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SHELLS AND SPHERES: A NOVEL FRAMEWORK FOR VARIABLE

SCALE STATISTICAL IMAGE ANALYSIS

C. Aaron Cois, M.S.

University of Pittsburgh, 2006

A framework for analyzing images, called Shells and Spheres, has been developed based

on a set of spheres with adjustable radii, with exactly one sphere centered at each image

pixel. This set of spheres, known as a sphere map, is considered optimized when each sphere

reaches, but does not cross, the nearest boundary. Calculations denoted as Variable-Scale

Statistics (VSS) are performed on populations of pixels within spheres, as well as popu-

lations of adjacent and overlapping spheres, in order to deduce the proper radius of each

sphere. Spheres grow or shrink by adding or deleting an outer shell one pixel thick . Unlike

conventional fixed-scale kernels, our spherical operators consider as many pixels as possible

to differentiate between objects and accurately delineate boundaries. The term “sphere”

is used for brevity, though the approach is not limited to 3D and is valid in n-dimensions.

The approach is illustrated using both real images and noiseless synthetic images contain-

ing objects with uniform intensity, and more closely examined and validated using various

synthetic images with added white noise and multiple contrast enhanced CT scans of the

aortic arch. A particular algorithm using Shells and Spheres is described and demonstrated

on segmentation of the aortic arch in a contrast-enhanced CT scan, both in 2D and 3D.
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1.0 INTRODUCTION

The framework of Shells and Spheres described in this thesis is based on a construct called

a sphere map. A sphere map is a set of spheres, exactly one sphere centered at each image

pixel, whose radii can be adjusted. Calculations denoted as Variable-Scale Statistics (VSS)

are performed on populations of pixels within spheres, as well as populations of adjacent

and overlapping spheres. Memory and computational requirements are kept reasonable by

storing only a relatively small, fixed number of VSS at each pixel, many of which can be

updated incrementally as spheres grow or shrink. The ultimate goal of radii adjustment

is to produce a sphere map in which each sphere is as large as possible without crossing

a boundary. Once properly adjusted, therefore, the spheres’ radii are equivalent to what

is commonly known as a distance map [1]. Though the task is trivial in binary images,

where definitive boundaries are known, it presents a challenge when boundaries are difficult

to determine due to noise and tissue inhomogeneity. The Shells and Spheres approach is

well suited to this challenge, as it makes use of uniquely large pixel populations defined by

maximally sized spheres for its region-defining statistics, though it is understood that the

correctness of segmentation of real images is ultimately subjective.

Many conventional methods for image processing consider a region of fixed size and

shape, usually referred to as a kernel, especially when used for convolution. Other common

approaches define dynamic regions adjoining boundaries using deformable contours [2] or

level sets [3]. Our approach, instead, uses a set of spheres whose individual radii are optimized

using VSS operators to achieve maximum discrimination between image regions. Not only

do such spheres provide highly representative populations for boundary detection and region

representation, but those spheres that touch at least two boundaries are also medial, as

classically defined by Blum [4], providing a basis for medial feature extraction. Unlike
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Gaussian blurring, commonly used in multi-scale analysis [5, 6], Shells and Spheres preserves

sharp boundaries with increasing scale.

This thesis develops the concepts of Shells and Spheres, VSS, and potential applications

of both to image analysis, with an emphasis on segmentation. Utilizing this framework, a

wide variety of diverse algorithms may be created for sphere map optimization, as well as

subsequent image analysis tasks. The information contained in an optimized sphere map has

applications to a number of such tasks in addition to segmentation, including registration,

structure identification, and measurement.

To begin, Chapter 2 provides background information on related topics in image analysis.

These areas of study represent classic and modern concepts and algorithms with which the

Shells and Spheres framework shares common ground, either in operation or objectives.

Chapter 3 details the methodology of the Shells and Spheres framework, including the

notation adopted for description of the framework and algorithms based on it. The general

principles of VSS and the statistical calculations currently used for analysis are presented in

detail, as well as a discussion of their specific performance compared to conventional image

analysis techniques.

Utilizing the Shells and Spheres framework and VSS, a variety of algorithms can be de-

veloped to optimize a sphere map and subsequently perform other image analysis tasks. One

such algorithm, designed to optimize the sphere map for an image and extended to identify

medial and boundary locations is presented in Chapter 4. The medial and boundary infor-

mation extracted is then applied to the task of image segmentation by utilizing a specially

designed flood-fill operation.

Chapter 5 presents and discusses results of the application of the system to real images

of the aortic arch. Segmentation results are presented for both 2D and 3D contrast-enhanced

CT images of the aortic arch. Tests are conducted on synthetic images with added white

noise to gauge performance of the algorithm in increasingly noisy conditions.

Finally, Chapter 6 will discuss various conclusions and proposes further research for the

Shells and Spheres framework and VSS.
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2.0 BACKGROUND

The essential purpose of the Shells and Spheres framework is to deduce the scale of each

pixel in an image. Scale is well-established in image analysis as a fundamental concept.

The analysis approach taken by the Shells and Spheres framework shares qualities with

the widely used concept of “scale space”[5, 6], as well as other popular analysis techniques

utilizing the principles of pixel scale, including Distance Maps [1], Fuzzy Connectedness [7],

and Mathematical Morphology [8], although the approach is different from all of these. A

discussion of the basic concepts of these techniques and the rationale for the divergence of

Shells and Spheres is fitting at this juncture.

2.1 SCALE SPACE

The concept of scale space, as put forth by Lindeberg [5, 6], adds a dimension to an image

by blurring it with a gaussian whose standard deviation increases along this new dimen-

sion. Thus, each pixel becomes a line along which it incorporates information from an even

larger, spherically symmetrical region in the image surrounding it. However, with Shells

and Spheres, for which the boundary of the spherical region is sharp, scale space inherently

defines spherical regions whose boundaries taper asymptotically to zero, associating larger

scales with blurred boundaries. As will be seen, Shells and Spheres avoids this unfortunate

association.
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2.2 DISTANCE MAPS

The calculation of distance maps in image analysis has been well studied. [1, 9, 10, 11, 12,

13, 14, 15] A distance map simply contains the distance from each pixel in an image to the

nearest boundary. A correctly optimized sphere map produces, in essence, a distance map,

as the radius of each sphere will be the distance to the boundary that caused the sphere to

stop its growth.

The computation of classical distance maps requires the previous determination of bound-

aries within an image. Boundaries can be detected in many ways, the most common classical

methods involving gradient calculations or intensity thresholding. Traditional gradient-based

boundary calculations are generally problematic, as they are based on fixed-size kernels,

which consider only small amounts of local image information when determining the loca-

tion of boundaries. Noise, particularly non-uniform or spatially low-frequency noise, can

generate non-boundary gradients capable of confusing gradient-based boundary detectors.

Fixed-sized boundary kernels have the added limitation that boundary location within a

given kernel placement is not reported, only the presence of the boundary somewhere within

the kernel is known. Thresholding image intensity introduces a separate set of concerns.

For ideal performance, homogeneity within objects, or at least low intra-object variance, is

desired. This is rarely, if ever, the case in real images. Additionally, finding the bound-

aries of multiple objects of different intensities within the same image may require multiple

thresholds, and intelligent determination of the number of thresholds and the optimum value

of each is difficult to automate.

The system presented in this dissertation was designed to address the aforementioned

shortcomings of classical boundary detection methods. To avoid the localization problem

of fixed-size kernels, we utilize the specialized VSS gradient, which is detected over a range

of sphere radii. This method allows verification of boundary gradients at multiple scales to

minimize instances of misinterpretation of noise as a boundary. In addition, boundaries are

subsequently adjusted and sharpened through the use of sets of spheres determined to be

in separate objects, across a shared boundary from each other. Statistical population tests

are used to determine the memberships of these sets, as well as the exact location of the
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boundary between them. The power of this method of boundary determination comes from

the ability of the sets to conform to arbitrary shapes and boundaries by combining spheres

of various sizes within the same object and from the consideration of large populations of

pixels on either side of a boundary in determining its exact location. By detecting each

homogeneous region in the image and using their independent statistical values, the system

overcomes the difficulties inherent to global thresholding by removing the need for multiple

explicit thresholds and is able to behave intelligently and independently in each object within

the image.

2.3 FUZZY-CONNECTEDNESS

In their recent papers on Fuzzy-Connectedness [7, 16, 17], Saha et al. describe a set of hyper-

balls centered at each image pixel, grown as large as possible without crossing boundaries.

This is the same basic goal presented for the spheres in this dissertation. Hyperballs provide

scale information for pixels to be used as a component of an affinity equation, which di-

rects the fuzzy-connectedness algorithm. The method used for calculating the size of each of

these hyperballs is detailed in [17]. The measure used to determine scale is a value denoted

FOk,v(c), which is the “fraction of the object” of a hyperball Bk,v(c) of radius k centered at

pixel c. The value of FOk,v(c) is calculated using a few fundamental values and concepts.

First, a user-defined homogeneity function W is used to find the probability (0-1) that two

pixels are in the same homogeneous region, given the intensity values of these two pixels c

and e, as in W (|f(c) − f(e)|). In the calculation of FOk,v(c), this function is used to find

the homogeneity measure between each pixel e in the outer shell of the hyperball, as repre-

sented in set notation by the subtraction of a sphere one size smaller from the current sphere

Bk,v(c)−Bk−1,v(c), and the central pixel c. Using these values, the equation for FOk,v(c) is

given as

FOk,v(c) =

∑
e∈Bk,v(c)−Bk−1,v(c) W (|f(c)− f(e)|)

|Bk,v(c)−Bk−1,v(c)|
. (2.1)
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The parameter v is a resolution value, and can be ignored in this discussion. The numerator

can be recognized as the sum of the homogeneity likelihood values given by W for each pixel

e in the hyperball’s outer shell when compared to the central pixel c. The denominator is

a normalizing factor, representing the number of pixels contained in the outer shell being

considered.

Thus, in a noiseless image, a sphere with an outer shell completely within a uniform

intensity region would have an FOk,v(c) value of 1. A manual threshold ts, under which the

FOk,v(c) values of spheres must remain in order to continue growth, is required. Saha, et al.

present a variety of possible homogeneity functions, each of which will perform differently

on a given image.

This method of scale calculation is not designed for extreme accuracy, and thus provides

a somewhat unreliable measure of scale. A number of issues with this approach become

readily apparent:

• using only the outer shell greatly decreases the statistical population used, weakening

the measurement

• the individual measure of homogeneity is derived from the comparison of only two pixels

(c and e), rather than an entire population

• the necessity of choosing the homogeneity function W adds a knowledge-dependent pa-

rameter to the system, which must be rectified by an experienced user

• the entire approach is highly dependent on having either uniform noise, or a very complex

homogeneity function designed to account for a specifically known type of non-uniform

noise

In noisy images, these drawbacks become cause for concern. Using only the central pixel

c as a basis for homogeneity comparisons is problematic, especially if that pixel is afflicted

with a large amount of noise. Homogeneity functions must be chosen very carefully by a

knowledgeable user. The interior region of the ball is not considered in any way, meaning

that the number of pixels considered to make a decision is small, compared to the pixel

population of the entire hyperball. There are two ways of considering this approach. Since

the population being considered is small compared to the entire sphere, a few pixels outside
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the region should have a more profound impact on the sum of the outer shell, and therefore

the sphere growth decision, than the same few pixels would have had when averaged in to

the pixel population of the entire sphere. This can be seen as a positive feature. However,

giving more weight to a few pixels can also be detrimental, as a few noisy pixels may have

a dramatic impact on the homogeneity value calculated. Viewed in this light, it can be seen

that the smaller population is more susceptible to the negative effects of noise and other

sources of inhomogeneity than a system using the largest population possible, which is the

approach used in Shells and Spheres.

2.4 MATHEMATICAL MORPHOLOGY

Mathematical Morphology [18, 8] should be discussed, as some conceptual similarities may

be seen between it and Shells and Spheres. The growing and shrinking actions of spheres

in Shells and Spheres may be likened to erosion and dilation of shapes in Mathematical

Morphology, and set theory is prevalent in both approaches. Homogeneous regions in Math-

ematical Morphology contort when eroded or dilated depending on the image data. Sets

of spheres in a Shells and Spheres system are able to combine to produce similarly com-

plex shapes, though they are made up of individual spheres whose only variable is radius.

A prominent distinction can be seen in the use of shape priors to govern shape evolution.

Mathematical Morphology uses a set called the “structuring element” to govern the erosion

or dilation of its shapes. This shape prior must be carefully selected using knowledge of the

data to be analyzed and the results desired. Shells and Spheres, on the other hand, currently

uses no shape prior in its analysis.

The above differences lead to notably different uses for these systems. Mathematical

Morphology is known for being able to remove incorrect or unwanted shapes (such as the

unwanted shorts in circuit boards) because an equal number of erosions and dilations using

the same structuring element can produce a shape different from the initial shape. With

Shells and Spheres, growing and shrinking a sphere an equal number of times always results

in the same final set of pixels, with the same resulting descriptive statistics. Any variability in
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this process comes from the algorithm used, and the way in which sets of spheres are created

and maintained. Additional constraints such as minimum sphere size could allow a Shells

and Spheres system to function in the same way, removing small objects while maintaining

larger ones. The introduction of shape priors into a Shells and Spheres system leads to a

whole new realm of possible algorithms and applications. None of these constraints, however,

are inherent to the framework or the approach itself.

This example is given as an illustration of the flexibility of the Shells and Spheres frame-

work, and its adaptability, via algorithmic design, to a wide variety of common image analysis

tasks. It is believed that the framework represents a novel, general toolkit for image analy-

sis, applicable to a variety of known tasks and algorithms as well as new and innovative

applications.

2.5 MEDIALNESS

Figure 1: The Blum medial manifold (dotted line) of a rectangle, with selected medial spheres

shown.

One other body of research needs to be included here, not necessarily for Shells and

Spheres itself, but for the application to which it is applied in this dissertation. A fun-

damental goal of the analysis system presented is to determine and describe the shape of

objects found within an image. While there are many possible descriptive methods, most are

based on boundary detection and/or medial analysis. Boundary detection defines a shape
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by finding points on the boundary of that shape. Medial analysis, instead, uses the points

at the center of a given shape to define it. While both of these methods can accurately

define shapes, the amount of data necessary for a medial representation is far less than for

the boundary representation, making it a more efficient approach. Consider a sphere, which

takes only one medial point (at the center) and a radius value to describe it. To describe this

same sphere with a boundary representation, an ever-increasing number of boundary points,

depending on the size of the sphere, must be used. Because of these innate advantages of

medial points as shape descriptors, their determination has been assigned a pivotal role in

the shape analysis methods presented in this thesis.

The classic medial manifold was defined by Blum [4]. This branching manifold, as seen in

Fig. 1, can be intuitively understood as the locus of all points forming the centers of spheres

(circles, in 2D) that can be placed entirely within an object and touch two or more separate

boundaries. When touching a boundary, a sphere is in a state such that, were the sphere to

grow any larger while maintaining its current center position, it would cross the boundary in

question. This is true of all maximally-sized spheres inside an object, while medial spheres

are distinctive in that they touch multiple boundaries, causing their centers to be located

on the medial manifold of the object. This concept and definition of medial manifolds was

actually inspirational in creating the Shells and Spheres approach, and finding medial points

remains one of its primary applications.
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3.0 METHODOLOGY

We will begin this section by defining notation. As previously mentioned, Shells and Spheres

can be generalized to n-dimensions. The term sphere is used (instead of “circle” or “hy-

persphere”) regardless of the number of dimensions involved. Figures are presented in 2-

dimensions for ease of illustration and explanation.

3.1 SHELLS AND SPHERES NOTATION

Since the framework of Shells and Spheres is used to gather statistics on dynamic collections

of pixels, a hybrid form of notation is derived from standard set theory and statistics. Vectors

are denoted by lowercase bold-faced letters (x), scalars by lowercase italic letters (r), and

sets by uppercase italic letters (S). Z denotes the set of all integers, and Ω ⊂ Zn denotes

the set of all pixel locations in a sampled n-dimensional image.

Given an n-dimensional image with intensities f(x) for x ∈ Ω, we define a radius image,

which assigns the radius r(x) to the sphere centered at each pixel x. The collection of all

spheres in the image, with their individual radii defined by r(x), is referred to as the sphere

map.

A sphere 1 is defined as an n-dimensional neighborhood of pixels that lie within a radius

r of a center point. Integer values are used for r, such that a sphere of radius r centered at

1Here it should be noted that many mathematicians use “sphere” to mean the 2D outer surface of a
spherical region and not the entire volume within, for which the term “ball” is reserved. We, however, will
trace our use of the word to Webster’s Dictionary, and to its common meaning in physics and astronomy,
where sphere means the entire volume within the spherical object.
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a pixel x is given by

Sr(x) = {y : round(|y − x|) ≤ r, y ∈ Ω} . (3.1)

Note the shorthand notation for the subscript r, meaning r(x), the radius of the particular

sphere at x as given by the sphere map. In some instances, the reader will encounter an

example with a different subscript, such as S1(x), meaning a sphere of radius 1, irrespective

of r(x). By definition, x ∈ Sr(x) for all x, even when r(x) = 0, and hence Sr(x) is always

non-empty.

A shell is a set of all pixels whose distance to the center rounds to a given radius, defined

for radius r as

Hr(x) = {y : round(|y − x|) = r, y ∈ Ω} . (3.2)

Shells are non-overlapping such that for concentric shells,

Hp(x) ∩Hq(x) = ∅, p 6= q . (3.3)

Additionally, shells are space-filling, and thus a sphere of radius r may be formed from a

union of shells,

Sr(x) =
r⋃

k=0

Hk(x) . (3.4)

Figure 2 illustrates the distribution of pixels in a series of concentric shells surrounding

a central pixel in a 2D image. Each pixel is labeled with its offset from the central pixel

(labeled “x”). Figure 3 shows an image containing two noiseless objects with pixel intensities

of 1 and 9 respectively. Note that pixels in this case are represented by their intensity. The

boundary between the objects is identified by a straight dashed line. Pixel x is surrounded by

a concentric set of four shells H0(x), H1(x), H2(x), and H3(x), shown separated by dashed

circles. Shell H3(x) is truncated by the edge of the image. The union of all four shells is

Sr(x), shown enclosed by a solid circle, with a radius governed by the value of r(x) = 3 in

the sphere map. Similarly, on the other side of the boundary, pixel y with a value of 9 has

three shells whose union Sr(y) has a radius r(y) = 2. Both Sr(x) and Sr(y) touch but do

not cross the boundary, and are therefore correctly optimized.

The correctly optimized sphere map of the image in Fig. 3 is shown in Fig. 4, with each

pixel represented by the radius of the sphere centered at that pixel. Note the linear increase
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Figure 2: Each pixel is shown as a number indicating its integer distance from the central

pixel. If we denote the central pixel as x, then pixels labeled with integer n are members of

the set Hn(x). For example, the pixels labeled “3” (shown in bold) comprise the set H3(x).

Figure 3: Noiseless image with boundary between two objects. Correctly scaled spheres

Sr(x) with r(x) = 3 and Sr(y) with r(y) = 2 touch, but do not cross, the boundary.

Numbers indicate pixel intensity.

in sphere radius with distance from the boundary and the fact that the radius equals zero

adjacent to the boundary.
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Figure 4: Correctly optimized sphere map of the image in Fig. 3. Numbers indicate the

integer radius of the sphere at each pixel. Pixels x and y are labeled as before.

3.2 VARIABLE SCALE STATISTICS

A number of statistics are derived at each pixel x, calculated from the intensities of pixels

within various spheres within the sphere map. Since these statistics depend on the radii of

the spheres, we call them Variable Scale Statistics (VSS). We denote as primary statistics

those VSS at x calculated using only the population of pixels within Sr(x). Higher-order

secondary statistics are VSS derived from multiple spheres.

3.2.1 Primary Statistics

The primary statistics at pixel x concern only the population of pixels within the sphere

Sr(x). Thus the mean at pixel x is the mean intensity of all pixels within the population

Sr(x), defined as

µ(x) =
1

|Sr(x)|
∑

y∈Sr(x)

f(y) , (3.5)

where |Sr(x)| is the number of pixels in Sr(x) and f(y) is the image intensity at y. The

variance at pixel x is defined as

σ2(x) =
1

|Sr(x)| − 1

∑
y∈Sr(x)

[f(y)− µ(x)]2 . (3.6)

where |Sr(x)| > 1. The standard deviation σ(x) is simply the square root of the variance.
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The first-order moment of intensities within Sr(x) is given by

m(x) =
∑

y∈Sr(x)

(y − x)f(y) . (3.7)

Due to the finite extent of an image’s domain Ω, a sphere may be truncated by one or

more edges of the image (for example, S3(x) in Fig. 3). Unlike conventional kernels, which

usually require pixel values to be arbitrarily defined outside the image, these spherical sets

simply exclude such locations from all calculations. This truncation will not adversely affect

µ(x) or σ(x). However, the first-order moment will suffer a bias due to asymmetrical pixel

distribution within the truncated sphere. To compensate for this bias, a measure that shows

no edge effect is defined, called VSS gradient. Given the center of mass of pixel locations in

sphere Sr(x),

c(x) =
1

|Sr(x)|
∑

y∈Sr(x)

y , (3.8)

the VSS gradient at x is

∇f(x) =
1

|Sr(x)|
[m(x)− µ(x)(c(x)− x)] . (3.9)

The VSS gradient does not suffer from the usual edge effects of convolution kernels (see Fig.

7C). Note that for non-truncated spheres c(x) = x and VSS gradient is equivalent to the

moment vector normalized to the number of pixels, m(x) / |Sr(x)|.

All of the above statistics can be computed incrementally as shells are added to, or

removed from, a given sphere, significantly reducing computational load during sphere map

optimization.

3.2.2 Secondary Statistics

Secondary statistics are defined as higher order VSS derived by combining multiple spheres

to form more complex neighborhoods. One such neighborhood, S−1(x), is defined as

S−1(x) = {y : x ∈ Sr(y)} , (3.10)
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Figure 5: Set S−1(x) of spheres that contain pixel x, adjacent to the boundary between two

noiseless objects with respective intensities of 1 and 9. Numbers indicate the intensity value

of the pixel. (centers of the spheres shown in bold)

the set of all pixels whose spheres contain x. The −1 supercsript is used to impart the flavor

of an inverse function. Note that since it is always true that x ∈ Sr(x) it must likewise

always be true that x ∈ S−1(x).

Given an optimized radius image, S−1(x) will consist entirely of pixels within the same

object as pixel x. Fig. 5 shows members of one such S−1(x) set, consisting of three pixels

(bold), whose spheres contain x. Notice that all three spheres touch but do not cross the

boundary, so this particular S−1(x) set is correctly optimized.

Secondary statistics are derived from populations of spheres such as S−1(x). Thus, the

mean of means is defined as

µµ(x) =
1

|S−1(x)|
∑

y∈S−1(x)

µ(y) , (3.11)

or the mean of the mean intensities for all the spheres in S−1(x). In a noiseless image

containing distinct homogeneous regions, µµ(x) yielded by a correct sphere map will be

identical to the original image.

Likewise, the standard deviation of the means is defined as

σµ(x) =

 1

|S−1(x)| − 1

∑
y∈S−1(x)

[µ(y)− µµ(x)]2

 1
2

. (3.12)
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Figure 6: Image with noise. Numbers indicate the intensity value of the pixel. Pixel x is

deterred from extending its sphere across the boundary because its mean is an outlier in the

population S−1(y).

Note that the above definition of σµ(x) is given only for |S−1(x)| > 1. For noiseless images,

a correct sphere map will yield σµ(x) values of 0 for all pixels. In an image containing noise,

σµ(x) of spheres within the same region can provide a measure of the total inhomogeneity of

the region. Note that this measure includes both local and global sources of inhomogeneity,

such as tissue inhomogeneity, uniform image noise, scanner noise, etc.

The z-value of a pair of spheres is defined to provide a measure of how well S(x) fits into

the current S−1(y) set,

zµ(x|y) =
|µ(x)− µµ(y)|

σµ(y)
. (3.13)

The justification is that, in an optimized radius image, if Sr(x) were to contain pixel y, then

µ(x) should fall well within the distribution of means for all spheres that already contain y.

This concept is illustrated in Fig. 6, which shows pixel x attempting to extend its sphere

across the boundary to include pixel y. Noise has been included in the image to demonstrate

that a high z-value could be used to stop the growth of Sr(x) at the boundary, even in the

presence of noise. It should be noted that the utility of this statistic is dependent on a

reasonable initialization of the sphere map, such that the percentage of spheres not crossing

boundaries is high enough to lend statistical validity to µµ(y) and σµ(y).
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3.2.3 Demonstration on a Noiseless Image

The optimization of a sphere map using the presented system is demonstrated on a noiseless

synthetic image containing a number of homogeneous objects as shown in Fig. 7A. Opti-

mization on such an image is trivial; spheres are initialized to zero radius and allowed to

grow until adding the next shell would yield a non-zero variance σ2(x). Figure 7B shows

results of optimizing the sphere map on the synthetic image in Fig. 7A. Figure 7B shows

negative ridges (dark) along boundaries, and positive ridges (bright) along medial manifolds.

Figures 7C and 7D show, respectively, the y component of the VSS gradient and the vari-

ance calculated using spheres of radius 5 at all pixels in the image. Note that neither the

gradient nor the variance suffer from edge effects. Note also that Figs. 7C and 7D use a

non-optimized sphere map, which includes spheres that cross boundaries. On this “perfect”

image with completely uniform object intensity, both VSS gradient and variance would be

zero for the optimized sphere map shown, where spheres all contain only homogeneous sets

of pixels.
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Figure 7: A: A noiseless synthetic image. B: The optimal radius image. C: The VSS gradient

in the y direction, calculated using spheres of radius 5 pixels at all image points. D: The

variance image, also calculated with all spheres set to a radius of 5.
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4.0 ALGORITHM FOR SEGMENTING REAL IMAGES

Figure 8: Images used for illustrative testing. Left: A 2D synthetic image with homogeneous

regions, including added synthetic uniform noise (calculated using Equation 5.1, detailed in

the Results chapter). Right: A contrast-enhanced CT scan of the aortic arch.

The Shells and Spheres framework presented thus far provides a basic set of versatile

image analysis tools. A number of methods for the use of these tools have been explored,

and in the remainder of this thesis one effective multistage algorithm for optimization of

a sphere map will be presented. Along with its incremental performance segmentation of

image objects in both real and synthetic data will be demonstrated. The presentation of

this algorithm provides not only an example of a functional Shells and Spheres system, but

also provides insight into the advantages, limitations, and overall utility of the Shells and

Spheres framework.

The algorithm described takes the form of a six step process, with steps 1-4 optimizing
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the sphere map, step 5 finding medial pixels, and step 6 producing an object segmentation.

Step 1 creates an initial approximation of the sphere map, from which acceptable statis-

tical values can be obtained for use in subsequent steps. Step 2 utilizes the pronounced

discrepancy in variance between spheres that have incorrectly grown across boundaries and

those that have not to reduce the size of incorrect spheres, placing them correctly within

their appropriate image objects. Step 3 introduces specialized boundary indicators, known

as outposts, to the image via boundary information extracted from population testing be-

tween spheres in adjacent image objects. These outposts then influence the radii of nearby

spheres, resizing them to adhere to the established boundary information. Step 4 revisits

variance calculation using the current sphere map, which is more accurate than the sphere

map previously available. The new variance measure is applied to spheres, encouraging them

to fully grow within their respective image objects, effectively smoothing the radius image

and sharpening its “boundaries” (as defined by all spheres that remain at the initial scale

of 0, or a size of 1 pixel) simultaneously. Step 5 identifies medial pixels, i.e. those whose

spheres touch at least two boundaries. Given a medial seed point, step 6 connects neighbor-

ing medial pixels and combines their corresponding spheres to produce a segmentation. The

following sections describe each step in more detail.

To illustrate the effect of each step more clearly, the progress of the radius image will

be followed on a synthetic image with added noise and a contrast-enhanced CT scan of the

aortic arch, both shown in Fig. 8. To clearly display the performance of each component of

the algorithm, results will be presented after each phase of development of the radius image,

i.e. after each of the six steps presented, for both images. Stepwise results are presented on

2D images only, for ease of visual presentation, though final results will also be presented for

the full 3D aortic arch data set. The 3D results presented are not compiled from a series of

2D data slices. Rather, they are intrinsic 3D calculations, as the algorithm presented, like

the Shells and Spheres framework itself, is inherently n-dimensional.
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4.1 STEP 1: VSS GRADIENT-BASED RADIUS APPROXIMATION

For the noiseless synthetic image shown earlier (Fig. 7), it is trivial to optimize the sphere

map by growing the spheres until any non-zero variance is detected. When analyzing real

images, however, this approach will fail, because intensity variation due to noise may be

indistinguishable from an object boundary, especially within small spheres. To yield viable

statistical populations for region representation, at least some spheres must be correctly

initialized. To accomplish this, all spheres are first set to r(x) = 0 and are then allowed

to grow until a persistent increase in VSS gradient magnitude is detected over a series of

scales. Unlike conventional gradient measured with a fixed-scale kernel, the VSS gradient

depends locally on r(x), and is based on the first-order moment of intensity normalized by

the number of pixels in the sphere. Thus the VSS gradient can be expected to increase

monotonically as a sphere grows past a boundary, since the first order moment favors the

outer pixels. A persistent increase in VSS gradient for g consecutive steps is sought, at

which point r(x) is reset to the scale just before the increase began. Empirically, it has been

found that a value of g = 5 performs well for the data tested to achieve a reasonable first

approximation of the optimized sphere map. Theoretically, the ideal value of this parameter

would change in proportion to the amount of uniform image noise, as a higher level of noise

would cause more obfuscation of boundaries, impeding the detection of gradient. Note that

any increase in gradient, regardless of magnitude, will count as one of the g increases. In

the same manner, even the slightest decrease in gradient will break the chain of consecutive

gradient increases being sought. Noise can cause random small fluctuations in gradient when

no actual gradient is present. Because of the possibility of this anomaly occurring just before

a growing sphere encounters an actual gradient, it is not unlikely that a sphere’s position at

the end of Step 1 will be one or two steps short of the actual boundary. A less likely, but

still possible, error is the case in which noise may cause enough of a decrease in perceived

gradient to cause a break in the chain of g consecutive gradient increases caused by an actual

boundary. Since it is far more likely that noise could overcome the influence of an actual

boundary on the VSS gradient within a small population of pixels (i.e. a small-scale sphere),

it is equally likely that such an error would only occur early in a sphere’s growth, again only
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deviating the sphere’s end position by a few units of radius from the ideal.

Figure 9: A: The sphere map r(x) of the image after Step 1. B: The variance of each pixel

after Step 1. The grayscale range of the image is 0-300, while all green pixels are distinctly

higher than this range.

Figure 9A shows the state of the sphere map after this first step for a the noisy synthetic

image presented, while Fig. 11A shows the same information for a contrast-enhanced CT scan

of the aortic arch. When examining the r(x) image in Fig. 9A, two problems are immediately

apparent. First, there is sporadic noise in the scales of the pixels, leaving them often with

lower intensity than they should be, indicating spheres that have not grown enough. These

spheres have been stopped early by noise that was perceived as boundary. Second, there

are abnormally high scale pixels in the centers of objects. These values represent spheres

that have grown past two symmetrical boundaries on opposite sides of the sphere because

the gradient contributions of the opposing boundaries canceled each other, producing an

incorrectly small moment (See Eqn. 3.7). As will be seen in the following section, this latter

problem can be addressed using variance.

This first step is effective at growing spheres past tissue inhomogeneity and noise. How-

ever, spheres may not stop exactly on the boundary because of the aforementioned effect of

noise on the detection of gradient increase. Using VSS gradient to govern sphere growth can

also fail completely for a sphere that encounters two opposing boundaries simultaneously, as

their contributions to the gradient may cancel.
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Figure 10: A colored height map of the variance image from Fig. 9B

Figure 11: A: Sphere map r(x) after Step 1. B: The variance of each pixel after Step 1. The

grayscale range of the image is 0-915, while all green pixels are distinctly higher than this

range.
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4.2 STEP 2: VARIANCE-CONSTRAINED RADIUS REDUCTION

After Step 1, three possible states exist for each sphere: The sphere can be too large, too

small, or the correct size (i.e. it touches the nearest boundary but does not cross it). The

most glaring error in the sphere map after Step 1 is the presence of large-scale spheres that

have incorrectly grown past boundaries. As previously mentioned, this type of error typically

occurs when a growing sphere contacts multiple boundaries at once, which in many cases

indicates that the sphere lies on the medial manifold. In such a case, the contributions to

the VSS gradient from multiple boundaries may cancel, allowing the sphere to grow larger

than its correct radius.

Examples of such erroneously high-variance pixels can be seen in Fig. 9B. These incorrect

pixels are colored green because their variance value is exponentially higher than the grayscale

pixels. While the grayscale portions of the image have a range of intensity values from 0

to 300, the green values increase to nearly 16000. The full range of the variance of these

improperly grown pixels can be easily seen in Fig. 10. The flat “floor” section of the image

is the average variance produced by the noise added to the image, which has a value near

200. The spheres near boundaries are seen to have distinctly lower variance, since they are

very small scale, and thus contain very few pixels. Figure 11 shows the same data described

above for a contrast-enhanced CT scan of the aortic arch. The same problematic trends

in the sphere map can be seen, as well as similar high variance issues caused by spheres

growing past boundaries. Note that the range on the grayscale areas in the variance image

(Fig. 11B) is 0-915, differing from that of its synthetic counterpart.

These erroneous spheres will, however, have a larger variance σ2(x) than spheres that

correctly remain within the object boundaries, a fact which can be exploited to correct them.

To address the problem, all spheres with a variance above a certain threshold α are shrunk

by decrementing r(x) for each sphere Sr(x) until σ2(x) < α. The threshold α is set relative

to µσ2 and σσ2 , the mean and standard deviation, respectively, of the variance of all the

spheres in the current sphere map, as defined by

α = µσ2 + βσσ2 . (4.1)
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The positive constant β represents the number of standard deviations above the mean

permitted for a sphere’s variance without the sphere being required to shrink. This parameter

is not particularly sensitive, as the difference between spheres with erroneously high variance

and all others is approximately two orders of magnitude. For the results presented, a value

of β = 0.2 was used.

An arbitrary global threshold for σ2(x) is not ideal, because it assumes a constant ex-

pected variance throughout the image. This expectation is likely untrue, given factors such

as tissue inhomogeneity and nonuniform noise, and future work may explore locally normal-

ized thresholds. It should also be noted that the threshold depends on the current r(x),

which is not yet fully optimized at this step. This deficiency is addressed by returning to

variance in Step 4, once a more accurate r(x) is available.

Figure 12: A: The sphere map r(x) of the image after Step 2. B: Variance image after Step

2. The grayscale range of the image is 0-300.

Reducing the radius of pixels with extremely high variance will correct a majority of

the spheres that have incorrectly grown past boundaries. The updated variance height map

after Step 2 is shown in Figure 13, and effectively illustrates the fact that the high variance

regions in the centers of objects have been eliminated.

This effect can also be seen in the variance and radius images (Fig. 12A and Fig. 14B,

where the abruptly large-scale pixels at the centers of objects have been corrected.
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Figure 13: A colored height map of the variance image from Fig. 12B, showing the state of

variance after Step 2.

Figure 14: A: Sphere map r(x) after Step 2. B: An image of the variance of each pixel after

Step 2. The grayscale range of the image is 0-915.
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4.3 STEP 3: OUTPOST SELECTION AND EXCLUSION

A primary use of VSS is to differentiate regions on opposite sides of the boundary. To do

this, however, the radius image r(x) must be in a state such that most spheres are not

crossing boundaries, as spheres containing pixels from multiple image objects will decrease

the effectiveness of statistics by representing samples from more than one object. Following

Step 2, it is generally the case that enough spheres are correctly sized that many face each

other across boundaries, producing high values for zµ(x|y). Likely boundary candidates

are identified for a given sphere by finding a pixel y in its Hr+1(x) shell with a high value

for zµ(x|y). The sphere at x is said to place a reflector at such a location, a metaphorical

construct denoting a vote by the sphere for the pixel y as a point across its nearest boundary.

Note that we do not vote for this pixel as a boundary itself, since boundaries may exist

between pixels, as in Figure 3. Instead, pixels on each side of a detected boundary are

marked. Thus, referring to Fig. 6, Sr(x) could place a reflector at pixel y. The set of

reflectors placed by a given sphere Sr(x) is denoted K(x). In the present algorithm the

constraint |K(x)| = 1 is applied, limiting each sphere by allowing it to place only one

reflector for reasons discussed below. This constraint leads to the definition of K(x) as

K(x) = {y : y = argmax
y∈Hr+1(x)

zµ(x|y)}. (4.2)

Such a constraint allows for the use of an argmax in determining the placement of a sphere’s

reflector, rather than requiring a decision of which pixels (and their corresponding zµ(x|y)

values) in its Hr+1(x) may represent a boundary and which do not. If a boundary exists

just beyond the outer shell of Sr(x), it will be located at the pixel y for which the highest

zµ(x|y) is calculated.

Each pixel may contain reflectors placed by a number of spheres. The set of spheres that

have placed reflectors at x is defined as

K−1(x) = {y : x ∈ K(y)}, (4.3)

invoking the same inverse notation used for S−1(x) in Eq. 3.10. Figure 15 shows a set of

spheres placing their reflectors across a boundary at pixel x.
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Figure 15: Illustration of K−1(x) containing 7 pixels (bold), each of whose sphere would

place its reflector across the boundary at x.

|K−1(x)| is referred to as the reflector count, i.e. the number of reflectors that have been

placed at location x. For example, in Figure 15, the reflector count |K−1(x)| = 7.

A reflector placed by y at x has an inherent direction governed by the vector (y − x).

The vector sum of the directions of all of the reflectors at x is denoted the reflectance k(x),

defined by

k(x) =
1

|K−1(x)|
∑

y∈K−1(x)

y − x

|y − x|
. (4.4)

This measure provides the average orientation of the K−1(x) population, which describes

the direction normal to the boundary, pointing to the center of the region represented by

K−1(x). Since it was decided that each sphere will contribute exactly one reflector, reflector

density and reflectance are normalized over the image. Therefore, reflector count can be used

to differentiate between significant collections of reflectors correctly placed at boundaries and

sparse distributions of reflectors incorrectly placed in the interior of objects. To denote pixels

containing a significant number of reflectors, the term outpost is adopted, since such pixels

serve as border markers, and in fact face each other across boundaries much the same way

that military outposts of opposing armies face each other across the battle line.

The set of all pixels in an image chosen to be outposts is denoted by P . In the present

algorithm this set is found in two steps. First, the set of primary outposts P ′ is established,
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containing all pixels with zero radius and at least κ reflectors, i.e.

P ′ = {x : |K−1(x)| ≥ κ, r(x) = 0}. (4.5)

For the results presented in this thesis, κ = 4. To increase the density of outposts along

the boundaries, a set of secondary outposts P ′′ is generated, containing all pixels with zero

radius that adjoin an outpost in P ′ and have at least λ reflectors, where λ < κ,

P ′′ = {x : |K−1(x)| ≥ λ, H1(x) ∩ P ′ 6= ∅, r(x) = 0}. (4.6)

For the results presented, λ = 2. By combining the sets of primary and secondary outposts,

the set of all outposts,

P = P ′ ∪ P ′′ (4.7)

is formed.

Each outpost y ∈ P has a reflectance k(y). A sphere at x can distinguish whether a

given outpost is on its side of the boundary, constituting a friendly outpost, or the other

side of the boundary, constituting an enemy outpost, based on the direction of the outpost’s

reflectance. The set of enemy outposts (those with reflectance facing x) within the sphere

of radius r(x), is defined as

Er(x) = {y : y ∈ P ∩ Sr(x),k(y) · (y − x) < 0}, (4.8)

where the sign of the dot product determines the direction of k(y) relative to x, differentiating

friendly from enemy outposts. The exceedingly unlikely case of an outposts with k(y) = 0

can be considered a friendly outpost, as it does not indicate a boundary facing the sphere.

In governing the growth of a sphere, enemy outposts are to be avoided, while friendly

outposts can be included. More specifically, enemy outposts stop the growth of spheres,

as they represent a different image region than the one in which the sphere resides, while

friendly outposts do not. Step 3 uses the number of enemy outposts to adjust the sphere

size as follows: If the pixel contains no enemy outposts in Sr+1(x), the sphere grows until it

does. That is

If |Er+1(x)| = 0, increase r(x) until |Er+1(x)| > 0.
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If the number of enemy outposts in Sr(x) is greater than γ, the radius is decreased until this

is no longer true, i.e.

If |Er(x)| > γ, reduce r(x) until |Er(x)| ≤ γ.

In the present implementation, γ = 2. This factor prevents lone pixels that have been

improperly labeled as outposts from incorrectly causing spheres to shrink.

Figure 16: A: Reflector count of all pixels after Step 3 with a binary threshold (|K−1(x)| ≥ 1).

B: Reflector count of all pixels after Step 3 with |K−1(x)| ≥ 4. C: The radius image r(x)

after Step 3. D: Variance after Step 3, with a grayscale range of 0-300.

After Step 2, the most pressing issue with the sphere map is the scattered effects of

noise on r(x), leading to the noise seen in the radius image in Fig. 12A. Now that the

incorrectly large spheres have been adjusted to a more correct size, the next logical step is

to focus on the small-scale pixels that incorrectly stopped growth at image noise, instead

of growing to an actual boundary. Outposts provide a means for correcting these errors, as

well as for adjusting spheres that have grown slightly too large or too small relative to their

nearest boundary. The effect of these outpost-driven operations is that significant densities of

reflectors along boundaries are used to correctly govern the size of spheres, sweeping incorrect

reflectors from the centers of objects to the boundaries, as a sphere’s reflector is redistributed

when its radius is altered. Because most spheres are large relative to the spacing of outposts
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Figure 17: A: Reflector count of all pixels after Step 3 with a binary threshold (|K−1(x)| ≥ 1).

B: Reflector count of all pixels after Step 3 with |K−1(x)| ≥ 4. C: The radius image r(x)

after Step 3. D: Variance after Step 3, with a grayscale range of 0-915.

along the boundary, their growth will be stopped and they will not “leak” or “bleed” across

boundaries.

Figure 16 shows the state of the system after outpost selection and exclusion, adding

reflector output to the previous figure format. Figure 16A is a binary thresholded image

showing all pixels that have had at least one reflector placed at them. This set of pixels is

dense, and while the true boundary pixels can be seen, a large number of false boundaries are

also represented. Recall that only pixels with values of |K−1(x)| ≥ 4 are selected as primary

outposts, provided they also have a radius value of r(x) = 0. These candidate outpost pixels

are shown in Fig. 16B. This set of pixels is far more representative of the actual boundaries

in the image, yielding an effective basis for sphere radius correction.

Figure 18 shows the outposts calculated for each of the test images presented. Red pixels

indicate primary outposts, and yellow pixels indicate secondary outposts. Comparing these

images with the data shown in Figures 16B and 17B allows us to see the effects of creating

outposts from reflectors, and the way in which the boundary information is enhanced by

adding the radius constraint to the reflector thresholds κ and λ.
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Figure 18: Left: Primary (red) and Secondary (yellow) outposts calculated for the synthetic

test image. Right: Primary (red) and Secondary (yellow) outposts calculated for the real

test image.

As can be seen in Fig. 16C, much of the sporadic noise in r(x) has been removed by

Step 3, leaving a noticeably smoother sphere map. This step also has a notable effect on the

variance, shown in Fig. 16D. As spheres cease crossing boundaries, variance inside objects

becomes much more uniform, as can be expected (compare Fig. 16D to Fig. 12B). It should

also be noted that this step yields a much more representative image variance than the

variance at the onset of Step 2, used to calculate the threshold α (Eqn. 4.2).

Figure 17 shows the same results for the real CT image, and the same basic elements

of progress can be seen. For this real image, one will note that the reflector count images

are less concentrated at actual boundaries, and the sphere map is far more inconsistent than

its synthetic counterpart. However, even this seemingly sparse set of correct outposts is

effective in correcting a large percentage of the sphere radii, as can be seen in the increased

smoothness in the sphere map between Figure 14B and Figure 17C.
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4.4 STEP 4: VARIANCE-CONSTRAINED SCALE GROWTH

At this point in the analysis, our sphere map has achieved a configuration generally rep-

resentative of the shapes within the image, but still retains adverse effects from noise and

sub-optimal boundary detection. Although Step 3 results in a reasonably accurate r(x),

some spheres still may not reach boundaries, due to pixels incorrectly labeled as outposts.

These false outposts will stop spheres in the interior of image regions, leading to the jagged

effect on boundaries in the radius images in Figures 16C and 17C. Since the issue at hand

is spheres stopping their growth short of the nearest boundary, an added measure to force

spheres to grow maximally within their object regions is required. To facilitate this growth

variance is used a second time, calculated in the same manner as in Step 2, but used to force

growth, rather than limiting it.

Figure 19: A: Reflector count of all pixels after Step 4 with a binary threshold (|K−1(x)| ≥ 1)

B: Reflector count of all pixels after Step 4 with a binary threshold |K−1(x)| ≥ 4. C: Radius

image r(x) of the image after Step 4. D: Variance after Step 4, with a grayscale range of

0-300.

The global variance threshold α, recalculated as described in Section 4.4, can be used

to smooth the boundaries in the radius image by forcing spheres to grow up to the actual

boundary using the current, more accurate variance representative of the regions. Due to

further optimization of the sphere radii, α represents a more appropriate variance thresh-

old than it did in Step 2, allowing Step 4 to perform more sensitive region-approximating

operations. Invoking the variance threshold, the value of r(x) is incremented for all spheres
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Figure 20: A: Reflector count of all pixels with a binary threshold (|K−1(x)| ≥ 1) B: Reflector

count of all pixels after Step 4 with a binary threshold |K−1(x)| ≥ 4. C: Radius image r(x)

of the image after Step 4. D: Variance after Step 4, with a grayscale range of 0-915.

while σ2(x) < α. This final measure creates a radius image defining spheres which more

accurately match the contours of the objects in the image.

The dramatic effects of this final measure can be seen in Figs. 19 and 20 for our syn-

thetic and real images, respectively. It should be noted that in addition to smoothing the

r(x) image, this step also sharpens the boundaries (especially apparent in Fig. 19D when

compared with Fig. 16D) by causing spheres to grow as far as possible within their object

regions.

This last step produces the final optimized set of radius values for each sphere in the

image, for use in the segmentation routine to be described in the following section. At this

point r(x) is considered optimized.
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Figure 21: Diagram on the left of an object with intensity 1 between two regions of intensity

9, showing set S−1(b) of pixels (bold) whose spheres contain pixel b. This set produces an

s(b) vector along which the furthest bold pixel m is the center of a medial sphere (circle in

bold) touching both boundaries (dashed lines). Image on the right of a 2D slice through a

CT scan of the aorta with contrast shows an actual S−1(b) set (purple/grey), the resulting

s(b) vector, and the medial manifold (dashed curve) on which the furthest sphere along s(b)

must lie.

4.5 STEP 5: MEDIAL PIXEL IDENTIFICATION

Given an optimized radius image r(x), the next goal is to extract medial pixels. To facilitate

this, a dense set of boundary pixels B is first defined from the sphere map as those pixels

with radius 0 or 1,

B = {x : r(x) ≤ 1}. (4.9)

The sets S−1(b) for all b ∈ B can be used to find pixels on the medial manifold, whose

spheres are as big as possible while still lying completely within the object. Recall that the

S−1(b) set for pixel b contains all spheres that contain pixel b. Given a correct sphere map,

this set will necessarily contain at least one sphere that touches both the boundary that

pixel b borders as well as an opposing boundary across the object region (and also across

the sphere) from pixel b. Figure 21(left) shows such a medial pixel (labeled “m”) on the

medial manifold of an object of intensity 1, between two regions of intensity 9.

To find such medial pixels within S−1(b), we first define an orientation s(b) orthogonal
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to the boundary as the vector sum of the normalized offsets relative to b for pixels within

S−1(b) as

s(b) =
1

|S−1(b)|
∑

y∈S−1(b)

y − b

|y − b|
. (4.10)

For each boundary pixel b ∈ B, the pixel m ∈ S−1(b) furthest from the boundary along

s(b) is identified as a medial pixel, as depicted in Fig. 21(left). The set of all medial pixels

M is thus

M = {m : m = argmax
y∈S−1(b)

((y − b) · s(b)),b ∈ B}. (4.11)

Figure 21(right) shows an actual S−1(b) set for a pixel b on the boundary of the aorta

in a CT scan with contrast.

Selecting a single pixel from each S−1(b) set overlooks a large number of additional medial

pixels on the outer edge of each set, but no reliable method has been found for extracting

only medial pixels from an S−1(b) set. This is in part due to the high variation in shape

of S−1(b) sets, which is a product of the local variability of the image objects in question.

A standard distance from the boundary for each medial pixel cannot be assumed, as this

distance is dependent upon the local thickness of the object and the relative orientation of

its boundaries. One can, however, be certain that each S−1(b) set contains a minimum of

one medial pixel, as the center of the largest sphere in the direction of the nearest boundary

is necessarily a medial pixel. The set M derived taking advantage of this fact is a sparse but

reliable set of pixels on the various medial manifolds within the image.

4.6 STEP 6: MEDIAL FLOOD-FILL SEGMENTATION

To segment a particular object, a medial seed pixel p ∈ M on that object’s medial manifold

is manually selected. A flood fill operator is then used to find a connected subset C ⊆ M

containing medial pixels that are connected to p. Pixels belonging in C are found iteratively

using a series of sets Ci starting with C0, a set containing just the seed pixel p. At each

subsequent step i + 1, the set Ci+1 is created by adding medial pixels within a radius φ of
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pixels already in set Ci. More precisely, Ci is defined inductively as

C0 = {p} (4.12)

Ci+1 = {x : x ∈ M, Sφ(x) ∩ Ci 6= ∅}. (4.13)

For the results presented, scale φ was dynamically set to φ(x) = r(x)/2, as this causes

the algorithm to search half-way from the medial manifold to the boundary for new medial

pixels to include, therefore staying within the designated object. When a final step f adds

no new pixels, such that

Cf = Cf−1, (4.14)

the flood-fill is complete, as the set of connected medial pixels within the object is the current

pixel collection, or

C = Cf . (4.15)

The union of the set of spheres centered at these medial pixels effectively segments the object

by including all of the pixels designated as within the object. These spheres, centered on

the medial manifold, extend to all points on the boundary.
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5.0 RESULTS

All of the tests shown thus far were run in 2D, for ease in illustration and interpretation.

Long term goals for Shells and Spheres, however, involve application to 3D medical image

data.

Tests were performed on a 3D contrast-enhanced CT scan containing the aortic arch to

showcase performance on real images. Results can be seen in Fig. 22. Figure 22A shows a

2D sagittal slice through the raw 3D data. Figure 22B is the optimized sphere map r(x) of

this 2D slice after step 4 showing dark ridges along the boundaries and bright ridges along

the medial manifolds. The mean of means image µµ(x), obtained using spheres from the

optimized sphere map, is shown in Fig. 22C. A reduction in noise within objects, without

significant blurring of boundaries, is evident. Fig. 22D shows the corresponding medial

pixels in set M as blue/dark spots and the segmentation from a seed pixel within the aorta

as pink/dark shading.

Figure 23 shows the results of the algorithm on the full 3D CT data set from which the

example 2D CT images shown throughout this thesis were taken. The surface model shown

is simply the union of all spheres in the segmentation set C calculated from a medial seed

pixel within the aortic arch. The lighting on the surface model was produced using OpenGL

to render the spheres in set C. Figure 24 shows a different 3D CT aortic arch data set, with

and without an overlayed segmentation produced by the system presented.
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Figure 22: A: 2D CT image of the aortic arch. B: Optimized r(x) image. C: Measured

mean of means µµ(x) image given optimized r(x). D: Segmentation of aortic arch (pink)

and medial pixels within the image objects (blue).
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Figure 23: Surface model of the aortic arch produced by applying our algorithm to a 3D

contrast-enhanced CT scan, using a single manually placed seed point.

Figure 24: Left: A different 3D contrast-enhanced CT scan of the aortic arch. Right: An

overlayed surface model of the aortic arch produced by applying our algorithm, using a single

manually placed seed point.
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Figure 25: Left: A binary synthetic branching structure image. Middle: The radius image

r(x) resulting from optimization using the algorithm presented. Right: A subsequent seg-

mentation of the image, showcasing the medial pixels detected (highlighted in yellow). (DSC

= 0.999927)

Branching structures often provide difficulty for medial manifold detection algorithms.

A synthetic 2D branching image was used to validate basic performance of the algorithm on

detecting and following branching medial structures. The 200x200 test image used and the

results obtained are shown in Figure 25. Segmentation performance was quantified by using

the Dice Similarity Coefficient (DSC) to compare the segmented region to the known pixels

comprising the object in the test image. It can be seen that the branching medial manifold

is properly detected, which leads to a successful segmentation with a DSC value of 0.999927

to the correct object. Notice that appropriate medial manifolds are detected outside, as well

as inside, the object.
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Figure 26: Synthetic binary image used to test segmentation performance in the presence of

noise.

To test performance degradation in in various levels of noise, the binary synthetic image

(black = 0, white = 255) in Figure 26 was used. It should be noted that the object in the

image is not perfectly symmetrical. Tests using the optimization algorithm presented were

run on this image with increasing amounts of additive uniform noise, added as

f(x) = f(x) + N ·R−N/2 (5.1)

where N is a noise amplitude parameter and R is a random number generated between 0

and 1 using std::rand()/RAND MAX, for all f(x) ∈ Ω. This produces a uniform random

distribution of additive noise over [−N/2, N/2].

Figure 27 shows the images with noise added, the resulting radius images calculated by

the algorithm previously described, and resulting the medial manifold and segmentation.

Segmentations were all performed with seed points from the center of the object. Figure 28

shows the results of segmentation performance testing in graph form. Performance remains

fairly constant (>0.99 DSC) until noise levels above an amplitude of N = 200.

The final test, for reference, represents random noise added to each pixel in the range

of [−250 250], while the signal of the image itself is only 0-255. While the human visual

system is highly skilled at perceiving correlated signals of this sort in high levels of noise,

computational systems generally have a great deal of difficulty in such cases. It should also

42



Figure 27: Synthetic test image with increasing levels of additive noise, split into two columns

of test data. The leftmost images in each column are the noisy images, with the amplitude of

the additive noise marked in the lower left-hand corner. The middle images in each column

are their respective computed radius images. The rightmost images in each column are the

segmentations produced along with highlighted medial pixels (yellow), labeled with DSC

similarity values for the segmentation.
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Figure 28: Graph of the amplitude of noise added to the test images versus the segmentation

performance, measured by DSC similarity to the known segmentation.

be noted that the level of relative noise in real images intended for application, such as the

CT scans show earlier, have lesser amounts of noise than the difficult test images in this

study, instead being roughly analogous to the test images between N = 40 and N = 100.
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Run time for the algorithm on 2D images (512x512) was typically 1-2 minutes on a 2.4

GHz Pentium 4-M laptop with 1 gigabyte of RAM. Run time for 3D images (155x90x75)

was typically 3-4 hours using a single processor and 2 gigabytes of RAM on a 2 GHz 64-bit

quad-Opteron workstation.
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6.0 CONCLUSIONS

Shells and Spheres provides an n-dimensional framework for computing Variable Scale Sta-

tistics (VSS), using local pixel populations whose size and shape conform to objects in a

particular image. The populations are assembled from spheres whose radii vary from pixel

to pixel, providing the benefits of rotational invariance without sacrificing the ability to an-

alyze arbitrarily shaped regions. Separate regions span the entire extent of objects on both

sides of the boundary, rather than being limited to a small neighborhood near the boundary.

Shells and Spheres differs from multi-scale approaches based on isotropic Gaussian filters

in that our domains are not weighted toward zero at their extremities, thus remaining “sharp”

at large scale. Our approach is similar to anisotropic diffusion[19], in that we seek to avoid

blurring boundaries while considering large pixel populations.

The radius image r(x) is analogous to what is often called the distance map, which has

been well explored for pre-segmented images [1]. The goal of the Shells and Spheres system

is to converge on an optimal r(x) on unsegmented grayscale images. A single optimal radius

is determined for each pixel such that its sphere touches but does not cross the nearest

boundary. In the radius image r(x), troughs represent boundaries, where r(x) is zero.

Ridges represent the medial manifold, where r(x) is the medial scale.

The Shells and Spheres framework and VSS operators have been presented, along with

one algorithm to optimize r(x) and segment the aortic arch in 2D and 3D from a single seed

point. The framework has been shown to be computationally tenable. The progression of

the r(x) values, as well as other pertinent statistical values, have been shown on both real

and synthetic images through the steps of the given algorithm.

The algorithm presented represents a working, if not optimal, system for demonstrating

the concept and potential of the Shells and Spheres framework. While it is believed that
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the present algorithm requires too many parameters, the underlying framework offers many

possible avenues for further development. The algorithm has been shown to perform well

on synthetic images of different types, including branching structures, as well as contrast

enhanced aortic arch CT data.

Results of preliminary testing indicate high DSC similarity values for segmentations of

noisy synthetic images with known optimal segmentations up to a noise amplitude of > 200.

The capability for accurate segmentation in the presence of noise and even given highly sub-

optimal r(x) images indicates a notable level of stability for the application of this approach

to segmentation. This advantage is mostly due to the large number of spheres used to define

the image and their high degree of overlap within regions, allowing for compensation of lower

percentages of incorrectly sized spheres.

Further work is planned to automate the determination of some system parameters.

It is hoped that parameters like α, the global variance threshold, can be localized using

preliminary region approximation data to improve accuracy. Further work will also be done

in developing entirely new algorithms using the statistical framework presented, in hopes of

achieving more powerful and computationally efficient future systems.
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