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STUDIES IN THE LOGIC OF EXPLANATORY POWER

Jonah N. Schupbach, PhD

University of Pittsburgh, 2011

Human reasoning often involves explanation. In everyday affairs, people reason to hypotheses

based on the explanatory power these hypotheses afford; I might, for example, surmise that

my toddler has been playing in my office because I judge that this hypothesis delivers a

good explanation of the disarranged state of the books on my shelves. But such explanatory

reasoning also has relevance far beyond the commonplace. Indeed, explanatory reasoning

plays an important role in such varied fields as the sciences, philosophy, theology, medicine,

forensics, and law.

This dissertation provides an extended study into the logic of explanatory reasoning via

two general questions. First, I approach the question of what exactly we have in mind when

we make judgments pertaining to the explanatory power that a hypothesis has over some

evidence. This question is important to this study because these are the sorts of judgments

that we constantly rely on when we use explanations to reason about the world. Ultimately,

I introduce and defend an explication of the concept of explanatory power in the form of

a probabilistic measure E . This formal explication allows us to articulate precisely some of

the various ways in which we might reason explanatorily.

The second question this dissertation examines is whether explanatory reasoning con-

stitutes an epistemically respectable means of gaining knowledge. I defend the following

ideas: The probability theory can be used to describe the logic of explanatory reasoning, the

normative standard to which such reasoning attains. Explanatory judgments, on the other

hand, constitute heuristics that allow us to approximate reasoning in accordance with this

logical standard while staying within our human bounds. The most well known model of
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explanatory reasoning, Inference to the Best Explanation, describes a cogent, nondeductive

inference form. And reasoning by Inference to the Best Explanation approximates reasoning

directly via the probability theory in the real world. Finally, I respond to some possible

objections to my work, and then to some more general, classic criticisms of Inference to the

Best Explanation. In the end, this dissertation puts forward a clearer articulation and novel

defense of explanatory reasoning.

Keywords: abduction, Bayesian explanationism, Bayesianism, bounded rationality, Car-

nap, epistemology, explanation, explanatory power, explanatory reasoning, explication,

formal epistemology, formal methods, formal philosophy, heuristics, human reasoning,

inductive logic, Inference to the Best Explanation, Peirce, probability theory.

v



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 What Paley and Darwin Have in Common . . . . . . . . . . . . . . . . . . . 1

1.2 Toward an Epistemology of Explanation . . . . . . . . . . . . . . . . . . . . 6

1.3 Objective of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.0 THE LOGIC OF EXPLANATORY POWER . . . . . . . . . . . . . . . . 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Conceptual Analysis and Carnapian Explication . . . . . . . . . . . . . . . . 18

2.3 Our Explicandum: Clarifying “Explanatory Power” . . . . . . . . . . . . . . 25

2.3.1 Examples: Paley and Darwin Revisited . . . . . . . . . . . . . . . . . 26

2.3.2 Examples: Murder on the London Underground . . . . . . . . . . . . 27

2.3.3 Examples: No Miracles Allowed . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Informal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Toward an Explicatum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Carnap’s Desiderata Revisited . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Conditions for an Explication of Explanatory Power . . . . . . . . . . 31

2.5 The Measure of Explanatory Power E . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Uniqueness, Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Uniqueness, Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Theorems of E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.1 Addition of Irrelevant Evidence . . . . . . . . . . . . . . . . . . . . . . 45

vi



2.6.2 Addition of Relevant Evidence . . . . . . . . . . . . . . . . . . . . . . 46

2.6.3 Conjunction of Independently Explained Evidence . . . . . . . . . . . 48

2.7 A Misguided Objection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.0 AN EMPIRICAL DEFENSE OF THE EXPLICATION E . . . . . . . . 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Candidate Measures of Explanatory Power . . . . . . . . . . . . . . . . . . . 53

3.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Preparing the Measures for Comparison . . . . . . . . . . . . . . . . . 60

3.4.2 Comparing the Measures . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.0 HOW TO BE (AND HOW NOT TO BE) A BAYESIAN EXPLANA-

TIONIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Explanatory Reasoning, Peircean Abduction, and Inference to the Best Ex-

planation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 The Bayesian and the Explanationist . . . . . . . . . . . . . . . . . . . . . . 79

4.3 How Not to Be a Bayesian Explanationist . . . . . . . . . . . . . . . . . . . 81

4.3.1 Pluralism I: van Fraassen’s Target . . . . . . . . . . . . . . . . . . . . 83

4.3.2 Pluralism II: Weisberg’s Principle . . . . . . . . . . . . . . . . . . . . 85

4.4 How to Be a Bayesian Explanationist . . . . . . . . . . . . . . . . . . . . . . 89

4.4.1 The Heuristic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.2 Okasha, Lipton, and McGrew on Bayesian Explanationism . . . . . . 93

4.4.3 Carnapian Explication and the Heuristic Approach . . . . . . . . . . . 96

4.4.4 A Recent Critique of the Heuristic Approach . . . . . . . . . . . . . . 98

4.4.4.1 Criticism 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.4.2 Criticism 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.0 INFERENCE TO THE BEST EXPLANATION, CLEANED UP AND

MADE RESPECTABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

vii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Inference to the Best Explanation, Cleaned Up . . . . . . . . . . . . . . . . 113

5.3 ... And Made Respectable: Implications of Explanatory Power . . . . . . . . 114

5.4 ... And Made Respectable: What Computers Teach us about Inference to

the Best Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.0 OBJECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Objections to this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1.1 Objection 1: Explanation without Explanatory Power? . . . . . . . . 127

6.1.2 Objection 2: Priors and Explanatory Power . . . . . . . . . . . . . . . 131

6.2 General Objections to Inference to the Best Explanation . . . . . . . . . . . 134

6.2.1 Objection 1: Affirming the Consequent . . . . . . . . . . . . . . . . . 134

6.2.2 Objection 2: Best of a Bad Lot . . . . . . . . . . . . . . . . . . . . . . 136

7.0 EPILOGUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

APPENDIX A. PROOF OF THEOREM 1 (UNIQUENESS OF E) . . . . . 146

APPENDIX B. PROOF OF THEOREM 2 AND COROLLARY 1 . . . . . 150

APPENDIX C. PROOF OF THEOREM 3 . . . . . . . . . . . . . . . . . . . . 154

APPENDIX D. PROOF OF THEOREM 4 . . . . . . . . . . . . . . . . . . . . 156

APPENDIX E. PROOF OF THEOREMS 5 AND 6 . . . . . . . . . . . . . . 159

APPENDIX F. PROOF OF THEOREM 7 . . . . . . . . . . . . . . . . . . . . 161

APPENDIX G. PROOF OF THEOREM 8 . . . . . . . . . . . . . . . . . . . . 163

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

viii



LIST OF TABLES

3.1 Candidate Measures of Explanatory Power. . . . . . . . . . . . . . . . . . . . 54

3.2 Respective Contents of Urns A and B. . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Distances between participant judgments and measures (subjective probabilities). 65

3.4 Distances between participant judgments and measures (objective probabilities). 66

3.5 Sample statistics (using subjective probabilities). . . . . . . . . . . . . . . . . 69

3.6 Sample statistics (using objective probabilities). . . . . . . . . . . . . . . . . 69

3.7 Comparison of E with other measures (using subjective probabilities on top

and objective probabilities on bottom). Note: Each cell reports the results of

a paired t-test between residuals obtained with E and those obtained with the

measure in the associated column. For each test, N = 520, corresponding to

the total number of participant judgments. . . . . . . . . . . . . . . . . . . . 70

5.1 Relative percentage accuracies of Inference to the Best Explanation (percentage

accuracy of Inference to the Best Explanation / percentage accuracy of IMP). 125

ix



LIST OF FIGURES

3.1 E(d, h) perfectly correlated with J(d, h) but giving vastly different values. . . 62

3.2 Three members of the Lα family. . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Distances of members of Lα versus that of EP (dotted line) and E (solid line)

– calculated using subjective probabilities. . . . . . . . . . . . . . . . . . . . . 68

3.4 Distances of members of Lα versus that of EP (dotted line) and E (solid line)

– calculated using objective probabilities. . . . . . . . . . . . . . . . . . . . . 68

3.5 Participant judgments about HA (darkest line) plotted with values derived

from E using subjective probabilities and objective probabilities (lightest line). 72

3.6 Participant judgments about HB (darkest line) plotted with values derived

from E using subjective probabilities and objective probabilities (lightest line). 73

5.1 Percentage accuracies of Inference to the Best Explanation in contexts with no

catch-all compared to those of IMP. . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Percentage accuracies of Inference to the Best Explanation in contexts that

include a catch-all compared to those of IMP. . . . . . . . . . . . . . . . . . . 123

C1 E(e, h) =
r(e, h)− 1

r(e, h) + 1
as a monotonically increasing function of r(e, h). . . . . 155

x



PREFACE

In one way or another, I have been researching the epistemology of explanatory reasoning

for nearly a decade now. My interests first turned toward this topic as a graduate student

pursuing an MA in philosophy of religion from Denver Seminary. There, Gordon Lewis, a

mentor to me in many respects, inspired me to think about such reasoning – which is so

central to his own “abductive” and “integrative” methods in theology and philosophy. There

too, especially through the teaching of Douglas Groothuis and Stanley Obitts, I developed

a strong, general interest in epistemology.

These interests were all strengthened and expanded while I was pursuing another MA at

Western Michigan University, under the guidance of Timothy McGrew. At the time, Tim was

actively researching the topic of explanatory reasoning. Working closely with Tim boosted

my prior interests in that topic. But Tim’s guidance also greatly expanded my philosophical

proficiencies. A testimony to his extraordinary gifts as a teacher and devoted attention to

his students, in the two years that I was his student, Tim gave me a sound education in,

and a passion for, many new subjects – including formal epistemology, probability theory,

formal logic, the general philosophy of science, and the history of scientific thought. Each of

these has a strong presence in this dissertation. So, Tim’s hand in my education is evident

both in the topic of this dissertation, and in its content.

I have spent the past five years of my career as a PhD student in the University of

Pittsburgh’s Department of History and Philosophy of Science. And, while my interests have

again broadened and my education has strengthened, the topic of this dissertation testifies

that I have not yet satisfied my initial philosophical curiosities regarding the epistemology

of explanatory reasoning. I am fortunate enough to be able to claim John Earman and

Edouard Machery as my advisors. I have long thought of John as a model philosopher. He
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is an example to me of intellectual honesty and humility, he is – as anyone familiar with

his work can attest – a brilliant and creative thinker, and his written work is always crystal

clear, engaging, and entertaining. He has helped me along in this project directly in many

ways; and he has also helped me very much simply by exemplifying the sort of academic

attitude and intellectual standards that I strive to attain.

Edouard Machery has been my most active help and support throughout this project.

He is also most responsible for my choosing to use many of the methods on which this

work relies. It was his idea, for example, for me to frame this project as one of Carnapian

explication – which improved it greatly. He also convinced me of the potential applicability

of experimental methods to philosophical investigation. Thus, Edouard’s influence on this

dissertation can be seen clearly and directly through the empirical investigation reported in

Chapter 3 and the computer simulation carried out in Section 5.4. More generally, Edouard

never tired of reading draft upon draft of each chapter of this dissertation, and he gave me a

significant amount of constructive criticism at every point. My practical goals while working

away on this project have been to do my best to convince Edouard of the project’s value

and to respond well to his penetrating criticisms. I am not sure how successful I have been

with regards to either of these goals, but I am quite certain that the project is far better for

his intellectual influence and for his constant assistance.

I would also like to acknowledge here that John Earman and Edouard Machery both very

graciously helped to finance the experimental project described in Chapter 3. For that, I

am especially grateful. Research for the work of that chapter was also supported by a grant

from the Wesley Salmon Fund, offered through the University of Pittsburgh.

I began work on this dissertation while enjoying a year-long visiting fellowship supported

and hosted by the Tilburg Center for the Logic and Philosophy of Science (TiLPS; Tilburg,

the Netherlands). While there, I had countless conversations, brainstorming sessions, and

the like with Stephan Hartmann and Jan Sprenger. They patiently endured the very first

developments of the thoughts contained herein, and they worked closely with me to turn

these hunches into ideas worth sharing. In fact, what is arguably the central result of this

dissertation – the uniqueness of E as described in Chapter 2 – is largely the fruit of my work

during this time with Jan and Stephan in Tilburg.
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Two other members of my dissertation committee, David Danks and John Norton, were

continual sources of help. I have had extended conversations with both of them over the

years on Bayesianism, and they have both helpfully corrected my thoughts on this topic

multiple times. Regarding the specific contents of this dissertation, David gave me much

assistance and feedback especially with regards to the experiment of Chapter 3. And John

was very actively helpful in my thinking through the contents of Chapter 2 – without any

persuasion on my part, he even developed an alternative theorem to the uniqueness of E .

This dissertation is truly the culmination of my academic career thus far. The topics I

discuss and the methods that I use constitute a survey of my philosophical interests, training,

and influences in the past decade. Accordingly, I first and foremost have all of the above

thinkers to thank who have devoted much of their valuable time and energy to training me

as a philosopher. And I owe debts of gratitude to many other thinkers besides who have

helped me very much throughout this project. These include: Jake Chandler, Vincenzo

Crupi, Igor Douven, David Glass, Ulrike Hahn, Leah Henderson, Kareem Khalifa, Kevin

Korb, Jonathan Livengood, Carlo Martini, Lydia McGrew, Anya Plutynski, Katie Steele,

and Michael Trestman.

In addition to all of these, I would like to thank my audiences at various talks that I gave

in the past years on material from this dissertation. These include the audiences at several

University of Pittsburgh Graduate Student Work In Progress Talks, TiLPS Epistemology and

Philosophy of Science Seminars, and the audiences that attended the following presentations:

• “How to Be (and How not to Be) a Bayesian Explanationist.” The 2nd London-Paris-

Tilburg Workshop in Logic and Philosophy of Science; Tilburg University; Tilburg, The

Netherlands; October 24, 2008.

• “How to Be (and How not to Be) a Bayesian Explanationist.” Talk given to the Formal

Philosophy Group; Katholieke Universiteit; Leuven, Belgium; November 28, 2008.

• “Comparing Probabilistic Measures of Explanatory Power.” The 3rd Sydney-Tilburg

Conference: The Future of Philosophy of Science; Tilburg University; Tilburg, the

Netherlands; April 14-16, 2010.

• “The Logic of Explanatory Power.” The 7th Annual Formal Epistemology Workshop;

Universität Konstanz; Konstanz, Germany; September 2-4, 2010.
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• “Comparing Probabilistic Measures of Explanatory Power.” The Biennial Meeting of

the Philosophy of Science Association; Montreal, Quebec, Canada; November 4-6, 2010.

• “Inference to the Best Explanation, Cleaned Up and Made Respectable.” Talk given to

the Philosophy Department at the University of Utah; Salt Lake City, Utah; January 14,

2011.

• “Inference to the Best Explanation, Cleaned Up and Made Respectable.” Talk given to

the Philosophy Department at Fordham University; Bronx, New York; January 24, 2011.

There is yet one more philosopher that I wish to thank, a scholar that has shaped my

thoughts on the subject of explanatory reasoning more than any other – and this in spite of

the fact that I never met him. I am referring to Peter Lipton, the famously clear and clever

Cambridge philosopher of science who sadly died at the same time that I was beginning work

on this dissertation. G. K. Chesterton once wrote, “I have often had a fancy for writing a

romance about an English yachtsman who slightly miscalculated his course and discovered

England under the impression that it was a new island in the South Seas.” Had Chesterton

written such a story, it would have symbolized nicely my work on this topic. At the outset of

this dissertation, I strived to become an original voice on the epistemology of explanation. I

was driven by the desire – instilled in me by Clark Glymour – to avoid writing a dissertation

that would turn out to be nothing but a “book report.” However, it was quite often the

case (and often frustratingly so!) that in developing my “original” thoughts, I found myself

rediscovering Lipton’s highly original views on the subject. Accordingly, in those parts of

this work that contain echoes of Lipton, I am happy to attempt a refining development of

Lipton’s thoughts. If this work is less original than I had desired, I remain hopeful that it

constitutes a significant improvement over a mere book report.

Finally, I dedicate this work to my wife Rebecca. Once upon a time, she fell in love with

a young, handsome, aspiring jazz guitarist who had an engineering degree on which to fall

back and no training whatever in philosophy with which to irritate her. That fellow has

slowly transformed into a ragged, busy, head-in-the-clouds philosopher, with no memory at

all of the practical knowledge once gained as an engineering student. Yet, miraculously, she

has only come to love this fellow more (or so she tells me!). This work could not possibly

have been completed without her.
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1.0 INTRODUCTION

Knowledge is the object of our inquiry, and men do not think
they know a thing till they have grasped the ‘why’ of it.

Aristotle (Physics, II.194b18)

To explain the phenomena in the world of our experience, to
answer the question ‘why?’ rather than only the question ‘what?’,
is one of the foremost objectives of all rational inquiry.

Hempel and Oppenheim (1948, p. 135)

1.1 WHAT PALEY AND DARWIN HAVE IN COMMON

It is an interesting exercise to compare the general structures and argumentative strategies

of William Paley’s Natural Theology (1802) and Charles Darwin’s Origin of Species (1859).

The former constitutes one of the most well-known and impressive arguments for the belief

that the natural world has behind it a powerful and intelligent designer. On the other hand,

the latter, of course, contains a first statement and powerful defense of the idea that the

variety that we see in the world is evidence, not of such a designer, but rather of a process

of natural selection. Yet, despite the obvious differences between the conclusions that Paley

and Darwin draw, there are many similarities between the two works.1

1Both Paley’s and Darwin’s arguments are simplified in some respects in the following discussion. For
example, I treat Paley as arguing for the intelligent design hypothesis over a chance hypothesis, and I discuss
Darwin’s arguments for the theory of natural selection over the design hypothesis. Neither Paley nor Darwin
always have these specific foils in mind when they are laying out their positive cases. Secondly, Darwin
argues for theories that are distinguishable from that of natural selection in the Origin – e.g., the theory
of the unity of origins. The primary aim of this section is not to provide the reader with a comprehensive
historical study of the arguments in both works but rather to focus in on some of the arguments employed by

1



For one thing, Paley and Darwin both begin their books by illustrating how the key

principles of their larger arguments apply to familiar, human contexts. In Paley’s case, the

context is one in which we inspect an artifact and infer to the existence of an intelligent

human designer. More specifically, Paley begins by asking his reader to imagine happening

upon a watch when crossing a heath. Even in the case where one is initially unaware of the

use and function of a watch, Paley (1802, p. 6) asserts that, “when we come to inspect the

watch, we perceive [...] that its several parts are framed and put together for a purpose.”

And eventually, from such considerations, we inevitably infer “that the watch must have

had a maker; that there must have existed, at some time and at some place or other, an

artificer or artificers, who formed it for the purpose which we find it actually to answer; who

comprehended its construction, and designed its use.”

In Darwin’s case, the context is one in which various adaptations of domesticated plants

and animals are affected through a process of human selection. When considering the dif-

ferences between, for example, “a dray- and race-horse, a greyhound and bloodhound, a

carrier and tumbler pigeon,” Darwin (1859, pp. 49-50) notes how remarkable it is that the

adaptations we see within a species serve “not the animal’s or plant’s own good” but instead

“man’s use and fancy.” Reflecting on this fact, Darwin then asserts that “the key is man’s

power of accumulative selection: nature gives successive variations; man adds them up in

certain directions useful to him. In this sense he may be said to have made for himself useful

breeds.”

Paley’s and Darwin’s works are similar too insofar as they both proceed by applying

the arguments and principles exemplified in the above human contexts to the natural world.

Paley wants to show that, just in the same way (and for the same reason) that we clearly

should infer that human intelligence stands behind the watch found on the heath, so should

we conclude from our observations of nature that there exists a divine intelligence respon-

sible for the function and useful constitution of the things found therein. Accordingly, the

vast majority of Paley’s Natural Theology discusses, in great detail, various observations of

particular objects of nature – including the eyes and ears of various animals, the generative

both thinkers in order to clarify some parallels between them and to give examples of explanatory reasoning
at work in the history of philosophical and scientific thought.
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parts of a number of plants and animals, human muscles and bones, and the circulatory and

digestive systems of various animals. In each case, Paley posits that the various functions

and intricate constitutions of these things found in nature more than suffice to warrant an

inference to an intelligent, designing cause. Near the end of his book, Paley (1802, pp. 265)

summarizes his argument in the following way:

[W]e see intelligence constantly producing effects, marked and distinguished by certain
properties; not certain particular properties, but by a kind and class of properties, such as
relation to an end, relation of parts to one another, and to a common purpose. We see,
wherever we are witnesses to the actual formation of things, nothing except intelligence
producing effects so marked and distinguished. Furnished with this experience, we view
the productions of nature. We observe them also marked and distinguished in the same
manner. We wish to account for their origin. Our experience suggests a cause perfectly
adequate to this account. No experience, no single instance or example, can be offered in
favour of any other. In this cause therefore we ought to rest.

Darwin similarly wants to show that, in the same way (and, again, for the same reason)

that we manifestly ought to conclude that a process of human selection is at work in the

adaptation of domesticated plants and animals to human needs and tastes, we should also

infer that a more general process of natural selection is at work adapting various species in

ways that increase their fitness in the natural competition for resources necessary to their

survival. Like Paley’s book then, a large part of Darwin’s Origin is devoted to the exam-

ination of various features of nature – including the instincts of animals, the geographical

distribution of different species, and rudimentary and atrophied parts of animals. In each

case, Darwin argues that his theory of natural selection provides an equally good, and some-

times superior, account of the observed facts of nature as compared to the hypothesis of a

powerful and intelligent designer. In the concluding chapter of the sixth and final edition of

the Origin, Darwin (1859, p. 637) summarizes his general case as follows:

I have now recapitulated the facts and considerations which have thoroughly convinced me
that species have been modified, during a long course of descent. This has been effected
chiefly through the natural selection of numerous successive, slight, favourable variations
[...] It can hardly be supposed that a false theory would explain, in so satisfactory a manner
as does the theory of natural selection, the several large classes of facts above specified.

Paley’s Natural Theology and Darwin’s Origin of Species have very similar structures

then. What is more, both works can be seen to employ the very same type of reasoning

3



in building their respective cases for their differing conclusions. Both Paley and Darwin

examine a set of observed, accepted facts that, at least to some extent, stand in need of

an explanation. They each then proceed by showing that there is reason to favor some

hypothesis based upon that hypothesis’s unique ability to provide the desired explanatory

account. In this way, Paley’s case for an intelligent designer argues that such a designer is

the only causally sufficient explanation of the presence of function in nature suggested by

our experience.2 Darwin likewise argues for natural selection by arguing that this hypothesis

would proffer a remarkably satisfactory explanation (indeed, a better explanation than the

design hypothesis) for various observed features of the natural world. A false hypothesis, he

asserts, would be able to do no such thing.

As one last point of comparison, it is noteworthy that Paley and Darwin both make

similar comments when reflecting on the value of the type of reasoning that they employ.

Paley (1802, pp. 265-266) gives an example of the general usefulness of this type of reasoning

and a statement of its trustworthiness when he writes, “The reasoning is the same, as

that, by which we conclude any ancient appearances to have been the effects of volcanos

or inundations [...] Men are not deceived by this reasoning; for whenever it happens, as it

sometimes does happen, that the truth comes to be known by direct information, it turns

out to be what was expected.” Darwin (1859, p. 637) makes essentially the same point,

emphasizing the broad applicability of this sort of reasoning: “It has recently been objected

that this is an unsafe method of arguing; but it is a method used in judging of the common

events of life, and has often been used by the greatest natural philosophers.”

Let us call this type of reasoning upon which Paley and Darwin both rely “explanatory

reasoning.” And, by way of a rough initial characterization in light of the above, let us say

that explanatory reasoning is that which favors hypotheses to the extent that these are able

to provide an otherwise lacking explanation of some set of accepted facts or evidence. In

thinking about the world, humans are generally not satisfied to know merely that something

2Paley never makes the form of his argument explicit, and so there are philosophers who would disagree
with my assumption here that Paley’s argument is essentially explanatory. For example, while Elliott Sober
(2000, pp. 30-33) agrees with this interpretation and so reads Paley’s argument as an explanatory inference,
Graham Oppy (2002) argues that Paley’s argument is deductive. See (Schupbach 2005) for a critique
of Oppy’s argument and a positive case for interpreting Paley’s argument as an instance of explanatory
reasoning.
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is the case. One’s knowledge of some fact just does not seem complete without an additional

explanation of why that fact holds. When humans reason explanatorily, they view a hypoth-

esis’s ability to answer such ‘why?’ questions as constituting a good reason to accept that

hypothesis. For example, Paley reasons explanatorily in favor of his design hypothesis by

arguing that this hypothesis tells us why natural entities have clear functions and intricate

constitutions. And Darwin reasons explanatorily in favor of his theories of natural selection

and the unity of origins when he repeatedly asserts that these theories elegantly answer

certain other ‘why?’ questions (e.g., ‘Why do some species have vestigial parts that serve

no obvious purpose?’). Explanatory reasoning, in which humans pursue answers to ‘why?’

questions, would thus certainly seem to constitute an important part of what humans do

when they seek knowledge about the world.

Insofar as this is true, we would expect explanatory reasoning to be used commonly, if not

ubiquitously, in various contexts of human cognition. And this does indeed seem to the case.

Recall from the above that Paley and Darwin both comment on the wider application of

this sort of reasoning to contexts outside of arguments for design or natural selection. Paley

suggests that we gain much of our knowledge about the causal history of the natural world

via explanatory reasoning, and Darwin notes that explanatory reasoning is “used in judging

of the common events of life.” Many contemporary philosophers make much the same point,

noting the intuitive appeal and widespread use of explanatory reasoning throughout human

cognition – for examples, see (Harman 1965, p. 89), (Glymour 1984, p. 173), (Lipton 2004),

and (Douven 2011, Section 1.2). And cognitive psychologists have observed the widespread

applicability of explanatory intuitions and judgments to human reasoning – see (Keil 2006)

and (Lombrozo 2006). To take an example, I might surmise that my toddler has been playing

in my office because this hypothesis provides a better explanation of the disarranged state of

the books on my shelves than any other plausible, competing hypothesis. But the practical

relevance of explanatory reasoning stretches far beyond such mundane affairs. In science,

geologists may reason to the occurrence of an earthquake millions of years ago because this

event would, more than any other plausible hypothesis, explain various deformations in layers

of bedrock. Court cases and forensic studies are decided to various degrees via explanatory

considerations. And this is true also of diagnostic procedures, whether performed by medical
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doctors or car mechanics – e.g., a doctor might diagnose her patient with the measles, because

that diagnosis would provide a satisfying explanation of the patient’s symptoms.

Contemporary philosophers have also made regular use of explanatory reasoning when

debating some of the most venerable topics in the history of philosophy. Just to list a few

examples, in the philosophy of religion, several well-known arguments for and against the

existence of God are explanatory arguments – e.g., Meyer (1994, pp. 88-98), Sober (2000, pp.

30-33), Swinburne (2004, p. 20), and Menssen and Sullivan (2007). Many epistemologists,

beginning with Bertrand Russell (1912, ch. 2), claim that explanatory reasoning provides

us with our best response to Cartesian skepticism – e.g., Harman (1973, chs. 8 and 11),

Goldman (1988, p. 205), Moser (1989, p. 161), and Vogel (1990, 2005). In the philosophy

of science, arguments to the existence of unobservables as well as arguments for scientific

progress are often framed as explanatory inferences – e.g., Putnam (1975) and Psillos (1999).

And the same can be said of debunking arguments in ethics, and arguments for certain realist

theories in metaethics and metaphysics – e.g., Balaguer (2009).

In all of these cases across domains, people reason in favor of hypotheses on account of

the explanatory power that these hypotheses have over the evidence. Paley and Darwin are

both certainly correct then when they assert the intuitive appeal and broad applicability of

explanatory reasoning. Explanatory reasoning is central to human inquiry.

1.2 TOWARD AN EPISTEMOLOGY OF EXPLANATION

This dissertation is, first and foremost, a study of this common mode of human reasoning,

exemplified so well by Paley and Darwin. In order to understand fully the epistemology

of human reasoning, it is necessary to come to an understanding of all of those activities

that are part and parcel of what humans do when they seek knowledge about the world by

reasoning about it. Consequently, in light of the above considerations, it is not enough for

an epistemology only to analyze all that is involved in knowing that something is the case; a

complete epistemology should additionally have something to say also about what is involved

in explaining why something is the case – i.e., in reasoning explanatorily. Accordingly,

6



this work seeks to describe and evaluate the ways in which humans use explanations when

reasoning about the world. One might say then that this dissertation offers an epistemology

of explanation.

The study of human reasoning thus overlaps with the philosophy of explanation. This

might come as very bad news to the epistemologist. It must be admitted that, in spite

of the central role that explanation has in human inquiry, not to mention the seeming

ease with which humans are able to recognize and compare explanations, the philosophy of

explanation has proven to be quite difficult. Humans evidently have a fairly strong intuitive

understanding of explanation; we are, after all, able to reason regularly in terms of this

concept. Yet, the history of philosophical thought on this topic reveals that when asked to

define what an explanation is, or when asked to describe just what it means for an explanation

to be good or bad, humans perform less admirably – Lipton (2004, p. 23) refers to the general

phenomenon of humans being so good at doing something while simultaneously being so bad

at describing what it is they are doing as the “gap between doing and describing.”

The study of explanation thus constitutes yet one more item on the list of challenging

topics within epistemology. However, I want to suggest here that it may be possible to

pursue the epistemology of explanatory reasoning without a full-blown, accepted philosophy

of explanation in hand; i.e., one might be able to describe explanation’s role in human

reasoning without knowing everything that a complete philosophy of explanation would

have to say. The question then is just how much of the philosophy of explanation is needed

in order to illuminate explanation’s role in human reasoning. To answer this question (and

in order to focus the efforts and clarify the objectives of this dissertation), it will be helpful

first to make the following distinction. One can divide the general philosophy of explanation

into at least two branches. Philosophers have, in the past, been interested in both what I

will call the “metaphysics of explanation” and the “epistemology of explanation.”

The metaphysics of explanation attempts to describe the very nature of explanation by

describing just how a theory or hypothesis must be related to that which is being explained

(the explanandum) in order for the former to provide an explanation of the latter. Ideally, a

complete metaphysics of explanation would describe the necessary and sufficient conditions

under which a particular hypothesis may be said to explain some specified explanandum.
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The goal here then is to answer the question, “What does it mean for a hypothesis to explain

some explanandum?” Since the publication of Hempel and Oppenheim’s (1948) classic in-

vestigation into “the logic of explanation,” many philosophers – and philosophers of science

especially – have earnestly been seeking an analysis of the nature of explanation. Neces-

sity (Glymour 1980), statistical relevance (Salmon 1970), inference and reason (Hempel and

Oppenheim 1948, Hempel 1965), familiarity (Friedman 1974), unification (Friedman 1974,

Kitcher 1989), causation (Salmon 1984, Woodward 2003), and mechanism (Machamer et al.

2000) are only some of the most popular concepts that such philosophers draw upon in the

attempt to describe necessary and sufficient conditions under which a theory explains some

fact.3 Despite decades of intense focused attempts to clarify the metaphysics of explanation,

philosophers have come to very little, if any, consensus concerning the nature of explanation.

An epistemology of explanation, on the other hand, aims to understand explanation’s role

in human reasoning, inference, and knowledge. The key concept to analyze in the epistemol-

ogy of explanation is not explanation simpliciter but the strength of a potential explanation

– i.e., explanatory power.4 This is because when humans make use of considerations of ex-

planation in reasoning about the world, the explanatory considerations to which they attend

tend to be more specific than the mere judgment that a hypothesis provides a potential

explanation of the explanandum in question. The most epistemically relevant explanatory

considerations are those that have to do with the strengths of the potential explanations

under consideration; these are communicated with propositions like the following:

• This hypothesis provides a great (good, poor, terrible, etc.) potential explanation of the

evidence.

• Hypothesis A offers a much better (somewhat better, equally good, worse, much worse,

etc.) potential explanation of the evidence than does hypothesis B.

This point can be made more obvious by looking briefly again at examples from Paley’s

and Darwin’s uses of explanatory reasoning. In the following passage, Paley makes use of

explanatory considerations in order to argue against the idea that “every organized body

3See Woodward (2009) for a recent survey of this literature.
4Following standard terminology, a hypothesis offers a potential explanation of some explanandum just

in case, if it were true, then that hypothesis would provide an actual explanation of that proposition.
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which we see, [is] only so many out of the possible varieties and combinations of being, which

the lapse of infinite ages has brought into existence:”

The hypothesis teaches, that every possible variety of being hath, at one time or other,
found its way into existence (by what cause or in what manner is not said), and that those
which were badly formed, perished: but how or why those which survived should be cast,
as we see that plants and animals are cast, into regular classes, the hypothesis does not
explain” (Paley 1802, pp. 44-46).

The explanatory judgment on which Paley relies here is manifestly not a judgment of the

nature of the relationship between hypothesis and evidence; rather, the judgment has to do

with the strength of the potential explanation that the hypothesis provides for the evidence.

In this case, Paley notes that the hypothesis in question offers a particularly weak explanation

of the evidence (in fact, he says that the hypothesis does not explain the evidence at all),

and he rejects the hypothesis for this explanatory reason.

Darwin (1859, p. 533) offers a particular explanatory argument in the following passage:

[The] general absence of frogs, toads, and newts on so many true oceanic islands cannot be
accounted for by their physical conditions: indeed it seems that islands are peculiarly fitted
for these animals; for frogs have been introduced into Madeira, the Azores, and Mauritius,
and have multiplied so as to become a nuisance. But as these animals and their spawn are
immediately killed (with the exception, as far as known, of one Indian species) by sea-water,
there would be great difficulty in their transportal across the sea, and therefore we can see
why they do not exist on strictly oceanic islands. But why, on the theory of creation, they
should not have been created there, it would be very difficult to explain.

Here, in explaining the absence of these animals from many oceanic islands, Darwin

reasons in favor of the hypothesis that these animals would have had to, but were not able

to, travel through the sea. The key explanatory premise underlying his argument is that his

favored hypothesis provides the strongest available potential explanation of the evidence – as

he suggests, the hypotheses of creation and the uninhabitability of oceanic islands are both

terrible explanations of this fact as compared to Darwin’s hypothesis. This is a comparative

judgment about the relative strengths of the potential explanations provided by the various

hypotheses considered. It is not a judgment concerning the nature of explanation.

So, when pursuing an epistemology of explanation, philosophers should be most interested

in investigating the question of what it means for potential explanations to be stronger or

weaker. In other words, such philosophers ought to focus their efforts on clarifying the
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concept of explanatory power. Ideally, such work would uncover the conditions under which

hypotheses are judged to provide potential explanations of various strengths (relative to

some explanandum), and so it would clarify explanatory propositions such as those listed

above. The aim here then is to answer the question, “What does it mean for the potential

explanation that a particular hypothesis provides (of some explanandum) to be good or bad

to various degrees?” Although this epistemological study of explanatory power has mostly

just not been pursued, there are some prior exceptions. Early attempts to account for

explanatory power were made by Popper (1959), Good (1960, 1968a,b) and Greeno (1970).

More recently, Okasha (2000), Lipton (2001a, 2004), and McGrew (2003) have all discussed

the nature of explanatory power. What all of these epistemologies of explanation have in

common is that they all try to clarify explanatory power in terms of the inductive logic

provided by the probability calculus (a trend that I will continue in this dissertation).

Given the above distinction between the metaphysics and epistemology of explanation,

what accounts for the fact that the metaphysics of explanation receives so much more at-

tention from philosophers than does the epistemological project? This state of affairs can

hardly be explained by appeal to any substantial difference in their relative philosophical

imports. Certainly, the first project has great philosophical significance; after all, humans on

the individual and social levels are constantly seeking and formulating explanations. Given

the ubiquity of explanation in human cognition and action, it is both surprising that this

concept turns out to be so analytically impenetrable, and critical that philosophers con-

tinue to strive for an understanding of this notion. We have seen, however, that the second

project is also immensely philosophically important. Humans regularly make judgments of

explanatory power and then use these judgments to develop preferences for hypotheses, or

even to infer outright to the truth of certain hypotheses. Much of human reasoning on indi-

vidual and social levels makes use of judgments of explanatory power. Ultimately then, in

order to understand and evaluate human reasoning generally, philosophers need to come to

a better understanding of explanatory power. Both the metaphysics and the epistemology

of explanation are therefore philosophically important and interesting.

The relative imbalance in the amount of philosophical attention that these two projects

receive is more likely due to the prima facie plausible but ultimately unfounded (as I will
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argue) assumption that one must have a complete analysis of explanation in hand before

pursuing a worthwhile study of explanatory power. If this is true, then one really ought

to pursue the metaphysics of explanation before attempting to develop an epistemology

of explanation. The assumption that the concept of explanation must be accounted for

before that of explanatory power is made compelling by the fact that in order to analyze

the strength of something, one must have some clarity about what that thing is. This

assumption is, however, shown to be far less tenable in light of the fact that humans do

generally have some fairly clear intuitions concerning explanation. The fact that there is no

consensus among philosophers today over the precise, necessary and sufficient conditions for

explanation does not imply that humans lack a firm understanding of this concept altogether.

And it seems that we do in fact have a fairly robust semantic grasp on the concept apart from

such a successful philosophical analysis, given the general ease with which humans recognize

explanations, and the general agreement that people have over most day-to-day explanatory

judgments. Whether this grasp is in fact strong enough to ground an account of explanatory

power in the absence of a complete, satisfactory account of the nature of explanation is an

important and intriguing question.

1.3 OBJECTIVE OF THE STUDY

With the distinction between the metaphysical and epistemological study of explanation in

hand, the objective of this dissertation can be stated more clearly. This dissertation is, above

all, an epistemological investigation into that aspect of human reasoning that goes beyond

mere knowledge-that by seeking an answer to why something is the case. The central question

of this dissertation is: What role do explanatory considerations have in human reasoning?

As such, this dissertation pertains to that area of epistemology that necessarily overlaps

with the philosophy of explanation, and so it seeks to advance both of these subjects. In this

dissertation, I take the less traveled approach to the philosophy of explanation by attempting

an account of the concept of explanatory power in the absence of an accepted analysis of

the nature of explanation. This dissertation may accordingly be seen as attempting an
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epistemology of explanation sans a complete metaphysics of explanation.

As a result, one might immediately have the following worry about the prospects for this

project: “It may indeed be possible to give an epistemology of explanation in the absence

of a satisfactory, metaphysical account of explanation if we do currently share a sufficiently

strong understanding of the concept of explanation in the absence of such an account. But

why believe that we do?” Just how firm a semantic grasp on the concept of explanation

humans really do have, and whether that grasp is in fact strong enough to ground an account

of explanatory power, are, to be sure, interesting questions. A central claim that I will defend

in this dissertation will be that our current, and what I take to be common, understanding

of the concept of explanation is indeed strong enough to ground a precise formal account of

explanatory power – even if it is not strong enough to determine a general analysis of the

nature of explanation. The defense that I will provide for this claim – and thus for the very

viability of my epistemology before (a complete) metaphysics approach to explanation – will

come in the form of the development of my account of explanatory power itself. In other

words, I will argue that our semantic grasp of explanation is strong enough to provide us with

an account of explanatory power by showing that this is so – i.e., by offering an intuitively-

grounded explication of explanatory power. The proof will thus be in the pudding.

There are a number of reasons that I choose to take this approach of focusing on the

concept of explanatory power over that of explanation simpliciter. First and most obviously,

as mentioned above, this dissertation is meant to shed light on the role that explanation has

in human reasoning, and the explanatory judgments that we utilize when reasoning tend

to be judgments about the strength of particular potential explanations. The concept of

explanatory power, much more so than that of explanation simpliciter, is thus relevant to

the intended epistemology of explanation.

Secondly, I am motivated to take this approach by the possibility that this may ultimately

be necessary in order to advance the metaphysics, as well as the epistemology, of explanation.

If our current understanding of the concept of explanation (the understanding that we all

share in the absence of a general philosophical analysis of this concept) is as strong as I argue

in this dissertation, then one can attempt a clearer account of either of our distinct concepts

in the absence of a complete account of the other. In this dissertation, I will argue that
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our semantic grasp on the concept of explanation even allows us to pin down one particular,

probabilistic explication of the notion of explanatory power as satisfactory (it does so by

providing us with certain intuitive judgments about explanatory power that are ultimately

only all satisfied by one such explication). The fact that we are able to pursue an account

of explanatory power in the absence of an accepted analysis of explanation, however, does

not mean that accounts of these two notions will have no bearing upon one another. On the

contrary, an account of either explanation or explanatory power will fit more or less naturally

with certain accounts of the other concept. Thus, just as an analysis of what explanation

is may shed some light on how we ought to go about measuring the strength of a potential

explanation, so may an account of what it means for a potential explanation to be stronger

or weaker shed light on what explanation is. Thus, pursuing the epistemology of explanation

may ultimately and indirectly advance the metaphysical study of the nature of explanation.

The importance of the distinction between the metaphysical and epistemological study

of explanation cannot be emphasized strongly enough for the sake of avoiding confusion

throughout this dissertation. What I offer here is an epistemological study of explanation’s

role in human reasoning and not a metaphysical analysis of the nature of explanation. The

concept that I will primarily have in mind will accordingly be the strength of a potential

explanation or, in other words, the explanatory power that a hypothesis has over some

explanandum, given that the former provides a potential explanation of the latter. Philo-

sophical accounts of the nature of explanation attempt to describe the conditions (be they

causal-mechanical, unificatory, or otherwise) under which a hypothesis provides a poten-

tial explanation of a proposition. However, such theories make no attempt to grade the

strengths of the various potential explanations that satisfy their conditions. Accordingly,

they will actually have surprisingly little to contribute to the present study.

1.4 PREVIEW

In order to conduct an epistemological study into the role of explanation in human reason-

ing, one fundamental goal must be to ensure that we have an understanding of the sorts
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of considerations that people utilize when they reason explanatorily. As discussed above,

these considerations generally have to do with the goodness (or badness) or comparative

goodness (or comparative badness) of the explanation that a hypothesis provides for some

explanandum. And the key concept that gets use in such judgments is explanatory power.

Accordingly, I begin this study, in Chapter 2, by attempting a more precise understanding

of what it means for a hypothesis to have various amounts of explanatory power over a

particular explanandum. To this end, I first introduce the methodological tool of Carnapian

explication. I argue that this philosophical tool potentially provides us with a useful means

for uncovering the epistemic implications of judgments of explanatory power. I then proceed

to give an explication of the concept of explanatory power in the logicomathematical terms

of the probability calculus. More specifically, I introduce and motivate several conditions

of adequacy that any such explication of explanatory power ought to satisfy. These condi-

tions can be straightforwardly interpreted in probabilistic terms. I then give two different

proofs showing that these adequacy conditions are sufficiently strong to determine a unique

probabilistic measure of explanatory power; i.e., any alternative measure will necessarily

part from some of the clear intuitive requirements laid down in our conditions of adequacy.

Furthermore, using the probability calculus, I prove a number of theorems showing that this

measure of explanatory power is well behaved insofar as it accords well with our clearest in-

tuitive judgments of explanatory power. Along the way, I also offer some arguments against

other proposed measures of explanatory power.

The measure of explanatory power developed and defended in Chapter 2 is normative

in the following sense: if one shares the intuitions underlying the conditions of adequacy in

that chapter, then one ought to think about explanatory power in accord with this account

(otherwise, one’s explanatory intuitions will not be consistent – i.e., jointly satisfiable).

However, one might wonder whether giving a logical, normative explication of explanatory

power might not take us too far away from actual human judgments and intuitions about

explanatory power. Perhaps people aren’t anywhere near consistent in their judgments and

intuitions of explanatory power; to the extent that this is the case, our logicomathematical

explication ceases to resemble the concept of explanatory power – one might say that our

explication no longer looks to be an explication of explanatory power. To respond to this
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concern, and thereby to give a further defense of our measure of explanatory power, I conduct

an empirical study into the descriptive merits of our explication in Chapter 3. In more detail,

I summarize my own recent experimental work, which compares the descriptive merits of

a number of proposed measures of explanatory power. Several interesting conclusions find

support from this experimental research, including the following: (1) The measure that fits

most closely with experimental participants’ judgments of explanatory power is the same

measure that is defined and defended in Chapter 2. (2) This measure is not only a better

predictor of participants’ judgments than other measures, but it also is a good predictor of

these judgments in its own right. And (3) participants’ judgments of explanatory power are

closely related to, but distinct from, their judgments of (posterior) probability.

In light of Chapters 2 and 3, I conclude that the measure of explanatory power offered

therein constitutes an accurate normative and descriptive account of this concept. The task

then is to show how this formal, logicomathematical account of explanatory power can shed

light on the ostensibly informal ways in which humans reason explanatorily. Chapter 4 pro-

ceeds with our study by examining various ways in which one might think of the relationship

between the formal theory and actual cases of reasoning in question. This examination fo-

cuses especially on the relationship between a probabilistic, “Bayesian” epistemology and the

most well-known type of explanatory reasoning, Inference to the Best Explanation. Several

strategies for combining a Bayesian epistemology with Inference to the Best Explanation

are first described and evaluated. Ultimately, this chapter offers a defense of a “heuristic”

approach to this project. According to this approach, Inference to the Best Explanation is

a heuristically useful mode of inference allowing people to approximate sound probabilistic

reasoning without necessarily having to know the relevant probabilities or even the probabil-

ity calculus. While Bayesianism thereby accounts for the normative appeal of Inference to

the Best Explanation, according to the heuristic approach, Inference to the Best Explana-

tion fills in some important psychological details pertaining to Bayesianism. This approach

is supported by the conceptual and experimental work presented in earlier chapters. In the

final section of this chapter, I respond to one recent criticism of the heuristic approach.

Chapter 5 implements the strategy described in Chapter 4 for combining Inference to

the Best Explanation and Bayesianism. The probabilistic explication of explanatory power
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introduced in Chapter 2 of this dissertation describes a probabilistic relation that typically

underlies the judgment that one hypothesis provides the best potential explanation of some

evidence. The epistemic implications of this judgment are then clarified by investigating the

probabilistic implications of the relevant formal relation. The result is a precise explication

of Inference to the Best Explanation and a general defense of this inference form’s cogency.

Inference to the Best Explanation is a cogent form of inference because the judgment that

a hypothesis provides the best potential explanation of the evidence gives us a good reason

to believe that it is also the most probable hypothesis in light of the evidence – and thus it

gives us a good reason to accept that hypothesis. I then proceed with one final stage of this

study by exploring just how useful this cogent inference form actually is in those contexts

where it is typically applied. This is decided by looking at how often Inference to the Best

Explanation accurately singles out the most probable available hypothesis in such contexts.

A series of computer simulations shows that Inference to the Best Explanation does very

well indeed in this regard.

Chapter 6 considers a number of objections to the work accomplished here. In the first

section, I focus on objections that one might have specific to my approach in this dissertation.

In the second section, I reconsider a number of general objections that have been put forward

against the epistemic value of explanatory reasoning and Inference to the Best Explanation.

Chapter 7 concludes the dissertation with a quick summary of the work accomplished

herein. Overall, this dissertation aims to provide a fresh approach to the philosophy of expla-

nation, by focusing on the epistemology of explanation, and a new defense of the genuinely

useful and epistemically sound role for explanatory considerations in human reasoning. I do

not pretend that this dissertation offers anything like a complete epistemology of explana-

tion. However, I do hope that it is successful in taking some important steps toward this

end, and I am hopeful that it will motivate much future research.
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2.0 THE LOGIC OF EXPLANATORY POWER

2.1 INTRODUCTION

We have seen, in Chapter 1, that the search for explanations constitutes an important part

of our cognitive lives. When reasoning about the world, humans are not only constantly

asking ‘what is the case?’ but they are also ever wondering ‘why?’ As Lipton (2004, p. 1)

writes, “We are forever inferring and explaining, forming new beliefs about the way things

are and explaining why things are as we have found them to be.” This dissertation aims

to clarify the second of these activities by studying the role that explanation has in human

reasoning.

In pursuit of this “epistemology of explanation,” our first task is to ensure that we have

a basic understanding of the sorts of explanatory considerations to which people typically

attend when they are reasoning. What sorts of judgments do people most directly rely on

when they try to reason to an answer to the question ‘why?’? As discussed in Section 1.2,

these considerations generally have to do with the goodness (or badness) or comparative

goodness (or comparative badness) of the explanation that a hypothesis provides for some

explanandum. One does not, for example, come to favor or accept a hypothesis simply

because it provides a potential explanation of the evidence but rather because it provides

a powerful potential explanation of the evidence, or because it provides the best potential

explanation of the evidence.

The key concept that is generally used when people reason explanatorily is thus the

strength of a potential explanation, or explanatory power. I accordingly begin this study

into the epistemology of explanation, in this chapter, by offering a formal explication of

what it means for a hypothesis to have various amounts of explanatory power over a partic-
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ular explanandum. I begin by introducing the methodological tool of Carnapian explication.

I argue that this philosophical tool potentially provides us with a useful means for uncover-

ing the epistemic implications of judgments of explanatory power. I then proceed to give an

explication of the concept of explanatory power in the logicomathematical terms of the prob-

ability calculus. More specifically, I introduce and motivate several conditions of adequacy

that any such explication of explanatory power ought to satisfy. These conditions can be

straightforwardly interpreted in probabilistic terms. I then give two different proofs showing

that these adequacy conditions are sufficiently strong to determine a unique probabilistic

measure of explanatory power; i.e., any alternative measure will necessarily part from some

of the clear intuitive requirements laid down in our conditions of adequacy. Furthermore,

using the probability calculus, I prove a number of theorems showing that this measure

of explanatory power is well behaved insofar as it accords well with our clearest intuitive

judgments of explanatory power. Along the way, I also offer some arguments against other

proposed measures of explanatory power.

2.2 CONCEPTUAL ANALYSIS AND CARNAPIAN EXPLICATION

In analytic philosophy, concepts are typically clarified and accounted for via conceptual

analysis. Conceptual analyses attempt to illuminate the meanings of particular concepts by

breaking them up into sets of constituent sub-concepts. Following C. H. Langford (1943),

along with a number of other philosophers, let us call the concept that a particular analysis

aims to clarify the analysandum and the set of sub-concepts that are meant to clarify it

the analysans. For a conceptual analysis to be successful, the concepts that make up the

analysans must all be more familiar to us than is the analysandum. If this fails to hold true,

then one runs into the classic objection that an analysis fails because it makes the mysterious

even more mysterious. In order for a conceptual analysis to succeed, it must also be the case

that it “states an appropriate relation of equivalence between the analysandum and the
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analysans” (Langford 1943, p. 323).1 Hence, the debate over the value of any particular,

putative analysis of a concept in philosophy often centers on proposed counterexamples

claiming to show that the set of concepts included in the analysans is either not necessary

or not sufficient for the application of the analysandum.

This can all be made more clear through the following example from contemporary phi-

losophy. Since the time of Plato’s Theaetetus, epistemologists have considered the suggestion

that knowledge might be accurately analyzed as justified true belief. That is, these philoso-

phers have investigated whether the meaning of the difficult concept of knowledge might

be illuminated by analyzing it into the more familiar notions of justification, truth, and

belief. The ensuing debate over the value of this putative analysis has at least gone in the

following two ways. First, the vast majority of recent criticisms to this “tripartite” account

of knowledge have pointed to so-called “Gettier cases” (Gettier 1963), which are meant to

show that the concepts justification, truth, and belief are either not jointly necessary or not

jointly sufficient (or both) for the application of the concept knowledge. Gettier cases thus

challenge the tripartite account of knowledge by claiming to show that it does not state an

appropriate relation of equivalence between the analysandum and the analysans – and so,

that it is not a satisfactory conceptual analysis. But contemporary epistemologists have also

challenged the tripartite account of knowledge on the grounds that its analysans is no clearer

(indeed, less clear) than its analysandum – i.e., that the collective concept of justified true

belief is even more muddled than the concept of knowledge. Timothy Williamson (2000,

p. 31), for example, complains that analyses that are complex enough to sidestep Gettier

counterexamples would remain unattractive as they “might well lead to more puzzlement

than less.”2 According to this objection, the tripartite account fails to provide a satisfactory

conceptual analysis because, while it may or may not be describing a relation of equivalence

between the analysandum and the analysans, it is doing nothing to make the analysandum

clearer to us.

In the first chapter of Logical Foundations of Probability, Rudolf Carnap describes a

1Here, I will set aside the interesting question of what sort of equivalence is required by a conceptual
analysis. I will also set aside potential worries about this requirement for a satisfying analysis having to do
with the nature of analyticity, cases of conceptual advance, etc.

2It should be noted that while Williamson does intend this comment to be a criticism of the tripartite
account, this point is, by no means, his main objection.
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methodological tool that philosophers may find useful for illuminating concepts, but which

is importantly distinct from conceptual analysis. Finding inklings of this idea in Kant’s

notion of an “explicative judgment” and Husserl’s “Explikat,” Carnap (1950, p. 3) calls this

tool explication.3 He then proceeds to describe the method of explication in the following

way:

The task of explication consists in transforming a given more or less inexact concept into
an exact one or, rather, in replacing the first by the second. We call the given concept (or
the term used for it) the explicandum, and the exact concept proposed to take the place
of the first (or the term proposed for it) the explicatum. The explicandum may belong
to everyday language or to a previous stage in the development of scientific language. The
explicatum must be given by explicit rules for its use, for example, by a definition which
incorporates it into a well-constructed system of scientific either logicomathematical or
empirical concepts.

Because explication works by transforming a vague concept into one that is exact, Carnap

(1950, p. 7) notes that “we cannot require the [relationship of correspondence between the

explicandum and explicatum] to be a complete coincidence.” Accordingly, the requirement

on a conceptual analysis that the analysans and analysandum be equivalent is replaced, in

explication, by the weaker and less precise requirement that the explicatum be “sufficiently

similar” to the explicandum; i.e., “that, in most cases in which the explicandum has so far

been used, the explicatum can be used” (ibid.). Additionally, whereas the primary aim of

a conceptual analysis is to clarify the meaning of a concept, the related but distinct aim of

explication is to sharpen or precisify a concept in order to advance its study. This difference

leads to two additional desiderata for a satisfactory explication. First, instead of requiring

that the explicatum be more familiar to us than the explicandum, Carnap requires that the

explicatum be more exact. Second, to ensure the usefulness of the explication for further

study, the explicatum ought to be fruitful in the sense of suggesting further research. Carnap

suggests that these three desiderata are equally important, and he argues that they often

need to be weighed against each other by pointing to cases in which it is good for explications

to break with one desideratum (e.g., the requirement of similarity) to some degree in order

to achieve a corresponding gain in the other desiderata (e.g., either precision or fruitfulness).

Finally, Carnap imposes a fourth desideratum, which is “of secondary importance,” when

3But see (Boniolo 2003, pp. 293-294) for an intriguing discussion of some “historical oversights” that
Carnap made when citing Kant and Husserl in this regard.
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he requires that “the explicatum should be as simple as possible; this means as simple as

the more important requirements [similarity to the explicandum, precision, and fruitfulness]

permit” (ibid.).

Although explication is clearly distinct from conceptual analysis in various ways then,

Carnap does reserve an important role for something like analysis in the preliminary work

leading up to the development of an explication. Before ever attempting an explication of

some concept, Carnap emphasizes that one must become at least somewhat clear on the

sense in which one means the explicandum. He writes (p. 4), “since even in the best case

we cannot reach full exactness, we must, in order to prevent the discussion of the problem

from becoming entirely futile, do all we can to make at least practically clear what is meant

as the explicandum.” Carnap suggests that this better understanding of the explicandum is

to be achieved “with the help of some examples for its intended use and other examples for

uses not now intended [along with] an informal explanation in general terms” (ibid.). By “an

informal explanation in general terms,” Carnap means an informal and general description

of the meaning intended. He provides the following example of the sort of clarifying work

that he has in mind (pp. 4-5):

I might say, for example: “I mean by the explicandum ‘salt’, not its wide sense which
it has in chemistry but its narrow sense in which it is used in the household language.”
This explanation is not yet an explication; the latter may be given, for instance by the
compound expression ‘sodium chloride’ or the synonymous symbol ‘NaCl’ of the language
of chemistry.

It is clear then that Carnap does not require here a fully satisfying conceptual analysis of

the explicandum; nonetheless, the sort of conceptual clarification achieved here is akin to

that achieved by such an analysis – and, were one to give a satisfactory conceptual analysis

to the explicandum, this would presumably more than suffice for this preliminary step.

It is important to keep in mind the above distinction between the method of explication

and that of conceptual analysis.4 The difference between the two methods, for philosophical

purposes, is immense. For one thing, whether one is analyzing or explicating a concept

4Carnap agrees. He writes, “What I mean by ‘explicandum’ and ‘explicatum’ is to some extent similar to
what C. H. Langford calls ‘analysandum’ and ‘analysans’ [...]. The procedure of explication is here understood
in a wider sense than the procedures of analysis and clarification which Kant, Husserl, and Langford have
in mind. The explicatum (in my sense) is in many cases the result of an analysis of the explicandum [...]; in
other cases, however, it deviates deliberately from the explicandum but still takes its place in some way.”
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matters greatly to how one will argue for that account. This is, first, because there are more

requirements that an explication must satisfy in order to be satisfactory; when arguing for

an explication, one must argue that the explication satisfies all four of Carnap’s desiderata

as described above. On the other hand, to be adequate, a conceptual analysis need only

satisfy a stronger version of the first of these – i.e., equivalence instead of similarity – along

with the requirement that the analysans be better understood than the analysandum.

Moreover, recall that in building a positive case for one’s explication, it is crucial to

show, among other things, that the explicatum is sufficiently similar to the explicandum –

i.e., as Carnap clarifies, that the explicatum can be accurately applied in most of the cases in

which the explicandum has so far been used. One natural way that one might establish this

similarity relation between the two concepts (in fact, one that I myself will utilize in Chapter

3) would be via empirical testing to see how often the two concepts coincide. But this method

would make little sense if one was trying to build a positive case for a conceptual analysis, in

which concepts are proposed as analytically equivalent. It would be akin to building a case

for the fact that ‘2+2=4’ by going out and observing various instances of pairs being added

to pairs. The way to establish analytic truths is not to go out and observe how often they

are true. Rather, following the example of analytic philosophers, a much more apt defense of

a putative analytic truth dissects the meanings of the relevant concepts and strives to show

that they are indeed equivalent (e.g., dissecting the concept of knowledge to arrive at the

concepts of justification, truth, and belief.)

Note too that the inequivalence objection that counterexamples raise for attempted con-

ceptual analyses have little relevance when directed at attempted explications. That is, it

makes no sense to object to an explication by pointing out that its explicatum is not nec-

essary and sufficient for the application of the explicandum. This is exactly what we would

expect to be the case if there is merely a relationship of similarity, and not equivalence,

between the two.

Along these same lines, note that an analysis might appropriately be condemned if the

analysans in question does not clarify the meaning, or define, the analysandum in question

– and so an attempted analysis might rightly be blamed for making a difficult concept even

less well understood. When one does conceptual analysis, one is committed to spelling out
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the meaning of the analysandum. However, this is not true of explication. There is no

requirement in explication that the explicatum must be a definition or semantic clarification

of the explicandum. The corresponding requirement on an explication is that the explicatum

must be more precise than the explicandum. However, an explicatum may, for example, be

stated in the terms of a complex mathematical language. And this could have the effect of

making the explicatum manifestly more precise than the explicandum while simultaneously

making it entirely, semantically opaque by most people’s lights. Even if this is true, the

explication could be entirely satisfactory.

While the methods of conceptual analysis and explication might look to be quite similar

in some regards then, there are important and extensive differences between them. Interest-

ingly, the two most well-known, recent objections to Carnap’s method of explication both

fail to take notice of this distinction. What is more, with the distinction in mind, both

objections lose their power.

Giovanni Boniolo (2003) conflates analysis with Carnapian explication throughout his

critique of Carnap. For instance, he writes (p. 290),

In the initial chapter of his Logical Foundation of Probability, Carnap stresses that his work
is devoted to analyzing in a precise and unambiguous way such concepts as confirmation,
induction, and probability. But before proceeding to their analysis – to their explication,
as he calls it – Carnap feels obliged to analyze what explication means, that is, to explicate
the concept of explication.

Boniolo goes on then to give a criticism of Carnapian explication. This criticism identifies

such explication with definition, and condemns the use of definitions in philosophy in the

following way (p. 297):

If a philosopher defined, he would construe the concept with all of its notes ab initio. But,
in such a way he would bar his own chances to investigate whether the aspects upon which
to dwell have been fixed at the beginning. Moreover, the philosopher who wants to ape the
mathematician in using definitions [...] runs the risk of believing that his definitions are
right when they may in fact be wrong.

Boniolo’s basic complaint here, stated more fully, is that explication involves definition. But

if we attempt to study our concept of interest by defining it, then we are in danger of deciding

the answers to interesting philosophical questions by effectively stipulating such answers, via

our definition, from the start. Such definitions, and so the answers stipulated therein, are
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likely to be wrong; necessary and sufficient conditions are, after all, hard to come by. Any

philosophical insight gained via explication then comes by way of assumptions built into our

definition rather than by way of argument; and this is shaky philosophical ground.

There are many reasons why one might object to Boniolo’s criticism. Here, the impor-

tant point is that this objection only works against explication if Boniolo is right to think

that, in explication, one defines the explicandum in terms of the explicatum. While this

would hold true without exception if explication were the same thing as conceptual analysis,

we have seen that there is an important distinction between these methods. Conceptual

analysis necessarily does attempt a definition of a concept, but this is not necessarily so

with explication. Once one distinguishes between analysis and explication, Boniolo’s worries

cease to apply to Carnapian explication. One need not worry that by explicating a concept,

we are assuming answers to philosophical questions within a fragile analytic foundation. By

weakening conceptual analysis’s equivalence condition to a similarity condition, explication

offers a more robust tool for clarifying concepts. While a single convincing counterexample

suffices to dismantle a conceptual analysis of a concept, an explication may stand strong

as offering an explicatum that is similar to the explicandum even in the face of examples

that show ways in which these two concepts might differ. Furthermore, as Patrick Maher

(2007, pp. 335-336) has convincingly argued, in those cases where explication does involve

definition, the definition cannot possibly go wrong. This is because what gets defined in such

cases is not the explicandum but the explicatum, and the definition in these cases is purely

stipulative. To criticize explication by appeal to worries about definition then is simply to

misinterpret the method of explication.

Antony Eagle (2004) also gives a recent criticism of Carnapian explication which rests

upon the conflation of this method with conceptual analysis. Describing Carnap’s method

of explication as an “approach to philosophical analysis,” Eagle puts forward the following

objection (pp. 372-373):

[The model of Carnapian explication] suggests that the explicatum replace or eliminate
the explicandum; and that satisfying these constraints is enough to show that the initial
concept has no further importance. But clearly the relation between the scientific and
pre-scientific concepts is not so one-sided; after all, the folk are the ones who accept the
scientific theories, and if the theory disagrees too much with their ordinary usage, it simply
wont get accepted.
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Eagle sees explication as a method that recommends replacing all instances of the expli-

candum with instances of the explicatum. But if, by making the explicandum precise, the

explicatum ceases to resemble the explicandum sufficiently through the eyes of the folk, then

the folk will certainly not use the former in place of the latter. In this case, the explicandum

will not be generally replaceable by the explicatum, and so, says Eagle, we have a failed

explication.

Eagle’s objection is only convincing if explication is misidentified with analysis. In this

case, the model of explication suggests that one is able to, and should, eliminate the explican-

dum across the board and replace it with the explicatum. After all, in this case, one would be

replacing an unclear concept with a clearer, analytically equivalent concept. However, such

general elimination makes no sense without the equivalence presumed in conceptual analysis.

We have seen that Carnap’s model of explication weakens the equivalence condition; accord-

ingly, pace Eagle, explication does not allow for the general elimination of the explicandum.5

For the same reason, a satisfactory explication does not imply that the explicandum “is of

no further importance.” An explication is not claimed, by Carnap or anyone following Car-

nap’s description, to provide a general replacement for the explicandum concept. Rather,

at best, the explicatum provides a replacement for such a concept within a set context and

for a specific purpose. Because explication is not analysis, there may be, and typically are,

features of the explicandum that are left out of the explicatum. The explicatum does not

attempt to describe a concept that is identical to the explicandum, and that is why there

will inevitably be uses of the explicandum that are not captured by the explicatum.

2.3 OUR EXPLICANDUM: CLARIFYING “EXPLANATORY POWER”

In the remainder of this chapter and in Chapter 3, we will set the foundations for our

epistemology of explanation by putting forward and defending an explication of the concept of

5Carnap does talk of “replacing” the explicandum with the explicatum; however, as Patrick Maher (2007,
pp. 339-340) shows, Carnap restricts such replacement to certain contexts and for certain purposes; Carnap
does not ever suggest that the explicandum ought to be generally eliminated in favor of the explicatum.

Maher (2007) offers similar responses both to Boniolo and Eagle to what I give here. In that paper, Maher
also discusses and responds to an earlier objection to Carnapian explication given by P. F. Strawson (1963).
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explanatory power. As a first step toward explicating explanatory power, we follow Carnap’s

advice and begin by gaining a better understanding of our explicandum. We do this first

with the help of some examples and then second with an informal description of the meaning

intended in more general terms.

2.3.1 Examples: Paley and Darwin Revisited

We have already, in fact, seen some examples of our explicandum from the history of scientific

and philosophical thought in Sections 1.1 and 1.2. The concept of explanatory power that I

am interested in explicating here is the same as that concept which Paley and Darwin have

in mind when they are making judgments about the ability of various theories to account

for observed facts in nature. To take a small but representative sample from these thinkers,

Paley (1802, p. 203) makes use of this concept in the following passage:

The attraction of the calf or lamb to the teat of the dam is not explained by simply referring
it to the sense of smell. What made the scent of the milk so agreeable to the lamb that it
should follow it up with its nose, or seek with its mouth the place from which it proceeded?
No observation, no experience, no argument could teach the new dropped animal, that the
substance, from which the scent issued, was the material of its food. It had never tasted
milk before its birth. None of the animals, which are not designed for that nourishment,
ever offer to suck, or to seek out any such food. What is the conclusion, but that the
sugescent parts of animals are fitted for their use, and the knowledge of that use put into
them?

More generally, Paley calls upon this concept throughout the Natural Theology when arguing

that the hypothesis of design does, but the chance hypothesis does not, “explain” certain facts

– which he variously describes as otherwise “surprising,” “remarkable,” and “unexpected.”

Darwin similarly employs this concept in the following two quotes when he writes about

whether evidence is or is not explicable on various theories: “This grand fact of the grouping

of all organic beings under what is called the Natural System, is utterly inexplicable on the

theory of creation” (Darwin 1859, p. 626);

Many other facts are, as it seems to me, explicable on this theory [of Natural Selection
... O]n the view of each species constantly trying to increase in number, with natural
selection always ready to adapt the slowly varying descendants of each to any unoccupied
or ill-occupied place in nature, these facts cease to be strange, or might even have been
anticipated (Darwin 1859, pp. 626-627).
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In the first quote above, Darwin argues against the theory of creation by appealing to its

inability to explain the “Natural System.” Darwin then employs explanatory reasoning again

in the second quote when he gives a more constructive argument in favor of his own theory

by pointing to its ability to make many facts explicable. Darwin repeatedly employs this

same notion of explanatory power throughout the Origin when arguing for Natural Selection

on account of its ability to “explain” several considerations from nature “in so satisfactory

a manner.” Below, I give two more examples of what I take to be the same concept at work

in other instances of human reasoning.

2.3.2 Examples: Murder on the London Underground

In the short story, “The Adventure of the Bruce-Partington Plans,” Sir Arthur Conan Doyle

(1908) has Sherlock Holmes investigating a murder. As the story proceeds, a curious body

of evidence is uncovered. First, the victim’s corpse is found near a portion of the London

Underground train system where the train line has just completed a curve and crossed some

points. Second, the tracks at this location are entirely surrounded by walls ensuring that the

body could only have come from a passing train. Third, while the body thus surely came

from a passing train, there was no ticket found on the body and no blood found inside any

carriages – despite the victim having suffered a “considerable wound.” After examining the

location where the body had been found, the following dialogue between Holmes and Watson

takes place:

Holmes: “The man met his death elsewhere, and his body was on the roof of a carriage.”

“On the roof!”

“Remarkable, is it not? But consider the facts. Is it a coincidence that it is found at
the very point where the train pitches and sways as it comes round on the points? Is not
that the place where an object upon the roof might be expected to fall off? The points
would affect no object inside the train. Either the body fell from the roof, or a very curious
coincidence has occurred. But now consider the question of the blood. Of course, there
was no bleeding on the line if the body had bled elsewhere. Each fact is suggestive in itself.
Together they have a cumulative force.”

“And the ticket, too!” I cried.

“Exactly. We could not explain the absence of a ticket. This would explain it. Every-
thing fits together.”
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In this passage, Holmes reasons in favor of a particular hypothesis – that the body was on

the roof of a train carriage – by noting just how much explanatory power this hypothesis has

over the evidence. It seems to me that this sense of explanatory power that Holmes appeals

to in this passage is the same as that employed by both Paley and Darwin in the above

passages. And this is the same concept of explanatory power that I attempt to explicate in

this dissertation.

2.3.3 Examples: No Miracles Allowed

By far, the most well-known argument for scientific realism (put bluntly, the philosophi-

cal hypothesis that successful scientific theories approximate the truth) is the “No Miracle

Argument.” The classic statement of this argument was given in the following passage by

Hilary Putnam (1975, p. 73):6

The positive argument for realism is that it is the only philosophy that doesn’t make the
success of science a miracle. That terms in mature scientific theories typically refer [...],
that the theories accepted in a mature science are typically approximately true, that the
same term can refer to the same thing even when it occurs in different theories – these
statements are viewed by the scientific realist not as necessary truths but as part of the
only scientific explanation of the success of science, and hence as part of any adequate
scientific description of science and its relations to its objects.

Our explicandum is the concept of explanatory power that Putnam invokes here. That is,

we want our explication of explanatory power to be a precisification of the notion according

to which scientific realism, unlike anti-realism, is supposed to be explanatory of the success

of science. Moreover, I take it that this notion of explanatory power is, for all intents and

purposes, identical to the concept appealed to by Doyle (via Holmes), Paley, and Darwin.

Finally, I should emphasize that examples of this concept being employed in human reasoning

abound. As suggested in Section 1.1, the concept of explanatory power that I focus on here

shows up in all sorts of contexts of human reasoning, and a multitude of examples could

be given from any one of these contexts. Nonetheless, I will let the examples given above

6Putnam puts forward a more detailed version of the No Miracle Argument in (Putnam 1978). Stathis
Psillos (1999, ch. 4) provides an interesting, informative discussion of the short history of the No Miracle
Argument. Among other things, Psillos points out that long before Putnam gave the classic statement of
this argument, variants of the No Miracle Argument had been put forward by J. J. C. Smart (1963) and
Grover Maxwell (1962, 1970).
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suffice, at least for the purpose of clarifying somewhat the sense of “explanatory power” that

I intend to explicate below.

2.3.4 Informal Description

In order to clarify our explicandum a bit further, we can develop an informal description of

the relevant sense of “explanatory power.” We begin by noting a common theme running

through all of the above examples. A hypothesis is considered explanatory with regards to

some evidence in the above cases to the extent that it makes such remarkable, surprising,

curious, strange, or unexpected evidence explicable, expected, or non-miraculous. That is,

more concisely, we might way that the sense of explanatory power that we have in mind has

to do with a hypothesis’s ability to make the evidence in question more expected, or less

surprising.

There is historical, philosophical precedence for describing explanatory power in this way.

In several writings throughout his career, C. S. Peirce famously describes three “categories

of inference.” His third category of inference, which he variously names “abduction,” “hy-

pothesis,” and “retroduction,” describes an inference in which one generates and evaluates

a hypothesis on account of its explanatory power. Peirce’s exact description of this third

type of inference throughout his career altered along with the name he gave it.7 However,

his most precise statement of “abduction” occurs in the following passage (1935, 5.189):

Long before I first classed abduction as an inference it was recognized by logicians that
the operation of adopting an explanatory hypothesis – which is just what abduction is –
was subject to certain conditions. Namely, the hypothesis cannot be admitted, even as a
hypothesis, unless it be supposed that it would account for the facts or some of them. The
form of inference, therefore, is this:

The surprising fact, e, is observed;
But if h were true, e would be a matter of course;
Hence, there is reason to suspect that h is true.8

According to this passage then, an inference in which one adopts an explanatory hypothesis

begins when a “surprising fact” e calls out for a new explanation. A hypothesis h is put forth

7See (Fann 1970) and (Anderson 1986) for discussions of Peirce’s evolving views on his third category of
inference.

8I have substituted e (evidence) and h (hypothesis) for Peirce’s original C and A respectively.
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then, which must render the surprising fact e a “matter of course.”9 The key idea here is

the same as we see through our previous examples: the explanatory power that a hypothesis

has over some evidence has to do with its ability to render that evidence less surprising or

more expected.

2.4 TOWARD AN EXPLICATUM

2.4.1 Carnap’s Desiderata Revisited

In order to construct a satisfactory explication of the above concept, we need to find an ex-

plicatum that satisfies Carnap’s four desiderata: similarity to the explicandum, fruitfulness,

precision, and simplicity (see Section 2.2 above). We may guarantee that our explication

will score well regarding the last two of these requirements in the following way: First, to

ensure that our explicatum is precise in the sense that Carnap (1950, p. 3) requires (stated

in a “logicomathematical” language so that the explicatum is “given by explicit rules for its

use”), I adopt the probability theory as the formal language in which the explicatum will be

expressed. The aim of this explication will thus be a probabilistic measure of the degree of

explanatory power that a particular hypothesis has relative to a specified set of evidence.10

9This feature of abduction might suggest that explanation is tied essentially to necessity for Peirce.
However, elsewhere, Peirce clarifies and weakens this criterion: “to explain a fact is to show that it is a
necessary or, at least, a probable result from another fact, known or supposed” (Peirce 1935, 6.606, emphasis
mine). See also (Peirce 1958, 7.220).

10One might take issue with my stipulating from the start that the explicatum be probabilistic. There are
at least two important reasons why I do this. First, our explicandum seems well-suited for a probabilistic
account. Our explicandum pertains to the ability of a hypothesis to increase the degree to which we expect
(or ought to expect) some set of evidence to attain. But probabilities are often interpreted as degrees of
expectedness (or degrees of rational expectedness). Thus, depending on one’s interpretation of probability,
probabilities may bear a prima facie conceptual resemblance to our explicandum.

Second, I ultimately want to say something informative about whether, and to what extent, a hypothesis’s
explanatory power relative to some evidence is relevant to that hypothesis’s probability given that evidence.
But then I need to bridge the language of explanatory power with the language of the probability theory in
some way. An explicatum stated in terms of the probability theory thus provides me with such a bridge.

Note that, by stipulating that the explicatum be probabilistic, I have not guaranteed that there will
be anything approaching a satisfying probabilistic explication of explanatory power. It could be that this
stipulation leads me down a dead end. Ultimately, in addition to being stated precisely (which is guaranteed
by being stated probabilistically), the explicatum needs to be sufficiently similar to the explicandum, fruitful,
and simple in order to be satisfactory. I will in fact argue that my explication satisfies all of these desiderata
in what follows. This is another place then where the proof is in the pudding. Whether the probability
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Our explicatum will thus be stated as a mathematical function. In this case, Carnap’s

simplicity desideratum amounts to a requirement that the mathematical form of this function

be as simple as possible (Carnap 1950, p. 7). Accordingly, we will simply lay it down as

a condition of adequacy for our explication that it be functionally simple (the probabilistic

nature of the explicatum and this simplicity condition are both more fully specified in CA

1 of Section 2.5.1).

It is much more difficult to ensure that our explicatum be “sufficiently similar to the

explicandum.” This is a requirement that we cannot just stipulate from the start. Instead,

we will do our best to ensure that our explicatum satisfies this desideratum by keeping

the latter in mind in the very construction of our explicatum. More specifically, in order

to develop an explicatum that is similar to the explicandum, we take the following steps.

First, Section 2.4.2 will propose a set of intuitive conditions that hold true regarding our

explicandum. Second, Section 2.5 will propose a set of formal conditions of adequacy for

our explicatum that are probabilistic renderings of the intuitive conditions. The intention is

that, by requiring that our explicatum satisfy formal versions of our intuitive conditions, we

force our explicatum to resemble the explicandum of explanatory power – at least in certain

respects. Even after all of this, I will devote Section 2.6 of this chapter along with the

entirety of Chapter 3 to defending further the claim that our explication satisfies Carnap’s

similarity desideratum.

Finally, with a candidate explicatum constructed in this way, Chapters 4, 5, and 6 will

investigate the epistemic implications of explanatory power. In these later chapters, I will

argue that our explicatum proves to be quite fruitful to this investigation. In the end then, I

eventually argue that our explication is satisfying according to all four of Carnap’s desiderata.

2.4.2 Conditions for an Explication of Explanatory Power

Above, we clarify that our explicandum is a particular sense of “explanatory power.” A

hypothesis exhibits such explanatory power with regards to some evidence when it makes

that evidence less surprising (or, we can just as well say, more expected). To ensure that

calculus can offer up a satisfying explication of this concept is something I ultimately argue for by doing it.
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our account of explanatory power is an account of explanatory power in this sense, we

require that it agrees with the following condition: a hypothesis has explanatory power over

a proposition to the extent that it makes that proposition less surprising.11

This initial condition itself leads to some related, additional conditions for an account

of explanatory power. First, just as (positive) explanatory power comes with a decrease

in surprise, one might say that a hypothesis has “negative explanatory power” over some

proposition to the extent that it makes that proposition more surprising. Recalling an

example from the introduction of this dissertation, the hypothesis that my toddler was

playing in my office would seem to me to be a powerful explanation of my books being in a

disarranged state on my shelves. This makes sense on the current conception of explanatory

power as it would be far less surprising that my books are in this state given the truth of

this hypothesis. Correspondingly, I would judge the hypothesis that my wife was recently in

my office to be a particularly poor explanation of the disarranged state of the books on my

shelves. This is because my wife tends to straighten the books on my shelf when she sees

them out of order. This hypothesis thus has negative explanatory power; it does negative

explanatory work because it makes the disarranged state of the books even more surprising

than it already was.

Given the above, we may also say that a hypothesis lacks all (positive or negative)

explanatory power whatever relative to some given proposition if the latter is neither more

nor less surprising in light of that hypothesis. The perceived motions of the planet Uranus,

for example, are less surprising in light of the hypothesized existence of Neptune, but they are

not any more or less surprising given that my two year old was playing in my office yesterday.

The latter hypothesis is simply “explanatorily irrelevant” to the explanandum in question.

Notice that this notion of negative explanatory power, as defined above, differs from that of

explanatory irrelevance. A hypothesis that makes the evidence even more surprising than it

already was is explanatorily inferior to one that is just irrelevant to the evidence. This is

11There are two senses in which the notion of explanatory power described in this condition is allowed
to be more general than that suggested by Peirce’s description of abduction above: first, a hypothesis may
provide a powerful explanation of a surprising proposition, in our sense, and still not render it a matter of
course; i.e., a hypothesis may make a proposition much less surprising while still not making it unsurprising.
Second, our sense of explanatory power does not suggest that a proposition must be surprising in order to be
explained; a hypothesis may make a proposition much less surprising (or more expected) even if the latter
is not very surprising to begin with.
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because there is more explanatory work to be done in light of the former, but not in light of

the latter.

Insofar as a hypothesis has positive explanatory power over a proposition to the extent

that it renders the latter unsurprising, one might additionally conclude that a hypothesis

provides a maximally powerful explanation of some proposition just when it would lead one

to expect that proposition to be true with certainty; this occurs when the hypothesis implies

the truth of that proposition. On the other hand, a maximally poor explanation of some

known proposition is one that renders the latter maximally surprising, and this occurs when

the hypothesis implies that the proposition in question is false.

Finally, the less surprising a proposition’s truth is in light of a hypothesis, the more

surprising is its falsity. Given the above, this means that the more explanatory power

a hypothesis has over a proposition, the less it has over the proposition’s negation – my

toddler’s playing in my office is a powerful explanation of my books being disarranged to

the extent that the same hypothesis would be a poor explanation of my books being in neat

order. To summarize then, focusing on our sense of “explanatory power” as decrease in

surprise, all of the following are natural, compelling conditions required for any account of

explanatory power:

Condition 1: A hypothesis has positive explanatory power over a proposition to the extent

that it decreases the degree to which that proposition is surprising (i.e., increases the

degree to which we expect that proposition to be true).

Condition 2: A hypothesis has negative explanatory power over a proposition to the extent

that it increases the degree to which that proposition is surprising.

Condition 3: A hypothesis has no explanatory power over (i.e., is explanatorily irrelevant

to) a proposition if and only if the latter is neither more nor less surprising in light of

that hypothesis.

Condition 4: A hypothesis has maximal explanatory power over a proposition (i.e., is a

maximally good explanation) if and only if it leads us to expect with certainty that the

proposition is true.

Condition 5: A hypothesis has minimal explanatory power over a proposition (i.e., is a

maximally poor explanation) if and only if it leads us to expect with certainty that the
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proposition is false.

Condition 6: The more explanatory power a hypothesis has relative to a proposition, the

less it has relative to the negation of that proposition.

Before moving on to our attempt to construct an explicatum from these conditions, it

is worth making a few clarifications. The first comes by way of a reminder: Recall that

this account is not intended to reveal the conditions under which a hypothesis provides an

explanation of some explanandum (that is, after all, the aim of a metaphysical account of ex-

planation rather than an epistemologically motivated account of explanatory power); rather,

the goal here is ultimately to explicate the strength or power of a potential explanation.

In other words, the explication aimed at in this chapter has, as its target concept, the ex-

planatory power of a hypothesis relative to some evidence, given that the former provides a

potential explanation of the latter. Accordingly, we restrict ourselves in presenting our condi-

tions of adequacy to speaking of theories that do in fact provide potential explanations of the

explanandum in question. Thus, it is no counterexample to Condition 1 and Condition

4, for example, to point out that any proposition will render itself maximally unsurprising.

Given any proposition, that same proposition is indeed maximally unsurprising. However,

this does not thereby make any proposition a maximally powerful explanation of itself. Such

an untoward conclusion is precluded by the fact that a proposition simply cannot provide a

potential explanation of itself (i.e., it cannot stand in the explanatory relation to itself).

Second, I take no position here on whether the explication given in this chapter captures

the notion of explanatory power generally ; it is consistent with this account that there be

other senses of explanatory power that do not fit the account provided here.12 On the

other hand, the account given in this dissertation does claim to capture one familiar and

epistemically compelling sense of explanatory power commonly, if not always, invoked when

humans reason explanatorily. The central, defining feature of explanatory power, in this

sense, is the notion that a hypothesis has explanatory power over some proposition to the

12As a possible example, Salmon (1970), Jeffrey (1969), and Greeno (1970) all argue that there is a sense
in which a hypothesis may be said to have positive explanatory power over some explanandum so long as
that hypothesis and explanandum are statistically relevant to one another, regardless of whether they are
negatively or positively statistically relevant. As will become clear, insofar as there truly is such a notion of
explanatory power, it must be distinct from the one that we have in mind.
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extent that it alleviates our surprise in that proposition’s truth.

Finally, regarding the distinction – made in Section 1.2 – between analyses of explanation

and epistemic accounts of explanatory power, it is worth pointing out the following. While

this explication of explanatory power does not rule out any particular metaphysical account

of explanation (after all, there may be other senses of explanatory power than the one ana-

lyzed in this dissertation), it does seem to fit better with some more than others. Without

going into much detail, the idea that a hypothesis has explanatory power to the extent that

it makes the explanandum less surprising (more expected) seems to fit especially well with

the Deductive-Nomological and Inductive-Statistical accounts (Hempel 1965) and necessity

accounts (Glymour 1980) of explanation. These have in common that they explicitly analyze

explanation in such a way that a hypothesis that is judged to be explanatory of some ex-

planandum will necessarily increase the degree to which we expect that explanandum. This

notion of explanatory power also seems quite compatible with causal-mechanical accounts

of explanation (Salmon 1984, Machamer et al. 2000) given the fact that causal strength is

plausibly measured in terms of positive statistical relevance (Fitelson and Hitchcock 2011)

(and this will be the same basic approach taken to measuring explanatory power below).13

2.5 THE MEASURE OF EXPLANATORY POWER E

The task of this section will be to apply some of the above conditions in order to arrive

at a precise explication of explanatory power. As it turns out, if one makes use of the

probability calculus to clarify and interpret these conditions, then one can prove that a subset

13To my mind, the only account of explanation that is clearly at odds with this the concept of explanatory
power as I analyze it here is the account of statistical explanation put forward by Salmon (1970) and
Jeffrey (1969) – see also the analyses of explanatory power discussed by Greeno (1970), Jeffrey (1970), and
Rosenkrantz (1970). According to this account, a statistical hypothesis has positive explanatory power over
its explanandum to the extent that it is statistically relevant to it, even if it is negatively so. In this case, a
hypothesis may make an explanandum far more surprising and still have much positive explanatory power
over that explanandum. As I mentioned in the previous footnote, insofar as there truly is such a notion of
explanatory power as this, it must be distinct from the one that we have in mind. Here I will also add that,
insofar as there truly is such a notion of explanatory power as this, it is not at all clear that this notion has
anything to do with those considerations that people generally utilize when reasoning explanatorily. I return
to this last point, and argue for it, in Section 6.1.1.
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of Conditions 1-6 are sufficiently strong to determine a unique quantitative measure of

explanatory power; in other words, the intuitions pertaining to explanatory power presented

in the previous section are already more than enough to pin down a single formal explication

of this concept. I offer two related, but distinct, theorems from probabilistic versions of

Conditions 1-6 to a unique measure of explanatory power E . The proofs of these theorems

are provided in the appendices to this dissertation. The resulting account of explanatory

power will then – in later chapters – be used to clarify, in the precise language of the

probability theory, the formal and epistemic implications of those explanatory judgments

that people make when reasoning.

The key interpretive move of this section is to formalize a decrease in surprise (increase

in expectedness) as an increase in probability. This move may seem dubious depending upon

one’s interpretation of probability. Given a physical interpretation (e.g., a relative frequency

or propensity interpretation), it would indeed be difficult to saddle such a psychological con-

cept as surprise with a probabilistic account. However, when probabilities are themselves

given a more psychological interpretation (whether in terms of simple degrees of belief or

the more normative rational degrees of belief), this move makes sense. In this case, prob-

abilities map neatly onto degrees of expectedness. This is true by definition for the first,

subjectivist interpretation; in terms of the more normative interpretation, probabilities still

map neatly onto degrees of expectedness, though these are more specifically interpreted as

rational degrees of expectedness. Accordingly, given the inverse relation between surprise

and expectedness (the more surprising a proposition, the less one expects it to be true),

surprise is straightforwardly related to probabilities: the observation that h decreases the

degree to which e is surprising corresponds with the judgment that h increases the degree to

which e is expected, which is expressed probabilistically by the inequality Pr(e) < Pr(e|h).14

In the remainder, I make the assumption that we only discuss probability distributions

that are regular; i.e., only tautologies and contradictions are awarded rational degrees of

belief of 1 and 0. This is not strictly required to derive the results below, but it makes the

calculations and motivations much more elegant.

14The background knowledge term k always belongs to the right of the solidus “|” in Bayesian formaliza-
tions (e.g., Pr(e|k) < Pr(e|h ∧ k)). Nonetheless, here and in the remainder of this dissertation, I choose for
ease of exposition to leave k implicit in all formalizations.
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2.5.1 Uniqueness, Version 1

Before interpreting Conditions 1-6 probabilistically, the following formal condition of ade-

quacy is first needed in order to specify that the measure of explanatory power that explanans

h has over explanandum e (denoted E(e, h)), which we seek as our explicatum, must be prob-

abilistic in nature and simple in a well-defined sense – in accordance with Carnap’s precision

and simplicity desiderata.15

CA 1. For any probability space and regular probability measure (Ω,A, P r(·)), E is a mea-

surable function from two propositions e, h ∈ A to a real number E(e, h) ∈ [−1, 1]. More

precisely, E is the ratio of two functions of Pr(e∧h), Pr(¬e∧h), Pr(e∧¬h) and Pr(¬e∧¬h),

each of which are homogeneous in their arguments to the least possible degree k ≥ 1.

Representing E as the ratio of two functions serves the purpose of normalization. Pr(e∧

h), Pr(¬e∧h), Pr(e∧¬h) and Pr(¬e∧¬h) fully determine the probability distribution over

the truth-functional compounds of e and h, so it is appropriate to represent E as a function

of them. The requirement that the two functions be “homogeneous in their arguments”

ensures that the functional form of E itself does not determine which of the terms (Pr(e∧h),

Pr(¬e ∧ h), Pr(e ∧ ¬h), Pr(¬e ∧ ¬h)) should have more weight.

The requirement that E be the ratio of two functions, each having “the least possible

degree k ≥ 1” reflects a minimal and well-defined Carnapian simplicity condition akin to

the version advocated by Kemeny and Oppenheim (1952, p. 315). Below, in Section 2.5.2,

I show that this simplicity requirement is not needed to determine E as the unique measure

of explanatory power up to ordinal equivalence. Nonetheless, there are several reasons one

might want to retain this requirement. First, such a simplicity requirement is part and parcel

of Carnap’s notion of explication. Accordingly, we build Carnap’s simplicity requirement

into our conditions of adequacy. Second, this requirement effectively limits the search for

a unique measure to those that are the most cognitively accessible and applicable. Some

15Up until this point in the dissertation, I have been able to avoid the topic of just what sort of thing the
explanandum is. At this point, however, I should clarify the following: For the sake of the following account,
all explananda are ultimately categorized as propositions. At times, it is natural to talk instead about the
explaining of evidence or events. In either case, the proper explanandum actually may be thought of as the
proposition describing the relevant evidence or event. Such a proposition may of course be as complex as is
necessary to describe the corresponding evidence or event (or conglomerate of events) accurately.
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such restraint is appropriate insofar as we want to ensure that our resulting measure is not

complex to the point of being hopelessly opaque and unusable. Third, in addition to this

pragmatic virtue, whether or not simplicity is of epistemic virtue is an open question, and

many philosophers and scientists endorse the idea that there are good epistemic reasons to

prefer simpler theories. The result that there is a unique, simplest measure of explanatory

power will be of great interest to any such thinker.

Of course, larger values of E(e, h) indicate greater explanatory power of h with respect

to e. Accordingly, E(e, h) = 1 (E ’s maximal value) is the value at which h is interpreted

as a maximally powerful potential explanation of e; similarly, E(e, h) = −1 indicates the

minimal degree of explanatory power for h relative to e, where h is interpreted as providing

a maximally powerful potential explanation for e being false. E(e, h) = 0 is the “neutral

point” at which h lacks any explanatory power relative to e (i.e., where h is explanatorily

irrelevant to e).

While CA 1 gives us an informal idea of when E should take on certain values, it is still

left to us to define these points formally. Here is where Conditions 1-6 become especially

pertinent. According to the above, E(e, h) should take the value 0 precisely when h lacks any

explanatory power relative to e. Condition 3 specifies that such irrelevance occurs if and

only if e is neither more nor less surprising in light of h. Given the inverse relation between

surprise and probability, the way to formalize this probabilistically is to say that, in such

cases, h and e are statistically irrelevant to (independent of) one another – in which case,

Pr(e|h) = Pr(e), or equivalently, Pr(h ∧ e) = Pr(h)× Pr(e):

CA 2. (Neutrality). For explanatory hypothesis h, E(e, h) = 0 if and only if Pr(h ∧ e) =

Pr(h)× Pr(e).

CA 1 also demands that E(e, h) takes a maximum value of 1 if and only if h is a maximally

powerful explanation of e. Condition 4 clarifies that such will be the case precisely when h

leads us to expect with certainty that e is true. Such a notion is straightforwardly formalized

with the equality Pr(e|h) = 1, resulting in the following condition:

CA 3. (Maximality). For explanatory hypothesis h, E(e, h) = 1 if and only if Pr(e|h) = 1.

Condition 6 above requires that as the explanatory power of h relative to e increases,
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that of h relative to ¬e decreases. In other words, the more h explains the truth of e, the less

it explains its falsity. CA 2 and CA 3 provide us with further rationale for this condition. CA

3 tells us that E(e, h) should be maximal only if Pr(e|h) = 1. Importantly, in such a case,

Pr(¬e|h) = 0, and this value intuitively corresponds to the point at which we should expect

E(¬e, h) to be minimal (see Condition 5 above). In other words, given CA 3, we see that

E(e, h) takes its maximal value 1 precisely when E(¬e, h) takes its minimal value −1 and vice

versa. Also, we know from CA 2 that E(e, h) and E(¬e, h) should always equal zero at the

same point given that Pr(h∧e) = Pr(h)×Pr(e) if and only if Pr(h∧¬e) = Pr(h)×Pr(¬e).

These considerations lead to the following requirement:

CA 4. (Symmetry). E(e, h) = −E(¬e, h).

The final condition of adequacy appeals to a scenario in which degree of explanatory

power is unaffected. If a hypothesis h2 is explanatorily irrelevant to another hypothesis h1,

to some proposition e, and to any logical combination of h1 and e, then Condition 3 tells

us that it does nothing to increase or decrease the degree to which these are surprising. In

such a case, conjoining h2 to h1 will do nothing to increase or decrease the degree to which

e is surprising in light of the hypothesis. Given CA 2 (Neutrality), we can state this in other

words: if h2 has no explanatory power whatever relative to e, h1, or any logical combination

of e and h1, then its presence will not affect the overall explanatory power of h1 relative to

e. This gives us the following condition:

CA 5. (Irrelevant Conjunction). If Pr(e∧h2) = Pr(e)×Pr(h2) and Pr(h1∧h2) = Pr(h1)×

Pr(h2) and Pr(e ∧ h1 ∧ h2) = Pr(e ∧ h1)× Pr(h2), then E(e, h1 ∧ h2) = E(e, h1).

These five adequacy conditions conjointly determine a unique measure of explanatory

power as stated in the following theorem (Proof in Appendix A).

Theorem 1. The only measure that satisfies CA 1 - CA 5 is

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

.

Thus, as desired, the function E provides a measure of the strength of a potential explanation;

the higher the value of E(e, h), the more powerful the potential explanation that h provides

of e.16

16E is closely related to Kemeny and Oppenheim’s (1952) measure of “factual support” F . In fact, these
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Note that this measure also satisfies the conditions from Section 2.4.2 that were not

needed in order to prove Theorem 1. Conditions 1 and 2 require that explanatory power

increases (decreases) as the degree to which e is surprising decreases (increases) in light of

h. Put more formally, these conditions require that E(e, h) > 0 to the extent that Pr(e) <

Pr(e|h). These conditions are satisfied by E given that

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

> 0

to the extent that Pr(h|e) > Pr(h|¬e). And this inequality holds to the extent that

Pr(e|h) > Pr(e) – this is easy to see in light of the fact that

Pr(h|e)
Pr(h|¬e)

=
Pr(e|h)

Pr(e)
× 1− Pr(e)

1− Pr(e|h)
.

Additionally, Condition 5 requires that explanatory power is minimal if and only if e is

certainly false in light of h. This fact also follows necessarily from E given that E(e, h) = −1

if and only if

E(e, h) = −Pr(h|¬e)
Pr(h|¬e)

.

But this equality follows only if Pr(h) 6= 0 and Pr(h|e) = 0, which implies that Pr(e|h) = 0.

Hence, E(e, h) = −1 if and only if Pr(e|h) = 0. Thus, E is the unique measure of explanatory

power that is able to satisfy the intuitive requirements described in Conditions 1-6.

2.5.2 Uniqueness, Version 2

As mentioned above, one could take issue with this first uniqueness theorem because of its

reliance on the simplicity requirement expressed in CA 1; that is, one might object that

the above theorem and corresponding proof do not show that there is only one intuitively-

satisfying measure of explanatory power, but rather that there is only one simplest such

measure. Insofar as someone is skeptical that the notion of simplicity required by CA 1

has any epistemic merit then, that person will not likely be persuaded that E is uniquely

satisfactory by the above result. (Note, however, that this concern would not raise any

two measures are structurally equivalent; however, regarding the interpretation of the measure, E(e, h) is
F (h, e) with h and e reversed (h is replaced by e, and e is replaced by h).
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real challenge to E ’s status as a uniquely satisfactory Carnapian explication, given that the

simplicity requirement is built in to this method.)

To alleviate this worry, this section introduces an alternative result showing that, even if

we set aside our simplicity requirement, E is still the uniquely best measure of explanatory

power, up to ordinal equivalence – where any two proposed measures of explanatory power

f and f ′ are ordinally equivalent if and only if it is true that, f(e, h) > (=, <)f(e′, h′) if

and only if f ′(e, h) > (=, <)f ′(e′, h′). In other words, the main result of this section states

that all functions that satisfy a set of clear adequacy conditions (probabilistic versions of a

subset of Conditions 1-6) will agree on all ordinal judgments. This implies that all such

functions are strictly monotonic functions of one another; one can say that they are merely

rescaled versions of one another.17

This is quite a substantial achievement. This result shows that, even without making a

simplicity assumption, we can derive a unique probabilistic account of explanatory power.

The fact that this account comes in the way of a class of ordinally equivalent functions

might worry some; however, with only one relatively minor exception, all of the applications

of this account of explanatory power in this dissertation will not depend upon one’s choice of

measure from among this set.18 The upshot is that, for those who are wary of requiring that

the intended explication be simple, there is an alternative theorem that singles out a class of

ordinally equivalent measures of explanatory power; and thankfully, accepting this class of

measures is sufficient for deriving all of the key results that will follow in this dissertation’s

study of the epistemology of explanation.

To present this second uniqueness result, it is necessary first to introduce and motivate

some more adequacy conditions. The first adequacy condition is again one that sets out

the purely formal requirements of our measure. Like CA 1, its main purpose is to specify

the probabilistic nature of our explicatum. Unlike CA 1, however, this condition does not

require that our measure be simple.

17The remaining content of this chapter is based upon my joint work with Jan Sprenger, as published in
(Schupbach and Sprenger 2011).

18The one exception is the work accomplished in Chapter 3; in that chapter, one’s choice of measure
will influence the degree of fitness between the theoretical results derived from a measure and experimental
participants’ explanatory judgments. Accordingly, in that chapter, I will have to make use of the first
uniqueness result given above – and thus also of the simplicity requirement made in CA 1 – in order to single
out one measure to test from among the class of ordinally equivalent measures.
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CA 6. For any probability space and regular probability measure (Ω,A, P r(·)), E is a mea-

surable function from two propositions e, h ∈ A to a real number E(e, h) ∈ [−1, 1]. More

precisely, given Bayes’s Theorem, E is represented as a function of Pr(e), Pr(h|e) and

Pr(h|¬e), and we demand that any such function be analytic.19

The next adequacy condition specifies, in probabilistic terms, the general notion of ex-

planatory power that we are interested in explicating. As mentioned in Section 2.4.2, an

explanans has explanatory power over some explanandum, in the sense that we have in mind,

to the extent that it makes that explanandum less surprising. More specifically Condition

1 tells us that a hypothesis has positive explanatory power over a proposition to the extent

that it decreases the degree to which that proposition is surprising (i.e., increases the degree

to which we expect that proposition to be true), while Condition 2 states that a hypothesis

has negative explanatory power over a proposition to the extent that it increases the degree

to which that proposition is surprising. If h decreases (increases) the degree to which e is

surprising, we represent this with the inequality Pr(e) < (>)Pr(e|h). The strength of this

inequality corresponds to the degree of statistical relevance between e and h, and so we can

capture all of this probabilistically by requiring the following:

CA 7. (Positive Relevance). Ceteris paribus, the greater the degree of statistical relevance

between e and h, the higher E(e, h).

The following adequacy condition observes that explanatory power, in our sense, does

not depend upon the prior plausibility of the explanans. This is because the extent to which

an explanatory hypothesis alleviates the surprising nature of some explanandum does not

depend on considerations of how likely that hypothesis is in and of itself. Rather, to decide

the effect of a hypothesis upon the surprisingness (expectedness) of some explanandum, one

19A real-valued function f is analytic if we can represent it as the Taylor expansion around a point in its
domain. This requirement is, first of all, quite weak insofar as it does not rule out any normal mathematical
function. Furthermore, and more importantly, this requirement is needed in order to ensure that our measure
cannot be composed in an arbitrary or ad-hoc way.

Since E is represented via certain conditional probabilities, one might worry about logically extreme cases
where, e.g., Pr(e) = 0. I suggest that this worry can easily be avoided by remembering that h is assumed
to provide a potential explanation of e. Cases of zero probability will not present a problem simply because
self-contradictory propositions (those propositions that have zero probability) cannot act as explanans or
explanandum in a potential explanation. In effect then, E is defined on all pairs of contingent propositions;
i.e., cases such as Pr(e) = 0 etc. are not in the domain of E .
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compares how surprising (expected) the explanandum is apart from considerations of the

hypothesis to how surprising (expected) it would be granting the truth of the hypothesis.

In making this specific comparison, it is simply not necessary (and not helpful) to know

how plausible the explanatory hypothesis is on its own. With this sense of explanatory

power in mind then, it is perfectly sensible to talk about two hypotheses that are vastly

unequal in their respective plausibilities having the same amount of explanatory power over

an explanandum. For example, dehydration and cyanide poisoning may be (approximately)

equally powerful explanations of symptoms of dizziness and confusion insofar as they both

make such symptoms less surprising to the (approximately) same degree. And this is true

despite the fact that dehydration is typically by far the more plausible explanans. In light

of these considerations, we require the following

CA 8. (Irrelevance of Priors). Values of E(e, h) do not depend upon the values of Pr(h).20

Retaining CA 5 from Section 2.5.1 and now also requiring CA 6, CA 7, and CA 8, one

can derive the following theorem (proof in Appendix B):

Theorem 2. All measures of explanatory power satisfying CA 5 - CA 8 are monotonically

increasing functions of the posterior ratio Pr(h|e)/Pr(h|¬e).

Note that the specific measure of explanatory power introduced and defended in Section

2.5.1,

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

,

is one such measure. We have already seen, via Theorem 1, that this measure satisfies CA

5; moreover it is easy to see that it does satisfy CA 6. E can be shown to satisfy both CA 7

and CA 8 simultaneously by proving that E is purely – no ceteris paribus clause required –

an increasing function of the degree of statistical relevance between h and e, and so that it

can be represented purely as a function of Pr(e|h) and Pr(e). This is shown in the proof of

the following representation theorem (Appendix C):

20The following weaker version of CA 8 actually suffices in the proof of Theorem 2: When either h or ¬h
implies e, values of E(e, h) and E(e,¬h) do not depend upon the values of Pr(h) and Pr(¬h). Nonetheless,
the notion of explanatory power analyzed here motivates the condition that explanatory power does not
depend upon Pr(h) generally – not merely when h or ¬h implies e. Accordingly, I include this stronger
condition here.
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Theorem 3. E can be represented as a function only of Pr(e) and Pr(e|h). Moreover, E

is a decreasing function – at constant Pr(e|h) – of Pr(e) and an increasing function – at

constant Pr(e) – of Pr(e|h).

Given that E thus satisfies CA 5 - CA 8, Theorem 2 implies that E is a monotonically

increasing function of the posterior ratio Pr(h|e)/Pr(h|¬e). This result is proved more

directly in Lemma 3 of Appendix C.

From Theorem 2, two important corollaries follow. First, we can derive a result specifying

the conditions under which E takes its maximal and minimal values. In other words, we

can derive CA 3 (Maximality) and the corresponding Minimality condition from CA 5 - CA 8

(proof in Appendix B):

Corollary 1. E(e, h) takes maximal value if and only if h entails e, and minimal value if

and only if h implies ¬e.

The second corollary constitutes our desired ordinal equivalence result:

Corollary 2. All measures of explanatory power satisfying CA 5 - CA 8 are ordinally equiv-

alent.

To see why this corollary follows from Theorem 2, let r be the posterior ratio of the pair

(e, h), and let r′ be the posterior ratio of the pair (e′, h′). Without loss of generality, assume

r > r′. Then, for any functions f and f ′ that satisfy CA 5 - CA 8, we obtain the following

inequalities:

f(e, h) = g(r) > g(r′) = f(e′, h′) f ′(e, h) = g′(r) > g′(r′) = f ′(e′, h′),

where the inequalities are immediate consequences of Theorem 2. So any f and f ′ satisfying

CA 5 - CA 8 always impose the same ordinal judgments.

2.6 THEOREMS OF E

I have proposed all of the above conditions of adequacy as intuitively plausible constraints on

any probabilistic account of explanatory power. Accordingly, the fact that these conditions
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are sufficient to determine E as a uniquely satisfactory measure of explanatory power (up to

ordinal equivalence in the case of the second uniqueness result) already constitutes a strong

argument in this measure’s favor. That is, insofar as this candidate explicatum is the only

one that can consistently satisfy our intuitive requirements on an account of explanatory

power, we already have good reason for thinking that our explicatum is sufficiently similar

to our explicandum. Nonetheless, I proceed in this section to strengthen the case for this

conclusion by highlighting some important theorems that follow from adopting E as measure

of explanatory power.21

2.6.1 Addition of Irrelevant Evidence

Good (1960) and, more recently, McGrew (2003) both account for h’s degree of explanatory

power relative to e in terms of the amount of information concerning h provided by e. This

results in the following alternative, probabilistic measure of explanatory power:22

I(e, h) =ln

[
Pr(e|h)

Pr(e)

]
According to this measure, the explanatory power of explanans h must remain constant

whenever we add an irrelevant proposition e′ to explanandum e (where proposition e′ is

irrelevant in the sense that it is statistically independent of h in the light of e):

I(e ∧ e′, h) = ln

[
Pr(e ∧ e′|h)

Pr(e ∧ e′)

]
= ln

[
Pr(e′|e ∧ h)Pr(e|h)

Pr(e′|e)Pr(e)

]
= ln

[
Pr(e′|e)Pr(e|h)

Pr(e′|e)Pr(e)

]
= ln

[
Pr(e|h)

Pr(e)

]
= I(e, h)

This is, however, a very counterintuitive result. Consider the following simple example:

Let e be a general description of the Brownian motion observed in some particles suspended

21Each of the theorems presented in this section can and should be thought of as further conditions of
adequacy on any measure of explanatory power. Nonetheless, I choose to present these theorems as separate
from the conditions of adequacy presented in Section 2.5 in order to make explicit which conditions do the
work in giving us the uniqueness results.

22Good’s measure is meant to improve upon the following measure of explanatory power defined by Popper
(1959): [Pr(e|h)−Pr(e)]/[Pr(e|h)+Pr(e)]. It should be noted that Popper’s measure is ordinally equivalent
to Good’s (see proof in footnote 1 of Section 3.2); thus, the problem we present here for Good’s and McGrew’s
measure is also a problem for Popper’s.
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in a particular liquid, and let h be Einstein’s atomic explanation of this motion. Of course,

h constitutes a lovely explanation of e, and this fact is reflected nicely by measure I:

I(e, h) = ln

[
Pr(e|h)

Pr(e)

]
� 0

However, take any irrelevant new statement e′ and conjoin it to e; for example, let e′ be

the proposition that the mating season for an American green tree frog takes place from

mid-April to mid-August. In this case, measure I judges that Einstein’s hypothesis explains

Brownian motion to the same extent that it explains Brownian motion and this fact about

tree frogs. Needless to say, this result is deeply unsettling.

Instead, it seems that, as the evidence becomes less statistically relevant to some explana-

tory hypothesis h (with the addition of irrelevant propositions), it ought to be the case that

the explanatory power of h relative to that evidence approaches the value at which it is judged

to be explanatorily irrelevant to the evidence (E = 0). Thus, if E(e, h) > 0, then this value

should decrease with the addition of e′ to our evidence: 0 < E(e∧e′, h) < E(e, h). Similarly, if

E(e, h) < 0, then this value should increase with the addition of e′: 0 > E(e∧e′, h) > E(e, h).

And finally, if E(e, h) = 0, then this value should remain constant at E(e∧e′, h) = 0. E gives

these general results as shown in the following theorem (proof in Appendix D):

Theorem 4. If Pr(e′|e ∧ h) = Pr(e′|e) – or equivalently, Pr(h|e ∧ e′) = Pr(h|e) – and

Pr(e′|e) 6= 1, then:

• if Pr(e|h) > Pr(e), then E(e, h) > E(e ∧ e′, h) > 0,

• if Pr(e|h) < Pr(e), then E(e, h) < E(e ∧ e′, h) < 0, and

• if Pr(e|h) = Pr(e), then E(e, h) = E(e ∧ e′, h) = 0.

2.6.2 Addition of Relevant Evidence

Next, we explore whether the results provided by E resemble our intuitions about the con-

cept of explanatory power in those circumstances where we strengthen our explanandum by

adding to it relevant evidence. Consider the case where h has some non-minimal degree of

explanatory power relative to e, so that E(e, h) > −1 (i.e., h does not imply that e is false).
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What should happen to this degree of explanatory power if we gather some new information

e′ that, in the light of e, we know is explained by h to the worst possible degree?

To take a simple example, imagine that police investigators hypothesize that Jones mur-

dered Smith (h) in light of the facts that Jones’ fingerprints were found near the dead body

and Jones recently had discovered that his wife and Smith were having an affair (e). Now

suppose that the investigators discover video footage that proves that Jones was not at the

scene of the murder on the day and time that it took place (e′). Clearly, h is no longer such

a good explanation of our evidence once e′ is added; in fact, h now seems to be a maximally

poor explanation of e∧ e′ precisely because of the addition of e′ (h cannnot possibly explain

e ∧ e′ because e′ rules h out entirely). Thus, in such cases, the explanatory power of h rela-

tive to the new collection of evidence e ∧ e′ should be less than that relative to the original

evidence e; in fact, it should be minimal with the addition of e′. This holds true in terms of

E as shown in the following theorem (proof in Appendix E):

Theorem 5. If E(e, h) > −1 and Pr(e′|e ∧ h) = 0 (in which case, it also must be true that

Pr(e′|e) 6= 1), then E(e, h) > E(e ∧ e′, h) = −1.

On the other hand, we may ask what intuitively should happen in the same circumstance

but where the new information we gain e′ is fully explained by h in the light of our evidence

e – and adding the assumption that h has some non-minimal and non-maximal degree of

explanatory power relative to e. Let h and e be the same as in the above example, and now

imagine that investigators discover video footage that proves that Jones was at the scene

of the murder on the day and time that it took place (e′). In this case, h becomes an even

better explanation of the evidence precisely because of the addition of e′ to the evidence.

Thus, in such cases, we would expect the explanatory power of h relative to the new evidence

e ∧ e′ to be greater than that relative to e alone. Again, E agrees with our intuition here

(proof in Appendix E):

Theorem 6. If 0 < Pr(e′|e) < 1 and h does not already fully explain e or its negation

(−1 < E(e, h) < 1) and Pr(e′|e ∧ h) = 1, then E(e, h) < E(e ∧ e′, h).

While these last two theorems are highly intuitive, they are also quite limited in their

applicability. Both theorems require in their antecedent conditions that one’s evidence be
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strengthened with the addition of some e′ that is itself either maximally or minimally ex-

plained by h in the light of e. However, our intuitions reach to another class of related

examples in which the additional evidence need not be maximally or minimally explained

in this way. In situations where h explains e to some positive degree, it is intuitive to think

that the addition of any new piece of evidence that is negatively relevant to h in the light of e

will decrease that h’s degree of explanatory power. Similarly, whenever h has some negative

degree of explanatory power relative to e, it is plausible to think that the addition of any

new piece of evidence that is positively relevant to h in the light of e will increase that h’s

degree of explanatory power. These intuitions are captured in the following theorem of E

(proof in Appendix F):

Theorem 7. If E(e, h) > 0, then if Pr(e′|e ∧ h) < Pr(e′|e), then E(e ∧ e′, h) < E(e, h). On

the other hand, if E(e, h) < 0, then if Pr(e′|e ∧ h) > Pr(e′|e), then E(e ∧ e′, h) > E(e, h).

2.6.3 Conjunction of Independently Explained Evidence

Last, we consider a case in which an hypothesis h has explanatory power relative to a

number of individual and independent bits of evidence (independent both unconditionally

and conditionally upon h), e1, e2, ..., and en. What should be that hypothesis’s degree of

explanatory power relative to the conjunction of all of these bits? Minimally, we suggest

that it should be required that h’s explanatory power relative to e1 ∧ e2 ∧ ... ∧ en be no less

than the minimal degree of explanatory power of h relative to e1, e2, ..., and en individually.

This is simply to say that if h explains e1, e2, ..., and en, then it also explains e1∧e2∧ ...∧en.

Given the independence of e1, e2, ..., and en both unconditionally and conditionally upon h,

this seems obvious enough: h should not lose explanatory power on account of its ability to

explain a host of disparate (statistically independent) pieces of evidence.23

To motivate this requirement further, imagine the following case. Johan lives in Tilburg,

where he is in the unlikely position of knowing many people who do not in turn know of

each other at all. For his birthday party, Johan decides to invite all of his friends to the Café

Anvers in the center of Tilburg so that they can finally all meet each other. He makes the

23On the contrary, it seems that, if anything, h should gain explanatory power on account of its ability to
explain a host of disparate pieces of evidence.
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reservations and sends out the invitations. Given that Johan’s friends do not know a single

thing about each other, it is the case that whether any subset of them do or do not decide

to attend the party is a fact that is quite irrelevant to the probability of any of the others’

decisions whether to attend; e.g., whether or not Sally comes to the party (ei) is not more

or less probable in light of the fact that William and Marie both come to the party (ej ∧ ek).

Thus, it is the case that Pr(e1 ∧ e2 ∧ ...∧ en) = Pr(e1)×Pr(e2)× ...×Pr(en). Additionally,

conditional on Johan inviting all of his friends (h), these independencies still remain and for

the same reason; e.g., Sally is however likely to come to the party given that she was invited

regardless of whether William and Marie will also come. Thus, Pr(e1 ∧ e2 ∧ ... ∧ en|h) =

Pr(e1|h)× Pr(e2|h)× ...× Pr(en|h).

Let us say that, as it turns out, all of Johan’s friends are able to come to the café for

the party. Manifestly, Johan’s act of inviting his friends h explains each individual friend’s

presence at the café on that evening (ei, for all i). Moreover, it explains the more unlikely

fact that all of them happen to be in attendance at the café on that evening, e1∧e2∧ ...∧en.

Most importantly, it also seems clear that, if anything, h is a much better explanation of the

more unlikely fact e1 ∧ e2 ∧ ... ∧ en than it is of any particular friend’s presence ei. This is

because e1∧e2∧...∧en describes a remarkable coincidence that goes missing in any particular

ei. The fact that all of the friends happen to turn up in the same place on the same evening

cries out for an explanation to a greater extent than does the less remarkable fact that one

of the friends happens to show up. Thus, h’s ability to explain these disparate occurrences

conjointly seems to strengthen its power as an explanation. At the very least, it certainly

does not weaken h’s explanatory power. E agrees with these strong intuitions as shown in

the following theorem (proof in Appendix G):

Theorem 8. If all of the following hold true:

• Pr(e1 ∧ e2 ∧ ... ∧ en) = Pr(e1)× Pr(e2)× ...× Pr(en)

• Pr(e1 ∧ e2 ∧ ... ∧ en|h) = Pr(e1|h)× Pr(e2|h)× ...× Pr(en|h)

• these independence relations also hold true of all elementary subsets of {e1, . . . , en}

• and E(e1, h), E(e2, h), ..., E(en, h) > 0
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then it must be the case that

E(e1 ∧ . . . ∧ en, h) ≥ min
1≤i≤n

E(ei, h).

2.7 A MISGUIDED OBJECTION

Section 2.5 introduced and defended the measure E as a uniquely satisfying, probabilistic

explication of explanatory power by showing that this measure alone satisfies certain intuitive

conditions of adequacy – those motivated in Section 2.4.2. Any other attempt to explicate

explanatory power in terms of the probability theory will either be more functionally complex

than E (and so break with CA 1) or it will diverge from the concept of explanatory power

by breaking with intuitions expressed by Conditions 1-6 (and so, it will not be as similar

to the explicandum as is E). Section 2.6 argued further for the claim that explicatum E

is sufficiently similar to our explicandum via several theorems. In particular, Theorem 4

revealed one context in which E resembles the concept of explanatory power, but other

candidate explicata do not. This section will finish our initial defense of E by responding

to a potentially compelling, but ultimately misguided objection that one might still have to

the adoption of E as an account of explanatory power.

One might offer the following objection to E as a formal explication of explanatory

power: There exist many cases in which a hypothesis predicts with certainty or at least

high probability that some uncertain event will occur while, at the same time, not providing

an explanation for that event’s occurrence. But in such cases, the corresponding likelihood

Pr(e|h) is approximately unity, and the corresponding expectedness Pr(e) is not. Thus,

E(e, h) > 0 and so h is falsely judged to be explanatory with regard to e.

Classic asymmetry cases from the philosophy of science provide plenty of grist for this

objection’s mill. For example, let h be the statement that there is a shadow of a certain

shape and length in a particular location, and that the sun is situated at a certain position

in the sky. Now, if e is the claim that there is a flagpole of corresponding shape and height

in the vicinity, then it is indeed the case that Pr(e|h) ≈ 1. Moreover, apart from considering
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h, e is far from certain: Pr(e) � 1. But then, given that E is positive to the extent that

Pr(e|h) > Pr(e),

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

� 0

and thus E judges that h is, to some extent, positively explanatory with regards to e. But the

details about the shadow and the sun are not explanatory at all with regards to the position

and features of the flagpole. Thus, the objection goes, E gives a deeply counterintuitive

result here and it cannot be taken seriously as a measure of explanatory power.

A closely related objection can be put forward by exploiting the fact that, according

to E , explanatory power seems to be symmetric in the following sense: E(e, h) > (<,=)0

if and only if E(h, e) > (<,=)0. In other words, if E judges h to have positive (negative,

no) explanatory power over e, then it must also judge e to have positive (negative, no)

explanatory power over h. But the explanation relation is famously not symmetrical; if h

explains e, then it is rarely the case that e also explains h (the position of the flagpole and

the sun explain the position and length of the shadow, but not vice versa). Thus, again, E

cannot be taken seriously as a measure of explanatory power.

This criticism only will seem convincing to those that have forgotten the crucial distinc-

tion discussed in Section 1.2 however. Recall that we are giving here an explication of the

strength of a potential explanation (or, in other words, the “explanatory power” that h has

over e given that h provides a potential explanation of e), not an account of explanation

simpliciter. A positive value of E(e, h) cannot be used to decide whether h is a potential ex-

planation of e; in any application of E , this is presumed from the start. It can only properly

be used to judge the strength of the potential explanation that h is presumed to give for

e. Given that there is no plausible metaphysical account of the nature of explanation that

would judge the details about the shadow and the sun to constitute a potential explanation

of the position and height of the flagpole (indeed, the fact that the Deductive-Nomological

model does seem to have this consequence is taken to be a devastating counterexample to

it), these cannot be appropriately plugged in to the measure E as our h and e respectively. E

is only meant to judge the strength of a potential explanation; the fact that it gives absurd

results when applied to an h and e that do not constitute a potential explanation is no

argument against it then. Thus, E easily avoids this objection.
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3.0 AN EMPIRICAL DEFENSE OF THE EXPLICATION E

3.1 INTRODUCTION

In Chapter 2, we have constructed a candidate explication of explanatory power. Our expli-

catum takes the form of the probabilistic measure of explanatory power E . This explicatum

is stated in the exact, logicomathematical language of the probability theory, and so it sat-

isfies Carnap’s precision desideratum. Moreover, we have taken steps to ensure that E is

as functionally simple as possible, and so this explicatum also satisfies Carnap’s simplicity

desideratum. Sections 2.5 and 2.6 contained an argument for thinking that E also satisfies

Carnap’s similarity to the explicandum desideratum. The central point of this argument

was to show that E is uniquely capable of agreeing with our intuitions about the concept of

explanatory power. Any other proposed, probabilistic explication of explanatory power will

necessarily fail to resemble the concept of explanatory power in some context(s) by failing

to satisfy one or more of our conditions of adequacy. To be more precise, we have seen that

the only way that an alternative, probabilistic measure of explanatory power can do just as

well as E with regards to our more substantive conditions of adequacy (i.e., CAs 2-5) is if it

is functionally more complex – thus, failing the simplicity desideratum and so breaking with

CA 1. Moreover, even in this latter case, Corollary 2 above shows that the more complex,

alternative measure will simply be a rescaled version of E (i.e., it will be ordinally equivalent

to E) so long as it satisfies CAs 5-8. Another way to state all of this is as follows: There

is only one probabilistic measure of explanatory power that will allow one to hold the intu-

itions underlying our conditions of adequacy without thereby becoming inconsistent; if one

chooses some other probabilistic explicatum, then one’s explanatory intuitions will not be

jointly satisfiable.
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However, one might still question whether giving a probabilistic explication of explana-

tory power might not take us too far away from actual human judgments and intuitions about

explanatory power. Perhaps people aren’t anywhere near consistent in their judgments of

explanatory power. To the extent that this is the case, the measure precisely defined in

our explication may well cease to resemble the concept of explanatory power – i.e., our ex-

plicatum may no longer look so similar to our explicandum, and thus Carnap’s similarity

desideratum will pose a problem here.

I respond to this concern in this chapter by offering a further defense of the claim that E

is sufficiently similar to our everyday concept of explanatory power. This defense is different

in kind from the arguments that I gave in the previous chapter. There, I relied purely

on what I take to be clear intuitions about explanatory power along with the assumption

that our intuitions about this concept are approximately consistent. Here, I go directly to

the source by conducting an empirical study investigating the fit between the theoretical

degrees of explanatory power given by E and actual actual human judgments of explanatory

power. I will be interested in discovering how well E does at describing human judgments of

explanatory power both as compared to other candidate measures as well as on its own.

I begin by introducing a list of candidate measures of explanatory power for consideration.

Then, I summarize my recent experimental work comparing the descriptive merits of these

proposed measures. Throughout this chapter, I defend the following claims: (1) The measure

that fits most closely with experimental participants’ judgments of explanatory power is E ,

the same measure that is defined and defended in Chapter 2. (2) E is not only a better

predictor of participants’ judgments than other measures, but this measure is also a good

predictor of these judgments in its own right. And (3) participants’ judgments of explanatory

power are closely related to, but distinct from, their judgments of posterior probability.

3.2 CANDIDATE MEASURES OF EXPLANATORY POWER

As was mentioned in Section 1.2, philosophers have not devoted a great deal of time and

energy to the study of explanatory power. Thus, it comes as no surprise that not too many
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alternative accounts of explanatory power have been put forward in the literature. Even so,

Table 3.1 lists a number of plausible, candidate measures of explanatory power that we may

consider and evaluate in this chapter.

ED(e, h) = Pr(e|h)− Pr(e)

EC(e, h) = Pr(e|h)− Pr(e|¬h)

EP (e, h) =
Pr(e|h)− Pr(e)
Pr(e|h) + Pr(e)

(Popper 1959)

I(e, h) = ln

[
Pr(e|h)

Pr(e)

]
(Good 1960, McGrew 2003)

EG(e, h) =
Pr(e ∧ h)

Pr(e ∨ h)
=

[
1

Pr(h|e)
+

1

Pr(e|h)
− 1

]−1
(Glass 2007)

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

Table 3.1: Candidate Measures of Explanatory Power.

Measures I and E are both related to Bayesian measures of confirmation; in fact, these

measures are structurally equivalent to the confirmation measures of Keynes (1921) and Ke-

meny and Oppenheim (1952) respectively. However, regarding interpretation, each reference

to evidence e and hypothesis h in the confirmation measures is replaced with a reference to

explanans h and explanandum e respectively in these measures. This suggests a natural way

to construct more candidate measures of explanatory power for the sake of evaluation and

comparison; measures ED and EC have been built in the same way as I and E but from two

other confirmation measures – due to (Eells 1982) and (Christensen 1999) respectively – and

added to the list of measures to consider here.
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Popper’s measure of explanatory power EP is closely linked in two different ways to two

other measures on this list. It is, first of all, a renormalization of ED as seen by the fact

that the numerator of EP just is ED. But more importantly, EP is ordinally equivalent to

measure I, as mentioned in footnote 22 of Section 2.6.1 Thus, EP and I always impose the

same ordinal relations on judgments of explanatory power; EP can be viewed as a rescaled

version of I.

Measure EG is unique insofar as it is the only proposed coherence-theoretic measure

of explanatory power. Glass (2007) argues that the explanatory power of h relative to

explanandum e just is measured by the degree to which h coheres with e. Glass thus

analyzes explanatory power in terms of his favorite Bayesian account of coherence, which

was first proposed by himself (Glass 2002) and independently by Olsson (2002). This account

states that the degree to which propositions cohere together is measured by their degree of

relative overlap in a shared probability space. And this is calculated as the percentage of the

total probability mass assigned to either of the considered propositions that falls into their

intersection; for a set of propositions {p1, p2, ...pn}:

CohOG({p1, p2, ..., pn}) =def
Pr(p1 ∧ p2 ∧ ... ∧ pn)

Pr(p1 ∨ p2 ∨ ... ∨ pn)

Each of the measures shown in Table 3.1 can be seen as an attempt to explicate the

concept of explanatory power. These measures thus enable us to ask and pursue answers

to questions about the epistemic value of explanatory reasoning. As a matter of fact, all

four of the measures of explanatory power that have been put forward in the literature

(including E) have also been used to defend explanatory reasoning as having normative

merit – E will be used to this end in Chapter 5. McGrew (2003, p. 558), for example,

proves the ceteris paribus theorem that “of two hypotheses with equal priors, the one with

greater explanatory power [measured in terms of his measure] will have the greater posterior

1Proof: Dividing the numerator and denominator of EP through by Pr(e) gives the following:

EP (e, h) =
Pr(e|h)/Pr(e)− 1

Pr(e|h)/Pr(e) + 1

And, for values of r ∈ [0,∞), which is the range of the ratio Pr(e|h)/Pr(e), f(r) = (r − 1)/(r + 1) is a
monotonically increasing function of r. Thus, EP is an increasing function of the ratio Pr(e|h)/Pr(e). But,
of course, I = ln[Pr(e|h)/Pr(e)] is also a monotonically increasing function of the ratio Pr(e|h)/Pr(e).
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probability.” Glass (2007, p. 294) argues that, according to his account, “good explanations

will be probable explanations and so someone who reasons [explanatorily] will tend to make

probable inferences.” And Popper (1959, p. 401) shows that the amount of explanatory

power that a hypothesis has relative to some evidence is positively related to the degree of

“corroboration” that the former receives from the latter.

These measures thus attempt to provide normative accounts of explanatory power and

explanatory reasoning. They each assert that, under certain conditions, explanatory con-

siderations do guide us to hypotheses which are more probable. Thus, they tell us that we

ought to reason explanatorily under such conditions. These measures unquestionably thus

have interesting normative interpretations and consequences.

What has not yet been investigated regarding these measures is the separate question

of whether any of them are also descriptive of people’s actual explanatory judgments. Of

course, the normative bearings of these measures does not imply their descriptive accuracy.

It may well be that a measure accurately represents the way people generally ought to think

about explanatory power and that, if they think about it in this way, then they ought to

reason in favor of good explanations; and it may simultaneously be true that people do not

do as they epistemically ought. Alternatively, if some candidate normative measure also

doubles as a good descriptor of people’s explanatory judgments, then we have the makings

of an interesting defense of human explanatory reasoning. The issue then is whether people

actually think about explanatory power in the way that these epistemologists have said that

they should.

But, as suggested earlier, the descriptive question also has important bearing for the

normative explications themselves. Here, the question is whether any of the formal accounts

fit with, or resemble, the concept of explanatory power as it is generally used. If all of

the measures diverge widely from people’s actual explanatory intuitions, then it may be

that people do not understand explanatory power in the way that they should; however, it

might more plausibly be the case that the explications are just inadequate (i.e., that the

explicata are just not sufficiently similar to the explicanda). On the other hand, if any

particular candidate measure fits well with such intuitions, then this not only reflects nicely

on everyday human intuitions, but it also provides some support for the adequacy of that
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particular measure as an explication of explanatory power.

This chapter empirically investigates the descriptive question. As such, and in light of the

above, it holds interest both to philosophers interested in the epistemology of explanatory

reasoning and to psychologists interested in human reasoning.

3.3 EXPERIMENTAL DESIGN

In this section, I summarize my own recent experimental research investigating the descrip-

tive question. The overarching goal of this project was to test and compare the relative

descriptive merits of the aforementioned candidate measures of explanatory power. In or-

der to do this, I used an experimental design based closely upon a chance-setup previously

applied by Phillips and Edwards (1966) and more recently by Tentori et al. (2007) in their

comparison of various Bayesian measures of confirmation.

3.3.1 Materials and Procedure

In this experiment, participants were asked to judge how well various hypotheses explain

certain sets of data. These judgments were elicited during individual interviews involving a

probabilistic scenario of black and white balls being drawn without replacement from one

of two possible urns. During interviews, participants were first presented with two opaque

urns, and then informed of their respective contents. The urns were composed of black and

white balls as specified in Table 3.2. Participants were also given a visual representation of

the urns’ contents, which they were free to refer to throughout the experiment.

The decision of which urn to use throughout the remainder of the interview was next

decided via an actual flip of a fair coin. Participants saw that the coin flip determined

our choice of urn; however, whether the chosen urn was A or B was left hidden. The

experiment then proceeded with a series of ten random drawings without replacement from

the chosen urn. These drawings and the corresponding results were performed in full view

of the participants. Additionally, balls that were the results of prior drawings were lined in
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Urn Number of Black Balls Number of White Balls

A 30 10

B 15 25

Table 3.2: Respective Contents of Urns A and B.

front of the participants in the order in which they had been withdrawn; thus, at any time

in the interview, participants could refer to all of the results up to that point. Throughout

each interview, the coin flip and drawings were truly chance events so that which urn was

used and which balls were withdrawn differed between participants. Participants were faced

with six tasks after each individual drawing.

Task 1. Participants were first asked to mark on an “impact scale” the degree to which

“the hypothesis that urn A was chosen [(HA)] explains the results from all of the drawings

so far.” Each impact scale was printed on a strip of paper and consisted of a dotted line with

arrows pointing out of either end. The following five descriptive labels were spaced evenly

from left to right over the line (with the line extending in both directions beyond the labels):

• This hypothesis is an extremely poor explanation of the results collected so far

• This hypothesis is a poor explanation of the results collected so far

• This hypothesis is neither a good nor a poor explanation of the results collected so

far

• This hypothesis is a good explanation of the results collected so far

• This hypothesis is an extremely good explanation of the results collected so far

Fresh copies of the scale were used for each of the ten drawings, and all of a participant’s

previously marked judgments were organized in his or her view to refer to if desired. On

a given impact scale, the marked distance from the neutral point was used to quantify

judged degrees of explanatory power. Upon receiving the impact scale, participants were

told that the scale was intended to be continuous and that distances would matter to how

their responses were recorded.
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Task 2. Next, participants were asked to repeat the first task but this time with regard

to the hypothesis that urn B was chosen (HB). Ultimately then, participants were asked to

make 20 judgments of explanatory power throughout the experiment (10 pertaining to HA,

and 10 pertaining to HB).

Tasks 3 and 4. In tasks 3 through 6, participants estimated various relevant probabili-

ties. For the first two of these tasks, participants were faced with the following two questions

(n was set to the number of balls that had been drawn at that point in the interview):

• Considering the color of the first n balls, what now is the probability that the urn selected

is A?

• Considering the color of the first n balls, what now is the probability that the urn selected

is B?

Participants were instructed that their answers could be written in whatever format they

preferred (decimals, fractions, or percentages); however, they had to sum either to 1 (if they

chose to write decimals or fractions) or 100%.

Tasks 5 and 6. For the final two tasks performed with each drawing, participants were

asked the following two questions:

• Assuming that the selected urn is A, what at this point was the probability of drawing

a ball of this color?

• Assuming that the selected urn is B, what at this point was the probability of drawing

a ball of this color?

Again, participants were instructed that their answers could be written in whatever format

they preferred; for these two questions, it was pointed out that there was no need for the

two answers to sum to 1 (or 100%).

Tasks 3 and 4 were used to assess participants’ judgments about the probabilities of the

respective hypotheses conditional upon all of the evidence received from the drawings. That

is, in the n’th round of the interview, each participant’s response to task 3 was interpreted

as that person’s subjective probability for HA conditional upon the n results of all of the

drawings up to that point: PrSubj(HA|d1 ∧ d2 ∧ ... ∧ dn). Similarly, participants’ responses

to task 4 were taken to provide values for PrSubj(HB|d1 ∧ d2 ∧ ... ∧ dn).
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On the other hand, tasks 5 and 6 assessed participant judgments about the probabilities

of the latest result conditional upon the respective hypotheses and all preceding results. That

is, in the n’th round of the interview, each participant’s response to task 5 was interpreted

as that person’s subjective probability for the result of the n’th drawing conditional upon

HA and upon the n − 1 preceding results: PrSubj(dn|HA ∧ d1 ∧ d2 ∧ ... ∧ dn−1). Similarly,

responses to task 6 were taken to provide values for PrSubj(dn|HB ∧ d1 ∧ d2 ∧ ... ∧ dn−1).

Given the chance nature and the quantitative details of this experimental design, the

following, corresponding objective probabilities were calculated for each drawing in each

interview: PrObj(HA|d1 ∧ d2 ∧ ...∧ dn), PrObj(HB|d1 ∧ d2 ∧ ...∧ dn), PrObj(dn|HA ∧ d1 ∧ d2 ∧

... ∧ dn−1), and PrObj(dn|HB ∧ d1 ∧ d2 ∧ ... ∧ dn−1).

These probabilities (collected in both their subjective and objective varieties) were suf-

ficient to derive corresponding degrees of explanatory power for HA and HB (relative to

the various sets of data) from all of the candidate measures in Table 3.1. In this way, this

experiment elicited a host of participant judgments about explanatory power along with

the same number of corresponding results derived from each measure (first using subjective

probabilities, and then also derived using the objective probabilities).

3.3.2 Participants

26 undergraduate students from the University of Pittsburgh participated in this study in

exchange for $10 each. The average age of the participants was 20 years. Among the

participants, there were 14 men and 12 women.

3.4 RESULTS

3.4.1 Preparing the Measures for Comparison

In order to compare the descriptive accuracies of the measures, we rely first upon the measure

of the Euclidean distance between participant judgments and the “theoretical results” derived

from each particular candidate measure of explanatory power. This distance (relative to a
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particular hypothesis h, and in n-dimensional space) between a set of n judged degrees of

explanatory power and a corresponding set of n theoretical degrees is given by the following

equation – where J(di, h) represents participant judgments of the degree to which hypothesis

h explains evidence di, and E stands in for any particular candidate measure of explanatory

power:

d(J,E) =

√√√√ n∑
i=1

(J(di, h)− E(di, h))2

That is, the Euclidean distance d between participant judgments J and the theoretical results

derived from E is given by summing the squares of the “residuals” (the differences between

each judged value and theoretical value) and then calculating that sum’s square root. The

lower the value of d, the closer E is to participant judgments J .

This choice of measure requires defense especially in light of Tentori et al.’s (2007) similar

study comparing the desciptive merits of various confirmation measures. Tentori et al. rely

primarily on a Pearson correlation test to decide which confirmation measure “corresponds

most closely to judged evidential impact” (p. 115). The experimental design applied here is

based upon that used by Tentori et al.; furthermore, the nature of our experimental results

and our aims in analyzing them are closely related. So why this change in how we proceed

with the analysis? The answer is that a correlation test will inevitably fall short of the sort

that we want to utilize in our comparison.2

The Pearson correlation test measures the degree of linear dependence that holds between

two variables. As such, it provides a powerful tool for showing the degree to which the values

of one variable can be predicted as a linear function of another variable (whose values are

known). More specific to our context, if J and a particular set of theoretical results derived

from a measure E are shown to be highly correlated, then this would constitute evidence

that E could be used as a predictor of people’s explanatory judgments. This would surely

be an interesting finding. However, a measure of the degree of explanatory power which

hopes to be descriptively valid claims to be more than merely capable of being made into

a good predictor of such judgments; indeed, the most descriptively accurate measure will

2This is not intended to be a criticism of Tentori et al.’s use of this test. A Pearson correlation test does
seem to be well-suited for their purposes but not so for our own given the differences between our respective
concepts of interest.
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be the one whose results actually correspond most closely to judged degrees of explanatory

power themselves. This notion of proximity is just what is measured by a distance measure

such as d. On the other hand, the concept of correlation can diverge significantly from this

notion. Indeed, two variables can be perfectly correlated even while having vastly different

corresponding values (as in Figure 3.1). Thus, in order to test the full descriptive merits or

our measures, we opt for a distance measure.

Figure 3.1: E(d, h) perfectly correlated with J(d, h) but giving vastly different values.

Our choice to use a distance measure does, however, lead to a new complication. In order

for us to compare the distances between each of our measures and actual human judgments,

we must first and foremost make sure that all derived and judged degrees of explanatory

power are on the same scale. Participants’ marked judgments are easily placed onto a [−1, 1]

scale with the extreme left point of the dotted line on the impact scale representing −1, the

center point 0, and the extreme right point 1. Moreover, ED, EC , EP , and E are all on the
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same [−1, 1] scale with interpretations corresponding to the labels provided with the impact

scale.3 Measure EG has a finite range of [0, 1]; thus, it can quickly be placed on the same scale

as the other measures if we consider the linear rescaling: EG′(e, h) = 2 × EG(e, h) − 1. On

the other hand, rescaling measure I to this same scale proves to be a much more complicated

affair.

Measure I agrees with our other candidate measures of explanatory power on its neutral

point. That is, (substituting the rescaled EG′ for EG) all of the measures agree that the

value 0 is to be interpreted as the neutral point at which h is “explanatorily irrelevant” to d.

However, while all other candidate measures are finite, I has the range (−∞,∞). In order

to measure the distance between the results provided by such a measure and a set of judged

degrees on a finite scale then, I must be “rescaled” down to a finite scale.

This can be done by feeding the results of I into any function that has all of the real

numbers as its domain and the real numbers from −1 to 1 as its range. More specifically,

such a function minimally ought to satisfy the following conditions of adequacy in order to

rescale I appropriately:

Finite Boundedness. The function F must have all of the real numbers as its domain and

the set of real numbers from −1 to 1 as its range: F : R→ [−1, 1].

Monotonicity. F must be monotonically increasing: ∀(x)(F ′(x) ≥ 0).

Neutrality. F (x) = 0 if and only if x = 0.

Asymptotic Behavior. The rate at which F (x) increases or decreases approaches 0 for

the limiting points: limx→∞F
′(x) = 0 and limx→−∞F

′(x) = 0.

These conditions of adequacy are all easily motivated as requirements for our function F .

Finite Boundedness has already been discussed above. Monotonicity ensures that the

degree of explanatory power as measured by F will increase with the degree of explanatory

power as measured by EM . We also want F to preserve the fact that EM is normalized around

0 with this value representing explanatory irrelevance; thus, we require Neutrality. Finally,

as values of EM increase (or decrease) without bound, corresponding degrees of explanatory

3For example, recall that E(e, h) = 1 is interpreted as the point at which h provides a full explanation of
e, E(e, h) = 0 the point at which h is judged to be explanatorily irrelevant to e, and E(e, h) = −1 the point
at which h provides a full explanation of ¬e.
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power become less distinguishable and their differences less meaningful. Accordingly, we

enforce the Asymptotic Behavior requirement for F .

Hartmann and Sprenger (2010) introduce (for purposes entirely different than our own)

a family of functions that, with a minor modification,4 elegantly satisfies our conditions of

adequacy. This family is defined by the following equation:

Lα(x) =

1− e−
1

2α2 x
2

if x ≥ 0

−1 + e−
1

2α2 x
2

if x < 0

Lα provides us with any number of functional rescalings of I depending upon the parameter

α (three members of the Lα family are pictured in Figure 3.2). This fact constitutes a

significant advantage for I when it comes to testing and comparing our measures’ proximities

to participant judgments. To measure I’s distance from participant judgments, we can

essentially evaluate a wide range of the members of Lα and then choose that member of Lα

that is closest. In this sense, I is much more flexible and thereby has an a priori advantage

over the other measures.

3.4.2 Comparing the Measures

We are now prepared to compare the descriptive merits of our various candidate measures

of explanatory power. We first apply the Euclidean distance measure d to the results de-

rived from each of our candidate measures of explanatory power via participants’ subjective

probabilities. Results (over 260 judgments for each hypothesis) are displayed in Table 3.3.

These results change somewhat if we now apply the measure d to the results derived from

the candidate measures using objective probabilities. Results are displayed in Table 3.4.

These tables reveal several interesting findings. First, the last row in each table provides

the distance between participant judgments and the corresponding posterior probabilities

(rescaled to [−1, 1]) that the urn chosen is A (column 2) or is B (column 3) in light of d.

These probabilities come remarkably close to participant judgments of explanatory power.

In particular, the subjective posterior probabilities come closest to participant judgments

4For their purposes, Hartmann and Sprenger introduce the measure Lα(x) = 1− e−
1

2α2 x
2

, which satisfies
Monotonicity only in the domain R≥0. Lα provides us with a function that satisfies Monotonicity
generally over R.
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Figure 3.2: Three members of the Lα family.

Measure Distance from J(d,HA) Distance from J(d,HB)

ED 8.563 7.726

EC 8.455 7.755

EP 5.437 6.144

EG′ 15.048 14.940

E 5.597 5.211

L.5 6.928 8.197

L1 5.935 6.233

L2 6.376 6.024

2× PrSubj(HA/B|d)− 1 5.132 5.404

Table 3.3: Distances between participant judgments and measures (subjective probabilities).
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Measure Distance from J(d,HA) Distance from J(d,HB)

ED 8.497 7.596

EC 8.356 7.555

EP 5.392 5.952

EG′ 14.520 14.887

E 5.617 6.218

L.5 6.217 7.190

L1 6.118 6.312

L2 6.502 6.218

2× PrObj(HA/B|d)− 1 6.587 8.318

Table 3.4: Distances between participant judgments and measures (objective probabilities).

about HA while these probabilities are second only to E in proximity to judgments about

HB. These results might suggest either of the following two hypotheses. First, it could be

that participants confuse the concepts of explanatory power and probability; in this case,

when asked to judge how well a hypothesis explains some set of data, participants tend to

read the question as asking for their judgment of how probable the hypothesis is in light

of that data. Alternatively, participants may have distinct concepts of explanatory power

and posterior probability that are nevertheless closely related (as the normative implications

of our candidate measures would suggest). In either case, we would expect participant

judgments of one of these concepts to track judgments of the other. We will have more to

say below about the relative merits of these two hypotheses.

These tables also reveal EG′ to be a uniquely bad descriptor of participants’ explanatory

judgments. As mentioned previously, EG′ also happens to be unique insofar as it is the

only formal attempt to analyze explanatory power in terms of coherence. Consequently,

the descriptive prospects for a coherence-theoretic explication of explanatory power look

bleak. At least with regards to the notion of coherence that Glass (2007) has in mind when
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he introduces EG, this study suggests that participants are not thinking about how well

hypotheses cohere with d when making judgments about how well they explain d.

Third, the tables show that, whether we use subjective or objective probabilities in our

derivations, measures EP , E , and various rescalings of I consistently come the closest of all

of the considered candidate measures of explanatory power to participant judgments. This

observation immediately leads to a further question insofar as we want a full comparison

of the descriptive merits of our measures. Recall that measure I has the advantage of

corresponding to any number of rescaled measures Lα. While EP and E look as though they

generally come closer to participant judgments than L.5, L1, or L2, it may be that some

other rescaling of I nonetheless outperforms EP and E . To investigate this possibility, we

must run a more careful analysis of the Lα family to get a closer estimate of which of its

members comes the closest to participant judgments. Then, we can compare that member to

EP and E . Figures 3.3 and 3.4 summarize the results of such an analysis. Looking at these

figures, we can see that the overall Euclidean distance (over all 520 participant judgments –

260 pertaining to HA and 260 pertaining to HB) corresponding to members of Lα never dips

below that for EP or for E . We can also now estimate which member of the Lα family is the

closest competitor to EP and E . When using subjective probabilities, we estimate the best

performing member of Lα to be L1.25; when using objective probabilities, we choose L.9.

In light of the preceding discussion, at least two important questions still remain. First,

do participants simply conflate the notions of explanatory power and posterior probability,

or do they take these to be distinct, albeit closely related to one another? Second, E and

EP are generally shown by d to be closer to participant judgments than the other measures.

Yet, one might still wonder what degree of confidence we can have in this conclusion given

our data and whether we can run a distinct comparison between these two measures which

will single one out as providing the best fit with participants’ judgments.

As it turns out, we can shed light on both of these questions by performing a more

sophisticated comparison of our measures. Specifically, we calculate and compare the means

of the residuals (i.e., J(di, hi) − E(di, hi)) between the theoretical results provided by each

candidate measure and participant judgments. These mean residuals (and corresponding

standard deviations) are displayed in Tables 3.5 and 3.6.
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Figure 3.3: Distances of members of Lα versus that of EP (dotted line) and E (solid line) –

calculated using subjective probabilities.

Figure 3.4: Distances of members of Lα versus that of EP (dotted line) and E (solid line) –

calculated using objective probabilities.
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Measure Mean Residual σ

ED -.098 .497

EC -.095 .495

EP .077 .352

EG′ .749 .551

L1.25 .112 .356

2× PrSubj(HA/B|d)− 1 -.095 .313

E -.015 .335

Table 3.5: Sample statistics (using subjective probabilities).

Measure Mean Residual σ

ED -.095 .491

EC -.095 .485

EP .081 .343

EG′ .728 .550

L.9 .134 .362

2× PrObj(HA/B|d)− 1 -.095 .456

E .071 .361

Table 3.6: Sample statistics (using objective probabilities).
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ED EC EP EG′ L1.25 2PrSub(HA/B|d)− 1

E t = 5.915 t = 6.000 t = −7.543 t = −49.702 t = −11.783 t = 7.833

p < .001 p < .001 p < .001 p < .001 p < .001 p < .001

ED EC EP EG′ L.9 2PrObj(HA/B|d)− 1

E t = 8.092 t = 8.628 t = −2.963 t = −32.441 t = −11.896 t = 13.074

p < .001 p < .001 p < .005 p < .001 p < .001 p < .001

Table 3.7: Comparison of E with other measures (using subjective probabilities on top and

objective probabilities on bottom). Note: Each cell reports the results of a paired t-test

between residuals obtained with E and those obtained with the measure in the associated

column. For each test, N = 520, corresponding to the total number of participant judgments.

As these tables show, E ’s results have the mean residual that comes closest to the ideal

value of 0, and this is true whether we are using subjective or objective probabilities to derive

our theoretical values. Furthermore, Table 3.7 reveals results from a series of paired t-tests

collectively showing that the differences between E ’s mean residual and those corresponding

to the other measures are all quite significant. Note, in particular, that E ’s mean residual is

significantly closer to 0 than that of EP and L1.25 (when using subjective probabilities) and

EP and L.9 (when using objective probabilities). Accordingly, from our experimental data,

we can now conclude that E comes significantly closer to participant judgments than any

other candidate measure (including any functional rescaling of I).

Importantly, E not only does comparatively well in this regard, but it also does remark-

ably well on its own. In particular, the mean residual between E ’s results (calculated using

subjective probabilities) and participant judgments (Table 3.5) does not differ significantly

from 0 (N = 520, t = −1.012, p = .312). This result does not hold true for any other mea-

sure; in all other cases (using either subjective or objective probabilities) a measure’s mean

residual differs significantly from the ideal value 0 (for all of these comparisons, p < .0001).

Figures 3.5 and 3.6 give visual representations of the fit between E and participant judgments.
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We may now return to the question of whether participants are simply conflating the

notions of explanatory power and posterior probability. If this were true, then we would

expect the mean residual corresponding to the posterior probability to be very close to 0.

This should particularly prove true in cases where the residuals represent the differences in

a participant’s judged degree of explanatory power and that same participant’s own stated

subjective posterior probability; presumably, a participant who conflates these two concepts

will give the same response in each case. In the subjective and objective cases, however,

the mean residual is −.095, which differs very significantly from the expected value of 0

(p < 10−10 using subjective probabilities and p < 10−5 using objective probabilities). This

means that, on average (over 520 data points), participants judge explanatory power to

be significantly lower than the corresponding posterior probability. Thus, our experimental

data provides us with evidence that, even while intuitions about explanatory power are

linked closely to judgments of posterior probability (as evidenced by their small Euclidean

distance), these notions remain conceptually distinct.

3.5 DISCUSSION

This experiment has important implications both for the epistemology and psychology of ex-

planatory reasoning. Regarding the former, I argued in Chapter 2 that measure E resembles

our concept of explanatory power more closely than any other probabilistic function insofar

as this measure alone satisfies several intuitive conditions of adequacy for an account of this

concept. This chapter augments that case for E with empirical evidence suggesting that this

measure also does the best at predicting people’s explanatory judgments in general. The

case for E as our most accurate formal explication of explanatory power thus looks to be

strong indeed. Moreover, given the close fit between the theoretical results of E and human

judgments of explanatory power in this experiment, we have new evidence for thinking that

E is an explicatum that satisfies Carnap’s similarity to the explicandum desideratum.
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Figure 3.5: Participant judgments about HA (darkest line) plotted with values derived from E using subjective probabilities

and objective probabilities (lightest line).
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Figure 3.6: Participant judgments about HB (darkest line) plotted with values derived from E using subjective probabilities

and objective probabilities (lightest line).
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Regarding this experiment’s implications for psychology, the results here support the

claim that E is a useful predictor of human explanatory judgments. At worst then, E provides

psychologists with a useful, but merely instrumental theory of explanatory reasoning. At

best, however, E may lend insight into some of the mental heuristics that people use in

making judgments pertaining to explanation and probability. To take one example, from

these experiments, we see clear signs that participants’ judgments of explanatory power

are closely aligned with, though distinct from, their judgments of probability. This finding

accords well with the normative implications of E – to be spelled out in Section 5.3. It also

suggests that people may well use their intuitions about how well a hypothesis explains data

as a heuristic when trying to gauge that hypothesis’s probability in light of that data. As

Peter Lipton (2004, p. 107) repeatedly quips: “explanatory considerations are a guide to

likeliness.” I will argue further for this thesis in Chapters 4 and 5.

Last, and of interest to both philosophers and psychologists, these experiments form the

basis of a normative defense of everyday human explanatory reasoning. If, as suggested here,

people’s explanatory judgments fit well with the formal explication E , then their judgments

will tend to benefit from this measure’s positive, normative implications. Consequently,

insofar as E shows that the best explanation of some evidence e must also be, or will tend

to be, the most probable hypothesis in the light of e (under certain formal conditions) – a

question that we will discuss in Chapter 5 – and given that people’s explanatory judgments

tend to agree with the results of E , then (given certain corresponding conditions) people will

tend to choose more probable hypotheses when they reason explanatorily.
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4.0 HOW TO BE (AND HOW NOT TO BE) A BAYESIAN

EXPLANATIONIST

In the previous two chapters, I have argued that E provides an explication of the concept of

explanatory power that satisfies at least three out of the four Carnapian desiderata: similar-

ity, precision, and simplicity. Whether or not E satisfies the fourth fruitfulness desideratum

is yet to be determined. In the remainder of this dissertation, I will effectively argue that

our explicatum is indeed fruitful for further research by applying it to the epistemology of

explanatory reasoning. Accepting E as a precisification of the concept of explanatory power,

I will claim, allows one to gain important insight into the value and relevance of judgments

of explanatory power in our epistemic lives.

The task then is to show that our probabilistic account of explanatory power can shed

light on the apparently non-probabilistic ways in which humans reason explanatorily. To

do this, I first take a step back in this chapter and perform a general investigation of the

following related question, which has been discussed very much recently: How, if at all, can

one reconcile the “Bayesian” view that the probability calculus serves the role of a general,

formal logic of nondeductive reasoning with the ostensibly informal category of explanatory

reasoning known as “Inference to the Best Explanation”? The view that Bayesianism and

Inference to the Best Explanation can be combined in some way that reserves a legitimate

role for each in an epistemology of human reasoning has come to be known as “Bayesian

explanationism.” Our discussion in this chapter will enable us to clarify how our approach

differs from others, and it will allow us to frame our approach more carefully.

In what follows, I begin with a somewhat tangential (but very important), brief clarify-

ing discussion of the nature of Inference to the Best Explanation as distinct from explana-

tory reasoning and Peircean abduction. Then, with a clearer picture of Inference to the
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Best Explanation in mind, I describe and evaluate several general strategies for combining

Bayesianism with Inference to the Best Explanation. Ultimately, in this chapter, I show

that the work already accomplished in this dissertation through our Carnapian explication

suggests an interesting and unique “heuristic” approach to Bayesian explanationism.

4.1 EXPLANATORY REASONING, PEIRCEAN ABDUCTION, AND

INFERENCE TO THE BEST EXPLANATION

Thus far in this dissertation, I have not mentioned the much-discussed form of inference

known as “Inference to the Best Explanation.” I have, on the other hand, described a no-

tion of explanatory reasoning (Chapter 1). Moreover, in attempting to situate my informal

description of the concept of explanatory power into a historical context, I have also very

briefly discussed Peirce’s category of abduction (Section 2.3.4). At this point, the reader

might fairly wonder how all of these relate to one another. Is Inference to the Best Expla-

nation just abduction by another name? What might be meant by “explanatory reasoning”

other than the sort of reasoning already described by abduction and Inference to the Best

Explanation? Below, I briefly tackle these questions in turn.

Although it has become quite common these days to identify Inference to the Best Ex-

planation with Peirce’s notion of abduction, insofar as we want to remain somewhat true

to Peirce’s descriptions of the latter concept, it is necessary to keep these two models of

inference distinct.1 While both inference forms are essentially explanatory in that they both

appeal to the explanatory power of a hypothesis as a mark in its favor, one important and

immense difference between the two has to do with just what they recommend regarding

such an explanatory hypothesis. In abduction, Peirce (1935, 2.786) suggests we single out

an explanatory hypothesis “only problematically,” as being worthy of a further “inductive

examination.” The further testing merited by an explanatory hypothesis has the distinct

(i.e., non-abductive) character of inductive inference. Abduction describes our logic of dis-

1Barnes (1995), Niiniluoto (1999), Sober (2000, p. 31) and Douven (2011), for example, all seem to assume
the identity of Inference to the Best Explanation and Peircean abduction. Hintikka (1998, pp. 506-511), on
the other hand, offers an extended argument against making this identification.
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covery, which constitutes our rational source of new hypotheses for future testing, according

to Peirce – “It is the only logical operation which introduces any new idea” (Peirce 1935,

5.171); “All the ideas of science come to it by the way of Abduction” (Peirce 1935, 5.145).

Thus, one might say that abductions are not inferences to the (truth of) explanatory hy-

potheses; rather, they are inferences to the adoption of new ideas to test. As Peirce (1958,

7.202) writes, “a hypothesis adopted by abduction could only be adopted on probation, and

must be tested.”

In Inference to the Best Explanation, on the other hand, we single out the most explana-

tory of a set of hypotheses as worthy of our acceptance or belief. Thus, in what is the classic

statement of this inference form, Gilbert Harman (1965, p. 89) describes Inference to the

Best Explanation as an inference to the most explanatory of the competing hypotheses –

see also Harman’s (1967, pp. 407-408) and (1968, p. 165). These are thus inferences to

the most explanatory hypotheses themselves, not to a probationary stance that encourages

mere problematic acceptance of a hypothesis.2 Abduction constitutes a much more cautious

inference than does Inference to the Best Explanation; only in the latter inference, does the

reasoner endorse and accept the most explanatory hypothesis.

Despite the fact that philosophers today – if they distinguish Inference to the Best

Explanation from abduction at all – typically argue for one of these inference forms over and

above the other, note that there is nothing in this distinction that suggests that abduction

and Inference to the Best Explanation are competing models of inference.3 In particular,

2I am purposefully ignoring several recent articulations of Inference to the Best Explanation that state
(and weaken) its conclusion in meta-epistemic terms. I have in mind statements of Inference to the Best
Explanation that commend an inference to the probable truth or approximate truth of the hypothesis. Another
example is the comparative conclusion recommended by Kuipers (1984, 1992, 2000): infer that the most
explanatory of the available hypotheses comes closer to the truth than all of its available competitors (though
one might still believe that it is very far from the truth of course).

I ignore these formulations for two reasons. First, it seems to me that they change the topic of interest.
The inferences that I am interested in describing and evaluating in this dissertation are not inferences to a
meta-epistemic claim having to do with the probability or truth-proximity of a hypothesis. Rather, they are
inferences to a hypothesis, plain and simple. Second, I do not think that there is any good reason to state
Inference to the Best Explanation in these weaker ways. It seems to me such weakenings are inspired by an
undue respect for some well-known criticisms (in particular, van Fraassen’s best of a bad lot objection). I will
argue, in Section 6.2.2 that there is no need to weaken Inference to the Best Explanation in order to defend
it against such objections. Moreover, in Chapter 5, I will argue that Inference to the Best Explanation, in
its strong form, can be given a positive defense.

3For an example of an expression of the common attitude that abduction and Inference to the Best
Explanation are competing, alternative inference forms, see Harman (1965, pp. 88-89).
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there is no need to believe that they are trying to describe the same inferences in contrary

ways. It could just as well be the case that humans make use of abduction and Inference to

the Best Explanation in various contexts of human reasoning. And the two inference forms

seem to be geared toward different stages in human reasoning too. Abduction, according to

Peirce, provides us with new ideas to be held on probation, ripe for further testing; Inference

to the Best Explanation provides us with hypotheses to be believed.4

In Sections 1.1 and 1.2, I described explanatory reasoning as that which favors hypothe-

ses on account of their explanatory power over some set of accepted facts or evidence. Both

abduction and Inference to the Best Explanation may accordingly be thought of as cases

of explanatory reasoning. In both cases, the explanatory power that a hypothesis has over

the evidence provides us with reason in that hypothesis’s favor. In abductive inferences,

explanatory considerations provide us with reason enough to consider new hypotheses for

future testing. In Inference to the Best Explanation, on the other hand, explanatory consid-

erations give us reason enough to accept the most explanatory of the available, competing

hypotheses.

Note that, as described here, abduction and Inference to the Best Explanation describe

only an arguably small region of the space of possible ways in which one might reason

explanatorily. In any case that one locates a reason to favor a hypothesis in its explanatory

power over the evidence, but does not thereby accept that hypothesis (either for belief or

future testing), one is reasoning explanatorily without performing an abduction or inferring

the best explanation. Such cases seem quite common.

Yet, even though there are potentially many ways in which one might reason explanatorily

without applying abduction or Inference to the Best Explanation, it is easy to imagine why

abduction and Inference to the Best Explanation are often singled out for philosophical

study – rather than focusing on other types of explanatory reasoning, or just focusing on

explanatory reasoning generally. Both of these categories describe inferences that make a

distinct mark on our epistemic lives; abductive inferences expand our working hypothesis

space while inferences to the best explanation provide us with new beliefs. Although much

4For this reason, Anya Plutynski (2011) describes this same difference between abduction and Inference to
the Best Explanation as being rooted in the distinction between the “context of discovery” and the “context
of confirmation.”
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of what I will have to say about the epistemology of explanation in the remainder of this

dissertation will apply to Peircean abduction and generally to explanatory reasoning, I will

follow a recent trend by focusing specifically on Inference to the Best Explanation.

4.2 THE BAYESIAN AND THE EXPLANATIONIST

As described above, Inference to the Best Explanation is a general form of inference in which

one comes to believe a hypothesis based upon the fact that it provides a better potential

explanation of the evidence than any other available, competing, explanatory hypothesis.

According to Inference to the Best Explanation, one ought to regard the explanatory power

that a hypothesis has over the evidence in question as providing an epistemically good

reason to accept that hypothesis. Thus, proponents of Inference to the Best Explanation –

or “explanationists” – tie the explanatory power of a hypothesis to its epistemic value. As

Peter Lipton (2001b, p. 55) – one of the foremost recent defenders of Inference to the Best

Explanation – writes, “[There is] a quite different sort of good that explanations provide. In

a word, this good is inference. This is an instrumental good, not part of understanding, but

an example of how our explanatory practices are tools for the acquisition of other valuable

things, in this case true beliefs.”

In addition to making claims about the epistemic implications of explanatory power,

explanationists commonly also make certain claims pertaining to the scope of Inference to the

Best Explanation. Humans are, it seems, forever making explanatory inferences. Whether

it be an inference from the observation of someone pulling sharply away from an oven to the

conclusion that the oven is hot or an inference from the motion of Uranus to the existence

of a new, hitherto unobserved planet, it seems true that “many of our inferences, both in

science and in ordinary life appear to follow this explanationist pattern” (Lipton 2004, p. 1).

Famously, Ernan McMullin (1992) goes so far as to label Inference to the Best Explanation

“the inferences that makes science.” And Harman (1965, p. 88) makes the even stronger

claim that all enumerative induction really is Inference to the Best Explanation, and indeed

that Inference to the Best Explanation is “the basic form of nondeductive inference.”
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Parallel claims to all of the preceding are made by proponents of Bayesianism, which

may be defined as an epistemological position consisting of the conjunction of the following

two tenets:

1. Synchronic Tenet: A set of beliefs is reasonable only if it can be represented by a

probability function defined over the relevant propositions.

2. Diachronic Tenet: Any change in belief is reasonable if and only if such a change takes

place in response to new evidence (e) in accordance with the rule of conditionalization (or

a suitable generalization of this rule), which mandates that one’s new degree of belief in

a proposition should equal one’s old degree of belief conditional upon this newly acquired

evidence: Prnew(h) = Prold(h|e).

Bayesians hold that the probability calculus, along with the notion of conditionalization,

provides a formal framework that enables us to model rational inference under conditions of

uncertainty. In this way, Bayesianism is understood as providing a, if not the, standard for

epistemically rational thought.

Concerning scope, Bayesianism is often taken to offer a means for modeling uncertain

inference generally ; the Bayesian supposes his model to apply, if not to all areas of human

reasoning, at least to a wide variety of domains including science and everyday reasoning.

Howson and Urbach (2006, p. xi), for example, put forward the “Bayesian” claim that

“valid inductive reasoning is reasoning according to the formal principles of probability.”

And arguments are often attempted from the Bayesian camp for the broad conclusion that

all rational degrees of belief, regardless of context, must be probabilities, and that all rational

changes in such degrees of belief must accord with the rule of conditionalization (or, again,

a suitable generalization of this rule).5

So, both explanationists and Bayesians claim to offer a theory of epistemically good

5The most well-known type of argument for both of these conclusions is the “Dutch book” argument
identifying irrationality with the notion of a series of bets that results in a sure loss; (Ramsey 1926, de Finetti
1937, Savage 1972, Teller 1973, 1976, Lewis 1980). “Depragmatized Dutch book” arguments are given by
those concerned with the pragmatic nature of these arguments (Christensen 1996, Hellman 1997, Howson
and Urbach 2006). Two other well-known types of defense for the Bayesian tenets include those that
provide representation theorems from conditions on our preferences (Savage 1972, Maher 1993) and “alethic”
justifications appealing to the (expected) accuracy of one’s degrees of belief (de Finetti 2008, Seidenfeld
1985, Joyce 1998, 2009, Leitgeb and Pettigrew 2010a,b). Helpful summaries of this literature are provided
by Earman (1992) and, more recently, by Joyce (2009) and Huber (2009).
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reasoning that applies quite broadly – in science as well as in everyday life. Given these

parallels between Inference to the Best Explanation and Bayesianism, the question naturally

arises: Are these two theories of rationality in conflict or are they complementary? Or, as

Lipton states the question, “should the Bayesian and the explanationist be friends?” This

question has been the topic of much work in the philosophy of science. On the one hand, van

Fraassen (1989) offers the most famous argument for the negative conclusion that the two

models cannot be made compatible with one another. Alternatively and more recently, many

authors – including Douven (1999), Okasha (2000), Lipton (2001a, 2004), McGrew (2003),

and Weisberg (2009) – argue that the two models are compatible by proposing specific

accounts of how Bayesianism and Inference to the Best Explanation should be merged. In

the next two sections, I will categorize, summarize, and evaluate these various approaches

to Bayesian explanationism.

4.3 HOW NOT TO BE A BAYESIAN EXPLANATIONIST

There are only so many types of strategies that one can follow in attempting to reconcile

Inference to the Best Explanation and Bayesianism. Generally, one can divide such strategies

into two camps, the monistic and the pluralistic. According to monistic accounts, the two

models of inference logically reduce to one; thus, the epistemic value of one of the two models

is accounted for in terms of the other. In practice, attempts of this nature always go in one

of two possible directions: the monist attempts to give a Bayesian account of Inference

to the Best Explanation. One reason for this is the significant difference in how clearly

and well defined the two models are relative to one another. While Bayesianism is a very

sharply defined take on inference with specific formal tools, Inference to the Best Explanation

remains without an accepted, clear account. Inference to the Best Explanation seems to be

– as some of its own proponents have admitted – more of a slogan than a clear model of

inference. Consequently, it would seem that accounting for Bayesianism in explanationist

terms would be to describe a clear model of inference in terms of one that is misty.

Prima facie, the major strength of monistic strategies is that they have the potential to
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bring some much needed clarity to Inference to the Best Explanation; explanatory inference

ceases to be a mere slogan by adopting the clarity inherent in Bayesianism. On the other

hand, the challenge for monistic strategies is to reserve distinct, important roles for both

models of inference. According to monism, Inference to the Best Explanation is judged

by the normative standards of the probability theory and thereby logically subsumed under

Bayesianism. Consequently, it seems that Inference to the Best Explanation can no longer be

viewed as a genuinely distinct form of inference; logically speaking, it simply is Bayesianism.

Given this apparent consequence of monistic accounts, explanationists who irenically pursue

a merger with Bayesianism but who nonetheless want to reserve a distinct, non-Bayesian

legitimacy for explanatory inference will tend to pursue a more pluralistic strategy.

Pluralistic accounts make no attempts at collapsing the two models of inference into

one. On the contrary, according to the pluralist, Bayesianism and Inference to the Best

Explanation are more properly left with their own separate normative analyses; neither

one is epistemically good on account of its relation to the other. Accordingly, Bayesianism

and Inference to the Best Explanation are seen as distinct, legitimate models of uncertain

inference. The pluralist’s project then is to show how these two distinct models interact with

one another.

The most apparent strength of the pluralistic strategy is just the flip side of monism’s

most obvious weakness: the pluralist has an inflexible commitment to maintaining the in-

dependent cogency of each model of inference. This is a strength of pluralism insofar as it

seems that such a commitment may ultimately be needed in order truly to appease both the

explanationist and Bayesian camps. The biggest challenge for the pluralist is filling in the

details. Not only is the pluralist still in need of a clearer account of Inference to the Best

Explanation (one that is not Bayesian), but the pluralist also needs to show two other things:

first, that these two distinct models don’t conflict with one another (that they are consis-

tent),6 and second, that neither model of reasoning subsumes the other. In other words, the

6Presumably, the pluralist could pass on this first challenge by also adopting a logical pluralism that
allows for potentially inconsistent logical models of overlapping realms of inference – along the lines of that
advocated, e.g., by Beall and Restall (2000, 2006). However, whatever its merits, such a position will hardly
constitute a general strategy to appease both Bayesians and explanationists. That is, it would doubtless be a
mark against the general acceptance of Bayesian explanationism – though, depending on what one thinks of
logical pluralism, perhaps not a mark against Bayesian explanationism itself – if acceptance of this position
committed one to logical pluralism. Because I ultimately want to try to defend Bayesian explanationism to
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pluralist needs to show just how these two models of inference remain distinct while at the

same time not getting into each other’s ways. This challenge is especially daunting given

that Bayesianism and Inference to the Best Explanation both claim to apply to overlapping

if not coextensive domains of human reasoning.

4.3.1 Pluralism I: van Fraassen’s Target

As part of a general critique of Inference to the Best Explanation, van Fraassen considers

and rejects a pluralistic account of Bayesian explanationism. According to this picture, in

the face of new evidence, a reasoner should first update his credence in a theory via the

rule of conditionalization and then add a probabilistic “bonus” to a theory in proportion

to its explanatory power over the evidence. That is, a theory’s explanatory power over the

evidence is accounted for epistemically via a post-conditionalization probabilistic boost. New

evidence thus affects one’s degree of belief in two stages: (1) standard conditionalization and

(2) probabilistic boosts for explanatory success. As van Fraassen notes, the inner details of

(2) – e.g., how such a bonus for explanatory success is calculated – are ultimately irrelevant.

All that matters to van Fraassen’s rejection of this position is that the Bayesian explanationist

adopt a rule for updating one’s credences in the light of new evidence that differs from the

rule of conditionalization. This strategy is pluralistic given that a probabilistic boost distinct

from any that comes by way of standard Bayesian conditionalization is necessary in order to

account for explanatory goodness. So long as this is true, the epistemic effects of explanatory

power will not be accounted for from within the Bayesian framework.

With this vision for how Inference to the Best Explanation and Bayesianism might be

wed in mind, van Fraassen (1989, pp. 160-170) famously presents an argument to show

that such a strategy will necessarily lead a reasoner into probabilistic incoherence. Such

incoherence is reflected in a reasoner’s susceptibility to Dutch books and is, for this reason,

taken to be grounds for irrationality. Van Fraassen’s argument makes use of the general

theorem attributed to Lewis and presented by Teller (1973, pp. 222-225), according to

which, “No explicitly formulated plan for changing beliefs in the face of new evidence is [safe

the largest possible audience, I will not exclude some by pursuing this potential strategy any further in this
dissertation.
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from Dutch books] unless [...] the plan calls for changing beliefs by conditionalization” (p.

223). That is, if one explicitly adopts some rule for updating beliefs in light of new evidence

other than conditionalization, he or she will be susceptible to sure-loss betting scenarios.7

The upshot, according to van Fraassen, is that “we should not listen to anyone who preaches

a probabilistic version of [Inference to the Best Explanation], whatever the details. Any such

rule, once adopted as a rule, makes us incoherent” (1989, p. 169).

Clearly van Fraassen’s conclusion here oversteps that which his argument warrants. It

is only by assuming his idiosyncratic version of how Inference to the Best Explanation and

Bayesianism might be reconciled that van Fraassen is able to show that such a project

will inevitably lead to incoherence. According to this vision, one fits Inference to the Best

Explanation into the Bayesian picture by modifying the rule for updating; any strategy that

does not require such modification will however not fall prey to such Dutch books. Not

only will any monistic strategy fit this bill, but there exist pluralistic strategies (such as

Weisberg’s considered below) that do as well.

Ultimately then, the version of Bayesian explanationism that van Fraassen has in mind

appears to be a straw man set up in his larger attack on Inference to the Best Explanation.

Nevertheless, there is a lesson that we can take away from van Fraassen’s critique. Any

attempt to wed explanationism with Bayesianism by modifying the method for updating from

standard Bayesian conditionalization will lead to Lewis-Teller style Dutch books. It is thus

doubtful whether any such project, as well as the addendum to standard conditionalization

in the first place, will please the Bayesian.

For the pluralist then, the strategy envisioned by van Fraassen fails to give an account

of how the two independently cogent models of inference complement one another. Any

attempt to bring Inference to the Best Explanation to bear on the Bayesian picture by

adjusting the Bayesian rule for updating degrees of belief will, van Fraassen shows, not

appease the Bayesian. There is, however, at least one place in the Bayesian framework

7Van Fraassen’s argument has been criticized for at least two reasons having to do with his reliance on
this Lewis-Teller “diachronic” Dutch book theorem. First, the soundness of the theorem itself is called into
question given that it rests upon some strong and questionable axioms – cf., Teller (1973, 1976), Lewis
(1980), Levi (1987, 2002), Maher (1992, 1993), Skyrms (1993). Second, even granting the soundness of the
theorem, van Fraassen’s use of it is questioned – cf., Douven (1999). Here, I side-step this issue, in effect
granting van Fraassen the soundness of both the theorem itself and his use of this theorem.
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other than the updating rule in which the pluralist may still attempt to situate Inference to

the Best Explanation. Instead of asserting that Inference to the Best Explanation interacts

with the diachronic component of Bayesianism, one might propose that it interacts with

Bayesianism’s synchronic component. That is, one may attempt to apply Inference to the

Best Explanation when specifying conditions for a set of beliefs at a particular time to be

rational. We turn to an example of such an account now.

4.3.2 Pluralism II: Weisberg’s Principle

Jonathan Weisberg (2009) defends a pluralistic account very different than van Fraassen’s

conception. According to this sketch, Inference to the Best Explanation serves as a principle

– on a par with principles such as the Principle of Indifference (Keynes 1921, ch. 4) or

Lewis’s Principal Principle (Lewis 1980) – constraining rational probability assignments for

the Bayesian. According to Weisberg, when hypotheses can be ranked in terms of their

success in explaining some piece of evidence, we should require the same ranking to hold in

terms of the posterior probabilities of those hypotheses. In this way, explanatory reasoning

is used to constrain the space of rationally allowable probability distributions. Weisberg

(2009, p. 137) writes,

[T]he explanationist should see her project of spelling out the details of [Inference to the Best
Explanation] as part of the objective Bayesian’s project of characterizing p [an objectively
correct distribution of “a priori” probabilities]. If we constrain p such that, whenever
H is a better explanation of E than H ′ is in light of background assumptions B, we
have p(H|E ∧ B) > p(H ′|E ∧ B), then [Inference to the Best Explanation] and objective
Bayesianism will be genuinely compatible.

Importantly, Weisberg’s pluralistic account is not an instance of the general strategy

that van Fraassen envisions and critiques. Weisberg’s strategy makes no adjustments to

the process by which we update our beliefs. That is, this strategy does not account for

the explanatory goodness of a hypothesis via some updating process other than condition-

alization.8 Rather, explanatory considerations only play a part in the process of assigning

8Weisberg (2009, p. 128) suggests that this is not true in the case when a subject’s credence function
is outside the rational bounds set by the relevant explanatory considerations. In such a case, a subject is
called to update his degrees of belief so that they are within those bounds. Such an update will not follow
standard conditionalization. Once one’s degrees of belief are within the rational bounds, however, updating
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probabilities to hypotheses prior to updating. Consequently, the Lewis-Teller Dutch book

theorem presents no obstacle for Weisberg’s strategy.

It is also important to distinguish Weisberg’s strategy from the monistic approach that

aims to account for the logical strength of explanatory inference in the Bayesian terms

of probability theory. Such an account attempts to bring light to Inference to the Best

Explanation by clarifying a sense in which explanatory power carries normative weight. But

this is not Weisberg’s project. Weisberg explicitly thinks that it is a mistake to attempt a

probabilistic account of Inference to the Best Explanation. In his words, this sort of project

“[robs] Inference to the Best Explanation of some of its most interesting applications [... and]

much of its intuitive appeal” (Weisberg 2009, pp. 135-136).9 Whatever else may be gained

by wedding Inference to the Best Explanation with Bayesianism in this way then, one will

manifestly not achieve a clearer picture, via the probability calculus, of what goes on when

one makes an explanatory inference.

There are, I suggest, at least three reasons why Weisberg’s approach to Bayesian expla-

nationism is not ultimately satisfying. First, it seems that Weisberg’s claims for Inference

to the Best Explanation might exaggerate even what the explanationist would say about

this form of inference. Weisberg’s principle effectively claims that the hypothesis that is sin-

gled out by Inference to the Best Explanation must, without exception, be that which is also

given the highest posterior probability – among the competing, explanatory hypotheses. But

one might plausibly wonder: Is the best available explanation really always provided by the

most probable of the considered hypotheses? Aren’t there cases where one might accept h

as the most probable hypothesis (conditional on e) in spite of the fact that h′ (a competing,

may proceed by conditionalization.
I think there is a very good reason, however, not to think of this sort of case as an exception to the

rule of conditionalization. Note that, for such an objective Bayesian, probabilities are not degrees of belief
simpliciter but degrees of rational belief. Insofar as this is true, the move from degrees of belief that
fall outside such rational bounds to degrees of belief that fall in line with these is manifestly not a move
between probability distributions; rather, this would be a move from mere degrees of belief (which are not
probabilities) to rational degrees of belief (which are). The upshot, given that conditionalization is a rule
for updating probabilities, is that, in spite of the fact that the move from mere degrees of belief to rational
degrees of belief does not follow standard conditionalization, this is not supposed to be an area where
this rule for updating applies anyway. Thus, such shifts hardly constitute changes to the updating rule of
conditionalization. To be sure, there are objective Bayesians that break with conditionalization as a general
rule for updating probabilities (Williamson 2011); however, this need not be a necessary and general feature
of the objective Bayesian approach.

9I will elaborate on and respond to these claims in Section 4.4.4.
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explanatory hypothesis) offers a better explanation of e? Classic “base rate fallacy” cases

seem to provide such examples. Take the following (Tversky and Kahneman 1982, p. 156):

A cab was involved in a hit and run accident at night. Two cab companies, the Green and
the Blue, operate in the city. You are given the following data:

(a) 85% of the cabs in the city are Green and 15% are Blue.
(b) a witness identified the cab as Blue. The court tested the reliability of the witness

under the same circumstances that existed on the night of the accident and concluded
that the witness correctly identified each one of the two colors 80% of the time and
failed 20% of the time.

In this example, it seems clear enough that, between the hypothesis that the cab involved

in the hit and run was Blue (hB) and the hypothesis that the cab involved was Green

(hG), hB provides a better explanation of the evidence (e – i.e., the witness’s testimony

that the cab was Blue); after all, the fact that the witness identifies the cab as Blue is

much less surprising if hB is true, whereas it is made even more surprising if hG is true.

However, it is also true that hG is the more probable hypothesis conditional on the evidence:

Pr(hB|e) ≈ .41 < .59 ≈ Pr(hG|e). In this case then, one can recognize the fact that Inference

to the Best Explanation would have us infer hB in spite of the fact that Bayesianism would

have us prefer hG. Such examples thus make it plausible that the best explanation need not

coincide with most probable hypothesis; at the very least, they show that we should allow

for this as a possibility instead of requiring as a rule that it could not happen.10

Why does Weisberg want to require as a rule that the hypothesis singled out by Inference

to the Best Explanation be that which is favored by Bayesianism? It seems that Weisberg

10There are easier ways to construct very clear examples in which hypotheses that are explanatorily
superior (regarding the evidence) are nonetheless not the most probable conditional on the evidence. For
example, let h be any hypothesis that explains e to some degree but that is not implied by e and let h′ be
either a tautology or a restatement of e itself. In this case, it will necessarily be true that Pr(h′|e) = 1 and
so it will be impossible to follow Weisberg’s principle and assign h a higher posterior probability. But h
must be a better explanation of e than h′; given its nature (in either case), h′ is just explanatorily vacuous
regarding e.

These counterexamples come a little too easily however. They are ultimately unfair to Weisberg’s position
for the following reason. Inference to the Best Explanation does not just apply to any hypotheses; rather
this form of inference tells us what to do in situations where the hypotheses that are under consideration all
provide competing, potential explanations of the evidence. If h′ is a tautology, then it will not be one of the
hypotheses under consideration. This is both because tautologies do not explain anything, and so h′ would
not offer a potential explanation of e, and because, whatever it means for hypotheses to compete, it better
not be the case that h competes with a tautology. If, on the other hand, h′ is a simple restatement of the
evidence, then it again will not be one of those hypotheses under consideration. First, a restatement of e
cannot potentially explain e; second, e presumably does not compete with any potential explanation of itself
and so h and h′ would not be competitors.
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is motivated to do this by the belief that this would be the only way to make the two

theories compatible; as he writes, it is by making this requirement that Inference to the Best

Explanation and Bayesianism become “genuinely compatible” (2009, p. 137). But this then

leads us to a second reason why Weisberg’s approach is unsatisfying: Weisberg’s principle

just seems like an ad hoc solution to the puzzle of how to fit these two theories together,

a wedding together of Bayesianism and Inference to the Best Explanation by fiat. The

problem, from Weisberg’s perspective, is how to show that Inference to the Best Explanation

and Bayesianism are genuinely compatible, where genuine compatibility requires that they

never disagree – the most explanatory hypothesis is without exception the most probable

hypothesis. And then Weisberg proposes that we solve this problem by simply requiring as a

rule on rational probability assignments that this is true. This is not a satisfying account of,

nor argument for, the wedding of Inference to the Best Explanation and Bayesianism. What

is instead aimed for is an account that would tell us, based upon the very natures of these two

theories, whether they can be thought of as compatible, and if so, just in what way. Rather

than answering the question of whether Inference to the Best Explanation and Bayesianism

are compatible by requiring that they are, we would like an account that clarifies for us if

and why they are.

This brings us to a third unsatisfying feature of Weisberg’s pluralistic approach to

Bayesian explanationism. Details aside, Weisberg’s general strategy is to assign Inference to

the Best Explanation the role of a principle for assigning initial probabilities. However, in-

sofar as Weisberg intends for his account to be placing objectivist constraints for rationality

onto the space of possible probability distributions, it would appear that Inference to the

Best Explanation would hinder rather than help his cause. This is true primarily because

Weisberg leaves the notion of explanatory goodness without any clarifying account. Without

such an account, just what makes for a good explanation remains unclear. Practically then,

explanatory goodness can only offer a rather hazy constraint that will be difficult actually to

apply. Furthermore, if Weisberg ultimately means to leave the notion of explanatory power

sui generis, then this notion just does not seem to be able to provide an objective constraint

for rationality. Explanatory goodness, left unanalyzed, becomes a subjective matter of one’s

intuitive judgments. Two people may both have clear intuitions that nonetheless conflict
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on what hypothesis constitutes the best explanation of some facts. Explanatory goodness,

unanalyzed as Weisberg leaves it, thus can hardly provide him with his desired objective

constraint on rational probability assignments.11 Weisberg’s general strategy seems to have

things backwards. He advocates the use of unanalyzed, hazy considerations of explanatory

power in order somehow to aid objective accounts of rationality. What is really needed is

a more objective account of explanatory power, carried out in the terms of a clear, general

account of rationality.

The above arguments against Weisberg’s pluralistic approach each point us to desiderata

that we would like to be true of an improved approach to the same project. The first

problem shows that we would like a way of showing that Inference to the Best Explanation

and Bayesianism are somehow compatible without requiring as a rule that they always

must agree. The second problem shows that we would like a more substantive account of

Bayesian explanationism that would not only tell us whether (require that) Inference to the

Best Explanation and Bayesianism are compatible but would also tell us how and why based

upon the respective natures of these two theories. Finally, the third problem suggests that we

will have to say more to clarify the nature of Inference to the Best Explanation in particular

before having a full Bayesian explanationist account. I argue in the next section that a

monistic, heuristic strategy for merging Bayesianism and Inference to the Best Explanation

satisfies all three of these desiderata.

4.4 HOW TO BE A BAYESIAN EXPLANATIONIST

The above problems with van Fraassen’s and Weisberg’s approaches to Bayesian explana-

tionism suggest the need for a more monistic approach. Recall that the pluralist aims to

assign Inference to the Best Explanation a role in a general theory of rationality that is both

11While this is a problem for Weisberg, on account of his objectivist motives, it does not appear to pose
a problem for the subjectivist. The subjective Bayesian may allow that Inference to the Best Explanation
constitutes a constraint on one’s degrees of belief and that explanatory goodness is a thoroughly subjective
notion. In this case, constraints placed on two subjects’ degrees of belief by explanatory considerations may
differ from one another; however, this is not a problem given that the subjective Bayesian is not necessarily
in the business of giving objective constraints for rational degrees of belief.
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logically independent of Bayesianism’s role while simultaneously needing to tell a story of

how these two theories interact. Regarding the latter project, the pluralist only has so many

options: he can show that Inference to the Best Explanation interacts with Bayesianism’s

synchronic tenet, its diachronic tenet, or both. Van Fraassen’s discussion shows that the

Bayesian explanationist will run into untoward consequences if Inference to the Best Ex-

planation is meant to have a distinct role in the diachronic process of conditionalization.

Weisberg thus attempts to spell out a way in which Inference to the Best Explanation in-

teracts with Bayesianism’s synchronic tenet; Inference to the Best Explanation provides us

with a principle (in addition to the requirement of probabilistic coherence) that must be sat-

isfied in order for one’s degrees of belief at a particular time to be rational. Yet, Weisberg’s

strategy, like the one that van Fraassen has in mind, is unsatisfactory. Neither pluralistic

approach is appealing then.

Unlike pluralistic accounts, monistic strategies for wedding explanationism and Bayesian-

ism are explicitly meant to be attempts also to clarify the logic of Inference to the Best

Explanation. The idea is to account for Inference to the Best Explanation in probabilistic

terms and thereby to show that the epistemic implications of these inferences may be spelled

out by Bayesianism. The monist therefore shows that the two theories are compatible by

capturing the logic of one in terms of the other. As mentioned in Section 4.3, however, this

leads to a challenge for monistic strategies: can both Inference to the Best Explanation and

Bayesianism each retain distinct, important roles if one reduces to the other? According to

monism, Inference to the Best Explanation is logically subsumed under Bayesianism. But

then is there any sense in which explanatory inference has a genuinely distinct and legitimate

role to play in an epistemology of explanatory reasoning?

4.4.1 The Heuristic Approach

The heuristic approach to Bayesian explanationism is put forward as a response to this chal-

lenge. This account asserts that Inference to the Best Explanation and Bayesianism are

compatible because the former guides us (as a heuristic) to good approximations of sound

probabilistic reasoning: “we show that loveliness [i.e., explanatory power] is the inquirer’s
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guide to likeliness” (2004, p. 121). According to this approach, Inference to the Best Ex-

planation is a heuristically useful mode of inference allowing people to approximate sound

probabilistic reasoning without necessarily having to know the relevant probabilities or even

the probability calculus. The probability calculus sets the normative standard to which Infer-

ence to the Best Explanation attains; Inference to the Best Explanation is a reasonable mode

of inference to the extent that it approximates sound probabilistic reasoning. Bayesianism

therefore accounts for the normative appeal of Inference to the Best Explanation.

On the other hand, according to the heuristic approach, Inference to the Best Explanation

fills in some important psychological details pertaining to Bayesianism. While Bayesianism

provides an attractive normative account of uncertain reasoning, it seems to set the standard

a bit too high; if it takes reasoning in accord with the probability calculus to be rational,

then the vast majority of people might plausibly be thought to be irrational. After all, how

many people know how to reason in terms of the probability theory? And even for those that

do, how many have access to or knowledge of the precise probabilities involved in typical

reasoning contexts? Inference to the Best Explanation goes some way to filling in the details

here by providing one example of a way in which our explicit patterns of reasoning allow us

to approximate sound probabilistic reasoning even when we are incapable of performing the

probabilistic reasoning directly.

Note that, according to the heuristic approach, Inference to the Best Explanation need

not be considered a perfect guide to sound probabilistic reasoning in order for the two to

be compatible. Lipton writes, “It is glory enough to show that explanatory considerations

are an important guide to inference” (2004, p. 121). Unlike what Weisberg assumes, the

compatibility of Inference to the Best Explanation and Bayesianism does not come by way

of the perfect agreement of their respective conclusions. Rather, it comes by way of their

mutually informative but distinct roles in a full theory of human reasoning. Bayesianism

provides the logic of such reasoning, including reasoning by Inference to the Best Explana-

tion; and Inference to the Best Explanation provides some important details about how we

– along with all of our natural, cognitive limitations – are actually able to satisfy this logic

approximately when we reason well (i.e., details about the psychological validity of Bayesian-

ism). Consistently with this, one might say that both models of inference describe norms of
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proper reasoning that are compatible because they are situated on different levels of norma-

tive theory. Bayesianism describes the logic that we attain to, but with no regard for our

human limitations. Inference to the Best Explanation, on the other hand, has the distinct

aim of describing a normative theory that simultaneously respects the bounds set by human

capacities; this theory of bounded rationality is normative because of its approximation, in

the real world, to Bayesian theory.

The heuristic approach easily avoids all of the serious difficulties encountered by previ-

ous attempts to spell out Bayesian explanationism. Unlike the pluralistic position that van

Fraassen criticizes, the heuristic approach proposes no change to Bayesian conditionaliza-

tion. Rather, this account locates the epistemic utility of explanatory considerations within

standard Bayesian reasoning. Consequently, worries about diachronic Dutch books do not

arise.

Unlike Weisberg’s principle and van Fraassen’s target, the heuristic approach does at-

tempt to shed light on Inference to the Best Explanation. Specifically, the heuristic account

aims to clarify the normativity of explanatory inference, and therefore to show why it is that

we find instances of this inference form compelling and useful. Depending on how one fills in

the details of the heuristic account (see the next two sections), this approach may also specify

the sorts of judgments and concepts that people rely on when they judge the explanatory

power of a hypothesis relative to some evidence. In this case, the heuristic account may

not only clarify the normativity of explanatory inference, but it also might go some way to

clarifying the nature of Inference to the Best Explanation.

Finally, the heuristic approach also has the benefit of reserving important and legiti-

mate roles both for explanatory considerations and for Bayesianism. Normatively speaking,

explanatory inference is defended via Bayesianism; i.e., this strategy maintains that explana-

tory reasoning can be given normative backing by being linked to Bayesianism. Thus, in

this constrained normative sense, it is indeed true that explanatory reasoning has nothing

to offer to the study of human reasoning that isn’t already provided by Bayesianism. How-

ever, explanatory considerations have a psychological importance insofar as they are shown

to be cognitive heuristics for sound probabilistic reasoning. Inference to the Best Explana-

tion describes a logic and epistemology of human reasoning that is mindful of actual human
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capabilities and limitations. Explanationists thus have something of great importance to

offer the Bayesian in the form of a psychological validity traditionally found wanting in the

Bayesian program. Lipton captures this idea nicely when he writes, “Even if Bayesianism

gave the mechanics of belief revision, Inference to the Best Explanation might yet illuminate

its psychology”(2004, p. 108).

4.4.2 Okasha, Lipton, and McGrew on Bayesian Explanationism

In the previous section, I have described what amounts to the core essence of the heuristic

approach to Bayesian explanationism; all of the recent proponents of the heuristic approach

agree on this much.12 The finer details of this position have, however, been worked out in

different ways by Peter Lipton (2001a, 2004), Samir Okasha (2000), and Timothy McGrew

(2003, 2005). In this section, I will briefly compare these three heuristic accounts. Doing

so will give us further clarity regarding the key tenets of the heuristic approach, and it will

allow us to see just how the heuristic account has developed so far.

Lipton (2004, p. 107) states a fundamental tenet of the heuristic approach when he

writes, “explanatory considerations provide a central heuristic we use to follow the process

of conditionalization, a heuristic we need because we are not very good at making the

probabilistic calculations directly.” To spell this out, Lipton (2004, pp. 107-108) draws

a distinction between the “explanatory loveliness” and “likeliness” of a hypothesis and he

asserts that the former need not simply reduce to the latter (and, if we want to avoid

trivializing Inference to the Best Explanation, then we should not support this reduction);

explanatory loveliness can be a guide to the posterior probability of a hypothesis without

being a perfect guide (i.e., without being identified with it). In his words, “explanatory

considerations are a way of realizing the Bayesian mechanism [in spite of the fact that] there

will be cases, sometimes striking, where explanatory and Bayesian considerations pull in

different directions” (p. 112). The project then is to show that explanatory loveliness can be

given a fair representation in probabilistic terms. Lipton suggests various possibilities, but

he never fully settles on a specific Bayesian explanationist account. At the end of the day,

12As evidence for this claim, see (Lipton 2004, ch. 7), (Okasha 2000, Section 6), and (McGrew 2003,
Section 2).
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“loveliness does not map neatly onto any one component of the Bayesian scheme” (p. 113).

Okasha and McGrew, on the other hand, both offer more precise heuristic accounts

insofar as they both suggest components of the Bayesian scheme to which explanatory love-

liness attaches in some way. For Okasha, this amounts to providing necessary, probabilistic

conditions for a hypothesis being a better explanation of some evidence than another. Specif-

ically, according to Okasha, Inference to the Best Explanation is able to approximate sound

probabilistic reasoning on account of its attachment to an explanatory hypothesis’s prior

probability or likelihood: “The correct way of representing [Inference to the Best Expla-

nation ...] views the goodness of explanation of a hypothesis vis-à-vis a piece of data as

reflected in the prior probability of the hypothesis Pr(h), and the probability of the data

given the hypothesis Pr(e|h). The better the explanation, the higher is one or both of these

probabilities” (2000, p. 703).

Given that Okasha’s account picks out as probabilistic correlates to the explanatory

goodness of an hypothesis the two terms that, according to Bayes’s theorem, are increasing

functions of the posterior probability of that hypothesis, one might worry that this strategy is

ad hoc; isn’t Okasha merely singling out priors and likelihoods as the probabilistic correlates

of explanatory goodness because that move will force Inference to the Best Explanation and

Bayesianism to fit together? This just seems to be a cheap, albeit effective, means of making

Bayesian explanationism work. In response to this worry, Okasha points out that there is

a deeper rationale for his choice of the probabilistic correlates to explanatory goodness. He

argues that judgments of explanatory goodness depend upon two things: “the existence of

an appropriate relation between explanans and explanandum, and [...] the plausibility of

the explanans” (p. 704). Okasha then claims that the likelihood and prior probability of an

hypothesis formally represent these two factors respectively.

Okasha is careful to point out that, while he does intend to “model” explanatory inference

in Bayesian terms, he does not intend for this model to provide an analysis of Inference to

the Best Explanation or explanatory goodness. In fact, Okasha explicitly disavows the

claim that high values for Pr(h) and Pr(e|h) suffice for h to have explanatory power over

e – and so he would reject the idea that he is giving necessary and sufficient conditions

for explanatory power. Okasha emphasizes that his point is only that “when scientists do
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attach confirmatory weight to a theory because the theory yields a better explanation of the

evidence than rival theories, this piece of reasoning can be given a plausible reconstruction

in Bayesian terms [... I]f one regards h1 as a better explanation of e than h2, then one must

either set Pr(e|h1) > Pr(e|h2), or Pr(h1) > Pr(h2), or both” (p. 705).

One of McGrew’s key contributions to the heuristic approach has been his focused study

of the notion of the explanatory power that a hypothesis has over the evidence. Unlike Lipton

and Okasha, McGrew does attempt a “probabilistic analysis” of this concept. Similar to the

approach we took in beginning our explication in Section 2.3.4, McGrew takes Peirce’s notion

of abduction as his starting point. Recall that this motivates a view of explanatory power

as reduction in surprise. McGrew accordingly proposes, as an analysis of the notion of

explanatory power, the following probabilistic measure:

EM(e, h) =def
Pr(e|h)

Pr(e)

When we infer to the best explanation then, according to McGrew, we have evidence

that effectively gives us access to the relative values of Pr(e|h) and Pr(e) – as plausibly

measured by EM .13 And while the ratio given by EM is manifestly positively correlated

with the likeliness of h given e (i.e., with Pr(h|e) = Pr(h) × EM(e, h)), it is not identical

to it. Differences in prior probability (Pr(h)) may result in the best explanation, by the

lights of EM , not corresponding to the most probable hypothesis. In this way, McGrew’s

analysis aims to specify just how explanatory considerations (those analyzable via EM) can

be a guide to sound probabilistic reasoning while not being a perfect guide.

To the extent that we take McGrew at his word that he is putting forward an analy-

sis of explanatory power, we might have the following worry.14 Unlike Okasha’s account,

which clearly only aims to specify necessary conditions on judgments of explanatory power,

McGrew’s measure is meant to describe necessary and sufficient conditions for explanatory

power. But there are obvious cases where a large positive value for EM(e, h) manifestly

does not suffice for h to have a large amount of explanatory power over e. For example, the

13But see Section 2.6.1 for an argument against accepting EM as one’s measure of explanatory power.
14It is not clear whether we ought to think of McGrew’s account as a conceptual analysis. On the one

hand, he does describe EM as a “probabilistic analysis.” However, he seems less than fully committed to
the implications of this claim; e.g., when he writes “the explanatory power of h with respect to e may be
analytically equivalent to the ratio of likelihood and expectedness” (2003, p. 560; emphasis added).
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classic flagpole example given in Section 2.7 constitutes such a case. One might try to save

McGrew’s account from such examples in the same way that we saved our own explication

from such examples – i.e., by pointing out that the concept of interest is explanatory power

of h and e assuming that h provides a potential explanation of e – but this move seems much

less appealing in this case. While a measure of increase in expectedness does, I have argued,

provide an accurate means of measuring the strength of a potential explanation, it is by no

means clear that such a measure is spelling out what it means for a potential explanation

to be strong to some degree. Indeed, while I have proposed that the degree of explanatory

power can be measured and explicated without relying on the vast literature on the nature

of explanation, it would seem that this would not be possible were we trying to spell out the

meaning of explanatory power. The meaning of explanatory power, it would seem, would

have to be spelled out with reference to the meaning of explanation.15

4.4.3 Carnapian Explication and the Heuristic Approach

The Carnapian explication of explanatory power that we have formulated and defended in

this dissertation provides us with a convenient tool for filling in the details of the heuristic

approach in a unique way. This explication fills in the details that go missing in Lipton’s

account by pointing to a probabilistic concept (the explicatum E) that is similar, in many

respects, to the pre-theoretic and imprecise concept of explanatory power. It also goes beyond

Okasha’s account by attempting a full explication of the concept of explanatory power rather

than merely giving necessary conditions for comparative judgments of explanatory power.

At the same time, E has it in common with Okasha’s account that it does not attempt an

analysis of explanatory power, but rather only attempts to precisify the logic of explanatory

reasoning when such reasoning is applicable (recall that E cannot decide whether a particular

h and e stand in the requisite explanatory relation; E instead assumes that h does provide a

potential explanation of e, and then it measures the strength of this potential explanation).

15It is worth noting that McGrew hedges his heuristic account a bit in his (2005) by only allowing judgments
of explanatory power – as represented by EM – a role of “abductive screening.” This modification aligns
McGrew’s account more closely with Peirce insofar as such explanatory judgments simply have the role of
a first filter that determines which hypotheses will be taken seriously for further testing and study. For
McGrew (2005), Inference to the Best Explanation – via specific “explanatory virtues” – can then take over
in order to decide which of these considered hypotheses is worthy of our acceptance.
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And so E differs from McGrew’s EM , not only in its mathematical structure, but also

in what it is claimed to be. Whereas McGrew’s measure is meant to be an analysis of

the meaning of explanatory power, E is meant to be an explication of explanatory power.

Accordingly, whereas McGrew’s measure must be held accountable to the strict standards

of conceptual equivalence (it must give necessary and sufficient conditions for explanatory

power), E is held to the more modest, Carnapian standard of sufficient similarity to the

explicandum – meaning that “in most cases in which the explicandum has so far been used,

the explicatum can be used” (Carnap 1950, p. 7). Moreover, whereas McGrew’s probabilistic

account qua conceptual analysis must make the meaning of explanatory power clearer in order

to be useful, E only aims to make this concept more precise for the purposes of shedding

light on the epistemic utility of explanatory power.

Yet, despite the fact that it does not constitute a conceptual analysis of explanatory

power, E can still be used to ground an articulation and defense of the heuristic approach

to Bayesian explanationism. We have shown that E satisfies certain intuitive requirements

regarding the concept of explanatory power (even in cases where McGrew’s EM does not),

and we have seen that this explicatum provides results that come remarkably close to actual

human judgments of explanatory power. I have argued via these results that E is sufficiently

similar to the concept of explanatory power – though it may well not be analytically tied to

this concept. Insofar as this is true, we may investigate how well E tracks sound Bayesian

reasoning, and then draw conclusions about how well the concept of explanatory power tracks

sound probabilistic reasoning based on the results. E functions for us as something like a

reliable (if imperfect) bridge principle then. It provides us with a bridge from the informal

language of explanatoriness to the precise inductive logic of the probability theory.

This is how I will apply the explication E to the study of the epistemology of explanation

then. In Chapter 5, I will use E to give a precise explication of Inference to the Best

Explanation. I will argue in favor of the heuristic approach, and I will ultimately defend

Inference to the Best Explanation, by showing that this inference form – explicated via E –

describes a cogent, nondeductive inference. Moreover, I will then argue that this inference

is worth using in those contexts where we are typically motivated to use it by showing

that it does allow us to approximate sound probabilistic reasoning, even in the absence of

97



knowledge of the probability theory or relevant probabilities. Chapter 5 will show in this way

that Inference to the Best Explanation is indeed a fine heuristic for approximating Bayesian

reasoning. Before doing this, however, I spend the final section of this chapter responding

to a recent critique of the heuristic approach.

4.4.4 A Recent Critique of the Heuristic Approach

Weisberg (2009, pp. 132-136) has recently introduced two critical arguments aimed directly

at the heuristic strategy for combining Bayesianism and Inference to the Best Explanation.

His explicit aim, in presenting these arguments, is to show “how much of the interest and

appeal of Inference to the Best Explanation is lost when we demote it to heuristic status”

(p. 136). The desired effect of these arguments then is to make the heuristic strategy

look unappealing to explanationists and thereby to “cajole explanationists out of a heuristic

view of Inference to the Best Explanation.” Though these arguments may initially appear

challenging, I argue that they miss their mark. Weisberg’s arguments are based on several

crucial misunderstandings of the heuristic project. Showing exactly where his arguments fail

then allows us to become clearer on some of the details of the heuristic strategy.

4.4.4.1 Criticism 1. With his first argument, Weisberg intends to show that the heuris-

tic approach robs Inference to the Best Explanation of some of its most interesting applica-

tions. This argument begins by noting that “Inference to the Best Explanation’s normative

force [on the heuristic view] is ultimately derivative on the correctness of Subjectivist Con-

ditionalization” (p. 135). Accordingly, says Weisberg, there is little reason to believe that

Inference to the Best Explanation will retain its normative force and still apply as a rule of

reasonable inference in any situation in which Subjectivist Conditionalization fails to apply.

But there are important domains in which Subjectivist Conditionalization notoriously does

not, but Inference to the Best Explanation does, apply. Weisberg (2009, p. 133) writes,

One of the famous limitations of Subjectivist Conditionalization is that it only applies
when the requisite prior degrees of belief exist, while the history of science provides many
examples where they do not. Major scientific breakthroughs provide striking examples,
introducing wholly new concepts and theories that no one could have had a prior degree
of belief in. But more mundane examples abound too. Small scientific breakthroughs,
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and even run of the mill research, can uncover hypotheses that no scientist could claim to
have had well-defined prior degrees of belief in. Even just day to day experience provides
hypotheses for which we do not have prior degrees of belief. I am right now wondering
why I feel fatigued despite having drunk four cups of coffee. I think it most likely that
the regular and decaffeinated pots have gotten mixed up, so that I have been drinking
decaffeinated coffee all morning, but I had no prior degree of belief in that hypothesis when
I walked into the café. One of the chief advantages Inference to the Best Explanation has
over Subjectivist Conditionalization is that it provides some basis for preferring one theory
over another in such cases.

If the heuristic approach is correct, then in such cases, despite intuitions to the contrary, one

has no reason to trust Inference to the Best Explanation. Thus, this argument concludes,

the heuristic approach robs Inference to the Best Explanation of many of its most important

applications by making it normatively dependent upon Bayesianism.

Although Weisberg’s point here appears damning indeed for the heuristic strategy, I

believe it misses its target. There are at least two different ways in which a proponent

of the heuristic strategy might respond. First, it is worth pointing out that Weisberg’s

criticism depends crucially on his assumed interpretation of probability. To be convinced

by Weisberg’s argument here, one must accept that prior probabilities exist only when prior

degrees of belief exist; i.e., one must believe that in order for Pr(h), for example, to have

any meaning, it must be interpreted as a measure of a particular person’s degree of belief

in the hypothesis h at a particular time. It is only upon accepting this purely subjective

interpretation that one would be willing to agree with Weisberg that his examples from

scientific breakthroughs, run of the mill research, and day to day experience provide examples

of scenarios in which certain relevant probabilities just do not exist – and so cases in which

Bayesianism cannot be applied.

It may in fact be that many, and perhaps most, proponents of the heuristic approach

would want to endorse a subjective interpretation of probabilities. This is, after all, a popular

position among philosophers of science today. However, it is important to note that Weisberg

gives us no reason whatever to think that the heuristic approach to Bayesian explanationism

necessarily commits one to such an interpretation. In fact, this claim is immediately suspect

given that McGrew, in addition to defending the heuristic strategy, also defends an objective
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interpretation of probabilities.16

Though Weisberg offers no clear argument for thinking that the heuristic approach com-

mits its proponents to subjectivism about probabilities, it is possible to construct such an

argument based on some of the assertions that he clearly does make. His reasoning seems

to be the following: subjective Bayesianism is defined by its commitment to what Weisberg

(2009, p. 127) calls “Subjectivist Conditionalization” – what we have called the rule of

conditionalization:

Subjectivist Conditionalization. When you gain evidence E, your new degree of belief

in a hypothesis H, call it q(H), should be your old degree of belief in H conditional on

E: q(H) = Pr(H|E).

Weisberg (2009, p. 137) contrasts this notion with “Objectivist Conditionalization”:

Objectivist Conditionalization. At any given time, your credence in an arbitrary propo-

sition H ought to be p(H|E), where p is the correct a priori probability distribution, and

E is your total evidence at that time.

In addition, the heuristic strategy is committed, according to Weisberg (2009, p. 133), to the

claim that “Inference to the Best Explanation is a reliable guide to Subjectivist Conditional-

ization.” Because that is its central claim, and because Subjectivist Conditionalization is the

defining commitment for subjective Bayesianism, the heuristic strategy is, at its foundations,

a subjective Bayesian’s project.

Granting these premises, Weisberg’s implicit argument is strong. If the heuristic ap-

proach necessarily advocates Subjectivist Conditionalization and if the advocation of Subjec-

tivist Conditionalization implies subjective Bayesianism, then clearly the heuristic approach

is essentially subjective about probabilities. However, it is unclear why one would grant

Weisberg either of these premises. Let us take these in turn.

The premise that the heuristic strategy necessarily advocates Subjectivist Conditional-

ization comes off rather as a working assumption than an argued conclusion in Weisberg’s

16McGrew has written explicitly on the topic of interpretations of probability in (McGrew 2005, pp. 286-
295). In this article, McGrew defends a version of “nonsubjective Bayesianism,” which he calls “realistic
Bayesianism.” One can easily recognize his objective interpretation of probability at work in many of his
other articles as well – for example, it is clearly assumed throughout (McGrew 2001).
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article and, indeed, it is hard to see how one could argue for it. The heuristic approach has

something to say about the relationship of Bayesianism to Inference to the Best Explana-

tion; namely, that reasoning explicitly in terms of the latter allows one to approximate the

results of reasoning via the former. But it involves no claim about what exactly constitutes

reasoning via the former – i.e., what exactly constitutes sound Bayesian reasoning. It is true

that those who have argued for the heuristic approach to date have assumed that, if they can

show that explanatory considerations have a bearing on posterior probability, then they will

have shown that explanatory considerations have a bearing on sound Bayesian reasoning.

But one could allow that some well-specified version of Objectivist Conditionalization (e.g.,

those that make use of the Maximum Entropy Principle – hereafter, “maxent theory”) accu-

rately captures good probabilistic reasoning and then proceed to show that Inference to the

Best Explanation provides a useful heuristic for approximating such reasoning. Furthermore,

the working assumption of the proponents of the heuristic approach seems rather innocuous.

It amounts to the assumption that posterior probabilities represent a crucial ingredient in

sound probabilistic reasoning, and it is difficult to imagine a Bayesian of any stripe taking

issue with this. This is true even of the thoroughgoing objective Bayesian. This last point

brings us to the second premise suggested by Weisberg.

The second premise of Weisberg’s implicit argument asserts that Subjectivist Condi-

tionalization implies the subjectivist interpretation of probabilities. This premise is also

questionable. To show this, we can take so-called maxent theory as a specific example of

the objective Bayesian position – although it is not necessary for our discussion to spell

out the details of maxent theory, the reader may find such details in (Rosenkrantz 1977,

Jaynes 2003), and more recently in the various publications of Jon Williamson (e.g., 2005,

2007a, 2007b, 2008, 2010, 2011). Maxent theory specifies the details underlying Objectivist

Conditionalization by providing a popular means of trying to pick out a particular proba-

bility distribution that represents the uniquely rational degrees of belief one ought to have

in a particular context. But even for the maxent Bayesian, posterior probabilities – and

indeed Weisberg’s so-called Subjectivist Conditionalization – will have great import. In fact,

one may specify the exact conditions under which Objective Conditionalization via maxent

will agree perfectly with Subjectivist Conditionalization (see Williams 1980 and Seidenfeld
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1986, result 1). The conditions in which the two rules of conditionalization coincide are

arguably quite easily satisfied, and thus the agreement between the two rules is substantial

(Williamson 2011, pp. 73-74). In all of these cases, the objective Bayesian will fully endorse

Subjectivist Conditionalization as defined by Weisberg. Thus, it is hardly the case that ad-

vocating Subjectivist Conditionalization requires one to advocate a subjective interpretation

of probability; subjective and nonsubjective Bayesians alike endorse this rule.17

Weisberg’s implicit argument, as we have reconstructed it, seems weak then. The heuris-

tic approach does not assume that subjective Bayesians have the final say in what constitutes

sound Bayesian reasoning; furthermore, “Subjectivist” Conditionalization, which makes the

posterior probability so central to sound Bayesian reasoning, is advocated widely by sub-

jectivists and objectivists alike. Consequently, Weisberg has given us no good reason to

believe that the proponent of the heuristic approach must be a subjectivist about probabil-

ities. Moreover, we have seen that Weisberg’s first criticism against the heuristic approach

hinges on this assumption, so that the criticism will fail to convince anyone who rejects this

interpretation. This is one reason why the argument misses its mark.

Even so, as I have already mentioned, many potential advocates of the heuristic approach

may well want to hold the subjective interpretation. Weisberg’s criticism should not convince

the nonsubjectivist, but what about the subjective Bayesian? Ultimately, we would still like

to show that Weisberg’s first criticism goes awry regardless of whether one subscribes to a

subjective interpretation of probabilities. The next response tries to show precisely this.

The defender of the heuristic approach may legitimately deny Weisberg his assumption

that the Bayesian framework cannot be applied to ground the normativity of Inference to

the Best Explanation in the sorts of scenarios that he exploits (cases of concept and the-

ory development). The heuristic approach is committed to the claim that good Bayesian

17One might reply that objective Bayesians do not endorse Subjectivist Conditionalization as a general,
exceptionless rule for updating; and advocating Subjectivist Conditionalization in this way does imply the
subjective interpretation. This may be right, but I do not think it is very interesting with regards to the
point at issue here. The point here is that, even for the objective Bayesian, if one shows that explanatory
considerations have a bearing on posterior probability (as proponents of the heuristic approach have tried to
do), then this will go some way to showing that explanatory considerations allow us to approximate sound
probabilistic reasoning. And this seems to follow even if, as an objective Bayesian, one thinks of Subjectivist
Conditionalization as a rule for updating that is typically right, but not without exception – as opposed to
thinking that it is good without exception.
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reasoning is approximated by Inference to the Best Explanation. And it may be that there

are ways of arguing for this claim even in scenarios where we are lacking information about

some of the relevant probabilities. In such cases, Weisberg may be absolutely right that we

cannot defend Inference to the Best Explanation by measuring its results against those given

by posterior probabilities. Nonetheless, Bayesianism might make a clear recommendation

even in cases where some relevant probabilistic information is not known or defined (thus, a

recommendation that is not, strictly speaking, based on a calculation of posterior probabil-

ities); and, if this is the case, then there may still be a sense in which, even in the absence

of such probabilistic information, the explanationist recommends the same conclusion as the

Bayesian.

In fact, all three of the main proponents of the heuristic approach make remarks that

suggest ways in which we could investigate whether explanationism does still approximate

a Bayesian result in such cases. All three thinkers believe that explanatory considerations

themselves provide us with some, but not all, of the probabilistic information that is relevant

in a situation;18 and they all hold that Inference to the Best Explanation makes the same

recommendation that a Bayesian does based upon this limited probabilistic information.

The question, in such cases, is not whether Inference to the Best Explanation leads us to

infer that hypothesis that has the greatest posterior probability – after all, the posterior

18Lipton (2001a, pp. 111-113) and Okasha (2000, pp. 702-704) both argue that judgments of explanatory
power are representable probabilistically as judgments pertaining to Pr(h) or Pr(e|h). McGrew (2003, p.
560) is motivated by the same Peircean intuitions that drive our own account of explanatory power, and
so his account agrees with ours that judgments of explanatory power are represented probabilistically as
judgments about the relative values of Pr(e|h) and Pr(e). He proceeds to spell out the key idea very clearly
with the following example:

[T]here are numerous situations in which we have evidence that pertains to the relative values of
Pr(e|h) and Pr(e) rather than to their absolute values. An example makes this plain. At a carnival
poker booth I espy a genial looking fellow willing to play all comers at small stakes. The first hand
he deals gives him four aces and a king, the second a royal flush, and indeed he never seems to come
up with less than a full house any time the cards are in his hands. Half an hour older and forty
dollars wiser, I strongly suspect that I have encountered a card sharp. I have made no attempt to
compute the odds against his obtaining those particular hands on chance; I may not even know how
to do the relevant calculation. Nor do I have any clear sense of the probability of his getting just
those hands given that he is a sharp. For neither Pr(e|h) nor Pr(e) am I in a position to estimate
a value within, say, three orders of magnitude; the best I can say in non-comparative terms is that
each of them is rather low. But I know past reasonable doubt that the explanatory power of my
hypothesis [i.e., the value of Pr(e|h) relative to that of Pr(e)] is very great.
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is undefined if some of the probabilities required to calculate it are undefined. Instead,

we ask whether there is a clear Bayesian recommendation in spite of the lack of complete

probabilistic information, and, if so, whether Inference to the Best Explanation’s use of the

limited probabilistic information falls in line with this.

To spell this response out with a particular example in mind, let us revisit Weisberg’s

café. Recall that, in this café, I find myself in the unfortunate position of just having

drunk four cups of coffee and feeling no more awake for it. After some thought, I judge

that the hypothesis that the decaffeinated and regular coffee pots were mixed up is the best

explanation of this state of affairs; accordingly, I accept this hypothesis as true. Importantly,

I reason in this way without ever having consciously considered that hypothesis before. Now,

particularly in light of the concept of explanatory power that we explicated in Chapter 2, the

proponent of the heuristic strategy might describe the reasoning involved here in more detail

as follows: I gain the surprising evidence that, despite having drunk four cups of coffee, I

am still tired. I judge that, if the pots were mixed up, then this evidence would be entirely

unsurprising – i.e., if I have been drinking decaffeinated coffee all along, then it is expected

that I wouldn’t feel much less fatigued. No other plausible hypothesis that comes to mind

would make the evidence unsurprising in this way. Thus, I accept this hypothesis because

of its explanatory power over the evidence.

Clearly, in this scenario, I have not explicitly estimated or measured any probabilities

in the relevant propositions when reasoning. I may not have any good way to go about

explicitly doing this, and I may not have any facility with the probability calculus anyway.

It may also be the case that certain probabilities are not defined here, depending on one’s

interpretation of probabilities. But, in this scenario, I have made a judgment about the

extent to which the hypothesis alleviates my surprise in the evidence (or increases how much

I expect it). And we have seen that such judgments are interpretable via the probability

calculus; specifically, they are interpretable as judgments about the relative values of Pr(e|h)

and Pr(e). Thus, considerations of explanatory power themselves give the reasoner reliable

access to some, but not all, of the relevant probabilistic information. In this sense, this is a

context where the explanationist has something to offer to the Bayesian; namely, a realistic

account of how it is that reasoners are able to get an implicit handle on some of the relevant

104



probabilistic information involved when they reason.

The question remains whether the probabilistic information we glean from such explana-

tory considerations suffices to ground a normative Bayesian defense of Inference to the Best

Explanation – i.e., whether the explanationist tends to make the same recommendation as

the Bayesian in such cases. Gaining information about the relative values of Pr(e|h) and

Pr(e) does not allow us simply to run the full Bayesian framework, conditionalize, and cal-

culate a posterior probability. Weisberg is absolutely right about that. Nonetheless, even if

the remaining probabilistic information that is needed to conditionalize (namely, information

about the priors Pr(h)) is undefined, Bayesianism does not fall silent. There is still arguably

a clear Bayesian recommendation in such a case based upon ceteris paribus theorems. Specif-

ically, the Bayesian will point to the fact that, all else being equal with regards to priors,

the hypothesis that has the highest relative value of Pr(e|h) to Pr(e) will have the highest

posterior probability. This theorem gives one reason, in the absence of priors, to favor the

hypothesis that gives the evidence the highest likelihood. In other words, the Bayesian po-

sition and the ceteris paribus theorem that it entails justifies a likelihoodist stance in cases

where priors are undefined. This is a common line to take among Bayesians, corresponding

to the idea that when we cannot ask which hypothesis is the most probable, we can still

change the question and ask which hypothesis the evidence most favors – see (Sober 2008,

pp. 32-35). And if one accepts that this is the Bayesian recommendation in cases where

priors are undefined, then there is a strong case to be made for the conclusion that Infer-

ence to the Best Explanation does still track sound Bayesian reasoning in such cases; the

Bayesian framework can ground the normativity of Inference to the Best Explanation, even

when some relevant probabilities remain undetermined. In the next chapter (Section 5.3),

I will make this case for the value of the heuristic approach to cases where we do not have

complete probabilistic information in more detail.

If one accepts my arguments above, then contrary to Weisberg’s point, the heuristic

strategy actually provides an explanation for how it is that we can often reason well about

hypotheses even in cases where conditionalization is impossible. In such cases, a reasoner may

only have an indirect access to some of the probabilistic information favoring one hypothesis

over another via that reasoner’s explanatory intuitions. While this probabilistic information
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per se may indeed not be enough for that reasoner to conditionalize, and while the reasoner

might very well not even know how to go about conditionalizing anyway, the explanatory

power that a hypothesis has may still constitute a good reason to favor that hypothesis in

light of the underlying probabilistic facts tracked by the reasoner’s explanatory judgments.

The point is that in cases where one does not have enough information to conditionalize and

thereby run the full Bayesian apparatus, there can still be Bayesian grounds for preferring

the more explanatorily virtuous hypothesis. Though the reasoner may not have a direct

awareness of the probabilities involved in a scenario or the basic skills to do some calculations

with those probabilities, that person may still tend to come to the same conclusions as if he

did have that awareness and skill. This is what it means for Inference to the Best Explanation

to be a valuable heuristic for approximating good probabilistic reasoning.

4.4.4.2 Criticism 2. Weisberg’s (2009, p. 136) second argument attempts to show that

the heuristic approach robs Inference to the Best Explanation of its intuitive appeal by

forcing upon it “the extreme subjectivity of subjective Bayesianism.” The criticism goes as

follows. In cases where explanatory considerations clearly prefer one hypothesis to another,

the subjective Bayesian may assign whatever degrees of belief he or she likes to the relevant

hypotheses (so long as the assignments are probabilistically coherent). The “full-blooded”

explanationist, according to Weisberg, “will insist that, even if your prior conditional cre-

dence [i.e., the posterior probability Pr(h|e)] in the [inferior] explanation is higher, the

[better] explanation is the one you should ultimately prefer” (p. 136). However, according

to Weisberg’s understanding of the heuristic strategy, if subjective conditionalization favors

the seemingly less explanatory hypothesis, then so does Inference to the Best Explanation.

Thus, even in cases where our explanatory intuitions clearly favor one hypothesis to an-

other, the heuristic approach might mandate that Inference to the Best Explanation favors

the intuitively less explanatory hypothesis, depending on one’s subjective probabilities.

There are several lines of response open here to the proponent of the heuristic approach.

First, it is worth noting that, like Weisberg’s first criticism, this criticism clearly relies

on the assumption that the heuristic approach is committed to a subjective interpretation

of probabilities. The only reason one might believe that the heuristic approach forces an
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untoward subjectivism upon Inference to the Best Explanation in the way that Weisberg

describes is if one first believes that this approach is inherently subjectivistic. However, as

we have seen, there is no reason to think the advocate of the heuristic approach must be

a subjectivist about probabilities. This second criticism will thus not even get off of the

ground in trying to convince any advocate of the heuristic strategy who is not a subjectivist

about probabilities.

Second, Weisberg’s criticism here relies on the premise that if subjective conditionaliza-

tion (posterior probability) favors the seemingly less explanatory hypothesis, then so must

Inference to the Best Explanation. But here, Weisberg is assuming his own overly stringent

conception of what is required in order for Bayesianism and Inference to the Best Explana-

tion to be compatible (see Section 4.3.2). For these two theories of reasoning to be genuinely

compatible, Weisberg suggests, they must always agree. However, the heuristic approach

disagrees with Weisberg on this point, and so it is unfair for him to impose this requirement

in his evaluation of this approach. In other words, to blame the heuristic approach for not

identifying the most explanatory hypothesis with the most probable is to misunderstand the

very essence of the heuristic approach.

The heuristic strategy in no way commits its advocates to the claim that the hypothesis

favored by conditionalization must also be the hypothesis favored by Inference to the Best

Explanation; it only claims that reasoning by Inference to the Best Explanation will allow

one to approximate reasoning by the probability theory. The heuristic strategy does not

equate explanatory goodness with posterior probability. Instead, this approach allows the

posterior probability of a hypothesis to be a function of explanatory and non-explanatory

virtues. Thus, it is perfectly compatible with the heuristic strategy that explanatory con-

siderations may favor one hypothesis over another in spite of the fact that – because of the

opposing influence of non-explanatory features of those hypotheses – Bayesian conditional-

ization ultimately results in the opposite preferential ordering. As already mentioned, base

rates constitute one example of non-explanatory though epistemically relevant considera-

tions for an hypothesis. It might be that a physician gives a perfectly good explanation

of a patient’s symptoms by appealing to an extremely uncommon disease. In this case,

though explanatory factors are reflective of probabilistic facts that increase the probability
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of the disease’s presence, the base rate of the disease opposes this influence. In common

base-rate fallacy cases, this opposing influence of the base rate is significant enough to out-

weigh the positive influence of explanatory considerations on the posterior probability of the

explanatory hypothesis.

So Weisberg wrongly blames the heuristic approach for not achieving something it never

sets out to achieve – reducing explanatory goodness to posterior probability. Still, Weisberg’s

criticism might have some footing if it is the case that posterior probability regularly comes

apart from explanatory power. Subjective Bayesians preach a certain freedom when it comes

to probabilities; posteriors can effectively lean in favor of any available hypothesis and still

be rational, so long as the reasoner’s credences at that time are coherent. And so it is

possible to imagine a scenario in which one’s credences always result in posteriors that favor

explanatorily inferior hypotheses. In such a world, Inference to the Best Explanation would

be anything but a good heuristic for gauging posterior probabilities.

The third response to Weisberg thus notes that the heuristic approach never claims that

such a world is not possible. Rather, the key claim of the heuristic approach is a claim

about the actual world – it is the claim that Inference to the Best Explanation is, in fact,

an inference form that approximates Bayesian reasoning, reliably if imperfectly. Weisberg’s

argument is powerless against this claim. He cannot refute it by pointing out that worlds

are allowable, by Bayesian standards, in which Inference to the Best Explanation would

not have this heuristic value. That is, again, to miss the point of the heuristic approach.

In order to confirm or refute the heuristic claim, one must look at the actual world; one

must investigate whether it is true in actuality. Does Inference to the Best Explanation

actually track good Bayesian reasoning? Weisberg has not offered us any such investigation,

and so his second criticism misses its mark. I will offer such an investigation in the next

chapter (Section 5.4) and will ultimately argue that, contrary to Weisberg’s claim, Inference

to the Best Explanation provides an eminently useful heuristic for approximating posterior

probabilities.

The heuristic strategy, properly understood, thus has no problem answering Weisberg’s

arguments. Through examining these two criticisms, several important and clarifying points

have been made about the heuristic strategy. To summarize, first, this approach to Bayesian
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explanationism entails no necessary commitment to subjective Bayesianism. Second, it is

a common claim of the heuristic strategy that explanatory considerations provide a person

with an indirect handle on some of the probabilistic features of the scenario in question.

Moreover, the probabilistic information gained in this way may suffice to ground a Bayesian

defense of the normativity of Inference to the Best Explanation, even in cases where relevant

probabilities are undetermined. It is not a good argument against this strategy then to

simply state that there exist scenarios in which one may reason explanatorily without being

able to apply the Bayesian framework. This is an open question – one which I will take

up in the next chapter. Third, the heuristic strategy does not identify explanatory power

with posterior probability – and so it does not identify Inference to the Best Explanation

with conditionalization. On the contrary, the posterior probability of an hypothesis, on the

heuristic strategy, is allowed to be a function of explanatory and non-explanatory virtues.

Fourth, the key claim of the heuristic approach is that explanatory considerations give us

a means of approximating probabilistic reasoning in the real world. Whether or not this is

true is another open question – which I will also take up in the next chapter.
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5.0 INFERENCE TO THE BEST EXPLANATION, CLEANED UP AND

MADE RESPECTABLE

5.1 INTRODUCTION

As I described it in Chapter 4, Inference to the Best Explanation is a general form of infer-

ence in which one accepts a hypothesis based upon the fact that it provides a better potential

explanation of the evidence than any other available, competing hypothesis. When inferring

the best explanation, one regards the explanatory power that a hypothesis has over the evi-

dence in question as providing an epistemically good reason to favor that hypothesis. Thus,

the explanatory power of a hypothesis is, according to Inference to the Best Explanation,

tied to its epistemic value.

Many philosophers have emphasized the intuitive appeal and widespread use of Inference

to the Best Explanation in human reasoning – for examples, see (Harman 1965, p. 89),

(Glymour 1984, p. 173), (Lipton 2004), and (Douven 2011, Section 1.2). In everyday affairs,

people often accept hypotheses based on the explanatory power these hypotheses afford.

And the practical relevance of Inference to the Best Explanation stretches far beyond the

mundane having great applicability in science, philosophy, diagnostics, and beyond. To

rehearse some examples from Section 1.1, I might infer that my toddler has been playing in

my office because this hypothesis provides a better explanation of the disarranged state of

the books on my shelves than any other plausible, competing hypothesis. In the same way,

geologists may infer the occurrence of an earthquake millions of years ago because this event

would, more than any other plausible hypothesis, explain various deformations in layers of

bedrock. In such cases across diverse domains, people accept hypotheses because of the fact

that these have more explanatory power over the evidence than competing hypotheses.
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Yet, despite its ubiquity and apparent cogency, Inference to the Best Explanation has

had quite a stormy history. It is difficult indeed to think of another form of inference

that has been, at once, so heartily defended by its champions and disparaged by its critics.

Among proponents, for example, Harman (1965, p. 88) boldly claims that Inference to

the Best Explanation is the “basic form of nondeductive inference,” having normative and

conceptual priority over other forms of uncertain inference. Among opponents, Fumerton

(1980) argues for the opposite claim that Inference to the Best Explanation is no more than

an incomplete description of simpler forms of induction, having no independent epistemic

merit. Famously, van Fraassen (1989, pp. 142-143) offers the additional “best of a bad

lot” criticism against Inference to the Best Explanation: Inference to the Best Explanation

assumes without argument that the true hypothesis is likely to be one of the hypotheses under

consideration. But the hypotheses could, of course, form a “bad lot” of false hypotheses.

Because Inference to the Best Explanation gives us no reason to believe that we are not

working with a bad lot, it can hardly be said to give us a reliable vehicle for inferring to

conclusions that are more probably true.

There is a worry for Inference to the Best Explanation that is more fundamental than

any of these however. This worry, expressed by the proponents and opponents of Inference

to the Best Explanation alike, is that despite decades of serious philosophical investigation,

the specific nature of this inference form still seems to be up for grabs; in the words of

one of Inference to the Best Explanation’s foremost, recent supporters (Lipton 2004, p. 2),

“[Inference to the Best Explanation] is more a slogan than an articulated philosophy.” This

worry is of primary importance because it needs to be addressed before Inference to the

Best Explanation’s more specific vices and virtues may be explored; who is to say whether

Harman, Fumerton, van Fraassen, and others are correct in their evaluations of Inference to

the Best Explanation so long as this inference form has no clear articulation?

This chapter begins by offering a resolution of this problem. The most significant road-

block standing in the way of a clear account of Inference to the Best Explanation is our lack

of precision regarding the concept of explanatory power. The key premise of any instance

of Inference to the Best Explanation is a claim about the relative explanatory power of a

particular hypothesis (that this hypothesis provides the best explanation of the evidence).
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Yet, the notion of explanatory power itself is infamously opaque. The first step in this

chapter then is to apply the probabilistic explication of explanatory power introduced in

Chapter 2 of this dissertation in order to precisify Inference to the Best Explanation’s main

premise – the judgment that one hypothesis provides the best potential explanation of some

evidence. The result will be a clear and precise articulation of the form of Inference to the

Best Explanation.

With this explicated version of Inference to the Best Explanation in hand, we will then

turn to an evaluation of this inference form. Section 5.3 will take up the challenge of showing

that Bayesianism might ground the general cogency of Inference to the Best Explanation,

even in the absence of some relevant probabilistic information (particularly, the priors). I

will show a clear Bayesian sense in which the fact that a hypothesis has more explanatory

power over the evidence than any competitor always provides us with good (though not

necessarily sufficient) reason, by the Bayesian’s lights, to infer that hypothesis. Then, in

Section 5.4, I turn to a test of the thesis that Inference to the Best Explanation provides

us with a heuristic for approximating the rule of conditionalization, in cases where we do

have some handle on prior probabilities. This is decided by looking at how often the most

explanatory of the available hypotheses coincides with the most probable available hypothesis

in contexts where we typically apply explanatory inference. A series of computer simulations

show that Inference to the Best Explanation does very well indeed in this regard. These

two arguments, taken together, constitute an extended defense of the heuristic approach to

Bayesian explanationism described in Chapter 4. I also point out that these two arguments

add to our defense of E as a satisfying explication of explanatory power by showing that this

explicatum bears fruit for further research (i.e., satisfies Carnap’s fruitfulness desideratum).

Overall then, this chapter offers a precise account and novel defense of Inference to the

Best Explanation. At the start of his most well-known and thorough attack on explanatory

inference, van Fraassen (1989, p. 131) writes, “As long as Inference to the Best Explanation

is left vague, it seems to fit much rational activity. But when we scrutinize its credentials, we

find it seriously wanting.” This chapter argues, quite to the contrary, that once we clearly

articulate this inference form via our explication of explanatory power, Inference to the Best

Explanation gains a sound new defense.
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5.2 INFERENCE TO THE BEST EXPLANATION, CLEANED UP

The key premise of any particular inference to the best explanation describes a judged dif-

ference in explanatory power between the hypotheses under consideration, all of which offer

competing potential explanations of the evidence. The hypothesis with the greatest explana-

tory power over the explanandum (i.e., the hypothesis that provides the best explanation)

is singled out as the hypothesis that we ought to accept. It has therefore been a major hin-

drance to our understanding of Inference to the Best Explanation in the past that we have

lacked a clear account of explanatory power. Vickers (2010, Section 6.4), for example, writes,

“The obvious challenge for proponents of Inference to the Best Explanation is to characterize

excellence in explanation in objective terms.” Without getting precise about this concept,

it is not at all clear what are the implications of the observation that a hypothesis provides

the best available explanation of the evidence.

Here is where our explication of explanatory power can really start to bear some fruit. E

provides us with a precisification of explanatory power, which we can plug into the central

premise of Inference to the Best Explanation in order to explicate that premise. This premise

that h provides the best available potential explanation of some explanandum e can accord-

ingly be explicated probabilistically as the claim that this hypothesis has more explanatory

power over e than any competing hypothesis – i.e., for all such explanatory competitors hi,

E(e, h) > E(e, hi). Hearkening back to Peirce’s statement of the rule of abduction then, we

can state the form of Inference to the Best Explanation precisely as follows:

P1: The evidence e is observed

P2: Among all of the available, competing explanatory hypotheses H = {h1, h2, ..., hn}, hi
has the most explanatory power over e; i.e., ∀hj ∈ H\{hi}, E(e, hi) > E(e, hj)

C: Therefore, hi

Whether or not Inference to the Best Explanation is a cogent inference form then turns

on the question of whether or not a difference in explanatory power, explicated as in P2,

along with an acceptance of evidence e, provides us with good reason for accepting the most

explanatory hypothesis. We turn now to our evaluation of this inference form.
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5.3 ... AND MADE RESPECTABLE: IMPLICATIONS OF

EXPLANATORY POWER

As a first step toward evaluating Inference to the Best Explanation, it is helpful and en-

lightening to spell out the probabilistic implications of a single hypothesis h having positive

explanatory power over some explanandum e; i.e., E(e, h) > 0. Filling in the details of E ,

this inequality has the following consequences:

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

> 0

∴ Pr(h|e) > Pr(h|¬e)

∴
Pr(e|h)

Pr(e)
>
Pr(¬e|h)

Pr(¬e)

∴ Pr(e|h)− Pr(e|h)Pr(e) > Pr(e)− Pr(e|h)Pr(e)

∴ Pr(e|h) > Pr(e)

∴ Pr(h|e) > Pr(h)

This is already a significant result. The concluding line of this derivation expresses an

important inequality for Bayesians. This inequality constitutes the necessary and sufficient

condition for evidence e to confirm hypothesis h. Consequently, for the Bayesian, positive

explanatory power is a sufficient indicator of confirmation. If a hypothesis is able to provide a

(positive) potential explanation of the evidence in question, then that evidence confirms that

hypothesis; the fact that h explains e reveals that e boosts the probability of h. Accordingly,

given that explanatory power is reflective of confirmation in this way, the judgment that a

hypothesis is positively explanatory of the evidence does indeed provide us with a reason to

favor that hypothesis.

While this fact is interesting and important, it is not, as it stands, directly relevant to

our discussion of Inference to the Best Explanation. This is because this inference form

does not rely on the simple judgment that a hypothesis has positive explanatory power over

the evidence. Rather, as we have noted above, Inference to the Best Explanation relies on

the comparative judgment that a particular hypothesis has more explanatory power over

the evidence than does any other available, competing explanatory hypothesis. This premise
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(along with the observation of the evidence) is then supposed to give us good reason to accept

that most explanatory of hypotheses. To assess Inference to the Best Explanation, we must

go beyond this preliminary result then, and reveal the probabilistic implications of h having

more explanatory power over e than any competing hypothesis hi; i.e., E(e, h) > E(e, hi).

Again, filling in the details of E , this inequality has the following consequences:

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

>
Pr(hi|e)− Pr(hi|¬e)
Pr(hi|e) + Pr(hi|¬e)

= E(e, hi)

A few simple algebraic manipulations show that this inequality holds true if and only if:

Pr(h|e)
Pr(h|¬e)

>
Pr(hi|e)
Pr(hi|¬e)

∴
Pr(e|h)Pr(¬e)
Pr(¬e|h)Pr(e)

>
Pr(e|hi)Pr(¬e)
Pr(¬e|hi)Pr(e)

∴ Pr(e|h)− Pr(e|h)Pr(e|hi) > Pr(e|hi)− Pr(e|h)Pr(e|hi)

∴ Pr(e|h) > Pr(e|hi)

The explication provided by E thus reveals that, in multi-hypothesis settings, the hy-

pothesis that offers the most powerful potential explanation of some proposition will be the

one that makes that proposition the most likely. In Bayesian terms, the best explanation,

as measured by E , will always have the greatest corresponding likelihood (Pr(e|h)) of any

explanatory hypothesis considered. This result clarifies the nature of the reason that favors

the most explanatory hypothesis over those that are explanatorily inferior. A hypothesis’s

corresponding likelihood (Pr(e|h)) is positively related to its overall probability in the light

of the evidence (Pr(h|e)) as can be seen via Bayes’s Theorem:

Pr(h|e) =
Pr(h)× Pr(e|h)

Pr(e)

Holding all else constant, the greater a hypothesis’s corresponding likelihood, the greater its

probability given e.

Furthermore, when comparing various hypotheses with respect to the same evidence e

(as we do when we infer to the best explanation), Pr(e) is the same regardless of which

hypothesis one has in mind. Accordingly, we can say that if h offers the most powerful of the

available potential explanations of e, then it is also the most probable hypothesis given e so
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long as it is at least as plausible as its competitors apart from considerations of e – i.e., so long

as Pr(h) ≥ Pr(hi), for all rival hypotheses hi. Of course, the most explanatory hypothesis

may be less plausible apart from considerations of e as compared to other hypotheses; in

this case, it is possible for h to provide the best explanation and not be the most probable

available hypothesis overall. Nonetheless, it is also true that the explanatory power of h

over e may be greater than that corresponding to rival hypotheses to such an extent that it

overcomes the fact that Pr(h) is comparatively low and makes it the case that h is the most

probable of the competing explanatory hypotheses.

In general then, the judgment that a hypothesis provides a powerful explanation of

the evidence provides us with a good reason to infer that hypothesis. This is because

judgments of positive explanatory power between h and e bear witness to relations of positive

statistical relevance showing that e confirms h. When we accept a hypothesis because of its

explanatory power over the evidence then, there is an implied probabilistic fact undergirding

our inference. Given that e constitutes the known evidence in contexts where Inference to

the Best Explanation applies, when we take account of the positive relevance between e and

h via our perception of h’s positive explanatory power over e, we thereby gain reason also

for accepting h.

When there are multiple competing hypotheses available in a particular inference to

the best explanation, comparisons of explanatory power bear witness to relative degrees of

statistical relevance between e and the various hypotheses respectively. The hypothesis with

the greatest explanatory power over e corresponds to that which is the most statistically

relevant to e, which implies that this hypothesis has the greatest corresponding likelihood.

A hypothesis’s corresponding likelihood is positively related to its overall probability in the

light of the evidence. The judgment that a hypothesis provides the best available explanation

of the evidence does therefore constitute a good reason to favor that hypothesis over its

explanatory competitors insofar as it gives us a good reason to believe that this hypothesis

is more probable than any of its competitors. In light of these results, Inference to the Best

Explanation clearly describes a cogent form of inductive inference.

Regarding this conclusion, it is important to note that the issue of a nondeductive in-

ference form’s cogency – whether or not the premises of that inference form epistemically

116



support its conclusion – is distinct from the issue of whether the conclusion of any particular

inference of that form is justified. Whether or not an inference form is cogent is generally

decidable based upon whether or not there is a logical sense in which the sort of premises

required in that inference form provide positive evidence for the sort of conclusion described.

The question of whether or not a particular conclusion of an inference of that form is justified,

on the other hand, is not generally decidable. There must be at least some reason in favor

of the conclusion of any particular inference to the best explanation, for example, given that

we have shown that Inference to the Best Explanation is generally cogent; however, other

epistemic considerations may bear upon this conclusion in such a way that it is overall un-

justified. Whether or not the conclusion of a particular inference to the best explanation is

justified then is determined by the full epistemic details of one’s situation; whether or not

Inference to the Best Explanation is a cogent form of inference, on the other hand, is not

determined by such contextually specific factors.

5.4 ... AND MADE RESPECTABLE: WHAT COMPUTERS TEACH US

ABOUT INFERENCE TO THE BEST EXPLANATION

Recall that the heuristic account of Bayesian explanationism asserts that considerations

of explanatory power have epistemic value on account of the role they play in reflecting

important probabilistic information. Inference to the Best Explanation enables us to account

for this probabilistic information appropriately when reasoning even without having explicit

awareness of the relevant probabilities or any knowledge of the probability theory. In this

way, explanatory inference gives us an ostensibly informal means of reasoning that allows

us to approximate the results of sound probabilistic reasoning. “Explanatory loveliness is,”

as Lipton (2004, p. 121) repeatedly quips, “a guide to judgments of likeliness.” With this

picture in mind, Inference to the Best Explanation gains its normative standing derivatively

on account of its usefulness in allowing us to approximate sound probabilistic reasoning.

But if Inference to the Best Explanation is only a good inference form insofar as it closely

approximates sound probabilistic reasoning, then, as part of our evaluation of the normative
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standing of Inference to the Best Explanation, the question naturally arises: just how closely

does Inference to the Best Explanation actually align with probabilistic reasoning? This

section attempts to shed some light on this question. To this end, I use computer simulations

to model what I argue are those contexts in which Inference to the Best Explanation is most

typically applied in real life.1 These simulations allow us to compare Inference to the Best

Explanation and probabilistic reasoning in such contexts by revealing just how often the

hypothesis favored by Inference to the Best Explanation is true with how often the hypothesis

favored by Inference to the Most Probable Hypothesis (IMP) is true.

The general methodology that these computer simulations apply is summarized in the

following steps:

1. For each of a specified number n of competing (mutually exclusive) explanatory hypothe-

ses, assign values of the prior probabilities (Pr(hi)) and likelihoods (Pr(e|hi)).

2. Using the respective values of Pr(hi), randomly select the “true” hypothesis hj from

h1, h2, ..., hn.

3. Using the value of Pr(e|hj) (the likelihood associated with the true hypothesis), check

whether e “occurs.” If e occurs, continue with steps 4-6; otherwise, end this iteration.

4. Check which of the n hypotheses has the greatest explanatory power; i.e., find hk where

E(e, hk) > E(e, hi) for all i 6= k.

5. Check which of the n hypotheses is the most probable in light of e; i.e., find hl where

Pr(hl|e) > Pr(hi|e) for all i 6= l.

6. If hk = hj, count this as a case where the most explanatory hypothesis matches the true

hypothesis; if hl = hj, count this as a case where the most probable hypothesis matches

the true hypothesis.

Steps 1-6 constitute one iteration of the simulation. After a large number of repeated it-

erations, the simulation provides estimates of how often the hypothesis with the greatest

explanatory power (relative to e) corresponds to the true hypothesis and how often the hy-

pothesis with the greatest probability (conditional on e) corresponds to the true hypothesis.

In either case, this is calculated as the number of times that one gets such a match divided by

1These simulations are based closely upon those devised and reported by Glass (2011). Glass’s own
simulations were in turn based upon those run by Angere (2007, 2008) in his study of coherence.
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the number of instances in which e occurs. These two average accuracies can then be com-

pared to see whether, and to what extent, Inference to the Best Explanation approximates

IMP.

The goal is for this procedure to model real-world contexts in which Inference to the Best

Explanation is used, and thereby to give us an estimate of the average, actual accuracy of

Inference to the Best Explanation as compared to probabilistic reasoning in such contexts.

Whether one is able to accomplish this end (and precisely which real-world contexts are

modeled) is contingent upon several assumptions built into the simulation. There are two

important decisions that one must make when preparing this simulation that will constrain

the model’s proper application: (1) whether one includes a “catch-all” hypothesis, and (2)

how exactly one assigns prior probabilities to the hypotheses.

Regarding (1), in general, if explanatory hypotheses h1 through hn are not only assumed

to be mutually exclusive but also jointly exhaustive, then one’s model will represent a situa-

tion in which one knows that one of these competing hypotheses must be true. In such a case,

there is no need to include a “catch-all” hypothesis to represent all unimagined hypotheses.

To take a simple example, one might be interested in inferring whether a particular coin is

fair or biased by examining how well these respective hypotheses explain a series of observed

coin flips. Given that the coin must either be fair or biased, there is no room to include a

third catch-all hypothesis.

However, there are many contexts in which it is not known with certainty that the

true hypothesis is one of those considered.2 In order to represent this scenario, a model must

include a catch-all hypothesis. Within the above simulation procedure, a catch-all hypothesis

can be chosen as the true hypothesis, but it cannot be chosen as the most explanatory or

probable of the available competing hypotheses for the simple reason that it is not known

by – and therefore not available to – the reasoner.

Decisions pertaining to (2) are the more difficult. How should one go about assigning

prior probabilities to the explanatory hypotheses in any particular iteration if the goal is

to model contexts in which Inference to the Best Explanation is typically applied? Such

2Such scenarios correspond to van Fraassen’s best of a bad lot objection as well as what Kyle Stanford
(2006) calls “the problem of unconceived alternatives.”
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probabilities must always sum to one,3 but is there more to say than this?

At least the following seems clear: the set of hypotheses that someone is willing to

consider in any particular instance of Inference to the Best Explanation will be determined

in part by how plausible those hypotheses are to begin with. When faced with some evidence

in need of explanation, a person may be aware of any number of alternative, explanatory

hypotheses having various degrees of explanatory power over that evidence. But the fact

that a given hypothesis is both cognitively available and explanatorily powerful is not enough

to place that hypothesis within the ranks of those that will actually be considered when

inferring the best explanation. No matter how well I think that an ancient extraterrestrial

visitation, for example, would explain the patterned deformations that I observe in layers

of bedrock, I will not consider this hypothesis when inferring the best explanation; this

is because I believe that that hypothesis is quite implausible to the point of not being

worth consideration. Correspondingly, insofar as someone believes that the extraterrestrial

hypothesis is plausible, that person will find it appropriate to consider that hypothesis when

inferring the best explanation of the evidence. Which hypotheses we find plausible enough

to be considered in our explanatory inferences is part of the material that we bring to the

table when inferring to the best explanation; it is not, strictly speaking, part of Inference to

the Best Explanation itself.

The upshot is that the hypotheses considered in any instance of Inference to the Best

Explanation will all typically be relatively plausible. Consequently, they will also tend to be

at least somewhat comparable in their respective plausibilities. For the sake of modeling the

usual Inference to the Best Explanation context then, the prior probabilities of the considered

hypotheses are chosen in such a way that they tend to be closer in value to one another.

This is only enforced for the considered hypotheses though; when a catch-all hypothesis is

included in a simulated context, the prior probability of this catch-all hypothesis is allowed to

stray from the values of the prior probabilities corresponding to the considered hypotheses.4

3This is true in either case regarding decisions about (1). If no catch-all hypothesis is required, then
h1 through hn are mutually exclusive and jointly exhaustive, thereby summing to one. If a catch-all is
required, then h1 through hn plus the catch-all hypothesis are mutually exclusive and jointly exhaustive,
thereby summing to one.

4This is achieved by sampling prior probabilities randomly from a normal distribution (µ = .5, σ = .2),
choosing the prior probability of the catch-all randomly from a uniform distribution between 0 and 1, and
then renormalizing so that the probabilities sum to 1.
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In either case, the method of assigning priors allows us to model the typical Inference to

the Best Explanation context in which we have a good sense that the competing potential

explanations under consideration do not normally differ drastically from one another in their

respective plausibilities.

This simulation design was run for two distinct scenarios corresponding to the choice

of whether to include a catch-all hypothesis. Within each of these two scenarios, a specific

simulation was run for a particular number n of competing explanatory hypotheses (n ranging

from 2 to 10). Any individual simulation included 1, 000, 000 repetitions to secure accuracy.

Results are shown in Figures 5.1 and 5.2.5 For a given number of hypotheses, these

figures display the percentage of cases in which the most explanatory hypothesis is true as

compared to the percentage of cases in which the most probable hypothesis is true. Figure

5.1 shows these results for contexts that do not include a catch-all hypothesis while Figure

5.2 shows the results corresponding to contexts that do.

Both figures reveal that the percentage accuracies of Inference to the Best Explanation

and IMP decrease as the number of hypotheses increases. This reflects and validates the

intuitive idea that as the number of competing hypotheses increases, so does the number of

ways in which one’s inferred conclusion could go wrong. Hence, accuracy decreases when

there are more hypotheses to which one can infer. Note also, however, that Inference to

the Best Explanation and IMP are both unsurprisingly much more accurate in contexts

with no catch-all hypothesis. This fact allows us to clarify one sense in which increasing

the number of considered hypotheses could actually increase the respective accuracies of

these inference rules. Each new, relatively plausible hypothesis added to the lot of those

considered decreases the probability of (i.e., the need for) a catch-all hypothesis. And as

one moves closer to a context in which there is no catch-all in this way, the result may be

an overall increase in accuracy. To take an example, if one is in a context that includes

six considered hypotheses and a catch-all, but then comes upon four additional explanatory

hypotheses that cover the remaining possibility space (so that there is no longer any need

for a catch-all hypothesis), then this shift in context will have actually slightly improved the

5These simulations were run using NetLogo, a programmable modeling software available free online at
http://ccl.northwestern.edu/netlogo/. Exact programming code used for these simulations is available
upon request from the author.
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Figure 5.1: Percentage accuracies of Inference to the Best Explanation in contexts with no

catch-all compared to those of IMP.

122



Figure 5.2: Percentage accuracies of Inference to the Best Explanation in contexts that

include a catch-all compared to those of IMP.
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average accuracy of Inference to the Best Explanation.

As can be seen from Figures 5.1 and 5.2, Inference to the Best Explanation approximates

probabilistic reasoning very well indeed. The average accuracy of Inference to the Best

Explanation is consistently just less than that of IMP. More specifically, both in contexts that

do and those that do not include a catch-all hypothesis, Inference to the Best Explanation’s

accuracy is consistently, on average, only about 3% below that of probabilistic reasoning.

To gauge Inference to the Best Explanation’s efficacy as a heuristic for approximating

probabilistic reasoning more directly, we can calculate the relative percentage accuracy of

Inference to the Best Explanation (i.e., the percentage accuracy of Inference to the Best

Explanation divided by that of IMP). These results are displayed in Table 5.1. Again,

the results suggest that Inference to the Best Explanation is a very useful heuristic for

approximating sound probabilistic reasoning. When there is no need to consider a catch-all

hypothesis, Inference to the Best Explanation identifies the true hypothesis over 90% as often

as probabilistic reasoning – averaging over the simulated contexts. Even when one is not

sure whether the true hypothesis is in the lot of those considered (and so, when a catch-all

hypothesis is needed), Inference to the Best Explanation still identifies the true hypothesis

nearly 85% as often, on average, as probabilistic reasoning.

5.5 CONCLUSION

Igor Douven (2011, Section 3.2) surveys and categorizes historical defenses of Inference to the

Best Explanation. According to his survey, all such defenses make appeal to the historical

track record of explanatory inference, and specifically its use in scientific reasoning. Some

of these are themselves inferences to the best explanation – e.g., those given by Boyd (1981,

1984, 1985) and Psillos (1999) – and some of these take the form of enumerative induction

– e.g., those given by Harré (1986, 1988), Kitcher (2001), and Douven (2002). While there

is, I think, a lot to be said for such defenses, the case that I have presented in this chapter

for Inference to the Best Explanation is distinct from these.

For one thing, before ever attempting to evaluate Inference to the Best Explanation, I
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n No Catch-all Catch-all

2 .9406 .9273

3 .9297 .8927

4 .9187 .8683

5 .9117 .8437

6 .8982 .8338

7 .8944 .8159

8 .8887 .8087

9 .8829 .8005

10 .8816 .7847

Table 5.1: Relative percentage accuracies of Inference to the Best Explanation (percentage

accuracy of Inference to the Best Explanation / percentage accuracy of IMP).

first of all have given a clear articulation of what this inference form says. Specifically, I

have applied the explicatum E to the central premise of this inference form in order to make

precise what the key explanatory judgment of Inference to the Best Explanation is. With

this statement of the inference form in hand, then I turned to the evaluation.

In my case for Inference to the Best Explanation, I have not turned to the history of

science for evidence (except for my quick appeals to the history of scientific and philosophical

thought in order to motivate and exemplify the relevant notion of explanatory power). In-

stead, I have turned to the concept of explanatory power and the judgments we make of this

concept when we infer the best explanation. In more detail, I defended this inference form

as normative on account of its providing us with a good heuristic for approximating sound

probabilistic, Bayesian reasoning. To this end, I first showed that, even if some probabilities

are undefinable or undetermined in a specific scenario, there is still a clear sense in which

Inference to the Best Explanation’s normativity can be grounded probabilistically. This in-

ference form is cogent in the sense that its main premise always gives us a good, positive

reason to believe its conclusion. And this holds true for two distinct, Bayesian reasons. First
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off, the most explanatory available hypothesis coincides with the most confirmed available

hypothesis. Second, explanatory power is positively related to a hypothesis’s overall prob-

ability so that, all else being equal, the most explanatory hypothesis will also be the most

probable.

All else is seldom equal in real life, however, and so the question remained whether in

fact Inference to the Best Explanation constitutes a good approximation of a hypothesis’s

overall probability in cases where the latter can be determined. To answer this question,

I investigated whether hypotheses favored by E – the formal concept that, we argued in

Chapter 3, people actually do track when they make explanatory judgments – are true

approximately as often as those favored by Pr(h|e). A series of computer simulations showed

that this is indeed the case.

The defense of Inference to the Best Explanation that I have put forward in this chapter

– and indeed throughout this dissertation – should be thought of as a first attempt at what

could potentially become a much more powerful case. One might argue against this defense,

as it stands, in several ways: one might question whether E really provides a fair explication

of the concept of explanatory power; similarly, one might question just how prevalent this

particular sense of explanatory power (the explicandum) is in human reasoning; one might

question whether E really describes and predicts our judgments of explanatory power in

the real world very well; one might also question some of the built-in assumptions of the

computer simulations described in the present chapter. All of these points in my extended

argument for Inference to the Best Explanation, and more besides, can be examined and

questioned. And I hope they are. I have argued in some depth for each of these statements,

but I do not pretend to have established any one of them. More research on the topic could,

I think, lead to more support for each of these key points in my larger case. If I have merely

convinced my reader that the present line of defense for Inference to the Best Explanation

is worthy of more study, then I will consider the project a success.

This chapter concludes the more constructive work of this dissertation. I have attempted

to give a positive account of the epistemology of explanation. Now, in the next chapter, I

reconsider several objections to Inference to the Best Explanation in light of the work that

I have accomplished.
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6.0 OBJECTIONS

Thus far in this dissertation, I have introduced and defended a probabilistic explication of

explanatory power, and I have used this explication to articulate and defend Inference to the

Best Explanation. This chapter responds to some criticisms one might aim at this work. In

Section 6.1, I briefly respond to two objections one might yet have specifically to accepting

E as an explication of explanatory power. Then, in Section 6.2, I examine two more general

arguments against Inference to the Best Explanation with the work of this dissertation in

mind.

6.1 OBJECTIONS TO THIS WORK

6.1.1 Objection 1: Explanation without Explanatory Power?

I have already considered, in Section 2.7, objections to my explication of explanatory power

that exploit cases where we have a positive degree of statistical relevance between some h

and e, and so E(e, h) > 0, in spite of the fact that h clearly does not provide a potential

explanation of e. Such objections fail to appreciate the distinction between explications of

explanatory power and analyses of explanation. It is up to the latter type of account, and not

to the former, to rule out such cases. A measure of the strength of a potential explanation,

like E , presumes that the h and e in question do sit in the proper relation – whatever that

might be – in order for h to be a potential explanation of e. However, one might also criticize

our explication by referring to cases in which a hypothesis does seem to provide a potential
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explanation of the evidence (and so it seems to have some positive degree of explanatory

power over the evidence) but where E takes a non-positive value.

In such cases, h is supposed to offer a potential explanation of e in spite of the fact that

it does not increase the expectedness of e (i.e., it does not decrease the degree to which e is

surprising). In developing his own statistical relevance theory of the nature of explanation,

Salmon (1970, pp. 63) puts forward some cases which are meant to exemplify this situation,

including the following:

Suppose [...] that a game of heads and tails is being played with two crooked pennies, and
that these pennies are brought in and out of play in some irregular manner. Let one penny
[penny A] be biased for heads to the extent that 90 percent of the tosses with it yield heads;
let the other [penny B] be similarly biased for tails. Furthermore, let the two pennies be
used with equal frequency in this game, so that the overall probability of heads is one-half.
[...] Suppose a play of this game results in a head; the prior [probability] of this event is
one-half. [Now suppose] that the toss were made with the penny biased for tails [penny B];
[the probability of the explanandum] is decreased from 0.5 to 0.1.

Despite the fact that the hypothesis that penny B was flipped lowers the probability of

getting a heads from 0.5 to 0.1, Salmon asserts that this hypothesis does provide a genuine

explanation; as he writes, “No further explanation can be required or can be given” (ibid.).

As soon as we have stated the probabilistic facts of the matter pertaining to the stochastic

process that resulted in our explanandum event, according to Salmon, we have given the

entire statistical explanation of that event.

Such cases seem to pose a problem for E as an explication of explanatory power because

it seems that, insofar as h provides all of the explanatory details about e, it should be

rendered as positively explanatory by a satisfactory measure of explanatory power. But

since h actually decreases the probability of e, E(e, h) < 0.

The first thing to say about Salmon’s example – and the other examples given in this

vein – is this: if one grants that there is a sense in which the hypothesis that penny B was

flipped (along with the corresponding probabilistic details) has explanatory power over the

result of this flip, it is manifestly not the sense of explanatory power that we commonly refer

to when reasoning. In order to motivate the intuitions that Salmon calls upon, he must set

up this and other examples in such a way that we know for certain which hypothesis is true

– in this case, it is stipulated that coin B was the one flipped. But note that this is never
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the situation when we are interested in reasoning explanatorily. Such reasoning seeks reason

in favor of some hypothesis on account of its explanatory power over the evidence. Thus, if

we are already in the know regarding which hypothesis is true, then we will find no use for

explanatory reasoning. The scenario where we know that penny B was the one flipped thus

does not represent a typical scenario in which we would be inclined to reason explanatorily

in real life.

Furthermore, we can consider the situation where we are not already clued in to the

truth of a hypothesis, and where we are inclined to reason explanatorily (i.e., where we are

interested in developing a rational preference for one hypothesis over the other based on their

relative explanatory powers over the evidence). And, in this scenario, explanatory intuitions

would seem to favor the hypothesis that penny A was chosen over the hypothesis that penny

B was chosen, contrary to stipulated fact. Given the stochastic facts of the scenario, the

former hypothesis just seems to be a far better explanation of the observed flip of a heads

than the the latter hypothesis. And this intuitive judgment falls right in line with the sense of

explanatory power explicated in this dissertation rather than the sense proposed by Salmon.

This is because the hypothesis that penny A was chosen would increase the expectedness

of flipping heads to a far greater extent than the hypothesis that penny B was chosen.

So, in our variation of Salmon’s example in which one is reasoning explanatorily without

already knowing what hypothesis is true, it is the sense of explanatory power explicated in

this dissertation – rather than that which Salmon has in mind – that seems to be at work.

Examples such as Salmon’s thus do not show that E fails to capture the notion of explanatory

power that we have in mind when reasoning explanatorily.

Still, it is an interesting question whether examples like Salmon’s point to a sense of

explanatory power distinct from that which E claims to capture. In all such examples, as

Salmon (1971a, p. 9) says, we put forward a “statistical explanation of an event [which]

exhibits that event as the result of a stochastic process from which such events arise with

some probability whose degree may be high, middling, or even very low.” In effect, we

respond to a why query by reciting the chances of the explanandum’s occurrence. Another

past proponent of the statistical relevance theory along with Salmon, Richard Jeffrey (1969,

p. 24) puts this point very clearly: “The knowledge that the process was random answers
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the question, ‘Why?’ – the answer is, ‘By chance’. Knowledge of the probabilistic law

governing the process answers the question ‘How’ – the answer is, ‘Improbably, as a product

of such-and-such a stochastic process’.”

The key question here is whether the hypotheses in these examples offer explanations

that do not fall in line with our notion of explanatory power, or whether instead they just do

not really offer explanations at all. With regards to this question, it seems to me that these

are cases where the hypotheses do not offer an explanation – in fact, where we are denying

that there is any explanation to be had. As such, they are cases that we would not want our

measure of explanatory power to accommodate. As noted above, in these examples, “there’s

no reason for the fact: it came about by chance” (Jeffrey 1969, p. 24). But when we can

only appeal to the stochastic facts of a scenario, we are effectively throwing our hands up and

saying, “the explanandum just happened, and there is nothing further to say about it other

than how likely its chance occurrence was.” If we gain no “reason” for the explanandum, as

Jeffrey puts it, or any other information about the explanandum other than knowledge of its

likeliness, then it is unclear at best why we would think we have gained an explanation. Any

psychological relief that such a move may give us in a particular instance is not, I suggest,

due to the fact that we now have a deeper understanding of the explanandum but rather to

the fact that we are no longer unsettled in our search for one; we have decidedly given up

on our search for understanding in this case.

Another way to think about this is that when we are faced with a ‘why?’ question, we

may respond either by giving an explanation or by saying that there is none available. In

the former case, we – at least typically – will cite causes, reasons, laws, or the like that go

some way to showing that the explanandum was actually not so unexpected as previously

thought. In the latter case, on the other hand, we can effectively say that there is no such

explanation simply by saying that the explanandum event just happened by chance; we can

give a more informative response of this sort by saying that the explanandum event just

happened by chance, and by citing the probability of its occurrence – if we know it. It is the

latter sort of move that Salmon and Jeffrey exploit, and so it seems that they are pointing

to a case where one denies the possibility of an explanation.1

1Back to Salmon’s coin example: the following sort of dialogue seems likely to ensue in response to
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6.1.2 Objection 2: Priors and Explanatory Power

Recall from Section 5.3 that a relative difference in explanatory power between hypotheses,

according to E , amounts to a difference in the likelihoods of those hypotheses. Because of this

fact, if it is ever the case that our judgments of the prior plausibilities of hypotheses influence

our judgments of their relative explanatory powers, then such scenarios would not be readily

accounted for by E . That is, if there are situations where our judgments of explanatory

power are sensitive to our judgments of prior plausibility, then E will fail to track judgments

of explanatory power in such situations, given that it is not sensitive to judgments of prior

plausibility.

Weisberg (2009, pp. 129-130) gives a useful example of explanatory reasoning, which

seems to involve such a prior-sensitive notion of explanatory power:

Suppose you come home one day to find the front door open and the lock broken. Furniture
is overturned, the contents of the shelves are on the floor, and valuables are missing. One
explanation [h1] is that someone broke in and stole your belongings, making a mess in the
hurried process. But here is a second possible explanation [h2]. One burglar broke the
lock and entered your house, only to encounter another burglar, who had found his way
in through a window just a few minutes earlier. The two fought, making a mess in the
process, before a police officer entered, having noticed the broken lock from the street. The
two burglars took off, and the police officer, deciding to take advantage of the situation
rather than risk having it revealed that he failed to apprehend either burglar, stole your
belongings.

Both h1 and h2 fully account for the observed evidence e in this case in the sense that they

both lead one fully to expect e. This is reflected in the fact that both hypotheses have near-

maximal explanatory power over e, according to measure E : E(e, h1) ≈ 1 ≈ E(e, h2). But,

as Weisberg writes, “Whatever your account of explanatory virtue, if Inference to the Best

Explanation applies here, it surely favors [h1].” Thus, Weisberg’s example seems to show

someone who puts the stochastic facts of the matter forward as an explanation:

Person 1: I wonder why the coin flipped heads.
Person 2: Well, it’s because you flipped penny B, which happens to be biased so that 90 percent of

its tosses results in a tails.
Person 1: That’s not much of an explanation. Now I’m even more curious why I flipped a heads.
Person 2: I suppose if we had video-recorded the flip, we could play it back in slow motion and

attempt to discover (a portion of) the dynamical set of events that took place and caused that coin to land
in such an unlikely way. But since we didn’t, we really just have to accept the brute fact that it did.
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that these judgments of explanatory power, present in a clear case of explanatory reasoning,

are not adequately captured by E .

Weisberg is surely right that, intuitively, h1 is to be favored over h2. Moreover, this

preference seems clearly attributable to a difference in prior plausibilities: the reason that

we all find h1 to be a much better hypothesis in light of e than h2 would seem to be because,

unlike h1, we find h2 to be an incredibly implausible hypothesis, apart from any considera-

tions of e.2 The big question then is this: granting that Inference to the Best Explanation

would have us infer h1 in this case, and granting that this preference is attributable to the

great difference between h1 and h2’s prior plausibilities, must we admit that the concept of

explanatory power at work here is itself sensitive to such prior plausibilities? The answer, I

think, is no. There are other ways in which prior probabilities might have an influence on

our explanatory inferences than through the concept of explanatory power.

In fact, in our own description and evaluation of actual human applications of Inference

to the Best Explanation in Section 5.4, we let prior probabilities have a role by asserting

that any hypothesis judged to be quite implausible relative to the other available, competing

hypotheses will simply not be put on the table for consideration. In this sense, judgments of

prior plausibility act as a preliminary filter to Inference to the Best Explanation, allowing one

to focus on a cognitively manageable number of alternative hypotheses when comparing their

2It should be mentioned that the use to which I am putting Weisberg’s example differs from his own use.
I use this example to motivate the potential objection to my account that explanatory power ought to be
sensitive to prior probabilities; Weisberg, on the other hand, uses the example to argue that our explanatory
intuitions can remain constant (here, in favor of h1) regardless of how subjective probabilities are assigned –
even if our degree of belief in h2 is stronger than our degree of belief in h1. He writes (p. 130), “However we
spell out its virtues, the important thing is that [h1] would still be the more virtuous [explanation] even if your
prior conditional degree of belief were higher for [h2]” – i.e., even if Pr(h2|e) > Pr(h1|e). Given that both
hypotheses make the evidence highly probable, we have Pr(e|h1) ≈ Pr(e|h2). Consequently, the difference
in posterior probabilities that Weisberg points to must amount to a difference in priors (Pr(h2) > Pr(h1)).
Weisberg’s claim here thus is effectively that Inference to the Best Explanation would still favor h1 over h2
even if we judged that h2 was equally or more plausible, apart from considerations of e.

Incidentally, I would argue that this claim is plainly false. It is difficult to imagine a set of background
beliefs that would make one believe at least as strongly in h2 as h1, but in such a scenario, I suggest that
it would actually be counter-intuitive to think that one should still plainly make the explanatory inference
to h1. One might imagine a neighborhood, for example, where it has become quite common for the scenario
described by h2 to occur. The police are all crooked in the same sort of way, the robbers all commonly
strike the same house in order to promote their ongoing turf-wars, etc. Filling in the details of this imagined
neighborhood, it might even be the case that the sort of scenario described in h2 is much more common
than the scenario described in h1. In this case, if one came home to find all of the evidence described by
Weisberg, it seems that an Inference to the Best Explanation would actually favor h2 over h1.
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explanatory merits. Thus, we can readily affirm that, if Inference to the Best Explanation

applies here at all, it will surely favor h1 to h2 in spite of the fact that both hypotheses take

very high, and approximately equal, degrees of explanatory power. But, at the same time,

we can maintain that this is not because one constitutes a much better explanation than

the other. Rather, it is because only one is plausible enough to be considered in the first

place. Thus, the fact that, in an actual application of Inference to the Best Explanation to

the above case, we would come to favor h1 over h2 does not, in and of itself, force one to

conclude that the concept of explanatory power ought to be sensitive to priors.

Many, no doubt, will be unconvinced by the above and will insist that the concept of

explanatory power be, at least in some cases, sensitive to judgments of prior plausibility.

As I have already suggested above in my response to the first objection considered in this

chapter, such a move will not pose a great challenge to the work laid out in this dissertation;

if there is a concept of explanatory power different from the one explicated here by being

sensitive to priors, it is not the one that I intended to capture with E , and I have avoided any

claim that E be thought of as a general explication of all senses of explanatory power. I have

tried to convince the reader in previous chapters that there is a sense of explanatory power

that is commonly drawn upon in human reasoning, which allows us to say, for example,

that Weisberg’s h2 does explain e just as well as h1, in spite of the fact that it is wildly

implausible in comparison. It is this sense that Peirce has in mind when he describes a

hypothesis’s explanatory power purely as its ability to make otherwise surprising evidence

a matter of course. And it is this sense of explanatory power that Good, Popper, McGrew,

and others must have in mind given that they measure explanatory power as the degree of

statistical relevance between e and h – given that, according to this conception, degree of

explanatory power is purely a function of the extent to which Pr(e|h) differs from Pr(e).

Keeping the concept of explanatory power distinct, in this way, from considerations of

a hypothesis’s prior plausibility has several virtues. First, by doing this, we disentangle

cognitively distinct, epistemic considerations – those relating to a hypothesis’s ability to

make the evidence more expected versus those pertaining to the plausibility of a hypothesis

apart from considerations of the evidence. Along the same lines, this move allows us to make

sense of the human ability to reason explanatorily in cases where priors are undetermined
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or otherwise inaccessible. It may often be the case that, when we reason via our judgments

of explanatory power, we also make use of our judgments of prior plausibility; but we also

are able to reason via judgments of explanatory power in cases where we have no good hold

on the prior probabilities of the hypotheses in question. Finally, as mentioned above, even

in cases of explanatory reasoning where priors do clearly have an influence, nothing requires

us to place that influence within the notion of explanatory power.

Both of the above objections fail to pose a real challenge to E then. Neither objection

gives us good reason to think that E fails to explicate adequately the notion of explanatory

power used so commonly in human reasoning. Even if one believes that, in both cases, there

is a sense of explanatory power at work that is not captured by our measure, this does not

seriously challenge E . As mentioned above, I have been careful throughout this dissertation

to avoid any commitment to the idea that E constitutes an overarching, general explication

of explanatory power, in all of the varied ways that this concept might be applied. What I

have claimed is that E does capture one common and compelling sense of explanatory power,

familiar to us in our experience reasoning explanatorily. I have also given a collection of

examples of this concept at work, particularly in Section 2.3. Perhaps Salmon and Weisberg

are pointing to senses of explanatory power not usefully explicated by E ; even if this is the

case, it poses no problem for the work accomplished in this dissertation.

6.2 GENERAL OBJECTIONS TO INFERENCE TO THE BEST

EXPLANATION

6.2.1 Objection 1: Affirming the Consequent

In Section 5.2, we characterized Inference to the Best Explanation in the following precise

way:

P1: The evidence e is observed

P2: Among all of the available, competing explanatory hypotheses H = {h1, h2, ..., hn}, hi
has the most explanatory power over e; i.e., ∀hj ∈ H\{hi}, E(e, hi) > E(e, hj)
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C: Therefore, hi

We also saw, in Section 2.5.1, that a hypothesis h has maximal explanatory power relative

to some evidence e if and only if it entails that evidence: E(e, h) = 1 ↔ Pr(e|h) = 1.

But then, in cases where the most explanatory, competing hypothesis offers a maximally

good explanation of the evidence – and so, in cases where one would think that Inference

to the Best Explanation should be at its strongest – we can restate Inference to the Best

Explanation as follows:

P1: The evidence e is observed

P2′: Among all of the available, competing explanatory hypotheses H = {h1, h2, ..., hn}, hi
alone implies e

C: Therefore, hi

But then, noticing this, someone might well raise the objection that Inference to the Best

Explanation, as we have stated it, at best commits the fallacy of affirming the consequent.

The inference from the fact that a particular hypothesis implies the evidence, and the obser-

vation of that evidence, to the hypothesis just seems to be a straightforward instantiation of

the deductive reasoning fallacy from ‘if p, then q’ and ‘q’ to ‘p’.

The best way to respond to this objection, I think, is simply to deny that it has any force

to begin with. No formulation of Inference to the Best Explanation claims to be deductively

valid, of course. But then it cannot be faulted for not being so. The important question, in

the evaluation of Inference to the Best Explanation, is not whether it describes a deductively

valid inference form but rather whether it describes an inductively cogent inference form –

and, if so, just how reliable this inference form is in real life. I have endeavored to show,

in Chapter 5, that Inference to the Best Explanation passes both of these more appropriate

tests. In light of this, we may just as well say that, in cases where Inference to the Best

Explanation can accurately be formulated as an affirmation of the consequent, this inference

form describes a set of cases in which it is actually quite rational, by inductive standards,

to affirm the consequent – though still, of course, not rational by deductive standards. This

idea is one that is common to recent work on the psychology of rationality. Contemporary

psychologists, including Mike Oaksford, Nick Chater, and Ulrike Hahn have argued recently
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that many cognitive moves, once thought of as fallacious according to deductive or informal

logical standards, can actually be represented as inductively rational – see (Oaksford and

Chater 1994, 2007, Hahn and Oaksford 2007).

It is worth noting that Peirce had to deal with a similar objection to his abductive form

of inference, and he gave a similar response. Recall from Section 2.3.4 that Peirce gave his

abductive category of inference a similar form as that which we here give Inference to the

Best Explanation. In his case, Peirce recommended the adoption of a hypothesis for further

testing based upon the observation of e and the explanatory premise that “If h were true, e

would be a matter of course.” Accordingly, Peirce responded to a similar objection to this

one in the following passage (Peirce 1935, 5.192):

[I]t is only in deduction that there is no difference between a valid argument and a strong
one. An argument is valid if it possesses the sort of strength that it professes and tends
toward the establishment of the conclusion in the way in which it pretends to do this.
But the question of its strength does not concern the comparison of the due effect of the
argument with its pretensions, but simply upon how great its due effect is. An argument
is none the less logical for being weak, provided it does not pretend to a strength that it
does not possess. It is, I suppose, in view of this that the best modern logicians outside the
English school never say a word about fallacies. They assume that there is no such thing
as an argument illogical in itself. An argument is fallacious only so far as it is mistakenly,
though not illogically, inferred to have professed what it did not perform.

Again, Inference to the Best Explanation does not profess to be a deductively valid inference

form. It is compatible with the claims of explanatory inference that it can be characterized

as a deductively fallacious inference. The real question is whether Inference to the Best

Explanation attains the inductive strengths and virtues that is does profess. I have argued

in this dissertation that it does.

6.2.2 Objection 2: Best of a Bad Lot

If there is one objection that is most commonly supposed to devastate Inference to the Best

Explanation, it is the so-called “best of a bad lot” objection. Van Fraassen gives the classic

statement of this objection in the following passage (1989, pp. 142-143):

[Inference to the Best Explanation] is a rule that selects the best among the historically
given hypotheses. We can watch no contest of the theories we have so painfully struggled
to formulate, with those no one has proposed. So our selection may well be the best of a
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bad lot. To believe is at least to consider more likely to be true, than not. So to believe the
best explanation requires more than an evaluation of the given hypothesis. It requires a
step beyond the comparative judgment that this hypothesis is better than its actual rivals.
While the comparative judgment is indeed a ‘weighing (in the light of) the evidence’, the
extra step – let us call it the ampliative step – is not. For me to take it that the best of set
X will be more likely to be true than not, requires a prior belief that the truth is already
more likely to be found in X, than not.

Stated in other words, van Fraassen’s criticism here is that the value of any inference to the

best explanation will be constrained by that of the lot of considered hypotheses. If this lot

does not include a true hypothesis, then Inference to the Best Explanation will inevitably

recommend to us a false belief. Inference to the Best Explanation begins with a considered

collection of hypotheses to be considered; it does not reason to such a collection. But then,

it gives us no reason to think that we are not starting off with a bad lot, and consequently

it can hardly be trusted as a reliable inferential vehicle for attaining true beliefs.

Douven (2011, Section 2) writes that this objection shows that Inference to the Best

Explanation, as classically formulated, is “manifestly defective.” In attempting to save

Inference to the Best Explanation from this objection, philosophers have, for the most part,

decided that the inference form requires a more modest formulation. Lipton, for one, requires

that the premises of an Inference to the Best Explanation should include the judgment not

only that the hypothesis being singled out be the best explanation, but also that it be

sufficiently good. Similarly, Alan Musgrave (1988) requires that the hypothesis ought to

be “satisfactory” in addition to being the most explanatory. Instead of strengthening the

premises of Inference to the Best Explanation, Theo Kuipers (1984, 1992, 2000) weakens

the conclusion, suggesting that instead of inferring the best explanation outright, we instead

infer that the most explanatory of the competing hypotheses is “closer to the truth” than

any of the available, considered competitors.

But I have strived in this dissertation to defend Inference to the Best Explanation as

classically formulated. That is, I have attempted to show that there is much to be said in

favor of the form of inference that has us infer to the truth of a hypothesis from the judg-

ment that that hypothesis proffers the most powerful of the available, competing (potential)

explanations of some given set of evidence. Thus, I would rather not weaken Inference to the

Best Explanation in order to make it defensible against van Fraassen’s famous objection.
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Happily, I do not think there is any need to. What I attempt to show here in this section

is that Inference to the Best Explanation, as classically formulated, requires no defense

against the best of a bad lot objection. This is because that objection is confused from the

start. Inference to the Best Explanation has everything going for it that it needs to in order

to be a respectable inference form. The unfortunate possibility that drives the best of a

bad lot objection is a possibility that should worry all supporters of any inference form –

even deductive inference forms. If I am right, then three decades of dialectic inspired by van

Fraassen’s objection have only served to muddle the debate over the value of Inference to

the Best Explanation.

My response turns on the distinction between the form of an inference and the material

content that we bring to the inferential table whenever our reasoning actually instantiates

an inference form. The form of an inference is, of course, that pattern which does not change

between instances of that form of reasoning and which all such instances follow; the material

content includes the particular statements and concepts that constitute the premises and

conclusion of a particular inference. A particular instance of the form of deductive inference

referred to as disjunctive syllogism, for example, may go as follows:

P1: Either we will buy a house or we will rent

P2: We will not buy a house

C: Therefore, we will rent

The pattern or inferential form that this reasoning instantiates is that of disjunctive syllo-

gism:

P1: Either p or q

P2: Not p

C: Therefore, q

And the material content that this instance of disjunctive syllogism brings to the table

includes the specified premises and conclusion (“Either we will buy a house or we will rent”,

“We will not buy a house”, “We will rent”) along with all of the concepts contained therein.

That much is, I think, elementary. Now let us apply this same distinction to the form

of Inference to the Best Explanation that we have articulated. A particular instance of the
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form of Inference to the Best Explanation might go as follows:

P1: The evidence that the books on my bookshelf are disarranged is observed

P2: Among all of the available, competing explanatory hypotheses H = {h1 : my toddler did

it, h2 : my wife did it, h3 : my dog did it}, h1 has the most explanatory power regarding

this evidence

C: Therefore, h1 : my toddler did it

The pattern or inferential form that this reasoning instantiates is that of Inference to the

Best Explanation as we have specified it earlier:

P1: The evidence e is observed

P2: Among all of the available, competing explanatory hypotheses H = {h1, h2, ..., hn}, hi
has the most explanatory power over e; i.e., ∀hj ∈ H\{hi}, E(e, hi) > E(e, hj)

C: Therefore, hi

And the material content that this instance of Inference to the Best Explanation brings to the

table includes the specified premises and conclusion, along with all of the concepts contained

therein. In particular, this material includes the lot of hypotheses to be considered. In no

sense is the particular hypotheses to be considered part of the inferential form; the lot of

hypotheses to be considered manifestly changes between instantiations of Inference to the

Best Explanation.

With this distinction in mind, van Fraassen’s objection can be rephrased as the worry

that since the form of Inference to the Best Explanation does not give us good reason to think

that we have brought good material content to the inferential table, it cannot be trusted as

a reliable mode of inference at all. Phrased in the way, it is worth noting that the best of

a bad lot objection is not of particular relevance to Inference to the Best Explanation; one

can easily run such an objection to any form of inference whatever, be it nondeductive or

deductive. If, for example, one brings a “bad lot” of premises to the inferential table, then

modus ponens will likely recommend to us a false conclusion. The same point obviously

holds for any inference form: fill in the material content of an inference form with bad (i.e.,

false) material, and the inference form will very likely give you a bad conclusion. Seen in
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this way, van Fraassen’s objection merely points to the garbage in / garbage out character

of all forms of inference.

To make this point even more forcefully, consider the subclass of disjunctive syllogisms

where our first premise specifies a considered lot of competing hypotheses, so that our infer-

ence form can be stated as follows:

P1: Either h1 or h2 or ... or hn

P2: ∀hj ∈ {h1, h2, ..., hn} \ {hi}, ¬hj

C: Therefore, hi

Now, let us re-quote van Fraassen’s statement of the best of a bad lot objection, changing

only the first sentence so that it refers to the above inference form:

[Disjunctive Syllogism as stated directly above] is a rule that selects the best among the
historically given hypotheses. We can watch no contest of the theories we have so painfully
struggled to formulate, with those no one has proposed. So our selection may well be the
best of a bad lot. To believe is at least to consider more likely to be true, than not. So
to believe the best explanation requires more than an evaluation of the given hypothesis.
It requires a step beyond the comparative judgment that this hypothesis is better than its
actual rivals. While the comparative judgment is indeed a ‘weighing (in the light of) the
evidence’, the extra step – let us call it the ampliative step – is not. For me to take it that
the best of set X will be more likely to be true than not, requires a prior belief that the
truth is already more likely to be found in X, than not.

Van Fraassen’s comments about Inference to the Best Explanation apply just as well then

to this specified form of disjunctive syllogism. Are we thus to conclude, parallel to van

Fraassen’s conclusion, that “[disjunctive syllogism – or any other inference form for that

matter – cannot] be a rule to form warranted new beliefs on the basis of the evidence, the

evidence alone, in a purely objective manner”?

The answer is no. And the reason is because this criticism of disjunctive syllogism would

be a non-starter, faulting this inferential form for not giving us reason to trust its particular

material content when instantiated. This is an unfair criticism for the simple reason that that

is not how inference forms are to be evaluated. When we evaluate the form of disjunctive

syllogism, we do not ask whether it could possibly lead us to false beliefs, or whether it

provides us with reason to believe that we are bringing true premises to the table. This

inference form could, of course, lead us to falsehoods; and it does not, in and of itself, give
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us reason to believe that its premises are true. But these points are simply not relevant to

the evaluation of the validity of the inference form (though they are perhaps relevant to the

evaluation of the soundness of any particular instance of this inference form). Instead, if we

are fairly evaluating the inference form, we ask after the truth-preserving character of the

inference form. For example, we ask whether the truth of the conclusion is guaranteed by

the truth of the premises – with questions as to whether the actual premises fed into that

inference form on any particular occasion are indeed true set aside. In the case of disjunctive

syllogism, the inference form is indeed truth-preserving, and so we can conclude that the

inference form is deductively valid; as such, it does in fact give us an objective rule for

forming warranted new beliefs based upon the evidence.

When evaluating nondeductive forms of inference, it would be unfair, of course, to ask

this same question. Unlike their deductive siblings, nondeductive inference forms make no

claim to preserving truth perfectly, and so it is unfair to fault them for not doing so; to do

so is to fault nondeductive inference forms for not being deductive. Minimally, what they do

claim is that their premises always lend positive support to their conclusions. Thus, when

we want to know whether or not an inductive inference form is “inductively cogent,” we may

ask whether bringing true premises and otherwise epistemically valuable material content to

the inferential table does anything to increase the likeliness that the conclusion is true, with

questions as to the value of the material content that one brings to a particular instance of

the inference form set aside. Of course, one should not actually set these questions aside

when evaluating an instance of the inference form; whether or not one finds an argument

to be convincing will very much depend on what that person thinks about the epistemic

value of the premises of the argument. But, importantly, if one criticizes an argument based

on the fact that one might get a bad conclusion from it if one brings bad material to the

inferential table, this presents no challenge whatever to the cogency of the inference form in

question. Specific to van Fraassen’s worry then, one cannot fairly criticize Inference to the

Best Explanation as a form of nondeductive inference based on the fact that one might get

a bad conclusion from it if one brings a bad lot of hypotheses to the inferential table.

As I briefly mentioned above, if my response to the best of a bad lot objection is correct,

then the dialectic that this objection has inspired has only served to confuse the debate over
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the value of Inference to the Best Explanation. In order to respond to this false problem,

philosophers have needlessly attempted reformulation after reformulation of Inference to the

Best Explanation. Douven (2011, Section 2), for example, provides a lengthy discussion of

what a defensible explication of Inference to the Best Explanation might be in light of the

best of a bad lot objection. He rehearses three different such formulations, and concludes that

more work needs to be done here. Then he asks which of the formulations people actually

rely on. In light of my response, this is all misguided. There are no three formulations of

Inference to the Best Explanation and there is not really a question of which form people

actually follow in real life; Inference to the Best Explanation is, for better or for worse,

exactly what it claims to be. It is the inferred acceptance of a hypothesis based upon that

hypothesis’s comparative explanatory superiority when compared to its competitors. I have

provided a positive case for thinking that this inference form, in its strongly stated glory, is

respectable, and now I have also argued against the objection that, more than any other,

convinces some to weaken or even to reject Inference to the Best Explanation altogether.
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7.0 EPILOGUE

When humans reason about the world, they make regular use of explanatory considerations.

They argue to the truth of hypotheses based on the ability that these have to explain

evidence, and they argue against the truth of others by noting that they fail to explain

well such evidence. Humans appeal to considerations of explanatory power when deciding

whether or not to test hypotheses further, and they rely on such considerations when deciding

which of many hypotheses to favor. In science, philosophy, theology, diagnostics (from

medical diagnostics to automobile diagnostics), law, criminal investigation, as well as in

everyday affairs, humans rely heavily on explanatory reasoning for gaining knowledge about

the world. We have seen this fact exemplified, in Chapters 1 and 2 of this dissertation, in the

history of scientific thought (Darwin), the history of philosophy (Paley, Putnam), detective

novels (Sherlock Holmes), and everyday life. Innumerable other examples from all of these

and other contexts of human reasoning abound.

One thing that is striking about such examples is that, where the context of reasoning

changes drastically (e.g., between the commonplace and the sciences), the notion of explana-

tory power at work in such reasoning does not seem to follow suit. When Darwin and Paley

discuss the explanatory power that their hypotheses have over the evidence, and when I

think about the explanatory power that the hypothesis of my toddler playing in my office

has over the evidence, the same concept of explanatory power seems to be at work. This

concept of explanatory power relates essentially to our epistemic situation; when we make

a judgment about the explanatory power of a hypothesis, we are saying something about

how a potential explanation has affected us epistemically (and how we think it ought to

affect others epistemically too). Specifically, I have proposed the idea – following Peirce and

others – that such judgments say something about how a hypothesis has made the relevant
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evidence much less surprising, or more expected.

To clarify, this is manifestly not what we mean when we make the judgment that a

hypothesis provides a potential explanation of the evidence; there is much more to the

nature of explanation than reduction of surprise. However, this does seem to be implied

when we make the judgment that a hypothesis – which is already judged to provide a

potential explanation of the evidence – has a certain amount of explanatory power over the

evidence. In other words, while the nature of explanation is not accurately analyzed via the

notion of surprise-reduction, the judged strength of a potential explanation (i.e., explanatory

power) is accurately explicated and measured via this notion.

This observation opens the door to the project of giving an account of explanatory power,

without having to wait for an acceptable philosophical analysis of the nature of explanation.

And this is the approach that I have taken in this dissertation. More generally, this disserta-

tion has put forward an epistemology of explanation via a study of the notion of explanatory

power. I have attempted to clarify how explanations affect us in our pursuit of knowledge

by investigating two important questions. Chapters 2 and 3 pursued an answer to the ques-

tion of what exactly we have in mind when we make judgments of the explanatory power

that a hypothesis has regarding some set of evidence. That is, these chapters attempted

to make more precise the concept of explanatory power that we all typically rely on when

we reason explanatorily. Together, these chapters introduced and defended a Carnapian

explication of the concept of explanatory power in the form of the probabilistic measure E .

And this explication gave us a more precise statement of various ways in which we might

reason explanatorily – including a more precise articulation of the most well-known mode of

explanatory reasoning, Inference to the Best Explanation.

Chapters 4, 5, and 6 turned to the question of whether or not explanatory reasoning

constitutes an epistemically respectable means of gaining knowledge. Chapter 4 discussed

the relationship of the formal, inductive logic provided by the probability calculus and the

ostensibly non-formal mode of explanatory reasoning described by Inference to the Best

Explanation. Here, I defended the irenic strategy for combining these two models of reasoning

known as the heuristic approach. According to this approach, Bayesianism describes the logic

of explanatory reasoning, the normative standard that such reasoning attains to without
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regards for human limitations and capacities. Inference to the Best Explanation, on the

other hand, gives us a description of how we are able to approximate such a logical standard

within our human bounds. I argued for both of these theses in more detail throughout

Chapter 5. By drawing out the probabilistic implications of certain explanatory judgments

– as explicated by E – I showed that Inference to the Best Explanation describes a cogent,

nondeductive inference form. And, via a set of computer simulations, I argued that Inference

to the Best Explanation approximates sound probabilistic reasoning very well indeed in the

real world. Finally, in Chapter 6, I responded to some possible objections to my explication

of explanatory power, and then to some more well-known criticisms of Inference to the Best

Explanation.

So concludes this work. This dissertation has proposed a clearer articulation and novel

defense of explanatory reasoning. Yet, in the end, my hopes for this work have less to do

with whether others accept my conclusions. While this would certainly please me, I would be

even more pleased if I am able to provoke other philosophers to place more focus specifically

on the epistemology of explanation. Also, I hope that this dissertation convinces some, if not

of the conclusions, then at least of the value of the methods used herein. If this work helps

to spark a greater interest in explanation’s role in human reasoning, or if this work convinces

anyone that the less traditional methods I have used here – including mathematical methods,

Carnapian explication, experimentation, and computer simulations – hold great value and

import to philosophical investigation, then I will be entirely satisfied.
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APPENDIX A

PROOF OF THEOREM 1 (UNIQUENESS OF E)

Theorem 1. The only measure that satisfies CA 1 - CA 5 is

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

.

Notation. Let x = Pr(e ∧ h), y = Pr(e ∧ ¬h), z = Pr(¬e ∧ h) and t = Pr(¬e ∧ ¬h) with

x+ y + z + t = 1. Then, by CA 1, E(e, h) has the form f(x, y, z, t).

Lemma 1. There is no f(x, y, z, t) of degree 1 that satisfies CA 1 - CA 5.

Proof. If there were such a function, its numerator would have the form ax + by + cz + dt

(a, b, c and d are coefficients). For all e and h that are statistically independent, CA 2 requires

that this numerator ax+by+cz+dt = 0. Now we can show that there is no such function by

locating four different parameter settings of (x, y, z, t) that each make e and h independent

but across which there are no (non-zero) coefficients that satisfy ax + by + cz + dt = 0.

The following four parameter settings suffice: (1/2, 1/4, 1/6, 1/12), (1/2, 1/3, 1/10, 1/15),

(1/2, 3/8, 1/14, 3/56), and (1/4, 1/4, 1/4, 1/4). Since these vectors are linearly independent

(i.e., their span has dimension 4), a = b = c = d = 0. Hence there is no such function of

degree 1.
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Lemma 2. CA 5 entails that for any value of β ∈ (0, 1),

f(x, y, z, t) = f(βx, y + (1− β)x, βz, t+ (1− β)z). (A.1)

Proof. For any x, y, z, t, we choose e, h1 such that

x =Pr(e ∧ h1) y =Pr(e ∧ ¬h1)

z =Pr(¬e ∧ h1) t =Pr(¬e ∧ ¬h1).

Moreover, we choose h2 such that the antecedent conditions of CA 5 are satisfied, and we

let β = Pr(h2). Then, E(e, h1 ∧ h2) = E(e, h1). Now, we have to show that (A.1) captures

exactly this case; i.e., that

βx =Pr(e ∧ (h1 ∧ h2)) y + (1− β)x =Pr(e ∧ ¬(h1 ∧ h2))

βz =Pr(¬e ∧ (h1 ∧ h2)) t+ (1− β)z =Pr(¬e ∧ ¬(h1 ∧ h2)).

This is demonstrated straightforwardly, making use of the independence claims of CA 5

(details omitted).

Proof of Theorem 1 (Uniqueness of E). Lemma 1 shows that there is no normalized

function f(x, y, z, t) of degree 1 that satisfies our desiderata. Our proof is constructive: we

show that there is exactly one such function of degree 2, which completes the proof (given

the formal requirements set out in CA 1). By CA 1, we look for a function of the form

f(x, y, z, t) =
ax2 + bxy + cy2 + dxz + eyz + gz2 + ixt+ jyt+ rzt+ st2

āx2 + b̄xy + c̄y2 + d̄xz + ēyz + ḡz2 + īxt+ j̄yt+ r̄zt+ s̄t2
(A.2)

We begin by investigating the numerator.1 CA 2 tells us that it has to be zero if Pr(e∧

h) = Pr(e)Pr(h); i.e., if

x = (x+ y)(x+ z). (A.3)

1The general method of this proof bears resemblance to Kemeny and Oppenheim’s (1952) discussion
of Theorem 17. There are, however, some crucial differences. First, this proof uses fewer assumptions,
and it works from within a different formal framework. Second, Kemeny and Oppenheim’s proof contains
invalid steps; for instance, they derive d = 0 by means of CA 4 alone. (Take the counterexample f =
(xy − yz + xz − z2)/(xy + yz + xz + z2) which even also satisfies CA 3.) Hence, this proof is truly original.
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Making use of x+ y + z + t = 1, we conclude that this is the case if and only if xt− yz = 0:

xt− yz = x(1− x− y − z)− yz

= x− x2 − xy − xz − yz

= x− (x+ y)(x+ z)

The obvious way to satisfy (A.3) is to set e = −i, and to set all other coefficients (but i) in the

numerator to zero. Actually, all other choices of coefficients don’t work since all dependencies

are non-linear (e.g., for given x and y, (A.3) demands that z = (x− x2 − xy)/(x+ y)). We

rule out this case by choosing values of (x, y, z, t) that satisfy (A.3), and imposing a system

of homogeneous linear equations on the coefficients in the numerator. From the preceding

it is clear that the corresponding matrix must have full rank. Hence, the only solution for

a, b, c, . . . is the trivial one: a = b = . . . = 0. Accordingly, f can be reduced to

f(x, y, z, t) =
i(xt− yz)

āx2 + b̄xy + c̄y2 + d̄xz + ēyz + ḡz2 + īxt+ j̄yt+ r̄zt+ s̄t2

Now, we make use of CA 3 and CA 4 in order to tackle the coefficients in the denominator.

CA 3 entails that f = 1 if z = 0, and CA 4 is equivalent to

f(x, y, z, t) = −f(z, t, x, y). (A.4)

First, applying CA 3 yields 1 = f(x, y, 0, t) = ixt/(āx2 + b̄xy + c̄y2 + īxt + j̄yt + s̄t2), and

by a comparison of coefficients, we get ā = b̄ = c̄ = j̄ = s̄ = 0 and ī = i. Additionally,

in similar fashion, we obtain ḡ = r̄ = 0 and ē = i from 1 = f(x, y, 0, t) = −f(0, t, x, y) =

ixt/(ēxt+ ḡx2 + r̄xy), combining CA 3 with CA 4 (A.4).

Thus, f can be written as

f(x, y, z, t) =
i(xt− yz)

d̄xz + i(xt+ yz)

=
(xt− yz)

(xt+ yz) + αxz
, (A.5)

by letting α = d̄/i.
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It remains to make use of CA 5 in order to fix the value of α. Set β = 1/2 in (A.1) and

make use of f(x, y, z, t) = f(βx, (1−β)x+y, βz, (1−β)z+ t) (Lemma 2) and the restrictions

on f captured in (A.5). By a straightforward calculation, we obtain the general constraint

xt− yz
xt+ yz + αxz

=
xt− yz

xt+ yz + 1
2
(2 + α)xz

(A.6)

For (A.6) to be true in general, we have to demand that α = (2 + α)/2 which implies

that α = 2. Hence,

f(x, y, z, t) =
xt− yz

xt+ yz + 2xz
.

After replacing x, y, z, and t by their corresponding joint probabilities, some algebraic ma-

nipulations show that this ratio is equivalent to the following:

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

which is therefore the unique function satisfying all of the conditions.
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APPENDIX B

PROOF OF THEOREM 2 AND COROLLARY 1

Theorem 2. All measures of explanatory power satisfying CA 5 - CA 8 are monotonically

increasing functions of the posterior ratio Pr(h|e)/Pr(h|¬e).

Proof. Pr(h|e), Pr(h|¬e) and Pr(e) jointly determine the probability distribution of the

pair (e, h); so we can represent E as a function of these values: there is a g : [0, 1]3 → R such

that E(e, h) = g(Pr(e), P r(h|e), P r(h|¬e)).

First, note that whenever the assumptions of CA 5 are satisfied (i.e., whenever h2 is

independent of all e, h1 and e ∧ h1), the following equalities hold:

Pr(h1 ∧ h2|e) = Pr(h2|h1 ∧ e)Pr(h1|e) = Pr(h2)Pr(h1|e)

Pr(h1 ∧ h2|¬e) =
Pr(h1 ∧ h2 ∧ ¬e)

Pr(¬e)
=
Pr(h1 ∧ h2)− Pr(h1 ∧ h2 ∧ e)

Pr(¬e)

= Pr(h2)
Pr(h1)− Pr(h1 ∧ e)

Pr(¬e)
= Pr(h2)Pr(h1|¬e).

(B.1)

Now, for all values of c, x, y, z ∈ (0, 1), we can choose propositions e, h1 and h2 and probability

distributions over these such that the independence assumptions of CA 5 are satisfied and

c = Pr(h2), x = Pr(e), y = Pr(h1|e), and z = Pr(h1|¬e). Due to CA 6, we can always

find such propositions and distributions so long as E is applicable. The above equations

then imply that Pr(h1 ∧ h2|e) = cy and Pr(h1 ∧ h2|¬e) = cz. Applying CA 5 (E(e, h1) =

E(e, h1 ∧ h2)) yields the general fact that

g(x, y, z) = g(x, cy, cz). (B.2)
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Consider now the case that ¬h entails e; i.e., Pr(e|¬h) = Pr(h|¬e) = 1. Assume that

g(·, ·, 1) could be written as a function of Pr(e) alone. Accordingly, there would be a function

h : [0, 1]→ R such that

g(x, y, 1) = h(x). (B.3)

If we choose y = Pr(h|e) < Pr(h|¬e) = z, it follows from equations (B.2) and (B.3) that

g(x, y, z) = g(x, y/z, 1) = h(x). (B.4)

In other words, g (and E) would then be constant on the triangle {y < z} = {Pr(h|e) <

Pr(h|¬e)} for any fixed x = Pr(e). Now, since g is an analytic function (due to CA 6), its

restriction g(x, ·, ·) (for fixed x) must be analytic as well. This entails in particular that if

g(x, ·, ·) is constant on some nonempty open set S ⊂ R2, then it is constant everywhere:

1. All derivatives of a locally constant function vanish in that environment (Theorem of

Calculus).

2. We write, by CA 6, g(x, ·, ·) as a Taylor series expanded around a fixed point (y∗, z∗) ∈

S = {y < z}:

g(x, y, z) =
∞∑
j=0

[
1

j!

(
(y − y∗) ∂

∂y
+ (z − z∗) ∂

∂z

)j
g(x, y∗, z∗)

]
y=y∗,z=z∗

.

Since all derivatives of g(x, ·, ·) in the set S = {y < z} are zero, all terms of the Taylor

series, except the first one (= g(x, y∗, z∗)) vanish.

Thus, g(x, ·, ·) must be constant everywhere. But this would violate the statistical relevance

condition CA 7 since g (and E) would then depend on Pr(e) alone and not be sensitive to

any form of statistical relevance between e and h.

Thus, whenever ¬h entails e, g(·, ·, 1) either depends on its second argument alone, or

on both arguments. The latter case implies that there must be pairs (e, h) and (e′, h′) with

Pr(h|e) = Pr(h′|e′) such that

g(Pr(e), P r(h|e), 1) 6= g(Pr(e′), P r(h′|e′), 1). (B.5)
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Note that if Pr(e|¬h) = 1, we obtain

Pr(e) = Pr(e|h)Pr(h) + Pr(e|¬h)Pr(¬h) = Pr(h|e)Pr(e) + (1− Pr(h))

=
1− Pr(h)

1− Pr(h|e)
, (B.6)

and so we can write Pr(e) as a function of Pr(h) and Pr(h|e).

Combining (B.5) and (B.6), and keeping in mind that g cannot depend on Pr(e) alone,

we obtain that there are pairs (e, h) and (e′, h′) such that

g

(
1− Pr(h)

1− Pr(h|e)
, P r(h|e), 1

)
6= g

(
1− Pr(h′)
1− Pr(h|e)

, P r(h|e), 1
)
.

This can only be the case if the prior probability (Pr(h) and Pr(h′) respectively) has an

impact on the value of g (and thus on E), in contradiction with CA 8. Thus, equality in (B.5)

holds whenever Pr(h|e) = Pr(h′|e′). Hence, g(·, ·, 1) cannot depend on both arguments, and

it can be written as a function of its second argument alone.

Thus, for any Pr(h|e) < Pr(h|¬e), there must be a g′ : [0, 1]2 → R such that

E(e, h) = g(Pr(e), P r(h|e), P r(h|¬e)) = g(Pr(e), P r(h|e)/Pr(h|¬e), 1)

= g′(Pr(h|e)/Pr(h|¬e), 1).

This establishes that E is a function of the posterior ratio if h and e are negatively relevant

to each other. By applying analyticity of E once more, we see that E is a function of the

posterior ratio Pr(h|e)/Pr(h|¬e) in its entire domain (i.e., also if e and h are positively

relevant to each other or independent).

Finally, CA 7 implies that this function must be monotonically increasing, since other-

wise, explanatory power would not increase with statistical relevance (of which the posterior

probability is a measure). Manifestly, any such function satisfies CA 5 - CA 8.

Corollary 1. E(e, h) takes maximal value if and only if h entails e, and minimal value if

and only if h implies ¬e.
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Proof. Since E is an increasing function of the posterior ratio Pr(h|e)/Pr(h|¬e), E(e, h) is

maximal if and only if Pr(h|¬e) = 0. Due to the regularity of Pr(·), this is the case of and

only if ¬e entails ¬h, in other words, if and only if h entails e. The case of minimality is

proven analogously.
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APPENDIX C

PROOF OF THEOREM 3

In proving many of our remaining theorems, we make use of the following lemma:

Lemma 3. E(e, h) is ordinally equivalent to the posterior ratio

r(e, h) =
Pr(h|e)
Pr(h|¬e)

.

That is, for any two pairs 〈ei, hi〉 and 〈ej, hj〉, E(ei, hi) < (=, >) E(ej, hj) if and only if

r(ei, hi) < (=, >) r(ej, hj).

Proof. In order to show this, we reformulate E in terms of r:

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

=
Pr(h|e)/Pr(h|¬e)− 1

Pr(h|e)/Pr(h|¬e) + 1
=
r(e, h)− 1

r(e, h) + 1

For r(e, h) ∈ [0,∞) (which is the range of r(e, h)), E(r(e, h)) is a monotonically increasing

function of r(e, h) with limr(e,h)→∞ E(r(e, h)) = 1 (Figure C1).

This is true given that
dE
dr

=
2

(r(e, h) + 1)2
> 0.

It is an immediate consequence of this fact that, for any two pairs 〈ei, hi〉 and 〈ej, hj〉,

E(ei, hi) < (=, >) E(ej, hj) if and only if r(ei, hi) < (=, >) r(ej, hj).

Theorem 3. E can be represented as a function only of Pr(e) and Pr(e|h). Moreover, E is

a decreasing function (at constant Pr(e|h)) of Pr(e) and an increasing function (at constant

Pr(e)) of Pr(e|h).
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Figure C1: E(e, h) =
r(e, h)− 1

r(e, h) + 1
as a monotonically increasing function of r(e, h).

Proof. We may begin by proving the truth of the first part of this theorem - that E is purely

a function of Pr(e|h) and Pr(e) - simply by reformulating E in the following way:

E(e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

=
Pr(e|h)/Pr(e)− Pr(¬e|h)/Pr(¬e)
Pr(e|h)/Pr(e) + Pr(¬e|h)/Pr(¬e)

=
Pr(e|h)/Pr(e)− (1− Pr(e|h))/(1− Pr(e))
Pr(e|h)/Pr(e) + (1− Pr(e|h))/(1− Pr(e))

.

Given Lemma 3, we may prove the remainder of this theorem for E more simply by

proving it for the posterior ratio r. We may rewrite r(e, h) in the following way:

r(e, h) =
Pr(h|e)
Pr(h|¬e)

=
Pr(e|h)(1− Pr(e))
(1− Pr(e|h))Pr(e)

.

In this form, it is manifest that r - and thus also E - is a function the value of which increases

with decreasing values of Pr(e) so long as Pr(e|h) remains constant, and which increases

with increasing values of Pr(e|h) so long as Pr(e) remains constant.
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APPENDIX D

PROOF OF THEOREM 4

Theorem 4. If Pr(e′|e ∧ h) = Pr(e′|e) – or equivalently, Pr(h|e ∧ e′) = Pr(h|e) – and

Pr(e′|e) 6= 1, then:

• if Pr(e|h) > Pr(e), then E(e, h) > E(e ∧ e′, h) > 0,

• if Pr(e|h) < Pr(e), then E(e, h) < E(e ∧ e′, h) < 0, and

• if Pr(e|h) = Pr(e), then E(e, h) = E(e ∧ e′, h) = 0.

Proof. Recall that the posterior ratio is r(e, h) = Pr(h|e)/Pr(h|¬e). Whenever E = (r −

1)/(r+1) = 0, we have r = 1. Also, given Lemma 3, we know that E(e∧e′, h) < (=, >) E(e, h)

if and only if r(e ∧ e′, h) < (=, >) r(e, h). So, it is sufficient to prove this theorem for us to

show the following:

If Pr(h|e ∧ e′) = Pr(h|e) and Pr(e′|e) 6= 1, then:

• if Pr(e|h) > Pr(e), then
Pr(h|e)
Pr(h|¬e)

>
Pr(h|e ∧ e′)

Pr(h|¬(e ∧ e′))
> 1,

• if Pr(e|h) < Pr(e), then
Pr(h|e)
Pr(h|¬e)

<
Pr(h|e ∧ e′)

Pr(h|¬(e ∧ e′))
< 1, and

• if Pr(e|h) = Pr(e), then
Pr(h|e)
Pr(h|¬e)

=
Pr(h|e ∧ e′)

Pr(h|¬(e ∧ e′))
= 1.

Given that Pr(h|e ∧ e′) = Pr(h|e), we may rework these consequents in the following

way:

Pr(h|e)
Pr(h|¬e)

> (=, <)
Pr(h|e ∧ e′)

Pr(h|¬(e ∧ e′))
> (=, <) 1
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iff Pr(h|¬e) < (=, >)Pr(h|¬(e ∧ e′)) < (=, >)Pr(h|e)

Applying Bayes’s theorem and filling our new consequents into the above conditionals give

us the following three new conditionals to prove:

1. if Pr(e|h) > Pr(e), then
Pr(¬e|h)

Pr(¬e)
<
Pr(¬(e ∧ e′)|h)

Pr(¬(e ∧ e′))
<
Pr(e|h)

Pr(e)
,

2. if Pr(e|h) < Pr(e), then
Pr(¬e|h)

Pr(¬e)
>
Pr(¬(e ∧ e′)|h)

Pr(¬(e ∧ e′))
>
Pr(e|h)

Pr(e)
, and

3. if Pr(e|h) = Pr(e), then
Pr(¬e|h)

Pr(¬e)
=
Pr(¬(e ∧ e′)|h)

Pr(¬(e ∧ e′))
=
Pr(e|h)

Pr(e)
= 1.

We can prove 1. and 2. together in two parts. First we reduce the first half of their

respective consequents in the following way:

Pr(¬e|h)

Pr(¬e)
< (>)

Pr(¬(e ∧ e′)|h)

Pr(¬(e ∧ e′))

iff (1− Pr(e|h))(1− Pr(e ∧ e′)) < (>)(1− Pr(e))(1− Pr(e ∧ e′|h))

But given that Pr(e′|e ∧ h) = Pr(e′|e), we know that this holds just in case:

(1− Pr(e|h))(1− Pr(e ∧ e′)) < (>)(1− Pr(e))(1− Pr(e|h)Pr(e′|e))

iff Pr(e|h) + Pr(e ∧ e′) > (<)Pr(e) + Pr(e|h)Pr(e′|e)

iff Pr(e|h)− Pr(e) > (<)[Pr(e|h)− Pr(e)]Pr(e′|e)

In the light of the given fact that Pr(e′|e) 6= 1, we know that 1. holds given that it is true

that if Pr(e|h) > Pr(e), then Pr(e|h)− Pr(e) > [Pr(e|h)− Pr(e)]Pr(e′|e). And given that

Pr(e′|e) 6= 1, we also know that 2. holds given that it is true that if Pr(e|h) < Pr(e), then

Pr(e|h)− Pr(e) < [Pr(e|h)− Pr(e)]Pr(e′|e).

To complete our proof of 1. and 2., we reduce the second half of their respective conse-

quents in the following way:

Pr(¬(e ∧ e′)|h)

Pr(¬(e ∧ e′))
< (>)

Pr(e|h)

Pr(e)

iff (1− Pr(e ∧ e′|h))Pr(e) < (>)(1− Pr(e ∧ e′))Pr(e|h).

Again, given that Pr(e′|e ∧ h) = Pr(e′|e), we know that this holds just in case:

Pr(e)− Pr(e|h)Pr(e′|e)Pr(e) < (>)Pr(e|h)− Pr(e ∧ e′)Pr(e|h)
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But Pr(e′|e)Pr(e) = Pr(e ∧ e′); thus, we have:

Pr(e) < (>)Pr(e|h).

And this is guaranteed true in cases 1. and 2. respectively by their antecedents.

The proof of 3. is more straightforward. Given that Pr(e|h) = Pr(e) and Pr(e′|e) =

Pr(e′|e ∧ h), it is also the case that

Pr(e ∧ e′|h)) = Pr(e|h)Pr(e′|e ∧ h) = Pr(e)Pr(e′|e) = Pr(e ∧ e′)

But then we can already conclude:

Pr(¬e|h)

Pr(¬e)
=

1− Pr(e|h)

1− Pr(e)
=

1− Pr(e)
1− Pr(e)

= 1

Pr(¬(e ∧ e′)|h)

Pr(¬(e ∧ e′))
=

1− Pr(e ∧ e′|h)

1− Pr(e ∧ e′)
=

1− Pr(e ∧ e′)
1− Pr(e ∧ e′)

= 1
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APPENDIX E

PROOF OF THEOREMS 5 AND 6

Theorem 5. If E(e, h) > −1 and Pr(e′|e ∧ h) = 0 (in which case, it also must be true that

Pr(e′|e) 6= 1), then E(e, h) > E(e ∧ e′, h) = −1.

Proof. Given Lemma 3 above, we may prove this theorem by showing that, in such a

situation, it must be the case that

Pr(h|e)
Pr(h|¬e)

>
Pr(h|e ∧ e′)

Pr(h|¬(e ∧ e′))
= 0.

And, applying Bayes’s theorem to the ratio on the right, we discover that this is true if and

only if

Pr(h|e)
Pr(h|¬e)

>
Pr(e ∧ e′|h)Pr(¬(e ∧ e′))
Pr(¬(e ∧ e′)|h)Pr(e ∧ e′)

= 0.

Given that Pr(e′|e ∧ h) = 0, we know that Pr(e ∧ e′|h) = 0. Thus, the ratio on the right

is indeed equal to zero. Moreover, the inequality will hold just in case the posterior ratio is

not minimal (zero):

Pr(h|e)
Pr(h|¬e)

> 0.

Applying Lemma 3 once more, we know that this posterior ratio cannot be minimal given

that E(e, h) is not minimal (E(e, h) > −1).

Theorem 6. If 0 < Pr(e′|e) < 1 and h does not already fully explain e or its negation –

i.e., −1 < E(e, h) < 1 – and Pr(e′|e ∧ h) = 1, then E(e, h) < E(e ∧ e′, h).
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Proof. Given Lemma 3, in order to prove this, it suffices for us to show that, in such a case,

Pr(h|e)
Pr(h|¬e)

<
Pr(h|e ∧ e′)

Pr(h|¬(e ∧ e′))
.

And, applying Bayes’s theorem, we know that this inequality is satisfied if and only if

Pr(e|h)Pr(¬e)
Pr(¬e|h)Pr(e)

<
Pr(e ∧ e′|h)Pr(¬(e ∧ e′))
Pr(¬(e ∧ e′)|h)Pr(e ∧ e′)

.

And this inequality is equivalent to the following:

Pr(e|h)Pr(¬(e ∧ e′)|h)

Pr(e)Pr(¬(e ∧ e′))
<
Pr(¬e|h)Pr(e ∧ e′|h)

Pr(¬e)Pr(e ∧ e′)

iff
Pr(e|h)(1− Pr(e ∧ e′|h))

Pr(e)(1− Pr(e ∧ e′))
<

(1− Pr(e|h))Pr(e ∧ e′|h)

(1− Pr(e))Pr(e ∧ e′)
.

From the given fact that Pr(e′|e∧h) = 1, we know that Pr(e∧e′|h) = Pr(e|h)×Pr(e′|e∧h) =

Pr(e|h) and so we can rewrite this inequality as:

1− Pr(e|h)

Pr(e)(1− Pr(e ∧ e′))
<

1− Pr(e|h)

(1− Pr(e))Pr(e ∧ e′)
.

Canceling these numerators, this is equivalent to:

Pr(e)(1− Pr(e ∧ e′)) > (1− Pr(e))Pr(e ∧ e′)

iff Pr(e)− Pr(e)Pr(e ∧ e′) > Pr(e ∧ e′)− Pr(e)Pr(e ∧ e′)

And this inequality must hold given that Pr(e) > Pr(e ∧ e′) (from the given fact that

Pr(e′|e) 6= 1).
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APPENDIX F

PROOF OF THEOREM 7

Theorem 7. If E(e, h) > 0, then if Pr(e′|e ∧ h) < Pr(e′|e), then E(e ∧ e′, h) < E(e, h). On

the other hand, if E(e, h) < 0, then if Pr(e′|e ∧ h) > Pr(e′|e), then E(e ∧ e′, h) > E(e, h).

Proof. To prove the first part of this theorem, we have to show that E(e ∧ e′, h) < E(e, h).

Using Lemma 3 and Bayes’s Theorem once more (as in the proofs of Appendix E), this

amounts to showing the following:

Pr(e ∧ e′|h) Pr(¬(e ∧ e′))
Pr(e ∧ e′) Pr(¬(e ∧ e′)|h)

<
Pr(e|h) Pr(¬e)
Pr(e) Pr(¬e|h)

.

And this is equivalent to proving that

Pr(e′|e ∧ h) Pr(e|h) (1− Pr(e ∧ e′))
Pr(e ∧ e′) (1− Pr(e′|e ∧ h) Pr(e|h))

<
Pr(e|h) (1− Pr(e))
Pr(e) (1− Pr(e|h))

. (F.1)

In the first part of Theorem 7, we are given that Pr(e′|e ∧ h) < Pr(e′|e). So we may bound

the left hand side in (F.1) from above in the following way:

Pr(e′|e ∧ h) Pr(e|h) (1− Pr(e ∧ e′))
Pr(e ∧ e′) (1− Pr(e′|e ∧ h) Pr(e|h))

<
Pr(e′|e) Pr(e|h) (1− Pr(e ∧ e′))
Pr(e ∧ e′) (1− Pr(e|e′) Pr(e|h))

.

Thus, if suffices to show that the right hand side in the above inequality is less than the right

hand side in (F.1). In other words, we may prove the first half of this theorem by showing

that

Pr(e′|e) Pr(e|h) (1− Pr(e ∧ e′))
Pr(e ∧ e′) (1− Pr(e|e′) Pr(e|h))

<
Pr(e|h) (1− Pr(e))
Pr(e) (1− Pr(e|h))
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This inequality can be reduced via the following series of equivalencies:

Pr(e′|e) Pr(e|h) (1− Pr(e ∧ e′))
Pr(e ∧ e′) (1− Pr(e|e′) Pr(e|h))

<
Pr(e|h) (1− Pr(e))
Pr(e) (1− Pr(e|h))

1− Pr(e ∧ e′)
1− Pr(e′|e) Pr(e|h)

<
1− Pr(e)

1− Pr(e|h)

(1− Pr(e ∧ e′)) (1− Pr(e|h)) < (1− Pr(e′|e)Pr(e|h)) (1− Pr(e))

1− Pr(e ∧ e′)− Pr(e|h) + < 1− Pr(e)− Pr(e′|e)Pr(e|h) +

Pr(e ∧ e′)Pr(e|h) Pr(e)Pr(e′|e)Pr(e|h)

Pr(e)− Pr(e′|e)Pr(e)− Pr(e|h) + < 0

Pr(e′|e)Pr(e|h)

(Pr(e|h)− Pr(e)) (Pr(e′|e)− 1) < 0. (F.2)

Given that Pr(e′|e ∧ h) < Pr(e′|e), we know that Pr(e′|e) 6= 1. Accordingly, we know

that Pr(e′|e) − 1 < 0. But we also know that E(e, h) > 0, which is true if and only if

Pr(e|h) > Pr(e). Thus, (F.2) is satisfied. Every step in this proof works mutatis mutandis

in the proof of the second half of this theorem.
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APPENDIX G

PROOF OF THEOREM 8

Theorem 8. If all of the following hold true:

• Pr(e1 ∧ e2 ∧ ... ∧ en) = Pr(e1)× Pr(e2)× ...× Pr(en)

• Pr(e1 ∧ e2 ∧ ... ∧ en|h) = Pr(e1|h)× Pr(e2|h)× ...× Pr(en|h)

• these independence relations also hold true of all elementary subsets of {e1, . . . , en}

• and E(e1, h), E(e2, h), ..., E(en, h) > 0

then it must be the case that

E(e1 ∧ . . . ∧ en, h) ≥ min
1≤i≤n

E(ei, h). (G.1)

Lemma 4. Theorem 8 is true for the case of n = 2.

Proof: Throughout the proof, we use the notation x1 = Pr(e1|h), x2 = Pr(e2|h), y1 =

Pr(e1), y2 = Pr(e2). Making use of this notation and our conditional and unconditional
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independences, we can write:

E(e1, h) =
Pr(h|e1)
Pr(h|¬e1)

=
Pr(e1|h)(1− Pr(e1))
Pr(e1)(1− Pr(e1|h))

=
x1(1− y1)
y1(1− x1)

E(e2, h) =
x2(1− y2)
y2(1− x2)

E(e1 ∧ e2, h) =
Pr(e1 ∧ e2|h)(1− Pr(e1 ∧ e2))
Pr(e1 ∧ e2)(1− Pr(e1 ∧ e2|h))

=
x1x2(1− y1y2)
y1y2(1− x1x2)

Now assume without loss of generality that E(e1, h) ≥ E(e2, h). First, we show that it suffices

to prove

x1(1− x2)(1− y1)− y1(1− y2)(1− x1) ≥ 0. (G.2)

This is so because E(e1 ∧ e2, h) ≥ min1≤i≤2 E(ei, h) = E(e2, h) if and only if

E(e1 ∧ e2, h)

E(e2, h)
≥ 1

⇔ x1(1− y1y2)(1− x2) ≥ y1(1− x1x2)(1− y2).

Taking the difference of both terms, we obtain

∆ := x1(1− y1y2)(1− x2)− y1(1− x1x2)(1− y2)

= x1 − x1x2 − x1y1y2 − y1 + y1y2 + x1x2y1

= x1(1− x2 + x2y1 − y1y2)− y1(1− y2)

= x1[(1− x2 − y1 + x2y1) + (y1 − y1y2)]− y1(1− y2)

= x1(1− x2)(1− y1) + x1y1(1− y2)− y1(1− y2)

= x1(1− x2)(1− y1)− y1(1− y2)(1− x1)

Thus, E(e1∧e2, h) ≥ E(e2, h) if and only if ∆ ≥ 0, or equivalently, (G.2) is satisfied. Secondly,

we show that

E(e1, h) ≥ E(e2, h) ⇔ x1(1− x2)(y2 − y1) ≥ y1(x2 − x1)(1− y2). (G.3)
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This follows straightforwardly: E(e1, h) ≥ E(e2, h) is equivalent to

x1y2(1− x2 − y1 + x2y1)− x2y1(1− x1 − y2 + x1y2) ≥ 0

⇔ x1x2(y1 − y2) + y1y2(x2 − x1) + x1y2 − x2y1 ≥ 0

⇔ x1x2(y1 − y2) + y1y2(x2 − x1) + x1(y2 − y1)− y1(x2 − x1) ≥ 0

⇔ x1(1− x2)(y1 − y2)− y1(1− y2)(x2 − x1) ≥ 0,

proving (G.3). Third, we examine the special case that E(e1, h) = E(e2, h). This entails

x1 =
x2y1(1− y2)

y2(1− y1)− x2(y2 − y1)

1− x1 =
y2(1− x2)(1− y1)

y2(1− y1)− x2(y2 − y1)
.

We can neglect the case that the denominator is negative because x1 must be positive, and

the numerator is always positive. Filling these ratios in for x1 and 1−x1 in the equation for

∆ above, and factoring out the common denominator, we derive:

[y2(1− y1)− x2(y2 − y1)] ∆ = x2y1(1− y2)(1− x2)(1− y1)

−y1(1− y2)y2(1− x2)(1− y1)

= y1(1− y2)(1− x2)(1− y1)(x2 − y2)

> 0.

We know that [y2(1− y1)− x2(y2 − y1)] must be positive given that this is the denominator

term of x1 above, and so it must also be the case that ∆ > 0. This proves the lemma for

the case where E(e1, h) = E(e2, h). Actually, the limiting case E(e1, h) = E(e2, h) (i.e., the

case where x1 = xcr := [x2y1(1 − y2)]/[y2(1 − y1) − x2(y2 − y1)]) is the most inconvenient

case to prove: First, observe that if E(e1, h) > E(e2, h) then also x1 > xcr. Second, observe

that (∂/∂x1)∆ > 0, thus higher values of x1 always yield ∆ ≥ 0, and the difference between

E(e1 ∧ e2, h) and E(e2, h) remains positive. Making use of transitivity, it follows that if

E(e1, h) > E(e2, h), then also E(e1 ∧ e2, h) > E(e2, h).
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Proof of Theorem 8. We prove the theorem by induction. Lemma 4 has already shown

the case n = 2, so we merely have to show the step from n-1 to n. Assume without loss of

generality that

E(e1, h) ≥ E(e2, h) ≥ . . . ≥ E(en, h).

Thus, we have to show that E(e1 ∧ . . . ∧ en, h) ≥ E(en, h). By assumption, we know that

Pr(e1 ∧ . . . ∧ en|h) =
n∏
j=1

Pr(ej|h) = Pr(en|h)
n−1∏
j=1

Pr(ej|h)

Pr(e1 ∧ . . . ∧ en) =
n∏
j=1

Pr(ej) = Pr(en)
n−1∏
j=1

Pr(ej).

Moreover, ê := e1 ∧ e2 ∧ . . . ∧ en−1 is positively relevant to h. This is so because

Pr(ê|h) =
n−1∏
j=1

Pr(ej|h) ≥
n−1∏
j=1

Pr(ej) = Pr(ê)

Finally, the inductive assumption implies that

E(ê, h) ≥ min
1≤j≤n−1

E(ej, h) = E(en−1, h) ≥ E(en, h).

Thus, all premises for applying Lemma 4 to the two pieces of evidence ê and en are satisfied.

Accordingly, we obtain

E(e1 ∧ . . . ∧ en, h) = E(ê ∧ en, h) ≥ E(en, h) = min
1≤j≤n

E(ej, h),
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