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A great deal of research has repeatedly demonstrated that piezoelectric energy harvesters 

hold the promise of providing an alternative power source that can enhance or replace 

conventional batteries and power wireless devices. Also, ambient vibrations have been the focus 

as a source due to the amount of energy available in them. By using energy harvesting devices to 

extract energy from their environments, the sensors that they power can be self-reliant and 

maintenance time and cost can be reduced. In order to harvest the most energy with the device, 

the beam’s fundamental mode must be excited.  However, this is not always possible due to 

manufacturing of the device or fluctuations in the vibration source.  By being able to change the 

frequencies of the beam, the device can be more effective in harvesting energy.  This work 

utilizes a shunt capacitor-tuning concept on a piezoelectric bimorph energy harvester.  Design 

parameters are investigated and discussed to achieve the most tuning from the device.  Static and 

dynamic beam and plate models are derived to predict natural frequencies and power and are 

later used to compare to experimental results.  Results are presented for the tunability of a square 

cantilever bimorph.  In addition, the amount of power able to be harvested from each layer of the 

bimorph is tested.  Finally, several other tuning methods are discussed. 
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1.0  INTRODUCTION 

Technology is continuously becoming smaller and smaller.  With these advancements, sensors 

and other electronics can be used in the most remote locations and transmit information 

wirelessly.  However, although the devices are smaller, they still require power sources such as 

batteries, which can degrade and would have to be replaced.  One possible solution is to use an 

energy harvesting device containing a piezoceramic to harvest energy from the environment of 

the sensor. 

A great deal of research has repeatedly demonstrated that piezoelectric energy harvesters 

hold the promise of providing an alternative power source that can enhance or replace 

conventional batteries and power wireless devices. Also, ambient vibrations have been the focus 

as a source due to the amount of energy available in them. By using energy harvesting devices to 

extract energy from their environments, the sensors that they power can be self-reliant and 

maintenance time and cost can be reduced.  

To maximize the amount of energy harvested from the source, generally a resonant mode 

of the harvester should match one of the dominant frequencies of the source. Due to 

inconsistencies in the fabrication of the harvester or variations in the source, frequency matching 

can be difficult to achieve. By being able to tune the device during fabrication or in real time 

during operation, a means to meet this criterion during operation of the device can be provided.  
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In this study both theoretical and experimental analysis will be done on a piezoelectric 

cantilever bimorph.  A bimorph harvester contains a substrate material sandwiched between two 

piezoelectric layers and is shown in Figure 1.1.   

 

 

Figure 1.1.  Bimorph Cantilever Energy Harvester 

 

 It has been shown that the stiffness of a piezoelectric element in parallel with a 

capacitive element is dependent on the impedance of the circuit. Thus, by shunting a 

piezoelectric layer with various capacitances, the stiffness of the beam and hence the natural 

frequency of the harvester can be varied.  Much research has been done utilizing this concept in 

tuning resonators but little has been investigated pertaining to energy harvesting. The objective 

of this research is to investigate the tuning concept as it pertains to piezoelectric cantilever beams 

and plates and to study its effect on energy harvesting from a particular vibration source.  

1.1 OUTLINE OF THESIS 

The thesis is laid out in the following manner.  Initially, background information on 

piezoelectricity is given, explaining terminology necessary to understand general piezoelectric 
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concepts.  This is followed by a literature review that will cover previous advancements in 

energy harvesting and will take a look at other methods of tuning cantilever-type harvesting 

devices.  A capacitive tuning concept will be presented and applied to a cantilever beam bimorph 

harvester as well as a plate. The general procedure for calculating the energy of the harvesters 

will be presented next.  Testing and analysis of the tuning concept will be presented and 

discussed.  Finally, some general conclusions will be presented and future work will be 

discussed. 

The literature review has two main topics.  The first reviews advances in energy 

harvesting and it’s applications, which provides a basis for the need to continue research in the 

area and shows promise in developing power for wireless devices.  The second section describes 

the capacitive tuning concept as it pertains to applications other than energy harvesting.  The idea 

stems from original work dealing with using capacitors for structural damping as well as using it 

for tuning mechanical resonators.  Other tuning concepts for harvesting devices will also be 

discussed. 

As mentioned earlier, both cantilever beam and plate bimorphs will be analyzed.  First, 

mode shapes and deflections will be calculated from a vibrational analysis of a continuous 

system.  Using strain energy methods the theoretical amount of energy able to be harvested can 

be calculated.  Next, a shunt capacitor concept will be applied to determine the amount of tuning 

available in each device as well as effects on energy harvesting. 

Lastly, a test setup will be described as well as the fabrication process of the energy 

harvesters.  The upper and lower tuning ranges of the harvesters will be determined along with 

the amount of energy able to be pulled from the device.  The results will be compared with 

theoretical values. 
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2.0  PIEZOELECTRIC BACKGROUND INFORMATION 

The brothers Pierre and Jacques Curie first demonstrated the piezoelectric effect in 1880.  Piezo 

originates from the Greek word meaning ‘to press’ and electric refers to energy or voltage.   The 

Curie’s showed that certain materials exhibited electrical polarization when a mechanical stress 

was applied.  In 1881, Lippmann mathematically proved that applying a voltage to a 

piezoelectric material induces strain in the material. The Curie brothers immediately obtained 

quantitative proof of this effect.  In their experiments, Quartz and Rochelle salt were able to 

produce a small amount of electrical energy, however it was very small and of little use.  It was 

not until the LiTiBa ceramic was discovered that the piezoelectric performance was increased 

and able to be used in a practical manner in electromechanical devices. 

2.1 PIEZOELECTRIC FUNDAMENTALS 

A point group describes a material’s lattice structure.   There are 20 point groups which lack a 

center of symmetry.  This means that the material develops a dielectric polarization when 

subjected to a stress and is known as the piezoelectric effect. The piezoelectric effect is the 

reason piezoelectric materials can be used as both sensors and actuators.  The direct piezoelectric 

effect describes the material’s ability to produce a voltage when mechanically strained and is 

utilized in sensor applications.  Common sensor applications taking advantage of this are found 
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in accelerometers and in pickups for acoustic guitars.  The converse piezoelectric effect is a 

material’s ability to transform an applied voltage into mechanical strain energy. This is 

commonly used in actuator applications such as creating ultrasonic waves used in medical 

imaging devices.  Figure 2.1 shows both the direct and converse piezoelectric effect. 

 

Vapp

Force

Vgen

+ +

- -

(a) (b) (c)
 
Figure 2.1.  (a) Unstrained piezoelectric material.  (b) direct piezoelectric effect.  (c) converse piezoelectric effect. 

 

Piezoelectric materials also belong to a group of materials known as ferroelectrics.  

Ferroelectrics have the characteristic of having locally random oriented electric dipoles 

throughout their material composition.  When the material is heated above its Curie temperature, 

and an electric field is applied across the material, the electric dipoles align themselves relative 

to the applied electric field.  When the material is cooled, the electric dipoles maintain their 

alignment.  This process is known as poling.  Once a ferroelectric material is poled, it will 

exhibit the piezoelectric effect.  The poling of a ferroelectric material is shown in Figure 2.2. 
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(a) (b) (c)  

Figure 2.2.  Poling process:  (a) unpoled ferroelectric ceramic, (b) material heated above Curie temperature 
and voltage applied, (c) poled piezoelectric material 

 
 
 
After the material has been poled, an electric field can be applied to the material to 

induce a stress (or a stress applied to create a voltage).  Since the electric field can be applied on 

several surfaces in different directions there is a sign convention that is normally used when 

dealing with piezoelectric materials. The poling direction is always assigned the 3 direction.  All 

other properties are based off of this direction. Properties are usually denoted as xij, where x is 

the property variable and i and j are subscripts that are common to denoting all piezoelectric 

properties. The first subscript shows the direction that charge is collected and the second 

subscript denotes the direction of stress. The direction of induced or applied stress is assigned 

relative to the poling direction.  Therefore, if the stress is in the same direction as the poling 

direction, it will also be in the 3 direction.  If the stress is perpendicular to the electric field it will 

be in the 1 direction.  Figure 2.3 illustrates this sign convention.  When the mechanical stress or 

strain is shear, the subscript 4, 5, and 6 are used for the second subscript. 
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Figure 2.3.   31-direction:  Charge collection in 3 direction and stress in 1 direction 

 

An important relation for piezoelectric material is that between charge and stress, denoted 

as a constant d. The larger this constant is, the more energy can be generated from a certain 

applied stress. In this work a piezoelectric material, Lead Zirconate Titanate (PZT), a 4mm class 

crystal, has 5 piezoelectric (d or g) constants (d31, d33, d32, d15, and d24).  For this work, all other 

remaining constants are zero.  The constant d31 is the same as d32 since 1 and 2 are both 

perpendicular to 3 and the material is isotropic in the 1-2 plane.  Also, d15  is the same as d24 due 

to the isotropic nature of the material.  Therefore, there are technically only 3 piezoelectric 

constants.  The d31 constant is the smallest among the three constants.  The d33 constant is 

approximately twice as large as the d31 constant and d15 is approximately five times as large. 

Although the d33 and d15 are larger than the d31, they are harder to realize in a real structure.  The 

33 and 15 directions are shown in Figure 2.4. 
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Figure 2.4.  (a) 33 direction:  Charge collection and stress in 3 direction  (b) 15 direction:  Charge 
collection in 1 direction and shear stress in 5 direction (which is 1-3 plane shear stress) 

2.2 TYPES OF PIEZOELECTRIC ACTUATORS / SENSORS 

This section will briefly review several common configurations of piezoelectric actuators or 

sensors that utilize the different poling configurations.  For each case a description and example 

is given. 

2.2.1 Piezoelectric stack devices 

Currently, one of the most common devices operating in the 33 direction is the stack actuator. 

Piezoelectric devices generally cannot create large deformations.  Also, it takes a relatively large 

electric field to produce a large strain.  This fact, along with the material being extremely brittle 

makes it difficult to use as an actuation device.  However, if a large number of thin piezoelectric 

plates are glued together and wired in parallel, a large strain, or deflection, can be produced with 

a small electric field.  This is known as a piezoelectric stack actuator.  The device can also 

operate as an energy harvester if a force is applied in the same direction as poling.  However, 
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energy can only be generated if the force is applied longitudinally so the structure would not be 

very good to use in vibration applications where bending is usually used as a stress inducer.  

Also, the volume of piezoelectric stack actuators is usually large.  Both a piezoelectric stack 

actuator and energy harvester are shown in Figure 2.5.   
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Figure 2.5.  Piezoelectric Stack Actuator and Generator.  (a) Actuator device  (b) Energy Harvester 

2.2.2 Piezoelectric cantilever bender devices 

The cantilever beam is another piezoelectric device commonly used as an actuator or generator.  

The cantilever is able to create relatively large deflections and take up less space than its stack 

counterpart.  As an energy harvester, cantilever beams work well in vibration applications 

because high stress is induced with very little force as compared to a stack. 

Since piezoelectric materials are brittle, it is common to have multiple layers in 

piezoelectric cantilever devices.  A piezoelectric layer is used to actuate or produce energy and a 

non-piezoelectric layer is used to add stiffness as well as make the device more durable.  When 
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the beam has only a piezoelectric layer attached to a substrate layer, the device is known as a 

unimorph.  When a substrate material is sandwiched between two piezoelectric materials, the 

device is known as a bimorph.   A piezoelectric unimorph and bimorph is shown in Figure 2.6. 

 

 

Figure 2.6.  Piezoelectric Cantilever Benders.  (a) unimorph (b) bimorph 

 

The operation of cantilever benders is relatively simple.  If one layer is in compression, 

the other layer is in tension.  The stress in one layer affects the stress in the other layer.  For 

example, in a piezoelectric unimorph when an electric field is applied to the piezoelectric layer, 

the piezoelectric layer expands or contracts where as the non-piezoelectric material is not 

affected by the electric field.  This causes the bender to bend.  The opposite also occurs when the 

beam undergoes bending from an applied force from an external vibration source.  This bending 

causes a charge to be generated between the electrodes of the piezoelectric layer.  In this 

situation, energy can be harvested from the electrodes.   

Different from a piezoelectric stack device, a cantilever beam can be manufactured to 

operate in either 31 or 33 modes.  Since the stress in a cantilever beam is always in the 

longitudinal direction, it is just a matter of configuring the electrodes on the piezoelectric 

material to manipulate the poling direction within the material.  If the electrodes fully cover the 
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piezoelectric material, the electric field will always be in the direction normal to the electrodes 

and hence be perpendicular to the stress in the bender.  This can be seen in Figure 2.7. 

 

 

Figure 2.7.  31 Piezoelectric Cantilever Bender 

 

It is very difficult to pole piezoelectric material in the direction of the beam length and 

hence create a 33 poling direction along the entire length of the beam, since the electrodes would 

have to be on the ends of the beam. In order to create a large enough electric field, the voltage 

required would be too high.  Also, the electrodes would have to be at the ends. However, if 

electrodes are spaced out on one surface, the material can be poled so that the electric field is 

generated between the electrodes as seen in Figure 2.8.  This is known as having interdigitated 

electrodes.  This method cannot generate a precise 33 direction due to non-uniform poling 

directions.  Also, the poling field might not reach the whole depth of the material.  These issues 

can be neglected for proper electrode size and spacing.  It is also assumed the 33 direction exists 

everywhere except directly below the electrodes. 
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Figure 2.8.  33 Piezoelectric Cantilever Bender 

 

It is difficult to realize the 15 mode in a standard cantilever bender.  However, since the 

d15  constant is larger than the d33  and d31 constants, if the bender could experience shear in the 1-

3 plane,  mechanical to electrical conversion or electrical to mechanical conversion may be able 

to be increased as compared with operating in the d33  and d31 modes  .   Figure 2.9 depicts a 

cantilever beam manufactured to operate in the 15 mode.  Since the electrodes are on the ends of 

the beam, when the beam bends, a shear stress would develop in the 1-3 plane and the d15  

constant would be exhibited.  In reality, this configuration would be very difficult to manufacture 

and would not be a likely candidate for an energy harvester. 

 

 

Figure 2.9.  Cross section of cantilever beam employing 15 mode 
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3.0  LITERATURE REVIEW 

In the last few years, there has been increasing research in the area of power or energy 

harvesting.  This is defined as the process of acquiring the energy surrounding a system and 

converting it into usable electrical energy.  This chapter will review some of the work that has 

been done previously in the energy harvesting area.  It will begin with a look at piezoelectric 

based energy harvesting and possible applications for these devices.  Reviewing research that 

investigates storing the energy harvested from the environment will follow this.  The basis of the 

capacitive shunt method used for tuning purposes in this thesis is discussed and is followed by a 

section outlining frequency-tuning concepts used in previous work. 

3.1 PIEZOELECTRIC BASED ENERGY HARVESTING AND APPLICATIONS 

The concept of using piezoelectric material for energy generation has been the focus of much 

research over the past few decades.  Numerous studies involving energy harvesting with 

piezoelectric material in various disciplines demonstrates the wide variety of applications that 

can be employed.  Hausler and Stein (1984) studied the expansion and contraction of the rib cage 

during breathing as a means to generate energy.  A polyvinylidene fluoride (PVDF) film was 

implemented in vivo on a dog.  It was demonstrated to produce a peak voltage of 18V and power 
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of approximately 17μW.  Starner (1996) explored the possibility of using a person’s everyday 

actions to generate power to run a computer and thus reduce or eliminate the use of batteries.  An 

analysis of the amount of energy generated from leg motion is presented along with a survey of 

other possible sources of energy such as blood pressure and body heat.  Kymissis et al. (1998) 

studied the use of capturing energy parasitically while walking.  Three different devices were 

built into the sole of a shoe and analyzed.  The three devices were a piezoceramic Thunder 

sensor/actuator placed in the heel of the shoe, a PVDF foil laminate patch in the sole of the shoe, 

and an electromagnetic generator.  Both the Thunder and PVDF devices translated each heel 

strike into electrical energy.  As for the generator, each time the heel struck the ground, a 

flywheel was spun which could extract power from the walking motion.  Ramsay and Clark 

(2001) investigated the capabilities of powering an in vivo MEMS system with a piezoelectric 

transducer.  It was shown that by driving a thin square plate with blood pressure, there was 

enough energy to run the electronics if they were used intermittently.  Priya (2005) demonstrated 

the possibility of using piezoelectric bimorphs to harvest energy from the wind using a 

piezoelectric windmill.  12 bimorphs were arranged along the circumference of the mill.  As the 

wind caused the mill to rotate, a camshaft gear mechanism provided a torque that excited the 

harvesters.  A rectified power of 10.2 mW was produced at an oscillating frequency of 6 Hz. 

One of the most effective ways to implement a piezoelectric harvesting device is to use 

mechanical vibrations to induce strain energy into the piezoelectric ceramic.  By using ambient 

vibrations as an energy source, otherwise wasted energy can be converted into useful electrical 

energy and used to power other devices.  Umeda et al. (1996) investigated the characteristics of a 

piezoelectric generator.  The authors quantified the amount of energy that could be produced 

from a steel ball impacting a piezoelectric plate.  An equivalent circuit model was used to predict 
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the generated energy and several parameters were modified to find the optimum conditions.  It 

was determined that a large amount of kinetic energy was returned to the steel ball causing it to 

leave the plate.  If the ball instead vibrated with the plate, more energy could be produced.  It 

was also determined that efficiency increases if the mechanical quality factor increases, the 

electromechanical coupling coefficient increases and the dielectric loss decreases. 

Williams and Yates (1996) propose a device that when embedded in a vibrating 

environment, can convert the mechanical energy into electrical energy.  The energy can be used 

to power other devices.  In this case a harmonic analysis was performed on an electromagnetic 

transducer and not a piezoelectric one.  However, the application is much the same.  Theoretical 

values of generated power for a range of frequencies of excitation, amplitude, and seismic mass 

displacement were calculated.  It was determined that the amount of power generated was 

proportional to the cube of the vibration frequency and in order to generate large amounts of 

power, large deflections of the mass must be incorporated into the design. 

Goldfarb and Jones (1999) analyzed the efficiency of the piezoelectric material in an 

energy harvesting stack configuration via an analytical model.  From the model it is suggested 

that a major problem in generating power from a piezoelectric material is that it stores a majority 

of the energy produced.  The energy is then transferred back to the vibration source that initially 

caused the generated charge.  The authors claim the maximum efficiency of power generation 

can be achieved by minimizing the amount of energy stored inside the piezoelectric material. 

Roundy et al. (2002) surveyed the potential to use ambient energy as a power source 

when vibrations are present.    In this work, possible energy sources for wireless sensor nodes 

were presented.    Of particular interest for this work are vibration energy sources.  The authors 

collected acceleration and frequency data from common sources that could be used to scavenge 
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energy from.  Table 1 presents the acceleration magnitude and frequency of the fundamental 

vibration mode of several common sources. 

 

Table 1.  Acceleration (m/s2) magnitude and frequency of fundamental vibration mode for various sources.  
(Roundy et al. (2002)) 

 
Vibration Source A (m/s2) Fpeak (Hz) 

Car engine compartment 12 200 

Base of 3-axis machine tool 10 70 

Blender casing 6.4 121 

Clothes dryer 3.5 121 

Person nervously tapping their heel 3 1 

Car instrument panel 3 13 

Door frame just after door closes 3 125 

Small microwave oven 2.5 121 

HVAC vents in office building 0.2-1.5 60 

Windows next to a busy road 0.7 100 

CD on notebook computer 0.6 75 

Second story floor of busy office 0.2 100 

 

 

Designs for both capacitive and piezoelectric converters are investigated and evaluated.  The 

analysis indicates that piezoelectric converters are capable of producing more power per unit 

volume than capacitive converters.  Piezoelectric materials also prove to have the capability of 
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producing a significant amount of energy at low frequencies that make them attractive for certain 

applications. 

Sodano et al. (2002) investigated the amount of power that could be generated by 

vibrating a cantilever plate.  An electromagnetic shaker was used to drive the plate at both 

resonant and random excitation signals.  At resonance, the plate could generate 2 mW of power.  

It was also shown the piezoelectric plate could be used to charge a capacitor circuit and also to 

replenish a fully discharged battery. 

Kim (2002) investigated the use of diaphragm elements for power harvesting.  In this 

work, unimorph and bimorph diaphragm structures were studied.  Several different poling 

configurations were investigated.  The thickness ratios and poling directions at various locations 

were varied and the amount of energy generated was calculated.  It was determined that a 

regrouped electrode pattern resulted in maximum electrical energy generation. 

Sood et al. (2005) presents an energy-harvesting device utilizing the d33 mode that can 

produce as much as 20 times more voltage than the d31 mode.  The manufacturing process is 

discussed.  The device was mechanically excited via base excitation.  It was shown that the 

device could deliver 1μW of power to a 5.2 MΩ resistive load at 2.4 V DC. 

3.2 POWER ESTIMATION MODELS FOR PIEZOELECTRIC DEVICES 

Along with experimental studies, many researchers have done analytical studies to predict the 

amount of energy that could be harvested from an energy harvester. 

Smits et. al. (1991)  discusses the electromechanical characteristics of a piezoelectric 

bender subjected to various boundary conditions, both electrical and mechanical.  In this work a 
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beam containing two piezoelectric layers is studied.  Using free bender analysis and assuming 

thermodynamic equilibrium, the constitutive equations of the bender are derived by calculating 

the internal energy of the system.  Wang and Cross (1999) followed a similar process for a triple 

layer piezoelectric bender.  The bender contained a substrate layer, sandwiched between two 

piezoelectric layers.  The constitutive equations were again derived using energy methods.  In 

another paper, Wang et. al. (1999) presents a discussion on electromechanical coupling 

mechanisms in piezoelectric unimorph and bimorph bending actuators.  The electromechanical 

coupling coefficient, maximum energy transmission coefficient, and maximum mechanical 

output energy were characteristic parameters discussed in the paper.  It was determined that in a 

unimorph actuator to obtain a higher coupling coefficient, a stiffer material is desired.  Also 

bending mode actuators have lower electromechanical coupling coefficients compared to 

longitudinal, transverse, or shear mode actuators because internal stresses are built up when 

converting transverse motion into bending motion. 

Eggborn (2003) investigated three different analytical models to predict the power output 

of a cantilever beam containing piezoelectric materials.  A pin-force method, enhanced pin-force 

method, and Euler-Bernoulli method were studied.  A parametric study was also conducted to 

determine optimum location and dimensions of a PZT patch and forcing function of the system.  

It was shown experimentally that the Euler-Bernoulli method produced the most accurate power 

predictions.   

Richards et al. (2004) developed a formula to predict the power conversion efficiency for 

devices that contain a piezoelectric material.  The formula reveals a trade-off on efficiency 

between the quality factor and electromechanical coupling factor.  The largest efficiency increase 
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comes from decreasing structural stiffness.  This is followed by decreasing the mechanical 

damping of the structure and next by increasing the effective mass. 

Lu et al. (2004) presents a simple model for the analysis of piezoelectric power generator 

in MEMS.  From the model, the output power and conversion efficiency are obtained and are 

used to evaluate the generator performance.  It is found that there is an optimal load resistance 

that produces the maximum output power.  Also, increasing frequency of vibration can increase 

generated power up to a certain point, where at the power ceases to improve. 

Sodano et al (2004a) developed a model to predict the amount of power capable of being 

generated via the vibration of a cantilever beam containing PZT elements. The model was 

adaptable to account for various boundary conditions or layouts of PZT patches.  Through 

experiment, the model proved to be very accurate. 

Mo et al. (2005) examined a unimorph piezoelectric cantilever beam with interdigitated 

electrodes for use in power harvesting.  A theoretical model to predict power output of the device 

is first presented and is followed by parametric simulations to determine optimal parameters to 

generate the greatest amount of energy.  It was determined that keeping the piezoelectric and 

substrate layers the same thickness results in the best performance. Also, keeping the width of 

the interdigitated electrode narrow, results in larger energy generation. 

3.3 ENERGY HARVESTING CIRCUITS AND STORAGE METHODS 

Just as there has been much research done with energy harvesting devices, there also have been 

investigations involving ways to store the harvested energy.  As well as looking at harvesting 

energy from human motion, Starner (1996) also discussed the advantages and disadvantages of 
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using either a rechargeable battery or capacitor and was one of the earliest researchers to 

investigate the concept. 

  Umeda et al. (1997) continued their previous work and studied the characteristics of 

energy storage.  Using the steel ball and piezoelectric generator as before, a bridge rectifier and 

capacitor were connected to the setup.  By changing parameters of the circuit, they were able to 

determine energy storage characteristics both theoretically and experimentally. 

After evaluating the performance of their piezoelectric generators, Kymissis et al. (1998) 

developed a circuit used to take energy generated from walking and power a radio transmitter.  

The circuit utilized a capacitor as the storage device as well as other components used to control 

the charging cycle.  The capacitor was first charged to a desired level and then allowed to 

discharge.  Once the capacitor was discharged to a predetermined level, an electronic switch 

would be triggered and the capacitor would recharge.  It was determined that it was possible to 

use the piezoelectric devices to power a transmitter to send data to a wireless receiver. 

Much research has gone into optimizing harvesting devices and developing storage 

circuits.  Some researchers have also looked at developing circuitry to extract more energy from 

the piezoelectric material. Kasyap et al. (2002) developed a lumped element model to predict the 

energy generated from a cantilever beam with a piezoelectric element undergoing forced 

vibration.  Energy was harvested and stored using a flyback converter to increase efficiency.  

The flyback converter allows the circuit impedance to match that of the piezoelectric device and 

hence maximized the amount of energy stored. 

In most applications, a capacitor is used as a storage device.  However, since a capacitor 

is only good at delivering short bursts of energy, it is not well suited for long term storage.  

Sodano et al. (2004) showed that a rechargeable battery could be used with piezoelectric 
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materials as an alternative to the capacitor.  In a paper that followed, Sodano et al. (2005) 

investigated the ability to use three piezoelectric devices to recharge various capacity nickel 

metal hydride batteries.  The three materials were stock PZT used in a manufactured bender, a 

macro-fiber composite, and a bimorph Quick-Pack actuator.  It was found that the PZT and 

Quick Pack were capable of recharging the batteries, with the PZT being more efficient in a 

random vibration environment.  It was also shown that the macro-fiber composite was not suited 

for power harvesting. 

Guan and Liao (2006) compared several energy storage devices for use in piezoelectric 

power harvesting.  The storage devices included conventional capacitors, rechargeable batteries, 

and supercapacitors.  Parameters studied were charge/discharge efficiency, adaptability, lifetime, 

and self-discharge.  From experimental results, it was determined that supercapacitors are 

suitable for energy harvesting and are more attractive than rechargeable batteries as energy 

storage devices. 

Ottman et al.  (2002) studied the use of an adaptive step down DC-DC converter to 

maximize energy transfer between a vibrating piezoelectric transducer and a battery.  It was 

experimentally shown that the use of the converter increases power transfer by as much as 400% 

as compared to a standard AC-DC rectifier circuit used alone.  A drawback to this circuit is that 

additional power was required due to the dissipative effects of added components.  It was also 

determined that there exists an optimal rectifier voltage to harvest the maximum amount of 

energy.  In an AC-DC rectifier circuit, the optimal rectifier voltage should be one-half of the 

peak open circuit voltage from the piezoelectric element.  

Shu (2006) investigates the optimal AC-DC power generation for a piezoelectric device.  

In this work an analytic expression for the AC-DC power generation is derived under steady 
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state operation.  From the derivation, it was shown that the harvested power is dependent on the 

frequency and acceleration of the input vibration, the mass of the generator, the electrical load, 

the natural frequency, damping, and electromechanical coupling coefficient of the system.  

Several design guidelines are given for devices with large coupling coefficients and quality 

factors. 

3.4 CAPACITIVE TUNING METHOD 

The majority of research involving the use of piezoelectric harvesters requires the fundamental 

mode of the harvesters to match the frequency of the vibration source to obtain maximum power 

output. Manufacturing processes or changes in the vibration frequency can make frequency 

matching difficult.  Using a piezoelectric element’s capacitive nature as a means of changing 

structural properties and hence natural frequency would be beneficial in the energy harvesting 

field.  Little has been done in using a passive tuning concept on a piezoelectric harvesting device.  

However, such a concept was investigated for use in structural damping and in tuning resonators 

used for frequency applications. 

Hagood and von Flotow (1991) initially investigated using passive elements to provide 

damping in structures.  By connecting piezoelectric materials with passive electrical networks (in 

this case using resistor-inductor networks), it was shown that damping could be developed in the 

system.  Wang et al. (1994) adapted the initial circuit to improve dissipation. 

Davis and Lesieutre (1998) investigated the use of a capacitive network to create a 

tunable vibration absorber. The effective stiffness of the device was adjusted electrically, 

utilizing piezoelectric ceramic elements.  It was shown that by using a passive capacitive shunt 
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circuit, the absorber had a tuning range dependent on the short and open circuit conditions of the 

piezoelectric element. 

Clark (2000) presented a piezoelectric actuator that was used for energy dissipation in a 

simple mechanical system.  The system utilizes an electrical shunt circuit to switch the actuator 

from high to low stiffness.  When the system is moving, the actuator is held in its high stiffness 

state such that energy can be stored in the actuator.  The actuator is switched to a low stiffness 

when the system’s motion would cause it to receive energy back from the actuator, and in turn 

dissipating the energy. 

Muriuki (2004) utilized a shunt capacitive concept to tune self-oscillating piezoelectric 

resonators.  In this work, a piezoelectric cantilever beam resonator was modeled as a single 

degree of freedom system.  From this work the natural frequency of a single degree of freedom 

resonator is shown in equation 1.  As can be seen, an equivalent stiffness of the cantilever beam 

can be equated to a mechanical stiffness combined with the product of the square of the 

electromechanical coupling and the inverse of the capacitance of the piezoelectric element.  

Hence, the natural frequency of the beam can be altered via the capacitance term.   

effm

2d1CeffK
ω

−+
=      (1) 

Frederick (2005) used a similar approach to achieve a wide range of tunability utilizing 

the d33 piezoelectric response of an interdigitated resonator.   In a similar approach, this work 

investigates the tuning range of a piezoelectric bimorph that utilizes the d31 response and also 

incorporates effects on generated energy.  
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3.5 OTHER FREQUENCY TUNING CONCEPTS 

Among the vast research being done in studying piezoelectric energy harvesters, the concept of 

tuning plays a major role in the amount of energy able to be recovered.  Along with the 

piezoelectric shunt mechanism described in the previous section, there is other research aimed at 

eliminating or at least reducing the dependence on matching a harvesting devices natural 

frequency to a source. 

Chandrashekhara and Bangera (1993) demonstrate the influence of beam geometry, tip 

mass and material properties on the frequencies of symmetric laminated composite beams.  In 

this work, the natural frequencies of a symmetrically laminated composite beam with a tip mass 

are determined.  The equations account for the Poisson effect, rotary inertia and transverse shear 

deformation. 

Lesieutre and Davis (1997) preceded their previously mentioned work by investigating 

the dependence of electromechanical coupling in a piezoelectric device on mechanical axial pre-

loads and hence show an alternative method of tuning piezoelectric devices. By applying a 

preload equal to half of the buckling load to a symmetric piezoelectric bimorph device, the 

coupling coefficient increased by more than 40%.  Leland and Wright (2006) later used this 

method to adjust the natural frequency of an energy harvester.  A simply supported piezoelectric 

bimorph was used to evaluate harvester performance.  It was determined that an axial pre-load 

can reduce the resonance frequency of the harvester up to 24% and increase the coupling 

coefficient up to 25%.  Using this method, a harvesting device can be tuned across a bandwidth 

of frequencies.   

Shahruz (2005) presents a design for a mechanical band-pass filter for use in energy 

scavenging.    A systematic procedure for designing the filter is given.  The filter contains and 
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ensemble of cantilever beams with proof masses at their ends.  By appropriately choosing 

dimensions of the beams and the size of the mass, energy can be harvested from a range of 

frequencies and is not limited to just one.   

Tieck et al. (2006) investigates a new approach using a frequency multiplication 

technique to harvest electrical energy from mechanical energy using cantilever piezoelectric 

bimorphs.  The work involves using a linearly traveling beam exciter or rack to impart 

vibrational motion to a beam.  If the rack is traveling at a lower frequency than the natural 

frequency of the energy harvester, it is possible to gather energy from a source using a harvester 

whose natural frequency is unrelated.  The authors claim more energy can be generated than 

using a standard harvester driven at resonance. 
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4.0  CAPACITIVE TUNING METHOD 

The tuning concept used in this work is based on utilizing the variable stiffness capabilities of 

piezoelectric material.  In this case, the piezoelectric material is a layer of a cantilever beam or 

plate structure.  By adjusting shunt circuit conditions applied across the piezoelectric layer, the 

effective elastic modulus of the layer changes and hence the overall stiffness of the structure 

changes.  Since the natural frequency of the structure is dependent on its stiffness, by varying the 

shunt conditions, the natural frequency can be adjusted or tuned to a desired value.  This chapter 

will begin by investigating shunt circuit effects on stiffness of a single degree of freedom beam 

model.  It will be shown that a ratio of open circuit to short circuit stiffness (or frequency) can be 

used to determine a tuning range for the device.  This model will then be used to determine 

parameters to gain the most tuning.  A binary capacitor array concept for use in tuning a 

piezoelectric harvester will be explained next.   

4.1 PIEZOLECTRIC SHUNT CONDITIONS 

In a network of parallel capacitors, the equivalent capacitance of the system is the sum of the 

capacitances.  If a piezoelectric element has a capacitance, Cp, and it’s shunt has a capacitance, 

Cs, the total capacitance is equal to the sum Cp + Cs.  Figure 4.1 presents the basic capacitive 

shunt method. 
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Figure 4.1.  Shunt Capacitor Tuning Method 

 

Case A of Figure 4.1 represents a piezoelectric element whose electrodes are left as an 

open circuit.  Case B represents a short-circuited piezoelectric element and Case C depicts a 

piezoelectric element in parallel with a shunt capacitor.  Since a piezoelectric element is a 

capacitive element, the total capacitance of the system is equal to the sum of the capacitance of 

the piezoelectric layer and its shunt. Combining this fact and Equation 1, the stiffness of the 

beam can be determined.  Case A has a capacitance equal to the piezoelectric layer and defines 

the upper stiffness limit.  For Case B, the electromechanical coupling term disappears because 

the equivalent capacitance is infinite and therefore the total structural stiffness only has a 

mechanical stiffness term, defining the lower stiffness limit. Since the reciprocal of the 

capacitance appears in the frequency equation, the effect of a shunt is to reduce the effect of the 

electromechanical coupling on the system. If shunt capacitors are added in parallel to the 

piezoelectric element, the stiffness and natural frequency of the beam can be adjusted between 

the two bounding conditions.   
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An example of this concept is demonstrated in the next section by changing the stiffness of a 

multi-layer cantilever beam containing piezoelectric layers.  By adding capacitors in parallel 

with a piezoelectric layer, the stiffness of the layer changes and hence the overall structural 

stiffness changes. 

4.2 SINGLE DEGREE OF FREEDOM BEAM MODEL 

In this section, a model for a cantilever beam with a harvesting layer (piezoelectric), a substrate 

layer (non-piezoelectric), and tuning layer (piezoelectric) is developed. The harvesting and 

tuning layers are made of piezoelectric material and the substrate layer is constructed of metal. 

Two piezoelectric layers were chosen for this analysis so that the affect each layer had on tuning 

and harvesting could be isolated for each case.  Since piezoelectric materials are brittle, a 

substrate was included to add stiffness and durability to the structure.  By varying the position 

and thickness of each layer, effects on stiffness and hence tunability can be studied. Three cases 

are given in Figure 4.2 
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Figure 4.2. (a) Cantilever beam with piezoelectric harvesting and tuning layers and a metal substrate.  (b) 
Conversion of beam cross-section dimensions from original beam to one made of entirely substrate material. 

 
 
 

For easier reference later, Case 1 is the case with the order of layers (from the bottom of the 

beam) being substrate layer, tuning layer, and harvesting layer.  Case 2 is the case with the order 

being substrate layer, harvesting layer, and tuning layer.  Case 3 is the case with the order of 

layers being tuning layer, substrate layer, and harvesting layer. 

 Utilizing a simplified analysis of the fundamental mode of a beam with effective 

stiffness and mass, the effective stiffness of a flexible beam can be found by using the equation 

for spring stiffness: 

                                                yeffKF =                                                                (2)      

 where F is a load applied to the end of the beam and y is the resulting deflection.  This 

deflection can be written as (Riley, 2002): 

)32Lx23L3x(
6EI
Fy −+−=                                                      (3) 
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The deflection at the end of the beam (x=0) is equal to: 

EI
PLy
6

3

=                                                            (4) 

hence the effective stiffness is: 

3
3
L
EIkeff =                                                             (5) 

Since the beam has three layers of different materials, the flexural rigidity, EI, is not constant 

through the depth of the beam.  By converting the beam to an equivalent one made entirely of the 

substrate material, the effective stiffness can be determined.  Figure 2b shows equivalent beams 

for each case where the heights of each layer have remained the same and the widths have been 

multiplied by a ratio of the layer’s elastic modulus to that of the substrate.  The ratios are: 

b
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b

t
t E

En =                                                      (6) 

The subscript, p, is for the harvesting layer, b is for the substrate, and t is for the tuning layer.  

Letting all distances be measured from the interface of the upper two layers, an effective moment 

of inertia, I, can be calculated for each case.  For case 1: 
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where h is the thickness of the specific layer, and yc is the distance to the centroid of the beam 

and is also known as the position of the neutral axis.  For this case, yc  is defined as: 

bpptt

b
tb

p
pp

t
tt

n

nn
c bhbhnbhn

)
2

h
h(bh)

2
h

(bhn)
2
h

(bhn

A

yA
y

++

−−++
−

==
∑
∑                              (8) 



 31 

where An is the area of a layer, and yn is the distance to the centroid of each layer. 

For case 2: 
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For case 3: 
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In all three cases, the effective rigidity and hence the effective stiffness can be changed by short 

or open circuiting the tuning layer.  For the harvesting layer (assuming a piezoelectric material), 

the elastic modulus is: 
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where the permittivity
A

tCε = , with t being capacitor thickness, C is capacitance, and A is 

capacitor area, s11 is the mechanical compliance of the piezoelectric material, d31 is the 

electromechanical coupling coefficient, ζ is a Laplace variable and Zsh is the impedance of the 

piezoelectric material and it’s shunt, defined by 

1
sp ))CC(( −+= ζshZ                                                  (14) 

where 
t
ACp
ε

= . 

If the tuning layer (a piezoelectric material) is short circuited, Cs approaches infinity and 

therefore Zsh approaches 0.  Hence the compliance is equal to the inverse of the Young’s 

modulus: 

1
11)( −= E

tsc sE                                         (15) 

If the tuning layer is open circuited, Cs is equal to zero and the modulus becomes: 
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dsE E
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When a capacitive shunt is applied, it can be seen from equation 13 that the modulus of the beam 

will fall between the short circuit and open circuit conditions.  Equations 5 through 16 show that 

by changing the shunt condition on the tuning layer, the effective beam modulus, and hence 

stiffness of the beam can be changed (Equation 5).  Since this stiffness term also appears in the 

frequency equation (1), it can be seen that the natural frequency of the beam can be adjusted 

using this capacitive shunt concept.  A summary of each shunt condition is presented in Table 2. 
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Table 2.  Summary of shunt conditions and effect on Stiffness 

Shunt Condition Cs Zsh E Stiffness State 

Open Circuit 0 (Cpζ)-1 12
31

11

−

⎟⎟
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⎞
⎜⎜
⎝

⎛
−=
ε

dsE E
toc  

High Stiffness 

Short Circuit ∞ 0 1
11)( −= E

tsc sE  Low Stiffness 

Capacitive Shunt Cs ((Cp+Cs) ζ)-1 
1

sp

2
31

11 )
)CC(t

Ad
s(E −

+
−=  

Stiffness between 

High and Low 

 
 

Assuming the natural frequency 
eff

eff

m
k

ω = , and inserting the appropriate modulus into equation 

5, the upper and lower frequency bounds are shown in equations 17 and 18. 
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By varying the capacitance of the shunt, the frequency can be varied between these two bounds 

and is shown in equation 19. 
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4.2.1 AVAILABLE STIFFNESS RESULTS 

Table 3 gives the parameters used in modeling each beam configuration.  Aluminum was chosen 

as the substrate material from previous experience and Lead Zirconate Titanate (PZT) was 

chosen as the material for both the substrate layer and the tuning layer. 

 

Table 3.   Parameters Used in Available Stiffness and Energy Analysis 

Parameter Variable Value Units 

PZT strain constant d31 -320e-12 m/V 

PZT relative 
permittivity 

ε 3800 m/V 

PZT elastic modulus Ep or Et 6.2e10 Pa 

Aluminum Elastic 
Modulus 

Eb 7e10 Pa 

 
 

Clark (2000) demonstrated that for a unimorph cantilever beam shunted between open 

circuit and short circuit states, by varying the ratio of the thickness of the substrate layer to the 

piezoelectric layer, the available change in stiffness of a beam could be determined. In this study, 

an additional layer is added to the beam.  A ratio of the thickness of the substrate layer to the 

tuning layer and a ratio of the thickness of the harvesting layer to the tuning layer is used as a 

baseline parameter for quantifying the change in stiffness for different layer configurations.   

Figures 4.3 and 4.4 show the results for varying the ratios for Case 1.  Figure 4.3 uses both 

tuning and harvesting layers for tuning and  Figure 4.4 only uses the tuning layer.  Note that the 

vertical axis in each case shows the open-circuit to short-circuit stiffness (koc/ksc), so higher 

values indicate greater change.  Also, the tuning layer thickness in each case remains constant. 
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As the thickness ratios increase, the stiffness change and thus the amount of tunability in the 

beam decreases since the frequency change is related to the square root of stiffness change.  This 

makes sense because the relative amount of tuning material decreases as the ratio increases.  On 

the following plots, the change in frequency can be found by taking the square root of the 

stiffness change. 

 

 

Figure 4.3.  Beam Stiffness Ratio versus Layer Thickness Ratio for Case 1 and 2 (Tuning and harvesting 
layers used for tuning) 
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Figure 4.4.  Beam Stiffness Ratio versus Layer Thickness Ratio for Case 1 (Tuning layer used for tuning) 

 

Figure 4.3 shows the result of using both the harvesting and tuning layer for tuning for 

Case 1 and 2.  The plots for each case look the same because the layers are in the same relative 

places on the beams and therefore their effect on stiffness is the same.  From the plot, the 

maximum ratio of stiffness and hence maximum amount of tunability occurs when the thickness 

ratios are small (between 0 and 2). Figure 4.4 shows the results when only the tuning layer is 

used for tuning. This condition could be considered as a lower limit on the available tuning. For 

this case, the maximum amount of tunability again occurs when the thickness ratios are small.  

However, in this case, when the ratios are equal to each other the stiffness ratio drops 

dramatically.  This is due to the neutral axis of the beam being inside of the tuning layer and 

hence causing a cancellation effect inside the piezoelectric material.  It is important to note that 

there is more tuning available for a larger range of thickness ratios when both layers are used due 
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to a greater stiffness change.  However, using both layers entirely would result in not being able 

to harvest any energy when approaching a short circuit condition. 

  

 

Figure 4.5.  Beam Stiffness Ratio versus Layer Thickness Ratio for Case 2 and 3 (Tuning Layer used for 
tuning) 

 
 
 
Figures 4.5 and 4.6 represent the resulting stiffness ratios from varying the thickness 

ratios for cases 2 and 3.  Figure 4.6 uses both harvesting and tuning layers for tuning.  Figures 

4.5 uses only the tuning layer. In cases 2 and 3, the tuning layer is in the same relative position, 

therefore by changing the stiffness of the tuning layer both cases produce the result of Figure 4.5. 

Again as the thickness ratios increase, the amount of available change in stiffness decreases.  The 

maximum amount of tunability occurs when the ratios are small.  Again, when only the tuning 

layer is used for tuning as in cases 2 and 3, the plots are the same.  This is because the layers are 

in the same relative places on the beams and therefore their effect on stiffness is the same.   
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Figure 4.6.  Beam Stiffness Ratio versus Layer Thickness Ratio for Case 3 (Tuning and harvesting layers 
used for tuning) 

 
 
 
It can be seen from Figure 4.6 that the most tuning is provided from Case 3.  For this case 

there is still a decrease in tuning for smaller substrate to tuning ratios.  However, the amount of 

tuning is in general greater than for the other cases.  For this reason, a bimorph is chosen as the 

structure to be used in all future analyses. Figures 4.5 and 4.6 show that keeping the ratio of the 

substrate layer thickness to the tuning layer thickness between .5 and 1 and the harvesting layer 

thickness to tuning layer thickness between 0 and 2 provides the largest available tuning.  Also, 

there is up to 20 percent change in stiffness in this range that corresponds to approximately 10 

percent change in frequency. 

In order to ensure the neutral axis remains in the substrate material and hence charge 

cancellation is prevented, all layer thickness ratios were chosen to be unity. Also, unless 

otherwise mentioned, the harvesting layer will be used exclusively for harvesting and the tuning 
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layer exclusively for tuning.  Since stiffness of the beam is dependent on the capacitance of the 

piezoelectric layer and its shunt, by plotting the ratio of the stiffness of the system to the short 

circuit stiffness vs. the ratio of the shunt capacitance to that of the piezoelectric layer, the effect 

of the shunt capacitance on the system can be observed.    
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Figure 4.7.   Ratio of effective stiffness versus ratio of shunt capacitance to piezoelectric capacitance  

 

As can be seen in Figure 4.7, an effective stiffness of 1 represents a short circuit 

condition and anything above this represents stiffness between short and open circuit.  As the 

capacitance of the shunt increases, the stiffness approaches short circuit conditions and as the 

capacitance of the shunt decreases, the stiffness approaches open circuit conditions.  It is 

important to note it takes approximately a four-order magnitude change in shunt capacitance to 
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go from open to short circuit.  Also, small capacitance ratios and large capacitance ratios affect 

the change in stiffness less than when the capacitance ratios are around one. 

4.3 CAPACITOR BINARY ARRAY 

The previous section showed that by adding capacitors in parallel with a piezoelectric layer in a 

piezoelectric bimorph, the stiffness of the layer changes and hence the overall stiffness of the 

device changes.  To implement this concept on a real structure, a capacitor array similar to the 

one shown in Figure 4.8 could be used.  By closing a certain combination of switches, the shunt 

capacitance can be adjusted from an open circuit condition to a short circuit condition.  

 

CnC3C2C1

SshortSnS3S2S1

VoutHarvesting Layer
Substrate Layer

Tuning Layer

 

Figure 4.8.  Capacitor array attached in parallel to tuning layer of a piezoelectric bimorph 

 

If each capacitor in the array is chosen appropriately, the array will be able to count in a 

binary fashion with a resolution equal to the smallest capacitor (or bit) in the array.  If the lowest 

bit in the array has a value equal to C pF, then each consecutive bit will have a value of 

pFC2C n
n =                                                         (20) 

where n ranges from 0 to m-1 and m is the number of bits in the array.  Therefore the total 

capacitance that can be obtained from the array is 
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and the capacitance in parallel with the harvesting device at any given time is 
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where δ is the Kronecker delta function. 
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 For easier computation, the capacitance values in the array can be put into matrix form.  

Each bit of the array can either be on or off which is equivalent to a binary one or zero.  By 

multiplying a vector with the binary equivalent of the array with the transpose of the vector 

containing the value of each bit, the value of the total capacitance of the array can be determined.  

For example, let the capacitance array be an 8 bit array with the lowest bit, C, being equal to 1 

pF.  Therefore, the capacitance vector is 

[ ]1248163264128Carray =                                     (24) 

If switches 1, 3, and 7 are on, a matrix, b, representing this (in binary form) is the vector 

[ ]10100010b =                                               (25) 

The capacitance of the array is now equal to 

T
arrays C*bC =                                                         (26) 
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5.0  ENERGY HARVESTING ANALYSIS 

The purpose of tuning a piezoelectric energy harvester is to match its fundamental mode 

with that of its excitation frequency and hence maximize the amount of energy able to be 

generated.  This chapter will present several models to predict the amount of energy that can be 

generated via an excited piezoelectric bimorph.  This chapter will begin by presenting a model 

representing a beam bimorph excited by a static force. A continuous beam model will follow and 

mode shapes will be plotted for use in following energy calculations.  Finally a plate model is 

developed for the purpose of comparing to experimental results. A dynamic beam bimorph 

energy model will follow this.  Utilizing the fact that the first mode of a plate is pure bending, 

the last section of this chapter will analyze a dynamic plate bimorph model based on the dynamic 

beam model. It will be shown that each model is based on the modulus of each layer.  Hence if 

each structure contains piezoelectric layers, by shunting the layers with capacitors, the stiffness 

and hence natural frequencies can be adjusted.  The three models are presented to provide 

alternatives to calculating energy depending on the particular situation. Similar energy 

calculations have been performed by Smits et. al. (1991), Kim (2002), and Wang and Cross 

(1999) for unimorph and bimorph benders. In these works it was assumed that each piezoelectric 

layer had the same properties.  To account for tuning and be able to change the stiffness of a 

particular layer, this work assumes each layer has different properties. By adding an extra layer, 

the resulting energy equations are rather large. Due to the length of the resulting equations, the 
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method will be discussed and the results presented in Appendices C and D.  For convenience, 

Table 4 lists the variables used in the calculations. 

 

Table 4. Variables used in energy calculations 

Young’s Modulus Eletter 

Moment of Inertia I 

Length of Beam L 

Moment M 

Load F 

Width of Beam b 

Piezoelectric Coefficient d 

Thickness of Beam Layer t 

Position Along the Beam x 

Position Across Beam z 

Compliance s 

Deflection y 

Piezoelectric Permittivity є 

Frequency ω 

Electric Displacement D 

Strain ε 

Stress σ 

Electric Field Enumber 
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Table 4. (continued) 

Charge Q 

Voltage V 

Modulus Ratio n 

Energy U 

Curvature ρ 

Neutral Axis yc 

SUBSCRIPTS  

1 direction 1 

2 direction 2 

3 direction 3 

Piezoelectric 31 mode 31 

Piezoelectric 33 mode 33 

Substrate b 

Harvesting layer p 

Tuning layer t 

SUPERSCRIPTS  

Constant Electric Field E 

Constant Stress T 
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5.1 STATIC BEAM ENERGY HARVESTING MODEL 

By assuming a static load, the equations used to describe the system are reduced dramatically 

and therefore is easier to model.  Multiplying the resulting energy by a driving frequency can 

approximate the amount of energy generated from a dynamic situation. When a point force, F, is 

applied to the end of a cantilever beam, as shown in Figure 5.1, strain is developed in the beam.  

If the beam is made of a piezoelectric material, this strain causes a charge to develop that can be 

harvested. 

 

y

x

F

1/κ

 

Figure 5.1.  Cantilever beam with applied load, F, at the tip 

 

Figure 5.2 represents the bimorph to be analyzed.  It is assumed that each layer is completely 

isolated from each other.  Since the electrodes of the piezoelectric material are on the 3 surface 

and the stress will develop in the 1 direction when the force is applied, the bimorph will operate 

in the 31 mode. 
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Figure 5.2.  Piezoelectric bimorph with static excitation  

 

The strain can be described in terms of curvature of the beam. 

  )yy( c1 −= κε        (27) 

where yc is the position of the neutral axis.  From mechanics, the moment at any point along the 

beam can be calculated as 

  x)F(LM −=                                                                 (28) 

The moment can also be calculated from stresses on a cross section. 

∫∫∫ −+−+−=
p

c1p
b

c1b
t

c1t )bdyy(yσ)bdyy(yσ)bdyy(yσM    (29) 

From the IEEE standard 176, the constitutive equations for a piezoelectric material in the 31 

mode are 
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∈+=

+=
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331313
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EσdD

Edσ
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1ε

     (30) 

 

The stresses in each layer can now be written for a piezoelectric layer and a non-piezoelectric 

layer and are given in equations 31 and 32, respectively. 
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)Ed(εEσ 3311p1 +=                                                           (31) 

1b1 εEσ =                                                                   (32) 

Substituting equation 27 into 31 and 32 and inserting the result into equation 29 results in 
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Setting equation 33 equal to equation 28, the curvature, κ can be solved for. 

t33p321 EGEGFG ++=κ                                                     (34) 

where G1, G2, and G3 are constants.  The curvature can then be substituted into the stress 

equations for each layer and used in the following procedure. 

In thermodynamic equilibrium, an infinitesimally small volume element in the 

piezoelectric material has an internal energy density of: 

3311 ED
2
1σε

2
1dU +=                                                      (35) 

Therefore the energy in a piezoelectric layer can be described as 
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and for the non-piezoelectric layer 

2
1

b
b E2

1dU σ=                                                         (37) 

The total energy is found by integrating the energy equations for each layer over the volume of 

the beam. 
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 Electric field in a piezoelectric layer can be defined as the voltage across the layer divided by 

the thickness of the layer. Using this relation, the electric field terms in the result of equation 38 

can be replaced according to equations 39 and 40. For the harvesting layer, 

p

p
3p t

V
E =                                                                  (39) 

and for the tuning layer, 

t

t
3t t

V
E =                                                                   (40) 

Making the appropriate substitution into equation 38 and differentiating with respect to the 

voltage across the layer being harvested from, the general charge output equation can be found. 

   t6p54 VGVGFG
V
UQ ++=
∂
∂

=                                                 (41) 

where G4, G5, and G6 are constants.  The charge generation from only the mechanical force input 

is 

FGQ 4gen =                                                               (42) 

The second and third terms are the charge generation due to electrical excitation.  Since the 

relationship of voltage to charge is capacitance, the terms in front of the voltages are the 

capacitance of the system.  Therefore the open circuit capacitance is 

2

2

free
U

UC
∂

∂
=                                                              (43) 

Using the capacitance and the generated charge, the voltage that appears on the electrodes of the 

harvesting layer can be calculated. 

free

gen
gen C

Q
V =                                                            (44) 

The generated energy from the applied load is 
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In order to maximize the amount of energy generated from the harvester, the impedance 

of the harvester must match that of the load.  The power across the load can be determined using 

basic circuit equations.  Figure 5.3 shows a simple resistive circuit with a rectified voltage, Vp, 

from the piezoelectric harvester, internal harvester resistance, Rp, and load resistance Rl. 

   

Vp

Rl
Rp

i

 

Figure 5.3.  Resistive Circuit 

 

The equivalent resistance of the circuit is 

lpeq RRR +=                                                     (46) 

The current, i, is 
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p

eq

p

RR
V

R
V

i
+

==                                                  (47) 

Therefore the power generated across the load resistor can be found. 
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5.2 MODE SHAPES OF BEAMS AND PLATES 

In the section 4.2, a single degree of freedom model was developed to classify the effect of 

changing capacitance on tuning.  In this section, mode shapes of beams and plates will be 

derived as well as equations for natural frequencies.  The natural frequency equation can be used 

in a similar manner to the single degree of system model and show it’s dependence on shunt 

circuit conditions.  The mode shapes will be used in sections 5.3 and 5.4 in a vibrational energy 

analysis of the system. 

5.2.1 Continuous Beam Model 

Equation 49 is the Euler-Bernoulli equation representing the dynamics of a beam. 

t)F(x,
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∂
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∂                                              (49) 

where, w is the displacement of the beam, ρ is the density of the beam, and F is the external 

force applied to the beam.  If no external force is applied, then F(x,t) is equal to 0 and the 

equation can be rewritten as: 
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A separation of variables solution is assumed to be X(x)T(t)t)w(x, = .  This is substituted into 

equation 50 which becomes: 

 22 ω
T(t)

(t)T
X(x)

(x)Xc =−=
′′′′ &&

                                                           (51) 

By rearranging equation 51, the spatial equation of the system can be found: 
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And assuming a solution of the form 

σxAeX(x) =                                                               (54) 

The general solution of equation 52 can be calculated as 

x)cosh(ax)sinh(ax)cos(ax)sin(aX(x) 4321 ββββ +++=                                   (55) 

The value of β and constants of integration can be determined using boundary conditions.  If a 

beam in transverse vibration is free at one end, the bending moment and shear force at that end 

must vanish: 
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If the end of the beam is clamped, the deflection and slope must vanish at that end: 

0
x
w0w =
∂
∂

=                                                                (57) 

Using these boundary conditions and substituting into equation 55, the mode shape of a 

cantilever beam becomes 
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where L is the length of the beam. The characteristic equation which is used to calculate β and 

hence the natural frequency of the beam is: 

1)Lcosh()Lcos( −=ββ                                                    (60)  
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Inman (2001) presents weighted frequencies and values for α for the first five modes of several 

different boundary conditions.  Values for a clamped-free beam are shown in Table 5. A plot of 

the first 5 normalized modes is shown in Figure 5.4. 

 

Table 5.  Weighted natural frequencies and clamped free mode shape coefficient αn 

Weighted frequencies βna αn 

1.875 .734 

4.694 1.018 

7.854 .999 

10.995 1.000 

14.137 1.000 

5nfor
2

)1n2(
>

− π  1 for n > 5 
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Figure 5.4.  Normalized mode shapes of a clamped-free beam 

5.2.2 Plate Mode Shapes 

In an Euler-Bernoulli beam, the length is assumed to be 10 times the width.  When this does not 

hold true, the structure can be considered a plate.  The equation representing a plate’s vibration is 

4
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                                         (61) 

where F is an applied load and D is the modulus of rigidity, which is similar to the stiffness term, 

EI in a beam.  The equation is similar to the Euler-Bernoulli equation for a beam however it is 

now dependent on two directions x and y. For a plate constructed of a single material, the 

modulus of rigidity is defined as 
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where E is the modulus of the material, t is the thickness and υ is Poisson’s ratio.  For a 

laminated plate with 2n+1 symmetrical isotropic layers as shown in Figure 5.5, Ugural (1999) 

defines a transformed flexural rigidity as 
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This can be substituted into equation 61 in place of D. 

 

 

Figure 5.5.  Cross section of a symmetrically constructed layered plate 

 

 The mode shape of a plate can be defined as 

(y)(x)YXΦ nm=                                                                 (64) 

 

The mode shapes of the plate can be thought of as combinations of two beam mode shapes: a 

clamped-free beam mode shape, X(x), running along the length of the beam and a free-free mode 

shape Y(y), running along the width of the beam.  This is shown in Figure 5.6. 
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Figure 5.6.  Representation of plate mode shapes:  Clamped-free beam mode in x-direction, Free-free beam 
mode in y-direction 

 
 
 

 Following a similar procedure for the clamped-free beam, the equations for the mode 

shapes of a free-free beam are given in equations 65, 66, and 67. 
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The characteristic equation for a free-free beam is: 

1bcoshbcos =μμ                                                  (69) 
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Equations 65 and 66 represent the rigid body and twisting 1st mode, respectively.  Equation 67 

satisfies the free-free boundary conditions.  Values for a clamped-free beam are shown in Table 

6 (Inman (2001)). A plot of the first 5 normalized modes is shown in Figure 5.7. 

 

Table 6.  Weighted natural frequencies and free free mode shape coefficient ηj  (j=3,4,5…) 

Weighted frequencies μjb ηj 

4.730 .982 

7.853 1.000 

10.995 .999 

14.137 1.000 

17.278 .999 

5nfor
2

)1n2(
>

+ π  1 for n > 5 
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Figure 5.7.  Normalized mode shapes of a free-free beam 

 

In order to find the correct mode shape combinations and natural frequencies of a thin 

elastic plate, the Ritz method is employed.  A comprehensive analysis using this method for 

several plates with various boundary conditions was performed by Young (1950) and therefore a 

brief overview will be given instead of an in depth analysis. 

The maximum potential energy for a uniform plate vibrating harmonically with 

amplitude w(x,y) and frequency ω is given by 
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and the maximum kinetic energy is 

T = ∫∫ dxdywρhω
2
1 22                                                         (71) 
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Equating equations 70 and 71 leads to 

∫∫
=

dxdyw

V
ρh
2ω

2
2                                                           (72) 

The natural frequencies are determined by finding expressions for w that satisfy the boundary 

conditions and minimize equation 72.  The deflection is assumed to be in the form of a series 

approximation as shown in equation 73 with Amn being a coefficient of each term in the series 

and X and Y are beam mode shapes along the length and width of the plate, respectively. 

∑∑
= =

=
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1n
nmmn (y)(x)YXAy)w(x,                                             (73) 

Equation 73 is then substituted into equation 72.  The right hand side of the equation becomes a 

function of the coefficients Amn.  Taking partial derivatives with respect to each coefficient and 

setting equal to zero minimizes this result.  Each equation is of the form 

∫∫ =
∂
∂

−
∂
∂ 0dxdyw
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ρhω

A
V 2

ik

2

ik
                                       (74) 

where Aik is one of the coefficients Amn.  Equation 74 represents a system of linear homogeneous 

equations with unknowns Amn.  The natural frequencies of the system are determined from 

finding the coefficients that make the determinant of the system vanish.  The natural frequencies 

of the plate can be obtained using the equation 

bρha
Dλω

3nn =                                                            (75) 

where λn is dependent on the Amn  coefficients. Young (1950) provides values for Amn and λn for 

plates with various boundary conditions.  Table 7 contains values for λ for the first five modes of 

a square cantilever plate (a=b).  Leissa (1969) provides a compilation of papers on the vibration 

of plates.  Such papers provide tables containing values for λ for non-symmetrical plates. 
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Table 7. Values of characteristic value for 1st five modes of a square cantilever plate. 

Mode 1 2 3 4 5 

λ 3.494 8.54 21.44 27.46 31.17 

 

 

It is also important to note that for each mode there is one value of Amn that dictates the 

shape of the modes.  Hence, the values of m and n determine the correct beam mode shape 

combinations.  Table 8 lists the X and Y combinations for each mode and can be found in 

Equation 58 for the X modes, and 65, 66 and 67 for the Ymodes. 

 

Table 8.  Beam mode shape combinations for plate mode shapes 

Mode Mode Shape 

1 Φ1 =X1(x)Y1(y) 

2 Φ2 = X1(x)Y2(y) 

3 Φ3 = X2(x)Y1(y) 

4 Φ4 = X1(x)Y3(y) 

5 Φ5 = X2(x)Y2(y) 

 

 
 Figures 5.8 to 5.12 show plots of the first five normalized mode shapes of a square 

cantilever plate.  As can be seen from the plots, the first mode is a pure bending mode.  The 
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second mode is a 2-d bending mode.  The third mode is again a bending mode and the fourth and 

fifth modes are combinations of bending in two directions. 

 

 

Figure 5.8.  Normalized 1st mode shape of a cantilever plate 

 

Figure 5.9.  Normalized 2nd mode shape of a cantilever plate 
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Figure 5.10.  Normalized 3rd mode shape of a cantilever plate 

 

Figure 5.11.  Normalized 4th mode shape of a cantilever plate 
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Figure 5.12.  Normalized 5th mode shape of a cantilever plate 

 

The next chapter will use the previously derived mode shapes to develop a model that 

will be used to calculate the amount of power that can be generated from a piezoelectric bimorph 

energy harvester. 

5.3 DYNAMIC BEAM ENERGY HARVESTING MODEL 

The Euler-Bernoulli method is used to model a bimorph energy harvester being excited by a 

harmonic vibration source.  This is shown in Figure 5.13. 



 63 

 

Figure 5.13.  Base excited piezoelectric bimorph 

 

The Euler-Bernoulli equation from the previous chapter now becomes 
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where ρ is the density, A is the cross-sectional area and y(t) is the excitation of the beam. The 

term on the right hand side of the equation is representative of base excitation. The solution to 

equation 76 is assumed to take the form of equation 77 that is a series solution containing the 

multiplication of a spatial solution and a temporal solution. 

∑
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=
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ii (t)(x)qXt)w(x,                                                   (77) 

Xi is the i-th mode shape of the beam and qi(t) are generalized coordinates. The convolution 

integral is used to evaluate qi(t) and takes the form 
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i τ))dτ(tsin(ω)e(Fe

ω
1(t)q nini τ                                       (78) 

where ωd is the damped natural frequency, ωn is the natural frequency, ς is the damping ratio and 

F is a generalized force.  The generalized force from the distributed inertia is 
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Inserting equations 58 and 78 into equation 77 the deflection w(x,t) can be found as 
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The moment caused by the base excitation is 
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The procedure for calculating the generated energy from the harvester is now similar to 

section 5.1.  Since the beam structure remains the same, the constitutive equations for stress and 

strain are the same.  However the equation for curvature is slightly different due to a different 

forcing function. 
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where G7, G8, and G9 are constants.  Hence, the equation for total energy, generated charge, 

generated voltage, capacitance, and generated energy are slightly different as well. 
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where G10, G11, and G12 are constants, and 

L))sin(βL)(sinh(βL)]cos(βL)[cosh(β(t)(αqEIβH iiiiiiii +−−=                        (85) 

Therefore, 

i10gen HGQ =                                                           (86) 
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5.4 DYNAMIC PLATE ENERGY HARVESTING MODEL 

The generated energy from a plate from a base excitation can be calculated in much the same 

way as the previous two sections.  However, since a plate is wider than a beam, an addition 

width direction must be accounted for in the derivation of stress, strain, and curvature.  Thus 

there will be two curvatures and each curvature equation will depend on two moment terms, one 

in each direction.  It will be assumed that the plate will contain one neutral surface since the 

surface is dependent only on the cross section of the harvester and that each layer of the 

harvester is isotropic.   
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Figure 5.14.  Plate used in energy calculations 

 

The plate equation describing the vibration of a plate from the previous chapter becomes 
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As with the dynamic beam model, the term on the right hand side is representative of base 

excitation.  The solution to equation 87 is assumed to take the form of equation 88 that is a series 

solution containing the multiplication of a spatial solution and a temporal solution. 
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iii (t)(z)q(x)ZXt)z,w(x,                                                    (91) 

XiZi  is the i-th mode shape of the plate and qi(t) are generalized coordinates. The convolution 

integral is used to evaluate qi (t) remains the same as equation 78.  However the generalized 

force Fi used to evaluate qi (t) becomes 
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The moments in each direction of the plate can be described as 
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The strain in the x and z (1 and 2) directions are 

)y(yκε),y(yκε c22c11 −=−=                                    (94) 

The constitutive equations can be rewritten to account for the extra direction. 
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Hence, the stresses for the substrate layer and the piezoelectric layers can be written as 
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and for the substrate layer 
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The moments of the plate can be calculated using equation 98. 
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Inserting appropriate terms for strain into equations 96 and 97 and then inserting the result into 

98 produces alternative equations for the moments in the plate.  Setting equation 98 equal to 93, 

the curvatures in each direction can be found by solving the set of simultaneous equations.  The 

curvatures are functions of the moments caused by the excitation force. Energies of each layer 

now include the stresses and strains in both 1 and 2 directions. 
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The generated energy can now be calculated in the exact same manner as the previous two 

sections.  In energy harvesting, the first mode of a harvester is designed to match that of the 

vibration source due to the first mode having the greatest energy.  Since the first vibration mode 

of a cantilever plate is a pure bending mode, the stress in the 2 direction is assumed to be 

minimal.  Hence, the method presented in this section reduces to that of section 5.3.  If the 

energy from higher modes of the plate is desired the method from section 5.4 should be used. 
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6.0  EXPERIMENTAL TEST SETUP AND RESULTS 

This chapter presents the test setup used to quantify the effects of using a capacitive shunt tuning 

method to tune a piezoelectric harvesting device. The bimorph construction process is first 

presented.  This is followed by a description of the test rig used to measure the natural frequency 

of the harvesters and power output.  It is followed by a presentation of experimental results.   

6.1 BIMORPH CONSTRUCTION PROCESS 

Five piezoelectric bimorphs were constructed using the following procedure.  PZT (Lead 

Zirconate Titanate) type PSI-5H4E was chosen as the piezoelectric material and aluminum 

(Alloy 1100) was chosen as the substrate material.  The dimensions of the materials are shown in 

Table 9.  Note that the lengths of the PZT and Aluminum were made longer so that there was 

material available to clamp for testing.  The actual clamped length and width dimensions are 30 

mm by 30 mm. 

 

Table 9.  Dimensions of materials in bimorph 

PZT thickness (mm) .2667 

PZT width (mm) 30 
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Table 9.  (continued). 

PZT length (mm) 36 

Aluminum thickness (mm) .254 

Aluminum width (mm) 30 

Aluminum length (mm) 76.2 

 

The aluminum was cut to the proper dimensions.  Next, using a straight edge and utility 

knife, the PZT was scored repeatedly until the proper size plate was obtained.  This is shown in 

Figure 6.1. 

 

 

Figure 6.1.  Scoring a sheet of PZT  

 

The substrate was next prepared for gluing by cleaning both sides with denatured alcohol.  M-

Bond 610 adhesive (Vishay) was then applied to the substrate in a thin layer as shown in Figure 

6.2. 
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Figure 6.2.  Adhesive is applied to the substrate 

 

The previously cut PZT was then carefully placed onto the adhesive and substrate.  The structure 

was turned over and the gluing process was repeated on the other side.  In order to use the 

substrate as a common ground, the poling direction of each piezoelectric layer was kept pointing 

outward.  If both layers are used to harvest energy, this also ensures positive voltage output from 

each layer.  When the top layer is in tension, the bottom layer is in compression and therefore if 

the poling direction of each layer is opposite, the voltages will be of the same sign.  

 

 

Figure 6.3.  A piece of PZT being adhered to the substrate 
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Once both layers of PZT were adhered to the substrate, the structure was placed between 

two polycarbonate plates wrapped in Teflon tape (to prevent being glued to the plates) and a 

mass was placed on top to provide sufficient clamping.  To cure the adhesive, the bimorph was 

placed in an environmental chamber (Model EC1X).  The temperature was set to 110 °C and the 

glue was allowed to cure for 2 hours and 30 minutes. 

 

 

Figure 6.4.  Left:  Bimorph being clamped after gluing.  Right:  Environmental Chamber, Model EC1X 

 

The bimorph was slowly allowed to cool in the environmental chamber to prevent 

cracking.  Thermocouple wires (40 gage) were then attached to the upper and lower PZT layer 

via CircuitWorks two part conductive epoxy. Thermocouple wires were chosen because they had 

low resistance and mass. The epoxy was allowed to dry for four hours. The final product is 

shown in Figure 6.6. 
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Figure 6.5.  Attaching a lead to the surface of a piezoelectric bimorph 

 

 

Aluminum 
Substrate 

Thermocouple wire 

PZT 

 

Figure 6.6. Finished piezoelectric bimorph 
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6.2 EXPERIMENTAL TEST SETUP AND PROCEDURE 

The test rig used to perform tests on the previously constructed harvesters is shown in Figure 6.7. 

 

 

Figure 6.7.  Test Setup 

 

DSP Technologies SIGLAB (box model number 20-42, software V 3.26) is used to produce an 

excitation signal and also record data for frequency analysis.  A signal is sent from Channel 1 of 
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the SIGLAB box, through a power amplifier that drives a shaker.  The shaker is attached to a 

clamp that holds the harvester.  One piezoelectric layer of the harvester is used to produce energy 

and sends a signal back to Channel 2 of the SIGLAB box.  The other piezoelectric layer is 

attached to a capacitor array that is used to tune the bimorph.  The actual SIGLAB box and 

harvester on the shaker is shown in Figures 6.8, and 6.9, respectively. 

 

 

Figure 6.8.    DSP SIGLAB box 

 

Figure 6.9.  Bimorph clamped on top of shaker. 

 

The values of the capacitors in the capacitor array had to be chosen such that a full range 

of tuning (open to short circuit) could be observed with relative accuracy.  After measuring the 
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capacitance of the tuning layer of the bimorphs, it was determined that each layer had a 

capacitance of approximately 100 nF.  Analyzing Figure 4.7, the lowest capacitor value in the 

array was chosen to be 150 pF.  A 14-bit array was used to cover the capacitance required for 

tuning.  All other capacitance values are based off of the lowest bit.  Since capacitors only come 

in select sizes, values were chosen so that each bit was approximately equal to that given by 

equation 20.  The values used for each bit (nominal values) along with the calculated values are 

shown in Table 10.  The actual array is shown in Figure 6.10. 

 

Table 10.  Calculated and commercial capacitance values for 14-bit capacitor array 

Bit Number Calculated Capacitance (pF) Nominal Capacitance (pF) 

1 150 100 

2 300 300 

3 600 630 

4 1200 1200 

5 2400 2530 

6 4800 5030 

7 9600 10000 

8 19200 20000 

9 38400 40000 

10 76800 80000 

11 153600 166000 
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Table 10.  (continued). 

12 307200 330000 

13 614400 640000 

14 1228800 1320000 

 

 

 

Figure 6.10.  14-bit capacitor array 

 

6.2.1 Capacitive Tuning Procedure 

To quantify the effects of the capacitive shunt on tuning, frequency responses were found for 

each harvester at various shunt capacitances.  First, a random signal of bandwidth 5kHz was 

generated to characterize the modes of the device, particularly the first mode.  This was 

performed using open circuit shunt conditions.  By comparing the output of the harvester to the 
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input signal, the transfer function could be plotted and the natural frequencies of each mode 

determined.  A random .707 Volt RMS random signal was used as the excitation signal. This 

correlated to a 1 g excitation that was verified using an accelerometer.  Table 11 presents the 

characteristics of the signal. 

 

Table 11.  Characteristics of  random signal with 5 kHz bandwidth 

Averages Samples Frequency Resolution Sampling Frequency Window Overlap 

20 8192 1.563 Hz 12.8 kHz Hanning 50 % 

 
 
 
To obtain better frequency resolution for the first mode, the signal was then changed to a 

signal with 1 kHz bandwidth.  The shunt capacitance was varied throughout its range and a 

response was found at 100 capacitance points.  Each response was imported into MATLAB and 

the natural frequency of the bimorph at each capacitance was extracted.  The characteristics of 

the 1kHz bandwidth signal are shown in Table 12. 

 

Table 12.  Characteristics of random signal with 1 kHz bandwidth 

Averages Samples Frequency Resolution Sampling Frequency Window Overlap 

20 8192 .313 Hz 2.6 kHz Hanning 50 % 
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6.2.2 Power Harvesting Procedure 

Once the natural frequency-capacitance relationship was determined, the next objective was to 

determine effects the tuning concept had on power.  Each harvester was excited by a .707 V 

RMS sine wave at its fundamental frequency (determined from the previous section) depending 

on the shunt capacitance. As the capacitance was changed, the input frequency was adjusted 

appropriately.  The output of the harvesting layer was connected in parallel with a DC rectifying 

bridge circuit, shown in Figure 6.11.  Power was dissipated through a resistive load.  For several 

shunt capacitances ranging from open to short circuit, the load was varied so that the power 

output characteristics could be determined.  The process was repeated for the tuning layer by 

putting the rectifying bridge circuit in parallel with the capacitor array. 

 

Rload
2.2 F

*

 

Figure 6.11.  Schematic of DC rectifying circuit. (*Ultrafast diodes, p/n 1N414 from Digikey) 
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6.2.3 Frequency Tuning Results 

By using equation 13, appropriate parameter values from Tables 5, and inserting into equation 53 

the natural frequencies of the first five modes can be calculated. Table 13 shows these 

frequencies. 

 

 

Table 13.  Frequencies of the first five modes of a cantilever beam (open circuit) 

Mode Number Frequency (Hz) 

1 351.151 

2 2200.627 

3 6161.819 

4 12074.705 

5 19960.353 

 
 
 

Figures 6.12 to 6.16 show the frequency response of each beam being excited by a 

random signal.  Due to the fact that each harvester was manufactured by hand the mode 

frequencies vary slightly from the predicted frequencies.  However, the frequencies fall in the 

range where they are expected to be.   
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Figure 6.12.  Response of a random signal excitation of beam 1 
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Figure 6.13.  Response of a random signal excitation of beam 2 
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Figure 6.14.  Response of a random signal excitation of beam 3 
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Figure 6.15.  Response of a random signal excitation of beam 4 
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Figure 6.16.  Response of a random signal excitation of beam 5 

 

The same procedure was performed with one layer of the beams short-circuited. Table 14 

and 15 present a comparison between the open and short circuit frequencies of each beam and 

compare them to theoretical values.  The frequencies above the second mode are not reliable 

because the natural frequency of the shaker falls shortly above this range (> 3 kHz).  Therefore 

only the first two modes are presented.  

 

Table 14.  Experimental and Theoretical open circuit frequencies for each beam 

Mode Beam 1 Beam 2 Beam 3 Beam 4 Beam 5 Theoretical

1 321.4 335.9 348.6 329.7 348.1 351.151 

2 2103 2103 2125 2147 2159 2200.627 
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Table 15.  Experimental and Theoretical short circuit (one layer used for tuning) frequencies for each beam 

Mode Beam 1 Beam 2 Beam 3 Beam 4 Beam 5 Theoretical

1 316.6 332.5 342.9 326.6 343.5 345.151 

2 2064 2139 2108 2131 2147 2163.022 

 
 
 
Once the open and short circuit frequencies of the beams were determined, the first mode 

was chosen to characterize the shunt capacitance effect on frequency.  Using equation 13 and 53, 

the analytical frequency versus ratio of shunt capacitance to piezoelectric capacitance can be 

plotted for the piezoelectric bimorph and is shown in Figure 6.17.  
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Figure 6.17.  Frequency versus capacitance ratio for a bimorph harvester (one layer is used for tuning) 
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As can be seen in the plot, this case results in a tuning range of approximately 6 Hz, or 1.74 

percent.  If both layers are used for tuning, the tuning range can be increased.  Figure 6.18 shows 

the analytical frequency versus ratio of shunt capacitance to piezoelectric capacitance if both 

layers are used for tuning.   
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Figure 6.18.  Frequency versus capacitance ratio for a bimorph harvester (both layers are used for tuning) 

 

As can be seen in the plot, this case results in a tuning range of approximately 10 Hz, or 2.94 

percent.  Figures 6.19 to 6.23 show experimental plots of the natural frequency of each beam 

versus a ratio of the shunt capacitance to that of the piezoelectric material for the case when only 

one layer is used for tuning. 
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Figure 6.19.  Frequency vs Capacitance Ratio for Beam 1 (one layer used for tuning) 
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Figure 6.20.  Frequency vs Capacitance Ratio for Beam 2 (one layer used for tuning) 
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Figure 6.21.  Frequency vs Capacitance Ratio for Beam 3 (one layer used for tuning) 
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Figure 6.22.  Frequency vs Capacitance Ratio for Beam 4 (one layer used for tuning) 
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Figure 6.23.  Frequency vs Capacitance Ratio for Beam 5 (one layer used for tuning) 

 

From the plots, the amount of frequency change and percent of tuning can be determined and 

represent the amount of tuning using one of the piezoelectric layers for tuning.  Table 16 

summarizes the frequency tuning results.  For the five beams tested, between 2.4 and 5.9 Hz 

frequency change was obtained.  This corresponds to a range of 0.72 percent to 1.48 percent of 

tuning. 

 

Table 16.  Frequency change and percent of tuning results for each beam using one layer for tuning 

Beam Number Δf % Tuning 

1 4.7 1.48 

2 2.4 0.72 

3 5.9 1.71 
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Table 16.  (continued). 

4 3.3 1.01 

5 4.1 1.19 

 
 
 
Figures 6.24 to 6.27 show experimental plots of the natural frequency of each beam versus a 

ratio of the shunt capacitance to that of the piezoelectric material for the case when both layers 

are used for tuning.  These tests were performed by adding an additional capacitor array to the 

second layer.  By simultaneously changing the capacitance of each layer by the same amount, the 

stiffness of each layer could be adjusted and therefore at any given time, each layer would have 

approximately the same stiffness. Note that Beam 3 was damaged before this test was performed, 

and therefore was not used to gather data.   
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Figure 6.24.  Frequency vs Capacitance Ratio for Beam 1 (both layers used for tuning) 
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Figure 6.25. Frequency vs Capacitance Ratio for Beam 2 (both layers used for tuning)  
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Figure 6.26.  Frequency vs Capacitance Ratio for Beam 4 (both layers used for tuning)   
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Figure 6.27.  Frequency vs Capacitance Ratio for Beam 5 (both layers used for tuning)   
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Table 17 summarizes the tuning results using both layers for tuning.  For the four beams tested, 

between 4.9 and 7.9 Hz frequency change was obtained.  This corresponds to a range of 1.89 

percent to 2.32 percent of tuning. Note that the frequencies were found by using the output of the 

beams and therefore the extreme case where both layers are shorted could not be found using this 

method.  Therefore the measured tuning ranges are assumed to be close to the full tuning range 

(open circuit to short circuit) but may be slightly larger. 

 

Table 17.  Frequency change and percent of tuning results for each beam using both layers for tuning 

Beam Number Δf % Tuning 

1 6.9 2.19 

2 6.2 1.89 

4 4.9 1.51 

5 7.9 2.32 

 

 

From the results it can be seen that using a capacitive shunt method to adjust the natural 

frequency of a piezoelectric bimorph is a viable one.  As long as the device is designed close to 

the desired frequency the harvester can be adjusted to the correct value.  In this analysis, there 

was variability in the natural frequencies of the beams.  To improve this, future studies should 

improve on the manufacturing process. It has been shown that if more layers are used for tuning, 

an increase in tunability occurs.  It will be shown in the next section that it is possible to harvest 

energy and tune with the same layer (to a certain extent) and therefore for certain applications it 

may be possible to use more than one layer for both tuning and harvesting.   
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6.2.4 Energy Harvesting Results 

By measuring across the load resistor in the energy harvesting circuit of Figure 6.11, the power 

output versus load resistance can be obtained.  The first test involved using the bottom layer of 

the bimorph to tune the harvester and measure power from the top layer.   

6.2.4.1 Harvesting from top layer (and tuning with bottom layer) 

By varying the load the source resistance was determined to be approximately 10 kΩ and was 

approximately the same for all of the harvesters and remained constant even when the shunt 

capacitance and input frequencies were changed to match fundamental frequencies.  Since the 

harvester only operated in the first bending mode, it was assumed it behaved like a beam and 

therefore the dynamic energy model was used for the theoretical power calculation due to it 

being much easier to calculate than the dynamic plate model.  For the calculation, approximately 

1% damping was assumed.  Also, by varying the capacitance, the output voltage (and hence 

power) remained relatively constant and therefore only one theoretical power curve is plotted on 

each graph.  Figures 6.28 to 6.32 present plots of power versus load resistance for the five 

beams. 
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Power vs. Load (Beam 1 - Harvesting Layer)
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Figure 6.28.  Power versus load resistance for Beam 1 (Harvesting from top layer, tuning with bottom layer) 

Power vs. Load (Beam 2 - Harvesting Layer)

0

20

40

60

80

100

120

140

160

180

200

0 10000 20000 30000 40000 50000

Load (Ohms)

P
ow

er
 (μ

W
)

0 pF
29687.5 pF
60937.5 pF
92187.5 pF
396250 pF
2515625
Short
Theoretical

 

Figure 6.29.  Power versus load resistance for Beam 2 (Harvesting from top layer, tuning with bottom layer) 
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Power vs Load (Beam 3 - Harvesting Layer)
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Figure 6.30.  Power versus load resistance for Beam 3 (Harvesting from top layer, tuning with bottom layer) 

Power vs Load (Beam 4 - Harvesting Layer)
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Figure 6.31.  Power versus load resistance for Beam 4 (Harvesting from top layer, tuning with bottom layer) 
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Power vs Load (Beam 5 - Harvesting Layer)
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Figure 6.32.  Power versus load resistance for Beam 5 (Harvesting from top layer, tuning with bottom layer) 

 

From the plots it can be seen that the power ranges from 130 to 170 μW when the load is 

matched to that of the source.  By adjusting the capacitance attached to the tuning layer, the plots 

show the power output and impedance of the harvesting layer is not affected, which provides 

evidence that the capacitive shunt method is a feasible means of tuning the natural frequency of a 

piezoelectric bimorph energy harvester.   

The theoretical power over-predicts the power for beams 1, 2, and 3, and under predicts 

the power for beams 4 and 5.  Several factors could attribute for this.  The actual damping ratio 

for each beam is unknown and would need to be determined experimentally. The assumed 

damping could attribute to some discrepancies. Power is also dependent on material properties, 

dimensions of the structures, etc.  Since each harvester was manufactured by hand, each is not an 

ideal replica of each other.  As could be seen in the previous section, each device had slightly 
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different natural frequencies.  Since the power calculation is based off calculated frequencies, 

there may be slight differences between calculated and actual values.  

By selecting an excitation frequency in the middle of the range of tuning and varying the 

capacitance attached to the tuning layer (and holding the frequency constant), the effect on 

power can be determined as well as demonstrate the practical use of the capacitive shunt tuning 

method.  Beam 1 was chosen to be used as an example.  The results of this test are shown in 

Figure 6.33. 

Power vs. Capacitance (Beam 1 - Harvesting and Tuning With 
Separate Layers) 
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Figure 6.33.  Plot of Power vs. Capacitance for Beam 1 holding frequency constant (mid-tuning range and shifted 
towards open circuit) and adjusting capacitance (Using separate layers for tuning and harvesting). 
 
 
 

As can be seen from the plot, when the driving frequency is in the center of the tuning range, the 

power is significantly decreased at low capacitances (off resonance condition), and rises to a 

maximum when the natural frequency of the beam matches that of the shaker and then decreases 

as the capacitance continues to increase (off resonance once again).  If the driving frequency is 
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shifted towards the open circuit natural frequency of the beam (increase in frequency), the 

resonant power peak occurs at a lower capacitance which makes sense since the open circuit 

shunt condition approaches zero.  Therefore, it can be concluded that as long as the harvester is 

designed to resonate near the frequency of a vibration source, the shunt capacitance can be 

adjusted to move the harvester’s natural frequency to that which produces maximum power. 

An important characteristic for evaluating the performance of an energy harvester is to 

calculate the efficiency of energy conversion.  For the test setup previously described, this can be 

defined as 

100*
kerShaofPowerInputMechanical

HarvesterfromPowerOutputElectrical
efficiency% =                          (101) 

The power output from each harvester can be found using the maximum power values 

from Figures 6.28 to 6.32.  The input power of the shaker can be found by measuring the mass of 

the beam-clamp structure and the force that is driving the structure.  The power from the input 

can be written as 

FvPinput =            (102) 

where F is the driving force and v is velocity of the structure.  By attaching a force transducer 

between the shaker and harvester, the force can be found.  Since force is equal to mass times 

acceleration, the acceleration of the system can be found.  Acceleration can also be written as 

)tsin(Aa ω=                                                               (103) 

where A is amplitude, and ω is the frequency of the source.  Integrating, the magnitude of the 

velocity is 

ω
Av =                                                                    (104) 

Substituting into equation 102, the mechanical input power is 
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ω
FAPinput =                                                                 (105) 

With both the input and output power able to be calculated, the efficiency of each harvester can 

be determined.  Table 18 presents the percent efficiency of each beam using the previous 

method.  Note that the driving frequency will change slightly as the capacitance attached to the 

tuning layer is changed.  Therefore, a frequency value in the center of each harvester’s tuning 

range was chosen as the driving frequency for each efficiency calculation.  Since the tuning 

ranges were not very large, the change in frequency does not have a large effect on the input 

power. 

 

Table 18.   Percent efficiency of each energy harvester (one layer used for tuning, one for harvesting) 

Beam Number % Efficiency 

1 0.443 

2 0.541 

3 0.488 

4 0.591 

5 0.741 

 

6.2.4.2 Harvesting (and tuning) with bottom layer 

As in the previous test, the power versus resistive load was determined for the tuning layer.  If 

the tuning layer could be used for both tuning and harvesting energy, the amount of energy 

generated by the beam could be increased while at the same time having tuning capabilities.  For 

this test, the harvesting circuit was connected in parallel with the capacitor array.  The results are 

shown in Figures 6.34 to 6.38. 
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Power vs Load (Beam 1 - Tuning Layer)
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Figure 6.34.   Power versus load resistance for Beam 1 (Harvesting and tuning with bottom layer) 
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Power vs Load (Beam 2 - Tuning Layer)
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Figure 6.35.  Power versus load resistance for Beam 2 (Harvesting and tuning with bottom layer) 

Power vs Load (Beam 3 - Tuning Layer)
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Figure 6.36.  Power versus load resistance for Beam 3 (Harvesting and tuning with bottom layer) 
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Power vs Load (Beam 4 - Tuning Layer)
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Figure 6.37.  Power versus load resistance for Beam 4 (Harvesting and tuning with bottom layer) 

Power vs Load (Beam 5 - Tuning Layer)
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Figure 6.38.  Power versus load resistance for Beam 5 (Harvesting and tuning with bottom layer) 
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From the plots, the open circuit power when the load matches the source impedance 

ranges from approximately 130 to 160 μW, similar to the previous results, as expected.  As the 

capacitance of the array increases the amount of power generated decreases.  This makes sense 

since as the capacitance of the shunt increases the shunt impedance approaches a short circuit 

condition.  Obviously when the shunt is shorted, no power can be generated.  Another 

observation is that as the capacitance of the array increases, the source impedance shifts slightly 

to the left (decreases).  The impedance of a capacitive element is defined by 

Cj
1Z c ω

=                                                                   (106) 

where ω is frequency and C is capacitance.  As capacitance increases, the impedance approaches 

zero.  It is well known that maximum power transfer occurs when the impedance of the source 

matches that of the load.  Treating the piezoelectric harvester and its shunt as a capacitive 

element and setting it equal to the impedance of the load, as the capacitance increases, the source 

and load impedance decrease. 

 Since both layers can possibly have different impedances, it is possible to harvest energy 

off of both layers at the same time by using a rectifying circuit like that of Figure 6.11 on each 

layer.  However, if both voltages are different, the outputs of each circuit will not simply add 

together.  It will be left to a future study to work this issue out. 

 As was done previously with the harvester with separate tuning and harvesting layers, if a 

driving frequency is held constant and capacitance is varied, the effect on power can be 

determined.  Figure 6.39 shows the effects of power output of beam 1 by choosing a mid-tuning 

range frequency and varying the capacitance, along with shifting the frequency towards the open 

circuit frequency and varying the capacitance. 
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Power vs. Capacitance (Beam 1 - Harvesting and Tuning With 
Same Layer)
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Figure 6.39.  Plot of Power vs. Capacitance for Beam 1 holding frequency constant (mid-tuning range and shifted 
towards open circuit) and adjusting capacitance (Using same layer for tuning and harvesting). 

 
 
 

As can be seen from the plot, the power output when the driving frequency is in the middle of the 

tuning range remains relatively constant and eventually falls off, similar to decrease of power 

observed in Figures 6.34 to 6.38.  When the driving frequency is shifted towards open circuit, the 

initial power is larger but follows a similar trend as the mid range power plot.  This makes sense 

because as the resonant frequency of the harvester approaches open circuit, the resonant power 

peak will occur at lower capacitance and hence will increase the power occurring at points close 

to the peak.  The resonant power peaks should occur at similar locations as in Figure 6.33.  

However, the increase in capacitance of the capacitor array prevents these peaks from occurring 

and therefore the capacitive shunt concept is not as useful for maximizing power as when the 

harvesting and tuning layers are separate. 
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6.2.5 Summary 

It has been shown that a capacitive shunt method can be used to tune a piezoelectric bimorph 

energy harvester.  For a bimorph (with all layers approximately the same thickness) if both layers 

are used for tuning, theoretically it is possible to achieve up to 2.94 percent tuning.  If only one 

layer is used for tuning the range is 1.74 percent.  Experimentally up to 2.32 percent tuning was 

obtained using both layers for tuning and up to 1.7 percent tuning was obtained using only one 

layer.  

Effects on power harvesting were also studied.  When using the capacitive array on only 

one layer, effects on the other layer are minimal.  It has been shown that the magnitude of the 

power versus impedance remains relatively constant as the value of the capacitive shunt is 

increased.  Tuning and harvesting from the same layer is also possible.  However, as capacitance 

increases, the amount of power able to be generated decreases.  The source impedance also 

decreases. 
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7.0  CONCEPTS FOR REDUCING FREQUENCY DEPENDENCE OF 

PIEZOELECTRIC ENERGY HARVESTERS 

The previous chapters have presented a method to passively tune a piezoelectric energy 

harvester.  This chapter will provide a brief overview of several other methods that could be used 

to tune, or at least reduce the need to design a harvester to an exact frequency.  To begin, a 

piezoelectric electro-mechanical filter concept to harvest from multiple frequencies will be 

presented.  This will lead to another mechanical band pass filter using multiple beams.  A 

frequency multiplier technique will follow.  The chapter will conclude with a morphing beam 

concept. 

7.1.1 Piezoelectric Electro-mechanical Filter 

Dmuchoski (2000) provides an extensive investigation into using piezoelectric transducers as 

electromechanical filters. By coupling two beams together with a coupling spring, a band pass 

filter can be created which is dependant on the fundamental frequency of the two beams and the 

spring.  Figure 7.1 shows an example of this type of filter. 
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Figure 7.1.  Mechanical filter 

 

Figure 7.2 shows a free body diagram of the system for when one of the beams is excited by a 

signal or force. 

 

 

Figure 7.2.  Free Body diagram of mechanical filter 

 

Assuming both beams have the same stiffness, k, the equations of motion of the system are 

1xck2)xck(k2xm0
2xck1)xck(k1xmF
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&&

&&
                                          (107) 

Taking the Laplace transform of the equations and writing in matrix form results in 
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Since the device is used as a resonator, the output of x2 is of interest.  Using Cramer’s rule, the 

transfer function of the system can be found. 
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The frequency response of the system (with k1=k2=k) can be seen in Figure 7.3.  If both beams 

have the same stiffness then the peaks of the plot correspond to k and k+kc. 
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Figure 7.3.  Frequency response of mechanical band pass filter 

 

If this idea could be applied to two base excited energy harvesters, the point of maximum energy 

could be changed from just a single frequency (i.e. first mode of Figure 6.12) to a range of 
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frequencies.  Changing the previous model so that both masses are excited by a base excitation, 

an energy harvesting analysis can be performed.  The new model is shown in Figure 7.4. 
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Figure 7.4.  Base excited coupled energy harvesting model 

 

Since the device is base excited, x3 can be assumed to be equal to x4.  Following a similar 

procedure as before, the system can be described by equation 110. 
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Where z1=x1-x3 and z2=x2-x4 Using Cramer’s rule, the transfer functions of the system can be 

found. 
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Since the same force is exciting both beams, by adding equations 111 and 112 together the total 

system response can be found. 
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Plotting the system response and varying the stiffness parameters, the effects on the system can 

be analyzed.  Also, by integrating over each plot the available energy in each system can be 

determined.  In Figures 7.5 to 7.8 this energy is found in between the magnitude and phase 

diagrams.  As the number increases, the energy in the system does as well.  Figure 7.5 shows the 

system response for k1=k2=kc.  Figure 7.6 shows the system response for k1=k2 and kc=0.  As can 

be seen in the plots, there is only one peak.  This is due to there always being a pole-zero 

cancellation in the transfer function.  The amount of energy in the system is also slightly more 

when the coupling spring is not present.  
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Figure 7.5.  System response for k1=k2=kc 
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Figure 7.6.  System response for k1=k2, kc=0 

 

Figures 7.7 and 7.8 show the system responses when the beam stiffness is not the same.  

Figure 7.7 is when k1=kc and k2=3k1. Figure 7.8 is when k2=3k1 and kc=0. 
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Figure 7.7.  System response for k1=kc, k2=3k1 
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Figure 7.8.  System response for kc=0, k2=3k1 

 

As can be seen from the plots, when the beam stiffness of each beam is different, two peaks 

occur due to poles in the system transfer function.  When the coupling spring is in the system, the 

magnitude of the second peak decreases and therefore more energy is present in the system 
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without the coupling spring.  From these results it is favorable to use a system lacking a coupling 

spring when the goal is to harvest energy from multiple frequencies.  A better method would be 

to design a harvesting device containing an array of beams, each with different natural 

frequencies.  If the frequencies are close enough together a response similar to a band-pass filter 

could be obtained.  An example of such a device is shown in Figure 7.9.  As can be seen in the 

figure, each beam is of different dimensions and also has proof masses on the ends.  Both are 

also methods of tuning a harvester to a certain frequency. 

 

 

Figure 7.9.  Energy harvesting beam array 

 

In summary, in the case of a resonator, adding a coupling spring increases the bandwidth 

of the device and has a filtering effect.  When using a coupling spring for the purpose of energy 

harvesting, there is always a pole-zero cancellation in the transfer function and the coupling 

spring has little effect.  The coupling spring actually decreases the amount of energy in the 

system because of an added zero in the system.  Multiple frequencies can be harvested by 

creating a multi-beam system in which each beam has a different stiffness. 
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7.1.2 Frequency multiplier 

An idea from Tieck et al. (2006) provides a possible way to eliminate the need to 

manufacture a piezoelectric bimorph harvester to an exact natural frequency. The idea involves 

using a linear traveling rack that imparts vibrational motion to a beam (via impulses). As long as 

the natural frequency of the bimorph is larger than the source, each period of the rack will excite 

the beam, which will vibrate at its natural frequency.  In a base excited beam, the beam would 

vibrate at the frequency of the source.  In this case, the frequency is multiplied from the source 

frequency to that of beam. The two frequencies are unrelated.  Figure 7.10 shows the motion of 

both the harvester and the source. 
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Figure 7.10.  Left:  Rack exciting a cantilever beam.  Right:  Motion of source and harvester 
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7.1.3 Variable modulus beam 

By adding mass to the end of a beam, the natural frequency of the beam changes.  However this 

can be a difficult task to accomplish in real time.  By being able to change the internal structure 

of the beam and move some concentrated mass toward the end or base, the frequency can be 

adjusted.  Figure 7.11 shows an example of the concept. 

 

 

Figure 7.11.  Cantilever beam with variable modulus core 

 

If the center of the beam is made of a material that is able to undergo a modulus change when a 

stimulus is applied, the natural frequency of the beam can be adjusted by applying the stimulus 

and moving the material to various positions along the beam.  If the material is closer to the tip, 

the beam will be less stiff and the natural frequency will decrease. If the material is close to the 

base, the beam will be stiffer and the natural frequency will increase. 
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8.0  CONCLUSIONS AND FUTURE WORK 

This work investigated the feasibility of using a capacitive shunt method to tune piezoelectric 

bimorph energy harvesters.  A brief history of piezoelectric materials was given, followed by 

fundamentals of piezoelectric sensors and actuators.  Attention was given to cantilever energy 

harvesters with respect to different modes of operation (33, 31, 15). 

A review of research done in the energy harvesting area was performed.  This was 

followed by a presentation of previous research done on methods of storing generated energy 

from energy harvesters. Research leading up to the capacitive method used in this work was 

discussed and was followed by other methods of tuning the frequency of energy harvesters. 

The capacitive tuning method was presented.  The concept was utilized on a multilayer 

beam with a harvesting layer, tuning layer, and substrate layer.  Ratios of the layer thicknesses 

were varied to determine the optimum configurations for determining the greatest amount of 

tunability.  The greatest tunability occurs when the ratios of substrate to piezoelectric layer 

thickness are small (less than 2).  As long as the neutral axis is not within a piezoelectric layer, 

this will ensure the maximum amount of energy can be generated in this range as well.  It was 

assumed these findings applied to a multi-layer plate as well. 

A binary capacitor array was next introduced for tuning purposes.  By properly choosing 

the values of capacitors in the array, the capacitance could be varied with a certain resolution 

across a wide range of capacitance using a minimal amount of capacitors. 
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Mode shapes of beams were determined using Euler-Bernoulli beam theory and the 

equation to calculate the natural frequency of cantilever beam was derived.  Mode shapes of 

plates were then calculated using a combination of the beam mode shapes.  The natural 

frequency of a plate was derived using the Ritz method.   

Analytical energy generation models were performed.  This was begun with a static 

bimorph energy model that calculated the amount of energy generated from a static load using a 

strain energy method.  Using the previously derived mode shapes, a similar method was used to 

find the energy in a base excited bimorph.  Finally, a base excited plate energy model was given. 

The capacitive tuning method was experimentally validated.  The construction process of 

the bimorph energy harvesters used in testing was given first and followed by testing procedure 

and results.  It was shown that it takes approximately a four-order magnitude change of the ratio 

of shunt capacitance to piezoelectric capacitance to change a piezoelectric bimorph from open 

circuit stiffness to short circuit stiffness.  It is theoretically possible to achieve up to 2.94 percent 

tuning for a bimorph (with all layers approximately the same thickness) if both layers are used 

for tuning. Around 1.74 percent tuning can be obtained if only one layer is used. Experimentally 

up to 1.7 percent tuning was obtained using only one layer and 2.32 percent was obtained using 

both layers.  

Effects on power harvesting were also studied.  When using the capacitive array on only 

one layer, effects on the other layer are minimal.  It has been shown that the magnitude of the 

power versus impedance remains relatively constant as the value of the capacitive shunt is 

increased.  Tuning and harvesting from the same layer is also possible.  However, as capacitance 

increases, the amount of power able to be generated decreases.  The source impedance also 
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decreases.  To harvest off of both layers at the same time a separate rectifier circuit should be 

used on each layer. Approximately 130 to 160 μW of power could be produced from each layer.  

An overview of other possible tuning methods was given.  It was shown that in order to 

harvest from multiple frequencies, the best method is to use a multi-beam array, where each 

beam in the array is designed to have a slightly different natural frequency and therefore the 

array spans a certain frequency band.  A method to convert a low vibration source into energy 

using a high frequency harvester was discussed.  Finally a variable stiffness beam was presented 

that could be changed from a high stiffness state to a low stiffness state and vice versa. 

8.1 FUTURE WORK 

From the experience of this research, several suggestions for future work can be recommended.   

• In the energy harvesting model, damping and impedance values were assumed.  To more 

accurately describe the energy models, the damping in the structure can be measured 

experimentally.  Instead of using a load to find the impedance of the bimorphs, an 

impedance analyzer could be used to find exact values. 

• Investigate the possibility of using energy from tuning layer to power a simple controller 

circuit that could automatically adjust capacitance to keep structure natural frequency 

matching source. 

• Further characterize plate models to account for situations where the plate is not 

symmetrical. 

• It is noted that at higher plate modes, there are stresses in each direction.  Charge 

cancellation could occur when modes are symmetrical.  Investigate possibility of 
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partitioning plates and re-poling the partitions so that the charge adds.  Since the 

percentage of tuning remains the same, higher modes would have a larger tuning range 

and possibly a significant amount of energy that could be generated. 
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APPENDIX A 

MATLAB CODE FOR AVAILABLE BEAM STIFFNESS 

%Tunability using only tuning layer for tuning 
  
clear 
%Layers:Substrate, Tuneable Layer, Harvesting Layer (case 1) 
%Define constants 
Eb=70e9;                                   %Substrate elastic modulus 
Ep=6.2e10;                                 %Piezoelectric modulus 
b=10e-3;                                   %Width of each layer 
hp=0:.1:10;                                %Thickness of piezoelectric layer 
hb=0:.1:10;                                %Thickness of tuning layer 
ht=1;                                %Thickness of substrate 
ep=3800*8.854e-12;                         %PZT relative permittivity 
d31 = -320e-12;                            %PZT strain constant 
L=1; 
  
%basic calculations 
  
At=b*ht;                                   %Area of substrate layer 
  
Sp=1/Ep;                                   %PZT compliance 
Etshort=Sp^-1;                             %Modulus of short circuited tuning 
layer 
Etopen=(Sp-d31^2/ep)^-1;                   %Modulus of open circuited tuning 
layer 
Epopen=(Sp-d31^2/ep)^-1 
%Convert beam to entirely substrate material 
np=Epopen/Eb; 
ntshort=Etshort/Eb; 
ntopen=Etopen/Eb; 
  
  
%Calclulate location of neutral axis for each circuit case 
for j=1:length(hp) 
    for i=1:length(hb) 
        %short circuit 
        Ap(j)=b*hp(j); 
        Ab(i)=b*hb(i); 
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ybarshort(i,j)=(hb(i)/2*Ab(i)+ntshort*At*(hb(i)+ht/2)+np*Ap(j)*(hb(i)+ht+hp(j
)/2))/(Ab(i)+ntshort*At+np*Ap(j)); 
  
        Ibshort(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybarshort(i,j)-hb(i)/2)^2; 
        Itshort(i,j)=(ntshort*b*ht^3)/12+ntshort*At*(ybarshort(i,j)-
(hb(i)+ht/2))^2; 
        Ipshort(i,j)=(np*b*(hp(j))^3)/12+np*Ap(j)*(ybarshort(i,j)-
(hb(i)+ht+hp(j)/2))^2; 
        Ishort(i,j)=Ibshort(i,j)+Itshort(i,j)+Ipshort(i,j); 
  
        Ksc(i,j)=3*Eb*Ishort(i,j)/L; 
     
        %open circuit 
        
ybaropen(i,j)=(hb(i)/2*Ab(i)+ntopen*At*(hb(i)+ht/2)+np*Ap(j)*(hb(i)+ht+hp(j)/
2))/(Ab(i)+ntopen*At+np*Ap(j)); 
  
        Ibopen(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybaropen(i,j)-hb(i)/2)^2; 
        Itopen(i,j)=(ntopen*b*ht^3)/12+ntopen*At*(ybaropen(i,j)-
(hb(i)+ht/2))^2; 
        Ipopen(i,j)=(np*b*(hp(j))^3)/12+np*Ap(j)*(ybaropen(i,j)-
(hb(i)+ht+hp(j)/2))^2; 
        Iopen(i,j)=Ibopen(i,j)+Itopen(i,j)+Ipopen(i,j); 
  
        Koc(i,j)=3*Eb*Iopen(i,j)/L; 
      
    end 
end 
  
hbtratio=(hb/ht); 
hptratio=(hp/ht); 
figure(2) 
mesh(hbtratio,hptratio,Koc./Ksc) 
xlabel('hb/ht') 
ylabel('hp/ht') 
zlabel('Ratio of Effective Stiffness (koc/ksc)') 
Title('Stiffness ratios vs layer thickness ratios (Case 1)') 

 
 
%Tunability using both piezoelectric layers for tuning 
  
clear 
%Layers:Substrate, Tuneable Layer, Harvesting Layer (Case 1) 
%Define constants 
Eb=70e9;                                   %Substrate elastic modulus 
Ep=6.2e10;                                 %Piezoelectric modulus 
b=10e-3;                                   %Width of each layer 
hp=0:.1:10;                                %Thickness of piezoelectric layer 
hb=0:.1:10;                                %Thickness of tuning layer 
ht=1;                                %Thickness of substrate 
ep=3800*8.854e-12;                         %PZT relative permittivity 
d31 = -320e-12;                            %PZT strain constant 
L=1; 
  
%basic calculations 
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At=b*ht;                                   %Area of substrate layer 
  
Sp=1/Ep;                                   %PZT compliance 
Etshort=Sp^-1;                             %Modulus of short circuited tuning 
layer 
Etopen=(Sp-d31^2/ep)^-1;                   %Modulus of open circuited tuning 
layer 
Epopen=(Sp-d31^2/ep)^-1 
%Convert beam to entirely substrate material 
npshort=Ep/Eb; 
npopen=Epopen/Eb; 
ntshort=Etshort/Eb; 
ntopen=Etopen/Eb; 
  
  
%Calclulate location of neutral axis for each circuit case 
for j=1:length(hp) 
    for i=1:length(hb) 
        %short circuit 
        Ap(j)=b*hp(j); 
        Ab(i)=b*hb(i); 
        
ybarshort(i,j)=(hb(i)/2*Ab(i)+ntshort*At*(hb(i)+ht/2)+npshort*Ap(j)*(hb(i)+ht
+hp(j)/2))/(Ab(i)+ntshort*At+npshort*Ap(j)); 
  
        Ibshort(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybarshort(i,j)-hb(i)/2)^2; 
        Itshort(i,j)=(ntshort*b*ht^3)/12+ntshort*At*(ybarshort(i,j)-
(hb(i)+ht/2))^2; 
        Ipshort(i,j)=(npshort*b*(hp(j))^3)/12+npshort*Ap(j)*(ybarshort(i,j)-
(hb(i)+ht+hp(j)/2))^2; 
        Ishort(i,j)=Ibshort(i,j)+Itshort(i,j)+Ipshort(i,j); 
  
        Ksc(i,j)=3*Eb*Ishort(i,j)/L; 
     
        %open circuit 
        
ybaropen(i,j)=(hb(i)/2*Ab(i)+ntopen*At*(hb(i)+ht/2)+npopen*Ap(j)*(hb(i)+ht+hp
(j)/2))/(Ab(i)+ntopen*At+npopen*Ap(j)); 
  
        Ibopen(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybaropen(i,j)-hb(i)/2)^2; 
        Itopen(i,j)=(ntopen*b*ht^3)/12+ntopen*At*(ybaropen(i,j)-
(hb(i)+ht/2))^2; 
        Ipopen(i,j)=(npopen*b*(hp(j))^3)/12+npopen*Ap(j)*(ybaropen(i,j)-
(hb(i)+ht+hp(j)/2))^2; 
        Iopen(i,j)=Ibopen(i,j)+Itopen(i,j)+Ipopen(i,j); 
  
        Koc(i,j)=3*Eb*Iopen(i,j)/L; 
      
    end 
end 
  
hbtratio=(hb/ht); 
hptratio=(hp/ht); 
figure(2) 
mesh(hbtratio,hptratio,Koc./Ksc) 
xlabel('hb/ht') 
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ylabel('hp/ht') 
zlabel('Ratio of Effective Stiffness (koc/ksc)') 
Title('Stiffness ratios vs layer thickness ratios (Case 1)') 

 
%Tunability using both piezoelectric layers for tuning 
  
clear 
%Layers:Substrate, Harvesting Layer, Tuning Layer (Case 2) 
%Define constants 
Eb=70e9;                                   %Substrate elastic modulus 
Ep=6.2e10;                                 %Piezoelectric modulus 
b=10e-3;                                   %Width of each layer 
hp=0:.1:10;                                %Thickness of piezoelectric layer  
hb=0:.1:10;                                %Thickness of tuning layer 
ht=1;                                %Thickness of substrate 
ep=3800*8.854e-12;                         %PZT relative permittivity 
d31 = -320e-12;                            %PZT strain constant 
L=1; 
  
%basic calculations 
                                        
At=b*ht;                                   %Area of substrate layer 
  
Sp=1/Ep;                                   %PZT compliance 
Etshort=Sp^-1;                             %Modulus of short circuited tuning 
layer 
Etopen=(Sp-d31^2/ep)^-1;                   %Modulus of open circuited tuning 
layer 
Epopen=(Sp-d31^2/ep)^-1 
Epshort=Sp^-1; 
%Convert beam to entirely substrate material 
npopen=Epopen/Eb; 
npshort=Epshort/Eb; 
ntshort=Etshort/Eb; 
ntopen=Etopen/Eb; 
  
  
%Calclulate location of neutral axis for each circuit case 
for j=1:length(hp) 
    for i=1:length(hb) 
        %short circuit 
        Ap(j)=b*hp(j); 
        Ab(i)=b*hb(i); 
        
ybarshort(i,j)=(hb(i)/2*Ab(i)+npshort*Ap(j)*(hb(i)+hp(j)/2)+ntshort*At*(hb(i)
+hp(j)+ht/2))/(Ab(i)+ntshort*At+npshort*Ap(j)); 
        Ibshort(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybarshort(i,j)-hb(i)/2)^2; 
        Ipshort(i,j)=(npshort*b*(hp(j))^3)/12+npshort*Ap(j)*(ybarshort(i,j)-
(hb(i)+hp(j)/2))^2; 
        Itshort(i,j)=(ntshort*b*ht^3)/12+ntshort*At*(ybarshort(i,j)-
(hb(i)+hp(j)+ht/2))^2; 
        Ishort(i,j)=Ibshort(i,j)+Itshort(i,j)+Ipshort(i,j); 
  
        Ksc(i,j)=3*Eb*Ishort(i,j)/L; 
     
        %open circuit 
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ybaropen(i,j)=(hb(i)/2*Ab(i)+npopen*Ap(j)*(hb(i)+hp(j)/2)+ntopen*At*(hb(i)+hp
(j)+ht/2))/(Ab(i)+ntopen*At+npopen*Ap(j)); 
        Ibopen(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybaropen(i,j)-hb(i)/2)^2; 
        Ipopen(i,j)=(npopen*b*(hp(j))^3)/12+npopen*Ap(j)*(ybaropen(i,j)-
(hb(i)+hp(j)/2))^2; 
        Itopen(i,j)=(ntopen*b*ht^3)/12+ntopen*At*(ybaropen(i,j)-
(hb(i)+hp(j)+ht/2))^2; 
        Iopen(i,j)=Ibopen(i,j)+Itopen(i,j)+Ipopen(i,j); 
  
        Koc(i,j)=3*Eb*Iopen(i,j)/L; 
      
    end 
end 
  
hbtratio=(hb/ht); 
hptratio=(hp/ht); 
mesh(hbtratio,hptratio,Koc./Ksc) 
xlabel('hb/ht') 
ylabel('hp/ht') 
zlabel('Ratio of Effective Stiffness (koc/ksc)') 
Title('Stiffness ratios vs layer thickness ratios (Case 2)') 

 
%Tunability using both piezoelectric layers for tuning 
  
clear 
%Layers:Tuning Layer ,Substrate Layer, Harvesting Layer (Case 3) 
%Define constants 
Eb=70e9;                                   %Substrate elastic modulus 
Ep=6.2e10;                                 %Piezoelectric modulus 
b=10e-3;                                   %Width of each layer 
hp=0:.1:10;                                %Thickness of piezoelectric layer  
hb=0:.1:10;                                %Thickness of tuning layer 
ht=1;                                      %Thickness of substrate 
ep=3800*8.854e-12;                         %PZT relative permittivity 
d31 = -320e-12;                            %PZT strain constant 
L=1; 
  
%basic calculations 
                                        
At=b*ht;                                   %Area of tuning layer 
  
Sp=1/Ep;                                   %PZT compliance 
Etshort=Sp^-1;                             %Modulus of short circuited tuning 
layer 
Etopen=(Sp-d31^2/ep)^-1;                   %Modulus of open circuited tuning 
layer 
Epshort=Ep; 
Epopen=(Sp-d31^2/ep)^-1 
%Convert beam to entirely substrate material 
npopen=Epopen/Eb; 
npshort=Epshort/Eb; 
ntshort=Etshort/Eb; 
ntopen=Etopen/Eb; 
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%Calclulate location of neutral axis for each circuit case 
for j=1:length(hp) 
    for i=1:length(hb) 
        %short circuit 
        Ap(j)=b*hp(j); 
        Ab(i)=b*hb(i); 
        
ybarshort(i,j)=(ntshort*ht/2*At+Ab(i)*(ht+hb(i)/2)+npshort*Ap(j)*(ht+hb(i)+hp
(j)/2))/(Ab(i)+ntshort*At+npshort*Ap(j)); 
        Ibshort(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybarshort(i,j)-(ht+hb(i)/2))^2; 
        Ipshort(i,j)=(npshort*b*(hp(j))^3)/12+npshort*Ap(j)*(ybarshort(i,j)-
(ht+hb(i)+hp(j)/2))^2; 
        Itshort(i,j)=(ntshort*b*ht^3)/12+ntshort*At*(ybarshort(i,j)-
(ht/2))^2; 
        Ishort(i,j)=Ibshort(i,j)+Itshort(i,j)+Ipshort(i,j); 
  
        Ksc(i,j)=3*Eb*Ishort(i,j)/L; 
     
        %open circuit 
        
ybaropen(i,j)=(ntopen*ht/2*At+Ab(i)*(ht+hb(i)/2)+npopen*Ap(j)*(ht+hb(i)+hp(j)
/2))/(Ab(i)+ntopen*At+npopen*Ap(j)); 
        Ibopen(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybaropen(i,j)-(ht+hb(i)/2))^2; 
        Ipopen(i,j)=(npopen*b*(hp(j))^3)/12+npopen*Ap(j)*(ybaropen(i,j)-
(ht+hb(i)+hp(j)/2))^2; 
        Itopen(i,j)=(ntopen*b*ht^3)/12+ntopen*At*(ybaropen(i,j)-(ht/2))^2; 
        Iopen(i,j)=Ibopen(i,j)+Itopen(i,j)+Ipopen(i,j); 
  
        Koc(i,j)=3*Eb*Iopen(i,j)/L; 
      
    end 
end 
  
hbtratio=(hb/ht); 
hptratio=(hp/ht); 
mesh(hbtratio,hptratio,Koc./Ksc) 
xlabel('hb/ht') 
ylabel('hp/ht') 
zlabel('Ratio of Effective Stiffness (koc/ksc)') 
Title('Stiffness ratios vs layer thickness ratios (Case 3)') 
 

 
 
%Tunability using only tuning layer for tuning 
  
clear 
%Layers:Substrate, Harvesting Layer, Tuning Layer (Case 2) 
%Define constants 
Eb=70e9;                                   %Substrate elastic modulus 
Ep=6.2e10;                                 %Piezoelectric modulus 
b=10e-3;                                   %Width of each layer 
hp=0:.1:10;                                %Thickness of piezoelectric layer  
hb=0:.1:10;                                %Thickness of tuning layer 
ht=1;                                %Thickness of substrate 
ep=3800*8.854e-12;                         %PZT relative permittivity 
d31 = -320e-12;                            %PZT strain constant 
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L=1; 
  
%basic calculations 
                                        
At=b*ht;                                   %Area of substrate layer 
  
Sp=1/Ep;                                   %PZT compliance 
Etshort=Sp^-1;                             %Modulus of short circuited tuning 
layer 
Etopen=(Sp-d31^2/ep)^-1;                   %Modulus of open circuited tuning 
layer 
Epopen=(Sp-d31^2/ep)^-1 
%Convert beam to entirely substrate material 
np=Epopen/Eb; 
ntshort=Etshort/Eb; 
ntopen=Etopen/Eb; 
  
  
%Calclulate location of neutral axis for each circuit case 
for j=1:length(hp) 
    for i=1:length(hb) 
        %short circuit 
        Ap(j)=b*hp(j); 
        Ab(i)=b*hb(i); 
        
ybarshort(i,j)=(hb(i)/2*Ab(i)+np*Ap(j)*(hb(i)+hp(j)/2)+ntshort*At*(hb(i)+hp(j
)+ht/2))/(Ab(i)+ntshort*At+np*Ap(j)); 
        Ibshort(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybarshort(i,j)-hb(i)/2)^2; 
        Ipshort(i,j)=(np*b*(hp(j))^3)/12+np*Ap(j)*(ybarshort(i,j)-
(hb(i)+hp(j)/2))^2; 
        Itshort(i,j)=(ntshort*b*ht^3)/12+ntshort*At*(ybarshort(i,j)-
(hb(i)+hp(j)+ht/2))^2; 
        Ishort(i,j)=Ibshort(i,j)+Itshort(i,j)+Ipshort(i,j); 
  
        Ksc(i,j)=3*Eb*Ishort(i,j)/L; 
     
        %open circuit 
        
ybaropen(i,j)=(hb(i)/2*Ab(i)+np*Ap(j)*(hb(i)+hp(j)/2)+ntopen*At*(hb(i)+hp(j)+
ht/2))/(Ab(i)+ntopen*At+np*Ap(j)); 
        Ibopen(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybaropen(i,j)-hb(i)/2)^2; 
        Ipopen(i,j)=(np*b*(hp(j))^3)/12+np*Ap(j)*(ybaropen(i,j)-
(hb(i)+hp(j)/2))^2; 
        Itopen(i,j)=(ntopen*b*ht^3)/12+ntopen*At*(ybaropen(i,j)-
(hb(i)+hp(j)+ht/2))^2; 
        Iopen(i,j)=Ibopen(i,j)+Itopen(i,j)+Ipopen(i,j); 
  
        Koc(i,j)=3*Eb*Iopen(i,j)/L; 
      
    end 
end 
  
hbtratio=(hb/ht); 
hptratio=(hp/ht); 
mesh(hbtratio,hptratio,Koc./Ksc) 
xlabel('hb/ht') 
ylabel('hp/ht') 
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zlabel('Ratio of Effective Stiffness (koc/ksc)') 
Title('Stiffness ratios vs layer thickness ratios (Case 2)') 
 

 
 
%Tunability using only tuning layer for tuning (Case 3) 
  
clear 
%Layers:Tuning Layer ,Substrate Layer, Harvesting Layer 
%Define constants 
Eb=70e9;                                   %Substrate elastic modulus 
Ep=6.2e10;                                 %Piezoelectric modulus 
b=10e-3;                                   %Width of each layer 
hp=0:.1:10;                                %Thickness of piezoelectric layer  
hb=0:.1:10;                                %Thickness of tuning layer 
ht=1;                                %Thickness of substrate 
ep=3800*8.854e-12;                         %PZT relative permittivity 
d31 = -320e-12;                            %PZT strain constant 
L=1; 
  
%basic calculations 
                                        
At=b*ht;                                   %Area of tuning layer 
  
Sp=1/Ep;                                   %PZT compliance 
Etshort=Sp^-1;                             %Modulus of short circuited tuning 
layer 
Etopen=(Sp-d31^2/ep)^-1;                   %Modulus of open circuited tuning 
layer 
Epopen=(Sp-d31^2/ep)^-1 
%Convert beam to entirely substrate material 
np=Epopen/Eb; 
ntshort=Etshort/Eb; 
ntopen=Etopen/Eb; 
  
  
%Calclulate location of neutral axis for each circuit case 
for j=1:length(hp) 
    for i=1:length(hb) 
        %short circuit 
        Ap(j)=b*hp(j); 
        Ab(i)=b*hb(i); 
        
ybarshort(i,j)=(ntshort*ht/2*At+Ab(i)*(ht+hb(i)/2)+np*Ap(j)*(ht+hb(i)+hp(j)/2
))/(Ab(i)+ntshort*At+np*Ap(j)); 
        Ibshort(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybarshort(i,j)-(ht+hb(i)/2))^2; 
        Ipshort(i,j)=(np*b*(hp(j))^3)/12+np*Ap(j)*(ybarshort(i,j)-
(ht+hb(i)+hp(j)/2))^2; 
        Itshort(i,j)=(ntshort*b*ht^3)/12+ntshort*At*(ybarshort(i,j)-
(ht/2))^2; 
        Ishort(i,j)=Ibshort(i,j)+Itshort(i,j)+Ipshort(i,j); 
  
        Ksc(i,j)=3*Eb*Ishort(i,j)/L; 
     
        %open circuit 
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ybaropen(i,j)=(ntopen*ht/2*At+Ab(i)*(ht+hb(i)/2)+np*Ap(j)*(ht+hb(i)+hp(j)/2))
/(Ab(i)+ntopen*At+np*Ap(j)); 
        Ibopen(i,j)=(b*hb(i)^3)/12+Ab(i)*(ybaropen(i,j)-(ht+hb(i)/2))^2; 
        Ipopen(i,j)=(np*b*(hp(j))^3)/12+np*Ap(j)*(ybaropen(i,j)-
(ht+hb(i)+hp(j)/2))^2; 
        Itopen(i,j)=(ntopen*b*ht^3)/12+ntopen*At*(ybaropen(i,j)-(ht/2))^2; 
        Iopen(i,j)=Ibopen(i,j)+Itopen(i,j)+Ipopen(i,j); 
  
        Koc(i,j)=3*Eb*Iopen(i,j)/L; 
      
    end 
end 
  
hbtratio=(hb/ht); 
hptratio=(hp/ht); 
mesh(hbtratio,hptratio,Koc./Ksc) 
xlabel('hb/ht') 
ylabel('hp/ht') 
zlabel('Ratio of Effective Stiffness (koc/ksc)') 
Title('Stiffness ratios vs layer thickness ratios (Case 3)') 
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APPENDIX B 

MATLAB CODE FOR BEAM AND PLATE MODE SHAPES 

%Calculates 1st five mode shapes for a free-free beam, clamped-free beam, 
%and a cantilever plate 
clear 
close all 
  
%values for a clamped-free beam 
lamda=[1.8751041 4.6940911 7.8547574 10.9955407 14.1371684]; 
alpha=[.7340955 1.01846644 .9992245 1.00003355 .99999855]; 
x=linspace(0,1,100); 
  
%values for a free-free beam 
mu=[0 0 4.7300408 7.8532046 10.9956078] 
beta=[0 0 0.98250222 1.00077731 .99996645 1.00000145] 
y=linspace(0,1,100); 
  
a=1; 
b=1; 
  
for i=1:length(lamda) 
    for j=1:length(x) 
X(i,j)=.5*(cosh(lamda(i)*x(j)/a)-cos(lamda(i)*x(j)/a)-
alpha(i)*[sinh(lamda(i)*x(j)/a)-sin(lamda(i)*x(j)/a)]); 
Y(i,j)=.5*(cosh(mu(i)*y(j)/b)+cos(mu(i)*y(j)/a)-
beta(i)*[sinh(mu(i)*y(j)/b)+sin(mu(i)*y(j)/b)]);     
    end 
end 
  
for j=1:length(y) 
    Y(1,j)=1; 
    Y(2,j)=sqrt(3)*(1-2*y(j)/b); 
end 
  
  
mode1=X(1,:)'*Y(1,:); 
mode2=X(1,:)'*Y(2,:); 
mode3=X(2,:)'*Y(1,:); 
mode4=X(1,:)'*Y(3,:); 
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mode5=X(2,:)'*Y(2,:); 
  
figure(1) 
mesh(x,y,mode1) 
xlabel('x/a') 
ylabel('y/b') 
title('Normalized mode shape for mode 1') 
  
figure(2) 
mesh(x,y,mode2) 
xlabel('x/a') 
ylabel('y/b') 
title('Normalized mode shape for mode 2') 
  
figure(3) 
mesh(x,y,mode3) 
xlabel('x/a') 
ylabel('y/b') 
title('Normalized mode shape for mode 3') 
  
figure(4) 
mesh(x,y,mode4) 
xlabel('x/a') 
ylabel('y/b') 
title('Normalized mode shape for mode 4') 
  
figure(5) 
mesh(x,y,mode5) 
xlabel('x/a') 
ylabel('y/b') 
title('Normalized mode shape for mode 5') 
  
figure(6) 
plot(x/a,Y(1,:),'r') 
hold 
plot(x/a,Y(2,:),'b') 
plot(x/a,Y(3,:),'g') 
plot(x/a,Y(4,:),'+') 
plot(x/a,Y(5,:),'^') 
Title('Mode shapes for a free-free beam') 
xlabel('x/b') 
ylabel('Normalized magnitude') 
legend('1st mode','2nd mode','3rd mode','4th mode','5th mode') 
  
figure(7) 
plot(x/a,X(1,:),'r') 
hold 
plot(x/a,X(2,:),'b') 
plot(x/a,X(3,:),'g') 
plot(x/a,X(4,:),'+') 
plot(x/a,X(5,:),'^') 
Title('Mode shapes for a clamped-free beam') 
xlabel('x/a') 
ylabel('Normalized magnitude') 
legend('1st mode','2nd mode','3rd mode','4th mode','5th mode') 
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APPENDIX C 

MATHCAD CODE FOR STATIC BEAM MODEL 

 

Find Curvature 

 

Energy Generation from a Static Input

Calculate neutral axis

nt
Et
Eb

:= np
Ep
Eb

:=
Ep3

Vp
tp

:= Et3
Vt
tp

:=

Ap np b⋅ tp⋅:=

At nt b⋅ tp⋅:=

Ab b tb⋅:=
A Ap At+ Ab+:=

ybar

tp
2

Ap⋅
tb
2

Ab⋅− tb
tp
2

+⎛⎜
⎝

⎞⎟
⎠

At⋅−⎡⎢
⎣

⎤⎥
⎦

A
:=
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B b 3 Eb⋅ tb⋅ ybar2
⋅ 3 Ep⋅ ybar2

⋅ tp⋅+ 3 Et⋅ tb2
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⋅+ Et tp3
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3 Et⋅ tp2
⋅ ybar⋅ Eb tb3

⋅+ 3 Eb⋅ tb2
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⋅+ 3 Ep⋅ tp2

⋅ ybar⋅−+

...⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

κ
3−

2
2− L⋅ 2 x⋅+

B
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3
2
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B
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2
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B
⋅ Ep3⋅

⎛
⎜
⎝

⎞
⎟
⎠

+
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U1

0

L

x

0

b

z
tb− tp−

tp−
ydUt

⌠
⎮
⌡

d
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⌠
⎮
⎮
⎮
⌡

d

⌠
⎮
⎮
⎮
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⌠
⎮
⌡
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⎟
⎠

⌠
⎮
⎮
⎮
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d

⌠
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⎮
⎮
⌡
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⎜
⎝
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⎠

⌠
⎮
⎮
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d

⌠
⎮
⎮
⎮
⌡
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0
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⌠
⎮
⌡

d

0

tp
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⌠
⎮
⌡
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...
⎡⎢
⎢
⎢
⎢
⎢
⎣
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⎥
⎥
⎥
⎥
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...

Define stresses of each layer

σt Et κ y ybar−( )⋅ d31 Et3⋅−⎡⎣ ⎤⎦⋅:=

σb Eb κ y ybar−( )⋅⎡⎣ ⎤⎦⋅:=

σp Ep κ y ybar−( )⋅ d31 Ep3⋅−⎡⎣ ⎤⎦⋅:=

dUp
1 σp

2
⋅

2 Ep⋅
d31 Ep3⋅ σp⋅+

1
2
ε⋅ Ep32
⋅+:=

dUt
1 σp

2
⋅

2 Ep⋅
d31 Et3⋅ σp⋅+

1
2
ε⋅ Et32
⋅+:=

dUb
1

2 Eb⋅
σb

2
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d
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⋅ tb2
⋅ ybar⋅−

2 tb⋅ ybar⋅ B⋅ 2 tp⋅ tb⋅ B⋅+ 2 b⋅ Ep⋅ tp⋅ tb3
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⋅ 18 tb⋅ Ep3
⋅ d312

⋅ b2
⋅ tp5

⋅ ybar⋅−+

...

6 tb2
⋅ Ep2

⋅ d312
⋅ b⋅ tp2

⋅ B⋅ 12 tb2
⋅ Ep2

⋅ d312
⋅ b⋅ tp⋅ ybar⋅ B⋅−+

...

24− tb⋅ Ep2
⋅ d312

⋅ b⋅ tp⋅ ybar2
⋅ B⋅( ) 12 Eb⋅ tb3

⋅ b2
⋅ Ep2

⋅ d312
⋅ tp3

⋅ ybar⋅−+

...

36− Eb⋅ tb2
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp3
⋅ ybar2

⋅( ) 36 Eb⋅ tb⋅ b2
⋅ Ep2

⋅ d312
⋅ tp2

⋅ ybar4
⋅++

...

12 Eb⋅ tb3
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp2
⋅ ybar2

⋅ 9 Eb⋅ tb⋅ b2
⋅ Ep2

⋅ d312
⋅ tp4

⋅ ybar2
⋅++

...

36 Eb⋅ tb2
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp2
⋅ ybar3

⋅ 12 tb⋅ Ep2
⋅ d312

⋅ b⋅ tp2
⋅ ybar⋅ B⋅−+

...

36− Eb⋅ tb⋅ b2
⋅ Ep2

⋅ d312
⋅ tp3

⋅ ybar3
⋅( ) 9 Eb⋅ tb2

⋅ b2
⋅ Ep2

⋅ d312
⋅ tp4

⋅ ybar⋅++

...

⋅:=
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APPENDIX D 

MATHCAD CODE FOR DYNAMIC BEAM MODEL 

 

 

Energy Generation from a Dynamic Input

Calculate neutral axis

nt
Et
Eb

:= np
Ep
Eb

:=

Ep3
Vp
tp

:= Et3
Vt
tp

:=Ap np b⋅ tp⋅:=

At nt b⋅ tp⋅:=

M x( )
x
dw x( )d

d
:=Ab b tb⋅:=

A Ap At+ Ab+:=

ybar

tp
2

Ap⋅
tb
2

Ab⋅− tb
tp
2

+⎛⎜
⎝

⎞⎟
⎠

At⋅−⎡⎢
⎣

⎤⎥
⎦

A
:=

M x( )
tb−

0
yEb κ⋅ y ybar−( )⋅ y ybar−( )⋅ b⋅

⌠
⎮
⌡

d
0

tp
yEp κ y ybar−( )⋅ d31 Ep3⋅−⎡⎣ ⎤⎦⋅ y ybar−( )⋅ b⋅

⌠
⎮
⌡

d+

tb− tp−

tb−
yEt κ y ybar−( )⋅ d31 Et3⋅−⎡⎣ ⎤⎦⋅ y ybar−( )⋅ b⋅

⌠
⎮
⌡

d+

...

B b Eb tb3
⋅ 3 Eb⋅ tb2

⋅ ybar⋅+ 3 Eb⋅ tb⋅ ybar2
⋅+ Ep tp3

⋅+ 3 Ep⋅ tp2
⋅ ybar⋅− 3 Ep⋅ ybar2

⋅ tp⋅+

3 Et⋅ tb2
⋅ tp⋅ 3 Et⋅ tb⋅ tp2

⋅+ Et tp3
⋅+ 6 Et⋅ ybar⋅ tb⋅ tp⋅+ 3 Et⋅ tp2

⋅ ybar⋅+ 3 Et⋅ ybar2
⋅ tp⋅++

...⎛
⎜
⎝

⎞
⎟
⎠

⋅:=
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κ
3−

2
2 Et⋅ b⋅ d31⋅ tb⋅ tp⋅ Et b⋅ d31⋅ tp2

⋅+ 2 Et⋅ b⋅ ybar⋅ d31⋅ tp⋅+

B
⋅ Et3⋅

3−
2

Ep− b⋅ tp2
⋅ d31⋅ 2 Ep⋅ b⋅ ybar⋅ tp⋅ d31⋅+

B
⋅ Ep3⋅

⎛
⎜
⎝

⎞
⎟
⎠

3
x
dw x( )d

d
B

⋅++

...:=

Define stresses of each layer

σt Et κ y ybar−( )⋅ d31 Et3⋅−⎡⎣ ⎤⎦⋅:=

σb Eb κ y ybar−( )⋅⎡⎣ ⎤⎦⋅:=

σp Ep κ y ybar−( )⋅ d31 Ep3⋅−⎡⎣ ⎤⎦⋅:=

dUp
1 σp

2
⋅

2 Ep⋅
d31 Ep3⋅ σp⋅+

1
2
ε⋅ Ep32
⋅+:=

dUt
1 σp

2
⋅

2 Ep⋅
d31 Et3⋅ σp⋅+

1
2
ε⋅ Et32
⋅+:=

dUb
1

2 Eb⋅
σb

2
⋅:=

U1

0

L

x

0

b

z
tb− tp−

tp−
ydUt

⌠
⎮
⌡

d
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⌠
⎮
⎮
⎮
⌡

d

⌠
⎮
⎮
⎮
⌡

d:=

U2

0

L

x

0

b

z
tb−

0
ydUb

⌠
⎮
⌡

d
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⌠
⎮
⎮
⎮
⌡

d

⌠
⎮
⎮
⎮
⌡

d:=

U3

0

L

x

0

b

z
0

tp
ydUp

⌠
⎮
⌡

d
⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⌠
⎮
⎮
⎮
⌡

d

⌠
⎮
⎮
⎮
⌡

d:=
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Q1
Vp

U1d
d

:= Q2
Vp

U2d
d

:= Q3
Vp

U3d
d

:=

Qgen
3−

2
b⋅ Ep⋅

d31
tp

⋅ dw L( )⋅

6 b⋅ ybar2
⋅ Ep⋅ tb2

⋅ tp⋅ tb2 B⋅− 2 tb⋅ ybar⋅ B⋅−

2− tb⋅ tp⋅ B⋅( ) 3 b⋅ ybar⋅ Ep⋅ tb2
⋅ tp2

⋅+ 2 b⋅ ybar⋅ Ep⋅ tb3
⋅ tp⋅++

...

9 b⋅ ybar2
⋅ Ep⋅ tb⋅ tp2

⋅ 3 b⋅ Ep⋅ tp3
⋅ tb2

⋅− b Ep⋅ tp2
⋅ tb3

⋅−+

...

6 tb⋅ b⋅ ybar3
⋅ tp⋅ Ep⋅ 3 b⋅ Ep⋅ tp4

⋅ tb⋅− 6 Eb⋅ tb⋅ b⋅ tp⋅ ybar3
⋅++

...

2 Eb⋅ tb3
⋅ b⋅ tp⋅ ybar⋅ 3 Eb⋅ tb⋅ b⋅ tp2

⋅ ybar2
⋅− 6 Eb⋅ tb2

⋅ b⋅ tp⋅ ybar2
⋅++

...

Eb− tb3
⋅ b⋅ tp2

⋅( ) 3 Eb⋅ tb2
⋅ b⋅ tp2

⋅ ybar⋅− 5 b⋅ Ep⋅ tp4
⋅ ybar⋅+ b Ep⋅ tp5

⋅−+

...

6 b⋅ ybar3
⋅ tp2

⋅ Ep⋅ 9 b⋅ ybar2
⋅ Ep⋅ tp3

⋅−+

...

B2
⋅:=

Cfree 2Vp
U1d

d

2

2Vp
U2d

d

2
+ 2Vp

U3d

d

2
+:=

Cfree
1
4

b⋅ L⋅

4 tp⋅ ε⋅ B2
⋅ 3 Eb⋅ tb3

⋅ b2
⋅ Ep2

⋅ d312
⋅ tp4

⋅+ 36 Eb⋅ tb2
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp2
⋅ ybar3

⋅+

36− Eb⋅ tb2
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp3
⋅ ybar2

⋅( ) 12 tb3
⋅ Ep3

⋅ d312
⋅ b2

⋅ ybar⋅ tp3
⋅−+

...

12− tb2
⋅ Ep2

⋅ d312
⋅ b⋅ ybar⋅ tp⋅ B⋅( ) 4 tb⋅ Ep⋅ d312

⋅ B2
⋅+ 12 tb⋅ Ep2

⋅ d312
⋅ b⋅ tp3

⋅ B⋅++

...

36 tb2
⋅ Ep3

⋅ d312
⋅ b2

⋅ ybar3
⋅ tp2

⋅ 9 tb⋅ Ep3
⋅ d312

⋅ b2
⋅ tp6

⋅++

...

24− tb⋅ Ep2
⋅ d312

⋅ b⋅ ybar2
⋅ tp⋅ B⋅( ) 27 tb2

⋅ Ep3
⋅ d312

⋅ b2
⋅ ybar⋅ tp4

⋅−+

...

21− b2
⋅ ybar⋅ tp6

⋅ d312
⋅ Ep3

⋅( ) 18 tb⋅ Ep3
⋅ d312

⋅ b2
⋅ ybar⋅ tp5

⋅−+

...

57 b2
⋅ ybar2

⋅ Ep3
⋅ d312

⋅ tp5
⋅ 27 tb⋅ Ep3

⋅ d312
⋅ b2

⋅ ybar2
⋅ tp4

⋅−+

...

12 tb⋅ Ep2
⋅ d312

⋅ b⋅ ybar⋅ tp2
⋅ B⋅ 6 tb2

⋅ Ep2
⋅ d312

⋅ b⋅ tp2
⋅ B⋅+ 3 tb3

⋅ Ep3
⋅ d312

⋅ b2
⋅ tp4

⋅++

...

36 tb⋅ Ep3
⋅ d312

⋅ b2
⋅ ybar3

⋅ tp3
⋅ 36 tb⋅ Ep3

⋅ d312
⋅ b2

⋅ ybar4
⋅ tp2

⋅+ 9 tb2
⋅ Ep3

⋅ d312
⋅ b2

⋅ tp5
⋅++

...

12 tb3
⋅ Ep3

⋅ d312
⋅ b2

⋅ ybar2
⋅ tp2

⋅ 72 b2
⋅ ybar3

⋅ tp4
⋅ d312

⋅ Ep3
⋅−+

...

36 b2
⋅ ybar4

⋅ tp3
⋅ d312

⋅ Ep3
⋅ 9 Eb⋅ tb2

⋅ b2
⋅ Ep2

⋅ d312
⋅ tp4

⋅ ybar⋅++

...

36− Eb⋅ tb⋅ b2
⋅ Ep2

⋅ d312
⋅ tp3

⋅ ybar3
⋅( ) 12 Eb⋅ tb3

⋅ b2
⋅ Ep2

⋅ d312
⋅ tp3

⋅ ybar⋅−+

...

12 Eb⋅ tb3
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp2
⋅ ybar2

⋅ 3 b2
⋅ Ep3

⋅ d312
⋅ tp7

⋅++

...

36 Eb⋅ tb⋅ b2
⋅ Ep2

⋅ d312
⋅ tp2

⋅ ybar4
⋅ 4 tp⋅ Ep⋅ d312

⋅ B2
⋅− 9 Eb⋅ tb⋅ b2

⋅ Ep2
⋅ d312

⋅ tp4
⋅ ybar2

⋅++

...

B2 tp2
⋅

⋅:=
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Vgen
Qgen
Cfree

:=

Vgen 6− Ep⋅ d31⋅ tp⋅
dw L( )

L
⋅

6 b⋅ ybar2
⋅ Ep⋅ tb2

⋅ tp⋅ tb2 B⋅− 2 tb⋅ ybar⋅ B⋅− 2 tb⋅ tp⋅ B⋅−

3 b⋅ ybar⋅ Ep⋅ tb2
⋅ tp2

⋅ 2 b⋅ ybar⋅ Ep⋅ tb3
⋅ tp⋅+ 9 b⋅ ybar2

⋅ Ep⋅ tb⋅ tp2
⋅++

...

3− b⋅ Ep⋅ tp3
⋅ tb2

⋅( ) b Ep⋅ tp2
⋅ tb3

⋅− 6 tb⋅ b⋅ ybar3
⋅ tp⋅ Ep⋅+ 3 b⋅ Ep⋅ tp4

⋅ tb⋅−+

...

6 Eb⋅ tb⋅ b⋅ tp⋅ ybar3
⋅ 2 Eb⋅ tb3

⋅ b⋅ tp⋅ ybar⋅+ 3 Eb⋅ tb⋅ b⋅ tp2
⋅ ybar2

⋅−+

...

6 Eb⋅ tb2
⋅ b⋅ tp⋅ ybar2

⋅ Eb tb3
⋅ b⋅ tp2

⋅− 3 Eb⋅ tb2
⋅ b⋅ tp2

⋅ ybar⋅−+

...

5 b⋅ Ep⋅ tp4
⋅ ybar⋅ b Ep⋅ tp5

⋅− 6 b⋅ ybar3
⋅ tp2

⋅ Ep⋅+ 9 b⋅ ybar2
⋅ Ep⋅ tp3

⋅−+

...

4 tp⋅ ε⋅ B2
⋅ 3 Eb⋅ tb3

⋅ b2
⋅ Ep2

⋅ d312
⋅ tp4

⋅+

36 Eb⋅ tb2
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp2
⋅ ybar3

⋅+

...

36− Eb⋅ tb2
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp3
⋅ ybar2

⋅( ) 12 tb3
⋅ Ep3

⋅ d312
⋅ b2

⋅ ybar⋅ tp3
⋅−+

...

12− tb2
⋅ Ep2

⋅ d312
⋅ b⋅ ybar⋅ tp⋅ B⋅( ) 4 tb⋅ Ep⋅ d312

⋅ B2
⋅++

...

12 tb⋅ Ep2
⋅ d312

⋅ b⋅ tp3
⋅ B⋅ 36 tb2

⋅ Ep3
⋅ d312

⋅ b2
⋅ ybar3

⋅ tp2
⋅++

...

9 tb⋅ Ep3
⋅ d312

⋅ b2
⋅ tp6

⋅ 24 tb⋅ Ep2
⋅ d312

⋅ b⋅ ybar2
⋅ tp⋅ B⋅−+

...

27− tb2
⋅ Ep3

⋅ d312
⋅ b2

⋅ ybar⋅ tp4
⋅( ) 21 b2

⋅ ybar⋅ tp6
⋅ d312

⋅ Ep3
⋅−+

...

18− tb⋅ Ep3
⋅ d312

⋅ b2
⋅ ybar⋅ tp5

⋅( ) 57 b2
⋅ ybar2

⋅ Ep3
⋅ d312

⋅ tp5
⋅++

...

27 tb⋅ Ep3
⋅ d312

⋅ b2
⋅ ybar2

⋅ tp4
⋅ 12 tb⋅ Ep2

⋅ d312
⋅ b⋅ ybar⋅ tp2

⋅ B⋅−+

...

6 tb2
⋅ Ep2

⋅ d312
⋅ b⋅ tp2

⋅ B⋅ 3 tb3
⋅ Ep3

⋅ d312
⋅ b2

⋅ tp4
⋅++

...

36 tb⋅ Ep3
⋅ d312

⋅ b2
⋅ ybar3

⋅ tp3
⋅ 36 tb⋅ Ep3

⋅ d312
⋅ b2

⋅ ybar4
⋅ tp2

⋅++

...

9 tb2
⋅ Ep3

⋅ d312
⋅ b2

⋅ tp5
⋅ 12 tb3

⋅ Ep3
⋅ d312

⋅ b2
⋅ ybar2

⋅ tp2
⋅++

...

72− b2
⋅ ybar3

⋅ tp4
⋅ d312

⋅ Ep3
⋅( ) 36 b2

⋅ ybar4
⋅ tp3

⋅ d312
⋅ Ep3

⋅++

...

9 Eb⋅ tb2
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp4
⋅ ybar⋅ 36 Eb⋅ tb⋅ b2

⋅ Ep2
⋅ d312

⋅ tp3
⋅ ybar3

⋅−+

...

12− Eb⋅ tb3
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp3
⋅ ybar⋅+

...

12 Eb⋅ tb3
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp2
⋅ ybar2

⋅ 3 b2
⋅ Ep3

⋅ d312
⋅ tp7

⋅++

...

36 Eb⋅ tb⋅ b2
⋅ Ep2

⋅ d312
⋅ tp2

⋅ ybar4
⋅ 4 tp⋅ Ep⋅ d312

⋅ B2
⋅−+

...

9 Eb⋅ tb⋅ b2
⋅ Ep2

⋅ d312
⋅ tp4

⋅ ybar2
⋅+

...

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅:=
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Ugen
1
2

Cfree⋅ Vgen2
⋅:=

Ugen
9 b⋅ Ep2

⋅ d312
⋅ dw L( )2

⋅

2 L⋅ B2
⋅

3 b⋅ Ep⋅ tb⋅ tp4
⋅ 3 b⋅ Ep⋅ tp3

⋅ tb2
⋅+ tb2 B⋅+ 3 b⋅ Ep⋅ tp2

⋅ tb2
⋅ ybar⋅−

2 tb⋅ ybar⋅ B⋅ 2 tp⋅ tb⋅ B⋅+ 2 b⋅ Ep⋅ tp⋅ tb3
⋅ ybar⋅− b Ep⋅ tp2

⋅ tb3
⋅++

...

6− b⋅ Ep⋅ tp⋅ tb2
⋅ ybar2

⋅( ) 6 tb⋅ b⋅ Ep⋅ tp⋅ ybar3
⋅−+

...

9− b⋅ Ep⋅ tp2
⋅ tb⋅ ybar2

⋅( ) 6 Eb⋅ tb2
⋅ b⋅ tp⋅ ybar2

⋅−+

...

3 Eb⋅ tb2
⋅ b⋅ tp2

⋅ ybar⋅ Eb tb3
⋅ b⋅ tp2

⋅+ 6 Eb⋅ tb⋅ b⋅ tp⋅ ybar3
⋅−+

...

3 Eb⋅ tb⋅ b⋅ tp2
⋅ ybar2

⋅ 2 Eb⋅ tb3
⋅ b⋅ tp⋅ ybar⋅− 6 b⋅ Ep⋅ tp2

⋅ ybar3
⋅−+

...

5− b⋅ Ep⋅ tp4
⋅ ybar⋅( ) b Ep⋅ tp5

⋅+ 9 b⋅ Ep⋅ tp3
⋅ ybar2

⋅++

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

2

57 b2
⋅ Ep3

⋅ tp5
⋅ d312

⋅ ybar2
⋅ 21 b2

⋅ Ep3
⋅ tp6

⋅ d312
⋅ ybar⋅−

36 b2
⋅ Ep3

⋅ tp3
⋅ d312

⋅ ybar4
⋅ 72 b2

⋅ Ep3
⋅ tp4

⋅ d312
⋅ ybar3

⋅−+

...

9 tb2
⋅ Ep3

⋅ d312
⋅ b2

⋅ tp5
⋅ 9 tb⋅ Ep3

⋅ d312
⋅ b2

⋅ tp6
⋅+ 4 tp⋅ Ep⋅ d312

⋅ B2
⋅−+

...

4 tb⋅ Ep⋅ d312
⋅ B2

⋅ 3 b2
⋅ Ep3

⋅ d312
⋅ tp7

⋅+ 3 tb3
⋅ Ep3

⋅ d312
⋅ b2

⋅ tp4
⋅++

...

4 tp⋅ ε⋅ B2
⋅ 3 Eb⋅ tb3

⋅ b2
⋅ Ep2

⋅ d312
⋅ tp4

⋅++

...

36 tb⋅ Ep3
⋅ d312

⋅ b2
⋅ tp3

⋅ ybar3
⋅ 27 tb⋅ Ep3

⋅ d312
⋅ b2

⋅ tp4
⋅ ybar2

⋅−+

...

36 tb⋅ Ep3
⋅ d312

⋅ b2
⋅ tp2

⋅ ybar4
⋅ 12 tb⋅ Ep2

⋅ d312
⋅ b⋅ tp3

⋅ B⋅++

...

27− tb2
⋅ Ep3

⋅ d312
⋅ b2

⋅ tp4
⋅ ybar⋅( ) 12 tb3

⋅ Ep3
⋅ d312

⋅ b2
⋅ tp2

⋅ ybar2
⋅++

...

12− tb3
⋅ Ep3

⋅ d312
⋅ b2

⋅ tp3
⋅ ybar⋅( ) 36 tb2

⋅ Ep3
⋅ d312

⋅ b2
⋅ tp2

⋅ ybar3
⋅++

...

18− tb⋅ Ep3
⋅ d312

⋅ b2
⋅ tp5

⋅ ybar⋅( ) 6 tb2
⋅ Ep2

⋅ d312
⋅ b⋅ tp2

⋅ B⋅++

...

12− tb2
⋅ Ep2

⋅ d312
⋅ b⋅ tp⋅ ybar⋅ B⋅( ) 24 tb⋅ Ep2

⋅ d312
⋅ b⋅ tp⋅ ybar2

⋅ B⋅−+

...

12− Eb⋅ tb3
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp3
⋅ ybar⋅( )+

...

36− Eb⋅ tb2
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp3
⋅ ybar2

⋅+

...

36 Eb⋅ tb⋅ b2
⋅ Ep2

⋅ d312
⋅ tp2

⋅ ybar4
⋅ 12 Eb⋅ tb3

⋅ b2
⋅ Ep2

⋅ d312
⋅ tp2

⋅ ybar2
⋅++

...

9 Eb⋅ tb⋅ b2
⋅ Ep2

⋅ d312
⋅ tp4

⋅ ybar2
⋅ 36 Eb⋅ tb2

⋅ b2
⋅ Ep2

⋅ d312
⋅ tp2

⋅ ybar3
⋅++

...

12− tb⋅ Ep2
⋅ d312

⋅ b⋅ tp2
⋅ ybar⋅ B⋅( ) 36 Eb⋅ tb⋅ b2

⋅ Ep2
⋅ d312

⋅ tp3
⋅ ybar3

⋅−+

...

9 Eb⋅ tb2
⋅ b2

⋅ Ep2
⋅ d312

⋅ tp4
⋅ ybar⋅+

...

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅:=
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APPENDIX E 

MATLAB CODE FOR EXTRACTING FREQUENCY DATA FROM SIGLAB 

close all 
clear all 
  
  
for i=100:199 
filename= ['Beam' num2str(i) '.vna']; 
  
load (filename, '-mat');  
  
[X,I]=max(20*log10(abs(SLm.xcmeas(1,2).xfer))); 
F(i-99)=SLm.fdxvec(I); 
  
end 
  
B=[100 300 630 1200 2530 5030 10000 20000 40000 80000 166000 330000 640000 
1330000]; 
  
for j=0:16383 
    binary=dec2bin(j,14); 
    for i=1:14 
        decimal(i)=bin2dec(binary(i)); 
    end 
    decimal=fliplr(decimal); 
    C(j+1)=B*decimal'; 
end 
  
Ccap(1)=C(1); 
  
k=[11:10:601 701:100:3101 4101:1000:16101]; 
for i=2:length(k)+1 
    Ccap(i)=C(k(i-1)); 
end 
  
Ccap(100)=10000000; 
  
semilogx(Ccap/100000,F) 
 

 
load Beam1sweepoc.vna -mat 
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figure(1); 
plot(SLm.fdxvec, 20*log10(abs(SLm.xcmeas(1,2).xfer)), 'r'); 
  
  
title('5 kHz Random Signal Sweep of Beam 1'); 
xlabel('Freq. (Hz)'), ylabel('Mag (dB)'); 
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