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NEUTRINO MIXING, OSCILLATIONS AND DECOHERENCE IN

ASTROPHYSICS AND COSMOLOGY

Chiu Man Ho, PhD

University of Pittsburgh, 2007

This thesis focuses on a finite-temperature field-theoretical treatment of neutrino oscillations in

hot and dense media. By implementing the methods of real-time non-equilibrium field theory, we

study the dynamics of neutrino mixing, oscillations, decoherence and relaxation in astrophysical

and cosmological environments. We first study neutrino oscillations in the early universe in the

temperature regime prior to the epoch of Big Bang Nucleosynthesis (BBN). The dispersion relations

and mixing angles in the medium are found to be helicity-dependent, and a resonance like the

Mikheyev-Smirnov-Wolfenstein (MSW) effect is realized. The oscillation time scales are found to

be longer near a resonance and shorter for off-resonance high-energy neutrinos. We then investigate

the space-time propagation of neutrino wave-packets just before BBN. A phenomenon of ”frozen

coherence” is found to occur if the longitudinal dispersion catches up with the progressive separation

between the mass eigenstates, before the coherence time limit has been reached. However, the

transverse dispersion occurs at a much shorter scale than all other possible time scales in the

medium, resulting in a large suppression in the transition probabilities from electron-neutrino to

muon-neutrino. We also explore the possibility of charged lepton mixing as a consequence of

neutrino mixing in the early Universe. We find that charged leptons, like electrons and muons,

can mix and oscillate resonantly if there is a large lepton asymmetry in the neutrino sector. We

study sterile neutrino production in the early Universe via active-sterile oscillations. We provide

a quantum field theoretical reassessment of the quantum Zeno suppression on the active-to-sterile

transition probability and its time average. We determine the complete conditions for quantum

Zeno suppression. Finally, we examine the interplay between neutrino mixing, oscillations and

equilibration in a thermal medium, and the corresponding non-equilibrium dynamics.
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1.0 INTRODUCTION

In this beginning chapter, we first give an overview on the current treatment of active and sterile

neutrinos in hot and dense media. Then we explain the motivations of this work and provide a

brief outline and summary to the thesis.

Readers who prefer getting the main ideas of this thesis are suggested to read the abstract and

this introduction chapter first. To learn the main results in each chapter without absorbing into

the technical details, they are encouraged to read the summary chapter at the end of this thesis.

Interested readers can continue to read the main text of Chapters 2-10 for fun.

1.1 OVERVIEW: NEUTRINOS IN PARTICLE PHYSICS, ASTROPHYSICS

AND COSMOLOGY

The Standard Model of particle physics is a well-tested theory that unifies the weak and electro-

magnetic interactions of elementary particles. In this model, neutrinos are introduced as massless

particles. However, by the time of the 2002 Nobel Prize in Physics on “the pioneering detection

of cosmic neutrinos”, a wealth of experimental data have confirmed that neutrinos are massive

and that different flavors of neutrinos can mix and oscillate [1, 2, 3, 4, 5]. Thus, after almost four

decades of the prescient suggestion that neutrinos may oscillate [6, 7], neutrino oscillation has now

become the first indisputable hint of new physics beyond the Standard Model. Increasing effort

is devoted to probe into this new physics. While accelerator and reactor experiments measure the

mass-squared difference of neutrinos, the current cosmological observations suggest that the sum

of the masses of all neutrino species has to be smaller than roughly 1 eV [8].

Neutrinos are the bridge between particle physics, nuclear physics, astrophysics and cosmology

[9, 10, 11, 12, 13, 14]. The astrophysical and cosmological systems serve as excellent “laboratories”
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to explore the properties of neutrinos under conditions not accessible in terrestrial high energy

experiments. Meanwhile, comprehension of neutrino physics, a crucial part of particle physics, is

indispensable for understanding the universe.

In addition to the three active neutrinos in the Standard Model, an extra light neutrino has been

proposed in order to explain the LSND anomaly [15, 16], if it is interpreted along with the solar

and atmospheric neutrino data as arising from vacuum neutrino oscillations. However, the limit on

the number of active light neutrinos from the Z0 decay width suggests that a fourth neutrino must

be sterile, namely without weak interactions.

Sterile neutrinos are ubiquitous in extensions beyond Standard Model [9, 10, 11, 12]. They

are emerging as plausible cold or warm dark matter candidates [17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30]. They may also be the potentially important ingredients in stellar collapse

[31, 32] and primordial nucleosynthesis [33, 34], and may provide an explanation to pulsar “kicks”

via asymmetric neutrino emission [35, 36, 37].

Being weak interaction singlets, sterile neutrinos can only be produced via active-sterile mix-

ing and oscillations. Hence any assessment on the possibility of sterile neutrinos as dark matter

candidates or their role in supernovae must begin with understanding their production mechanism.

Recently, the MiniBooNE collaboration [38] has reported results in contradiction with those

from LSND [15, 16] which suggested a fourth sterile neutrino in ∆m2 ∼ 1 eV2 range. Although

the MiniBooNE results hint at an excess of events below 475 MeV, the analysis distinctly rules

out a fourth light sterile neutrino with mass scale ∆m2 ∼ 1 eV2. However, a recent analysis [39]

suggests that while (3 + 1) schemes are strongly disfavoured, (3 + 2) neutrino schemes provide a

good fit to both the LSND and MiniBooNE data, including the low energy events. This is due to

the possibility of CP violation in (3 + 2) schemes, although significant tension remains.

Furthermore, sterile neutrinos as dark matter candidates would require masses in the keV

range[17, 18, 19, 20, 21, 22, 23, 25, 27, 28]. This means that the MiniBooNE result does not

actually rule out the possibility of a heavier variety of sterile neutrinos as dark matter candidates.

The radiative decay of keV neutrinos would contribute to the X-ray background [21, 40]. Analysis

from the X-ray background in clusters can provide constraints on the masses and mixing angles

of sterile neutrinos [25, 41, 42, 43], and recently it has been suggested that precision laboratory

experiments on β decay in tritium may be sensitive to keV neutrinos [44].

Neutrino mixing and oscillations in extreme conditions of high temperature and density play

a fundamental role in astrophysics and cosmology [14, 27, 45, 46, 47, 48, 49]. It is now widely
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accepted that the resonant flavor mixing due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect

in the sun can provide a concrete explanation to the solar neutrino problem [50, 51]. During Big

Bang Nucleosynthesis (BBN), neutrino oscillations may cause distortions in the electron-neutrino

abundance, which may affect the neutron-to-proton ratio and hence the mass fraction of 4He due to

BBN [14]. An important aspect of neutrino oscillations is lepton number violation, leading to the

suggestion that the observed baryon asymmetry may actually originate from the lepton sector. This

possibility is known as leptogenesis [52, 53, 54]. The dynamical aspects of neutrino oscillations in

hot and dense media are crucial to the explosion mechanism of core-collapse supernovae [13, 55, 56],

and the formation, evolution and cooling of neutron stars [46, 47, 48].

The non-equilibrium dynamics of neutrino mixing, oscillations and equilibration is of substan-

tial relevance within all the settings mentioned above. Neutrino mixing and oscillations introduce

a novel aspect to the description of flavor equilibration. This is because neutrinos are produced as

“flavor eigenstates” in weak interaction vertices, but propagate as a linear superposition of mass

eigenstates. The neutrino mixing matrix is off-diagonal in the neutrino flavor basis while collisional

processes due to weak interactions are flavor diagonal. This leads to a competition between pro-

duction, propagation and relaxation, resulting in a rich and complex dynamics. Therefore, in a hot

and dense medium where neutrino interactions cannot be neglected, collisional processes must be

studied on the same footing as the dynamics of oscillations.

Neutrino propagation in a cold medium has been first studied in [50] wherein the refractive

index of electron neutrinos was obtained. The early studies of neutrino propagation focused on

the neutrino dispersion relations and damping rates in the temperature regime relevant for stellar

evolution or BBN [14, 57]. The matter effects of neutrino oscillations in the early universe have been

investigated in [14, 57, 58, 59]. A consistent calculation of the neutrino dispersion relations in a

hot and dense medium, implementing the techniques of quantum field theory at finite temperature,

was provided in [57].

Pioneering work on the dynamics of neutrino mixing and oscillations in a medium was cast in

terms of the 2×2 Bloch-type equations akin to a spin in a magnetic field [9, 10, 11, 50, 58, 60]. This

is a single-particle quantum-mechanical description, wherein the dynamical evolution is described

in terms of an effective Hamiltonian for a two-level system. Another early approach relies on a

Wigner-Weisskopf effective Hamiltonian for the quantum-mechanical states in the medium [61]. For

the single-particle states, the equation of motion for neutrino oscillations has been derived from

the underlying field theory in the relativistic limit [13, 62], which was then extended to a kinetic
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description of mixing and oscillations in a medium [12, 58, 63, 64, 65, 66].

In all of the approaches mentioned above, the medium effects are always input into the single-

particle equation of motion or Schrodinger-like single-particle wavefunctions, after computing the

self-energy contributions from charged and neutral currents in a medium with charged leptons,

neutrinos and hadrons or quarks. These have been implemented to study the evolution of the

neutrino distribution functions in supernovae [32, 67, 68] and the early universe [14, 59, 69, 70, 71,

72], as well as to study the relic neutrino asymmetry [73].

1.2 MOTIVATIONS

The above discussion highlights that the non-equilibrium dynamics of neutrino mixing and oscil-

lations in a hot and dense medium is mostly studied within the framework of a single-particle

description. However, a single-particle formulation is inadequate in a hot and dense medium where

collective many-body effects may be predominant. In a recent study, the validity of the single-

particle picture that underlies the kinetic equations for neutrinos in a medium has been critically

re-examined [74].

While the kinetic approach in principle yields the time evolution of the distribution functions

[58, 65, 66], it usually invokes a variety of approximations. This includes neglecting interference

between particles and antiparticles by restricting the Hamiltonian [65] or introducing some time

averaging, and restriction to single-particle state evolution [66]. For a thorough discussion of the

kinetic approach to mixing and oscillations, as well as the approximations involved, the reader is

referred to [14, 63, 75].

Furthermore, numerical studies of sterile neutrinos as possible dark matter candidates [17, 20,

76, 77, 78] usually rely on a semi-phenomenological approach which inputs an effective production

rate in terms of a time averaged transition probability [76, 77].

The main point in the above discussion is to highlight that there is a lack of consis-

tency in the current approach to study neutrino mixing and oscillations in a medium

— the results of a quantum field-theoretical calculation of the index of refraction or

relaxation rates in the medium are input into a single-particle quantum-mechanical

description of mixing and oscillations based on Bloch-type equations. This is at best
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a semi-phenomenological approach.

There are many fundamental reasons to study neutrino mixing and oscillations in

hot and dense media at a deeper level: (i) Neutrino mixing is the first indisputable

experimental evidence of physics beyond the Standard Model; (ii) The MSW resonance

in the sun can provide a concrete explanation to the solar neutrino problem [50,

51]; (iii) BBN is particularly sensitive to the spectrum and oscillations of electron-

neutrinos [14]; (iv) Leptogenesis in the early universe may be the relevant mechanism

for the observed baryon asymmetry [52, 53, 54]; (v) Just like the cosmic microwave

background (CMB), there is a cosmic neutrino background left over from the Big Bang;

(vi) Dynamical aspects of neutrino oscillations are crucial to the explosion mechanism

of core-collapse supernovae [13, 55, 56], and the formation, evolution and cooling of

neutron stars [46, 47, 48]; (vii) Sterile neutrinos produced in the early universe via

active-sterile mixing may be plausible cold or warm dark matter candidates [17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

Unlike cosmic rays and photons, neutrinos will not be absorbed or obscured when

they traverse through the intergalactic medium. Due to their weak interactions with

other particles, they serve as an excellent probe to dense astrophysical sources such as

supernovae, neutron stars, black holes, gamma ray bursts (GRB) and active galactic

nuclei (AGN). On the other hand, neutrinos from the forthcoming supernova explosion

will provide remarkable tests to particle physics. Ultra-High Energy (UHE) neutrinos

from black holes, GRB and AGN may even probe the existence of extra dimensions

[79] and the possibility of Lorentz and CPT violations [80, 81]. These high energy

neutrinos may be observable with IceCube [82].

In our view, the proper understanding of collective phenomena in hot and dense

media requires a systematic and consistent treatment by implementing the methods of

quantum field theory at finite temperature and density. Furthermore, the dynamical

evolution of neutrino mixing and oscillations requires a non-equilibrium formulation

of quantum field theory specially suited to study the real-time evolution as an initial

value problem [83, 84, 85, 86, 87].

Motivated by the fundamental role of neutrinos in particle physics, astrophysics and

cosmology, this thesis is devoted to providing a full finite-temperature field-theoretical

treatment of neutrino oscillations in hot and dense media. We study the dynamics of
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neutrino mixing, oscillations, decoherence and relaxation in astrophysical and cosmo-

logical environments, by implementing the methods of real-time non-equilibrium field

theory.

This thesis establishes a systematic and consistent framework for studying the non-

equilibrium dynamics of neutrinos in hot and dense media. The main ingredients in

this program are the quantum density matrix and the effective Dirac equation that

includes all the self-energy corrections from the medium. We obtain the retarded

neutrino propagator from which we extract the quasiparticle poles. The decoherence

as well as relaxation of the neutrino quasiparticles due to collisions are manifestly

described by the imaginary parts of the quasiparticle poles instead of putting in by

hand semi-phenomenologically.

Furthermore, we explore some new and novel implications of neutrino mixing and

oscillations in astrophysics and cosmology, within our theoretically sound framework.

1.3 BRIEF SUMMARY OF MAIN RESULTS

The main results of this thesis are as follows:

• In Chapter 2, we first study the time evolution of the distribution functions for hot and dense

gases of two flavor Dirac neutrinos as a consequence of flavor mixing and dephasing, in the

absence of weak interactions. This is achieved by obtaining the time evolution of the flavor

density matrix directly from quantum field theory at finite temperature and density.

We find that the dynamics of neutrino oscillations features a hierarchy of time scales. The

shorter time scales are associated with the interference between particle and antiparticle states,

while the longer time scales emerge from the interference between particle states (or antiparticle

states) of different masses. In the degenerate case, an initial flavor asymmetry will relax towards

an the asymptotic limit via dephasing resulting from the oscillations between flavor modes that

are not Pauli blocked, with a power law proportional to the inverse of time.

• In Chapter 3, we study neutrino oscillations in the early universe by implementing finite-

temperature field theory. Particularly, we are interested in the temperature regimes that are

relevant for Big Bang Nucleosynthesis (BBN). We focus on two flavors of Dirac neutrinos;

however, the formulation is general.
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We show that the medium dispersion relations and mixing angles are both energy and helicity

dependent, and a resonance like the Mikheyev-Smirnov-Wolfenstein (MSW) resonance is real-

ized. The oscillation time scale in the medium is longer as compared to that in the vacuum near

a resonance, but much shorter for off resonance high energy neutrinos for which the medium

mixing angle becomes vanishingly small.

• In Chapter 4, we investigate the space-time evolution of “flavor” neutrino wave-packets at finite

temperature and density prior to BBN. We implement non-equilibrium field theory methods

and linear response to study the space-time evolution directly from the effective Dirac equation

in the medium.

We find that there exists a coherence time limit beyond which the two mass eigenstates cease

to overlap and so neutrino oscillation is exponentially suppressed. But a novel phenomenon

of ”frozen coherence” can occur if the longitudinal dispersion catches up with the progressive

separation between the two mass eigenstates in the medium, before the coherence time limit

has been reached. However, the transverse dispersion occurs at a much shorter scale than all

other possible time scales in the medium, resulting in a large suppression in the transition

probabilities from electron-neutrino to muon-neutrino, on a time scale much shorter than the

Hubble time.

• In Chapter 5, we explore the possibility of large charged lepton mixing as a consequence of

neutrino mixing in the early universe. We state the general criteria for charged lepton mixing,

critically re-examine aspects of neutrino equilibration.

We show that it is the off-diagonal elements in the charged-current self-energy that are re-

sponsible for the charged lepton mixing. For a large lepton asymmetry in the neutrino sector,

there could be a resonant charged lepton mixing in the temperature range T ∼ 5GeV. In this

regime, the electromagnetic damping rate is of the same order as the charged lepton oscillation

frequency, suggesting a substantial transition probability during equilibration.

• In Chapter 6, we study sterile neutrino production in the early universe via active-sterile oscil-

lations. We provide a quantum field theoretical reassessment of the quantum Zeno suppression

on the active-to-sterile transition probability and its time average.

We derive the the active-to-sterile transition probability:

Pa→s(t) =
sin2 2θm

4

[
e−Γ1t + e−Γ2t − 2 e−

1
2
(Γ1+Γ2)t cos

(
∆Et

)]
,
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where ∆E is the oscillation frequency, Γ1 = Γaa cos2 θm and Γ2 = Γaa sin2 θm are the two

relaxation rates associated with the propagating modes in the medium, with Γaa ∝ G2
F kT 4

being the active neutrino scattering rate and θm the mixing angle in the medium. We point

out that the complete conditions for quantum Zeno suppression on Pa→s(t) are: (i) Γaa ¿ ∆E,

and (ii) Γ1 ≈ Γ2. While the oscillatory term in Pa→s(t) is suppressed on the decoherence time

scale τdec = 2/Γaa, at very high or low temperatures, this is not the relevant time scale for the

suppression of the transition probability, but either 1/Γ1 or 1/Γ2 whichever is longer.

• In Chapter 7, we learn a quantum kinetic description based on the non-equilibrium effective

action and implement it for studying the abundance of a particle species in a thermalized

plasma. A specific model of a bosonic field in interaction with two thermalized heavier bosonic

fields is studied.

As a consequence of off-shell corrections to the particle abundance, we find substantial de-

partures from the usual Bose-Einstein prediction in both high temperature limit, and the low

temperature but large momentum limit. In the latter case, the particle abundance is exponen-

tially suppressed but larger than the Bose-Einstein result.

• In Chapter 8, we examine the interplay between neutrino mixing, oscillations and equilibration

in a thermal medium. The non-equilibrium dynamics is studied in a field theory of flavored

neutral mesons that effectively models two flavors of mixed neutrinos, in interaction with other

mesons that represent a thermal bath of hadrons or quarks and charged leptons.

We find that the dispersion relations and mixing angles of the “neutrino” quasiparticles are of

the same form as those of neutrinos in the medium, and the relaxation rates are obtained as well.

At the time much longer than the two time scales for relaxation, the two-point function of the

“neutrino” fields becomes time-translational invariant, reflecting the approach to equilibrium.

The equilibrium density matrix is found to be nearly diagonal in the basis of eigenstates of an

effective Hamiltonian that includes self-energy corrections in the medium, with perturbatively

small off-diagonal elements.

• In Chapter 9, we investigate the production of a sterile species from active-sterile neutrino

mixing in a thermalized medium, within the effective model developed in Chapter 8. The

quantum kinetic equations for the distribution functions and coherences are obtained from two

independent methods, namely the non-equilibrium effective action and the quantum master

equation.
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We prove that the quantum kinetic equations derived via the non-equilibrium effective action

and the quantum master equation are identical up to the leading order in perturbative quanti-

ties. We show that if the initial density matrix is off-diagonal in the basis of the propagating

modes in the medium, the off-diagonal coherences are damped out on the decoherence time

scale. The damping of these off-diagonal coherences leads to an equilibrium reduced density

matrix diagonal in the basis of propagating modes in the medium. The “neutrino” distribution

functions reach equilibrium on the relaxation time scales associated with the quasiparticle modes

in the medium. We have also argued that the simple phenomenological rate equation used in

numerical studies of sterile neutrino production in the early universe has severe shortcomings,

due to the time average of an overly simplified transition probability in the medium.

• In Chapter 10, we study the CMB power spectra for different families of single-field new and

chaotic inflation models in which the inflaton potential has general degree (2n) of the scalar

field. Under the effective field theory approach to inflation, we investigate the dependence of

the scalar spectral index ns, tensor-to-scalar ratio r on the degree of the inflaton potential, and

confront them to the WMAP3 and large scale structure (LSS) data. This chapter has nothing

to do with neutrinos, but serves as a way to learn more about cosmology.

We show in general that fourth degree potentials (n = 2) provide the best fit to the data, and

the window of consistency with the WMAP3 and LSS data narrows with growing n. While we

take Ne = 50 as the number of e-foldings before the end of inflation, extrapolations to arbitrary

values of Ne can be done with a simple scaling relation. For the new inflationary scenarios,

small-field inflation yields r < 0.16 while large-field inflation yields r > 0.16. The family of

chaotic models feature r ≥ 0.16. We conclude that a measurement of r < 0.16 (for Ne = 50)

distinctly rules out the chaotic scenarios and favors small-field new inflationary models.

• In Chapter 11, we give an extended summary of the main results in each chapter.
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2.0 OSCILLATIONS AND EVOLUTION OF A HOT AND DENSE GAS OF

FLAVOR NEUTRINOS: A FREE FIELD THEORY STUDY

2.1 INTRODUCTION

In the presence of flavor mixing, individual flavor number is not conserved and a density matrix

that is diagonal in the flavor Fock basis will evolve in time and develop off diagonal elements.

Hence time evolution of a dense or hot neutrino gas has to be studied as a quantum mechanical

initial value problem: an initial density matrix which is diagonal in the flavor basis is evolved in time

with the full Hamiltonian with flavor mixing. In this chapter we focus on studying precisely the time

evolution of a dense or hot flavor neutrino gas in the simplest case of free field theory. Our goal is to

study the evolution of an initially prepared density matrix which is diagonal in the flavor basis and

describes a quantum gas of flavor neutrinos at finite density or finite temperature. We undertake

the study of the dynamics in free field theory as a prelude towards a complete understanding of

oscillation phenomena in weak interactions. The first step of any systematic program must be the

understanding at the simplest level. As will be detailed below, studying the dynamics of oscillations

and mixing in a dense and/or hot medium even at the level of free field theory reveals a wealth

of subtle and important phenomena which leads to a firmer understanding of the validity of the

various approximations as well as highlighting the potential corrections.

The problem that we study can be stated succinctly as follows: Consider that at a given initial

time we have a “box” that contains a hot or dense gas of flavor neutrinos with a given single particle

distribution consistent with Fermi-Dirac statistics , how does this ensemble evolve in time? How

do the populations of flavor neutrinos evolve in time? How do flavor neutrinos propagate in the

medium?

While our ultimate goal is to study the evolution in the presence of the weak interactions, we

begin our study in this simplest free field theory case and the case of two flavors with the following
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goals in mind

• To study the evolution directly from the underlying quantum field theory without making any

approximations. This study will clarify the nature of the various approximations invoked in the

literature and exhibit the potential corrections.

• By keeping the full evolution, the different time scales will emerge thus paving the way to

providing a firmer understanding of coherence effects as well as the time averaging implied by

several approximations.

• A first principle derivation of kinetic equations and or Boltzmann equations require the prop-

agators for the fields[88] in the medium. Thus the study of the evolution in free field theory is

the starting point for a systematic treatment of oscillations and collisions in a medium with a

neutrino background.

• As it will become clear below, the study of even the simple free field theory case reveals a wealth

of phenomena as a consequence of flavor mixing, which to the best of our knowledge has not

been recognized and explored fully before in the case of finite temperature and density. The

full quantum field theory treatment unambiguously reveals all the complexities associated with

flavor mixing and allows a systematic implementation of several approximations which clarify

the regime of validity of the single particle description and provide an understanding of the

corrections.

Our study is organized as follows: in section 2.2 the theory corresponding to two flavors of neu-

trinos as well as the density matrix that describes an initial state of flavor neutrinos is presented. In

this section we address the quantization aspects and point out the source of subtle mixing phenom-

ena between particles and antiparticles, confirming previous results in the literature[89]. In sections

2.3 and 2.4 we study the evolution of the flavor asymmetry as well as that of the individual distribu-

tion functions focusing on the emergence of a hierarchy of scales and extracting the asymptotic long

time dynamics as well as the phenomenon of flavor pair production via oscillations. In section 2.5

we present the “effective” field theory that describes the long-time dynamics and discuss its regime

of validity. In this section we obtain the Feynman propagators and discuss their non-equilibrium

aspects. In section 2.6 we discuss the regime of validity of the several approximations as well as

caveats in the formulation and present our conclusions.
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2.2 NEUTRINO MIXING AND FLAVOR DENSITY MATRIX

We focus our attention on the evolution of Dirac neutrinos postponing the case of Majorana neu-

trinos for further discussion elsewhere. Furthermore, we restrict the discussion to the case of two

flavors which provides the simplest scenario. Most of the results can be extrapolated to the case

of three active flavors including the case of sterile neutrinos, but for the subtleties associated with

CP violating phases which of course are of great interest but will not be addressed here. We will

call the flavors the electron and muon neutrino, but the results apply more broadly to active-sterile

oscillations.

Consider the Dirac neutrino fields with the Lagrangian density given by

L = ν̄e(x)(i6∂)νe(x) + ν̄µ(x)(i6∂)νµ(x) +
(

ν̄e(x) ν̄µ(x)
)


 me meµ

meµ mµ





 νe(x)

νµ(x)


 , (2.1)

where meµ is the mixing and we have absorbed a potential phase into a field redefinition. The mass

matrix can be diagonalized by introducing a rotation matrix such that


 νe(x)

νµ(x)


 =


 C S

−S C





 ψ1(x)

ψ2(x)


 , (2.2)

where for simplicity of notation we defined

C ≡ cos θ ; S ≡ sin θ (2.3)

where θ is the mixing angle. The diagonalized mass matrix then reads


 M1 0

0 M2


 =


 C −S

S C





 me meµ

meµ mµ





 C S

−S C


 . (2.4)

In the mass eigenstate basis, the Lagrangian density becomes

L = ψ̄1(x)(i6∂ −M1)ψ1(x) + ψ̄2(x)(i6∂ −M2)ψ2(x). (2.5)

In what follows, we reserve the latin label i = 1, 2 for the fields associated with the mass

eigenstates ψ and the greek label α = e, µ for the fields associated with the flavor eigenstates ν.
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Upon quantization in a volume V , the flavor field operators να(x) at time t = 0 are written as

να(~x) =
1√
V

∑

~k

να(~k) ei~k·~x,

να(~k) =
∑

λ

(
α

(α)
~k,λ

U
(α)
~k,λ

+ β
(α)†
−~k,λ

V
(α)

−~k,λ

)
(2.6)

where the index λ refers to the Dirac spin index and we have kept the same notation for the field

and its spatial Fourier transform to avoid cluttering of notation. A flavor Fock representation is

defined by choosing the spinors U and V respectively. In principle these spinors can be chosen

to be the positive and negative energy solutions of a Dirac equation with an arbitrary mass, in

what follows we will choose these to be me; mµ, namely the masses of the flavor eigenstates in the

absence of mixing. While we consider this to be a physically motivated choice, it is by no means

unique and different alternatives have been discussed in the literature[89, 90, 91].

Thus the spinors U and V are chosen to be solutions of the following Dirac equations

γ0(~γ · ~k + mα) U
(α)
~k,λ

= ωα(k)U
(α)
~k,λ

γ0(~γ · ~k + mα) V
(α)

−~k,λ
= −ωα(k) V

(α)

−~k,λ
(2.7)

ωα(k) =
√

k2 + m2
α (2.8)

The Dirac spinors U and V , are normalized as follows (no sum over the index α)

U
(α)†
~k,λ

U
(α)
~k,λ′

= V
(α)†

~k,λ
V

(α)
~k,λ′

= δλ,λ′ ; U
(α)†
~k,λ

V
(α)

−~k,λ′
= 0. (2.9)

and the creation and annihilation operators α~k,λ
; β~k,λ

obey the usual canonical anticommutation

relations.

On the other hand, upon quantization the field operators ψi(x) associated with mass eigenstates

at time t = 0 are given by

ψi(~x) =
1√
V

∑

k

ψi(~k) ei~k·~x

ψi(~k) =
∑

λ

(
a

(i)
~k,λ

F
(i)
~k,λ

+ b
(i)†
−~k,λ

G
(i)

−~k,λ

)
. (2.10)

where the spinors F, G are now solutions of the following Dirac equations

13



γ0(~γ · ~k + Mi) F
(i)
~k,λ

= Ei(k) F
(i)
~k,λ

γ0(~γ · ~k + Mi) G
(i)

−~k,λ
= −Ei(k)G

(i)

−~k,λ
(2.11)

Ei(k) =
√

k2 + M2
i (2.12)

with the normalization conditions (no sum over the label i)

F
(i)†
~k,λ

F
(i)
~k,λ′

= G
(i)†
~k,λ

G
(i)
~k,λ′

= δλ,λ′ ; F
(i)†
~k,λ

G
(i)

−~k,λ′
= 0. (2.13)

Similarly, the operators a and b satisfy usual canonical anticommutation relations.

2.2.1 Hamiltonian and Charges

The total free field Hamiltonian for mixed neutrinos in the diagonal (mass) basis is given by

H =
∑

~k,i

[
ψ̄i(~k)(~γ · ~k + Mi)ψi(~k)

]
=

∑

~k,λ,i

(
a

(i)†
~k,λ

a
(i)
~k,λ

+ b
(i)†
~k,λ

b
(i)
~k,λ
− 1

)
Ei(k), (2.14)

Therefore the time evolution of the operators a, b is given by

a
(i)
~k,λ

(t) = a
(i)
~k,λ

e−iEi(k)t

b
(i)
~k,λ

(t) = b
(i)
~k,λ

e−iEi(k)t. (2.15)

The free field Lagrangian density (2.1) is invariant under independent phase transformations of

the fields ψ1,2, hence the individual U(1) charges

Qi =
∫

d3x ψ†i (~x, t)ψi(~x, t) =
∑

~k,λ

[
a

(i)†
~k,λ

a
(i)
~k,λ
− b

(i)†
~k,λ

b
(i)
~k,λ

+ 1
]

(2.16)

are time independent.

The discussion that follows will focus on describing a statistical density matrix which is diagonal

in the flavor basis and describes a hot and or dense ensemble of flavor neutrinos. This discussion

requires the flavor Hamiltonian which is obtained from the Lagrangian density (2.1) for vanishing

mixing meµ = 0, namely

Hf = He + Hµ =
∑

~k,α

[
ν̄α(~k)(~γ · ~k + mα)να(~k)

]
=

∑

~k,λ,α

(
α

(α)†
~k,λ

α
(α)
~k,λ

+ β
(α)†
~k,λ

β
(α)
~k,λ

− 1
)

ωα(k), (2.17)
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The flavor Hamiltonian above is invariant under independent phase transformations of the flavor

fields να, thus the individual flavor charges commute with Hf

qα =
∫

d3x ν†α(~x)να(~x) =
∑

~k

ν†α(~k)να(~k) =
∑

~k,λ

[
α

(α)†
~k,λ

α
(α)
~k,λ

− β
(α)†
~k,λ

β
(α)
~k,λ

+ 1
]

(2.18)

Using the transformation law (2.2) between flavor and mass eigenstates it is straightforward to

find that the total charges are the same, namely

∑

i,~k

ψ†i (~k, t)ψi(~k, t) =
∑

α,~k

ν†α(~k, t)να(~k, t) ⇒ Q1 + Q2 = qe + qµ (2.19)

2.2.2 Density matrix and time evolution

As stated in the introduction, our focus and goal is to study the time evolution of the distribution

function of flavor neutrinos, at the level of free field theory at this stage. The question that we

posed in the introduction and address here is the following: consider that at some given time the

gas of flavor neutrinos and antineutrinos are described by a quantum statistical ensemble with a

Fermi-Dirac distribution function with a fixed chemical potential for each flavor, namely

n(α)(k) =
1

eβ(ωα(k)−µα) + 1
; n̄(α)(k) =

1
eβ(ωα(k)+µα) + 1

(2.20)

with β = 1/T and µα the chemical potential for each flavor.

Such an ensemble is described by a quantum statistical density matrix which is diagonal in the

Fock space of flavor eigenstates and is given by

ρ̂ = ρ̂(e) ⊗ ρ̂(µ) (2.21)

with the flavor density matrices

ρ̂(α) = e−β(Hα−µαqα) (2.22)

Hence the initial distribution functions are given by

〈α(α)†
~k,λ

α
(α)
~k,λ
〉 = Trρ̂(α)α

(α)†
~k,λ

α
(α)
~k,λ

= n(α)(k)

〈β(α)†
~k,λ

β
(α)
~k,λ
〉 = Trρ̂(α)β

(α)†
~k,λ

β
(α)
~k,λ

= n̄(α)(k) (2.23)
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In the expressions above we have assumed that the distribution of flavor neutrinos are spin

independent, of course a spin dependence of the distribution function can be incorporated in the

description.

Although we have stated the problem in terms of a gas flavor neutrinos in thermal equilibrium

with Fermi-Dirac distributions, this restriction can be relaxed to arbitrary non-equilibrium single

particle distributions consistent with Fermi-Dirac statistics. Regardless of the initial distributions

the ensuing time evolution with the full Hamiltonian with mixing will be out of equilibrium.

2.2.3 Cold degenerate case:

The case of a cold, degenerate gas of neutrinos is described by the zero temperature limit but

fixed chemical potential of the density matrix (2.21) with (2.22). In this limit the individual flavor

neutrino gases form Fermi seas “filled up” to the Fermi momentum k
(α)
F . Consider the case of a

positive chemical potential corresponding to a degenerate gas of neutrinos without antineutrinos

at zero temperature, the degenerate ground state is given by

|FS >= |FS >(e) ⊗|FS >(µ) (2.24)

with

|FS >(α)=
k
(α)
F∏

~k

α
(α)†
~k,↑ α

(α)†
~k,↓ |0 >(α) (2.25)

with the flavor vacuum state |0 >(α) annihilated by the destruction operators α
(α)
~k,λ

;β(α)
~k,λ

. The initial

density matrix in this case is that of a pure state

ρ̂ = |FS >< FS| (2.26)

the distribution function of flavor neutrinos is given by

n(α)(k) = Θ(k(α)
F − k) , n̄(α)(k) = 0 (2.27)

and the chemical potential is µα = ωα(kF ). The Fermi momentum is as usual given by

k
(α)
F =

(
3π2N (α)

)1/3
⇒ k

(α)
F (eV ) = 6.19

(
N (α)

1015 cm−3

)1/3

(2.28)
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with N (α) the neutrino density for each flavor. Although the zero temperature limit is described

by a pure state, this state is a truly many body state

An important many body aspect of the situation under consideration can be gleaned by studying

how the creation and annihilation operators of mass eigenstates act on the state |FS >. Consider

for example the action of the annihilation operator a
(1)
~k,λ

on the state, to understand this question

we must first obtain a
(1)
~k,λ

in terms of the creation and annihilation operators of flavor eigenstates.

¿From equation (2.10) and the relation between fields given by (2.2) we find

a
(1)
~k,λ

= F
(1),†
~k,λ

[
Cνe(~k)− Sνµ(~k)

]
(2.29)

and the expansion for the flavor fields given by (2.7) clearly indicates that if k < kµ
F < ke

F , for

example, then a
(1)
~k,λ
|FS > is a superposition of states with an electron neutrino “hole”, an electron

antineutrino, a muon neutrino “hole” and a muon antineutrino. The antiparticle components of

the wave function a
(1)
~k,λ
|FS > is a result of the non-vanishing overlap between the positive energy

spinors for mass eigenstates and the negative energy spinors for flavor eigenstates[89].

2.2.4 Time evolution

Within the framework of free field theory of mixed neutrinos, the time evolution is completely

determined by the total Hamiltonian H given by eqn. (2.14).

In the Schroedinger picture the density matrix evolves in time with the full Hamiltonian as

follows

ρ̂(t) = e−iHtρ̂(0)eiHt (2.30)

Since the full Hamiltonian H does not commute with He,Hµ because of the flavor mixing, the

density matrix does not commute with the Hamiltonian and therefore evolves in time. This is

the statement that the initial density matrix (2.21) describes an ensemble out of equilibrium when

flavor neutrinos are mixed.

Our goal is to obtain the time evolution of the distribution functions for flavor neutrinos and

antineutrinos, namely

n(α)(~k, t) = Trρ̂(α)(t) α
(α)†
~k,λ

α
(α)
~k,λ

= Trρ̂(α)(0) α
(α)†
~k,λ

(t)α(α)
~k,λ

(t) (2.31)
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and similarly for the antineutrino distribution function. The initial distribution functions n(α)(~k, 0) =

n(α)(~k) (and similarly for antineutrinos) given by equations (2.23) or (2.20) for the case of an initial

thermal distribution.

It is more convenient to describe the time evolution in the Heisenberg picture wherein the density

matrix does not depend on time and the Heisenberg field operators carry the time dependence as

made explicit in eqn. (2.36).

The free fields associated with the mass eigenstates ψi evolve in time with the usual time

dependent phases multiplying the creation and annihilation operators, namely

ψi(~k, t) = eiHtψi(~k, 0)e−iHt =
∑

λ

(
a

(i)
~k,λ

e−iEi(k)t F
(i)
~k,λ

+ b
(i)†
−~k,λ

eiEi(k)t G
(i)

−~k,λ

)
(2.32)

The time evolution of the fields associated with flavor eigenstates, namely να is not so simple:

να(~k, t) = eiHtνα(~k, 0)e−iHt =
∑

λ

(
α

(α)
~k,λ

(t)U (α)
~k,λ

+ β
(α)†
−~k,λ

(t)V (α)

−~k,λ

)
(2.33)

where the time dependent operators α
(α)
~k,λ

(t);β(α)†
−~k,λ

(t) can be obtained by writing the flavor fields in

terms of the mass eigenstate fields using eqn. (2.2) and projecting out the components using the

orthogonality property given by eqn. (2.9), leading for example to

α
(e)
~k,λ

(t) = U
(e)†
~k,λ

[
Cψ1(~k, t) + Sψ2(~k, t)

]

β
(e)†
−~k,λ

(t) = V
(e)†
−~k,λ

[
Cψ1(~k, t) + Sψ2(~k, t)

]
(2.34)

The expression (2.34) reveals several subtle aspects which are highlighted by considering in

detail for example the time evolution of the operator that creates electron neutrinos (a similar

analysis holds for the muon neutrinos and their respective antiparticles)

α
(e)†
~k,λ

(t) =
∑

λ′

{(
C a

(1)†
~k,λ′

eiE1(k)t F
(1)†
~k,λ′

U
(e)
~k,λ

+ S a
(2)†
~k,λ′

eiE2(k)t F
(2)†
~k,λ′

U
(e)
~k,λ

)
+

(
C b

(1)

−~k,λ′
e−iE1(k)t G

(1)†
−~k,λ′

U
(e)
~k,λ

+ S b
(2)

−~k,λ′
e−iE2(k)t G

(2)†
−~k,λ′

U
(e)
~k,λ

)}
(2.35)

It is a simple and straightforward exercise using the completeness and orthogonality of the

respective spinor wavefunctions, to show that the creation and annihilation operators of flavor

states indeed fulfill the canonical anticommutation relations. A Fock representation of flavor states
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is therefore consistent and moreover needed to describe a quantum statistical ensemble of flavor

neutrinos.

The first line in the above expression shows that the annihilation operator for electron corre-

sponds to the expected combination of creation operators for mass eigenstates multiplied by the

cosine and sine of the mixing angle, but also multiplied by the overlap of the different spinor

wavefunctions. Furthermore, the electron creation operator also involves the annihilation of an-

tiparticles associated with the mass eigenstates, a feature recognized in ref.[89]. There are two

important consequences of the exact relation (7.183):

• The amplitude for creating a mass eigenstate out of the vacuum of mass eigenstates by an

electron neutrino creation operator is not only given by the cosine or sine (respectively) of the

mixing angle, but also by the overlap of the spinor wave functions F
(i)†
~k,λ′

U
(e)
~k,λ

.

• The electron neutrino creation operator destroys antiparticle mass eigenstates. While this

aspect is not relevant when the electron neutrino creation operator acts on the vacuum of mass

eigenstates, it becomes relevant in a medium where both particles and antiparticles states are

populated.

These aspects, which were also highlighted in references[89, 90, 91] will be at the heart of

the subtle many body aspects of neutrino mixing which contribute to the time evolution of the

distribution functions studied below.

The time dependent distribution functions are obtained by taking the trace with the initial

density matrix

n(α)(~k, t) = Trρ̂(α)(0)α
(α)†
~k,λ

(t) α
(α)
~k,λ

(t) (2.36)

and similarly for the other distribution functions. One can use the expression (7.183) for the

time evolution of the Heisenberg field operator (and the equivalent for the hermitian conjugate),

however in order to compute the time evolved distribution function we would need to compute the

expectation value of bilinears of the field operators ψi in the flavor diagonal density matrix ρ̂(0).

To do this we would have to re-write the creation and annihilation operators a
(i)
~k,λ

; b(i)
~k,λ

; etc. in the

expression (7.183) back in terms of the creation and annihilation operators α
(α)
~k,λ

; β(α)
~k,λ

; etc.. This is

obviously a rather cumbersome method. A more systematic manner to carry out this program is

presented below.

Using the expressions (2.17,2.18) we find the following identities
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1
2
〈ν̄α(~k, t) γ0 να(~k, t)〉 = n(α)(~k, t)− n̄(α)(~k, t) + 1 (2.37)

1
2ωα(k)

〈ν̄α(~k, t) (~γ · ~k + mα) να(~k, t)〉 = n(α)(~k, t) + n̄(α)(~k, t)− 1 (2.38)

Thus the computation of the distribution functions or combinations of them requires to find

general expressions of the form

< ν̄e(~k, t)O νe(~k, t) >= Ofg < [ν̄e(~k, t)]f [νe(~k, t)]g > . (2.39)

where the Dirac indices f, g are summed over and the averages are in the flavor diagonal density

matrix (2.21,2.22).

Since the time evolution of the fields ψi is that of usual free Dirac field in terms of positive and

negative frequency components, we write

ψ(i)(~k, t) =
(
Λ(i)

+ (~k) e−iEit + Λ(i)
− (~k) eiEit

)
ψ(i)(~k, 0). (2.40)

where we have introduced the positive and negative frequency projector operators Λ+(k) and Λ−(k)

respectively which are given by

Λ(i)
+ (~k) =

∑

λ

F
(i)
~k,λ

F
(i)†
~k,λ

=
( 6k(i) + Mi

2Ei

)
γ0, (2.41)

Λ(i)
− (~k) =

∑

λ

G
(i)

−~k,λ
G

(i)†
−~k,λ

= γ0

( 6k(i) −Mi

2Ei

)
(2.42)

6k(i) = γ0Ei(k)− ~γ · ~k (2.43)

These projection operators have the following properties,

Λ(i)†
+ (~k) = Λ(i)

+ (~k) ; Λ(i)†
− (~k) = Λ(i)

− (~k), (2.44)

Λ(i)
+ (~k) Λ(i)

− (~k) = 0 ; Λ(i)
− (~k) Λ(i)

+ (~k) = 0, (2.45)

Λ(i)
+ (~k) + Λ(i)

− (~k) = 1. (2.46)

We can now write the time evolution of the flavor fields in a rather simple manner by using the

relations between the fields given by (2.2) and the inverse relation which allows to write ψi(~k, 0) in

(2.40) back in terms of να(~k, 0). We find
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ψ1(~k, t) = γ0F1(~k, t)[Cνe(~k, 0)− Sνµ(~k, 0)] (2.47)

ψ̄1(~k, t) = [Cν̄e(~k, 0)− Sν̄µ(~k, 0)]F̃1(~k, t)γ0 (2.48)

ψ2(~k, t) = γ0F2(~k, t)[Cνµ(~k, 0) + Sνe(~k, 0)] (2.49)

ψ̄2(~k, t) = [Cν̄µ(~k, 0) + Sν̄e(~k, 0)]F̃2(~k, t)γ0 (2.50)

where we have introduced the following time evolution kernels

Fj(~k, t) = γ0[Λ(j)
+ (~k)e−iEj(k)t + Λ(j)

− (~k)eiEj(k)t], (2.51)

F̃j(~k, t) = Fj(~k,−t)γ0 ; j = 1, 2. (2.52)

After straightforward algebra using the mixing transformation (2.2) and equations (2.47-2.50)

we find the following result for the time evolution of the flavor fields

νe(k, t) = Tee(~k, t)νe(~k, 0) + Teµ(~k, t)νµ(~k, 0), (2.53)

ν̄e(k, t) = ν̄e(~k, 0)T̃ee(~k, t) + ν̄µ(~k, 0)T̃eµ(~k, t), (2.54)

νµ(~k, t) = Tµµ(~k, t)νµ(~k, 0) + Tµe(~k, t)νe(~k, 0), (2.55)

ν̄µ(~k, t) = ν̄µ(~k, 0)T̃µµ(~k, t) + ν̄e(~k, 0)T̃µe(~k, t), (2.56)

where the time evolution operators are given by

Tee(~k, t) = γ0
[
C2F1(~k, t) + S2F2(~k, t)

]
, (2.57)

Tµµ(~k, t) = γ0
[
C2F2(~k, t) + S2F1(~k, t)

]
, (2.58)

Teµ(~k, t) = Tµe = CSγ0
[
F2(~k, t)− F1(~k, t)

]
(2.59)

T̃αβ(~k, t) = γ0Tαβ(~k,−t)γ0, (2.60)

Furthermore since the initial density matrix is flavor diagonal, we find the following expectation

values

< [ν̄e(~k, t)]f [νe(~k, t)]g > = < [ν̄e(~k, 0)]r[νe(~k, 0)]s > [T̃ee(~k, t)]rf [Tee(~k, t)]gs

+ < [ν̄µ(~k, 0)]r[νµ(~k, 0)]s > [T̃eµ(~k, t)]rf [Teµ(~k, t)]gs, (2.61)
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and similarly for the muon neutrino fields, where < · · · > stands for the trace with the initial

density matrix.

A noteworthy feature of the above exact expressions is that the time evolution of the flavor

neutrino fields mix positive and negative frequency components of the mass eigenstates. Namely

a flavor neutrino state is a linear combination of particles and antiparticles of mass eigenstates.

Thus a wave packet of flavor neutrinos will necessarily mix positive and negative frequencies of

mass eigenstates. This mixing between particles and antiparticles is a consequence of the fact that

a flavor eigenstate is a squeezed state of mass eigenstates and viceversa[89].

A simple calculation yields the following expectation values in the initial density matrix

< [ν̄α(~k, 0)]r[να(~k, 0)]s > =

[∑

λ

< α
(α)†
~k,λ

α
(α)
~k,λ

> [Ū (α)
~k,λ

]r[U
(α)
~k,λ

]s

+
∑

λ

< β
(α)†
−~k,λ

β
(α)

−~k,λ
> [V̄ (α)

−~k,λ
]r[V

(α)

−~k,λ
]s

]
(2.62)

= n(α)(k)
(6kα + mα

2ωα(k)

)

sr

+ (1− n̄(α)(k))
[
γ0 6kα −mα

2ωα(k)
γ0

]

sr

(2.63)

≡ [Nα(~k)]sr

6kα = γ0ωα(k)− ~γ · ~k (2.64)

where nα(k); n̄α(k) are given by the expressions (2.20) and there are no flavor off-diagonal matrix

elements at t = 0 because the initial density matrix is flavor diagonal.

Combining all the above results, we find the final compact form for the time dependent expec-

tation values in eqn. (2.39), namely

< ν̄e(~k, t)O νe(~k, t) >= Tr
[
Ne(~k)T̃ee(~k, t)O Tee(~k, t)

]
+ Tr

[
Nµ(~k)T̃eµ(~k, t)O Teµ(~k, t)

]
(2.65)

2.2.4.1 Exact time evolution of distribution functions The exact time evolution (in free

field theory) of flavor neutrinos is given by

n(e)(k, t) ≡ I(e)(k, t) + J (e)(k, t), (2.66)

where I(e)(k, t) and J (e)(k, t) are given by
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I(e)(k, t) =
1

4ωe(k)
Tr

[
Ne(k)T̃ee(~k, t)γ0(6ke + me)γ0Tee(~k, t)

]
, (2.67)

J (e)(k, t) =
1

4ωe(k)
Tr

[
Nµ(~k)T̃eµ(~k, t)γ0(6ke + me)γ0Teµ(~k, t)

]
. (2.68)

n̄(e)(k, t) = 1− Ī(e)(k, t)− J̄ (e)(k, t), (2.69)

where Ī(e)(k, t) and J̄ (e)(k, t) are given by

Ī(e)(k, t) =
1

4ωe(k)
Tr

[
Ne(~k)T̃ee(~k, t)(6ke −me)Tee(~k, t)

]
, (2.70)

J̄ (e)(k, t) =
1

4ωe(k)
Tr

[
Nµ(~k)T̃eµ(~k, t)(6ke −me)Teµ(~k, t)

]
. (2.71)

For the muon neutrinos and antineutrinos

n(µ)(k, t) = I(µ)(k, t) + J (µ)(k, t) (2.72)

where I(µ)(k, t) and J (µ)(k, t) are given by

I(µ)(k, t) =
1

4ωµ(k)
Tr

[
Nµ(~k)T̃µµ(~k, t)γ0(6kµ + mµ)γ0Tµµ(~k, t)

]
, (2.73)

J (µ)(k, t) =
1

4ωµ(k)
Tr

[
Ne(~k)T̃µe(~k, t)γ0(6kµ + mµ)γ0Tµe(~k, t)

]
. (2.74)

n̄(µ)(k, t) = 1− Ī(µ)(k, t)− J̄ (µ)(k, t), (2.75)

where Ī(µ)(k, t) and J̄ (µ)(k, t) are given by

Ī(µ)(k, t) =
1

4ωµ(k)
Tr

[
Nµ(~k)T̃µµ(~k, t)(6kµ −mµ)Tµµ(~k, t)

]
, (2.76)

J̄ (µ)(k, t) =
1

4ωµ(k)
Tr

[
Ne(~k)T̃µe(~k, t)(6kµ −mµ)Tµe(~k, t)

]
. (2.77)
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The calculation of the traces is simplified by the observation that all of the different terms that

enter in the trace, such as Nα(~k); T̃α,α′(~k, t)γ0; γ0Tα,α′(~k, t) can be written in the form

γ0A0(~k, t)− ~γ · ~A(~k, t) + B(~k, t) ≡6A(~k, t) + B(~k, t) (2.78)

where the coefficient functions A0(~k, t); ~A(~k, t);B(~k, t) can be read off each individual term. Thus

the traces in the terms above can be calculated by using the standard formulae for the traces of

two and four Dirac matrices.

2.2.5 Fast and slow time scales

While the exact compact expressions above describe the full time evolution and provide a set of

closed form expressions, they hide the fact that there two widely different time scales. These

different time scales can be revealed by unravelling the different contributions to the distribution

functions as follows. Consider the expectation value on the right hand side of eqn. (2.39) for the

case of the electron neutrino

< [ν̄e(~k, t)]f [νe(~k, t)]g > = C2 < [ψ̄1(~k, t)]f [ψ1(~k, t)]g > +S2 < [ψ̄2(~k, t)]f [ψ2(~k, t)]g >

+ CS < [ψ̄1(~k, t)]f [ψ2(~k, t)]g + [ψ̄2(~k, t)]f [ψ1(~k, t)]g > (2.79)

the case of the muon neutrino can be obtained from the expression above by replacing S → C; C →
−S.

By writing each one of the fields ψi in terms of the positive and negative frequency contribu-

tions which evolve in time with the phases e∓iEi(k)t respectively, it is clear that in the products

ψ̄i(~k, t) ψi(~k, t) there is a contribution that does not depend on time and terms that oscillate in time

with the phases e∓2iEi(k)t. These oscillatory terms arise from the interference between particles and

antiparticles akin to zitterbewegung in principle do not vanish when the density matrix is diagonal

in the flavor basis. In the general expectation values in eqn (2.39) these oscillatory terms will

multiply the matrix elements of the form F̄
(i)
~k,λ
OG

(i)

−~k,λ
, thus if these matrix elements do not vanish,

these oscillatory terms are present. In the second line in eqn. (2.79) a similar argument shows

that there are two types of oscillatory terms, e∓i(E1(k)+E2(k))t and e∓i(E1(k)−E2(k))t. The former

arise from the interference between the particle and antiparticle states of different masses, while

the latter from interference between particle states of different masses (or antiparticle).
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The combined analysis from solar neutrinos and KamLAND[92] suggest that for two flavor

mixing M2
1 −M2

2 = ∆M2 ∼ 7 × 10−5(eV )2 and cosmological constraints from WMAP[8] suggest

that the average mass of neutrinos is M̄ . 0.23eV . Therefore even in the non-relativistic limit

with k ¿ Mi the ratio |E1(k)− E2(k)|/(E1(k) + E2(k)) < 10−4 and certainly much smaller in the

relativistic limit k À Mi. Hence because of the near degeneracy, or in the relativistic limit for any

value of the masses, there are two widely different time scales of evolution for the flavor distribution

functions. The longest one corresponding to the interference between particle states (or antiparticle

states) of different masses while the shortest one corresponds to the interference between particle

and antiparticle states of equal or different masses. This point will be revisited below.

The evolution of the flavor (lepton) asymmetry highlights these time scales clearly and is studied

below.

2.3 DEGENERATE GAS OF NEUTRINOS: EVOLUTION OF FLAVOR

ASYMMETRY

The results obtained above are general and valid for any temperature and chemical potential

(density). In this section we focus on understanding the time evolution of the flavor asymme-

try n(α)(k, t) − n̄(α)(k, t) in the case of a cold, degenerate gas of flavor neutrinos. From equations

(2.37) and (2.79) we find

n(e)(~k, t)− n̄(e)(~k, t) =
C2

2
< ψ†1(~k, t)ψ1(~k, t) > +

S2

2
< ψ†2(~k, t)ψ2(~k, t) > −1

+
CS

2
< ψ†1(~k, t)ψ2(~k, t) + ψ†2(~k, t)ψ1(~k, t) > (2.80)

n(µ)(~k, t)− n̄(µ)(~k, t) =
S2

2
< ψ†1(~k, t)ψ1(~k, t) > +

C2

2
< ψ†2(~k, t)ψ2(~k, t) > −1

− CS

2
< ψ†1(~k, t)ψ2(~k, t) + ψ†2(~k, t)ψ1(~k, t) > (2.81)

The first line of the expressions above is time independent because the overlap between posi-

tive and negative frequency components vanishes, and the time dependence arises solely from the

interference between different mass eigenstates. The time dependent terms (second lines in the

above expressions) are opposite for the two flavors realizing the fact that the total charge of mass

eigenstates equals that of flavor eigenstates and is time independent (see eqn. (2.19)).
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Furthermore the expectation values < ψ†i (~k, t) ψi(~k, t) > (no sum on i) are time independent (in

the case of free field theory under consideration) since the interference term between positive and

negative frequency spinors vanishes. The time dependence is completely encoded in the contribution

that mixes the mass eigenstates.

Therefore the time dependence of the flavor asymmetry is completely determined by the quantity

χ(~k, t) ≡ CS

2
<

(
ψ†1(~k, t)ψ2(~k, t) + ψ†2(~k, t)ψ1(~k, t)

)
> . (2.82)

Using equations (2.47)- (2.50), it follows that

χ(~k, t) =
C2S2

2
Tr

[
[Ne(~k)−Nµ(~k)][F̃1(~k, t)F2(~k, t) + F̃2(~k, t)F1(~k, t)]

]
, (2.83)

The computation of the traces is simplified by writing

Fj(k, t) = 6Pj(t) + Mj(t) (2.84)

P 0
j (t) = cos(Ej(k)t), (2.85)

~Pj(t) =
i~k

Ej(k)
sin(Ej(k)t), (2.86)

Mj(t) = − iMj

Ej(k)
sin(Ej(k)t). (2.87)

and similarly we write

Nα(k) = 6Qα + M̃α (2.88)

6Qα = γ0Q0
α − ~γ · ~Qα, (2.89)

Q0
α =

1
2

[
n(α)(k) + 1− n̄(α)(k)

]
, (2.90)

~Qα =
~k

2ωα(k)

[
n(α)(k)− 1 + n̄(α)(k)

]
, (2.91)

M̃α =
mα

2ωα(k)

[
n(α)(k)− 1 + n̄(α)(k)

]
. (2.92)

For further convenience, we define

∆6Q =6Qe−6Qµ, ; ∆M̃ = M̃e − M̃µ, (2.93)

in terms of which we obtain
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χ(~k, t) =
C2S2

2
Tr

[
(∆6Q + ∆M̃)(6P1(−t) + M1(−t))γ0(6P2(t) + M2(t))

+(∆6Q + ∆M̃)( 6P2(−t) + M2(−t))γ0(6P1(t) + M1(t))
]
. (2.94)

After some lengthy but straigthforward algebra we find

χ(~k, t) = χ(~k, 0)− 2C2S2
[(

n(e)(k)− n̄(e)(k)
)
−

(
n(µ)(k)− n̄(µ)(k)

)]

[(
1− k2 + M1M2

E1(k)E2(k)

)
sin2

(
E1(k) + E2(k)

2
t

)

+
(

1 +
k2 + M1M2

E1(k)E2(k)

)
sin2

(
E1(k)− E2(k)

2
t

)]
, (2.95)

where χ(~k, 0) is given by

χ(~k, 0) = 2C2S2
[(

n(e)(k)− n̄(e)(k)
)
−

(
n(µ)(k)− n̄(µ)(k)

)]
. (2.96)

The expression (2.95) for the time dependence of the flavor asymmetry clearly shows that

neutrino mixing results in a time evolution of the flavor asymmetry unless the flavor asymmetry

for both flavors is the same. This is obviously a consequence of Pauli blocking: if the neutrino states

are occupied up to the same momentum electron neutrinos cannot transform into an (occupied)

muon neutrino state and viceversa.

In the case of a cold, degenerate gas of flavor neutrinos (we assume here both chemical potentials

to be positive) is given by

n(α)(k) → Θ(k(α)
F − k) ; n̄(α)(k) → 0 (2.97)

If the chemical potential is different for the different flavors, the expression above shows that

each wavevector mode will evolve with a different frequency and as a consequence of free field

evolution there is no mode mixing. The important question is what is the time evolution of the

total charge which is the integral of the flavor asymmetry over all momenta. This time evolution

will be a result of the dephasing through the oscillations between different modes that are not Pauli

blocked.

27



We now proceed to study analytically and numerically the time evolution of the flavor charge

densities qα/V with qα given by eqn. (2.18) and V the volume. We begin by defining

M̄ ≡ M1 + M2

2
; ∆M2 ≡ M2

1 −M2
2 , (2.98)

so that M1 and M2 can be written in terms of M̄ and ∆M2 as

M1 = M̄

(
1 +

∆M2

4M̄2

)
; M2 = M̄

(
1− ∆M2

4M̄2

)
. (2.99)

We take the following as representative values for the two flavor case[1, 2] M̄ ' 0.25 eV and

∆M2 ' 7 × 10−5(eV )2. In what follows we assume that ke
F > kµ

F and introduce dimensionless

variables by taking ke
F as the common scale, the opposite limit for the Fermi momenta can be

obtained simply from the results below. Hence we define

q =
k

ke
F

; qr =
kµ

F

ke
F

; τ = ke
F t, (2.100)

m̄ =
M̄

ke
F

; δm2 = m2
1 −m2

2 =
M2

1 −M2
2

(ke
F )2

(2.101)

m1 = m̄

(
1 +

∆M2

4M̄2

)
; m2 = m̄

(
1− ∆M2

4M̄2

)
; (2.102)

ε1 =
√

q2 + m2
1 ; ε2 =

√
q2 + m2

2. (2.103)

Hence, in terms of N (α) = (kα
F )3/3π2 (see eqn. (2.28)), we find that the time evolution of the

flavor charge densities are given by

qe(t)
V

= N (e) − 6C2S2N (e)
(
If (τ) + Is(τ)

)
(2.104)

qµ(t)
V

= N (µ) + 6C2S2N (e)
(
If (τ) + Is(τ)

)
(2.105)

where

If (τ) =
∫ 1

qr

dq q2

(
1− q2 + m1m2

ε1ε2

)
sin2

[
ε1 + ε2

2
τ

]
(2.106)

Is(τ) =
∫ 1

qr

dq q2

(
1 +

q2 + m1m2

ε1ε2

)
sin2

[
ε1 − ε2

2
τ

]
(2.107)
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We have separated the contributions from the fast (If (τ)) and slow (Is(τ)) time scales as

discussed in section (2.2.5) above. In particular, as discussed above the term that oscillates with

the sum ε1 +ε2 is a consequence of the overlap between particles and antiparticles. The pre-factors

that multiply the sine functions in equations (2.106,2.107) arise from the overlap between particle-

antiparticle spinors in (2.106) and particle-particle, anti-particle-anti-particle spinors in (2.107).

The overlap between particle and antiparticle spinors is non-vanishing for different masses. Similar

contributions from the overlap between particle and antiparticle states of different masses have

been found in the studies of refs.[89, 90, 91].

Since the mass eigenstates are almost degenerate or alternatively for any values of the masses

in the relativistic limit we find

q2 + m1m2

ε1ε2
= 1− m̄2q2

ε̄4

(
∆M2

4M̄2

)2

+O
((

∆M2

4M̄2

)4
)

ε̄ =
√

q2 + m̄2 (2.108)

with ∆M2

4M̄2 ∼ 3× 10−4. Therefore the coefficient that results from the overlap between the particle

and antiparticle spinors of different mass is given by

1− q2 + m1m2

ε1ε2
= O

(
∆M2

4M̄2

M̄

E(k)

)2

(2.109)

and the coefficient that results from the overlap between particle-particle or anti-particle-anti-

particle of different masses is

1 +
q2 + m1m2

ε1ε2
= 2 +O

(
∆M2

4M̄2

M̄

E(k)

)2

(2.110)

where E(k) is an energy scale.

Therefore the coefficient of the oscillatory term in If (τ) is a factor at least of order
(

∆M2

4M̄2

)2
∼

10−7 smaller than that of Is(τ). Furthermore it is clear that the interference terms between particle

and antiparticle average out on a time scale tf . 1/M̄ whereas the particle-particle contributions

evolve on a much slower time scale ts ∼ M̄/∆M2 À tf .

However, despite the fact that the coefficients of the oscillatory terms in Is(τ) and If (τ) differ

by several orders of magnitude, the fact that the time evolution of Is(τ) is much slower allows for a

time scale within which both contributions are comparable. This can be gleaned from the following

argument.
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The integrals for Is(τ) and If (τ) are dominated by the region q ∼ 1. Consider an intermediate

time scale so that the argument of the oscillatory function in If (τ) is of order one, but the argument

of the oscillatory function in Is(τ) is ¿ 1. The contribution to the integral in If (τ) is of order

m̄2
(

∆m2

4m̄2

)2
while the contribution to the integral Is(τ) is of order 2(δm2τ2). Therefore, it is clear

that even when the prefactor of its oscillatory term is small, the integrand of If (τ) will be larger

than that of Is(τ) in the time domain during which

m̄2

(
δm2

4m̄2

)2

> (δm2τ)2 =⇒ τ . 1/m̄ (2.111)

In the opposite limit, for τ >> 1/m̄ the dynamics is completely dominated by Is(τ).

Fig. (2.1) below displays the early time evolution of Is(τ) and If (τ) for 0 ≤ τ . 1/m̄. It is

clear from this figure that If (τ) averages out to its asymptotic value on a short time scale τ ∼ 1

(t ∼ 1/kF ) and that Is(τ) begins to dominate the dynamics on time scales τ & 1/m̄ as discussed

above. In the case of Fig.(2.1), with ke
F >> M̄ the time scale of averaging is t ∼ 1/ke

F , but for

kF << M̄ it would be of order 1/M̄ .

0 50 100 150 200 250 300 τ
0.00e0

5.00e-13

1.00e-12

1.50e-12

2.00e-12

I ( )τf

I ( )sτ

Figure 2.1: Is(τ) and Is(τ) for ke
F = 100 eV ; kµ

F = 0 ; M̄ = 0.25 eV ; ∆M2 ' 7× 10−5(eV )2 vs.

τ . For these values 1/m̄ = 400.

In terms of dimensionful quantities the inequality obtained in eqn. (2.111) above translates into

t < 1/M̄ . With the current estimate M̄ ∼ 0.25 eV the analysis above suggests that the particle-

antiparticle interference is dynamically relevant during time scales t . 10−15 s although this time

scale is comparable to the expansion time scale at the time of the electroweak phase transition, it

30



is far shorter than the time scales relevant either for primordial nucleosynthesis or for dynamical

processes during the collapse of supernovae or neutron star cooling.

While the behavior of Is(τ) and If (τ) as a function of τ must in general be studied numerically,

the long time limit can be extracted analytically.

The asymptotic long time behavior of Is(τ) and If (τ) is determined by the end points of their

integrands, in particular for momenta near the Fermi surface. Two relevant cases yield the following

results

• Relativistic Limit: max(ke
F , kµ

F ) À M1, M2

Is(τ) =
1
2

∫ 1

qr

dq q2

(
1 +

q2 + m1m2

ε1ε2

)
+

2
δm2τ

{
sin

(δm2

2
τ
)
− q4

r sin
(δm2τ

2qr

)}

+O
(

1
(δm2τ)2

)
(2.112)

If (τ) =
1
2

∫ 1

qr

dq q2

(
1− q2 + m1m2

ε1ε2

)
− 1

8τ
(m1 −m2)2 [sin(2τ)− sin 2qrτ ]

+O
(

1
τ2

)
(2.113)

where δm2 is defined by equation (2.100) along with the other dimensionless variables.

• Non-Relativistic limit: ke
F , kµ

F ¿ M1,M2

Is(τ) =
1
2

∫ 1

qr

dq q2

(
1 +

q2 + m1m2

ε1ε2

)
+

m1m2

(m1 −m2) τ

{
sin

[
(m1 −m2)(1− 1

2m1m2
)τ

]
−

qr sin
[
(m1 −m2)(1− q2

r

2m1m2
)τ

]}
+O

(
1

τ
3
2

)
; for

(m1 −m2)τ
m1m2

À 1

Is(τ) =
1
2

∫ 1

qr

dq q2

(
1 +

q2 + m1m2

ε1ε2

)
[1− cos[(m1 −m2)τ ]] ; for

(m1 −m2)τ
m1m2

¿ 1 (2.114)

If (τ) =
1
2

∫ 1

qr

dq q2

(
1− q2 + m1m2

ε1ε2

)
− (m1 −m2)2

m1m2(m1 + m2) τ

{
sin

[
(m1 + m2)(1 +

1
2m1m2

)τ
]
−

q3
r sin

[
(m1 + m2)(1 +

q2
r

2m1m2
)τ

]}
+O

(
1
τ2

)
; for

(m1 + m2)τ
m1m2

À 1

If (τ) =
1
2

∫ 1

qr

dq q2

(
1− q2 + m1m2

ε1ε2

)
[1− cos[(m1 + m2)τ ]] ; for

(m1 + m2)τ
m1m2

¿ 1 (2.115)

In both cases, the flavor asymmetry density at asymptotically long time is given by

1
V

(qe(t)− qµ(t)) →
[
N (e) −N (µ)

]
cos2(2θ) +O(1/t) (2.116)
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Figure 2.2: Is(τ) and [Is(τ) − Is(∞)] × (Ωτ) for ke
F = 100 eV ; kµ

F = 0 ; M̄ = 0.25 eV ; ∆M2 '
7× 10−5(eV )2 vs. Ωτ , with Ω = δm2 = 7× 10−9.

The power law fall-off is a consequence of dephasing between different flavor modes that are

not Pauli blocked. Fig.(2.2) displays the slow contribution Is(τ) and its asymptotic limit given by

eqn. (2.112) in the relativistic case.

2.4 DISTRIBUTION FUNCTIONS OF NEUTRINOS AND ANTINEUTRINOS

The distribution functions are given by equations (2.66)-(2.77) for which after lengthy but straight-

forward algebra we find the following expressions

I(e)(k, t) = n(e)(k)− 2n(e)(k)A(k, t)− k2

ω2
e(k)

[
n(e)(k)−

(
1− n̄(e)(k)

)]
B(k, t) (2.117)

J (e)(k, t) =
[
C2S2(M1 −M2)2 + M1M2 + k2

ωe(k)ωµ(k)

(
n(µ)(k)− [1− n̄(µ)(k)]

)

+
(
n(µ)(k) + [1− n̄(µ)(k)]

)]
A(k, t)

− k2

ωe(k)ωµ(k)

[
n(µ)(k)−

(
1− n̄(µ)(k)

)]
C(k, t) (2.118)

where n(e)(k) and n̄(e)(k) are the initial distribution functions given by eqn. (2.20) and
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A(k, t) = C2S2

[(
1− k2 + M1M2

E1(k)E2(k)

)
sin2

(
E1(k) + E2(k)

2
t

)
+ (2.119)

(
1 +

k2 + M1M2

E1(k)E2(k)

)
sin2

(
E1(k)−E2(k)

2
t

)]
(2.120)

B(k, t) = C4S4(M1 −M2)2
[

1
E1(k)

sin(E1(k)t)− 1
E2(k)

sin(E2(k)t)
]2

(2.121)

C(k, t) = C2S2(M1 −M2)2
[

C2S2

E2
1(k)

sin2(E1(k)t) +
C2S2

E2
2(k)

sin2(E2(k)t)

− 2C2S2 − 1
E1(k)E2(k)

sin(E1(k)t) sin(E2(k)t)
]

. (2.122)

The expressions for Ī(e)(k, t) and J̄ (e)(k, t) are obtained from those for I(e)(k, t) and J (e)(k, t)

above by the replacement

n(e)(k) ←→ [1− n̄(e)(k)] ; n(µ)(k) ←→ [1− n̄(µ)(k)] (2.123)

Finally the expressions for I(µ)(k, t); Ī(µ)(k, t); J (µ)(k, t); J̄ (µ)(k, t) are obtained from those for

the electron neutrino by the replacement

n(e)(k) ←→ n(µ)(k) ; n̄(e)(k) ←→ n̄(µ)(k) ; ωe(k) ←→ ωµ(k) ; C2 ←→ S2 (2.124)

These dynamical factors A(k, t);B(k, t); C(k, t) are determined by the time evolution while their

pre-factors in the expressions for the distribution functions are determined by the initial state.

The dynamical factors clearly reveal again the different time scales. Terms that feature the con-

tributions e±2iE(1,2)t; e±i(E1+E2)t arise from particle-antiparticle interference and their contribution

is proportional to
(
∆M2/M̄2

)
and those that feature e±i(E1−E2)t arise from particle-particle (or

anti-particle- anti-particle) interference. We can find the asymptotic distribution functions at long

time by averaging the oscillatory terms over a time scale longer than the longest scale ∼ M̄/∆M2.

This time averaging procedure leads to

A(k, t) = C2S2 (2.125)

B(k, t) = C(k, t) =
1
2
C4S4(M1 −M2)2

[
1

E2
1(k)

+
1

E2
2(k)

]
(2.126)

The above expressions are exact and therefore valid for any value of the neutrino masses M1,M2.

However, the most recent compilation[2, 92] of data suggests that in the two flavor case the mass
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eigenstates are almost degenerate with ∆M2 ∼ 7 × 10−5 (eV )2 and the most recent cosmological

constraint from WMAP[8] suggests that the average value of the mass M̄ is . 0.25 (eV ). In terms

of the M̄ and ∆M2 introduced in eqn. (2.98), we find

me = M̄

[
1 +

∆M2

4M̄2
cos(2θ)

]
; mµ = M̄

[
1− ∆M2

4M̄2
cos(2θ)

]
(2.127)

In terms of the small ratio ∆M2/M̄2 ∼ 10−3 we find the average of the distribution functions

over the longest time scale to be given by

n(e)
av (k) = n(e)(k)− 2C2S2

(
n(e)(k)− n(µ)(k)

)
−R[k, n(α), n̄(α)] (2.128)

n̄(e)
av (k) = n̄(e)(k)− 2C2S2

(
n̄(e)(k)− n̄(µ)(k)

)
−R[k, n(α), n̄(α)] (2.129)

n(µ)
av (k) = n(µ)(k) + 2C2S2

(
n(e)(k)− n(µ)(k)

)
−R[k, n(α), n̄(α)] (2.130)

n̄(µ)
av (k) = n̄(µ)(k) + 2C2S2

(
n̄(e)(k)− n̄(µ)(k)

)
−R[k, n(α), n̄(α)] (2.131)

with

R[k, n(α), n̄(α)] =
k2M̄2

Ē4(k)

(
∆M2

4M̄2

)2

C2S2
[
4C2S2(n(e)(k) + n̄(e)(k)− 1) + (n(µ)(k) + n̄(µ)(k)− 1)

]

+O
((

∆M2

4M̄2

)3
)

(2.132)

Ē(k) =
√

k2 + M̄2 (2.133)

The term R[k, n(α), n̄(α)] arises from the overlap between particle and antiparticle spinors which

features the small quantity
(

∆M2

4M̄2

)
.

Flavor pair production and normal ordering:

The expressions (2.128-2.131) with that for the corrections given by eqn. (2.132) point out an

important and subtle aspect of the dynamics of mixing. Consider that the initial density matrix is

the flavor vacuum, namely set n(e)(k) = n̄(e)(k) = n(µ)(k) = n̄(µ)(k) = 0. The asymptotic limit of

the distribution functions (2.128-2.131) is given to lowest non trivial order in the ratio ∆M2/M̄2

by

n(e)(k,∞) = n̄(e)(k,∞) = n(µ)(k,∞) = n̄(µ)(k,∞) =
k2M̄2

4Ē4(k)

(
∆M2

4M̄2

)2

sin2(2θ)(1 + sin2(2θ)) +

O
((

∆M2

4M̄2

)3
)

(2.134)
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This result clearly indicates that the time evolution results in the creation of particle-antiparticle

pairs of electron and muon neutrinos. This is of course a consequence of the non-vanishing overlap

between positive and negative energy spinors which results in that a destruction operator for flavor

neutrinos develops a component corresponding to a creation operator of antineutrinos during time

evolution, and viceversa. In leading order in the degeneracy, the typical momentum of the pair

created is k ∼ M̄ therefore these are typically low momentum pairs of flavor neutrinos.

Furthermore a remarkable aspect of this pair production process via neutrino mixing is that

the distribution function of the produced particles falls off very slowly at high energies, namely

nprod(k,∞) ∝ 1/k2. As a result there is a divergent number of pairs produced as a consequence of

mixing and time evolution. Since the particles and antiparticles are produced in pairs, the flavor

charge vanishes, but the individual distribution functions feature a contribution from the pair pro-

duction process. A normal ordering prescription must be appended to subtract the infinite number

of particles created, however unlike normal ordering in the usual free field theory, which subtracts

a constant, in the case of mixing such normal ordering requires a subtraction of a distribution

function.

This is a novel and subtle phenomenon, flavor pair production which is a direct many particle

consequence of mixing and oscillations. Since this phenomenon is a consequence of the interference

between particle and antiparticle states is suppressed by the small quantity (∆M2/M̄)2.

Regardless of whether this phenomenon of flavor pair production has any bearing on the cos-

mology and or astrophysics of neutrinos, it is a genuine many body aspect inherent to the field

theory of neutrino mixing that deserves to be studied in its own right as a fundamental aspect of

the field theory of mixing.

Off-diagonal densities: Even when the initial density matrix is diagonal in the flavor basis

and therefore there are no off-diagonal initial correlations, these develop upon time evolution as

a consequence of flavor mixing. Following the same steps described above for the distribution

functions, we find the off-diagonal density to be given by the following expression
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< ν†e(~k, t)νµ(~k, t) >

= −2
C2 − S2

CS

[(
n(e)(k)− n̄(e)(k)

)
−

(
n(µ)(k)− n̄(µ)(k)

)]
A(k, t)

+iCS sin [(E1(k)−E2(k)) t]×{
1

ωe(k)

[
n(e)(k)−

(
1− n̄(e)(k)

)] [
(E1(k) + E2(k))− (M1 −M2)

(
S2M1

E1(k)
− C2M2

E2(k)

)]

− 1
ωµ(k)

[
n(µ)(k)−

(
1− n̄(µ)(k)

)] [
(E1(k) + E2(k))− (M1 −M2)

(
C2M1

E1(k)
− S2M2

E2(k)

)]}

+iCS sin [(E1(k) + E2(k)) t]×{
1

ωe(k)

[
n(e)(k)−

(
1− n̄(e)(k)

)] [
(E1(k)−E2(k))− (M1 −M2)

(
S2M1

E1(k)
+

C2M2

E2(k)

)]

− 1
ωµ(k)

[
n(µ)(k)−

(
1− n̄(µ)(k)

)] [
(E1(k)− E2(k))− (M1 −M2)

(
C2M1

E1(k)
+

S2M2

E2(k)

)]}

(2.135)

with A(k, t) given by eqn. (2.119). The expressions for the distribution functions and the off-

diagonal density can be simplified by expanding the coefficients of the oscillatory functions up to

leading order in the small quantity
(
∆M2/M̄2

)
. We find

n(e)(k, t) = n(e)(k)− (n(e)(k)− n(µ)(k))2C2S2 [1− cos[(E1(k)− E2(k))t]] +O
(

∆M2

4M̄2

)2

(2.136)

the other distribution functions may be found from the expression above by the replacements

in eqns. (2.123,2.124). Their time averages over the long time scale coincides with the leading

expressions in eqns. (2.128-2.131). The off-diagonal density simplifies to the following expression

< ν†e(~k, t)νµ(~k, t) >

= −2SC

{
2(C2 − S2)

[(
n(e)(k)− n̄(e)(k)

)
−

(
n(µ)(k)− n̄(µ)(k)

)]
sin2

[
(E1(k)− E2(k))

t

2

]

−i
[(

n(e)(k) + n̄(e)(k)
)
−

(
n(µ)(k) + n̄(µ)(k)

)]
sin [(E1(k)−E2(k)) t]

}
+O

(
∆M2

4M̄2

)2

(2.137)

The terms of O
(

∆M2

4M̄2

)2
again involve terms that oscillate with the sum of the frequencies

corresponding to particle-antiparticle interference as well as terms that oscillate with the difference
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of the frequencies arising from the overlap of the particle (or antiparticle) spinor wavefunctions for

different masses. The analysis that was presented for the same type of contributions in Is(τ); If (τ)

above highlight that the particle-antiparticle interference becomes subdominant on time scales

t > 1/M̄ . Hence the first terms O
(

∆M2

4M̄2

)0
in the approximations (2.136, 2.137) determine the

dynamics of the distribution functions and the off-diagonal correlator in leading order in the small

ratio ∆M2

4M̄2 for t >> 1/M̄ .

2.4.1 Equilibrated gas of mass eigenstates

Although we have focused on the case in which the initial density matrix is diagonal in the flavor

basis, for completeness we now study the case in which the initial density matrix describes an

ensemble of mass eigenstates in equilibrium. Therefore this initial density matrix is diagonal in the

mass basis and commutes with the Hamiltonian. This situation thus describes a state of equilibrium

in which the occupation numbers do not evolve in time (in the non-interacting theory). In this case

we find

< [ψ̄i(~k, 0)]r[ψi(~k, 0)]s > = n(i)(k)
(6ki + Mi

2Ei(k)

)

sr

+
(
1− n̄(i)(k)

)[
γ0 6ki −Mi

2Ei(k)
γ0

]

sr

(2.138)

≡ [Ni(~k)]sr

6ki = γ0Ei(~k)− ~γ · ~k (2.139)

where n(i)(k) are the occupation numbers of mass eigenstates assumed to depend only on the

energy. Just as we did in our previous analysis it proves convenient to write the above correlator

in the following form

Ni(~k) = 6Qi + M̃i (2.140)

6Qi = γ0Q0
i − ~γ · ~Qi, (2.141)

Q0
i =

1
2

[
n(i)(k) +

(
1− n̄(i)(k)

)]
, (2.142)

~Qi =
~k

2Ei(k)

[
n(i)(k)−

(
1− n̄(i)(k)

)]
, (2.143)

M̃i =
Mi

2Ei(k)

[
n(i)(k)−

(
1− n̄(i)(k)

)]
. (2.144)

Since the density matrix commutes with the full Hamiltonian, the distribution functions of the
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flavor eigenstates do not depend on time. Following the procedure detailed above we find the

following results

n(e)(k) =
C2

2

[(
1 +

k2 + meM1

ωe(k)E1(k)

)
n(1)(k) +

(
1− k2 + meM1

ωe(k)E1(k)

)(
1− n̄(1)(k)

)]

+
S2

2

[(
1 +

k2 + meM2

ωe(k)E2(k)

)
n(2)(k) +

(
1− k2 + meM2

ωe(k)E2(k)

) (
1− n̄(2)(k)

)]
(2.145)

n̄(e)(k) = 1− C2

2

[(
1− k2 + meM1

ωe(k)E1(k)

)
n(1)(k) +

(
1 +

k2 + meM1

ωe(k)E1(k)

) (
1− n̄(1)(k)

)]

−S2

2

[(
1− k2 + meM2

ωe(k)E2(k)

)
n(2)(k) +

(
1 +

k2 + meM2

ωe(k)E2(k)

) (
1− n̄(2)(k)

)]
(2.146)

Using the relations given by eqn. (2.127) we find to leading order in ∆M2/M̄2

n(e)(k) = C2n(1)(k) + S2n(2)(k) +O
(

∆M2

4M̄2

)2

(2.147)

n(µ)(k) = S2n(1)(k) + C2n(2)(k) +O
(

∆M2

4M̄2

)2

n̄(e)(k) = C2n̄(1)(k) + S2n̄(2)(k) +O
(

∆M2

4M̄2

)2

n̄(µ)(k) = S2n̄(1)(k) + C2n̄(2)(k) +O
(

∆M2

4M̄2

)2

(2.148)

2.5 “EFFECTIVE” (FREE) FIELD THEORY DESCRIPTION

Let us summarize the lessons learned in the analysis of the previous section in order to establish a

set of criteria with which to develop an effective description of the dynamics in the case in which

the mass eigenstates are nearly degenerate as confirmed by the experimental situation or in the

relativistic case.

• For nearly degenerate mass eigenstates there is a hierarchy of scales determined by i) kF or

temperature (T), ii) the average mass M̄ and iii) the mass difference M1−M2. The experimental

situation seems to confirm the near degeneracy with |M1 − M2| ¿ M̄ , therefore at least two

scales are widely separated. Furthermore if kF and or T (temperature) are such that kF ; T À M̄

which describes a relativistic case, then all three scales are widely separated with the hierarchy

kF , T À M̄ À |M1 −M2|. The dynamics studied above reveals all three scales.
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• The time evolution of the distribution functions, flavor asymmetry and off-diagonal correlators

all feature terms that oscillate with the frequencies E1(k) + E2(k), 2E1,2(k), and also terms

which oscillate with the difference E1(k)−E2(k). The former arise from the interference between

particle and antiparticle states of equal or different masses and determine the short time scales

t . 1/M̄ , while the latter arise from interference between particle states (or antiparticle

states) of different masses and determine the long time scales t & M̄/∆M2. The terms that

oscillate with the fast time scales average out on these fast scales and their coefficients are

of order ∆M2/M̄2 and hence small in the nearly degenerate case. These coefficients result

from the overlap between positive and negative energy spinors of slightly different masses.

The coefficients of the terms that oscillate on the long time scale are of O(1) and result from

the overlap between positive energy spinors (or between negative energy spinors) of different

masses.

• The contributions to the distribution functions and off-diagonal correlators from the terms with

fast and slow oscillations are comparable within the short time scale t . 1/M̄ but for times

longer than this scale the contributions from the terms with fast oscillations are suppressed

with respect to those with slow oscillations at least by O
(

∆M2

4M̄2

)2
.

We seek to obtain a description of the oscillation dynamics on scales much larger than 1/M̄ when

the contribution from the fast oscillations have averaged out to quantities that are proportional to

powers of the small ratio ∆M2

4M̄2 and can therefore be neglected in the nearly degenerate case.

In the nearly degenerate case ∆M2/M̄2 ¿ 1 the masses me,mµ,M1,M2 ∼ M̄ (see eqns.

(2.99),(2.127)), thus in order to isolate the leading order terms as well as to understand corrections

in the degeneracy parameter ∆M2/M̄2 it proves convenient to expand the positive and negative

energy spinors in terms of this small parameter. A straightforward computation in the standard

Dirac representation of the Dirac gamma matrices leads to the following result for the flavor positive

and negative energy spinors (see eqn. (2.6))

U
(α)
~k,λ

=

[
1± ∆M2

4M̄2

M̄

Ē(k)
cos(2θ)

(
γ0Ē(k)− M̄

2Ē(k)

)
+O

(
∆M2

4M̄2

)2
]
U~k,λ

V
(α)

−~k,λ
=

[
1∓ ∆M2

4M̄2

M̄

Ē(k)
cos(2θ)

(
γ0Ē(k) + M̄

2Ē(k)

)
+O

(
∆M2

4M̄2

)2
]
V~k,λ

(2.149)
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with

Ē(k) =
√

k2 + M̄2 (2.150)

and the upper sign corresponds to α = e and the lower sign to α = µ. The spinors U~k,λ
, V~k,λ

are positive and negative energy solutions respectively of the Dirac equation with mass M̄ with

unit normalization. Similarly for the positive and negative energy spinors associated with the mass

eigenstates F
(i)
~k,λ

; G(i)

−~k,λ
(see eqn. (2.10)), we find

F
(i)
~k,λ

=

[
1± ∆M2

4M̄2

M̄

Ē(k)

(
γ0Ē(k)− M̄

2Ē(k)

)
+O

(
∆M2

4M̄2

)2
]
U~k,λ

G
(i)

−~k,λ
=

[
1∓ ∆M2

4M̄2

M̄

Ē(k)

(
γ0Ē(k) + M̄

2Ē(k)

)
+O

(
∆M2

4M̄2

)2
]
V~k,λ

(2.151)

with the same spinors U~k,λ
;V~k,λ

, where the upper sign corresponds to i = 1 and the lower sign to

i = 2.

It is clear from the approximations (2.149) and (2.151) that the overlap between positive and

negative energy spinors of different masses is O
(

∆M2

4M̄2

)2
. For times much larger than the fast time

scale, the corrections to the spinors are subdominant and can be neglected and the fields associated

with the flavor and mass eigenstates are expanded as

να(~k, t) =
∑

λ

(
α

(α)
~k,λ

(t) U~k,λ
+ β

(α)†
−~k,λ

(t) V−~k,λ

)
+O

(
∆M2

4M̄2

)
(2.152)

ψi(~k, t) =
∑

λ

(
a

(i)
~k,λ

U~k,λ
e−iEi(k)t + b

(i)†
−~k,λ

V−~k,λ
eiEi(k)t

)
+O

(
∆M2

4M̄2

)
. (2.153)

We can now find the relation between the creation and annihilation operators of flavor states

and those of mass eigenstates by using eqn. (2.2), to leading order in the degeneracy parameter we

find

α
(e)
~k,λ

(t) = Ca
(1)
~k,λ

e−iE1(k)t + Sa
(2)
~k,λ

e−iE2(k)t (2.154)

α
(µ)
~k,λ

(t) = Ca
(2)
~k,λ

e−iE2(k)t − Sa
(1)
~k,λ

e−iE1(k)t (2.155)

where we have neglected terms ofO
(

∆M2

4M̄2

)
, and similar relations hold for the annihilation operators

of the respective antiparticles β
(α)
~k,λ

(t). It is clear that the approximations leading to the relations
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(2.154) and (2.155) are more generally valid not only in the nearly degenerate case but also in

the relativistic case k À M1,2 regardless of the value of the mass difference, since in this case the

common spinors are those of massless Dirac fermions in all cases.

In this approximation, the evolution equation for the Heisenberg operators α
(α)
~k,λ

(t) does not

follow directly from any Dirac equation, but can be obtained straightforwardly by taking time

derivatives of these operators in eqns. (2.154,2.155) and using the relations (2.154,2.155) to re-

write the result in terms of the operators themselves. In the leading order approximation particles

and antiparticles do not mix since the overlap between the spinors U~k,λ
and V−~k,λ

vanishes (in free

field theory) and a straightforward calculation leads to the following equations of motion

i
d

dt


 α

(e)
~k,λ

(t)

α
(µ)
~k,λ

(t)


 =


Ē(k)


 1 0

0 1


− Ω(k)


 − cos(2θ) sin(2θ)

sin(2θ) cos(2θ)








 α

(e)
~k,λ

(t)

α
(µ)
~k,λ

(t)


 (2.156)

with

Ē(k) =
1
2
(E1(k) + E2(k)) =

√
k2 + M̄2 +O

(
∆M2

4M̄2

)
(2.157)

Ω(k) =
1
2
(E1(k)− E2(k)) =

∆M2

4Ē(k)
+O

(
∆M2

4M̄2

)
(2.158)

and a similar equation of motion for the annihilation operators for flavor antiparticles β
(α)
~k,λ

(t). These

equations of motion look to be the familiar ones for neutrino oscillations[4, 9, 10, 11, 12, 50, 60, 62],

but these are equations for the Heisenberg field operators, rather than for the single particle wave-

functions. Once the time evolution of the operators is found, we can find the time evolution of any

multiparticle state. Furthermore the regime of validity of these equations is more general, they are

valid either in the nearly degenerate case ∆M2/M̄2 ¿ 1 for any value of the momentum, or in the

relativistic limit for arbitrary value of the masses provided that k À M1,M2.

Inverting the relation between the operators for flavor and mass states at the initial time, namely

writing the operators a
(i)
~k,λ

in terms of α
(α)
~k,λ

(0) using eqns. (2.154, 2.155) at t = 0, we find (again to

leading order)

α
(e)
~k,λ

(t) = α
(e)
~k,λ

(0)
[
C2e−iE1(k)t + S2e−iE2(k)t

]
+ SC α

(µ)
~k,λ

(0)
[
e−iE2(k)t − e−iE1(k)t

]
(2.159)

α
(µ)
~k,λ

(t) = α
(µ)
~k,λ

(0)
[
C2e−iE2(k)t + S2e−iE1(k)t

]
+ SC α

(e)
~k,λ

(0)
[
e−iE2(k)t − e−iE1(k)t

]
(2.160)
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For the antiparticle operators we find the same equations with α
(α)
~k,λ

→ β
(α)
~k,λ

.

The Heisenberg field operators given by eqns. (2.159,2.160) (and the equivalent for the antipar-

ticle operators) are the solutions of the equations of motion (2.156).

The time evolution of the distribution functions in an initial density matrix that is diagonal in

the flavor basis follows from a straightforward calculation using the above time evolution. We find

n(e)(k, t) = 〈α(e)†
~k,λ

(t)α(e)
~k,λ

(t)〉

= n(e)(k)− 1
2

sin2(2θ)
(
n(e)(k)− n(µ)(k)

)
[1− cos[(E1(k)−E2(k))t]] (2.161)

n(µ)(k, t) = 〈α(µ)†
~k,λ

(t)α(µ)
~k,λ

(t)〉

= n(µ)(k) +
1
2

sin2(2θ)
(
n(e)(k)− n(µ)(k)

)
[1− cos[(E1(k)− E2(k))t]] (2.162)

The distribution functions for antiparticles to leading order is obtained from the above results

by the replacements n(α) → n̄(α). A straightforward calculation following the above steps leads to

the result

< ν†e(~k, t)νµ(~k, t) >

= − sin(2θ)

{
2 cos(2θ)

[(
n(e)(k)− n̄(e)(k)

)
−

(
n(µ)(k)− n̄(µ)(k)

)]
sin2

[
(E1(k)− E2(k))

t

2

]

−i
[(

n(e)(k) + n̄(e)(k)
)
−

(
n(µ)(k) + n̄(µ)(k)

)]
sin [(E1(k)−E2(k)) t]

}
(2.163)

The results (2.161) and (2.163) reproduce the leading order expressions found in the previous

section, eqns. (2.136,2.137). Thus this “effective” free field theory description reproduces the

leading order results either in the nearly degenerate case ∆M2 ¿ M̄2 or in the relativistic case.

Furthermore either the effective equations of motion (2.156) or alternatively the time evolution

(2.159,2.160) (and those for antiparticles) lead to a set of closed evolution equations for bilinears.

These are most conveniently written by introducing a fiducial spin
−→
S = (Sx, Sy, Sz) with the

following components

Sx(~k, λ; t) = i
(
α

(µ)†
~k,λ

(t)α(e)
~k,λ

(t)− α
(e)†
~k,λ

(t)α(µ)
~k,λ

(t)
)

(2.164)

Sy(~k, λ; t) =
(
α

(µ)†
~k,λ

(t)α(e)
~k,λ

(t) + α
(e)†
~k,λ

(t)α(µ)
~k,λ

(t)
)

(2.165)

Sz(~k, λ; t) =
(
α

(e)†
~k,λ

(t)α(e)
~k,λ

(t)− α
(µ)†
~k,λ

(t)α(µ)
~k,λ

(t)
)

(2.166)
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and a fiducial magnetic field
−→
B = (Bx, By, Bz) with components

−→
B (k) = 2Ω(k)(0,− sin(2θ), cos(2θ)) (2.167)

in terms of which the equations for the bilinears are akin to the Bloch equations for a spin
−→
S

precessing in the magnetic field
−→
B namely

d
−→
S (~k, λ; t)

dt
=
−→
S (~k, λ; t)×−→B (k) (2.168)

The antiparticle operators obey independently a similar set of equations. To leading order in

∆M2/M̄2 there is no mixing between particles and antiparticles (suppressed by two powers of this

small ratio), therefore the number of electron plus muon neutrinos is conserved independently of

that for antineutrinos, namely

d

dt

(
α

(e)†
~k,λ

(t)α(e)
~k,λ

(t) + α
(µ)†
~k,λ

(t)α(µ)
~k,λ

(t)
)

= 0 (2.169)

and similarly for the operators β
(α)
~k,λ

. The set of equations above, for Heisenberg operators is akin

to the equations of motion for the “single particle” density matrix obtained in ref.[69], which are

equivalent to those investigated in refs.[66, 67, 70, 71, 73].

In the study of synchronized oscillations[69, 71, 73, 72], a self-consistent Hartree-Fock approxi-

mation is introduced which leads to a Bloch equation like (2.168) but where the magnetic field
−→
B

acquires a correction from the self-consistent Hartree terms which arise from forward scattering off

neutrinos in the medium.

This effective formulation neglects the dynamics of flavor pair production discussed above since

such phenomenon is suppressed by two powers of the small ratio ∆M2/M̄2.

2.5.1 Propagators: non-equilibrium correlation functions

While the set of equations of motion (2.156) and (2.168) are reminiscent of those for the single

particle wave functions and the single particle density matrix, in fact there is more information in

the “effective” free field theory description afforded by the operator equations (2.156) and (2.168)

combined with the field expansion (2.152). In particular, inserting the solution of the equations

of motion (2.159, 2.160) (and the similar ones for the antiparticles) into the expansion (2.152) for

the field operators allow us to obtain any correlation function in the free field theory at equal or

different times. These are the building blocks of any systematic perturbative expansion of processes
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of weak interactions. In particular the Feynman propagators, which are an essential ingredient in

any calculation that involves neutrinos are given by

SF
(α,α′)(~x−~x′; t, t′) = −i

∫
d3k

(2π)3
ei~k·(~x−~x′)

[
〈ν(α)(~k, t)ν̄(α′)(~k, t′)〉Θ(t− t′)− 〈ν̄(α′)(~k, t′)ν(α)(~k, t)〉Θ(t′ − t)

]

(2.170)

where the expectation values are in the initial density matrix, which is taken to be diagonal in the

flavor basis in the present discussion.

The correlation (Wightmann) functions that enter in the Feynman propagator are found by

using the leading order expansion (2.152) with the time evolution of the creation and annihilation

operators given by eqns. (2.159,2.160) and similar ones for β
(α)
~k,λ

(t). With the purpose of highlighting

the fast and slow time scales in the propagators, it is convenient to introduce the following functions

that evolve on the slow time scale

fk(t) = cos[Ω(k)t]− i cos(2θ) sin[Ω(k)t] (2.171)

gk(t) = i sin(2θ) sin[Ω(k)t] (2.172)

in terms of which the Heisenberg creation and annihilation operators of flavor states are written as

follows

α
(e)
~k,λ

(t) = e−iĒ(k)t
[
α

(e)
~k,λ

(0)fk(t) + α
(µ)
~k,λ

(0)gk(t)
]

(2.173)

α
(µ)
~k,λ

(t) = e−iĒ(k)t
[
α

(µ)
~k,λ

(0)f∗k (t) + α
(e)
~k,λ

(0)gk(t)
]

(2.174)

and similarly for the antiparticle Heisenberg operators β
(α)
~k,λ

(t).

A straighforward calculation of the Wightman functions yields the following results

〈ν(e)(~k, t)ν̄(e)(~k, t′)〉 =
(6k + M̄

2Ē(k)

)
e−iĒ(k)(t−t′)

[
(1− n(e)(k))fk(t)f∗k (t′) + (1− n(µ)(k))gk(t)g∗k(t

′)
]

+
(

γ0 6k − M̄

2Ē(k)
γ0

)
eiĒ(k)(t−t′)

[
n̄(e)(k)f∗k (t)fk(t′) + n̄(µ)(k)g∗k(t)gk(t′)

]
(2.175)

〈ν̄(e)(~k, t′)ν(e)(~k, t)〉 =
(6k + M̄

2Ē(k)

)
e−iĒ(k)(t−t′)

[
n(e)(k)fk(t)f∗k (t′) + n(µ)(k)gk(t)g∗k(t

′)
]

+
(

γ0 6k − M̄

2Ē(k)
γ0

)
eiĒ(k)(t−t′)

[
(1− n̄(e)(k))f∗k (t)fk(t′) + (1− n̄(µ)(k))g∗k(t)gk(t′)

]

(2.176)
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where

6k ≡ γ0Ē(k)− ~γ · ~k (2.177)

The Wightman function for the muon neutrino is obtained from that of the electron by the

replacement n(e)(k), n̄(e)(k) → n(µ)(k), n̄(µ)(k) , and fk ←→ f∗k . The off-diagonal Wightman

functions are given by

〈ν(µ)(~k, t)ν̄(e)(~k, t′)〉 =
(6k + M̄

2Ē(k)

)
e−iĒ(k)(t−t′)

[
(1− n(µ)(k))f∗k (t)g∗k(t

′) + (1− n(e)(k))f∗k (t′)gk(t)
]

+
(

γ0 6k − M̄

2Ē(k)
γ0

)
eiĒ(k)(t−t′)

[
n̄(µ)(k)gk(t′)fk(t) + n̄(e)(k)g∗k(t)fk(t′)

]
(2.178)

〈ν̄(e)(~k, t′)ν(µ)(~k, t)〉 =
(6k + M̄

2Ē(k)

)
e−iĒ(k)(t−t′)

[
n(µ)(k)f∗k (t)g∗k(t

′) + n(e)(k)f∗k (t′)gk(t)
]

+
(

γ0 6k − M̄

2Ē(k)
γ0

)
eiĒ(k)(t−t′)

[
(1− n̄(µ)(k))gk(t′)fk(t) + (1− n̄(e)(k))g∗k(t)fk(t′)

]

(2.179)

the other off-diagonal Wightmann function is obtained from the one above by replacing n(e) ←→
n(µ) and fk ←→ f∗k .

We have specifically separated the “fast” evolution, encoded in the exponentials ei±Ē(k)(t−t′)

and the “slow” evolution encoded in the functions fk; gk which oscillate with the small frequency

Ω(k) ∼ ∆M2/2Ē(k). We emphasize that the propagators above are functions not only of the

difference (t− t′) but also of the sum (t + t′) which reveals a truly non-equilibrium evolution. The

manifest lack of time translational invariance reflects the fact that the density matrix which is

diagonal in the flavor representation does not commute with the time evolution operator.

The discussion at the beginning of this section points out that these propagators are valid on

time scales t, t′ À 1/M̄ , for which the corrections arising from the interference between particle

and antiparticle can be neglected. Therefore the correlation functions obtained from the effective

field theory must be understood as being averaged over the fast time scales and their validity is

restricted to slow time scales.

The free field theory propagators obtained above provide the main ingredients to carry out a

study of the weak interactions in a neutrino background in a loop expansion.
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2.6 CONCLUSIONS

Our focus was to study the evolution of a dense and or hot gas of flavor neutrinos as a consequence

of oscillations and mixing. The goal was to establish an understanding of the dynamics directly

from the underlying quantum field theory, beginning with the simplest case of free field theory and

restricted to the two flavor case.

Such study leads to a deeper understanding of the various approximations invoked in the liter-

ature as well as recognizing the potential corrections. Even at the level of free field theory, which

must be the starting point of any program to study the physics of oscillations and mixing in the

weak interactions, this study reveals a wealth of dynamical phenomena that has not been explored

before within the context of neutrino oscillations in a medium with neutrinos at finite density and

temperature.

Our results can be summarized as follows:

• A hierarchy of time scales emerges associated with different interference phenomena. Oscilla-

tions on fast time scales t < 1/M̄ are associated with the interference between particles and

antiparticles while oscillations on slow time scales t > M̄/∆M2 arise from the interference be-

tween particle (or antiparticle) states with different masses. Observationally the situation for

two flavors is that of near degeneracy, which entails that these time scales are widely separated.

Furthermore in the relativistic limit with typical energy Ē À M1,M2 there is an even shorter

time scale t ∼ 1/Ē.

• The terms that oscillate on fast scales feature coefficients that are determined by the overlap

of positive and negative frequency wave functions of different masses. In the relativistic limit

or in the case of near degeneracy as suggested by the recent observations, these terms are

of order (∆M2/M̄2)2 ∼ 10−6 (or smaller in the relativistic case), while the coefficients of

terms that oscillate on the slow scales are of O(1) in terms of this ratio. During the short

time scales both contributions are comparable, but for t >> 1/M̄ the contribution from the

overlap between particle and antiparticle states becomes subdominant being at least a factor

(∆M2/M̄2)2 ∼ 10−6 smaller than the oscillations on the slow time scale. For the values of M̄

consistent with the recent bounds[8] the scale for fast oscillations is ∼ 10−15s these are clearly

too fast for relevant processes during BBN or neutrino processes in astrophysics, but may be

relevant for early universe cosmology. Of course this possibility requires further and deeper

studies.
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• An initial flavor asymmetry relaxes to equilibrium via dephasing between modes that are not

Pauli blocked with a power law 1/t on slow time scales t > kF /∆m2 in the relativistic case

kF >> M̄ . We have obtained exact as well as approximate expressions for the time evolution

of the distribution functions and off diagonal densities and discussed their asymptotic behavior,

all of which display Pauli blocking between different flavors (see eqns. (2.128-2.131). For

completeness we have also studied the case of an equilibrated gas of mass eigenstates which

describes a situation of equilibrium in absence of interactions. The non-equilibrium oscillation

dynamics leads to the production of particle-antiparticle pairs of flavored neutrinos with typical

momenta k ∼ M̄ . Since this phenomenon is a direct consequence of the overlap between particle

and antiparticle states the pair yield is suppressed by the factor (∆M2/M̄2)2.

• The wide separation between the different time scales allows to describe the dynamics on the

longer time scales in terms of an “effective” theory. In this effective description the Heisenberg

creation and annihilation field operators for flavor neutrinos and antineutrinos obey the familiar

Bloch type equations and the spinor structure is common to both flavors as well as the mass

eigenstates. This effective description allows to obtain in a simple manner the dynamics of the

distribution functions, off diagonal correlation functions and the non-equilibrium propagators,

all of which must be understood as an average over the fast time scales and valid only on the

slow scales.

While we have focused on the evolution of a gas of flavor neutrinos as an initial value problem

we have not discussed how the initial state is “prepared”. This is an important aspect of the physics

of neutrino mixing and the weak interactions, since weak interactions only produce flavor states

the initial state (or density matrix) must be “prepared” by weak interaction processes that occur

on time scales much shorter than those in which such state will relax either via collisions or by

oscillations. Clearly we have nothing to say yet on this aspect which deserves a thorough study.

Another aspect that deserves attention is that of the corrections to the “effective” theory de-

scribed above. These corrections entail powers of the ratios that are small either in the nearly

degenerate case or in the relativistic limit. In perturbation theory in the weak interactions, these

“small” corrections could conceivably be comparable to perturbative corrections in GF the Fermi

coupling, in which case the terms neglected in the effective theory must be kept on the same footing

as the contributions in the weak coupling in the perturbative expansion. Clearly such possibility

must be evaluated for the particular situation under consideration.

While we have focused on the dynamics in free field theory, the results will likely be valid in
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the interacting case in the case of a low density neutrino gas (or low temperatures). Under these

circumstances the corrections to the evolution equations associated with forward scattering off the

neutrino background (mean field), which is of order GF would be much smaller than ∆M2/M̄ and

the free field theory results for the evolution of the asymmetry may very well be valid.
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3.0 NEUTRINO OSCILLATIONS IN THE EARLY UNIVERSE

3.1 INTRODUCTION

The full quantum field theory treatment of neutrino mixing in hot and or dense media has not yet

received the same level of attention as the more familiar single particle treatment, which however,

is not suited when collective many body phenomena become relevant as is typically the case in

extreme environments.

Previous quantum field theory studies[14, 57, 93, 94] address either the dispersion relations or

mixing phenomena under restrictive approximations to lowest order in g2/M2
W .

In this chapter, we provide a systematic quantum field theory study of neutrino propagation

and oscillations in the early Universe directly in real time. Because in the early Universe the lepton

asymmetries are expected to be typically of the same order of the baryon asymmetry ηB/ηγ ∼ 10−9

a consistent description of neutrino propagation and oscillations requires to include corrections non-

local in space-time of order g2/M4
W in the dispersion relations[57] and mixing angles. We focus our

study on the case of two flavors of Dirac neutrinos, taken to be the electron and muon neutrinos,

this study can be generalized to more flavors or to Majorana-Dirac mass matrices without any

conceptual difficulty.

Our main goals are:

• To provide a systematic and consistent study of the real time dynamics of neutrino oscillation

and mixing directly in quantum field theory in conditions of temperature and lepton/neutrino

asymmetries applicable to the early Universe prior to the nucleosynthesis era. This is achieved

by formulating an initial value problem via linear response and implementing real time field

theory methods at finite temperature and density.

• We obtain the dispersion relations and in-medium mixing angles including the non local contri-

butions from the neutrino self-energies up to order g2/M4
W . Namely we carry out an expansion
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of the one-loop self-energy in frequency and momentum to lowest order in (ω, k)/MW . We find

a new contribution which cannot be interpreted as the usual effective potential. These contri-

butions are necessary since the typical asymmetries in the early Universe are very small and

these non-local (in space-time) contributions can be of the same order or larger than the local

contributions.

• We obtain the in-medium Dirac spinors for both helicities and study the evolution of oscillations

and mixing for both helicity components directly in real time.

• Two different temperature regimes are studied in detail: i) me ¿ T ¿ mµ, ii) me,mµ ¿ T ¿
MW . The first regime is just prior to big bang nucleosynthesis. Lepton and hadron (proton and

neutrons in nuclear statistical equilibrium) or quark asymmetries are included in the one-loop

self-energy. We assess in detail the temperature and energy regime for which a resonance in the

mixing angle is available in the medium. The second temperature regime is above the QCD

phase transition and we include two flavor of (light quarks) with their respective asymmetries.

In this regime the mixing angle becomes small. In both cases we also study the mixing and

oscillations of positive helicity as well as right handed neutrinos, which are typically neglected

in the literature. We also obtain the loop corrections to the oscillation frequencies thereby

providing a complete description of oscillation and mixing that includes corrections to both the

mixing angle and the oscillation frequencies.

• We obtain general oscillation formulae derived directly from the real time evolution in quantum

field theory. These formulae reveal the limit in which the usual quantum mechanical single

particle description is reliable as well as the corrections to them.

Main Approximations:

Since our study relies on a one-loop self-energy computation including leptons and neutrinos, the

inclusion of a neutrino background must necessarily imply some approximations for consistency.

We do not yet consider absorptive contributions, which in the temperature regime studied here

are of two-loop order, postponing the study of the interplay between oscillations and relaxation to

a forthcoming article.

Since we obtain the non-local (in space-time) contributions from the one-loop self energy we

must address the issue of the neutrino propagators in the neutral current contributions. Because

of mixing, the neutrino propagator in the flavor basis, in which the weak interactions are diagonal,

does not correspond to the propagation of mass eigenstates and in principle the non-equilibrium
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propagators obtained in ref.[95] must be used. The question of equilibration of a neutrino gas with

mixing is one of time scales: the weak interactions are diagonal in the flavor basis, therefore weak

processes tend to equilibrate flavor neutrinos with a typical weak interaction relaxation rate at high

temperature [57] Γ ∼ G2
F T 5. Oscillations, on the other hand mix flavors and tend to redistribute

flavor neutrinos into mass eigenstates of energy E on a time scale τosc ∼ E/δM2. Combined fitting

of the solar and KamLAND data yield [92] |δM2| ≈ 7.9× 10−5 (eV )2, therefore considering E ∼ T ,

we find Γ τosc ∼ 10 (0.1T/MeV)6. This comparison of time scales suggests that for T & 10MeV

neutrinos are equilibrated as flavor eigenstates. Flavor eigenstates created at local weak interaction

vertices will reach thermal equilibrium on time scales far shorter than those required for oscillations

into mass eigenstates for temperatures larger than ∼ 10MeV. Since in a loop integral the typical

momenta are of order T , and assuming the validity of this estimate, we consider the neutrino

propagators in the neutral current self-energy loop to be diagonal in the flavor basis, massless and

in thermal equilibrium.

For temperatures T . 10MeV and certainly below freeze out T < 1MeV a full kinetic descrip-

tion that includes oscillations and expansion[14, 59] is required. The study of the kinetic equations

will be the subject of forthcoming work. In this article we restrict our study to the temperature

regime T & 10MeV.

We also assume that the lepton and neutrino asymmetries are of the same order as the baryon

asymmetry, namely Li = (ni − n̄i)/nγ ∼ 10−9. For a relativistic species the asymmetry is propor-

tional to ξi (1 + ξ2
i /π2) with ξi ≡ µi/T , therefore under this assumption ξi ∼ 10−9 and we can

safely neglect the contribution to the chemical potential in the non-local (in space-time) terms of

order g2/M4
W .

This chapter is organized as follows: in section 3.2 we obtain the equations of motion for initially

prepared neutrino wavepackets by implementing the methods of non-equilibrium field theory and

linear response. In section 3.3 we obtain the one-loop self-energy contributions from charged and

neutral currents. Section 3.4 is devoted to obtaining the dispersion relations, mixing angles and

oscillation time scales in the medium and a study of the possibility of resonances. In section 3.5

we study the real time evolution of neutrino wavepackets as an initial value problem. Section

3.6 presents our conclusions, summarizes our results and presents some conjectures and further

questions. The detailed calculation of the self-energy is presented in Appendix A.
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3.2 EFFECTIVE DIRAC EQUATION FOR NEUTRINO PROPAGATION IN A

MEDIUM

The propagation of a neutrino in a medium is determined by the effective Dirac equation which

includes the self-energy corrections. Its solution yields the real time evolution as an initial value

problem. The correct framework to study the dynamics is the real time formulation of field theory

in terms of the closed-time-path integral[83, 84, 85, 86, 87]. In this section we implement this

method combined with linear response to obtain the effective equation of motion for an expectation

value of the neutrino field. The main concept in this approach is the following, consider coupling

an external c-number Grassman source to the neutrino field and switching this source adiabatically

up to time t = 0. This source induces an expectation value of the neutrino field, after switching-off

the external source at t = 0, the expectation value evolves in time as a solution of the effective

Dirac equation in the medium with the initial condition determined by the source term.

The main ingredient in this program is the retarded self-energy which enters in the effective

Dirac equation. The real-time formulation of field theory directly leads to causal and retarded

equations of motion. It is important to highlight the difference with the S-matrix approach which

describes transition amplitudes from in to out states, the real time formulation yields the equations

of motion for an expectation value and these are fully causal[83, 84, 85, 86, 87].

The self-energy is obtained in the unitary gauge in which only the correct physical degrees of

freedom contribute and is manifestly unitary[96]. Previous calculations of the neutrino self-energy

in covariant gauges (one of which is the unitary gauge) have proven that although the self-energy

does depend on the gauge parameter, the dispersion relations are gauge-invariant [97].

As mentioned above we restrict our discussion to the case of two flavors of Dirac neutrinos,

namely the electron and muon neutrinos. The subtle CP violating phases associated with the case

of three active neutrinos will not be considered here. However, the method can be generalized

to three active neutrinos, sterile neutrinos or even Majorana neutrinos without any conceptual

difficulty and will be postponed for further discussion elsewhere.

For Dirac neutrinos, mixing and oscillations can be implemented by a minimal extension of the

standard model adding a Dirac mass matrix to the standard model Lagrangian which is off-diagonal

in the flavor basis. The relevant part of the Lagrangian density is given by

L = L0
ν + L0

W + L0
Z + LCC + LNC , (3.1)
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where L0
ν is the free field neutrino Lagrangian minimally modified to include a Dirac mass matrix

L0
ν = νa (i6∂ δab −Mab) νb (3.2)

with a, b being the flavor indexes. For two flavors of Dirac neutrinos the mass matrix Mab is given

by

M =


 mee meµ

meµ mµµ


 , (3.3)

L0
W,Z are the free field lagrangian densities for the vector bosons in the unitary gauge, namely

L0
W = −1

2
(
∂µW+

ν − ∂νW
+
µ

) (
∂µW− ν − ∂νW−µ

)
+ M2

W W+
µ W−µ , (3.4)

L0
Z = −1

4
(∂µZν − ∂νZµ) (∂µZν − ∂νZµ) +

1
2
M2

Z Zµ Zµ , (3.5)

and the charged and neutral current interaction lagrangian densities are given by

LCC =
g√
2

[
νa γµ L la W+

µ + laγ
µ L νa W−

µ

]
, (3.6)

LNC =
g

2 cos θw

[
νa γµ L νa Zµ + fa γµ (gV

a − gA
a γ5) fa Zµ

]
. (3.7)

where L = (1 − γ5)/2 is the left-handed chiral projection operator, gV,A are the vector and axial

vector couplings for quarks and leptons, l stands for leptons and f generically for the fermion

species with neutral current interactions.

For two flavors, the diagonalization of the free field Dirac Lagrangian for neutrinos, (3.2) is

achieved by a unitary transformation to mass eigenstates. Considering, flavor and mass eigenstates

doublets respectively 
 νe

νµ


 ,


 ν1

ν2


 ,

related by unitary transformation

 νe

νµ


 = U


 ν1

ν2


 , (3.8)

with the unitary transformation given by the 2× 2 matrix

U =


 cos θ sin θ

− sin θ cos θ


 , (3.9)
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where θ is the vacuum mixing angle.

In the basis of mass eigenstates (ν1, ν2) the mass matrix Mab becomes diagonal

 M1 0

0 M2


 .

The elements mee,mµµ and meµ in the mass matrix (3.3) are related to the vacuum mixing angle

θ and masses of the propagating mass eigenstates M1 and M2 as follows

mee = C2 M1 + S2 M2 ; mµµ = S2 M1 + C2 M2 ; meµ = −(M1 −M2) C S , (3.10)

where C = cos θ and S = sin θ.

For later convenience, we introduce

M =
M1 + M2

2
; δM2 = M2

1 −M2
2 (3.11)

The current value for the average of the vacuum masses obtained by WMAP[8] and oscillation

parameters from the combined fitting of the solar and KamLAND data are [92]:

M ≈ 0.25 (eV ) ; |δM2| ≈ 7.9× 10−5 (eV )2 ; tan2 θ ≈ 0.40 . (3.12)

For these values of the masses and more generally if there is an almost degeneracy in the hierarchy

of neutrino masses the ratio
|δM2|
M

2 ¿ 1 . (3.13)

The smallness of this ratio in the nearly degenerate case will lead to important simplifications.

Our goal is to obtain the effective Dirac equation for neutrinos propagating in the medium and

extract the in-medium mixing angles, propagation frequencies and the wave functions of the propa-

gating modes in the medium. The real-time effective Dirac equation in the medium is derived from

linear response by implementing the methods of non-equilibrium quantum field theory described in

[87].

Following this approach, we introduce an external Grassmann-valued source that couples lin-

early to the neutrino field via the lagrangian density

LS = νa ηa + ηa νa . (3.14)

whence the total lagrangian density is given by L+LS . The external source induces an expectation

value for the neutrino field which, in turn, obeys the effective equation of motion with self-energy

modifications from the thermal medium [87].
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To study the dynamics of the system, it is the expectation values rather than the in-out S-matrix

elements that are necessary[84]. This requires a generating function for the real-time correlation

functions. Denoting generically by Φ the fields (fermions, or gauge bosons), a path integral repre-

sentation of this generating functional is given by

Z[j+, j−] =
∫

DΦ+ DΦ−ei
R

(L[Φ+,j+]−L[Φ−,j−]) , (3.15)

and the path integrations over the fields Φ± will be taken along the forward (+) and backward

(−) time branches, in the presence of the sources j± [83, 84, 85, 86, 87]. Here, the sources j± are

coupled linearly to the fields Φ± and thus the real-time correlation functions can be obtained from

the functional derivatives of this generating functional with respect to these sources. Functional

derivatives with respect to j+ and j− give the time-ordered and anti-time-ordered correlation

functions respectively.

The sources j± are introduced to compute the real-time correlation functions and will be set

to zero after the calculations. However, the external Grassman source η and hence the expectation

value induced to the neutrino field will remain the same along both time branches (±). For further

discussions on the general method, see references [83, 85, 86, 87].

The equation of motion for the expectation value of the neutrino field induced by the external

Grassman source is derived by shifting the field

ν±a = ψa + Ψ±
a , ψa = 〈ν±a 〉 , 〈Ψ±

a 〉 = 0 , (3.16)

and imposing 〈Ψ±
a 〉 = 0 order by order in the perturbation theory [85, 86, 87]. Carrying out this

implementation up to one-loop order, we find the following equation of motion
(
i 6∂ δab −Mab + Σtad

ab L
)

ψb(~x, t) +
∫

d3x′
∫

dt′ Σret
ab (~x− ~x′, t− t′) ψb(~x′, t′) = −ηa(~x, t), (3.17)

where Σret
ab (~x − ~x′, t − t′) is the real-time retarded self-energy given by the exchange one-loop

contributions, the first two diagrams displayed in Fig. 3.1 and Σtad
ab L is the tadpole contribution

from the last two diagrams in Fig. 3.1. The expectation value of the neutrino field in the medium

describes a beam or wave-packet of test neutrinos, namely these are neutrinos that are injected

in the medium, for example by the decay of a neutron or any other heavy particle, but have not

(yet) thermalized with the plasma. This is precisely the manner in which linear response leads to

a study of real-time phenomena.

Due to the translational invariance of the medium in thermal equilibrium, the retarded self-

energy is simply a function of ~x − ~x′ and t − t′. Hence, the equation can be written in frequency
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Figure 3.1: One-loop diagrams contributing to the neutrino self-energy.

and momentum space by introducing the space-time Fourier transform of the expectation value

and the source

ψa(~x, t) =
1√
V

∑

~k

∫
dω ψa(~k, ω) ei~k·~x e−iω t , ηa(~x, t) =

1√
V

∑

~k

∫
dω ηa(~k, ω) ei~k·~x e−iω t.

(3.18)

Furthermore, due to the rotational invariance of the thermal medium, implies that all physical

quantities depend on |~k| ≡ k.

We have argued in the introduction that for temperatures T & 10MeV the relaxation via the

weak interaction is faster than the time scales of (vacuum) oscillations. The validation of this

assumption requires a deeper study of the interplay between neutrino oscillations and damping

processes in the medium including the two-loop self-energy, which will be the subject of a forth-

coming article. Assuming the validity of this estimate, the neutrinos in the loop are in thermal

equilibrium as flavor eigenstates and at the temperatures of interest we consider them massless.

Under this assumption, the self-energy is diagonal in the flavor basis

As a result, the effective Dirac equation for neutrino oscillations in the medium is obtained as
[(

γ0 ω − ~γ · ~k
)

δab −Mab + Σtad
ab L + Σab(ω, k) L

]
ψb(ω, k) = −ηa(ω, k) , (3.19)

with

Σ(ω, k) = ΣW (ω, k) + ΣZ(ω, k) ; Σtad = Σνe tad + Σνµ tad + Σf tad , (3.20)

where Σf tad is the total tadpole contribution from all fermions other than neutrinos in the loop.

The details of the calculation of the self-energy are presented in Appendix A.
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3.3 ONE-LOOP SELF-ENERGIES

3.3.1 Charged and Neutral Currents

From Eqs.(A.28)-(A.32) in the Appendix, we found that the self-energy ΣW,Z(ω, k) can be written

in the dispersive form

ΣW,Z(ω, k) =
∫

dk0

π

ImΣW (k0, k)
k0 − ω − iε

. (3.21)

with

ImΣW (k0, k) =
g2π

2

∫
d3p

(2π)3
1

4 Wq ωp

{
[1−Nf (ωp) + Nb(Wq)] 6Q(~p, ~q) δ(k0 − ωp −Wq) +

+
[
1− N̄f (ωp) + Nb(Wq)

] 6Q(−~p,−~q) δ(k0 + ωp + Wq)

+ [Nf (ωp) + Nb(Wq)] 6Q(~p,−~q) δ(k0 − ωp + Wq)

+
[
N̄f (ωp) + Nb(Wq)

] 6Q(−~p, ~q) δ(k0 + ωp −Wq)

}
, (3.22)

where we have defined

Qµ(~p, ~q) = pµ + 2 qµ Wq ωp − ~q · ~p
M2

W

, (3.23)

qµ = ( Wq ,~k − ~p ) , ωp =
√
|~p |2 + m2

f , Wq =
√
|~k − ~p |2 + M2

W .

The corresponding contribution from neutral currents can be obtained from the above expression

by setting
g√
2
→ g

2 cos θw
, MW → MZ =

MW

cos θw
, (3.24)

with θw being the Weinberg angle.

In the limit T ¿ MW,Z , the abundance of vector bosons is exponentially suppressed, hence we

neglect the terms that feature Nb(Wq). The imaginary part of the one-loop self-energy vanishes on

the neutrino mass shell at one-loop level. A non-vanishing damping rate (non-vanishing imaginary

part of the self-energy at the neutrino mass shell) at temperatures T ¿ MW arises at two-loop

level. Thus we focus solely on ReΣW (k0, k) when studying the dispersion relation and propagation

of neutrinos in the medium.

The form of ImΣW (k0, k) suggests that ReΣW (ω, k) can be written as

ReΣW (ω, k) = γ0 σ0
W (ω, k)− ~γ · k̂ σ1

W (ω, k), (3.25)

where σ0
W (ω, k) and σ1

W (ω, k) can be obtained by taking traces on both sides.
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Dropping the T = 0 part and using the dispersive representation (3.21), we find that for any

fermion f in the loop,

σ0
W (ω, k) = −g2

2

∫
d3p

(2π)3
1

4 Wq ωp

{
Nf (ωp)

[
Q0(~p, ~q)

Wq + ωp − ω
+

Q0(~p,−~q)
Wq − ωp + ω)

]

−N̄f (ωp)
[

Q0(~p, ~q)
Wq + ωp + ω

+
Q0(~p,−~q)

Wq − ωp − ω

] }
, (3.26)

σ1
W (ω, k) = −g2

2

∫
d3p

(2π)3
1

4 Wq ωp

{
Nf (ωp)

[
k̂ · ~Q(~p, ~q)

Wq + ωp − ω
+

k̂ · ~Q(~p,−~q)
Wq − ωp + ω

]

+N̄f (ωp)

[
k̂ · ~Q(~p, ~q)

Wq + ωp + ω
+

k̂ · ~Q(~p,−~q)
Wq − ωp − ω

] }
. (3.27)

In the thermalized medium with temperature T , the dominant loop momenta is of order p ∼ T ,

therefore we neglect the neutrino masses since T & 3 − 5MeV. The self-energy is expanded

in a power series in the external frequency and momentum ω, k, we refer to terms of the form

ω/MW ; k/MW as non-local terms (in space-time) since they represent gradient expansions in

configuration space. Furthermore, we will neglect the contribution from leptons with masses mf À
T since these will be exponentially suppressed, but we calculate the self-energies up the order

(g2/M4
W,Z)(mf/T )2 for leptons with masses mf ¿ T and all higher order terms will be dropped.

A straightforward but lengthy calculation gives

σ0
W (ω, k) = −3 GF√

2
(nf − nf̄ ) +

7 π2

15
√

2
GF ω T 4

M2
W

,

σ1
W (ω, k) = − 7 π2

45
√

2
GF k T 4

M2
W

[
1− 30

7 π2

(mf

T

)2
]

, (3.28)

where GF =
√

2 g2

8 M2
W

is the Fermi constant, and nf−nf̄ is the particle-antiparticle number density

difference for any fermion f defined as

nf − nf̄ = 2
∫

d3p

(2π)3
[
Nf (ωp)− N̄f (ωp)

]
. (3.29)

The contribution to σ1
W (ω, k) of order g2/M2

W vanishes as a consequence of the isotropy of the

equilibrium distribution functions. In calculating the non-local (in space-time) terms proportional

to ω/MW ; k/MW we have neglected the chemical potentials under the assumption that all asym-

metries (leptons and neutrinos) are of the same order as the baryon asymmetry, in which case

µ/T ∼ 10−9 where µ is the chemical potential for the corresponding species.

In ref.[57] the equivalent to σ0 is quoted as the coefficient bL, but no equivalent to σ1 was

provided there, this is a difference between our results and those of ref.[57]. The contribution
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σ1(ω, k) is new it cannot be identified with an “effective potential” (which is proportional to γ0)

and it will be a source of helicity dependence on frequencies and mixing angles which has not been

appreciated in the literature.

To obtain the corresponding expressions for the neutral current interactions, we can simply

apply the replacement eq.(3.24).

3.3.2 Tadpole

As we mentioned in section 3.2, the path integrations over the fields Φ± have to be taken along

both forward (+) and backward (−) time branches in the presence of the sources j±. However, the

fermion loop of the tadpole diagram corresponds to the coincidence limit of the propagator, and in

this limit all four real time propagators coincide[87]. Thus, to derive the correlation function, we

only need the source j+. Correspondingly, upon functional derivative with respect to j+, only the

time-ordered propagator iS++(p) will be required, where p is the 4-momentum through the loop.

The computation of the tadpole diagram is simplified by writing iS++(p) as

i S++(p) = i (6p + m)
[

1
p2 −m2 + iε

+ i Γ(p)
]

, (3.30)

where Γ(p) is given by

Γ(p) = 2 π δ(p2 −m2)
[
θ(p0) Nf (|p0|) + θ(−p0) N̄f (|p0|)

]
. (3.31)

Since the 4-momentum through the Z boson propagator is zero, the tadpole diagram with any

fermion f through the loop is given by

−i Σf tad =
(

i g

2 cos θw

)2

γµ igµν

M2
Z

(−1)
∫

d4p

(2π)4
Tr

[
γν (gV − gAγ5) i S++(p)

]
, (3.32)

where the values of gV and gA for all the fermions are listed in the following table:

Particles gV gA

νe, νµ, ντ
1
2

1
2

e, µ, τ −1
2 + 2 sin2 θw −1

2

p 1
2 − 2 sin2 θw

1
2

n −1
2 −1

2

u, c, t 1
2 − 4

3 sin2 θw
1
2

d, s, b −1
2 + 2

3 sin2 θw −1
2
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Evaluation of the integral in eq.(3.32) gives the result

Σf tad =
2 GF gV

√
2

(nf − nf̄ ) γ0 , (3.33)

Writing Σf tad(ω, k) in the same form as (3.25), we obtain

σ0
tad =

2GF gV

√
2

(nf − nf̄ ) , σ1
tad = 0 . (3.34)

and tadpoles with quark loops acquire an extra factor 3 from color. We see that the tadpole

contribution is finite and proportional to nf − nf̄ . This is the signature of a CP asymmetric

medium. It is customary and convenient to express nf − nf̄ in terms of its relative abundance to

the photons in the universe. At any temperature T , the photon number density in the universe is

given by

nγ =
2
π2

ζ(3) T 3 . (3.35)

and the particle-antiparticle asymmetry for any fermion species f is defined as

Lf =
nf − nf̄

nγ
. (3.36)

The magnitude of the observed baryon asymmetry is LB ' 10−9. Since B − L is conserved in the

standard model, it is natural to expect that the lepton asymmetries should be of the same order

as LB. Although there is no a priori reason to expect the neutrino asymmetries to be of the same

order, we will henceforth assume that all the lepton and neutrino asymmetries Le, Lµ, Lνe and

Lνµ are of the order of the baryon asymmetry ∼ 10−9.

The next step is to compute the contributions from the one-loop exchange diagrams. We focus

on two different temperature regimes, me ¿ T ¿ mµ in which only the electron is ultrarelativistic

and me, mµ ¿ T ¿ MW in which both leptons are ultrarelativistic.

3.3.2.1 me ¿ T ¿ mµ This temperature limit is interesting because it is the energy scale right

above BBN. The efficiency of BBN is sensitive to the amount of electron neutrinos which, in turn,

depends on the detailed dynamics of neutrino oscillations. As it will be discussed below in detail,

in the temperature regime T & 5MeV the non-local (in space-time) terms proportional to ω, k

from the exchange diagrams (both charged and neutral currents) dominate the contributions of the

lepton and neutrino asymmetries assuming all of them to be of order 10−9.

In the temperature limit with me ¿ T ¿ mµ, the contribution from µ leptons to the exchange

one loop diagram is exponentially suppressed and we neglect it. Apart from electrons and neutrinos,

60



the thermal background does contain protons and neutrons in nuclear statistical equilibrium since

for T & 1MeV the weak interactions lead to equilibration on time scales shorter than the Hubble

time scale via the reactions

n ↔ p + e− + ν̄e , p + ν̄e ↔ n + e+ , p + e− ↔ n + νe . (3.37)

In the basis of flavor eigenstates, the total one-loop self-energy contribution is of the form

ReΣ(ω, k) = [γ0A(ω)− ~γ · k̂B(k)]L (3.38)

where A(ω, k) and B(ω, k) are 2× 2 diagonal matrices in the neutrino flavor basis given by

A(ω) =


 Ae(ω) 0

0 Aµ(ω)


 ; B(k) =


 Be(k) 0

0 Bµ(k)


 , (3.39)

Extracting non-local terms (in space-time) up to O(ω/T ) , O(k/T ) we find the following matrix

elements,

Ae(ω) = −3 GF√
2

Le nγ +
7 π2

15
√

2
GF ω T 4

M2
W

− 3 GF

2
√

2
Lνe nγ +

7 π2

30
√

2
GF ω T 4

M2
Z

+
GF√

2
Lνe nγ +

GF√
2

Lνµ nγ +
2 GF√

2
(−1

2
+ 2 sin2 θw) Le nγ

+
2 GF√

2
(
1
2
− 2 sin2 θw) Lp nγ − GF√

2
Ln nγ , (3.40)

Aµ(ω) = −3 GF

2
√

2
Lνµ nγ +

7 π2

30
√

2
GF ω T 4

M2
Z

+
GF√

2
Lνe nγ +

GF√
2

Lνµ nγ +
2 GF√

2
(−1

2
+ 2 sin2 θw) Le nγ

+
2 GF√

2
(
1
2
− 2 sin2 θw) Lp nγ − GF√

2
Ln nγ , (3.41)

Be(k) = − 7 π2

45
√

2
GF k T 4

M2
W

[
1− 30

7 π2

(me

T

)2
]
− 7 π2

90
√

2
GF k T 4

M2
Z

, (3.42)

Bµ(k) = − 7 π2

90
√

2
GF k T 4

M2
Z

. (3.43)

We purposely displayed the individual terms in the above expressions to highlight that the first

line in Ae,µ(ω) as well as the expressions for Be,µ(k) arise from the exchange diagrams (the two top

diagrams in fig.3.1), while the second and third lines in Ae,µ(ω) arise from the tadpole diagrams

(bottom two diagrams in fig.3.1). We have assumed that the flavor neutrinos are in thermal

equilibrium and have consistently neglected neutrino masses. The correction term (me/T )2 is

displayed so that one can estimate the error incurred when this term is dropped for T >> me,
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the error is less than 1% for T & 5MeV. In what follows we will neglect this contribution in the

temperature range of interest for this section.

Charge neutrality requires that Le = Lp, hence

Σe tad + Σp tad = 0 . (3.44)

Therefore, the expressions for Ae and Aµ simplify to the following:

Ae(ω) =
GF nγ√

2

[
− Le +

7 π4

60 ζ(3)
ω T

M2
W

(
2 + cos2 θw

)
]

, (3.45)

Aµ(ω) =
GF nγ√

2

[
− Lµ +

7 π4

60 ζ(3)
ω T

M2
W

cos2 θw

]
, (3.46)

Be(k) = −GF nγ√
2

7 π4

180 ζ(3)
k T

M2
W

(
2 + cos2 θw

)
, (3.47)

Bµ(k) = −GF nγ√
2

7 π4

180 ζ(3)
k T

M2
W

cos2 θw . (3.48)

where

− Le = −1
2

Lνe + Lνµ − 3 Le − Ln

−Lµ = −1
2
Lνµ + Lνe − Ln (3.49)

Where in the temperature regime me ¿ T ¿ mµ we consistently neglected the muon contribution

to the non-local terms proportional to ω, k in the exchange diagrams.

The above expressions also reveal the importance of the temperature region T & 5MeV. As-

suming that all asymmetries are of the same order as the baryon asymmetry, namely Li ∼ 10−9,

we see that for ω ∼ k ∼ T the factor T 2/M2
W À 10−9 for T & 5 MeV.

We will discuss below that in this region there is also a resonance in the mixing angle in

agreement with the results in[59].

3.3.2.2 me,mµ ¿ T ¿ MW This temperature region is important because the non-local con-

tributions are much larger than that of the lepton and neutrino asymmetries, assuming both to

be of the same order ∼ 10−9 and are the same for both leptons if their masses are neglected.

Therefore, if the contribution from the lepton and neutrino asymmetries is neglected, and terms

of O(m2
e/T 2) ; O(m2

µ/T 2) are neglected, the matrices A,B become proportional to the identity. In

this case the mixing angle would be the same as in the vacuum. We will see however, that keeping
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terms of O(m2
e/T 2) ; O(m2

µ/T 2) leads to a very different result, namely the vanishing of the mixing

angle for negative helicity neutrinos or positive helicity antineutrinos in this temperature range.

For T À mµ ∼ 100MeV the temperature is larger than the critical temperature for deconfine-

ment in QCD Tc ∼ 160MeV. Therefore, the medium contains free quarks but no nucleons. Since

both u and d quarks have masses smaller than 10 MeV, their masses can be neglected. We only

include in our description the two lightest quark degrees of freedom consistently with keeping only

a weak doublet. We also assume that there is vanishing strangeness in the medium.

As a result, the corresponding Ae,µ(ω), Be,µ(k) are now given by

Ae(ω) = −3 GF√
2

Le nγ +
7 π2

15
√

2
GF ω T 4

M2
W

− 3 GF

2
√

2
Lνe nγ +

7 π2

30
√

2
GF ω T 4

M2
Z

+
GF√

2
Lνe nγ +

GF√
2

Lνµ nγ

+
2 GF√

2
(−1

2
+ 2 sin2 θw) Le nγ +

2 GF√
2

(−1
2

+ 2 sin2 θw) Lµ nγ

+
6 GF√

2
(
1
2
− 4

3
sin2 θw) Lu nγ +

6 GF√
2

(−1
2

+
2
3

sin2 θw) Ld nγ , (3.50)

Aµ(ω) = −3 GF√
2

Lµ nγ +
7 π2

15
√

2
GF ω T 4

M2
W

− 3 GF

2
√

2
Lνµ nγ +

7 π2

30
√

2
GF ω T 4

M2
Z

+
GF√

2
Lνe nγ +

GF√
2

Lνµ nγ

+
2 GF√

2
(−1

2
+ 2 sin2 θw) Le nγ +

2 GF√
2

(−1
2

+ 2 sin2 θw) Lµ nγ

+
6 GF√

2
(
1
2
− 4

3
sin2 θw) Lu nγ +

6 GF√
2

(−1
2

+
2
3

sin2 θw) Ld nγ , (3.51)

Be(k) = − 7 π2

45
√

2
GF k T 4

M2
W

[
1− 30

7 π2

(me

T

)2
]
− 7 π2

90
√

2
GF k T 4

M2
Z

, (3.52)

Bµ(k) = − 7 π2

45
√

2
GF k T 4

M2
W

[
1− 30

7 π2

(mµ

T

)2
]
− 7 π2

90
√

2
GF k T 4

M2
Z

. (3.53)

Charge neutrality of the medium leads to the constraint 4 Lu − Ld − 3 Le = 0, which leads to the

following simplified expressions:

Ae(ω) =
GF nγ√

2

[
−̃Le +

7 π4

60 ζ(3)
ω T

M2
W

(
2 + cos2 θw

)
]

, (3.54)

Aµ(ω) =
GF nγ√

2

[
− L̃µ +

7 π4

60 ζ(3)
ω T

M2
W

(
2 + cos2 θw

)
]

, (3.55)

Be(k) = −GF nγ√
2

7 π4

180 ζ(3)
k T

M2
W

[
2 + cos2 θw − 60

7 π2

(me

T

)2
]

, (3.56)

Bµ(k) = −GF nγ√
2

7 π4

180 ζ(3)
k T

M2
W

[
2 + cos2 θw − 60

7π2

(mµ

T

)2
]

, (3.57)
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where

− L̃e = −1
2

Lνe + Lνµ − 3 Le + (1− 4 sin2 θw)(2 Le − Lµ)− (1− 8 sin2 θw)Lu − 2 Ld ,

(3.58)

−L̃µ = −1
2

Lνµ + Lνe − 3 Lµ + (1− 4 sin2 θw)(2 Le − Lµ)− (1− 8 sin2 θw)Lu − 2 Ld .

(3.59)

In the limit when T À me,µ both leptons become ultrarelativistic and a CP-symmetric medium

becomes flavor blind to the weak interactions. In this case we must keep terms of O(me,µ/T ) to

understand the nature of oscillations and mixing.

3.4 DISPERSION RELATIONS, MIXING ANGLES AND RESONANCES IN

THE MEDIUM

The neutrino dispersion relations and mixing angles in the medium are obtained by diagonalizing

the homogeneous effective Dirac equation in the medium, namely by setting η(ω, k) = 0 in eq.(3.19).

Using the results obtained above, the homogeneous Dirac equation in frequency and momentum

becomes [
γ0 ω1− ~γ · k̂ k1−M+

(
γ0A(ω)− ~γ · k̂B(k)

)
L

]
ψ(ω, k) = 0 , (3.60)

where 1 is the 2× 2 identity matrix in the flavor basis in which the field ψ(ω, k) is given by

ψ(ω, k) =


 νe(ω, k)

νµ(ω, k)


 , (3.61)

with νe(ω, k) and νµ(ω, k) each being a 4-component Dirac spinor.

If we multiply the effective Dirac equation (3.60) by the chiral projectors R and L respectively

from the left, we obtain

(
γ0W − ~γ · k̂K

)
ψL −M ψR = 0 , (3.62)

(
γ0 ω 1− ~γ · k̂ k 1

)
ψR −M ψL = 0 , (3.63)

where we have defined the flavor matrices

W = ω1+A , K = k 1+B . (3.64)
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The set of equations (3.62) and (3.63) couple ψL and ψR together. To solve the equations, we first

multiply (3.62) by
(
γ0 ω − ~γ · k̂ k

)
1 from the left and use eq.(3.63) to obtain an equation for ψL

which can be written in terms of the helicity operator ĥ(k̂) = γ0~γ · k̂ γ5, as follows

[
ωW − kK+ ĥ(k̂)(ωK−Wk)−M2

]
ψL = 0 , (3.65)

and the right handed component is given by

ψR(ω, k) = M γ0 [ω + ĥ(k̂) k]
ω2 − k2

ψL(ω, k) . (3.66)

It is convenient to separate the Dirac and flavor structure to simplify the study. This is achieved

most economically in the chiral representation of the Dirac matrices, in which

γ0 =


 0 −1
−1 0


 ; γ5 =


 1 0

0 −1


 , (3.67)

~γ · k̂ =


 0 ~σ · k̂1
−~σ · k̂1 0


 ; ĥ(k) = ~σ · k̂


 1 0

0 1


 , (3.68)

and by introducing the two component Weyl spinors v(h)(k̂) eigenstates of helicity,

~σ · k̂ v(h)(k̂) = h v(h)(k̂) ; h = ±1 . (3.69)

These spinors are normalized so that

(
v(h)(k̂)

)†
v(h′)(k̂) = δh,h′ . (3.70)

In terms of these helicity eigenstates, a general flavor doublet of left (L) and right (R) handed Dirac

spinors can be written

ψL =
∑

h=±1


 0

v(h) ⊗ ϕ(h)


 , (3.71)

and

ψR =
∑

h=±1


 v(h) ⊗ ξ(h)

0


 , (3.72)

where ϕ(h) ; ξ(h) are flavor doublets. We have purposely left the arguments unspecified because this

expansion will be used in real time as well as for the Fourier and Laplace transforms respectively.

We need both positive and negative helicity eigenstates because the four independent degrees of

freedom for each flavor are positive and negative energy and positive and negative helicity.
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Projecting eq. (3.65) onto the helicity eigenstates v(h)(k̂) we obtain an equation for the flavor

doublet ϕ(h)(ω, k), namely

[
(ω2 − k2)1+ (ω − hk)(A+ hB)−M2

]
ϕ(h)(ω, k) = 0 . (3.73)

Projecting eq. (3.66) onto helicity eigenstates yields the relation

ξ(h)(ω, k) = −M (ω + h k)
ω2 − k2

ϕ(h)(ω, k) . (3.74)

Writing the doublet ϕ(h)(ω, k) in the flavor basis as

ϕ(h)(ω, k) =


 ν

(h)
e (ω, k)

ν
(h)
µ (ω, k)


 , (3.75)

leads to the following matrix form for Eq.(3.73)

 a(h) b

b c(h)





 ν

(h)
e

ν
(h)
µ


 = 0 , (3.76)

where the matrix elements in the flavor basis are given by

a(h) = ω2 − k2 + (ω − hk)(Ae + hBe)− 1
2

(M2
1 + M2

2 )− 1
2

(M2
1 −M2

2 ) cos(2θ) , (3.77)

b =
1
2

(M2
1 −M2

2 ) sin(2θ) , (3.78)

c(h) = ω2 − k2 + (ω − hk)(Aµ + hBµ)− 1
2

(M2
1 + M2

2 ) +
1
2

(M2
1 −M2

2 ) cos(2θ) . (3.79)

Let us introduce a doublet of mass eigenstates in the medium

χ(h)(ω, k) =


 ν1(ω, k)

ν2(ω, k)


 , (3.80)

related to the flavor doublet ϕ(h)(ω, k) by a unitary transformation U
(h)
m with

U (h)
m =


 cos θ

(h)
m sin θ

(h)
m

− sin θ
(h)
m cos θ

(h)
m


 , (3.81)

ϕ(h)(ω, k) = U (h)
m χ(h)(ω, k) ; ξ(h)(ω, k) = U (h)

m ζ(h)(ω, k) . (3.82)

The mixing angle in the medium for states with helicity h, θ
(h)
m is obtained by requiring that

the unitary transformation eq.(3.81) diagonalizes the matrix equation eq.(3.76). The eigenvalue

equation in diagonal form is given by
{

ω2 − k2 +
1
2

Sh(ω, k)− 1
2

(M2
1 + M2

2 )− 1
2

δ M2 Ωh(ω, k)


 1 0

0 −1




}
χ(h)(ω, k) = 0 , (3.83)
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where Sh(ω, k), δM2, ∆h and Ωh(ω, k) are respectively given by

Sh(ω, k) = (ω − hk) [Ae(ω) + Aµ(ω) + h Be(k) + h Bµ(k)] , (3.84)

δM2 = M2
1 −M2

2 , (3.85)

∆h(ω, k) = (ω − hk) [Ae(ω)−Aµ(ω) + h Be(k)− h Bµ(k)] (3.86)

Ωh(ω, k) =

[(
cos 2θ − ∆h(ω, k)

δM2

)2

+ sin2 2θ

] 1
2

(3.87)

The mixing angle in the medium is determined by the relation

tan[2θ(h)
m ] =

2 b

c(h) − a(h)
=

δM2 sin(2θ)
δM2 cos(2θ)−∆h(ω, k)

, (3.88)

or alternatively by the more familiar relation

sin 2θ(h)
m =

sin 2θ
[(

cos 2θ − ∆h(ω,k)
δM2

)2
+ sin2 2θ

] 1
2

(3.89)

We note that the neutrino mass eigenvalues as well as the mixing angle depends on k as well

as the helicity eigenvalue h. This is one of the novel results which has not been obtained

before simply because only left handed negative helicity neutrinos were considered in the literature

[5, 9, 45, 50, 51, 56].

The right handed components are obtained from the left handed ones by performing the unitary

transformation eq.(3.81) on eq.(3.74). The relation (3.74) leads to the following expressions

ζ(h)(ω, k) = −ω + h k

ω2 − k2
M

[
1+

δM2

4M
2


 C S

S −C




]
χ(h)(ω, k) , (3.90)

where M = 1
2(M1 + M2) and

C = cos
[
2 θ(h)

m − 2 θ
]

, S = sin
[
2 θ(h)

m − 2 θ
]

. (3.91)
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3.4.1 Eigenvectors and dispersion relations

Eq.(3.83) has the following eigenvectors in the basis of mass eigenstates:

χ
(h)
1 (ω, k) = ν

(h)
1 (ω, k)


 1

0


 , (3.92)

ζ
(h)
1 (ω, k) = −ν

(h)
1 (ω, k)

ω + h k

ω2 − k2
M

[
 1

0


 +

δM2

4 M
2


 C

S




]
, (3.93)

and

χ
(h)
2 (ω, k) = ν

(h)
2 (ω, k)


 0

1


 , (3.94)

ζ
(h)
2 (ω, k) = −ν

(h)
2 (ω, k)

ω + h k

ω2 − k2
M

[
 0

1


 +

δM2

4 M
2


 S

−C




]
(3.95)

The corresponding doublets in the flavor basis can be obtained by the unitary transformation

eq.(3.81).

The eigenvalues are found in perturbation theory consistently up to O(GF ) by writing

ω(h)
a (k,±) = ±

[
Ea(k) + δω(h)

a (k,±)
]

, a = 1, 2 (3.96)

with

E1,2(k) =
√

k2 + M2
1,2 (3.97)

We find,

δω
(h)
1 (k,±) = − 1

4E1(k)

{
Sh(±E1(k), k)− δM2

[[(
cos 2θ − ∆h(±E1(k), k)

δM2

)2

+ sin2 2θ

] 1
2

− 1

]}

(3.98)

δω
(h)
2 (k,±) = − 1

4E2(k)

{
Sh(±E2(k), k) + δM2

[[(
cos 2θ − ∆h(±E2(k), k)

δM2

)2

+ sin2 2θ

] 1
2

− 1

]}

(3.99)

It is important to highlight that whereas the mixing angle only depends on ∆h, the medium

corrections to the frequencies also depend on Sh. This is important because even when in the

case when the matrices A, B become proportional to the identity, in which case ∆h = 0 and the

mixing angle in the medium coincides with that of the vacuum, the frequencies and in particular

the oscillation frequency still receives medium corrections.
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3.4.2 Resonances

The condition for resonant oscillations is that the mixing tan[2θ(h)
m ] reaches a maximum (infinity)

as a function of a parameter, temperature, density or energy. From eq. (3.88) a resonance takes

place when
∆h(ω, k)

δM2
= cos 2θ (3.100)

where ω = ω
(h)
a (k,±) correspond to the dispersion relations for the propagating modes in the

medium, given by eq.(3.96). To leading order in GF the in-medium dispersion relation can be

approximated by the free field dispersion relation ω
(h)
a (k,±) ≈ ±

√
k2 + M2

1,2. The relativistic

limit is warranted because the neutrino momenta in the plasma is k À M1,2 ∼ eV. Furthermore,

under the assumption that the hierarchy of vacuum mass eigenstates is nearly degenerate, namely

|δM2/M
2| ¿ 1, as seems to be supported by the experimental data, the dispersion relations can

be further approximated as follows

ω(h)
a (k,±) ≈ λk

(
1 +

M
2

2k2

)
; λ = ±1 (3.101)

It is convenient to introduce the following notation

L9 = 109 (Le − Lµ) (3.102)

δ5 = 105

(
δM2

eV2

)
(3.103)

If the lepton and neutrino asymmetries are of the same order of the baryon asymmetry, then

0.2 . |L9| . 0.7 and the fitting from solar and KamLAND data suggests |δ5| ≈ 8. Using the

approximations leading to eq. (3.101) the ratio ∆h/δM2 can be written compactly from eq.(3.86).

We study separately the cases me ¿ T ¿ mµ and me,mµ ¿ T ¿ MW .

3.4.2.1 me ¿ T ¿ mµ

• case I: ω = k + M
2

2k , h = −1, positive energy, negative helicity neutrinos:

∆h

δM2
≈ 4

δ5

(
0.1T

MeV

)4 k

T

[
− L9 +

(
2T

MeV

)2 k

T

]
. (3.104)

Where we have neglected M
2

k2 . For fixed temperature, the resonance condition eq.(3.100) is

fulfilled for the value of neutrino momentum given by

k =
(MeV)2

8T

{
L9 +

[
L2

9 + 16 δ5 cos 2θ

(
200MeV

T

)2
] 1

2
}

. (3.105)
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Hence, for δ5 cos 2θ > 0, there is always a resonance. If |L9| . 1, then for neutrino momenta

such that
√

Tk > 1MeV the non-local term dominates over the asymmetry and the resonance

occurs for k ∼ 25
√

δ5 cos 2θ (MeV)3/T 2. For example, if T ∼ 10 MeV, the resonance occurs

for k ∼ 1 MeV. If δ5 cos 2θ < 0 there can also be a resonance provided

|L9|T
200MeV

> 4
√
|δ5 cos 2θ|. (3.106)

However this inequality requires a large value of |L9|, for example for T ∼ 10MeV it requires

that |L9| & 140.

• case II: ω = k + M
2

2k , h = 1, positive energy, positive helicity neutrinos:

∆h

δM2
≈ 10−16

δ5

(
T

MeV

)2 (
M

eV

)2
[
− L9

T

k
+ 2

(
T

MeV

)2
]

(3.107)

Where we have neglected terms of higher order in M
2

k2 . Because M ∼ 1 eV and 100 MeV À
T À 1MeV a resonance would only be available for k ∼ 10−16 MeV which is not a relevant

range of momenta for neutrinos in the plasma. Therefore, positive helicity neutrinos mix with

the vacuum mixing angle.

• case III: ω = −k − M
2

2k , h = −1, positive energy, negative helicity anti-neutrinos:

∆h

δM2
≈ 10−16

δ5

(
T

MeV

)2 (
M

eV

)2
[
L9

T

k
+ 2

(
T

MeV

)2
]

. (3.108)

Again in this expression we have neglected higher order terms in M
2

k2 . A conclusion similar

to that of case II above holds in this case. No resonance is available for relevant values of

neutrino momenta within the temperature range in which these results are valid. For the cases

II and III the ratio |∆h/δM2| ¿ 1 for all relevant values of the neutrino momentum within the

temperature range in which these results are valid. Therefore, negative helicity antineutrinos

mix with the vacuum mixing angle, just as positive helicity neutrinos.

• case IV: ω = −k − M
2

2k , h = 1, positive energy, positive helicity anti-neutrinos:

∆h

δM2
≈ 4

δ5

(
0.1T

MeV

)4 k

T

[
L9 +

(
2T

MeV

)2 k

T

]
. (3.109)

Where we have neglected higher order terms in M
2

k2 . The position of the resonance in this case is

obtained from that in case I above by the replacement L9 → −L9, namely for fixed temperature

the resonance condition is fulfilled at the value of k given by

k =
(MeV)2

8T

{
− L9 +

[
L2

9 + 16 δ5 cos 2θ

(
200 MeV

T

)2
] 1

2
}

. (3.110)
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Again in the temperature range 1 MeV ¿ T ¿ 100MeV there is a resonance if δ5 cos 2θ > 0

(assuming that |δ5 cos 2θ| ∼ 1).

Just as in case I, if |L9| . 1 the non-local term dominates over the asymmetry contribution for
√

Tk & 1MeV and the resonance occurs for k ∼ 25
√

δ5 cos 2θ (MeV)3/T 2.

Cases III and IV reveal an interesting feature: only the asymmetry contribution changes sign

between neutrinos and antineutrinos whereas the non-local (in space-time) term remains the

same.

Together these expressions confirm that if the lepton and neutrino asymmetries are of the same

order as the baryon asymmetry, namely 0.2 . |L9| . 0.7, then the non-local terms from the

exchange diagrams dominate the self-energy for T & 3−5MeV unless the neutrino in the plasma

has a momentum k such that
√

kT ¿ 0.5MeV.

In summary, for me ¿ T ¿ mµ resonances occur in cases I and IV when h λ < 0 (λ is the

sign of the energy eigenvalue). For h λ > 0 (cases II and III) no resonance is available for neutrino

momenta k ∼ T ∼ few MeV and mixing angle in the medium coincides with the vacuum value.

3.4.2.2 me,mµ ¿ T ¿ MW We use mµ ≈ 106 MeV and find the following simple expressions

• case I: ω = k + M
2

2k , h = −1, positive energy, negative helicity neutrinos:

∆h

δM2
≈ 0.4× 1012

δ5

(
T

GeV

)4 k

T

[
4.83

k

T
+ 10−3L9

]
(3.111)

In this case no resonance is available but for neutrinos with extremely low energy and not

relevant for the plasma. For example for T ∼ GeV only neutrinos with energy of a few eV

would be potentially resonant, but this momentum range is not a relevant one for neutrinos

in the plasma. For neutrinos with energy larger than a few keV the mixing angle effectively

vanishes. Therefore, we conclude that in this temperature regime the mixing angle in the

medium for negative helicity neutrinos vanishes.

• case II: ω = k + M
2

2k , h = 1, positive energy, positive helicity neutrinos:

∆h

δM2
≈ −10−7

δ5

(
T

GeV

)2 T

k

(
M

eV

)2
[
4.83

k

T
− 10−3L9

]
(3.112)

It is clear that for the relevant regime of neutrino momenta in the plasma |∆h/δM2| ¿ 1. Hence

the mixing angle in the medium coincides with the vacuum mixing angle. Thus the conclusion

in this case is similar to that in the case described by eq. (3.107), namely positive helicity

neutrinos undergo oscillations in the medium with the vacuum mixing angle.
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• case III: ω = −k − M
2

2k , h = −1, positive energy, negative helicity anti-neutrinos:

∆h

δM2
≈ −10−7

δ5

(
T

GeV

)2 T

k

(
M

eV

)2
[
4.83

k

T
+ 10−3L9

]
(3.113)

The result in this case is similar to that of case II above, negative helicity antineutrinos oscillate

in the medium with the vacuum mixing angle.

• case IV: ω = −k − M
2

2k , h = 1, positive energy, positive helicity anti-neutrinos:

∆h

δM2
≈ 0.4× 1012

δ5

(
T

GeV

)4 k

T

[
4.83

k

T
− 10−3L9

]
(3.114)

The conclusion in this case is similar to that of the case described by eq. (3.111) above, the

mixing angle effectively vanishes and oscillations of positive helicity antineutrinos are suppressed

in the medium in this temperature range.

Taken together the above analysis reveals that there is a resonance in the oscillation of negative

helicity neutrinos and positive helicity antineutrinos (that is h λ < 0) in the temperature range

me ¿ T ¿ mµ with a typical neutrino momentum k ∼ T ∼ few MeV. For me,mµ ¿ T ¿ MW

the mixing angle for negative helicity neutrinos and positive helicity antineutrinos (that is h λ < 0)

effectively vanishes in the medium, and in both temperature ranges positive helicity neutrinos and

negative helicity antineutrinos undergo oscillations in the medium with the vacuum mixing angle.

We cannot yet conclude that positive helicity neutrinos and negative helicity antineutrinos are

sterile, before studying the corrections to the oscillation frequencies.

3.4.3 Oscillation frequencies and time scales

The oscillation time scale in the medium is given by

τ (h)
m (k, λ) =

1∣∣∣ω(h)
1 (k, λ)− ω

(h)
2 (k, λ)

∣∣∣
=

1∣∣∣E1(k)−E2(k) + δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ)

∣∣∣
, (3.115)

where E1,2(k) =
√

k2 + M2
1,2 and λ = +1 and λ = −1 correspond to neutrino and antineutrinos

respectively.

The vacuum oscillation time scale is

τv(k) =
1

|E1(k)− E2(k)| , (3.116)
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therefore, in order to understand the loop corrections to the oscillations time scales, it is convenient

to study the ratio
τv(k)

τ
(h)
m (k, λ)

=

∣∣∣∣∣1 +
δω

(h)
1 (k, λ)− δω

(h)
2 (k, λ)

E1(k)− E2(k)

∣∣∣∣∣ . (3.117)

Typical neutrino momenta in the plasma are ultrarelativistic, hence we approximate

E1(k)− E2(k) ≈ δM2

2k
=

δ5

2
10−11 eV
(k/MeV)

. (3.118)

furthermore to leading order in GF we replace ω
(h)
a (k, λ) ≈ λk in the arguments of Ae,µ(ω).

The term δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ) represents the correction to the vacuum oscillation time scale

due to the medium effect. While the general form of these corrections are cumbersome, we can

extract simplified expressions in three relevant limits.

• I Resonant case: ∆h(λE1,2,k)
δM2 ≈ cos 2θ:

In section 3.4.2 above we found that resonant flavor oscillations can occur only for λ = +1, h =

−1 and λ = −1, h = +1. In both these cases we obtain,

δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ) = −δM2

8k2

[
Ae(k) + Aµ(k) + Be(k) + Bµ(k)

]

−δM2

2k2

(
1 +

M
2

2k2

)
k (1− sin 2θ) . (3.119)

• II vanishing mixing angle :
∣∣∣∆h(λE1,2,k)

δM2

∣∣∣ À 1:

In this limit, θ
(h)
m ∼ 0 and neutrino flavor mixing is suppressed. In section 3.4.2 above, we

found that this occurs only for λ = +1, h = −1 or λ = −1, h = +1. Furthermore, ∆h(λE1,2, k)

is always positive definite in both temperature limits considered here me ¿ T ¿ mµ and

me,mµ ¿ T ¿ MW .

In this case we obtain

δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ) = −δM2

8k2

[
Ae(k) + Aµ(k) + Be(k) + Bµ(k)

]

+sign (δM2)

[
Ae(k)−Aµ(k)−Be(k) + Bµ(k)

]
. (3.120)
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• III vacuum mixing:
∣∣∣∆h(λE1,2,k)

δM2

∣∣∣ ¿ 1:

In this limit θ
(h)
m ≈ θ. In section 3.4.2 above we found that this case occurs for λ = +1, h = +1

or λ = −1, h = −1. In both these cases we find

δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ) = −δM2

8k2

[
Ae(k) + Aµ(k) + Be(k) + Bµ(k)

]

−M
2

4k2
cos 2θ

[
Ae(k)−Aµ(k) + Be(k)−Bµ(k)

]
. (3.121)

We now study these simplified expressions in the different regimes of temperature and for the

different helicities components. The most relevant cosmological regime corresponds to momenta of

the order of the temperature, hence we will focus on the regime in which the non-local (in space-

time) contributions from the exchange diagrams dominate over the lepton-neutrino asymmetries.

Taken together these simplifications allow us to study the relevant cosmological range of neutrino

energies in a clear manner.

3.4.3.1 me ¿ T ¿ mµ

• case I: ω1,2(k, λ) = λ (k +
M2

1,2

2k ) ; λ = +1, h = −1 and λ = −1, h = +1:

As observed in section (3.4.2) the non-local terms become dominant for
√

Tk ≥ 1MeV which

is of course consistent with the ultrarelativistic limit M
2
/2k2 ¿ 1. Furthermore in the

temperature range of interest in this study, the factors Ae,µ(k) and Be,µ(k) are of the or-

der GF kT 4/M2
W ∼ 10−9(T/GeV)4 k ¿ k. Therefore, near the resonance which occurs when

T 2k ∼ 25
√

δ5 cos 2θ MeV3, the expression (3.119) simplifies to

δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ) ≈ −δM2

2k
(1− sin 2θ) . (3.122)

The ratio of the oscillation time scales (3.117) becomes

τv(k)

τ
(h)
m (k, λ)

∼ | sin 2 θ| < 1 (3.123)

Therefore, for small vacuum mixing angle there is a considerable slow down of oscillations.

Resonant flavor mixing in the medium occurs on longer time scales than in the vacuum.
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For large neutrino energy, well outside the resonance region for T 2k À 25
√
|δ5 cos 2θ|MeV3,

eq. (3.104) indicates that |∆h(λE1,2, k)/δM2| À 1. In this high energy regime we find that

δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ) ≈ sign (δM2)

[
Ae(k)−Aµ(k)−Be(k) + Bµ(k)

]
(3.124)

= sign (δM2)
28 π2

45
√

2
GF k T 4

M2
W

(3.125)

' 7.9× 10−15 eV sign(δM2)
k

MeV

(
T

MeV

)4

(3.126)

therefore neutrino oscillations are suppressed by a vanishingly small mixing angle and the ratio

of time scales (3.117) becomes

τv(k)

τ
(h)
m (k, λ)

∼
∣∣∣∣∣1 +

10−3

|δ5|
(

k T 2

MeV3

)2
∣∣∣∣∣ . (3.127)

A considerable speed-up of oscillations occurs for k T 2 & 100MeV3 since then τ
(h)
m (k, λ) ¿ τv(k).

In this case, off-resonance flavor mixing is suppressed not only by a small mixing angle in the

medium but also by a rapid decoherence and dephasing of the oscillations.

• case II: ω1,2(k, λ) = λ (k +
M2

1,2

2k ) ; λ = +1, h = +1 and λ = −1, h = −1:

The results of section 3.4.2 (see eq. (3.107)) indicate that in this case |∆h(λE1,2, k)/δM2| ¿ 1,

corresponding to the mixing angle in the medium being the same as in the vacuum. As a result,

δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ) ≈ −M

2

4 k2
cos 2 θ

[
Ae(k)−Aµ(k) + Be(k)−Bµ(k)

]
(3.128)

= −M
2

4 k2
cos 2θ

14 π2

45
√

2
GF k T 4

M2
W

(3.129)

' −6.1× 10−29 eV cos 2θ
(

k

MeV

)−1 (
T

MeV

)4

. (3.130)

and the ratio of time scales (3.117) becomes

τv(k)

τ
(h)
m (k, λ)

'
∣∣∣∣∣1−

10−17 cos 2θ

δ5

(
T

MeV

)4
∣∣∣∣∣ ≈ 1 (3.131)

Therefore, for positive helicity neutrinos and negative helicity antineutrinos medium oscillations

are the same as vacuum oscillations both in the mixing angle as well as in the oscillation time

scales. In this regime of temperature positive helicity neutrinos and antineutrinos are sterile in

the sense that these do not interact with the medium.
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3.4.3.2 me,mµ ¿ T ¿ MW

• case I: ω1,2(k, λ) = λ(k +
M2

1,2

2k ) ; λ = +1, h = −1 and λ = −1, h = +1:

This case describes negative helicity neutrinos and positive helicity antineutrinos. Eq. (3.111)

indicates that in this case, |∆h(λE1,2, k)/δM2| À 1 corresponding to vanishing mixing angle in

the medium. Therefore, we obtain

δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ) ≈ sign (δM2)

[
Ae(k)−Aµ(k)−Be(k) + Bµ(k)

]
(3.132)

= sign(δM2)
2 GF k T 2

3
√

2

(
mµ

MW

)2

(3.133)

' 9.6× 10−6 eV sign(δM2)
(

k

MeV

) (
T

GeV

)2

. (3.134)

and the ratio of time scales is given by

τv(k)

τ
(h)
m (k, λ)

'
∣∣∣∣∣1 +

1012

|δ5|
(

kT

GeV2

)2
∣∣∣∣∣ À 1 (3.135)

Hence there is a considerable speed-up in the oscillation time scale in the medium. Again, in

this case oscillations are strongly suppressed not only by a vanishingly small mixing angle but

also by the rapid dephasing in the medium.

• case II: ω1,2(k, λ) = λ (k +
M2

1,2

2k ) ; λ = +1, h = +1 and λ = −1, h = −1:

This case describes positive helicity neutrinos negative helicity antineutrinos. Eq. (3.112) shows

that in this case |∆h(λE1,2, k)/δM2| ¿ 1, the mixing angle in the medium is the same as in the

vacuum. We find for this case

δω
(h)
1 (k, λ)− δω

(h)
2 (k, λ) ≈ −M

2

4k2
cos 2θ

[
Ae(k)−Aµ(k) + Be(k)−Bµ(k)

]
(3.136)

=
M

2

4 k2
cos 2θ

2 GF k T 2

3
√

2

(
mµ

MW

)2

(3.137)

' 1.5× 10−19 eV cos 2θ

(
k

MeV

)−1 (
T

GeV

)2

. (3.138)

where we have taken M ∼ 1 eV. The ratio of time scales in this case is given by

τv(k)

τ
(h)
m (k, λ)

∼
∣∣∣∣∣1 +

3× 10−8 cos 2θ

δ5

(
T

GeV

)2
∣∣∣∣∣ ≈ 1 (3.139)
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Again in this temperature regime we find that positive helicity neutrinos and negative helicity

antineutrinos are almost ”sterile” in the sense that neither the mixing angle nor the oscillation

time scales receive substantial loop corrections. Thus the combined analysis of mixing angle and

propagation frequencies in the medium in the temperature regime under consideration indicates

that in medium corrections for positive helicity neutrinos and negative helicity antineutrinos are

very small. These degrees of freedom are effectively sterile in that their dynamics is (almost)

the same as in the vacuum.

3.5 LAPLACE TRANSFORM AND REAL-TIME EVOLUTION

The main purpose to obtain the Dirac equation in real time is to study the oscillations of neutrinos in

the medium as an initial value problem. As described in section 3.2 this is achieved by adiabatically

switching the sources η, η from t = −∞ and switching them off at t = 0. The adiabatic switching

on of the sources induces an expectation value, which evolves in the absence of sources for t > 0,

after the external source has been switched off. It is convenient to write the effective Dirac eq.

(3.17) in terms of spatial Fourier transforms. Using the results of the appendix (A.3) we find
[(

iγ0 ∂

∂t
− ~γ · ~k

)
δab −Mab + Σtad

ab L

]
ψb(~k, t) +

∫ t

−∞
dt′ Σab(~k, t− t′) L ψb(~k, t′) = −ηa(~k, t),

(3.140)

where the results of appendix (A.3) yield

Σ(~k, t− t′) = i

∫ ∞

−∞

dk0

π
ImΣ(~k, k0) e−ik0(t−t′) , Σ(~k, k0) = ΣW (~k, k0) + ΣZ(~k, k0) (3.141)

For an external Grassmann valued source adiabatically switched on at t = −∞ and off at t = 0

ηa(~k, t) = ηa(~k, 0) eε t θ(−t) , ε → 0+ . (3.142)

It is straightforward to confirm that the solution of the Dirac eq. (3.140) for t < 0 is given by

ψa(~k, t < 0) = ψa(~k, 0) eε t . (3.143)

Inserting this ansatze into the equation (3.140) it is straightforward to check that it is indeed a

solution with a linear relation between ψa(~k, 0) and ηa(~k, 0). This relation can be used to obtain

ψa(~k, 0) from ηa(~k, 0), or alternatively, for a given initial value of the field at t = 0 to find the

source ηa(~k, 0) that prepares this initial value. For t > 0 the source term vanishes, the non-local
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integral in eq.(3.140) can be split into an integral from t = −∞ to t = 0 plus an integral from t = 0

to t. In the first integral corresponding to t < 0 we insert the solution eq.(3.143) and obtain the

following equation valid for t > 0
[(

iγ0 ∂

∂t
− ~γ · ~k

)
δab −Mab + Σtad

ab L

]
ψb(~k, t) +

∫ t

0
dt′ Σab(~k, t− t′) L ψb(~k, t′)

= −
∫ +∞

−∞

dk0

π

ImΣab(~k, k0)
k0

e−ik0t Lψb(~k, 0). (3.144)

This equation can be solved by Laplace transform. Introduce the Laplace transforms

ψ̃(~k, s) =
∫ ∞

0
dt e−st ψ(~k, t) , Σ̃(~k, s) =

∫ ∞

0
dt e−st Σ(~k, t) =

∫ +∞

−∞

dk0

π

ImΣ(~k, k0)
k0 − is

, (3.145)

where we have used eq.(3.141) to obtain the Laplace transform of the self-energy, which leads to

the analyticity relation (see Eq. (3.21)),

Σ̃(~k, s) = Σ(~k, ω = is− iε) . (3.146)

In terms of Laplace transforms the equation of motion becomes the following algebraic equation

[(
iγ0s− ~γ · ~k

)
δab −Mab + Σtad

ab L + Σ̃ab(~k, s) L
]
ψ̃b(~k, s)

= i

{
γ0 δab +

1
is

[
Σ̃ab(~k, s)− Σ̃ab(~k, 0)

]
L

}
ψb(~k, 0) . (3.147)

Consistently with the expansion of the self-energy in frequency and momentum up to order ω/MW ,

and using eq.(3.146), we replace the expression in the bracket in eq.(3.147) by

1
is

[
Σ̃ab(~k, s)− Σ̃ab(~k, 0)

] ∣∣∣
s=0

=
∂Σ(~k, ω)

∂ω

∣∣∣
ω=0

≡ Σ′(~k, 0) . (3.148)

Using the representation (3.38) for the real part of the self-energy, the eq. (3.147) can be written

as

[(
γ0 i s− ~γ · ~k

)
1−M+ γ0Ã(s) L− ~γ · k̂B(k) L

]
ψ̃b(~k, s) = i γ0

[
1+A′(0) L

]
ψb(~k, 0) , (3.149)

where

Ã(s) = A(ω = is) ; A′(0) =
dA
dω

∣∣∣
ω=0

. (3.150)

The real time evolution is obtained by the inverse Laplace transform,

ψ(~k, t) =
∫

Γ

ds

2πi
ψ̃(~k, s) est , (3.151)

where Γ is the Bromwich contour in the complex s plane running parallel to the imaginary axis to

the right of all the singularities of the function ψ̃(~k, s) and closing on a large semicircle to the left.
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We now follow the same steps as in section 3.4, namely projecting onto right and left components

and onto helicity eigenstates. After straightforward manipulations we arrive at the following set of

equations

[
−(s2 + k2) 1+ (is− ĥ(k̂)k)(Ã+ ĥ(k̂)B)−M2

]
ψ̃L(~k, s) = i γ0 M ψR(~k, 0)+i(is−ĥ(k̂)k) D ψL(~k, 0) ,

(3.152)

where D = 1+A′(0), and

ψ̃R(~k, s) = − is + ĥ(k̂)k
s2 + k2

[
M γ0 ψ̃L(~k, s) + i ψR(~k, 0)

]
. (3.153)

We now follow the same steps as above to separate the Dirac and flavor structures by introducing the

flavor doublets ϕ̃(~k, s), ξ̃(~k, s) which are the Laplace transform of the flavor doublets ϕ(~k, t), ξ(~k, t)

introduced in the expansion of the Dirac spinors in eqs.(3.71)-(3.72), projecting onto the Weyl

spinors eigenstates of helicity, the above equations become

[
−(s2 + k2)1+ (is− hk)(Ã+ hB)−M2

]
ϕ̃(h)(~k, s) = −i M ξ(h)(~k, 0) + i (is− hk) D ϕ(h)(~k, 0) ,

(3.154)

ξ̃(h)(~k, s) = − is + hk

s2 + k2

[
−M ϕ̃(h)(~k, s) + i ξ(h)(~k, 0)

]
. (3.155)

The solution to eq. (3.154) is obtained as

ϕ̃(h)(~k, s) = S̃(h)(k, s)

[
− iM ξ(h)(~k, 0) + i(i s− h k)Dϕ(h)(~k, 0)

]
, (3.156)

where the propagator is given by

S̃h(k, s) =
1

α2
h(k, s)− β2

h(k, s)

(
αh(k, s) + β(k, s) cos 2θ

(h)
m −βh(k, s) sin 2θ(h)

m

−βh(k, s) sin 2θ(h)
m αh(k, s)− βh(k, s) cos 2θ

(h)
m

)
,

(3.157)

in which it will prove convenient to introduce the following quantities

αh(k, s) =

[
ω2 − k2 +

1
2

Sh(ω, k)− 1
2

(M2
1 + M2

2 )

]

ω=is−iε

, (3.158)

βh(k, s) =
1
2

δM2

[(
cos 2θ − ∆h(ω, k)

δM2

)2

+ sin2 2θ

] 1
2

∣∣∣∣∣∣
ω=is−iε

. (3.159)

The inverse Laplace transform eq.(4.8) can be done straightforwardly, the singularities of

ϕ̃(h)(~k, s) in the complex s plane are determined by the singularities of the propagator S̃(h)(k, s).
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Up to the order in weak interactions considered here, these singularities are isolated poles along the

imaginary axis at the positions s = −i ω
(h)
a (k,±) given by eq. (3.96)-(3.99). As a relevant example

of the real time evolution, let us consider that the initial state corresponds to a wave-packet of

left-handed electron neutrinos of arbitrary helicity h, with no muon neutrinos. This could, for

example, be the case relevant for nucleosynthesis in which a neutron beta decays at the initial time.

In this case

ϕ(h)(~k, 0) = ν(h)
e (~k)


 1

0


 , ξ(h)(~k, 0) =


 0

0


 , (3.160)

and we find

ϕ̃(h)(~k, s) = ν(h)
e (~k)

i(i s− h k)[1 + A′e(0)]
α2

h(k, s)− β2
h(k, s)


 αh(k, s) + βh(k, s) cos(2θ

(h)
m )

−βh(k, s) sin(2θ(h)
m )


 , (3.161)

ξ̃(h)(~k, s) = −ν(h)
e (~k)

i[1 + A′e(0)]
α2

h(k, s)− β2
h(k, s)

M


 αh(k, s) + βh(k, s) cos(2θ(h)

m )

−βh(k, s) sin(2θ(h)
m )


 . (3.162)

In order to avoid cluttering the notation, we have not included the frequency argument in the

mixing angle in the medium θ
(h)
m but such dependence should be understood throughout.

The term [αh(k, s) − βh(k, s)]−1 features poles at s = −iω1(k,±) and the term [αh(k, s) +

βh(k, s)]−1 features poles at s = −iω2(k,±).

We neglect terms of order GF T 4/M2
W ∼ (T/MW )4 ¿ 1 since in the regime in which the

approximations are valid T ¿ MW . The residues of these poles are respectively 2ω1,2(k,±) and

the inverse Laplace transform yield within these approximations,

ϕ(h)(~k, t) = ν(h)
e (~k)

∑

λ=±

[
ω

(h)
1 (k, λ)− h k

4 ω
(h)
1 (k, λ)


 1 + C

(h)
1,λ

−S
(h)
1,λ


 e−iω

(h)
1 (k,λ) t

+
ω

(h)
2 (k, λ)− h k

4ω
(h)
2 (k, λ)


 1− C

(h)
2,λ

S
(h)
2,λ


 e−iω

(h)
2 (k,λ) t

]
, (3.163)

ξ(h)(~k, t) = −ν(h)
e (~k)

∑

λ=±

[
M

4ω
(h)
1 (k, λ)


 1 + C

(h)
1,λ

−S
(h)
1,λ


 e−iω

(h)
1 (k,λ) t

+
M

4ω
(h)
2 (k, λ)


 1− C

(h)
2,λ

S
(h)
2,λ


 e−iω

(h)
2 (k,λ) t

]
. (3.164)

For economy of notation, we introduce the following shorthand

C
(h)
a,λ ≡ cos

[
2θ(h)

m (ω(h)
a (k, λ))

]
, S

(h)
a,λ ≡ sin

[
2θ(h)

m (ω(h)
a (k, λ))

]
(3.165)
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for a = 1, 2, helicity components h = ± and positive and energy components λ = ±.

The above expressions yield a direct comparison with the usual oscillation formulae in the

literature. To leading order we set ω1,2(k, λ) ≈ λk (1+M2
1,2/2k2) in the prefactors in the expressions

above thereby neglecting terms of order GF . Since the dependence of the mixing angle on the

frequency and momentum appears at order GF , we can set ω1,2(k, λ) ≈ λ k in the argument of the

mixing angles, therefore to leading order C
(h)
1,λ = C

(h)
2,λ ≡ C

(h)
λ and S

(h)
1,λ = S

(h)
2,λ ≡ S

(h)
λ . With these

approximations, for an initial left handed electron state of helicity h = ∓ we find

ϕ−(~k, t) = ν−e (~k)

[
1
2


 1 + C−

+

−S−+


 e−iω−1 (k,+) t +

1
2


 1− C−

+

S−+


 e−iω−2 (k,+) t

+
M2

1

8k2


 1 + C−

−

−S−−


 eiω−1 (k,−) t +

M2
2

8k2


 1− C−

−

S−−


 eiω−2 (k,−) t

]
, (3.166)

ϕ+(~k, t) = ν+
e (~k)

[
M2

1

8k2


 1 + C+

+

−S+
+


 e−iω+

1 (k,+) t +
M2

2

8k2


 1− C+

+

S+
+


 e−iω+

2 (k,+) t

+
1
2


 1 + C+

−

−S+
−


 eiω+

1 (k,−) t +
1
2


 1− C+

−

S+
−


 eiω+

2 (k,−) t

]
. (3.167)

The exponentials e∓iω(k) t correspond to positive energy (−) neutrino and positive energy (+)

antineutrino components respectively. Therefore, the expressions above reveal that for negative

helicity the relevant components in the relativistic limit correspond to positive energy neutrinos,

while for positive helicity they correspond to positive energy antineutrinos.

The upper component of the expressions above correspond to wavepackets of negative and

positive helicity respectively for a left handed electron neutrino, namely ν∓e (~k, t) while the lower

components correspond to a left handed muon neutrino, namely ν∓µ (~k, t).

For the right handed components ξ the leading order can be obtained by setting M ≈ M 1

thereby neglecting terms of order δM2/M
2. This approximation yields,

ξ∓(~k, t) = −ν∓e (~k)
M

4 k

[
 1 + C∓

+

−S∓+


 e−iω∓1 (k,+) t +


 1− C∓

+

S∓+


 e−iω∓2 (k,+) t

−

 1 + C∓

−

−S∓−


 eiω∓1 (k,−) t −


 1− C∓

−

S∓−


 eiω∓2 (k,−) t

]
. (3.168)

The upper and lower components correspond to wavepackets for right handed negative and positive

helicity electron and muon neutrinos respectively.
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From the expression (3.166) we can read off the probability for relativistic left handed, negative

helicity electron and muon neutrinos as a function of time,

|ν−e,L(~k, t)|2 = |ν−e (~k)|2
{

1− sin2[2 θ−m(k)] sin2

(
1
2

∆ω−(k, +) t

)
+O

(
M2

1,2

k2

)}
,(3.169)

|ν−µ,L(~k, t)|2 = |ν−e (~k)|2
{

sin2[2 θ−m(k)] sin2

(
1
2

∆ω−(k, +) t

)
+O

(
M2

1,2

k2

)}
. (3.170)

The probability for left handed relativistic positive helicity electron and muon antineutrinos as a

function of time are read off from eq.(3.167)

|ν+
e,L(~k, t)|2 = |ν+

e (~k)|2
{

1− sin2[2 θ+
m(−k)] sin2

(
1
2

∆ω+(k,−) t

)
+O

(
M2

1,2

k2

)}
,(3.171)

|ν+
µ,L(~k, t)|2 = |ν+

e (~k)|2
{

sin2[2 θ+
m(−k)] sin2

(
1
2

∆ω+(k,−) t

)
+O

(
M2

1,2

k2

)}
, (3.172)

where

∆ω±(k,±) =
δM2

2k
+ δω±1 (k,±)− δω±2 (k,±) . (3.173)

The corrections δω±a (k,±) had been studied in detail in section 3.4.3 above. Finally, eq. (3.168)

determines the probabilities of finding right handed positive and negative helicities neutrinos as

a function of time. This equation makes manifest that this probability is suppressed by a factor

M/k with respect to the left handed component, indeed it is the mass term that is responsible for

generating a right handed component from a left handed one and must therefore be suppressed by

one power of the ratio M/k. For a typical neutrino momentum k & 1MeV this suppression factor

is of order 10−6. Eqs.(3.163)-(3.164) provide a complete field theoretical description of oscillations

in real time. Eqs.(3.169)-(3.170) are obviously reminiscent of the familiar oscillation equations

obtained in the simplified quantum mechanical two level system, however there are some important

aspects that must be highlighted, namely, the field theoretical formulation introduced here led

directly to these oscillation formulae in terms of the mixing angles in the medium and the correct

oscillation frequencies that include the quantum loop corrections. Furthermore, the oscillation

formulae obtained above reveal the nature of the approximations and allow a consistent inclusion

of higher order effects as well as describe the oscillation of all helicity components as well as the

dynamics of the right handed component. The usual oscillation formula obtained within the single

particle quantum mechanical description emerge cleanly in suitable limits and the nature of the

corrections is readily manifest.
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3.6 CONCLUSIONS

In this chapter, we provided a systematic treatment of neutrino oscillations and mixing directly from

quantum field theory in real time in a regime of temperature and density relevant for early Universe

cosmology prior to big bang nucleosynthesis. While we have focused on two flavors (electron and

muon) of Dirac neutrinos the formulation can be generalized straightforwardly to more flavors and

to Majorana-Dirac mass matrices.

We have obtained the medium corrections to the dispersion relations and mixing angles of

propagating neutrinos. Implementing methods from real time non-equilibrium quantum field theory

at finite temperature and density we have systematically obtained the equations of motion for the

neutrino field and studied the real time evolution as an initial value problem. The major advantage

of this approach, as compared to the usual approach based on single particle quantum mechanics is

that it consistently and systematically includes the medium corrections to the dispersion relations

and mixing angles directly into the real time evolution and treats left and right handed fields

and both helicity components on equal footing. We have argued that collisional relaxation yields

thermalization of neutrinos in flavor eigenstates for temperature T & 5 − 10 Mev for which the

relaxation time scale via weak interactions is shorter than the oscillation time scale. Assuming

the validity of this argument, we obtained the neutrino self-energies up to one-loop including the

asymmetries from leptons, neutrinos, hadrons and quarks, as well as non-local (in space-time) terms

arising from the expansion of the self-energy loop in the external frequency and momentum. We

have consider these non-local terms up to leading order in ω/MW ; k/MW since these terms are

of the same order of or larger than the contribution from the asymmetries for T & 5 MeV if all

asymmetries are of the same order as the baryon asymmetry. This is yet another indication that

this is an important temperature regime in the early Universe.

Our main results are summarized as follows:

• Implementing the methods from non-equilibrium real-time field theory at finite temperature

and density we obtained the equations of motion for the neutrino fields in linear response. This

formulation includes consistently the self-energy loop corrections to the dispersion relations

and mixing angles in the medium and treat left and right handed fields with both helicity

components on equal footing.

• We have focused on a temperature regime prior to nucleosynthesis T & 5 − 10MeV in which

we argued that neutrinos are thermalized as flavor eigenstates. We studied two different tem-
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perature regimes: me ¿ T ¿ mµ within which we have shown that there is the possibility of

resonant oscillations of test neutrinos, and me, mµ ¿ T ¿ MW within which the mixing angle

for active neutrinos effectively vanishes.

• An expansion of the self-energy in terms of the neutrino frequency and momentum is carried

out to lowest order in ω/MW ; k/MW thus extracting the leading non-local (in space-time)

contributions. We find a new contribution which cannot be identified with an effective poten-

tial. The mixing angles and propagation frequencies in the medium are found to be helicity

dependent.

• If the lepton and quark asymmetries are of the same order as the baryon asymmetry in the early

Universe, we have shown that the non-local (in space-time) terms in the self-energies dominate

over the asymmetry for typical energies of neutrinos in the plasma for T & 3− 5MeV.

• The oscillation time scale in the medium is slowed-down near the resonance, becoming sub-

stantially longer than in the vacuum for small vacuum mixing angle. For high energy neutrinos

off-resonance the mixing angle becomes vanishingly small and the oscillation time scale speeds-

up as compared to the vacuum. At high temperature, in the region T À me,mµ the mixing

angle for active neutrinos effectively vanishes and there is a considerable speed-up of oscillations,

which are then suppressed by a vanishingly small mixing angle and a rapid dephasing.

• We have obtained the general equations of motion for initially prepared wave packets of neutrinos

of arbitrary chirality and helicity. These equations reduce to the familiar oscillation formulae for

ultrarelativistic negative helicity neutrinos, but with the bonus that they consistently include

the mixing angles and the oscillation frequencies in the medium. These equations not only

yield the familiar ones but also quantify the magnitude of the corrections. Furthermore these

equations also describe the evolution of right handed neutrinos (of either helicity) which is a

consequence of a non-trivial mass matrix and usually ignored in the usual formulation.
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4.0 SPACE-TIME PROPAGATION OF NEUTRINO WAVE-PACKETS AT HIGH

TEMPERATURE AND DENSITY

4.1 INTRODUCTION

In 1981, Kayser[98] first pointed out subtle but important caveats in the vacuum oscillation for-

mula obtained from the standard plane wave treatment, which result from assuming a definite

neutrino momentum for different mass eigenstates. He showed that knowledge of momentum

allows experiments to distinguish different neutrino mass eigenstates, essentially destroying the

oscillation pattern. He then proposed a wave-packet treatment of neutrino oscillations, in which

the neutrino momentum is spread out. Since then, the wave-packet approach has been studied

by many authors in both quantum mechanical [9, 10, 99, 100, 101, 102, 103] and field theoretical

[104, 105, 106, 107, 108] frameworks, including the study of oscillations of neutrinos produced and

detected in crystals[109].

The quantum mechanical approach usually refers to the intermediate wave-packet model in

which each propagating mass eigenstate of neutrino is associated with a wave-packet [100]. This

model eliminates some of the problems in the plane wave treatment although several conceptual

questions remaining unsettled[99]. See [108] and references therein for detailed descriptions of these

issues. A field theoretical approach is the external wave-packet model [104] in which the oscillating

neutrino is represented by an internal line of a Feynman diagram, while the source and the detector

are respectively described by in-coming and out-going wave-packets. A recent review[108] presents

the different approaches, summarizes their advantages and caveats and includes the dispersion of

wave packets in the study.

An important physical consequence of the wave-packet description of neutrino evolution is the

concept of the coherence length beyond which neutrino oscillations vanish. A “flavor neutrino”

wave-packet is a linear superposition of wave-packets of mass eigenstates. The different mass
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states entail a difference in the group velocity and an eventual separation of the wave-packets

associated with mass eigenstates. This separation results in a progressive loss of coherence as

overlaps between the wave packets dimishes. See for example[102] for an early explanation. In

an actual source-detector experimental setup, the observation time is usually not measured and

is commonly integrated out in a wave-packet treatment[102]. This leads to a localization term in

the vacuum oscillation formula, which states that neutrino oscillations are suppressed if the spatial

uncertainty is much larger than the oscillation length[102].

The coherence of neutrino oscillations in matter has been studied within a geometrical represen-

tation in [101], but the medium oscillation formula was not derived. While most of the studies focus

on reproducing the standard vacuum oscillation formula, a consistent study of neutrino mixing and

propagation in a medium in real time has not yet emerged.

While in the vacuum the space-time propagation can be studied in the wave-packet approach by

focusing on the space-time evolution of initially prepared single particle “flavor states”, the study

of the space-time evolution in a medium at finite temperature and density requires a density matrix

description.

To the best of our knowledge, a full finite temperature field theoretical treatment of the space-

time propagation of neutrino wave-packets in a medium including medium corrections and dis-

persion dynamics has not yet been offered. We consider this study an important aspect of the

program to study the non-equilibrium evolution of neutrinos in the early Universe. Detailed stud-

ies have shown that neutrino oscillations and self-synchronization lead to flavor equilibration before

BBN[32, 71, 110, 111, 112], beginning at a temperature of T ∼ 30MeV with complete flavor equi-

libration among all flavors at T ∼ 2MeV [111]. If neutrinos are produced in the form of spatially

localized wave-packets rather than extended plane waves before BBN, the two mass eigenstates

separate progressively during propagation due to the small difference in group velocities. A sig-

nificant amount of neutrino oscillations, which are crucial for “flavor equalization” requires that

the two mass eigenstates overlap appreciably throughout their propagation, namely the coherence

time scale should be sufficiently large to ensure that “flavor equilibration” through oscillations is

effective. Therefore, it is important to pursue a full field theoretical study of neutrino wave-packet

propagation in the medium directly in real time to determine the relevant time scales for coherence

to be maintained and to identify the processes that contribute to its loss.

In this chapter, we study the space-time evolution of neutrino wave packets in extreme envi-

ronments at high temperature and density, conditions that prevail in the early Universe or during
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supernovae explosions. Our goals are the following:

• To provide a consistent and systematic non-equilibrium field-theoretical formulation to study

the space-time evolution of initially prepared neutrino wave packets at finite temperature and

density. This goal requires a treatment of the space-time evolution in terms of the density

matrix, which goes beyond the usual treatment in terms of single particle states. To achieve

this goal we implement a recently developed method[113] to study non-equilibrium aspects of

neutrino propagation in a medium as an initial value problem in linear response. This method

yields the effective Dirac equation of motion for the expectation value of the neutrino field

induced by an external source. The effective Dirac equation in the medium includes self-energy

contributions from charged and neutral currents up to one loop.

• To assess the different time scales associated with wave-packet dispersion, coherence and oscil-

lations including the medium effects, in particular near possible resonances in the in-medium

mixing angles. This is achieved by solving the effective Dirac equation in the medium, which

includes self-energy corrections, as an initial value problem. The initial wave-packet configu-

ration is “prepared” by an external source term in linear response. This method also allows

to assess corrections from the energy dependence of the mixing angles in the medium upon the

wave-packet dynamics.

• The space-time evolution of the initially prepared wave packet, including dispersive effects

allows an assessment of the competition between the progressive loss of coherence in the wave-

packet dynamics by the separation of mass eigenstates, collisional decoherence and cosmological

expansion. While our study only includes the self-energy from charged and neutral currents up

to one-loop, the final result allows us to include results available in the literature[14, 57, 58, 59]

to understand the effects of collisional decoherence and cosmological expansion when there is a

separation of time scales.

• We focus our study within the context of early Universe cosmology, in particular in the tem-

perature regime just prior to BBN where there is a possibility for resonant transitions[14, 57,

58, 59, 113]. Of particular interest are the medium modifications of the dispersion relations,

wave-packet dispersion, oscillation and coherence time scales in this temperature and energy

regime.

Since we study the propagation of neutrino wave-packets in a medium, aspects associated with

the source-detector measurement processes are not well-defined or relevant in this case. Conse-

87



quently, in contrast to most studies in the literature, we do not integrate in time as is the case for

a description of experiments in the vacuum [102]. Therefore, our study of propagation is both in

space and time.

This chapter is organized as follows. In section 4.2, we obtain the effective Dirac equation

of neutrino in a thermal medium implementing the methods of non-equilibrium field theory and

linear response[113]. In this section we obtain the in-medium dispersion relations and mixing

angles. In section 4.3, we develop the general formulation to study the space-time propagation of

neutrino wave-packet. In this section we discuss the different time scales associated with dispersion,

oscillations and coherence. In section 4.4 we compare the different time scales with the Hubble and

collisional relaxation time scales and discuss the impact of the different scales upon the space-time

evolution of the neutrino wave-packets, coherence and oscillations. We present our conclusions in

section 4.5.

4.2 EFFECTIVE DIRAC EQUATION OF NEUTRINOS IN A MEDIUM AND

LINEAR RESPONSE

The study of the evolution of neutrino wave packets in the vacuum typically involves a description

of the experimental production and detection of these wave packets. We study the space-time

evolution of wave packets in a medium as an initial value problem. This is achieved in linear

response by coupling an external source term which induces an expectation value of the neutrino

field in the density matrix, after this source is switched off the expectation value evolves in time.

The propagation of this initial state is described by the effective Dirac equation in the medium,

which includes the self-energy corrections. This is the familiar linear response approach to studying

the evolution out of equilibrium in condensed matter systems. The correct framework to implement

this program is the real-time formulation of field theory in terms of the closed-time-path integral

[83, 85, 87].

We restrict our study to the case of two Dirac flavor neutrinos, while the formulation is general

and can treat 1 − 2 or 1 − 3 mixing on equal footing, for convenience we will refer to electron

and muon neutrino mixing. The current value for M obtained by WMAP [8] and the oscillation
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parameters from the combined fitting of the solar and KamLAND data are [92] respectively:

M ≈ 0.25 (eV ) ; |δM2
12| ≈ 7.9× 10−5 (eV )2 ; tan2 θ12 ≈ 0.40 . (4.1)

For atmospheric neutrinos, analysis from SuperKamiokande, CHOOZ and atmospheric neutrino

data yield,

|δM2
13| ≈ (1.3− 3.0)× 10−3 (eV )2 ; sin2 θ13 < 0.067 (3σ) . (4.2)

4.2.1 Linear response:

The medium is described by an ensemble of states, and the description is in terms of a density

matrix. Therefore the question of space-time evolution is more subtle, while in the vacuum one

can consider preparing an initial single particle state and evolving it in time, such a consideration

is not available in a medium, and the question of time evolution must be formulated differently,

namely in terms of expectation values of the relevant operators in the density matrix.

In equilibrium the neutrino field cannot have an expectation value in the density matrix. The

usual method in many body theory to study the non-equilibrium evolution of single quasiparticle

states is the method of linear response: an external source is coupled to the field which develops an

expectation value in the density matrix induced by the source. The expectation value of this field

obeys the equation of motion with medium corrections. Upon switching-off the external source,

the expectation value evolves in time as a solution of the effective equations of motion in the

medium. For a detailed description of this method in non-equilibrium quantum field theory see

refs.[85, 87, 113]. The external sources ηa in the Lagrangian density (3.1) induce an expectation

value of the neutrino field

ψa = 〈νa〉 = Tr ρ̂ νa (4.3)

where ρ̂ is the full density matrix of the medium. In linear response this expectation value is

linear in the external source and obeys the effective Dirac equation of motion in the medium[87].

It is most conveniently written in terms of the spatial Fourier transforms of the fields, sources

and self-energies ψa(~k, t), ηa(~k, t), Σ(~k, t − t′) respectively. The one loop self-energies with neutral

and charged current contributions had been obtained in refs.[57, 58, 113], and the effective Dirac

equation in the medium up to one loop has been obtained in the real time formulation in ref.[113].
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It is given by

[(
iγ0 ∂

∂t
− ~γ · ~k

)
δab −Mab + Σtad

ab L

]
ψb(~k, t) +

∫ t

−∞
dt′Σab(~k, t− t′) Lψb(~k, t′) = −ηa(~k, t), (4.4)

where L is the projector on left handed states, Σtad
ab L is the (local) tadpole contribution from the

neutral currents and Σab(~k, t − t′) is the spatial Fourier transform of the (retarded) self energy

which includes both neutral and charged current interactions, and whose spectral representation is

given by

Σ(~k, t− t′) = i

∫ ∞

−∞

dk0

π
ImΣ(~k, k0) e−ik0(t−t′) ; Σ(~k, k0) = ΣW (~k, k0) + ΣZ(~k, k0) (4.5)

where we have separated the charged and neutral current contributions respectively.

It is obvious that Eq. (4.4) takes exactly the same form as Eq. (3.140). Thus, following the

same laplace transform procedures as we did in section 3.5, the equation of motion becomes the

following algebraic equation

Dab(~k, s) ψ̃b(~k, s) = i

(
γ0 δab +

1
is

[
Σ̃ab(~k, s)− Σ̃ab(~k, 0)

]
L

)
ψb(~k, 0) (4.6)

where D(~k, s) ≡ D(~k, ω = is − iε) is the analytic continuation of the Dirac operator in frequency

and momentum space

Dab(~k, ω) =
[(

γ0ω − ~γ · ~k
)

δab −Mab + Σtad
ab L + Σab(~k, ω) L

]
(4.7)

The full space-time evolution of an initial state is determined by

ψa(~x, t) =
∫

d3k ei~k·~x
∫

Γ

ds

2πi
D−1

ab (~k, s) (iγ0)ψb(~k, 0) est , (4.8)

where Γ is the Bromwich contour in the complex s plane running parallel to the imaginary axis

to the right of all the singularities of the function ψ̃(~k, s) and closing on a large semicircle to the

left. We have simplified the expression for the eqn. (4.8) by discarding a perturbatively small

correction to the amplitude of O(GF ), given by the self-energy corrections on the right hand side

of eqn. (3.147). Therefore the space-time evolution is completely determined by the singularities

of the function ψ̃(~k, s) in the complex s-plane. Up to one loop order and for temperatures well

below the mass of the vector bosons, the only singularities are simple poles along the imaginary
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axis, corresponding to the dispersion relations of the propagating modes in the medium. In this

temperature range absorptive processes emerge at the two loop level, consequently these are of

O(G2
F ) and are neglected in the one loop analysis presented here. The integral along the Bromwich

contour in the complex s-plane can now be written

∫

Γ

ds

2πi
D−1

ab (~k, s) (iγ0)ψb(~k, 0) est =
∫ ∞

−∞

dω

2π
D−1

ab (~k, ω) (iγ0)ψb(~k, 0) e−iω t (4.9)

where the frequency integral is performed along a line parallel to but slightly below the real ω axis

closing counterclockwise in the upper half plane.

The one loop contributions to the self-energy for ω, k, T ¿ MW were obtained in reference[57,

58, 113] and found to be of the form[113]

Σtad
ab + Σab(~k, ω) = γ0A(ω)− ~γ · k̂B(k) (4.10)

where A(ω) and B(k) are 2× 2 diagonal matrices in the neutrino flavor basis.1. To lowest order in

k/MW ;ω/MW these matrices are found to be[14, 57, 58, 113]

A(ω) =


 Ae(ω) 0

0 Aµ(ω)


 ; B(k) =


 Be(k) 0

0 Bµ(k)


 , (4.11)

where the entries Ae(ω), Aµ(ω), Be(k) and Bµ(k) can be read off from the results of section 3.3.

Also, see the reference[113], as well as [14, 57, 58, 59].

4.2.2 Dispersion relations and mixing angles in the medium

The simple poles of the integrand in (4.9) are the solutions of the homogeneous Dirac equation

(3.60). Following the same procedures as we did in section 3.4, the propagating modes in the

medium are found by diagonalizing (3.60). This can be done by performing a unitary transformation

ϕ(h)(ω, k) = U
(h)
m χ(h)(ω, k) where

U (h)
m =


 cos θ

(h)
m sin θ

(h)
m

− sin θ
(h)
m cos θ

(h)
m


 ; χ(h)(ω, k) =


 ν

(h)
1 (ω, k)

ν
(h)
2 (ω, k)


 , (4.12)

1The equivalence with the notation of ref.[57] is (see eqn. (2) in ref.[57]): aNR = B(k)/k ; bNR = A(ω)−ωB(k)/k.
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and a similar transformation for the right handed doublet ξ(h)(ω, k), with the medium mixing angle

θ
(h)
m depending on h, k and ω. Upon diagonalization, the eigenvalue equation is given by [113]

{
ω2 − k2 +

1
2

Sh(ω, k)− 1
2

(M2
1 + M2

2 )− 1
2

δ M2 Ωh(ω, k)


 1 0

0 −1




}
χ(h)(ω, k) = 0 , (4.13)

where Sh(ω, k), ∆h(ω, k) and Ωh(ω, k) are respectively given by

Sh(ω, k) = (ω − hk) [Ae(ω) + Aµ(ω) + h Be(k) + h Bµ(k)] , (4.14)

∆h(ω, k) = (ω − hk) [Ae(ω)−Aµ(ω) + h Be(k)− h Bµ(k)] , (4.15)

Ωh(ω, k) =

[(
cos 2θ − ∆h(ω, k)

δM2

)2

+ sin2 2θ

] 1
2

. (4.16)

This requires the matrix elements in U
(h)
m to be of the following form

sin 2θ(h)
m (ω, k) =

sin 2θ

Ωh(ω, k)
; cos 2θ(h)

m (ω, k) =
cos 2θ − ∆h(ω,k)

δM2

Ωh(ω, k)
. (4.17)

The dispersion relations ω
(h)
a (k, λ) for the propagating modes in the medium are found in

perturbation theory consistently up to O(GF ) by writing [113]

ω(h)
a (k, λ) = λ

[
Ea(k) + δω(h)

a (k, λ)
]

, a = 1, 2 ; λ = ± (4.18)

where Ea(k) =
√

k2 + M2
a , and δω

(h)
a (k, λ) are found to be

δω(h)
a (k, λ) = − 1

4Ea(k)

{
Sh(λEa(k), k) + (−1)a δM2 (Ωh(λEa(k), k)− 1 )

}
. (4.19)

For relativistic neutrinos with k À Ma the dispersion relations ωa(k) ; a = 1, 2 for the different

cases are given to leading order in GF by

• Positive energy, negative helicity neutrinos, λ = +1, h = −1:

ωa(k) = k +
M2

a

2k
− 1

4k

[
S−(k, k) + (−1)aδM2

(
Ω−(k, k)− 1

)]
. (4.20)

92



• Positive energy, positive helicity neutrinos, λ = +1, h = +1:

ωa(k) = k +
M2

a

2k
− 1

4k

[
S+(k, k) + (−1)aδM2

(
Ω+(k, k)− 1

)]
; ω − h k ≈ M

2

2k
(4.21)

where we have neglected corrections of order δM2/M
2.

• Negative energy, negative helicity neutrinos, λ = −1, h = −1:

ωa(k) = −k − M2
a

2k
+

1
4k

[
S−(−k, k) + (−1)aδM2

(
Ω−(−k, k)− 1

)]
; ω − h k ≈ M

2

2k
(4.22)

where we have again neglected corrections of order δM2/M
2.

• Negative energy, positive helicity neutrinos, λ = −1, h = +1:

ωa(k) = −k − M2
a

2k
+

1
4k

[
S+(−k, k) + (−1)aδM2

(
Ω+(−k, k)− 1

)]
. (4.23)

In the above expressions the Ω± are given by eqn. (4.16).

The vacuum and medium oscillation time scales are respectively defined as

Tvac =
2π

E1 − E2
; Tmed =

2π

ω
(h)
1 (k, λ)− ω

(h)
2 (k, λ)

, (4.24)

In the relativistic case when k À Ma, we find

Tvac ≈ 4πk

δM2
; Tmed ≈ 4πk

δM2 Ωh(λ k, k)
(4.25)

leading to the relation

Tmed

Tvac
=

sin 2θ
(h)
m (ω, k)

sin 2θ
(4.26)

4.3 SPACE-TIME PROPAGATION OF A NEUTRINO WAVE-PACKET.

We now have all the ingredients necessary to study the space-time evolution of a initial wave

packet by carrying out the integrals in eqn. (4.8). For this purpose it is convenient to write
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ψ(~k, 0) = ψR(~k, 0)+ψL(~k, 0) and expand the right and left-handed components in the helicity basis

as in Eq. (3.71) and Eq. (3.72), namely

ψL(~k, 0) =
∑

h=±1


 0

v(h) ⊗ ϕ(h)(~k, 0)


 ; ψR(~k, 0) =

∑

h=±1


 v(h) ⊗ ξ(h)(~k, 0)

0


 (4.27)

where

ϕ(h)(~k, 0) =


 ν

(h)
eL (~k, 0)

ν
(h)
µL (~k, 0)


 ; ξ(h)(~k, 0) =


 ν

(h)
eR (~k, 0)

ν
(h)
µR(~k, 0)


 (4.28)

The general initial value problem requires to furnish initial conditions for the four components

above. However, an inhomogeneous neutrino state is produced by a weak interaction vertex, which

produces left handed neutrinos, suggesting to set ν
(h)
eR (~k, 0) = 0; ν(h)

µR(~k, 0) = 0. Without loss of

generality let us consider an initial state describing an inhomogeneous wave-packet of electron

neutrinos of arbitrary helicity, thus ν
(h)
eL (~k, 0) 6= 0; ν(h)

µL (~k, 0) = 0.

In the cases of interest neutrinos are relativistic with typical momenta k À M . Following the

real time analysis described in detail in ref.[113] in the relativistic case we find

ϕ(h)(~k, t) =
1
2

ν
(h)
eL (~k, 0)

[
 1 + C(h)

−h

−S(h)
−h


 e−iω

(h)
1 (k,−h) t +


 1− C(h)

−h

S(h)
−h


 e−iω

(h)
2 (k,−h) t +O

(M
2

k2

)]
,

(4.29)

ξ(h)(~k, t) =
1
2

ν
(h)
eL (~k, 0)

(
hM

2 k

) { 
 1 + C(h)

−h

−S(h)
−h


 e−iω

(h)
1 (k,−h) t +


 1− C(h)

−h

S(h)
−h


 e−iω

(h)
2 (k,−h) t

−

 1 + cos 2θ

− sin 2θ


 e−iω

(h)
1 (k,h) t −


 1− cos 2θ

sin 2θ


 e−iω

(h)
2 (k,h) t +O

(M

k

) }
, (4.30)

where ϕ(h)(~k, t) and ξ(h)(~k, t) are the flavor doublets corresponding to the left-handed and right-

handed neutrinos with helicity h respectively. The upper component corresponds to the electron

neutrino ν
(h)
e (~k, t) while the lower component corresponds to the muon neutrinos ν

(h)
µ (~k, t). The

factors C(h)
λ (k) and S(h)

λ (k) are defined as

C(h)
λ (k) = cos

[
2θ(h)

m (λk)
]

; S(h)
λ (k) = sin

[
2θ(h)

m (λk)
]

. (4.31)

94



The suppression factor M/k in the right handed component (4.30) is of course a consequence

of the chirality flip transition from a mass term in the relativistic limit. For relativistic neutrinos

and more specifically for neutrinos in the medium prior to BBN with k ∼ T ∼ few MeV the right

handed component is negligible as expected.

The one-loop computation of the self-energy performed above does not include absorptive pro-

cesses such as collisions of neutrinos with leptons (or hadrons) in the medium. Such absorptive

part will emerge in a two loops calculation and is of O(G2
F ). While we have not calculated these

contributions it is clear from the analysis what it should be expected: the frequencies ω1,2(k) are

the “exact” dispersion relations of the single particle poles of the Dirac propagator in the medium.

At two loops the self energy will feature an imaginary part with support on the mass shell of these

single particle states. The imaginary part of the self-energy evaluated at these single particle ener-

gies yield the width of the single quasi-particle states Γ1(k); Γ2(k) and the oscillatory exponentials

in the expressions above are replaced as follows

e−iωa(k) t → e−Γa(k) t e−iωa(k) t ; a = 1, 2 (4.32)

While our one loop calculation does not include the damping rates Γa we will invoke results

available in the literature[14, 57, 58, 59] to estimate the collisional relaxation time scales (see section

4.4).

The corresponding fields for the left-handed and right-handed component neutrinos in configu-

ration space are obtained by performing the spatial Fourier transform

ϕ(h)(~r, t) =
∫

d3~k

(2π)3
ϕ(h)(~k, t) ei~k·~r, (4.33)

ξ(h)(~r, t) =
∫

d3~k

(2π)3
ξ(h)(~k, t) ei~k·~r. (4.34)

For an arbitrary initial configuration these integrals must be done numerically, but analytic

progress can be made by assuming an initial Gaussian profile, describing a wave-packet in momen-

tum space centered at a given momentum, ~k0 with a width σ. While the width could generally

depend on helicity we will consider the simpler case in which it is the same for both helicities.
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Namely, we consider

ν
(h)
eL (~k, 0) = ν

(h)
eL (0)

( π

σ2

) 3
2 exp

[
−(~k − ~k0)2

4σ2

]
, (4.35)

where ν
(h)
eL (0) is an arbitrary amplitude and assume that wave packet is narrow in the sense that

σ ¿ k0. In the limit σ → 0 the above wave-packet becomes ν
(h)
eL (0)δ3(~k−~k0). In the opposite limit

of large σ the wave packet describes an inhomogeneous distribution spatially localized within a

distance ≈ 1/σ. For a narrow wave packet the momentum integral can be carried out by expanding

the integrand in a series expansion around k0 keeping up to quadratic terms.

4.3.1 Integrals

The typical integrals are of the form

I(~r, t) =
( π

σ2

) 3
2

∫
d3k

(2π)3
A(k) exp

[
−(~k − ~k0)2

4σ2
+ i~k · ~r − iω(k) t

]
(4.36)

where A stands for the factors (1± C) ;S in eqns. (4.29,4.30), and ω(k) are the general dispersion

relations obtained above. The computation of these integrals is simplified by noticing that for any

function F (k) the expansion around ~k0 up to quadratic order is given by

F (k) = F (k0) + F ′(k0) k̂0 · (k−k0) +
1
2

(
F ′′(k0) P

‖
ij(k̂0) +

F ′(k0)
k0

P⊥
ij (k̂0)

)
(k−k0)i(k−k0)j + · · ·

(4.37)

where

P
‖
ij(k̂) = k̂ik̂j ; P⊥

ij (k̂) = δij − k̂ik̂j (4.38)

The result of the integration can be written more compactly by introducing the following quan-

tities

σ2
‖(t) = σ2

(
1− i t

τ‖

)
[
1 + t2

τ2
‖

] ≡ Φ‖(t)
(

1− i
t

τ‖

)
(4.39)

σ2
⊥(t) = σ2

(
1− i t

τ⊥

)
[
1 + t2

τ2
⊥

] ≡ Φ⊥(t)
(

1− i
t

τ⊥

)
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where we have introduced the perpendicular and parallel dispersion time scales given respectively

by

τ⊥ =
k0

2σ2vg
; τ‖ =

1
2σ2ω′′(k0)

= γ2τ⊥ . (4.40)

It will be seen in detail below that these two time scales are indeed associated with the spreading

of the wave packet in the transverse and longitudinal directions.

The group velocity vg and effective Lorentz factor2 γ are given by

~vg = ω′(k0) k̂0 ; γ2 =
vg

k0ω′′(k0)
(4.41)

The transverse and longitudinal coordinates are

~X‖(t) = k̂0

(
~r · k̂0 − vgt

)
; ~X⊥ = ~r − k̂0

(
~r · k̂0

)
(4.42)

and in terms of these variables we finally find

I(~r, t) =

[
σ‖(t)σ2

⊥(t)
σ3

]
A(k0;~r, t) ei(~k0·~r−Ψ(~r,t) t) e

−
�
Φ⊥(t) ~X2

⊥+Φ‖(t) ~X2
‖(t)

�
(4.43)

where the phase

Ψ(~r, t) = ω(k0) +
Φ⊥(t)

τ⊥
X2
⊥ +

Φ‖(t)
τ‖

X2
‖ (t) (4.44)

and

A(k0;~r, t) = A(k0) + 2 iA′(k0)σ2
‖(t) k̂0 · ~X‖(t)

+A′′(k0)σ2
⊥(t)

(
1− 2σ2

⊥(t) ~X2
⊥
)

+
A′(k0)

k0
σ2
‖(t)

(
1− 2σ2

‖(t) ~X2
‖ (t)

)
(4.45)

Neglecting the prefactor A(k0;~r, t) we see that

|I(~r, t)|2 ∝
[(

1 +
t2

τ2
‖

)(
1 +

t2

τ2
⊥

)2
]− 1

2

e
−2
�
Φ⊥(t) ~X2

⊥+Φ‖(t) ~X2
‖(t)

�
(4.46)

describes a wave-packet moving in the direction parallel to the momentum ~k0 with the group

velocity vg and dispersing both along the perpendicular and parallel directions. The expressions

for Φ⊥(t) and Φ‖(t) given by eqn. (4.39) clearly show that the dispersion time scales along the

2For the usual dispersion relation ω(k) =
√

k2 + M2 it is straightforward to confirm that γ2 = (1− v2
g)−1
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parallel direction and transverse directions are given by τ‖, τ⊥ respectively and τ‖ displays the time

dilation factor γ. The wave packet is localized in space within a distance of order 1/
√

Φ(t) ∝ 1/
√

σ

in either direction. Small σ localizes the wave packet in momentum space while large σ the wave

packet is spatially localized. For large σ the integrals must necessarily be performed numerically.

This discussion highlights that the derivative terms in the prefactor A(k0;~r, t), which are a

consequence of the momentum dependence of the mixing angles correspond to an expansion in

the ratio σ/k0. This can be understood from the following argument: A ∼ (1 ± C),S, hence its

derivatives with respect to momentum are of the form f(k)∆′ with f(k) being smooth and bounded

functions ofO(1), while ∆ is at most of the form ∆0k+∆1k
2 in the relativistic limit, (see eqn. (4.15))

therefore ∆′ ≈ ∆/k. These derivatives multiply powers of σ⊥,‖X⊥,‖, and the exponential damping

in I restricts these contributions to the range |σ⊥,‖X⊥,‖| ≈ 1. Therefore in the narrow packet

approximation σ ¿ k0 the higher order derivative terms are suppressed by powers of σ/k0 ¿ 1.

We have invoked this narrow packet approximation to carry out the momentum integral, therefore

consistently with this approximation we will only keep the first derivative term, which is of O(σ/k0)

and neglect the higher order derivatives, which are of higher order in this ratio. Namely in the

analysis that follows we approximate

|A(k0;~r, t)|2 ≈ |A(k0)|2
[
1 + 4

A′(k0)
A(k0)

Φ‖(t) k̂0 · ~X‖(t)
t

τ‖

]
(4.47)

In this manner we consistently keep the lowest order corrections arising from the momentum

dependence of the mixing angles in the medium.

We now have all the ingredients for our analysis of the space time evolution. The above general

expressions for the time evolution of initially prepared wave-packets, eqns. (4.29,4.30) combined

with the dispersion relations obtained in section (4.2.2) provide a solution to the most general case.

We focus our discussion on the case of the early Universe, in which the typical neutrino energies

are ∼ MeV. With (active) neutrino masses in the range Ma ∼ eV and δM2 ∼ 10−5 − 10−3 it is

clear from the results above that the amplitude of the right handed component is suppressed by

a factor M/k ∼ 10−6 and the medium corrections to the dispersion relations for positive energy

neutrinos with positive helicity and negative energy neutrinos with negative helicity are suppressed

by a factor M
2
/k2 with respect to the opposite helicity assignement. Therefore in what follows

we focus our discussion to the case of left handed negative helicity neutrinos (and positive helicity

antineutrinos).
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4.3.2 Space-time evolution and oscillations

We now focus on describing the evolution of negative helicity neutrinos or positive helicity antineu-

trinos.

The initial state considered above corresponds to a wave-packet of electron neutrinos at t = 0

but no muon neutrinos. The lower component of the flavor spinor in eqn. (4.29,4.33) describes

the wave-packet of the muon neutrino at any arbitrary time. We begin by studying the transition

probability from an initial electron neutrino wave packet of negative helicity to a muon neutrino

wave packet.

Using the results obtained in the previous section for the integrals in the narrow packet approx-

imation we find the transition probability

Pe→µ(~r, t) = |ν(h)
µ L(~r, t)|2

=
1
4
|ν(h)

eL (~k, 0)|2|S(k0)|2
[
1 + 4

S ′(k0)
S(k0)

Φ‖(t) k̂0 · ~X‖(t)
t

τ‖

]
×

[
|I1(~r, t)|2 + |I2(~r, t)|2 − 2 |I1(~r, t)| |I2(~r, t)| cos [(Ψ1(~r, t)−Ψ2(~r, t)) t]

]
(4.48)

where S = sin
[
2θ

(h)
m (±k)

]
and I1,2(~r, t) ; Ψ1,2 correspond to the integrals and phases given by

eqn. (4.43,4.44) with the frequencies ω1,2(k) for negative helicity given by eqns. (4.20). In the

expression above we have taken a common prefactor by neglecting the differences between the

group velocities and the masses, taking vg = 1, and Φ‖, τ‖ correspond to Φ‖, τ‖ with a mass

M . We focus our attention on the interference term which is the space-time manifestation of

the oscillation phenomenon and features the oscillatory cosine function. The amplitude of the

oscillation, |I1(~r, t)I2(~r, t)| describes the product of two wavepackets of the form given by eqn.

(10.13).

It is convenient to write the product |I1 I2| in the following form

|I1(~r, t) I2(~r, t)| ≈
[(

1+
t2

τ2
‖

)(
1+

t2

τ2
⊥

)2
]− 1

2

e−(Φ⊥,1(t)+Φ⊥,2(t)) ~X2
⊥ e−ΦCM (t) ~X2

CM (t) e−ΦR(t)X2
R(t) (4.49)

where we have introduced the center of mass (CM) and relative (R) variables
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~XCM = k̂0

(
~r · k̂0 − vCM (t) t

)
; vCM (t) =

Φ‖ 1(t) vg 1 + Φ‖ 2(t) vg 2

Φ‖ 1(t) + Φ‖ 2(t)
(4.50)

~XR = ~X‖ 1 − ~X‖ 2 = − (~vg 1 − ~vg 2) t (4.51)

ΦCM = Φ‖ 1 + Φ‖ 2 ; ΦR =
Φ‖ 1 Φ‖ 2

Φ‖ 1 + Φ‖ 2
(4.52)

The integral (4.49) describes the product of two gaussian wave packets spreading in the trans-

verse and longitudinal directions and separating in the longitudinal direction because of the differ-

ence in group velocities, made explicit by the term ΦR(t)X2
R(t).

The first two terms in eqn. (4.48) describe the incoherent sum of the probabilities associated

with separated wave packets of propagating mode eigenstates , in the third, interference term, the

product |I1||I2| is the overlap between these two wave-packets that are slowly separating because

of different group velocities. As discussed above a two loop calculation of the self-energies will lead

to a quasiparticle width and a damping rate Γa for the individual quasiparticle modes of frequency

ωa(k), the discussion leading up to eqn. (4.32) suggests that the integrals

|Ia(~r, t)| → e−Γa(k) t |Ia(~r, t)| . (4.53)

4.3.2.1 Coherence and “freeze-out” Since ~XR = (~vg 2−~vg 1)t does not depend on position,

the overlap between the separating wave packets becomes vanishingly small for t >> tcoh where

the coherence time scale tcoh is defined by

ΦR(tcoh)(~vg 2 − ~vg 1)2 t2coh = 1 (4.54)

Before we engage in an analysis of the different cases, it is important to recognize that there are

several dimensionless small ratios: i) σ/k0 ¿ 1 describes narrow wave-packets, this approximation

was implemented in the calculation of the integrals, ii) M/k ¿ 1 in the relativistic limit with k ∼
MeV for example in the early Universe near the epoch of BBN or for supernovae, iii) δM2/M

2 ¿ 1

describes a nearly degenerate hierarchy of neutrino masses. Since in the relativistic limit v1 g−v2 g ∼
δM2/k2 we can neglect the difference in the masses in Φ‖ and write Φ‖ 1 ∼ Φ‖ 2 ∼ Φ‖ where the

masses are replaced by the mean mass M given by eqn. (3.11), and similarly for Φ⊥. Therefore to

leading order in small quantities we can replace ΦR above by Φ‖/2 leading to

ΦCM (t) = 2 Φ‖(t) =
2σ2

1 + t2

τ2
‖

; vCM =
1
2
(vg 1 + vg 2) (4.55)
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where τ‖ is given by eqn. (4.40) for M , and

1
2
Φ‖(t)X2

R(t) =

(
t
tc

)2

1 +
(

t
τ‖

)2 (4.56)

where we have introduced the time scale

tc =
√

2
σ|vg 2 − vg 1| (4.57)

The coherence time scale is the solution of the equation

(
tcoh
tc

)2

1 +
(

tcoh

τ 2
‖

)2 = 1 (4.58)

The expression (4.56) reveals a remarkable feature: for t À τ‖ the overlap between the sepa-

rating wave-packets saturates to a time independent value

1
2
Φ‖(t)X2

R(t) →
(

τ‖
tc

)2

. (4.59)

This effect has been recognized in ref.[108] and results from the longitudinal dispersion catching

up with the separation of the wave packets. This phenomenon is relevant only in the case when

tc > τ‖ in which case the overlap of the separating wave packets “freezes” and the packets maintain

coherence for the remainder of their evolution. There are two distinct possibilities:

tc ¿ τ‖ : (a) (4.60)

tc À τ‖ : (b) (4.61)

In case (a) we can approximate
1
2
Φ‖(t)X2

R(t) ≈
(

t

tc

)2

(4.62)

since during the time interval in which the separating packets maintain coherence t ¿ tc ¿ τ‖ and

in this case the relevant coherence time scale is tc.

In case (b) the “freeze out” of coherence results and the long time limit of the overlap between

the wave packets in the longitudinal direction remains large and determined by eqn. (4.59).

However, while this “freezing of coherence” phenomenon in the longitudinal direction ensues in

this regime, by the time when the coherence freezes t ∼ τ‖ the wave packet has spread dramatically
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in the transverse direction. This is because of the enormous Lorentz time dilation factor in the

longitudinal direction which ensures that t ∼ τ‖ À τ⊥ (see eqn. (4.40)). The large spreading in

the transverse direction entails a large suppression of the transition probability

Pe→µ(~r, t ∼ τ‖) ∝
(

τ⊥
τ‖

)2

∼ 1
γ4
∼

(
M

k0

)4

. (4.63)

For M ∼ eV and k0 ∼ MeV the above ratio is negligible. Therefore while the phenomenon of

freezing of coherence is remarkable and fundamentally interesting, it may not lead to important

consequences because the transition probability is strongly suppressed in this regime. Therefore in

the time scale during which the transition probability is non-negligible, namely t ¿ τ‖ the overlap

integral can be simplified to

e−
1
2
Φ‖(t)X2

R(t) ≈ e
−
�

t
tc

�2

. (4.64)

4.3.2.2 Effective oscillation frequency Another aspect of the interference term is the effec-

tive time dependent oscillation frequency Ψ1(~r, t)−Ψ2(~r, t) where the Ψa are given by eqn. (4.44)

for the frequencies ωa(k) of the propagating modes. The spatio-temporal dependence of this ef-

fective phase is a consequence of the dispersion of the inhomogeneous configurations, encoded in

the functions Φ and results in a drift of the oscillation frequency, a result that confirms a similar

finding in the vacuum case in ref.[114]. Because of the exponential fall off of the amplitudes the

maximum value of the drift contribution is achieved for Φ⊥,aX
2
⊥ ∼ 1 ; Φ‖,aX2

‖,a(t) ∼ 1, namely

in front and back of the center of the wave-packets, both in the transverse and the longitudinal

directions. Furthermore, because of the Lorentz dilation factor, τ‖ À τ⊥ for relativistic neutrinos.

Therefore we can approximate the effective oscillation frequencies as

Ψ1 −Ψ2 ∼ ω1(k)− ω2(k) +
2σ2

k0
(vg,1 − vg,2) (4.65)

The dispersion relations and mixing angles obtained above along with the the results (4.29,4.30),

yield the complete space-time evolution for wave-packets with initial conditions corresponding to

an electron neutrino. Rather than studying the general case, we focus on three different situations

which summarize the most general cases,i) ∆h/δM2 ¿ 1 corresponding to the case of vacuum

oscillations, ii) ∆h/δM2 ∼ cos 2θ corresponding to a resonance in the medium, and iii) ∆h/δM2 À 1

corresponding to the case a hot and or dense medium in which oscillations are suppressed.
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4.3.3 ∆h/δM2 ¿ 1: vacuum oscillations

We study this case not only to compare to results available in the literature, but also to establish

a “benchmark” to compare with the results with medium modifications. Beuthe [108] has studied

the propagation of neutrino wave-packets in the vacuum case including dispersion and in ref.[114]

an effective frequency similar to (4.44) has been found for wave-packets propagating in the vacuum.

In this case for positive energy, negative helicity neutrinos with a = 1, 2

ωa(k0) ∼ k0 +
M2

a

2k0
; vg,a ∼ 1− M2

a

2k2
0

; ω′′a(k0) ∼ M2
a

k3
0

(4.66)

leading to the vacuum time scales

tc,v =
2
√

2k2
0

σ|δ M2| (4.67)

τ‖ =
k3

0

2σ2M
2 (4.68)

In the case when ∣∣∣∣
k0

σ

δ M2

4M
2

∣∣∣∣ À 1 (4.69)

the vacuum coherence time is given by

tc,v = τ‖

∣∣∣∣∣
σ

k0

4M
2

δ M2

∣∣∣∣∣ =
2k2

0

σ|δ M2| ¿ τ‖ (4.70)

and the overlap between the separating wave-packets vanishes well before the packets disperse

appreciably along the longitudinal direction. On the other hand, in the case when

∣∣∣∣
k0

σ

δ M2

4M
2

∣∣∣∣ ¿ 1 (4.71)

the spreading of the wave packets catches up with the separation and the overlap between them

freezes when t ≡ tf,v = τ‖ = k3
0/2σ2M

2. With |δM2|/4M
2 ∼ 10−4 for solar or ∼ 10−3 for

atmospheric neutrinos the phenomenon of “freezing” of the overlap and the survival of coherence

is available for

1 ¿ k0

σ
¿ 4M

2

|δ M2| (4.72)

which is well within the “narrow wave packet” regime. However, as discussed above, when the

coherence freezes the transition probability has been strongly suppressed by transverse dispersion.
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Therefore during the time scale during which the transition probability is non-negligible we can

approximate the exponent in (4.49)

1
2
Φ‖(t)X2

R(t) ∼
(

t

tc,v

)2

(4.73)

The effective oscillation frequency is given by eqn. (4.65) which becomes

Ψ1 −Ψ2 ∼ δM2

2k

(
1− 2σ2

k2
0

)
(4.74)

while the corrections tend to diminish the oscillation frequency, these are rather small in the narrow

packet approximation.

4.3.4 Medium effects: near resonance

In refs.[14, 57, 58, 59, 113] it was established that if the lepton asymmetries are of the order of

the baryon asymmetry η ∼ 10−9 there is the possibility of a resonance for the temperature range

me ¿ T ¿ mµ for positive energy negative helicity neutrinos with ω(k) ∼ k + M
2
/2k ; h = −1

or positive energy positive helicity antineutrinos with ω(k) ∼ −k −M
2
/2k ; h = 1 respectively.

It is convenient to introduce the following notation

L9 = 109 (Le − Lµ) (4.75)

δ5 = 105

(
δM2

eV2

)
(4.76)

If the lepton and neutrino asymmetries are of the same order of the baryon asymmetry, then

0.2 . |L9| . 0.7 and the fitting from solar and KamLAND data suggests |δ5| ≈ 8. In this

temperature regime we find[113] for positive energy, negative helicity neutrinos

∆−(k, k)
δM2

≈ 4
δ5

(
0.1T

MeV

)4 k

T

[
− L9 +

(
2T

MeV

)2 k

T

]
. (4.77)

and for positive energy positive helicity antineutrinos

∆+(−k, k)
δM2

≈ 4
δ5

(
0.1T

MeV

)4 k

T

[
L9 +

(
2T

MeV

)2 k

T

]
. (4.78)

In the above expressions we have neglected terms of order M
2

k2 . With k ∼ T and in the

temperature regime just prior to BBN with T ∼ fewMeV the lepton asymmetry contribution L
is much smaller than the momentum dependent contribution and will be neglected in the analysis
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that follows, therefore we refer to ∆h(λk, k) and Sh(λk, k) as ∆(k) and S(k) respectively since these

are independent of h, λ in this regime. In this temperature regime we find for both cases (negative

helicity neutrinos and positive helicity antineutrinos) the following simple expressions

∆(k) ≈ 56π2

45
√

2
GF k2T 4

M2
W

; S(k) ≈ ∆(k)(1 + cos2 θw). (4.79)

A resonance is available when ∆(k0) ∼ δM2 cos 2θ, which may occur in this temperature regime

for k0 ∼ T ∼ 3.6MeV[14, 57, 58, 59, 113] for large mixing angle (θ12) or k ∼ T ∼ 7MeV for small

mixing angle (θ13). Near the resonance the in-medium dispersion relations and group velocities are

given by

ωa(k) ≈ k +
M2

a

2k
− δM2

4k

{
(1 + cos2 θw) cos 2θ + (−1)a−1 (1− sin 2θ)

}
(4.80)

vg,a ≈ 1− M2
a

2k2
+

δM2

4k2

{
(1 + cos2 θw) cos 2θ + (−1)a−1 (1− sin 2θ)

}
(4.81)

Again we focus our discussion on the interference terms in the transition probability (4.48), in

particular the medium modifications to the oscillation frequencies and coherence time scales. To

assess these we note the following (primes stand for derivatives with respect to k):

Ω(k)|res = sin 2θ ; Ω
′
(k)|res = 0 ; Ω

′′
(k)|res =

4
k2

cos2 θ

sin 2θ
(4.82)

which when combined with equation (4.20) yield

ω1(k)− ω2(k) =
δM2

2k
sin 2θ ; vg,1 − vg,2 ≈ −δM2

2k2
sin 2θ (4.83)

We also note that near the resonance

sin′ 2θm(k) ∝ cos 2θm ≈ 0 , (4.84)

therefore the corrections arising from the energy dependence of the mixing angle in the transition

probability (4.48) become vanishingly small. The transverse and longitudinal dispersion time scales

are given by

τa⊥ =
k0

2σ2 vg,a
; τa‖ ≈ τ‖

[
1− (−1)a−1 δM2

2M
2

1 + cos2 2θ

sin 2θ

]
; τ‖ =

k3
0

2σ2M
2 . (4.85)
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Therefore in the medium near the resonance, the argument of the exponential that measures

the overlap between the separating wave packets is given by

1
2
Φ‖(t)X2

R(t) ∼
(

k0

σ

δ M2

4M
2 sin 2θ

)2
t2

τ2
‖ + t2

=

(
t

tc,m

)2

1 +
(

t
τ‖

)2 (4.86)

where

tc,m =
2k2

0

σ|δ M2| sin 2θ
=

tc,v
sin 2θ

. (4.87)

The effective oscillation frequency (4.65) is given by

Ψ1 −Ψ2 ∼ δM2

2k
sin 2θ

(
1− 2σ2

k2
0

)
(4.88)

which when compared to the vacuum result (4.74) confirms the relation between the vacuum and

in-medium oscillation time scales (4.26) since near the resonance sin 2θm ∼ 1.

We conclude that the main effects from the medium near the resonance are an increase in the

coherence and in the oscillation time scale T = 2π/|Ψ1−Ψ2| by a factor 1/ sin 2θ. For solar neutrino

mixing with sin 2θ12 ∼ 0.9 the increase in these time scales is at best a 10% effect, but it becomes

much more pronounced in the case of atmospheric neutrino mixing since sin 2θ13 ¿ 1.

4.3.4.1 ∆h/δM2 À 1 oscillation suppression by the medium. In the temperature or mo-

mentum regime for which ∆h/δM2 À 1 the expression for the in-medium mixing angles (4.17)

reveals that cos 2θm → −1. In this case the in-medium mixing angle reaches θm → π/2 and the

transition probability Pe→µ vanishes. Eqn. (4.29) shows that in this case an electron neutrino

wavepacket of negative helicity propagates as an eigenstate of the effective Dirac Hamiltonian in

the medium with a dispersion relation

ω2(k) ∼ vk +
M2

2

2k
; v =

[
1− 14

45
√

2
GF T 4

M2
W

(
1 + sign(δM2) + cos2 θw

)]
(4.89)

where we have used eqn. (4.79) for the case when the momentum dependent contribution is much

larger than the asymmetries. The in-medium correction to the group velocity being proportional

to
GF T 4

M2
W

∼ 10−21

(
T

MeV

)4

(4.90)

is negligible in the temperature regime in which the calculation is reliable, namely for T ¿ MW .
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4.4 TIME SCALES IN THE RESONANCE REGIME

There are several important time scales that impact on the dynamics of wave-packets in the medium

as revealed by the discussions above, but also there are two more relevant time scales that are

pertinent to a plasma in an expanding Universe: the Hubble time scale tH ∼ 1/H which is the

cooling time scale T (t)/Ṫ (t) and the collisional relaxation time scale trel = 1/Γ with Γ the weak

interaction collision rate. Neither tH nor trel has been input explicitly in the calculations above

which assumed a medium in equilibrium and considered self-energy corrections only up to O(GF ).

The damping factor that leads to the decoherence from neutral and charged current interactions

has been studied in detail in references[14, 57, 58, 59] and we take this input from these references in

order to compare this time scale for damping and decoherence to the time scales for the space-time

evolution of the wave packets obtained above at the one-loop level.

In the temperature regime 1MeV ≤ T ≤ 100MeV the Hubble time scale is[115]

tH ∼ 0.6
(

T

MeV

)−2

s (4.91)

and the collisional rate is estimated to be[14, 57, 58, 59]

Γ ∼ 0.25G2
F T 5 ∼ 0.25× 10−22

(
T

MeV

)5

MeV ⇒ trel ∼ 1.6
(

T

MeV

)−5

s (4.92)

In order to determine the relevant time scales an estimate of the momentum spread of the initial

wavepacket σ is needed. For example, for neutrinos in the LSND experiment, the momentum spread

of the stopped muon is estimated to be about 0.01MeV [106]. An estimate of the momentum

spread in the medium can be the inverse of the mean-free path of the charged lepton associated

with the neutrino[9]. This mean free path is determined by the electromagnetic interaction, in

particular large angle scattering, which can be simply estimated from one-photon exchange to be

λmf ∼ (α2
emT )−1. This estimate yields

σ ∼ α2
emT ∼ 10−4

(
T

MeV

)
(MeV) . (4.93)

For neutrinos in the neutrinosphere of a core-collapse supernovae, the estimate for σ is also ∼
10−2 MeV[9]. We will take a value σ ∼ 10−3 MeV in the middle of this range as representative to

obtain order of magnitude estimates for the time scales, but it is straightforward to modify the

estimates if alternative values of σ can be reliably established.
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We now consider the large mixing angle (LMA) case to provide an estimate of the different time

scales, but a similar analysis holds for the case of small vacuum mixing (SMA) by an appropriate

change of k0; T . Taking k0 ∼ T ∼ 3.6MeV, σ ∼ 10−3MeV, |δM2| ∼ 8 × 10−5(eV)2, M ∼ 0.25eV

we obtain the following time scales near the resonance region:

i) oscillation time scales:

Tvac =
4πk0

|δM2| ∼ 3.8× 10−4 s ; Tmed =
Tvac

sin 2θ
(4.94)

ii) dispersion and coherence time scales:

τ⊥ ∼ k0

2σ2
∼ 1.2× 10−15 s ; τ‖ ∼

k3
0

2σ2M
2 ∼ 0.25 s (4.95)

tc,v =
2k2

0

σ|δM2| ∼ 0.21 s ; tc,m =
tc,v

sin 2θ
(4.96)

iii) expansion and collisional relaxation time scales:

tH ∼ 4.6× 10−2 s ; trel ∼ 2.8× 10−3 s (4.97)

For small vacuum mixing angle (θ13) the above results are modified by taking k0 ∼ T ∼ 7 MeV.

In the resonance region the in-medium coherence time scale is of the same order as the Hubble

time (for LMA) or much longer (for SMA) and and there is a large temperature variation during

the coherence time scale. However, the decoherence of the wave packets occurs on much shorter

time scales determined by the collisional relaxation scale and the coherence time scale is not the

relevant one in the medium near the resonance.

Decreasing the momentum spread of the initial wave packet σ increases the dispersion and

coherence time scales, with the dispersion scales increasing faster. The medium effects are manifest

in an increase in the oscillation and the coherence time scales by a factor 1/ sin 2θ. This effect is

more pronounced for 1 − 3 mixing because of a much smaller mixing angle. It is clear from the

comparison between the coherence time scale in the medium tc,m and the relaxational (collisional)

time scale trel that unless σ is substantially larger than the estimate above, by at least one order

of magnitude in the case of 1− 2 mixing, or even more for 1− 3 mixing, collisions via neutral and

charge currents is the main source of decoherence between the separating wave-packets near the

resonance. However, increasing σ will decrease the transverse dispersion time scale thus leading to

greater suppression of the amplitude of the wave packets through dispersion. Furthermore, for large

mixing angle sin 2θ ∼ 1 the oscillation scale is shorter than the collisional decoherence time scale via

the weak interactions trel, therefore allowing several oscillations before the wave packets decohere,
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and because the oscillation scale is much smaller than the Hubble scale the evolution is adiabatic

over the scale trel. But for small mixing angle the opposite situation results and the transition

probability is suppressed by collisional decoherence, furthermore for small enough mixing angle

there is a breakdown of adiabaticity. However, the strongest suppression of the survival Pe→e as

well as the transition Pe→µ probabilities (equally) is the transverse dispersion of the wave packets,

on a time scale many orders of magnitude shorter than the decoherence tc,m and the collisional trel

time scales. Unless σ2 is within the same order of magnitude of |δM2| the transverse dispersion

occurs on time scales much faster than any of the other relevant time scales and the amplitude

of the wave-packets is suppressed well before any oscillations or decoherence by any other process

can occur. Clearly a better understanding of the initial momentum spread is necessary for a full

assessment of the oscillation probability in the medium.

4.5 CONCLUSIONS

In this chapter, we implemented a non-equilibrium quantum field theory method that allows to

study the space-time propagation of neutrino wave-packets directly from the effective Dirac equation

in the medium. The space-time evolution is studied as an initial value problem with the full density

matrix via linear response. The method systematically allows to obtain the space-time evolution

of left and right handed neutrino wave packets.

A “flavor neutrino” wave packet evolves in time as a linear superposition of wave-packets of

“exact” (quasi) particle states in the medium, described by the poles of the Dirac propagator in

the medium. These states propagate in the medium with different group velocities and the slow

separation between these packets causes their overlap to diminish leading to a loss of spatial and

temporal coherence. However, the time evolution of the packets also features dispersion as a result

of the momentum spread of the wave packets[108].

The space time dynamics feature a rich hierarchy of time scales that depend on the initial

momentum spread of the wave packet: the transverse and longitudinal dispersion time scales τ⊥ ¿
τ‖ which are widely separated by the enormous Lorentz time dilation factor ≈ (k/M)2 with M

the average neutrino mass, and a coherence time scale tc,m that determines when the overlap of

the wave packets becomes negligible. The dynamics also displays the phenomenon of “freezing of

coherence” which results from the competition between the separation and spreading of the wave
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packet along the direction of motion (longitudinal). For time scales larger than τ‖ the overlap of

the wave-packets freezes, with a large overlap in the case when tc,m À τ‖, which occurs for a wide

range of parameters.

We have focused on studying the space-time propagation in the temperature and energy regime

in which there is a resonance in the mixing angle in the medium, prior to BBN[14, 57, 58, 59, 113].

Our main results are summarized as follows:

• Both the coherence and oscillation time scales are enhanced in the medium with respect to the

vacuum case by a factor 1/ sin 2θ near the resonance, where θ is the vacuum mixing angle.

• There are small corrections to the oscillation formula from the wave-packet treatment, but these

are suppressed by two powers of the ratio of the momentum spread of the initial packet to the

main momentum.

• There are also small corrections to the space-time evolution from the energy dependence of the

mixing angle, but these are negligible near the resonance region.

• The spreading of the wave-packet leads to the phenomenon of “freezing of coherence” which

results from the competition between the longitudinal dispersion and coherence time scales.

This phenomenon is a result of the longitudinal spreading of the wave-packets “catching up”

with their separation. Substantial coherence remains frozen for tc,m À τ‖.

• We have compared the wide range of time scales present in the early Universe when the resonance

is available for T ∼ 3.6MeV[14, 57, 58, 59, 113] for large mixing angle. Assuming that the initial

momentum spread of the wave-packet is determined by the large angle scattering mean free path

of charged leptons in the medium[9], we find the following hierarchy between the transverse

dispersion τ⊥, oscillation Tmed, collisional relaxation trel, Hubble tH , in-medium coherence tc,m

and longitudinal dispersion τ‖ time scales respectively: for large vacuum mixing angle sin 2θ ∼ 1:

τ⊥ ¿ Tmed < trel < tH ¿ tc,m . τ‖ (4.98)

and for small mixing angle sin 2θ ¿ 1

τ⊥ ¿ trel . Tmed < tH ¿ tc,m . τ‖ . (4.99)

The rapid transverse dispersion is responsible for the main suppression of both the persistent

and transition probabilities making the amplitudes extremely small on scales much shorter

than any of the other scales. Only a momentum spread σ ∼
√
|δM |2 will make the transverse

110



dispersion time scale comparable with the oscillation and relaxation ones. Clearly a better

assessment of the momentum spread of wave-packets in the medium is required to provide a

more reliable estimate of the wave-packet and oscillation dynamics.
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5.0 CHARGED LEPTON MIXING AND OSCILLATIONS FROM NEUTRINO

MIXING IN THE EARLY UNIVERSE

5.1 INTRODUCTION

While there is a large body of work on the study of neutrino mixing in hot and dense environments,

much less attention has been given to the possibility of mixing and oscillation of charged leptons.

Charged lepton number non-conserving processes, such as µ → e γ;µ → 3 e mediated by massive

mixed neutrinos have been studied in the vacuum in refs.[116, 117, 118]. For Dirac neutrinos

the transition probabilities for these processes are suppressed by a factor m4
a/M

4
W [116, 117, 118].

The WMAP[8] bound on the neutrino masses ma < 1 eV yields typical branching ratios for these

processes B . 10−41 making them all but experimentally unobservable.

In this chapter, we explore the possibility of charged lepton mixing in the early Universe at

high temperature and density. In section 5.2 we discuss the general arguments for charged lepton

mixing as a result of neutrino mixing and establish the necessary conditions for this mixing to be

substantial. We suggest that large neutrino chemical potentials may lead to substantial charged

lepton mixing.

Without oscillations BBN and CMB provide a stringent constraint on the neutrino chemical

potentials[21, 119] ξα, with −0.01 ≤ ξe ≤ 0.22 , |ξµ,τ | ≤ 2.6. Detailed studies[32, 71, 110, 111, 112]

show that oscillations and self-synchronization lead to flavor equilibration before BBN, beginning at

a temperature T ∼ 30MeV[111] with complete flavor equilibration among the chemical potentials

at T ∼ 2MeV[110, 111]. Thus prior to flavor equalization for T > 30MeV there could be large

neutrino asymmetries consistent with the BBN and CMB bounds in the absence of oscillations.

We study whether this possibility could lead to charged lepton mixing focusing on two flavors of

Dirac neutrinos corresponding to e, µ and for simplicity in the temperature regime where both are

ultrarelativistic, with mµ ¿ T ¿ MW .
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In section 5.3 we discuss general arguments within the realm of reliability of perturbation theory

suggesting that the equilibrium state is described by a density matrix nearly diagonal in the mass

basis. In this section we also discuss caveats and subtleties in the kinetic approach to neutrino

equilibration in the literature and argue that results on the equilibrium state are in agreement with

the interpretation of an equilibrium density matrix diagonal in the mass basis. Our main and only

assumption is that for T > 30MeV neutrinos are in equilibrium and the density matrix is nearly

diagonal in the mass basis, with distribution functions of mass eigenstates that feature different

and large chemical potentials. While this is not the only, it is one possible scenario for substantial

charged lepton mixing that can be explored systematically.

In section 5.4 we explore charged lepton mixing in lowest order in perturbation theory as a

consequence of large asymmetries in the equilibrium distribution functions of mass eigenstates.

In this section we also critically discuss possible caveats and suggest a program to include non-

perturbative corrections in a systematic expansion.

Finally, in section 5.5 we summarize the main aspects and results of the article.

5.2 CHARGED LEPTON MIXING: THE GENERAL ARGUMENT

Charged lepton mixing is a consequence of neutrino mixing in the charged current contribution

to the charged lepton self energy. This can be seen as follows: consider the one-loop self energy

for the charged leptons. The off-diagonal self-energy Σeµ is depicted in fig. (5.1) for the case of

electron-muon mixing. The internal line in fig. (5.1) (a) is a neutrino propagator off-diagonal in the

flavor basis, which is non-vanishing if neutrinos mix. In Fermi’s effective field theory obtained by

integrating out the vector bosons the effective interaction that gives rise to charged lepton mixing

is

Heff =
2GF√

2
[eLγµνeL] [νµLγµµL] . (5.1)

A simple Hartree-like factorization yields

2GF√
2

eLγµ < νeLνµL > γµµL ≡ eL Σeµ µL (5.2)
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Figure 5.1: Off diagonal charged lepton self energy: (a) one loop W -boson exchange, (b) self-energy

in the effective Fermi theory.

where the brackets stand for average in the density matrix of the system. Eqn. (5.2) gives the

charged-lepton mixing part of the self energy as

Σeµ =
2GF√

2
γµ < νeLνµL > γµ . (5.3)

The Fermi effective field theory contribution to the self-energy is depicted in fig. (5.1) (b).

The focus of this chapter is to study two aspects that emerge from this observation:

• Mixing: The propagating modes in the medium are determined by the poles of the full propa-

gator with a self-energy that includes radiative corrections in the medium. The full self-energy

for the charged leptons is a 2×2 matrix (in the simple case of two flavors), and eqn. (5.3) yields

the off-diagonal matrix element in the flavor basis. This is precisely the main study in this arti-

cle: we obtain the charged lepton propagator including radiative corrections in the medium up

to one loop in the electromagnetic and weak interactions. Neutrino mixing leads to off diagonal

components of the propagator in the charged lepton flavor basis. We find the dispersion relation

of the true propagating modes in the medium by diagonalization of the full propagator includ-

ing one loop radiative corrections. The true propagating modes in the medium are admixtures

of electron and muon states: this is precisely what we identify as mixing. The results given by

equations (5.2,5.3) state quite generally that electron and muon states are mixed whenever the

neutrino propagator is off-diagonal in the flavor basis. We highlight that this is precisely the

condition for flavor neutrino oscillations since the propagator yields the transition amplitude
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from an initial to a final state. Therefore we state quite generally that provided flavor neutrinos

oscillate, namely if the neutrino propagator is off diagonal in the flavor basis, charged leptons

associated with these flavor neutrinos will mix. The true propagating modes of charged leptons

are linear superpositions of the charged leptons associated with the flavor neutrinos. We em-

phasize these statements because even though they are a straightforward consequence of flavor

neutrino mixing, this precise point, and its consequences, have not been previously addressed

in the literature.

• Oscillations: Consider the decays W → νe e or neutron beta decay n → p e ν in the medium.

The electron produced in the medium at the decay vertex propagates as a linear combination of

the true propagating modes in the medium, each with a different dispersion relation. Upon time

evolution this linear superposition will have non-vanishing overlap with a muon state yielding

a typical oscillation pattern. We study this oscillation between the electron and muon charged

lepton by considering the evolution of an electron wave-packet produced locally at the decay

vertex. These oscillations are akin to the typical oscillation between flavor neutrino states and

are a consequence of the one loop radiative correction depicted in fig.(5.1) with neutrinos in

the medium. The transition probability from an initial electron to a muon packet oscillates

in time. While in the case of almost degenerate neutrinos oscillations are associated with

macroscopic quantum coherence because the oscillation lengths are macroscopically large, this

is not a necessary condition for oscillations, which occur whenever the initial state is a linear

superposition of the propagating modes. The example of neutron beta decay gives a precise

meaning to the statement of charged lepton mixing: in the decay of the neutron the charged

lepton that is produced is identified with the electron. This is the initial state, which in a

medium will propagate as a linear combination of the propagating modes with an oscillatory

probability of finding a muon. These oscillations are fundamentally different from the space-time

oscillations possibly associated with quantum entanglement and discussed in references[120].

Eqn. (5.3) generally states that there is charged lepton mixing when the density matrix is off

diagonal in the flavor basis. This is equivalent to the statement of neutrino mixing. A simple

example of a density matrix off diagonal in the flavor basis is ρ̂ = |0m >< 0m| with |0m > being

the vacuum state in absence of weak interactions but with a neutrino Hamiltonian with an off

diagonal mass matrix in the flavor basis. This is the interaction picture vacuum of the standard
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model augmented by a neutrino mass matrix with flavor mixing. In the two flavor case with

νe(~x, t) = cos θ ν1(~x, t) + sin θ ν2(~x, t) , νµ(~x, t) = cos θ ν2(~x, t)− sin θ ν1(~x, t) (5.4)

with ν1,2(~x, t) the fields associated with the mass eigenstates,

< 0m|νe(~x, t)νµ(~x′, t′)|0m >= cos θ sin θ
[
< 0m|ν2(~x, t)ν2(~x′, t′)|0m > − < 0m|ν1(~x, t)ν1(~x′, t′)|0m >

]
.

(5.5)

If the propagators for the mass eigenstates only differ in the masses, this difference leads to a very

small self-energy. In a medium the flavor off diagonal expectation value (5.3) could be enhanced by

temperature and or density. Therefore the general criterion for substantial charged lepton mixing

in a medium hinges on just one aspect: a large off diagonal matrix element < νeLνµL >. One

possible case for which this condition is fulfilled is if the density matrix is nearly diagonal in the

mass basis with large chemical potentials for the different mass eigenstates.

We emphasize that this is only one condition for substantial charged lepton mixing and by no

means unique, the analysis above shows that the most general condition is simply that < νeLνµL >

be large.

In the general case a full solution of a kinetic equation should yield the value of < νeLνµL >.

If an equilibrium state of mixed neutrinos is described by a density matrix nearly diagonal in the

mass basis with distribution functions for the different mass eigenstates with large and different

chemical potentials, then simple expressions for the equilibrium propagators allow an assessment

of the charged lepton mixing self energy. Can this be the case?.

5.3 ON NEUTRINO EQUILIBRATION

5.3.1 Equilibration in the mass basis

A system is in equilibrium if

[ρ̂, H] = 0 , (5.6)

where ρ̂ is the density matrix of the system and H the total Hamiltonian H = H0+Hint with H0 the

Hamiltonian in the absence of weak interactions but with a mass matrix and Hint = HNC + HCC .

In the absence of weak interactions, an equilibrium density matrix ρ̂0 commutes with H0, therefore

it is diagonal in the mass basis. The equilibrium density matrix cannot have off-diagonal matrix
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elements in the mass basis because these oscillate in time. Of course without interactions the system

will not reach an equilibrium state, however, as is the usual assumption in statistical mechanics,

provided the interactions are sufficiently weak but lead to an equilibrium state, an almost free gas

of particles in equilibrium is a suitable description, and the canonical density matrix in such case is

of the form ρ̂0 = e−H0/T (the grand canonical could also include a chemical potential for conserved

quantities). Examples of this are abundant, a ubiquitous one is the cosmic microwave background

radiation: the Planck distribution function describes free photons in equilibrium, although photons

reach equilibrium by undergoing collisions with charged particles in a plasma with cross sections

much larger than those of neutrinos.

Consider how the density matrix is modified from the “free field” form by “switching on” the

weak interactions in perturbation theory. A perturbative expansion in the interaction picture of H0

begins by writing the interaction vertices in terms of neutrino fields in the mass basis. Neglecting

sterile neutrinos, neutral current interaction vertices are diagonal and only the charge current

interactions induce off-diagonal correlations in the mass basis. Let us write the full density matrix

as ρ̂ = ρ̂0 + δρ̂ where δρ̂ has a perturbative expansion in the weak coupling. The equilibrium

condition leads to the following identity

[δρ̂,H0] = − [ρ̂0,Hint]− [δρ̂,Hint] (5.7)

Taking matrix elements in the mass eigenstates of H0 the solution of eqn. (5.7) for the matrix

elements of δρ̂ in the mass basis can be found in a perturbative expansion. The matrix elements

of δρ̂ may feature non-vanishing off diagonal correlations in the mass basis as a result of charged

current vertices which mix different mass eigenstates. However, a perturbative solution for the

matrix elements of eqn. (5.7) in the mass basis would at most result in off diagonal correlations

which are perturbatively small. Namely, the equilibrium density matrix is nearly diagonal in the

mass basis.

Expanding the field operators associated with the mass eigenstates in terms of Fock creation

and annihilation operators of mass eigenstates, the spatial Fourier transform of the field operators

is given by

νi(~k, 0) =
∑

λ

ai(~k, λ)Ui(~k, λ) + b†i (−~k, λ)Vi(−~k, λ) ; i = 1, 2 (5.8)

where the spinors U ,V are orthonormalized positive and negative energy solutions solutions of

the Dirac equation with mass mi. If the density matrix is diagonal in the mass basis, then
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〈a†i (~k) aj(~k)〉 ∝ δij and the distribution functions for the mass eigenstates are 〈a†i (~k) ai(~k)〉 ; 〈b†i (~k) bi(~k)〉
for neutrinos and antineutrinos of mass i respectively. Switching on the neutral current interaction

which is diagonal in the mass basis (provided there are no sterile neutrinos) will lead to the equili-

bration of neutrinos and the equilibrium distribution functions will be the usual Fermi-Dirac with

a possible chemical potential. The charged current interactions yield vertices that are off-diagonal

in the mass basis and induce cross correlations of the form 〈a†i aj〉 with i 6= j. In free field theory

this equal time correlation function, if non-vanishing, oscillates with a time dependence ei(ωi
k−ωj

k) t,

however, in equilibrium there cannot be a time dependence of these off diagonal correlations as the

following argument shows

〈a†i (t) aj(t)〉 = Tr
(
ρ̂eiHta†i (0) aj(0)e−iHt

)
= Tr

(
ρ̂a†i (0) aj(0)

)
(5.9)

where we used eqn. (5.6). Either the charged current interactions that generate these off-diagonal

correlations exactly cancel the free field time dependence for all values of momentum k or, more

likely, they lead to the decay of these off diagonal correlations to asymptotically perturbatively

small expectation values as expected from the general arguments following eqn. (5.7).

This observation leads to the conclusion that if the perturbative expansion is reliable, the weak

interactions lead to an equilibrium state described by a density matrix which is nearly diagonal in

the mass basis but for possible perturbatively small off-diagonal elements. In perturbation theory

the equilibrium distribution functions are diagonal in the mass basis and may feature a chemical

potential for each mass eigenstate. Weak interaction vertices involve the flavor fields, but these

are linear combinations of the fields that create and annihilate mass eigenstates, the true in-out

states. Consider a far off-equilibrium initial state with a population of vector bosons (or neutrons)

and no neutrinos, the decay of the vector bosons (or neutrons) results in the creation of a linear

superposition of mass eigenstates, which propagate independently after production. Collisional

processes via the weak interaction lead to the decoherence of the mass eigenstates and ultimately

to a state of equilibrium in which equal time expectation values in the density matrix cannot

depend on time. Neutral and charged current interactions yield different relaxational dynamics:

in the mass basis the neutral current interaction is diagonal and relaxation processes via neutral

currents lead to equilibration in the mass basis. Charged currents feature both diagonal and off-

diagonal contributions in the mass basis, the diagonal ones yield relaxation dynamics similar to the

neutral current interaction. The off diagonal contributions induce correlations between different

mass eigenstates, but also lead to the relaxation of these off diagonal correlations. These two types
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of processes leading to relaxation dynamics for diagonal and off-diagonal correlations in the mass

basis are akin to the different processes that lead to the relaxation times T1 (diagonal) and T2

(transverse) in spin systems in nuclear magnetic resonance[121]. These concepts are manifest in

Stodolsky’s effective Bloch equation description of neutrino oscillations in a medium with a damping

coefficient in the “transverse” direction[122] whose inverse is the equivalent of the T2 relaxation

time in spin systems.

By the above arguments this asymptotic equilibrium density matrix must be nearly diagonal in

the mass basis at least within the realm of reliability of perturbation theory. Equilibrium correlation

functions of operators at different times must be functions of the time difference. Of particular

relevance to the discussion below is the flavor off diagonal propagator 〈νe(~k, t)νµ(~k, t′)〉. Writing

the flavor fields as linear combinations of the fields ν1,2 this correlation function in the equilibrium

density matrix diagonal in the mass basis is to zeroth order in the perturbation

〈νe(~k, t) νµ(~k, t′)〉 = − cos θ sin θ
[
〈ν1(~k, t− t′) ν1(~k, 0)〉 − 〈ν2(~k, t− t′) ν2(~k, 0)〉

]
. (5.10)

Mixed correlators of ν1,2 cannot be functions of the time difference because of the different masses

lead to a dependence on t + t′. As a simple but relevant example, consider the density matrix for

the vacuum

ρ̂ = |0 >< 0| (5.11)

where |0 > is the exact ground state of H. This state can be constructed systematically in pertur-

bation theory from the ground state |0m > of the Hamiltonian H0 in absence of weak interactions,

namely the interaction picture ground state in the basis of mass eigenstates,

|0 >= |0m > +
∑

n

|nm >
< nm|Hint|0m >

−En
+ · · · . (5.12)

where |nm > are Fock eigenstates of H0 (“mass eigenstates”) with energy En. Writing the full

density matrix as ρ̂ = |0m >< 0m|+ δρ̂ one can find δρ̂ systematically in perturbation theory. The

off-diagonal flavor propagator

Seµ(~k, t− t′) = < 0|νe(~k, t)νµ(~k, t′)|0 >=< 0m|νe(~k, t)νµ(~k, t′)|0m > +O(g) + · · ·

= cos θ sin θ
[
< 0m|ν2(~k, t)ν2(~k, t′)|0m > − < 0m|ν1(~k, t)ν1(~k, t′)|0m >

]
+O(g) + · · · .

(5.13)

This propagator is the lowest order intermediate state in the process W e → W µ, and is also the

internal fermion line, along with W-vector boson exchange in the off-diagonal self-energy contribu-

tion for charged leptons, see fig.(5.1). This simple example also leads to conclude that if there is
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an equilibrium state for which the equal time “distribution function” < νe(~k)νµ(~k) >6= 0 then the

unequal time correlation function

Seµ(~k, t− t′) =< νe(~k, t)νµ(~k, t′) >= cos θ sin θ
[
< ν2(~k, t)ν2(~k, t′) > − < ν1(~k, t)ν1(~k, t′) >

]
6= 0

(5.14)

As it will become clear below, this is the correlation function that describes the charged lepton

mixing. These arguments rely on the validity of the perturbative expansion and require revision

in the case where perturbation theory in the mass basis must be reassessed. In section (5.4.3) we

discuss this possibility and propose a method to re-arrange the perturbative expansion.

5.3.2 On the kinetic approach

Early kinetic approaches to the dynamics of oscillating neutrinos in thermal environments were

proposed by Dolgov[14, 59, 124], Stodolsky[122] and Manohar[123]. Dolgov[124] introduced density

matrices in flavor space, whereas Stodolsky[122] and Manohar[123] used a single particle density

matrix of flavor states leading to Bloch-like equations and a similar description was studied in

ref.[58]. Stodolsky argued that decoherence between flavor states emerged from a “transverse”

relaxation akin to the relaxation time T2 in nuclear magnetic resonance[121]. A Boltzmann equation

for mixing and decoherence was established by Raffelt, Sigl and Stodolsky[125] in terms of a “matrix

of densities” in the nonrelativistic domain instead of the density matrix. In this approach the field

operators for different flavors were truncated to only the annihilation operators and obtained a

Boltzmann equation in a perturbative expansion. A fully relativistic treatment was presented in

ref.[126] introducing “matrices of densities” defined by the expectation value of bilinears of creation

and annihilation operators of flavor states. A quantum kinetic description of oscillating neutrinos

was presented in ref.[66] with an approach similar to those of refs.[122, 125] in terms of single

particle flavor states.

All of the approaches to the kinetic description of oscillating neutrinos in a medium in one way

or another use the notion of flavor Fock states, either in terms of single particle flavor neutrino

states or by expanding field operators in terms of creation and annihilation Fock operators for flavor

states. However, flavor states and the precise definition of Fock operators associated with these

states are very subtle and controversial[1, 89, 90, 91, 127, 128].

Precisely, what are flavor states? While in the literature there is no precise definition of a

“flavor state”, a proper definition of such state should begin by expanding the flavor field operator
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in terms of Fock creation and annihilation operators. In such an expansion the spatial Fourier

transform of the flavor neutrino field operator, for example the electron neutrino at t = 0, is given

by

νe(~k, 0) =
∑

s

αe(~k, s)Ue(~k, s) + β†e(−~k, s)Ve(−~k, s) (5.15)

where the spinors Ue ; Ve are orthonormalized positive and negative frequency solutions of a Dirac

operator with some mass and define a basis. A Fock state of an electron neutrino can be defined

by

|νe(~k, s)〉 = α†e(~k, s)|0m〉 (5.16)

where |0m〉 is the vacuum of the non-interacting theory, namely the vacuum of mass eigenstates.

However, the expansion (5.15) requires a definite basis corresponding to a definite choice of the

Dirac spinors U ,V, which can be chosen to be solutions of a Dirac operator for any arbitrary mass.

Each possible choice of mass gives a different definition of “particle”. One possible choice is zero

mass[126], another choice would be the diagonal elements of the mass matrix in the flavor basis[129]

or masses m1 to the electron neutrino and m2 to the muon neutrino[89]. Any of these choices is just

as good and physically motivated but obviously arbitrary. The creation and annihilation operators

are extracted by projection[129], for example α†e(~k, s) = ν†e(~k, 0)Ue(~k, s). Writing the electron

neutrino field operator as a linear combination of the field operators that create and annihilate

mass eigenstates one finds

α†e(~k, s) = cos θ

[∑

λ

a†1(~k, λ)U†1(~k, λ)Ue(~k, s) + b1(−~k, λ)V†1(−~k, λ)Ue(~k, s)

]
+

sin θ

[∑

λ

a†2(~k, λ)U†2(~k, λ)Ue(~k, s) + b2(−~k, λ)V†2(−~k, λ)Ue(~k, s)

]
(5.17)

The transformation between the set of “flavor” operators and those that create and annihilate

mass eigenstates is unitary and the scalar products of the spinors yield generalized Bogoliubov

coefficients. It is clear that there is no single choice of spinor Ue that will make

U†1(~k, λ)Ue(~k, s) = 1 ; U†2(~k, λ)Ue(~k, s) = 1

V†1(−~k, λ)Ue(~k, s) = 0 ; V†2(−~k, λ)Ue(~k, s) = 0 (5.18)

A surprising result of the above identification is that the annihilation operator αe(~k, s) creates a

linear combination of antineutrino mass eigenstates out of the vacuum |0m >[89, 90, 91, 128, 129].

This observation indicates that any choice of the solutions for the spinors Ue,Ve to define a

flavor Fock creation operator leads to |νe〉 6= cos θ|ν1〉 + sin θ|ν2〉. A possible definition of flavor
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Fock states would be to define the flavor vacuum |0f > as the state annihilated by the flavor

annihilation operators (defined for example for zero mass states) and to construct a Fock Hilbert

space out of this vacuum by successive application of flavor Fock creation operators. However,

while there is a formal unitary transformation that relates the flavor and mass Fock operators

via the Bogoliubov coefficients, such transformation is not unitarily implementable in the infinite

dimensional Hilbert space[89], in particular < 0f |0m >= 0. Finally one can simply define flavor

states as

|νe >≡ cos θ|ν1 > +sin θ|ν2 > . (5.19)

However, because of the ambiguities with the definition of flavor Fock creation-annihilation opera-

tors discussed above these single particle states are indirectly related to the flavor fields νe,µ(~x, t)

that enter in the standard model Lagrangian. Furthermore, this single particle definition does not

yield any information on a Fock representation of many particle flavor states. A quantum statistical

description of a neutrino gas is intrinsically a many body description, the total wave function of an

n-fermion system must be completely antisymmetric under pairwise exchange. The second quan-

tized Fock representation allows a systematic treatment of the many particle aspects, in particular

in quantum statistical mechanics a distribution function is an expectation value of Fock number

operator in the density matrix. Therefore simply defining flavor states as in eqn.(5.19) does not

yield a complete information on the many particle nature of a neutrino gas. A systematic study

of the many particle aspect of the dynamical evolution of a dense gas of flavor neutrinos with a

physically motivated definition of flavor states even in the non-interacting theory was presented in

ref.[129] wherein subtle but important effects associated with the non-trivial Bogoliubov coefficients

in the dynamics were studied. Another subtlety emerges when a chemical potential is assigned to

“flavor states”, a chemical potential is a thermodynamic variable conjugate to a conserved particle

number. Even in the free theory, in absence of weak interactions, flavor number is not conserved if

neutrinos mix and as a result a chemical potential for flavor neutrinos is not a well defined quantity

even for free mixed neutrinos. Dynamical aspects associated with this issue were also studied in

ref.[129].

A counter argument to this critique would hinge on the fact that neutrino masses are small on

the relevant energy scales and mass differences are even smaller, therefore one can approximately

take all of the Dirac spinors to be practically massless. Of course if all spinors U ,V for mass and

flavor eigenstates are taken to be massless the overlaps (5.18) yield U†U = 1;U†V = 0 and eqn.

(5.19) becomes an identity. This point will become relevant below.
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While this approximation may be justified, it glosses over the main conceptual aspects and

avoids the fundamental question of what precisely is a distribution function of flavor states. Such

function includes information over all scales, it yields the average occupation for all values of the

momenta, not just the high energy limit.

The main point of this discussion is that there are subtleties and caveats in the kinetic de-

scription based on “flavor states” or flavor matrix of densities, which involve Fock operators for

flavor states. While these subtleties and caveats may not invalidate the broad aspects of the kinetic

results, they cloud the interpretation of the equilibrium state of neutrinos.

To highlight this point consider an equilibrium situation in which neµ(~k) ≡< ν†e(~k)νµ(~k) >= 0,

for a density matrix diagonal in the mass basis this means

cos θ sin θ
[
< ν†1(~k)ν1(~k) > − < ν†2(~k)ν2(~k) >

]
= 0 ⇒< ν†1(~k)ν1(~k) >=< ν†2(~k)ν2(~k) > (5.20)

which in turn leads to the result

nee =< ν†e(~k)νe(~k) >=< ν†µ(~k)νµ(~k) >= nµµ (5.21)

These conditions of “flavor equalization” are the same as those obtained in ref.[59] for the

equilibrium solution of the kinetic equations, although in that reference one active and one sterile

neutrino were studied. The condition (5.20) is consistent with identical chemical potentials for the

mass eigenstates in the limit m1 = m2 = 0. As discussed above, it is precisely taking m1 = m2 = 0

that yields the correspondence between the definition of the flavor states (5.19) and the relation

between the flavor and mass eigenstates fields when all spinors are taken to be massless. This is

also the approximation used in ref.[126] where flavor fields are expanded in the basis of massless

spinors. These are precisely the approximations invoked in the kinetic approach and correspond to

neglecting the neutrino masses. Restoring neutrino masses the off diagonal correlation in the mass

basis would be neµ(k) ∝ (m2
1 −m2

2)/k2. Thus an interpretation of the kinetic results is that the

equilibrium state is described by a density matrix diagonal in the mass basis with equal chemical

potential for the mass eigenstates with an off diagonal correlation neµ ∝ (m2
1 − m2

2)/k2 which is

neglected in the kinetic approach.

Thus the equilibrium solution of the kinetic equation in ref.[59](see eqn. (12) in this reference)

can be interpreted as a confirmation of the statement of equilibration in the mass basis when the

neutrino masses are neglected, although in the “flavor” formulation of the kinetic equations this

information is not readily available.
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The discussion in the previous section based on general aspects of the full density matrix and

a systematic perturbative expansion avoids the caveats associated with the intrinsic ambiguities

in the definition of flavor states and suggests that equilibration leads to a density matrix nearly

diagonal in the mass basis.

Quantum Zeno effect: References[122, 130, 131] discuss the fascinating phenomenon of the

Quantum Zeno effect or “Turing’s paradox”[122]. In the case of neutrino mixing, this effect arises

when the scattering rate is larger than the oscillation rate. Since neutrinos are produced in weak

interaction vertices as “flavor eigenstates” when rapid collisions via the weak interactions which

are diagonal in the flavor basis prevent oscillations, the states are effectively “frozen” in the flavor

basis[122]. This situation may be expected at high temperature. An order of magnitude estimate

reveals that such a possibility is not available in the case under consideration, with a large difference

in the neutrino asymmetries. The argument is the following: the oscillation frequency is given by

Ω ∼ δm2

k

[(
cos 2θ − V (k)

δm2

)2
+

(
sin 2θ

)2
] 1

2

, (5.22)

where the matter potential

V (k) ≈ k GF T 3L , (5.23)

and L is the neutrino asymmetry difference between the two generations of neutrinos. Our study

relies on the possibility of large asymmetries, namely L ∼ 1. The decay rates are of the order

Γ ≈ G2
F T 5 . (5.24)

The “quantum zeno effect” would operate provided Γ >> Ω. Even if V (k) >> δm2 which can

occur at high temperatures, the oscillation frequency

Ω ∼ GF T 3 L (5.25)

and Γ
Ω ∼ GF T 2/L << 1 under the assumptions invoked in this article, namely: i) L ∼ 1, ii)

perturbation theory is valid in Fermi’s effective field theory. A reversal of this bound would entail

a breakdown of the perturbative expansion, and of the Fermi effective field theory. In perturbation

theory the bound is even stronger if δm2 >> V (k). Thus we conclude that, under the conditions

studied in this article, the quantum Zeno effect is not effective in “freezing” the states in the flavor

basis and that oscillations and relaxation may indeed result in a density matrix which is off diagonal

in the flavor basis.
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5.3.3 Main assumptions

After the above discussion on the general aspects of equilibration and the kinetic approach, we are

in position to clearly state our main assumptions. These are the following:

• For T >> 1MeV the electromagnetic and weak interaction rates ensure that leptons are in

equilibrium in the early Universe, namely their distribution functions are time independent.

• The results from the kinetic approach in refs.[111] indicate that for T >> 30MeV neutrino

oscillations are suppressed and flavor equilibration via oscillations is not operational. Therefore

for T >> 30MeV neutrinos are in equilibrium, and there could be large asymmetries in the

neutrino sector consistent with the BBN and CMB bounds in the absence of oscillations.

• The arguments presented above lead us to assume that the equilibrium state of the neutrino

gas is described by a density matrix which is nearly diagonal in the mass basis, and allow

the distribution functions of mass eigenstates to feature different chemical potentials. As per

the discussion above, this is consistent with the interpretation of the equilibrium state after

equalization of the chemical potentials discussed after eqn. (5.20).

Equation (5.14) entails that the equilibrium off-diagonal flavor propagator does not vanish. The

numerical study in ref.[111] shows that flavor equilibration with |ξν | . 0.07 is established but

for T ∼ 2MeV, well below the scale of interest in our study, clearly leaving open the possibility,

which we assume here, of large asymmetries in the neutrino sector at a temperature much

higher than that of flavor equalization. In summary: the combination of the general arguments

suggesting that the equilibrium density matrix is nearly diagonal in the mass basis, at least

within the framework of perturbation theory, along with the results of the kinetic approach

lead us to assume that at high temperature T & 30MeV neutrinos are in equilibrium, the

density matrix is nearly diagonal in the mass basis and there could be large asymmetries for the

different mass states consistent with the bounds in absence of oscillations. Equilibration of mass

eigenstates implies that the neutrino propagators in the mass basis only depend on the time

difference (translational invariance in time) and are determined by the equilibrium distribution

functions, the off-diagonal flavor propagator is given by eqn.(5.14).

The dynamics that leads to equilibration and the mechanism by which substantial chemical

potentials emerge is of course very important and require a much deeper and detailed investigation

as well as an understanding of initial conditions for lepton asymmetries. A consistent study should

address the subtleties and caveats associated with the notion of flavor states or Fock operators. Such
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program is certainly beyond the scope and focus of this article. Here we study the consequences of

this assumption in a perturbative expansion in the mass basis up to one loop order, namely up to

leading order in the weak and electromagnetic interactions. In order to explore the main possible

consequences of neutrino equilibration with large asymmetries within a simpler setting, we focus

on the regime of temperature much larger than the charged lepton masses.

We emphasize, that our main observation, namely that charged leptons mix if neutrinos mix

is one of principle and of a general nature. Our purpose is to study the potentially novel broad

aspects of charged lepton mixing under these circumstances in the simplest scenario, postponing a

more detailed analysis to a future study.

5.4 EXPLORING THE CONSEQUENCES

In perturbation theory in the electroweak interactions, the self-energy is computed in the basis of

mass eigenstates, hence it is off-diagonal in the flavor basis if neutrinos are in equilibrium as mass

eigenstates in the absence of oscillations. Including the electromagnetic self-energy, and introducing

the charged lepton spinor fields να with α , β = e, µ the effective Dirac equation in the medium for

the space-time Fourier transforms of these fields is the following[113]

[(
γ0 ω − ~γ · ~k

)
δα β −Mα β + Σem

α β(ω, k) + Σ̃NC
α β (ω, k) + ΣNC

α β (ω, k)L + ΣCC
α β (ω, k) L

]
ψβ(ω, k) = 0,

(5.26)

where M = diag(Me,Mµ) is the charged lepton mass matrix and L = (1− γ5)/2.

5.4.1 Electromagnetic self-energy

The leading electromagnetic contribution to the charged lepton self-energy Σem
α β(ω, k) for temper-

atures much larger than the lepton masses is dominated by one-photon exchange in the hard-

thermal loop approximation[132, 133]. As discussed below, the temperature region of interest

for substantial charged-lepton mixing is T ∼ Gev, therefore we will neglect corrections of order

M2
e /T 2; M2

µ/T 2 ¿ 10−2 (which already multiply one power of α) to leading order.

Quark-lepton chemical equilibrium may lead to charged lepton chemical potentials as large as

those for neutrinos, therefore we allow for arbitrary charged lepton chemical potentials with the

possibility that µe,µ/T ∼ O(1). The self-energy Σem
α β(ω, k) is diagonal in flavor space Σem(ω, k) =
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diag
(
Σem

e (ω, k), Σem
µ (ω, k)

)
. The matrix elements are given by (f = e, µ) [132, 133]

Σem
f (ω, k) = −γ0

[
m2

f

k
Q0

(ω

k

)
− iΓ

]
+ ~γ · k̂ m2

f

k

(ω

k
Q0

(ω

k

)
− 1

)
; Q0(x) =

1
2

ln
x + 1
x− 1

(5.27)

with

m2
f =

π

2
α T 2 [1 + D(ξf )] ; f = e, µ. (5.28)

The function

D(ξf ) =
4
π2

∫ ∞

0
xdx

[
1

ex−ξf + 1
− 1

ex + 1

]
; ξf =

µf

T
(5.29)

is monotonically increasing with −0.196 ≤ D(ξ) ≤ 0.4, for − 1 ≤ ξ ≤ 1.

The leading order damping rate Γ in Σem emerges from threshold infrared divergences associ-

ated with the emission and absorption of soft, transverse magnetostatic photons[134, 135] and is

insensitive to the masses for temperature larger than the mass of the charged leptons. In an abelian

plasma transverse photons do not acquire a magnetic mass and are only screened dynamically by

Landau damping[133, 134, 135]. Detailed work in high temperature QED plasmas[133, 134, 135]

reveals that the exchange of soft magnetostatic photons yields an anomalous damping of fermionic

excitations, which can be accurately described by the damping rate given by

Γ = αT ln
( ωp

αT

)
. (5.30)

The plasma frequency ωp is determined by the photon polarization fermion loop with all relativistic

fermionic species: for T ∼ GeV with electron, muon and three light quark degrees of freedom we

find to leading logarithimic order

Γ = αT ln
(

8π

3e

)
∼ 3.3 αT. (5.31)

A collisional contribution to the charged lepton damping rate Γ is of order α2T [134] and will be

neglected to leading order in α.

5.4.2 Charged and neutral currents self-energy

As depicted in fig. (5.1) to lowest order in perturbation theory in the interaction picture of H0,

there is a flavor off-diagonal contribution to the charged lepton self energy, Σe,µ given by a W-

boson exchange and an internal off-diagonal fermion propagator < νe(~x, t)νµ(~x′, t′) >. In the mass

basis this propagator is given by eqn. (5.14) and the general form of the corresponding self energy
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Figure 5.2: Charged current self energy Σa(ω, k) with a = 1, 2 corresponding to mass eigenstate

neutrinos in the fermion line. The external lines correspond to e, µ charged leptons with frequency

ω and momentum k.

contribution is depicted in fig.5.2 where the internal fermion line corresponds to a mass eigenstate

neutrino νa in equilibrium with chemical potential µa = T ξa.

We focus on the temperature regime T ¿ MW and obtain the charged current contribution

to the self-energy up to leading order in a local expansion in the frequency and momentum of the

external leptons neglecting terms proportional to ma/MW . 10−17. The general expressions for

charged and neutral current self-energies are given in references[57, 113] where we refer the reader

for more details.

Denoting by ΣCC
a (ω, k) the one-loop charged current self-energy with internal neutrino line

corresponding to a mass eigenstate νa displayed in fig.5.2, the matrix ΣCC
α,β(ω, k) in eqn. (5.26) has

the following entries

ΣCC
e,e = C2 Σ1 + S2 Σ2

ΣCC
µ,µ = S2 Σ1 + C2 Σ2

ΣCC
e,µ = ΣCC

µ,e = −CS (Σ1 − Σ2) (5.32)

consistently with a perturbative calculation in the mass basis to lowest order in the weak inter-

actions C = cos θ ; S = sin θ and θ is the neutrino vacuum mixing angle. A fit to the solar and

KamLAND[92] data yields tan2 θ ≈ 0.40.

The off diagonal element ΣCC
e,µ in eqn. (5.32) is responsible for charged lepton mixing. The

flavor off-diagonal propagator in this self-energy is precisely given by eqn. (5.14). The form of this
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off-diagonal self-energy makes clear that there is mixing provided θ 6= 0, π/2 and Σ1−Σ2 6= 0. The

calculation of the self-energy ΣCC
e,µ in the vacuum is standard: it is performed in the interaction

picture of the true basis of in-out states, these are mass eigenstates. In this case the difference

of the self-energies is determined solely by the neutrino mass difference, therefore in the vacuum

ΣCC
e,µ ∝ GF ∆m2 ∼ 10−27 and the mixing between charged leptons is negligible.

The main point of our study is that in the medium in equilibrium with large neutrino asymme-

tries for the mass eigenstates, charged lepton mixing may be substantial. The propagating modes

in the medium are determined by the poles of the exact propagator. An off diagonal self-energy Σeµ

entails that the charged lepton propagating modes are admixtures of electron and muon degrees

of freedom. We now study this possibility in detail when the temperature is much larger than the

lepton masses. We focus on this case for simplicity in order to extract the main features of the

phenomenon and to highlight the main steps in the calculation.

We are only interested in the real part of the self-energies since at this order the imaginary part

vanishes on the charged lepton mass shells. From the results obtained in[113], for any loop with a

lepton with mass m in the high temperature limit T À m we obtain

ReΣ(ω, k) = γ0 σ0(ω, k)− ~γ · k̂ σ1(ω, k). (5.33)

For MW,Z À T, ω, k we find

σ0(ω, k) = −3 g GF nγ√
2

L +
7 π2

15
√

2
g GF ω T 4

M2
B

I , (5.34)

σ1(ω, k) = − 7 π2

45
√

2
g GF k T 4

M2
B

I , (5.35)

where g is the appropriate factor for charged or neutral currents, L is the asymmetry for the

corresponding lepton and MB = MW,Z for charged or neutral currents, nγ = 2 ζ(3) T 3/π2, and

I =
120
7π4

∫ ∞

0

x3

ex−ξ + 1
dx . (5.36)

The neutrino asymmetries are given by La = (π2/12ζ(3))(ξa +ξ3
a/π2). In the absence of oscillations

the combined analysis from CMB and BBN yield an upper bound on the asymmetry parameters

|ξe| . 0.1, |ξµ| ∼ 1 for flavor neutrinos[21, 119] which we assume to imply a similar bound on the

asymmetries for the mass eigenstates, ξa. The validity of this assumption in free field theory is

confirmed by the analysis in ref.[129]. From (5.32) and the above results the following general form

for the charged and neutral current self-energies is obtained

ReΣ(ω, k) =
3 GF nγ

2
√

2
[γ0A(ω)− ~γ · k̂B(k)] (5.37)
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where A(ω, k) and B(ω, k) are 2× 2 matrices in the charged lepton flavor basis given by

A(ω) =


 Aee(ω) Aeµ(ω)

Aeµ(ω) Aµµ(ω)


 ; B(k) =


 Bee(k) Beµ(k)

Beµ(k) Bµµ(k)


 . (5.38)

where the matrix elements are given by

ACC
ee (ω) = −

[
L+ + cos 2θ L− − 7 π4

90 ζ(3)
ω T

M2
W

(I+ + cos 2θ I−)

]
(5.39)

ACC
µµ (ω) = −

[
L+ − cos 2θ L− − 7 π4

90 ζ(3)
ω T

M2
W

(I+ − cos 2θ I−)

]
(5.40)

ACC
eµ (ω) = sin 2θ

[
L− − 7 π4

90 ζ(3)
ω T

M2
W

I−

]
(5.41)

and

BCC
ee (k) = − 7π4

270 ζ(3)
k T

M2
W

(I+ + cos 2θ I−) (5.42)

BCC
µµ (k) = − 7π4

270 ζ(3)
k T

M2
W

(I+ − cos 2θ I−) (5.43)

BCC
eµ (k) =

7π4

270 ζ(3)
k T

M2
W

sin 2θ I− , (5.44)

where we have introduced L± = L1±L2, I± = I1± I2. The neutral current contributions are flavor

diagonal and given by

ANC
ee (ω) = −(1− 4 sin2 θw)

[
Le − 7 π4

90 ζ(3)
ω T

M2
W

cos2 θw Ie

]
− 4

3

∑

f

gv
f Lf (5.45)

ANC
µµ (ω) = −(1− 4 sin2 θw)

[
Lµ − 7 π4

90 ζ(3)
ω T

M2
W

cos2 θw Iµ

]
− 4

3

∑

f

gv
f Lf (5.46)

ÃNC
ee (ω) = −4 sin4 θw

[
Le − 7 π4

90 ζ(3)
ω T

M2
W

cos2 θw Ie

]
+

8
3

sin2 θw

∑

f

gv
f Lf (5.47)

ÃNC
µµ (ω) = −4 sin4 θw

[
Lµ − 7 π4

90 ζ(3)
ω T

M2
W

cos2 θw Iµ

]
+

8
3

sin2 θw

∑

f

gv
f Lf , (5.48)

and

BNC
ee (k) = − 7π4

270 ζ(3)
k T

M2
W

(1− 4 sin2 θw) cos2 θw Ie (5.49)

BCC
µµ (k) = − 7π4

270 ζ(3)
k T

M2
W

(1− 4 sin2 θw) cos2 θw Iµ (5.50)

B̃NC
ee (k) =

4 sin4 θw BNC
ee (k)

(1− 4 sin2 θw)
; B̃NC

µµ (k) =
4 sin4 θw BNC

µµ (k)
(1− 4 sin2 θw)

, (5.51)
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where gv
f , Lf are the vector coupling and asymmetry of fermion species f , θw is the Weinberg

angle and Le,µ are the charged lepton asymmetries. The non-vanishing off-diagonal matrix elements

ACC
eµ , BCC

eµ lead to charged lepton mixing and oscillations. It is convenient to combine the charged

leptons into a doublet of Dirac fields

ψ(ω, k) =


 ψe(ω, k)

ψµ(ω, k)


 . (5.52)

In the chiral representation the left and right handed components of the Dirac doublet are written

as linear combinations of Weyl spinors v(h) eigenstates of the helicity operator ~σ · k̂ with eigenvalues

h = ±1, as follows[113]

ψL =
∑

h=±1


 0

v(h) ⊗ ϕ(h)


 ; νR =

∑

h=±1


 v(h) ⊗ ξ(h)

0


 (5.53)

The left handed doublet

ϕ(h)(ω, k) =


 l

(h)
e (ω, k)

l
(h)
µ (ω, k)


 , (5.54)

obeys the following effective Dirac equation in the medium to leading order in α, GF [113]
{

[
(ω + iΓ)2 − k2

]
1+

3 GF nγ

2
√

2

(
2ω ÃNC − 2k B̃NC + (ω − hk)(A+ hB)

)
− M̃2

}
ϕ(h)(ω, k) = 0 ,

(5.55)

where M̃2 = diag
(
M2

e + 2m2
e,M

2
µ + 2m2

µ

)
where m2

e,µ are given by eqn. (5.28) and to avoid clut-

tering of notation A , B are the sums of the charged and neutral current contributions. To leading

order the right handed doublet is determined by the relation[113]

ξ(h)(ω, k) = −M (ω + h k)
ω2 − k2

ϕ(h)(ω, k) . (5.56)

The propagating modes in the medium are found by diagonalization of the above Dirac equation.

Let us introduce a doublet of collective modes in the medium

χ(h)(ω, k) =


 l

(h)
1 (ω, k)

l
(h)
2 (ω, k)


 , (5.57)

related to the flavor doublet ϕ(h)(ω, k) by a unitary transformation U
(h)
m with

U (h)
m =


 cos θ

(h)
m sin θ

(h)
m

− sin θ
(h)
m cos θ

(h)
m


 , (5.58)
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ϕ(h)(ω, k) = U (h)
m χ(h)(ω, k). (5.59)

and a similar transformation for the right handed doublet ξ(h)(ω, k), where the mixing angle θ
(h)
m

depend on h, k and ω. The eigenvalue equation in diagonal form is given by

{
(ω+iΓ)2−k2+

1
2

Sh(ω, k)− 1
2

(M2
e +M2

µ+2m2
e+2 m2

µ)+
1
2

Ωh(ω, k)


 1 0

0 −1




}
χ(h)(ω, k) = 0 ,

(5.60)

where Sh(ω, k), ∆h(ω, k) and Ωh(ω, k) are respectively given by

Sh(ω, k) =
3 GF nγ

2
√

2

{
(ω − hk) [Aµµ(ω) + Aee(ω) + h( Bee(k) + Bµµ(k))] +

2ω(ÃNC
µµ + ÃNC

ee )− 2k(B̃NC
µµ + B̃NC

ee )

}
, (5.61)

∆h(ω, k) =
3 GF nγ

2
√

2

{
(ω − hk)[Aµµ(ω)−Aee(ω) + h(Bµµ(ω)−Bee(ω))] +

2ω(ÃNC
µµ − ÃNC

ee )− 2k(B̃NC
µµ − B̃NC

ee )

}
, (5.62)

Ωh(ω, k) =

( [
δM̃2 −∆h(ω, k)

]2
+ [ 2(ω − hk)(Aeµ + hBeµ) ]2

) 1
2

. (5.63)

where δM̃2 = M2
µ − M2

e + 2m2
µ − 2m2

e. The mixing angle in the medium is determined by the

relations

sin 2θ(h)
m = −2(ω − hk) (Aeµ + hBeµ)

Ωh(ω, k)
; cos 2θ(h)

m =
δM̃2 −∆h(ω, k)

Ωh(ω, k)
. (5.64)

where ω must be replaced by the solution of the eigenvalue equation (5.60) for each collective mode.

A remarkable convergence of scales emerges for T ∼ 5GeV: if the neutrino asymmetry |L−| ∼ 1

then for nearly thermalized relativistic charged leptons with ω ∼ −hk with k ∼ T , all of the terms

in the expression for Ωh(ω, k) are of the same order, namely, |∆h(k, k)| ∼ |TAeµ| ∼ δM̃2. For

relativistic leptons |ω| can be replaced by k in the arguments of the functions A,B to leading order

in α,GF .

For Mµ ¿ ω, k, T ¿ MW we find that the leading contribution to ∆h is given by

∆h(ω, k) ' 1.2 10−5

(
T

GeV

)4 [(
ω − h k

2T

)
L− cos 2θ − 0.29

(
6.3ω − h k

7.3T

)(
Lµ − Le

)]
(GeV2) ,

(5.65)
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where we have used the value sin2 θw = 0.23. A resonance in the mixing angle occurs for ∆h = δM̃2.

The typical momentum of a lepton in the plasma is k ∼ T , therefore in the temperature regime

T ¿ MW wherein our calculation is reliable, a resonance is available ωe,µ(k) ∼ −h k ∼ −hT

if the neutrino asymmetry is close to the upper bound. Taking the values for |ξa| inferred from

the upper bounds from combined CMB and BBN data in absence of oscillations[21, 119] and

the fit tan2 θ ∼ 0.40 from the combined solar and KamLAND data[92] suggest the upper bound

|L− cos 2θ| ∼ 1. With the asymmetry parameters for the charged leptons |ξf | smaller than or of the

same order of |ξa|, resonant mixing may occur in the temperature range T ∼ 5GeV. Even when the

asymmetries from charged leptons do not allow for a resonance or at lower temperature, it is clear

that at high temperature and for large neutrino asymmetries such that L− ∼ 1 there is a large mixing

angle because of the convergence of scales. Hence at high temperature and large differences in the

chemical potential for mass eigenstates, the propagating charged lepton collective excitations in the

medium will be large admixtures of e ; µ states. Consider a slightly off-equilibrium disturbance in

the medium corresponding to an initial state describing an inhomogeneous wave packet of electrons.

The real time evolution of this state in the medium has to be studied as an initial value problem.

Following the real time analysis presented in ref.[113], we find that if an initial state describes a

wave-packet of left handed electrons of helicity h, with amplitude lhe (0; k); k À Mµ but no muons,

the persistence and transition probabilities are given by

Pe→e(t; k) = |lhe (0; k)|2 e−2Γt

[
1− sin2(2θh

m(k)) sin2

[
Ω(k)
4k

t

] ]
(5.66)

Pe→µ(t; k) = |lhe (0; k)|2 e−2Γt sin2(2θh
m(k)) sin2

[
Ω(k)
4k

t

]
; Ω(k) = Ωh(k, k) . (5.67)

The exponential prefactor reveals the equilibration of the charged lepton distribution with the

equilibration rate 2Γ[133, 135]. It is also remarkable that Γ ∼ Ω(k)/k in the temperature and

energy regime of relevance for the resonance k ∼ T ∼ 5GeV. Therefore we conclude that during the

equilibration time scale of charged leptons, there is a substantial transition probability. Collisional

contributions are of order α2T or G2
F T 5 for electromagnetic or weak interaction processes leading

to collisional relaxation time scales far larger than the oscillation scale for T ∼ 5GeV.

In the radiation dominated phase for MW À T as discussed here, we find that the ratio of the

oscillation to the expansion time scale Hτosc . 10−16(T/GeV)3 ¿ 1, namely oscillation of mixed

charged leptons occur on time scales much shorter than the expansion scale and the cosmological

expansion can be considered adiabatic.
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5.4.3 Remarks: beyond perturbation theory

We have focused on the high temperature limit to provide a detailed calculation within a simpler

scenario, to extract the main aspects of the phenomenon and to highlight the main steps of the

calculation. However, it is clear that a similar calculation can be performed at much lower tem-

perature and the point of principle is still valid under the assumption of an equilibrium density

matrix diagonal in the mass basis: there could be substantial charged lepton mixing if there are

large chemical potential differences between the distribution functions of mass eigenstates. As per

the discussion above, this is not the only scenario that yields substantial charged lepton mixing,

the general condition is that the off diagonal self energy Σeµ in eqn. (5.3) be non-zero (and large).

The off diagonal expectation value < νeLνµL > must in general be found from the equilibrium so-

lution of a kinetic equation, but with a consistent treatment that avoids the caveats and subtleties

discussed in section (5.3.2).

The arguments in favor of an equilibrium density matrix diagonal (or nearly so) in the mass ba-

sis, and the specific calculation described above relied on a perturbative expansion in the interaction

picture of the unperturbed Hamiltonian H0 which includes the neutrino mass matrix. There are

possible caveats in the validity of perturbation theory, particularly in the case where medium effects

lead to large corrections to the single particle states. For example, a large “index of refraction”

arising from forward scattering with particles in the medium may lead to non-perturbative changes

in the properties of the single particle basis. The lowest order contribution to the self-energy from

forward scattering has been obtained in ref.[57], these are in general dependent on the energy of the

neutrinos. Including these corrections in a perturbative approach entails summing the geometric

Dyson series for the one-particle irreducible self energy in the neutrino propagators. This case is

akin to the generation of a thermal mass from forward scattering in a scalar φ4 field theory at finite

temperature[133], when this thermal mass is larger than the zero temperature mass there is a large

modification in the propagating single particle modes in the medium. In the scalar field theory case

a self-consistent re-arrangement of the perturbative expansion consists in adding the thermal mass

to the unperturbed Hamiltonian and at the same time a counterterm in the interaction part. The

free single particle propagators now include the thermal mass term, and in order to avoid double

counting, the counterterm in the interaction Hamiltonian cancels the contributions that yield the

thermal mass corrections systematically order by order in the perturbative expansion. We propose

a similar strategy to include the medium modifications to the propagating single particle modes
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in the medium. In references[57, 113] it is found that the forward scattering contributions to the

effective Hamiltonian in the medium are of the form

δH = γ0A(k)− ~γ · ~̂kB(k) (5.68)

with A(k);B(k) momentum dependent matrices in flavor space, their explicit expressions are given

in refs.[57, 113]. A re-arrangement of the perturbative expansion results by writing

H = H̃0 + H̃int (5.69)

where H̃0 = H0 + δH and H̃int = Hint + Hc where the “counterterm” Hamiltonian Hc = −δH

systematically cancels the forward scattering corrections to the self-energies consistently in the per-

turbative expansion. The new “free” Hamiltonian H̃0 includes self-consistently the modifications

to the propagating single particle states from the in-medium index of refraction. The field opera-

tors are now written in the basis of the solutions of the Dirac equation from the new Hamiltonian

and finally the interaction is written in terms of these fields. Thus the perturbative expansion is

re-organized in terms of the single particle propagating modes in the medium. The main compli-

cation in this program is that the mixing angles in the medium which determine the single particle

propagating modes, are energy dependent, this introduces a non-locality in the interaction vertices

which now become dependent on the energy and momentum flowing into the vertex.

If there is substantial charged lepton mixing, such phenomenon in turn affects the index of

refraction for neutrinos in the medium and possibly the equilibration dynamics of neutrinos. A

self-consistent treatment of the charged lepton mixing and neutrino mixing and relaxation would

be required to understand the dynamical aspects of neutrino and charge lepton equilibration. This

task is beyond the goals and focus of this article.

5.5 CONCLUSIONS

In this chapter, we focused on studying the possibility of charged lepton mixing as a consequence

of neutrino mixing at high temperature and density in the early Universe. There are three main

points in this chapter:

• We establish that a general criterion for charged lepton mixing as a consequence of neutrino

mixing is that there must be off diagonal correlation of flavor fields in the density matrix. We
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identified one possible case in which there could be charged lepton mixing: that the equilibrium

density matrix be nearly diagonal in the mass basis. This is the case in the vacuum, but in this

case the smallness of the neutrino masses entails that charged lepton mixing is negligible. We

argued that this effect can be enhanced in a medium if the density matrix is nearly diagonal in

the mass basis with large and different chemical potential for mass eigenstates. While this is

not the only case in which charged lepton mixing can occur, it is one in which we can provide

a definite calculation to assess charged lepton mixing.

• We have given general arguments to suggest that within the realm of validity of perturbation

theory, the equilibrium density matrix must be nearly diagonal in the mass basis. We have

critically re-examined the kinetic approach to neutrino mixing and relaxation in a medium

at high temperature and density and highlighted several caveats and subtleties with flavor

states, and or Fock operators associated with these states that cloud the interpretation of the

density matrix. We argue that an equilibrium solution of the kinetic equations describing “flavor

equalization”[59] can be interpreted as a confirmation that the density matrix is nearly diagonal

in the mass basis. This interpretation leads us to the main and only assumption, namely that

before “flavor equalization” for T & 30MeV neutrinos are in equilibrium, the density matrix

is nearly diagonal in the mass basis but with distribution functions for mass eigenstates with

large and different chemical potentials in agreement with the bounds from BBN and CMB in

absence of oscillations.

• Under this assumption and the validity of perturbation theory we have provided a definite

calculation of charged lepton mixing. While the general criterion for charged lepton mixing

does not imply that this is the only case in which charged leptons mix, it is a scenario that

allows a definite calculation to assess the phenomenon in a quantitative manner.

In conclusion, under the assumption that the mass eigenstates of mixed neutrinos in the early

Universe are in thermal equilibrium with different chemical potentials for T >> 30 MeV, before

oscillations establish the equalization of flavor asymmetries[111] neutrino mixing leads to charged

leptons mixing with large mixing angles in the plasma. We explored this possibility by obtaining

the leading order contributions to the charged lepton self energies in the high temperature limit. If

the upper bounds on the neutrino asymmetry parameters from BBN and CMB without oscillations

is assumed along with the fit for the vacuum mixing angle for two generations from the KamLAND

data, we find that charged leptons mix resonantly in the temperature range T ∼ 5GeV in the early

Universe. The electromagnetic damping rate is of the same order as the oscillation frequency in
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the energy and temperature regime relevant for the resonance suggesting a substantial transition

probability during equilibration. The cosmological expansion scale is much larger than the time

scale of charged lepton oscillations. Although we assumed the validity of perturbation theory we

recognized possible caveats in the high temperature limit arising from potentially large corrections

to the single-particle propagating modes from the in-medium index of refraction. We proposed a

re-organization of the perturbative expansion that includes the correct single-particle propagators

self-consistently. We have focused on the high temperature limit as a simpler scenario to assess

charged lepton mixing, however, the calculation can be performed at lower temperatures with the

corresponding technical complications associated with the lepton masses. While at much lower

temperatures there is no resonant mixing of charged leptons, the results of the calculation establish

a point of principle, namely that for large chemical potential differences in the distribution function

of mass eigenstates of neutrinos, the charged lepton propagating modes in the medium will be

admixtures of the electron and muon degrees of freedom with non-vanishing mixing angle.

We believe that the phenomenon of charged lepton mixing in a medium warrants a deeper

and thorough investigation. Our study also raises relevant questions on the kinetic approach: a

consistent description of the kinetics of neutrino oscillation and relaxation avoiding the caveats

associated with flavor states and or Fock operators associated with these states. Furthermore,

substantial charged lepton mixing also suggests that a dynamical description should include self-

consistently both neutrino and charged lepton mixing in a full non-equilibrium treatment. These

aspects as well as possible consequences of charged lepton mixing for leptogenesis will be explored

elsewhere.
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6.0 STERILE NEUTRINO PRODUCTION VIA ACTIVE-STERILE

OSCILLATIONS: THE QUANTUM ZENO EFFECT

6.1 INTRODUCTION

Sterile neutrinos couple to standard model active neutrinos through an off diagonal mass matrix,

therefore they are produced via active-sterile oscillations. In the hot and dense environment of

the early Universe when the scattering rate of active neutrinos off the thermal medium is large,

namely a short mean free path, there is a competition between the oscillation length and the mean

free path. It is expected that when the oscillation length is much larger than the mean free path,

the active to sterile transition probability is hindered because rapid scattering events “freeze” the

state to the active flavor state. This phenomenon receives the name of quantum Zeno effect or

Turing’s paradox, studied early in quantum optical coherence[136] but revisited within the context

of neutrino oscillations in a medium in the pioneering work of references[60, 63, 64].

A semiclassical description of sterile neutrino production in the early Universe is achieved with

the following semiphenomenological Boltzmann equation[20, 61, 77, 78, 137]

d

dt
fs(p, t) ≈ Γ(a → s; p) [fa(p; t)− fs(p; t)] (6.1)

where fa,s are the distribution functions for active (a) and sterile (s) neutrinos, d/dt is the total

time derivative including the redshift of momenta through the expansion in the early Universe and

Γ(a → s; p) is an effective reaction rate. It is determined to be[61, 77]

Γ(a → s; p) ≈ Γaa(p)
2

〈
Pa→s

〉
(6.2)

where Γaa(p) ∼ G2
F p T 4 is the active neutrino reaction rate and

〈
Pa→s

〉
is a time average of the

active-sterile transition probability in the medium which in reference[77] is given by

〈
Pa→s

〉
= Γ

∫ ∞

0
Pa→s(t)dt (6.3)
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where

Γ =
Γaa

2
(6.4)

is the inverse of the decoherence time scale. Hence the rate that enters in the kinetic equation (6.1)

is given by[77]

Γ(a → s; p) =
Γaa(p)

4

sin2 2θm(p)
(

2∆E(p)
Γaa(p)

)2

[
1 +

(
2∆E(p)
Γaa(p)

)2] (6.5)

where θm(p), ∆E(p) are the mixing angle and active-sterile oscillation frequency in the medium

respectively. The quantum Zeno paradox is manifest in the ratio 2∆E(p)/Γaa(p) in (6.5): for a

relaxation time shorter than the oscillation time scale, or mean free path smaller than the oscil-

lation length, Γaa(p) À ∆E(p) and the active-sterile transition probability is suppressed, with a

concomitant reduction of the sterile production rate in the kinetic equation (6.1).

A field theoretic approach to sterile neutrino production near a MSW resonance which focuses

primarily on the hadronic contribution and seemingly yields a very different rate has been proposed

in reference[138], and more recently it has been observed that quantum Zeno suppression may have

important consequences in thermal leptogenesis[12].

Goals: The emerging cosmological and astrophysical importance of sterile neutrinos motivates

us to reconsider the dynamical aspects of their production. Most theoretical studies of the produc-

tion of sterile neutrinos via active-sterile mixing rely on the kinetic description afforded by equation

(6.1). While taking this description for granted, we focus our attention on the phenomenon of the

quantum Zeno suppression of the active-sterile transition probability. We provide a quantum field

theoretical understanding of the quantum Zeno suppression in real time and a reassessment of the

time averaged transition probability 〈Pa→s〉 by studying the non-equilibrium time evolution of the

full density matrix and focusing on the dynamics of the quasiparticle propagating modes in the

medium, in particular their dispersion relation and widths.

In section (6.2) we draw an analogy with mixing, oscillation and decay in the familiar setting

of the neutral kaon system to establish the main observation: that each propagating mode in the

medium features a different relaxation rate and the time averaged transition probability depends

on both. In this section we obtain the general result for the time averaged transition probability

〈Pa→s〉 in terms of the oscillation frequency and both relaxation rates, thereby establishing the main

differences with the results available in the literature[20, 77, 78].

In section (6.3) we follow this analysis with a detailed study of the time evolution of the full

quantum field theory density matrix, obtain the equations of motion for expectation values of the
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neutrino fields and provide a detailed calculation of the dispersion relations and widths of the

propagating modes (quasiparticles) in the medium up to second order in the weak interactions by

obtaining the full neutrino propagator in the medium. In this section we also obtain the active-

sterile transition probability Pa→s(t) in terms of the weak interaction scattering rate for active

neutrinos and the mixing angle in the medium.

In section (6.4) we discuss in detail the conditions for the quantum Zeno effect, both in real time

and in the time-averaged transition probability. In section (6.5) we discuss the implications of our

results for the production of sterile neutrinos in the early Universe. In this section we argue that

the in the early Universe far away from an MSW resonance the wide separation of the damping

scales makes any definition of the time averaged transition probability ambiguous, and question

the validity of the usual rate equation to describe sterile neutrino production in the early Universe

far away from MSW resonances.

Section (6.6) presents our conclusions and poses further questions.

6.2 THE QUANTUM MECHANICAL PICTURE: COMPLETE CONDITIONS

FOR QUANTUM ZENO SUPPRESSION.

Before we proceed with the quantum field theory study of the time evolution of the full density

matrix which is pursued in detail in the following sections, it is illuminating to present our main

observations on the suppression of the transition probability by interactions with the medium within

the simple quantum mechanical picture of “strangeness” oscillations of neutral kaons[139, 140].

The neutral kaon system features many similarities to the case of mixing of two neutrinos

in the medium: there are two different widths for the propagating eigenstates, and a time av-

eraged probability is introduced in the study of K0 − K̄0 oscillation to assess indirect CP viola-

tion experimentally[140]. The emergence of two relaxation rates for neutrinos propagating in the

medium will be studied in the next section with the full quantum field theory density matrix. Of

course the neutral kaon system is not exactly analog to the case of neutrinos, kaons are decaying

single particle states even in the absence of a medium, while neutrinos acquire a relaxation rate

(width) as a consequence of elastic and inelastic processes in the medium. Nevertheless, in both

cases the decay or relaxation rates are determined by the imaginary part of the complex poles of

the corresponding propagators.
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In this section we explore the dynamical aspects of the presence of two time scales within the

simpler quantum mechanical kaon system.

In section 6.3 we study the propagation of neutrinos in the medium from the full quantum field

theory density matrix: we obtain the neutrino propagator in the medium, show that the complex

poles yield two different relaxation rates and provide a complete quantum field theory analysis of

the time evolution of flavor off diagonal density matrix elements.

Consider two quantum states labeled as |νa〉; |νs〉 which are linear superposition of propagating

modes |ν1〉; |ν2〉, namely

|νa〉 = cos θ|ν1〉+ sin θ|ν2〉

|νs〉 = cos θ|ν2〉 − sin θ|ν1〉 . (6.6)

(In the neutral kaon system θ = π/4).

Let us consider that |ν1〉; |ν2〉 feature the time evolution of decaying states,

|ν1,2(t)〉 = |ν1,2(0)〉 e−iE1,2t e−
Γ1,2

2
t (6.7)

leading to

|νa(t)〉 = cos θ|ν1(0)〉 e−iE1t e−
Γ1
2

t + sin θ|ν2(0)〉 e−iE2t e−
Γ2
2

t

|νs(t)〉 = cos θ|ν2(0)〉 e−iE2t e−
Γ2
2

t − sin θ|ν1(0)〉 e−iE1t e−
Γ1
2

t . (6.8)

For the familiar case of neutral kaons the states |ν1,2 > correspond to the long and short lived

kaon states.

The transition probability Pa→s(t) is given by

Pa→s(t) = |〈νs(0)|νa(t)〉|2 =
sin2 2θ

2
e−Γt [cosh(γt)− cos(∆Et)] (6.9)

where

Γ =
1
2

(Γ1 + Γ2) ; γ =
1
2

(Γ1 − Γ2) ; ∆E = E1 − E2 . (6.10)

The decoherence time scale is 1/Γ, since this is the time scale of suppression of the oscillatory

overlap between the two states.
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In section 6.3 we study the time evolution of the full quantum field theory density matrix for

neutrinos and obtain the neutrino propagator in the medium. The complex poles of the neutrino

propagator yield the dispersion relation and relaxation rates of the propagating modes in the

medium. We find that for one active and one sterile neutrino the two propagating modes in the

medium feature different widths or relaxation rates, Γ1(k); Γ2(k). From the time evolution of flavor

off-diagonal density matrix elements we obtain the active-sterile transition probability Pa→s which

is similar in form to (6.9) (see eqn. (6.81)). The quantum Zeno effect or Turing’s paradox[60, 63]

arises when the transition probability is suppressed by rapid scattering in the medium.

Sterile neutrinos are produced via the production of the active species and the transition from

mixing a → s. The transition probability (6.9), (see also (6.81) ) is suppressed by the exponential

prefactor which is a consequence of collisions in the medium. This suppression leads to the often

quoted condition for quantum Zeno suppression: if collisions in the medium are faster than the

oscillation time scale, these hinder the production of sterile neutrinos and the state of the system

is “frozen”[20, 60, 63, 77, 78]. According to this condition, if Γ À ∆E the oscillation a → s is

strongly suppressed by the decay, in the opposite limit, ∆E À Γ there are many oscillations with

a substantial transition probability. This argument implicitly assumes that the interaction rates

of the propagating modes in the medium are the same, hence that there is only one time scale for

relaxation.

However, in general there are two different rates Γ1, Γ2 for the different propagating eigenstates

and we show below that this introduces substantial modifications to the necessary conditions for

quantum Zeno suppression.

Following the arguments of references[61, 77], a measure of the influence of the a → s transition

probability on the sterile neutrino production rate is obtained from the average of the transition

probability on the time scale of the exponential decay of the coherence, namely the oscillatory

interference term which results from the overlap of the two propagating states. Using the result

(6.9) we find instead

〈
Pa→s

〉
≡ Γ

∫ ∞

0
Pa→s(t) dt =

sin2 2θ

2

( γ
Γ

)2 +
(

∆E
Γ

)2

[
1− ( γ

Γ

)2
] [

1 +
(

∆E
Γ

)2
] . (6.11)

This expression features two remarkable differences with the result (6.5)[77]: the extra terms

(γ/Γ)2 in the numerator and 1− (γ/Γ)2 in the denominator, both are consequence of the fact that

the relaxation is determined by two time scales Γ1, Γ2. Only when these scales are equal, namely
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when γ = 0 the result (6.5) often used in the literature is recovered.

This simple analysis leads us to state that the complete conditions for quantum Zeno suppression

of the transition probability are that both γ/Γ ¿ 1 and ∆E/Γ ¿ 1. That these are indeed the

correct necessary conditions for quantum Zeno suppression can be gleaned from figure (6.1) which

displays the transition probability (without the prefactor sin2 2θ/2) as a function of time for several

values of the ratios γ/Γ,∆E/Γ even without performing the time average.

Γt0 2 4 6 8 10

  Pa->s (t
)

0.00.20.40.60.81.0 γ/Γ = 0.5 ,  ∆E/Γ = 4
γ/Γ = 0.5 ,  ∆E/Γ = 1

γ/Γ = 0.5 ,  ∆E/Γ = 0.1
Γt0 2 4 6 8 10

Pa->s(t)

0.00.20.40.60.81.0 γ/Γ = 0.2 ,  ∆E/Γ = 4
γ/Γ = 0.2 ,  ∆E/Γ = 1

γ/Γ = 0.2 ,  ∆E/Γ =0.2

Figure 6.1: The transition probability Pa→s(t) (without the prefactor sin2 2θ/2) vs. Γt. The left

panel is for γ/Γ = 0.5, ∆E/Γ = 4, 1, 0.1, the right panel is for γ/Γ = 0.2, ∆E/Γ = 4, 1, 0.2.

The main difference between the result (6.11) and that in reference [77] is that in this reference

it has been assumed that Γ1 = Γ2, namely γ = 0, in which case the result (6.11) agrees with that

in [77].

Thus it is clear from the above analysis that quantum Zeno suppression is not operational when

there is a wide separation between the rates, Γ1 À Γ2 or Γ1 ¿ Γ2, even when ∆E/Γ ¿ 1. The

failure of quantum Zeno suppression in these cases is a consequence of the fact that in this limit

of wide separation of relaxation scales implies (γ/Γ)2 ∼ 1, which in turn leads to an enhancement

of the average transition probability because the time integral is dominated by the longest time

scale. Such is the case, for example, for the long and short lived kaon states whose lifetimes differ

by almost three orders of magnitude.

Although the discussion above focused on the time averaged transition probability, in the fol-

lowing sections we study the quantum Zeno effect and the different time scales directly in real time

based on the non-equilibrium time evolution of the full quantum density matrix.
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6.3 QUANTUM FIELD THEORY TREATMENT IN THE MEDIUM

6.3.1 Non-equilibrium density matrix

In a medium the relevant question is not that of the time evolution of a pure quantum state, but

more generally that of a density matrix from which expectation values of suitable operators can be

obtained.

In order to provide a detailed understanding of the quantum Zeno effect, we need a reliable

estimate of the dispersion relations E1,2(k) and the relaxation rates Γ1,2(k) in the medium which

are determined by the complex poles of the neutrino propagator in the medium.

In this chapter, we obtain these from the study of the real time evolution of the full density ma-

trix by implementing the methods of quantum field theory in real time described in references[141,

142, 143, 144, 145, 146]. This is achieved by introducing external (Grassmann) sources that in-

duce an expectation value for the neutrino fields. Upon switching off the sources these expectation

values relax towards equilibrium and their time evolution reveals both the correct energy and the

relaxation rates[145, 146]. The main ingredient in this program is the active neutrino self-energy

which we obtain up to second order in the standard model weak interactions and from which we

extract the index of refraction and the widths which determine the dispersion relations and decay

rates of the quasiparticle modes in the medium.

We consider a model of one active and one sterile Dirac neutrinos in which active-sterile mixing

is included via an off diagonal Dirac mass matrix. The relevant Lagrangian density is given by

L = L0
ν + LIa , (6.12)

where

L0
ν = ν (i 6∂ 1−M) ν , (6.13)

with ν being the neutrino doublet

ν ≡

 νa

νs


 , (6.14)

and a, s refer to the flavor indexes of the active and sterile neutrinos respectively. The Dirac mass
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matrix M is given by

M =


 maa mas

mas mss


 . (6.15)

It can be diagonalized by the unitary transformation that takes flavor into mass eigenstates, namely


 νa

νs


 = U(θ)


 ν1

ν2


 , (6.16)

with the unitary transformation given by the 2× 2 matrix

U(θ) =


 cos θ sin θ

− sin θ cos θ


 . (6.17)

In this basis the mass matrix is diagonal

M =


 M1 0

0 M2


 , (6.18)

with the relation

maa = cos2 θM1 + sin2 θM2 ; mss = sin2 θM1 + cos2 θM2 ; mas =
1
2
(M2 −M1) sin 2θ , (6.19)

where θ is the vacuum mixing angle. The Lagrangian density LIa describes the weak interactions

of the active neutrino νa with hadrons or quarks and its associated charged lepton. Leptons,

hadrons or quarks reach equilibrium in a thermal bath on time scales far shorter than those of

neutrinos, therefore in what follows we assume hadrons or quarks and charged leptons to be in

thermal equilibrium. Furthermore, in our analysis we will not include the non-linearities associated

with a neutrino background, such component requires a full non-equilibrium treatment and is not

germane to the focus of this study. The Lagrangian density that includes both charged and neutral

current interactions can be written in the form

LIa =
[

g√
2
OaLνa + GF νLaγµJµLνa

]
(6.20)

where L = (1−γ5)/2, Oa describes the charged current interaction with hadrons or quarks and the

charged lepton, and Jµ represents the background current of the bath in equilibrium and describes

the neutral current contributions in the limit of the effective Fermi interaction after integrating out

the neutral vector boson. In the case of all active species the neutral current yields a contribution
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which is the same for all flavors (when the neutrino background is neglected), hence it does not

contribute to oscillations and the effective matter potential. In the case in which there are sterile

neutrinos, which do not interact with the background directly, the neutral current contribution does

contribute to the medium modifications of active-sterile mixing angles and oscillations frequencies.

To study the dynamics in a medium we must consider the time evolution of the density matrix.

While the usual approach truncates the full density matrix to a 2 × 2 “flavor” subspace thus

neglecting all but the flavor degrees of freedom, and studies its time evolution in terms of Bloch-

type equations[60, 77], our study relies instead on the time evolution of the full quantum field

theoretical density matrix.

The time evolution of the quantum density matrix ρ̂ is given by the quantum Liouville equation

i
dρ̂(t)
dt

= [H, ρ̂(t)] (6.21)

where H is the full Hamiltonian with weak interactions. The solution is given by

ρ̂(t) = e−iHt ρ̂(0) eiHt (6.22)

from which the time evolution of observables associated with an operator O, namely its expectation

value in the time evolved density matrix is given by

〈O(t)〉 = Trρ̂(t)O . (6.23)

The time evolution of the density matrix requires the unitary time evolution operators that

evolve forward (e−iHt) and backward (eiHt) in time. The density matrix elements in the field basis

are given by

ρ̂(ψ, ψ′; t) =
∫
DφDφ′ 〈ψ|e−iHt|φ〉 ρ̂(φ, φ′; 0) 〈φ′|eiHt|ψ′〉 , (6.24)

the matrix elements of the forward and backward time evolution operators can be handily written

as path integrals and the resulting expression involves a path integral along a forward and backward

contour in time. This is the Schwinger-Keldysh[141, 142, 143, 144] formulation of non-equilibrium

quantum statistical mechanics which yields the correct time evolution of quantum density matrices

in field theory. Expectation values of operators are obtained as usual by coupling sources conjugate

to these operators in the Lagrangian and taking variational derivatives with respect to these sources.

This formulation of non-equilibrium quantum field theory yields all the correlation and Green’s

function and is undoubtedly more complete than the simpler 2× 2 truncation to the flavor degrees
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of freedom. Of primary focus for our program in this article is the neutrino retarded propagator

Sαβ(~x− ~x′; t− t′) = −iΘ(t− t′)
〈{

ψα(~x, t), ψβ(~x′, t′)
}〉

, (6.25)

where the flavor indices α, β correspond to either active or sterile and the brackets stand for

ensemble average in the full quantum density matrix (6.22). The (complex) poles in complex

frequency space of the spatio-temporal Fourier transform of the neutrino propagator yields the

dispersion relations and damping rates of the quasiparticle states in the medium. It is not clear

if this important information can be extracted from the truncated 2 × 2 density matrix in flavor

space usually invoked in the literature and which forms the basis of the kinetic description (6.1),

but certainly the full quantum field density matrix does have all the information on the correct

dispersion relations and relaxation rates.

A standard approach to obtain the propagation frequencies and damping rates of quasiparticle

excitations in a medium is the method of linear response[147]. An external source η is coupled

to the field operator ψ to induce an expectation value of this operator in the many body density

matrix, the time evolution of this expectation value yields the quasiparticle dynamics, namely the

propagation frequencies and damping rates. In linear response

〈ψα(~x, t)〉 = −
∫

d3x′dt′Sαβ(~x− ~x′; t− t′) ηβ(~x′, t′) , (6.26)

where S(~x − ~x′; t − t′) is the retarded propagator or Green’s function (6.25) and averages are in

the full quantum density matrix. We emphasize that the quasiparticle dispersion relations and

damping rates are obtained from the complex poles of the spatio-temporal Fourier transform of

the retarded propagator in the complex frequency plane[147, 148]. For one active and one sterile

neutrino there are two propagating modes in the medium. Up to one loop order O(GF ) the index

of refraction in the medium yields two different dispersion relations[57], hence we expect also that

the damping rates for these two propagating modes which will be obtained up to O(G2
F ) will be

different. This expectation will be confirmed below with the explicit computation of the propagator

up to two-loop order.

Linear response is the standard method to obtain the dispersion relations and damping rates

of quasiparticle excitations in a plasma in finite temperature field theory[148]. The linear response

relation (6.26) can be inverted to write

S−1〈ψ(~x, t)〉 = −η(~x, t) , (6.27)
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where S−1 is the (non-local) differential operator which is the inverse of the propagator, namely the

effective Dirac operator in the medium that includes self-energy corrections. This allows to study

the dynamics as an initial value problem and to recognize the quasiparticle dispersion relations and

damping rates directly from the time evolution of an initial value problem. This method has been

applied to several different problems in quantum field theory out of equilibrium and the reader is

referred to the literature for detailed discussions[85, 86, 87, 145, 146].

It is important to highlight that 〈ψ(~x, t)〉 is not a single particle wave function but the ex-

pectation value of the quantum field operator in the non-equilibrium density matrix, namely an

ensemble average. In contrast to this expectation value, a single particle wave function is defined

as 〈1|ψ(~x, t)|0〉 where |0〉 is the vacuum and |1〉 a Fock state with one single particle.

In the present case the initial value problem allows us also to study the time evolution of flavor off

diagonal density matrix elements. Consider an external source ηa that induces an initial expectation

value only for the active neutrino field ψa, such an external source prepares the initial density matrix

so that at t = 0 the active neutrino field operator features a non-vanishing expectation value, while

the sterile one has a vanishing expectation value. Upon time evolution the density matrix develops

flavor off diagonal matrix elements and the sterile neutrino field ψs develops an expectation value.

The solution of the equation of motion (6.27) as an initial value problem allows us to extract

precisely the time evolution of 〈ψs〉 from which we unambiguously extract the transition probability

in the medium.

6.3.2 Equations of motion in linear response

The linear response approach to studying the non-equilibrium evolution relies on “adiabatically

switching on” an external source η that initializes the quantum density matrix to yield an ex-

pectation value for the neutrino field(s). Upon switching off the external source the expectation

values of the neutrino fields relax to equilibrium. The real time evolution of the expectation values

reveals the dispersion relations and damping rates of the propagating quasiparticle modes in the

medium. These are determined by the poles of the retarded propagator in the complex frequency

plane[147, 148].

The equation of motion for the expectation value of the flavor doublet is obtained by introducing
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external Grassmann-valued sources η[85, 86, 87]

LS = ν η + η ν , (6.28)

shifting the field

ν±α = ψα + Ψ±
α ; ψα = 〈ν±α 〉 ; 〈Ψ±

α 〉 = 0, (6.29)

for α = a, s, and imposing 〈Ψ±
a 〉 = 0 order by order in the perturbation theory [85, 86, 87].

Implementing this program up to two-loop order, we find the following equation of motion

(
i 6∂ δαβ −Mαβ + Σtad

αβ L
)

ψβ(~x, t) +
∫

d3x′
∫ t

−∞
dt′Σαβ(~x− ~x′, t− t′)ψβ(~x′, t′) = −ηα(~x, t), (6.30)

The self energy contribution Σtad ∝ GF describes the one-loop neutral current contribution to the

matter potential in the medium, and Σret includes contributions of order GF but also of order G2
F .

The latter describes the two-loops diagrams with intermediate states of hadrons or quarks and the

charged lepton and its spatio-temporal Fourier transform features an imaginary part that yields the

relaxation rates of neutrinos in the medium. As shown in ref.[145], the spatial Fourier transform

of the retarded self-energy can be written as

Σ(~k, t− t′) =
i

π

∫ ∞

−∞
dk0 ImΣ(~k, k0) eik0(t−t′) . (6.31)

The imaginary part ImΣ(~k, k0) determines the relaxation rate of the neutrinos in the medium.

Since only the active neutrino interacts with the degrees of freedom in the medium, both self-energy

contributions are of the form

Σ =


 Σaa 0

0 0


 . (6.32)

Following ref.[145], we proceed to solve the equation of motion by Laplace transform as befits

an initial value problem. Introducing the Laplace transform, the equation of motion becomes (see

also ref.[145] for details)

[(
iγ0s− ~γ · ~k

)
δαβ −Mαβ + Σtad

αβ L + Σ̃αβ(~k, s) L
]
ψ̃β(~k, s) = i

(
γ0 δαβ +O(GF )

)
ψβ(~k, 0) . (6.33)
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where the Laplace transform of the retarded self energy admits a dispersive representation which

follows from eqn.(7.56), namely[145]

Σ̃(~k, s) =
∫ ∞

−∞

dk0

π

ImΣ(~k, k0)
k0 − is

(6.34)

In what follows we will ignore the perturbative corrections on the right hand side of (6.33) since

these only amount to a perturbative multiplicative renormalization of the amplitude, (see ref.[145]

for details).

The chiral nature of the interaction constrains the self-energy to be of the form[145]

Σtad L + Σ̃(~k, s) L =
(
γ0A(s; k)− ~γ · k̂B(s; k)

)
L (6.35)

where the matrices A,B are of the form given in eqn. (6.32) with the only matrix elements being

Aaa; Baa respectively. The dispersive form of the self-energy (6.34) makes manifest that for s near

the imaginary axis in the complex s-plane

Σ̃(~k, s = −iω ± ε) =
∫ ∞

−∞

dk0

π
P

[
ImΣ(~k, k0)

k0 − ω

]
± i ImΣ(~k, ω) , (6.36)

where P indicates the principal part. This result will be important below.

The solution of the algebraic matrix equation (6.33) is simplified by expanding the left and right

handed components of the Dirac doublet ψ̃ in the helicity basis as

ψ̃L =
∑

h=±1


 0

v(h) ⊗ ϕ̃(h)


 ; ψ̃R =

∑

h=±1


 v(h) ⊗ ξ̃(h)

0


 (6.37)

where the Weyl spinors v(h) are eigenstates of helicity ~σ · k̂ with eigenvalues h = ±1 and ϕ̃(h); ξ̃(h)

are flavor doublets with the upper component being the active and the lower the sterile neutrinos.

Projecting the equation of motion (6.33) onto right and left handed components and onto

helicity eigenstates, we find after straightforward algebra

[−(s2 + k2)1+ (is− hk)(A(k; s) + hB(k; s))−M2
]
ϕ̃(h)(~k, s) = i(is−hk)1ϕ(h)(~k, 0)−iM ξ(h)(~k, 0)

(6.38)

ξ̃(h)(~k, s) = − is + hk

s2 + k2

[
−M ϕ̃(h)(~k, s) + iξ(h)(~k, 0)

]
(6.39)

where again we have neglected perturbatively small corrections on the right hand side of eqn. (6.38).
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It proves convenient to introduce the following definitions,

δM2 = M2
1 −M2

2 ; M
2 =

1
2
(M2

1 + M2
2 ) (6.40)

Sh(k; s) = (is− hk)(Aaa(k; s) + hBaa(k; s)) (6.41)

∆h(k; s) =
Sh(k; s)

δM2
(6.42)

ρh(k; s) =
[
(cos 2θ −∆h(k; s))2 + sin2 2θ

] 1
2 (6.43)

cos 2θ(h)
m (k; s) =

cos 2θ −∆h(k; s)
ρh(k; s)

(6.44)

sin 2θ(h)
m (k; s) =

sin 2θ

ρh(k; s)
(6.45)

in terms of which

−(s2 + k2)1+ (is− hk)(A(k; s) + hB(k; s))−M2

=
(
−s2 − k2 +

1
2
Sh(k, s)−M

2
)
1− δM2

2
ρh(k; s)


 cos 2θ

(h)
m (k; s) − sin 2θ

(h)
m (k; s)

− sin 2θ
(h)
m (k; s) − cos 2θ

(h)
m (k; s)




(6.46)

The solution of the equation (6.38) is given by

ϕ̃(h)(~k, s) = S̃(h)(k, s)

[
− iM ξ(h)(~k, 0) + i(is− hk)1ϕ(h)(~k, 0)

]
(6.47)

where the propagator S̃(h)(k, s) is given by

S̃(h)(k, s) =
1[

α2
h(s, k)− β2

h(s, k)
]
[
αh(s, k)1+ βh(s, k)


 cos 2θ

(h)
m (k; s) − sin 2θ

(h)
m (k; s)

− sin 2θ
(h)
m (k; s) − cos 2θ

(h)
m (k; s)




]

(6.48)

where

αh(k; s) =

[
− (s2 + k2) +

1
2

Sh(k; s)−M
2

]
(6.49)

βh(k; s) =
δM2

2
ρh(k; s) . (6.50)
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The real time evolution is obtained by inverse Laplace transform,

ϕ(h)(~k, t) =
∫

Γ

ds

2πi
ϕ̃(h)(~k, s) est , (6.51)

where Γ is the Bromwich contour in the complex s plane running parallel to the imaginary axis to

the right of all the singularities of the function ϕ̃(~k, s) and closing on a large semicircle to the left of

the imaginary axis. The singularities of ϕ̃(~k, s) are those of the propagator (6.48). If the particles

are asymptotic states and do not decay these are isolated simple poles along the imaginary axis

away from multiparticle cuts. However, in a medium or for decaying states, the isolated poles move

into the continuum of the multiparticle cuts and off the imaginary axis. This is the general case of

resonances which correspond to poles in the second or higher Riemann sheet and the propagator is

a complex function with a branch cut along the imaginary axis in the complex s-plane as indicated

by eqn. (6.36). Its analytic continuation onto the physical sheet features the usual Breit-Wigner

resonance form and a complex pole and the width determines the damping rate of quasiparticle

excitations[85, 86, 87].

It is important and relevant to highlight that the full width or damping rate is the sum of all

the partial widths that contribute to the damping from different physical processes: decay if there

are available decay channels, and in a medium the collisional width and or Landau damping also

contribute to the imaginary part of the self-energy on the mass shell. The quasiparticle damping

rate is one-half the relaxation rate in the Boltzmann equation for the distribution functions[87, 149].

It is convenient to change the integration variable to s = −iω + ε with ε → 0+ and to write the

real time solution (6.51) as follows

ϕ(h)(~k, t) =
∫ ∞

−∞

dω

2π
ϕ̃(h)(~k, s = −iω + ε) e−iω t , (6.52)

Rather than studying the most general cases and in order to simplify the discussion we focus

on the cases of relevance for nearly ultrarelativistic neutrinos in the early Universe. Let us consider

that initially there are no right handed neutrinos and only active neutrinos of negative helicity are

produced, namely h = −1, and

ϕ(−1)(~k, 0) =


 νa(~k, 0)

0


 , (6.53)
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hence


 νa(~k, t)

νs(~k, t)


 = i

∫ ∞

−∞

dω

2π
e−iω t (ω + k)G(k; ω)


 νa(~k, 0)

0


 (6.54)

where

G(k; ω) ≡ S̃(−1)(k, s = −iω + ε) (6.55)

and the integral in (6.54) is carried out in the complex ω plane closing along a semicircle at infinity

in the lower half plane describing retarded propagation in time.

In order to understand the nature of the singularities of the propagator, we must first address

the structure of the self energy, in particular the imaginary part, which determines the relaxation

rates. Again we focus on negative helicity neutrinos for simplicity. Upon the analytic continuation

s = −iω + ε for this case we define

S(k, ω) ≡ Sh=−1(k; s = −iω + ε) = (ω + k)
1
4

Tr(γ0 − ~γ · k̂)Σ̃aa(~k, s)
∣∣∣
s=−iω+ε

(6.56)

From equation (6.36) which is a consequence of the dispersive form (6.34) of the self energy

Σ̃aa(~k, s) , it follows that

S(k, ω) = SR(k, ω) + iSI(k, ω) (6.57)

where SR,I are the real and imaginary parts respectively. The real part of the self energy deter-

mines the correction to the dispersion relations of the neutrino quasiparticle modes in the medium,

namely the “index of refraction”, while the imaginary part determines the relaxation rate of these

quasiparticles.

6.3.3 The self-energy: quasiparticle dispersion relations and widths:

Figure (7.2) shows the one loop contributions of O(GF ) including the neutral current tadpole

diagrams which contribute to the in-medium “index of refraction” for one active species, and the

two loop contribution of O(G2
F ) with intermediate states of hadrons (or quarks) and the associated

charged lepton, in the limit of Fermi’s effective field theory.
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Figure 6.2: Left: one loop contributions to the self energy, the diagrams in the second line yield

Σtad. These contributions are of O(GF ). Right: two loops contribution of O(G2
F ) to the self-energy

in Fermi’s effective field theory limit, with internal lines corresponding to hadrons and the charged

lepton, or alternatively quarks and the charged lepton above the QCD phase transition.

In a medium at temperature T the real part of the one-loop contributions to S(k, ω) is of the

form[20, 26, 57, 145]

SR(k, ω) = (ω + k)GF T 3

[
L +

T

M2
W

(aω + bk)
]

(6.58)

where L is a function of the asymmetries of the fermionic species and a, b simple coefficients, all of

which may be read from the results in ref.[20, 57, 145]. Assuming that all asymmetries are of the

same order as the baryon asymmetry in the early Universe L ∼ 10−9 the term ∝ T/M2
W in (6.58)

for ω ∼ k ∼ T dominates over the asymmetry term for T & 3MeV[57, 145] and in what follows we

neglect the CP violating terms associated with the lepton asymmetry.

The imaginary part to one loop order is obtained from a Cutkosky cut (discontinuity) of the

diagrams with vector boson exchange shown on the left side in figure (6.3) and is determined by

the processes W → laνa, Z → νaνa. Both of these contributions are exponentially suppressed

at temperatures T ¿ MW,Z , hence the one-loop contributions to the imaginary part of S(k; ω)

is negligible for temperatures well below the electroweak scale. The two loop contribution to the

imaginary part is obtained from the discontinuity cut of the two loop diagram with internal hadron

or quark and charged lepton lines in figure (7.2). Some of the processes that contribute to the

imaginary part in this order are for example neutron β decay n → p + e+ + ν and its inverse,

along with scattering processes in the medium. The imaginary part of the on-shell self-energy for
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these contributions is proportional to G2
F k T 4[26, 57] at temperatures T ¿ MW . Therefore in this

temperature range

SI(k, ω) ∼ (ω + k) G2
F k T 4 . (6.59)

The consistency and validity of perturbation theory and of Fermi’s effective field theory for scales

ω, k, T ¿ MW entail the following inequality

SI(k, ω) ¿ SR(k, ω) . (6.60)

For example near the neutrino mass shell for ultrarelativistic neutrinos with ω ∼ k, assuming

L ∼ 10−9 and discarding this CP violating contribution for T > 3 MeV because it is subleading,

we find

SI(k, ω)
SR(k, ω)

∼ g2 (6.61)

with g the weak coupling. This discussion is relevant for the detailed understanding of the circum-

stances under which the quantum Zeno effect is operative (see section (6.5) below).

The propagator G(k; ω) for negative helicity neutrinos is found to be given by

G(k;ω) =
1
2β

[
1

α− β
− 1

α + β

] 
 α + β cos 2θm −β sin 2θm

−β sin 2θm α− β cos 2θm


 , (6.62)

where we have suppressed the arguments for economy of notation, and defined

α = ω2 − k2 −M
2 +

1
2
SR(k, ω) +

i

2
SI(k, ω) , (6.63)

β =
δM2

2

[(
cos 2θ − SR(k, ω)

δM2
− i

SI(k, ω)
δM2

)2
+ sin2 2θ

] 1
2

, (6.64)

θm ≡ θ(−1)
m (k, s = −iω + ε) . (6.65)

The inequality (6.60) licenses us to write β consistently up to O(G2
F ) as

β ' δM2

2
ρ(k, ω)− i

2
SI(k, ω) cos 2θm , (6.66)

where

ρ(k, ω) =

[(
cos 2θ − SR(k, ω)

δM2

)2
+ sin2 2θ

] 1
2

. (6.67)
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2

2

Figure 6.3: Contributions to the imaginary part of the self energy, the vertical line represents a

Cutkosky cut. Left: discontinuity from the one loop contributions to the self energy of O(GF ),

from the decay of vector bosons for example W → lν. Right: discontinuity from the two loops

contribution of O(G2
F ), arising for example from n → p + e+ + νe or similar processes at the quark

level.

Equation (6.62) makes manifest that G(k; ω) is strongly peaked at the values of ω for which

α = ±β. These determine the position of the complex poles in the analytic continuation. In the

relativistic approximation k À M1,2 we find the following complex poles:

• For α = β:

ω1(k) = E1(k)− i
Γ1(k)

2
(6.68)

with

E1(k) ≈ k +
1
2k

[
M

2 +
δM2

2
ρ(k)− SR(k)

2

]
(6.69)

Γ1(k)
2

=
Γaa(k)

2
cos2 θm(k) (6.70)

• For α = −β:

ω2(k) = E2(k)− i
Γ2(k)

2
(6.71)
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with

E2(k) ≈ k +
1
2k

[
M

2 − δM2

2
ρ(k)− SR(k)

2

]
(6.72)

Γ2(k)
2

=
Γaa(k)

2
sin2 θm(k) . (6.73)

where

ρ(k) ≡
[(

cos 2θ − SR(k, ω = k)
δM2

)2
+ sin2 2θ

] 1
2

, (6.74)

Γaa(k) is the standard model result for the scattering rate of the active neutrino species[20, 57, 77,

78]
Γaa(k)

2
=

SI(k, ω = k)
2k

=
1
4
Tr(γ0 − ~γ · k̂)ImΣaa(~k, ω = k) ∼ G2

F T 4 k (6.75)

and θm(k) = θ
(h=−1)
m (k, s = −ik) is the mixing angle in the medium for negative helicity neutrinos

of energy ω ∼ k in the relativistic limit. The relations (6.70,6.73) are the same as those recently

found in reference[146].

Combining all the results we find


 νa(~k, t)

νs(~k, t)


 =

[
e−iE1(k)t e−

Γ1(k)
2

t 1
2


 1 + cos 2θm(k) − sin 2θm(k)

− sin 2θm(k) 1− cos 2θm(k)


 +

e−iE2(k)t e−
Γ2(k)

2
t 1
2


 1− cos 2θm(k) sin 2θm(k)

sin 2θm(k) 1 + cos 2θm(k)




]
 νa(~k, 0)

0




(6.76)

This expression can be written in the following more illuminating manner,


 νa(~k, t)

νs(~k, t)


 = U(θm(k))


 e−iE1(k)t e−

Γ1(k)
2

t 0

0 e−iE2(k)t e−
Γ2(k)

2
t


U−1(θm(k))


 νa(~k, 0)

0


 ,

(6.77)

where U(θm(k)) is the mixing matrix (6.17) but in terms of the mixing angle in the medium.

In obtaining the above expressions we have neglected perturbative corrections from wave func-

tion renormalization and replaced ω + k ∼ 2k thus neglecting terms that are subleading in the

relativistic limit, and the imaginary part in ω, which although it is of O(G2
F ), yields the effective

Wigner-Weisskopf approximation[146].
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6.3.4 Physical interpretation:

The above results have the following clear physical interpretation. The active (a) and sterile

(s) neutrino fields in the medium are linear combinations of the fields associated with the 1, 2

quasiparticle modes with dispersion relations E1,2(k) and damping rates Γ1,2(k) respectively, on

the mass shell of the quasiparticle modes the relation between them is the usual one for neutrinos

propagating in a medium with an index of refraction, namely

νa(~k, t) = cos θm(k) ν1(~k, t) + sin θm(k) ν2(~k, t) (6.78)

νs(~k, t) = cos θm(k) ν2(~k, t)− sin θm(k) ν1(~k, t) . (6.79)

These relations between the expectation values of flavor fields and the fields associated with

the propagating quasiparticle modes in the medium are obtained from the diagonalization of the

neutrino propagator on the mass shell of the quasiparticle modes. These are recognized as the usual

relations between flavor and “mass” fields in a medium with an index of refraction.

At temperatures much higher than that at which a resonance occurs (and for k ∼ T ) θm(k) ∼
π/2 then νa ∼ ν2, and the active neutrino features a damping rate Γ2 ∼ Γaa while the sterile neutrino

νs ∼ ν1 with a damping rate Γ1 = Γaa cos2 θm(k) ¿ Γaa. In the opposite limit for temperatures

much lower than that of the resonance and for very small vacuum mixing angles νa ∼ ν1 and

features a damping rate Γ1 ∼ Γaa while νs ∼ ν2 with a damping rate Γ2 ∼ Γaa sin2 θ ¿ Γaa. Thus

it is clear that in both limits the active neutrino has the larger damping rate and the sterile one the

smallest one. This physical interpretation confirms that there must be two widely different time

scales for relaxation in the high and low temperature limits, the longest time scale or alternatively

the smallest damping rate always corresponds to the sterile neutrino. This is obviously in agreement

with the expectation that sterile neutrinos are much more weakly coupled to the plasma than the

active neutrinos for sin 2θm(k) ∼ 0. This analysis highlights that two time scales must be expected

on physical grounds, not just one, the decoherence time scale, which only determines the suppression

of the overlap between the propagating states in the mixed neutrino state.

This physical interpretation of the different damping rates is of crucial importance in the de-

scription of the transition probability. The decoherence time scale corresponds to the time scale

for suppression of the overlap between the two quasiparticle modes in the medium, hence it is

determined by the sum of the individual damping rates. However, the total transition probability

Pa→s(t) not only includes the overlap between the two modes but also the probability of each mode
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in the mixed state, and these are suppressed by the individual damping rates Γ1,2(k), which are

widely separated far away of the resonance.

It is important to highlight that the emergence of two time scales can be gleaned in the pioneer-

ing work on sterile neutrino production of ref.[61] (see eqn. (10) in that reference) obtained within a

phenomenological Wigner-Weisskopf approximation. Our quantum field theory study based on the

full density matrix and the neutrino propagator in the medium provides a consistent and systematic

treatment of propagation in the medium that displays both time scales.

6.4 QUANTUM ZENO EFFECT

6.4.1 Real time interpretation

Consider a density matrix in which the expectation value of the sterile neutrino field vanishes at

the initial time t = 0. Then it is clear from equation (6.76) that flavor off-diagonal density matrix

elements develop in time signaling that sterile neutrinos are produced via active-sterile oscillation

with amplitude

νs(~k, t) = −1
2

sin 2θm(k)

[
e−iE1(k)t e−

Γ1(k)
2

t − e−iE2(k)t e−
Γ2(k)

2
t

]
νa(~k, 0) (6.80)

From the solution (6.80) we can read off the transition probability

Pa→s(t) =
sin2 2θm(k)

2
e−Γ(k)t

[
cosh(γ(k)t)− cos(∆E(k)t)

]
(6.81)

which is of the same form as the expression obtained from the quantum mechanical analysis (6.9)

with the identification

Γ(k) =
1
2

(
Γ1(k) + Γ2(k)

)
=

Γaa(k)
2

(6.82)

γ(k) =
1
2

(
Γ1(k)− Γ2(k)

)
=

Γaa(k)
2

cos 2θm(k) (6.83)

∆E(k) = E1(k)−E2(k) =
δM2

2 k
ρ(k) (6.84)

For the analysis that follows it is more convenient to write (6.81) in the form

Pa→s(t) =
sin2 2θm(k)

4

[
e−Γ1 t + e−Γ2 t − 2 e−Γ(k)t cos(∆E(k)t)

]
. (6.85)
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The first two terms are obviously the probabilities for the quasiparticle modes 1, 2, while the

oscillatory term is the usual interference between these but now damped by the factor e−Γ(k)t.

We highlight that the decoherence time scale is precisely Γ−1(k) = 2/Γaa(k) as anticipated in

references[60, 77], namely the interference between the two quasiparticle modes is suppressed on

this time scale. However, the total transition probability is suppressed on this time scale only if

Γ1 = Γ2 = Γ, namely near a resonance. In this case

Pa→s(t) = sin2 2θm(k) e−
Γaa
2

t sin2

[
∆E(k)

2
t

]
, (6.86)

which is the result quoted in reference[77]. Under these conditions quantum Zeno suppression

occurs when Γ(k) À ∆E(k) in which case the decoherence time scale is much smaller than the

oscillation time scale and the transition probability is suppressed before a → s oscillations take

place.

However, far away on either side of the resonance, although the oscillatory interference term is

suppressed on the decoherence time scale Γ−1, the transition probability is not suppressed on this

scale but on a much longer time scale, determined by the smaller of Γ1,2. Only when Γ1 = Γ2 = Γ,

namely γ = 0 both the coherence (oscillatory interference term) and the transition probability are

suppressed on the decoherence time scale. This phenomenon is displayed in (6.4). This figure shows

the transition probability as a function of time without the prefactor sin2 2θm(k) since it is not the

relevant quantity for quantum Zeno suppression, which only emerges from the competition between

the damping and the oscillation time scales.

Even for Γ(k) À ∆E(k), claimed in the literature [20, 60] to be the condition for quantum Zeno

suppression, the transition probability is substantial on time scales much longer than Γ−1 if Γ1 and

Γ2 are widely separated. This situation is depicted in figure (6.5). From this analysis we conclude

that the conditions for quantum Zeno suppression of Pa→s(t) are: (i): Γ(k) À ∆E(k) and (ii):

γ(k) ∼ 0, namely Γ1(k) ∼ Γ2(k). These conditions which are obtained from the time dependence

of Pa→s(t) are consistent with those found from the simple quantum mechanical example in terms

of the time averaged probability (6.11). We then emphasize that it is not necessary to average the

probability over time to recognize the criteria for the quantum Zeno effect, these can be directly

gleaned from the time evolution of the probability as originally proposed[136].
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Γt0 5 10 15 20
Pa->s

0.00.20.40.60.81.01.2

γ/Γ =0 ; ∆E/Γ = 5
γ/Γ =0.98 ; ∆E/Γ = 5

Figure 6.4: The transition probability Pa→s(t) (6.81) (without the prefactor sin2 2θm/2) vs. Γt.

The figure depicts the cases cos 2θm(k) = 0.98 and cos 2θm(k) = 0 respectively, both with ∆E/Γ =

δM2ρ(k)/2kΓ = 5. The scale for suppression of the oscillatory interference is 1/Γ in both cases.

Γt0 10 20 30 40 50

Pa->s
(t)

0.00.10.20.30.40.5 γ/Γ = 0.98∆E/Γ =0.1

0 5 10 15 200.00000.00050.00100.00150.00200.00250.0030

Γt

Pa->s(t)
γ/Γ =0∆E/Γ= 0.1

Figure 6.5: The transition probability Pa→s(t) (6.81) (without the prefactor sin2 2θm/2) vs. Γt in

the quantum Zeno limit Γ À ∆E for the cases cos 2θm(k) = 0.98, 0 and ∆E/Γ = δM2ρ(k)/2kΓ =

0.1. The ramp-up time scale is ∼ 1/Γ1 ∼ 1/Γ. In the left figure the damping time scale is

∼ 1/Γ2 ∼ 50/Γ. The right figure displays the resonant case for which the damping and coherence

time scale coincide, when the conditions for quantum Zeno suppression are fulfilled.
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6.4.2 High and low temperature limits: assessment of the quantum Zeno condition

In order to establish when the quantum Zeno condition ∆E(k)/Γaa(k) ¿ 1 is fulfilled we focus

on the cases far away from resonances and, according to the exhaustive analysis of ref.[17, 20] and

the constraints from the X-ray background in clusters[41, 42], in the region of parameter space

1 keV . ms . 10 keV , 10−10 . sin2 2θ . 10−6. We consider T & 3 MeV for which we can neglect

the CP violating asymmetry contribution in (6.58) assuming that it is of the same order as the

baryon asymmetry L ∼ 10−9[57, 145]. In this regime δM2 ∼ m2
s, and from (6.58) we find

SR(k, k)
δM2

∼ 10−14

(
T

MeV

)6 (
k

T

)2 (
keV
ms

)2

(6.87)

Taking k ∼ T and ms ∼ 1 keV the MSW resonance SR(k, k)/δM2 = 1 occurs at TMSW ∼
215MeV (a more precise estimate yields T ∼ 180 MeV[17, 20]). For T À TMSW corresponding to

SR(k, k)/δM2 À 1 the active sterile oscillation frequency becomes

∆E(k) =
δM2

2 k
ρ(k) ∼ SR(k, k)

2k
∼ GF T 4 k

M2
W

(6.88)

From the result (6.75) for Γaa(k) we find in the high temperature limit T À TMSW

2∆E(k)
Γaa(k)

∼ GF T 4 k

G2
F T 4 k M2

W

∼ 1
g2
À 1 (6.89)

where g is the weak coupling. We note that in the high temperature limit the ratio ∆E(k)/Γaa(k)

becomes independent of T, k.

In the low temperature limit 3 MeV . T ¿ TMSW it follows that SR(k, k)/δM2 ¿ 1 and the

active-sterile oscillation frequency is

∆E(k) ∼ m2
s

2k
(6.90)

hence the ratio

∆E(k)
Γaa(k)

∼ m2
s

G2
F T 4 k2

∼ 1016

(
ms

keV

)2 (
T

MeV

)−6 (
k

T

)−2

(6.91)

which for k ∼ T can be simplified to

2 ∆E(k)
Γaa(k)

∼ 102

(
TMSW

T

)6

À 1 . (6.92)
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At the MSW resonance T = TMSW , cos 2θm ∼ 0, ∆E(k) = m2
s sin 2θ/2k and the ratio becomes

2∆E(k)
Γaa(k)

∼ 102 sin 2θ ¿ 1 (6.93)

for 10−5 . sin 2θ . 10−3. Therefore at the MSW resonance cos 2θm(k) ∼ 0 and both conditions for

quantum Zeno suppression, γ/Γ ¿ 1 , ∆E/Γ ¿ 1 are fulfilled.

6.4.3 Validity of the perturbative expansion:

The quantum Zeno condition Γaa(k) À ∆E(k) requires a consistent assessment of the validity

of the perturbative expansion in the standard model and or Fermi’s effective field theory. The

active neutrino scattering rate Γaa ∝ G2
F k T 4 is a two loops result, while to leading order in weak

interactions, the index of refraction contribution to the dispersion relation SR(k, ω) is of one-loop

order[57]. In the high temperature limit when SR À δM2 ∼ m2
s the active-sterile oscillation

frequency is

∆E(k) ∼ |SR(k, k)|
2k

(6.94)

combining this result with equation (6.75) at high temperature or density where the index of

refraction dominates over δM2, it follows that

∆E(k)
Γaa(k)

∼ |SR(k, k)|
SI(k, k)

(6.95)

for k ∼ T the perturbative relation (6.61) suggests that this ratio is & 1/g2 À 1. An opposite ratio,

namely ∆E(k)/Γaa ¿ 1 would entail that the two-loop contribution (Γaa) is larger than the one-

loop contribution that yields the index of refraction SR. Thus quantum Zeno suppression at high

temperature when the index of refraction dominates the oscillation frequency necessarily implies a

breakdown of the strict perturbative expansion. Such potential breakdown of perturbation theory

in the standard model or Fermi’s effective field theory in the quantum Zeno limit has been already

observed in a different context by these authors in ref.[150], and deserves deeper scrutiny. We are

currently exploring extensions beyond the standard model in which neutrinos couple to scalar fields

motivated by Majoron models, in these extensions the coupling to the scalar (Majoron) provides a

different scale that permits to circumvent this potential caveat. We expect to report on our results

in a forthcoming article[151].
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6.5 IMPLICATIONS FOR STERILE NEUTRINO PRODUCTION IN THE

EARLY UNIVERSE:

6.5.1 Time averaged transition probability, production rate and shortcomings of the

rate equation

Combining the result (6.11) with (6.81,6.82,6.83) yields the following time averaged transition

probability

〈
Pa→s

〉
=

sin2 2θm(k)
2

cos2 2θm(k) +
(

2∆E(k)
Γaa(k)

)2

sin2 2θm(k)

[
1 +

(
2∆E(k)
Γaa(k)

)2
] (6.96)

We have purposely kept the sin2 2θm(k) in the numerator and denominator to highlight the

cancelation between this factor arising from the transition probability in the numerator with the

factor 1 − (γ/Γ)2 arising from the total integrated probability in the denominator. The factor

cos2 2θm(k) in the numerator and the sin2 2θm(k) in the denominator are hallmarks of the presence

of the two different relaxation rates Γ1(k), Γ2(k), and are responsible for the difference with the

result (6.5). The extra factor sin2 2θm(k) in the denominator signals an enhancement when θm(k) =

0, π/2. In the case θm(k) ∼ 0 the relaxation rate Γ2(k) ¿ Γ1(k) whereas for θm(k) ∼ π/2 the

opposite holds, Γ1(k) ¿ Γ2(k). In either case there is a wide separation between the relaxation

rates of the propagating modes in the medium and the longest time scale for relaxation dominates

the time integral in (6.96). This is depicted in fig. (6.5).

This is an important difference with the result in [77] wherein it was assumed that Γ1 = Γ2,

in which case γ = 0. For θm(k) ∼ 0, π/2, the ratio γ/Γ ∼ 1 leads to an enhancement of the time

averaged transition probability. The interpretation of this result should be clear. The probability

Pa→s(t) has two distinct contributions, the interference oscillatory term, and the non-oscillatory

terms. When one of these non-oscillatory terms features a much longer relaxation time scale, it

dominates the integrand at long time after the interference term has become negligible, as shown

in figure (6.5). Therefore the time integral receives the largest contribution from the term with the

smallest relaxation rate, this is the origin of the factor 1−(γ/Γ)2 = sin2 2θm(k) in the denominator.

Taking the kinetic equation that describes sterile neutrino production (6.1) along with the

effective production rate (6.2) at face value, the new result (6.96) for the average transition
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probability yields the effective production rate

Γ(a → s; k) =
Γaa(k)

4

cos2 2θm(k) +
(

2∆E(k)
Γaa(k)

)2

[
1 +

(
2∆E(k)
Γaa(k)

)2
] . (6.97)

The result of references[20, 77, 78] is retrieved only near an MSW resonance for which cos 2θm(k) ≈
0, in this case the relaxation rates become the same and γ = 0. However, accounting for both relax-

ation rates Γ1; Γ2 yields the new result (6.96,6.97) which is generally very different from the usual

one (6.5).

The result (6.97) is suspicious, taking the limit of sin 2θm(k) ∼ 0, it still yields a non-vanishing

sterile neutrino production rate despite the fact sterile neutrinos decouple from the plasma in this

limit. The origin of this result is the time averaged probability 〈Pa→s〉 (6.3) not in any ambiguity

in the calculation of the relaxation rates or in the time dependence of the transition probability

Pa→s(t). The time integral in the averaged expression (6.3) introduces a denominator sin2 2θm(k)

from the longest time scale, and it is this denominator that is responsible for the enhancement. Thus

the unreliability of the result (6.97) is a direct consequence of using the time-averaged transition

probability (6.3) in the rate equation (6.1).

The real time analysis presented above clearly suggests that far away from an MSW resonance

when Γ1 and Γ2 differ widely, Γ−1 is not the relevant time scale for suppression of the transition

probability, but the longest of Γ−1
1 and Γ−1

2 therefore the time averaged transition probability (6.3)

cannot be the correct ingredient in the rate equation. A more suitable definition of the average

transition probability under these circumstances should be

〈Pa→s〉 = Γsm

∫ ∞

0
Pa→s(t)dt (6.98)

where Γsm is the smallest of Γ1,2. In a non-expanding cosmology this would indeed be the correct

definition of an average transition probability, however in the early Universe as the temperature

diminishes upon cosmological expansion, Γsm changes with time crossing from Γ1 over to Γ2 at the

resonance and the alternative definition (6.98) would imply a “rate” with a sliding averaging time

scale that changes rapidly near an MSW resonance. One can instead provide yet another suitable

definition of an averaged transition rate

〈Pa→s〉 =
Γ1 Γ2

Γ1 + Γ2

∫ ∞

0
Pa→s(t)dt . (6.99)
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When the two rates differ widely the prefactor always approximates the smaller one. Since

Γ1 Γ2

Γ1 + Γ2
=

Γaa

4

[
1− γ2(k)

Γ2(k)

]
(6.100)

this definition would cancel the enhancement from the sin2 2θm(k) in the denominator in (6.96)

(still leaving the cos2 2θm(k) in the numerator), but it misses the correct definition of the average

rate by a factor 2, namely by 100%, in the region of the resonance where Γ1 = Γ2 = Γaa/2.

Obviously the ambiguity in properly defining a time averaged transition probability stems from

the wide separation of the time scales associated with the damping of the quasiparticle modes, far

away from an MSW resonance. Near the resonance both time scales become comparable and there

is no ambiguity in the averaging scale. Complicating this issue further is the fact that in the early

Universe these time scales are themselves time dependent as a consequence of the cosmological

expansion and feature a rapid crossover behavior at an MSW resonance.

6.5.2 Caveats of the kinetic description

It is important to highlight the main two different aspects at the origin of the enhanced production

rate given by equation (6.97) in the high temperature regime, for θm(k) ∼ π/2: i) the assumption

of the validity of the usual rate equation in terms of a time-averaged transition probability wherein

the relevant time scale for averaging is the decoherence time scale 1/Γ, ii) the result of a complete

self-energy calculation that yields two time scales which are widely different far away from an

MSW resonance, in particular at very high and very low temperatures. The real time study of the

transition probability shows that the oscillatory interference term is suppressed on the decoherence

time scale 1/Γ, but also that this is not the relevant time scale for the suppression of the transition

probability far away from an MSW resonance. The transition probability actually grows during

1/Γ reaches its maximun on this time scale and remains near this value for a long time interval

between 1/Γ and 1/Γsm where Γsm is the smaller of Γ1, Γ2. The enhanced rate emerges when

taking for granted the definition of the time-averaged probability in terms of the decoherence scale

but including in this expression the correct form of the transition probability (6.85). As discussed

above, alternative definitions of a time-averaged rate could be given, but all of them have caveats

when applied to sterile neutrino production in the early Universe.

However, we emphasize, that the underlying physical reason for the enhancement does not call

for a simple redefinition of the rate but for a full reassessment of the kinetic equation of sterile
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neutrino production. The important fact is that the wide separation of scales prevent a consistent

description in terms of a rate in the kinetic equation, a rate implies only one relevant time scale

for the build-up or relaxation of population, whereas our anaysis reveals two widely different scales

that are of the same order only near an MSW resonance.

Kinetic rate equations are generally a Markovian limit of more complicated equations in which

the transition probability in general features a non-linear time dependence . Only when the non-

linear aspects of the time dependence of the transition probability are transients that disappear

faster than the scale of build-up or relaxation an average transition probability per unit time, namely

a rate, can be defined and the memory aspects associated with the time evolution of the transition

probability can be neglected. This is not the case if there is a wide separation of scales, and under

these circumstances the assumptions leading to the kinetic equation (6.1) must be revised and its

validity questioned, very likely requiring a reassessment of the kinetic description. This situation

becomes even more pressing in the early Universe. In the derivation of the average probability in

ref.[77] the rate Γaa (denoted by τ0 in that reference) is taken as a constant in the time integral

in the average. This is a suitable approximation if the integrand falls off in the time scale 1/Γaa,

since this time scale is shorter than the Hubble expansion time scale for T > 1MeV. However, if

there is a much longer time scale, when one of the relaxation rates is very small, as is the case

depicted in fig.(6.5), then this approximation cannot be justified and a full time-dependent kinetic

description beyond a simple rate equation must be sought.

Thus we are led to conclude that the simple rate equation (6.1) based on the time-averaged

transition probability (6.3) is incorrect far away from MSW resonances.

An alternative kinetic description based on a production rate obtained from quantum field

theory has recently been offered[138] and seems to yield a result very different for the rate equation

(6.1) in terms of the time-averaged transition probability. However, this alternative description

focuses on the hadronic contribution near the MSW resonance, and as such cannot yet address

the issue of the widely separated time scales far away from it. A full quantum field theoretical

treatment far away from an MSW resonance which systematically and consistently treats the two

widely different time scales is not yet available.

Thus we conclude that while the result for the rate (6.97) is a direct consequence of including

the correct transition probability Pa→s(t) given by (6.85) into the rate equation (6.1), our field

theoretical analysis of the full neutrino propagator in the medium, and the real time evolution of

the transition probability, extracted from the full density matrix leads us to challenge the validity
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of the rate equation to describe sterile neutrino production in the early Universe away from MSW

resonances.

6.6 CONCLUSIONS

Motivated by the cosmological importance of sterile neutrinos, we reconsider an important aspect

of the kinetics of sterile neutrino production via active-sterile oscillations at high temperature:

quantum Zeno suppression of the sterile neutrino production rate.

Within an often used kinetic approach to sterile neutrino production, the production rate in-

volves two ingredients: the active neutrino scattering rate Γaa and a time averaged active-sterile

transition probability 〈Pa→s〉[20, 61, 76, 77, 78] in the case of one sterile and one active neutrino.

For one active and one sterile neutrino, we establish an analogy with the familiar case of neutral

kaon oscillations and argue that in a medium there are two propagating modes with different

propagating frequencies and damping rates.

Unlike the usual treatment in terms of a truncated 2 × 2 density matrix for flavor degrees of

freedom, we study the dynamics of active-sterile transitions directly from the full real time evolution

of the quantum field density matrix. Active-sterile transitions are studied as an initial value problem

wherein the main ingredient is the full neutrino propagator in the medium, obtained directly from

the quantum density matrix and includes the self-energy up to two-loops in standard model weak

interactions. The correct dispersion relations and damping rates of the quasiparticles modes are

obtained from the neutrino propagator in the medium. The transition probability is obtained from

the time evolution of the off-diagonal density matrix elements and the solution of the equation of

motion for the propagating quasiparticle modes in the medium.

There are three main results from our study:

• I): The damping rates of the two different propagating modes in the medium are given by

Γ1(k) = Γaa(k) cos2 θm(k) ; Γ2(k) = Γaa(k) sin2 θm(k) (6.101)

where Γaa(k) ∝ G2
F k T 4 is the active neutrino scattering rate and θm(k) is the mixing an-

gle in the medium. The dispersion relations are the usual ones with the index of refraction

correction[57], plus perturbatively small two-loop corrections of O(G2
F ). We give a simple phys-

ical explanation for this result: for very high temperature when θm ∼ π/2, νa ∼ ν2; νs ∼ ν1 and
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Γ2 ∼ Γaa; Γ1 ¿ Γaa. In the opposite limit of very low temperature and small vacuum mixing

angle θm ∼ 0 , νa ∼ ν1; νs ∼ ν2 and Γ1 ∼ Γaa; Γ2 ¿ Γaa. Thus in either case the sterile neutrino

is much more weakly coupled to the plasma than the active one.

• II): We study the active-sterile transition probability Pa→s(t) directly in real time from the

time evolution of the propagating modes in the medium and the flavor off-diagonal quantum

field density matrix elements. The result is given by

Pa→s(t) =
sin2 2θm(k)

4

[
e−Γ1(k) t+e−Γ2(k) t −2 e−Γ(k)t cos(∆E(k)t)

]
; Γ(k) =

1
2
(Γ1(k)+Γ2(k)) .

(6.102)

The real time analysis shows that even when Γ(k) À ∆E(k), which in the literature [20,

60] is taken to indicate quantum Zeno suppression, we find that the transition probability is

substantial on time scales much longer than Γ−1 if Γ1 and Γ2 are widely separated. While the

oscillatory interference term is suppressed by the decoherence time scale 1/Γ(k) = 2/Γaa(k)

in agreement with the results of [60, 77], at very high or low temperature this is not the

relevant time scale for the suppression of the transition probability, which is given by 1/Γsm

with Γsm the smaller between Γ1, Γ2. Thus, we obtain the complete conditions for quantum

Zeno suppression: i) 2∆E(k)/Γaa ¿ 1 where ∆E(k) is the oscillation frequency in the medium,

and ii) Γ1 ∼ Γ2. This latter condition is only achieved near an MSW resonance. Furthermore

we studied consistently up to second order in standard model weak interactions, in which

temperature regime the quantum Zeno condition Γaa(k) À ∆E(k) is fulfilled. We find that for

ms ∼ keV and 10−5 . sin 2θ . 10−3[17, 20, 78] the opposite condition, Γaa(k) ¿ ∆E(k) is

fulfilled in the high temperature limit T À TMSW ∼ 215MeV, as well as in the low temperature

regime 3 MeV . T ¿ TMSW . We therefore conclude that the quantum Zeno conditions are

only fulfilled near an MSW resonance for T ∼ TMSW .

• III): Inserting the result (6.102) into the expressions for the time averaged transition probabil-

ity (6.3) and the sterile neutrino production rate (6.2) yields an expression for this rate that is

enhanced at very high or low temperature given by equation (6.97) instead of the result (6.5)

often used in the literature. The surprising enhancement at high or low temperature implied

by (6.97) originates in two distinct aspects: i) the assumption of the validity of the rate kinetic

equation in terms of a time-averaged transition probability with an averaging time scale deter-

mined by the decoherence scale 2/Γaa, and ii) inserting the result (6.102) into the definition

of the time-averaged transition probability. The enhancement is a distinct result of the fact
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that at very high or low temperatures the decoherence time scale is not the relevant scale for

suppression of Pa→s but either 1/Γ1 or 1/Γ2 whichever is longer in the appropriate temperature

regime. Our analysis shows that far away from the region of MSW resonance, the transition

probability reaches its maximum on time scale 1/Γ(k), remains near this value during a long

time scale 1/Γsm À 1/Γ. We have also argued that in the early Universe the definition of a

time averaged transition probability is ambiguous far away from MSW resonances. Our analysis

leads us to conclude that the simple rate equation (6.1) in terms of the production rate (6.2),

( 6.3) is incorrect far away from MSW resonances.

We emphasize and clarify an important distinction between the results summarized above.

Whereas I and II are solidly based on a consistent and systematic quantum field theory calculation

of the neutrino propagator, the correct equations of motion for the quasiparticle modes in the

medium and the time evolution of flavor off diagonal quantum density matrix elements, the results

summarized in III stem from a stated assumption, namely the validity of a kinetic description in

terms of the time-averaged transition probability (6.3). The enhancement of the sterile production

rate arising from this assumption, along with the ambiguity in properly defining a time-averaged

transition probability in an expanding cosmology in the temperature regime far away from a MSW

resonance all but suggest important caveats in the validity of the kinetic description for sterile

neutrino production in terms of a simple rate equation in this regime. We also suggest that a deeper

understanding of possible quantum Zeno suppression at high temperature requires a reassessment

of the validity of the perturbative expansion in the standard model or in Fermi’s effective field

theory. Further studies of these issues are in progress.
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7.0 PARTICLE ABUNDANCE IN A THERMAL PLASMA: QUANTUM

KINETICS VERSUS BOLTZMANN EQUATION

7.1 INTRODUCTION

Phenomena out of equilibrium played a fundamental role in the early Universe: during phase

transitions, baryogenesis, nucleosynthesis, recombination, particle production, annihilation and

freeze out of relic particles, some of which could be dark matter candidates[17, 152, 153]. Of

the many different non-equilibrium processes, particle production, annihilation and freeze-out and

baryogenesis[152, 154] are non-equilibrium kinetic processes which are mainly studied via the Boltz-

mann equation[17, 152, 153].

The Boltzmann kinetic equation is also the main approach to study equilibration, thermalization

and abundance of a species in a plasma. A thorough formulation of semiclassical kinetic theory in

an expanding Friedmann-Robertson-Walker cosmology is given in ref.[153].

However the Boltzmann equation is a classical equation for the distribution function with an

inhomogeneity determined by collision terms which are computed with the S-matrix formulation of

quantum field theory. The collision term in the Boltzmann equation is obtained from the transition

probability per unit time extracted from the asymptotic long time limit of the transition matrix

element. This is tantamount to implementing Fermi’s golden rule. Potential quantum interference

and memory effects are completely ignored in this approach. Furthermore a single particle distri-

bution function, the main ingredient in the Boltzmann equation, is usually defined via some coarse

graining procedure. All of these shortcomings of the usual semiclassical Boltzmann equations when

extrapolated to the realm of temperatures and density in the Early Universe, suggest that in order

to provide a reliable understanding of such delicate processes such as baryo and leptogenesis a full

quantum field theory treatment of kinetics may be required[154].

One of the basic predictions of the Boltzmann equation is that the local thermodynamic equilib-
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rium solution for the abundance of a particle species is determined by the Bose-Einstein or Fermi-

Dirac distribution functions, hence exponentially suppressed at low temperatures (in absence of a

chemical potential).

This basic prediction has recently been challenged in a series of articles[155] wherein a surprising

result is obtained: the abundance of heavy particles with masses much larger than the temperature

is not exponentially suppressed as the Boltzmann equation predicts but the suppression is a power

law. Such result, if correct, can have important consequences for the relic abundance of cold dark

matter candidates.

This result, however, has been criticized and scrutinized in detail by several authors[156, 157,

158] who concluded that it is a consequence of the definition of the particle number introduced

in ref.[155]. The definition of the total number of particles proposed in [155] is based on the

non-interacting Hamiltonian for the heavy particle divided by its mass plus counterterms, which

purportedly account for renormalization effects. The results of references[156, 157, 158] point out

the inherent ambiguity in separating the contribution to the energy density from the particle and

that of the bath and the interaction. The ambiguity in the separation of the different contribu-

tions to the energy has been studied thoroughly in these references in particular exactly solvable

models[156], effective field theory[157] or a consistent treatment of renormalization effects[158].

Understanding the limitations of and corrections to the Boltzmann kinetic description and

potential departures from the predicted abundances is important for a deeper assessment of possible

mechanisms of baryogenesis as well as for the relic abundance of cold dark matter candidates. In

the case of baryogenesis, the applicability and reliability of Boltzmann kinetics in the conditions of

temperature and density that prevailed in the early Universe warrants a critical reassessment[154].

While the work in refs.[156, 157, 158] has clarified the shortcomings of the definition of the total

particle number proposed in[155] explaining the origin of the power law suppression as a consequence

of the ambiguity in this definition, what is missing from this discussion is a suitable definition of

a distribution function and its real time evolution. The Boltzmann equation is a local differential

equation that determines the dynamics of the single particle distribution function. Therefore in

order to clearly assess potential corrections to the equilibrium solutions of the familiar Boltzmann

equation a suitable distribution function and its dynamical evolution must be understood.

The definition of the distribution function both in non-relativistic many body theory[159] as well

as in relativistic quantum field theory[160, 161] is typically based on a Wigner transform of a two

point correlation function, which is not manifestly positive semidefinite. Usual derivations of the
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Boltzmann kinetic equation invoke gradient expansions or quasiparticle (on-shell) approximations

which lead to Markovian dynamics. Alternative derivations of the kinetic equations[162] which

explicitly implement real time perturbation theory often invoke a long time limit and Fermi’s

Golden rule which enforces energy conservation in the kinetic equation. This is also the case in

the dynamical renormalization group approach to quantum kinetics advocated in ref.[163] although

this latter method allows one to systematically include off-shell corrections. Whichever method of

derivation of the kinetic equation is used, the first step is to define a single particle distribution

function.

Any definition of the distribution function of particles that decay in the vacuum (resonances) is

fraught with ambiguities because the spectral representation of such particles is not a sharp delta

function but typically a Breit-Wigner distribution. Since these particles decay even in vacuum and

do not exist as asymptotic states any definition of an operator that “counts” these particles will

unavoidably be ambiguous.

In this work, we circumvent this ambiguity by focusing on the study of the quantum kinetics and

equilibration dynamics of the distribution functions of particles that are stable at zero temperature

associated with a field Φ. Stable physical particles are asymptotic states which can be measured

and a distribution function for the single particle physical states can be introduced according to

the basic assumptions of asymptotic theory. While our ultimate goal is to find a quantum kinetic

description for phenomena in the early Universe, in this article we focus on a study in Minkowski

space-time as a first step towards that goal.

In this chapter, we provide a framework for non-equilibrium quantum kinetics beyond the

usual Boltzmann equation. This non-equilibrium formulation includes off-shell and non-Markovian

(memory) processes which are not accounted for in the semiclassical Boltzmann equation and result

in modifications of the equilibrium abundances. We focus on the case of a scalar field Φ coupled

to other heavier fields for a wide variety of relevant interacting quantum field theories. Here we

consider that the heavier fields constitute a thermal bath in equilibrium. In order to study the

thermalization of the Φ particle as well as the time evolution of its distribution function we consider

the case in which the field Φ is coupled to the thermal bath at some initial time ti. We then obtain

the non-equilibrium effective action for the field Φ by integrating out the degrees of freedom of the

thermal bath to lowest order in the coupling of the field Φ to the heavy sector but in principle to

all orders in the couplings of the heavy fields amongst themselves.

At zero temperature the Φ-particles are stable because they are the lightest, therefore they are
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manifest as asymptotic states. Hence according to asymptotic theory we introduce a definition of

an interpolating number operator that counts these particles, for example as those measured by a

detector in a collision experiment in the vacuum. At finite temperature the distribution function

is the expectation value of this interpolating operator in the statistical ensemble. The real time

evolution of this distribution function is completely determined by the non-equilibrium effective

action and its asymptotic long time limit determines the abundance of the physical particles Φ

in the thermal plasma. The non-equilibrium approach introduced here, borrows from the seminal

work on quantum Brownian motion[141, 164, 165, 166] which is adapted to quantum field theory.

After the discussion of the general case, we introduce a specific model in which the scalar field

Φ associated with the stable particle couples to two heavier bosonic fields which constitute the

thermal bath. At lowest order in the coupling we find that the Φ particle despite being the lightest,

acquires a width in the medium as a consequence of the two body decay of the heavier particle and

its recombination in the plasma. These processes result in a broadening of its spectral function and

corrections to its equilibrium abundance.

This chapter is organized as follows: in section (7.2) we introduce the general form of the

interacting quantum field theories considered and develop the formulation in terms of the non-

equilibrium effective action. The effective action is obtained to lowest order in the coupling of

the field Φ to the heavier fields (the bath) and in principle to all orders in the coupling of the

bath fields amongst themselves. We show that a stochastic formulation in terms of a Langevin

equation emerges naturally. In section (7.3) we introduce the definition of the fully renormalized

interpolating number operator and the single particle distribution function based on asymptotic

theory. The time evolution of this distribution function is completely determined by the solution

of the stochastic Langevin equation.

In section (9.2) we study a specific model in which the Φ field is coupled to two heavy scalar

fields with a coupling g Φχ1 χ2. This interacting quantum field theory provides an excellent testing

ground and highlights the main conceptual results. We study the dynamics of the distribution

function for the Φ particle up to one loop order. The asymptotic distribution function is studied

for a wide range of parameters allowing to extract fairly general conclusions whose validity goes

beyond this specific model. In particular we analyze in detail how off-shell effects result in large

corrections to the usual Bose-Einstein equilibrium abundance. In section (7.5) we obtain the usual

Boltzmann quantum kinetic equation and highlight the main assumptions implicit in its derivation.

We contrast the predictions for the asymptotic abundance between the non-equilibrium kinetic
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formulation and that of the usual quantum kinetic Boltzmann equation, highlighting that memory

and off-shell effects are responsible for the differences in the predictions. Our conclusions and a

discussion on the cosmological consequences are presented in section (7.6). Appendix B is devoted

to the explicit calculation of the self-energy in the specific example studied.

7.2 GENERAL FORMULATION: THE NON-EQUILIBRIUM EFFECTIVE

ACTION

We focus on the description of the dynamics of the relaxation of the occupation number of a scalar

field Φ which is in interaction with other fields either fermionic or bosonic, collectively written as

χi, with a Lagrangian density of the form

L[Φ(x), χ(x)] = L0,Φ[Φ(x)] + Lχi [χi(x)] + gΦO[χi(x)] (7.1)

where O[χi] stands for an operator non-linear in the fields χi and L0,Φ is the free field Lagrangian

density for the field Φ but Lχi [χi(x)] is the full Lagrangian for the fields χ including interactions

amongst themselves. This general form describes several relevant cases:

• Interacting scalars, for example the linear sigma model in the broken symmetry phase. The

interaction between the massive scalar and the Goldstone bosons is of the form σπ2. In this

article we focus on the case of a trilinear interaction of the form Φ
∑

ij gijχiχj where the fields

χ1,2 have masses larger than that of the Φ field.

• A Yukawa theory with χ being fermionic fields and Φ a scalar field, with interaction ΦΨ̄Ψ. This

could be generalized to a chiral model.

• A gauge theory in which Φ is the gauge field and χ is either a complex scalar or fermion fields,

the interaction being of the form AµJµ with Jµ being a bilinear of the fields. In particular this

approach has been recently implemented to study photon production from a quark gluon plasma

in local thermal equilibrium[167]. This case is particularly relevant for assessing potential

distortions in the spectrum of the cosmic microwave background.

• Another possible realization of this situation could be the case in which Φ is a neutrino field in

interaction with leptons and (or) quarks which constitute a thermal or dense plasma.

• The case of a self-interacting scalar field in which one mode say with wave vector k is singled

out as the “system” and the other modes are treated as a “bath”.
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In all of these cases the fields χi are treated as a bath in equilibrium assuming that the bath

fields are sufficiently strongly coupled so as to guarantee their thermal equilibration. These fields

will be “integrated out” yielding a reduced density matrix for the field Φ in terms of an effective real-

time functional, known as the influence functional[164] in the theory of quantum brownian motion.

The reduced density matrix can be represented by a path integral in terms of the non-equilibrium

effective action that includes the influence functional. This method has been used extensively to

study quantum brownian motion[164, 165, 166] and for preliminary studies of quantum kinetics in

the simpler case of a particle coupled linearly to a bath of harmonic oscillators[155, 168].

The models can be generalized further by considering that the interaction between Φ and χ is

also polynomial in Φ. However, in this chapter we will consider the simpler case described by (9.2)

since it describes a broad range of physically relevant cases, and as will be discussed below this

case already reveals a wealth of novel phenomena. As we will discuss in detail below most of the

relevant phenomena can be highlighted within this wide variety of models and most of the results

will be seen to be fairly general.

The relaxation of the distribution function is an initial value problem, therefore we propose the

initial density matrix at a time ti to be of the form

ρ̂(ti) = ρ̂Φ,i ⊗ ρ̂χi,i (7.2)

The initial density matrix of the χi fields will be taken to describe state in thermal equilibrium

at a temperature T = 1/β, namely

ρ̂χ = e−β Hχ (7.3)

where Hχi(χi) is the Hamiltonian for the fields χi. We will now refer collectively to the set of fields

χi simply as χ to avoid cluttering of indices.

In the field basis the matrix elements of ρ̂Φ,i are given by

〈Φ|ρ̂Φ,i|Φ′〉 = ρΦ,i(Φ;Φ′) (7.4)

The density matrix for Φ will represent an initial out of equilibrium state.

The physical situation described by this initial state is that of a field (or fields) in thermal

equilibrium at a temperature T = 1/β, namely a heat bath, which is put in contact with another

system, here represented by the field Φ. Once the system and bath are put in contact their mutual

interaction will eventually lead to a state of thermal equilibrium. The goal is to study the relaxation
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of the field Φ towards equilibrium with the “bath”. The initial density matrix of the field Φ will

describe a state with few quanta (or the vacuum) initially.

The real time evolution of this initial uncorrelated state will introduce transient evolution,

however the long time behavior will be insensitive to this initial transient. Furthermore, we point

out that it is important to study the initial transient stage for the following reason. As a particle

Φ propagates in the medium it will be screened or dressed by the excitations in the medium and it

will propagate as a “quasiparticle”. Its distribution function will be shown to become insensitive

to the initial conditions on time scales larger than the “quasiparticle” relaxation time.

The strategy is to integrate out the χ fields therefore obtaining the reduced time dependent

density matrix for the field Φ, and the non-equilibrium influence functional for this field. Once we

obtain the reduced density matrix for the field Φ we can compute expectation values or correlation

functions of this field. We will focus on studying the time evolution of the distribution function, or

particle number to be defined below.

The time evolution of the initial density matrix is given by

ρ̂(tf ) = e−iH(tf−ti)ρ̂(ti)eiH(tf−ti) (7.5)

Where the total Hamiltonian H is given by

H = HΦ(Φ) + Hχ(χ) + HI(Φ, χ) (7.6)

The calculation of correlation functions is facilitated by introducing currents coupled to the

different fields. Furthermore since each time evolution operator in eqn. (9.13) will be represented

as a path integral, we introduce different sources for forward and backward time evolution operators,

referred to as J+, J− respectively. The forward and backward time evolution operators in presence

of sources are U(tf , ti; J+), U−1(tf , ti, J
−) respectively.

We will only study correlation functions of the Φ field, therefore we carry out the trace over the

χ degrees of freedom. Since the currents J± allow us to obtain the correlation functions for any

arbitrary time by simple variational derivatives with respect to these sources, we can take tf →∞
without loss of generality.

The non-equilibrium generating functional is given by

Z[j+, j−] = TrU(∞, ti;J+)ρ̂(ti)U−1(∞, ti, J
−) (7.7)
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Where J± stand collectively for all the sources coupled to different fields. Functional derivatives

with respect to the sources J+ generate the time ordered correlation functions, those with respect

to J− generate the anti-time ordered correlation functions and mixed functional derivatives with

respect to J+, J− generate mixed correlation functions. Each one of the time evolution operators

in the generating functional (7.7) can be written in terms of a path integral: the time evolution

operator U(∞, ti; J+) involves a path integral forward in time from ti to t = ∞ in presence of sources

J+, while the inverse time evolution operator U−1(∞, ti, J
−) involves a path integral backwards in

time from t = ∞ back to ti in presence of sources J−. Finally the equilibrium density matrix for

the bath e−β Hχ can be written as a path integral along imaginary time with sources Jβ. Therefore

the path integral form of the generating functional (7.7) is given by

Z[j+, j−] =
∫

DΦi

∫
DΦ′i ρΦ,i(Φi; Φ′i)

∫
DΦ±

∫
Dχ±DχβeiS[Φ±,χ±;J±Φ ;J±χ ] (7.8)

with the boundary conditions Φ+(~x, ti) = Φi(~x) ; Φ−(~x, ti) = Φ
′
i(~x).

The non-equilibrium action is given by

S[Φ±, χ±; J±Φ ; J±χ ] =
∫ ∞

ti

dtd3x
[L0,Φ(Φ+) + J+

Φ Φ+ + hΦ+ − L0,Φ(Φ−)− J−Φ Φ− − hΦ−
]

+
∫

C
d4x

{
Lχ(χ) + Jχχ + g ΦO[χ]

}
(7.9)

where C describes a contour in the complex time plane as follows: along the forward branch (ti, +∞)

the fields and sources are Φ+, χ+, J+
χ , along the backward branch (∞, ti) the fields and sources are

Φ−, χ−, J−χ and along the Euclidean branch (ti, ti − iβ) the fields and sources are Φ = 0;χβ, Jβ
χ .

Along the Euclidean branch the interaction term vanishes since the initial density matrix for the

field χ is assumed to be that of thermal equilibrium. The contour is depicted in fig. (7.1)

The linear term hΦ± is a counterterm that will be required to cancel the linear terms (tadpole)

in Φ± in the non-equilibrium effective action. This issue will be discussed below when we obtain

the non-equilibrium effective action for the field Φ after integrating out the field(s) χ.

The trace over the degrees of freedom of the χ field with the initial equilibrium density matrix,

entail periodic (for bosons) or antiperiodic (for fermions) boundary conditions for χ along the

contour C. However, the boundary conditions on the path integrals for the field Φ are given by

Φ+(~x, t = ∞) = Φ−(~x, t = ∞) (7.10)
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ti − iβ

Φ+, χ+, J+
Φ , J+

χ

Φ−, χ−, J−

Φ , J−

χ

χβ, Jβ
χ

∞

Figure 7.1: Contour in time for the non-equilibrium path integral representation.

and

Φ+(~x, t = ti) = Φi(~x) ; Φ−(~x, t = ti) = Φ′i(~x) (7.11)

The reason for the different path integrations is that whereas the χ field is traced over with an

initial thermal density matrix (since it is taken as the “bath”), the initial density matrix for the Φ

field will be specified later as part of the initial value problem. The path integral over χ leads to

the influence functional for Φ±[164].

7.2.1 Tracing over the “bath” degrees of freedom

As far as the path integrals over the bath degrees of freedom χ is concerned the fields Φ± are simply

c-number sources. The contour path integral

Z[Φ±] =
∫
Dχ±Dχβe

i
R
C d4x

{
Lχ(χ)+Jχχ+g ΦO[χ]

}

(7.12)

is the generating functional of correlation functions of the field χ in presence of external c-number

sources Φ± (the sources J±χ generate the correlation functions via functional derivatives and are

set to zero at the end of the calculation), namely

∫
Dχ±Dχβe

i
R
C d4x

{
Lχ(χ)+gΦO[χ]

}
=

〈
eig

R
C d4xΦO[χ]

〉
χ

Z[0]. (7.13)
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Note that the expectation value in the right hand side of eqn. (7.13) is in the equilibrium

density matrix of the field χ. The path integral can be carried out in perturbation theory and the

result exponentiated to yield the effective action as follows

〈
eig

R
C d4xΦO[χ]

〉
χ

= 1 + ig

∫

C
d4xΦ(x)

〈
O[χ](x)

〉
χ

+
(ig)2

2

∫

C
d4x

∫

C
d4x′Φ(x)Φ(x′)

〈
O[χ](x)O[χ](x′)

〉
χ

+O(g3) (7.14)

This the usual expansion of the exponential of the connected correlation functions, where this

series is identified with

〈
eig

R
C d4xΦO[χ]

〉
χ

= ei Lif [Φ+,Φ−] , (7.15)

and where the influence functional [164] Lif [Φ+, Φ−] is given by the following expression

Lif [Φ+,Φ−] = g

∫

C
d4xΦ(x) 〈O[χ](x)〉χ+i

g2

2

∫

C
d4x

∫

C
d4x′Φ(x)Φ(x′)〈O[χ](x)O[χ](x′)〉χ,con+O(g3)

(7.16)

In detail, the integrals along the contour C stand for the following:

∫

C
d4xΦ(x) 〈O[χ](x)〉χ =

∫
d3x

∫ ∞

ti

dt
[
Φ+(~x, t)〈O[χ+](x)〉χ − Φ−(~x, t)〈O[χ−](x)〉χ

]
(7.17)

∫

C
d4x

∫

C
d4x′Φ(x)Φ(x′)〈O[χ](x)O[χ](x′)〉χ,con

=
∫

d3x

∫ ∞

ti

dt

∫
d3x′

∫ ∞

ti

dt′
[
Φ+(x)Φ+(x′)〈O[χ+](x)O[χ+](x′)〉χ,con

+ Φ−(x)Φ−(x′)〈O[χ−](x)O[χ−](x′)〉χ,con

− Φ+(x)Φ−(x′)〈O[χ+](x)O[χ−](x′)〉χ,con

− Φ−(x)Φ+(x′)〈O[χ−](x)O[χ+](x′)〉χ,con

]
(7.18)

Since the expectation values above are computed in a thermal equilibrium translational invariant

density matrix, it is convenient to introduce the spatial Fourier transform of the composite operator

O in a spatial volume V as

O~k
(t) =

1√
V

∫
d3xei~k·~xO[χ(~x, t)] (7.19)
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in terms of which we obtain following the correlation functions

〈O~k
(t)〉 = 〈O+

~k
(t)〉 = 〈O−~k (t)〉 = Tr e−β Hχ O~k

(t) (7.20)

〈O~k
(t)O−~k

(t′)〉 = 〈O−~k (t)O+

−~k
(t′)〉 = TrO−~k

(t′) e−β Hχ O~k
(t) = G>

k (t− t′) = G−+
k (t, t′) (7.21)

〈O−~k
(t′)O~k

(t)〉 = 〈O+
~k

(t)O−−~k
(t′)〉 = TrO~k

(t) e−β Hχ O−~k
(t′) = G<

k (t− t′) = G+−
k (t, t′) = G−+

k (t′, t)

(7.22)

〈TO~k
(t)O−~k

(t′)〉 = G>
k (t− t′)Θ(t− t′) + G<

k (t− t′)Θ(t′ − t) = G++
k (t, t′) (7.23)

〈T̃O~k
(t)O−~k

(t′)〉 = G>
k (t− t′)Θ(t′ − t) + G<

k (t− t′)Θ(t− t′) = G−−k (t, t′) (7.24)

The time evolution of the operators is determined by the Heisenberg picture of Hχ, namely

O~k
(t) = eiHχ(t−ti)O~k

(ti)e−iHχ(t−ti). Because the density matrix for the bath is in equilibrium, the

correlation functions above are solely functions of the time difference. These correlation functions

are computed exactly to all orders in the couplings of the bath fields amongst themselves.

These correlation functions are not independent, but obey

G++
k (t, t′) + G−−k (t, t′)− G−+

k (t, t′)− G+−
k (t, t′) = 0 (7.25)

The non-equilibrium effective action is given by

Leff [Φ+, Φ−] =
∫ ∞

ti

dtd3x
[L0,Φ(Φ+) + hΦ+ − L0,Φ(Φ−)− hΦ−

]
+ Lif [Φ+, Φ−] (7.26)

where we have set the sources J± for the fields Φ± to zero.

The choice of counterterm

h = −〈O(~x, t)〉 (7.27)

cancels the terms linear in Φ± (tadpole) in the non-equilibrium effective action.

In what follows we take ti = 0 without loss of generality since (i) for t > ti the total Hamiltonian

is time independent and the correlations will be solely functions of t−ti, and (ii) we will be ultimately

interested in the limit t À ti when all transient phenomena has relaxed. In terms of the spatial

Fourier transform of the fields Φ± defined as in eqn. (7.19) we find
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iLeff [Φ+,Φ−]

=
∑

~k

{
i

2

∫ ∞

0
dt

[
Φ̇+

~k
(t)Φ̇+

−~k
(t)− (k2 + m2)Φ+

~k
(t)Φ+

−~k
(t)− Φ̇−~k (t)Φ̇−−~k

(t) + (k2 + m2)Φ−~k (t)Φ−−~k
(t)

]

−g2

2

∫ ∞

0
dt

∫ ∞

0
dt′

[
Φ+

~k
(t)G++

k (t, t′)Φ+

−~k
(t′) + Φ−~k (t)G−−k (t, t′)Φ−−~k

(t′)

−Φ+
~k

(t)G+−
k (t, t′)Φ−−~k

(t′)− Φ−~k (t)G−+
k (t, t′)Φ+

−~k
(t′)

] }
(7.28)

where all the time integrations are in the interval 0 ≤ t ≤ ∞.

A similar program has been used recently to study the relaxation of scalar fields[169] as well as

the photon production from a quark gluon plasma in thermal equilibrium[167].

7.2.2 Stochastic description: generalized Langevin equation

As it will become clear below, it is more convenient to introduce the Wigner center of mass and

relative variables

Ψ(~x, t) =
1
2

(
Φ+(~x, t) + Φ−(~x, t)

)
; R(~x, t) =

(
Φ+(~x, t)− Φ−(~x, t)

)
(7.29)

and the Wigner transform of the initial density matrix for the Φ field

W(Ψi; Πi) =
∫

DRie
−i
R

d3xΠi(~x)Ri(~x)ρ(Ψi +
Ri

2
;Ψi − Ri

2
) (7.30)

ρ(Ψi +
Ri

2
;Ψi − Ri

2
) =

∫
DΠie

i
R

d3xΠi(~x)Ri(~x)W(Ψi; Πi) (7.31)

The boundary conditions on the Φ path integral given by (7.11) translate into the following

boundary conditions on the center of mass and relative variables

Ψ(~x, t = 0) = Ψi ; R(~x, t = 0) = Ri (7.32)

furthermore, the boundary condition (7.10) yields the following boundary condition for the relative

field

R(~x, t = ∞) = 0. (7.33)

This observation will be important in the steps that follow. In terms of the spatial Fourier

transforms of the center of mass and relative variables (9.22) introduced above, integrating by
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parts and accounting for the boundary conditions (7.32), the non-equilibrium effective action (9.20)

becomes:

iLeff [Ψ, R] =
∫ ∞

0
dt

∑

~k

{
−iR−~k

(
Ψ̈~k

(t) + (k2 + m2)Ψk(t)
)}

−
∫ ∞

0
dt

∫ ∞

0
dt′

{
1
2
R−~k

(t)R~k
(t′)Kk(t− t′) + R−~k

(t)iΣR
k (t− t′)Ψ~k

(t′)
}

+
∫

d3xRi(~x)Ψ̇(~x, t = 0) (7.34)

where the last term arises after the integration by parts in time, using the boundary conditions

(7.32) and (7.33). The kernels in the above effective Lagrangian are given by (see eqns. (7.21-7.24))

Kk(t− t′) =
g2

2
[G>

k (t− t′) + G<
k (t− t′)

]
(7.35)

iΣR
k (t− t′) = g2

[G>
k (t− t′)− G<

k (t− t′)
]
Θ(t− t′) ≡ iΣk(t− t′)Θ(t− t′) (7.36)

The term quadratic in the relative variable R can be written in terms of a stochastic noise as

exp
{
− 1

2

∫
dt

∫
dt′R−~k

(t)Kk(t− t′)R~k
(t′)

}

=
∫
Dξ exp

{
− 1

2

∫
dt

∫
dt′ ξ~k

(t)K−1
k (t− t′)ξ−~k

(t′) + i

∫
dt ξ−~k

(t)R~k
(t)

}
(7.37)

The non-equilibrium generating functional can now be written in the following form

Z =
∫

DΨi

∫
DΠi

∫
DΨDRDξ W(Ψi; Πi)DRie

i
R

d3xRi(~x)(Πi(~x)−Ψ(~x,t=0))P[ξ] (7.38)

exp
{
−i

∫ ∞

0
dt R−~k

(t)
[
Ψ̈~k

(t) + (k2 + m2)Ψ~k
(t) +

∫
dt′ ΣR

k (t− t′)Ψ~k
(t′)− ξ~k

(t)
]}

P[ξ] = exp
{
−1

2

∫ ∞

0
dt

∫ ∞

0
dt′ ξ~k

(t)K−1
k (t− t′)ξ−~k

(t′)
}

(7.39)

The functional integral over Ri can now be done, resulting in a functional delta function, that

fixes the boundary condition Ψ̇(~x, t = 0) = Πi(~x).

Finally the path integral over the relative variable can be performed, leading to a functional

delta function and the final form of the generating functional given by

Z =
∫

DΨiDΠi W(Ψi; Πi)DΨDξ P[ξ] δ
[
Ψ̈~k

(t) + (k2 + m2)Ψ~k
(t) +

∫ t

0
dt′ Σk(t− t′)Ψ~k

(t′)− ξ~k
(t)

]

(7.40)

with the boundary conditions on the path integral on Ψ given by

Ψ(~x, t = 0) = Ψi(~x) ; Ψ̇(~x, t = 0) = Πi(~x) (7.41)
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where we have used the definition of ΣR
k (t− t′) in terms of Σk(t− t′) given in equation (7.36).

The meaning of the above generating functional is the following: in order to obtain correlation

functions of the center of mass Wigner variable Ψ we must first find the solution of the classical

stochastic Langevin equation of motion

Ψ̈~k
(t) + (k2 + m2)Ψ~k

(t) +
∫ t

0
dt′ Σk(t− t′)Ψ~k

(t′) = ξ~k
(t)

Ψ~k
(t = 0) = Ψ

i,~k
; Ψ̇~k

(t = 0) = Π
i,~k

(7.42)

for arbitrary noise term ξ and then average the products of Ψ over the stochastic noise with

the Gaussian probability distribution P[ξ] given by (7.39), and finally average over the initial

configurations Ψi(~x); Πi(~x) weighted by the Wigner function W(Ψi, Πi), which plays the role of an

initial phase space distribution function.

Calling the solution of (9.23) Ψ~k
(t; ξ; Ψi; Πi), the two point correlation function, for example,

is given by

〈Ψ−~k
(t)Ψ~k

(t′)〉 =
∫
D[ξ]P[ξ]

∫
DΨi

∫
DΠi W(Ψi; Πi)Ψ~k

(t; ξ; Ψi; Πi)Ψ−~k
(t′; ξ; Ψi; Πi) (7.43)

We note that in computing the averages and using the functional delta function to constrain the

configurations of Ψ to the solutions of the Langevin equation, there is the Jacobian of the operator

d2/dt2 +(k2 +m2)+
∫

dt′Σret
k (t− t′) which however, is independent of the field and cancels between

numerator and denominator in the averages.

This formulation establishes the connection with a stochastic problem and is similar to the

Martin-Siggia-Rose[170] path integral formulation for stochastic phenomena. There are two differ-

ent averages:

• The average over the stochastic noise term, which up to this order is Gaussian. We denote the

average of a functional F [ξ] over the noise with the probability distribution function P [ξ] given

by eqn. (7.39) as

〈〈F [ξ]〉〉 ≡
∫ DξP [ξ]F [ξ]∫ DξP [ξ]

. (7.44)

Since the noise probability distribution function is Gaussian the only necessary correlation

functions for the noise are given by

〈〈ξ~k
(t)〉〉 = 0 , 〈〈ξ~k

(t)ξ~k′(t
′)〉〉 = Kk(t− t′) δ3(~k + ~k′) (7.45)
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and the higher order correlation functions are obtained from Wick’s theorem. Because the noise

kernel Kk(t− t′) 6= δ(t− t′) the noise is colored.

• The average over the initial conditions with the Wigner distribution function W(Ψi,Πi) which

we denote as

A[Ψi, Πi] ≡
∫

DΨi

∫
DΠi W(Ψi; Πi)A[Ψi, Πi]∫

DΨi

∫
DΠi W(Ψi; Πi)

(7.46)

In what follows we will consider a Gaussian initial Wigner distribution function with vanishing

mean values of Ψi; Πi with the following averages:

Ψ
i,~k

Ψ
i,−~k

=
1

2Wk
[1 + 2Nb,k] (7.47)

Π
i,~k

Π
i,−~k

=
Wk

2
[1 + 2Nb,k] (7.48)

Π
i,~k

Ψ
i,−~k

+ Ψ
i,~k

Π
i,−~k

= 0 (7.49)

where Wk is a reference frequency. Both Wk and Nb,k characterize the initial gaussian density

matrix. Such a density matrix describes a free field theory of particles with frequencies Wk.

The averages (7.47,7.48) are precisely the expectation values obtained in a free field Fock state

with Nb,k number of free field quanta of momentum k and frequency Wk or a free field density

matrix which is diagonal in the Fock representation of a free field with frequency Wk. This can

be seem simply by writing the field and canonical momentum in terms of the usual creation

and annihilation operators of Fock quanta of momentum k and frequency Wk. While this is

a particular choice of initial state, we will see below that the distribution function becomes

insensitive to it after a time scale longer than the quasiparticle relaxation time.

The average in the time evolved full density matrix is therefore defined by

〈· · · 〉 ≡ 〈〈· · · 〉〉 . (7.50)

7.2.3 Fluctuation and Dissipation:

From the expression (7.36) for the self-energy and the Wightmann functions (7.21,7.22) which are

obtained as averages in the equilibrium density matrix of the χ fields (bath), we now obtain a

dispersive representation for the kernels Kk(t− t′); ΣR
k (t− t′). This is achieved by explicitly writing
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the expectation value in terms of energy eigenstates of the bath, introducing the identity in this

basis, and using the time evolution of the Heisenberg field operators to obtain

g2G>
k (t− t′) =

∫ ∞

−∞
dω σ>

~k
(ω) eiω(t−t′) (7.51)

g2G<
k (t− t′) =

∫ ∞

−∞
dω σ<

~k
(ω) eiω(t−t′) (7.52)

with the spectral functions

σ>
~k

(ω) =
g2

Zb

∑
m,n

e−βEn〈n|O~k
(0)|m〉〈m|O−~k

(0)|n〉 δ(ω − (En − Em)) (7.53)

σ<
~k

(ω) =
g2

Zb

∑
m,n

e−βEm〈n|O−~k
(0)|m〉〈m|O~k

(0)|n〉 δ(ω − (Em − En)) (7.54)

where Zb = Tr e−βHχ is the equilibrium partition function of the “bath”. Upon relabelling m ↔ n

in the sum in the definition (7.54) we find the KMS relation[171, 172]

σ<
k (ω) = σ>

k (−ω) = eβωσ>
k (ω) (7.55)

where we have used parity and rotational invariance in the second line above to assume that the

spectral functions only depend of the absolute value of the momentum.

Using the spectral representation of the Θ(t − t′) we find the following representation for the

retarded self-energy

ΣR
k (t− t′) =

∫ ∞

−∞

dk0

2π
eik0(t−t′)Σ̃R(k, k0) (7.56)

with

Σ̃R(k, k0) =
∫ ∞

−∞
dω

[σ>
k (ω)− σ<

k (ω)]
ω − k0 + iε

(7.57)

Using the condition (7.55) the above spectral representation can be written in a more useful

manner as

Σ̃R(k, k0) = − 1
π

∫ ∞

−∞
dω

ImΣ̃R(k, ω)
ω − k0 + iε

, (7.58)

where the imaginary part of the self-energy is given by
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ImΣ̃R(k, ω) = πσ>
k (ω)

[
eβω − 1

]
(7.59)

and is clearly positive for ω > 0. Equation (7.55) entails that the imaginary part of the retarded

self-energy is an odd function of frequency, namely

ImΣ̃R(k, ω) = −ImΣ̃R(k,−ω) . (7.60)

The relation (7.59) leads to the following results which will be useful later

σ>
k (ω) =

1
π

ImΣ̃R(k, ω) n(ω) (7.61)

σ<
k (ω) =

1
π

ImΣ̃R(k, ω) [1 + n(ω)] (7.62)

Similarly from the definitions (7.35) and (7.51,7.52) and the condition (7.55) we find

Kk(t− t′) =
∫ ∞

−∞

dk0

2π
eik0(t−t′)K̃(k, k0) (7.63)

K̃(k, k0) = πσ>
k (k0)

[
eβk0 + 1

]
(7.64)

whereupon using the condition (7.55) leads to the followint generalized form of the fluctuation-

dissipation relation

K̃(k, k0) = ImΣ̃R(k, k0) coth
[
βk0

2

]
(7.65)

Thus we see that ImΣ̃R(k, k0) ; K̃(k, k0) are odd and even functions of frequency respectively.

For further analysis below we will also need the following representation (see eqn. (7.36))

Σk(t− t′) = −i

∫ ∞

−∞
eiω(t−t′) [

σ>
k (ω)− σ<

k (ω)
]
dω =

i

π

∫ ∞

−∞
eiω(t−t′)ImΣ̃R(k, ω)dω (7.66)

whose Laplace transform is given by

Σ̃(k, s) ≡
∫ ∞

0
dte−stΣk(t) = − 1

π

∫ ∞

−∞

ImΣ̃R(k, ω)
ω + is

dω (7.67)
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Figure 7.2: Self-energy of Φ to lowest order in g2 but to all orders in the couplings of the fields χ

amongst themselves. The external lines correspond to the field Φ.

This spectral representation, combined with (7.58) lead to the relation

Σ̃R(k, k0) = Σ̃(k, s = ik0 + ε) (7.68)

We highlight that the self-energy Σ̃R(k, k0) as well as the fluctuation kernel K̃(k, k0) are to all

orders in the couplings amongst the fields χ but to lowest order, namely O(g2) in the coupling

between the field Φ and the fields χ. The self-energy is depicted in fig.(7.2).

7.2.4 The solution:

The solution of the Langevin equation (9.23) can be found by Laplace transform. Defining the

Laplace transforms

Ψ̃~k
(s) ≡

∫ ∞

0
dte−stΨ~k

(t) (7.69)

ξ̃~k
(s) ≡

∫ ∞

0
dte−stξ~k

(t) (7.70)

along with the Laplace transform of the self-energy given by eqn. (7.67) we find the solution

Ψ̃~k
(s) =

Π
i,~k

+ sΨ
i,~k

+ ξ̃~k
(s)

s2 + ω2
k + Σ̃(k, s)

; ω2
k = k2 + m2 (7.71)

where we have used the initial conditions (7.41). The solution in real time can be written in a

more compact manner as follows. Introduce the function fk(t) that obeys the following equation
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of motion and initial conditions

f̈k(t) + ω2
k fk(t) +

∫ t

0
dt′ Σk(t− t′)fk(t′) = 0 ; f(t = 0) = 0; ḟk(t = 0) = 1 (7.72)

whose Laplace transform is given by

f̃k(s) =
1

s2 + ω2
k + Σ̃(k, s)

(7.73)

In terms of this auxiliary function the solution of the Langevin equation (9.23) in real time is

given by

Ψk(t; Ψi; Πi; ξ) = Ψ
i,~k

ḟk(t) + Π
i,~k

fk(t) +
∫ t

0
fk(t− t′) ξ~k

(t′)dt′ (7.74)

For the study of the number operator below we will also need the time derivative of the solution,

given by

Ψ̇k(t; Ψi; Πi; ξ) = Ψ
i,~k

f̈k(t) + Π
i,~k

ḟk(t) +
∫ t

0
ḟk(t− t′) ξ~k

(t′)dt′ (7.75)

where we have used the initial conditions given in eqn. (9.28). From eqn. (7.71) it is clear that the

solution (9.28) represents a Dyson resummation of the perturbative expansion.

The real time solution for f(t) is found by the inverse Laplace transform

fk(t) =
∫

C

ds

2πi

est

s2 + ω2
k + Σ̃(k, s)

(7.76)

where C stands for the Bromwich contour, parallel to the imaginary axis in the complex s plane

to the right of all the singularities of f̃(s) and along the semicircle at infinity for Re s < 0. The

singularities of f̃(s) in the physical sheet are isolated single particle poles and multiparticle cuts

along the imaginary axis. Thus the contour can be deformed to run parallel to the imaginary axis

with a small positive real part with s = iω + ε ; −∞ ≤ ω ≤ ∞ , returning parallel to the imaginary

axis with s = iω − ε ; ∞ > ω > −∞, with ε = 0+ as depicted in fig. (7.3).

From the spectral representations (7.59,7.67)) one finds that Σ̃(k, s = iω ± ε) = ReΣ̃R(k, ω) ±
ImΣ̃R(k, ω) and using that ImΣ̃R(k, ω) = −ImΣ̃R(k,−ω) we find the following solution in real time

fk(t) =
∫ ∞

−∞
sin(ωt) ρ(k, ω;T ) dω , (7.77)
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Figure 7.3: General structure of the self-energy in the complex s-plane. The dashed regions corre-

spond to multiparticle cuts namely ImΣ̃R(k, s = iω + ε) 6= 0. The dots depict isolated poles.

where we have introduced the spectral density

ρ(k, ω; T ) =
1
π

[
ImΣ̃R(k, ω; T ) + 2ωε

]

[
ω2 − ω2

k − ReΣ̃R(k, ω; T )
]2

+
[
ImΣ̃R(k, ω;T ) + 2ωε

]2 , (7.78)

and we have made explicit the temperature dependence of the self-energy.

We have kept the infinitesimal 2ωε with ε → 0+ since if there are isolated single particle poles

away from the multiparticle cuts for which ImΣ̃R(k, s) = 0 then this term ensures that the isolated

pole contribution is accounted for, namely

1
π

2ωε[
ω2 − ω2

k − ReΣ̃R(k, ω)
]2

+ [2ωε]2
= sign(ω) δ

[
ω2 − ω2

k − ReΣ̃R(k, ω)
]

. (7.79)

The initial condition ḟk(t = 0) = 1 leads to the following sum rule

∫ ∞

−∞

dω

π

ω
[
ImΣ̃R(k, ω) + 2ωε

]

[
ω2 − ω2

k − ReΣ̃R(k, ω)
]2

+
[
ImΣ̃R(k, ω) + 2ωε

]2 = 1 (7.80)
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7.3 COUNTING PARTICLES: THE NUMBER OPERATOR

In an interacting theory the definition of a particle number requires careful consideration. To begin

with, a distinction must be made between physical particles that appear in asymptotic states and

can be counted by a detector, from unstable particles or resonances which have a finite lifetime and

decay into other particles. Resonances are not asymptotic states, do not correspond to eigenstates

of a Hamiltonian and their presence is inferred from virtual contributions to cross sections. In an

interacting theory virtual processes turn a bare particle into a physical particle by dressing the

bare particle with a cloud of virtual excitations. Physical particles correspond to asymptotic states

and are eigenstates of the full (interacting) Hamiltonian with the physical mass. These physical

particles correspond to real poles in the Green’s functions or propagators in the complex frequency

plane. In the exact vacuum state, the propagator of the field associated with the physical particles

features poles below the multiparticle continuum at the exact frequencies and with a residue given

by the wave function renormalization constant Z. The wave function renormalization determines

the overlap between the bare and interacting single particle states. Lorentz invariance of the

vacuum state entails that the exact frequencies are of the form Ωk =
√

k2 + m2
P , where mP is

the physical mass and that the wave function renormalization is independent of the momentum k.

In asymptotic theory, the spatial Fourier transform of the field operator Φ̂~k
(t) obeys the (weak)

asymptotic condition

Φ̂~k
(t)|0〉 −−−−→

t →∞
√

Z

2Ωk
eiΩk t a†out|0〉 ≡

√
Z

2Ωk
eiΩk t |1~k

〉 , (7.81)

where |1~k
〉 is the state with one physical particle.

In a medium at finite temperature there are no asymptotic states, each particle, even when stable

in vacuum acquires a width in a medium either by collisional processes (collisional broadening) or

other processes such as Landau damping. The width acquired by a physical particle in a medium is

a consequence of the interaction between the physical particle and the excitations in the medium.

In particular the medium-induced width is necessary to ensure that physical particles relax to a

state of thermal equilibrium with the medium. The relaxation rate is a measure of the width of the

particle in the medium. Therefore in a medium a physical particle becomes a quasiparticle with a

medium modification of the dispersion relation and a width.

Thus the question arises as to what particles are “counted” by a definition of a distribution

function, namely, a decision must be made to count either physical particles or quasiparticles.
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One can envisage counting physical particles by introducing a detector in the medium. Such

detector must be calibrated so as to “click” every time it finds a particle with given characteristics.

A detector that has been calibrated to measure physical particles in a scattering experiment for

example, will measure the energy and the momentum (and any other good quantum numbers) of

a particle. Every time that the detector measures a momentum ~k and an energy Ωk determined

by the dispersion relation of the physical particle (as well as other available quantum numbers), it

counts this “hit” as one particle.

Once this detector has been calibrated in this manner, for example by carrying out a scattering

experiment in the vacuum, we can insert this detector in a medium and let it count the physical

particles in the medium.

Counting quasiparticles entails a different calibration of the detector which must account for the

properties of the medium in the definition of a quasiparticle. The first obstacle in such calibration

is the fact that a quasiparticle does not have a definite dispersion relation because its spectral

density features a width, namely a quasiparticle is not associated with a sharp energy but with a

continuum distribution of energies. How much of this distribution will be accepted by the detector

in its definition of a quasiparticle, will depend on the filtering process involved in accepting a

quasiparticle, and so cannot be unique. Therefore statements about measuring a distribution of

quasiparticles are somewhat ambiguous.

In this article we focus on the first strategy, by counting only physical particles. Hence we

propose a number operator that “counts” the physical particle states of mass mP that a detector

will measure for example in a scattering experiment at asymptotically long times. Asymptotic

theory and the usual reduction formula suggest the following definition of an interpolating number

operator that counts the number of physical (stable) particles in a state

N̂k(t) =
1

2Ωk Z

{
ˆ̇Φ~k

(t) ˆ̇Φ−~k
(t) + Ω2

kΦ̂~k
(t)Φ̂−~k

(t)
}
− Ck (7.82)

where Z is the wave function renormalization, namely the residue of the single (physical) particle

pole in the exact propagator, Ωk =
√

k2 + m2
P is the renormalized physical frequency and the

normal ordering constant Ck will be adjusted so as to include renormalization effects. In free field

theory Ωk = ωk =
√

k2 + m2 , Z = 1 , Ck = 1/2. However, in asymptotic theory the field Φ creates

a single particle state of momentum k and mass mP with amplitude
√

Z out of the exact vacuum.

The quantity Ck arises from the necessity of redefining the normal ordering for the correct

identification of the particle number in an interacting field theory. It will be fixed below by requiring
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that the expectation value of N̂k(t) vanishes in the exact vacuum state at asymptotically long time.

Alternatively this constant can be extracted from the equal time limit of the operator product

expansion.

The approach that we follow is to consider an initial factorized density matrix corresponding to

a tensor product of a density matrix of the field Φ and a thermal bath of the fields χ. This initial

state will evolve in time with the full interacting Hamiltonian, leading to transient phenomena

which results in the dressing of the bare particles by the virtual excitations. At asymptotically

long times the bare particle is fully dressed into the physical particle, and at finite temperature, a

quasiparticle. The time evolution of the interpolating number operator will reflect this transient

stage and the dynamics of the dressing of the bare into the physical state. Since the thermal bath is

stationary, the distribution of physical particles in the bath will be extracted from the asymptotic

long time limit of the expectation value of the interpolating Heisenberg number operator N̂k(t) in

the initial state.

The expectation value of N̂k(t) is related to the real-time correlation functions of the field Φ as

follows

〈N̂k(t)〉 =
1

4Ωk Z

(
∂

∂t

∂

∂t′
+ Ω2

k

) [
g>
k (t, t′) + g<

k (t, t′)

]

t=t′
− Ck (7.83)

where the non-equilibrium correlation functions are given by

〈Φ+
~k

(t)Φ+

−~k
(t′)〉 = g>

k (t, t′)Θ(t− t′) + g<
k (t, t′)Θ(t′ − t) (7.84)

〈Φ−~k (t)Φ−−~k
(t′)〉 = g>

k (t, t′)Θ(t′ − t) + g<
k (t, t′)Θ(t− t′) (7.85)

〈Φ−~k (t)Φ+

−~k
(t′)〉 = g>

k (t, t′) (7.86)

〈Φ−−~k
(t′)Φ+

~k
(t)〉 = g<

k (t, t′) (7.87)

In terms of the center of mass field Ψk(t) = (Φ+
~k

(t)+Φ−~k (t))/2 introduced above it is straightforward

to find that the correlation function in the bracket in (7.83) is given by

〈Ψ~k
(t)Ψ−~k

(t′)〉 =
1
2

[
g>
k (t, t′) + g<

k (t, t′)
]

(7.88)

and the occupation number can be written in terms of the center of mass Wigner variable introduced

in eqn. (9.22) as follows

〈N̂k(t)〉 =
1

2ΩkZ

[
〈Ψ̇~k

(t)Ψ̇−~k
(t)〉+ Ω2

k〈Ψ~k
(t)Ψ−~k

(t)〉
]
− Ck (7.89)

where the expectation values are obtained as in eqn. (7.50) and Ψ~k
(t) is the solution of the Langevin

equation given by (9.28,7.75).
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A straightforward calculation implementing eqn. (7.50) writing the noise in terms of its temporal

Fourier transform and using the Fourier representation of the noise kernel (7.63) leads to the

following result

Nk(t) ≡ 〈N̂k(t)〉 =
1

2ΩkZ

{
1

2Wk
[1 + 2Nb,k]

[
f̈2

k (t) + (Ω2
k + W 2

k ) ḟ2
k (t) + Ω2

kW
2
k f2

k (t)
]

+
∫ ∞

−∞

dω

2π
K̃(k, ω)

[|Fk(ω, t)|2 + Ω2
k|Hk(ω, t)|2]

}
− Ck (7.90)

where we have introduced

Hk(ω, t) =
∫ t

0
dτfk(τ)e−iωτ (7.91)

Fk(ω, t) =
∫ t

0
dτ ḟk(τ)e−iωτ (7.92)

fk(t) is given in eqn. (7.77) and the fluctuation kernel K̃(k, ω) is given by eqn. (9.27).

The result (7.90) for the time evolution of the distribution function, along with the expressions

(7.91,7.92) clearly highlights the non-Markovian nature of the evolution. The integrals in time in

(7.91,7.92) include memory of the past evolution. This is one of the most important aspects that

distinguishes the quantum kinetic approach from the usual Boltzmann equation. We will contrast

these aspects in section (7.5).

7.3.1 Counting physical particles in a thermal bath

In the vacuum the spectral density of the field Φ which describes a physical particle is depicted in

fig. (7.4). It features isolated poles along the real axis in the physical sheet in the complex frequency

(ω) plane at the position of the exact single particle dispersion relation Ωk with |Ωk| < |ωth| where

ωth is the lowest multiparticle threshold.

As mentioned above, in a medium stable physical particles acquire a width as a consequence of

the interactions with physical excitations, and become quasiparticles. The width can originate in

several different processes such as collisions or Landau damping. The poles move off the physical

sheet into the second (or higher) Riemann sheet in the complex ω plane, thus becoming a resonance.

This is the statement that there are no asymptotic states in the medium.

The analytic structure of the spectral density at finite temperature is in general fairly compli-

cated. While at zero temperature the multiparticle thresholds are above the light cone |ω| > k,
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Figure 7.4: Spectral density ρk(ω, T = 0) for stable particles. The dots represent the isolated poles

at ±Ωk and the shaded regions the multiparticle cuts. ωth is the lowest multiparticle threshold.

at finite temperature (or density) there appear branch cuts with support below the light cone[149,

171, 172, 173]. However a general statement in a medium is that the poles associated with stable

particles in vacuum (along the real axis in the physical sheet) move off the physical sheet and the

spectral density does not feature isolated poles but only branch cut singularities in the physical

sheet, associated with multiparticle processes in the medium.

In perturbation theory the resonance is very close to the real axis (but in the second or higher

Riemann sheet) and the width is very small as compared with the position of the resonance. We

will study a particular example in the next section.

In perturbation theory the spectral density ρ(k, ω, T ) (7.78) features a sharp peak at the position

of the quasiparticle “pole” which is determined by

W2
k(T )− ω2

k − ReΣ̃R(k,Wk(T );T ) = 0 (7.93)

Near the quasiparticle “poles” the spectral density is well described by the Breit-Wigner ap-

proximation

ρBW (k, ω;T ) ' Zk(T )
2Wk(T )

1
π

sign(ω) Γk(T )
(|ω| −Wk(T ))2 + Γ2

k(T )
, (7.94)

where Wk(T ) is determined by eqn. (7.93) and the finite temperature residue and width are given
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by

1
Zk(T )

=

[
1− 1

2Wk(T )
∂ReΣ̃R(k, ω; T )

∂ω

]

ω=Wk(T )

(7.95)

Γk(T ) = Zk
ImΣ̃R(k,Wk(T );T )

2Wk(T )
(7.96)

At zero temperature of the bath, the (quasi) particle dispersion relation Wk(T ) is identified

with the dispersion relation of the stable physical particle, namely the “on-shell” pole, the residue

Zk(T ) is identified with the wavefunction renormalization constant Z which is the residue at the

on-shell pole for the physical particle, and the width vanishes at zero temperature since the particle

is stable in the vacuum, namely

Wk(T = 0) = Ωk (7.97)

Zk(T = 0) = Z (7.98)

Γk(T = 0) = 0 (7.99)

In the Breit-Wigner approximation the real time solution is easily found to be

fBW
k (t) ' Zk(T )

sin [Wk(T ) t]
Wk(T )

e−Γk(T ) t (7.100)

This solution describes the relaxation of single quasiparticles, where Wk(t) is the quasiparticle

dispersion relation and Γk(T ) is the quasiparticle decay rate.

The asymptotic long time limit of the distribution function (7.90) is obtained by using the

following identities

Hk(ω,∞) =
∫ ∞

0
e−i(ω−iε)tfk(t)dt = f̃k(s = iω + ε) (7.101)

Fk(ω,∞) =
∫ ∞

0
e−i(ω−iε)tḟk(t)dt = iωf̃k(s = iω + ε) (7.102)

where f̃k(s) is the Laplace transform of fk(t) given by eqn. (7.73) and in (7.102) we have integrated

by parts, used the initial condition fk(0) = 0 and introduced a convergence factor ε → 0+. Hence
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the expectation value of the interpolating number operator in the asymptotic long-time limit is

given by

Nk(∞) =
∫ ∞

0

(
ω2 + Ω2

k

2Z Ωk

)
[1 + 2n(ω)] ρ(k, ω, T ) dω − Ck , (7.103)

where n(ω) is the Bose-Einstein distribution function and we have used the fluctuation-dissipation

relation (9.27) as well as eqn. (7.73) which lead to the ρ(k, ω, T ) in (7.103). The dependence of

the asymptotic distribution function on the spectral density is a consequence of the fluctuation-

dissipation relation (9.27) as well as the non-Markovian time evolution as displayed in (7.101,7.102).

The real time solution (7.100) clearly reveals that the asymptotic limit is reached for t > τk =

1/2Γk(T ) where Γk(T ) is the quasiparticle relaxation rate. The distribution function at t >> τk

does not depend on the initial distribution Nb,k or the reference frequencies Wk. Therefore at times

longer than the quasiparticle relaxation time the distribution function becomes independent of the

initial conditions. This is to be expected if the state reaches thermal equilibrium with the bath,

since in thermal equilibrium there is no memory of the initial conditions or correlations.

The integral term in the asymptotic distribution (7.103) is easily understood as full thermaliza-

tion from the following argument.

Let us consider the correlations functions g>
k (t, t′); g<

k (t, t′) given by eqns. (7.86,7.87). In thermal

equilibrium they have the spectral representation

g>
k (t, t′) =

∫
ρ>(k, ω; T ) eiω(t−t′)dω (7.104)

g<
k (t, t′) =

∫
ρ<(k, ω; T ) eiω(t−t′)dω (7.105)

where

ρ>(k, ω;T ) =
1
ZT

∑
m,n

e−βEn〈n|Φ~k
(0)|m〉〈m|Φ−~k

(0)|n〉 δ(ω − (En − Em)) (7.106)

ρ<(k, ω;T ) =
1
ZT

∑
m,n

e−βEm〈n|Φ−~k
(0)|m〉〈m|Φ~k

(0)|n〉 δ(ω − (Em − En)) . (7.107)

Where ZT is the thermal equilibrium partition function. A straightforward re-labelling of indices

leads to the relation

ρ<(k, ω; T ) = ρ>(k,−ω; T ) = eβωρ>(k, ω; T ) (7.108)
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The spectral density is given by

ρ(k, ω; T ) = ρ<(k, ω;T )− ρ>(k, ω; T ) (7.109)

leading to the relations

ρ>(k, ω; T ) = ρ(k, ω; T )n(ω) (7.110)

ρ<(k, ω; T ) = ρ(k, ω; T ) [1 + n(ω)] , (7.111)

where n(ω) = 1/[eβω − 1].

Therefore in thermal equilibrium the expectation value of the operator term in eqns. (7.82,

7.83) is given by

1
4Ωk Z

(
∂

∂t

∂

∂t′
+ Ω2

k

)[
g>
k (t, t′) + g<

k (t, t′)

]

t=t′
=

∫ ∞

−∞

(
ω2 + Ω2

k

4Z Ωk

)
[1 + 2n(ω)] ρ(k, ω; T ) dω ,

(7.112)

which is precisely the integral term in the asymptotic limit given by eqn. (7.103). Therefore the

expression (7.103) indicates that the excitations of the field Φ have reached a state of thermal

equilibrium with the bath. The normal ordering constant Ck in (7.103) is a subtraction necessary

to redefine normal ordering in the interacting theory and is defined from the operator product

expansion to yield vanishing number of particles in the vacuum.

While the asymptotic long time limit can be obtained directly from the spectral representation

of the interpolating number operator in the equilibrium state, the real time formulation in terms of

the non-equilibrium effective action has two advantages: i) it makes explicit the connection with the

fluctuation dissipation relation and clearly states that the equilibrium abundance is determined by

the noise correlation function of the bath, ii) the real time dynamics clearly shows thermalization

on time scales t > τk. These statements would not be immediately recognized from the equilibrium

spectral representation.

The result (7.103) becomes more illuminating in the narrow width approximation where the

Breit-Wigner approximation for the spectral density (7.94) is supplemented with the narrow width

limit Γk(T ) → 0 which leads to

ρ(k, ω; T ) ' Zk(T )
2Wk(T )

sign(ω)δ (|ω| −Wk(T )) , (7.113)
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which in turn leads to the approximate result

Nk(∞) ∼ Zk(T )
Z

(
W2

k(T ) + Ω2
k

2Wk(T )Ωk

) [
1
2

+ n(Wk(T ))
]
− Ck (7.114)

Obviously the zero temperature pole Ωk and residue Z and their finite temperature counterparts

Wk(T ),Zk(T ) differ by terms that are of order g2, namely perturbatively small, therefore in the

narrow width approximation, which itself is a result of the weak coupling assumption one could

write

Nk(∞) ∼ n(Ωk) +
[
1
2

+O(g2)− Ck

]
(7.115)

Thus choosing the normal ordering factor Ck = 1/2 + O(g2) would lead to the conclusion

that the physical particles are distributed in the thermal bath with a Bose-Einstein distribution

function with the argument being the physical pole frequency (at zero temperature). Furthermore

the normal ordering constant Ck ∼ 1/2 is identified with the usual normal ordering of the number

operator in the free field vacuum.

In order to understand in detail the perturbative correction we have to first decide on what

are Ωk, Z, Ck. The importance of the perturbative corrections cannot be underestimated, if the

temperature of the bath is much smaller than Ωk the distribution function n(Ωk) ¿ 1 and the

perturbative corrections can be of the same order or larger. What should be clear from the above

discussion is that in order to make precise the perturbative correction to the abundance, we must

specify unambiguously what is being counted.

7.3.1.1 Physical particles in the vacuum The next step is to define Ωk, Z, Ck. As it was

emphasized above, the number operator that we seek counts physical particles. These are stable

excitations off the full vacuum state of the theory and are associated with isolated single particle

poles in the spectral density at zero temperature.

The zero temperature limit of the asymptotic distribution function (7.103) is

Nk(∞; T = 0) =
∫ ∞

0

(
ω2 + Ω2

k

2Z Ωk

)
ρ(k, ω, T = 0) dω − Ck , (7.116)

At T = 0 the spectral density features the isolated single particle poles away from the multi-

particle continuum as depicted in fig. (7.4). The contribution from the single particle poles to the
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zero temperature spectral density is given by eqn. (7.79), therefore we write

ρ(k, ω, T = 0) = sign(ω)
Z

2Ωk
δ(ω − Ωk) + ρc(k, ω, T = 0) , (7.117)

where ρc(k, ω, T = 0) is the continuum contribution with support for |ω| > ωth, where ωth is the

lowest multiparticle threshold, and the position of the isolated pole satisfies

Ω2
k − ω2

k − ReΣ̃R(k,Ωk) = 0 (7.118)

At zero temperature Lorentz covariance implies that Ω2
k = k2 +m2

P , where mP is the pole mass

of the physical excitations (asymptotic states).

The residue at the single (physical) particle pole, Z, is given by

1
Z

=

[
1− 1

2Ωk

∂ReΣ̃R(k, ω; T )
∂ω

]

ω=Ωk

. (7.119)

Introducing the zero temperature form of the spectral density (7.117) in the sum rule (7.80) the

following alternative expression is obtained.

Z = 1− 2
∫ ∞

ωth

ω ρc(k, ω, T = 0) dω (7.120)

Therefore the asymptotic distribution of particles in the vacuum is given by

Nk(∞; T = 0) =
1
2

+
∫ ∞

0

(
ω2 + Ω2

k

2Z Ωk

)
ρc(k, ω, T = 0) dω − Ck , (7.121)

The normal ordering term Ck is now fixed by requiring that for T = 0 the vacuum state has

vanishing number of physical excitations. In other words, by requiring Nk(∞, T = 0) = 0 we are

led to

Ck =
1
2

+
∫ ∞

0

(
ω2 + Ω2

k

2Z Ωk

)
ρc(k, ω, T = 0) dω. (7.122)

We have kept the lower limit in the integral to be ω = 0 for further convenience, however ρc(k, ω, T =

0) vanishes for |ω| < ωth.

Equations (7.118), (7.119,7.120) and (7.122) determine all of the parameters Ωk, Z, Ck for the

proper definition of the distribution function for physical particles.
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Hence the distribution function of physical excitations in equilibrium with the bath at finite

temperature is finally given by the simple expression

N (k, T ) ≡ Nk(∞) =
∫ ∞

0

(
ω2 + Ω2

k

2Z Ωk

){
[1 + 2n(ω)] ρ(k, ω, T )− ρc(k, ω, T = 0)

}
dω − 1

2
, (7.123)

This is the final form of the asymptotic distribution function of physical particles in equi-

librium in the thermal bath with Ωk =
√

k2 + m2
P ; Z; Ck given by equations (7.118),(7.119) (or

(7.120),(7.122)) respectively.

7.3.2 Renormalization:

In renormalizable theories the wavefunction renormalization constant Z is ultraviolet divergent and

the expression for the asymptotic distribution function (7.123) seems to be ambiguous. However

proper renormalization as described below shows that the asymptotic abundance is finite.

In general the imaginary part of the self-energy can be written as a sum of a zero temperature

and a finite temperature contribution, the latter vanishing at zero temperature, thus we write

ImΣ̃R(ω, k; T ) = ImΣ̃R
0 (ω, k) + ImΣ̃R

T (ω, k) (7.124)

Therefore the real part of the self-energy, which is obtained from the imaginary part by a

dispersion relation (Kramers-Kronig) can also be written as a sum of a zero temperature plus a

finite temperature contribution,

ReΣ̃R(ω, k; T ) = − 1
π
P

∫ ∞

0
2k0

ImΣ̃R(k0, k; T )
k2

0 − ω2
dk0 ≡ ReΣ̃R

0 (ω, k) + ReΣ̃R
T (ω, k) (7.125)

where P stands for the principal part of the integral, and we have used the fact that ImΣ̃R(k0, k; T )

is an odd function of k0. Both ImΣ̃R
T (ω, k) and ReΣ̃R

T (ω, k) vanish at T = 0.

The position of the physical pole is obtained at zero temperature from the relation (7.118),

Ω2
k − ω2

k − ReΣ̃R
0 (k,Ωk) = 0 (7.126)

The subtracted real part of the self energy is

ReΣ̃R
0 (k, ω)− ReΣ̃R

0 (k, Ωk) =
[
1− Z−1[k, ω]

]
(ω2 − Ω2

k) (7.127)

201



where

Z−1[k, ω] = 1 +
1
π
P

∫ ∞

0
2k0

ImΣ̃R
0 (k0, k)

(k2
0 − ω2)(k2

0 − Ω2
k)

dk0 (7.128)

As mentioned above, in renormalizable theories Z[k, ω] is ultraviolet logarithmically divergent,

therefore it is convenient to perform yet another subtraction of the integral term in (7.128) as

follows,

Z−1[k, ω] = Z−1 −Π0(k, ω) , (7.129)

where Z is the wavefunction renormalization constant, namely the residue at the pole,

Z−1 = 1 +
1
π
P

∫ ∞

0
2k0

ImΣ̃R
0 (k0, k)

(k2
0 − Ω2

k)
2

dk0 , (7.130)

and Π0(k, ω) is the real part of the twice subtracted self-energy given by

Π0(k, ω) = − 1
π

(ω2 − Ω2
k) P

∫ ∞

0
2k0

ImΣ̃R
0 (k0, k)

(k2
0 − ω2)(k2

0 − Ω2
k)

2
dk0 (7.131)

The two subtractions had been performed on the single particle mass-shell. In a renormalizable

theory the integral in the twice subtracted real part of the self energy Π0(k, ω) is finite while the

integral in Z−1 is logarithmically divergent. However the finite temperature parts do not have

primitive divergences since all the primitive divergences are those of the zero temperature theory.

Combining equations (7.150), (7.126), (7.127) and (7.129), the spectral density (7.78) can be

written in the following form

ρ(k, ω; T ) =
1
π

[
ImΣ̃R(k, ω;T ) + 2ωε

]

[
Z−1(ω2 − Ω2

k)− Π̃(k, ω; T )
]2

+
[
ImΣ̃R(k, ω; T ) + 2ωε

]2 , (7.132)

where

Π̃(k, ω; T ) = (ω2 − Ω2
k)Π0(k, ω) + ReΣ̃R

T (ω, k) (7.133)

Introducing the renormalized real and imaginary part of the self-energy as

Π̃r(k, ω; T ) = Z Π̃(k, ω; T ) (7.134)

ImΣ̃R
r (k, ω;T ) = Z ImΣ̃R(k, ω; T ) (7.135)

202



the spectral density (7.132) can be written as

ρ(k, ω;T ) = Z ρr(k, ω; T ) , (7.136)

where

ρr(k, ω; T ) =
1
π

[
ImΣ̃R

r (k, ω; T ) + 2ωε
]

[
(ω2 − Ω2

k)− Π̃r(k, ω; T )
]2

+
[
ImΣ̃R

r (k, ω; T ) + 2ωε
]2 . (7.137)

We note that at zero temperature the spectral density ρr(k, ω;T = 0) has unit residue at the

single physical particle pole.

Since both Π̃(k, ω;T ) and ImΣ̃R(k, ω;T ) are proportional to g2, the renormalization of the real

and imaginary part of the self-energy in eqns. (7.134),(7.135) is tantamount to the renormalization

of the coupling constant1

gr =
√

Zg (7.138)

In terms of gr, both Π̃r(k, ω; T ) and ImΣ̃R
r (k, ω; T ) are finite since the only counterterms neces-

sary are those of the zero temperature theory. Therefore the equilibrium distribution function can

be written solely in terms of renormalized quantities as follows

N (k, T ) =
∫ ∞

0

(
ω2 + Ω2

k

2Ωk

){
[1 + 2n(ω)] ρr(k, ω, T )− ρr,c(k, ω, T = 0)

}
dω − 1

2
. (7.139)

This definition of the asymptotic distribution function is one of the main results of this article.

7.4 THE MODEL

The results obtained in the previous section are general and as mentioned above the quantum ki-

netic effects that modify the standard Boltzmann suppression of particle abundance in the medium

depend on the particular theory under consideration. To highlight the main concepts in a spe-

1The coupling g in the Lagrangian already has the proper renormalization of the (composite) operator O[χ].
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cific scenario, we now consider a theory of three interacting real scalar fields with the following

Lagrangian density.

L =
1
2
∂µΦ∂µΦ− 1

2
m2Φ2 +

2∑

i=1

[
1
2
∂µχi∂

µχi − 1
2
M2

i χ2
i

]
− gΦ χ1 χ2 + Lint[χ1 χ2] (7.140)

We will assume that the mutual interaction between the fields χ1 , χ2 ensures that the fields

χ1,2 are in thermal equilibrium at a temperature T = 1/β. A similar model has been previously

studied in ref.[149] for an analysis of the different processes in the medium.

The particles associated with the field Φ will be stable at T = 0 provided mP < M1 + M2,

where mP is the zero temperature pole mass of the Φ particles. In order to study the emergence

of a width for the particles of the field Φ to lowest order in perturbation theory we will consider

the case in which M1 > mP + M2 (or alternatively M2 > mP + M1) in this case the quanta of

the field χ1 can decay into those of the field Φ and χ2. Since the particles 1, 2 are in a thermal

bath in equilibrium the presence of the heavier species (here taken to be that of the field χ1) in the

medium results in a width for the excitations of field Φ through the process of decay of the heavier

particle into the lighter scalars and its recombination, namely χ1 ↔ Φ + χ2. As will be seen in

detail below the kinematics for this process is similar to that for Landau damping in the case of

massive particles [173].

The relevant quantity is the self-energy of the field Φ which we now obtain to one loop order

O(g2) in the Matsubara representation. The one-loop self-energy is given by

Σ(νn,~k) = −g2

∫
d3~p

(2π)3
1
β

∑
ωm

G(0)
χ1

(ωm, ~p) G(0)
χ2

(ωm + νn, ~p + ~k) , (7.141)

where ωm, νn are Bosonic Matsubara frequencies. It is convenient to write the Matsubara propa-

gators in the following dispersive form
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G(0)
χ1

(ωm, ~p) =
∫

dp0
ρ1(p0, ~p)
p0 − iωm

, (7.142)

G(0)
χ2

(ωm + νn, ~p + ~k) =
∫

dq0
ρ2(q0, ~p + ~k)

q0 − iωm − iνn
, (7.143)

ρ1(p0, ~p) =
1

2ω
(1)
~p

[δ(p0 − ω
(1)
~p )− δ(p0 + ω

(1)
~p )] , (7.144)

ρ2(q0, ~p + ~k) =
1

2ω
(2)

~p+~k

[δ(q0 − ω
(2)

~p+~k
)− δ(q0 + ω

(2)

~p+~k
)] , (7.145)

ω
(1)
~p =

√
~p2 + M2

1 ; ω
(2)

~p+~k
=

√
(~p + ~k)2 + M2

2 . (7.146)

This representation allows to carry out the sum over Matsubara frequencies ωm in a rather

straightforward manner[171, 172] which automatically leads to the following dispersive representa-

tion of the self-energy

Σ(k, νn) = − 1
π

∫ ∞

−∞
dω

ImΣ̃R(k, ω)
ω − iνn

(7.147)

with the imaginary part of the self-energy given by

ImΣ̃R(k, ω) = πg2

∫
d3~p

(2π)3

∫
dp0

∫
dq0 [n(p0)−n(q0)] ρ1(p0, ~p) ρ2(q0, ~p+~k) δ(ω− q0 + p0) (7.148)

where n(q) are the Bose-Einstein distribution functions. From the representation (7.58) the retarded

self-energy follows by analytic continuation, namely

Σ̃R(k, k0) = Σ(k, νn = k0 − iε) (7.149)

The imaginary part of the self energy can be written as a sum of several different contributions,

namely

ImΣ̃R
r (k, ω; T ) = σ0(k, ω) + σa(k, ω; T ) + σb(k, ω;T ) , (7.150)

where σ0(k, ω) is the zero temperature contribution given by

σ0(k, ω) =
g2

32π2

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

[
δ
(
ω − ω

(1)
~p − ω

(2)

~p+~k

)
− δ

(
ω + ω

(1)
~p + ω

(2)

~p+~k

)]
, (7.151)
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Figure 7.5: Processes contributing to σ0(k, ω), σa(k, ω) (a) and to σb(k, ω) (b). The inverse processes

are not shown.

and σa(k, ω), σb(k, ω) are the finite temperature contributions given by

σa(k, ω;T ) =
g2

32π2

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

[
n(ω(1)

~p ) + n(ω(2)

~p+~k
)
][

δ
(
ω − ω

(1)
~p − ω

(2)

~p+~k

)
− δ

(
ω + ω

(1)
~p + ω

(2)

~p+~k

)]
,

(7.152)

σb(k, ω; T ) =
g2

32π2

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

[
n(ω(2)

~p+~k
)− n(ω(1)

~p )
][

δ
(
ω − ω

(1)
~p + ω

(2)

~p+~k

)
− δ

(
ω + ω

(1)
~p − ω

(2)

~p+~k

)]
,

(7.153)

The processes that contribute to σ0(k, ω) and σa(k, ω) are Φ ↔ χ1 χ2 while the processes that

contribute to σb(k, ω) are χ1,2 ↔ Φχ2,1 depicted schematically in fig. (7.5)

The details of the calculation of the different contributions are relegated to the appendix. The

result is summarized as follows:

σ0(k, ω) =
g2

16πQ2
sign(ω) Θ[Q2−(M1+M2)2 ]

[
(Q2)2−2Q2(M2

1 +M2
2 )+(M2

1−M2
2 )2

] 1
2 ; Q2 = ω2−k2

(7.154)

We have explicitly displayed the fact that the zero temperature contribution to the imaginary

part is manifestly Lorentz invariant and solely a function of the invariant mass Q2 = ω2 − k2. The

finite temperature contributions are

σa(k, ω; T ) =
g2

16πk β
sign(ω)Θ[Q2 − (M1 + M2)2 ]

[
ln

(
1− e−βω+

p

1− e−βω−p

)
+ M1 ↔ M2

]
(7.155)
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σb(k, ω; T ) =
g2

16πk β
sign(ω)Θ[(M1 −M2)2 −Q2 ]

[
ln

(
1− e−β|ω−p |

1− e−β|ω+
p |

)
+ M1 ↔ M2

]
(7.156)

where

ω±p =
|ω|
2Q2

(Q2 + M2
1 −M2

2 )± k

2Q2

[
(Q2 + M2

1 −M2
2 )2 − 4Q2M2

1

] 1
2

; Q2 = ω2 − k2. (7.157)

The real part of the self energy is obtained from the dispersive form (7.58) and can be separated

into a zero temperature and a finite temperature part as follows

ReΣ̃R(k, ω; T ) = ReΣ̃R
0 (k, ω) + ReΣ̃R

T (k, ω; T ) (7.158)

with

ReΣ̃R
0 (k, ω) = − 1

π
P

∫ ∞

−∞

σ0(k0, k)
k0 − ω

dk0 (7.159)

ReΣ̃R
T (k, ω; T ) = − 1

π
P

∫ ∞

−∞

σa(k0, k;T ) + σb(k0, k; T )
k0 − ω

dk0 (7.160)

where P stands for the principal part. We note that both σ0(k, ω) and σa(k, ω) feature the standard

two particle threshold above the light cone at the invariant mass Q2 = (M1 + M2)2 whereas the

finite temperature contribution σb(k, ω) has support for invariant mass Q2 ≤ (M1−M2)2 even below

the light cone and vanishes at T = 0. In the case of massless particles in the loop this contribution

is below the light cone and is identified with Landau damping[171, 173, 172]. In particular at zero

temperature the isolated poles are at Q2 = m2
P , hence if m2

P < (M1−M2)2 the physical particle pole

is embedded in the multiparticle continuum and moves off the real axis onto the second (or higher)

Riemann sheet in the complex frequency plane. Because of this the physical particle acquires a

width. The spectral density for the case m2
P < (M1 −M2)2 is depicted in fig. (7.6)

7.4.0.1 Zero temperature: Ωk; Z; Ck: Using that σ0(k0, k) is odd in k0 and that it is solely

a function of the invariant P 2 = k2
0 − k2 for k0 > 0, it is straightforward to find the following

manifestly Lorentz invariant result

ReΣ̃R
0 (k, ω) = − 1

π
P

∫ ∞

(M1+M2)2

σ0(P 2)
P 2 −Q2

dP 2 ; Q2 = ω2 − k2 (7.161)
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Figure 7.6: Spectral density ρ(k, ω, T ) for m2
P < (M1−M2)2. The shaded areas are the multiparticle

cuts with thresholds ωth1 =
√

k2 + (M1 −M2)2 and ωth2 =
√

k2 + (M1 + M2)2. The single particle

poles at Ω2
k = k2 + m2

P moved off the real axis into an unphysical sheet.

where we have explicitly exhibited the two particle threshold in the lower limit. Lorentz invariance

requires that the single particle pole features the dispersion relation Ω2
k = k2 + m2

P , and so the

equation that determines the single particle physical poles, namely eqn. (7.118) is given by

m2
P −m2 − ReΣ̃R

0 (Q2 = m2
P ) = 0 (7.162)

From the results of the previous section (see eqn. (7.130)) the wave function renormalization

constant is given by

Z−1 = 1 +
1
π
P

∫ ∞

(M1+M2)2

σ0(P 2)
(P 2 −m2

P )2
dP 2 , (7.163)

Separating the residue at the physical particle pole and following the steps described in section

(7.3.2) the renormalized spectral density (7.136,7.137) at zero temperature can now be written in

the following simple form

ρr(k, ω; T = 0) =
1
π

[
σ0,r(Q2) + 2ωε

]
[
(Q2 −m2

P )
(
1−Π0,r(Q2)

)]2
+ [σ0,r(Q2) + 2ωε]2

= sign(ω) δ(ω2 − Ω2
k) + ρc,r(k, ω; T = 0) (7.164)
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where σ0,r(k, ω) = Zσ0(k, ω) is given by the expression (7.154) but with the coupling constant

replaced by the renormalized coupling Zg2 = g2
r

The continuum contribution is given by

ρc,r(k, ω;T = 0) =
1
π

σ0,r(Q2)[
(Q2 −m2

P )
(
1−Π0,r(Q2)

)]2
+

[
σ0,r(Q2)

]2 , (7.165)

with

Π0,r(Q2) = − 1
π

(Q2 −m2
P ) P

∫ ∞

(M1+M2)2

σ0,r(P 2)
(P 2 −Q2)(P 2 −m2

P )2
dP 2 (7.166)

where we have made explicit the two particle threshold in the lower limit of the integral.

The exact expression for Z given by the sum rule (7.120) coincides with Z given by eqn. (7.163)

to lowest order in perturbation theory (O(g2)).

Up to O(g2) we can neglect σ0(k, ω) as well as Π0,r(k, ω) in the denominator of the continuum

contribution (7.165) because Q2 ≥ (M2
1 + M2

2 ) > m2
P and the denominator is never perturbatively

small. Therefore to leading order in the coupling we can approximate

ρc,r(k, ω; T = 0) ' 1
π

σ0,r(Q2)
(Q2 −m2

P )2
. (7.167)

The renormalized spectral function at finite temperature can be separated into the contributions

from the different multiparticle cuts,

ρr(k, ω, T ) = ρI,r(k, ω, T ) + ρII,r(k, ω, T ) (7.168)

where the contribution with support above the two particle cut is

ρI,r(k, ω;T ) =
1
π

[σ0,r(k, ω) + σa,r(k, ω; T )][
(Q2 −m2

P )
(
1−Π0,r(Q2)

)
− ReΣ̃R

T,r(k, ω; T )
]2

+
[
σ0,r(Q2) + σa,r(k, ω;T )

]2

(7.169)

and that which has support below the light cone given by

ρII,r(k, ω;T ) =
1
π

σb(k, ω; T )[
(Q2 −m2

P )
(
1−Π0,r(Q2)

)
− ReΣ̃R

T,r(k, ω; T )
]2

+
[
σb,r(k, ω; T )

]2 (7.170)

where again the renormalized quantities are obtained from the unrenormalized ones by replacing

g → gr = Zg.
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Since ρI,r(k, ω) has support only for |ω| >
√

k2 + (M2
1 + M2

2 ) its denominator is never perturba-

tively small, therefore to leading order O(g2) in the perturbative expansion it can be approximated

by

ρI,r(k, ω; T ) ' 1
π

[σ0,r(k, ω) + σa,r(k, ω; T )]
(ω2 − k2 −m2

P )2
(7.171)

For ρII,r(k, ω) we must keep the full expression because for m2
P < (M1−M2)2 the denominator

becomes perturbatively small for ω2 ∼ k2 + m2
P . Therefore the final expression for the asymptotic

distribution function (7.139) to leading order in the coupling (O(g2)) is given by

N (k, T ) = NI(k;T ) +NII(k, T ) (7.172)

where the different contributions reflect the different multiparticle cuts, namely

NII(k, T ) =
∫ ∞

0

(
ω2 + Ω2

k

2Ωk

){
[1 + 2n(ω)] ρII,r(k, ω, T )

}
dω − 1

2
(7.173)

NI(k, T ) =
2
π

∫ ∞

ωth(k)

[
ω2 + Ω2

k

2Ωk(ω2 − Ω2
k)

2

]{
n(ω)

[
σ0,r(k, ω) + σa,r(k, ω; T )

]
+

1
2
σa,r(k, ω;T )

}
dω ,

(7.174)

where ωth(k) =
[
k2 + (M1 + M2)2

] 1
2 is the two particle cut.

7.4.1 The approach to equilibrium:

Before we study the asymptotic distribution function we address the approach to equilibrium.

The time evolution of the (interpolating) number operator Nk(t) given by eqns. (7.90-7.92) is

completely determined by the real time evolution of the solution fk(t) given by eqn. (7.77). For

mP < |M1 −M2| the particle acquires a width through the two body decay of the heavier particle

in the bath and the particle pole is now embedded in the continuum for Q2 < (M1 −M2)2, which

is the relevant part of the spectral density is σb(k, ω, T ) given in eqn. (7.156). In the Breit Wigner

approximation, the spectral density is given by eqns. (7.94,7.93,7.95) with

Γk(T ) = Zk
σb(k,Wk(T ), T )

2Wk(T )
(7.175)

The real time evolution of the solution fk(t) in the Breit-Wigner approximation is given by eqn.

(7.100). Figure (7.7) displays both the exact solution (7.77) and the Breit-Wigner approximation
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Figure 7.7: The functions fk=0(t) and fBW
k=0 (t) vs tmP for g2/(16π2m2

P ) = 0.01 M1 = 4mP ; M2 =

mP ; T = 10mP . For these values of the parameters we find numerically: Z0(T ) = 0.998 , W0(T ) =

0.973mP , Γ0(T ) = 0.012mP . The exact solution and the Breit-Wigner approximation are indis-

tinguishable.

(7.100) for k = 0. The exact and approximate solutions are indistinguishable during the time scale

of the numerical evolution as gleaned from this figure.

The asymptotic long time evolution is determined by the behavior of the spectral density near

the thresholds and is typically of the form of a power law[174]. However, such asymptotic behavior

sets in at very long times, beyond the regime in which our numerical study is trustworthy. It is

numerically exceedingly difficult to extract the exponential relaxation from the power laws that

dominate at asymptotically long time because the amplitude becomes very small in the weak

coupling case.

The main conclusion is that the distribution function approaches thermalization and becomes

insensitive to the initial conditions for time scales t > τk = 1/2Γk(T ), where Γk(T ) is the quasipar-

ticle relaxation rate.

211



7.4.2 The asymptotic distribution function:

In the Breit-Wigner approximation and assuming a very narrow resonance near the physical particle

pole

ρII,r(k, ω, T ) ∼ 1
π

sign(ω) Γk

(ω2 − Ω2
k)

2 + Γ2
k

∼ sign(ω)δ(ω2 − Ω2
k) (7.176)

where in the second term on the right hand side the width has been neglected by assuming a very

narrow resonance at Ωk. Therefore in this narrow width approximation one would expect that the

different contributions are given by

NII(k, T ) ∼ n(Ωk) ; NI(k, T ) = O(g2) (7.177)

where n(Ωk) is the Boltzmann distribution function for the stable particle. This rather simple

analysis would lead to the conclusion that the corrections to the equilibrium abundance are per-

turbatively small.

However, even for weakly coupled theories we expect this simple argument to be incorrect

both in the high and low temperature regimes. The main reason for this expectation is that the

approximation (7.176) suggests that this argument neglects the fact that the spectral density has

support for frequencies smaller than the position of the physical particle pole (namely for |ω| 6= Ωk).

From the expression (7.173) it is clear that the region of small ω will lead to a substantial correction

since for ω ¿ T the Bose-Einstein distribution function in (7.173) becomes n(ω) ∼ T/ω >> 1,

thus the region of |ω| < Ωk and in particular |ω| ¿ T gives a non-trivial contribution to the

abundance. The region of spectral density for |ω| > Ωk will yield a much smaller, but non-negligible

contribution. Furthermore in the high temperature limit T À k, mP ,M1,2 the width is expected

to become large. This can be gleaned from the expression for σb(ω, k, T ) in eqn. (7.153), which

for T À ω1,2
p is proportional to T . This is clearly a statement that at high temperatures there is a

large population of heavy particles which results in a larger number of processes χ1 ↔ Φχ2 in the

medium, thereby increasing the width of the particle Φ. As the width of the spectral density near

the physical particle pole increases, the spectral density has larger support in the small ω region,

thereby increasing the off-shell contributions to the abundance. These arguments will be confirmed

both analytically and numerically below.

We now study numerically and analytically the asymptotic distribution function to assess pre-

cisely the magnitude and origin of the corrections to the equilibrium abundance. The parameter
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Figure 7.8: The spectral density ρII(k = 0, ω, T ) vs ω/mP for g2/(16π2m2
P ) = 0.01 M1 =

4mP ; M2 = mP and T/mp = 10, 30, 100 respectively.

space is fairly large, thus we consider separately the cases of small momenta k ¿ mP ,M1,M2, T

and the case of large momenta k À mP ,M1, M2, T choosing the unit of energy to be the zero

temperature pole mass of the particle, mP and keeping the value of the masses of the heavy fields

fixed with M1 > M2 + mP .

7.4.2.1 k = 0 The limit k = 0 of the spectral density can be easily obtained from the expressions

given above (7.154-7.156). Of particular importance is the high temperature limit of σb(0, ω, T )

since this contribution to the spectral density determines the width of the spectral function near

the physical particle pole Γ0(T ) given by eqn. (7.175).

A straightforward calculation leads to the following result in the limit T À mP , M1,2,

σb(0,mP , T )
2mP

=
g2T

8π2

[
m4

P + (M2
1 −M2

2 )2 − 2m2
P (M2

1 + M2
2 )

] 1
2

[
(M2

1 −M2
2 )2 −m4

P

] (7.178)

We note that this expression for the width is classical since restoring g2 → g2~ ; T → T/~ the

expression above is independent of ~. This is a consequence of the fact that the high tempera-

ture limit is completely determined by the Rayleigh-Jeans part of the Bose-Einstein distribution

function. As a result when the temperature is much larger than all mass scales, the width is pro-

portional to T and the spectral density becomes wider, enhancing the off-shell contributions. Fig.
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Figure 7.9: The ratio ∆(T ) = (N (0, T ) − n(mP ))/n(mP ) vs mP /T for g2/(16π2m2
P ) = 0.01

M1 = 4mP ; M2 = mP .

(7.8) displays the spectral density for several values of the temperature highlighting the broadening

for large temperature. It is clear from this figure that at very high temperatures perturbation

theory breaks down in this model since the width can become comparable to the physical mass

or the position of the pole. This situation has been previously noticed in a scalar field theory at

high temperatures, and a finite temperature renormalization group was introduced to provide a

non-perturbative resummation[175].

Restricting ourselves to the regime in temperature within which perturbation theory is still

reliable, namely for Γ0(T ) ¿ mP , we study the departure of the distribution function from the

Bose-Einstein form (for k = 0) numerically.

Figure (7.9) displays the quantity

∆(T ) =
N (k = 0, T )− n(mP )

n(mP )
(7.179)

for a weakly coupled case in the range of temperatures 1 ≤ T/mp ≤ 20 for M1 = 4mP , M2 = mP

within which we find numerically that Γ0(T )/mP ≤ 0.1 which we use as a reasonable criterion for

the validity of perturbation theory (see fig. 7.8).

This figure clearly indicates that even within the high temperature regime where perturbation

theory is reliable and the spectral density still features a rather narrow Breit-Wigner peak, there
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are substantial departures from the Bose-Einstein form in the equilibrium distribution function.

At low temperatures fig. (7.9) clearly displays an exponential suppression and the distribution

function essentially becomes the Bose-Einstein distribution. In this limit the width is extremely

small and the spectral density is almost a delta function on the physical particle mass shell, and

the off-shell effects are perturbatively small.

7.4.2.2 k À T, mP ,M1,2 In the limit of large momenta several interesting features emerge: i)

the width of the spectral density becomes very small, this is a consequence of the fact that there

are very few heavy states for large momenta in the heat bath if the momentum is large. The width

as a function of k is depicted in fig. (7.10), which displays clearly this behavior. ii) As a function of

the variable ω, the position of the peak in the spectral density becomes closer to the threshold for

k À mP ,M1,2. As a result of both these effects the spectral distribution becomes strongly peaked

near threshold and the threshold moves to larger values of the frequency, thus leaving behind a

larger region of the spectra off-shell for frequencies smaller than the position of the peak. The

spectral density while small away from the peak is, however, non-vanishing and the fact that there

is now a larger region in frequency ω below the (narrow) peak, brings about a competition of scales

as can be understood from the following argument. The very narrow peak (almost a delta function

at ω = Ωk ∼ k) leads to a contribution NII(k, T ) ∼ n(Ωk), which for k À T is ¿ 1. This on-shell

contribution competes against the off-shell contributions from integrating the spectral density for

ω < Ωk which is also very small because σb(k, ω, T )/Ω2
k ¿ 1 but for ω ¿ T is multiplied by the

Bose enhancement factor ∼ T/ω. The competition between the “on-shell” contribution n(Ωk) and

the off-shell contributions is studied numerically.

Fig. (7.11) displays both the Bose-Einstein distribution function n(Ωk) and the asymptotic

distribution function N (k, T ) in the limit k À T,mP ,M1,2.

It is clear from this figure that while the distribution function N (k, T ) is strongly suppressed

for k À T it is larger than the Bose-Einstein distribution. The main reason for this enhancement is

precisely the competition mentioned above, namely the position of the peak in the spectral density

moves towards threshold which for large k corresponds to large values of the frequency ω. Therefore

there is a large region in which the spectral density is very small but non-vanishing for ω < Ωk.

Clearly the part of the spectral density with support for ω > Ωk yields a much smaller contribution

to the distribution function. Furthermore, for ω ¿ T the factor n(ω) ∼ T/ω À 1 which enhances

further the off-shell contributions.
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Figure 7.10: The width Γ(k, T ) in units of mP vs k/mP for k À T for T = mP for g2/(16π2m2
P ) =

0.01 M1 = 4mP ; M2 = mP .

6 8 10 12 14 k/mP

0.00e0

2.00e-3

4.00e-3

6.00e-3

solid line = N(k)
dashed line = N BE(k)

 T=mP

Figure 7.11: The distribution functions N (k, T ) given by eqn. (7.172) (solid line) vs. the Bose-

Einstein distribution NBE(k, T ) (dashed line) as a function of k/mP for T = mP ; g2/(16π2m2
P ) =

0.01; M1 = 4mP ; M2 = mP .

These results in the different regimes can be summarized as follows:

• In the high temperature regime the larger abundance of heavier particles in the bath leads

to a broadening of the spectral density. This broadening in turn results in a larger off-shell
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contribution to the abundance N (k, T ) and an enhancement of the distribution function over

the Bose-Einstein result. The off-shell region of small frequency yields a substantial contribution

because of the factor n(ω) ∼ T/ω in (7.139). In the model considered perturbation theory breaks

down at high temperature and the imaginary part on-shell becomes classical. This situation

is akin to the case of a self-interacting bosonic field theory studied in ref. [175]. A high

temperature renormalization group resummation program such as in ref.[175] may be required

to provide a non-perturbative resummation.

• For momenta much larger than the mass scales and the temperature there is also a large

enhancement of the distribution function N (k, T ) over the Bose-Einstein result. In this case

the spectral density features a very narrow resonance near the position of the physical pole at

ω ' Ωk, which however moves closer to threshold. For large k the off-shell region of support of

the spectral density becomes larger and though the spectral density is strongly suppressed, the

off-shell contribution from the region ω < Ωk competes with the contribution from the on-shell

pole, namely the Bose-Einstein distribution function n(Ωk) because for k >> T n(Ωk) ¿ 1.

The off-shell contribution from the region ω << Ωk is comparable to or larger than n(Ωk) for

k À T and is enhanced in the region ω ¿ T by the factor n(ω) ∼ T/ω.

While these results may be particular to the model studied, we expect most of these features to

be robust and fairly general. In particular at high temperature it is physically reasonable to expect

a thermal broadening of the spectral density either from collisions, many-body decays or Landau

damping as in the case studied here. Broadening of the spectral function yields a larger contribution

from the small ω region which is enhanced further by the factor n(ω) ∼ T/ω for ω ¿ T . Therefore

a substantial departure of the distribution function N (k, T ) from the Bose-Einstein distribution is

expected at high temperature. A possible breakdown of perturbation theory in the high temperature

regime may require the implementation of a non-perturbative resummation procedure akin to that

introduced in ref.[175]. At low temperatures, much lower than the mass and momentum scales

a departure from simple Bose-Einstein is also expected. In this case even though the spectral

function features a sharp and narrow peak at a position very near the physical particle pole, the

Bose-Einstein distribution function is very small. Hence the off-shell region ω << Ωk of the spectral

function will lead to a substantial contribution which is further enhanced by the factor n(ω) ∼ T/ω

for ω ¿ T . Again because the temperature is much smaller than any of the scales, the spectral

density will be exponentially suppressed off shell and the equilibrium abundance will reflect this

suppression, but just as in the case studied here, may still be larger than the simple Bose-Einstein
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abundance. Of course our study within this particular model serves only as a guidance and the

details of the enhancement will depend on the theory under consideration, but the main lesson

learned here is that the off-shell, small frequency region of the spectral density yields a substantial

contribution to the equilibrium abundance in interacting theories.

7.5 BOLTZMANN KINETICS IN RENORMALIZED PERTURBATION

THEORY

It is important to understand the origin of the differences between the quantum kinetic equation

for the distribution function (7.90) and the usual quantum Boltzmann equation. Therefore in this

section we provide a derivation of the quantum Boltzmann equation in renormalized perturbation

theory to highlight the origin of the different equilibrium abundances. We assume that the bath is

in equilibrium just as we did in our derivation of the effective action and the time evolution for the

distribution function in the previous sections.

The quantum Boltzmann equation is a differential equation for the single particle distribution

function. However, as we have discussed in detail above, the physical particles have mass mP

and the Heisenberg field operators create physical particles out of the vacuum with an amplitude

determined by the wave function renormalization. Therefore in order to account for the mass

and wave function renormalization, and to obtain the kinetic Boltzmann equation for the physical

particles it is convenient to re-write the Lagrangian by introducing counterterms, namely

L =
1
2
∂µΦr∂

µΦr − 1
2
m2

P Φ2
r +

2∑

i=1

[
1
2
∂µχi∂

µχi − 1
2
M2

i χ2
i

]
− grΦr χ1 χ2 + Lcount + Lint[χ1 ; χ2]

(7.180)

Lcount =
1
2
(Z − 1)∂µΦr∂

µΦr − 1
2
∆m2Φ2

r (7.181)

where gr =
√

Zg and we assume that the renormalization aspects of the fields χ1,2 had already been

included in Lint[χ1 ; χ2] . The counterterms in (7.181) are treated systematically in perturbation

theory along with the cubic interaction. Note that Z − 1 , ∆m2 are both of O(g2).

The renormalized field Φr is expanded in terms of creation and annihilation operators of physical

Fock states,
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Φr(~x, t) =
1√
V

∑

~k

Φ~k
(t)ei~k·~x (7.182)

Φ~k
(t) =

1√
2Ωk

[
a~k

e−iΩk t + a†−~k
eiΩk t

]
(7.183)

and a similar expansion for the bath fields χ1, χ2 in terms of creation and annihilation operators

and the corresponding frequencies ω
(1,2)
k . The total interaction Lagrangian is

Lint =
gr√
V

∑

~k

∑

~p

Φk χ1,~p χ
2,−~p−~k

+ Lcount (7.184)

where Lcount is the counterterm Lagrangian. The kinetic Boltzmann equation for the occupation

number of the Fock quanta of the field Φ is

dNk

dt
=

dNk

dt

∣∣∣∣∣
gain

− dNk

dt

∣∣∣∣∣
loss

(7.185)

The gain and loss terms are obtained by calculating the transition probabilities per unit time

for processes that lead to the increase (gain) and decrease (loss) the occupation number, namely

dNk(t)/dt = dPk/dt. Within the framework of the kinetic description such calculation is carried

out by implementing Fermi’s Golden rule. The processes that lead to the increase or decrease of

the population are read-off the interaction and energy conservation emerges as a consequence of

taking the long time limit as is manifest in Fermi’s Golden rule. The cubic interaction term in Lint

gives rise to several different processes which are gleaned by expanding the product in terms of the

creation and annihilation operators of all the fields involved. The different phases that enter in

such terms determine the energy conservation delta functions in Fermi’s Golden rule. Some of the

processes are depicted in fig. (7.5). When mP < M1,M2 the quanta of the field Φ cannot decay

into those of the bath fields, however if M1 > M2 + mP (or M2 > M1 + mP ) the heavier bath field

can decay into particles of Φ therefore increasing the population. This process is depicted in fig.

(7.5-(b)). The inverse process contributes to the loss term. Let us consider the case M1 > M2 +mP

(the case M2 > M1 + mP is similar by M2 ↔ M1). The only process that leads to the gain in the

population by energy conservation is χ1 → Φ χ2 and consequently the only process that leads to the

loss of population with energy conservation is the inverse process of annihilation Φχ2 → χ1. The

calculation of the gain and loss terms is as follows: consider the initial Fock state |N~k
, n

(1)
~p , n

(2)

~p+~k
〉

where N is the occupation of particles of Φ and n(1,2) that for the respective bath fields. To lowest
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order in the coupling g the interaction from the counterterm Lagrangian does not contribute to

the gain or loss, but only to forward scattering since these terms are already of O(g2) and the

transition probabilities will be at least of (g3). Thus to lowest order O(g2), the gain term arises

from the following matrix element

Mgain = − igr√
V
〈N~k

+ 1, n
(1)
~p − 1, n

(2)

~p+~k
+ 1

∣∣∣
∫ ∞

−∞
dtΦk(t) χ1,~p(t) χ

2,−~p−~k
(t)

∣∣∣N~k
, n

(1)
~p , n

(2)

~p+~k
〉 (7.186)

The limits in the time integral had been extended to ±∞ according to Fermi’s Golden rule which

leads to energy conservation. The calculation of this matrix element is straightforward, taking the

absolute value squared of this matrix element, summing over ~p and averaging over the occupation

numbers of the particles in the bath, which is assumed in equilibrium, one obtains the inclusive

transition probability

Pgain =
2 t

2Ωk

g2

32π2

(
1 + Nk

)∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

n(ω(1)
~p )

[
1 + n(ω(2)

~p+~k
)
]
δ
(
Ωk + ω

(2)

~p+~k
− ω

(1)
~p

)
(7.187)

where n(ω(1,2)
~p ) are the Bose-Einstein distribution functions since the thermal bath is assumed to

remain in equilibrium. To obtain the above expression we have used
∣∣∣2πδ

(
Ωk + ω

(2)

~p+~k
− ω

(1)
~p

) ∣∣∣
2

=

2πδ
(
Ωk + ω

(2)

~p+~k
− ω

(1)
~p

)
t where t is the total interaction time. A similar calculation leads to the

total transition probability for the loss process:

Ploss =
2 t

2Ωk

g2

32π2
Nk

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

[
1 + n(ω(1)

~p )
]
n(ω(2)

~p+~k
) δ

(
Ωk + ω

(2)

~p+~k
− ω

(1)
~p

)
(7.188)

The kinetic equation can now be written in the following form

dNk

dt
= (1 + Nk) γ>

k −Nk γ<
k (7.189)

The gain and loss rates are given by

γ>
k =

2
2Ωk

g2

32π2

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

n(ω(1)
~p )

[
1 + n(ω(2)

~p+~k
)
]
δ
(
Ωk + ω

(2)

~p+~k
− ω

(1)
~p

)
(7.190)

γ<
k =

2
2Ωk

g2

32π2

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

[
1 + n(ω(1)

~p )
]
n(ω(2)

~p+~k
) δ

(
Ωk + ω

(2)

~p+~k
− ω

(1)
~p

)
(7.191)
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Since the bath particles are in thermal equilibrium with a Bose-Einstein distribution function

the detailed balance condition follows, namely

γ>
k = e−β Ωk γ<

k (7.192)

The solution of the Boltzmann kinetic equation (7.189) is the following

Nk(t) = n(Ωk) + [Nk(0)− n(Ωk)]e−γk t (7.193)

where

γk = γ<
k − γ>

k =
2

2Ωk

g2

32π2

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

[
n(ω(2)

~p+~k
)− n(ω(1)

~p )
]
δ
(
Ωk − ω

(1)
~p + ω

(2)

~p+~k

)
(7.194)

Comparing this expression with those for the imaginary part of the self energy given by the

expressions (7.150,7.151,7.152,7.153) it is straightforward to see that

γk = 2
ImΣ̃R

r (k, Ωk, T )
2Ωk

(7.195)

where

ImΣ̃R
r (k, Ωk, T ) = σb,r(k, Ωk, T ) (7.196)

This expression for the relaxation rate should be compared to the decay rate for the single

quasiparticle Γk given by eqn. (7.96,7.100)). Since the quasiparticle residue in perturbation theory

is Zk(T ) = 1 +O(g2) and the difference between the quasiparticle frequency Wk(T ) and the single

particle frequency Ωk is of O(g2) to leading order in the coupling g, the relaxation rate of the

distribution function γk and that of the single quasiparticle Γk (see eqn. (7.96)) is

γk = 2Γk +O(g4) (7.197)

We have provided this derivation of the usual quantum Boltzmann equation and its solution in

the case when the bath remains in equilibrium to highlight the similarities and differences with the

real time evolution of the distribution function given by eqn. (7.90):

• The derivation above clearly shows that the Fock states that enter in the matrix elements (7.186)

are the asymptotic free field Fock states associated with physical particles of mass mP . This is
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similar to the definition of the interpolating number operator (7.82) which is based on the free

field asymptotic physical states, and includes both mass and wave-function renormalization.

• By implementing Fermi’s golden rule, namely taking the time interval to infinity, thereby en-

forcing the on shell delta function, extracting the linear time dependence and dividing by time

to provide a local differential equation for the time evolution of the distribution function all

memory aspects have been neglected. Namely implementing Fermi’s golden rule results in ne-

glecting memory effects, which in turn results in only on-shell processes contributing to the rate

equation. Contrary to this, the real time evolution of the distribution function (7.90) includes

memory effects as is manifest in the time integrals (7.91,7.92) in (7.90). In turn these time inte-

grals keep memory of the past time evolution, and at asymptotically long time lead to the full

spectral density as manifest in eqn. (7.103), not just an on-shell delta function. The presence

of the full spectral density in the asymptotic distribution includes the off-shell contributions

discussed in the previous section. This discussion brings to the fore that one of the main origins

of the differences can be traced to memory effects and the fact that the real time evolution

of the distribution function (7.90) is non-Markovian. The memory of the past time evolution

translates in off-shell processes through the full spectral density.

• As emphasized in section (7.2) the expression (7.90) for the quantum kinetic distribution func-

tion implies a Dyson-like resummation of the perturbative expansion and includes consistently

the renormalization aspects associated with asymptotic single particle states, namely the cor-

rect pole mass and the wave function renormalization. The dependence of the asymptotic

distribution function on the full spectral density is a consequence of the fluctuation-dissipation

relation.

7.6 CONCLUSIONS

Motivated by a critical reassessment of the applicability of Boltzmann kinetics in the early Universe,

in this chapter we studied the abundance of physical quanta of a field Φ in a thermal plasma by

introducing a quantum kinetic description based on the non-equilibrium effective action for this

field. We focused on understanding the equilibrium abundance of particles that are stable in the

vacuum and interact with heavier particles which constitute a thermal bath.

The non-equilibrium effective action is obtained by integrating out the heavy particles to lowest
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order in the coupling of the field Φ to the bath but in principle to all orders in the coupling

of the heavy fields amongst them. We show that the non-equilibrium effective action leads to

a Langevin stochastic description with a Gaussian but colored noise and a non-Markovian self-

energy kernel. The correlation function of the noise and the non-Markovian self-energy kernel are

related by a generalized fluctuation dissipation relation. The correlation functions are determined

by the solution of this Langevin equation which furnishes a Dyson resummation of the perturbative

expansion. We introduced a definition of the single physical particle distribution function in terms

of a fully renormalized interpolating Heisenberg number operator based on asymptotic theory. The

real time evolution of this single particle distribution function is completely determined by the

solution of the Langevin equation.

We show that in a heat bath at finite temperature this number operator becomes insensitive to

the initial conditions after a time scale ≈ 1/2Γk(T ), where Γk(T ) is the single quasiparticle relax-

ation rate. We prove that the asymptotic long time limit of this distribution function describes full

thermalization of the Φ particle with the thermal bath. The equilibrium distribution function de-

pends on the full spectral density and includes off-shell corrections as a result of the non-Markovian

real time evolution (with memory) and the fluctuation-dissipation relation. Its expression is given

by eqn. (7.139). We argue that while we obtained the distribution function in the case of a field

linearly coupled to a thermal bath of heavier particles, the final form of the distribution function

at asymptotically long time is much more generally applicable.

In order to provide a detailed assessment of novel specific features of the distribution function

in particular departure from the usual Bose-Einstein distribution, we considered a model in which

the thermal bath is described by two heavy bosonic fields χ1,2 coupled to the field Φ as g Φχ1 χ2,

with M1 > M2 + mp and mp the pole mass of the field Φ. We obtained the real time effective

action at one loop level. We find that the in-medium processes of two body decay of the heavier

particle, and its recombination, namely χ1 ↔ χ2Φ results in a width for the Φ-particle and a

broadening of its spectral density. A detailed study of the single (physical) particle distribution

function reveals substantial corrections to the Bose-Einstein distribution at high temperature as

well as low temperature but large momentum. At high temperature the spectral density broadens

dramatically and the off-shell contributions become very substantial resulting in an enhancement

of the abundance with respect to the Bose-Einstein distribution. We found that at very high

temperatures, perturbation theory breaks down and a resummation of the perturbative expansion

via the renormalization group at finite temperature may be required[175]. This case must be studied

223



further.

In the limit where the momentum of the particle is much larger than the temperature and the

masses, our analysis also reveals a substantial departure from the Bose-Einstein distribution. In

this case the spectral density is sharply peaked near the (zero temperature) physical pole mass,

but the position of the peak moves to higher energies. As a result, the spectral density features

off-shell contributions in a large region of frequencies smaller than the position of the peak. The

small frequency region is further enhanced by temperature factors and these off shell contributions,

while exponentially small, compete with the exponentially small on-shell contribution which yields

the Bose-Einstein distribution. As a result the distribution function, while strongly suppressed at

high momenta much larger than the temperature (and mass scales), is considerably larger than the

Bose-Einstein abundance predicted by the usual Boltzmann equation.

In order to highlight the origin of the enhancement, we derived the Boltzmann equation in

renormalized perturbation theory up to the same order in the coupling to the bath as the non-

equilibrium effective action, which is the basis for the quantum kinetic description. This derivation

makes manifest the origin of the discrepancy: the usual Boltzmann equation is based on Fermi’s

golden rule, which requires taking a long time limit in the transition probability. In taking the long

time limit and extracting the asymptotic behavior of the transition probability energy conservation

is manifest as an on-shell delta function, and all memory effects have been neglected. Furthermore

in considering the transition probability in a gain-loss balance equation, interference phenomena

have been neglected. As a result the Boltzmann equation neglects off-shell contributions. Pre-

cisely these off-shell contributions from the support of the spectral density away from its peak and

near the particle mass shell, are responsible for the departure from the Bose-Einstein result. The

enhancement over the Bose-Einstein distribution is a consequence of the off-shell support of the

spectral density at frequencies smaller than the position of the peak.

Although these results were obtained within the particular specific model studied here, the origin

of the discrepancies suggests these to be much more general. The spectral density of a particle that

is stable at zero temperature features an on-shell delta function below the multiparticle thresholds.

However in a medium this peak will be broadened by different processes and the particle becomes a

quasiparticle. This unavoidable feature of an interacting particle in a medium results in a broader

spectral density with a region of support at frequencies smaller than the position of the peak, which

leads to a larger contribution to the abundance as compared to the Bose-Einstein distribution which

is the “on-shell” result.
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Cosmological consequences. An important feature of the distribution function (7.139) is that

it is exponentially suppressed at low temperatures since all the intermediate states are heavy and

therefore exponentially suppressed at low temperatures. Therefore the off-shell contributions are

strongly suppressed leading to the conclusion that the low temperature abundance is exponentially

suppressed. This is in agreement with the results of refs.[156, 158]. Therefore we do not expect

the low temperature enhancement of the abundance to be of any practical relevance for cold dark

matter candidates.

The consequences for the cosmic microwave background depend on the temperature regime.

For temperatures much larger than the electron mass the photons in the plasma propagate as in-

medium quasiparticles of two species: longitudinal and transverse plasma excitations (plasmons).

The plasma frequency in the high temperature regime is of the order ωpl ∝ √
αem T [171, 172]. The

corrections to the dispersion relations (plasma frequency) arise from intermediate states of electron-

positron pairs and yield a contribution to the spectral density with support below the light cone.

These are Landau damping processes[171, 172] while those that yield the width arise from Compton

scattering and pair annihilation and are of higher order. The plasmon width (up to logarithmic

corrections) is of order Γ ∝ α2
emT . Thus the spectral function for photons features support both

above and below the light cone, the latter is a result of Landau damping processes[171, 172]. This

latter contribution is important because it yields support in the small frequency region which is

Bose enhanced. Both the plasma frequency and the width are strong functions of temperature

and we expect substantial corrections to the power spectrum of the cosmic microwave background

for T À 1 Mev. However, these potential corrections are observable only indirectly, possibly

through nucleosynthesis. For temperatures well below the electron mass the lowest order O(αem)

correction to the spectral density arises from an electron loop and an electron-positron loop (we

ignore the contribution from protons). The former gives a Landau damping cut below the light cone

akin to the contribution (7.153)[171, 172] and the latter gives a two particle cut above the pair-

production threshold. Both are off-shell contributions and yield corrections to the spectral density

which are proportional to the electron number density ( equal to the proton number density) ne ∼
xe(Ωbh

2
0)(1+z)3×10−5cm−3, with xe the ionization fraction. The width of the spectral density near

the mass shell results from Compton scattering and is of order α2
em. It is approximately given by Γ ∼

σT ne

√
kBT
me

and σT is the Thompson scattering cross section. During recombination the ionization

fraction diminishes precipitously within a window of redshift ∆z ∼ 100 which is the width of the

last scattering surface. This rapid vanishing of the ionization fraction and consequently of the (free)
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electron density entails that the broadening of the spectrum and the spectral distortions become

vanishingly small at the end of recombination. At decoupling the mean free path is comparable to

the size of the horizon and the spectral density for photons is basically that of free field theory. Hence

recombination erases any observable vestige of spectral distortion through many body processes and

spectral broadening, thus there are no observable consequences of these effects in the CMB.

226



8.0 NON EQUILIBRIUM DYNAMICS OF MIXING, OSCILLATIONS AND

EQUILIBRATION: A MODEL STUDY

8.1 INTRODUCTION

Beginning with pioneering work on neutrino mixing in media[60, 124, 176, 177, 178], the study of

the dynamical evolution has been typically cast in terms of single particle “flavor states” or matrix

of densities that involve either a non-relativistic treatment of neutrinos or consider flavor neutrinos

as massless. The main result that follows from these studies is a simplified set of Bloch equations

with a semi-phenomenological damping factor (for a thorough review see[26]).

Most of these approaches involve in some form the concept of distribution functions for “flavor

states”, presumably these are obtained as expectation values of Fock number operators associated

with flavor states. However, there are several conceptual difficulties associated with flavor Fock

states, still being debated[89, 90, 91, 128, 179, 180, 181, 182].

The importance of neutrino mixing and oscillations, relaxation and equilibration in all of

these timely aspects of cosmology and astroparticle physics warrant a deeper scrutiny of the non-

equilibrium phenomena firmly based on quantum field theory.

Our ultimate goal is to study the non-equilibrium dynamics of oscillation, relaxation and equili-

bration directly in the quantum field theory of weak interactions bypassing the ambiguities associ-

ated with the definition of flavor Fock states. We seek to understand the nature of the equilibrium

state: the free field Hamiltonian is diagonal in the mass basis, but the interactions are diagonal in

the flavor basis, however, equilibration requires interactions, hence there is a competition between

mass and flavor basis, which leads to the question of which is the basis in which the equilibrium

density matrix is diagonal. Another goal is to obtain the dispersion relations and the relaxation

rates of the correct quasiparticle excitations in the medium.

In this chapter, we make progress towards these goals by studying a simpler model of two
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“flavored” mesons representing the electron and muon neutrinos that mix via an off-diagonal mass

matrix and interact with other mesons which represent either hadrons (neutrons and protons)

or quarks and charged leptons via an interaction vertex that models the charged current weak

interaction. The meson fields that model hadrons (or quarks) and charged leptons are taken as

a bath in thermal equilibrium. In the standard model the assumption that hadrons (or quarks)

and charged leptons can be considered as a bath in thermal equilibrium is warranted by the fact

that their strong and electromagnetic interactions guarantee faster equilibration rates than those

of neutrinos.

This model bears the most relevant characteristics of the standard model Lagrangian augmented

by an off diagonal neutrino mass matrix and will be seen to yield a remarkably faithful description

of oscillation and relaxational dynamics in a thermal medium at high temperature. It effectively

describes the thermalization dynamics of neutrinos in a medium at high temperature such as the

early Universe for T & 3MeV[11, 26, 183].

Furthermore, Dolgov et. al.[184] argue that the spinor nature of the neutrinos is not relevant

to describe the dynamics of mixing at high energies, thus we expect that this model captures the

relevant dynamics.

An exception is the case of neutrinos in supernovae, a situation in which neutrino degeneracy,

hence Pauli blocking, becomes important and requires a full treatment of the fermionic aspects of

neutrinos. Certainly the quantitative aspects such as relaxation rates must necessarily depend on

the fermionic nature. However, we expect that a bosonic model will capture, or at minimum provide

a guiding example, of the most general aspects of the non-equilibrium dynamics. The results found

in our study lend support to this expectation.

While meson mixing has been studied previously[185], mainly motivated by mixing in the neutral

kaon and pseudoscalar η, η′ systems, our focus is different in that we study the real time dynamics

of oscillation, relaxation and equilibration in a thermal medium at high temperature including

radiative corrections with a long view towards understanding general aspects that apply to neutrino

physics in the high temperature environment of the early Universe.

While neutrino equilibration in the early Universe for T & 3MeV prior to BBN is undisputable[11,

26, 183], the main questions that we address in this article are whether the equilibrium density

matrix is diagonal in the flavor or mass basis and the relation between the relaxation rates of the

propagating modes in the medium.

Strategy: the meson fields that model flavor neutrinos are treated as the “system” while those
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that describe hadrons (or quarks) and charged leptons, as the “bath” in thermal equilibrium. An

initial density matrix is evolved in time and the “bath” fields are integrated out up to second order

in the coupling to the system, yielding a “reduced density matrix” which describes the dynamics of

correlation functions solely of system fields (neutrinos). This program pioneered by Feynman and

Vernon[164] for coupled oscillators (see also[165, 168]) is carried out in the interacting theory by

implementing the closed-time path-integral representation of a time evolved density matrix[141].

This method yields the real time non-equilibrium effective action[186] including the self-energy

which yields the “index of refraction” correction to the mixing angles and dispersion relations[57]

in the medium and the decay and relaxation rates of the quasiparticle excitations. The non-

equilibrium effective action thus obtained yields the time evolution of correlation and distribution

functions and expectation values in the reduced density matrix[186]. The approach to equilibrium

is determined by the long time behavior of the two point correlation function and its equal time

limit, the one-body density matrix. The most general aspects of the dynamics of mixing and

equilibration are completely determined by the spectral properties of the correlators of the bath

degrees of freedom in equilibrium.

In section (8.2) we introduce the model and discuss the ambiguities in defining flavor Fock

operators, states and distribution functions. In section (8.3) we obtain the reduced density matrix,

the non-equilibrium effective action and the Langevin-like equations of motion for the expectation

value of the fields. In section (8.4) we provide the general solution of the Langevin equation. In

section (8.5) we obtain the dispersion relations, mixing angles and decay rates of quasiparticle

modes in the medium. In this section an effective Weisskopf-Wigner description of the long time

dynamics is derived. In section (8.6) we study the approach to equilibrium in terms of the one-body

density matrix. In this section we discuss the consequences for “sterile neutrinos”. Section (8.7)

summarizes our conclusions.

8.2 THE MODEL

We consider a model of mesons with two flavors e , µ in interaction with a “charged current”

denoted W and a “flavor lepton” χα modeling the charged current interactions in the EW model.
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In terms of field doublets

Φ =

(
φe

φµ

)
; X =

(
χe

χµ

)
(8.1)

the Lagrangian density is

L =
1
2

{
∂µΦT ∂µΦ− ΦTM2Φ

}
+ L0[W,χ] + G W ΦT ·X + Gφ2

eχ
2
e + Gφ2

µχ2
µ (8.2)

where the mass matrix is given by

M2 =


 M2

ee M2
eµ

M2
eµ M2

µµ


 (8.3)

where L0[W,χ] is the free field Lagrangian density for W,χ which need not be specified. The mesons

φe,µ play the role of the flavored neutrinos, χe,µ the role of the charged leptons and W a charged

current, for example the proton-neutron current pγµ(1 − gAγ5)n or a similar quark current. The

coupling G plays the role of GF . As it will be seen below, we do not need to specify the precise

form, only the spectral properties of the correlation function of this current are necessary.

Passing from the flavor to the mass basis for the fields φe,µ by an orthogonal transformation

Φ = U(θ) ϕ


 φe

φµ


 = U(θ)

(
ϕ1

ϕ2

)
; U(θ) =

(
cos θ sin θ

− sin θ cos θ

)
(8.4)

where the orthogonal matrix U(θ) diagonalizes the mass matrix M2, namely

U−1(θ)M2 U(θ) =

(
M2

1 0

0 M2
2

)
(8.5)

In the flavor basis M can be written as follows

M2 = M
2
1+

δM2

2


 − cos 2θ sin 2θ

sin 2θ cos 2θ


 (8.6)

where we introduced

M
2 =

1
2
(M2

1 + M2
2 ) ; δM2 = M2

2 −M2
1 . (8.7)
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8.2.1 Mass and flavor states:

It is convenient to take the spatial Fourier transform of the fields φα; ϕi and their canonical momenta

πα = φ̇α; υi = ϕ̇i with α = e, µ and i = 1, 2 and write (at t=0),

φα(~x) =
1√
V

∑

~k

φ
α,~k

ei~k·~x ; ϕi(~x) =
1√
V

∑

~k

ϕ
i,~k

ei~k·~x

πα(~x) =
1√
V

∑

~k

π
α,~k

ei~k·~x ; υi(~x) =
1√
V

∑

~k

υ
i,~k

ei~k·~x (8.8)

in these expressions we have denoted the spatial Fourier transforms with the same name to avoid

cluttering of notation but it is clear from the argument which variable is used. The free field Fock

states associated with mass eigenstates are obtained by writing the fields which define the mass

basis ϕi in terms of creation and annihilation operators,

ϕ
i,~k

=
1√

2ωi(k)

[
a

i,~k
+ a†

i,−~k

]
; υ

i,~k
=
−iωi(k)√

2ωi(k)

[
a

i,~k
− a†

i,−~k

]
(8.9)

with

ωi(k) =
√

k2 + M2
i ; i = 1, 2 (8.10)

The annihilation (a
i,~k

) and creation (a†
i,~k

) operators obey the usual canonical commutation relations,

and the free Hamiltonian in the mass basis is the usual sum of independent harmonic oscillators

with frequencies ωi(k). One can, in principle, define annihilation and creation operators associated

with the flavor fields a
α,~k

, a†
α,~k

respectively in a similar manner

φ
α,~k

=
1√

2Ωα(k)

[
a

α,~k
+ a†

α,−~k

]
; π

α,~k
=
−iΩα(k)√

2Ωα(k)

[
a

α,~k
− a†

α,−~k

]
(8.11)

with the annihilation (a
α,~k

) and creation (a†
α,~k

) operators obeying the usual canonical commutation

relations. However, unlike the case for the mass eigenstates, the frequencies Ωα(k) are arbitrary.

Any choice of these frequencies furnishes a different Fock representation, therefore there is an

intrinsic ambiguity in defining Fock creation and annihilation operators for the flavor fields since

these do not have a definite mass. In references[89, 90, 91] a particular assignment of masses has

been made, but any other is equally suitable. The orthogonal transformation between the flavor and

mass fields eqn. (9.4), leads to the following relations between the flavor and mass Fock operators,
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a
e,~k

= cos θ

[
a

1,~k
Ae,1(k) + a†

1,−~k
Be,1(k)

]
+ sin θ

[
a

2,~k
Ae,2(k) + a†

2,−~k
Be,2(k)

]
(8.12)

a
µ,~k

= cos θ

[
a

2,~k
Aµ,2(k) + a†

2,−~k
Bµ,2(k)

]
− sin θ

[
a

1,~k
Aµ,1(k) + a†

1,−~k
Bµ,1(k)

]
(8.13)

where Aα,i,Bα,i are the generalized Bogoliubov coefficients

Aα,i =
1
2

(√
Ωα(k)
ωi(k)

+

√
ωi(k)
Ωα(k)

)
; Bα,i =

1
2

(√
Ωα(k)
ωi(k)

−
√

ωi(k)
Ωα(k)

)
. (8.14)

These coefficients obey the condition

(
A2

α,i −B2
α,i

)
= 1 (8.15)

which guarantees that the transformation between mass and flavor Fock operators is formally

unitary and both sets of operators obey the canonical commutation relations for any choice of the

frequencies Ωα(k). Neglecting the interactions, the ground state |0 > of the Hamiltonian is the

vacuum annihilated by the Fock annihilation operators of the mass basis,

a
i,~k
|0 >= 0 for all i = 1, 2 ,~k . (8.16)

In particular the number of flavor Fock quanta in the non-interacting ground state, which is

the vacuum of mass eigenstates is

< 0|a†
e,~k

a
e,~k
|0 > = cos2 θ

[
Ωe(k)− ω1(k)

]2

4Ωe(k) ω1(k)
+ sin2 θ

[
Ωe(k)− ω2(k)

]2

4Ωe(k) ω2(k)
(8.17)

< 0|a†
µ,~k

a
µ,~k
|0 > = cos2 θ

[
Ωµ(k)− ω2(k)

]2

4Ωµ(k) ω2(k)
+ sin2 θ

[
Ωµ(k)− ω1(k)

]2

4Ωµ(k) ω1(k)
(8.18)

namely the non-interacting ground state (the vacuum of mass eigenstates) is a condensate of “flavor”

states[89, 90, 91] with an average number of “flavored particles” that depends on the arbitrary

frequencies Ωα(k). Therefore these “flavor occupation numbers” or “flavor distribution functions”

are not suitable quantities to study equilibration.

Assuming that Ωα(k) → k when k → ∞, in the high energy limit A → 1 ; B → 0 and in this

high energy limit

a
e,~k
≈ cos θ a

1,~k
+ sin θ a

2,~k
; a

µ,~k
≈ cos θa

2,~k
− sin θa

1,~k
(8.19)
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Therefore, under the assumption that the arbitrary frequencies Ωα(k) → k in the high energy

limit, there is an approximate identification between Fock states in the mass and flavor basis in this

limit. However, such identification is only approximate and only available in the asymptotic regime

of large momentum, but becomes ambiguous for arbitrary momenta. In summary the definition

of flavor Fock states is ambiguous, the ambiguity may only be approximately resolved in the very

high energy limit, but it is clear that there is no unique definition of a flavor distribution function

which is valid for all values of momentum k and that can serve as a definite yardstick to study

equilibration. Even the non-interacting ground state features an arbitrary number of flavor Fock

quanta depending on the arbitrary choice of the frequencies Ωα(k) in the definition of the flavor

Fock operators. This is not a consequence of the meson model but a general feature in the case of

mixed fields with similar ambiguities in the spinor case[182].

We emphasize that while the flavor Fock operators are ambiguous and not uniquely defined,

there is no ambiguity in the flavor fields φα which are related to the mass fields ϕi via the unitary

transformation (9.4). While there is no unambiguous definition of the flavor number operator or

distribution function, there is an unambiguous number operator for the Fock quanta in the mass

basis Ni(k) = a†
i,~k

a
i,~k

, whose expectation value is the distribution function for mass Fock states.

8.3 REDUCED DENSITY MATRIX AND NON-EQUILIBRIUM EFFECTIVE

ACTION

Our goal is to study the equilibration of neutrinos with a bath of hadrons or quarks and charged

leptons in thermal equilibrium at high temperature. This setting describes the thermalization of

neutrinos in the early Universe prior to BBN, for temperatures T & 3MeV[11, 26, 183].

We focus on the dynamics of the “system fields”, either the flavor fields φα or alternatively the

mass fields ϕi. The strategy is to consider the time evolved full density matrix and trace over the

bath degrees of freedom χ, W . It is convenient to write the Lagrangian density (8.2) as

L[φα, χα,W ] = L0[φ] + L0[W,χ] + GφαOα + Gφ2
αχ2

α (8.20)

with an implicit sum over the flavor label α = e, µ, where

Oα = χα W . (8.21)
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L0[· · · ] are the free Lagrangian densities for the fields φα, χα,W respectively. The fields φα are

considered as the “system” and the fields χα,W are treated as a bath in thermal equilibrium at a

temperature T ≡ 1/β. We consider a factorized initial density matrix at a time ti = 0 of the form

ρ̂(0) = ρ̂φ(0)⊗ e−β H0[χ,W ] (8.22)

where H0[χ,W ] is Hamiltonian for the fields χ,W . Although this factorized form of the initial

density matrix leads to initial transient dynamics, we are interested in the long time dynamics,

in particular in the long time limit. The bath fields χα,W will be “integrated out” yielding a

reduced density matrix for the fields φα in terms of an effective real-time functional, known as the

influence functional[164] in the theory of quantum brownian motion. The reduced density matrix

can be represented by a path integral in terms of the non-equilibrium effective action that includes

the influence functional. This method has been used extensively to study quantum brownian

motion[164, 165], and quantum kinetics[168, 186].

In the flavor field basis the matrix elements of ρ̂φ(0) are given by

〈φα|ρ̂φ(0)|φ′β〉 = ρφ;0(φα;φ′β) (8.23)

or alternatively in the mass field basis

〈ϕi|ρ̂ϕ(0)|ϕ′j〉 = ρϕ;0(ϕi;ϕ′j) . (8.24)

The time evolution of the initial density matrix is given by

ρ̂(tf ) = e−iH(tf−ti)ρ̂(ti)eiH(tf−ti) , (8.25)

where the total Hamiltonian H is

H = H0[φ] + H0[χ,W ] + HI [φ, χ, W ] . (8.26)

The calculation of correlation functions is facilitated by introducing currents coupled to the different

fields. Furthermore since each time evolution operator in eqn. (8.25) will be represented as a path

integral, we introduce different sources for forward and backward time evolution operators, referred

to as J+, J− respectively. The forward and backward time evolution operators in presence of sources

are U(tf , ti; J+), U−1(tf , ti, J
−) respectively.

We will only study correlation functions of the “system” fields φ (or ϕ in the mass basis),

therefore we carry out the trace over the χ and W degrees of freedom. Since the currents J±
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allow us to obtain the correlation functions for any arbitrary time by simple variational derivatives

with respect to these sources, we take tf → ∞ without loss of generality. The non-equilibrium

generating functional is given by[168, 186]

Z[j+, j−] = TrU(∞, ti; J+)ρ̂(ti)U−1(∞, ti, J
−) , (8.27)

where J± stand collectively for all the sources coupled to different fields. Functional derivatives with

respect to the sources J+ generate the time ordered correlation functions, those with respect to J−

generate the anti-time ordered correlation functions and mixed functional derivatives with respect

to J+, J− generate mixed correlation functions. Each one of the time evolution operators in the

generating functional (8.27) can be written in terms of a path integral: the time evolution operator

U(∞, ti; J+) involves a path integral forward in time from ti to t = ∞ in presence of sources J+,

while the inverse time evolution operator U−1(∞, ti, J
−) involves a path integral backwards in time

from t = ∞ back to ti in presence of sources J−. Finally the equilibrium density matrix for the

bath e−β H0[χ,W ] can be written as a path integral along imaginary time with sources Jβ. Therefore

the path integral form of the generating functional (8.27) is given by

Z[j+, j−] =
∫

DΦiDΦ′i ρΦ,i(Φi; Φ′i)
∫
DΦ±Dχ±DW±DχβDW β eiS[Φ±,χ±,W±;J±Φ ;J±χ ;J±W ] (8.28)

with the boundary conditions Φ+(~x, ti) = Φi(~x) ; Φ−(~x, ti) = Φ
′
i(~x). The trace over the bath fields

χ,W is performed with the usual periodic boundary conditions in Euclidean time.

The non-equilibrium action is given by

S[Φ±, χ±;J±Φ ; J±χ ;J±W ] =
∫ ∞

ti

dtd3x
[
L0(φ+) + J+

φ φ+ − L0(φ−)− J−φ φ−
]

+
∫

C
d4x

{
L0[χ,W ] + Jχχ + JW W + G φαOα + Gφ2

αχ2
α

}
(8.29)

where C describes the following contour in the complex time plane: along the forward branch

(ti, +∞) the fields and sources are Φ+, χ+, J+
χ , along the backward branch (∞, ti) the fields and

sources are Φ−, χ−, J−χ and along the Euclidean branch (ti, ti − iβ) the fields and sources are

Φ = 0;χβ, Jβ
χ . Along the Euclidean branch the interaction term vanishes since the initial density

matrix for the field χ is assumed to be that of thermal equilibrium. This contour is depicted in fig.

(8.1)
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ti Φ+, χ+,W+, J+
a

Φ−, χ−,W−, J−

a

∞

ti − i β

Figure 8.1: Contour in time for the non-equilibrium path integral representation.

The trace over the degrees of freedom of the χ field with the initial equilibrium density matrix,

entail periodic boundary conditions for χ,W along the contour C. However, the boundary conditions

on the path integrals for the field Φ are given by

Φ+(~x, t = ∞) = Φ−(~x, t = ∞) (8.30)

and

Φ+(~x, t = ti) = Φi(~x) ; Φ−(~x, t = ti) = Φ′i(~x) (8.31)

The reason for the different path integrations is that whereas the χ and W fields are traced over

with an initial thermal density matrix, the initial density matrix for the Φ field will be specified later

as part of the initial value problem. The path integral over χ,W leads to the influence functional

for Φ±[164].

Because we are not interested in the correlation functions of the bath fields but only those of

the “system” fields, we set the external c-number currents Jχ = 0; JW = 0. Insofar as the bath

fields are concerned, the system fields Φ act as an external c-number source, and tracing over the

bath fields leads to

∫
Dχ±DW±DχβDW β e

i
R
C d4x

{
L0[χ,W ]+G φαOα+Gφ2

αχ2
α

}
=

〈
eiG

R
C d4xφαOα+φ2

αχ2
α

〉
0
Tre−βH0[χ,W ].

(8.32)
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The expectation value in the right hand side of eqn. (8.32) is in the equilibrium free field density

matrix of the fields χ, W . The path integral can be carried out in perturbation theory and the

result exponentiated to yield the effective action as follows

〈
eiG

R
C d4xφαOα+φ2

αχ2
α

〉
0

= 1 + iG

∫

C
d4x

{
φα(x)

〈
Oα(x)

〉
0
+ φ2

α(x)
〈
χ2

α(x)
〉

0

}

+
(iG)2

2

∫

C
d4x

∫

C
d4x′φα(x)φβ(x′)

〈
Oα(x)Oβ(x′)

〉
0
+O(G3)

(8.33)

This is the usual expansion of the exponential of the connected correlation functions, therefore

this series is identified with

〈
eiG

R
C d4xφαOα+φ2

αχ2
α

〉
0

= ei Lif [φ+,φ−] , (8.34)

where Lif [φ+, φ−] is the influence functional [164], and 〈· · · 〉0 stand for expectation values in the

bath in equilibrium. For
〈
χα(x)W (x)

〉
0

= 0 the influence functional is given by

Lif [φ+, φ−] = G

∫

C
d4xφ2

α(x)
〈
χ2

α(x)
〉

0
+ i

G2

2

∫

C
d4x

∫

C
d4x′φα(x)φβ(x′)〈Oα(x)Oβ(x′)〉0 +O(G3) .

(8.35)

In the above result we have neglected second order contributions of the form G2φ4
α. These

non-linear contributions give rise to interactions between the quasiparticles and will be neglected

in this article. Here we are primarily concerned with establishing the general properties of the

quasiparticles and their equilibration with the bath and not with their mutual interaction. As in

the case of mixed neutrinos, the inclusion of a “neutrino” background may lead to the phenomenon

of non-linear synchronization[13, 69, 187], but the study of this phenomenon is beyond the realm

of this article.

We focus solely on the non-equilibrium effective action up to quadratic order in the “neutrino

fields”, from which we extract the dispersion relations, relaxation rates and the approach to equi-

librium with the bath of the quasiparticle modes in the medium.

The integrals along the contour C stand for the following expressions:

G

∫

C
d4xφ2

α(x)
〈
χ2

α(x)
〉

0
= Vαα

∫
d3x

∫ ∞

ti

dt
[
φ2+

α (x)− φ2−
α (x)

]
(8.36)
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where Vαα are the “matter potentials” which are independent of position under the assumption of

translational invariance, and time independent under the assumption that the bath is in equilibrium,

and

∫

C
d4x

∫

C
d4x′φα(x)φβ(x′)〈Oα(x)Oβ(x′)〉0

=
∫

d3x

∫ ∞

ti

dt

∫
d3x′

∫ ∞

ti

dt′
[
φ+

α (x)φ+
β (x′)〈O+

α (x)O+
β (x′)〉0

+ φ−α (x)φ−β (x′)〈O−α (x)O−β (x′)〉0 − φ+
α (x)φ−β (x′)〈O+

α (x)O−β (x′)〉0
− φ−α (x)φ+

β (x′)〈O−α (x)O+
β (x′)〉0

]
(8.37)

Since the expectation values above are computed in a thermal equilibrium translational invariant

density matrix, it is convenient to introduce the spatial Fourier transform of the composite operator

O in a spatial volume V as

O
α,~k

(t) =
1√
V

∫
d3xei~k·~xOα(~x, t) (8.38)

in terms of which we obtain following the correlation functions

〈O−
α,~k

(t)O+

β,−~k
(t′)〉 = TrO

β,−~k
(t′) e−β H0[χ,W ]O

α,~k
(t) = G>

αβ(k; t− t′) ≡ G−+
αβ (k; t− t′) (8.39)

〈O+

α,~k
(t)O−

β,−~k
(t′)〉 = TrO

α,~k
(t) e−β Hχ O

β,−~k
(t′) = G<

αβ(k; t− t′) ≡ G+−
αβ (k; t− t′) = G−+

β,α (k; t′ − t)

(8.40)

〈O+

α,~k
(t)O+

β,−~k
(t′)〉 = G>

αβ(k; t− t′)Θ(t− t′) + G<
αβ(k; t− t′)Θ(t′ − t) ≡ G++

αβ (k; t− t′) (8.41)

〈O−
α,~k

(t)O−
β,−~k

(t′)〉 = G>
αβ(k; t− t′)Θ(t′ − t) + G<

αβ(k; t− t′)Θ(t− t′) = G−−αβ (k; t− t′) (8.42)

The time evolution of the operators is determined by the Heisenberg picture of H0[χ,W ]. Be-

cause the density matrix for the bath is in equilibrium, the correlation functions above are solely

functions of the time difference as made explicit in the expressions above. These correlation func-

tions are not independent, but obey

G++
αβ (k; t, t′) + G−−αβ (k; t, t′)− G−+

αβ (k; t, t′)− G+−
αβ (k; t, t′) = 0 (8.43)

The correlation function G>
αβ up to lowest order in the coupling G is given by

G>
αβ(k; t− t′) =

∫
d3p

(2π)3
〈W

~p+~k
(t)W−~p−~k

(t′)〉〈χ~p,α(t)χ−~p,β(t′)〉 (8.44)
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where the expectation value is in the free field equilibrium density matrix of the respective fields.

This correlation function is diagonal in the flavor basis and this entails that all the Green’s functions

(8.39-8.42) are diagonal in the flavor basis.

The non-equilibrium effective action yields the time evolution of the reduced density matrix, it

is given by

Leff [φ+, φ−] =
∫ ∞

ti

dtd3x
[L0(φ+)− L0(φ−)

]
+ Lif [φ+, φ−] (8.45)

where we have set the sources J± for the fields φ± to zero.

In what follows we take ti = 0 without loss of generality since (i) for t > ti the total Hamiltonian

is time independent and the correlations will be solely functions of t−ti, and (ii) we will be ultimately

interested in the limit t À ti when all transient phenomena has relaxed. Adapting the methods

presented in ref. [186] to account for the matrix structure of the effective action, introducing the

spatial Fourier transform of the fields φ± defined as in eqn. (8.38) and the matrix of the matter

potentials

V =


 Vee 0

0 Vµµ


 (8.46)

we find

iLeff [φ+, φ−] =
∑

~k

{
i

2

∫ ∞

0
dt

[
φ̇+

α,~k
(t)φ̇+

α,−~k
(t)− φ+

α,~k
(t)(k2 δαβ +M2

αβ +Vαβ)φ+

β,−~k
(t)

−φ̇−
α,~k

(t)φ̇−
α,−~k

(t) + φ−
α,~k

(t)(k2 δαβ +M2
αβ +Vαβ)φ−

β,−~k
(t)

]

−G2

2

∫ ∞

0
dt

∫ ∞

0
dt′

[
φ+

α,~k
(t)G++

αβ (k; t, t′)φ+

β,−~k
(t′) + φ−

α,~k
(t)G−−αβ (k; t, t′)φ−

β,−~k
(t′)

−φ+

α,~k
(t)G+−

αβ (k; t, t′)φ−
β,−~k

(t′)− φ−
α,~k

(t)G−+
αβ (k; t, t′)φ+

β,−~k
(t′)

] }
(8.47)

The “matter potentials” Vαα play the role of the index of refraction correction to the dispersion

relations[57] and is of first order in the coupling G whereas the contributions that involve G are of

order G2. As it will become clear below, it is more convenient to introduce the Wigner center of

mass and relative variables

Ψα(~x, t) =
1
2

(
φ+

α (~x, t) + φ−α (~x, t)
)

; Rα(~x, t) =
(
φ+

α (~x, t)− φ−α (~x, t)
)

(8.48)

and the Wigner transform of the initial density matrix for the φ fields

W(Ψ0; Π0) =
∫

DR0,αe−i
R

d3xΠ0,α(~x)R0,α(~x)ρ(Ψ0 +
R0

2
;Ψ0 − R0

2
) (8.49)
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with the inverse transform

ρ(Ψ0 +
R0

2
;Ψ0 − R0

2
) =

∫
DΠ0

αei
R

d3xΠ0
α(~x)R0

α(~x)W(Ψ0; Π0) (8.50)

The boundary conditions on the φ path integral given by (8.31) translate into the following

boundary conditions on the center of mass and relative variables

Ψα(~x, t = 0) = Ψ0
α ; Rα(~x, t = 0) = R0

α (8.51)

furthermore, the boundary condition (8.30) yields the following boundary condition for the relative

field

Rα(~x, t = ∞) = 0. (8.52)

This observation will be important in the steps that follow.

The same description applies to the fields in the mass basis. We will treat both cases on equal

footing with the notational difference that Greek labels α, β refer to the flavor and Latin indices

i, j refer to the mass basis.

In terms of the spatial Fourier transforms of the center of mass and relative variables (8.48)

introduced above, integrating by parts and accounting for the boundary conditions (8.51), the

non-equilibrium effective action (8.47) becomes:

iLeff [Ψ, R] =
∫ ∞

0
dt

∑

~k

{
−iR

α,−~k

(
Ψ̈

α,~k
(t) + (k2δαβ +M2

αβ +Vαβ)Ψ
β,~k

(t)
)}

−
∫ ∞

0
dt

∫ ∞

0
dt′

∑

~k

{
1
2
R

α,−~k
(t)Kαβ(k; t− t′)R

β,~k
(t′) + R

α,−~k
(t) iΣR

αβ(k; t− t′)Ψ
β,~k

(t′)
}

+ i

∫
d3xR0

α(~x)Ψ̇α(~x, t = 0) (8.53)

where the last term arises after the integration by parts in time, using the boundary conditions

(8.51) and (8.52). The kernels in the above effective Lagrangian are given by (see eqns. (8.39-8.42))

Kαβ(k; t− t′) =
G2

2

[
G>

αβ(k; t− t′) + G<
αβ(k; t− t′)

]
(8.54)

iΣR
αβ(k; t− t′) = G2

[
G>

αβ(k; t− t′)− G<
αβ(k; t− t′)

]
Θ(t− t′) ≡ iΣαβ(k; t− t′)Θ(t− t′)(8.55)

The term quadratic in the relative variable R can be written in terms of a stochastic noise as

exp
{
− 1

2

∫
dt

∫
dt′R

α,−~k
(t)Kαβ(k; t− t′)R

β~k
(t′)

}

=
∫
Dξ exp

{
− 1

2

∫
dt

∫
dt′ ξ

α,~k
(t)K−1

αβ (k; t− t′)ξ
β,−~k

(t′) + i

∫
dt ξ

α,−~k
(t)R

α,~k
(t)

}
(8.56)
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The non-equilibrium generating functional can now be written in the following form

Z =
∫

DΨ0

∫
DΠ0

∫
DΨDRDξ W(Ψ0; Π0)DR0ei

R
d3xR0,α(~x)(Π0

α(~x)−Ψ̇α(~x,t=0))P[ξ]

exp
{
−i

∫ ∞

0
dtR

α,−~k
(t)

[
Ψ̈

α,~k
(t) + (k2 δαβ +M2

αβ +Vαβ)Ψ
β,~k

(t)

+
∫

dt′ΣR
αβ(k; t− t′)Ψ

β,~k
(t′)− ξ

α,~k
(t)

]}
(8.57)

P[ξ] = exp
{
−1

2

∫ ∞

0
dt

∫ ∞

0
dt′ ξ

α,~k
(t)K−1

αβ (k; t− t′)ξ
β,−~k

(t′)
}

(8.58)

The functional integral over R0 can now be done, resulting in a functional delta function, that fixes

the boundary condition Ψ̇α(~x, t = 0) = Π0
α(~x). Finally the path integral over the relative variable

can be performed, leading to a functional delta function and the final form of the generating

functional given by

Z =
∫

DΨ0DΠ0W(Ψ0; Π0)DΨDξ P[ξ] ×

δ

[
Ψ̈

α,~k
(t) + (k2 δαβ +M2

αβ +Vαβ)Ψ
β,~k

(t) +
∫ t

0
dt′ Σαβ(k; t− t′)Ψ

β,~k
(t′)− ξ

α,~k
(t)

]

(8.59)

with the boundary conditions on the path integral on Ψ given by

Ψα(~x, t = 0) = Ψ0
α(~x) ; Ψ̇α(~x, t = 0) = Π0

α(~x) , (8.60)

where we have used the definition of ΣR
αβ(k; t− t′) in terms of Σαβ(k; t− t′) given in equation (8.55).

The meaning of the above generating functional is the following: to obtain correlation functions

of the center of mass Wigner variable Ψ we must first find the solution of the classical stochastic

Langevin equation of motion

Ψ̈
α,~k

(t) + (k2 δαβ +M2
αβ +Vαβ)Ψ

β,~k
(t) +

∫ t

0
dt′ Σαβ(k; t− t′)Ψ

β,~k
(t′) = ξ

α,~k
(t)

Ψ
α,~k

(t = 0) = Ψ0
α,~k

; Ψ̇
α,~k

(t = 0) = Π0
α,~k

(8.61)

for arbitrary noise term ξ and then average the products of Ψ over the stochastic noise with

the Gaussian probability distribution P[ξ] given by (8.58), and finally average over the initial

configurations Ψ0(~x); Π0(~x) weighted by the Wigner function W(Ψ0,Π0), which plays the role of

an initial phase space distribution function.

Calling the solution of (8.61) Ψ
α,~k

(t; ξ; Ψi; Πi), the two point correlation function, for example,
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is given by

〈Ψ
α,~k

(t)Ψ
β,−~k

(t′)〉 =

∫ D[ξ]P[ξ]
∫

DΨ0
∫

DΠ0 W(Ψ0; Π0)Ψ
α,~k

(t; ξ; Ψ0; Π0)Ψ
β,−~k

(t′; ξ; Ψ0; Π0)∫ D[ξ]P[ξ]
∫

DΨ0
∫

DΠ0 W(Ψ0; Π0)
.

(8.62)

In computing the averages and using the functional delta function to constrain the configurations

of Ψ to the solutions of the Langevin equation, there is the Jacobian of the operator (d2/dt2 +

k2)δαβ +M2 +V+
∫

dt′Σret(k; t− t′) which however, is independent of the field and the noise and

cancels between numerator and denominator in the averages. There are two different averages:

• The average over the stochastic noise term, which up to this order is Gaussian. We denote the

average of a functional F [ξ] over the noise with the probability distribution function P [ξ] given

by eqn. (8.58) as

〈〈F〉〉 ≡
∫ DξP [ξ]F [ξ]∫ DξP [ξ]

. (8.63)

Since the noise probability distribution function is Gaussian the only necessary correlation

functions for the noise are given by

〈〈ξ
α,~k

(t)〉〉 = 0 , 〈〈ξ
α,~k

(t)ξ
β,~k′(t

′)〉〉 = Kαβ(k; t− t′) δ3(~k + ~k′) (8.64)

and the higher order correlation functions are obtained from Wick’s theorem as befits a Gaussian

distribution function. Because the noise kernel Kαβ(k; t− t′) 6= δ(t− t′) the noise is colored.

• The average over the initial conditions with the Wigner distribution function W(Ψ0, Π0) which

we denote as

A[Ψ0, Π0] ≡
∫

DΨ0
∫

DΠ0 W(Ψ0; Π0)A[Ψ0, Π0]∫
DΨ0

∫
DΠ0 W(Ψ0; Π0)

(8.65)

Therefore, the average in the time evolved reduced density matrix implies two distinct averages:

an average over the initial conditions of the system fields and and average over the noise distribution

function. The total average is defined by

〈· · · 〉 ≡ 〈〈· · · 〉〉 . (8.66)
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Equal time expectation values and correlation functions are simply expressed in terms of the

center of mass Wigner variable Ψ as can be seen as follows: the expectation values of the field

〈φ+(~x, t)〉 = Trφ(~x, t)ρ(t) ; 〈φ−(~x, t)〉 = Trρ(t)φ(~x, t) (8.67)

hence the total average (8.66) is given by

〈φ(~x, t)〉 = 〈Ψ(~x, t)〉 . (8.68)

Similarly the equal time correlation functions obey

〈φ+(~x, t)φ+(~x′, t)〉 = 〈φ+(~x, t)φ−(~x′, t)〉 = 〈φ−(~x, t)φ+(~x′, t)〉 = 〈φ−(~x, t)φ−(~x′, t)〉 = 〈Ψ(~x, t)Ψ(~x′, t)〉 .
(8.69)

Therefore the center of mass variables Ψ contain all the information necessary to obtain expectation

values and equal time correlation functions.

8.3.1 One body density matrix and equilibration

We study equilibration by focusing on the one-body density matrix

ραβ(k; t) = Trρ(0)φα(~k, t)φβ(−~k, t) = Trρ(t)φα(~k, 0)φβ(−~k, 0) (8.70)

where

ρ(t) = e−iHtρ(0)eiHt (8.71)

is the time evolved density matrix. The time evolution of the one-body density matrix obeys the

Liouville-type equation

d

dt
ραβ(t) = −iTr

[
H, ρ(t)

]
φα(~k, 0)φβ(−~k, 0) . (8.72)

If the system reaches equilibrium with the bath at long times, then it is expected that

[
H, ρ(t)

] t→∞−→ 0 (8.73)

Therefore the asymptotically long time limit of the one-body density matrix yields information on

whether the density matrix is diagonal in the flavor or any other basis. Hence we seek to obtain

ραβ(k;∞) = Trρ(∞)φα(~k, 0)φβ(−~k, 0) = 〈Ψ
α~k

(∞)Ψ
β,−~k

(∞)〉 . (8.74)
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and to establish the basis in which it is nearly diagonal. The second equality in eqn. (8.74) follows

from eq. (8.69), and the average is defined by eq.(8.66). To establish a guide post, consider the one-

body density matrix for the free “neutrino fields” in thermal equilibrium, for which the equilibrium

density matrix is

ρeq = e−βH0[ϕ] (8.75)

where H0[ϕ] is the free “neutrino” Hamiltonian. This density matrix is diagonal in the basis of

mass eigenstates and so is the one-body density matrix which in the mass basis is given by

ρij(k) =




1
2ω1(k) coth

[
βω1(k)

2

]
0

0 1
2ω2(k) coth

[
βω2(k)

2

]

 ; i, j = 1, 2 (8.76)

therefore in the flavor basis the one-body density matrix is given by

ραβ(k) = U(θ)




1
2ω1(k) coth

[
βω1(k)

2

]
0

0 1
2ω2(k) coth

[
βω2(k)

2

]

 U−1(θ) ; α, β = e, µ (8.77)

This simple example provides a guide to interpret the approach to equilibrium. Including interac-

tions there is a competition between the mass and flavor basis. The interaction is diagonal in the

flavor basis, while the unperturbed Hamiltonian is diagonal in the mass basis, this of course is the

main physical reason behind neutrino oscillations. In the presence of interactions, the correct form

of the equilibrium one-body density matrix can only be obtained from the asymptotic long time

limit of the time-evolved density matrix.

8.3.2 Generalized fluctuation-dissipation relation

From the expressions (8.54) and (8.55) in terms of the Wightmann functions (8.39,8.40) which

are averages in the equilibrium density matrix of the bath fields (χ,W ), we obtain a dispersive

representation for the kernels Kαβ(k; t−t′); ΣR
αβ(k; t−t′). This is achieved by writing the expectation

value in terms of energy eigenstates of the bath, introducing the identity in this basis, and using

the time evolution of the Heisenberg field operators to obtain

G2 G>
αβ(k; t− t′) =

∫ ∞

−∞
dω σ>

αβ(~k, ω) eiω(t−t′) ; G2 G<
αβ(k; t− t′) =

∫ ∞

−∞
dω σ<

αβ(~k, ω) eiω(t−t′)

(8.78)

with the spectral functions
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σ>
αβ(~k, ω) =

G2

Zb

∑
m,n

e−βEn〈n|O
α,~k

(0)|m〉〈m|O
β,−~k

(0)|n〉 δ(ω − (En − Em)) (8.79)

σ<
αβ(~k, ω) =

G2

Zb

∑
m,n

e−βEm〈n|O
β,−~k

(0)|m〉〈m|O
α,~k

(0)|n〉 δ(ω − (Em −En)) (8.80)

where Zb = Tr e−βHχ is the equilibrium partition function of the “bath” and in the above expressions

the averages are solely with respect to the bath variables. Upon relabelling m ↔ n in the sum in

the definition (8.80) and using the fact that these correlation functions are parity and rotational

invariant[171] and diagonal in the flavor basis we find the KMS relation[171]

σ<
αβ(k, ω) = σ>

αβ(k,−ω) = eβωσ>
αβ(k, ω) . (8.81)

Using the spectral representation of the Θ(t−t′) we find the following representation for the retarded

self-energy

ΣR
αβ(k; t− t′) =

∫ ∞

−∞

dk0

2π
eik0(t−t′)Σ̃R

αβ(k; k0) (8.82)

with

Σ̃R
αβ(k; k0) =

∫ ∞

−∞
dω

[σ>
αβ(k;ω)− σ<

αβ(k; ω)]

ω − k0 + iε
. (8.83)

Using the condition (8.81) the above spectral representation can be written in a more useful manner

as

Σ̃R
αβ(k; k0) = − 1

π

∫ ∞

−∞
dω

ImΣ̃R
αβ(k; ω)

ω − k0 + iε
, (8.84)

where the imaginary part of the self-energy is given by

ImΣ̃R
αβ(k; ω) = πσ>

αβ(k; ω)
[
eβω − 1

]
(8.85)

and is positive for ω > 0. Equation (8.81) entails that the imaginary part of the retarded self-energy

is an odd function of frequency, namely

ImΣ̃R
αβ(k; ω) = −ImΣ̃R

αβ(k;−ω) . (8.86)

The relation (8.85) leads to the following results which will be useful later

σ>
αβ(k; ω) =

1
π

ImΣ̃R
αβ(k;ω) n(ω) ; σ<

αβ(k; ω) =
1
π

ImΣ̃R
αβ(k; ω) [1 + n(ω)] (8.87)
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where n(ω) = [eβω − 1]−1 is the Bose-Einstein distribution function. Similarly from the definitions

(8.54) and (8.78) and the condition (8.81) we find

Kαβ(k; t− t′) =
∫ ∞

−∞

dk0

2π
eik0(t−t′)K̃αβ(k; k0) (8.88)

K̃αβ(k; k0) = πσ>
αβ(k; k0)

[
eβk0 + 1

]
(8.89)

whereupon using the condition (7.55) leads to the generalized fluctuation-dissipation relation

K̃αβ(k; k0) = ImΣ̃R
αβ(k; k0) coth

[
βk0

2

]
. (8.90)

Thus we see that ImΣ̃R
αβ(k; k0) ; K̃αβ(k; k0) are odd and even functions of frequency respectively.

For the analysis below we also need the following representation (see eqn. (8.55))

Σαβ(k; t− t′) = −i

∫ ∞

−∞
eiω(t−t′)

[
σ>

αβ(k; ω)− σ<
αβ(k; ω)

]
dω =

i

π

∫ ∞

−∞
eiω(t−t′)ImΣ̃R

αβ(k; ω)dω

(8.91)

whose Laplace transform is given by

Σ̃αβ(k; s) ≡
∫ ∞

0
dte−stΣαβ(k; t) = − 1

π

∫ ∞

−∞

ImΣ̃R
αβ(k; ω)

ω + is
dω (8.92)

This spectral representation, combined with (8.84) lead to the relation

Σ̃R
αβ(k; k0) = Σ̃αβ(k; s = ik0 + ε) (8.93)

The self energy and noise correlation kernels Σ̃, K̃ are diagonal in the flavor basis because the

interaction is diagonal in this basis. Namely, in the flavor basis

Σ̃(k, ω) =

(
Σ̃ee(k, ω) 0

0 Σ̃µµ(k, ω)

)
; K̃ = [1 + 2n(ω)] ImΣ̃(k, ω) =

(
K̃ee(k, ω) 0

0 K̃µµ(k, ω)

)
.

(8.94)

In the mass basis these kernels are given by

Σ̃ =
1
2

(
Σ̃ee + Σ̃µµ

)
1+

1
2

(
Σ̃ee − Σ̃µµ

)(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
(8.95)

and

K̃ =
1
2

(
K̃ee + K̃µµ

)
1+

1
2

(
K̃ee − K̃µµ

)(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
. (8.96)
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8.4 DYNAMICS: SOLVING THE LANGEVIN EQUATION

The solution of the equation of motion (8.61) can be found by Laplace transform. Define the

Laplace transforms

Ψ̃
α,~k

(s) =
∫ ∞

0
dte−stΨ

α;~k
(t) ; ξ̃

α,~k
(s) =

∫ ∞

0
dte−stξ

α,~k
(t) (8.97)

along with the Laplace transform of the self-energy given by eqn. (8.92). The Langevin equation

in Laplace variable becomes the following algebraic matrix equation

[
(s2 + k2)δαβ +M2

αβ +Vαβ + Σ̃αβ(k; s)

]
Ψ̃

β,~k
(s) = Π

0,α,~k
+ sΨ

0,α,~k
+ ξ̃

α,~k
(s) (8.98)

where we have used the initial conditions (8.60). The solution in real time can be written in a more

compact manner as follows. Introduce the matrix function

G̃(k; s) =

[
(s2 + k2)1+M2 +V + Σ̃(k; s)

]−1

(8.99)

and its anti-Laplace transform

Gαβ(k; t) =
∫

C

ds

2πi
G̃αβ(k; s) est (8.100)

where C refers to the Bromwich contour, parallel to the imaginary axis in the complex s plane to

the right of all the singularities of G̃(k; s). This function obeys the initial conditions

Gαβ(k; 0) = 0 ; Ġαβ(k; 0) = 1 . (8.101)

In terms of this auxiliary function the solution of the Langevin equation (8.61) in real time is given

by

Ψ
α,~k

(t; Ψ0; Π0; ξ) = Ġαβ(k; t)Ψ0
β~k

+ Gαβ(k; t)Π0
β,~k

+
∫ t

0
Gαβ(k; t′) ξ

β,~k
(t− t′)dt′ , (8.102)

where the dot stands for derivative with respect to time. In the flavor basis we find

G̃f (k; s) = S(k; s)

[(
s2 + ω2(k) + Σ(k; s)

)
1+

δ M2

2

(
cos 2θ −∆(k; s) − sin 2θ

− sin 2θ − cos 2θ + ∆(k; s)

)]

(8.103)
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whereas in the mass basis we find

G̃m(k; s) = S(k; s)

[(
s2 +ω2(k)+Σ(k; s)

)
1+

δ M2

2

(
1−∆(k; s) cos 2θ ∆(k; s) sin 2θ

∆(k; s) sin 2θ −1 + ∆(k; s) cos 2θ

)]

(8.104)

where M
2 and δM2 were defined by eqn. (9.7) and to simplify notation we defined

ω(k) =
√

k2 + M
2 (8.105)

Σ(k; s) =
1
2

(
Σ̃ee(k; s) + Vee + Σ̃µµ(k; s) + Vµµ

)
(8.106)

∆(k; s) =
Σ̃ee(k; s) + Vee − Σ̃µµ(k; s)− Vµµ

M2
2 −M2

1

(8.107)

and

S(k; s) =

[(
s2 + ω 2(k) + Σ(k; s)

)2
−

(δ M2

2

)2 [
(cos 2θ −∆(k; s))2 + (sin 2θ)2

]]−1

(8.108)

In what follows we define the analytic continuation of the quantities defined above with the

same nomenclature to avoid introducing further notation, namely

Σ(k; ω) ≡ Σ(k; s = iω + ε) ; ∆(k; ω) ≡ ∆(k; s = iω + ε) . (8.109)

Their real and imaginary parts are given by

ΣR(k; ω) =
1
2

[ΣR,ee(k, ω) + ΣR,µµ(k, ω) + Vee + Vµµ] (8.110)

ΣI(k; ω) =
1
2

[ΣI,ee(k, ω) + ΣI,µµ(k, ω)] (8.111)

∆R(k; ω) =
1

δ M2
[ΣR,ee(k, ω)− ΣR,µµ(k, ω) + Vee − Vµµ] (8.112)

∆I(k; ω) =
1

δ M2
[ΣI,ee(k, ω)− ΣI,µµ(k, ω)] (8.113)

We remark that while the matter potential V is of of order G, Σ is of order G2. Therefore, in

perturbation theory

ΣR(k;ω) >> ΣI(k;ω) ; ∆R(k; ω) >> ∆I(k; ω) . (8.114)

This inequality also holds in the standard model, where the matter potential is of order GF [57]

while the absorptive part that determines the relaxation rates is of order G2
F . This perturbative

inequality will be used repeatedly in the analysis that follows, and we emphasize that it holds in

the correct description of neutrinos propagating in a medium.
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8.5 SINGLE PARTICLES AND QUASIPARTICLES

Exact single particle states are determined by the position of the isolated poles of the Green’s

function in the complex s− plane. Before we study the interacting case, it proves illuminating to

first study the free, non-interacting case.

8.5.1 Non-interacting case: G = 0

To begin the analysis, an example helps to clarify this formulation: consider the non-interacting

case G = 0 in which Σ = 0; ∆ = 0. In this case G̃f,m(k; s) have simple poles at s = ±iω1(k) and

±iω2(k) where

ωi(k) =
√

k2 + M2
i ; i = 1, 2 . (8.115)

Computing the residues at these simple poles we find in the flavor basis

Gf (k; t) =
sin(ω1(k)t)

ω1(k)
R(1)(θ) +

sin(ω2(k)t)
ω2(k)

R(2)(θ) (8.116)

where we have introduced the matrices

R(1)(θ) =

(
cos2 θ − cos θ sin θ

− cos θ sin θ sin2 θ

)
= U(θ)

(
1 0

0 0

)
U−1(θ) (8.117)

R(2)(θ) =

(
sin2 θ cos θ sin θ

cos θ sin θ cos2 θ

)
= U(θ)

(
0 0

0 1

)
U−1(θ) (8.118)

In the mass basis

Gm(k; t) =

(
sin(ω1(k)t)

ω1(k) 0

0 sin(ω2(k)t)
ω2(k)

)
(8.119)

with the relation

Gf (k; t) = U(θ) Gm(k; t)U−1(θ) (8.120)

and U(θ) is given by 9.4. Consider for simplicity an initial condition with Ψ0 6= 0; Π0 = 0 in both

cases, flavor and mass. The expectation value of the flavor fields Φα in the reduced density matrix

(8.66) is given by

〈( Ψ
e,~k

(t)

Ψ
µ,~k

(t)

)〉
=

[
cos(ω1(k)t)R(1)(θ) + cos(ω2(k)t)R(2)(θ)

](
Ψ0

e,~k

Ψ0
µ,~k

)
(8.121)
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and that for the fields in the mass basis is

〈( Ψ1(k; t)

Ψ2(k; t)

)〉
=

(
Ψ0

1,~k
cos(ω1(k)t)

Ψ0
2,~k

cos(ω2(k)t)

)
(8.122)

These are precisely the solutions of the classical equations of motion in terms of flavor and mass

eigenstates, namely

φe(k; t) = cos θ ϕ1(k; t) + sin θ ϕ2(k; t)

φµ(k; t) = cos θ ϕ2(k; t)− sin θ ϕ2(k; t) (8.123)

where

ϕ1(k; t) = ϕ1(k; 0) cosω1(k)t ; ϕ2(k; t) = ϕ2(k; 0) cosω2(k)t (8.124)

for vanishing initial canonical momentum and the initial values are given in terms of flavor fields

by

ϕ1(k; 0) = cos θ φe(k; 0)− sin θ φµ(k; 0)

ϕ2(k; 0) = cos θ φµ(k; 0) + sin θ φe(k; 0) (8.125)

inserting (8.124) with the initial conditions (8.125) one recognizes that the solution (8.121) is the

expectation value of the classical equation of motion with initial conditions on the flavor fields and

vanishing initial canonical momentum.

It is convenient to separate the positive (particles) and negative (antiparticles) frequency com-

ponents by considering an initial condition with Π0
α,~k

6= 0, in such a way that the time dependence

is determined by phases corresponding to the propagation of particles (or antiparticles). Without

mixing (θ = 0) this is achieved by choosing the following initial conditions

Π0
α,~k

= ∓iΩα(k)Ψ0
α,~k

(8.126)

for particles (−) and antiparticles (+) respectively, as in eq. (8.11). This choice of initial conditions

leads to the result

〈〈Ψ
α,~k

(t)〉〉

=

{
R(1)

αβ(θ)
[
cos(ω1(k)t)∓ i

Ωβ(k)
ω1(k)

sin(ω1(k)t)
]

+R(2)
αβ(θ)

[
cos(ω2(k)t)∓ i

Ωβ(k)
ω2(k)

sin(ω2(k)t)
] }

Ψ0
β,~k

(8.127)
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It is clear from (8.127) that no single choice of frequencies Ωβ(k) can lead uniquely to time

evolution in terms of single particle/antiparticle phases e∓iω1,2(k)t. This is a consequence of the

ambiguity in the definition of flavor states as discussed in detail in section (8.2.1). However, for the

cases in which |M2
1 −M2

2 | ¿ (k2 + M
2) , relevant for relativistic mixed neutrinos, and for K0K

0

and B0B
0 mixing, the positive and negative frequency components can be approximately projected

out as follows. Define

ω(k) =
√

k2 + M
2 (8.128)

in the nearly degenerate or relativistic regime when |δM2|/ω 2(k) ¿ 1

ω1(k) = ω(k)


1− δM2

4ω 2(k)
+O

(
δM2

ω 2(k)

)2

 ; ω2(k) = ω(k)


1 +

δM2

4ω 2(k)
+O

(
δM2

ω 2(k)

)2

 .

(8.129)

Taking Ωβ(k) = ω(k) and choosing for example the negative sign (positive frequency component)

in (8.127) we find

〈Ψ
α,~k

(t)〉 =

{
R(1)

αβ(θ) e−iω1(k)t +R(2)
αβ(θ) e−iω2(k)t +O

(
δM2

ω 2(k)

)}
Ψ0

β,~k
(8.130)

Consider the following initial condition

Ψ0
~k

=


 Ψ0

e,~k

0


 (8.131)

neglecting the corrections in (8.130) we find

|〈Ψ
µ,~k

(t)〉|2 = sin2 2θ sin2

(
δM2

4ω(k)
t

)
Ψ0

e,~k
+O

(
δM2

ω 2(k)

)2

(8.132)

which is identified with the usual result for the oscillation transition probability Ψe → Ψµ upon

neglecting the corrections.

8.5.2 Interacting case: G 6= 0

For G 6= 0, the self-energy as a function of frequency and momentum is in general complex, the

imaginary part arises from multiparticle thresholds. When the imaginary part of the self-energy

does not vanish at the value of the frequency corresponding to the dispersion relation of the free
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particle states, these particles can decay and no longer appear as asymptotic states. The poles in

the Green’s function move off the physical sheet into a higher Riemann sheet, the particles now

become resonances.

Single particle states correspond to true poles of the propagator (Green’s function) in the

physical sheet, which are necessarily away from the multiparticle thresholds. This case is depicted

in fig. (8.2).

s
=

i
ω
−

ǫ

s
=

i
ω

+
ǫ

(s

Figure 8.2: Bromwich contour in s-plane, the shaded region denotes the cut discontinuity from

multiparticle thresholds across the imaginary axis, the filled circles represent the single particle

poles.

Let us consider the Green’s function in the flavor basis eqn. (8.103). The single particle poles

are determined by the poles of S(k; s) on the imaginary axis away from the multiparticle cuts.

These are determined by the roots of the following equations

Ω2
1(k) = ω 2(k) + ΣR(k; Ω1(k))− δM2

2

[(
cos 2θ −∆R(k; Ω1(k))

)2 +
(
sin 2θ

)2
] 1

2 (8.133)

Ω2
2(k) = ω 2(k) + ΣR(k; Ω2(k)) +

δM2

2

[(
cos 2θ −∆R(k; Ω2(k))

)2 +
(
sin 2θ

)2
] 1

2 (8.134)

along with the conditions

ΣI(k; Ω1,2(k)) = 0 ; ∆I(k; Ω1,2(k)) = 0 (8.135)

where the subscripts R, I refer to the real and imaginary parts respectively. Evaluating the residues

at the single particle poles and using that the real and imaginary parts of the self-energies are even
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and odd functions of frequency respectively, we find

Gf (k; t) = Z
(1)
k

sin(Ω1(k)t)
Ω1(k)

R(1)
(
θ(1)
m (k)

)
+ Z

(2)
k

sin(Ω2(k)t)
Ω2(k)

R(2)
(
θ(2)
m (k)

)
+ Gf,cut(t) (8.136)

where Gf,cut(t) is the contribution from the multiparticle cut, the matrices R(1,2) are given by

(9.30,9.31) and θ1,2
m (k) are the mixing angles in the medium

cos 2θi
m(k) =

cos 2θ −∆R(Ωi(k))
[(

cos 2θ −∆R(k; Ωi(k))
)2 +

(
sin 2θ

)2
] 1

2

sin 2θi
m(k) =

sin 2θ
[(

cos 2θ −∆R(k; Ωi(k))
)2 +

(
sin 2θ

)2
] 1

2

. (8.137)

for i = 1, 2. The wave function renormalization constants are given by

Z
(i)
k =

[
1− 1

2ω

(
Σ
′
R(k; ω)− (−1)i δM

2

2
cos 2θi

m(k)∆
′
R(k;ω)

)]−1

ω=Ωi(k)

(8.138)

where the prime stands for derivative with respect to ω. At asymptotically long time the contri-

bution from the cut Gf,cut(t) ∼ t−α where α is determined by the behavior of the self-energy at

threshold[174, 188].

In perturbation theory and in the limit ω(k) 2 À |δM2| the dispersion relations (8.133,8.134)

can be solved by writing

±Ωi(k) = ±(ω(k) + δωi(k)) , (8.139)

we find

δωi(k) =
ΣR(k;ω(k))

2ω(k)
+ (−1)i δM2

4ω(k)
%(k) (8.140)

where we defined

%(k; ω) =

[
(cos 2θ −∆R(k;ω))2 + (sin 2θ)2

] 1
2

(8.141)

and the shorthand

%(k) = %(k;ω = ω(k)) . (8.142)

To leading order in the perturbative expansion and in δM2/ω 2(k) we find θ
(1)
m (k) = θ

(2)
m (k) = θm(k).

Gathering these results, we find the dispersion relations and mixing angles in the medium to be
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given by the following relations,

Ω1(k) = ω(k) +
ΣR(k; ω(k))

2ω(k)
− δM2

4 ω(k)
%(k) (8.143)

Ω2(k) = ω(k) +
ΣR(k; ω(k))

2ω(k)
+

δM2

4 ω(k)
%(k) , (8.144)

and

cos 2θm(k) =
cos 2θ −∆R(k;ω(k))

[(
cos 2θ −∆R(k; ω(k))

)2 +
(
sin 2θ

)2
] 1

2

sin 2θm(k) =
sin 2θ

[(
cos 2θ −∆R(k; ω(k))

)2 +
(
sin 2θ

)2
] 1

2

. (8.145)

These dispersion relations and mixing angles have exactly the same form as those obtained in the

field theoretical studies of neutrino mixing in a medium[57, 189].

8.5.3 Quasiparticles and relaxation

Even a particle that is stable in the vacuum acquires a width in the medium through several

processes, such as collisional broadening or Landau damping[171]. In this case there are no isolated

poles in the Green’s function in the physical sheet, the poles move off the imaginary axis in the

complex s−plane on to a second or higher Riemann sheet. The Green’s function now features

branch cut discontinuities across the imaginary axis perhaps with isolated regions of analyticity.

The inverse Laplace transform is now carried out by wrapping around the imaginary axis as shown

in fig. (8.3), and the real time Green’s function is given by

Gαβ(k; t) =
i

π

∫ ∞

−∞
dω eiωt ImG̃αβ(k; s = iω + ε) (8.146)

Under the validity of perturbation theory, when the inequality (8.114) is fulfilled we consistently

keep terms up to O(G2) and find the imaginary part to be given by the following expression

ImG̃(k; s = iω + ε) =
−A(D−γ+ + D+γ−) +B(D+D− − γ+γ−)

(D2
+ + γ2

+)(D2− + γ2−)
(8.147)

where we have introduced

D±(k; ω) = −ω2 + ω 2
k + ΣR(k; ω) ∓ 1

2
δM2%(k;ω) (8.148)

γ±(k; ω) =
1
2

(1± cos 2θm(ω, k)) ΣI,ee(k; ω) +
1
2

(1∓ cos 2θm(ω, k)) ΣI,µµ(k; ω) (8.149)
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ΣR,I are the real and imaginary parts of the self energy respectively, with

∆R(k; ω) =
1

δM2
[ΣR,ee(k; ω) + Vee − ΣR,µµ(k; ω)− Vµµ] , (8.150)

and

A(k; ω) =
[−ω2 + ω 2

k + ΣR(k; ω)1
]
+

δM2

2


 cos 2θ −∆R(k;ω) − sin 2θ

− sin 2θ − cos 2θ + ∆R(k; ω)


 ,

(8.151)

B(k; ω) =


 ΣI,µµ(k; ω) 0

0 ΣI,ee(k;ω)


 . (8.152)

The denominator in (8.147) features complex zeroes for

D±(k; ω) + γ±(k; ω) = 0 . (8.153)

Near these zeroes ImG̃(k; s = iω + ε) has the typical Breit-Wigner form for resonances. The

dynamical evolution at long times is dominated by the complex poles in the upper half ω− plane

associated with these resonances. In perturbation theory the complex poles of ImG̃(k; s = iω + ε)

occur at

ω = ±Ω1(k) + i
Γ1(k)

2
(8.154)

and

ω = ±Ω2(k) + i
Γ2(k)

2
(8.155)

where Ω1,2(k) are given by (8.133,8.134) and

Γ1(k)
2

=
γ+(k, Ω1(k))

2Ω1(k)
≈ γ+(k, ω(k))

2 ω(k)
;

Γ2(k)
2

=
γ−(k,Ω2(k))

2Ω2(k)
≈ γ−(k, ω(k))

2ω(k)
(8.156)

These relaxation rates can be written in an illuminating manner

Γ1(k) = Γee(k) cos2 θm(k) + Γµµ(k) sin2 θm(k) (8.157)

Γ2(k) = Γµµ(k) cos2 θm(k) + Γee(k) sin2 θm(k) (8.158)

where

Γαα(k) =
ΣI,αα(k; ω(k))

ω(k)
(8.159)
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are the relaxation rates of the flavor fields in absence of mixing. These relaxation rates are similar

to those proposed within the context of flavor conversions in supernovae[190], or active-sterile

oscillations[77, 78, 112].

s
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i
ω
−

ǫ

s
=

i
ω

+
ǫ

(s

Figure 8.3: Bromwich contour in s-plane, the shaded region denotes the cut discontinuity from

multiparticle thresholds across the imaginary axis.

We carry out the frequency integral in (8.146) by approximating the integrand as a sum of two

Breit-Wigner Lorentzians near ω = ±Ω1,2(k) with the following result in the flavor basis,

Gf (k; t) = Z
(1)
k e−

Γ1(k)
2

t

[
sin(Ω1(k)t)

Ω1(k)
R(1)(θm(k))− γ̃(k)

2
cos(Ω1(k)t)

Ω1(k)
R(3)(θm(k))

]
+

Z
(2)
k e−

Γ2(k)
2

t

[
sin(Ω2(k)t)

Ω2(k)
R(2)(θm(k)) +

γ̃(k)
2

cos(Ω2(k)t)
Ω2(k)

R(3)(θm(k))

]
(8.160)

where again we have used the approximation |δM2| ¿ ω 2(k) and introduced

R(3)(θ) = sin 2θ


 sin 2θ cos 2θ

cos 2θ − sin 2θ


 = sin 2θ U(θ)


 0 1

1 0


 U−1(θ) (8.161)

and

γ̃(k) =
ΣI,ee(k; ω(k)− ΣI,µµ(k;ω(k))

δM2 %(k)
. (8.162)

Under the assumption that ΣR,α,α À ΣI,α,α it follows that γ̃(k) ¿ 1. As in the previous section,

we can approximately project the positive frequency component by choosing the initial condition

(8.126) with Ωα = ω(k), leading to the result
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〈Ψ
α,~k

(t)〉 = e−iW (k)t−Γ(k)
2

t

{
Z

(1)
k ei∆ω(k)t−∆Γ(k)

2
t
(
R(1)(θm(k)) + i

γ̃(k)
2
R(3)(θm(k))

)

+ Z
(2)
k e−i∆ω(k)t+

∆Γ(k)
2

t
(
R(2)

α,β(θ)− i
γ̃(k)

2
R(3)(θm(k))

)
+O

(
δM2

ω 2(k)

)}
Ψ0

β,~k

(8.163)

where

W (k) = ω(k) +
ΣR(k;ω(k))

4ω(k)
(8.164)

Γ(k)
2

=
1

4ω(k)

[
ΣI,ee(k, ω(k) + ΣI,µµ(k, ω(k)

]
(8.165)

∆ω(k) =
δM2 %(k)

4ω(k)
(8.166)

∆Γ(k)
2

=
cos 2θm

4 ω(k)

[
ΣI,ee(k, ω(k)− ΣI,µµ(k, ω(k)

]
(8.167)

With the initial condition (8.131) we now find the long time evolution of the transition proba-

bility Ψe → Ψµ

|〈Ψ
µ,~k

(t)〉|2 ∼ sin2 2θm(k)
4

[
e−Γ1(k)t + e−Γ2(k)t − 2 e−

1
2
(Γ1(k)+Γ2(k))t cos

(
2∆ω(k)t

)]
Ψ0

e,~k
(8.168)

where we have neglected perturbatively small terms by setting Z(i) ∼ 1 ; γ̃(k) ∼ 0 in prefactors.

The solution (8.163) can be written in the following illuminating form

〈Ψ
α,~k

(t)〉 = e−iW (k)t−Γ(k)
2

t U(
θm(k)

)
(

Z
(1)
k ei∆ω(k)t−∆Γ(k)

2
t 0

0 Z
(2)
k e−i∆ω(k)t+

∆Γ(k)
2

t

)
U−1

(
θm(k)

)
Ψ0

β,~k

(8.169)

where

U(
θm(k)

)
=

(
cos θm(k)

(
1 + iγ̃(k)

)
sin θm(k)

(
1− iγ̃(k)

)

− sin θm(k) cos θm(k)

)
(8.170)

U−1
(
θm(k)

)
=

1(
1 + i cos θm(k) γ̃(k)

)
(

cos θm(k) − sin θm(k)
(
1− iγ̃(k)

)

− sin θm(k) cos θm(k)
(
1 + iγ̃(k)

)
)

(8.171)

Obviously the matrix U is not unitary.
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8.5.4 Long time dynamics: Weisskopf-Wigner Hamiltonian

A phenomenological description of the dynamics of mixing and decay for neutral flavored mesons,

for example K0K0 ; B0B0 relies on the Weisskopf-Wigner (WW) approximation[191]. In this

approximation the time evolution of states is determined by a non-hermitian Hamiltonian that

includes in a phenomenological manner the exponential relaxation associated with the decay of the

neutral mesons. This approach has received revived attention recently with the possibility of obser-

vation of quantum mechanical coherence effects, in particular CP-violation in current experiments

with neutral mesons[192]. In ref.[193] a field theoretical analysis of the (WW) approximation has

been provided for the K0K0 system.

The form of the solution (8.169) suggests that a (WW) approximate description of the asymp-

totic dynamics in terms of a non-hermitian Hamiltonian is available. To achieve this formulation

we separate explicitly the fast time dependence via the phase e∓iω(k)t for the positive and negative

frequency components, writing

Ψ~k
(t) = e−iω(k)t Ψ+

~k
(t) + eiω(k)t Ψ−

~k
(t) (8.172)

where Ψ±
~k

(t) the amplitudes of the flavor vectors that evolve slowly in time. The solution for

the positive frequency component (8.163) follows from the time evolution of the slow component

determined by

i
d

dt
Ψ+

~k
(t) = HwΨ+

~k
(t) (8.173)

where the effective non-hermitian Hamiltonian H is given by

Hw =
δM2

4ω(k)

( − cos 2θ sin 2θ

sin 2θ cos 2θ

)
+

ΣR(k; ω(k)) +V
2ω(k)

− i
ΣI(k;ω(k))

2ω(k)
(8.174)

with

ΣR(k;ω(k)) +V =

(
ΣR,ee(k; ω(k)) + Vee 0

0 ΣR,µµ(k;ω(k)) + Vµµ

)
(8.175)

ΣI(k; ω(k)) =

(
ΣI,ee(k;ω(k)) 0

0 ΣI,µµ(k;ω(k))

)
(8.176)

The (WW) Hamiltonian Hw can be written as

Hw =
{ΣR(k; ω(k))

4ω(k)
− i

Γ(k)
2

}
1+

δM2 %(k)
4 ω(k)

(
−(cos 2θm(k) + iγ̃(k)) sin 2θm(k)

sin 2θm(k) (cos 2θm(k) + iγ̃(k))

)

(8.177)
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where we have used the definitions given in equations (9.34,8.142,9.33,9.41,8.165). It is straightfor-

ward to confirm that the Wigner-Weisskopf Hamiltonian can be written as

Hw = U(θm(k))

(
λ−(k) 0

0 λ+(k)

)
U−1(θm(k)) (8.178)

where U(θm(k)) is given in (8.170) and using the definitions given in eqn. (8.164-8.167) the complex

eigenvalues are

λ∓(k) = W (k)− ω(k)− i
Γ(k)

2
∓

(
∆ω(k) + i

∆Γ(k)
2

)
(8.179)

The solution of the effective equation for the slow amplitudes (8.173) coincides with the long

time dynamics given by (8.163) when the wave function renormalization constants are approximated

as Z
(i)
~k

∼ 1. Therefore the (WW) description of the time evolution based on the non-hermitian

Hamiltonian Hw (8.174) effectively describes the evolution of flavor multiplets under the following

approximations:

• Only the long-time dynamics can be extracted from the Weisskopf-Wigner Hamiltonian.

• The validity of the perturbative expansion, and of the condition δM2 ¿ ω(k)2.

• Wavefunction renormalization corrections are neglected Z(i) ∼ 1 and only leading order correc-

tions of order γ̃(k) are included.

While the Weisskopf-Wigner effective description describes the relaxation of the flavor fields, it

misses the stochastic noise from the bath, therefore, it does not reliably describe the approach to

equilibrium.

8.6 EQUILIBRATION: EFFECTIVE HAMILTONIAN IN THE MEDIUM

As discussed in section 8.3.1 we study equilibration by focusing on the asymptotic long time behavior

of the one-body density matrix or equal time correlation function, namely

lim
t→∞ 〈Ψα,~k

(t)Ψ
β,−~k

(t)〉 . (8.180)

In particular we seek to understand which basis diagonalizes the equilibrium density matrix.

Consider general initial conditions Ψ0 6= 0 and Π0 6= 0, in which case the flavor field Ψ
α,~k

(t) is

given by Eq. (8.102) with Gf (k; t) given by eqn. (9.29). For t À Γ−1
1,2, the first two contributions

to (8.102) which depend on the initial conditions fall-off exponentially as e−
Γ1,2

2
t and only the last
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term, the convolution with the noise, survives at asymptotically long time, indicating that the

equilibrium state is insensitive to the initial conditions as it must be.

To leading order in the perturbative expansion in G, and in the limit δM2/ω 2(k) ¿ 1, we can

approximate θ
(1)
m (k) ≈ θ

(2)
m (k) = θm(k), where the effective mixing angle in the medium θm(k) is

determined by the relations (9.33). Similarly we can approximate the wave function renormalization

constants as Z(1)(k) ≈ Z(2)(k) = Z(k) with

Z(k) =

[
1− 1

2ω

(
Σ
′
R(k;ω)− (−1)i δM

2

2
cos 2θm(k)∆

′
R(k;ω)

)]−1

ω=ω(k)

(8.181)

where the prime stands for derivative with respect to ω. Thus, Gf (k; t) and Gm(k; t) are related

by

Gf (k; t) ≈ Z(k) U(θm) Gm(k; t) U−1(θm) (8.182)

where Gm(k; t) is given by

Gm(k; t) =

(
sin(Ω1(k)t)

Ω1(k) e−
Γ1(k)

2
t 0

0 sin(Ω2(k)t)
Ω2(k) e−

Γ2(k)
2

t

)
+

γ̃(k)
2

sin 2θm(k)
[
e−

Γ2(k)
2

t cos(Ω2(k)t)
Ω2(k)

− e−
Γ1(k)

2
t cos(Ω1(k)t)

Ω1(k)

] 
 0 1

1 0


 .(8.183)

It is useful to define the quantities hm(t, ω) and ξ̃
β,~k

(ω) as follows

hm(t, ω) =
∫ t

0
e−iωt′ Gm(k; t) dt′ (8.184)

and

ξ
β,~k

(t− t′) =
∫ +∞

−∞
eiω(t−t′) ξ̃

β,~k
(ω) dω, (8.185)

with the noise average in the flavor basis given by

〈〈 ξ̃
ρ,~k

(ω) ξ̃
σ,−~k

(ω′) 〉〉 = K̃ρσ(k; ω)δ(ω + ω′) = ImΣ̃R
ρσ(k; ω) coth

(
βω

2

)
δ(ω + ω′) . (8.186)

We find convenient to introduce

K̃m(k;ω) = U−1(θm) K̃(k; ω) U(θm) . (8.187)
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The approach to equilibrium for t >> Γ−1
1,2 can be established from the unequal time two-point

correlation function, given by

lim
t,t′→∞

〈Ψ
α,~k

(t)Ψ
β,−~k

(t′)〉 = Z2(k)U(θm)

{∫ +∞

−∞
dω eiω(t−t′) hm(∞, ω) K̃m(k; ω) hm(∞,−ω)

}
U−1(θm)

(8.188)

where we have taken the upper limit t → ∞ in (8.185). The fact that the correlation function

becomes a function of the time difference, namely time translational invariant, indicates that the

density matrix commutes with the total Hamiltonian in the long time limit. The one-body density

matrix is obtained from (8.188) in the coincidence limit t = t′.

Performing the integration over ω, we obtain after a lengthy but straightforward calculation

lim
t→∞ 〈Ψα,~k

(t)Ψ
β,−~k

(t)〉 = Z2(k) U(θm)


 Λ11(k) Λ12(k)

Λ21(k) Λ22(k)


 U−1(θm); (8.189)

wherein

Λ11(k) =
1

2Ω1(k)
coth

(
βΩ1(k)

2

)
; Λ22(k) =

1
2 Ω2(k)

coth
(

βΩ2(k)
2

)
, (8.190)

and to the leading order of δM2/ω(k)
2 ¿ 1, we find Λ21 = Λ12(Ω1 → Ω2) where

Λ12(k) =
1

2 Ω1(k)
coth

(
βΩ1(k)

2

)
sin 2θm(k)

γ̃(k) η(k)
1 + ( η(k) )2

; η(k) =
2Ω1(k) ( Γ1(k) + Γ2(k) )

δM2%(k)
.

(8.191)

Since γ̃(k) ¿ 1, it is obvious that Λ12(k) and Λ21(k) are perturbatively small compared with

Λ11(k) and Λ22(k), in either case η(k) À 1 or η(k) ¿ 1. The asymptotic one-body density matrix

(8.74) then becomes

ρα,β(k;∞) = U(θm)




Z
2Ω1(k) coth

(
βΩ1(k)

2

)
ε

ε Z
2Ω2(k) coth

(
βΩ2(k)

2

)

 U−1(θm) ; ε . O(G2)

(8.192)

where we neglected corrections of O(G2) in the diagonal matrix elements.

Neglecting the perturbative off-diagonal corrections, the one-body density matrix commutes

with the effective Hamiltonian in the medium which in the flavor basis is given by
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Heff (k) = ω(k)

(
1 0

0 1

)
+

δM2

4ω(k)

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)

+
1

2ω(k)

(
ΣR,ee(k;ω(k)) + Vee 0

0 ΣR,µµ(k; ω(k)) + Vµµ

)
(8.193)

this effective in-medium Hamiltonian can be written in a more illuminating form

Heff (k) = U(θm)

(
Ω1(k) 0

0 Ω2(k)

)
U−1(θm) (8.194)

where Ω1,2(k) are the correct propagation frequencies in the medium given by eqn. (9.35,9.36).

This effective Hamiltonian includes the radiative corrections in the medium via the flavor di-

agonal self-energies (forward scattering) and apart from the term proportional to the identity is

identified with the real part of the Weisskopf-Wigner Hamiltonian Hw given by eqn. (8.174).

This form highlights that the off-diagonal elements of the one-body density matrix in the basis

of eigenstates of the effective Hamiltonian in the medium are perturbatively small. The unitary

transformation U(θm) relates the flavor fields to the fields in the basis of the effective Hamiltonian

in the medium.

Comparing this result to the free field case in thermal equilibrium, where the one body density

matrix in the flavor basis is given by eqn. (8.77), it becomes clear that in the long time limit equili-

bration is achieved and the one-body density matrix is nearly diagonal in the basis of the eigenstates

of the effective Hamiltonian in the medium (8.193) with the diagonal elements determined by the

distribution function of these eigenstates.

This means that within the realm of validity of perturbation theory, the equilibrium correlation

function is nearly diagonal in the basis of the effective Hamiltonian in the medium. This result

confirms the arguments advanced in [182]. Since the effective action is quadratic in the “neutrino

fields” higher correlation functions are obtained as Wick contractions of the two point correlators,

hence the fact that the two point correlation function and consequently the one-body density matrix

are diagonal in the basis of the eigenstates of the effective Hamiltonian in the medium guarantee

that all higher correlation functions are also diagonal in this basis.
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8.6.1 On “sterile neutrinos”

The results obtained in the previous sections apply to the case of two “flavored neutrinos” both

in interaction with the bath. However, these results can be simply extrapolated to the case of

one “active” and one “sterile” neutrino that mix via a mass matrix that is off-diagonal in the

flavor basis. By definition a “sterile” neutrino does not interact with hadrons, quarks or charged

leptons, therefore for this species there are no radiative corrections. Consider for example that the

“muon neutrino” represented by φµ does not couple to the bath, but it does couple to the “electron

neutrino” solely through the mixing in the mass matrix. Since the interaction is diagonal in the

flavor basis, the decoupling of this “sterile neutrino” can be accounted for simply by imposing the

following “sterility conditions” for the matter potential V and the self energies

Vµµ ≡ 0 ; ΣR,µµ ≡ 0 ; ΣI,µµ ≡ 0 . (8.195)

All of the results obtained above for the dispersion relations and relaxation rates apply to this case

by simply imposing these “sterility conditions”. In particular it follows that

Γ1(k) = Γee(k) cos2 θm(k) ; Γ2(k) = Γee sin2 θm(k) (8.196)

where Γee(k) is the relaxation rate of the active neutrino in absence of mixing. This result highlights

that in the limit θ → 0 the in-medium eigenstate labeled “2” is seen to correspond to the sterile

state, because in the absence of mixing this state does not acquire a width. However, for non-

vanishing vacuum mixing angle, the “sterile neutrino” nonetheless equilibrates with the bath as a

consequence of the “active-sterile” mixing, which effectively induces a coupling between the “sterile”

and the bath[77, 78, 112, 190, 194]. The result for Γ2(k), namely the relaxation rate of the “sterile”

neutrino is of the same form as that proposed in refs. [77, 78, 112, 190, 194]. The result for the

“sterile” rate Γ2(k) compares to those in these references in the limit in which perturbation theory

is valid, namely Σee(k)/δM2%(k) ¿ 1 since the denominator in this ratio is proportional to the

oscillation frequency in the medium.

8.7 CONCLUSIONS

In this chapter, we studied the non-equilibrium dynamics of mixing, oscillations and equilibration

in a model field theory that bears all of the relevant features of the standard model of neutrinos
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augmented by a mass matrix off diagonal in the flavor basis. To avoid the complications associated

with the spinor nature of the neutrino fields, we studied an interacting model of flavored neutral

mesons. Two species of flavored neutral mesons play the role of two flavors of neutrinos, these are

coupled to other mesons which play the role of hadrons or quarks and charged leptons, via flavor

diagonal interactions that model charged currents in the standard model. These latter meson fields

are taken to describe a bath in thermal equilibrium, and the meson-neutrino fields are taken to be

the “system”. We obtain a reduced density matrix and the non-equilibrium effective action for the

“neutrinos” by integrating out the bath degrees of freedom up to second order in the coupling in

the full time-evolved density matrix.

The non-equilibrium effective action yields all the information on the particle and quasiparticle

modes in the medium, and the approach to equilibrium.

Our main results can be summarized as follows:

• We obtain the dispersion relations, mixing angles and relaxation rates of the two quasiparticle

modes in the medium. The dispersion relations and mixing angles are of the same form as those

obtained for neutrinos in a medium[57, 189].

• The relaxation rates are found to be

Γ1(k) = Γee(k) cos2 θm(k) + Γµµ(k) sin2 θm(k) (8.197)

Γ2(k) = Γµµ(k) cos2 θm(k) + Γee(k) sin2 θm(k) (8.198)

where

Γαα(k) =
ΣI,αα(k; ω(k))

ω(k)
(8.199)

are the relaxation rates of the flavor fields in absence of mixing and ΣI,α,α are the imaginary

parts of the “neutrino” self energy which is diagonal in the flavor basis. These relaxation rates

are similar in form to those proposed in refs.[77, 78, 112, 190], within the context of active-sterile

conversion or flavor conversion in supernovae.

• The long time dynamics is approximately described by an effective Weisskopf-Wigner approx-

imation with a non-hermitian Hamiltonian. The real part includes the “index of refraction”

and the renormalization of the frequencies and the imaginary part is determined by the ab-

sorptive part of the second order self-energy and describes the relaxation. While this (WW)

approximation describes mixing, oscillations and relaxation, it does not capture the dynamics

of equilibration.
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• For time t >> Γ−1
1,2 the two point function of the neutrino fields becomes time translational

invariant reflecting the approach to equilibrium. The asymptotic long time limit of the one-body

density matrix reveals that the density matrix is nearly diagonal in the basis of eigenstates of an

effective Hamiltonian in the medium (8.193) with perturbatively small off-diagonal corrections

in this basis. The diagonal components in this basis are determined by the distribution function

of these eigenstates.

• “Sterile” neutrinos: these results apply to the case in which only one of the flavored neutrinos

is “active” but the other is “sterile”. Consider for example that the “muon neutrino” is sterile

in the sense that it does not couple to the bath. This sterile degree of freedom is thus identified

with the in medium eigenstate “2” because in the absence of mixing θ = 0 its dynamics is

completely free. The “sterility” condition corresponds to setting the matter potential Vµµ = 0

and the self-energy Σµµ = 0 with a concomitant change in the dispersion relations. All the

results obtained above apply just the same, but with Γµµ(k) = 0, from which it follows that

Γ2(k) = Γee(k) sin2 θm(k). The final result is that “sterile” neutrinos do thermalize with the

bath via “active-sterile” mixing. If the mixing angle in the medium is small, the equilibration

time scale for the “sterile neutrino” is much larger than that for the “active” species, but

equilibration is eventually achieved nonetheless. This result is a consequence of “active-sterile”

oscillations which effectively induces an interaction of the sterile neutrino with the bath[77, 78,

112, 190, 194].

Although the meson field theory studied here describes quite generally the main features of

mixing, oscillations and relaxation of neutrinos, a detailed quantitative assessment of the relaxation

rates and dispersion relations do require a full calculation in the standard model. Furthermore there

are several aspects of neutrino physics that are distinctly associated with their spinorial nature and

cannot be inferred from this model. While only the left handed component of neutrinos couple to

the weak interactions, a (Dirac) mass term couples the left to the right handed component, and

through this coupling the right handed component develops a dynamical evolution. Although the

coupling to the right handed component is very small in the ultrarelativistic limit, it is conceivable

that non-equilibrium dynamics may lead to a substantial right handed component during long time

intervals. The study of this possibility would be of importance in the early Universe because the

right handed component may thereby become an “active” one that may contribute to the total

number of species in equilibrium in the thermal bath thus possibly affecting the expansion history

of the Universe.
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Another important fermionic aspect is Pauli blocking which is relevant in the case in which

neutrinos are degenerate, for example in supernovae. These aspects will be studied elsewhere.
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9.0 PRODUCTION OF A STERILE SPECIES: QUANTUM KINETICS

9.1 INTRODUCTION

The rich and complex dynamics of oscillations, decoherence and damping is of fundamental and

phenomenological importance not only in neutrino cosmology but also in the dynamics of meson

mixing and CP violation[195, 196]. In ref.[184] it was argued that the spinor nature of neutrinos is

not relevant to describe the dynamics of mixing and oscillations at high energy which can then be

studied within a (simpler) quantum field theory of meson degrees of freedom.

Recently we reported on a study[197] of mixing, decoherence and relaxation in a theory of

mesons which provides an accurate description of similar phenomena for mixed neutrinos. This

effective theory incorporates interactions that model the medium effects associated with charge

and neutral currents for neutrinos and yield a robust picture of the non-equilibrium dynamics of

mixing, decoherence and equilibration which is remarkably general. The fermion nature of the

distributions and Pauli blocking effects can be simply accounted for in the final result[197]. This

study implemented quantum field theory methods to obtain the non-equilibrium effective action for

the “neutrino” degrees of freedom. The main ingredient in the time evolution is the full propagator

for the “neutrino” degrees of freedom in the medium. The complex poles of the propagator yield

the dispersion relation and damping rates of quasiparticle modes in the medium. The dispersion

relations are found to be the usual ones for neutrinos in a medium with the index of refraction

correction from forward scattering. For the case of two flavors, there are two damping rates which

are widely different away from MSW resonances. The results of this study motivated[198] a deeper

scrutiny of the rate equation which is often used to study sterile neutrino production in the early

Universe[20, 77, 78].

One of the observations in[198] is that the emergence of two widely different damping time scales

precludes a reliable kinetic description in terms of a time averaged transition probability suggesting
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that a simple rate equation to describe sterile neutrino production in the early Universe far away

from MSW resonances may not be reliable.

Motivation and goals: The broad potential relevance of sterile neutrinos as warm dark matter

candidates in cosmology and their impact in the late stages of stellar collapse warrant a deeper

scrutiny of the quantum kinetics of production of the sterile species. Our goal is to provide a

quantum field theory study of the non-equilibrium dynamics of mixing, decoherence and damping

and to obtain the quantum kinetic equations that determine the production of a sterile species. We

make progress towards this goal within a meson model with one active and one sterile degrees of

freedom coupled to a bath of mesons in equilibrium discussed in ref.[197]. As demonstrated by the

results of ref.[197] this (simpler) theory provides a remarkable effective description of propagation,

mixing, decoherence and damping of neutrinos in a medium. While ref.[197] studied the approach

to equilibrium focusing on the one body density matrix and single quasiparticle dynamics, in

this article we obtain the non-equilibrium effective action, the quantum master equation and the

complete set of quantum kinetic equations for the distribution functions and coherences. We also

establish a generalization of the active-sterile transition probability based on the quantum master

equation. In distinction with a recent quantum field theory treatment[?] we seek to understand

the quantum kinetics of production not only near MSW resonances, at which both time scales

concide[197, 198] but far away from the resonance region where the damping time scales are widely

separated[197, 198].

In section (9.2) we introduce the model, obtain the effective action, and the full propagator from

which we extract the dispersion relations and damping rates. In section (9.3) we define the active

and sterile distribution functions and obtain their quantum kinetic non-equilibrium evolution from

the effective action, discussing the various approximations. In section (9.4) we obtain the quantum

Master equation for the reduced density matrix, also discussing the various approximations. In

this section we obtain the full set of quantum kinetic equations for the populations and coherences

and show their equivalence to the results from the effective action. In section (9.5) we study the

kinetic evolution of the off-diagonal coherences and introduce a generalization of the active-sterile

transition probability in a medium directly from the quantum master equation. In section (9.6)

we establish the equivalence between the kinetic equations obtained from the quantum master

equation and those most often used in the literature in terms of a “polarization vector”, along the

way identifying the components of this “polarization vector” in terms of the populations of the

propagating states in the medium 1, 2 and the coherences. While this formulation is equivalent to
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the quantum kinetic equations obtained from the master equation and effective action, we argue that

the latter formulations yield more information, making explicit that the fundamental damping scales

are the widths of the quasiparticle modes in the medium and allow to define the generalization of the

transition probability in the medium. We also discuss the shortcomings of the phenomenological

rate equations often invoked for numerical studies of sterile neutrino production. Section (9.7)

summarizes our conclusions. Appendices C and D elaborate on technical aspects.

9.2 THE MODEL, EFFECTIVE ACTION, AND DISTRIBUTION FUNCTIONS

We consider a model of mesons with two flavors a, s in interaction with a “ vector boson” and a

“flavor lepton” here denoted as W , χa respectively, modeling charged and neutral current interac-

tions in the standard model. This model has been proposed as an effective description of neutrino

mixing, decoherence and damping in a medium in ref.[197] to which we refer reader for details. As

it will become clear below, the detailed nature of the bath fields W,χa is only relevant through

their equilibrium correlation functions which can be written in dispersive form.

In terms of the field doublet

Φ =

(
φa

φs

)
(9.1)

the Lagrangian density is

L =
1
2

{
∂µΦT ∂µΦ− ΦTM2Φ

}
+ L0[W,χ] + GW φaχa + Gφ2

aχ
2
a (9.2)

where the mass matrix is given by

M2 =


 M2

aa M2
as

M2
as M2

ss


 (9.3)

and L0[W,χ] is the free field Lagrangian density for W,χ which need not be specified.

The mesons φa,s play the role of the active and sterile flavor neutrinos, χa the role of the charged

lepton associated with the active flavor and W a charged current, for example the proton-neutron

current pγµ(1 − gAγ5)n or a similar quark current. The coupling G plays the role of GF . The

interaction between the “neutrino” doublet and the W,χa fields is of the same form as that studied

in ref.[12, 63, 64] for neutral and charged current interactions. As it will be seen below, we do
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not need to specify the precise form, only the spectral properties of the correlation function of this

current are necessary.

The flavor φa,s and the mass basis fields ϕ1,2 are related by an orthogonal transformation

Φ = U(θ) ϕ


 φa

φs


 = U(θ)

(
ϕ1

ϕ2

)
; U(θ) =

(
cos θ sin θ

− sin θ cos θ

)
(9.4)

where the orthogonal matrix U(θ) diagonalizes the mass matrix M2, namely

U−1(θ)M2 U(θ) =

(
M2

1 0

0 M2
2

)
(9.5)

In the flavor basis the mass matrix M can be written in terms of the vacuum mixing angle θ

and the eigenvalues of the mass matrix as

M2 = M
2
1+

δM2

2


 − cos 2θ sin 2θ

sin 2θ cos 2θ


 (9.6)

where we introduced

M
2 =

1
2
(M2

1 + M2
2 ) ; δM2 = M2

2 −M2
1 . (9.7)

For the situation under consideration with keV sterile neutrinos with small vacuum mixing

angle θ ¿ 1

Maa ∼ M1 ; Mss ∼ M2 (9.8)

and in the vacuum

φa ∼ φ1 ; φs ∼ φ2 . (9.9)

We focus on the description of the dynamics of the “system fields” φα, α = a, s. The strategy is

to consider the time evolved full density matrix and trace over the bath degrees of freedom χ,W .

It is convenient to write the Lagrangian density (9.2) as

L[φα, χα,W ] = L0[φ] + L0[W,χ] + GφaOa + Gφ2
aχ

2
a (9.10)

where

Oa = χa W . (9.11)
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and L0[· · · ] are the free Lagrangian densities for the fields φα, χa, W respectively. The fields φα are

considered as the “system” and the fields χa, W are treated as a bath in thermal equilibrium at a

temperature T ≡ 1/β. We consider a factorized initial density matrix at a time t0 = 0 of the form

ρ̂(0) = ρΦ(0)⊗ ρB(0) ; ρB(0) = e−β H0[χ,W ] (9.12)

where H0[χ,W ] is Hamiltonian for the fields χa,W in absence of interactions with the neutrino

field φa.

Although this factorized form of the initial density matrix leads to initial transient dynamics,

we are interested in the long time dynamics, in particular in the long time limit.

The bath fields χα, W will be “integrated out” yielding a reduced density matrix for the fields

φα in terms of an effective real-time functional, known as the influence functional[164] in the theory

of quantum brownian motion. The reduced density matrix can be represented by a path integral in

terms of the non-equilibrium effective action that includes the influence functional. This method has

been used extensively to study quantum brownian motion[164, 165], and quantum kinetics[168, 186]

and more recently in the study of the non-equilibrium dynamics of thermalization in a similar

model[197]. The time evolution of the initial density matrix is given by

ρ̂(t) = e−iH(t−t0)ρ̂(t0)eiH(t−t0) (9.13)

Where the total Hamiltonian H is

H = H0[φ] + H0[χ,W ] + HI [φ, χ, W ] (9.14)

Denoting all the fields collectively as X to simplify notation, the density matrix elements in the

field basis are given by

〈X|ρ̂(t)|X ′〉 =
∫

DXiDX ′
i 〈X|e−iH(t−t0)|Xi〉 〈Xi|ρ̂(t0)|X ′

i〉 〈X ′
i|eiH(t−t0)|X ′〉 . (9.15)

The density matrix elements in the field basis can be expressed as a path integral by using the

representations

〈X|e−iH(t−t0)|Xi〉 =
∫
DX+ e

i
R t

t0
dt
R

d3xL[X+] ; X+(t0) = Xi; X+(t) = X . (9.16)

Similarly

〈X ′
i|eiH(t−t0)|X ′〉 =

∫
DX− e

−i
R t

t0
dt
R

d3xL[X−] ; X−(t0) = X ′
i; X

−(t) = X ′ . (9.17)
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Therefore the full time evolution of the density matrix can be systematically studied via the path

integral

Z =
∫
DX+DX−e

i
R t

t0
dt
R

d3x{L[X+]−L[X−]} , (9.18)

with the boundary conditions discussed above. This representation allows to obtain expectation

values or correlation functions C(X, Xi, X
′
i, X

′; t, t′) which depend on the values of the fields Xi; X ′
i

through the initial conditions. In order to obtain expectation values or correlation functions in the

full time evolved density matrix, the results from the path integral must be averaged in the initial

density matrix ρ̂(t0), namely

〈C(X,X ′; t, t′)〉 ≡
∫

DXiDX ′
i 〈Xi|ρ̂(t0)|X ′

i〉 C(X,Xi, X
′
i, X

′; t, t′) . (9.19)

We will only study correlation functions of the “system” fields φα, therefore we carry out

the trace over the χa and W degrees of freedom in the path integral (9.18) systematically in a

perturbative expansion in G. The resulting series is re-exponentiated to yield the non-equilibrium

effective action and the generating functional of connected correlation functions of the fields φα.

This procedure has been explained in detail in references[168, 186] and more recently in [197]

within a model similar to the one under consideration. Following the procedure detailed in these

references we obtain the non-equilibrium effective action up to order G2 and quadratic in the fields

φα neglecting higher order non-linearities,

iLeff [φ+, φ−] =
∑

~k

{
i

2

∫
dt

[
φ̇+

α,~k
(t)φ̇+

α,−~k
(t)− φ+

α,~k
(t)(k21+M2 +V)φ+

β,−~k
(t)

−φ̇−
α,~k

(t)φ̇−
α,−~k

(t) + φ−
α,~k

(t)(k2 1+M2 +V)φ−−~k
(t)

]

−G2

2

∫
dt

∫
dt′

[
φ+

a,~k
(t)G++(k; t, t′)φ+

a,−~k
(t′) + φ−

a,~k
(t)G−−(k; t, t′)φ−

a,−~k
(t′)

−φ+

a,~k
(t)G+−(k; t, t′)φ−

a,−~k
(t′)− φ−

a,~k
(t)G−+(k; t, t′)φ+

a,−~k
(t′)

] }
(9.20)

where the matter potential is

V =


 Vaa 0

0 0


 ; Vaa = G〈χ2

a〉 , (9.21)

with the average in the initial bath density matrix. The corresponding one-loop diagram at order

G that yields the matter potential is depicted in figure (9.1).

The correlation functions G(t, t′) ∼ 〈Oa(t)Oa(t′)〉 = 〈W (t)W (t′)〉 〈χa(t)χa(t′)〉 are also deter-

mined by averages in the initial equilibrium bath density matrix and their explicit form is given in

reference[197] (see also appendix (D)).
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φa φa

〈χ2〉

Figure 9.1: One loop self-energy for the active species at order G, corresponding to the matter

potential Vaa = G〈χ2〉.

Performing the trace over the bath degrees of freedom the resulting non-equilibrium effective

action acquires a simpler form in terms of the Wigner center of mass and relative variables[168,

186, 197]

Ψα(~x, t) =
1
2

(
φ+

α (~x, t) + φ−α (~x, t)
)

; Rα(~x, t) =
(
φ+

α (~x, t)− φ−α (~x, t)
)

; α = a, s (9.22)

and a corresponding Wigner transform of the initial density matrix for the φ fields. See ref.[197]

for details. The resulting form allows to cast the dynamics of the Wigner center of mass variable as

a stochastic Langevin functional equation, where the effects of the bath enter through a dissipative

kernel and a stochastic noise term, whose correlations obey a generalized fluctuation-dissipation

relation[168, 186, 197]. In terms of spatial Fourier transforms the time evolution of the center of

mass Wigner field Ψ is given by the following Langevin (stochastic) equation (see derivations and

details in refs.[164, 165, 168, 186, 197])

Ψ̈
α,~k

(t) + (k2 δαβ +M2
αβ +Vαβ)Ψ

β,~k
(t) +

∫ t

0
dt′ Σαβ(k; t− t′)Ψ

β,~k
(t′) = ξ

α,~k
(t)

Ψ
α,~k

(t = 0) = Ψ0
α,~k

; Ψ̇
α,~k

(t = 0) = Π0
α,~k

(9.23)

where Ψ0
α,~k

, Π0
α,~k

are the initial values of the field and its canonical momentum. The stochastic

noise ξ
α,~k

(t) is described by a Gaussian distribution function [168, 186, 197]with

〈ξ
α,~k

(t)〉 = 0 ; 〈ξ
α,~k

(t)ξ
β,−~k

(t′)〉 = Kα,β(k; t− t′) ≡
∫ ∞

−∞

dω

2π
eiω(t−t′)K̃αβ(k; ω) (9.24)

and the angular brackets denote the averages with the Gaussian probability distribution function,

determined by the averages over the bath degrees of freedom. The retarded self-energy kernel has
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the following spectral representation[197]

Σαβ(k; t− t′) =
i

π

∫ ∞

−∞
eiω(t−t′)ImΣ̃αβ(k; ω)dω (9.25)

where the imaginary part in the flavor basis is

ImΣ̃(k; ω) = ImΣ̃aa(k; ω)


 1 0

0 0


 , (9.26)

and ImΣ̃aa(k; ω) is obtained from the cut discontinuity in the one-loop diagram in figure (9.2). In

this figure the W propagator should be identified with the full charged vector boson propagator

in the standard model, including a radiative self-energy correction from a quark, lepton or hadron

loop.

φa φaχa

W

Figure 9.2: One loop self-energy for the active species to order G2. The cut discontinuity across

the W − χ lines yields the imaginary part ImΣ̃aa(k;ω).

Because the bath fields are in thermal equilibrium, the noise correlation kernel K̃αβ(k; ω) in

eqn. (9.24) and the absorptive part of the retarded self energy ImΣ̃αβ(k;ω) obey the generalized

fluctuation dissipation relation[168, 186, 197]

K̃αβ(k; ω) = ImΣ̃αβ(k; ω) coth
[
βω

2

]
(9.27)

The solution of the Langevin equation (9.23) is[168, 186, 197]

Ψ
α,~k

(t) = Ġαβ(k; t)Ψ0
β,~k

+ Gαβ(k; t)Π0
β,~k

+
∫ t

0
Gαβ(k; t′) ξ

β,~k
(t− t′)dt′ , (9.28)

from which is clear that the propagator Gαβ contains all the relevant information for the non-

equilibrium dynamics.

In the Breit-Wigner (narrow width) approximation, the matrix propagator G(k; t) in the flavor
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basis is given by[197]

G(k; t) = Z
(1)
k e−

Γ1(k)
2

t

[
sin(Ω1(k)t)

Ω1(k)
R(1)(θm)− γ̃(k)

2
cos(Ω1(k)t)

Ω1(k)
R(3)(θm)

]
+

Z
(2)
k e−

Γ2(k)
2

t

[
sin(Ω2(k)t)

Ω2(k)
R(2)(θm) +

γ̃(k)
2

cos(Ω2(k)t)
Ω2(k)

R(3)(θm)

]
(9.29)

where Z
(i)
k are the residues at the quasiparticle poles and we have introduced the matrices

R(1)(θ) =

(
cos2 θ − cos θ sin θ

− cos θ sin θ sin2 θ

)
= U(θ)

(
1 0

0 0

)
U−1(θ) (9.30)

R(2)(θ) =

(
sin2 θ cos θ sin θ

cos θ sin θ cos2 θ

)
= U(θ)

(
0 0

0 1

)
U−1(θ) (9.31)

R(3)(θ) = sin 2θ


 sin 2θ cos 2θ

cos 2θ − sin 2θ


 = sin 2θ U(θ)


 0 1

1 0


 U−1(θ) . (9.32)

From the results of reference[197] to leading order in G, the mixing angle in the medium is deter-

mined from the relations

cos 2θm =
cos 2θ − Vaa

δM2

%
; sin 2θm =

sin 2θ

%
, (9.33)

where

% =

[
(
cos 2θ − Vaa

δM2

)2 +
(
sin 2θ

)2

] 1
2

. (9.34)

The propagating frequencies and widths are given by[197]

Ω1(k) = ω1(k) + ∆ω1(k) ; Γ1(k) =
ImΣ̃aa(k; ω1(k))

ω1(k)
cos2 θm (9.35)

Ω2(k) = ω2(k) + ∆ω2(k) ; Γ2(k) =
ImΣ̃aa(k; ω2(k))

ω2(k)
sin2 θm , (9.36)

where

ω2
1(k) = k2 + M

2 +
Vaa

2
− δM2 %

2
(9.37)

ω2
2(k) = k2 + M

2 +
Vaa

2
+

δM2 %

2
(9.38)

are the propagating frequencies (squared) in the medium including the matter potential at order G,

namely the index of refraction arising from forward scattering, with M
2 ; δM2 defined in equation
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(9.7). The second order frequency shifts are

∆ω1(k) = − cos2 θm

2πω1(k)

∫
dωP

[
ImΣ̃aa(k; ω)
ω − ω1(k)

]
(9.39)

∆ω2(k) = − sin2 θm

2πω2(k)

∫
dωP

[
ImΣ̃aa(k; ω)
ω − ω2(k)

]
, (9.40)

and[197]

γ̃(k) =
ImΣ̃aa(k; ω(k))
ω2

2(k)− ω2
1(k)

; ω(k) =
√

k2 + M
2
. (9.41)

The relationship between the damping rates Γ1,2 and the imaginary part of the self energy is the

same as that obtained in the study of neutrinos with standard model interactions in a medium

in[198].

To leading order in perturbation theory the denominator in equation (9.41) is δM2ρ. When the

matter potential dominates (at high temperature in the standard model), Vaa À δM2 and δM2ρ ∼
Vaa ∝ G À ImΣ̃aa ∝ G2, thus in this regime γ̃ ∝ G ¿ 1. For example with active neutrinos with

standard model interactions at high temperature, it was argued in ref.[198] that Vaa ∝ GF kT 5/M2
W

whereas ImΣ̃aa ∼ G2
F kT 5 therefore at high temperature γ̃ ∼ ImΣ̃aa/Vaa ∼ gw ¿ 1 with gw the

standard model weak coupling.

In the opposite limit, for δM2 À Vaa ∝ G the vacuum mass difference dominates ρ ∼ 1 and

γ̃ ¿ 1 since δM2 À G À G2. This analysis is similar to that in ref.[198] and precludes the

possibility of “quantum zeno suppression”[20, 60] at high temperature.

The only region in which γ̃ may not be perturbatively small is near a resonance at which ρ =

| sin 2θ| and only for very small vacuum mixing angle so that δM2| sin 2θ| ∝ G2. This situation

requires a careful re-examination of the perturbative expansion, and in this case the propagator

cannot be described as two separate Breit-Wigner resonances because the width of the resonances is

of the same order of or larger than the separation between them. Such a possibility would require a

complete re-assessment of the dynamics of the propagating modes in the medium as a consequence

of the breakdown of the Breit-Wigner (or narrow width) approximation. However, for very small

vacuum mixing angle, indeed a distinct possibility for keV sterile neutrinos[20], the MSW resonance

is very narrow and in most of the parameter range γ̃ ¿ 1 and can be safely neglected. This is

certainly the case at very high or very low temperature regimes in which Vaa À δM2 or Vaa ¿ δM2

respectively.

In summary, it follows from this discussion that γ̃(k) ¿ 1, with the possible exception near an

MSW resonance for extremely small vacuum mixing angle[197], and such a case must be studied
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in detail non-perturbatively.

Hence, neglecting perturbatively small corrections, the Green’s function in the flavor basis can

be written as

G(k; t) = U(θm(k))Gm(k; t)U−1(θm(k)) (9.42)

with

Gm(k; t) =

(
e−

Γ1(k)
2

t sin(Ω1(k)t)
Ω1(k) 0

0 e−
Γ2(k)

2
t sin(Ω2(k)t)

Ω2(k)

)
(9.43)

This Green’s function and the expression for the damping rates Γ1,2 in eqn. (9.35,9.36) lead

to the following physical interpretation. The fields that diagonalize the Green’s function on the

mass shell, namely φ1,2 are associated with the quasiparticle modes in the medium and describe

the propagating excitations in the medium. From eqn. (9.42) these are related to the flavor fields

φa,s by the unitary transformation

φa = cos θmφ1 + sin θmφ2 ; φs = cos θmφ2 − sin θmφ1 . (9.44)

When the matter potential Vaa À δM2, namely when θm ∼ π/2 it follows that φa ∼ φ2 and the

damping rate of the active species is Γ2 ∼ Γaa while φs ∼ φ1 and the damping rate of the “sterile”

species is Γ1 ∼ Γaa cos2 θm ¿ Γaa, where

Γaa ' ImΣ̃aa(k; k)
k

(9.45)

is the ultrarelativistic limit of the damping rate of the active species in absence of mixing. In

the opposite limit, when the medium mixing angle is small θm ∼ 0, corresponding to the near-

vacuum case, φa ∼ φ1 and the active species has a damping rate Γ1 ∼ Γaa while φs ∼ φ2 with

Γ2 ∼ Γaa sin2 θm ¿ Γaa. In both limits the sterile species is weakly coupled to the plasma, active

and sterile species become equally coupled near an MSW resonance for θm ∼ π/4.

We emphasize that the relation (9.44) is not a relation between wave functions, but between

the fields associated with the flavor eigenstates (active-sterile) and those associated with the prop-

agating (quasiparticle) excitations in the medium (see section (9.5)).
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9.3 QUANTUM KINETICS:

The distribution functions for the active (a) and sterile (s) species are defined in terms of the

diagonal entries of the mass matrix in the flavor representation, namely

Nα(k; t) =
1

2Wα(k)

[
〈φ̇α(~k; t)φ̇α(−~k, t)〉+ W 2

α(k)〈φα(~k; t)φα(−~k, t)〉
]
− 1

2
; α = a, s (9.46)

where

W 2
α(k) = k2 + M2

αα . (9.47)

The equal time expectation values of Heisenberg field operators are in the initial density matrix,

and as shown in references[168, 186, 197] they are the same as the equal time expectation value of

the center of mass Wigner variables Ψ, where the expectation value is now in terms of the initial

density matrix for the system and the distribution function of the noise which is determined by the

thermal bath[168, 186, 197]. Therefore the distribution functions for the active and sterile species

are given by

Nα(k; t) =
1

2Wα(k)

[
〈Ψ̇α(~k; t)Ψ̇α(−~k, t)〉+ W 2

α(k)〈Ψα(~k; t)Ψα(−~k, t)〉
]
− 1

2
; α = a, s (9.48)

and the averages are taken over the initial density matrix of the system and the noise probability

distribution. This expression combined with eqn.(9.28) makes manifest that the full time evolution

of the distribution function is completely determined by the propagator Gαβ(k, t) obtained from

the solution of the effective equations of motion in the medium[197].

It proves convenient to introduce a matrix of distribution functions in terms of a parameter Ω

as follows

Nαβ(k, t; Ω) ≡ 1
2Ω

[
〈Ψ̇α(~k; t)Ψ̇β(−~k, t)〉+ Ω2〈Ψα(~k; t)Ψβ(−~k, t)〉

]
− 1

2
δαβ (9.49)

from which we extract the active and sterile distribution functions from the diagonal elements,

namely

Na(k; t) = Na,a(k, t; Wa(k)) ; Ns(k; t) = Ns,s(k, t; Ws(k)) (9.50)

and the off-diagonal elements determine off-diagonal correlation functions of the fields and their

canonical momenta in the flavor basis.
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We consider first the initial density matrix for the system ρ̂Φ(0) to be diagonal in the flavor

basis with free field correlations

Tr ρ̂Φ(0)Ψ0
α,~k

Ψ0
β,−~k

=
1

2Wα(k)
[1 + 2Nα(k; 0)] δαβ (9.51)

Tr ρ̂Φ(0)Π0
α,~k

Π0
β,−~k

=
Wα(k)

2
[1 + 2Nα(k; 0)] δαβ (9.52)

Tr ρ̂Φ(0)Ψ0
α,~k

Π0
β,−~k

= 0 (9.53)

with Nα(k; 0) being the initial distribution functions for the active and sterile species. Different

initial conditions will be studied below.

Following the steps described in appendix (??) it is convenient to writeN(k, t; Ω) = N(I)(k, t; Ω)+

N(ξ)(k, t; Ω) where N(I) depends on the initial conditions but not on the noise ξ and N(ξ) depends

on the noise ξ but not on the initial conditions. We find

N(I)(k, t; Ω)

= R(1)(θm) e−Γ1t

{
cos2(θm)

[
W 2

a + Ω2
1

2WaΩ

] [
1
2

+ Na(0)
]

+ sin2(θm)
[
W 2

s + Ω2
1

2ΩWs

] [
1
2

+ Ns(0)
]}[

Ω2 + Ω2
1

2Ω2
1

]

+ R(2)(θm) e−Γ2t

{
sin2(θm)

[
W 2

a + Ω2
2

2WaΩ

] [
1
2

+ Na(0)
]

+ cos2(θm)
[
W 2

s + Ω2
2

2ΩWs

] [
1
2

+ Ns(0)
]}[

Ω2 + Ω2
2

2Ω2
2

]

+ R(3)(θm) e−
1
2
(Γ1+Γ2)t cos [(Ω1 − Ω2)t]

[
Ω2 + Ω2Ω1

4Ω1Ω2

]{
(Wa −Ws)

4Ω

(
Ω1Ω2

WaWs
− 1

)

+ Na(0)
(

Ω1Ω2 + W 2
a

2ΩWa

)
−Ns(0)

(
Ω1Ω2 + W 2

s

2ΩWs

)}
− 1

2
. (9.54)

We have suppressed the dependence on k to simplify the notation. The contribution from the

noise term can be written as

N(ξ)(k, t; Ω) =
1

2Ω

∫
dω

2π
U(θm)

{
hm(ω, t)Km(ω)h∗m(ω, t) + Ω2fm(ω, t)Km(ω)f∗m(ω, t)

}
U−1(θm)

(9.55)

where

hm(ω, t) =
∫ t

0
e−iωt′Gm(k; t′) ; fm(ω, t) =

∫ t

0
e−iωt′Ġm(k; t′) (9.56)

and

Km(ω) = ImΣ̃aa(k; ω) [1 + 2n(ω)]

(
cos2(θm) cos(θm) sin(θm)

cos(θm) sin(θm) sin2(θm)

)
(9.57)

279



After lengthy but straightforward algebra we find

N(ξ)(k, t; Ω) =
[
Ω2 + Ω2

1

2Ω1Ω

] [
1
2

+ n(Ω1(k))
](

1− e−Γ1(k)t
)
R(1)(θm(k)) +

[
Ω2 + Ω2

2

2Ω2Ω

] [
1
2

+ n(Ω2(k))
](

1− e−Γ2(k)t
)
R(2)(θm(k)) (9.58)

where we have neglected terms proportional to γ̃.

Approximations: In arriving at the expressions (9.54), (9.58), we have made the following

approximations:

• (a) We have taken Z
(i)
k = 1 thus neglecting terms which are perturbatively small, of O(G2).

• (b) We have assumed Γi/Ωi ¿ 1, which is warranted in perturbation theory and neglected

terms proportional to this ratio.

• (c) As discussed above, consistently with perturbation theory we have assumed γ̃(k) ¿ 1 and

neglected terms proportional to it. This corresponds to the interaction rate much smaller than

the oscillation frequencies and relies on the consistency of the perturbative expansion.

• (d) In oscillatory terms we have taken a time average over the rapid time scales 1/Ω1,2 replacing

sin2(Ω1,2t) = cos2(Ω1,2t) → 1/2 ; sin(Ω1,2t) = cos(Ω1,2t) → 0.

Ultrarelativistic limit: The above expressions simplify considerably in the ultrarelativistic

limit in which

Ω ∼ Wa(k) ∼ Ws(k) ∼ Ω1(k) ∼ Ω2(k) ∼ k , (9.59)

and in this limit it follows that

Γ1 = Γaa cos2 θm ; Γ2 = Γaa sin2 θm (9.60)

and Γaa is the ultrarelativistic limit of the width of the active species in the absence of mixing given

by eqn. (9.45). In this limit we obtain the following simple expression for the time evolution of the

occupation number matrix in the flavor basis (suppressing the k dependence for simplicity)

N(t) = R(1)(θm)

[
n(Ω1) +

(
Na(0) cos2(θm) + Ns(0) sin2(θm)− n(Ω1)

)
e−Γ1t

]

+ R(2)(θm)

[
n(Ω2) +

(
Na(0) sin2(θm) + Ns(0) cos2(θm)− n(Ω2)

)
e−Γ2t

]

+
1
2
R(3)(θm) e−

1
2
(Γ1+Γ2)t cos [(Ω1 − Ω2)t]

(
Na(0)−Ns(0)

)
. (9.61)
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It is straightforward to verify that

N(0) =


 Na(0) 0

0 Ns(0)


 . (9.62)

The active and sterile populations are given by the diagonal elements of (9.61), namely

Na(t) = cos2(θm)

[
n(Ω1) +

(
Na(0) cos2(θm) + Ns(0) sin2(θm)− n(Ω1)

)
e−Γ1t

]

+ sin2(θm)

[
n(Ω2) +

(
Na(0) sin2(θm) + Ns(0) cos2(θm)− n(Ω2)

)
e−Γ2t

]

+
1
2

sin2(2θm) e−
1
2
(Γ1+Γ2)t cos [(Ω1 − Ω2)t]

(
Na(0)−Ns(0)

)
. (9.63)

Ns(t) = sin2(θm)

[
n(Ω1) +

(
Na(0) cos2(θm) + Ns(0) sin2(θm)− n(Ω1)

)
e−Γ1t

]

+ cos2(θm)

[
n(Ω2) +

(
Na(0) sin2(θm) + Ns(0) cos2(θm)− n(Ω2)

)
e−Γ2t

]

− 1
2

sin2(2θm) e−
1
2
(Γ1+Γ2)t cos [(Ω1 − Ω2)t] (Na(0)−Ns(0)) . (9.64)

The oscillatory term which results from the interference of the propagating modes 1, 2 damps

out with a damping factor
1
2
(Γ1 + Γ2) =

Γaa

2
(9.65)

which determines the decoherence time scale τdec = 2/Γaa. These expressions are one of the main

results of this article.

Initial density matrix diagonal in the 1 − 2 basis: The above results were obtained

assuming that the initial density matrix is diagonal in the flavor basis, if instead, it is diagonal in

the basis of the propagating modes in the medium, namely the 1− 2 basis, it is straightforward to

find the result

N(t) = U(θm)

{
 1 0

0 0




[
n(Ω1) +

(
N1(0)− n(Ω1)

)
e−Γ1t

]

+


 0 0

0 1




[
n(Ω2) +

(
N2(0)− n(Ω2)

)
e−Γ2t

]}
U−1(θm) . (9.66)
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In particular, the active and sterile distribution functions become

Na(t) = cos2 θm

[
n(Ω1) +

(
N1(0)− n(Ω1)

)
e−Γ1t

]
+ sin2 θm

[
n(Ω2) +

(
N2(0)− n(Ω2)

)
e−Γ2t

]

(9.67)

Ns(t) = cos2 θm

[
n(Ω2) +

(
N2(0)− n(Ω2)

)
e−Γ2t

]
+ sin2 θm

[
n(Ω1) +

(
N1(0)− n(Ω1)

)
e−Γ1t

]
.

(9.68)

The results summarized by eqns. (9.63-9.68) show that the distribution functions for the prop-

agating modes in the medium, namely the 1, 2 quasiparticles, reach equilibrium with the damping

factor Γ1,2 which is twice the damping rate of the quasiparticle modes (see eqn. (9.43)). The

interference term is present only when the initial density matrix is off diagonal in the (1,2) basis

of propagating modes in the medium.

If the initial density matrix is off-diagonal in the (1,2) basis, these off diagonal components

damp-out within the decoherence time scale τdec, while the diagonal elements attain the values of

the equilibrium distributions on the time scales 1/Γ1, 1/Γ2.

9.4 THE QUANTUM MASTER EQUATION

The quantum master equation is the equation of motion of the reduced density matrix of the system

fields in the interaction picture after integrating out the bath degrees of freedom. The first step

is to define the interaction picture, for which a precise separation between the free and interaction

parts in the Hamiltonian is needed[200]. In order to carry out the perturbative expansion in terms

of the eigenstates in the medium, we include the lowest order forward scattering correction, namely

the index of refraction into the un-perturbed Hamiltonian. This is achieved by writing the term

φ2
aχ

2 = φ2
a〈χ2〉+ φ2

aδχ
2 (9.69)

where

δχ2 = χ2 − 〈χ2〉 ; 〈δχ2〉 = 0 (9.70)

and the average is performed in the bath density matrix ρB(0) = e−βH0[χ,W ]. In this manner the

quadratic part of the Lagrangian density for the active and sterile fields is

L0[φ] =
1
2

{
∂µΦT ∂µΦ− ΦT (M2 +V)Φ

}
(9.71)
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where V is the matter potential given by eqn. (9.21). The unperturbed Hamiltonian for the system

fields in the medium is diagonalized by the unitary transformation (9.4) but with the unitary matrix

U(θm) with θm being the mixing angle in the medium given by equations (9.33,9.34) and ϕ1, ϕ2

are now the fields associated with the eigenstates of the Hamiltonian in the medium including the

index of refraction correction from the matter potential to O(G) (O(GF ) in the case of neutrinos

with standard model interactions). Introducing creation and annihilation operators for the fields

ϕ1,2 with usual canonical commutation relations, the unperturbed Hamiltonian for the propagating

modes in the medium including the index of refraction is

HS [ϕ1,2] =
∑

~k

∑

i=1,2

[
a†i (~k)ai(~k)ωi(k)

]
(9.72)

where ωi(k) are the propagating frequencies in the medium given in equation (9.37,9.38). The

interaction Hamiltonian is

HI = G

∫
d3x

[
φ2

aδχ
2 + φaOa

]
(9.73)

where

φa = cos(θm)ϕ1 + sin(θm)ϕ2 . (9.74)

This formulation represents a re-arrangement of the perturbative expansion in terms of the fields

that create and annihilate the propagating modes in the medium. The remaining steps are available

in the quantum optics literature[200]. Denoting the Hamiltonian for the bath degrees of freedom

H0[χ,W ] ≡ HB the total Hamiltonian is H = HS + HB + HI ≡ H0 + HI . The density matrix in

the interaction picture is

ρ̂i(t) = eiH0tρ̂(t)e−iH0t (9.75)

where ρ̂(t) is given by eqn. (9.13) and it obeys the equation of motion

dρ̂i(t)
dt

= −i [HI(t), ρ̂i(t)] (9.76)

with HI(t) = eiH0tHIe
−iH0t is the interaction Hamiltonian in the interaction picture of H0. Itera-

tion of this equation up to second order in the interaction yields[200]

dρ̂i(t)
dt

= −i [HI(t), ρ̂i(0)]−
∫ t

0
dt′

[
HI(t),

[
HI(t′), ρ̂i(t′)

]]
+ · · · (9.77)

The reduced density matrix for the system is obtained from the total density matrix by tracing

over the bath degrees of freedom which are assumed to remain in equilibrium[200]. At this stage,

several standard approximations are invoked[200]:
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• i): factorization: the total density matrix is assumed to factorize

ρ̂i(t) = ρS,i(t)⊗ ρB(0) (9.78)

where it is assumed that the bath remains in equilibrium, this approximation is consistent with

obtaining the effective action by tracing over the bath degrees of freedom with an equilibrium

thermal density matrix. The correlation functions of the bath degrees of freedom are not

modified by the coupling to the system.

• ii): Markovian approximation: the memory of the evolution is neglected and in the double

commutator in (9.77) ρ̂i(t′) is replaced by ρ̂i(t) and taken out of the integral.

Taking the trace over the bath degrees of freedom yields the quantum master equation for the

reduced density matrix,

dρS,i(t)
dt

= −
∫ t

0
dt′TrB

{ [
HI(t),

[
HI(t′), ρ̂i(t)

]] }
+ · · · (9.79)

where the first term has vanished by dint of the fact that the matter potential was absorbed into

the unperturbed Hamiltonian, namely TrBρB(0)δχ2 = 0. This is an important aspect of the

interaction picture in the basis of the propagating states in the medium. Up to second order we

will only consider the interaction term

HI(t) =
∑

~k

[
cos θmϕ

1,~k
(t) + sin θmϕ

2,~k
(t)

]
O−~k

(t) (9.80)

where we have written the interaction Hamiltonian in terms of spatial Fourier transforms and

the fields are in the interaction picture of H0. We neglect non-linearities from the second order

contributions of the term φ2
aδχ

2, the non-linearities associated with the neutrino background are

included in the forward scattering corrections accounted for in the matter potential. The quartic

non-linearities are associated with active “neutrino-neutrino” elastic scattering and are not relevant

for the production of the sterile species.

The next steps are: i) writing out explicitly the nested commutator in (9.79) yielding four dif-

ferent terms, ii) taking the trace over the bath degrees of freedom yielding the correlation functions

of the bath operators TrBO(t)O(t′) (and t ↔ t′) and, iii) carrying out the integrals in the variable

t′. While straightforward these steps are lengthy and technical and are relegated to appendix (D).

Two further approximations are invoked[200],

• iii): the “rotating wave approximation”: terms that feature rapidly varying phases of

the form e±2iω1,2t; e±i(ω1+ω2)t are averaged out in time leading to their cancellation. This ap-
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proximation also has a counterpart in the effective action approach in the averaging of rapidly

varying terms, see the discussion after equation (9.58).

• iv): the Wigner Weisskopf approximation: time integrals of the form

∫ t

0
e−i(ω−Ω)τdτ ≈ −iP

[
1

ω − Ω

]
+ πδ(ω − Ω) (9.81)

where P stands for the principal part. The Markovian approximation (ii) when combined with

the Wigner-Weisskopf approximation is equivalent to approximating the propagators by their

narrow width Breit-Wigner form in the effective action.

All of these approximations i)- iv) detailed above are standard in the derivation of quantum

master equations in the literature[200].

The quantum master equation is obtained in appendix (D), it features diagonal and off-diagonal

terms in the 1−2 basis and is of the Lindblad form[200] which ensures that the trace of the reduced

density matrix is a constant of motion as it must be, because it is consistently derived from the full

Liouville evolution (9.13). We now focus on the ultrarelativistic case ω1(k) ∼ ω2(k) ∼ k which leads

to substantial simplifications and is the relevant case for sterile neutrinos in the early Universe, we

also neglect the second order corrections to the propagation frequencies. With these simplifications

we obtain,

dρS,i

dt
=

{ ∑

j=1,2

∑

~k

−Γj(k)
2

[
[
1 + n(ωj(k))

](
ρS,ia

†
j(~k)aj(~k) + a†j(~k)aj(~k)ρS,i − 2aj(~k)ρS,ia

†
j(~k)

)

+ n(ωj(k))
(

ρS,iaj(~k)a†j(~k) + aj(~k)a†j(~k)ρS,i − 2a†j(~k)ρS,iaj(~k)
)]

−
∑

~k

Γ̃(k)
2

{[(
1 + n(ω1(k))

)(
a†2(k; t)a1(k; t)ρS,i + ρS,ia

†
1(k; t)a2(k; t)− a2(k; t)ρS,ia

†
1(k; t)

− a1(k; t)ρS,ia
†
2(k; t)

)
+ n(ω1(k))

(
a2(k; t)a†1(k; t)ρS,i + ρS,ia1(k; t)a†2(k; t)− a†2(k; t)ρS,ia1(k; t)

− a†1(k; t)ρS,ia2(k; t)
)]

+

[(
1 + n(ω2(k))

)(
a†1(k; t)a2(k; t)ρS,i + ρS,ia

†
2(k; t)a1(k; t)− a1(k; t)ρS,ia

†
2(k; t)

− a2(k; t)ρS,ia
†
1(k; t)

)
+ n(ω2(k))

(
a1(k; t)a†2(k; t)ρS,i + ρS,ia2(k; t)a†1(k; t)− a†1(k; t)ρS,ia2(k; t)

− a†2(k; t)ρS,ia1(k; t)
)]}

, (9.82)
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where

Γ1(k) = Γaa(k) cos2 θm , Γ2(k) = Γaa(k) sin2 θm

Γ̃(k) =
1
2

sin 2θmΓaa(k) ; Γaa(k) =
ImΣaa(k, k)

k
(9.83)

and the interaction picture operators are given in eqn. (D.8). The expectation value of any system’s

operator A is given by

〈A〉(t) = Trρi,S(t)A(t) (9.84)

where A(t) is the operator in the interaction picture of H0, thus the time derivative of this expec-

tation value contains two contributions

d

dt
〈A〉(t) = Trρ̇i,S(t)A(t) + Trρi,S(t)Ȧ(t) . (9.85)

The distribution functions for active and sterile species is defined as in equation (9.48) with the

averages defined as in (9.84), namely

Nα(k; t) = Trρi,S(t)

[
φ̇α(~k; t)φ̇α(−~k, t)

2Wα(k)
+

Wα(k)
2

φα(~k; t)φα(−~k, t)

]
− 1

2
, (9.86)

where the fields are in the interaction picture of H0. The active and sterile fields are related to the

fields that create and annihilate the propagating modes in the medium as

φa(~k) = cos θmϕ1(~k) + sin θmϕ2(~k) ; φs(~k) = cos θmϕ2(~k)− sin θmϕ1(~k) . (9.87)

In the interaction picture of H0

ϕj(~k, t) =
1√

2ωj(k)

[
aj(~k) e−iωj(k)t + a†j(−~k) eiωj(k)t

]
(9.88)

where ωj(k) are the propagation frequencies in the medium up to leading order in G, given by

equations (9.37,9.38). Introducing this expansion into the expression (9.86) we encounter the ratio

of the propagating frequencies in the medium ωj and the bare frequencies Wα. Just as we did in

the previous section, we focus on the relevant case of ultrarelativistic species and approximate as

in equation (9.59) ωj(k) ∼ Wα(k) ∼ k, in which case we find the relation between the creation-

annihilation operators for the flavor fields and those of the 1, 2 fields to be[197]

aa(~k, t) = cos θma1(~k, t) + sin θma2(~k, t) ; as(~k, t) = cos θma2(~k, t)− sin θma1(~k, t) (9.89)
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leading to the simpler expressions for the active and sterile distributions,

Na(k; t) = Trρi,S(t)

[
cos2 θma†1(~k, t)a1(~k, t) + sin2 θma†2(~k, t)a2(~k, t)

+
1
2

sin 2θm(a†1(~k, t)a2(~k, t) + a†2(~k, t)a1(~k, t))

]
(9.90)

Ns(k; t) = Trρi,S(t)

[
cos2 θma†2(~k, t)a2(~k, t) + sin2 θma†1(~k, t)a1(~k, t)

−1
2

sin 2θm(a†1(~k, t)a2(~k, t) + a†2(~k, t)a1(~k, t))

]
. (9.91)

In the interaction picture of H0 the products a†j(~k, t)aj(~k, t) are time independent and a†1(~k, t)a2(~k, t) =

a†1(~k, 0)a2(~k, 0) ei(ω1(k)−ω2(k))t. It is convenient to introduce the distribution functions and off-

diagonal correlators

n11(k, t) = Trρi,S(t)a†1(k, t)a1(k, t) , n22(k, t) = Trρi,S(t)a†2(k, t)a2(k, t) (9.92)

n12(k, t) = Trρi,S(t)a†1(k, t)a2(k, t) , n21(k, t) = Trρi,S(t)a†2(k, t)a1(k, t) = n∗12(k, t) .(9.93)

In terms of these, the distribution functions for the active and sterile species in the ultrarelativistic

limit becomes

Na(k; t) = cos2 θmn11(k; t) + sin2 θmn22(k; t) +
1
2

sin 2θm

(
n12(k; t) + n21(k; t)

)
(9.94)

Ns(k; t) = sin2 θmn11(k; t) + cos2 θmn22(k; t)− 1
2

sin 2θm

(
n12(k; t) + n21(k; t)

)
. (9.95)

From eqn. (9.85) we obtain the following kinetic equations for nij(k; t)

ṅ11 = −Γ1

[
n11 − neq,1

]
− Γ̃

2

[
n12 + n21

]
(9.96)

ṅ22 = −Γ2

[
n22 − neq,2

]
− Γ̃

2

[
n12 + n21

]
(9.97)

ṅ12 =
[
− i∆ω − Γaa

2

]
n12 − Γ̃

2

[
(n11 − neq,1) + (n22 − neq,2)

]
(9.98)

ṅ21 =
[

+ i∆ω − Γaa

2

]
n21 − Γ̃

2

[
(n11 − neq,1) + (n22 − neq,2)

]
, (9.99)

where neq,j = n(ωj(k)) are the equilibrium distribution functions for the corresponding propa-

gating modes, and ∆ω = (ω2(k) − ω1(k)). As we have argued above, in perturbation theory

Γaa(k)/∆ω(k) ¿ 1, which is the same statement as the approximation γ̃ ¿ 1 as discussed for

the effective action, and in this case the off diagonal contributions to the kinetic equations yield

287



perturbative corrections to the distribution functions and correlators. To leading order in this ratio

we find the distribution functions,

n11(t) = neq,1 +
(
n11(0)− neq,1

)
e−Γ1t − Γ̃e−Γ1t

2∆ω

[
i n12(0)

[
e−i∆ωt e

1
2
(Γ2−Γ1)t − 1

]
+ c.c.

]

(9.100)

n22(t) = neq,2 +
(
n22(0)− neq,2

)
e−Γ2t − Γ̃e−Γ2t

2∆ω

[
i n12(0)

[
e−i∆ωt e

1
2
(Γ1−Γ2)t − 1

]
+ c.c.

]

(9.101)

and off-diagonal correlators

n12(t) = e−i∆ωt e−
Γaa
2

t

{
n12(0) + i

Γ̃
2∆ω

[
(n11(0)− neq,1)

[
ei∆ωt e

1
2
(Γ2−Γ1)t − 1

]

+ (n22(0)− neq,2)
[
ei∆ωt e

1
2
(Γ1−Γ2)t − 1

]]}
(9.102)

where
Γ̃

2∆ω
=

1
2

sin 2θm
ImΣaa(k, k)

2k(ω2(k)− ω1(k)
=

1
2

sin 2θmγ̃ (9.103)

with γ̃ defined in eqn. (9.41) and we have suppressed the momenta index for notational convenience.

9.4.1 Comparing the effective action and quantum master equation

We can now establish the equivalence between the time evolution of the distribution functions

obtained from the effective action and the quantum master equation, however in order to compare

the results we must first determine the initial conditions in equations (9.100-9.102). The initial

values nij(0) must be determined from the initial condition and depend on the initial density

matrix. Two important cases stand out: i) an initial density matrix diagonal in the flavor basis or

ii) diagonal in the 1− 2 basis of propagating eigenstates in the medium.

Initial density matrix diagonal in the flavor basis: the initial expectation values are

obtained by inverting the relation between ϕ1,2 and φa,s. We obtain

n11(0) = 〈a†1(~k)a1(~k)〉(0) = cos2 θmNa(0) + sin2 θmNs(0) (9.104)

n22(0) = 〈a†2(~k)a2(~k)〉(0) = cos2 θmNs(0) + sin2 θmNa(0) (9.105)

n12(0) = 〈a†1(~k)a2(~k)〉(0) =
1
2

sin 2θm(Na(0)−Ns(0)) (9.106)
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It is straightforward to establish the equivalence between the results obtained from the effective

action and those obtained above from the quantum master equation as follows: i) neglect the

second order frequency shifts (Ω1,2 ∼ ω1,2) and the perturbatively small corrections of order γ̃, ii)

insert the initial conditions (9.104-9.106) in the solutions (9.100-9.102), finally using the relations

(9.94,9.95) for the active and sterile distribution functions we find precisely the results given by

equations (9.63,9.64) obtained via the non-equilibrium effective action.

Initial density matrix diagonal in the 1− 2 basis: in this case

〈a†1(~k)a1(~k)〉(0) = N1(0)

〈a†2(~k)a2(~k)〉(0) = N2(0)

〈a†1(~k)a2(~k)〉(0) = 0 (9.107)

with these initial conditions it is straightforward to obtain the result (9.67,9.68).

The fundamental advantage in the method of the effective action is that it highlights that the

main ingredient is the full propagator in the medium and the emerging time scales for the time

evolution of distribution functions and coherences are completely determined by the quasiparticle

dispersion relations and damping rates.

9.4.2 Quantum kinetic equations: summary

Having confirmed the validity of the kinetic equations via two independent but complementary

methods, we now summarize the quantum kinetic equations in a form amenable to numerical

study. For this purpose it is convenient to define the hermitian combinations

nR(t) = n12(t) + n21(t) ; nI(t) = i(n12(t)− n21(t)) (9.108)

in terms of which the quantum kinetic equations for the distribution functions and coherences

become (suppressing the momentum label)

ṅ11 = −Γaa cos2 θm

[
n11 − neq,1

]
− Γaa

4
sin 2θm nR (9.109)

ṅ22 = −Γaa sin2 θm

[
n22 − neq,2

]
− Γaa

4
sin 2θm nR (9.110)

ṅR = −(ω2 − ω1) nI − Γaa

2
nR − Γaa

2
sin 2θm

[
(n11 − neq,1) + (n22 − neq,2)

]
(9.111)

ṅI = (ω2 − ω1) nR − Γaa

2
nI , (9.112)
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with the active and sterile distribution functions related to the quantities above as follows

Na(k; t) = cos2 θmn11(k; t) + sin2 θmn22(k; t) +
1
2

sin 2θmnR(k; t) (9.113)

Ns(k; t) = sin2 θmn11(k; t) + cos2 θmn22(k; t)− 1
2

sin 2θmnR(k; t) . (9.114)

In the perturbative limit when Γaa sin 2θm/∆ω ¿ 1 which as argued above is the correct limit

in all but for a possible small region near an MSW resonance[198], the set of kinetic equations

simplify to

ṅ11 = −Γaa cos2 θm

[
n11 − neq,1

]
(9.115)

ṅ22 = −Γaa sin2 θm

[
n22 − neq,2

]
(9.116)

ṅR = −
(
ω2 − ω1

)
nI − Γaa

2
nR (9.117)

ṅI =
(
ω2 − ω1

)
nR − Γaa

2
nI . (9.118)

In this case the active and sterile populations are given by (suppressing the momentum variable)

Na(t) = cos2(θm)

[
neq(ω1) +

(
n11(0)− neq(ω1)

)
e−Γ1t

]

+ sin2(θm)

[
neq(ω2) +

(
n22(0)− neq(ω2)

)
e−Γ2t

]

+ sin(2θm) e−
Γaa
2

t cos [(ω1 − ω2)t] n12(0) . (9.119)

Ns(t) = sin2(θm)

[
neq(ω1) +

(
n11(0)− neq(ω1)

)
e−Γ1t

]

+ cos2(θm)

[
neq(ω2) +

(
n22(0)− neq(ω2)

)
e−Γ2t

]

− sin(2θm) e−
Γaa
2

t cos [(ω1 − ω2)t] n12(0) , (9.120)

where

Γ1(k) = Γaa(k) cos2 θm ; Γ2(k) = Γaa(k) sin2 θm (9.121)

and assumed that n12(0) is real as is the case when the initial density matrix is diagonal both in

the flavor or 1, 2 basis,

n12(0) =

{
1
2 sin 2θm (Na(0)−Ns(0)) diagonal in flavor basis

0 diagonal in 1, 2 basis
(9.122)
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It is clear that the evolution of the active and sterile distribution functions cannot, in general,

be written as simple rate equations.

From the expressions given above for the quantum kinetic equations it is straightforward to gen-

eralize to account for the fermionic nature of neutrinos: the equilibrium distribution functions are

replaced by the Fermi-Dirac distributions, and Pauli blocking effects enter in the explicit calculation

of the damping rates.

9.5 TRANSITION PROBABILITIES AND COHERENCES

9.5.1 A “transition probability” in a medium

The concept of a transition probability as typically used in neutrino oscillations is not suitable in

a medium when the description is not in terms of wave functions but density matrices. However,

an equivalent concept can be provided as follows. Consider expanding the active and sterile fields

in terms of creation and annihilation operators. In the ultrarelativistic limit the positive frequency

components are obtained from the relation (9.89)and their expectation values in the reduced density

matrix are given by

ϕa,s(~k, t) ≡ 〈aa,s(~k, t)〉 . (9.123)

The kinetic equations for 〈a1,2(~k)〉(t) are found to be

d

dt
〈a1(~k)〉(t) =

(
− iω1(k)− Γ1(k)

2

)
〈a1(~k)〉(t)− Γ̃

2
〈a2(~k)〉(t) (9.124)

d

dt
〈a2(~k)〉(t) =

(
− iω2(k)− Γ2(k)

2

)
〈a2(~k, t)〉 − Γ̃

2
〈a1(~k)〉(t) , (9.125)

where Γ̃ has been defined in eqn. (9.83). To leading order in Γ̃/∆ω the solutions of these kinetic

equations are

〈a1(~k)〉(t) = 〈a1(~k)〉(0) e−iω1te−
Γ1
2

t − iΓ̃
2∆ω

〈a2(~k)〉(0)
[
e−iω2te−

Γ2
2

t − e−iω1te−
Γ1
2

t
]

(9.126)

〈a2(~k)〉(t) = 〈a2(~k)〉(0) e−iω2te−
Γ2
2

t +
iΓ̃

2∆ω
〈a1(~k)〉(0)

[
e−iω1te−

Γ1
2

t − e−iω2te−
Γ2
2

t
]
.(9.127)

The initial values 〈a1,2(~k)〉(0) determine the initial values ϕa,s(~k; 0), or alternatively, giving the

initial values ϕa,s(~k; 0) determines 〈a1,2(~k)〉(0). Consider the case in which the initial density

matrix is such that

〈aa(~k, 0)〉 ≡ ϕa(~k) 6= 0 ; 〈as(~k, 0)〉 ≡ ϕs(~k, 0) = 0 (9.128)
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the initial values of 〈a1,2(~k)〉(0) are obtained by inverting the relation (9.74) from which we find

ϕs(~k, t) = −1
2

sin 2θm(1− iγ̃)
[
e−iω1te−

Γ1
2

t − e−iω2te−
Γ2
2

t
]
ϕa(~k, 0) , (9.129)

this result coincides with that found in ref.[197]. We can interpret the “transition probability” as

Pa→s(~k, t) =

∣∣∣∣∣
ϕs(~k, t)

ϕa(~k, 0)

∣∣∣∣∣
2

=
1
2

sin2 2θm

[
e−Γ1t + e−Γ2t − 2 cos

((
ω2 − ω1

)
t
)

e−
1
2
(Γ1+Γ2)t

]
(9.130)

where we have neglected perturbative corrections of O(γ̃). This result coincides with that obtain

in ref.[197] from the effective action, and confirms a similar result for neutrinos with standard

model interactions[198]. We emphasize that this “transition probability” is not obtained from the

time evolution of single particle wave functions, but from expectation values in the reduced density

matrix : the initial density matrix features a non-vanishing expectation value of the active field but

a vanishing expectation value of the sterile field, however, upon time evolution the density matrix

develops an expectation value of the sterile field. The relation between the transition probability

(9.130) and the time evolution of the distribution functions and coherences is now explicit, the first

two terms in (9.130) precisely reflect the time evolution of the distribution functions n11, n22 with

time scales 1/Γ1,2 respectively, while the last, oscillatory term is the interference between the active

and sterile components and is damped out on the decoherence time scale τdec. This analysis thus

confirms the results in ref.[198].

9.5.2 Coherences

The time evolution of the off-diagonal coherence 〈a†1(~k)a2(~k)〉(t) is determined by the kinetic equa-

tion (9.98), neglecting perturbatively small corrections of O(γ̃)

〈a†1(~k)a2(~k)〉(t) = 〈a†1(~k)a2(~k)〉(0) ei∆ωte−
Γaa
2

t (9.131)

where we have used the relations (9.83) in the ultrarelativistic limit. Therefore, in perturbation

theory, if the initial density matrix is off-diagonal in the 1 − 2 basis (propagating modes in the

medium) the off-diagonal correlations are exponentially damped out on the coherence time scale

τdec = 2/Γaa(k). This coherence term and its hermitian conjugate are precisely the ones respon-

sible for the oscillatory term in the transition probability (9.130). An important consequence of

the damping of the off-diagonal coherences is that in perturbation theory the equilibrium density

matrix is diagonal in the basis of the propagating modes in the medium. This result confirms the
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arguments in ref.[199]. As can be seen from the expression of the transition probability (9.130)

this is precisely the time scale for suppression of the oscillatory interference term. However, the

transition probability is not suppressed on this coherence time scale, the first two terms in (9.130)

reflect the fact that the occupation numbers build up on time scales 1/Γ1; 1/Γ2 respectively and

the interference term is exponentially suppressed on the decoherence time scale τdec = 2/(Γ1 +Γ2).

For small mixing angle in the medium θm all of these time scales can be widely different.

It is noteworthy to compare the transition probability (9.129) with the distribution functions

(9.119,9.120). The first two, non-oscillatory terms in (9.129) describe the same time evolution as the

distribution functions n11, n22 of the propagating modes in the medium, while the last, oscillatory

term describes the interference between these. This confirms the results and arguments provided

in ref.[198].

9.6 FROM THE QUANTUM MASTER EQUATION TO THE QKE FOR THE

“POLARIZATION” VECTOR

The results of the previous section allows us to establish a correspondence between the quantum

master equation (9.82) the quantum kinetic equations (9.109-9.112) and the quantum kinetic equa-

tion for a polarization vector often used in the literature[66, 71]. Following ref.[201], let us define

the “polarization vector” with the following components,

P0(~k, t) = 〈a†a(~k, t)aa(~k, t) + a†s(~k, t)as(~k, t)〉 = Na(k, t) + Ns(k, t) (9.132)

Px(~k, t) = 〈a†a(~k, t)as(~k, t) + a†s(~k, t)aa(~k, t)〉 (9.133)

Py(~k, t) = −i〈a†a(~k, t)as(~k, t)− a†s(~k, t)aa(~k, t)〉 (9.134)

Pz(~k, t) = 〈a†a(~k, t)aa(~k, t)− a†s(~k, t)as(~k, t)〉 = Na(k, t)−Ns(k, t) (9.135)

where the creation and annihilation operators for the active and sterile fields are related to those

that create and annihilate the propagating modes in the medium 1, 2 by eqn. (9.89), and the

angular brackets denote expectation values in the reduced density matrix ρS,i which obeys the

quantum master equation (9.82). In terms of the population and coherences nij the elements of

the polarization vector are given by
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P0 = n11 + n22 (9.136)

Px = − sin 2θm

(
n11 − n22

)
+ cos 2θmnR (9.137)

Py = −nI (9.138)

Pz = cos 2θm

(
n11 − n22

)
+ sin 2θmnR (9.139)

where nR,I are defined by equation (9.108). Using the quantum kinetic equations (9.109-9.112) we

find

dP0

dt
= −Γaa

2
Pz − Γaa

2

[(
n11 − neq,1

)
+

(
n22 − neq,2

)]
+

Γaa

2
cos 2θm

(
neq,1 − neq,2

)
(9.140)

dPx

dt
= −(ω2 − ω1) cos 2θmnI − Γaa

2
Px − Γaa

2
sin 2θm

(
neq,1 − neq,2

)
(9.141)

dPy

dt
= −(ω2 − ω1)nR − Γaa

2
Py (9.142)

dPz

dt
= −(ω2 − ω1) sin 2θmnI − Γaa

2
Pz − Γaa

2

[(
n11 − neq,1

)
+

(
n22 − neq,2

)]
(9.143)

We now approximate (
neq,1 − neq,2

)
∼ (ω2 − ω1)

T
n′eq(x) ∼ 0 , (9.144)

thus neglecting the last terms in eqns. (9.140,9.141), introducing the vector ~V with components

~V = (ω2 − ω1)
(

sin 2θm, 0,− cos 2θm

)
(9.145)

we find the following equations of motion for the polarization vector

d~P

dt
= ~V × ~P − Γaa

2

(
Pxx̂ + Pyŷ

)
+

dP0

dt
ẑ (9.146)

This equation is exactly of the form

d~P

dt
= ~V × ~P −D ~PT +

dP0

dt
ẑ (9.147)

used in the literature[60, 66, 71, 77, 78], where D and ~PT can be identified from eqn. (9.146).

Therefore the quantum kinetic equation for the polarization vector (9.146) is equivalent to

the full set of quantum kinetic equations (9.109-9.112) or equivalently to equations (9.96-9.99)
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under the approximation (9.144). Furthermore since the quantum kinetic equations (9.109-9.112)

have been proven to be equivalent to the time evolution obtained from the effective action, we

conclude that the kinetic equation for the polarization vector (9.147) is completely equivalent to

the effective action and the quantum master equation under the approximations discussed above.

This equivalence between the effective action, the kinetic equations obtained from quantum Master

equation and the kinetic equations for the polarization vector makes explicit that the fundamental

scales for decoherence and damping are determined by Γ1,2, which are twice the damping rates of

the quasiparticle modes. These are completely determined by the complex poles of the propagator

in the medium. Furthermore the formulation in terms of the effective action, or equivalently

the quantum master equation (9.82) provides more information: for example from both we can

extract the transition probability Pa→s in the medium from expectation values of the field operators

(or creation/annihilation operators) in the reduced density matrix, leading unequivocally to the

expression (9.130) which indeed features the two relevant time scales. Furthermore it directly

yields information on the off-diagonal coherences (9.131) which fall off on the decoherence time

scale τdec = 2/Γaa, thus elucidating that the reduced density matrix in equilibrium (the asymptotic

long time limit) is diagonal in the 1-2 basis. While this information could be extracted from linear

combinations of Px, Py it is hidden in the solution of the kinetic equation for the polarization,

whereas it is exhibited clearly in the quantum kinetic equations (9.96-9.99) in the regime in which

perturbation theory is applicable |Γaa sin 2θm/(ω2 − ω1)| ¿ 1 . In this regime, which as argued

above is the most relevant, the set of quantum kinetic equations (9.115-9.118) combined with

the relations (9.94-9.95) yield a much simpler and numerically amenable description of the time

evolution of the populations and coherences: the active and sterile distribution functions are given

by equations (9.119,9.120) and the off-diagonal coherence by eqn. (9.131). Therefore, while the

kinetic equation for the polarization and the quantum kinetic equations (9.115-9.118) are equivalent

and both are fundamentally consequences of the effective action or equivalently the quantum master

equation, the study of sterile neutrino production in the early Universe does not implement any of

these equivalent quantum kinetic formulations but instead assume a phenomenological approximate

description in terms of a simple rate equation[20, 77, 78], which implies only one damping scale.

Such a simple rate equation cannot describe accurately the time evolution of distribution functions

and coherences which involve two different time scales (away from MSW resonances). In our view,

part of the problem in this formulation is the time averaged transition probability introduced in

ref.[77] which inputs the usual quantum mechanical vacuum transition probability but damped by

295



a simple exponential on the decoherence time scale, clearly in contradiction with the result (9.130)

obtained from the reduced quantum density matrix. Within the kinetic formulation for the time

evolution of the polarization vector P0, ~P , eqn. (9.146) it is not possible to extract the notion of

a transition probability because the components of polarization vector are expectation values of

bilinear operators in the reduced density matrix. Instead, the concept of active-sterile transition

probability can be established in a medium via expectation values of the field operators (or their

creation/annihilation operators) in the reduced density matrix es discussed in section (9.5.1).

9.7 CONCLUSIONS

Our goal is to study the non-equilibrium quantum kinetics of production of active and sterile

neutrinos in a medium. We make progress towards that goal by studying a model of an active and

a sterile mesons coupled to a bath in thermal equilibrium via couplings that model charged and

current interactions of neutrinos. The dynamical aspects of mixing, oscillations, decoherence and

damping are fairly robust and the results of the study can be simply modified to account for Pauli

blocking effects of fermions. As already discussed in ref[197] this model provides a remarkably

faithful description of the non-equilibrium dynamics of neutrinos.

We obtained the quantum kinetic equations for the active and sterile species via two independent

but complementary methods. The first method obtains the non-equilibrium effective action for

the active and sterile species after integrating out the bath degrees of freedom. This description

provides a non-perturbative Dyson-like resummation of the self-energy radiative corrections, and

the dynamics of the distribution functions is completely determined by the solutions of a Langevin

equation with a noise term that obeys a generalized fluctuation-dissipation relation. The important

ingredient in this description is the full propagator. The poles of the propagator correspond to two

quasiparticle modes whose frequencies obey the usual dispersion relations of neutrinos in a medium

with the corrections from the index of refraction (forward scattering), with damping rates (widths)

Γ1 = Γaa cos2 θm ; Γ2 = Γaa sin2 θm . (9.148)

where Γaa is the interaction rate of the active species in absence of mixing (in the ultrarelativistic

limit) and θm is the mixing angle in the medium. These two damping scales, along with the

quasiparticle frequencies completely determine the evolution of the distribution functions. This is
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one of the important aspects of the kinetic description in terms of the non-equilibrium effective

action: the dispersion relations and damping rates of the quasiparticle modes corresponding to the

poles of the full propagator completely determine the non-equilibrium evolution of the distribution

functions and coherences.

We also obtained the quantum master equation for the reduced density matrix for the “neutrino

degrees of freedom” by integrating (tracing) over the bath degrees of freedom taken to be in thermal

equilibrium. An important aspect of the derivation consists in including the matter potential, or

index of refraction from forward scattering to lowest order in the interactions in the unperturbed

Hamiltonian. This method provides a re-arrangement of the perturbative expansion that includes

self-consistently the index of refraction corrections and builds in the correct propagation frequencies

in the medium. In this manner the the reduced density matrix (in the interaction picture ) evolves in

time only through second order processes. From the reduced density matrix we obtain the quantum

kinetic equations for the distribution functions and coherences. These are exactly the same as

those obtained from the non-equilibrium effective action. We also obtain the kinetic equation for

coherences and introduce a generalization of the active-sterile transition probability by obtaining the

time evolution of expectation values of the active and sterile fields in the reduced quantum density

matrix. Within the realm of validity of the perturbative expansion the set of kinetic equations for

the distribution functions and coherences are given by

ṅ11 = −Γaa cos2 θm

[
n11 − neq,1

]
; ṅ22 = −Γaa sin2 θm

[
n22 − neq,2

]

ṅ12 =
[
− i

(
ω2(k)− ω1(k)

)
− Γaa

2

]
n12 ; n21 = n∗12 , (9.149)

where neq,j = n(ωj(k)) are the equilibrium distribution functions for the corresponding propagating

modes, ω1,2(k) are the dispersion relations in the medium including the index of refraction, and

the active and sterile distribution functions are given by

Na(k; t) = cos2 θmn11(k; t) + sin2 θmn22(k; t) +
1
2

sin 2θm

(
n12(k; t) + n21(k; t)

)
(9.150)

Ns(k; t) = sin2 θmn11(k; t) + cos2 θmn22(k; t)− 1
2

sin 2θm

(
n12(k; t) + n21(k; t)

)
. (9.151)

The set of equations (9.149) provide a simple system of uncoupled rate equations amenable to

numerical study, whose solution yields the active and sterile distribution functions via the relations

(9.150,9.151), with straightforward modifications for fermions.
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From the kinetic equations above, it is found that the coherences

n12 = 〈a†1a2〉 (9.152)

which are off-diagonal (in the 1− 2 basis of propagating modes in the medium) expectation values

in the reduced quantum density matrix are exponentially suppressed on a decoherence time scale

τdec = 2/Γaa indicating that the equilibrium reduced density matrix is diagonal in the 1− 2 basis,

confirming the arguments in ref.[199].

The generalization of the active-sterile transition probability in the medium via the expectation

value of the active and sterile fields in the reduced quantum density matrix yields

Pa→s =
1
2

sin2 2θm

[
e−Γ1t + e−Γ2t − 2 cos

((
ω2 − ω1

)
t
)

e−
Γaa
2

t

]
(9.153)

this result shows that the active-sterile transition probability depends on the two damping time

scales of the quasiparticle modes in the medium which are also the time scales of kinetic evolution

of the distribution functions, and confirms the results of refs.[198].

Finally, from the full set of quantum kinetic equations (9.115-9.118) and the approximation

(9.144) we have obtained the set of quantum kinetic equations for the polarization vector, most

often used in the literature,

d~P

dt
= ~V × ~P − Γaa

2

(
Pxx̂ + Pyŷ

)
+

dP0

dt
ẑ (9.154)

where the relation between the components of the polarization vector P0, ~P and the distribution

functions and coherences is explicitly given by eqns. (9.132-9.135) (or equivalently (9.136-9.139)),

and ~V is given by eqn. (9.145). Thus we have unambiguously established the direct relations be-

tween the effective action, quantum master equation, the full set of kinetic equations for population

and coherences and the quantum kinetic equations in terms of the “polarization vector” most often

used in the literature. These are all equivalent, but the effective action approach distinctly shows

that the two independent fundamental damping scales are those associated with Γ1,2, namely the

damping rates of the quasiparticles in the medium, which are determined by the complex poles of

the propagator. Furthermore in the regime of validity of perturbation theory, the set of kinetic

equations (9.149) obtained from the quantum master equation yield a simple and clear understand-

ing of the different time scales for the active and sterile distribution functions and a remarkably

concise description of active and sterile production when combined with the relations (9.150,9.151).

These simpler set of rate equations are hidden in the kinetic equation (9.154).
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We have also argued that the simple phenomenological rate equation used in numerical studies

of sterile neutrino production in the early Universe is not an accurate description of the non-

equilibrium evolution, and trace its shortcomings to the time integral of an overly simplified de-

scription of the transition probability in the medium.
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10.0 NEW INFLATION VS. CHAOTIC INFLATION, HIGHER DEGREE

POTENTIALS AND THE RECONSTRUCTION PROGRAM IN LIGHT OF

WMAP3

10.1 INTRODUCTION

Inflation provides a simple and robust mechanism to solve several outstanding problems of the

standard Big Bang model [202, 203] becoming a leading paradigm in cosmology. Superhorizon

quantum fluctuations amplified during inflation provide an explanation of the origin of the tem-

perature anisotropies in the cosmic microwave background (CMB) and the seeds for large scale

structure formation[204], as well as of tensor perturbations (primordial gravitational waves). Al-

though there is a diversity of inflationary models, most of them predict fairly generic features: a

gaussian, nearly scale invariant spectrum of (mostly) adiabatic scalar and tensor primordial fluc-

tuations [204]. These features provide an excellent fit to the highly precise data provided by the

Wilkinson Microwave Anisotropy Probe (WMAP) [205, 206, 207, 208] which begins to constrain

inflationary models.

The combination of CMB [206, 207] and large scale structure data [209, 210] yield fairly tight

constraints for the two dimensional marginalized contours of the tensor to scalar ratio r and the

scalar index ns. While ns = 1 was excluded at the 95%CL in [210] a most notable result that stems

from the analysis of WMAP3 data is a confirmation that a scale invariant Harrison-Zeldovich

spectrum is excluded at the 3σ level [207]. A combination of data from WMAP3 and large scale

surveys distinctly favor ns < 1 [211]. These latest bounds on the index of the power spectrum

of scalar perturbations, and emerging bounds on the ratio of tensor to scalar fluctuations r begin

to offer the possibility to discriminate different inflationary models. For example, the third year

WMAP data disfavors the predictions for the scalar index and the tensor to scalar ratio from a

monomial inflationary potential λ φ4 showing them to lie outside the 3σ contour, but the simple

300



monomial m2 φ2/2 yields a good fit to the data [207] and predicts a tensor to scalar ratio r ∼ 0.16

within the range of forthcoming CMB observations.

Current and future CMB observations in combination with large scale structure surveys will

yield tight constraints on the inflationary models, this motivates the exploration of clear predictions

from the models and their confrontation with the data.

In distinction with the approach followed in [206, 207, 212] or studies of specific models[213],

or statistical analysis combined with WMAP3 and LSS data[214, 215], we study the predictions

for the power spectra of scalar fluctuations and the tensor to scalar ratio for families of new and

chaotic inflationary models in the framework of the method presented in ref.[216]. This method

relies on the effective field theory approach combined with a systematic expansion in 1/Ne where

Ne ∼ 50 is the number of e-folds before the end of inflation. The family of inflationary models that

we study is characterized by effective field theories with potentials of the form

V (φ) = V0 − 1
2

m2 φ2 +
λ

2n
φ2 n , broken symmetry (10.1)

V (φ) =
1
2

m2 φ2 +
λ

2n
φ2 n , unbroken symmetry , (10.2)

with n = 2, 3, 4 · · · . For broken symmetry models with potentials of the form (10.1) there are two

distinct regions: small and large field, corresponding to values of the inflaton field smaller or larger

than the symmetry breaking scale respectively.

We implement the systematic expansion in 1/Ne where Ne ∼ 50 is the number of e-folds before

the end of inflation when wavelengths of cosmological relevance crossed the Hubble radius[216]. The

1/Ne expansion is a powerful and systematic tool that allows to re-cast the slow roll hierarchy as

expansion in powers of 1/Ne [216]. This expansion allows us to implement a reconstruction program

[217] which yields the scale of the inflaton field when modes of cosmological relevance today crossed

the Hubble radius during inflation, and in the case of new inflation models also yields the scale of

symmetry breaking.

We study the dependence of the observables (ns, r and dns/d ln k) on the degree of the inflaton

potential (2n) for new and chaotic inflation and confront them with the WMAP3 data. This study

shows in general that fourth degree potentials (n = 2) provide the best fit to the data. We find that

new inflation fits the data on an appreciable wider range of the parameters while chaotic inflation

does this in a much narrow range. Therefore, amongst the families of inflationary models studied,

new inflation emerges as a leading contender in comparison with chaotic inflation. The present
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analysis confirms the statement that within the framework of effective field theories with polynomial

potentials, new inflation is a preferred model reproducing the present data [219, 220, 221].

10.2 EFFECTIVE FIELD THEORY, SLOW ROLL AND 1/NE EXPANSIONS

In the absence of a fundamental microscopic description of inflation, an effective field theory ap-

proach, when combined with the slow roll expansion provides a robust paradigm for inflation with

predictive power. The reliability of the effective field theory description hinges on a wide separation

between the Hubble and Planck scales, and is validated by the bound from temperature fluctuations

H/MPl < 10−5 [216].

The slow roll expansion relies on the smallness of a hierarchy of the dimensionless ratios [203,

217, 222],

εv =
M2

Pl

2

[
V
′
(φ)

V (φ)

]2

, ηv = M2
Pl

V
′′
(φ)

V (φ)
, ξv = M4

Pl

V ′(φ) V
′′′

(φ)
V 2(φ)

. (10.3)

The effective field theory expansion in H/MPl and the slow roll expansion are independent, the

latter can be interpreted as an adiabatic expansion [216] wherein the derivatives of the inflationary

potential are small.

The CMB data is consistently described within the slow roll expansion with inflationary poten-

tials of the form [203, 216]

V (φ) = M4 v

(
φ

MPl

)
. (10.4)

Within the slow roll approximation the number of e-folds before the end of inflation for which the

value of the field is φend is given by

N [φ(t)] = − 1
M2

Pl

∫ φend

φ(t)
V (φ)

dφ

dV
dφ . (10.5)

It proves convenient to introduce Ne as the typical number of e-folds before the end of inflation

during which cosmologically relevant wavelengths cross the Hubble radius during inflation, and φc

as the value of the inflaton field corresponding to Ne

Ne = − 1
M2

Pl

∫ φend

φc

V (φ)
dφ

dV
dφ . (10.6)

The precise value of Ne is certainly near Ne = 50 [203, 218]. We will take the value Ne = 50

as a reference baseline value for numerical analysis, but from the explicit expressions obtained in
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the systematic 1/Ne expansion below, it becomes a simple rescaling to obtain results for arbitrary

values of Ne [see eq. (10.10) below].

The form of the potential eq.(10.4) and the above definition for the number of e-folds, suggests

to introduce the following rescaled field variable [216]

φ =
√

NeMPl χ (10.7)

where the rescaled field χ is dimensionless. Furthermore, it is also convenient to scale Ne out of

the potential and write

V (φ) = Ne M4 w(χ) . (10.8)

With this definition, eq. (10.6) becomes

1 = −
∫ χend

χc

w(χ)
w′(χ)

dχ (10.9)

where the prime stands for derivative with respect to χ, χ50 is the value of χ corresponding to Ne

e-folds before the end of inflation, and χend is the value of χ at the end of inflation.

We emphasize that there is no dependence on Ne in the expression (10.9), therefore χc, χend

only depend on the coupling g and the degree n. The slow roll parameters then become,

εv =
1

2Ne

[
w′(χc)
w(χc)

]2

, ηv =
1

Ne

w′′(χc)
w(χc)

, ξv =
1

N2
e

w′(χc) w′′′(χc)
w2(χc)

. (10.10)

It is clear from eqs.(10.9) and (10.10) that during the inflationary stage when wavelengths of

cosmological relevance cross the horizon, it follows that w(χc), w′(χc) ∼ O(1) leading to the slow

roll expansion as a consistent expansion in 1/Ne [216].

The connection between the slow roll expansion and the expansion in 1/Ne becomes more

explicit upon introducing a stretched dimensionless time variable τ and a dimensionless Hubble

parameter h as follows [216]

τ =
M2 t√
Ne MPl

; h =
MPl H√
Ne M2

. (10.11)

In terms of τ, χ and h the Friedmann equation and the equation of motion for the inflaton become,

h2(τ) =
1
3

[
1

2Ne

(
dχ

dτ

)2

+ w(χ)

]
,

1
Ne

d2χ

dτ2
+ 3 h

dχ

dτ
+ w′(χ) = 0 . (10.12)
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This equation of motion can be solved in a systematic expansion in 1/Ne. The definition (10.7)

also makes manifest that χ is a slowly varying field, since a change ∆φ ∼ MPl in the inflaton field

implies a small change of the dimensionless field ∆χ ∼ 1/
√

Ne.

In terms of these definitions, the CMB observables can be written manifestly in terms of the

1/Ne expansion. The amplitude of scalar perturbations is given by

∆2
R =

N2
e

12π2

(
M

MPl

)4 w3(χc)
[w′(χc)]

2 , (10.13)

and the spectral index ns, the ratio of tensor to scalar perturbations r and the running of ns with

the wavevector dns/d ln k become

ns = 1− 6 εv + 2 ηv , r = 16 εv (10.14)

dns

d ln k
= − 2

N2
e

{
w′(χc)w′′′(χc)

w2(χc)
+ 3

[
w′(χc)
w(χc)

]4

− 4

[
w′(χc)

]2
w′′(χc)

w3(χc)

}
. (10.15)

The virtue of the 1/Ne expansion is that we can choose a reference baseline value for Ne, say

Ne = 50 for numerical study, and use the scaling with Ne of the slow roll parameters given by

eqs.(10.10), (10.14) and (10.15) to obtain their values for arbitrary Ne, namely

εv[Ne] = εv[50]
50
Ne

, ηv[Ne] = ηv[50]
50
Ne

, r[Ne] = r[50]
50
Ne

,

dns

d ln k
[Ne] =

dns

d ln k
[50]

(
50
Ne

)2

, ns[Ne] = ns[50] + (1− ns[50])
Ne − 50

Ne
. (10.16)

In what follows we will take Ne = 50 as representative of the cosmologically relevant case, however,

the simple scaling relations (10.16) allow a straightforward extrapolation to other values.

The combination of WMAP and SDSS (LRG) data yields [207]

ns = 0.958± 0.016 (assuming r = 0 with no running) (10.17)

r < 0.28 (95%CL) no running (10.18)

r < 0.67 (95%CL) with running . (10.19)

The running must be very small and of the order O(1/N2
e ) ∼ 10−3 in slow roll for generic

potentials[216]. Therefore, we can safely consider dns/d ln k = 0 in our analysis. Figure 14 in

ref.[207] and figure 2 in ref.[221] show that the preferred value of ns slowly grows with the preferred

value of r for r > 0. We find approximately that

∆ns

∆r
' 0.12 (10.20)
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Therefore, for r ∼ 0.1 the central value of ns shifts from ns = 0.958 (r = 0) to ns = 0.97 (r = 0.1)

as can be readily gleaned from the quoted figures in these references.

As a simple example that provides a guide post for comparison let us consider first the monomial

potential

V (φ) =
λ

2n
φ2 n . (10.21)

The case n = 1 yields a satisfactory fit to the WMAP data [206, 207]. For these potentials it follows

that,

w(χ) =
χ2 n

2n
; M4 = λ Nn−1

e M2 n
P l , (10.22)

inflation ends at χend = 0, and the value of the dimensionless field χc at Ne e-folds before the end

of inflation is

|χc| = 2
√

n . (10.23)

These results lead to [203]

εv =
n

2Ne
, ηv =

2n− 1
2Ne

(10.24)

ns − 1 = −n + 1
Ne

, r =
8n

Ne
,

dns

d ln k
= −n + 1

N2
e

. (10.25)

Taking Ne = 50 as a baseline, these yield

ns − 1 = −2 (n + 1)× 10−2
( 50

Ne

)
, r = 0.16 n

( 50
Ne

)
,

dns

d ln k
= −4 (n + 1)× 10−4

( 50
Ne

)2
.

(10.26)

10.3 FAMILY OF MODELS

We study the CMB observables ns, r, dns/d ln k for families of new inflation and chaotic models

determined by the following inflationary potentials.

V (φ) = V0 − 1
2

m2 φ2 +
λ

2n
φ2 n , broken symmetry (10.27)

V (φ) =
1
2

m2 φ2 +
λ

2n
φ2 n , unbroken symmetry . (10.28)

Upon introducing the rescaled field χ given by eq. (10.7) we find that these potentials can be

written as

V (φ) = Ne m2 M2
Pl w(χ) , (10.29)

305



where we recognize that

M4 = m2 M2
Pl . (10.30)

Then, the family of potentials eqs.(10.27)-(10.28) are

w(χ) = w0 − 1
2

χ2 +
g

2n
χ2 n , broken symmetry (10.31)

w(χ) =
1
2

χ2 +
g

2n
χ2 n , unbroken symmetry . (10.32)

where w0 and g are dimensionless and related to V0 and λ by

V0 = w0 Ne m2 M2
Pl , λ =

m2 g

M2 n−2
Pl Nn−1

e
. (10.33)

New inflation models described by the dimensionless potential given by eq. (10.31) feature a

minimum at χ0 which is the solution to the following conditions

w′(χ0) = w(χ0) = 0 . (10.34)

These conditions yield,

g =
1

χ2 n−2
0

, w0 =
χ2

0

2n
(n− 1) , (10.35)

χ0 determines the scale of symmetry breaking φ0 of the inflaton potential upon the rescaling

eq.(10.7), namely

φ0 =
√

Ne MPl χ0 . (10.36)

It is convenient to introduce the dimensionless variable

x =
χ

χ0
(10.37)

Then, from eqs.(10.35) and (10.37), the family of inflation models eq.(10.31)-(10.32) take the form

w(χ) =
χ2

0

2n

[
n (1− x2) + x2 n − 1

]
, broken symmetry , (10.38)

w(χ) =
χ2

0

2n

[
n x2 + x2 n

]
, unbroken symmetry . (10.39)

In terms of the variable x, the small and large field regions for the potential eq.(10.38) correspond

to x < 1 and x > 1, respectively. The form of the dimensionless potentials w(x) for both families

are depicted in fig. 10.1. The left panel in this figure shows the new (small field) or chaotic (large

field) behavior of the broken symmetry potential eq.(10.38) depending on whether the initial value

of the inflaton is smaller or larger than the minimum of the potential x = 1.
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Figure 10.1: Left panel: broken symmetry potential for for n = 2, small and large field cases. Right

panel: unbroken symmetry potential for n = 2, large field inflation.

10.4 BROKEN SYMMETRY MODELS

Inflation ends when the inflaton field arrives to the minimum of the potential. For the new inflation

family of models eq.(10.38) inflation ends for

χend = χ0 . (10.40)

In terms of the dimensionless variable x, the condition eq.(10.9) becomes

2n

χ2
0

= In(X) , X =
χ50

χ0
≡ xc , (10.41)

where

In(X) =
∫ 1

X

dx

x

n (1− x2) + x2 n − 1
1− x2 n−2

=
∫ 1

X

n−∑n−1
m=0 x2m

∑n−2
m=0 x2m

dx

x
. (10.42)

This integral can be computed in closed form in terms of hypergeometric functions [224] which can

be reduced to a finite sum of elementary functions[225].

For a fixed given value of X, the value of χ0 and therefore of the dimensionless coupling g

is determined by the equation (10.41). Once we obtain this value, the CMB observables eqs.

(10.14)-(10.15) are obtained by evaluating the derivatives of w(χ) at the value χ = χ50 = χ0 X

with the corresponding value of the coupling g. Thus, a study of the range of possible values for

ns, r, dns/d ln k is carried out by exploring the relationship between these spectral indices as a
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function of X. For this study we choose the baseline value Ne = 50 from which the indices can be

obtained for arbitrary value of Ne by the relation (10.16).

While the dependence of χ0 and g upon the variable X must in general be studied numerically,

their behavior in the relevant limits, X → (0, 1) for small field inflation and X >> 1 for large field

inflation can be derived from eqs.(10.41)-(10.42).

For small field inflation and X → 0 the lower limit of the integral dominates leading to

χ2
0

X→0=
2n

n− 1
1

log 1
X

, g
X→0=

(
n− 1
2n

log
1
X

)n−1

, (10.43)

thus, as X → 0 these are strongly coupled theories. This result has a clear and simple interpretation:

for Ne = 50 to be the number of e-folds between x = X and x = 1 the coupling g must be large

and the potential must be steep, otherwise there would be many more e-folds in such interval.

For small field inflation and X → 1− the integral In(X) obviously vanishes and

χ2
0

X→1−=
(

2
1−X

)2 [
1 +

2n− 1
9

(X − 1) +O(X − 1)2
]

, g
X→1−= =

[
1
2

(1−X)
]2 (n−1)

→ 0 ,

(10.44)

thus, as X → 1−, these are a weakly coupled family of models.

For large field inflation and X À 1, the integral In(X) is dominated by the term with the

highest power, namely x2 n, leading to the behavior

χ2
0

XÀ1=
4n

X2
, g

XÀ1=
(

X2

4 n

)n−1

, (10.45)

which leads to a strongly coupled regime. The results of a numerical analysis are depicted in fig.

10.2.

Before we proceed with a numerical study of the CMB indices and the tensor to scalar ratio,

we can extract interesting and relevant information by focusing on the region X ∼ 1 which as

discussed above corresponds to a weakly coupled family for broken symmetry potentials. This is

the region near the minimum of the potential and the integral In(X) can be evaluated simply by

expanding w(χ) and its derivative near the minimum. To leading order in (X − 1) the condition

(10.41) leads to eq.(10.44) and

(χc − χ0)2 = 4 or |χc − χ0| = 2 . (10.46)

This is precisely eq.(10.23) for n = 1 upon the shift χc → χc − χ0. Namely, eq.(10.46) is the

condition eq.(10.23) for the quadratic monomial potential with minimum at χ = χ0 instead of
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Figure 10.2: The coupling g as a function of X, for the degrees of the new inflation potential

n = 2, 3, 4. For X → 1, g vanishes as
[

1−X
2

]2 (n−1). The point X = 1, g = 0 corresponds to

the monomial m2 φ2/2. g increases both for X → 0 and for large X as,
(
log 1

X

)n−1 and
(

X2

4 n

)n−1
,

respectively.

χ = 0 as in eq.(10.22). This is clearly a consequence of the fact that near the minimum X = 1 the

potential is quadratic, therefore for X ∼ 1 the quadratic monomial is an excellent approximation

to the family of higher degree potentials and more so because g ∼ 0. For X ∼ 1 we find to leading

order in (X − 1) the values:

εv = ηv = 0.01
( 50

Ne

)
, ns = 0.96+0.04

(Ne − 50
Ne

)
, r = 0.16

( 50
Ne

)
,

dns

d ln k
= −0.0008

( 50
Ne

)2
.

(10.47)

The fact that the potential eq.(10.38) is quadratic around the minimum X = 1 explains that we

have in this limit identical results for new inflation with the potential eq.(10.38) than with chaotic

inflation with the monomial potential m2 φ2/2.

As observed in [207] these values of r, ns for Ne ∼ 50 yield a good fit to the available CMB

data.

The results of the numerical analysis for εv, ηv, ns, r and dns/d ln k for the baseline value

Ne = 50 are depicted in fig. 10.3, 10.4, 10.5 and 10.6 respectively.

The vertical dashed line in fig. 10.4 at X ∼ 0.2 determines the lower limit of X for which ns

is consistent with the WMAP data for r = 0. For large values of X, ns approaches asymptotically
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X0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

εv

0.0000.0050.0100.0150.0200.0250.0300.035
n=2n=3
n=4

X0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

ηv

-0.08-0.06-0.04-0.020.000.020.040.06
n=2n=3n=4

Figure 10.3: Slow roll parameters as a function of X for Ne = 50. Left panel εv, right panel ηv, for

new inflation with the degrees of the potential n = 2, 3, 4. The results for arbitrary values of Ne

are obtained by multiplying by the factor 50
Ne

.

X0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Ns

0.860.880.900.920.940.960.98
n=2n=3n=4

Figure 10.4: Scalar spectral index ns for the degrees of the potential n = 2, 3, 4 for new inflation

with Ne = 50. The vertical line delimits the smallest value of ns (for r = 0) [207]. The grey dot

at ns = 0.96, X = 1 corresponds to the value for the monomial potential n = 1, m2 φ2/2. Notice

that the small field behavior is n independent. For arbitrary Ne the result follows directly from the

Ne = 50 value by using Eq. (9.16).
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X0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

r
0.00.10.20.30.40.50.6

n=2
n=3n=4

Figure 10.5: Tensor to scalar ratio r vs. X for the degrees of the potential n = 2, 3, 4 for new

inflation with Ne = 50. The horizontal dashed line corresponds to the upper limit r = 0.28 (95%CL)

from WMAP3 without running. The vertical dashed line determines the minimum value of X, X ∼
0.2, consistent with the WMAP limits for ns as in fig. 10.4. The grey dot at X = 1, r = 0.16

corresponds to the value for the monomial potential m2 φ2/2. The small field limit is nearly

independent of n. For arbitrary Ne the result follows directly from the Ne = 50 value by using Eq.

(9.16).

the values for the monomial potentials φ2 n given by eq. (10.26). For the larger degrees n, the

asymptotic behavior of ns and r settles at larger values of X, this is a consequence of the larger

region in which the coupling is small as observed in fig. 10.2 for larger degrees n. The horizontal

dashed lines with vertical downward arrows in fig. 10.5 determines the upper bound from WMAP

[207] given by eq. (10.19) without running, since from fig. 10.6 the values of dns/d ln k for these

models are negligible. The vertical dashed line with the right-pointing arrow in fig. 10.5 determines

the values of X for which ns are consistent with the WMAP data (see also fig. 10.4).

From these figures we see that unlike the case of a pure monomial potential λφ2 n with n ≥ 2,

there is a large region of field space within which the new inflation models given by eq.(10.27) are

consistent with the bounds from marginalized WMAP3 data and the combined WMAP3 + LSS

data [207].

Fig. 10.7 displays r vs ns for the values n = 2, 3, 4 in new inflation and indicate the trend with
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X0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

dNs/dln
(k)

-0.0014-0.0012-0.0010-0.0008-0.0006-0.0004-0.00020.0000

n=2n=3n=4
Figure 10.6: Running of the scalar index dns/d ln k vs. X for the degrees of the potential n = 2, 3, 4

respectively for new inflation with Ne = 50. The small field behavior is independent of n. For

arbitrary Ne the result follows directly from the Ne = 50 value by using Eq. (9.16).

n. While r is a monotonically increasing function of X, ns features a maximum as a function of X,

hence r becomes a double-valued function of ns. The grey dot at r = 0.16, ns = 0.96 corresponds

to the monomial potential m2 φ2/2 for Ne = 50. Values below the grey dot along the curve in fig.

10.7 correspond to small fields X < 1 while values above it correspond to large fields X > 1. We

see from figs. 10.5 and 10.7 that large fields systematically lead to larger values of r. Models that

fit the WMAP data to 95% CL are within the tilted box. The tilt accounts for the growth of the

preferred value of ns with r [207] according to eq. (10.20).

Fig. 10.8 displays the running of the scalar index vs. ns for the different members of the family

of new inflation showing clearly that running is all but negligible in the entire range of values

consistent with the WMAP data. This was expected since the running in slow-roll is of the order

∼ 1
N2

e
' 4× 10−4 [see eq.(10.15)] [216].

We note that dns/d ln k is a monotonically decreasing function of X approaching asymptotically

the values for the monomials φ2 n given by eq. (10.26). X ∼ 0.2 which is the minimum value of X

consistent with the bounds from WMAP on ns (see fig. 10.4).
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10.4.1 Field reconstruction

The above analysis suggests to study the inverse problem, namely, for a given member of the family

labeled by n, we may ask what is the value φc of the field at Hubble crossing and what is the scale

φ0 of symmetry breaking of the potential which are consistent with the CMB+LSS data. This is

tantamount to the program of reconstruction of the inflaton potential advocated in ref. [217] and

is achieved as follows: eq.(10.41) yields χ0 = χ0[X] from which we obtain χc = χ0 X. These results

are then input into the expression for ns by evaluating the potential w(χ) and its derivatives at the

value of χc. This yields ns = ns[χc] which is then inverted to obtain χc = χc[ns] and thus φc.

In the region X ∼ 1 corresponding to the weakly coupled case, this reconstruction program can

be carried out as a systematic series in

∆ ≡ X − 1 =
χ50

χ0
− 1 , (10.48)

by expanding the inflationary potential and its derivatives in a power series in x around x = 1 in

the integrand of In(X) [eq. (10.42)]. For X = 1 the value of the scalar index ns is determined

by the simple monomial m2 φ2/2 which from eq. (10.25) for n = 1 is given by ns − 1 = −2/Ne.

Therefore, in terms of ns, the actual expansion parameter is ns − 1 + 2/Ne.

We obtain ns to first order in ∆ from eqs.(10.10), (10.14), (10.38), (10.44) and (10.48) with the

result,

ns − 1 = − 2
Ne

[
1 +

2n− 1
18

∆ +O(∆2)
]

then, by inverting this equation we find:

∆(ns, n) = X − 1 = − 9Ne

2n− 1

(
ns − 1 +

2
Ne

)
+O

([
ns − 1 +

2
Ne

]2
)

, (10.49)

and from eqs. (10.44) and (10.49) we find,

χ0(ns, n) =
2 (2n− 1)

9Ne

∣∣∣ns − 1 + 2
Ne

∣∣∣

[
1− Ne

2

(
ns − 1 +

2
Ne

)]
+O

([
ns − 1 +

2
Ne

])
(10.50)

The leading order (∝ 1/∆) of this result for χ0(ns, n) can be simply cast as eq.(10.46): this is

recognized as the condition to have 50 e-folds for the quadratic monomial centered in the broken

symmetry minimum [see discussion below eq. (10.46)].

Finally, the value of the (dimensionless) field χc at Hubble crossing is determined from χc(ns, n) =

χ0 [1 + ∆(ns, n)] from which we obtain

χc =
2 (2n− 1)

9Ne

∣∣∣ns − 1 + 2
Ne

∣∣∣

[
1− (2 n + 17) Ne

2 (2n− 1)

(
ns − 1 +

2
Ne

)]
+O

([
ns − 1 +

2
Ne

])
. (10.51)
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The coupling constant g can be also expressed in terms of ns in this regime with the result,

g =


9Ne

∣∣∣ns − 1 + 2
Ne

∣∣∣
2 (2n− 1)




2 n−2

→ 0 ,

which exhibits the weak coupling character of this limit.

This analysis shows that the region in field space that corresponds to the region in ns that best

fits the WMAP data can be systematically reconstructed in an expansion in ns − 1 + 2/Ne. This

is yet another bonus of the 1/Ne expansion. Although the above analysis can be carried out to an

arbitrary order in ns − 1 + 2/Ne, it is more convenient to perform a numerical study of the region

outside from X ∼ 1 to find the values of χc and χ0 as a function of ns for fixed values of n, Ne.

Figures 10.9 and 10.10 display χc, χ0 as a function of ns with Ne = 50 for different values of n for

the small field region X < 1 and the large field region X > 1 respectively. The point X = 1 is a

degeneracy point and corresponds to the quadratic monomial as discussed above.

Finally, the values for the dimensionful field φ are given by φc =
√

Ne MPl χc, φ0 =
√

Ne MPl χ0.

Figures 10.7, 10.9 and 10.10 lead to the conclusion that for the range of CMB parameters r < 0.1

and ns ≤ 0.96, the typical value of the symmetry breaking scale is φ0 ∼ 10 MPl and the value of the

inflaton field at which cosmologically relevant wavelengths crossed the Hubble radius during new

inflation is φc ∼ MPl with a weak dependence on n. For 0.1 < r < 0.16 we have |φc−φ0| ∼ 15 MPl.

We obtain for the coupling g in the X → 0 limit which is a strong coupling regime [see eq.(10.43)]

where ns ¿ 1,

g =
[
Ne

4

(
1− 1

n

)
(1− ns)

]n−1

.

Finally, we have the X → ∞ limit which is also a strong coupling limit [see eq.(10.45)] where

ns → 1− (n + 1)/Ne and we find,

χ2
0 = (4n)2


 Ne(1− ns)− (n + 1)

4n(n− 1) + 3
(
1 + 1

n−2

)



1
n−1

→ 0

g =
4n(n− 1) + 3

(
1 + 1

n−2

)

(4n)n−1 [Ne(1− ns)− (n + 1)]
→∞ . (10.52)
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10.5 CHAOTIC INFLATION MODELS

We now turn to the study of the family of chaotic inflationary potentials given by eq. (10.39).

Taking that the end of inflation corresponds to x = 0, the condition eq.(10.9) now becomes

2n

χ2
0

= Jn(X) =
∫ X

0

n + x2 n−2

1 + x2 n−2
x dx . (10.53)

Again, this integral can be computed in closed form in terms of hypergeometric functions [224]

which can be reduced to a finite sum of elementary functions[225]. For general values of X the

integral will be studied numerically, but the small X region can be studied by expanding the

integrand in powers of x2 n−2, with the result

1 =
χ2

0 X2

4

[
1− n− 1

n2
X2 n−2 +O(X4 n−4)

]
. (10.54)

For small X and recalling that X = χc/χ0 this relation yields

|χc| = 2
[
1 +

n− 1
2n2

X2 n−2 +O(X4 n−4)
]

(10.55)

which is again, at dominant order the relation for the quadratic monomial potential eq.(10.23) for

n = 1. This must be the case because the small field limit is dominated by the quadratic term in

the potential. For small fields, χ0 ≈ 2/X and the coupling g vanishes as,

g(X) X→0=
(

X

2

)2 n−2

. (10.56)

The coupling as a function of X is shown in fig. 10.11.

The dependence of εv, ηv in the full range of X for several representative values of n is studied

numerically: these results are displayed in fig. 10.12. In the small X regime, we obtain from eqs.

(10.10), (10.39) and (10.54) the expressions,

εv =
1

2Ne

[
1 +

(2n− 1)(n− 1)
n2

X2 n−2 +O (
X4 n−4

)]
(10.57)

ηv =
1

2Ne

[
1 +

(2n− 1)(n2 − 1)
n2

X2 n−2 +O (
X4 n−4

)]
(10.58)

As X → 0, εv and ηv tend to the result from the quadratic monomial potential, namely εv = ηv =

1/[2Ne] as must be the case because the quadratic term dominates the potential for X ¿ 1.

Figures 10.13, 10.14 display ns, r as functions of X for Ne = 50 respectively. The horizontal

dashed lines in these figures delimit the WMAP band of 95% CL from ref. [207]. For X → 0, ns →
0.96 and r → 0.16 which are the values from the quadratic monomial m2 φ2/2.
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For X À 1, the values of ns, r for the monomial potentials φ2 n are attained asymptotically,

namely, (for Ne = 50): ns − 1 = −2 (n + 1)× 10−2, r = 0.16n.

Comparing figs. 10.13, 10.14 to those for the new inflation case, (figs. 10.4 and 10.5), we note

that the range in which the chaotic family provide a good fit to the WMAP data is very much

smaller than for new inflation. Fig. 10.13 shows that in chaotic inflation only for n = 2 the range

of ns is allowed by the WMAP data in a fairly extensive range of values of X, whereas for n = 3, 4

(and certainly larger), there is a relatively small window in field space for X < 1 which satisfies

the data for ns and r simultaneously.

The tensor to scalar ratio r in chaotic inflationary models is larger than 0.16 for all values of X,

approaching asymptotically for large X the value r = 0.16 n associated to the monomial potentials

φ2 n.

Fig. 10.15 displays dns/d ln k as a function of X, while the running is again negligible, it is

strikingly different from the new inflation case. Again this figure, in combination with those for ns

and r as functions of X distinctly shows that only n = 2 in chaotic inflation is compatible with

the bounds from the WMAP data, while for n = 3, 4 only a small window for X < 1 is allowed by

the data. We see from fig. 10.15 that dns/d ln k takes negative as well as positive values for chaotic

inflation, in contrast with new inflation where dns/d ln k < 0.

The fact that the combined bounds on ns, r and dns/d ln k from the WMAP3 data [207] provide

much more stringent constraints on chaotic models is best captured by displaying r as a function

of ns in fig. 10.16. The region allowed by the WMAP data lies within the tilted box delimited by

the vertical and horizontal dashed lines that represent the 95%CL band.

A complementary assessment of the allowed region for this family of effective field theories is

shown in fig. 10.17 which distinctly shows that only the n = 2 case of chaotic inflation is allowed

by the WMAP3 data.

10.5.1 Field reconstruction

The reconstruction program proceeds in the same manner as in the case of new inflation: the first

step is to obtain χ0(X) from eq.(10.53). Then εv and ηv are obtained as a function of X which

yields ns(X). Inverting this relation we find X = X(ns) and finally χc(ns) = χ0 X(ns). While this

program must be carried out numerically, we can gain important insight by focusing on the small

X region and using eq.(10.54).
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From eqs. (10.14), (10.57) and (10.58) we find

ns − 1 +
2

Ne
= X2 n−2 (2n− 1)(n− 1)(n− 2)

n2 Ne
+O

(
X4n−4

)
(10.59)

As X → 0 it follows that ns → 1 − 2/Ne which is the value for the scalar index for the quadratic

monomial potential m2φ2/2. However, for n > 2 this limit is approached from above, namely for

n > 2 it follows that ns > 1 − 2/Ne. The small X region corresponds to small departures of ns

from the value determined by the quadratic monomial 1− 2/Ne but always larger than this value

for n > 2. In the small field limit we reconstruct the value of χc in an expansion in ns − 1 + 2/Ne.

The leading order in this expansion is obtained by combining eqs. (10.55) and (10.59), we obtain

|χc| = 2

[
1 +

(
ns − 1 + 2

Ne

)
Ne

2 (2n− 1) (n− 2)

]
+O

(
[ns − 1 + 2/Ne]

2
)

(10.60)

Obviously, this leading order term is singular at n = 2, this is a consequence of the result eq.(10.59)

which entails that for n = 2 the expansion must be pursued to higher order, up to X4n−4.

We find from eqs. (10.14), (10.57) and (10.58) for n = 2,

ns − 1 +
2

Ne
= − 17

24Ne
X4 +O

(
X6

)
, n = 2 , (10.61)

therefore,

|χc| = 2

[
1 +

√
3Ne

136

(
1− 2

Ne
− ns

) ]
+O

(
ns − 1 +

2
Ne

)
, n = 2 . (10.62)

We see that the derivative of χc with respect to ns is singular for n = 2 at ns = 1− 2
Ne

. We note

that for n = 2 there is a sign change with respect to the cases n > 2 and ns − 1 + 2/Ne ≤ 0 as

determined by eq. (10.61).

Fig. 10.18 shows χc as a function of ns for n = 2, 3, 4 for Ne = 50. The case n = 2 clearly

shows the singularity in the derivative ∂χc/∂ns at ns = 1− 2/Ne = 0.96 [see eq.(10.62)].

Combining fig. 10.18 with fig. 10.16 it is clear that there is a small window in field space within

which chaotic models provide a good fit to the WMAP3 data, for Ne = 50 we find:

n = 2 : 0.95 . ns ≤ 0.960 , 2.0 ≤ |χc| . 2.25

n = 3 : 0.96 ≤ ns . 0.965 , 2.0 ≤ |χc| . 2.15

n = 4 : 0.96 ≤ ns ≤ 0.975 , 2.0 ≤ |χc| . 2.10 . (10.63)

Restoring the dimensions via eq. (10.7) these values translate into a narrow region of width ∆φ .

1.5MPl around the scale |φc| ∼ 15 MPl.
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Therefore, the joint analysis for ns, r, dns/d ln k distinctly reveals that: (i) chaotic models

favor larger values of r thus, larger tensor amplitudes, and (ii) feature smaller regions in field space

consistent with the CMB and large scale structure data. Only the case n = 2 features a larger

region of consistency with the combined WMAP3 data.

10.6 CONCLUSIONS

The fact that current observations of the CMB and LSS are already placing constraints on in-

flationary models which will undoubtedly become more stringent with forthcoming observations,

motivates a study of the predictions for the CMB power spectra from different inflationary scenar-

ios. We perform a systematic study of families of single field new and chaotic inflation slow roll

models characterized by effective field theories with potentials of the form

V (φ) = V0 − 1
2

m2 φ2 +
λ

2n
φ2n , broken symmetry (10.64)

V (φ) =
1
2

m2 φ2 +
λ

2n
φ2 n , unbroken symmetry . (10.65)

Unlike the approach followed in [206, 207] based on the inflationary flow equations[212], or more

recent studies which focused on specific inflationary models [213], or on statistical analysis of models

[214], we implement an expansion in 1/Ne where Ne ∼ 50 is the number of e-folds before the end of

inflation when wavelengths of cosmological relevance today cross the Hubble radius during inflation.

We provide an analysis of the dependence of CMB observables (ns, r and dns/d ln k) with n and

establish the region in field space within which these families provide a good agreement with the

WMAP3 data combined with large scale surveys.

For new inflation models with potentials eq.(10.64) there are two distinct regions corresponding

to values of the inflaton field smaller (small field) or larger (large field) than the symmetry breaking

scale. For this family we find a wide range in the r − ns plane in which the different members

n = 2, 3, 4... are allowed by the data both for small and large fields with negligible running of the

scalar index:

−4 (n + 1)× 10−4 ≤ dns/d ln k ≤ −2× 10−4 .

For Ne = 50 the values ns = 0.96, r = 0.16 which are those determined by the simple monomial

potential m2 φ2/2 determine a divide and a degeneracy point in the field and parameter space.

Small field regions yield r < 0.16 while large field regions correspond to r > 0.16.

318



The 1/Ne expansion also provides a powerful tool to implement a reconstruction program that

allows to extract the value of the field Ne e-folds before the end of inflation, and in the case of new

inflationary models, the symmetry breaking scale.

We find that the region of field space favored by the WMAP3 data can be explored in a

systematic expansion in ns − 1 + 2/Ne. An analytic and numerical study of this region lead us to

conclude that if forthcoming data on tensor modes favors r < 0.16 then new inflation is favored,

and we predict for r < 0.1 that (i) the symmetry breaking scale is

φ0 ∼ 10 MPl ,

and (ii) the value of the field when cosmologically relevant wavelengths cross the Hubble radius is

|φc| ∼ MPl .

The family of chaotic inflationary models characterized by the potentials eq.(10.65) feature

tensor to scalar ratios r ≥ 0.16 (for Ne = 50), with the minimum, r = 0.16 obtained in the limit

of small inflaton amplitude and corresponds to the monomial potential m2 φ2/2 which is again a

degeneracy point for this family of models.

The combined marginalized data from WMAP3 [207] yields a very small window within which

chaotic models are allowed by the data, the largest region of overlap with the (r, ns) WMAP3 data

corresponds to n = 2 and the width of the region decreases with larger n. The typical scale of the

field at Hubble crossing for these models is |φc| ∼ 15 MPl (for Ne = 50). Some small regions in

field space consistent with the WMAP3 data feature peaks in the running of the scalar index but

in the region consistent with the WMAP3 data in chaotic inflation the running is again negligible.

If future observations determine a tensor to scalar ratio r < 0.16, such bound will, all by itself,

rule out the large family of chaotic inflationary models of the form (10.65) for any n.
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Ns0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

r
0.00.10.20.30.40.50.6 n=4

n=3 n=2

Figure 10.7: Tensor to scalar ratio r vs. ns for degrees of the potential n = 2, 3, 4 respectively

for new inflation with Ne = 50. r turns to be a double-valued function of ns exhibiting a

maximum value for ns. The values inside the box between the dashed lines correspond to the

WMAP3 marginalized region of the r − ns plane with (95%CL) : r < 0.28, 0.942 + 0.12 r ≤ ns ≤
0.974 + 0.12 r, see eq.(10.20). The grey dot corresponds to the values for the monomial potential

m2φ2/2 and the value X = 1 : r = 0.16, ns = 0.96.

Ns0.86 0.88 0.90 0.92 0.94 0.96 0.98

dNs/dln
(k)

-0.0014-0.0012-0.0010-0.0008-0.0006-0.0004-0.00020.0000

n=2n=3n=4

Figure 10.8: Running of the scalar index dns/d ln k vs. ns for degrees of the potential n = 2, 3, 4

respectively for new inflation with Ne = 50. The values for arbitrary Ne follow directly from the

Ne = 50 value by using Eq. (9.16).
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Figure 10.9: Reconstruction program for broken symmetry potentials with Ne = 50, small field

case X < 1. χ50 ≡ χc and χ0 vs. ns for degrees of the potential n = 2, 3, 4, respectively. These

values of χc, ns correspond to the region r < 0.16.
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Figure 10.10: Reconstruction Program for broken symmetry potentials with Ne = 50, large field

case X > 1. χ50 ≡ χc and χ0 vs. ns for degrees of the potential n = 2, 3, 4, respectively. These

values of χ, ns correspond to the region r > 0.16.
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Figure 10.11: Coupling g as a function of X for Ne = 50, for n = 2, 3, 4 for chaotic inflation. g

turns to be a monotonically increasing function of X. g vanishes for X → 0 as
(

X
2

)2 n−2 in sharp

contrast with new inflation where g strongly increases for X → 0.

X0 1 2 3 4 5 6

εv
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n=2n=3n=4

X0 1 2 3 4 5 6

ηv

0.000.020.040.060.080.100.120.14

n=2n=3n=4

Figure 10.12: Left panel εv, right pannel ηv as a function of X for Ne = 50, for chaotic inflation

with degrees of the potential n = 2, 3, 4. The small X behavior is n independent.
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Figure 10.13: Scalar spectral index ns for degrees of the potential n = 2, 3, 4 respectively for

chaotic inflation with Ne = 50. For X → 0, ns reaches for all n the value ns = 0.96 corresponding

to the monomial potential m2φ2/2.
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Figure 10.14: Tensor to scalar ratio r vs. X for degrees of the potential n = 2, 3, 4 respectively for

chaotic inflation with Ne = 50. The horizontal dashed lines with the downward arrows delimit the

region of 95% CL given by WMAP3 with no running r < 0.28.
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Figure 10.15: Running of the scalar index dns/d ln k vs. X for degrees of the potential n = 2, 3, 4

respectively for chaotic inflation with Ne = 50. The X → 0 behavior is n independent. dns/d ln k

features a maximun value that gets stronger with increasing n. For chaotic inflation dns/d ln k

takes negative as well as positive values, in contrast with new inflation where dns/d ln k < 0.
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r
0.00.20.40.60.81.01.2 n=4

n=3
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Figure 10.16: Tensor to scalar ratio r vs. ns for degrees of the potential n = 2, 3, 4 respectively

for chaotic inflation with Ne = 50. The range of 95% CL as determined by WMAP3 [207] is within

the tilted box delimited by : r < 0.28, 0.942 + 0.12 r ≤ ns ≤ 0.974 + 0.12 r, see Eq. (9.20).
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Figure 10.17: Running of the scalar index dns/d ln k vs. ns for degrees of the potential n = 2, 3, 4

respectively for chaotic inflation with Ne = 50.
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Figure 10.18: Reconstruction program for chaotic inflation with Ne = 50 χc vs. ns for n = 2, 3, 4

respectively.
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11.0 EXTENDED SUMMARY OF MAIN RESULTS

In this last chapter, we give a summary to each of the previous chapters. The main ideas and

results in each chapter are highlighted.

Oscillations and Evolution of a Hot and Dense Gas of Flavor Neu-

trinos: a Free Field Theory Study

In this thesis, we first study the time evolution of the distribution functions for hot and/or

dense gases of two flavor Dirac neutrinos as a consequence of flavor mixing and dephasing, in the

absence of weak interactions. This is achieved by obtaining the time evolution of the flavor density

matrix directly from quantum field theory at finite temperature and density. The dynamics of

neutrino oscillations features a hierarchy of time scales. The shorter time scales are associated

with the interference between particle and antiparticle states, while the longer time scales emerge

from the interference between particle states (or antiparticle states) of different masses. In the

degenerate case, an initial flavor asymmetry will relax towards an asymptotic limit via dephasing

resulting from the oscillations between flavor modes that are not Pauli blocked, with a power law

proportional to the inverse of time. The distribution function for flavor neutrinos and antineutrinos

as well as off-diagonal densities are obtained. In the nearly degenerate or relativistic case, as is

likely to prevail in the early universe as well as in core collapse supernovae, the time scales are

widely separated. This allows to describe the dynamics on the longer time scales in terms of an

“effective” (free) theory. In this effective description, the Heisenberg creation and annihilation field

operators for flavor neutrinos and antineutrinos obey the familiar Bloch type equations and the

spinor structure is common to both flavors as well as the mass eigenstates. This effective descrip-

tion allows to obtain in a simple manner the dynamics of the distribution functions, off diagonal

correlation functions and the non-equilibrium propagators, all of which must be understood as an

average over the shoter time scales and valid only on the longer scales.
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Neutrino Oscillations in the Early Universe

We study neutrino oscillations in the early universe by implementing finite-temperature field the-

ory. Particularly, we are interested in the temperature regimes me ¿ T ¿ mµ and mµ ¿ T ¿ MW ,

which are relevant for Big Bang Nucleosynthesis (BBN). We focus on two flavors of Dirac neutrinos;

however, the formulation is general. The propagation of neutrinos is determined by the effective

Dirac equation which includes the self-energy corrections. We obtain the equations of motion for

neutrino of both chirality and helicity in the medium, allowing for CP asymmetry. An expansion

of the self-energy in terms of the neutrino frequency ω and momentum k is carried out to lowest

order in ω/MW and k/MW . It is found that contributions non-local in space-time to the self-energy

dominate over the asymmetry for T & 3 − 5 MeV if the lepton and neutrino asymmetries are of

the same order as the observed baryon asymmetry. We find a new contribution which cannot be

interpreted as the usual effective potential. The medium dispersion relations and mixing angles

are found to be both energy and helicity dependent, and a resonance like the Mikheyev-Smirnov-

Wolfenstein (MSW) resonance is realized. The oscillation time scale in the medium is longer as

compared to that in the vacuum near a resonance, but much shorter for off resonance high en-

ergy neutrinos for which the medium mixing angle becomes vanishingly small. The equations of

motion reduce to the familiar form of vacuum oscillation formulae for negative helicity ultrarela-

tivistic neutrinos, but include consistently both the mixing angle and the oscillation frequencies in

the medium. These equations of motion also allow to study the dynamics of right-handed neutrinos.

Space-Time Propagation of Neutrino Wave-Packets at High Tem-

perature and Density

For a deeper study of neutrinos oscillations in the early universe, we investigate the space-time

evolution of “flavor” neutrino wave-packets at finite temperature and density prior to BBN. There

is a rich hierarchy of time scales associated with coherence, transverse and longitudinal dispersions.

For relativistic neutrinos, the time scale of longitudinal dispersion is much longer than that of

transverse dispersion by the enormous Lorentz dilation factor. There exists a coherence time limit

beyond which the two mass eigenstates cease to overlap and so neutrino oscillation is exponentially

suppressed. But a novel phenomenon of ”frozen coherence” can occur if the longitudinal dispersion

catches up with the progressive separation between the two mass eigenstates in the medium, before

the coherence time limit has been reached. Near a resonance, the coherence time scale is enhanced
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by a factor 1/ sin 2θ compared to the vacuum. Collisional relaxation via charged and neutral cur-

rents occurs on time scales much shorter than the coherence time scale. However, the transverse

dispersion occurs at a much shorter scale than all other possible time scales in the medium, result-

ing in a large suppression in the transition probabilities from electron-neutrino to muon-neutrino,

on a time scale much shorter than the Hubble time. This indicates that neutrino wave-packets

produced just prior to BBN will cease to oscillate rapidly, without distorting the electron-neutrino

abundance, and hence without affecting the correct neutron-to-proton ratio for the observed mass

fraction of Helium-4 due to BBN.

Charged Lepton Mixing and Oscillations from Neutrino Mixing in

the Early Universe

Charged lepton non-conserving processes are highly suppressed in the vacuum due to the small-

ness of neutrino masses. This motivates us to explore the possibility of large charged lepton mix-

ing, for two generations e and µ, as a consequence of neutrino mixing in the temperature regime

mµ ¿ T ¿ MW in the early universe. We state the general criteria for charged lepton mixing,

critically re-examine aspects of neutrino equilibration and provide arguments to suggest that neu-

trinos may equilibrate as mass eigenstates in the temperature regime prior to flavor equalization.

We assume this to be the case, and that neutrino mass eigenstates are in equilibrium with different

chemical potentials. Charged lepton self-energies are obtained to leading order for both electro-

magnetic and weak interactions. We find that it is the off-diagonal elements in the charged-current

self-energy that are responsible for the charged lepton mixing. For a large lepton asymmetry in

the neutrino sector, there could be a resonant charged lepton mixing in the temperature range

T ∼ 5GeV. In this regime, the electromagnetic damping rate is of the same order as the charged

lepton oscillation frequency, suggesting a substantial transition probability during equilibration.

This is a novel phenomenon that has not been recognized, without invoking Grand Unification

Theory (GUT) or Supersymmetry (SUSY) models.

Sterile Neutrino Production via Active-Sterile Oscillations: the

Quantum Zeno Effect

Motivated by the importance of sterile neutrinos in astrophysics and cosmology, we study their

production in the early universe via active-sterile oscillations. We provide a quantum field theo-

retical reassessment of the quantum Zeno suppression on the active-to-sterile transition probability
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Pa→s(t) and its time average. In analogy with the neutral kaon system, we point out that there are

two different relaxation rates Γ1 and Γ2, corresponding to the propagating modes in the medium.

We find that the complete conditions for quantum Zeno suppression on Pa→s(t) are: (i) the active

neutrino scattering rate being much larger than the oscillation frequency, and (ii) the two relax-

ation rates of the propagating modes being approximately equal. Condition (ii) has been missing

in the literature. For keV sterile neutrinos with sin 2θ . 10−3, we find that these conditions for

quantum Zeno suppression are fulfilled only near an MSW resonance at TMSW ∼ 215 MeV. Far

away from the resonance, either at high or low temperatures, there is a wide hierarchy between

the two relaxation rates of the propagating modes in the medium. We show that even for the case

with the active neutrino scattering rate being much larger than the oscillation frequency, which

is usually taken to indicate quantum Zeno suppression in the literature, the transition probability

could still be substantial on time scales much longer than the decoherence time scale, if the two

relaxation rates are widely separated. While the oscillatory term in Pa→s(t) is suppressed on the

decoherence time scale, at very high or low temperature, this is not the relevant time scale for the

suppression of the transition probability, but either 1/Γ1 or 1/Γ2 whichever is longer.

Particle Abundance in a Thermal Plasma: Quantum Kinetics ver-

sus Boltzmann Equation

We study the abundance of a particle species in a thermalized plasma by introducing a quan-

tum kinetic description based on the non-equilibrium effective action. A stochastic interpretation

of quantum kinetics in terms of a Langevin equation emerges naturally. We consider a particle

species that is stable in the vacuum and interacts with heavier particles that constitute a thermal

bath in equilibrium. Asymptotic theory suggests a definition of a fully renormalized single-particle

distribution function. Its real time dynamics is completely determined by the non-equilibrium

effective action which furnishes a Dyson-like resummation of the perturbative expansion. The dis-

tribution function reaches thermal equilibrium on a time scale ∼ 1/2Γk(T ), with Γk(T ) being the

quasiparticle relaxation rate. The equilibrium distribution function depends on the full spectral

density as a consequence the fluctuation-dissipation relation. Such dependence leads to off-shell

contributions to the particle abundance. A specific model of a bosonic field Φ in interaction with

two thermalized heavier bosonic fields χ1 and χ2 is studied. The decay of the heaviest particle and

the corresponding recombination processes lead to a width in the spectral function for the particle

Φ and off-shell corrections to the particle abundance. We find substantial departures from the
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usual Bose-Einstein prediction in both high temperature limit, and the low temperature but large

momentum limit. In the latter case, the particle abundance is exponentially suppressed but larger

than the Bose-Einstein result. We obtain the Boltzmann equation in renormalized perturbation

theory and point out the origin of the different results. We argue that the corrections to the abun-

dance of cold dark matter candidates are observationally negligible, and that recombination erases

any possible spectral distortions on the CMB.

Non Equilibrium Dynamics of Mixing, Oscillations and Equilibra-

tion: a Model Study

Armed with the powerful non-equilibrium field theory methods, we proceed to examine the

interplay between neutrino mixing, oscillations and equilibration in a thermal medium. The non-

equilibrium dynamics is studied in a field theory of flavored neutral mesons that effectively models

two flavors of mixed neutrinos, in interaction with other mesons that represent a thermal bath

of hadrons or quarks and charged leptons. This model describes the general features of neu-

trino mixing and relaxation via charged currents in a medium. The reduced density matrix and

the non-equilibrium effective action that describe the propagation of neutrinos are obtained by

integrating out the bath degrees of freedom. We obtain the dispersion relations, mixing angles

and relaxation rates of the “neutrino” quasiparticles. The dispersion relations and mixing angles

are of the same form as those of neutrinos in the medium, and the relaxation rates are given by

Γ1(k) = Γee(k) cos2 θm(k)+Γµµ(k) sin2 θm(k) ; Γ2(k) = Γµµ(k) cos2 θm(k)+Γee(k) sin2 θm(k) where

Γαα(k) are the relaxation rates of the flavor fields without mixing, and θm(k) is the mixing angle

in the medium. The long time dynamics is approximately described by an effective Weisskopf-

Wigner non-hermitian Hamiltonian. At long time, namely, t >> Γ−1
1,2, the two-point function of

the “neutrino” fields becomes time-translational invariant, reflecting the approach to equilibrium.

The equilibrium density matrix is found to be nearly diagonal in the basis of eigenstates of an ef-

fective Hamiltonian that includes self-energy corrections in the medium, with perturbatively small

off-diagonal elements.

Production of a Sterile Species: Quantum Kinetics

We investigate the production of a sterile species from active-sterile neutrino mixing in a ther-

malized medium, within the effective model developed in Chapter 8. The quantum kinetic equations

for the distribution functions and coherences are derived from two independent but complementary
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methods, namely the non-equilibrium effective action obtained by integrating out the “bath degrees

of freedom” and the quantum master equation for the reduced density matrix. The set of kinetic

equations derived via these two different techniques are shown to be identical up to the leading

order in perturbative quantities. We show that if the initial density matrix is off-diagonal in the

basis of the propagating modes in the medium, the off-diagonal coherences are damped out on

the decoherence time scale. The damping of these off-diagonal coherences leads to an equilibrium

reduced density matrix diagonal in the basis of propagating modes in the medium. The “neutrino”

distribution functions reach equilibrium on the relaxation time scales 1/Γ1 and 1/Γ2 associated

with the quasiparticle modes in the medium. Away from the MSW resonance, the time scales 1/Γ1

and 1/Γ2 are widely separated, which precludes the kinetic description of active-sterile production

in terms of a simple rate equation that is commonly used in the literature. We derive explicitly

the usual quantum kinetic equations in terms of the “polarization vector” and show their equiv-

alence to those obtained from the non-equilibrium effective action and quantum master equation.

However, while the notion of active-to-sterile transition probability Pa→s(t) is well-defined in the

non-equilibrium effective action and quantum master equation approaches, it is not possible to

extract Pa→s(t) from the components of the “polarization vector” because they are expectation

values of bilinear operators in the reduced density matrix.

New Inflation vs. Chaotic Inflation, Higher Degree Potentials and

the Reconstruction Program in Light of WMAP3

The CMB power spectra are studied for different families of single-field new and chaotic inflation

models in the effective field theory approach to inflation. We implement a systematic expansion

in 1/Ne where Ne ∼ 50 is the number of e-foldings before the end of inflation. We study the

dependence of the observables (ns, r and dns/d ln k) on the degree of the inflaton potential (2n)

and confront them to the WMAP3 and large scale structure (LSS) data. This shows in general that

fourth degree potentials (n = 2) provide the best fit to the data, and the window of consistency with

the WMAP3 and LSS data narrows with growing n. New inflation yields a good fit to the r and ns

data in a wide range of field and parameter space. Small field inflation yields r < 0.16 while large

field inflation yields r > 0.16 (for Ne = 50). All members of the new inflation family predict a small

but negative running −4 (n + 1)× 10−4 ≤ dns/d ln k ≤ −2× 10−4. (The values of r, ns, dns/d ln k

for arbitrary Ne follow by a simple rescaling from the Ne = 50 values). A reconstruction program

is carried out, suggesting quite generally that for ns consistent with the WMAP3 and LSS data
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and r < 0.1, the symmetry breaking scale for new inflation is |φ0| ∼ 10 MPl, while the field scale

at Hubble crossing is |φc| ∼ MPl. The family of chaotic models feature r ≥ 0.16 (for Ne = 50),

where the minimum value r = 0.16 corresponds to small amplitude of the inflaton and coincides

with the value obtained from the monomial m2φ2/2. Only a restricted subset of chaotic models

are consistent with the combined WMAP3 bounds on r, ns, dns/d ln k with a narrow window in

field amplitude around |φc| ∼ 15 MPl. We conclude that a measurement of r < 0.16 (for Ne = 50)

distinctly rules out a large class of chaotic scenarios and favors small field new inflationary models.

As a general consequence, new inflation emerges more favored than chaotic inflation.
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APPENDIX A

REAL-TIME PROPAGATORS AND SELF-ENERGIES

A.1 FERMIONS

Consider a generic fermion field f(~x, t) of mass mf . The Wightmann and Green’s functions at

finite temperature are given as

i S>
α,β(~x− ~x′, t− t′) = 〈fα(~x, t)fβ(~x′, t′)〉 =

1
V

∑

~p

ei~p·(~x−~x′) iS>
α,β(~p, t− t′), (A.1)

i S<
α,β(~x− ~x′, t− t′) = −〈fβ(~x′, t′)fα(~x, t)〉 =

1
V

∑

~p

ei~p·(~x−~x′) i S<
α,β(~p, t− t′), (A.2)

where α, β are Dirac indices and V is the quantization volume.

The real-time Green’s functions along the forward (+) and backward (−) time branches are

given in terms of these Wightmann functions as

〈f (+)
α (~x, t)f (+)

β (~x′, t′)〉 = i S++(~x− ~x′, t− t′)

= i S>(~x− ~x′, t− t′) Θ(t− t′) + i S<(~x− ~x′, t− t′) Θ(t′ − t) , (A.3)

〈f (+)
α (~x, t)f (−)

β (~x′, t′)〉 = i S+−(~x− ~x′, t− t′) = i S<(~x− ~x′, t− t′) . (A.4)

At finite temperature T , it is straightforward to obtain these correlation functions by expanding

the free fermion fields in terms of Fock creation and annihilation operators and massive spinors. In

a CP asymmetric medium, the chemical potential µf for the fermion f is non-zero. Particles and

anti-particles obey the following Fermi-Dirac distribution functions respectively

Nf (p0) =
1

e(p0−µf )/T + 1
, N̄f (p0) =

1
e(p0+µf )/T + 1

. (A.5)
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The fermionic propagators are conveniently written in a dispersive form

i S>
α,β(~p, t− t′) =

∫ ∞

−∞
dp0 ρ>

α,β(~p, p0) e−ip0(t−t′) , (A.6)

i S<
α,β(~p, t− t′) =

∫ ∞

−∞
dp0 ρ<

α,β(~p, p0) e−ip0(t−t′) , (A.7)

where we have

ρ>
α,β(~p, p0) =

γ0 p0 − ~γ · ~p + mf

2p0
[1−Nf (p0)] δ(p0 − ωp)

+
γ0 p0 − ~γ · ~p + mf

2p0
N̄f (−p0) δ(p0 + ωp) , (A.8)

ρ<
α,β(~p, p0) =

γ0 p0 − ~γ · ~p + mf

2p0
Nf (p0) δ(p0 − ωp)

+
γ0 p0 − ~γ · ~p + mf

2p0
[1− N̄f (−p0)] δ(p0 + ωp) , (A.9)

with ωp =
√
|~p |2 + m2

f . Using the relation N̄f (−p0) = 1−Nf (p0), we can write

ρ>
α,β(~p, p0) = [1−Nf (p0)] ρf

α,β(~p, p0) , (A.10)

ρ<
α,β(~p, p0) = Nf (p0) ρf

α,β(~p, p0) , (A.11)

where the free fermionic spectral density ρf (~p, p0) is given by

ρf (~p, p0) =
6p+

2ωp
δ(p0 − ωp) +

6p−
2ωp

δ(p0 + ωp) , (A.12)

6p± = γ0 ωp ∓ ~γ · ~p ±mf . (A.13)

A.2 VECTOR BOSONS

Consider a generic real vector boson field Aµ(~x, t) of mass M . In unitary gauge, it can be expanded

in terms of Fock creation and annihilation operators of physical states with three polarizations as

Aµ(~x, t) =
1√
V

∑

λ

∑

~k

εµ
λ(~k)√
2 Wk

[
a~k,λ

e−iWk t ei~k·~x + a†~k,λ
eiWk t e−i~k·~x

]
; kµ εµ,λ(~k) = 0 , (A.14)

where Wk =
√
|~k |2 + M2 and kµ is on-shell kµ = (Wk,~k). The three polarization vectors are such

that
3∑

λ=1

εµ
λ(~k) εν

λ(~k) = Pµν(~k) = −
(

gµν − kµkν

M2

)
. (A.15)
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It is now straightforward to compute the Wightmann functions of the vector bosons in a state in

which the physical degrees of freedom are in thermal equilibrium at temperature T . These are

given by

〈Aµ(~x, t)Aν(~x′, t′)〉 = i G>
µ,ν(~x− ~x′, t− t′), (A.16)

〈Aν(~x′, t′)Aµ(~x, t)〉 = i G<
µ,ν(~x− ~x′, t− t′), (A.17)

where G<,> can be conveniently written as spectral integrals in the form

i G>
µ,ν(~x− ~x′, t− t′) =

1
V

∑

~k

ei~k·(~x−~x′)
∫ ∞

−∞
dk0 e−ik0(t−t′) [1 + Nb(k0)] ρµν(k0,~k), (A.18)

i G<
µ,ν(~x− ~x′, t− t′) =

1
V

∑

~k

ei~k·(~x−~x′)
∫ ∞

−∞
dk0 e−ik0(t−t′) Nb(k0) ρµν(k0,~k) , (A.19)

where

Nb(k0) =
1

ek0/T − 1
, (A.20)

and the spectral density is given by

ρµν(k0,~k) =
1

2Wk

[
Pµν(~k) δ(k0 −Wk)− Pµν(−~k) δ(k0 + Wk)

]
. (A.21)

In terms of these Wightmann functions, the real-time correlation functions along the forward and

backward time branches are given by

〈A(+)
µ (~x, t)A(+)

ν (~x′, t′)〉 = iG>
µ,ν(~x− ~x′, t− t′) Θ(t− t′) + i G<

µ,ν(~x− ~x′, t− t′) Θ(t′ − t),(A.22)

〈A(+)
µ (~x, t)A(−)

ν (~x′, t′)〉 = i G<
µ,ν(~x− ~x′, t− t′) . (A.23)

For the charged vector bosons, the correlation functions can be found simply from those of the real

vector boson fields described above by writing the charged fields as linear combinations of two real

fields A1,2, namely

W±
µ (~x, t) =

1√
2
[A1

µ(~x, t)± iA2
µ(~x, t)] . (A.24)

It is straightforward to find the correlation function

〈W+
µ (~x, t)W−

µ (~x′, t′)〉 = G>
µν(~x− ~x′, t− t′) , (A.25)

and similarly for the other necessary Wightmann and Green’s functions.
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A.3 RETARDED SELF-ENERGIES FOR CHARGED AND NEUTRAL

CURRENT INTERACTIONS

The diagrams for the one-loop retarded self-energy from charged current interactions are displayed

in Fig. (A1).

(~x, t)(~x, t) (~x′, t′) (~x′, t′)−

(+) (−)(+) (+)

(+) (−)(+) (+)

Figure A1: Retarded self-energy for charged current interactions. The wiggly line is a charged vector

boson and the dashed line a lepton. The labels (±) correspond to the forward (+) and backward

(−) time branches. The corresponding propagators are i S±,±(~x−~x′, t− t′) and i G±±
µν (~x−~x′, t− t′)

for leptons and charged bosons respectively.

A straightforward calculation yields for the charged current contribution the following result

ΣCC
ret (~x− ~x′, t− t′) =

ig2

2
R γµ

[
i S++(~x− ~x′, t− t′) i G++

µν (~x− ~x′, t− t′)

−i S<(~x− ~x′, t− t′) i G<
µν(~x− ~x′, t− t′)

]
γν L ,(A.26)

with

R =
1 + γ5

2
, L =

1− γ5

2
.

A similar result is obtained for the neutral current contribution to the self-energy by simply replac-

ing g/
√

2 → g/2 cos θw and MW → MZ = MW / cos θw.

Using the representation of the fermion and vector boson propagators given above the retarded

self-energy (A.26) can be written as

Σret(~x− ~x′, t− t′) =
i

V

∑

~k

∫ ∞

−∞
dk0 R

[
ΣW (~k, k0) + ΣZ(~k, k0)

]
L ei~k·(~x−~x′) e−ik0(t−t′) Θ(t− t′)

(A.27)

The contributions from charged and neutral vector bosons are given by

ΣW (~k, k0) =
g2

2

∫
d3q

(2π)3∫
dp0

∫
dq0 δ(p0 + q0 − k0) γµ ρf (~k − ~q, p0) ρW

µν(~k)(~q, q0) γν [1−Nf (p0) + Nb(q0)] ,

(A.28)
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ΣZ(~k, k0) =
g2

4 cos2 θw

∫
d3q

(2π)3∫
dp0

∫
dq0 δ(p0 + q0 − k0) γµ ρf (~k − ~q, p0) ρZ

µν(~q, q0) γν [1−Nf (p0) + Nb(q0)] ,

(A.29)

where ρW,Z(~q, q0) are the vector boson spectral densities given by eq.(A.21) with M ≡ MW,Z

respectively. It is clear that ΣW,Z(~k, k0) corresponds to a vector-like theory.

Using the integral representation of the function Θ(t−t′), the retarded self-energy can be written

in the following simple dispersive form

Σret(~x− ~x′, t− t′) =
1
V

∑

~k

∫ ∞

−∞

dω

2π
ei~k·(~x−~x′) e−iω(t−t′) R

[
ΣW (~k, ω) + ΣZ(~k, ω)

]
L , (A.30)

ΣW,Z(~k, ω) =
∫

dk0
ΣW,Z(~k, k0)
k0 − ω − iε

, (A.31)

where ε → 0+. Hence, from the above expression, we identify

ΣW,Z(~k, ω) =
1
π

ImΣW,Z(~k, ω) . (A.32)

Furthermore, since R (±mf ) L = 0, the factor ±mf in the free fermionic spectral density defined

in Eqns. (A.12) and (A.13) can be ignored when we compute R
[
ΣW (~k, ω) + ΣZ(~k, ω)

]
L. The

signature of the the fermion mass mf is only reflected in the factors of ωp in the spectral density.

Ignoring the factor mf from now on, the fermionic spectral density is proportional to the γ matrices

only and does not feature the identity matrix or γ5. Therefore, there is the following simplification

R
[
ΣW (~k, ω) + ΣZ(~k, ω)

]
L =

[
ΣW (~k, ω) + ΣZ(~k, ω)

]
L . (A.33)
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APPENDIX B

CALCULATION OF THE IMAGINARY PART OF THE SELF-ENERGY

The imaginary part of the self-energy is given in the text, eqn. (7.148).

Integrating over dp0, dq0 and then performing the transformation ~p → −~p−~k in all the integrals

involving n(ω(2)

~p+~k
), we can write

ImΣ̃R(ω,~k) = σ0 + σI + σII + (σ(1)
III − σ

(2)
III) + (σ(1)

IV − σ
(2)
IV ) (B.1)

where

σ0 =
g2

32π2
sign(ω)

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

δ( |ω| − ω
(1)
~p − ω

(2)

~p+~k
), (B.2)

σI =
g2

32π2
sign(ω)

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

n(ω(1)
~p ) δ( |ω| − ω

(1)
~p − ω

(2)

~p+~k
), (B.3)

σII =
g2

32π2
sign(ω)

∫
d3~p

ω
(2)
~p ω

(1)

~p+~k

n(ω(2)
~p ) δ( |ω| − ω

(2)
~p − ω

(1)

~p+~k
), (B.4)

σ
(1)
III =

g2

32π2

∫
d3~p

ω
(1)
~p ω

(2)

~p+~k

n(ω(1)
~p ) δ( ω + ω

(1)
~p − ω

(2)

~p+~k
) ; σ

(2)
III = σ

(1)
III(ω → −ω), (B.5)

σ
(1)
IV =

g2

32π2

∫
d3~p

ω
(2)
~p ω

(1)

~p+~k

n(ω(2)

~p+~k
) δ( ω + ω

(2)
~p − ω

(1)

~p+~k
) ; σ

(2)
IV = σ

(1)
IV (ω → −ω). (B.6)

Obviously, σ0 represents the zero temperature contribution. Note that σII and σ
(1)
IV can be

obtained by exchanging M1 and M2 in σI and σ
(1)
III respectively. Thus, we will only outline the

main steps in computing σ0, σI and σ
(1)
III in this appendix. First of all, let ωp = ω

(1)
~p and z = ω

(2)

~p+~k
.
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Then, we have

σ0 + σI =
g2

16πk
sign(ω)

∫ ∞

M1

[ 1 + n(ωp) ] dωp

∫ z+

z−
δ( |ω| − ωp − z ) dz (B.7)

where

z± =
√

(p± k)2 + M2
2 (B.8)

=

√
ω2

p ± 2k
√

ω2
p −M2

1 + k2 − (M2
1 −M2

2 ). (B.9)

Without loss of generality we can assume that M1 > M2 for convenience. For the integral to

be non-vanishing, we require that

z− < z = |ω| − ωp < z+. (B.10)

Squaring both sides twice properly, these two inequalities can be reduced to f(ωp) < 0 where

f(ωp) = 4(|ω|2 − k2)ω2
p − 4|ω|(|ω|2 − a)ωp + (|ω|2 − a)2 + 4kM2

1 (B.11)

and a = k2 − (M2
1 − M2

2 ). Notice that the graph f(ωp) against ωp represents a conic with

positive y-intercept. Solving f(ωp) = 0 for ωp, we obtain

ωp ≡ ω±p =
|ω|(|ω|2 − a)± k

√
(|ω|2 − a)2 − 4(|ω|2 − k2)M2

1

2(|ω|2 − k2)
. (B.12)

There are two possibilities: (i) |ω|2 − k2 > 0, (ii) k2 − |ω|2 > 0. For k2 − |ω|2 > 0, graphs

with f(ωp) against ωp show that condition (B.10) can be satisfied only if ωp > ω−p but algebraic

calculation indicates that |ω| − ω−p < 0. Thus, condition (B.10) can never be satisfied and this

solution should be ignored. For |ω|2 − k2 > 0, we have |ω|2 − a > 0.

A detailed analysis of f(ωp) as well as z± and |ω|−ωp as functions of ωp reveals that that condi-

tion (B.10) can always be satisfied for ω−p < ωp < ω+
p and |ω| >

√
k2 + M2

2 + M1. For the discrim-

inant in ω±p to be positive, we require that |ω| >
√

k2 + (M1 + M2)2 or |ω| <
√

k2 + (M1 −M2)2.

Since
√

k2 + M2
2 + M1 >

√
k2 + (M1 −M2)2, we can only pick up |ω| >

√
k2 + (M1 + M2)2. As a

result, we conclude that
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σ0 =
g2

16πk
sign(ω)Θ[ |ω|2 − k2 − (M1 + M2)2 ] (ω+

p − ω−p ), (B.13)

σI =
g2

16πkβ
sign(ω)Θ[ |ω|2 − k2 − (M1 + M2)2 ] ln

(
1− e−βω+

p

1− e−βω−p

)
. (B.14)

Now, we proceed to compute σ
(1)
III :

σ
(1)
III =

g2

16πk

∫ ∞

M1

n(ωp) dωp

∫ z+

z−
δ( ω + ωp − z ) dz. (B.15)

For the integral to be non-vanishing, we require that

z− < z = ω + ωp < z+ (B.16)

which can be reduced to g(ωp) < 0 where

g(ωp) = 4(ω2 − k2)ω2
p + 4ω(ω2 − a)ωp + (ω2 − a)2 + 4km2

1. (B.17)

Solving g(ωp) = 0 for ωp, we obtain

ωp ≡ ξ±p (ω) =
−ω(ω2 − a)± k

√
(ω2 − a)2 − 4(ω2 − k2)M2

1

2(ω2 − k2)
(B.18)

First, note that z± → ωp ± k as ωp → ∞. Then, drawing graphs with g(ωp) against ωp and

diagrams with z± and ω + ωp against ωp, we observe that condition (B.16) is always satisfied for

k2−ω2 > 0 with ωp > ξ−p (ω). For ω2− k2 > 0, we have |ω|2− a > 0 and graphs with g(ωp) against

ωp show that condition (B.16) can be satisfied only if ω < 0 and ξ−p < ωp < ξ+
p . Moreover, an

algebraic calculation indicates that both ω + ξ−p < 0 and ω + ξ+
p < 0 unless ω2 − k2 < M2

1 −M2
2 .

Additionally, for the discriminant in ξ±p to be positive, we require that ω2 − k2 > (M1 + M2)2 or

ω2 − k2 < (M1 −M2)2. The condition ω2 − k2 > (M1 + M2)2 contradicts ω2 − k2 < M2
1 −M2

2 .

Hence, we must take ω2 − k2 < (M1 − M2)2. Graphs of z± and ω + ωp against ωp confirm that

condition (B.16) is always satisfied for 0 < ω2 − k2 < (M1 −M2)2. As a result, we have

σ
(1)
III − σ

(2)
III =

g2

16πkβ
Θ(k2 − ω2) ln

(
1− e−βξ−p (−ω)

1− e−βξ−p (ω)

)

+
g2

16πkβ
sign(ω)Θ(ω2 − k2)Θ[ k2 + (M1 −M2)2 − ω2 ] ln

(
1− e−βω−p

1− e−βω+
p

)

(B.19)
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where ω±p are the roots given by (B.12). For k2 − ω2 > 0 and ω > 0, ξ−p (−ω) = |ω−p | and

ξ−p (ω) = |ω+
p |. For k2 − ω2 > 0 and ω < 0, ξ−p (−ω) = |ω+

p | and ξ−p (ω) = |ω−p |. Therefore, we

conclude that

σ
(1)
III − σ

(2)
III =

g2

16πkβ
sign(ω)Θ[ k2 + (M1 −M2)2 − ω2 ] ln

(
1− e−β|ω−p |

1− e−β|ω+
p |

)
. (B.20)

Finally, to obtain σ
(1)
IV − σ

(2)
IV , we simply need to exchange M1 and M2 in σ

(1)
III − σ

(2)
III .
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APPENDIX C

A SIMPLER CASE

Consider for simplicity the case of one scalar field. The solution of the Langevin equation is given

by

Ψ~k
(t) = ġ(k; t)Ψ0

~k
+ g(k; t)Π0

~k
+

∫ t

0
g(k; t′) ξ~k

(t− t′)dt′ , (C.1)

where the dot stands for derivative with respect to time. In the Breit-Wigner approximation and

setting Zk = 1

g(k; t) =
sin[Ω(k) t]

Ω(k)
e−

Γ(k)
2

t . (C.2)

where Ω(k) is the position of the quasiparticle pole (dispersion relation) and its width is given by

Γ(k) =
ΣI(Ω(k))

Ω(k)
(C.3)

The particle number is given by

N(k, t) =
1

2W (k)

[
〈Ψ̇(~k, t)Ψ̇(−~k, t)〉+ W 2(k)〈Ψ(~k, t)Ψ(−~k, t)〉

]
− 1

2
(C.4)

where W (k) is the bare frequency. Taking the initial density matrix of the field Ψ to be that

corresponding to a free-field with arbitrary non-equilibrium initial distribution function N(k; 0)

and carrying out both averages, over the initial density matrix for the field and of the quantum

noise and using that the average of the latter vanishes, we find

N(k; t) = N1(k; t) + N2(k; t)− 1
2

(C.5)

with

N1(k; t) =
1 + 2N(k; 0)

4W 2(k)

[
(g̈(k; t))2 + 2W 2(k)(ġ(k; t))2 + W 4(k)g2(k; t)

]
(C.6)

N2(k; t) =
1

2W 2(k)

∫
dω

2π
ΣI(k; ω) [1 + 2n(ω)]

[
W 2(k)

∣∣h(ω, t)
∣∣2 +

∣∣f(ω, t)
∣∣2

]
(C.7)
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where

(C.8)

h(ω, t) =
∫ t

0
e−iωt′g(k; t′)dt′ (C.9)

f(ω, t) =
∫ t

0
e−iωt′ ġ(k; t′)dt′ (C.10)

The terms N1(k; t);N2(k; t) have very different origins: the term N1(k; t) depends on the initial

condition and originates in the first two terms in (9.28) namely those independent of the noise,

which survive upon taking the average over the noise. The term N2(k; t) is independent of the

initial conditions and is solely determined by the correlation function of the noise term and is a

consequence of the fluctuation dissipation relation. Using the expression (C.2) we find

N1(k; t) =
[
1
2

+ N(k; 0)
]

e−Γ(k)t

[
1 + sin2(Ω(k)t)

(
Ω2(k)−W 2(k)

2W (k)Ω(k)

)2

+O
(

Γ2(k)
Ω2(k)

)]
(C.11)

where the neglected terms of order Γ2(k)/Ω2(k) ¿ 1 are perturbatively small. The oscillatory term

in (C.11) averages out on a short time scale 1/Ω(k) ¿ 1/Γ(k) and we can replace (C.11) by its

average over this short time scale yielding

N1(k; t) ≈
[
1
2

+ N(k; 0)
]

e−Γ(k)t

[
1 +

1
2

(
Ω2(k)−W 2(k)

2W (k)Ω(k)

)2

+O
(

Γ2(k)
Ω2(k)

)]
(C.12)

In perturbation theory Ω2(k) −W 2(k)/2W (k)Ω(k) ¿ 1, can be neglected to leading order in

perturbative quantities, thus we obtain

N1(k; t) ≈
[
1
2

+ N(k; 0)
]

e−Γ(k)t . (C.13)

Using the fact that ΣI(ω) = −ΣI(−ω) we can perform the integrals in N2(k; t) in the narrow width

(Breit-Wigner) approximation by using eqn. (C.3), with the result

N2(k; t) ' Z 2
k

[
W 2(k) + Ω2(k)

2W (k)Ω(k)

] [
1
2

+ n(Ω(k))
] (

1− e−Γ(k)t
)

+O
(

Γ2(k)
Ω2(k)

)
(C.14)

Replacing in perturbation theory

Zk ≈ 1 ;
W 2(k) + Ω2(k)

2W (k)Ω(k)
≈ 1 (C.15)

we find

N(k; t) = n(Ω(k)) + (N(k; 0)− n(Ω(k))) e−Γ(k)t (C.16)
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which is the solution of the usual kinetic equation

dN(k; t)
dt

= −Γ(k) (N(k; t)−Neq(k)) (C.17)

where

Neq(k) = n(Ω(k)) (C.18)

It is important to highlight the series of approximations that led to this result: i) the narrow

width (Breit-Wigner) approximation, ii) Zk ∼ 1, iii) Ω2(k) ∼ W 2(k), iv) Γ(k)/Ω(k) ¿ 1, these

approximations are all warranted in perturbation theory. Clearly including perturbative corrections

lead to perturbative departures of the usual kinetic equation and of the equilibrium distribution

function.
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APPENDIX D

QUANTUM MASTER EQUATION

Taking the trace over the bath variables with the factorized density matrix (9.78), the double

commutator in equation (9.79) becomes

−
∑

~k

∫ t

0
dt′

{
φa(t)φa(t′)ρS,i(t) TrBρB(0)O(t)O(t′)

+ρS,i(t)φa(t′)φa(t) TrBρB(0)O(t′)O(t)

−φa(t)ρS,i(t)φa(t′) TrBρB(0)O(t′)O(t)

−φa(t′)ρS,i(t)φa(t) TrBρB(0)O(t)O(t′)
}

. (D.1)

We suppressed the momentum index to simplify notation but used the fact that translational

invariance of the bath implies that the correlation functions are diagonal in momentum. The bath

correlation functions were given in ref.[197] (see section 3-B in this reference) and we just summarize

these results:

TrBρB(0)O(t)O(t′) =
1
π

∫ ∞

−∞
dω ImΣ̃aa(k; ω)[1 + n(ω)] e−iω(t−t′) (D.2)

TrBρB(0)O(t′)O(t) =
1
π

∫ ∞

−∞
dω ImΣ̃aa(k; ω) n(ω) e−iω(t−t′) (D.3)

where we used the property ImΣ̃aa(k;ω) = −ImΣ̃aa(k;−ω)[197]. The self energy Σ̃ is obtained from

the discontinuity across the W − χ lines in the diagram in fig. (9.2) and is the same quantity that

enters in the non-equilibrium effective action, and n(ω) is the equilibrium distribution function.

The active field φa is related to the fields that create and annihilate the propagating modes in the

medium ϕ1,2 as in eq. (9.87), hence terms of the form

φa(t)φa(t′) = cos2 θmϕ1(t)ϕ1(t′)+ sin2 θmϕ2(t)ϕ2(t′)+
1
2

sin 2θm

(
ϕ1(t)ϕ2(t′)+ϕ2(t)ϕ1(t′)

)
, (D.4)
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and all other terms in (D.1) are written accordingly. The next step requires writing these fields

in terms of creation and annihilation operators in the interaction picture of H0, their expansion

is shown in eqn. (9.88). The resulting products of creation and annihilation operators all feature

phases which are re-arranged to depend separately on the variable t and t− t′, for example

ajaj e2iωjt e−iωj(t−t′) ; a†jaj eiωj(t−t′) ; a†iaj ei(ωi−ωj)t eiωj(t−t′) , etc. . (D.5)

The exponentials that depend on t − t′, such as e±iωj(t−t′) are combined with the exponentials

in (D.2,D.3) and the integral in t′ in (D.1) is written as an integral in τ = t − t′. The Wigner-

Weisskopf approximation for the resulting integral yields eqn. (9.81). After performing the time

integral the terms of the form a†jaj do not feature any phase, whereas terms of the form aiaj (and

their hermitian conjugate) feature terms of the form e±i(ωi+ωj)t, all of these rapidly oscillating terms

average out and are neglected in the “rotating wave approximation”[200], which is tantamount to

time-averaging these rapidly varying terms. The remaining terms can be gathered together into

two different type of contributions, diagonal and off-diagonal in the 1 − 2 indices. The diagonal

contributions do not feature explicit time dependence while the off-diagonal one features an explicit

time dependence of the form e±i(ω1−ω2)t.

Diagonal: The diagonal contributions are

dρS,i

dt
=

∑

j=1,2

∑

~k

{
− i∆ωj(k)

[
a†j(~k)aj(~k), ρS,i(t)

]

− Γj(k)
2

[(
1 + n(ωj(k))

)(
ρS,ia

†
j(~k)aj(~k) + a†j(~k)aj(~k)ρS,i − 2aj(~k)ρS,ia

†
j(~k)

)

+ n(ωj(k))
(

ρS,iaj(~k)a†j(~k) + aj(~k)a†j(~k)ρS,i − 2a†j(~k)ρS,iaj(~k)
)]}

(D.6)

where the second order frequency shifts ∆ωj(k) and the widths Γj(k) are given in equations (9.35-

9.40).

Off diagonal: The full expression for the off-diagonal contributions is lengthy and cumbersome

and we just quote the result for the real part of the quantum master equation, neglecting the

imaginary part which describes a second order shift to the oscillation frequencies of the off-diagonal

coherences.
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dρS,i

dt
=

∑

~k

{
− Γ̃1(k)

2

[(
1 + n(ω1(k))

)(
a†2(k; t)a1(k; t)ρS,i + ρS,ia

†
1(k; t)a2(k; t)− a2(k; t)ρS,ia

†
1(k; t)

−a1(k; t)ρS,ia
†
2(k; t)

)
+ n(ω1(k))

(
a2(k; t)a†1(k; t)ρS,i + ρS,ia1(k; t)a†2(k; t)− a†2(k; t)ρS,ia1(k; t)

−a†1(k; t)ρS,ia2(k; t)
)]

− Γ̃2(k)
2

[(
1 + n(ω2(k))

)(
a†1(k; t)a2(k; t)ρS,i + ρS,ia

†
2(k; t)a1(k; t)− a1(k; t)ρS,ia

†
2(k; t)

−a2(k; t)ρS,ia
†
1(k; t)

)
+ n(ω2(k))

(
a1(k; t)a†2(k; t)ρS,i + ρS,ia2(k; t)a†1(k; t)− a†1(k; t)ρS,ia2(k; t)

−a†2(k; t)ρS,ia1(k; t)
)]}

(D.7)

where the interaction picture operators

aj(k; t) = aj(k; 0) e−iωjt (D.8)

and

Γ̃j(k) =
1
2

sin 2θm
ImΣ̃aa(k; ωj(k))√

ω1(k)ω2(k)
; j = 1, 2 . (D.9)
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