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ABSTRACT

CAVEATS FOR CAUSAL REASONING WITH
EQUILIBRIUM MODELS

Denver Dash, Ph.D.

University of Pittsburgh, April 2003

This thesis raises objections to the use of causal reasoning with equilibrium

models. I consider two operators that are used to transform models: the Do operator

for modeling manipulation and the Equilibration operator for modeling a system that

has achieved equilibrium. I introduce a property of a causal model called the EMC

Property that is true iff the Do operator commutes with the Equilibration operator.

I prove that not all models obey the EMC property, and I demonstrate empirically

that, when inferring a causal model from data, the learned model will not support

causal reasoning if the EMC property is not obeyed. I find sufficient conditions for

models to violate and not to violate the EMC property. In addition, I show that

there exists a class of models that violate EMC and possess a set of variables whose

manipulation will cause an instability in the system. All dynamic models in this

class possess feedback, although I do not prove that feedback is a necessary or a

sufficient condition for EMC violation. I define the Structural Stability Principle

which provides a necessary graphical criterion for stability in causal models. Finally,

I will argue that the models in this class are quite common given typical assumptions

about causal relations.
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“We find ourselves confronted with this paradox: in order for the comparative-

statics analysis to yield fruitful results, we must first develop a theory of

dynamics.” —Paul A. Samuelson, Foundations of Economic Analysis
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INTRODUCTION

A precise definition of causality has proven elusive to philosophers ever since David

Hume. Hume argued that the belief in causality was not an act of reason, but rather

an act of habit. That habit has served the human race well, giving us a powerful tool

for organizing phenomena, to form and test scientific hypotheses, to predict the effects

of actions on our environment, and to reason about counterfactual claims. It could be

argued that no human characteristic has done more to advance human progress than

this habit. The power of causal reasoning thus provides a justification for seeking a

mathematical definition of causality even if there is no purely logical reason to accept

a given causal model.

In traditional scientific disciplines, causal explanations are not typically embedded

explicitly into the models being studied. Mathematical effort in these disciplines has

instead concentrated on the ability to compile the systems into simplified forms that

allow for the easiest analytical or numerical solutions, and causal knowledge is used

only implicitly by the scientist to construct these reduced-form relationships.

There are, however, good reasons to include causality explicitly within a model’s

representation. First, when one is studying extremely complex systems, such as those

found in biological or social science applications, sorting out the network of cause and

effect can be extremely difficult to accomplish without an explicit representation. In

the study of artificial intelligence, an explicit representation of causality creates the

potential for developing an agent that can perform extremely sophisticated reasoning

tasks. Constructing a causal model provides an agent with a robust means to diag-

nose symptoms, to perform prediction given a current observed state of the system,

and most importantly, a causal model releases an agent from the need to store a

2



combinatorially large set of pairs {action ⇒ effect}, allowing the result of external

manipulation on various system components to be predicted directly from the model

using the Do operator [Wold, 1954; Goldszmidt and Pearl, 1992]. By accepting the

assumption of causal faithfulness [Pearl, 1988; Pearl and Verma, 1991; Spirtes et al.,

1993], it is possible in principle to recover causal models from data using constraint-

based [Spirtes et al., 1993; Verma and Pearl, 1991; Cheng et al., 2002] or Bayesian

[Cooper and Herskovits, 1992; Heckerman et al., 1995; Bouckaert, 1995] causal dis-

covery methods. Causal reasoning plus the ability to learn causal models from data

could potentially enable an intelligent agent to build and test hypotheses about its

environment and could help automate the process of scientific discovery from data.

These are topics that sit on the forefront of artificial intelligence research.

It has been shown by Iwasaki and Simon [1994] that, given assumptions about

the form of the causal model, the causal relations governing a dynamic system can

change as the time-scale of observation of the system is increased. In particular, they

introduce the Equilibration operator that produces the causal relations of a system in

equilibrium given the dynamic (non-equilibrium) causal system.

Informally, the Do operator, Do(M,U = u), transforms a causal model M to a

new causal model M ′ where a subset of variables U in M ′ are fixed to specific values

independent of the causes of U. On the other hand, the Equilibration operator,

Equilibrate(M,X), transforms the model M with a dynamic (time-varying) variable

X to a new causal model M ′ where X is static. This thesis will address the relationship

between these two operators. In particular I am interested in the following property:

Definition 1 (Equilibration-Manipulation Commutability) Let M (V) be a causal

model over variables V. M satisfies the Equilibration-Manipulation Commutability

(EMC) property iff Equilibrate(Do(M,U = u), X) = Do(Equilibrate(M,X),U = u),

for all U ⊆ V and all X ∈ V.

3



I use the shorthand EMC to denote Equilibration-Manipulation Commutability.

In this thesis, I ask the following question, which I refer to as the Equilibrium-

Causality Question:

Question 1 (Equilibration-Causation Question) Does the EMC property

hold for all causal models?

This question is important for at least the following reason: Very often in practice a

causal model is first built from equilibrium relationships, and then causal reasoning

is performed on that model. This common approach takes path A in Figure 1. When

EquilibrationS S
~

M
anipulation

Ŝ Equilibration
S
~
ˆ

M
anipulation

Ŝ
~=?

A

B

Figure 1. The Equilibrium-Causality Question asks whether or not the Do operator
commutes with the Equilibration operator operating on a dynamic causal model S.

a manipulation is performed on a system, however, the state of the system in general

becomes “shocked” taking the system out of equilibrium, a situation which is modeled

by path B in Figure 1. The validity of the common approach of taking path A thus

hinges on the answer to the Equilibrium-Causality Question.
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The Equilibrium-Causation Question has implications for causal discovery from

data. A very similar question can be posed in terms of the causal faithfulness condition

as follows:

Question 2 (Equilibration-Causation Question 2) Does the Equilibration

operator preserve causal faithfulness?

In other words, given a causally faithful dynamic model S, does the new model S̃

resulting from some equilibration of S obey causal faithfulness? This question can be

viewed in terms of Figure 1: if path S → S̃ leads to the only graph that is faithful to

the equilibrium probability distribution, and if the manipulated equilibrium graph ˆ̃S

is not equal to the true causal graph defined by
˜̂
S, then S̃ does not obey the causal

faithfulness assumption.

My hypotheses, which will be proven correct, is that the answer to both

Equilibrium-Causation Questions is “No”.

I will characterize sufficient conditions for when these questions are answered in

the negative. I will also present examples and numerical simulations that illustrate

the practical implications of these questions.

The thesis will be organized as follows: Chapter 1 will present the current state-of-

the-art for modeling causality, for learning causality, and some background in dynamic

systems that will be required in the remaining chapters. Chapter 2 answers both

questions, presenting both empirical measurements and theorems that characterize

EMC-violating systems, and Chapter 3 pulls together all results and analyzes their

implications for future research in causal modeling.
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CHAPTER 1

BACKGROUND CONCEPTS

In this chapter I present a review of the existing research relevant to the topics

discussed in this thesis, and I define explicitly the background concepts needed. In

Section 1.1, I present some general technical notation that will be used throughout

this document. In Section 1.2, I present some background ideas in modeling causality,

including the Do operator. Finally, in Section 1.3, I discuss concepts relating to

temporal abstraction with causal models, including the definition of the Equilibration

operator.

1.1 General Notation

This section summarizes some general conventions that I will be using to provide

an index for the reader to refer back to. Also note that an extensive index has been

provided following the Bibliography.

Sets and vectors of objects will be written in boldface type, e.g., V and E. Non-

set variables will be written as capital letters such as V ∈ V and E ∈ E. A specific

constant value obtained by a random variable will be written in lower case and by sets

will be lowercase bold, such as V = v0 and V = v0. If V is some set, I will use |V|
to denote the number of elements of V. Throughout this document I will frequently

refer to both equation systems and to directed graphs. Equation systems involve

sets of Equations while directed graphs involve sets of Edges. To avoid confusion, I

will reserve the symbol {E/E} for equations and sets of equations, and I will refer to

undirected edges with the character {U/U} and directed arcs with {A/A}. Unordered
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sets will be denoted by curly braces {. . .}, ordered tuples will be denoted by angle

braces: 〈. . .〉.
I will discuss several types of graphical objects throughout this document. The

following notation will be prevalent:

Definition 2 (undirected edge) If V is a set of objects, then an undirected edge

U over V is an unordered pair {X, Y } such that X, Y ∈ V.

Definition 3 (directed arc) If V is a set of objects, then a directed arc A over V

is an ordered pair 〈X,Y 〉, usually denoted as (X → Y ), such that X, Y ∈ V.

Definition 4 (directed graph) A directed graph G is a pair G = 〈V,A〉 where V

is a set of vertices and A is a set of directed arcs over V.

Definition 5 (partially directed graph) A partially directed graph Gp is a triple

Gp = 〈V,U,A〉, where V is a set of vertices, U is a set of undirected edges over V

and A is a set of directed arcs over V.

I will use the shorthand DiG (DAG) for “directed (acyclic) graph” and PDiG (pDAG)

for“partially directed (acyclic) graph”. If G(V) is a graph, and V ∈ V then I

use the following notation to indicate relationships between variables in G: Pa(V ),

Ch(V ), Anc(V ) and Des(V ) denote the set of children, parents, ancestors and

descendants of V in G, respectively. If E is an equation, then let Params(E)

denote the set of free parameters of E. If E is a set of equations, let Params(E)

denote
⋃

E∈E Params(E). If V is a random variable then I use Rng(V ) to denote

the set of possible outcomes of V . If V is a set of random variables then I use Rng(V)

to denote the Cartesian products of the ranges of each variable Vi ∈ V:

Rng(V) =
⊗
Vi∈V

Rng(Vi)

I use the notation (X ⊥ Y | Z) to denote the fact that a variable X is independent

of a variable Y given a set of variables Z.
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1.2 Representing Causality

There are several ways that causality has been modeled in artificial intelligence,

econometrics and the social sciences. These representations are closely related: all

describe a set of relationships between variables in some set V. All utilize the con-

cept of a causal relation between variables A,B ∈ V as a directed arc A → B; thus,

indirectly at least, all conceptions define directed graphs of some sort. The concep-

tions differ as to what information constitutes the most fundamental description of a

causal model; and these differences in turn impact the types of directed graphs that

can be generated by the models. Here I define the representation that I will be using

throughout this thesis. In Appendix A, I present an overview of the other concep-

tions, and I show that, given the assumptions I take for the theorems in this work,

these other representations will be consistent with the definitions that I use here.

1.2.1 Causality

From a philosophical viewpoint, most would agree that causality is intertwined

with the concept of manipulation. In fact, as I define it, manipulation requires the

concept of causation and causation requires the concept of manipulation. Manipu-

lation is the act of forcing a set of variables U ⊆ V to a particular configuration u

independent of the state of other variables in the system.:

Definition 6 (manipulation) Let P(V) be a joint probability distribution over a

set of variables V, let U,W ⊆ V be arbitrary disjoint subsets of V. A manipulation

Manip(P,U,u) of P is a new probability distribution P̂ (V) such that: P̂ (U = u) =

P̂ (U = u | W = w) = 1 for all w ∈ Rng(W).

I use the notation U=̂u to indicate that U is being manipulated into the configu-

ration u (as opposed to being observed), and I use P(V | U=̂u) as shorthand for

Manip(P,U,u).
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This definition of manipulation does not require the definition of a cause; however,

it is also too general to be useful as it includes what I call fat-hand manipulations. A

fat-hand manipulation is a manipulation that alters the conditional probability of a

non-manipulated variable given its direct causes:

Definition 7 (fat-hand manipulation) If V is a set of variables, U ⊂ V, V′ =

V \U and P is a probability distribution over V, then a manipulation P(V | U=̂u)

is a fat-hand manipulation iff there exists a variable V ∈ V′ and v ∈ Rng(V ) such

that:

P(V = v | Pa(V ) = p) 6= P(V = v | Pa(V ) = p,U=̂u),

where Pa(V ) ⊂ V is the set of direct causes of V with respect to P and V.

If a manipulation M is not a fat-hand manipulation, then I say that M is a modular

manipulation:

Definition 8 (modular manipulation) A manipulation M is a modular manipu-

lation iff it is not a fat-hand manipulation.

I define X to be a cause of Y iff Y depends on X when all other variables are

modularly manipulated to constant values:

Definition 9 (cause) Let V be a set of variables with X, Y ∈ V, let U = V\{X, Y },
and let P(V) be a probability distribution over V. X is a cause of Y with respect to

P and V iff there exists a state y ∈ Rng(Y ) and modular manipulations U=̂u, X=̂x0

and X=̂x1 such that:

P(Y = y | U=̂u, X=̂x0) 6= P(Y = y | U=̂u, X=̂x1).

Given this definition of a cause, the concept of a causal graph can be defined:
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Definition 10 (causal graph) Let V be a set of variables, and let P(V) be a prob-

ability distribution over V. A causal graph with respect to P and V is a directed

graph G = 〈V,A〉 such that {X → Y } ∈ A iff X is a cause of Y with respect to P

and V.

Again, these definitions of modular manipulation and cause are cyclic—each re-

quiring the other. That does not, however, mean that these two definitions are mean-

ingless. They provide consistency constraints on any working definitions of these two

concepts: Given a system that is a priori determined to be causal, Definitions 6 and

8 can be used to define a modular manipulation on that system; likewise, given an

operation that is a priori defined to be a modular manipulation, we can define a

causal system using Definitions 9 and 10.

1.2.2 Causal Models

One of the first representations of causality was developed in econometrics over

half a century ago. A structural equation model (SEM) is defined as a pair 〈V,E〉,
where E is a set of simultaneous equations and V is a set of variables constrained by

E. In order for a set of equations and a set of variables to be causally meaningful,

they must satisfy both syntactical as well as semantical constraints. By syntactical

constraints, I mean conditions the equation set must satisfy that can be directly

verified by examining the equations themselves; for example, the equations must

specify a solution for each variable in V. By semantic constraints, I mean that each

equation is meant to represent some fundamental, invariant mechanism in the real

world.

I make the following two syntactical assumptions about SEMs, letting S = 〈V,E〉
denote an arbitrary SEM:

Assumption 1 (fully bijective mappings) Every E ∈ E can be written as V =

f (V′) where V ∈ V, V′ ⊆ V \ {V } and f is a bijection, i.e., for any Y ∈ V′ the
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function f (Y,V′′)|V′′=v′′ is a bijection, where V′′ = V′ \ {Y } and v′′ is a constant

vector v′′ ∈ Rng(V′′).

There are two immediate consequences to this assumption. First, every equation

can be solved for every variable appearing in the equation in terms of the remaining

variables, e.g., Y = f (X, Z) can be rewritten as X = f−1(Y, Z). Second, since all

the functions are injections, all variables appearing in a function will be mapped to

unique values, e.g. f (x1, z) 6= f (x2, z). This class of equations includes all strictly

monotonic functions (when the variables are continuous) and some discrete functions

(when the variables are multinomial).

Next I assume that there are no latent confounding causes, an assumption labelled

causal sufficiency by Spirtes et al. [1993]:

Assumption 2 (causal sufficiency) Let V be a set of variables and let P denote

a probability distribution over V. V is causally sufficient with respect to P iff every

common cause of any two or more variables is either in V or has a constant value.

Finally, Simon [1953] makes the syntactical assumption that all SEMS are self-

contained:1

Assumption 3 (self-contained structure) Let S = 〈V,E〉 be an arbitrary SEM;

let S ′ = 〈V′,E′〉 be an arbitrary pair such that E ′ ⊆ E and V ′ = Params(E ′), and

let k ≡ |E′| and m ≡ |V′|. The following conditions are true:

1. m ≥ k, and

2. If the values of any m − k variables in V′ are instantiated to constant values,

the remaining k variables can be solved for unique values in terms of constants.

1I use here the definition put forward by Iwasaki and Simon [1994], which is a generalization of
that used by Simon [1953].
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I will also refer to a set of equations E as being self-contained (with respect to a

set of variables V) if the SEM S = 〈V,E〉 is self-contained. The condition of being

self-contained assures us not only that the equation set defines unique values for all

variables, but that every subset of equations of size k that have been reduced to

constraining k variables will also define a unique solution to those variables. I will

assume that all SEMs in this thesis are self-contained.

Semantically, the equations in a SEM are meant to represent fundamental, stable

mechanisms, or physical laws. As an example, the system of equations in Figure 1.1b

does not represent stable mechanisms for the system of a five kilogram mass M being
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Figure 1.1. Two structural equation systems and the corresponding causal graphs.
Although both sets of equations are algebraically equivalent, the structures obtained
are different.

influenced by a ten Newton force F and possessing an acceleration A. Although

both sets of equations are algebraically equivalent and entail that the value of the

acceleration is two meters per second squared, the equations in Figure 1.1b are not

invariant for this system because the equation A = 2 m/s2 does not in general hold

for this system when either of the other two equations are changed. The property

of equation invariance or fundamentality is obviously a semantical distinction rather

than a syntactical property of a SEM; i.e., Figure 1.1b is a syntactically valid SEM,

so when I state that the equations are not structural, I am making an assertion about

the ability of the equations to explain the real-world interactions of this system.

How to identify a stable mechanism in reality is not a straightforward matter. A

debate that is of interest to this thesis occurred in the econometrics literature between
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Wold [1954, 1955] and Simon [1955]. Simon and Wold debated the differences in their

respective definitions of causality. In that debate, Wold seems especially adamant

about allowing an “equilibrium” relationship to represent causality, although he does

not precisely define what an “equilibrium” relationship is. He does not object to the

use of a relationship that is independent of time, so by “equilibrium” he certainly does

not mean “stationary”. The objection of Wold is relevant to this thesis because I will

also raise objections to the use of causal reasoning with equilibrium relationships;

however, I prove that some equilibrium models support causal reasoning while others

do not, and I characterize these different types of equilibrium relations.

In a SEM associating each variable with one equation in which that variable ap-

pears defines a directed graph. An example of such a mapping between equations

and variables is shown in Figure 1.2. Such a graph possesses a one-to-one correspon-
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Figure 1.2. Establishing a one-to-one correspondence between equations E and
variables V in an SEM defines a directed (possibly cyclic) graph where each node
corresponds to a variable in V.

dence between vertices and variables, and may contain cycles. I term the one-to-one

correspondence a total causal mapping:

Definition 11 (total causal mapping) If E is a set of equations with V ≡ Params(E),

then a total causal mapping over E is an onto mapping φ : V → E.

It was proven in [Nayak, 1994] that a set of independent equations is self-contained

iff it possesses a total causal mapping. Again, a total causal mapping defines a

directed (possibly cyclic) graph (DiG). This DiG can be constructed by the following
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procedure: For each association 〈X, E〉 direct an arc from X ′ → X for each X ′ ∈
Params(E) such that X ′ 6= X.

I define a causal model as follows:

Definition 12 (causal model) A causal model is a pair 〈S, φ〉, where S = 〈V,E〉
is a structural equation model and φ is a total causal mapping.

A causal model is an explicit hypothesis about the detailed causal interactions be-

tween variables in the system: for each variable V ∈ V, a causal model hypothesizes

which variables directly affect V and the precise functional form of that affectation.

In addition to the set of equations, a causal model requires additional semantic knowl-

edge about the system, expressed as the mapping φ. Some researchers have developed

automated methods to generate matchings between variables and equations [Serrano

and Gossard, 1987; Nayak, 1994].

Causal models have been used in econometrics and the social sciences for half a

decade (see Wright [1934]; Haavelmo [1943]; Strotz and Wold [1960], for example)

and have strongly influenced the work of modern researchers in artificial intelligence

[Pearl and Verma, 1991; Spirtes et al., 2000; Pearl, 1995]. In the econometrics and

social sciences these models are referred to as simply “structural equation models”,

and the equations are typically linear.

I define aggregation as an operation on a causal model that is used to reduce the

causal resolution of the model:

Definition 13 (Aggregation operator) Let M = 〈〈V,E〉, φ〉 be a causal model

with a corresponding directed graph G. An aggregation Agg(M, X) of a variable X ∈
V is a new causal model M ′ = 〈〈V′,E′〉, φ′〉 such that the following conditions hold:

1. V′ = V \ {X},

2. φ′(X ′) = φ(X ′), for all X ′ ∈ V′ such that X ′ /∈ Ch(X)|G.
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3. Let φ(X) be written as X = f (PX), where PX = Pa(X)|G, let Xch ∈ Ch(X)

be an arbitrary child of X and let φ(Xch) be written as Xch = g(X,P) where

P = Pa(Xch) \ {X}. φ′(Xch) is the equation that results from substituting f

into g for X: Xch = g(f(PX),P).

Aggregation is a way of removing some variables from the model while preserving all

causal links between the remaining variables.

If the directed graph corresponding to a causal model is acyclic then the model is

called recursive:

Definition 14 (recursive causal model) A causal model M = 〈〈V,E〉, φ〉 with a

graph G is recursive if and only if G is acyclic.

Different causal mappings will in general produce different directed graphs. In Fig-

ure 1.2, if we were to instead associate E3 with Y and E4 with Z, then X would be

a parent of Y in the graph instead of a parent of Z. However, the following theorem

states that if a causal model is recursive, there exists exactly one causal mapping.

This in turn implies that the graph is unique:

Lemma 1 If M = 〈〈V,E〉, φ〉 is a recursive structural equation model then any

causal mapping φ′ : V → E must be identical to φ: i.e., φ(V ) = φ′(V ) for all

V ∈ V.

Proof: This proof follows as a corollary to the correctness of the Causal Ordering

algorithm of Simon [1953], which I prove in Appendix D. 2

Uncertainty is usually modeled in causal models by allowing each equation Ei to

constrain a single random variable γi called a noise term. I assume that the noise

terms are independently distributed: γi is independent of γj when i 6= j. However,

correlated error terms are also used to model a system with latent confounding vari-

ables.
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I will sometimes make the assumption that the noise terms are non-uniformly

distributed, which I define as follows:

Definition 15 (non-uniform distribution) Let X be a random variable and let

P(X) be the probability distribution (or density if X is continuous) function. P is

non-uniform iff there exist two values x1, x2 ∈ Rng(X) such that P(x1) 6= P(x2).

The Markov condition relates a probability distribution to a directed (causal)

graph:

Definition 16 (causal Markov condition) A causal graph G(V) over variables

V obeys the Markov condition with respect to a probability distribution P(V) if all

variables X ∈ V are independent of their causal non-descendants given their causal

parents: (X ⊥ Y | Pa(X)) ∈ Indep(P ) for all Y ∈ {V \Des(X)G}.

A graph that obeys the Markov condition is also called an I-map [Pearl, 1988]. Pearl

[2000] proves that the graph associated with a recursive causal model with indepen-

dent error terms always satisfies the Markov condition.

The concept of d-separation was defined by Pearl [1988] as a graphical condition

applied to a directed graph:

Definition 17 (d-separation) Let G = 〈V,A〉 be a directed graph. Two variables

X,Y ∈ V are d-separated given a set Z ⊂ V iff, for every (undirected) path P between

X and Y :

1. P contains a chain A → B → C or a structure A ← B → C with B ∈ Z, or

2. P contains a structure A → B ← C such that neither B nor a descendant of B

is in Z.

I use the notation (X ⊥⊥ Y | Z)|G to indicate that X and Y are d-separated by Z in

G.
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The following theorem relating d-separation to conditional independence was

proven also by Pearl [1988]:

Theorem 1 Let P(V) be a probability distribution over a set of variables V and

G(V) be a directed acyclic graph over V that obeys the Markov condition with respect

to P . Then a d-separation condition (X ⊥⊥ Y | Z) in G implies a corresponding

conditional independence condition (X ⊥ Y | Z) in P .

The Markov condition between a graph G and a PDF P does not guarantee that

an independence relation in P corresponds to a d-separation condition in G. This

correspondence requires the causal faithfulness condition:

Definition 18 (causal faithfulness condition) A directed graph G = 〈V,A〉 obeys

the causal faithfulness condition with respect to a probability distribution P (V) if a

conditional independence relation in P implies a d-separation in G: (X ⊥ Y | Z)P ⇒
(X ⊥⊥ Y | Z)G.

A graph that obeys faithfulness was called a D-map by Pearl [1988]. The term

“faithfulness” was coined by Spirtes et al. [1993], in the context of inference of causal

structure from data; the identical notion of “stability” was used in [Pearl and Verma,

1991].

1.2.3 Causal Reasoning

In the arc-cutting account of manipulation, the fundamental knowledge of a causal

system consists of causal parent-child relationships: these are expressed in terms

of a causal model S = 〈〈V,E〉, φ〉, where the function determining each variable

X ∈ V is explicated by the mapping φ. Manipulating X is defined by replacing the

equation φ(X) with a new equation, X = x0, specifying the manipulated value of

X. This striking of mapped equations goes at least as far back as Wold [1954] and
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was emphasized by Strotz and Wold [1960]. This operation corresponds to the Do

operator2 [Goldszmidt and Pearl, 1992; Spirtes et al., 2000]:

Definition 19 (Do-operator) If M = 〈〈V,E〉, φ〉 is a causal model, and U ⊆ V,

then Do(M,U = u) is a causal model M̂ = 〈〈V,E′〉, φ′〉, such that:

1. For all V /∈ U, φ′(V ) = φ(V ).

2. If U ∈ U then φ′(U) takes the form U = u, where u is the component of u

assigned to U in the manipulation.

Spirtes et al. [2000] prove a theorem called the Manipulation Theorem, which states

that given the Markov condition, it is possible to calculate the new distribution result-

ing from applying the Do operator to a recursive causal model. The axiomatizations

of causal reasoning developed by Galles and Pearl [1997] and extended by Halpern

[2000], treat the Do operator as the definition of a manipulation. However, whether

or not the Do operator correctly corresponds to a given manipulation depends on the

manipulation being considered.

The arc-cutting account of manipulation is not the only possible one. Simon [1953]

argued for a model of manipulation based on his Causal Ordering Algorithm. For

completeness I contrast the two approaches in Appendix B.

It is an interesting question to ask under what conditions a causal model and the

Do operator correspond to the definitions of a causal graph (Definition 10) and a

modular manipulation (Definitions 6 and 8). The following theorems show that if all

equations are fully bijective and the error terms are independent and non-uniform,

then the concepts of a causal model and the Do operator are consistent with the

definition of a causal graph and a modular manipulation. To my knowledged these

theorems have not been proven elsewhere:

2Spirtes et al. define a more general concept of manipulation in which the conditional distribution
is changed, but the causal parents may still have an effect on the manipulated variable. The concept
that I consider in this thesis corresponds to their concept of a perfect manipulation.
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Theorem 2 Let M = 〈〈V,E〉, φ〉 be a causal model with independent error terms,

let P be the probability distribution defined by M , and let G = 〈V,A〉 be the directed

graph associated with M . If G is a causal graph with respect to P and V, then the

probability distribution defined by Do(M,U = u) is a modular manipulation of P .

Proof: I need to show first that the Do operation is a manipulation and second that

it is not a fat-hand. First, in the model M̂ ≡ Do(M,U = u), all variables U ∈ U are

specified by an equation of the form U = u, where u is a constant; so P(U = u) = 1

independent of the state of any other variable in V. Second, if V ∈ V and V /∈ U,

then both before and after the manipulation V is specified by an equation of the

form V = f (Pa(V ), γV ), where Pa(V ) are the set of parents of V in G and γV is

the error term. Thus, before and after the manipulation P(V = v | Pa(V ) = p) =

P(γV = f−1(v,p)) which depends only on the distribution of γV . Finally, if G is a

causal graph then Pa(V ) is the set of causal parents of V and the Do operator is

thus not a fat-hand manipulation. 2

Theorem 3 Let M = 〈〈V,E〉, φ〉 be a causal model with non-uniform independent

error terms, P(V) be the probability distribution defined by M and G = 〈V,A〉 be

the directed graph associated with M . If, for all subsets U ⊆ V, the probability distri-

bution defined by Do(M,U = u) is a modular manipulation of P , then G is a causal

graph with respect to P and V.

Proof: ⇒ If {X → Y } ∈ A then the equation determining Y takes the form

Y = f (X,P, γY ), where P ≡ Pa(Y ) \ {X} and γY is an error term. Let V′ ≡
V \ {X, Y,P}. Let y ∈ Rng(Y ), xi ∈ Rng(X), p ∈ Rng(P) and v′ ∈ Rng(V′)

be arbitrary values, then Do(M, {X = xi,P = p,V′ = v′}) defines a distribution

P(Y = y | X=̂xi,P=̂p) = P(γY = f−1(y, xi,p)). Since γY is non-uniform, there ex-

ists two values g1, g2 such that P(γY = g1) 6= P(γY = g2). Define values x1, x2 ∈
Rng(X) such that x1 = f−1(y, g1,p) and x2 = f−1(y, g2,p). Since f is a bijection x1

and x2 exist and x1 6= x2. Then P(Y = y | X=̂x1,P=̂p) 6= P(Y = y | X=̂x2,P=̂p)
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and X is a cause of Y with respect to P and V.

⇐ Assume X is a cause of Y with respect to P and V. Let P ≡ Pa(Y ) \
{X} and V′ ≡ V \ {X, Y,P}. The equation determining Y either takes the form

Y = f (P, γY ) or Y = f (X,P, γY ); I need to show that it in fact takes the form

Y = f (X,P, γY ). Since X is a cause of Y , there exist values y ∈ Rng(Y ), xi ∈
Rng(X), p ∈ Rng(P) and v′ ∈ Rng(V′) such that P(Y = y | X=̂x1,P=̂p,V′=̂v′) 6=
P(Y = y | X=̂x2,P=̂p,V′=̂v′). Assuming Y = f (P, γY ), this equation can be rewrit-

ten in terms of γY : P(γY = f−1(y,p)) 6= P(γY = f−1(y,p)), which is a contradiction.

Therefore it must be the case that Y = f (X,P, γY ) and X is a parent of Y in G. 2

1.3 Temporal Abstraction

The formalism presented in Section 1.2 allows the concept of causality to be dis-

cussed at all levels of abstraction and is thus quite general. In particular, it is trivial

to approximate a time-dependent variable X simply by adding one variable for X at

each discrete time slice:

X ; {X(0), X(1), . . . , X(n)}.

The model itself must of course specify the functional relations and probability dis-

tributions between all variables in the model, including those at various time slices.

In this way, a time-dependent causal model is just a special-case of a causal model in

general, and need not be treated any differently.

It has long been recognized that the causal graph of a system can depend on the

time-scale at which the system is observed. For example, it is well established that

a non-recursive system, when modeled over a shorter time scale, can be transformed

into a recursive one [Bentzel and Hansen, 1954]. Strotz and Wold [1960] provide an

example of such a system: an aquarium with multiple populations of fish competing
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for resources. In this toy model there are two types of fish, big and small, occurring in

quantities Yb and Ys, respectively, and two populations of weeds Wb and Ws, occurring

in quantities Xb and Xs, respectively. The big fish feed only on the small fish and on

weed Wb; while the small fish feed only on weed Ws. The linear structural equation

model that they use to describe this system on short time-scales is as follows:

Yb(t) = α1 + β1Ys(t−∆t) + γ1Xb(t) + u1(t) (1.1)

Ys(t) = α2 + β2Yb(t−∆t) + γ2Xs(t) + u2(t) (1.2)

where ∆t is a constant time lag, the ui are independent random variables, and all

other variables are constant non-zero coefficients. This model is a causal model with

Equation 1.1 being associated with variable Yb and Equation 1.2 being associated

with Ys, and it can be represented as an acyclic time-dependent graph with Yb and

Ys varying in time on a time scale of ∆t (assumed to be short).

If we make the assumption that the fish populations in the aquarium are in equi-

librium (thus looking at the system on a longer time-scale), then Yb(t −∆t) = Yb(t)

and Ys(t−∆t) = Ys(t), thus Equations 1.1 and 1.2 can be written as:

Yb(t) = α1 + β1Ys(t) + γ1Xb(t) + u1(t) (1.3)

Ys(t) = α2 + β2Yb(t) + γ2Xs(t) + u2(t) (1.4)

which is a strongly coupled set and can only be represented by a cyclic graph. Thus

a cyclic equilibrium causal graph is typically interpreted as arising from a system

possessing feedback when viewed at shorter time-scales; although there is no syntactic

reason why a cyclic causal graph must be based on such a system, i.e., the syntax of

a nonrecursive model does not give us any indication of what a cycle means or how

it came about in a system.
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There has been other work relating dynamic models to non-dynamic models in

general: Fisher [1970] discusses the implications of the fact that in SEMs, causality

is assumed to be instantaneously occurring, when in reality a cause always requires

an implicit time-lag to produce effects. He derives necessary conditions for an SEM

that a set of variables, being defined as the averages over a short time-lag, will obey

the same relationships as their instantaneous counterparts. Kuipers [1987] discusses

temporal abstraction in dynamic qualitative models with widely varying time-scales;

and Richardson [1996] discusses the signatures that dynamic models with feedback

display in their non-recursive equilibrium counterparts.

1.3.1 Dynamic Causal Ordering

Iwasaki and Simon [1994] discussed dynamic causal models, defined as sets of

differential equations, and introduced various operations that can be used to con-

vert those dynamic models into static models or models with mixed equilibrium and

dynamic relationships. In so doing, they presented examples which show that it is pos-

sible for an acyclic equilibrium causal graph, defined by an SEM, to be produced by

a dynamic system with feedback. Their formulation used the representation of SEMs

along with the COA, and they considered differential equation systems whereby if a

variable X is changing in time, then there exists some mechanism that includes the

differential of X: dX/dt (or the difference ∆X for a discretized time interval). Models

of this form are convenient because they allow for simple analysis of the systems as

some dynamic variables achieve equilibrium. I will use the standard notation V̇ to

denote dV/dt and V (i) to denote the ith derivative of V : V (i) ≡ diV/dT i.

I will illustrate these types of models by presenting the equilibrium and dynamic

causal models of the non-damped simple-harmonic oscillator system (i.e., a mass

dangling from a spring), depicted schematically in Figure 1.3. In the equilibrium

system there are two physical laws at play. First, the gravitational force Fg depends

22



m

Fs

Fm

x

ij
M = m0

?i
Fg = Mg

- i
Fs = −Fg

?i
X = −Fs/K

ij
K = k0

-

Figure 1.3. A non-damped simple-harmonic oscillator and its equilibrium causal
model.

on the mass M and the gravitational constant g; and second, the spring force is

proportional and opposite to the displacement X:

Fg =Mg (1.5)

Fs =−KX. (1.6)

The mass M and spring constant (stiffness) K are set to constant values:

M =m0 (1.7)

K =k0. (1.8)

Assuming the block is in equilibrium, the force of gravity must be equal and opposite

to the force of the spring:

Fs = −Fg, (1.9)

yielding the recursive equilibrium causal model shown in Figure 1.3 (with independent

error terms being left implicit). Since I have not explicitly modelled a dissipative force

in this system, oscillations will never “damp out” causing the system to go from a

non-equilibrium state to an equilibrium state. Thus if this system is in an equilibrium

state, it must have been put in that state from the start.

The dynamic causal model of this system has the same mechanisms at play, but

it does not make the assumption that the block is in equilibrium; thus, Equation 1.9
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is replaced with Newton’s second law for the acceleration A of a mass M under forces

in one dimension:

ΣiFi = MA, (1.10)

where the sum is over the set {Fg, Fs}. In addition, the definitions of acceleration

and velocity must be added to make the system self-contained (expressed in discrete

form):

A(t) ≈
V(t+1) − V(t)

∆t
(1.11)

V(t) ≈
X(t+1) −X(t)

∆t
(1.12)

where X(t) refers to the value of variable X at time slice t, and ∆t is the (constant)

time between slices. These can be rewritten as the recurrence relations:

V(t+1) = V(t) + A(t)∆t (1.13)

X(t+1) = X(t) + V(t)∆t (1.14)

In order to specify a particular solution to these difference equations, we need to

specify initial conditions for X: X(0) = x0 and for V : V(0) = v0, for some constants

x0 and v0. Finally, we need to state which variables are exogenous, in this case:

M(t) = m0, g(t) = g0, and K(t) = k0, for all t.

The recursive graph for this set of equations is shown in Figure 1.4 (a). This graph

relates all the variables in our model at t = 0 with each other and with V and X at

t = 1. Since X(1) and V(1) are now determined at t = 1, we can recursively iterate

this procedure to generate causal graphs for arbitrary values of t.

Since this graph is based on continuous differential equations, all causation across

time slices will only occur to a variable from its derivative, a proposal made by Simon

24



j
Fs(0) = −KX(0)

@
@@R

j
Fg(0) = Mg

�
��	 jlM = m0

@
@@I

�

jl g = g0�

jl
K = k0

�
���

j
A(0) = ΣFi(0)/M

jl
V(0) = v0

HHHHHHj

HHHHHHj-

jl
X(0) = x0

6

-

j
V(1) = V(0) + A(0)∆t

j
X(1) = X(0) + V(0)∆t

(a)

j
Fs = −KX(t)

@
@@R

j
Fg = Mg

�
��	 jlM = m0

@
@@I

�

jlg = g0�

jl
K = k0

�
���

j
A(t) = ΣFi/M

?j
V(t) = V(t−1) + A(t−1)∆t

?j
X(t) = X(t−1) + V(t−1)∆t

6

(b)

Figure 1.4. (a) The first two time-slices of the dynamic causal model for the simple
harmonic oscillator system. (b) A shorthand graph for the same system.

and Rescher [1966]. Thus, this graph is Markovian through time i.e., the variables in

the future are d-separated from variables in the past by variables in the present, and

it can be represented by a convenient shorthand graph for an infinite sequence of time

steps. In this shorthand graph, depicted in Figure 1.4 (b), temporal subscripts have

been dropped and special dashed links, labelled by Iwasaki and Simon as integration

links, have been created to denote that a causal relationship is really occurring through

a time slice.

The shorthand dynamic graph in Figure 1.4 adds some confusion to the concept

of recursivity, since it possesses cycles itself although it really is meant to represent

an acyclic graph. The following theorem relates an unrolled recursive graph to the

shorthand graph:

Theorem 4 (recursive causal model) A causal model M = 〈〈V,E〉, φ〉 with a

shorthand causal graph G is recursive if and only if the causal graph G
(0)
x , obtained

by removing all integration links from G, is acyclic.

Proof: ⇒ Assume that G
(0)
x is acyclic. Then for a fixed time slice the causal graph

is acyclic. Assuming there are n links from slice i to slice i + 1 and that no variable

at slice i + 1 is an ancestor of a variable at slice i, then we can add another arc from

25



slice i to i + 1 without creating any cycles, thus the rolled out graph must be acyclic.

Finally when there are no arcs from slice i to i + 1 then there exist no ancestors in

slice i + 1 of any variables in slice i. Thus, by induction, the rolled-out graph will be

acyclic.

⇐ Assume the unrolled graph is acyclic, then dropping all arcs across time slices will

leave an acyclic graph at each time slice. 2

A self-contained dynamic structure was defined by Iwasaki and Simon [1994] es-

sentially as a set of well-defined n first-order differential equations for n variables:

Definition 20 (self-contained dynamic structure) Let S be a pair S = 〈V,E〉
where V is a set of variables and E is a set of equations such that |V| = |E| = n.

Let E′ ⊆ E be an arbitrary subset with k = |E′| and r equal to the number of first

derivatives contained in Params(E′). Then S is a self-contained dynamic structure

iff:

1. r ≥ k

2. If the values of any (r − k) first derivatives are chosen arbitrarily, then the

remaining k are determined uniquely as a function of the chosen variables.

Each equation in a dynamic model so defined is a differential equation for some

V ∈ V. The restriction to first-order equations is general because a single nth-order

differential equation can be converted into a set of n first-order equations by defining

each first-derivative as a new variable.

Iwasaki and Simon [1994] generalize dynamic models to mixed structures by al-

lowing both differential and equilibrium equations. Let M = 〈V,E〉 be a pair where

E is a set of equations (some differential, some non-differential) constraining the set

of variables V. Then define Inst(M) to be the superset of equations consisting of E

plus one constant equation of the form V = v0, where v0 is a constant value for each
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dynamic variable V . A self-contained mixed structure is then defined as (in verbatim

from Iwasaki and Simon [1994]):

Definition 21 (self-contained mixed structure) The set E of n equations for n

variables is a self-contained mixed structure iff:

1. Zero or more of the n equations are first-order differential equations and the

rest are equilibrium equations.

2. Inst(M) is a self-contained equilibrium structure when the variables and their

derivatives are treated as distinct variables.

Thus the model illustrated in Figure 1.4 is in fact a mixed-model according to Iwasaki

and Simon.

The “mixed-model” definition makes an unnatural distinction between a first-

order differential equation and an “equilibrium” equation. The distinction is not

wholly consistent with their treatments of derivatives-as-variables. The restriction of

a dynamic model to containing only first-order differential equations was justified on

the grounds that any n-th order differential equation could be readily replaced by

n first-order equations over n variables by treating derivatives as normal variables.

Implicit in this argument is that derivatives should be treated at the same level

as regular variables. If an “equilibrium” equation is defined as an equation that is

mapped to a non-dynamic variable (a variable with no derivative in the model), then a

first-order differential equation for variable X is equivalent to an equilibrium equation

for Ẋ. I therefore simplify this notation and refer to any causal model as a dynamic

model if it contains a dynamic variable:

Definition 22 (dynamic variable) Given a causal model M = 〈〈V,E〉, φ〉, a vari-

able V ∈ V is a dynamic variable if and only if V̇ ∈ V.

Definition 23 (dynamic causal model) A causal model M = 〈〈V,E〉, φ〉 is a dy-

namic causal model with respect to V ∈ V if and only if V is a dynamic variable.
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Using this definition, the equations in a dynamic model must include the integration

equations relating a variable to its derivative as an integral over time in order for the

differential equations to specify a self-contained system. These integration equations

also include the initial conditions required for the Inst(M) model defined by Iwasaki

and Simon [1994]. I will use the term differential model to emphasize that a model is

meant to represent relations that hold on an infinitesimal time-interval, i.e., a model

that is made up wholly of either continuous (not discretized) differential equations

and instantaneous relations. I use the term differential graph to denote the directed

graph of a dynamic model with all integration links removed.

Applying the Do(M,U = u) operator to a dynamic model M means setting the

variables U to the configuration u for all time. An example of manipulating a dynamic

variable Y in a causal graph is shown in Figure 1.5. Since Y is a dynamic variable,
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Figure 1.5. Applying the Do operator to a dynamic variable Y in a causal model.
Y and all of Y ’s derivatives must be set to the same value for all time, represented
in the graph as latent variables γ2 and γ3.

in order to set its value for all time, we must also set Y ’s derivatives to zero for
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all time. Manipulating dY and Y for all time is modelled with common causes γ2

and γ3 affecting these variables in each time slice. This action on the unrolled graph

corresponds to simple arc-cutting on the shorthand dynamic graph.

1.3.2 Equilibrium Models from Dynamic Models

Iwasaki and Simon [1994] studied the ability to model dynamic systems on many

different time scales and the ability to derive different causal models as the obser-

vation time-scale changes. The dynamic graph in Figure 1.4 represents the causal

graph for the simple harmonic oscillator system modeled over an infinitesimal time

scale. Alternatively, this system could be modeled over the time-scale necessary for

the system to achieve equilibrium. The equilibrium model can be derived from the

dynamic model in Figure 1.4 by assuming that the mass has come to equilibrium,

which implies that both the velocity and the acceleration of the mass are zero: A = 0

and V = 0. Substituting these two constraints into the equations and eliminating A

and V from the model yields a new set of equations which corresponds to the original

equilibrium causal model shown in Figure 1.3.

By saying that the causal graph can be different for different time scales, I mean

two things: (1) the COA of Simon (discussed in Appendices A and D) produces

different causal structures, and (2) if uncertainty is added to the model in the form

of independent error terms, then the Markov condition can be violated when the

probability distribution of the system in equilibrium is compared to the dynamic

causal graph. For example, in Figure 1.4, the Markov condition entails that Fg and

Fs are marginally independent; however, if independent error terms γa are added

to each equation, then in the equilibrium probability distribution this independence

relation does not hold, since Fs = −Fg + γa in equilibrium.
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The operation of equilibration was presented in Iwasaki and Simon [1994], whereby

the derivatives of a dynamic variable X are eliminated from a model by assuming that

X has achieved equilibrium. Intuitively this operation can be sketched as follows:

Definition 24 (equilibration sketch) Given a causal model with dynamic variable

X, do the following:

1. Assume all derivatives of X are zero, and remove them from the model.

2. Remove all integration equations for X or derivatives of X from the model.

3. Alter all remaining equations by substituting zero for all derivatives.

4. Construct a new causal mapping φ.

Before defining equilibration formally I will introduce some definitions. I use the

notation Vdel(X) and Edel(X) to denote the variables and equations that are deleted

from a SEM due to equilibration:

Definition 25 (Vdel(X), Edel(X)) Let M = 〈〈V,E〉, φ〉 be a causal model with X ∈
V and with X(n) ∈ V the highest order derivative of X in V, then:

Vdel(X) = {X(i) | 0 < i ≤ n} and

Edel(X) = {φ(X(i)) | 0 ≤ i < n}

Note that X /∈ Vdel(X) and φ(X(n)) /∈ Edel(X). I define equilibration as follows:3

Definition 26 (equilibration) Let M = 〈〈V,E〉, φ〉 be a causal model with X ∈
V and with X(n) ∈ V the highest order derivative of X ∈ V. The model Mx̃ =

〈〈Ṽx,Ex̃〉, φx̃〉 due to the equilibration of X is obtained by the following procedure:

3This definition differs slightly from Iwasaki and Simon [1994] in how it handles higher-order
derivatives. Their version required n equilibration operations to equilibrate X when X(n) is the
highest order derivative present in the model; whereas my definition allows X to be equilibrated
with a single operation.
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1. Let Ṽx = V \Vdel(X),

2. Let Ex̃ = E \Edel(X),

3. For each E ∈ Ex̃ set V = 0 for all V ∈ Vdel(X).

4. Construct a new mapping φx̃ : Ṽx → Ex̃.

An example of applying this operator to the damped simple-harmonic oscillator dy-

namic graph is shown in Figure 1.6. This system is identical to the non-damped
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Figure 1.6. Applying the Equilibration operator to the damped simple harmonic
oscillator system.

simple-harmonic oscillator of Figure 1.4, except here a damping force Fd which is

proportional to the negative of the velocity V has been added (this term is necessary

to ensure that the system will have a stable equilibrium; this point is discussed in

Section 1.3.3). The resulting equilibrium model is identical to the equilibrium model

of the simple-harmonic system of Figure 1.3, and is the only mapping possible by

Lemma 1 (Page 15). Note that after an equilibration operation, the new mapping

φx̃ may be completely different from the original mapping φ. In Figure 1.6 variables

Fs and X are both mapped to different equations than they were mapped to in the

dynamic model.
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Iwasaki and Simon [1994] define a self-regulating mechanism as one through which

a variable causes its derivative:4

Definition 27 (self-regulating mechanism) Let S = 〈〈V,E〉, φ〉 be a causal model.

An equation E ∈ E is a self-regulating mechanism (with respect to S) for variable

V ∈ V if V ∈ Params(E) and φ(V (n)) = E, where V (n) is the highest-order deriva-

tive of V in V.

If E is a self-regulating mechanism for V then I say that V is a self-regulating variable.

A mechanism that is self-regulating for V causes an arc V → V(n) to be present in

the dynamic causal graph. To eliminate non-general problems that may arise due to

particular characteristics of equations in an SEM, Iwasaki and Simon also define a

A qualitative self-contained structure as a self-contained SEM where each equation

is only qualitatively specified. That is, each equation only specifies which variables

are constrained by an equation E, but does not specify the actual functional form of

the relationship. They show that if S is a qualitative SEM and E is a self-regulating

mechanism for V , then equilibrating V will always result in a qualitative self-contained

structure.

The Equilibration operator from Definition 26 can cause the remaining set of

equations to be non-self-contained. For example, setting variables to zero could cause

two equations that were initially independent to become dependent, or it could cause

the system to be over-constrained if some variable drops out of an equation. I call

equilibration well-defined if these do not happen:

Definition 28 (well-defined equilibration) If M = 〈〈V,E〉, φ〉 is a causal model

and Ṽx and Ex̃ are the respective variables and equations that result when variable

4This is slightly different from the definition of Iwasaki and Simon [1994] to account for the
difference in my definition of equilibration.
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X ∈ V is equilibrated, then I say that equilibrating X is well-defined iff 〈Ṽx,Ex̃〉 is a

self-contained SEM.

I define an equilibrium model any model that is not a dynamic model:

Definition 29 (equilibrium model) A causal model M = 〈〈V,E〉, φ〉 is an equi-

librium model with respect to X for some X ∈ V if and only if X is not a dynamic

variable in M .

An SEM M = 〈V,E〉 is an equilibrium model if and only if it is not a dynamic model.

I also define an equilibrated model as an equilibrium model that is derived from a

dynamic model by equilibrating one or more variables in a dynamic model:

Definition 30 (equilibrated model) Let M = 〈〈V,E〉, φ〉 be a causal model and

let X ∈ V be a dynamic variable. A causal model Mx̃ = 〈〈Ṽx,Ex̃〉, φx̃〉 is an equili-

brated model with respect to X and M if and only if Mx̃ is the model that results by

performing a well-defined equilibration on X in M .
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Figure 1.7. The dynamic graph rolled out to the n-th time slice with all intermediate
time-slices aggregated out.

33



It should be emphasized that the causal structure obtained by performing an

equilibration, although it is meant to represent the relations of a system observed

over a long time scale, is not necessarily the same as the unrolled dynamic graph

aggregated out to an arbitrary time scale n. An example of the latter graph is shown

in Figure 1.7. Figure 1.7-a shows the first three time slices of the full rolled-out

dynamic graph. Note that X is assumed to be manipulated to a constant value

at all time. This is reflected by including a common latent cause γ into the model.

Figure 1.7-b shows the same graph with the intermediate time slices aggregated out to

reveal causal relations between the initial time slice and the final time slice. If we were

to further aggregate out all derivative variables we get the structure of Figure 1.8-a.

Finally, by using the independence relations between just the variables at slice n of
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Figure 1.8. (a) The rolled-out aggregated graph with all derivatives further aggre-
gated, and (b) the independence structure between variables just at the n-th time
slice, assuming that X is exogenous.

this graph (taking into account the latent common cause γ), and using the background

knowledge that X is exogenous, we would recover the independence graph shown in

Figure 1.8-b. This structure is different from that obtained by equilibrating Y and W

(Figure 1.9-a). The fact that these two graphs are different reflect the fact that the

occurrence of equilibrium adds a new relation to the causal model that can possibly

34



X

W

Z

Y

0 nequil

W

Z

Y

X

n

(a) (b)

Figure 1.9. The equilibrium graph (a) is not the same as the rolled-out graph with
intermediate and differential nodes aggregated out (b).

dramatically alter the causal ordering. Consider the following method of generating

long-time-scale data using the dynamic model:

1. Starting with random initial conditions for the dynamic model in Figure 1.7-a.

Simulate the temporal evolution of the system for n steps using the dynamic

model.

2. After n steps, take a snapshot of all variables and save that as one record in a

database of values.

3. Repeat 1 and 2 until N records have been generated.

If the database so generated were input into a causal discovery program, for arbitrary

n we would expect to recover the graph in Figure 1.9-b. On the other hand if n were

long enough for both Y and W to achieve equilibrium, then a shift in the dependence

relations will occur, and the graph of Figure 1.9-a will be discovered. This fact is

verified empirically in Section 2.2.

As already defined, in an equilibrium SEM, under the assumption of no latent

variables, noise is modeled by allowing each mechanism Ei to include an independent

error term γi: random variables whose distributions in turn define the joint proba-

bility distribution over all observed variables. When considering a non-deterministic
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dynamic causal model, however, there is an issue of how to model noise. One point

is that an integral equation (e.g., Xt = Xt−1 + Ẋt ·∆t), essentially the definition of a

derivative Ẋ, should not include a noise term because it is a mathematical identity.

Another, less trivial issue, concerns the assumption about time-dependence of the

noise terms themselves. If a dynamic model is to be interpreted literally as a static

model with a copy of each variable made at each time slice, then in general one would

expect to specify a noise term for each variable in the model, and thus a complete set

for each time slice. Such a noise model assumes that the noise terms themselves are

changing in time. An alternative model would give all variables in time-slice t = 0 a

noise term, and at subsequent times allow the system to evolve deterministically.

Which model is most appropriate depends on the system and on how fast the noise

term is changing. Consider for example the equation for the value of the mass M

in the simple-harmonic oscillator system of Figure 1.4 (Page 25). A possible source

of noise for the mass is that we have a selection of different bodies that have been

weighed and sorted into bins. When we pick a certain mass from a bin, it may only

be approximately equal to the value assigned to the bin, displaying some random

variation which is specified by the distribution of the noise term for M . However,

once a mass is chosen, the noise term will be constant from one time-slice to another.

On the other hand, the value of the spring constant K may be temperature dependent,

so if the system is submerged in a rapidly varying temperature environment, the noise

term for K may be best modeled as time-dependent.

When discussing issues of learning causal models of a dynamic system, I will make

the simplifying assumption that the noise terms are very slowly changing compared

to the time-step ∆t. This limit is best modeled with noise terms at t = 0 and

deterministic propagation through time.
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1.3.3 Dynamic Stability

The subject of dynamic stability is an old one and is widely-studied. In this

section I introduce some terminology and state some standard results which will be

relevant to causal reasoning in equilibrium models. A first-order differential equation

Ẋ = f (X), denoted as E, defines a family of solutions for the path of X for all time

and for all initial conditions of X. Given a particular initial condition X = x0, where

x0 is a constant, E defines a particular trajectory of X through time. A fixed point

of E is a solution X = xf such that X will remain fixed at for all time; thus it is

a point at which Ẋ = 0 for all time. A fixed point is stable if all sufficiently small

disturbances away from equilibrium damp out over time and cause the variable to

return to the fixed point.

A common geometrical interpretation of stability and fixed points is obtained by

viewing the derivative Ẋ as a function of X, defined by the differential equation E

(assuming E can be written in the form Ẋ = f (X)). Figure 1.10 illustrates the use of

this geometrical technique. In Figure 1.10a, a single solution path is shown for which

X&

X
sX uX

(a)

X&

X

0X&

(b)

Figure 1.10. A geometrical interpretation of fixed-points and stability.

there exist two fixed-points, labelled Xs and Xu. The point Xs is stable because

when X = Xs, a slight perturbation δ in the positive (negative) direction will cause
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a negative (positive) velocity to arise which tends to push X back to Xs. On the

contrary, the point Xu is an unstable fixed-point, because, although Ẋ is zero exactly

at X = Xu, a perturbation in the positive (negative) direction will cause a positive

(negative) velocity to arise, pushing X even further away from Xu.

There exist many classifications of stability. A fixed-point can be either locally or

globally stable (meaning stable under small or large perturbations, respectively), or

bistable (meaning stable in one direction but not the other). This thesis is interested in

all of these types of stability. Figure 1.10a suggests the following sufficient conditions

for local stability in a dynamic system:5

Theorem 5 (stability condition) Let X be a dynamic variable having a fixed-point

solution at X = x0. Then x0 is locally stable if

∂Ẋ

∂X

∣∣∣∣∣
x0

< 0

where Ẋ is the time-derivative of X.

For the case when ∂Ẋ/∂X
∣∣∣
x0

= 0, in general nothing can be said about stability of a

fixed point at x0; these situations must be handled on a case-by-case basis. However,

when ∂Ẋ/∂X = 0 for all values of X as in Figure 1.10b, it is obvious that no fixed

point exists unless Ẋ = 0 for all time, in which case all values of X represent a fixed

point that is neither stable nor unstable. Thus, it is clear that a necessary condition

for a stable fixed-point to exist is that Ẋ be a nonzero function of X. The function

f (X) also defines a characteristic time scale for X to reach stability. The quantity

f ′ ≡ ∂f/∂X has units of inverse time, and 1/f ′ defines the characteristic time-scale

for X to converge.

5See [Strogatz, 1991] for example.
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Samuelson [1947] made the connection between comparative statics and dynamics

in the context of econometric models by deriving the Correspondence Principle. Al-

though this analysis was not made on causal models, it nonetheless made arguments

similar to those presented in this thesis. Namely, Samuelson argued that in order to

draw meaningful conclusions from a static model it is necessary to have knowledge

about dynamics. In practice, invoking the Correspondence Principle in economet-

rics amounts to assuming that the dynamic system is in equilibrium so that a static

analysis can be brought to bear.
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CHAPTER 2

RESULTS

In this chapter I discuss empirical and theoretical results which answer the Equilibrium-

Causation Questions. First, in Section 2.1, I present an example of a real-world system

that does not obey the EMC property, thus proving my hypothesis correct. In Sec-

tion 2.2 I present simulation studies that illustrate that the Equilibrium-Causation

Question 2 can also be answered in the negative. Finally, in Section 2.3 I characterize

certain models that are guaranteed to violate and those that are guaranteed to obey

the EMC property.

2.1 Motivating Example: the Ideal Gas System

Here I provide a real-world example showing that the causal resolution of a model

can determine whether or not the Do operator commutes with the Equilibration op-

erator. Consider in Figure 2.1 the example of an ideal-gas trapped in a chamber with

a movable piston, on top of which sits a mass, M . The temperature, T , of the gas is

controlled externally by a temperature reservoir placed in contact with the chamber.

Therefore, M and T can be controlled directly and so will be exogenous variables in

our model of this system. When the values of either M or T are altered, the height

of the piston will change: If M is increased then the height will decrease; whereas if

T is increased then H will increase.

In Section 2.1.1 I show that, for this system, the model Do(Equilibrate(M)) differs

from the model expected by physical intuition. In Section 2.1.2 I show that the
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models derived from physical intuition correspond to the models obtained by the

Equilibrate(Do(M)) operator.

2.1.1 Manipulating the Equilibrium Model

Assuming that the piston in the ideal-gas system is in equilibrium, the precise

expression of H in terms of T and M is a combination the ideal-gas law together with

the equilibrium assumption, as given in Figure 2.1 (g, k, m0, and t0 are constants.).

M

T

6

?

H

jl
M = m0

?j
H = kT/Mg

jl
T = t0

-

Figure 2.1. Causal model of the ideal-gas in equilibrium.

I could increase the resolution of the ideal-gas model in order to explain in more

detail how the equation for H in Figure 2.1 comes about. In Figure 2.2 I have added

two intermediate variables: the total force on the bottom of the piston, Fb, and the

pressure of the gas, P (a is a constant). The model of Figure 2.1 can be derived

from the model of Figure 2.2 by applying the Aggregation operator to Fb and P .

M

T

6

?

H

Fb, P

jl
M = m0

?j
Fb = Mg

- j
P = Fb/a

?j
H = kT/P

jl
T = t0

-

Figure 2.2. The equilibrium ideal-gas model with increased resolution.

In words the causal ordering can be described as follows: “In equilibrium, the force
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applied to the bottom of the piston must equal the weight of the mass on top of the

piston. Given the force on the bottom of the piston, the pressure of the gas must be

determined, which together with the temperature determines the height of the piston

through the ideal-gas law.” I now consider what happens when various variables in

this model are manipulated.

2.1.1.1 Manipulating the Height of the Piston

Consider what happens when the height of the piston is set to a constant value:

H = h0. Physically this can be achieved by inserting pins into the walls of the

chamber at the desired height, as shown in Figure 2.3a. Applying the Do operator

to the models in Figures 2.1 and 2.2 yields the graphs depicted in Figure 2.3b and

Figure 2.3d, respectively.

(a)

M

T

6

?

H

Fb

pinpin

??

Predicted
Model

jl
M = m0

jl
H = h0

jl
T = t0

jl
M = m0

?j
Fb = Mg/A

- j
P = Fb/A

jl
H = h0

jl
T = t0

Correct
Model

jl
M = m0

jl
H = h0

jl
T = t0

jl
M = m0

j
Fb = Pa

� j
P = kT/H

6

jl
H = h0

�
���

jl
T = t0

(d) (e)

(b) (c)

Figure 2.3. Whether or not the ideal-gas model possesses the EMC property when
H is manipulated depends on the resolution of the model.
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Now let us consider what the “true” causal graph for these models should look

like. For the non-resolved model of Figure 2.3b, all variables in the model are be-

ing manipulated so obviously the Do operator will produce the correct manipulated

model. The resolved model of Figure 2.3d is a simple system which we understand

well, so we are able to write down the true governing equations for the manipulated

version of this system, given in Figure 2.3e. Constructing the causal mapping (unique

by Lemma 1) for these equations yields the graph shown. In words: Since H and T

are both fixed, P is determined by the ideal-gas law, P = kT/H. Since the gas is the

only source of force on the bottom of the piston, Fb is determined by P : Fb = Pa.

Thus, P is no longer determined by Fb, and Fb is independent of M . It is clear that

the true causal model shown in Figure 2.3e differs from that predicted by the Do

operator shown in Figure 2.3d. I will show shortly that what I call the “true” model

is in fact the model that results when the Do operator is applied to the dynamic

model and then the resulting model is equilibrated.

The fact that changing the resolution of a model can cause it to violate the EMC

property is a disturbing conclusion. Causal modelers are accustomed to being able

to switch back and forth between different levels of abstraction for ease of model

construction and explanation. Considered from the standpoint of causal discovery

these results are also disheartening. Using data from the equation system of Figure 2.2

with independent error terms, the causal graph shown there would be learned by a

constraint-based discovery algorithm such as the PC algorithm. On the other hand,

using data from the equations governing the manipulated system would yield the

causal graph in Figure 2.3e. Both of these facts can readily be verified by calculating

the independencies given by the respective equation systems with independent error

terms. This fact was also verified empirically using simulation in Section 2.2. The

end result is clear: a causal graph learned based on the equilibrium ideal-gas system

and altered with the Do operator will yield the incorrect causal graph of Figure 2.3d.
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2.1.1.2 Manipulating the Force on the Bottom of the Piston

There are other, even more dramatic problems with manipulating variables in

the expanded-resolution model. Referring back to Figure 2.2, imagine that for some

reason we want to minimize the value of H. It would not be unreasonable, given the

graph and the equations in Figure 2.2, to set H by applying a manipulation to Fb,

since Fb is a causal ancestor of H. In particular, in order to make H as small as

possible, we would want to make Fb as large as possible according to the equations

in Figure 2.2.

Consider what happens when Fb is manipulated in this way: Again, the Do op-

erator predicts that a manipulation will cause the arc from M to Fb to be removed

from the model, but otherwise the model will be unchanged. This model is depicted

in Figure 2.4b. In the real system, the force on the bottom of the piston can be

M

T

6

?

H
Fb

Predicted
Model

jl
M = m0

jl
Fb = F0

- j
P = Fb/a

?j
H = kT/P

jl
T = t0

-

Correct
Model?

(a) (b) (c)

Figure 2.4. A more severe violation of the EMC property: no equilibrium model
exists after manipulating Fb.

set independently of the pressure of the gas by raising a movable stage up through

the chamber and directly applying the desired force to the piston with the stage, as

shown in Figure 2.4a. Something very unexpected happens under this manipulation.

Unless by coincidence the force applied exactly balances the force due to the mass,

the piston will continually be accelerated out of the cylinder, and H, which we in-
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tended to minimize, instead grows without bound. Not only does this manipulation

violate EMC, but even worse, we have discovered a dynamic instability in the system,

i.e., there is no equilibrium model; a fact which an equilibrium causal graph alone

provides no indication of.

The most disturbing fact about this example is that the instability caused by

our manipulation created exactly the opposite effect we were attempting to achieve.

Imagine for instance that, instead of the height of a piston, H represented the cancer

level in a population of patients. If this example seems exaggerated it is only because

we have some concrete understanding about the equations underlying the ideal-gas.

However, imagine applying manipulations to automatically learned models of complex

socio-economic or medical systems, where our basic knowledge is typically much less.

2.1.2 Equilibrating the Manipulated Dynamic Model

Manipulating the force in the ideal-gas system led to an instability. This effect

gives us a clue as to what is happening; namely, underlying the equilibrium ideal-gas

system is a dynamic system. When certain manipulations are made, this dynamic

system may not possess an equilibrium point; the result is the hidden instability

discovered in the ideal-gas system. Thus it makes sense to model this system on a

shorter time-scale, using the dynamic model formalism reviewed in Section 1.3.

Imagine dropping a mass M on the piston, simultaneously altering the tempera-

ture of the gas, and shortly after measuring the values of all the remaining variables.

The physics of this system is comprised of a few fundamental equations: The force

on the top of the piston Ft is given by the weight of the mass M :

Ft = Mg. (2.1)

The acceleration A of the piston is given by Newton’s second law:
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ΣiFi = MA. (2.2)

The pressure of the gas P is related to the temperature T and the height of the piston

H through the ideal gas law:

P = kT/H, (2.3)

where k is a constant. The force on the bottom of the piston is determined by the

pressure and the cross-sectional area a of the cylinder:

P = Fb/a (2.4)

The height H and the velocity V are determined by recurrence relations (integrals):

V(t) = V(t−1) + A(t−1)∆t (2.5)

H(t) = H(t−1) + V(t−1)∆t (2.6)

The causal graph of this system is shown in Figure 2.5. Using this model, it is possible

to show what is happening when we apply the Do operator to the equilibrium ideal-

gas system.

2.1.2.1 Manipulating the Height of the Piston.

Let us again fix the height of the piston, using the dynamic model of Figure 2.5 to

describe the ideal-gas system. To fix the piston, we must set H to some constant value

for all time, H(t) = h0. We also must stop the piston from moving because we want to

set H for all time, so we must set V(t) = 0 and A(t) = 0. Thus, in the dynamic graph

with integration links, we can think of this one action of setting the height of the

piston as three separate actions. Applying the Do operator to these three variables

results in the causal graph shown in Figure 2.6 (b). Since H is being held constant,

the graph in Figure 2.6 (b) is already an equilibrium graph with respect to H, so
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@
@@R
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jlM = m0�

j

�������
A = (Ft + Fb)/M

?jV = v0 + A∆t

?jH = h0 + V ∆t�j
P = kT/H

6

jl -
T = t0

Figure 2.5. The dynamic causal model for the ideal-gas system. Three new variables
have been added: A, V , and Ft, the acceleration of the piston, velocity of the piston,
and the total force on the top of the piston, respectively.

applying the Equilibration operator results in no change to the graph. By comparing

Figure 2.6 (b) to the “true” model of Figure 2.3 (c), we can see that aside from the

extra variables that were added to the differential model for clarity (Ft, A and V ),

Figure 2.6 (b) (the Equilibrate(Do(M,H), H) model) is the model we expected to get

based on our physical knowledge when inserting pins into the walls of the cylinder to

fix the height of the piston. Clearly the EMC property is not obeyed for this system,

and the Equilibrate(Do(M, H), H) model is the more useful.

(a)

j
Fb

@
@@R

j
Ft

�
��	

jlM�
�������jA = (Ft + Fb)/M

?jV = v0 + A∆t

?jH = h0 + V ∆t�j
P

6

jl -
T

(b)

j
Fb j

Ft jlM�

jlA = 0

jlV = 0

jlH = h0�j
P

6

jl -
T

Figure 2.6. The graph corresponding to the Equilibrate(Do(M, H), H) operation on
the ideal-gas dynamic model is identical to the expected graph from Figure 2.3 (c).
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2.1.2.2 Detecting Instabilities

Differential models can also be used to predict when a manipulation will cause an

instability. According to the discussion in Section 1.3.3, the variable Ẋ must somehow

be a function of X for stability to occur. What does this imply about dynamic causal

models? In order for stability to occur, at the very least, X(t) must be an ancestor

of Ẋ(t). When there exist higher order derivatives in the model, by construction this

ancestry can only occur through the highest-order derivative in the model. These

observations thus suggests a structural condition for stability in a causal graph (as a

reminder, a differential graph is a dynamic graph with all integration links removed):

Definition 31 (The Structural Stability Principle) Let M = 〈〈V,E〉, φ〉 be a

causal model corresponding to a differential causal graph Gd, let V ∈ V be a dynamic

variable and let V (n) denote the highest derivative of V in V, the Structural Stability

Principle states that V will possess a stable fixed-point only if V ∈ Anc(V (n)) in Gd.

In fact, the structural stability principle immediately points out a flaw in the dynamic

model of Figure 2.5: since V is a dynamic variable in this model, in order for it to

stabilize, it needs to also be an ancestor of A. This observation is a restatement of

the fact that a dissipative (frictional) force must be present in a second-order system

in order for oscillations to dampen out. Thus, a better model of the ideal gas system

is given in Figure 2.8.

Consider the effects of manipulating Fb in the dynamic model of the ideal-gas

system. Applying the Do operator to Fb in Figure 2.7 (a) yields the model shown in

Figure 2.7 (b). We can see immediately from the causal graph that this manipulation

will break the only feedback loop for X in this system, and thus according to the

Structural Stability criterion, there does not exist a stable equilibrium point for H.

Therefore applying the Do operator to the non-equilibrated graph, and the addition
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Figure 2.7. Applying the Do operator to the differential model when manipulating
Fb allows the instability to be detected because we have broken the only feedback
loop in the graph.

of the Structural Stability criterion shows that the Equilibrate(Do(M,Fb), H) system

will be unstable. Again, this model corresponds to path B in Figure 1, not path A.

2.2 Discovery from Data: Empirical Results

Section 2.1 demonstrated that the answer to the Equilibration-Causation Ques-

tion 1 was “no”. This section addresses the Equilibrium-Causation Question 2 using

empirical studies. I performed numerical simulations of some dynamic systems to

demonstrate that as the time scale was increased enough so that an equilibration

could occur, the causal structure that was learned from data corresponds to the

structure obtained by applying the Equilibration operator to the dynamic model.

This fact is significant because it indicates that whenever a causal structure that is

learned from equilibrium data is used for causal reasoning, then Path A of Figure 1

is being taken: if the EMC property does not hold for the model being used then

causal reasoning will produce incorrect results. These experiments provide an em-

pirical answer to Question 2 because it has been proven [Spirtes et al., 1993] that,

in the absence of latent variables, assuming a faithful model to a distribution exists,
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then the PC algorithm will recover the graph that is faithful to the distribution that

generated the data. Furthermore Spirtes et al. [1993] also prove that the probability

of generating a non-faithful model by chance is zero.

In short, these experiments show that the empirically-determined faithful graph

corresponds to the one given by the Equilibration operator. If the true causal graph

(obtained by taking path B in Figure 1) is different from this faithful graph, then

causal faithfulness is violated by definition.

2.2.1 Ideal-Gas System

The first experiment performed was to simulate the ideal-gas system. Prelim-

inary simulations using the equation system presented in Figure 2.5 showed only

non-stationary oscillatory solutions, i.e., the piston would oscillate about its fixed

point but never converge. As already discussed, this oscillatory behavior was due

to the absence of a dissipative force in the system of equations. Thus, to ensure a

stable fixed-point, it was necessary to add a frictional force Ff = −γV , where γ is

the coefficient of friction.

The simulation assumed linear independent Gaussian noise terms in order to make

possible the induction of structure from data using statistical significance tests. The

complete system of equations used for the simulation is presented in Figure 2.8. The

values of the constants were determined by trial-and-error to ensure that the velocity

of the piston remained much less than H (to avoid numerically-induced instabilities)

and that the height of the piston would never approach zero (which would cause

a singularity in the ideal-gas law: P = T/H). The values that were used were:

h0 = 6, v0 = 1, m0 = 6, and t0 = 50. Each γi term was assumed to be a Gaussian

random variable with mean zero. It was observed that the ability to correctly recover

the expected causal structures depended strongly on the relative noise levels of the

variables. To illustrate this fact, I introduce an additional parameter ρ which links
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Figure 2.8. The system of equations used to simulate the learning of the ideal-gas.
Independent Gaussian error terms (denoted with the symbol γi) have been added as
well as a frictional force to ensure stability.

the standard deviations (denoted as σi) of the noise-terms. The following values were

used: σH = 0.75, σm = 0.5, σT = 5, σt = 0.5ρ, σa = 0.6ρ, σp = 0.9ρ, σb = 0.9ρ. Since

ρ has a constant value for all records in any given database, it will not violate causal

sufficiency for this system. The frictional force was treated as a latent variable (no

attempt was made to include it into the learning), and was treated as deterministic for

simplicity—its only purpose was to damp out oscillations. The coefficient of friction

γ was set to 0.25 to allow lightly damped oscillatory motion of the piston. A few

typical equilibrations of the piston are illustrated in Figure 2.9.

Distinct runs were generated by repeatedly sampling the noise terms of each vari-

able (i.e., “shocking” the system) and allowing the equation system to guide the

evolution of the variables. In order for the system to converge, it was noted that

an assumption of stationary noise terms was required. That is, all error terms are

sampled once at time step t = 0, and thereafter the system was allowed to evolve

deterministically until equilibrium, as opposed to sampling the noise terms anew at

each time step. This was necessary because randomly shocking the system close to

equilibrium will continuously bring it out of equilibrium again.
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Figure 2.9. A few typical equilibrations of the ideal-gas system. M , T and Ft were
exogenous for each run; the other variables evolved deterministically to equilibrium.
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Each run was allowed to go up to 1000 time steps or until the system was de-

termined to be in an equilibrium state, whichever came first. The system was

deemed to be in the equilibrium state if the absolute difference in the change of

H from one time step to the next was less than 0.0001. Given the mean value of H:

〈H〉 = 〈T 〉/〈M〉 ' 10, this amounts to a change of about 1/1000 of 1 percent. Thus,

we can be confident that if the system was stopped prematurely, the values will be

nearly identical to the those at time step t = 1000.

Using this procedure, two databases Ddyn and Dequ were generated. Each complete

run to equilibrium corresponded to a single record in the databases: a snapshot of

the system state at time step t = 0 produced a single record for Ddyn, and a snapshot

at t = 1000 defined a record of Dequ. This was repeated until two databases of

some size N were generated. These two databases were used with the PC algorithm

(page 101) to learn the causal structures observed on short (Ddyn) and long (Dequ)

time-scales. A modified version of PC was used which forbade cycles or bi-directional

arrows and randomized the order in which independencies were checked [Dash and

Druzdzel, 1999]. Data for each variable took on a continuous range of values, and in

all cases the Fisher’s-z statistic was used to test for conditional independence using

a significance level of α = 0.05.

I restricted structure learning to the variables {M , T , H, P , Ft, Fb}, namely the

variables relevant to the static analysis of this system. Over this subset of variables

we expect to recover the two structures S1 and S2 shown in Figure 2.10: S1 when

t = 0 and S2 when t = 1000. N was systematically varied from the set {100, 500,

1000, 2000, 4000, 10000}, and ρ was varied from the set {0.1, 0.15, 0.2, 0.25, 0.3, 0.35,

0.4}. 100 measurements were taken for each (N, ρ) combination, and the following

three statistics were averaged over the measurements: Nadj = N+
adj + N−

adj is the

number of extra adjacencies (N+
adj) plus the number of missing adjacencies (N−

adj);

Nv = N+
v + N−

v is the number of extra v-structures (N+
v ) plus the number of missing
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Figure 2.10. The two patterns expected to be recovered from the simulation of the
ideal-gas system of Figure 2.8. S1 is the expected pattern for t = 0 (Ddyn), and S2 is
the expected pattern for t = 1000 (Dequ).

v-structures (N−
v ); and Pcorrect is the fraction of times that precisely the correct

structure was learned. We expect that as N increases, the probability of recovering

S1 and S2 should increase, ideally approaching unity. Figure 2.11 shows the measured

probability of learning the correct graph, averaged over all values of N , as ρ is varied.
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Figure 2.11. The probability of learning the expected dynamic (S1) and equilibrium
(S2) graphs as the noise parameter ρ increases for the ideal-gas system.

54



ρρρρ=0.15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000

Number of Records

Pr
ob

ab
il

it
y 

of
 L

ea
rn

in
g 

E
xp

ec
te

d 
St

ru
ct

ur
e

Dynamic

Equilibrium

Figure 2.12. The probability of learning the expected dynamic (S1) and equilib-
rium (S2) graphs as the number of records increases for the ideal-gas system, for an
optimum value of ρ.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000 12000

Number of Records

Pr
ob

ab
il

it
y 

of
 L

ea
rn

in
g 

E
xp

ec
te

d 
St

ru
ct

ur
e

Dynamic

Equilibrium

Figure 2.13. The probability of learning the expected dynamic (S1) and equilibrium
(S2) graphs as the number of records increases for the ideal-gas system.
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Figure 2.14. Incorrect structural features as a function of the number of records for
the dynamic and equilibrium ideal-gas systems, averaged over all values of ρ.
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It is apparent that there exists a complementarity between the ability to recover

the dynamic structure (S1) versus the ability to recover the equilibrium structure

(S2). Nonetheless, as Figure 2.12 shows, it was possible to find specific values of ρ

for which this convergence was apparent for both structures. Figure 2.13 shows the

probability of recovering the correct graphs averaged over all values of ρ. (Incidentally,

the randomizing of the order in which independence relations were checked turned

out to be a crucial factor in obtaining good results for these experiments. Apparently

using a fixed ordering, PC would often get stuck at a local optimum significantly

degrading the quality of the results.) Here, it is evident that, while the probability of

recovering S1 appears to be monotonically converging, the probability of recovering

S2 displays a local maximum at around N = 2000. Despite this fact, Figure 2.14

shows that on average fewer than one adjacency and one v-structure were learned

incorrectly (either added or deleted).

2.2.2 Pseudo-Linear Ideal-Gas System

Although the measurements made with the ideal-gas system do illustrate the

change in structure as the time-scale is changed, the lack of clear convergence with in-

creasing N is not the optimal anticipated result. I hypothesized that the recovery rate

of S2 peaked at an intermediate number of records because of the use of the linear par-

tial correlation for the testing of independence. The ideal gas law H = P/T involves a

non-linear relationship between T and H, and the presence of non-linear associations,

together with the assumption of linearity and a large database of records, could allow

the significance test to return low p-values if the relation is severely under-fit by a

straight line.

To test this hypothesis, I performed a simulation on the linearized version of

the ideal gas system, shown in Figure 2.15. This system is identical to the original

ideal gas system, except the ideal gas law is replaced by the linear relationship P =
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−k(H −T − ĥ). Physically, this change corresponds to replacing the ideal gas with a

spring whose base can be adjusted with a constant offset T , and where the compression

of the spring is given by ĥ − H (ĥ is the relaxed height of the piston when M = 0

and T = 0). One might argue that the equation for A in Figure 2.15 is non-linear

because of the inverse dependence on M ; however, this relation does not come into

play when learning S1 (because A is not included in the causal model), and the M

drops out of the equation in equilibrium, leaving only a linear relationship between

the forces in S2. For this reason I refer to this system as the pseudo-linear ideal gas

system. A typical time trace for this system is shown in Figure 2.16.

m

h

T

j
Fb = P + γb

HHHHHHj

j
Ft = M + γt
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�������jA = (Ft + Fb + Ff )/M + γa

?jV = v0 + A∆t

?jH = h0 + V ∆t�j
P = −k(H − T − ĥ)

6

jl -
T = t0 + γT

Figure 2.15. Using a linear ideal-gas law is equivalent to replacing the gas with a
spring where T denotes a shift of the base of the spring and P denotes the force of
the compressed spring.

Figure 2.17 shows the probability of recovering the correct structure as a function

of N , averaged over values of ρ. When the linear equation system is used, the learned

graphs converge neatly to S1 and S2. While the same complementarity between S1

and S2 (as in Figure 2.11) is evident as a function of ρ when averaging over N , for

all values of ρ tested, the learned graphs converge to S1 and S2 as N was increased.

The important observation about these simulations is this: If we alter the system

of Figure 2.15 by setting A = V = 0 for all time and setting H = h0, we can simulate

the ideal-gas system under the assumption that H is being manipulated to the value
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Figure 2.16. A few typical equilibrations of the pseudo-linear ideal-gas system.

h0. However, this manipulation will produce data from a distribution identical to

that of the model S1, and therefore, we would learn S1 from the data generated by
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manipulating H. This of course, is not the same graph that we would get by applying

the Do operator to S2, verifying exactly the observations of Section 2.1.
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Figure 2.17. The probability of learning the expected dynamic (S1) and equilibrium
(S2) graphs as the number of records increases for the pseudo-linear ideal-gas system,
averaged over all values of ρ.

2.2.3 Filling Bathtub System

The failure of the ideal-gas system to obey the EMC property adds credence to

the claim of Wold [1954, 1955] that “equilibrium” equations can not constitute causal

mechanisms; for example, perhaps it was the equilibrium relation Fb = Ft that was

responsible for the ideal-gas violations. Here I discuss an example that shows that this

conclusion is simplistic. The ideal-gas system possessed a single dynamic variable,

and therefore only two patterns were expected to be observed as the observation

time-scale was varied. If a system has several dynamic variables with widely-varying
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time-scales the situation is more complicated. One example is the filling-bathtub

system introduced by Iwasaki and Simon [1994], and reproduced here.

In this system, water is entering the bathtub from the faucet at a rate Qin liters

per second and is exiting the drain at a rate Qout liters per second. The pressure of

the water at the base of the drain is P , the depth of the water is D, and the diameter

of the drain is denoted as K. I take Qin and K as being exogenous. If the outflow is

not identical to the inflow, then the depth of the water will change in proportion to

the difference:

Ḋ = α0(Qin −Qout), (2.7)

where α0 is the inverse cross-sectional area of the tub. The pressure of the water at

the base of the drain is proportional to the depth of the water:

P = ρgD, (2.8)

where ρ is the density of the water and g is the gravitational constant. Finally, the

outflow of the water depends on the pressure at the base and the diameter of the

drain:

Qout = α1K
√

P . (2.9)

The causal ordering of this system is shown in Figure 2.18.
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in

out

                             

                                               

                                       

&

Figure 2.18. The intuitive or “mixed” causal ordering of the bathtub system.
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If the depth D were shocked by very quickly adding a unit depth ∆D of water,

it would take some time for the pressure at the base of the drain to change to its

equilibrium value of P = ρg(D + ∆D). Similarly, if we perturb P , it would take

some short but nonzero time for the outflow rate Qout to respond. If we assume for

simplicity that the change in P and Qout under these perturbations is proportional to

the difference between the current values and the equilibrium values, we could derive

the following differential equations:

Ṗ = α2(ρgD − P ), and (2.10)

Q̇out = α3(α1K
√

P −Qout). (2.11)

Replacing the equilibrium relations 2.8 and 2.9 with the dynamic relations 2.10 and

2.11, respectively, yields the causal ordering referred to as “dynamic” by Iwasaki and

Simon, shown in Figure 2.19.
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Figure 2.19. The dynamic causal ordering of the bathtub system.

Because the system of Figure 2.19 involves three dynamic variables, there exist

three important time-scales for this system, controlled by the inverse of the coef-

ficients: τD ∝ 1/α0, τP ∝ 1/α2, and τQ ∝ 1/α3, for D, P and Qout respectively.

Assuming the system is stable over all time-scales, if τP ¿ τQ ¿ τD, then there

will exist four possible equilibrium causal structures learned from data depending on
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the time, τ , at which the data was observed. These four structures (over variables

V = {Qin, Qout, P , T , K}) are shown in Figure 2.20. At τ = 0 each of the five

τ = 0

τ ' τP

τ ' τQ

τ >∼ τD 4

3

2

1

       :                                               

       :                                               

       :                                               

       :                                               

SKQPDQ

SKQPDQ

SKQPDQ

SKQPDQ

outin

outin

outin

outin

Figure 2.20. The bathtub system has four correct equilibrium structures depending
on the time scale at which the system is modelled.

variables in V are given by their initial conditions and so are exogenous; in this case

S1 will be the structure learned from data. After enough time has passed for P to

equilibrate (τ ' τP ), then Equation 2.10 reduces to Equation 2.8, and the structure

S2 will result. After τ ' τQ, enough time has passed for Qout to equilibrate, and

Equation 2.11 becomes Equation 2.9, resulting in the structure S3. Finally, after

τ > τD, enough time has passed for D to equilibrate and Equation 2.7 reduces to the

Equation 2.12:

Qin = Qout, (2.12)

leading to a drastic restructuring of equations and resulting in model S4.

I simulated learning over several time-scales for the filling-bathtub system. The

following values for constants were used: ρ = g = α1 = 1, α0 = 0.005, α2 = 0.05,

and α3 = 0.01. All variables were initialized from the uniform distribution over the

interval (0, 1). Independent Gaussian error terms with mean 0 were added to each
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derivative variable. The error terms for Ḋ and Q̇out had standard deviation equal to

0.01, and Ṗ had standard deviation equal to 0.5. The first fifty steps of a typical

time-trace is shown in Figure 2.21.

Equilibration Trace of the Bathtub System
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Figure 2.21. The first fifty steps of a typical bathtub simulation run.

A database of N = 10000 records was generated for each of the 29 time-scales

given in the set T = {0−10, 20, 30, 40, 50, 80, 100, 125, 150, 200, 250, 300, 500, 750,

1000, 1250, 1500, 1750, 2000}, and for each of these databases the PC algorithm was

run as in the previous experiments presented in this chapter. This was performed 50

times for each time scale, and the number of times the pattern corresponding to the

graphs in Figure 2.20 were exactly recovered was counted. The normalized results,

showing the probability of retrieving the four structures as a function of the time

scale, are shown in Figure 2.22. The time-scales 20 ≤ τ ≤ 750 are excluded from

this figure—they produced empirical probabilities of 0 for all four structures. These
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Change in Structure over Time Scale for Bathtub Model
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Figure 2.22. As the time step is varied, each of the four equilibrium structures can
be recovered in sequence.

results show that as the time-scale increases each of the four causal structures will be

learned, in the order predicted by the analysis above.

The overarching point to this section is that the causal structure learned from

data depends very much on the time-scale of the data, and there might be several

important time scales. Obviously, if no recourse is made to dynamics, it would be in

general impossible to use a learned causal graph to predict the effects of manipulation.

These results demonstrate that the equilibrated model is the one learned from data

(and therefore the faithful one). If the EMC property is not obeyed, then the model

that is faithful will not support causal inferences with the Do operator; therefore such

a model violates the causal faithfulness condition.

In regard to Wold’s suspicion that equilibration relations cannot be used for causal

reasoning, this example shows that this suspicion is overly simplistic. In models S2

and S3, variables P and Q were equilibrated, respectively; yet these graphs obeyed
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EMC. It was not until the equilibration of D that the equilibrium causal structure

became inconsistent with the differential graph. Why the equilibration of D did

not commute with the Do operator while that of P and Qout did is addressed by

Theorem 10 in Section 2.3.

2.3 Theoretical Results

In this chapter I treat the Equilibrium-Causation Question in a more formal way.

This formalization allows me to more precisely characterize when a model will or will

not obey the EMC property.

I now state several definitions and theorems that lead up to my main proofs. For

the remainder of this section, let M = 〈〈V,E〉, φ〉 be an arbitrary dynamic causal

model, let X ∈ V be a dynamic variable in M and let Mx̃ = 〈〈Ṽx,Ex̃〉, φx̃〉 be a

causal model obtained by performing a well-defined equilibration operation on X.

Let G and Gx̃ be the causal graphs for M and Mx̃, respectively and G
(0)
x be the

differential graph corresponding to G. I define Fb(X) to be the set of feedback

variables: Fb(X) = {Anc(X)G ∩Des(X)G}. Let Vdel(X) and Edel(X) be defined

as in Definition 25 (Page 30).

2.3.1 Guaranteed Violation of EMC

Definition 32 (RFRE Model, F) Mx̃ is a feedback-resolved equilibrated model with

respect to M and X if and only if:

1. Equilibration: MF is derived from a dynamic model Md by equilibrating X in

Md,

2. Recursivity: MF and Md are both recursive, and

3. Feedback-resolution:

{Fb(X) \ Vdel(X)} ∩Ch(X)Gd
6= ∅.
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I denote the class of all RFRE models as F , and use F(M, X) to denote the set of

RFRE models with respect to M and X.

Lemma 2 If M is recursive, then there exists an ordering relation O on the associ-

ations of φ such that:

1. O(〈Vi, Ei〉) < O(〈Vj, Ej〉) if Vi ∈ Anc(Vj)G
(0)
x

, and

2. the pairs corresponding to Fb(X) form a contiguous sequence in O.

Proof: In G
(0)
x , all X(i) such that i 6= n are exogenous by construction (they are

specified by the initial conditions in the model). Thus they can be ordered be-

fore all other V ∈ Fb(X). Define Anc(Fb(X))
G

(0)
x
≡ ⋃

V ∈Fb(X) Anc(V )
G

(0)
x

and

Des(Fb(X))
G

(0)
x
≡ ⋃

V ∈Fb(X) Des(V )
G

(0)
x

to be the set of ancestors and descen-

dants, respectively of Fb(X). By transitivity of the ancestor and descendant relation-

ships, if there exists a V ∈ Anc(Fb(X))∩Des(Fb(X)) then V ∈ Fb(X). Thus an

ordering can be defined such that O(Vanc) < O(Vfb) < O(Vdes) for arbitrary variables

Vanc ∈ Anc(Fb(X)) \ Fb(X), Vdes ∈ Des(Fb(X)) \ Fb(X), and Vfb ∈ Fb(X). 2

Throughout the remainder of the thesis, I use the notation that if there exists an

ordering over associations O, then for an arbitrary association 〈V, E〉 I define O(V ) =

O(E) = O(〈V, E〉).
The following lemma shows that, during an equilibration, all non-feedback vari-

ables retain their original mappings:

Lemma 3 Let F denote the set Vx̃ \ {Fb(X) ∪ {X}}. If M and Mx̃ are recursive

then φx̃(V ) = φ(V ) for all V ∈ F .

Proof: Define an ordering O for φ and label the pairs 〈Xi, Ei〉 in φ as in the proof

of Lemma 1. By Lemma 2, O can be defined such that all associations for variables

in Fb(X) form a contiguous sequence in O with O(X) < O(V ) for all V ∈ Fb(X).

Define ox = O(X) and ofb = O(V ) where V is highest ordered variable in Fb(X).
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Partition the variables and equations into three sets: V = {Vpre,Vfb,Vpost} and

E = {Epre,Efb,Epost}, where

Vfb ≡ {V | V ∈ Fb(X) ∪ {X}},

Vpre ≡ {V | V ∈ V and O(V ) < ox},

Vpost ≡ {V | V ∈ V and O(V ) > ofb},

and Efb, Epre, Epost are the sets of equations associated with Vfb, Vpre, and Vpost,

respectively, in φ.

First I show that all E ∈ Epre get assigned to some V ∈ Vpre and all E ∈ Epost

get assigned to some V ∈ Vpost, then the result follows by the fact that within the

post and pre sets φ already provides a causal mapping because none of the equations

or variables in Epre have changed and no dependency on the variables in Vpost have

changed in the equations in Epost by the assumption of a well-defined equilibration.

Since φx̃ is unique it must possess the same mapping between these sets.

By an argument identical to that of Lemma 1 it can be proven that the first pair

〈Vj, Ei〉 ∈ φx̃ such that j 6= i will occur when j = ox; thus all V ∈ Vpre get mapped

only to equations in Epre. Finally, no Efb ∈ Efb can be assigned to some V ∈ Vpost

because by construction no equation of order i can be assigned to a variable of order

j > i since O(VE) ≤ O(E) for all VE ∈ Params(E). Therefore, no Epost ∈ Epost

can be assigned to a V ∈ Fb(X) because there would be no equation to replace it in

Efb. 2

The next lemma says, informally, that all ancestors of X in Fb(X) that are not

dynamic variables in G
(0)
x must pass through X(n):

Lemma 4 The following relation holds: Fb(X) \Vdel(x) ⊆ Anc(X(n))
G

(0)
x

.

Proof: First note that if V is a dynamic variable, then in G
(0)
x , by construction
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V must be given by initial conditions and so must be exogenous. Therefore, in the

chain of derivatives:

X(n) → X(n−1) → · · · → X

all X(i) such that i 6= n must have a single parent which is connected by an integration

link. Therefore, all V ∈ Anc(X)G\Vdel(X) must be ancestors of X(n), i.e., Fb(X)\
Vdel(X) ⊆ Anc(X(n))

G
(0)
X

. 2

Lemma 5 If Mx̃ ∈ F(M,X) then there does not exist an X(i) such that X(i) ∈
Ch(X)G.

Proof: First note that the result follows for all X(j) such that j < n, because by con-

struction Pa(X(j)) = {X(j+1)} in M . Thus I only need to prove that X(n) /∈ Ch(X).

I prove this result by contradiction. Define {Vpre,Vfb,Vpost} and {Epre,Efb,Epost}
as in the proof of Lemma 3. Mx̃ is recursive by assumption; therefore there only

exists one causal mapping, φx̃, by Lemma 1. I show that if X ∈ Pa(X(n))G then Gx̃

will not be acyclic, which violates the assumption that Mx̃ ∈ F(M,X).

According to Lemma 3, φx̃(V ) = φ(V ) for all V ∈ Vpre ∪ Vpost. I therefore

only need to construct a mapping over Vfb. Assume X ∈ Pa(X(n))G and let

〈X(n), E(n)〉, 〈X, Ex〉 ∈ φ. Then when X(n) is removed from the set of variables

during equilibration, E(n) will be of the form f(X,V ′
fb, P ) = 0, where V ′

fb ⊂ Vfb

and P is a set of variables that are not in Fb(X). During equilibration Ex will be

removed from the model, thus X can be assigned to E(n). Furthermore, all remain-

ing variables in Fb(X) can be associated with their original equations in φ. Let

φ′ : Ṽx → Ex̃ be the causal mapping defined such that φ′(V ) = φ(V ) for all V 6= X

and φ′(X) = E(n). This forms a valid causal mapping and therefore by uniqueness

φ′ = φx̃. By Lemma 4, since Fb(X) \Vdel(X) ⊂ Anc(X(n))
G

(0)
x

it must be the case

that Fb(X)\Vdel(X) ⊂ Anc(X)Gx̃
, because the equation that was assigned to X(n)

is now assigned to X and all the remaining associations are unchanged. However,

since Mx̃ ∈ F(M,X) it must be the case that {Fb(X) \ Vdel(X)} ∩ Ch(X) 6= ∅,
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therefore, there exists an f ∈ Fb(X) \Vdel(X) such that X ∈ Pa(f). Thus Gx̃ is

cyclic, which is a contradiction. 2

Lemma 6 If Mx̃ ∈ F(M,X), then there exists a V ∈ Ṽx such that V ∈ Pa(X)|Gx̃

and such that V ∈ Ch(X)|G.

Proof: Define an ordering O for φ and label the pairs 〈Vl, El〉 in φ according to O

as in the proof of Lemmas 1 and 3. Let 〈X, Ei〉 be the association for X in φx̃. By

construction X 6= Vi, and by Lemma 3, Vi ∈ Fb(X). Since X ∈ Params(Ei) and

since 〈Vi, Ei〉 ∈ φ it must be the case that Vi ∈ Ch(X)G. Since X(l) is exogenous in

G
(0)
x for all l 6= n and since, by Lemma 5, Vi 6= V (n), it follows that Vi /∈ Vdel(X).

Therefore Vi ∈ Fb(X) \Vdel(X), and since Vi ∈ Params(Ei) it must be the case

that Vi ∈ Pa(X)Gx̃
. 2

Lemma 7 If Mx̃ ∈ F(M, X) and Mx̂ = 〈〈Vx̂,Ex̂〉, φx̂〉, with causal graph Gx̂, is the

causal model resulting when X is manipulated in M , then in Gx̂ there will exist an

edge X → V for all V ∈ Ch(X)G ∩Vx̂.

Proof: When applying the Do operator to M , the only arcs that will be removed

from G when X is manipulated will be the arcs coming into X and into X’s derivatives

X(i). Since by Lemma 5, X is not a parent of any X(i) the children of X must be

preserved in Gx̂. 2

Finally, Theorem 6 presents conditions which are sufficient for Mx̃ to violate the

EMC property.

Theorem 6 (change-of-structure) If Mx̃ ∈ F(M, X) then the EMC property does

not hold for Mx̃.

Proof: Manipulating X in M produces an equilibrium model with respect to X

(since X will be manipulated to a constant value by definition of the Do operator), Mx̂,

so the subsequent applying of the Equilibration operator will not change the causal
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graph. Let Gx̂ be the causal graph corresponding to Mx̂. Since Mx̃ ∈ F(M, X), by

Lemma 6 there exists a V ∈ Ch(X)G such that V → X in Gx̃; however, according

to Lemma 7, the edge X → V must exist in Gx̂. Thus, manipulating X in Gx̃ leads

to a graph Gx̃x̂ 6= Gx̂, because it will not contain an edge between V and X. 2

The theorem’s proof relies on the guaranteed reversal of an arc; nonetheless, it is

clear by the examples given in Section 2.1 that there is more complex behavior being

exhibited in these systems than mere reversibility.

The following theorem proves that hidden dynamic instabilities are a mathemat-

ical feature of some equilibrium causal models:

Theorem 7 (instability) If Mx̃ ∈ F(M, X) and the Structural Stability condition

holds then there exists a set of variables V′ ⊂ Ṽx such that if V′ is manipulated in

M , the variable X will become unstable.

Proof: Define V′ ≡ Fb(X)\Vdel(X). It must be the case that V′ 6= ∅ by definition

of F(M, X). Manipulating V′ in G will create a new graph GV̂ ′ with Fb(X)G
V̂ ′

= ∅.
Therefore, according to the Structural Stability principle, X will be unstable in GV̂ ′ .

2

2.3.2 Guaranteed Obeyance of EMC

It was observed in Section 2.2 that equilibrating some variables in the bathtub

example did not result in an equilibrium structure that contradicted the dynamic

structure. The following theorems formalize that observation by showing that if the

variable being equilibrated is self-regulating (see Definition 27), then the EMC prop-

erty will hold. The next three theorems temporarily suspend the common notation

for the symbols X and M defined above in Section 2.3.

The following theorem shows that the Do operator commutes with itself:

Theorem 8 The Do operator commutes with itself, i.e., for a causal model M =

〈〈V,E〉, φ〉, Do(Do(M, X), Y ) = Do(Do(M,Y ), X) for X,Y ∈ V.
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Proof: Both Do(Do(M, X), Y ) and Do(Do(M, Y ), X) correspond to model M with

φ(X) and φ(Y ) replaced with equations of the form X = x0 and Y = y0, respectively,

so they are identical. 2

Theorem 8 justifies the use of the Do operator on sets of variables rather than just

singletons.

Next I show that the Aggregation operator commutes with itself:

Theorem 9 The Aggregation operator commutes with itself, i.e., for a causal model

M = 〈〈V,E〉, φ〉, Agg(Agg(M, X), Y ) = Agg(Agg(M,Y ), X) for X,Y ∈ V.

Proof: Let B ∈ V be an arbitrary variable such that B 6= X and B 6= Y . Write

φ(X), φ(Y ) and φ(B) as X = fx(Px), Y = fy(Py) and B = fb(Pb) respectively. In

general, if Pw is the parent set of a variable W , I use the notation Pw|z to denote

the parent set of W after a variable Z has been aggregated. I thus need to show that

Pb|xy = Pb|yx. There are four possibilities: Pb = {P}, {X,P}, {Y,P}, or {X,Y,P},
where P ⊂ V is such that X /∈ P and Y /∈ P. Thus, Pb|x = {P}, {Px,P}, {Y,P}, or

{Px, Y,P}, respectively, and Pb|xy = {P}, {Px|y,P}, {Py|x,P}, or {Px|y,Py|x,P},
respectively. Repeating this argument for Pb|yx will yield the same four sets, so

regardless of which set corresponds to Pb, it will be the case that Pb|yx = Pb|xy. 2

Again, this theorem allows us to unambiguously apply the Aggregation operator to

sets of variables, rather than constraining it to singletons.

The next lemma shows that the Aggregation operator commutes with the Do

operator as long as they are not applied to the same variable:

Lemma 8 The Aggregation operator commutes with the Do operator, i.e., for a

causal model M = 〈〈V,E〉, φ〉 and two variables X, Y ∈ V, if X 6= Y then

Agg(Do(M,X), Y ) = Do(Agg(M,Y ), X).

Proof: Let B ∈ V be an arbitrary variable such that B 6= X and B 6= Y . Write

φ(Y ) and φ(B) as Y = fy(Py) and B = fb(Pb), respectively. For some set P, I use
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Px̂ to denote P after X has been manipulated, and Py to denote P after Y has been

aggregated out. I thus need to show that Pb|x̂y = Pb|yx̂.

Mirroring the proof of Theorem 9, there are four possibilities: Pb = {P}, {X,P},
{Y,P}, or {X,Y,P}, where P ⊂ V is such that X /∈ P and Y /∈ P. Thus, Pb|x̂ =

{P}, {X,P}, {Y,P}, or {X,Y,P}, respectively, and Pb|x̂y = {P}, {X,P}, {Py|x̂,P},
or {X,Py|x̂,P}, respectively. On the other hand, Pb|y = {P}, {X,P}, {Py,P}, or

{X,Py,P}, respectively, but Pb|yx̂ is also equal to Pb|y = {P}, {X,P}, {Py,P}, or

{X,Py,P}. However, if Y 6= X then Py|x̂ = Py, so Pb|x̂y = Pb|yx̂. 2

Finally, returning to the notation defined in Section 2.3, the following theorem

shows that equilibrating X will commute with the Do operator if X is a self-regulating

variable:

Theorem 10 (self-regulation) If X is a self-regulating variable, then there exists

a mapping φx̃ such that Equilibrate(Do(M,Y ), X) = Do(Equilibrate(M, X), Y ), for

any Y ∈ Vx̃.

Proof: Let φx̃(Y ) = φ(Y ) for all Y ∈ Ṽx \X and let φx̃(X) = φ(X(n)). With this

mapping all variables maintain the same equation except for X which has the equation

originally mapped to X(n); thus, Mx̃ = 〈〈Ṽx,Ex̃〉, φx̃〉 is equivalent to Agg(M,Vdel(X)).

Since Y /∈ Vdel(X), the result follows by Lemma 8. 2
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CHAPTER 3

DISCUSSION

In this chapter I discuss the implications of the results presented in the previous

chapters. I explore the question of how likely a model is to violate the EMC property,

expanding the analysis to nonrecursive models and models that assume latent vari-

ables. I also discuss ways in which the results of this thesis can be mitigated, including

ways to identify EMC-violating systems, and I discuss the assumptions necessary for

learning dynamic models from time-series data.

3.1 The Ubiquity of EMC-Violating Systems

In this section I ask how common an EMC-violating system is to occur. I discuss

not just the size of the RFRE class, but other classes of models that also can violate

the EMC property.

3.1.1 The Size of the RFRE Class

The most significant restriction placed on a model M , to guarantee that M does

not obey the EMC property, is that M be in F . Thus all recursive dynamic models

whose equilibrated model is also recursive and who possesses intermediate feedback

variables are guaranteed to not obey the EMC property. The condition that the model

possess feedback variables is trivial. According to the structural stability principle all

dynamic systems require feedback in order for stability to occur. Furthermore, if one

assumes that all causal interactions require time-lags to occur, then in the real-world

there is no such thing as a “simultaneous equation”, and all stationary mechanisms
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are thus equilibrium equations. Under these assumptions, whether or not feedback

variables are present in the model has little to do with the system itself and more to

do with the modeler.

The condition that the dynamic model be recursive is also very weak. Most, if not

all, previous work on dynamic modeling maintains this assumption. The condition

that the equilibrium model be recursive is less trivial, but is taken for convenience

in theorem-proving only: there certainly exist non-recursive models that do not obey

the EMC property (as discussed in Section 3.1.2). Nonetheless, this restriction is also

modeler-dependent: any dynamic model such that set of variables Fb(X)∩ Ṽx forms

a chain from X to X(n):

X → X1
fb → X2

fb → . . . → X(n),

i.e., such that X has exactly one child in Fb(X) and X(n) has exactly one parent in

Fb(X), will produce a recursive model when X is equilibrated.

To give a feel for the scope of these conditions, Table 3.1 provides a sample of

physical systems which can possess RFRE models. This table is a virtual laundry

System X {Fb(X) \Vdel(X)} ∩Ch(X)
Ideal-gas height of piston pressure

Body in viscous medium velocity damping force
Simple harm. oscillator position of mass spring force

RC circuit charge on capacitor current
Inverting amplifier output voltage voltage at neg term

Table 3.1. Examples of physical systems that can be modeled as RFRE models.

list of some of the simplest physical systems known. Significantly, it contains common

prototype systems that are used as idealized versions of a host of many other systems

which are mathematically isomorphic to it. For example the simple-harmonic oscilla-

tor system, which has already been discussed in detail in Section 1.3, is an extremely
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general model that is applicable to almost any system where second-order damped

oscillations exist. Another general system is the inverting amplifier circuit, shown in

Figure 3.1. This system can be an idealized representation for many systems-control

problems.

_

+

V-

V+

Vin

R1

R2

Vout

Figure 3.1. The inverting amplifier op-amp circuit.

The operational amplifier (op-amp) is essentially a black-box solid-state device

with three terminals, the voltage at each is denoted as V−, V+, and Vout and two

resisters of resistance R1 and R2. The device works based on two idealized rules:

1. The input terminals (associated with V− and V+) draw no current.

2. The output voltage is proportional (with high gain) to the difference V+ − V−.

Thus, when an op-amp possesses negative feedback, it tends to bring the voltage dif-

ference at the input terminals to zero, leading to a steady-state. The set of equations

for this system are as follows: First, assume that Vin, V+, R1 and R2 are exogenous:

Vin = vin, V+ = v+, R1 = r1, and R2 = r2. Using conservation of current and Ohm’s

law, the voltage at the negative terminal can be solved as a function of Vin, R1 and

R2 and Vout.

V− = f (Vin, Vout, R1, R2) (3.1)
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Based on rule number 2 of the op-amp operation, I assume that the op-amp ana-

lyzes the current differential in input voltage, and it adjusts the output current by a

proportional amount in the next time-step:

∆Vout = α(V+ − V−) (3.2)

The dynamic causal graph for this system looks like that of Figure 3.2a. Obviously,

R1

R2

V- ∆V

Vout

Vin V+

(a)

R1

R2

V-Vout

Vin V+

(b)

Figure 3.2. The dynamic and equilibrium causal models for the inverting amplifier.

the assumption of equilibrium yields the model in Figure 3.2b, and thus this system

produces an RFRE model.

3.1.2 Non-Recursive Models

Exacerbating the ubiquity of the RFRE class is the fact that membership in F is

only sufficient, not necessary for violation of the EMC property. There exist feedback-

resolved non-recursive models, for example, that also do not obey EMC. Consider the

dynamic model shown in Figure 3.3. When this model is equilibrated there are two

possible equilibrium causal structures, both of which include an arc from F1 → X even

though in the dynamic model X was a parent of F1. Thus, any equilibrated model

for this system that includes F1 will display reversibility when X is manipulated.
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Figure 3.3. Some non-recursive feedback-resolved equilibrated models will also ex-
hibit reversibility.

Again, the culprit in this system is the presence of feedback resolution in the equi-

librium models. This observation might lead one to make the following generalization:

Conjecture 1 Any feedback-resolved equilibrated model will violate the EMC prop-

erty.

This conjecture is certainly false, however, as can be seen by the counterexample of

a self-regulating feedback-resolved equilibrated model, depicted in Figure 3.4a. The

Y ∆X

X

Z

Y X

Z

(a) (b)

Figure 3.4. A self-regulating feedback-resolved equilibrated model will obey the
EMC property.

equilibrated structure of this example, shown in Figure 3.4b, is the aggregate graph of

the dynamic structure. In fact, Figure 3.4 illustrates the essence of why self-regulating

variables produce well-behaved equilibrated models. “Self-regulation” is another way

of saying that there exists at least one feedback loop that is not resolved. That is not to
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say that the model in Figure 3.4-b is guaranteed to be stable when Y is manipulated,

or Z for that matter; nonetheless, this model is not guaranteed to be unstable or

to violate the EMC property because of the potential for the self-regulation path to

maintain stability.

With this argument in mind, a plausible conjecture might be proposed. For a

model M = 〈〈V,E〉, φ〉, I define a feedback-resolved variable V ∈ V as a dynamic

variable with feedback variables present in V.

Conjecture 2 Given a dynamic causal model M = 〈〈V,E〉, φ〉, if V ∈ V is a

feedback-resolved variable that is not self-regulating, then equilibrating V will result

in a model that violates the EMC property.

I have not yet found either a counter-example to, or a proof for, this conjecture.

3.1.3 Latent-Variable Models

Throughout this thesis, I have assumed that the models under discussion are not

being influenced by the presence of latent variables. This assumption was made to

show that even this simplistic case was plagued with problems under manipulation.

One would expect that the presence of latent variables would only confound the issue

more.

Nonetheless, it is a valid question to ask if it is possible to avoid violations of

the EMC property by assuming the presence of latent variables when learning a

causal model from data. Can the more stringent detection of causality given by a

partial ancestral graph still be found to violate EMC based on underlying dynamics?

The answer is “yes”. As an example, consider the simple dynamic model given in

Figure 3.5. Assuming Figure 3.5a to be the true causal system, then the equilibrated

system is given by Figure 3.5b. Using the FCI algorithm for causal discovery (i.e.,

one that does not make the assumption of absence of latent variables), one would

learn the partial ancestral graph shown in Figure 3.5c (see Scheines et al., 1999, for
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Figure 3.5. Allowing latent variables will not guarantee a learned model will obey
the EMC property. If the true causal graph is given by (a), the equilibrated graph
will be given by (b), and the FCI algorithm applied to data learned from this graph
will return the PAG (c).

example). Thus, in this example, we would conclude that Z is an ancestor of W ,

and we would predict that manipulating W could not have an impact on Z, which is

incorrect according to Figure 3.5a.

3.2 Learning Differential Models

The obvious conclusion to this work is that, rather than learning equilibrium

causal models, we should attempt to learn dynamic models, differential models ideally.

In this section, I explore the assumptions that are necessary to learn a dynamic causal

model as it has been defined in this thesis.

The shorthand dynamic graph representation makes the assumptions that all

causal structure between time-slices occurs through derivatives, and that the instan-

taneous causal structure at a fixed time slice is stationary.

Assumption 4 (stationary structure) A variable X causes a variable Y at time

slice t = l if and only if X causes Y at time slice t = 0.

Assumption 5 (differential causation) All causation between time-slices occurs

to a variable from its first-derivative.
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In addition, one assumption often made is that in reality causation always takes a

time-lag to occur:

Assumption 6 (non-simultaneous causation) If X is a cause of Y , (for exam-

ple, expressed by some invertible mechanism f (X,Y ) = 0) and if X is perturbed from

value x0 to some value x1 at time t = 0, then Y will achieve its final value (e.g.,

f−1(x1)) at time t′ > t.

The non-simultaneous causation assumption adds bewilderment to the prospect

of learning a differential model. If there exist no instantaneous mechanisms, then it

would be impossible to learn any structure at all with instantaneously gathered data,

because for the system to evolve in time, there must exist some-order derivative V (n)

for each V ∈ V for which an instantaneous mechanism exists. Thus, given the three

assumptions just stated, any model learned from truly instantaneous data would in

principle result in a complete lack of dependence between the variables (as in the

structure S1 of the filling-bathtub system of Figure 2.20). This apparent paradox

is resolved by the reality that we never in the real-world have data that is truly

instantaneous. Thus, each set of data has an implicit time lag τ over which it will

often be the case that very fast mechanisms will be able to equilibrate, even as τ is

made to be as small as experimentally possible.

If this set of assumptions is accepted, then one must conclude that all learned

models are, in fact, equilibrium models. In that case every learned mechanism would

be either an equilibrium one or a transient one. If the mechanism is an equilibrium

one, then the variable corresponding to it must be either self-regulating or feedback-

resolved (or both); and we are thus at risk of violating EMC in the ways presented

in this thesis. Transient mechanisms could be used to form a coherent causal model

if the transience time is very long.

Assuming that all mechanisms are equilibrium mechanisms, is there then any ben-

efit to using finely-spaced time-series data to learn a dynamic model? I propose that
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even in this case it is beneficial, based on the following argument: Let X be the

only feedback resolved variable in a causal model, and let Y denote the set of (self-

regulating) feedback variables of X. It is obviously not likely for X to equilibrate

before any Y ∈ Y. If some Y ∈ Y is changing, it will in general cause X to come out

of equilibrium since it will cause a derivative of X to change as well. Thus, we expect

feedback-resolved variables to take much longer to equilibrate than the self-regulating

variables. Since we are only concerned with discovering the feedback-resolved rela-

tionships, then learning with the finest possible time data will be beneficial.

There are many open questions regarding how to best learn a dynamic graph from

time-series data. There already exist many algorithms for learning causal structure

and for learning dynamic models in general. However, the assumptions behind the

models considered here may allow for more accurate or more efficient algorithms to

be developed tailored to this representation.

One theoretical solution is to take a Bayesian approach to this problem. This

would entail the following: (1) Establish a set of (maybe non-informative) priors on

the space of all possible dynamic models, (2) Given some data, update beliefs about

these dynamic models. Finally, (3) use these updated beliefs to calculate the expected

effect of manipulation on the system by weighting the prediction of each dynamic

model by that model’s posterior probability. As with many Bayesian solutions, this

one is both comprehensive and probably impossible to achieve in practice, but it could

form the basis for a reasonable Bayesian approximate solution.

3.3 Future Directions

This work raises many new open research questions. Obviously these results raise

the importance of being able to learn dynamic causal graphs from time-series data.

However, another alternative to focusing efforts on constructing dynamic models

would be instead to attempt to more precisely characterize the relationship between
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a dynamic model and its equilibrium counterpart. In this way it may be possible

to extract general rules for when an equilibrium model will obey the EMC property.

Among the questions to be answered are:

Question 1 Is Conjecture 2 correct?

More generally,

Question 2 Do there exist general necessary and sufficient conditions for an equi-

librium model to obey EMC?

Constructing a dynamic model instead of a non-dynamic model requires the mod-

eler to know more about the system being modeled; for example one might need

detailed time-series data. However, maybe it is possible to ensure that a model will

support manipulation with less than full time-series data, motivating the following

question:

Question 3 What is the minimal information needed to insure that a model will obey

EMC?

An example is knowledge of temporal disjunction, i.e., the knowledge that two vari-

ables do not completely co-vary in time (for example, if I can observe that one vari-

able achieves its equilibrium value before another variable). Obviously all variables in

Fb(X) must co-vary in time with X. Thus, it should be safe (assuming stability) to

manipulate a variable that is known to be temporally disjoint from all other variables.

Instabilities seem to be a most serious problem with using learned models for

manipulation. An important and hard question is:

Question 4 Under what circumstances will a manipulation cause an instability?

This question seems especially difficult to answer. It seems that even using a dif-

ferential model, considering causal structure alone is insufficient to determine if a

83



manipulation will cause an instability. For example, a feedback loop that provides

positive (as opposed to negative) feedback will cause an instability to occur. Even

manipulating non-feedback variables can cause instabilities. Imagine placing a large

negative mass (e.g., a big helium balloon) on the piston in the ideal-gas system. Such

a manipulation will obviously cause the height of the piston to increase indefinitely,

with no available force to oppose the negative mass. Thus, detection of instabilities

seems to require quantitative information about a dynamic system.

Although this thesis raises important objections to some uses of causal reasoning

with models learned from data, I believe that the great potential of causal modeling

and causal discovery in artificial intelligence make it all the more important for these

questions to be explored further and answered as forcefully as possible. The fact

that equilibrium causal models can not be proven to support causal inference should

not deter us from building and using them in practice, any more than the fact that

causality itself is not based in logical reason should dissuade us from employing it in

our everyday organization of phenomena.

The fact that taking path A in Figure 1 produces predictions that differ from path

B requires us, if we intend to perform causal reasoning with our model, to either

ensure that we are taking path B or ensure that we are dealing with models that

obey the EMC property. Currently, most work regarding the discovery or building of

causal models takes path A and pays no regard to the EMC property. I hope that

this thesis will bring attention to this fact and help to rectify it.
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APPENDIX A

BACKGROUND CONCEPTS

A.1 The Causal Ordering Algorithm

Simon [1953] showed that an unmapped SEM S = 〈E,V〉 implies asymmetries

among the variables in V, and he proposed an algorithm for extracting these asym-

metries in terms of a directed graph. This algorithm is known as the causal ordering

algorithm (COA). In this section I illustrate the idea and terminology of the algorithm,

first through an example and then formally.

Consider the set of equations E(0) in Figure A.1a. E(0) constrains the set of

variables, V = {X,Y, Z, W, V } with five completely invertible functional relations.

Informally, COA orders the variables in an SEM according to the order in which they

can be solved in terms of constant parameters of the equations. In Figure A.1a, the

single equation E2 can be inverted to find a unique solution for variable X. This

equation by itself thus forms a trivial SEM for the single variable X. Since it is the

smallest set of equations that defines a solution for a subset of V, it is a minimal

self-contained subset. Likewise E5 alone defines a minimal SEM for variable V , so

for E(0) there are two minimal self-contained subsets. I denote this set of subsets as

E(0) = {{E2}, {E5}}.
The causal ordering algorithm proceeds by generating a new SEM, E(1), by sub-

stituting the solutions for X and V (denoted as x0 and v0, respectively) into the

remaining equations and removing equations E2 and E5. I use the terminology that

X and V are exogenous to the subset {W,Y, Z} meaning that X and V are deter-

mined before the set {W,Y, Z}. In E(1), no variables can be determined within a
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Figure A.1. The causal ordering algorithm takes a structural equation model as
input and outputs a directed partition graph (DPG).

single equation; however, the equations E3 and E4 taken together as a subsystem

form an SEM for variables Y and Z, for which both can be simultaneously solved in

terms of X. The variables Y and Z are said to be strongly coupled because they both

reside in the same minimal SEM in which they were ultimately determined, and they

are collectively represented by a single vertex in the graph, as in Figure A.1c. Since

X appears in E3, it is a parent of the entire subset {Y, Z} in the graph. Finally, given

X, V , and Z, the equation E1 alone forms an SEM for W , so X, V and Z are parents

of W in the graph.
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All graphs produced by COA will be acyclic, but they may possess vertices which

represent strongly-couple variables as {Y, Z} in Figure A.1c. In fact, the graphs

produced by the COA are somewhat unorthodox objects where parents in the graph

are variables, but children in the graph are partitions of variables:

Definition 33 (partitioning) A partitioning V of V is a set of disjoint sets V =

{V1,V2, . . . ,Vn} such that
⋃n

i=1 Vi = V.

If V is a partitioning, then we call an arbitrary element Vi ∈ V a partition of V . As

an example, {{X}, {V }, {W}, {Y, Z}} is a partitioning of {V , W , X, Y , Z}. I use

the notation Part(X)V to denote the partition which contains the variable X ∈ V,

although I may drop the V subscript if the partitioning is clear by the context. I call

the graphs produced by the COA “directed partition graphs” (DPGs):

Definition 34 (directed partition graph) A directed partition graph over a set

of variables V is an ordered pair 〈V ,A〉, where the set of vertices V is a partitioning

of V and A is a set of directed arcs X → V(i) where X ∈ V is a variable, V(i) ∈ V
is a partition and V(i) 6= Part(X).

The causal ordering recursively finds the minimal self-contained subsets (e.g., {E2}
and {E5} in set E(0), {E3, E4} in E(1) and {E1} in E(2) in Figure A.1b) of equations

and solves them for specific solutions:

Definition 35 (minimal self-contained structure) If S is a self-contained struc-

ture, then S is minimal when there does not exist a subset S ′ ⊂ S such that S ′ is also

self-contained.

Again, I will refer to a set of equations E as being a minimal self-contained set with

respect to a set of variables V if the SEM S = 〈V,E〉 is a minimal self-contained set.

COA then substitutes the values of the variables determined by all minimal self-

contained sets into the remaining equations to get a derived subset (e.g., both E(1)

and E(2) in Figure A.1):
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Definition 36 (derived subset) Let S = 〈V,E〉 be a self-contained structure and

let E be the set of all minimal self-contained subsets of E. Let Esc =
⋃

Ei∈E Ei, and

let E←↩ denote the set of equations that are obtained when solutions of Params(Esc)

given by Esc are substituted into E \ Esc. E←↩ is called the derived subset of E.

I use the general notation that E(1) ≡ E←↩ , E(2) ≡ E
(1)
←↩ , etc., where E(i) is called the

derived subset of ith order. If E is a set of equations with derived subset E(i), and if

E′ ⊆ E(i) is some subset of E(i), then I use Ê′ to denote the subset of E corresponding

to the equations remaining in E′, that is, the subset of original equations with no

values substituted.

In Figure A.1, COA constructed a mapping between sets of variables and sets of

equations. The mapping could be written as a list of association-pairs as follows:

{〈{W}, {E1}〉, 〈{X}, {E2}〉, 〈{Y, Z}, {E3, E4}〉, 〈{V }, {E5}〉}.

I call this a partial causal mapping:

Definition 37 (commensurate partitionings) Let A and B be two sets such that

|A| = |B|. A partitioning PA over A is commensurate with a partitioning PB over

B iff there exists a one-to-one correspondence φ : PA → PB such that for each set

S
(i)
A ∈ PA, |S(i)

A | = |φ(S
(i)
A )|.

Definition 38 (partial causal mapping) If E is a set of equations with V =

Params(E), then a partial causal mapping Φ of E is a triple 〈V , E , φ〉, where V
is a partitioning of V, E is a partitioning of E, and φ is a bijection, φ : V → E , such

that the following is true:

1. V is commensurate with E, and

2. For all sets V(i) ∈ V we can match up each variable in V(i) with a unique

equation in φ(V(i)). That is, there exists a bijection φ(i) : V(i) → φ(V(i)) such

that X ∈ Params(φ(i)(X)) for all X ∈ V(i).
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A partial causal mapping Φ = 〈V , E , φ〉 can also be written as a list of ordered pairs

or associations: Φ = {〈V(1),E(1)〉, 〈V(2),E(2)〉, . . . , 〈V(n),E(n)〉}, where V(i) ∈ V
and E(i) ∈ E are sets for all i, and n is the number of partitions in V . I will use

these two representations of a partial causal mapping interchangeably. I define an

elementary association as one that maps a single variable to a single equation:

Definition 39 (elementary association) An association 〈V(i),E(i)〉 is an elemen-

tary association if |V(i)| = |E(i)| = 1.

If 〈V(i),E(i)〉 is an elementary association where Vp = {v} and Ep = {E}, for clarity

of notation I will often write this association as 〈v, E〉 rather than as 〈{v}, {E}〉. A

partial causal mapping Φ is obviously isomorphic to a total causal mapping if each

association in Φ is an elementary association.

The Causal Ordering Algorithm can now be formally defined:

Definition 40 (Causal Ordering Algorithm) Given an SEM S = 〈V(i),E(i)〉,
the causal ordering algorithm produces a partial causal mapping Φ = 〈V , E , φ〉, where

V is a partitioning of V(i) and E is a partitioning of E(i), through the following pro-

cedure:

1. Define E (i) to be the set of all minimal self-contained subsets of E(i).

2. For each set E ∈ E (i) add the association 〈Params(E), Ê〉 to Φ.

3. Let E(i+1) ≡ E
(i)
←↩ and recurse this procedure until E(i+1) = ∅.

A partial causal mapping Φ = 〈V , E , φ〉 defines a DPG as follows: For each association

〈V(i),E(i)〉 ∈ φ and for each E ∈ E(i) and each V ∈ Params(E) \ V(i), direct an

edge from V to V(i). This procedure will always produce an acyclic DPG.

A.2 Bayesian Networks

A Bayesian network (BN) is another explicit representation which models causality

using a directed graph together with a set of conditional probability distributions.
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Because I will often refer to the parent set of an enumerated node Xi, I will use the

shorthand notation that Pi = Pa(Xi). A Bayesian network is defined as:

Definition 41 (Bayesian network) A Bayesian network is a pair 〈G,Θ〉, where

G = 〈V,A〉 is a directed acyclic graph over nodes V possessing directed arcs A, and

Θ is a set of conditional probability tables Θ = {θijk = P(Vi = vk
i | Pai = paj

i) : Vi ∈
V, Pai = Pi}.

The parameters Θ are often written as a set of conditional probability tables θi,

corresponding to each node Vi ∈ V. Each CPT θi is in turn defined as a set of

distribution functions θij, one for each parent configuration paj
i of node Vi.

Like a causal model, a BN is an explicit hypothesis about the causal interactions

present between variables; however, the quantification of that interaction takes the

form of conditional probability distributions rather than deterministic functions.

If it is assumed that the Markov condition holds between nodes in the network,

then a BN specifies the joint probability distribution over the nodes P (V). This is

evident based on the fact that any probability distribution over n variables can be

factored according to the chain rule of probability:

P (X) = P (X1) · P (X2 | X1) · . . . · P (Xn | X1, X2, . . . , Xn−1). (A.1)

If we use the ordering of the nodes specified by a topological sort of the network, then

Equation A.1 together with the Markov condition yields the equation:

P (V) =
n∏

i=1

P (Vi | Pi), (A.2)

each term of which is specified by the definition of a BN.

Unlike functional causal models, representing cyclic causal interactions with a

Bayesian-network-like representation allowing cyclic graphs is not straightforward
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because although cyclic graphs may obey the Markov condition locally, they will

not in general obey this condition in a global sense [Spirtes, 1995], which makes

the factorization in Equation A.1 non-trivial to produce. It can be argued however,

that this is not a drawback of Bayesian networks but rather a drawback of cyclic

models. After all, no claim has been made that SEMS are guaranteed to specify the

joint distribution for cyclic systems either. Nonetheless, most of the computational

benefits of using Bayesian networks rely on the ability to factor the joint distribution

according to Equation A.2, so in practice this representation has not been used to

model cyclic systems.

A.3 Conditional Independence Models

If, rather than specifying the complete set of causal links directly, one only has

information about independence relations that exist in a system, then a conditional

independence (CI) model can be constructed:

Definition 42 (conditional independence model) A conditional independence model

is a pair 〈V, I〉, where V is a set of variables and I is a list of conditional independence

statements of the form (X ⊥ Y | Z) such that X,Y ∈ V and Z ⊆ V \ {X, Y }.

Even with the addition of the faithfulness condition, the mapping from CI models

to BN models is not unique. If MI is a CI model, then I use the notation G(MI) to

denote the set of DAGs consistent with MI according to the Markov and faithfulness

conditions. If G1, G2 ∈ G(MI) then G1 and G2 are said to be independence equiva-

lent. Conversely, if G is a DAG, then I use the notation I (G) to indicate the set of

independencies entailed by G given the Markov condition (and Theorem 1):

I (G) = {(X ⊥ Y | Z) : (X ⊥⊥ Y | Z)G}.

91



Obviously G1 and G2 are independence equivalent if and only if I (G1) = I (G2). I

also use the notation Skeleton(G) to denote the set of undirected arcs in G:

Skeleton(G) ≡ {{A,B} : either A → B or B → A},

and V-struct(G) to denote the set of v-structures in G:

V-struct(G) ≡ {〈A,C, B〉 : A → C, B → C, and {A,B} /∈ Skeleton(G)}.

The following theorem was proven by Verma and Pearl [1991]; Spirtes et al. [1993];

Chickering [1995]:

Theorem 11 If G1 and G2 are two Bayesian networks, then I (G1) = I (G2) if and

only if Skeleton(G1) = Skeleton(G2) and V-struct(G1) = V-struct(G2).

A causal graph derived from a CI model MI must be consistent with all possible

BN models that are represented by MI . This fact leads to the concept of CI-based

causality:

Definition 43 (CI causal graph) Given a CI model MI over variables V, then a

CI causal graph is a partially directed graph Gp = 〈V,U,A〉 where U is a set of

undirected (ambiguous) edges:

U = {{A,B} : (∃ G1, G2 ∈ G(MI)) ∧ (A → B)G1 ∧ (B → A)G2},

and A is a set of directed (unambiguous) edges:

A = {(A → B) : (A → B)G for all G ∈ G(MI)}.
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A CI causal graph is more commonly known as a pattern or the more descriptive

but less common essential graph. A pattern provides a graphical representation of an

equivalence class as all CI models in the same equivalence class will produce the same

pattern. It is not clear that all patterns map to a unique equivalence class however

because some patterns are cyclic and the analysis of cyclic probabilistic models is less

mature.

In order to define the procedure used to construct a pattern, I need to introduce

some terminology. If MI = 〈V, I〉 is a CI model then I define the independency

set Indep(MI) to be the set of independent pairs defined by MI , and I define the

dependency set Dep(MI) to be the set of dependencies implied by MI and the

faithfulness condition:

Definition 44 (independency set) If MI = 〈V, I〉 is a CI model then the indepen-

dency set Indep(MI) is the set of pairs of variables that can be made independent

by a suitable conditioning event: Indep(MI) ≡ {{X,Y } : (X ⊥ Y | Z) ∈ I}.

Definition 45 (dependency set) If MI = 〈V, I〉 is a CI model then the depen-

dency set Dep(MI) is the set of pairs of variables that are never independent in MI :

Dep(MI) ≡ Pairs(V) \ Indep(MI).

Definition 46 (v-structure signature) In a CI model MI = 〈V, I〉, a v-structure

signature is a pair {{A,C}, {B, C}} such that:

1. {A,C}, {B, C} ∈ Dep(MI) and {A,B} ∈ Indep(MI),

2. (A ⊥ B | Z) ∈ I ⇒ C /∈ Z.

The following algorithm can be used to construct a pattern from a CI model MI

[Verma and Pearl, 1991; Spirtes et al., 2000]:

Procedure 1 (pattern construction)

Input: a CI model MI = 〈V, I〉.
Output: a partially directed graph Gp = 〈V,U,A〉.

93



1. Set U = Dep(MI).

2. For every v-structure signature {{X, Z}, {Y, Z}} add edges (X → Z), (Y → Z)

to A and remove sets {X,Z}, {Y, Z} from U.

3. Orient all edges that are required to avoid additional v-structures and to avoid

cycles.

Step 3 can be performed by repeatedly applying the following four rules until no more

edges can be added [Verma and Pearl, 1992; Meek, 1995]:

1. For every set {B,C} ∈ U such that ∃ (A → B) ∈ A and {A,C} /∈ U, orient

the edge B → C.

2. For every set {A,B} ∈ U such that ∃ (A → C), (C → B) ∈ A, orient the edge

A → B.

3. For every set {A,B} ∈ U such that ∃ {A,C}, {A,D} ∈ U and ∃ (C →
B), (D → B) ∈ A such that C and D are non-adjacent, orient the edge A → B.

4. For every set {A,B} ∈ U such that ∃ {A,C} ∈ U and ∃ (C → D), (D → B) ∈
A such that C and B are non-adjacent and A and D are adjacent, orient the

edge A → B.

The result of Procedure 1 is a partially directed graph that may or may not contain

cycles.

In summary, a conditional independence model MI (together with the Markov

and faithfulness conditions) is a hypothesis about both the dependencies and the in-

dependencies among the variables in V. From this model, a conservative definition

of causality arises: an arc A → B is causal if and only if that arc is present in every

BN model that is consistent with MI . Some may interpret this as a practical defini-

tion of a causal arc, while others take the viewpoint that a CI model is incomplete,
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providing only a set of necessary arcs. Given a CI model, the causal graph can be

constructed using the deterministic Procedure 1. CI models are especially relevant to

the task of learning a causal model because some methods for learning use classical

significance tests to search the data for independence relations so that a CI model

can be constructed (see Section C.1).
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APPENDIX B

TWO CONCEPTIONS OF MANIPULATION

After the manipulation U=̂u, the marginal probability distribution P(U) will

have been altered so, even if U normally would depend on some set P of parents, U

will become independent of P:

P(U=̂u) = P(U=̂u | P = p) = 1 for all p ∈ Rng(P).

Since a manipulation U=̂u fixes the distribution of U, it is intuitive to suppose that

a causal graph G of such a manipulated system will be such that Pa(U)G = ∅ (this

intuition is, in fact, one justification for the causal faithfulness assumption: we are

asserting that since U does not depend on P then that fact must be reflected in the

structure of the causal graph).

Whatever other changes may occur to the causal graph under a manipulation are

not necessarily specified by the intuitive notion of manipulation, and there are at least

two differing opinions in the literature as to how the rest of the causal graph will be

affected. By far the most common assumption is that the remainder of the model is

unaffected, I refer to this view as the arc-cutting account of manipulation. The other

viewpoint argues that the response of a system to manipulation is more complex and

requires the COA for elucidation. I refer to this viewpoint as the mechanism-altering

account of manipulation.

In the arc-cutting account, the fundamental knowledge of a system consists of

causal parent-child relationships: these are expressed in terms of a causal model
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S = 〈〈V,E〉, φ〉, where the function determining each variable X ∈ V is explicated

by the mapping φ. Manipulating X is defined by replacing the equation φ(X) with

a new equation, X = x0, specifying the manipulated value of X. On the other hand,

the mechanism-altering account, put forth by Simon [1953], defines manipulation on

an unmapped SEM also as the altering of equations which constitute the fundamental

building blocks of knowledge. Manipulation thus again involves striking equations

from the model and replacing them with new equations. The difference between this

approach and the arc-cutting approach is that the equation that is struck can be

different in the two cases:

Definition 47 (Alter operator) If S = 〈V,E〉 is an SEM, and Edel is a set of

equations Edel ⊆ E, Eadd is a set of equations such that E′ ≡ Eadd ∪ {E \ Edel} is

self-contained with respect to V, then Alter(S,Edel,Eadd) is the SEM S ′ = 〈V,E′〉.

In order to be consistent with the intuitive idea of manipulating a set U=̂u, the list

of equations to add, Eadd, obviously must take the form of U = u.

The Do operator is related to the Alter operator. In particular, given an un-

mapped SEM S = 〈V,E〉 and a causal model Sm = 〈S, φ〉, performing Do(G, V = v)

on a variable V ∈ V in the causal graph G of Sm corresponds to Alter(S,Edel,Eadd),

where Edel ≡ φ(V) and Eadd ≡ {V = v}. However, the Alter operator is more

general in that it does not require the equation that was originally associated with V

to be deleted from the set of equations. Because of this generality, the Alter operator

is capable of modeling manipulations that result in “reversibility” in some systems

(discussed in Section B).

It has been observed [Spirtes et al., 1993; Druzdzel and van Leijen, 2001] that some

systems appear to exhibit reversibility when manipulated. The standard example of a

reversible system is the transmission of a bicycle. In normal operation, the following

causal graph describes this system:
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Pedal Rotation Rate → Wheel Rotation Rate;

however, if the bike is propped up on a bike rack, the pedals left free to rotate, and

the wheel directly rotated at some rate (in the backwards direction), the pedals will

rotate in response. The causal ordering of the system under these circumstances

yields:

Pedal Rotation Rate ← Wheel Rotation Rate.

This type of reversibility is present in any physical system where two or more com-

ponents are connected by a set of rigid gears.

Another type of system that displays reversibility, in a probabilistic sense, occurs

when a model is built on a mixed population, where in one subpopulation A, a

variable A causes a variable B; whereas in another subpopulation B, B causes A. In

this case, when A is manipulated (and not B), A will appear to cause B, and when

A is released and B is manipulated, it will appear that B causes A.

Both types of reversibility require that some variables be “released” before re-

versibility will be present. For example, if the wheels of a bike are fixed to a certain

rotation rate without releasing the pedals of the bike (e.g., while holding the pedals

in place), then the chain will obviously break, and no reversibility will be apparent.

Because of the need to release variables to expose reversibility in a system, the Do

operator is incapable of modeling this behavior because it only specifies how to ma-

nipulate a variable, not how to release it. The Alter operator is capable of modeling

these types of manipulations because of the added flexibility about which equations

can be deleted. For example, if our SEM consists of two equations:

P = P0 (E1)

W = αP (E2)
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where P denotes the rotation rate of the pedals and W denotes the rotation rate of

the rear wheel, then manipulating the wheel and releasing the pedals can be achieved

by striking out E1 and replacing it with E ′
1:

W = W0 (E ′
1)

This manipulation cannot be modeled by the Do operator because it requires the

replacing of an equation for P with an equation for W .
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APPENDIX C

CONSTRUCTION OF CAUSAL MODELS

In this section I review some basic approaches to using a database of non-experimental

records to infer causal relationships. I discuss the two primary methods in use for

this task. In Section C.1 I present the theory behind constraint-based learning, and

in Section C.2 I discuss Bayesian methods for inferring causal structure.

C.1 Constraint-Based Learning

Constraint-Based (CB) learning methods [Verma and Pearl, 1991; Spirtes and

Glymour, 1991; Pearl and Verma, 1991; Spirtes et al., 2000; Cheng et al., 2002] (also

known as “conditional independence search” methods) build a CI model by system-

atically checking the data for conditional independence relations. The ability to

infer causal structure from independence information requires the causal Markov and

causal faithfulness conditions, defined in Sections A.2 and A.3, respectively. I assume

the existence of a standard independence test I (X, Y | Z, D, α), a set of variables V

a complete database D, and a significance level α. I use Adj (V ) to denote the set

of adjacencies of V , i.e., if G is (in the most general case) a partially directed graph

G = 〈V,U,A〉:

Adj (V ) ≡ {X : (X → V ) ∈ A ∨ (V → X) ∈ A ∨ {X,V } ∈ U}.

The following straightforward algorithm could be proposed for the construction

of a causal graph. I use the notation Pairs(V) to denote the set of all unordered

disjoint pairs of V: Pairs(V) ≡ {{X, Y } : X,Y ∈ V, X 6= Y }:
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Procedure 2 (simple constraint-based learning)

Input: Set of variables V and database of values D(V).

Output: a partially directed graph Gp.

0. Let the set I = ∅.

1. For each pair {X,Y } ∈ Pairs(V) and all subsets Z ⊆ V\{X,Y }, if I (X,Y | Z, D, α) =

true then add (X ⊥ Y | Z) to the list I.

2. Use Procedure 1 together with the CI model M = 〈V, I〉 to construct the causal

graph Gp.

In practice, Procedure 2 is prohibitive because if |V| = N , Step 1 requires the

checking of O(NN/2) independence tests. A more practical algorithm will grow the

independence graph as it checks for independencies so that it can reduce the number

of independency checks required by using d-separation information provided by the

graph-so-far. The PC algorithm [Spirtes et al., 2000] does this by replacing Step 1

with one that constructs an independence graph by incrementally thinning a com-

pletely connected graph by checking various independence relations. The algorithm

is sketched as follows:

Procedure 3 (PC algorithm)

Given: V, D and α.

1. Su = PC-Find-Independence-Graph(V, D, α),

2. S = Orient-Edges(Su, D),

3. Return S.

PC-Find-Independence-Graph(V, D, α) takes a set of variables V and a database D

as input and outputs an undirected graph Su such that an edge X—Y exists in Su

iff there does not exist a subset Z ⊆ V \ {X, Y } (including the empty set) such that
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I (X,Y | Z, D) = true. Su is constructed by checking conditional independence rela-

tions and removing edges from an initially complete undirected graph whenever an

independence is found. The PC algorithm makes this procedure efficient by succes-

sively checking higher-order dependencies while restricting the set of nodes that need

to be conditioned on. Specifically, let Adj (A) denote the set of variables that are

adjacent to A, then Find-Independence-Graph(V, D, α) can be sketched as follows:

Procedure 4 (PC-Find-Independence-Graph(V, D, α))

1. Let n = 0.

2. Let Su be a complete undirected graph.

3. Repeat:

(a) For all pairs of variables (X,Y ), check I (X, Y | Z, D, α) for all subsets Z

such that |Z| = n and Z ⊂ Adj (X) or Z ⊂ Adj (Y ). If there exists a Z

such that I (X,Y | Z, D, α) = true then remove the edge X—Y from Su.

(b) Set n = n + 1

Until no variable has greater than n adjacencies.

4. Return Su.

The sub-procedure Orient-Edges(Su, D) infers directionality of some arcs in S by

searching for independence relations characteristic of v-structures and by avoiding

cycles. For example, the four rules for orienting a pattern given in Chapter A.3 can

be used.

The graphs produced by CI-based procedures are patterns as defined in Defini-

tion 43. As a reminder, patterns summarize the structure of a Bayesian network

that can be inferred from a list of independencies alone. A loose-upper bound on the

worst-case computational time complexity of PC is O[n2(n− 1)k−1/(k− 1)!], where k

is the maximum number of adjacencies of any node in the graph. In practice graphical
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models are typically assumed to be sparse. For example, the space complexity of a

Bayesian network is exponential in the largest in-degree in the network. Therefore,

this complexity result for the PC algorithm can be quite efficient for many problems

considered in practice.

CB methods have the advantage of possessing clear stopping criteria and deter-

ministic, systematic search procedures. On the other hand, they are subject to several

instabilities. [Spirtes et al., 2000; Dash and Druzdzel, 1999] Namely, if a mistake is

made early on in the search, it can lead to incorrect sets Adj (A) and Adj (B) later in

the search, which may in turn lead to bad decisions in the future, which can lead to

even more incorrect sets Adj (A), etc. This instability has the potential to cascade,

creating many errors in the learned graph. Similarly, incorrect edges in Su can lead to

incorrectly oriented arcs in the final graph S. It is for these reasons that the quality

and reliability of the independence test is critical for practical constraint-based algo-

rithms. Unfortunately, when there is little data, when some configurations of variables

are unlikely, or when there is missing data, hypothesis tests can be unreliable.

C.2 Bayesian Learning

Rather than finding a single model that maximizes the likelihood of the data D,

Bayesian learning in general advocates averaging quantities of interest over all possible

models M , weighting each model by its posterior probability P(M | D). However,

Bayesian-inspired methods exist which allow one to learn a single causal model in the

form of a Bayesian network. In terms of Bayesian learning, one primary quantity of

interest when using causal models is the joint probability distribution P(X) over the

variables X. This chapter will review the techniques and assumptions that are used

to allow Bayesian learning to be applied to this problem, and show how they can be

simplified into a set of techniques for selection of a single causal model.
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I begin by stating the assumptions that are required to make Bayesian learning

tractable. First, I assume that all variables are discrete:

Assumption 7 (Multinomial variables) Each variable Xi ∈ V is a discrete vari-

able with ri possible states {x1
i , x

2
i , . . . , x

ri
i }.

I let qi denote the number of possible joint configurations of parents for node Xi, and

I enumerate these configurations as {p1
i , p

2
i , . . . , p

qi

i }. I use the shorthand that if Qijk

is some quantity associated with coordinates (ijk), then Qij ≡
∑

k Qijk.

I assume that all data is complete, although these techniques can be easily adapted

to incomplete data via the EM algorithm [Dempster et al., 1977]

Assumption 8 (Complete Labelled Data) The training data set D contains no

record Dl ∈ D such that Dl is missing data.

I let Nijk denote the number of times in the database that the node Xi achieved state

k when Pi was in the j-th configuration.

Assumption 9 (Dirichlet priors) The prior beliefs over parameter values are given

by a Dirichlet distribution.

I let αijk denote the Dirichlet hyperparameters corresponding to the network param-

eter θijk.

Assumption 10 (Parameter independence) For any given network structure S,

each probability distribution θij is independent of any other probability distribution

θi′j′:

P(θ | S) =
N∏

i=0

qi∏
j=1

P(θij | S) (C.1)
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C.2.1 Fixed Network Structure

For a fixed network structure S and a fixed set of network parameters Θ, the

quantity P(X = x | S,Θ) can be calculated in O(N) time:

P(X = x | S,Θ) =
N∏

i=0

θiJK , (C.2)

where all (j, k) coordinates are fixed by the configuration of X and the structure S

to the value (j, k) = (J,K) (J and K should technically be indexed as JS
x and KS

x

because they are fixed by the structure and the configuration x, but I refrain from

doing this here to simplify the notation).

When, rather than a fixed set of parameters, a database D is given, from an ideal

Bayesian perspective it is necessary to average over all possible configurations of the

parameters Θ:

P(X = x | S, D) =

∫
P(X = x | S,Θ) · P(Θ | S, D) · dΘ

=

∫ N∏
i=0

θiJK · P(Θ | S,D) · dΘ

where the second line follows from Equation C.2. Given the assumption of param-

eter independence and Dirichlet priors, this quantity can be written just in terms

of sufficient statistics and Dirichlet hyperparameters [Cooper and Herskovits, 1992;

Heckerman et al., 1995]:

P(X = x | S, D) =
N∏

i=0

αiJK + NiJK

αiJ + NiJ

(C.3)

Comparing this result to Equation C.2 illustrates the well-known result that a single

network with a fixed set of parameters Θ̂ given by

105



θ̂ijk =
αijk + Nijk

αij + Nij

(C.4)

will produce predictions equivalent to those obtained by averaging over all parameter

configurations. [Heckerman, 1998] asserts that under a suitable coordinate trans-

formation these parameters in fact coincide with the maximum a posteriori (MAP)

configuration.

C.2.2 Unconstrained Averaging over Structures

Again, a holistic Bayesian approach would not consider a single structure, but

would instead calculate predictions by averaging over all possible structures, in which

case the quantity P(X = x | D) is given by:

P(X = x | D)

=
∑

S

∫
P(X = x | S,Θ) · P(Θ | S, D) · P(S | D) · dΘ

=
∑

S

N∏
i=0

θ̂iJK · P(S | D)

which according to Bayes’ rule can be written as:

P(X = x | D) = κ
∑

S

N∏
i=0

θ̂iJK · P(D | S) · P(S) (C.5)

where κ is a constant depending only on the constant P(D).

Given the assumptions of complete data, multinomial variables, Dirichlet priors

and parameter independence, the marginal likelihood P(D | S) can also be written

just in terms of hyperparameters and sufficient statistics [Cooper and Herskovits,

1992; Heckerman et al., 1995]:
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P(D | S) =
N∏

i=0

qi∏
j=1

Γ(αij)

Γ(αij + Nij)
·

ri∏

k=1

Γ(αijk + Nijk)

Γ(αijk)
. (C.6)

The summation over all possible structures makes the full Bayesian model aver-

aging approach intractable for any reasonable number of variables. Thus practical

Bayesian algorithms resort to one of two solutions, either a MCMC model-averaging

[Madigan and Raftery, 1994; Volinsky, 1997; Madigan and York, 1995] is performed

by randomly searching the space of structures, or heuristic search is performed for a

single model that maximizes Equation C.6 [Cooper and Herskovits, 1992; Heckerman

et al., 1995].

Both of these solutions require Equation C.6 to be calculated repeatedly during

the course of a search procedure. Since the marginal likelihood of a given structure

G is typically a very small number (on the order of [total # structures ]−1), it is usual

to find the structure that maximizes the log-likelihood rather than the likelihood:

log P(D | G) =
n∑

i=1

qi∑
j=1

[log Γ(αij)− log Γ(αij + Nij)]×
ri∑

k=1

[log Γ(αijk + Nijk)− log Γ(αijk)], (C.7)

This criterion is important for several reasons. First, it allows the score of a

given network to be calculated exactly in closed form. More importantly is that it is

separable. That is, it takes the form:

Score(V) =
N∑

i=1

c(Vi,Pi), (C.8)

where c(Vi,Pi) is a function that depends only on the sufficient statistics of Vi and

Pi. Thus, during a single-step search, after changing the parent set of a single node

Vi, we can recalculate the entire score of the network by recalculating only the local
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statistics and the local function c(Vi,Pi). This allows the space of DAGs to be

explored relatively quickly.

Bouckaert [1995] proves that, assuming a nonzero prior over structures, the ex-

istence of a P-map, and an infinite sample size, the posterior probability score will

achieve a maximum for the P-map structure. This result justifies the use of this

Bayesian search-based procedures for causal discovery.
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APPENDIX D

THE CORRECTNESS OF THE CAUSAL ORDERING
ALGORITHM

Comparison between the causal ordering given by COA and that given by an

arbitrary expert is complicated by the fact that both procedures produce different

types of directed graphs. I therefore must define precisely what I mean when I say

that a DiG is consistent with a DPG.

Definition 48 (DiG/DPG consistency) If V is a set of variables, Gp = 〈V ,Ap〉
is a DPG over V, and G = 〈V,A〉 is a DiG over V, then G is consistent with Gp if

and only if the following are true:

1. If an arc V1 → V(2) exists in Ap then there exists a V2 ∈ V(2) such that the arc

V1 → V2 exists in A.

2. If an edge V1 → V2 exists in A, then either V1 → Part(V2) exists in Ap or

Part(V1) = Part(V2).

Part 1 says that all arcs present in Gp must be represented in G, and Part 2

says that the only additional arcs that are allowed must be between variables that

were “strongly coupled” in Gp. The DiG of Figure 1.2 is consistent with the DPG of

Figure A.1.

Definition 49 (partial/total mapping consistency) If Φp is a partial causal map-

ping over a self-contained set E with V = Params(E), and φt is a total causal

mapping over E, then φt is consistent with Φp iff the following hold:
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1. For each association 〈V(i), Φp(V
(i))〉 ∈ Φp there exists for each V ∈ V(i) an

elementary association 〈V, E〉 ∈ φt where E ∈ Φp(V
(i)).

2. An elementary association 〈V, E〉 exists in φt but not in Φp only if the non-

elementary association 〈Part(V ),Part(E)〉 exists in Φp.

The following lemma shows that mapping consistency implies DiG/DPG consis-

tency. I denote the DiG that corresponds to a total causal mapping φt as DiG(φt)

and the DPG that corresponds to a partial causal mapping Φp as DPG(Φp):

Lemma 9 Let E denote a self-contained set. If a total causal mapping φt over E is

consistent with a partial causal mapping Φp over E, then DiG(φt) is consistent with

DPG(Φp).

Proof: Let Gp = 〈V ,Ap〉 denote DPG(Φp) and let Gt = 〈V,A〉 denote DiG(φt).

Assume Conditions 49.1 and 49.2 are true.

Satisfaction of condition 48.1:

Assume an edge V1 → V(2) exists in Ap. Let 〈V(2), Φp(V
(2))〉 be the association

corresponding to V(2) in Φp. By condition 49.1 there exists in φt an elementary as-

sociation of the form 〈V2, E1〉 where V2 ∈ V(2) and E1 ∈ Φp(V
(2)). Therefore in

DiG(φt) there exists an edge from all V i
1 ∈ Params(E1) \V(2) to some V2 ∈ V(2).

Finally, since V1 → V(2) it must be the case that V1 ∈ Params(E1) \V(2).

Satisfaction of condition 48.2:

Assume an edge V1 → V2 exists in A, then the elementary association 〈V2, E1〉
must exist in φt such that V1 ∈ Params(E1). Then by condition 49.2, either

〈{V2}, {E1}〉 ∈ Φp or 〈Part(V2),Part(E1)〉 ∈ Φp. Either way the association

〈Part(V2),Part(E1)〉 ∈ Φp. Therefore in DPG(Φp) an arc will be directed from all

V ∈ Params(Part(E1))\Part(V2) to Part(V2). Since V1 ∈Params(Part(E1)),

either there will exist an edge V1 → Part(V2) or V1 ∈ Part(V2). 2
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Using this result, it can be shown that a DiG Gt generated by any total causal

mapping φt over a set of equations E is consistent with the DPG Gp generated by

applying COA to E.

Theorem 12 Given a self-contained set E, any graph produced by constructing a to-

tal causal mapping on E is consistent with the graph specified by COA applied to E.

Proof: First I show that all total causal mappings must be consistent with the par-

tial causal mapping generated by COA. Then the result follows from Lemma 9.

Satisfaction of condition 49.1:

I prove this result by induction. Let φt be an arbitrary total causal mapping on E,

and label the associations generated by COA as 〈Params(E
(i)
j ), Ê

(i)
j 〉 where E

(i)
j is

the jth minimal self-contained subset found by COA in the ith level of recursion

(e.g., the equations for the exogenous variables can be labeled as E
(0)
1 , E

(0)
2 , etc.).

If V is an arbitrary variable such that V ∈ Params(E
(i)
j ), I must show that V

gets mapped to some equation E ∈ Ê
(i)
j . Let 〈Params(E

(k)
l ), Ê

(k)
l 〉 be an arbi-

trary association made by COA. Assume that condition 49.1 holds for all associations

〈Params(E
(i)
j ), Ê

(i)
j 〉 with all i < k. I show that it must also hold for the associ-

ation 〈Params(E
(k)
l ), Ê

(k)
l 〉. Let 〈V,E〉 ∈ φt be an arbitrary association such that

E ∈ Ê
(k)
l . By definition of a causal mapping, V ∈ Params(E), and therefore it

must be the case that V ∈ Params(Ê
(k)
l ). However, according to the induction

hypothesis, all V ∈ Params(Ê
(k)
l ) \ Params(E

(k)
l ) have already been assigned to

equations; therefore it must be the case that V ∈ Params(E
(k)
l ). To complete

the induction step, notice that for any association in the initial level of recursion

〈Params(E
(0)
l ), Ê

(0)
l 〉, it must be the case that Params(E

(0)
l ) ≡ Params(Ê

(0)
l ) so

for any 〈V, E〉 ∈ φt it must be the case that V ∈ Params(E
(0)
l )

Satisfaction of condition 49.2:

Let 〈V,E〉 be an elementary association in φt. Consider the association 〈Part(V ),

Φp(Part(V ))〉 ∈ Φp. By condition 49.1 there exists an elementary association
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〈V,E ′〉 ∈ Φp such that E ′ ∈ Φp(Part(V )). But since φt is one-to-one there can be

only one equation associated with V . Therefore E ′ = E (and Part(E ′) = Part(E)).

2
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Alter operator, 97
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causal mapping
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causal ordering
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causal ordering algorithm, 85, 89
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COA, see causal ordering algorithm, 89
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conditional independence model, 91–95
constraint-based learning, 100–103
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d-separation, 16, 17
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dependency set, 93
derived subset, 88
Des(V ), 7
differential graph, 28
differential model, 28
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directed graph, 7
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Do-operator, 18
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dynamic causal models, 20–39
dynamic structure, 26
dynamic variable, 27
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elementary association, 89
equilibrated model, 33
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bicycle, 97
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ideal gas, 40–57
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latent variable, 79
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simple harmonic oscillator, 22, 29,
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ideal-gas example, 40
Indep(MI), 93
independence equivalence, 91, 92
independency set, 93
instability, 48

JS
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joint probability
with Bayesian network, 90
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x , 105

Mx̃, 66
manipulation, 96–99

fat-hand, 9
modular, 9

mapped SEMs, see structural equation
models, mapped

Markov condition, 16, 91
mechanism, 12

self-regulating, 32, 78
mixed structure, 27
multinomial variables, 104

noise model, 35–36

O(V ), 67
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Pa(V ), 7
Pi, 90
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parameter independence, 104
Params(E), 7
partial causal mapping, 88
partially directed graph, 7
partitioning, 87
pattern, 92
pattern construction, 93
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PDiG, 7
PDiG, partially directed graph, 7
physical law, 12

recursive feedback-resolved equilibrated
model, 66

recursive model, 15
dynamic, 25

RFRE model, 66
Rng(V ), 7

self-contained dynamic structure, 26
self-contained mixed structure, 27
self-contained set, 11

minimal, 87
self-contained structure, 11
self-regulating

mechanism, 32, 78
variable, 32

SEMs, see structural equation models
simple harmonic oscillator, 22, 29, 31
Skeleton(G), 92
stability, 37–38, 45, 48

structural, 48
structural equation models, 10

mapped, 13
qualitative, 32

structural stability, 48

temporal abstraction, 20–39
total causal mapping, 13

undirected edge, 7
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V (i), 22
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