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Driven by the explosive growth of information available online, the World-Wide-Web is currently 

witnessing a trend towards personalized information access. As part of this trend, numerous personalized 

news services are emerging. The goal of this project is to develop a prototype algorithm for using 

bookmarks to develop a personal profile. Ultimately, we imagine this might be used to construct a 

personalized RSS reader for reading news online. A reader returns a large number of news stories. To 

increase user satisfaction it is useful to rank them to bring the most interesting to the fore. This ranking is 

done by implementing a personalized profile. One way to create such a profile might be to extract it from 

user’s bookmarks. In this paper, we describe a process for learning user interest from bookmarks and 

present an evaluation of its effectiveness. The goal is to utilize a user profile based on bookmarks to 

personalize results by filtering and re-ranking the entries returned from a set of user defined feeds 
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1.0 INTRODUCTION 

The World Wide Web has had a profound impact on our everyday lives: we routinely rely on it as a 

ubiquitous source for timely information. In particular, the web’s real-time and on-demand characteristics 

make it an ideal medium for news access anywhere and anytime. As a result, virtually every news 

organization now has a presence on the World Wide Web. 

Driven by the explosive growth of information available online, the World-Wide-Web is currently 

witnessing a trend towards personalized information access. As part of this trend, numerous personalized 

news services are emerging. For example, Internet portals such as Google, Yahoo and Lycos offer 

personalized access to daily news stories from a large range of categories. These services are based on a 

static user profile; users fill out questionnaires in order to make use of news filtering capabilities. 

Personalization based on static user profiles is neither fine-grained enough to accurately reflect an 

individual user's interests, nor flexible enough to take a user's interest changes into account. In addition, it 

requires additional work from the user.  

User profiles can also be constructed implicitly through agents that monitor user activity (Gauch, 

Speretta, Chandramouli, & Micarelli, 2007 p. 55). Time spent on a page, scrolling and mouse movement, 

eye tracking, downloading and bookmarking activities, browsing histories and web and search logs are all 

mechanism that can provide implicit feedback from user. Stoilova, Holloway, Markines, Maguitman, & 

Menczer (2005, pg. 67) claim that bookmarks contain explicit and implicit knowledge. K.Chan, (2000) 

and Stoilova, Holloway, Markines, Maguitman, and Menczer, (2005) propose techniques to define the 

level of user interest from user bookmark folders.  

The next section provides information about web browser bookmarking and then discusses issues and 

motivation for extracting user interest from user bookmarks. 
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1.1 WEB BROWSER BOOKMARKS AND USER BOOKMARKING ACTIVITY 

Bookmarks which are also known as “favorites”, are a tool available in all the major browsers. Browsers 

also offer various approaches to managing bookmarked URLs. Abrams, Baecker, & Chignell, (1998) 

define a bookmark as a recorded URL that may be saved in a browser for later use. Stoilova, Holloway, 

Markines, Maguitman, and Menczer, (2005) claim that bookmarks contain explicit and implicit 

knowledge. Explicit attributes are: URLs, titles, the hierarchical structure of the bookmark folder, 

bookmarked date and last accessed date, personalized title and description. Implicit knowledge can be 

developed by taking into consideration the way people organize or use these URLs. For example, folders 

and subfolders might be used to identify classification. Browser bookmarking facilities allow either a flat 

list or a hierarchical folder structure to store and organize URLs. According to Keller, Wolfe, Chen, 

Rabinowitz, & Mathe, (1997, p.1103), most browsers allow users to create a hierarchical organization of 

bookmarks. 

Abrams, Baecker, & Chignell, (1998, pg.44) report about how users organize their bookmarks and the 

method they use. Twenty-six percent of users don’t organize their bookmarks. They leave them in the 

order they are created. When the number of bookmarks exceeds 35, 20% of users use folders. When the 

number of bookmarks exceeds 100, 20% of users use a hierarchy within folders. The number of folders 

follows a linear relationship with bookmarks. Users with the most bookmarks have more sophisticated 

methods to organize their bookmarks. For example, most users, who have more than 300 bookmarks, file 

bookmarked page when it is created and 50% of these users schedule a cleanup session to organize their 

bookmarks.  

Abrams, Baecker, & Chignell, (1998, pg.47) report that bookmarks are used as “personal web 

information spaces” to help people remember and retrieve interesting web pages. According to the paper, 

bookmarks are created for (1) General usefulness, (2) Personal interest, (3) Quality of Web sites, (4) 

Frequency of use, (5) Potential future use. They also reports that bookmarks are used for: (1) 
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Identification: to make a spot to come back it later. (2) Collection: the ability to quickly retrieve sites. (3) 

Movement: remind where user was. (4) Episodes: Chronological list of episodes. 

According to Abrams, Baecker, & Chignell, (1998, pg.46), bookmarks may be stored for short term 

or long term use. Abrams & Chignell reports that 30% of bookmarks have been visited in 3 months, 67% 

of them in 6 months and 96% of them in 1 year and 6% of them in 1 month. This means bookmarks are 

mostly used for archiving. This research also shows that users add bookmarks during periods of intense 

bookmarking separated by less active periods where few if any bookmarks are added.   

1.2 ISSUES AND MOTIVATION 

In this study bookmarks are used to generate a set of ‘interest clusters’. It is the goal of a larger research 

project to use. Generated interest clusters to rank or filter large amount information stores such as the 

entries from a set of RSS feeds. Given prior work on interest clusters this study looks to generate 5-11 

interest clusters for a user. There are different categories of RSS feeds and user can get many feed entries 

related with one category in a small amount of time depending on the number of feeds user is subscribed. 

For example, if a user who is interested in politics did not check his reader for a day, he might probably 

get a large amount of information since political news is very dynamic. It would be nice to have ‘political 

interest cluster’ for user that gives the information about user’s political interest. Using the user’s 

‘political interest cluster’ on the large amount of political news stories, user might be provided a better 

ranking of entries in the reader that saves time and increase user satisfaction. Bookmarks might be a good 

source to create the interest clusters because they can be considered as ‘personal interest archive’.      

There are also some obstacles of using web browser bookmarks as a way to determine user interests. The 

ways to organize and describe bookmarks are limited on web browsers. Hierarchical folder organization 

is the only sophisticated way to organize them and text is the only descriptor for bookmarks. On the other 

hand, user might have bookmarks for short term use and never delete them. These might pose problems if 

we try to discern user interest from bookmarks. 
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1.2.1 Monolithic Structuring of URLs 

Browser bookmarking facilities allow either a flat list or a hierarchical folder structure to store and 

organize URLs. Although superior to unstructured list, the widely-used hierarchical folder organization 

forces user to store information resources in disjoint, decomposable clusters, even when the information 

does not actually fit this pattern (Keller, Wolfe, Chen, Rabinowitz, & Mathe, 1997, p.1104). For example, 

a single web page describing restaurants in San Francisco may be useful in different circumstances and 

should be accessible by a number of different categories: restaurants, San Francisco, cooking, Web Page 

design, entertainment etc. (Keller, Wolfe, Chen, Rabinowitz, & Mathe, 1997, p.1104). Some browsers 

allow users insert a single bookmark into multiple folders by creating copies. Hierarchical folder 

organization makes it difficult to see connections among URLs (Keller, Wolfe, Chen, Rabinowitz, & 

Mathe, 1997, p.1104).  

The simplistic structure of bookmarks can be a problem when extracting user interest. If a URL that 

can be mapped into multiple concepts is inserted in only one folder, then taking folders as interest clusters 

may not provide a good indication of user interest. Thus, even if users store bookmarks in hierarchical 

structure it may not be easy to extract user interest. 

1.2.2 Lack of facilities to rank and conceptualize URLs according to utility   

According to Abrams, Baecker, & Chignell, (1998, pg.44), most users agree that it is difficult to manage a 

large number of bookmarks. The presentation order of URLs in the bookmark folders in current web 

browsers is determined by initial user placement and users generally leave URLs in the order they are 

created (Abrams, Baecker, & Chignell, 1998, pg.42). On the other hand, bookmarks are represented by 

text obtained from the title of the page, but according to Abrams, Baecker, & Chignell, (1998, pg.47) it is 

not descriptive enough for users so that few users actually change the name of bookmarks because it is 

difficult to change the name to something more descriptive. As a result of the current state of web 

browser bookmarking facilities, user must work hard to continuously rearrange the folder content and 
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order them to keep useful URLs and use them efficiently. This reality makes extracting user interest from 

bookmarks more challenging.  

1.2.3 Noise in Bookmarks 

Bookmarks can be stored for short term or long term use. Short term users may want to bookmark sites as 

a reminder where he/she was. This kind of usage causes noise in bookmarks when extracting user interest 

if the reminder is not removed from the list. Abrams, Baecker and Chignell (1998, pg.43) report that users 

often bookmark things like a newspaper front page with headlines and pages with links to the articles. 

This kind of bookmarks can introduce noise since they include multiple contexts and it is not clearly 

defined which one the user is actually interested in. 
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1.3  RESEARCH OBJECTIVE 

The goal of this project is to develop a prototype algorithm for using bookmarks to develop a personal 

profile. Ultimately, we imagine this might be used to construct a personalized RSS reader for reading 

news online. A reader returns a large number of news stories. To increase user satisfaction it is useful to 

rank them to bring the most interesting to the fore. This ranking is done by implementing a personalized 

profile. One way to create such a profile might be to extract it from user’s bookmarks. In this paper, we 

describe a process for learning user interest from bookmarks and present an evaluation of its 

effectiveness. The ultimate goal, beyond the scope of this thesis, is to utilize a user profile based on 

bookmarks to personalize results by filtering and re-ranking the entries returned from a set of user defined 

feeds. 

1.4 ORGANIZATION OF THESIS   

Chapter (-1- ) presents an introduction to the study by discussing the context, the purpose of the study, 

motivation, issues and definitions. Chapter (-2- ) reviews of the literature. Chapter (-3- ) presents research 

questions and details of some of the preliminary work. Chapter (-4- ) defines methodology of the study 

along the procedure of data analysis. Chapter (-5- ) will provide the research findings and Chapter (-6- ) 

presents implications of the research and recommendations for further research.  

1.5 DEFINITION OF TERMS  

1.5.1 Bookmarks 

Bookmarks, which are also known as “favorites”, are a tool available in the major browsers and provide 

an approach to managing URLs. When user wants to add a bookmark, they open a dialog window such as 

seen in Figure 1. The title of the page is selected as the bookmark name and a default folder is chosen. 
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Users can customize name and folder at that time. It can be also organized later with a organization tool 

such as is shown in Figure 2. 

 

Figure 1. Add a favorite screenshot 

 

Figure 2. Organize Favorites screenshot 

Bookmarks can be exportable. A bookmark file has its own coding system. Each bookmark starts 

with <DT> tag and has anchor link (<A>) that has href, add_date and last_modified and icon and 

icon_uri attributes. This link is attached to the bookmark title.  

 

 

 

Figure 3. An Example of Bookmark Code 

<DT><A HREF="http://www.mozilla.com/en-US/firefox/help/" ADD_DATE="1264916415" LAST_MODIFIED="1269816889" 

ICON_URI="http://www.mozilla.org/2005/made-up-favicon/1-1264916415518000" 

ICON="data:image/png;base64”>Help and Tutorials</A> 
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1.5.2 RSS Feeds 

An RSS (Really Simple Syndication) feed is an XML document that provides links to currently available 

content. At the top level, of an RSS document is the <rss> element, with a mandatory attribute called 

version, which specifies the version of RSS that the document conforms to. Subordinate to the <rss> 

element is a single <channel> element, which contains information about the channel (metadata) and its 

contents (Center, 2003). The XML excerpt below shows an example of a simple RSS 2.0 feed.  

Title, link and description are the required channel elements. Title is generally the same as the title of 

the website. Link is the URL to the HTML website corresponding to the channel. Description is sentences 

describing the channel (Center, 2003).  

<?xml version="1.0"?> 

<rss version="2.0"> 

   <channel>  

      <title>Liftoff News</title> 

      <link>http://liftoff.msfc.nasa.gov/</link> 

      <description>Liftoff to Space Exploration.</description> 

      <language>en-us</language> 

      <pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate> 

      <lastBuildDate>Tue, 10 Jun 2003 09:41:01 GMT</lastBuildDate> 

      <docs>http://blogs.law.harvard.edu/tech/rss</docs> 

      <generator>Weblog Editor 2.0</generator> 

      <managingEditor>editor@example.com</managingEditor> 

      <webMaster>webmaster@example.com</webmaster> 

      <item> 

         <title>The Engine That Does More</title> 

         <link>http://liftoff.msfc.nasa.gov/news/2003/news-
VASIMR.asp</link> 

         <description>Before man travels to Mars, NASA hopes to 
design new engines that will let us fly through the Solar System more 
quickly.  The proposed VASIMR engine would do that.</description> 

         <pubDate>Tue, 27 May 2003 08:37:32 GMT</pubDate> 
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A <channel> may contain any number of <item>s. All elements of an item are optional, however at 

least one of title or description must be present (Center, 2003). The example above contains <title>, 

<description>, <link>, <pubdate> and <guid> elements. Title is the given title for the entry. Description is 

a short synopsis about the entry. Link is a URL link to the actual article. Pubdate indicates when the item 

was published. Guid is a string that uniquely identifies the item.  

1.5.3 RSS Reader and RSS Aggregators 

Really Simple Syndication (RSS) has a potential to changed how the web is explored by users. 

Essentially, RSS is a technology that lets web sites publish updates such as new blog posts or news 

articles. Interested users “subscribe” to the publication initiating a pull action where a user can read those 

updates which they have an interest in using a special RSS feed reader which can be either a desktop or 

Web-based application (Catona, 2009). Rather than forcing users to visit a Web site to check for new 

updates, the user can pull the updates to their reader.  

The user subscribes to a feed by entering the feed's URL into the reader. Currently many aggregators 

allow the user to simply click an RSS icon in a browser to initiates the subscription process. The RSS 

reader checks the user's subscribed feeds regularly for new updates, downloads any updates that it finds, 

and provides a user interface to monitor and read the feeds (Wikipedia).  

  

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier�
http://en.wikipedia.org/wiki/User_interface�
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2.0 RELATED WORK 

This chapter is divided into two parts:  

• Section 2.1 reviews Profiles based on Web Data and Mining Bookmarks 

• Section 2.2 reviews Personalization of News Services  

2.1 DATA SOURCES FOR PERSONALIZATION 

2.1.1 Profiles Based on Web Data 

A user’s profile is a collection of information that the system collects and maintains in order to improve 

the quality of information access. The goal of developing a user profile is to get the user more relevant 

information. User profiles may include demographic information, e.g., name, age, country, education 

level, etc, and may also represent the interests or preferences of either a group of users or a single person 

(Gauch, Speretta, Chandramouli, & Micarelli, 2007). User profiles can be constructed explicitly, through 

direct user intervention, or implicitly, through agents that monitor user activity (Gauch, Speretta, 

Chandramouli, & Micarelli, 2007, pg.55). Time spent on the page, scrolling and mouse movement, eye 

tracking, downloading and bookmarking activities, browsing histories and web and search logs can be 

used as implicit feedback from a user.   

Different types of data can be used to create user profiles. WebMate  (Chen & Sycara, 1998), PVA  

(Chien, Chen, & Yeali, 2004) and Syskill&Webert  (Pazzani & Billsus, 1997) create user profiles by 

analyzing web pages visited by the user as they browse. The PVA system (Chien, Chen, & Yeali, 2004) 

uses web pages visited for more than 2 minutes to construct a user profile. OBIWAN (Trajkova & Gauch, 

2004) uses web pages visited for more than 5 seconds and pages that are more than 1 KB and classifies 

them using tf-idf techniques. The highest 20 weighted words are used to represent the content of a 

webpage. Syskill & Webert (Pazzani & Billsus, 1997) is an agent designed to help a user with long-term 
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information seeking goals, such as finding previously unvisited web sites on a particular technical topic. It 

uses a user-given topic name and the URL of an existing index page and user feedbacks to identify the 

interesting pages. An index page is simply a web page with many links to other pages on the topic. 

Syskill&Webert is not restricted to just pages that can be accessed from an index page. In particular, it has 

the ability to construct queries for search engines (consisting of a combination of highly informative 

words and words that occur frequently on interesting pages), and it can make suggestions about which 

pages returned from a search engine are of interest. The profile features are extracted from visited web 

pages. Do-I-Care (Starr, Ackerman, & Pazzani, 1996) is an agent which is designed to monitor user-

specified web pages and notify the user of important changes to these pages. The user provides feedback 

on which changes are important from which the Do-I-Care Agent learns. The profile features are 

extracted from the difference between the current and an earlier version of a web page. Watson (Budzik & 

Hammond, 2000) gathers contextual information in the form of the text of the document the user is 

manipulating in order to proactively retrieve documents from a distributed information repository. They 

create a user profile by gathering terms based on rating documents using relevance feedback. Crabtree & 

Soltysiak (1998) uses received and sent emails and searched web pages to create a user profile. Speretta & 

Gauch (2005) creates user profile based on user search history by classifying the queries and snippets 

(titles and summaries) into concepts in a reference concept hierarchy.  

These systems require a large amount of historical data and might be computationally expensive to 

mine. Further, when initially learning user interests, systems perform poorly until enough information has 

been collected to construct a reasonably complete user profiling. This is often referred to as the “cold-start 

problem.” It is contention of this study that bookmarks have valuable information in them which can be 

used to create user profile without gathering voluminous data over a longer period of time. Given the fact 

that most users have naturally accumulated bookmarks over time, the cold start problem can be overcome 

when sufficient bookmarks exist.  

2.1.2 Mining Bookmarks  
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Several systems have been built that parse bookmark data and use it for personalization services. 

PowerBookmarks (Li, Vu, Agrawal, Hara, & Takano, 1999) is a web information organization, 

sharing and management tool that parses metadata from bookmarked URL’s and uses it to index and 

classify the URLs. Users can collect bookmarks into PowerBookmarks. The system monitors and utilizes 

user access pattern to provide personalization services such as automated URL bookmarking. If a 

bookmark is saved into PowerBookmarks, its URL is downloaded, its metadata such as keywords are 

parsed and it is indexed and classified. PowerBookmarks considers navigation history, association 

between URLs and existing bookmarks to recommend a URL to bookmark. 

GiveAlink (Stoilova, Holloway, Markines, Maguitman, & Menczer, 2005) is an online bookmarking 

site. They determine similarity of bookmarks by mining the structure and attributes of bookmark files. 

They use Lin’s measure (Stoilova, Holloway, Markines, Maguitman, & Menczer, 2005) to calculate 

similarity of bookmarks. The bookmarks are organized into tree structure for each user. Consider as an 

example a user u with bookmark x in folder Fx
u and bookmark y in folder Fy

u. Lowest common ancestor 

of x and y be folder Fa
u
(x,y). Also let the size of any folder F, |F| be the number of bookmarks in that folder 

and all its subfolders. The size of the root folder is |U|. Then the similarity between x and y for user u is: 

 𝑆𝑆𝑢𝑢(𝑥𝑥,𝑦𝑦) =  
2𝑥𝑥  log |𝐹𝐹𝑎𝑎(𝑥𝑥 ,𝑦𝑦 )

𝑢𝑢 | |𝑈𝑈|⁄

log |𝐹𝐹𝑥𝑥𝑢𝑢 | |𝑈𝑈|⁄ + log |𝐹𝐹𝑦𝑦𝑢𝑢 | |𝑈𝑈|⁄  

This function produces similarity values between 0 and 1. For example, if two bookmarks appears in 

the same folder, then their similarity is 1 because Fx=Fy=Fa(x,y). Also, all other things being equal, the 

similarity between x and y is higher when Fy is a subfolder of Fx, than when Fx and Fy are siblings 

(Stoilova, Holloway, Markines, Maguitman, & Menczer, 2005). Lin’s measure works if bookmarks are 

organized in folders. If a user has a flat list bookmarks, according to user the Lin’s measure, since all 

bookmarks are in the same folder all bookmarks must be similar, which is most likely not true. To avoid 

this problem,  they decide to consider each bookmark in the flat list as if it were its own folder. Since 

Lin’s measure calculates the similarity of bookmarks considering one user’s bookmark set, in order to get 
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a global similarity score for two bookmarks in the system, average score is calculated that are reported by 

each user. So that system can recommend URLs to the user.        

Chirita, Olmedill, & Nejdl (2004) used bookmarks to improve the ranking of search results for a 

specific user. PROS takes bookmarks as an indicator for user preferences and defines a preference set 

based on bookmarks and pages surfed. They compare PROS algorithm with Page Rank and PPR 

(Personalized Page Rank). Page Rank algorithm considers a page that has many backlinks more important 

than others. PPR takes user selected pages as preference set. The result is that PROS returned the most 

relevant URL’s among the three systems assessed.  

Chan P. K. (2000, pg.42) describes a metric to estimate the level of user interest.  The metric uses 

history, bookmarks, content of pages and access logs to estimate user interest. They proposed that if a 

user’s bookmarks are organized into folders, then each folder can correspond to a cluster. Pages that are 

not bookmarked are assigned to the closest cluster measured by the average distance to each bookmarked 

page in the cluster. Ranking of pages are decided by using 1) number of pages visited by the user in a 

cluster during session and 2) how likely it is when a page is in a cluster is referenced.  

Jung & Jo (2003) proposes a user-supported mechanism based on the sharing of knowledge with 

other users through the collaborative Web browsing, focusing specifically on the user’s interests extracted 

for his or her bookmarks.  

 

Figure 3. Interest extracting from bookmarks 

Bookmarks are categorized on Bayesian networks by ontology. A bookmark set is replaced with 

category set for the user by referring to the ontology. The algorithm checks whether a category is 

connected to more than one category. If so, other categories are retrieved that are connected to it. This 
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improves coverage of the user set as well as user preferences. Then it can be used to detect user 

preferences.  

Hyoung-Rae & Chan (2008, p.153) extracts general and specific interest of a user that is called “User 

Interest Hierarchy (UIH)” based on user’s bookmark set. UIH represents user interest at different levels 

and these interests are learned from hierarchical clustering (DHC) to group terms that are extracted from 

bookmark content. 

2.2 PERSONALIZATION OF AWERENESS SERVICES 

2.2.1 SDIs, Ranking Platforms and News Services  

Historically, "Selective Dissemination of Information" (SDI)  has been used to refer to the matching of 

terms in a user-interest "profile" against document descriptors and selecting those documents with a 

specified degree of similarity to the terms of the user-interest profile  (Connor, 1967). In SDI systems, 

modifications of the user profile are made manually by the user or the SDI staff. In most systems the users 

are encouraged to experiment with adjusting their interest profiles to produce the desired results (Connor, 

1967). SDI is the foundation of current awareness services in that it is a personalized service, providing a 

specialized bibliography for each individual served, suited to his own research interests (Connor, 1967). 

The purposes of an SDI service are: (1) to provide a personalized current awareness service for the 

scientist keeping him informed of all research relevant to his interests, and (2) to conserve the time of the 

scientist by screening out irrelevant information, thus making the "information explosion" a manageable 

problem. The two traditional measures of the effectiveness of an Information Retrieval system, "recall" 

and "precision" are useful measures for the evaluation of an SDI system (Connor, 1967) 

PROS (Chirita, Olmedill, & Nejdl, 2004) is a personalized ranking platform for web search. PROS 

takes bookmarks as an indicator of user preferences and defines a preference set based on bookmarks and 

page surfing, then extends this set to contain a set of hubs with high PageRank related to them. The PROS 
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algorithm has been compared to Page Rank and PPR (Personalized Page Rank). The Page Rank algorithm 

considers a page that has many backlinks more important than others. PPR takes user selected pages as 

profile and creates hubs as PROS does. Experimental evidence found that PROS returned the most 

relevant URL’s among three systems assessed.   

2.2.2 Personalized News Services  

Del Corso, Gulli, & Romani ( 2005, pg.98 ) proposed an algorithm to find the most authoritative 

news source and to identify the most interesting events in the different categories to which a news article 

belongs. The most important ranking criteria of their algorithm are freshness of news article and 

authoritativeness of the news agencies. They also claim that mutual reinforcement between new articles 

and news sources can be used for ranking. 

iScore (Pon, Cárdenas, Buttler, & Critchlow, 2007a) aims to accurately predict interesting news 

articles for a single user. In iScore a variety of features are extracted from an article, ranging from topic 

relevancy to source reputation. The combination of multiple features yields higher quality results for 

identifying interesting articles, it also incorporates user-feedback.  

Pon, Cárdenas, Buttler and Critchlow, (2007b) define “an interesting article” as an article that an 

arbitrary user finds interesting. The interesting classification task is to identify the most interesting 

articles from the entire pool of articles for different communities. The 43 RSS feeds considered for 

labeling are feeds of the form “most emailed”, “most viewed”, “most highly rated” and “top stories”. For 

example, RSS feeds such as “Most reviewed Technology” is a good proxy of what the most interesting 

articles are for the technologist. They showed that better recommendation results can be achieved by 

tailoring the parameters to a specific user.  

2.2.3 Adaptive News Readers  

Krakatoa  (Bharat, Kamba, & Albers, 1998) uses explicitly specified keywords as a part of the user 

profile. This provides a feature vector and each article is converted into a term / feature vector. Then all 
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articles are ranked by their similarity score. WebClipping2 (Carreira, Crato, Goncalves & Jorge, 2004) 

used Bayesian classifier to calculate the probability that a specific article will be of interest to the user. 

The system uses implicit feedback which takes account of characteristics such as reading time. 

NewsDude  (Billsus & Pazzani, 2000) creates short term and long term user models based on rated 

stories.  Chan, Sun, & Lim (2001) have designed Categorizer to classify news articles from a news 

channel and it allows the user to create and maintain personalized categories. The user defines his/her 

personalized category by providing a name for category and a set of keywords associated with it. These 

keywords are known as the category profile for the newly created category. 

Table 1 Adaptive News Readers 

System Name Profile Construction Method 

Krakatoa Explicitly specified keywords 

WebClipping2 User specifies their interests from available subjects with a value ranging 
from 0 to 100. 

NewsDude User model is created based on rated stories 

Categorizor User defines his/her personalized category by providing a category name 
and a set of keywords associated with it 

2.2.4 RSS Aggregators 

RSS allows people to subscribe to content and further it has allowed web developers to mash up news 

coverage in new and exciting ways (Catona, 2009). Sites like Regator, Techmeme and Opfine use RSS 

feeds to enhance the way readers find and consume the news.  

Opfine (http://www.opfine.com) is a 100% automatic service collects the financial news stories from 

around the Internet. It reads the publicly available RSS feeds throughout the internet and analyzes their 

polarity (negative or positive). It displays them according to sentiment polarities - negative (red) and 

positive (green). Opfine uses the bespoke sentiment analysis algorithm, specifically designed and adjusted 

for this site to be financial terminology aware. Accuracy of Opfine is around 97%. 

http://regator.com/�
http://techmeme.com/�
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Figure 4. Opfine Screenshot 

Techmeme (http://www.techmeme.com) arranges stories in technology that are scattered across 

hundreds of news sites and blogs into a single, easy-to-scan page. Story selection is accomplished via 

computer algorithm extended with direct human editorial input.  

 

Figure 5. Techmeme Screenshot 

Regator (www.regator.com) is a website that gathers the world’s best blog posts from Blogosphere 

and organizes them. Regator can also be used as an RSS reader.  Users can upload their own selection of 

blogs and can search posts about any keyword. Regator can sort articles based on its popularity in the 

community or recentness.    
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Figure 6. Regator Screenshot 

Bloglines (www.bloglines.com) is an online service for searching, subscribing, creating and sharing 

news feeds and blogs. Users can create categories and make their own personalized page dragging and 

dropping feeds on the main page. 

 

Figure 7. Bloglines Screenshot 

 Google Reader (reader.google.com) allows a user to read and manage RSS Feeds. User can have 

folders and related feeds underneath them as Bloglines. Google Reader returns articles in chronological 

order by default.    

http://www.bloglines.com/�
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Figure 8. Google Reader Screenshot 

Google Reader has feed entry sort option called “magic” that re-orders items in the feed based on 

user’s personal usage, and overall activity in Reader instead of the default chronological order. 

 

2.3 SUMMARY 

This chapter looked at data sources for personalization and following the overview of profiles on web 

data, bookmarks are introduced as the data that is used for personalization purpose. Also SDIs, 

personalized ranking platforms and news services, standard and adaptive RSS readers which are the latest 

personalized information retrieval technologies are reviewed. 

Current adaptive systems require either a large amount of history data which is computationally 

expensive to mine or user-defined profiles which can be a burden on the user. Further, when initially 

learning user interests, systems perform poorly until enough information has been collected for user 
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profiling. It is contention of this study that bookmarks have valuable information in them which can be 

used to create user profile without the need to wait a long period of time until enough implicit data is 

collected.  
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3.0 RESEARCH STATEMENT 

This study seeks to determine whether a user’s bookmarks can be used as a source of information that will 

reflect a user’s interests. Ultimately, but beyond the scope of the current study, we are interested in 

whether integrating bookmark information into a user profile will improve personalized presentation 

order of RSS entries. 

3.1 RESEARCH QUESTION 

The following are important research questions that need to be addressed: 

1) Can bookmark information be converted into profile made up of a set of Interest Clusters? 

2) How to measure the quality of the created Interest Clusters?  

3.2 PRELIMINARY ANALYSIS 

As suggested in the literature, bookmarks saved by a user may be mined in variety ways. They may be 

organized or not, etc. This study reports preliminary investigations one whether a user’s bookmarks can 

be used as a source of information that will reflect a user’s interests. We conducted a number of informal 

reviews of bookmarks to better understand their structure and examine how a bookmark set might be 

converted into user profile.  

3.2.1 How to Describe a Bookmark 

A bookmark is some text and a URL that points to a website. When users bookmark a website, the default 

name of the bookmark is the title of the webpage. Most bookmark tools allow the user to modify this 

name. It is assumed by many that user modifications of a bookmark title make it more important than the 

default name. Seven sets of bookmarks were analyzed to make a preliminary determination of the number 

of modified titles. In the seven sets of bookmarks, there were a total of 858 bookmarks. The number of 
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bookmarks in each of the seven sets was 30, 44, 76, 108, 229, 293.We found several potentially 

interesting things. Of the 858 bookmarks, 100 bookmarks titles were modified. Of those, 70 were 

shortened version of the original title. For example, the title “Books –Blogcritic” was modified to “BC 

Books” which does not bring any value. We suspect that shortened titles were deemed too long to be in 

the bookmark list conveniently. The following table show some examples of original titles of resources vs. 

user modified titles.   

Table 2. Original Titles of Resources vs.. User Modified Titles 

URL TITLE USER GIVEN TITLE 

http://www.etiquettehell.com Etiquette Hell — Your site has redeemed the web and 
my faith in humanity that there are some basic 
fundamental rules to life and personal relationships and 
that the poised will someday be victorious over the 
tacky heathens of the world 

Etiquette Hell 

http://www.adaa.org/ Anxiety Disorders Association of America ADAA  
Anxiety Disorders are real serious and treatable 
America ADAA  Anxiety Disorders are real serious 
and treatable 

ADAA homepage 

http://blogcritics.org/books/ Books - Blogcritic BC Books 

http://health.msn.com/medic
ations/default.aspx?vendor=
google?match_type={ifsearc
h:search}{ifcontent:content}
?pkw=%20medication 

Medications | Prescription Drugs - MSN Health & 
Fitness 

Drug Finder - MSN Health & Fitness 

http://www.youtube.com/wat
ch?v=5VoYHtAGLns 

Peaceful Concentration Relaxation Meditation-Music-
Part2 

Concentration 

http://www.indiaparenting.co
m/pregnancy/data/preg32_00
.shtml 

Pregnancy Pregnancy week-by-week 

http://levin.senate.gov/newsr
oom/supporting/2008/Detain
ees.121108.pdf 

http://levin.senate.gov/newsroom/supporting/2008/Det
ainees.121108.pdf 

csas detainee report 

 

The 30 modified titles that were not shortened bookmarks were analyzed to understand reasons of 

modification. Of 30 bookmarks, 14 of bookmarks’ titles were the URL of the resources – which is often 

the case if the resource is not an HTML page e.g. it is a PDF which was the case for 11 of the 14 pages or 

an image file which was the case for 3 of the 14 pages. 4 of the 30 bookmarks were in another language 

so that user modified it.  

http://blogcritics.org/books/�
http://health.msn.com/medications/default.aspx?vendor=google?match_type=%7bifsearch:search%7d%7bifcontent:content%7d?pkw=%20medication�
http://health.msn.com/medications/default.aspx?vendor=google?match_type=%7bifsearch:search%7d%7bifcontent:content%7d?pkw=%20medication�
http://health.msn.com/medications/default.aspx?vendor=google?match_type=%7bifsearch:search%7d%7bifcontent:content%7d?pkw=%20medication�
http://health.msn.com/medications/default.aspx?vendor=google?match_type=%7bifsearch:search%7d%7bifcontent:content%7d?pkw=%20medication�
http://health.msn.com/medications/default.aspx?vendor=google?match_type=%7bifsearch:search%7d%7bifcontent:content%7d?pkw=%20medication�
http://health.msn.com/drugfinder/default.aspx?vendor=google?match_type=%7bifsearch:search%7d%7bifcontent:content%7d?pkw=%20medication�
http://www.indiaparenting.com/pregnancy/data/preg32_00.shtml�
http://www.indiaparenting.com/pregnancy/data/preg32_00.shtml�
http://www.indiaparenting.com/pregnancy/data/preg32_00.shtml�
http://levin.senate.gov/newsroom/supporting/2008/Detainees.121108.pdf�
http://levin.senate.gov/newsroom/supporting/2008/Detainees.121108.pdf�
http://levin.senate.gov/newsroom/supporting/2008/Detainees.121108.pdf�
http://levin.senate.gov/newsroom/supporting/2008/Detainees.121108.pdf�
http://levin.senate.gov/newsroom/supporting/2008/Detainees.121108.pdf�
http://levin.senate.gov/newsroom/supporting/2008/Detainees.121108.pdf�
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Table 3. Detailed Analysis on Modified Titles 

Number of 
Bookmarks 

Number of 
modified bookmark  
titles 

Number of modified titles 
that are the shortened 
version of the original title 
or user added terms those are 
not descriptive 

Other modifications 
(modifications that are 
different from url 
original title or user adds 
term that are descriptive) 

 NON HTML PAGES 
of other modifications 

30 - - - - 

44 2 - 2 1 (pdf) 

76 16 9 7 5 (pdf) 

78 1 1 - - 

108 19 13 6 1 (pdf) 

229 18 16      2  1 (pdf) 

293 44 31 13 (3 in other 
language) 

6 (3 pdf, 3 image) 

 

Remaining 16 bookmarks of 30 non-shortened modified bookmarks sometimes had descriptive terms 

for the resources; sometimes user just shortened it using his words. Here are some examples: 

Table 4. Valuable Modified Title Examples 

 

Based on this analysis, we believe it will be true that modified bookmarks will be more representative 

of the topic of interest when a URL is replaced with a title, but are not more descriptive when the title is 

merely shortened.  

TITLE USER GIVEN TITLE 

Buttonator Button Creator 

Justices Hear Case on Right to Choose Defense Counsel - New York Times nyt scalia twinkie defense 

Judge of the Day: Diane Boswell - Above the Law - A Legal Tabloid - News, 
Gossip, and Colorful  Commentary on Law Firms and the Legal Profession 

cell phone contempt 

http://www.nytimes.com/2006/04/19/washington/19scotus.html?_r=1�
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Since modified titles would not bring that much valuable information about the URL, its body text 

and only the original URL title are considered to extract representative terms for a URL. In order to 

decide the best and efficient way to extract representative terms for a URL, all body text, title text and 

combination of title text and H1 title text in the body are compared.  

The Table 5 shows tag clouds of various combinations of information sources title text, title and 

h1text and all body text. Most of the time, title and h1text have the same terms. It might be argued 

combining h1 text brings nothing valuable, but actually even though they are very similar, it appears to 

promote more relevant terms. It is also possible that title and h1 text are exactly the same so that having 

h1 will not make any sense but also it will not harm. On the other hand, taking account all body text 

brings too much noise and does not describe a concept. Based on all this analysis, we believe that a 

combination of title and h1 text will be most representative of a URL. 

Table 5. Tag Clouds of Various Combinations of Information Sources Titles 

TITLE TITLE + H1 ALL BODY TEXT 

http://www.jamendo.com/en/ 

  

 

http://www.recipezaar.com/32416 

   

http://www.gardeningpatch.com/herbs/growing-basil.aspx 
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http://www.w3schools.com/ASP/asp_send_email.asp 

   

3.2.2 K-Means Clustering on Bookmarks 

K –means clustering classifies a given data set by partitioning n vectors into k clusters. This is 

accomplished by assigning each vector to a set of randomly assigned points that serve as centroids for 

subsets of the data set. The location of the centroid is moved to the center of the assigned vector and then 

the closest vectors are again assigned to these points. This process continues until the sets don’t change 

and or the center points stop moving (Segaran, 2007, p. 33) 

One goal of this research is to convert bookmarks into interest clusters. In order to create these 

clusters, K-means clustering is used to cluster user bookmarks. Using the following process: 

1. For each bookmark URL, a representative vector will be created based on its text content as 

described in section 3.2.1 

2. Using K-Means clustering algorithms, these vectors are clustered into k subsets with respect 

of their similarity. 
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Figure 9. K-means Clustering on Bookmarks 

In order to go further, it is necessary to decide how many clusters should be created with K-Means 

clustering algorthm so that they best define points of interest for user. 

A bookmark set is clustered into k subsets where k is 5, 7, 9 or 11. In order to decide wheather a 

cluster set is a good estimation of user interest or not, user evaluation is needed. It is our hope that we will 

find particular levels of influenced by the number of bookmarks or the use of folders, or some other 

variable.  

3.2.3 Quality Measures for Clusters   

A cluster consists of some number of vectors where each vector represents a bookmark. All bookmarks in 

the cluster might be from the same folder, or some of them might be from different folders. It is assumed 

that as much as a cluster gets a good portion of bookmarks from the same bookmark folder, it represents a 

concept that is more likely an interest for user. One goal of this exploratory research is to determine if 

human judgement can be predicted based on objective measures of bookmark sets. 

For quality measure of a cluster the following variables are defined:  

CBMFi    = Total count of bookmarks in the cluster that belongs to folder i. 

BMFi  = Total count of bookmarks in folder i 

The proportion of CBMFi/ BMFi is called folder score for folder i and donated as FSi.  

𝐹𝐹𝐹𝐹𝑖𝑖 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹

𝐵𝐵𝐵𝐵𝐹𝐹𝐹𝐹
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Folders whose 𝐹𝐹𝐹𝐹 >= 0.4 are called ‘dominated folders’ and donated as DF. 

Folders whose 𝐹𝐹𝐹𝐹 < 0.4 are called ‘noise folders’ and donated as NF. 

Cluster Quality Score (CQS) is calculated as below: 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
∑ 𝐹𝐹𝐹𝐹𝑖𝑖  −   ∑ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖  𝑁𝑁𝑁𝑁 𝑖𝑖 𝑖𝑖𝑖𝑖  𝐷𝐷𝐷𝐷

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷
 

For example, a cluster has 9 bookmarks from folder A that has total 9 bookmarks and 2 

bookmarks from folder B that has total 10 bookmarks. FSA is 1 and FSB is 0.2. In this case, A is a 

dominated folder (DF) and B is a noise folder (NF). Calculated CQS is 0.8 for this cluster. Since the 

cluster has all bookmarks from A, CQS is high and so high CQS indicates it is a good cluster. 2 

bookmarks from B do not create a negative effect on CQS since they are from a NF. 

For another example, a cluster has 4 bookmarks from folder A that has 5 bookmarks, 5 

bookmarks from folder that has 27 bookmarks and 2 bookmarks from folder that has 13 bookmarks. FSA 

is 0.8, FSB is 0.18 and FSC is 0.15. In this case, A is a DF and B & C are NF. Calculated CQS is 0.47. 

Since this cluster has bookmarks from different folders, its quality is not considered as good as previous 

example.  

Average of the Cluster Quality Scores for a k-cluster set is defined as Cluster Set Quality Score 

and denoted as CSQSk. This score is tentatively proposed as a measure of the best clustering set between 

5, 7, 9, 11 cluster sets.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 =  
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷 

CSQS formula depends on the folder scores so it is important to define what a ‘folder’ means in a 

bookmark set. A bookmark set might have linear folders without any subfolder, as example user 

bookmark set A is organized into 8 folders and these 8 folders do not have any subfolders. This kind of 

bookmark set is called bmset with 1-level folders. A bookmark set also might have folders in hierarchical 



35 
 

structure with many subfolders. Each subfolder creates a level. This kind of bookmark set is called a 

bmset with k-level folders where k is the level of subdirectories. As an example, let say bookmark set B is 

organized into 5 folders. Of the 5 folders, 2 folders have 3 subfolders in them. Of 3 subfolders, 1 of them 

has 3 subfolders. This bookmark set is called a bmset with 3-level folders.  

The CQS formula is design for bookmark sets with 2-level folders. If a bookmark set has more 

than 2 level folders, then it is converted into bookmark set with 2-level folders using the following rules: 

• If a 1-level folder has only subfolders, each subfolder is considered as a ‘folder’. 

• If a 1-level folder has one or more bookmarks and some subfolders, 1- level folder is 

considered as a ‘folder’ with all bookmarks that are not in the subfolders. Each subfolder is 

also considered as ‘folder’. 

• If a folder’s subfolder has a subfolder, in other words, if a bookmark set has 3-level folders, 

then all 3-level folders’ bookmarks are combined and added to 2-level folder. 

 Let say folder A has a subfolder B and x number of bookmarks. B has 2 subfolders C and D and 

some number of bookmarks in C and D. Folder A is considered a ‘folder’ with x number of bookmarks 

and B is considered another ‘folder’ with all bookmarks of C and D.  

In order to see how much different the CSQS score when 3-level folders are taken account or not, 

three bookmark sets that have 3-level folders were analyzed. Cluster sets are created and cluster scores 

are calculated taking account 2-level subfolders and also 3-level subfolders. Cluster Set Quality Scores 

are compared. The Figure 9 shows that there does not appear to be any significant effect of using a 

bookmark set with 2-level or 3-level folders on CSQS.  
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Figure 10. Effect of using 3-level folder vs 2-level folders on CSQS 

A bookmark set that has 185 bookmarks and 17 folders has been classified into 5, 7, 9 and 11 

clusters with K-means clustering algorithm. All bookmarks in this set are organized into folders, 32 of 

them are organized in sub folders. Table 6 shows the calculated cluster set scores for clustering level. 

According to the table, 9-Cluster set is expected to be the best cluster set for user interest. (Keep in mind, 

the goal of building and assessing a CSQS is to validate its use as a predictor of human judgment.) 

Table 6. Calculated Cluster Set Scores for Clustering Level 

Cluster set  Cluster Set Quality Score (CSQS) 

5 0.11 

7 -0.10 

9 0.24 

11 0.14 

 

In order to see how well the best interest cluster is predicted using CSQS, users were asked to rate 

the clusters that were created with 5, 7, 9 and 11 clustering process. Tag clouds of clusters were created as 

visual representation of them. Clusters are displayed in random order to the user who is asked to rate 

clusters on scale of 1-7 (1 is less relevant, 7 is most relevant). Based on user relevancy ratings of clusters, 
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average score is calculated for cluster set quality score for user. This score is called cluster set relevancy 

score and denoted as CSRS. Table 7 shows the User Relevancy scores for each clustering level. 

According to CSRS scores, 9-Cluster set is the best as it is expected. 

Table 7. User Relevancy Scores for Each Clustering Level 

Cluster set  Cluster Set Relevancy Score (CSRS) 

5 4.2 

7 4.0 

9 4.7 

11 3.3 

 

Another bookmark set has 293 bookmarks in 75 folders. All bookmarks in this set are organized 

into folders, in other words there is not any bookmark that is not in a folder. The bookmarks were 

clustered into 5, 7, 9 and 11 clusters using K-means. Table 8 shows the system predicted scores for each 

clustering level. According to the table, 5-Cluster set is expected to be the best cluster set for user interest. 

Table 8. System Predicted Scores for Each Clustering Level 

Cluster set  Cluster Set Quality Score (CSQS) 

5 0.81 

7 0.62 

9 0.62 

11 0.65 

 

User is asked to rate the randomly displayed cluster tag clouds that are created with 5, 7, 9 and 11 

clustering process. Table 9 shows the user relevancy scores for each clustering level. According to CSRS 

scores, the 7-Cluster set, not the 5-Cluster set, is the best. This is not predicted, but do note that 5 and 7 
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cluster sets are closer to each other than the 9 and 11. While the results are not strongly encouraging, we 

think there is still some promise here. 

Table 9. User Relevancy Scores for Each Clustering Level 

Cluster set  Cluster Set Relevancy Score (CSRS) 

5 4.6 

7 4.85 

9 4.0 

11 4.2 

  



39 
 

4.0 METHODOLOGY 

This research proposes to use bookmarks to create interest cluster sets and a method to measure the 

quality of interest clusters sets using bookmark hierarchal structure. Short of a controlled experimental 

study, we carried out further exploratory analysis of several more bookmark sets 

4.1 DEVELOPMENT OF CLUSTER SETS BASED ON USER BOOKMARKS  

Based on preliminary analysis, we continue to use a combination of bookmark title and h1 text on the 

body of the page is the most representative text for a bookmark as well as the most efficient way to 

describe it. For each bookmark, a representative vector was created based on its text content and vectors 

will be clustered using K-means clustering algorithm.  This process has been achieved with a java 

program. The steps of this process are as follows: 

1) All bookmark URLs, their titles and if exist their H1 texts are saved in MySQL database for a 

given username. If the bookmark is in a folder, folder name added to the record  

2) All bookmark titles and H1 texts are retrieved and terms are extracted to create dictionary. All 

stop words and adjectives are removed  

3) For each bookmark, its title and h1 text are combined removing all stop words, adjectives and 

digits as representative text. Bookmark vector is created based on the dictionary. If a dictionary 

term appears in bookmark representative text then frequency of the term is placed on the vector. 

4) After all bookmark vectors are created, K-means clustering is performed using 5, 7, 9, 11 clusters. 

All clusters created at end of the each clustering process are called k-cluster set where k is 5, 7, 

9, or 11.  
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4.2 EXPERIMENTAL DESIGN 

In section 3.2.3, Cluster set quality score metric (CSQS) is explained. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 =  
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷 

The study examines the quality of this metric to predict the best cluster set for the user. 

4.2.1 Predicting the Best Clustering Level for Users 

The study examined user satisfaction with created interest clusters to determine whether CSQS score 

could return the same clustering level as the most qualified level for users. The participants were 

volunteers who have at least 70 bookmarks that were organized in folders. Users provided bookmarks for 

cluster construction and evaluated the created clusters. The system returned clusters in randomized order 

and they were displayed to the participants for relevancy rating. User  were asked to rate the relevancy of 

the clusters on seven-point scale; where ‘1’ means not interesting at all, ‘7’ means extremely interesting. 

Before rating the relevancy, subjects were informed that the results would be displayed in a random order. 

The subjects in this experiment are considered experts on their interests. Their relevancy ratings for each 

cluster are considered perfect.  

The relevancy ratings of each cluster were used to calculate cluster set relevancy score (CSRS). 

Average of the clusters’ scores that are belongs to the k-cluster set is defined as CSRS k for k-cluster set.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 =  
∑ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝑘𝑘    where k =  5, 7, 9, 11 

Based on the CSRSs, cluster sets will be ranked for the perfect ordering. 

4.2.1.1 Evaluation Procedure 

To evaluate the performance of the proposed CSQS metric, the proportion of bookmark sets that have 

highest CSRS and CSQS for each clustering level will be compared.  
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In our experiment, we will examine whether the best clustering level based on CSQS score and CSRS 

score is the same or not.   

4.2.1.2  Expected Result 

It is expected CSQS and CSRS return the same clustering level as the level that is rated most highly by 

the participants.  

4.2.1.3 Analysis Procedure 

After user relevancy ratings, average user relevancy scores (CSRS) are calculated for each clustering 

level. Based on the calculated score, clustering levels are ranked from the highest score to lowest for each 

user as perfect ordering of user satisfaction indicating the best clustering level that creates best clusters 

defining user interest points. Number of users is counted for each clustering level that is obtained as the 

best clustering level according to CSRS rankings of each user.  Clustering level with the best portion of 

number of user is decided to be the best clustering level. 

At the same time, CSQS are calculated for each clustering level and ranked from the highest score to 

lowest for each user. Number of users is counted for each clustering level that is obtained as the best 

clustering level according to CSQS rankings of each user. Clustering level with the best portion of 

number of user is decided to be the best clustering level.  

At the end of the calculations, obtained two clustering level are expected to be the same. This would 

indicate that CSQS can be used of deciding the best clustering level that provides the most likely the best 

cluster set would satisfy users.  
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5.0 RESULTS AND DISCUSSIONS 

This chapter describes the result of the experiments. 

5.1 PARTICIPANTS AND OVERALL PROCEDURE  

The assessment was carried out between February and April 2010. The participants were individuals who 

have at least 70 bookmarks that were all organized in folders. Nine students from University of Pittsburgh 

applied to be participant. All participants provided their bookmarks for cluster construction and evaluated 

created clusters. Bookmarks are parsed and their titles and H1 texts are extracted and combined for 

representation of a bookmark set. Then, K-Means clustering is performed on it. It has been classified into 

5, 7, 9, 11 cluster sets. 5, 7, 9, 11 are called clustering levels in the section. A total 32 clusters were 

created (5+7+9+11). They were converted into tag clouds. Each cluster tag cloud provides visual 

representation of potential interest clusters for user. These tag clouds are provided to the user in 

randomized order for relevancy rating. Users were  asked to rate the relevancy of the clusters on seven-

point scale; where ‘1’ means not interesting at all, ‘7’ means extremely interesting. Before rating the 

relevancy, subjects were informed that the results will be displayed in a random order. The subjects in this 

experiment are considered experts. Their relevancy ratings for each cluster are considered perfect.  Table 

10 shows an example of a part of a document that is sent user for relevancy rating. 

Table 10. Example of relevancy rating document 

Please Rate Clusters in scale of 1-7 .  1 is LESS RELEVENT with your interest – 7 is MOST RELEVENT 
with your interest and label the clusters if you can. Write your answers in the box below of the cluster. 

    

5 firefox addons 6 tomcat 6 music, guitar tabs 1 doesn’t ring a bell 
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6 watching video online  5 webserver on mac 6 ajax and web 
programing 

6 watching video online 

5.2 DISCUSSIONS OF RESEARCH RESULTS  

5.2.1 Comparison of User Rated and System Predicted Cluster Set Qualities 

In this section, Cluster Set Relevancy Score that is obtained after user relevancy ratings and Cluster 

Set Quality Scores that is implemented to predict the human judgment of the quality of interest clusters 

are examined whether the system prediction is successful determining the best clustering level.  

Table 11 shows the scores after users’ relevancy rating (CSRS) and Table 12 shows the system 

predicted scores for each clustering level (CSQS). 

 

Table 11. Cluster Set Relevancy Scores after user relevancy rating (CSRS) 

User 
ID 

Number of 
bookmarks 5-cluster set 7-cluster set 9-cluster set 11-cluster set 

1 88 4.00 4.00 3.10 2.90 
2 104 2.20 2.71 2.33 3.82 
3 113 3.60 2.00 1.88 2.50 
4 185 4.20 4.00 4.78 3.36 
5 243 2.80 2.57 2.30 2.18 
6 281 4.80 4.86 4.00 4.27 
7 303 5.80 4.71 5.56 5.73 
8 325 4.40 4.50 4.60 4.70 
9 358 3.60 4.29 2.56 1.91 
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Table 12. Cluster Set Quality Score that System Predicts (CSQS) 

User 
ID 

Number of 
bookmarks 5-cluster set 7-cluster set 9-cluster set 11-cluster set 

1 88 0.22 0.12 0.08 0.05 
2 104 0.46 0.04 0.24 0.12 
3 113 -0.64 -0.01 0.05 0.03 
4 185 0.04 0.25 0.16 0.17 
5 243 0.15 0.22 0.07 0.12 
6 281 0.66 0.62 0.55 0.62 
7 303 -0.23 -0.07 -0.02 -0.05 
8 325 0.22 0.11 0.19 0.12 
9 358 0.35 0.23 0.03 0.06 

 

Figure 11 shows the CSQS distribution on Number of Bookmarks. 

 

 

Figure 11. CSQS Distribution on Number of Bookmarks 

 

Before comparing CSRS and CSQS, CSRS is normalized in order to have scores smaller than 1. Table 13 

shows the normalized CSRSs. 
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Table 13. Normalized CSRSs 

User 
ID 

Number of 
bookmarks 5-cluster set 7-cluster set 9-cluster set 11-cluster set 

1 88 0.57 0.57 0.44 0.41 
2 104 0.31 0.39 0.33 0.55 
3 113 0.51 0.29 0.27 0.36 
4 185 0.60 0.57 0.68 0.48 
5 243 0.40 0.37 0.33 0.31 
6 281 0.69 0.69 0.57 0.61 
7 303 0.83 0.67 0.79 0.82 
8 325 0.63 0.64 0.66 0.67 
9 358 0.51 0.61 0.37 0.27 

 

Figure 12 shows the Normalized CSRS distribution on Number of Bookmarks.  

 

Figure 12. Normalized CSRS distribution on Number of Bookmarks 
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Table 14. Systems Two Bests and Users Two Best Cluster Set Levels and Scores 

User 
ID  

Number of 
bookmarks 

System’s Best System’s 2. Best Users’ Best Users’ 2.Best 
Level Score Level Score Level Score Level Score 

1 88 5 0.22 7 0.12 5 0.57 7 0.57 
2 104 9 0.46 5 0.24 11 0.55 7 0.39 
3 113 11 0.05 9 0.03 5 0.51 11 0.36 
4 185 11 0.25 7 0.17 9 0.68 5 0.60 
5 243 7 0.22 5 0.15 5 0.4 7 0.37 
6 281 7 0.66 5 0.62 5 ,7 0.69 5,7 0.69 
7 303 11 -0.02 9 -0.05 5 0.83 11 0.82 
8 325 9 0.22 5 0.19 11 0.67 9 0.66 
9 358 5 0.35 7 0.23 7 0.61 5 0.51 

 

Figure 13 shows the CSQS and CSRS scores for 2 best cluster set levels. CSRS1 and CSQS1 indicate 

the scores of the best levels. CSRS2 and CSQS2 indicate the scores of the second best levels. 
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Figure 13. CSQS and CSRS scores for 2 Best Cluster Set Levels 

 

Figure 14 shows the System’s Best and Users’ Best Cluster Set levels and how they fit.  

 

Figure 14. System’s Best and Users’ Best Cluster Set level 
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It would be perfect if all user’s best matches with system’s best and user’s second best matches with 

system’s second best. But there are some cases such as user’s best matches with system’s second best or 

user’s second best matches with system’s best or none of them matches at all. In order to see the 

differences between the probabilities of being accurate or not, all probabilities are scored from 0 to 4:  

 4 is when system’s best and users’ bests are all different. 

 3 is when system predicts only the best or the second best with wrong order. 

 2 is when system predicts only the best or the second best with correct order. 

 1 is when system predicts both users’ 2 bests with wrong order. 

 0 is when system predicts both users’ 2 best with correct order. 

Figure 15 shows the prediction difference score. 

 

Figure 15. Prediction Difference Scores 

 

It looks like system prediction is better with less than 100 bookmarks and if number of bookmarks 

between 200 and 300. With more than 300 bookmarks system prediction does not look good. In order to 
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1. Relationship between total number of bookmarks in a bookmark set and user satisfaction of 

created interest clusters for each clustering level.  

2. Relationship between number of folders in a bookmark set and user satisfaction of created 

interest clusters for each clustering level. 

Figure 16 shows the distribution of CSRS on number of bookmarks. As it is seen, none of the 

clustering levels has a linear relationship by the increasing order of number of bookmarks. 

 

Figure 16. Distribution of CSRS on number of bookmarks 

 

As the same above, there is no relationship between CSRS and the increasing number of folders of 

bookmark sets as seen on Figure 17. 
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Figure 17. Distribution of CSRS on number of folders of bookmark sets 
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6.0 CONCLUSIONS 

This chapter describes the contributions and implications of this research. Then, future work is discussed. 

6.1 CONTRIBUTIONS AND IMPLICATIONS 

We examined whether a user’s bookmarks can be used as a source of information that will reflect a user’s 

interests. Ways to extract the best descriptive information from bookmarks were explored. A bookmark is 

represented with all body text including bookmark title and also represented just with bookmark title and 

H1 text in the body. It was found that a combination of H1 text and bookmark titles provided the best 

descriptive information for a bookmark. 

After each bookmark is replaced with its representation, they are all converted to vectors so that a 

bookmark set becomes a bag of bookmark vectors. K-Means clustering was performed on a bookmark set 

of create four sets of clusters - 5, 7, 9, 11 cluster sets. The better quality clusters a cluster set has, the 

clustering level returns a better estimation of user interest than other levels. A cluster is a list of terms 

extracted from bookmarks. To measure the quality of clusters, all clusters are converted into tag clouds to 

present visualized representation of clusters. These visualizations were displayed randomly to users for 

relevancy rating. After user ratings, for each clustering level average of rating scores are calculated as 

cluster set relevance score (CSRS) and it is used to determine the best clustering level that is an indication 

of better representation of user interest. 

CSQS equation is implemented to predict the chances of levels being the best without user interaction 

looking at the number of bookmarks in the clusters that falls into the same folder. It appears that CSQS 

works for predicting best two clustering levels with less than 100 bookmarks and if number of bookmarks 

between 200 and 300. With more than 300 bookmarks system seems like not working well. To draw a 

solid conclusion it is necessary to conduct the study with larger data set. 
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6.2 FUTURE WORK 

This study explored one way to determine the best clustering level for bookmark information in order to 

get most relevant clusters for user interest. It is necessary to conduct a large and more controlled study of 

bookmarks. 

Browser bookmarks are used in this study. Current trend is online bookmarking sites and similar 

study might be conducted using delicious online bookmarking site as basis. Unlike from browser 

bookmarks, tags are used for organization of URLs. Usage of tags might cure some problems that occur 

in browser bookmarks. For example, the monolithic structuring of URLs that means a URL can be listed 

in one folder without duplicates in browser bookmarks. Since a resource can be tagged with several tags, 

online bookmarking sites overcome this problem. Tagging system also gives user a new way to 

conceptualize resources better than browser bookmarks’ hierarchical folder structure. 

In our study only bookmarks are used as user interest source. Since user interest is more dynamic than 

bookmarks, other implicitly aggregated information sources might be integrated with bookmarks to 

construct a profile – eg. monitoring a user’s browsing history.   

Our study is part of a bigger research question: Ranking RSS feeds using bookmark based user 

profiles. For the future work, an RSS reader could be implemented that takes user bookmarks to create 

user profile and displays a ranked list of RSS feed entries based on bookmark user profile. As literature 

shows, most of the current RSS readers do not provide personalization. If they provide personalization, 

they use either explicitly provided keyword by user as user profile or large history, browsing data that are 

computationally expensive to mine. There has not explored a new way to make use of RSS readers to 

create user profile without user interaction but economically constructed. 

The goal of this future research is to determine if the user bookmark information could be used to 

improve user experience by providing a better presentation order of feed entries and ranking of entries 

compared to other news readers. Dr. Michael Spring, advisory of this thesis, has an implemented RSS 
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aggregator that used k-means clustering techniques to build clusters of news. These clusters might be 

mined to determine user points of interest looking at the users’ news access patterns. Since RSS feeds are 

very dynamic, bookmark information might be combined with user access pattern to predict user 

interested news. Envisioned system over view is that user provides his/her bookmarks for user profile 

construction and RSS feeds that user reads regularly. These feeds are saved into the RSS reader and as 

user uses the reader, it collects user news access pattern and combine this information with created 

bookmark based user profile and returns a ranked list of feed entries for user relevancy rating. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑞𝑞 = 𝑀𝑀𝑞𝑞�
(2𝑟𝑟(𝑗𝑗 ) −  1)
log⁡(1 + 𝑗𝑗)

𝐾𝐾

𝑗𝑗=𝑖𝑖

 

where 𝑀𝑀𝑞𝑞  is the calculated normalization constant. The perfect ordering would obtain NDCG of 1; 

each r(j) is an integer representing the relevancy rated by human. NDCG rewards relevant documents in 

the top ranked results more heavily than those ranked lower and punishes irrelevant documents by 

reducing their contributions to NDCG. 

  



54 
 

7.0 APPENDIX A. CSRS AND CSQS COMPARISON CHARTS OF 

SUBJECTS  
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