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COMPARING SPECTRAL DENSITIES IN REPLICATED TIME SERIES

BY SMOOTHING SPLINE ANOVA

Sangdae Han, PhD

University of Pittsburgh, 2008

Comparing several groups of populations based on replicated data is one of the main concerns

in statistical analysis. A specific type of data, time series data, such as waves of earthquakes

present difficulties because of the correlations amongst the data. Spectral analysis solves

this problem somewhat because the discrete Fourier transform transforms the data to near

independence under general conditions.

The goal of our research is to develop general, user friendly, statistical methods to com-

pare group spectral density functions. To accomplish this, we consider two main problems:

How can we construct an estimation function from replicated time series for each group and

what method can be used to compare the estimated functions? For the first part, we present

smooth estimates of spectral densities from time series data obtained from replication across

subjects (units) (Wahba 1990; Guo et al. 2003). We assume that each spectral density,

f(ω), is in some reproducing kernel Hilbert space and apply penalized least squares methods

to estimate f̂(ω) in smoothing spline ANOVA. For the second part, we consider confidence

intervals to determine the frequencies where the spectrum of one spectral density may dif-

fer from another. These confidence intervals are the independent simultaneous confidence

interval and the bootstrapping confidence interval (Babu et al. 1983; Olshen et al. 1989).

Finally, as an application, we consider the replicated time series data that consist of shear

(S) waves of 8 earthquakes and 8 explosions (Shumway & Stoffer 2006).
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1.0 INTRODUCTION

1.1 PROBLEM STATEMENT

The goal of this thesis is to develop a general statistical methodology for comparing spectral

density functions across groups. To accomplish this, we will construct smooth and continuous

estimates of the spectral density from time series data obtained from replication across

subjects (units).

The basic idea of our thesis is as follows; suppose a time series, y1, y2, . . . , yn, is given;

let I(ωk) and f(ω) denote the periodogram and the spectrum of the time series at Fourier

(fundamental) frequencies ωk = k/n where k = 0, 1, 2, . . . , n−1 and frequency ω, respectively.

For a specific frequency ω, say ω0, we assume ωk′ is the closest Fourier frequency to ω0 and

ωk′ → ω0 as n →∞. For ωk′ ∈ (0, 1/2), I(ωk′ ) is distributed asymptotically as f(ω0) times

a random variable with a Gamma distribution whose shape and scale parameters are 1 and

1. Moreover, at frequencies ωk1 6= ωk2 , I(ωk1) and I(ωk2) are asymptotically independent

under general conditions.

Suppose we have G groups and each group consists of replicated time series data from

fg(ω|xi) where g = 1, 2, . . . , G and xi = [xi1, xi2, . . . , xip] is a vector of p group specific

covariates for subject i. We assume that xi consists of only group identifiers. If xi contains

other covariates such as age or temperature, then these covariates (if they differ between

groups) would be confounded with differences between group spectral densities.

Now we assume each such spectral density is given by

fg(ω|xi) = exp[βg0(ω) + βg1(ω)xi1 + βg2(ω)xi2 + · · ·+ βgp(ω)xip], (1.1)

1



where [βg0(ω),. . . , βgp(ω)] is a vector of regression coefficients specific to group g and fre-

quency ω. The goal is to discover if there are any differences in the group spectra and to

find the frequencies, ω, where the spectrum of one group differs from that of another. For

this purpose, we can consider the confidence bands for pairwise log-differences for all groups,

log fg1(ω|xi) − log fg2(ω|xi), where g1, g2 = 1, 2, . . . , G (g1 6= g2). Then, we can simply de-

termine for each band whether or not zero is contained in the band at frequencies ω. For

example, if zero is contained in the confidence band for the log-difference between group g1

and g2 at ω, conclusion H0 : fg1(ω|xi) = fg2(ω|xi) is reached at ω. Note that these confidence

bands should be simultaneous confidence bands for all
(

G
2

)
pairs. In the simplest case in (1.2)

and (1.3) below, log f(ω|xi = 1)− log f(ω|xi = 0) can be expressed as β1(ω). We will use the

two different confidence intervals (bands) for β1(ω) to determine the frequencies, ω, where

the spectra of the two groups are different; these confidence intervals are the independent si-

multaneous confidence interval and the bootstrapping confidence interval for functions [6, 21].

Suppose we wish to compare the spectra of two groups where we observe l1 subjects from

group 1 and l2 subjects from group 2. Then, we model the two group spectra as in (1.2),

f(ω|xi) = exp[β0(ω) + β1(ω)xi] (1.2)

where xi = 1 for i = 1, 2, . . . , l1 and xi = 0 for i = l1 + 1, l1 + 2, . . . , l = l1 + l2. Note that

equation (1.2) is a decomposition of the two spectra, and that β1(ω) is

β1(ω) = log
f(ω|xi = 1)

f(ω|xi = 0)
. (1.3)

β1(ω) has an important interpretation: if β1(ω) > 0, then the spectral power of group 1 at

ω is greater than that of group 2, and if β1(ω) < 0, then the spectral power of group 2 is

greater than that of group 1 at ω. Therefore, our analysis will be focused on β1(ω) for each ω.

The motivation of our research is from Wahba [29]. That is, suppose {yt}n
t=1 is a sta-

tionary series. Instead of indexing Fourier frequencies by ωk = k
n
, we henceforth simply

2



index them by k only. Thus, I(k) ≡ I(ωk). According to standard asymptotic theory (e.g.

[15, 29]), and using (1.2),

I(k) = f(k)Uk (1.4)

log I(k) = log f(k) + εk (1.5)

log I(k) = β0(k) + β1(k)xi + εk (1.6)

where k = 1, 2, . . . , [n
2
] if n is odd, and k = 1, 2, . . . , [n−1

2
] if n is even, Uk

ind∼ γ(1, 1) where γ

denotes the Gamma distribution, and the εk are independent random variables having the

distribution of log γ(1, 1) so that E(εk) = −0.57721 and Var(εk) = π2/6.

We will use log I(k) = log f(k) + εk in (1.5) as the basis of our model. Because log I(k1)

and log I(k2) are asymptotically independent for k1 6= k2 as n → ∞, we regard (1.6) as a

simple regression for estimation of β0(k) and β1(k). The differences from a simple regression

are that the estimates are smooth and εk
ind∼ log γ(1, 1).

We will finally analyze the replicated time series data that consist of shear (S) waves of

8 earthquakes (group 1) and 8 explosions (group 2). Each sequence of data consists of 1024

points (40 points per second) that are recorded in seismic recording stations in Scandinavia

[28]. Figure 1.1 shows one series of earthquakes and explosions series each and the R code

is shown in Appendix D.1.

1.2 THESIS OUTLINE

This thesis is organized in the following fashion: In Chapter 2, brief reviews of some related

definitions for our research are given. In addition, we review the papers Wahba [29] and

Diggle and Al Wasel [9] that provided motivation for our research in Section 2.2. Chapter 3

is devoted to our estimation method. This chapter contains the notions of smoothing spline

estimation and the penalty functional in reproducing kernel Hilbert spaces. The model and

the modified (centered) model for estimating spectral densities are also presented. In Chap-

ter 4, we present simulation results and an application to the real time series data that

3



validate our proposed estimation method described in Chapter 3. In particular, we focus on

two confidence intervals used to validate our estimation method. Finally, Chapter 5 gives a

summary of the results of our thesis and issues for our future studies.

Figure 1.1: Arrival phases from S waves from an earthquake and explosion.

4



2.0 LITERATURE REVIEW

Many of the basic ideas which are the foundation of this thesis are from spectral analysis

(e.g. [28]), Wahba’s estimation method [29, 30], and spectral analysis of replicated time

series [9]. These ideas are reviewed in this chapter.

2.1 BACKGROUND OF THE PROBLEM

Our problem in this thesis deals with spectral estimation which is based on periodograms

(log-periodograms). Therefore, I briefly give an overview of the definitions and properties

of the spectral density, the periodogram, the approximate confidence interval for spectral

density at w, and smoothing spline analysis of variance in reproducing kernel Hilbert spaces.

2.1.1 Spectral Density

Given a stationary process {yt}, t = 0,±1, . . . with autocovariance function, γ(h), which is

absolutely summable1,
∑∞

h=−∞ |γ(h)| < ∞, then the spectral density, f(ω), of the process is

defined as2

f(ω) =
∞∑

h=−∞

γ(h)e−2πiωh − 1/2 ≤ ω ≤ 1/2, (2.1)

1If this condition is not satisfied f(ω) is not continuous.
2A frequency is measured in cycles per time point. i.e., ω = 1

T where the period, T , is measured the
number of points in a cycle. Meanwhile, some books (e.g. [4]) use the frequency as v = 2πω instead of ω.
In this case, v is radians per unit time, and −π ≤ v ≤ π.

5



and

γ(h) =

∫ 1/2

−1/2

e2πiωhf(ω)dω h = 0,±1,±2, . . .

The spectral density is similar to a probability density in that f(ω) ≥ 0 for all ω, which

holds because γ(h) is a non-negative definite operator. The important property is that the

Var(yt) can be expressed by f(ω) and γ(h)3 in (2.2). It means that the variance of {yt} is

the integrated spectral density over all of the frequencies.

Var[xt] ≡ γ(0) =

∫ 1/2

−1/2

f(ω)dω. (2.2)

The properties of f(ω) for all −1/2 ≤ ω ≤ 1/2 are as follows.

1. real-valued function: f(ω) is a real value.

2. nonnegative: f(ω) ≥ 0.

3. even function: f(ω) = f(−ω).

4. period = 1: f(ω + 1) = f(ω).

2.1.2 Discrete Fourier Transform (DFT) & Periodogram.

If time series data y1, y2, . . . , yn are given, the discrete Fourier transform of this data is

defined as

d(ωk) =
1√
n

n∑
t=1

yte
−2πiωkt (2.3)

for k = 0, 1, 2, . . . , n− 1, where the frequencies ωk = k
n

are called Fourier frequencies.

The periodogram is then defined as

I(ωk) = |d(ωk)|2 =
1

n

∣∣∣∣ n∑
t=1

yte
−2πiωkt

∣∣∣∣2 (2.4)

for k = 0, 1, 2, . . . , n− 1, with I(0) = nx̄2.

3γ(h) is also the characteristic function of the f(ω). In other words, γ(h) and f(ω) have the same
information about the process. The difference is that γ(h) is defined in the time domain and f(ω) is defined
in the frequency domain.

6



I(ωk) is also called the sample spectral density and it is the sample variance of y1, y2, . . . , yn

at frequency ωk. The important property of I(ωk) is that I(ωk1) and I(ωk2) are asymptoti-

cally independent for each k1 and k2 (k1 6= k2).

I(ωk) is distributed asymptotically as f(ωk) times a random variable with a gamma or

chi-squared distribution at each ωk, and this fact is used to find an approximate confidence

interval for f(ωk) [28].

If y1, y2, . . . , yn is a stationary Gaussian time series with E(yt) = 0 and satisfies the

condition,
∑∞

h=−∞ |h||γ(h)| < ∞, then as n →∞,

2I(ωk)

f(ωk)
∼ χ2

2. (2.5)

Because E[2I(ωk)
f(ωk)

] = 2E[I(ωk)]
f(ωk)

= 2 = E(χ2
2), E[I(ωk)] = f(ωk) and because Var[2I(ωk)

f(ωk)
] =

4Var[I(ωk)]
f2(ωk)

= 4 = Var(χ2
2), Var[I(ωk)] = f 2(ωk). Thus, I(ωk) is an asymptotically unbiased

estimator of f(ωk) but is not consistent since f 2(ωk) does not converge to 0 as n →∞.

2.1.3 Approximate Confidence Interval for the Spectral Density

From equation (2.5), we can find an approximate 100(1 − α)% confidence interval for the

spectral density f(ωk) at ωk, that is,

2I(ωk)

χ2
2(1− α/2)

≤ f(ωk) ≤
2I(ωk)

χ2
2(α/2)

. (2.6)

where χ2
v(α) denote the lower α probability tail for the chi-squared distribution with v

degrees of freedom. Moreover, in the case of the replicated time series, suppose the data

{yit : i = 1, 2, . . . , N ; t = 1, 2, . . . , n} with each series having the density, f(ωk), constitute N

mutually independent partial realizations of {Yt}, and thus the observed I1(ωk), I2(ωk), . . . ,

IN(ωk) are mutually independent periodograms at wk. Because the average of N independent

7



γ(1, 1) random variables is γ(N, 1
N

), Īi(ωk) ∼ f(ωk) × γ(N, 1
N

). Thus, an approximate

100(1− α)% confidence interval for the spectral density at wk is

2NĪ(ωk)

χ2
2N(1− α/2)

≤ f(ωk) ≤
2NĪ(ωk)

χ2
2N(α/2)

(2.7)

In the case of an approximate confidence interval for f1(ωk)/f2(ωk), suppose the data are {zit :

i = 1, 2, . . . , N1; t = 1, 2, . . . , n} with each series having the density, f1(ωk), and {yit : i =

1, 2, . . . , N2; t = 1, 2, . . . , n} with each series having the density, f2(ωk). This data constitutes

N1 and N2 mutually independent partial realizations of {Zt} and {Yt} respectively. The ob-

served replicated periodograms, I1,1(ωk), I1,2(ωk),. . . , I1,N1(ωk) and I2,1(ωk), I2,2(ωk), . . . , I2,N2(ωk)

are mutually independent at ωk. Similar to (2.7),

2NiĪi(ωk)

fi(ωk)
∼ χ2

2Ni
i = 1, 2. (2.8)

Thus,
Īi(ωk)

fi(ωk)
∼

χ2
2Ni

2Ni

i = 1, 2. (2.9)

Because Īi(ωk)/fi(ωk) are independent for i = 1, 2, it follows from (2.9) that their ratio

follows an F distribution with degrees of freedom 2N1 and 2N2:

Ī1(ωk)/f1(ωk)

Ī2(ωk)/f2(ωk)
∼ F2N1,2N2 . (2.10)

From (2.10), an approximate 100(1 − α)% confidence interval for the ratio, f1(ωk)
f2(ωk)

, of the

spectral densities at ωk is,

Ī1(ωk)

Ī2(ωk)F2N1,2N2(1− α/2)
≤ f1(ωk)

f2(ωk)
≤ Ī1(ωk)

Ī2(ωk)F2N1,2N2(α/2)
(2.11)

When N1 = N2 = N, we can use the fact that 1
FN,N (α)

= FN,N(1 − α), to show that (2.11)

can be expressed as,

Ī1(ωk)

Ī2(ωk)
F2N,2N(α/2) ≤ f1(ωk)

f2(ωk)
≤ Ī1(ωk)

Ī2(ωk)
F2N,2N(1− α/2) (2.12)

F2N,2N(α/2) increases and F2N,2N(1−α/2) decreases as N →∞. Hence, if enough replicated

time series are available, we can get a useful approximate confidence interval from equation

(2.12). Note that limN→∞
Ī1(ωk)

Ī2(ωk)
F2N,2N(α) = f1(ωk)

f2(ωk)
because F2N,2N(α)

p→ 1 as N →∞.

8



2.1.4 Analysis of Variance in Reproducing Kernel Hilbert Spaces (RKHS)

We begin with the assumption f is in some RKHS, that is, a Hilbert space, H, of functions in

which all the point evaluations are bounded [2, 14, 32]. Let H be some RKHS of real-valued

of functions of t = (t1, t2, . . . , td) and t ∈ T = T (1) ⊗ T (2) · · · ,⊗T (d), where ta is the ath

variable in T (a) and T (a) is some measurable space. Now we construct a probability measure

dµa on T (a) for each a = 1, 2, . . . , d with the symbol (Aaf)(t), defined by

(Aaf)(t) =

∫
T (a)

f(t1, . . . , td)dµa(ta) (2.13)

is well defined and finite and for every f ∈ H and t ∈ T .

We can consider Aa as an operator from H to H and the decomposition of the identity,

I, as

I =
∏

a

[Aa + (I − Aa)]

=
∏

a

Aa +
∑

a

(I − Aa)
∏
b6=a

Ab

+
∑
a<b

(I − Aa)(I − Ab)
∏

c 6=a,b

Ac + · · ·+
∏

a

(I − Aa). (2.14)

In general, f has an unique representation of the form in SS-ANOVA [14]

f(t) = C +
∑

a

fa(ta) +
∑
a<b

fab(ta, tb) +
∑

a<b<c

fabc(ta, tb, tc) + · · · (2.15)

where C = (
∏

a Aa)f is the mean, fa = [(I − Aa)
∏

b6=a Ab]f are the main effects, and

fab = [(I − Aa)(I − Ab)
∏

c 6=a,b Ac]f are the two-factor interactions in (2.14), etc.

We will use this idea with d = 1, that is, a = 1, and f0 = (Aa)f ∈ H0 and f1 =

(I − Aa)f ∈ H1 in Section 3.1. The important thing is that the penalty functional that we

wish to use, is ||(I − Aa)f ||2H where (I − Aa) is the orthogonal projection of f onto H1 [the

notation P1 is used for (I − Aa) and Hα is used for H in Section 3.1].

Lastly, note that some papers describe the case where d = 2 (e.g. the time-frequency

functional model). Thus, H can be expressed by tensor (direct) sum (⊕) and tensor product

(⊗) of the corresponding subspaces. See [15, 24] for details.
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2.2 LITERATURE REVIEW

We review Wahba [29] and Diggle and Al Wasel [9] in this section. These two papers provided

motivation for our research.

2.2.1 Estimation Method of Wahba

Cogburn and Davis [7] suggested the log periodogram as an estimator for the log spectral

density. This idea was extended by Wahba [29], which she refers to as an optimally smoothed

spline (OSS). Her important idea was that the periodograms (log-periodograms) of a station-

ary time series are asymptotically independent at different Fourier frequencies. Therefore,

we can apply classical statistical methods to time series data. The asymptotic distribution

of a periodogram is shown in equation (2.5).

In her paper [29], the goal was to estimate log f(ω) from the data y1, y2, . . . , y2n (that is,

the total number of data is even). Wahba noted that the plot of I(ω) is uselessly “wiggly”,

even though f(ω) is smooth. Therefore, she proposed a smoothing estimation method for

log f(ω) based on log I(ω) obtained by fitting a smoothing spline through minimizing the

expected mean square errors of the data.

Let Yk = log Ik + Ck, where Ck = 0.57721 for k = ±1, 2, . . . , n − 1 and C0 = Cn =

(log 2 + 0.57721)/π = 0.40437. Then, Yk = log f(k/2n) + εk, where E(εk) = 0, E(ε2
k) =

Var(εk) = π2/6 for k = −(n− 1), . . . , (n− 1); for details, see Bateman [3].

Let g(ω) = log f(ω), and define the integrated mean square error Rn(λ, m) where λ

controls the width of smoothing splines and m controls the steepness, as

Rn(λ, m) =

∫ 1/2

−1/2

[gn,m,λ(ω)− g(ω)]2dω (2.16)

The estimate ĝn,m,λ(ω) for g(ω) is obtained through minimizing Rn(λ, m) :

ĝn,m,λ(ω) =
n∑

v=−(n−1)

g̃v

(1 + λ(2πv)2m)
exp(2πivω), (2.17)
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where

g̃v =
1

2n

n∑
k=−(n−1)

Yk exp(−2πivk/2n). (2.18)

The proof that (2.17) minimizes (2.16) is given in Wahba [29].

Figure 2.1: S components of earthquake and explosion.

We plotted S components of earthquakes and explosions [28] by (2.17) with R statistical

package where ĝn,m,λ(ω) with m = 4 and λ = 10−14 on the log-periodograms in Figure 2.1

and the R code is shown in Appendix D.2. One thing we have to concern is that we have

to calculate the C
′

k = −E(log Y ) where Y ∼ γ(8, 1/8) because Figure 2.1 is based on the

mean periodograms of 8 earthquakes and 8 explosions respectively. That is, C
′

k = 0.0637944

by Bateman [3] instead of Ck = 0.57721, the Euler Mascheroni constant, is from −E(log X)
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where X ∼ γ(1, 1).

The method proposed by Wahba seems to fit the data fairly well. However, her method

used the simple mean periodogram and did not account for subject effects. Hence, that

approach is suitable for single time series data but not for replicated data when the goal of

analysis includes the subject effects.

2.2.2 Diggle and Al Wasel [DWA]’s Model

Most of the methodological development has been devoted toward a single time series as

described in Subsection 2.2.1. The paper by [DWA] [9] provides a general framework for

spectral analysis of replicated time series. If replicated time series are available, our concern

is naturally about the estimation of population characteristics (parameters), rather than on

the behavior of the individual time series.

Diggle and Al Wasel (1997) proposed the method of spectral analysis to interpret biomed-

ical time series data involving observations of time series from random samples of subjects.

Their data consist of luteinizing hormone concentrations in blood samples taken from each

subject at 1 min intervals during 1 hour. The original data were filtered by a weighted seven-

points moving average with weight of 1, 3, 6, 7, 6, 3 and 1. After filtering, 54 = 60− (3 ∗ 2)

observations are left for each subject.

In their paper, they proposed the model (2.19) to estimate f(ω), using a log-linear trans-

formation. There is no assumption of a common population spectrum for all subjects.

Let fi(ωk) denote the population spectrum corresponding to the ith subject and kth fre-

quency.

log fi(ωk) =

p∑
j=1

dikjβj i = 1, 2, . . . , 8, k = 1, 2, . . . , 26 = [(54− 1)/2], (2.19)

where the dikj are known explanatory variables and βj are parameters to be estimated.
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The model (2.19) looks similar to our proposed model (3.8) to be presented Chapter 3,

with respect to replicated spectral analysis. However, βj does not depend on i or k. This

means the coefficients do not vary with frequencies in (2.19). This paper gave us the mo-

tivation to propose a model which has coefficients which change with different frequencies.

The approach and model of DWA do not give us enough information when our goal is to

determine the frequencies where the spectrum of one group may differ from that of another.

This paper [9] also indicated that variability between subjects in periodograms at given

frequencies is larger than the variability predicted by asymptotic distribution theory for

replicated time series.

Figure 2.2: Sample coefficient of variation.

For example, we plotted the sample coefficients of variations (CV s) against frequen-

cies. [The R code is shown in Appendix D.3.] The data consist of eight S components of

earthquakes. Let Iik denote the periodogram for the ith time series at the kth Fourier fre-

quency, for i = 1, 2, . . . , 8 and k = 1, 2, . . . , 512. According to standard asymptotic theory,

for each value of k the eight values I1k, I2k, . . . , I8k are an independent random sample from

the γ(1, fk) distribution. Therefore, we can expect for each sample coefficient of variation,
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CVk = sk/Īk ≈ 1. In Figure 2.2, the averages of the sample CV s are substantially greater

than 1 and this supports the argument of DAW that the standard theory does not hold in the

homogeneous cases. Therefore, when we analyze replicated time series, instead of using mean

periodogram, we will consider the variations between replicated time series at each frequency.
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3.0 ESTIMATION METHOD

In this chapter, we present the model (modified model) and a new estimation method. We

briefly describe the idea of smoothing spline ANOVA and the penalty functional in Section

3.1. We present our model and the modified model that we use for our estimation in Section

3.2 and the method to find estimation function in Section 3.3.

3.1 SMOOTHING SPLINE ESTIMATION AND THE PENALTY

FUNCTIONAL

We briefly describe about smoothing spline ANOVA (SS-ANOVA) and the orthogonal pro-

jections onto the reproducing kernel Hilbert spaces. These ideas are used in smoothness for

functions on the frequency domain in Section 3.3.

We begin with Taylor’s theorem with remainder: If f is a real valued function on [0, 1]

with f
′
, f

′′
, . . . , f (α−1) continuous derivatives and f (α) ∈ L2[0, 1], then f can be expressed as,

f(x) =
α−1∑
v=0

xv

v!
f (v)(0) +

∫ 1

0

(x− u)α−1
+

(α− 1)!
f (α)(u)du, (3.1)

where (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0.

Now, we define Hilbert space Hα
1: Hα[0, 1] = {f : f, f

′
, f

′′
. . . , f (α−1) absolutely contin-

uous and f (α) ∈ L2}. Then, each function f in Hα has a Taylor series expansion (3.1) to

1It is the so-called Sobolev Hilbert space. See [1] for details.
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order α and has a decomposition as f = f0 + f1 with f0 ∈ H0 and f1 ∈ H1 given by the first

and the second terms in (3.1). Moreover,
∫ 1

0
[(Dαf0)(u)]2du = 0 and

∑α−1
v=0 [(Dvf1)(0)]

2 = 0

where Dα denotes the αth derivative of function [32]. Therefore, we can represent Hα using

direct sum notation,

Hα = H0 ⊕H1. (3.2)

If we consider the square norm of f ∈ Hα,

||f ||2 =
α−1∑
v=0

[(Dvf)(0)]2 +

∫ 1

0

[(Dαf)(u)]2du, (3.3)

This means that subspaces H0 and H1 of Hα are perpendicular i.e., H0 ⊥ H1. Note that we

use the penalty functional
∫ 1

0
[fα(u)]2 = ||P1f ||2Hα

where P1 is the orthogonal projection of f

onto H1 in Hα in our research.

In general, given the series y1, y2, . . . yn, the estimation method of f (f ∈ Hα) by the

penalized least squares is to minimize

1

n

n∑
i=1

(yi −Dif)2 + λ||P1f ||2Hα
, (3.4)

where P1 is as before, and Di is a design matrix of fixed values, λ is a smoothing parameter

i.e., λ ≥ 0 and as λ is increased, the estimated function is smoother.

We just extend the penalty functional to multi-covariate case in Section 3.3. Thus, we also

need subsidiary smoothing parameters θ depending on covariates.
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3.2 THE MODEL

In this section, i = 1, 2, . . . , l indexes the replicated time series, k = 1, 2, . . . , s indexes the

indices for the Fourier frequencies, ωk, and p = 1, 2, . . . , P indexes the covariates.

Let gi(ω) = log[fi(ω)]. Our proposed functional model for gi(ω) is

gi(ωk) = Diβ(ωk), (3.5)

where Di = {Di[1], . . . , Di[P ]} is a design matrix that consists of measured covariates and

dummy variables, and β(ωk)={β1(ωk), . . . , βP (ωk)}T is a vector of frequency coefficients at

ωk. Note that the β(ωk) are periodic functions with period 1, i.e., β(ωk) = β(ωk + 1), and

are symmetric around ωk = 0.5 i.e., β(ωk) = β(1−ωk) in the frequency domain. For conve-

nience, we only use half of the frequency domain in (3.5) to be free of the periodic constraint.

Let yik = log(Ii(ωk)) + Cωk
, where Cωk

= 0.57721 for ωk 6= 0, 1/2 and Cωk
= (log 2 +

0.57721)/π = 0.4043 for ωk = 0, 1/2. We have the following frequency functional model for

the log-periodograms,

log Ii(ωk) ≈ gi(ωk) + δik, (3.6)

where E(δik) = −Cωk
, Var(δik) = π2/6 and δik are asymptotically independent for all i and

k [15, 24]. Using equation (3.5), model (3.6) can be modified as follows:

yik ≈ Diβ(ωk) + εik, (3.7)

where εik are asymptotically independent with mean 0 and variance π2/6 for all i and k.
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3.3 ESTIMATION METHOD (PENALIZED LEAST SQUARES

ESTIMATE)

We apply the following penalized least squares (PLS) method to estimate β(Ω) on the re-

producing kernel Hilbert spaces (RKHS):

Let us denote Y = {yT
1 , yT

2 , . . . ,yT
l }T where yi = {yik, k = 1, 2, . . . , s}, β(Ω) = {βT

1 (Ω),

. . . , βT
P (Ω)}T , and D[p] = diag{D1[p], . . . ,Dl[p]} where Di[p] = diag{Di1[p], . . . , Dis[p]}.

The PLS criterion we will use is:

1

ls

∣∣∣∣Y −
P∑

p=1

D[p]βp(Ω)

∣∣∣∣2 +
P∑

p=1

λ

θp

|Ppβp|2, (3.8)

where λ is the main smoothing parameter, θp’s are subsidiary smoothing parameters, and

Pp represents the orthogonal projections onto the RKHS in the smoothing spline ANOVA

(SS-ANOVA) model.

Conditional on the smoothing parameters (λ and θp), Gu and Wahba [13] give the esti-

mates that minimize (3.8) as follows:

β̂p(Ω) = Uphp + Qpcp (3.9)

where Up = (1, ωj)
ls
j=1, Qp = θpRp(Ω,Ω), and Rp(Ω,Ω) = {Rp(ωj, ωj′)}ls,ls

j=1,j′=1, where

Rp(ωj, ωj′) = −k4(|ωj − ωj′|), where k4(x) = B4(x)/4! and B4(x) = x4 − 2x3 + x2 − 1/30 is

the fourth-order Bernoulli polynomial [15, 32].

Let us denote D = {D[1], . . . ,D[P ]}, T = diag{U1, . . . , UP}, H = {hT
1 , . . . , hT

P}T , Q =

diag{Q1, . . . , QP} and C = {cT
1 , , . . . , cT

P}T . Then, we can find the PLS estimate of β(Ω)

that can be estimated from the PLS of (3.10) and that is β̂(Ω) = TH + QC.

1

ls
|Y −DTH −DQC|2 + λCT QC. (3.10)

where

H = {T T DT M−1DT}−1T T DT M−1Y , (3.11)
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and

C = DM−1{I −DT (T T DT M−1DT )−1T T DT M−1}Y , (3.12)

where M = DQDT + lsλI.

Moreover, when we only need an estimate for a specific ω0, we can also use the PLSE at

any given frequency point ω0 from equation (3.9):

β̂p(ω0) = Up0hp + Qp0cp, (3.13)

where Up0 = (1, ω0), Qp0 = θpRp(ω0,Ω) and Rp(ω0,Ω) = {Rp(ω0, ωj)}ls
j=1, for p = 1, . . . , P.

We can consider methods to estimate parameters (λ and θp). There are a few ways

[e.g. generalized cross validation (GCV) [26]] beside generalized maximum likelihood (GLM)

[15, 24, 31] to find parameters. The GML criterion is,

V (λ, θp) =
Y T F2(F

T
2 DQDT F2 + lsλI)−1F T

2 Y

[det(F T
2 DQDT F2 + lsλI)]1/(ls−4)

(3.14)

where F2 is given by the QR decomposition of DT : DT = (F1, F2)
(

G
0

)
where (F1, F2) is

orthogonal and G is upper triangular. Thus, the dimensions are F1 = ls × (2P − 1) and

F2 = ls× 1.

Lastly, we consider the estimation of variances at given frequencies. Numerous authors

[13, 15, 24, 30] discuss variances of β̂(ω0) conditioning on the estimates of the λ and θp and

Bayesian confidence intervals for β̂(ω0). The Bayesian confidence intervals have pointwise

interpretation. Nychka [18] pointed out that they are curvewise confidence intervals and

averaging confidence intervals across the all frequencies. That is, 100(1 − α)% confidence

interval is,

1

ls

ls∑
k=1

Pr

[
β(wk) ∈ β̂(wk)± zα/2

√
var(β̂(wk)|Y )

]
≈ 1− α. (3.15)

where zα/2 is the 100(1− α/2) percentile of the standard Normal distribution. (3.15) shows

informative regions depending on the design covariates in the frequency domain.
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Here, in equations (3.10) - (3.12), we find β̂(Ω) and estimated the associated standard

errors via a bootstrapping method [17]. Then, we use two confidence intervals for β(Ω)

to compare the group spectra for all frequencies. These are the independent simultaneous

confidence interval and the bootstrapping confidence interval [21]. See details in Chapter 4.
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4.0 SIMULATION STUDIES

We apply our proposed method to the simulated replicated data series [P = 1 in (3.8)]

that consist of two groups. Thus, we assigned 1 for group 1 and 0 for group 2 as their

group-covariate to estimate β1(ω) in (1.2). In Section 4.1, we introduce the simulation

procedure and the simulated data. In Section 4.2, we construct two confidence intervals. The

bootstrapping confidence interval for functions, one of two confidence intervals, is our original

work motivated by Olshen [21]. Lastly, we evaluate performance of our proposed method

by determining whether the true β1(ω) = log[f1(ω)/f2(ω)] lies within the approximate 95%

confidence interval for β1(ω) that is estimated by using β̂1(ω) = log[f̂1(ω)/f̂2(ω)] for all ω.

in Section 4.3,

4.1 SIMULATION

We conduct the simulation and this procedure consists of four steps:

Step 1. Simulation of replicated time series from given AR(2) model.

Step 2. Calculation of log-periodograms from simulated replicated data.

Step 3. Estimation of the true log-spectra through our proposed method.

Step 4. Validation of the estimated log-spectra function.

For step 1, we simulated data whose size is 500, four series are from xt = 0.9xt−1 +

0.05xt−2 + εt, four series are from xt = xt−1 − 0.9xt−2 + εt, and four series are from

xt = −0.9xt−1 + 0.05xt−2 + εt where εt ∼ N(0, 1). For step 2, we used (2.4). For step

3, all procedures are described in Section 3.3. For step 4, our proposed estimation method
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is evaluated by checking whether the true log-spectra function lies within 95% confidence

interval for the true log-spectra. In particular, we need to find the true log-spectra for Step 4.

These are, f1(ω) = 1
1.8125−1.71 cos(2πω)−0.1 cos(4πω)

, f2(ω) = 1
2.81−3.8 cos(2πω)+1.8 cos(4πω)

, and f3(ω)

= 1
1.8125+1.71 cos(2πω)−0.1 cos(4πω)

, respectively. The mathematical procedures to find the spec-

tra from time series [AR(2) model] are shown in Appendix B. Note that we will construct

confidence intervals based on the estimated log-spectra function in Step 3.

Three log-spectral densities are given in Figure 4.1 and the centered log-periodograms,

log I(ωk) + 0.57721, from f1(ω), f2(ω) and f3(ω) and the corresponding smoothing spline

estimates are shown in Figure 4.2. We used (3.8) with smoothing parameters λ = 0.001

and θ1 = 1 to provide the smoothed estimates. The R code is shown in Appendix D.4 and

Appendix D.5 for Figure 4.1 and Figure 4.2 respectively.

Figure 4.1: True simulated densities.

22



Figure 4.2: log-periodograms + 0.57721 from three simulated series and their fitted curves.

Our simulation study plans are as follows:

Simulation Study 1. We will compare log f1(ω) with log f2(ω) based on the estimated

log f1(ω) and log f2(ω) for each ω. In particular, we will notice the estimates around

ω = 0.17. because there are sharp peak spectra around ω = 0.17 of logf2(ω)[AR(1,−0.9)]

in Figure 4.1 and Figure 4.2 and our estimation function is smooth.

Simulation Study 2. We will compare log f1(ω) with log f3(ω) based on the estimated

log f1(ω) and log f3(ω) for each ω.
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Before we continue our main analysis, we calculated the residuals in (3.7), their means

and variances. Their means are very close to 0 and their variances are about 1.65 for all the

simulation runs, which is close to the asymptotic variance σ2 = π2/6. Figure (4.3) shows

the box plots of the residuals eik where i = 1, 2, 3, 4 and k = 1, 2, . . . , 250 for three spectra

settings.

Figure 4.3: Panels from left to right: AR(0.9, 0.05), AR(1, -0.9) and AR(-0.9, 0.05).

4.2 APPROXIMATE CONFIDENCE INTERVAL

We develop two approximate confidence intervals and these confidence intervals will be used

to determine the frequencies where the spectrum of one group may differ from that of another

in Section 4.3. Now suppose we construct an approximate 100(1−α)% confidence interval for

β1(ωk) [Note that we notate ωk instead of ω in this section because our confidence intervals

are constructed on all Fourier frequencies] in (1.3) using β̂1(ωk) = log[f̂1(ωk)]− log[f̂2(ωk)] =

log[f̂1(ωk)/f̂2(ωk)] for each ωk. Note that we choose the bootstrapping method for points

[17] to find the standard errors of β̂1(ωk) because we do not have any information about the
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variations of log[f̂1(ωk)] and log[f̂2(ωk)].

4.2.1 Independent Simultaneous Confidence Interval

We can construct the confidence interval for β1(ωk) at each ωk by

β̂1(ωk)± Z∗
√

Var(log f̂1(ωk)) + Var(log f̂2(ωk)) (4.1)

for k = 1, 2, . . . , s, and Z∗ can be predicted using the following procedure. We can find this

confidence interval with the assumption that each spectrum (log-spectrum) is independent.

Let Ak = {interval for kth frequency covers true value} and P (Ak) = 1− α0 where α0 is

a marginal confidence interval for frequency ωk. Since Ak are independent for k = 1, 2, . . . , s,

the Z∗ for the 100(1− α)% confidence interval is,

1− α = P (
s⋂

k=1

Ak) =
s∏

k=1

P (Ak) = (1− α0)
s. (4.2)

Thus, α0 = 1−(1−α)1/s and Z∗ = Z1−α0
2

= Z( 1
2
+ 1

2
(1−α)1/s) where Zp is the 100(p) percentile of

the standard normal distribution. Note that Var(log f̂i(ωk)) for i = 1, 2, and k = 1, 2, . . . , s,

can be estimated by the bootstrapping method for points [17].

4.2.2 Bootstrapping Confidence Interval for Functions

This subsection is our original work in the sense that we use the bootstrapping confi-

dence interval (for functions) for the differences between two groups [β1(ωk) = log[f1(ωk)]−

log[f2(ωk)]] for all ωk in the frequency domain. Previous study is by Olshen et al. [21] used

this confidence interval for a group [gait analysis of children with the cycle by percent when

they walk].

The simultaneous prediction regions are the form of

⋂
ωk

{ ¯̂
β1(ωk)−mσ̂(ωk) ≤ β̃1(ωk) ≤ ¯̂

β1(ωk) + mσ̂(ωk)} (4.3)

25



=

{
β̃1(ωk) : max

ωk

∣∣∣∣ β̃1(ωk)− ¯̂
β1(ωk)

σ̂(ωk)

∣∣∣∣ ≤ m

}
, (4.4)

where β1(ωk) for k = 1, 2, . . . , s is estimated by
¯̂
β1(ωk), in which β̂1(ωk) are unbiased esti-

mates of β1(ωk) for replicated time series of the training samples, and
¯̂
β1(ωk) is the mean

of β̂1(ωk) for each ωk [suppose we repeat the bootstrap sampling R times]. β̃1(ωk) are

another unbiased estimates for β1(ωk), and m is a positive number. σ̂(ωk) is a standard

error at ωk and found estimated by the bootstrapping method for points [17]. Therefore,

σ̂(ωk) =

√
Var(log f̂1(ωk)) + Var(log f̂2(ωk)) for all ωk in (4.1).

The important part to construct the bootstrapping confidence interval for functions is

to estimate the probability of the event (4.3) depending on a fixed m by the bootstrapping

method for functions [21].

Define F̂B(m) with positive m and R repetition bootstrap sampling in (4.5). Suppose

we have N random sample time series with replacement from our training samples,

F̂B(m) =
1

N
#

{
β̂1(ωk) : max

ωk

∣∣∣∣ β̂1(ωk)− ¯̂
β1B(ωk)

σ̂B(ωk)

∣∣∣∣ ≤ m

}
(4.5)

where B = 1, 2, . . . , R. We repeat the bootstrap sampling R times, then estimate
¯̂
FB(m) by

(F̂1(m) + F̂2(m) + · · ·+ F̂R(m))/R for a fixed m.
¯̂
β1B(ωk) is , as defined before, the average

of the Rβ̂1(ωk).

Again we define mp by

mp = min{m :
¯̂
FB(m) ≥ p} where 0 ≤ p ≤ 1. (4.6)

p is our estimate of the probability of (4.3) if m = mp. That is, β̃1(ωk) will lie between

¯̂
β1(ωk)−mpσ̂B(ωk) and

¯̂
β1(ωk) + mpσ̂B(ωk) for all ωk.

Figure 4.4 shows the example of
¯̂
FB(m) as a function of mp when group 1 is the simulated

series from AR(0.9, 0.05) and group 2 is the simulated series from AR(1,−0.9) with N = 20

26



and R = 10 in (4.5). We can realize that the magnitude of the jump points of
¯̂
F (m) is 1/NR.

Thus, we can get smoother curve as N and R are increased. We can notice
¯̂
F (m) = 0.95

when m0.95 = 2.85, and m0.95 = 2.85 will be used to construct 95% bootstrapping confidence

interval for β1(ω) when we compare f1(ω) with f2(ω) in Section 4.3. The R code is shown

in Appendix D.7.

Figure 4.4: Equation 4.5 when group 1 = AR(0.9, 0.05) and group 2 = AR(1, -0.9).

¯̂
FB(m) approximates uniformly in m the corresponding theoretical bootstrap probabil-

ity with high probability as R → ∞ [Babu and Singh [6]]. Therefore, we can predict

the approximate 100(p)% confidence interval for β1(ωk) between
¯̂
β1(ωk) − mpσ̂B(ωk) and

¯̂
β1(ωk) + mpσ̂B(ωk) as R →∞ for all ωk.

The proof is based on the first theorem (see [6]). In order for the theorem to apply, we

need to show that conditions A1, A2 and A3 below are satisfied. Let F1(ω) and F2(ω) be the

distribution functions of the log spectral densities i.e., log f1(ω) and log f2(ω), where f1(ω)

= group 1 and f2(ω) = group 2 respectively. We will take n1 independent random samples

series of log f1(ω) and n2 from log f2(ω) with each series having size s. Let R = n1 + n2.
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Define F̂1(ωk) and F̂2(ωk) be the empirical distribution functions of the random variables

X1k and X2k where X1k = log f̂1(ωk) and X2k = log f̂2(ωk) for a specific ωk. See [pp 999, [6]]

for details.

A1: The ni tends to infinity at the same rate. In other words, the R/ni ≤ λ < ∞ for

i = 1, 2.

A2: For at least one i, Fi(ω) is continuous.

A3: Fi(ω) has finite 6th moment for i = 1, 2.

For A1, since n1 = n2 in our case, R/ni = 2ni/ni = 2 < ∞ for i = 1, 2.

For A2, it is sufficient to show f(ω) is continuous. Given a stationary process {yt}n
t=1,

t = 0,±1, . . . with var(yt) = σ2 < ∞, suppose the autocovariance function, γ(h), of a process

satisfies the absolute summable condition,
∑∞

h=−∞ |γ(h)| < ∞, then by the inverse transform

of the spectral density, f(ω) =
∑∞

h=−∞ γ(h)e−2πiωh =
∑∞

h=−∞ γ(h)[cos(2πωh)− i sin(2πωh)]

= σ2 + 2
∑∞

h=1 γ(h) cos(2πωh).

Given any ε > 0, let a δ(ε) = ε. Then for any frequencies, ω0, in (-1/2, 1/2) if 0 <

|2
∑∞

h=1 γ(h)[cos(2πωh)− cos(2πω0h)]| < δ(ε) , we trivially have

|f(ω)− f(ω0)| =
∣∣∣σ2 + 2

∞∑
h=1

γ(h) cos(2πωh)− [σ2 + 2
∞∑

h=1

γ(h) cos(2πωh)]
∣∣∣

=
∣∣∣2 ∞∑

h=1

γ(h)[cos(2πωh)− cos(2πω0h)]
∣∣∣

< δ(ε) = ε.

(4.7)

For A3, assume i = 1 and let a random variable W be from F1(ω), the distribution function

of log f1(ω) (= group 1), where W ∈ (−1/2, 1/2). By the condition A2, we can express the
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6th moment of F1(ω) as,

E[(W )6] =

∫ 1/2

−1/2

W 6 log f1(ω)dω <

∫ 1/2

−1/2

W 6f1(ω)dω

≤
∫ 1/2

−1/2

(0.5)6f1(ω)dω = (0.5)6

∫ 1/2

−1/2

f1(ω)dω

= (0.5)6σ2
1 < ∞.

(4.8)

Since f1(ω) 6= 0 for all ω [if f1(ω) = 0 for all ω, then {y1t}n
t=1 have the same values because

their variances, var(y1t) = σ2
1 = 0] and by the assumption of σ2

1 < ∞. The same proof is for

i = 2. Note that the spectral distribution function is bounded [28]. Thus, all moments of

the spectral distribution function must exist and these moments are finite. This fact can be

extended to the spectral distribution function of log density.

29



4.3 PERFORMANCE OUR ESTIMATION METHOD

To evaluate the performance of our proposed method in Chapter 3, we use the simulated

data in Section 4.2 to construct the confidence intervals in Section 4.3.

Suppose we compare f1(ω) with f2(ω) based on replicated series from two groups. the

procedure consists of 4 steps:

Step 1. We will calculate β̂1(ω) from log f̂1(ω) and log f̂2(ω) for all ω.

Step 2. We will construct the approximate 95% confidence intervals for β1(ω) using the

β̂1(ω) in Step 1.

Step 3. We will calculate the true β1(ω) from log f1(ω) and log f2(ω).

Step 4. We will determine whether the true β1(ω)’s lie within the confidence intervals that

are derived from Step 2 for all ω.

For Step 1, we calculate β̂1(ωk) = log[f̂1(ωk)/f̂2(ωk)] because ωk → ω as the num-

ber of sample size, n, is increased. For Step 2, the independent simultaneous confidence

interval (Subsection 4.2.1) and the bootstrapping confidence interval for functions (Sub-

section 4.2.2) are used. As previously mentioned in Subsection 4.2.2, we use N = 20

and R = 10 to construct the bootstrapping confidence interval for functions. For Step

3, β1(ω) = log[f1(ω)/f2(ω)] where f1(ω) and f2(ω) are given in page 23. For Step 4, if true

β1(ω)’s lie within the confidence intervals means that our proposed estimation method will

be useful to analyze real time series.

4.3.1 Evaluation of Performance 1:

We wish to compare f1(ω) with f2(ω). Thus, we calculate β̂1(ωk) from 4 replicated time

series data that are obtained from AR(0.09, 0.05) = group 1, and from 4 replicated time

series data that are from AR(1,−0.9) = group 2 for all Fourier frequencies.

Figure 4.5 shows for all ω the true β1(ω)’s [solid line in the middle (red line)], β̂1(ωk)’s

[dotted line in the middle], and the approximate 95% upper (lower) limit for β1(ωk)’s for the
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two confidence intervals described in Subsection 4.2.1 and Subsection 4.2.2 respectively. For

Figure 4.5, we used Z∗ = Z( 1
2
+ 1

2
(0.95)1/s) = 3.712 because s = 250 in (4.2) and m0.95 = 2.85

in (4.6). Thus, we can notice that the independent simultaneous confidence interval is wider

than the bootstrapping confidence interval for functions. The R code is shown in Appendix

D.6.

Figure 4.5: Confidence intervals when group 1 [2] = AR(0.9, 0.05) [AR(1, -0.9)].

As we can see, we observed similar confidence intervals using the independent simulta-

neous confidence interval and the bootstrapping confidence interval for functions. We also

observed satisfactory results for most frequencies because β1(ω)’s lie between the approxi-

mate 95% confidence intervals for β1(ω). However, this is not the case around ω = 0.17. We

have an issue to mention about both confidence intervals at this point. If we see the middle

column in Figure 4.2, these are log-periodograms of simulated series from AR(1,−0.9). We

pay attention that four estimated functions, f̂2(ω), are underestimated around ω = 0.17.

This is because smooth estimated functions underestimate around sharp peak points, and

overestimate around steep drop points. This reason results in higher β̂1(ω)’s than real β1(ω)

around ω = 0.17. Recall that β̂1(ω)’s are obtained from log[f̂1(ω)/f̂2(ω)] for all ω.
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4.3.2 Evaluation of Performance 2:

We wish to compare f1(ω) with f3(ω) and the procedure of this Subsection 4.3.2 is the same

as Subsection 4.3.1 except the process in group 2 is AR(−0.9, 0.05). In other words, we

calculate β̂1(ωk) from 4 replicated time series data that are obtained from AR(0.09, 0.05) =

group 1, and from 4 replicated time series data that are from AR(−0.9, 0.05) = group 2 for

all Fourier frequencies.

Figure 4.6 shows for all ω the true β1(ω)’s [solid line in the middle (red line)], β̂1(ωk)’s [dotted

line in the middle], and the approximate 95% upper (lower) limit for β1(ωk)’s for the two

confidence intervals described in Subsection 4.2.1 and Subsection 4.2.2 respectively.

Figure 4.6: Confidence intervals when group 1 [2] = AR(0.9, 0.05) [AR(-0.9, 0.05)].

We observed satisfactory results using the two confidence intervals in the sense that the

β1(ω)’s lie steadily between the approximate 95% confidence intervals for β1(ω) for all ω.

If we see Figure 4.2, centered log-periodograms from simulated series from AR(0.09, 0.05)

and AR(−0.9, 0.05) are pretty smooth and predict the result in Figure 4.6. We used Z∗ =

Z( 1
2
+ 1

2
(0.95)1/s) = 3.712 because s = 250 in (4.1) and m0.95 = 2.82 [see Appendix C] in (4.6).

The R code is shown in Appendix D.8.
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4.4 ANALYSIS FOR REPLICATED EARTHQUAKES & EXPLOSIONS

TIME SERIES DATA

We applied our proposed method as described in Chapter 3 to earthquakes (group 1), and

explosions (group 2) time series data [Because of computation problems, we selected subsets

of 4 series out of 8 series]. Each sequence of data consists of 512 points i.e., s = 256.

Figure 4.7 shows the centered log-periodograms, log I(ω) + 0.57721, from earthquakes and

explosions time series data and the corresponding smoothing spline estimates with smoothing

parameters λ = 0.0001 and θ1 = 1 in (3.9).

Figure 4.7: log-periodograms + 0.57721 and their fitted curves.
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Note that because the series are not simulated series, at a glance, the fit is not as good

as Figure 4.2. We used the smoothing parameter λ = 0.00011 instead of λ = 0.001 as in

4.2, because we wish to reduce underestimation (overestimation) so we can overcome the

problem in Subsection 4.3.1 to some extent.

For our confidence intervals, we use Z∗ = Z( 1
2
+ 1

2
(0.95)1/s) = 3.718 in (4.1) because s = 256

for the independent simultaneous confidence interval, and m0.95 = 2.45 in (4.6) for the

bootstrapping confidence interval for functions. Figure 4.8 shows that
¯̂
FB(m) as a function

of mp when group 1 is earthquakes series and group 2 is explosions series with N = 20 and

R = 10 in (4.5).

Figure 4.8: Equation 4.5 when group 1 = earthquakes and group 2 = explosions series.

Figure 4.9 shows the β̂1(ωk)’s [solid line in the middle (red line)] and the two approxi-

mate 95% confidence intervals with reference line, spectrum = 0, to analyze the two groups.

The reason we are interseted in the reference line is because β1(ω) = log[f1(ω)/f2(ω)] where

1As λ →∞, the fit is getting smoother
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f1(ω) is a spectral density of earthquake and f2(ω) is a spectral density of explosion. Thus,

β1(ω) > 0 means the spectral power of earthquake is greater than that of explosion at ω and

vice versa.

Figure 4.9: Confidence intervals when group 1 [2] = earthquakes [explosions] series.

We have wider confidence intervals than Figure 4.5 and Figure 4.6. This is because

σ̂(ωk) =

√
Var(log f̂1(ωk)) + Var(log f̂2(ωk)) is much larger, although m0.95 = 2.45 is some-

what smaller than 2.85 and 2.82 in the bootstrapping confidence interval for functions.

Our analysis may be somewhat different depending on the independent simultaneous

confidence interval or the bootstrapping confidence interval for functions. These are, the

spectral power of earthquakes is greater at low frequencies than that of explosions. In mid

frequencies, the spectral power of explosions is greater than that of earthquakes: around

ω = 0.15 in the independent simultaneous confidence interval, and from ω = 0.12 to ω = 0.4

in the bootstrapping confidence interval. There is no difference between the two groups at

higher frequencies under either method.
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Remark

• We conducted a standardized transformation to earthquakes and explosions series before

using them.

• Because R cannot handle the inversion of matrices of dimensions roughly higher than

1000*1000 in our design matrices, we chose 4 data series which have 500 points each in

the simulation and 4 data series which have 512 points each in real data analysis.
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5.0 CONCLUSION AND FUTURE WORK

5.1 SUMMARY AND CONTRIBUTIONS

This study is motivated from a simple but very important fact: I(ω) ∼ f(ω)× Gamma(scale

= 1, shape = 1), where f(ω) is a spectral density and I(ω) is the corresponding periodogram

at frequency ω. With this motivation, we develop the method to compare several spectral

densities in the spectral domain. This method consists of the estimation of spectral density

in Chapter 3, and comparing the densities by the confidence intervals in Chapter 4.

In our research, we make the following contributions:

• We applied classical statistical methods in the frequency domain. For example, after

constructing the periodograms from the time series data, we can use them to construct

the confidence intervals for spectral density mentioned in Chapter 3.

• The bootstrapping confidence interval (for functions) for the difference of two groups

in Subsection 4.2.2. This confidence interval can be useful for clinical research. For

example, the analysis of an epileptic intracranial electroencephalogram (IEEG) data set

[24] can help predict seizure with this confidence interval, and protect the patients.

• Our research is basically different from that of Wahba [29] in that it uses replicated series

data instead of a single series, and differs from that of Diggle and Al Wasel [DAW] [9] in

allowing the coefficients to vary with the frequencies.
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5.2 FUTURE WORK

For our future research, we make the following future work:

• One drawback to our proposed estimation method is that it does not work well if the

data series is not smooth. In other words, based on the two confidence intervals in Figure

4.5, our estimated function is overestimated around steep drop points. Naturally, our

concern is about how to deal with data series that have steep drop (sharp peak) points.

• We will also consider other methods to compare spectral densities. For example, the

Penalized Whittle Likelihood estimate (PWLE) [23] can be considered for the estimation

method and the Bayesian confidence interval [18] can be considered in addition to the

confidence intervals in Chapter 4.

• We have considered only group identifiers as covariates in (1.1). If other covariates differ

between groups, the spectral density depends on these covariates as well as frequencies.

We wish to compare spectral densities in the case when the spectral density also depends

on these other covariates.

• When we have G groups to compare, we have to compute
(

G
2

)
pairwise comparisons.

We can consider the method to compare all groups at one time. Thus, we consider a

generalized random effects model; log fgl(ω|xi) = µg(ω) + εgl(ω), where the µg(ω) are

independent N(µ(ω), σ2
µ(ω)), the εgl(ω) are independent N(0, σ2

ε (ω)), µg(ω) and εgl(ω)

are independent random variables for each ω for g = 1, 2, . . . , G; l = 1, 2, . . . , L, where L

is the number of subjects. We need to test Ho : σ2
µ(ω) = 0 for each ω.
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APPENDIX A

NOTATION

I list the notations that often used in my thesis and their meanings.

• y1, y2, . . . , yn : time series.

• xi : group indicator.

• n : number of data.

• ω : frequency.

• ωk = k/n : Fourier (fundamental) frequency.

• I(ωk) : periodogram at ωk.

• Ii(ωk) : ith periodogram at ωk in the replicated series.

• i = 1, 2, . . . , l : indices for the replicated series [indices for the groups if xi].

• p = 1, 2, . . . , P : indices for covariates.

• k = 1, 2, . . . , s : indices for the Fourier frequencies.

• g = 1, 2, . . . , G : indices for groups.

• f(ω) : spectral density.

• f1(ω) : the spectral densities of AR(0.9, 0.05) in the simulation.

• f2(ω) : the spectral densities of AR(1,−0.9) in the simulation.

• f3(ω) : the spectral densities of AR(−0.9, 0.05) in the simulation.

• log γ(α, β): log-gamma random variable with shape parameter α and scale parameter β.

• γ(h): autovariance function with lag h.

• σ̂(ωk) : standard error at Fourier frequency ωk.
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• λ : main smoothing parameter.

• θ : subsidiary smoothing parameter.

• Zα : 100(α) percentile of the standard normal distribution.

• Dαf : αth derivative of function f .
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APPENDIX B

SPECTRAL DENSITY OF AR(2) MODEL

xt = 0.9xt−1 + 0.05xt−2 + εt where εt ∼ N(0, 1). We start with the fact that the spectrum of

εt, fε(ω) = 1 [28] and we use the uniqueness of the Fourier transformation.

γε(h) = E(εt+hεt)− E(εt+h)E(εt) (B.1)

= E[(xt+h − 0.9xt+h−1 − 0.05xt+h−2)(xt − 0.9xt−1 − 0.05xt−2)]

= [1 + (0.9)2 + (0.05)2]γx(h) + [(0.9× 0.05)− 0.9][γx(h + 1) + γx(h− 1)]

−0.05[γx(h + 2) + γx(h− 2)]

= 1.8125γx(h)− 0.855[γx(h + 1) + γx(h− 1)]− 0.05[γx(h + 2) + γx(h− 2)]

=

∫ 1/2

−1/2

[1.8125− 0.855(e2πiω + e−2πiω)− 0.05(e4πiω + e−4πiω)]e2πiωhfx(ω)dω

=

∫ 1/2

−1/2

[1.8125− 1.71 cos(2πω)− 0.1 cos(4πω)]e2πiωhfx(ω)dω.

By the uniqueness, fε(ω) = [1.8125 − 1.71 cos(2πω) − 0.1 cos(4πω)]fx(ω) Thus, fx(ω) =

1
1.8125−1.71 cos(2πω)−0.1 cos(4πω)

. Similarly, we can find the spectral densities in cases of xt =

xt−1 − 0.09xt−2 + εt and xt = −0.9xt−1 + 0.05xt−2 + εt where εt ∼ N(0, 1).

Note that using frequency response function (pp 220, [28]), Aεx(ω) =
∑t=∞

t=−∞ ate
−2πiωt,

fε(ω) = |Aεx(ω)|2fx(ω), (B.2)

where Aεx(ω) = 1−0.9e−2πiω−0.05e−4πiω because a1 = 1, a2 = −0.9, a3 = −0.05, and ar = 0

otherwise. We can simply find the same fx(ω).
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APPENDIX C

EQUATION 4.5 WHEN GROUP 1 = AR(0.9, 0.05) AND GROUP 2 =

AR(-0.9, 0.05)
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APPENDIX D

R FUNCTIONS

D.1 EXAMPLE : TIME SERIES

Figure 1.1

han=scan("c:\\eq+exp.dat") ## Read 34816 items
earth1=han[1:2048]
earth2=han[2049:4096]
earth3=han[4097:6144]
earth4=han[6145:8192]
earth5=han[8193:10240]
earth6=han[10241:12288]
earth7=han[12289:14336]
earth8=han[14337:16384]
exp1=han[16385:18432]
exp2=han[18433:20480]
exp3=han[20481:22528]
exp4=han[22529:24576]
exp5=han[24577:26624]
exp6=han[26625:28672]
exp7=han[28673:30720]
exp8=han[30721:32768]
NZ=han[32769:34816]

ear1=earth1[1025:2048]
ear2=earth2[1025:2048]
ear3=earth3[1025:2048]
ear4=earth4[1025:2048]
ear5=earth5[1025:2048]
ear6=earth6[1025:2048]
ear7=earth7[1025:2048]
ear8=earth8[1025:2048]
ex1=exp1[1025:2048]
ex2=exp2[1025:2048]
ex3=exp3[1025:2048]
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ex4=exp4[1025:2048]
ex5=exp5[1025:2048]
ex6=exp6[1025:2048]
ex7=exp7[1025:2048]
ex8=exp8[1025:2048]

par(mfrow=c(2,1)) ## 5th and 6th series.
ts.plot(ear5,ylab="", main="Earthquake")
ts.plot(ex6,ylab="", main="Explosion")

D.2 EXAMPLE : WAHBA’S ESTIMATION

Figure 2.1

## After we get Figure 1.1 ##
nearth1=(earth1-mean(earth1))/sd(earth1)
nearth2=(earth2-mean(earth2))/sd(earth2)
nearth3=(earth3-mean(earth3))/sd(earth3)
nearth4=(earth4-mean(earth4))/sd(earth4)
nearth5=(earth5-mean(earth5))/sd(earth5)
nearth6=(earth6-mean(earth6))/sd(earth6)
nearth7=(earth7-mean(earth7))/sd(earth7)
nearth8=(earth8-mean(earth8))/sd(earth8)
nexp1=(exp1-mean(exp1))/sd(exp1)
nexp2=(exp2-mean(exp2))/sd(exp2)
nexp3=(exp3-mean(exp3))/sd(exp3)
nexp4=(exp4-mean(exp4))/sd(exp4)
nexp5=(exp5-mean(exp5))/sd(exp5)
nexp6=(exp6-mean(exp6))/sd(exp6)
nexp7=(exp7-mean(exp7))/sd(exp7)
nexp8=(exp8-mean(exp8))/sd(exp8)

## For earthquakes ##

snearth1=nearth1[1025:2048]
snearth2=nearth2[1025:2048]
snearth3=nearth3[1025:2048]
snearth4=nearth4[1025:2048]
snearth5=nearth5[1025:2048]
snearth6=nearth6[1025:2048]
snearth7=nearth7[1025:2048]
snearth8=nearth8[1025:2048]

## For explosions ##

snexp1=nexp1[1025:2048]
snexp2=nexp2[1025:2048]
snexp3=nexp3[1025:2048]
snexp4=nexp4[1025:2048]
snexp5=nexp5[1025:2048]
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snexp6=nexp6[1025:2048]
snexp7=nexp7[1025:2048]
snexp8=nexp8[1025:2048]

par(mfrow=c(4,4))
searth1.per=spec.pgram(snearth1,taper=0,log="no")
searth2.per=spec.pgram(snearth2,taper=0,log="no")
searth3.per=spec.pgram(snearth3,taper=0,log="no")
searth4.per=spec.pgram(snearth4,taper=0,log="no")
searth5.per=spec.pgram(snearth5,taper=0,log="no")
searth6.per=spec.pgram(snearth6,taper=0,log="no")
searth7.per=spec.pgram(snearth7,taper=0,log="no")
searth8.per=spec.pgram(snearth8,taper=0,log="no")
sexp1.per=spec.pgram(snexp1,taper=0,log="no")
sexp2.per=spec.pgram(snexp2,taper=0,log="no")
sexp3.per=spec.pgram(snexp3,taper=0,log="no")
sexp4.per=spec.pgram(snexp4,taper=0,log="no")
sexp5.per=spec.pgram(snexp5,taper=0,log="no")
sexp6.per=spec.pgram(snexp6,taper=0,log="no")
sexp7.per=spec.pgram(snexp7,taper=0,log="no")
sexp8.per=spec.pgram(snexp8,taper=0,log="no")

## we get spectra ##

s1=searth1.per$spec
s2=searth2.per$spec
s3=searth3.per$spec
s4=searth4.per$spec
s5=searth5.per$spec
s6=searth6.per$spec
s7=searth7.per$spec
s8=searth8.per$spec
s9=sexp1.per$spec
s10=sexp2.per$spec
s11=sexp3.per$spec
s12=sexp4.per$spec
s13=sexp5.per$spec
s14=sexp6.per$spec
s15=sexp7.per$spec
s16=sexp8.per$spec

smatH=cbind(s1,s2,s3,s4,s5,s6,s7,s8)
smatL=cbind(s9,s10,s11,s12,s13,s14,s15,s16)
smeanH=apply(smatH,1,mean)
smeanL=apply(smatL,1,mean)

## main for Whaba graph ##

meanH=apply(smatH,1,mean)
meanL=apply(smatL,1,mean)

I1=meanH

45



freq=searth1.per$freq
freq2=sort(-freq)
frequency=c(freq2,freq)

Y11=log(I1)+0.0637944
Y12=Y11[512:1]
Y1=c(Y12,Y11) ## logI[1]=logI[960]=-0.6110726 ##

c0=(log(2)+0.0637944)/pi
Y1[1024]=c0+(Y1[1024]-0.0637944)
Y1[1]=c0+(Y1[1]-0.0637944)

I2=meanL
Y21=log(I2)+0.0637944
Y22=Y21[512:1]
Y2=c(Y22,Y21)

d0=(log(2)+0.0637944)/pi
Y2[1024]=d0+(Y2[1024]-0.0637944)
Y2[1]=d0+(Y2[1]-0.0637944)

gv1=rep(1,1024)
gv2=rep(1,1024)

v=-511:512
k=-511:512
for(i in 1:1024) { gv1[i]=(1/1024)*sum(Y1*exp(-2*pi*1i*v[i]*k/1024))}
for(j in 1:1024) { gv2[j]=(1/1024)*sum(Y2*exp(-2*pi*1i*v[j]*k/1024))}

lamda1=10**(-10) ## test with different parameters ##
mm1=4

lamda2=10**(-5)
mm2=2

lamda3=10**(-14)
mm3=4

lamda4=10**(-7)
mm4=2

w=seq(-511/1024,512/1024,1/1024)

est1=rep(1,1024)
for(i in 1:1024) {est1[i]=sum((gv1/(1+lamda3*(2*pi*v)**(2*mm3))) *exp(2*pi*1i*v*w[i]))}

est2=rep(1,1024)
for(j in 1:1024) {est2[j]=sum((gv2/(1+lamda3*(2*pi*v)**(2*mm3))) *exp(2*pi*1i*v*w[j]))}

par(mfrow=c(2,1)) ## Graph ##
plot(frequency,Y1,lty="dotted",type="l",ylim=c(-8,7),xlab=expression(italic(frequency))

,ylab="",main="S components of earthquake")
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lines(frequency,est1,type="l")
legend(0.27,6.5,legend=c("estimate","log I(w) + C"),lty=c(1,3))
plot(frequency,Y2,lty="dotted",type="l",ylim=c(-8,7),xlab=expression(italic(frequency))

,ylab="",main="S components of explosion")
lines(frequency,est2,type="l")

D.3 EXAMPLE : SAMPLE COEFFICIENT VARIATION

Figure 2.2

## After we get Figure 1.1 and Figure 2.1 ##
s=apply(smatH,1,sd)
I=apply(smatH,1,mean)
plot(freq,s/I,type="l",ylab=expression(italic(CV)),xlab=expression(italic(frequency)))
abline(h=1,lty="dotted")

D.4 EXAMPLE : SPECTRAL DENSITIES

Figure 4.1

w=seq(0.02,0.5,0.02)
f1=log(1/(1.8125-1.71*cos(2*pi*w)-0.1*cos(4*pi*w)))
f2=log(1/(2.81-3.8*cos(2*pi*w)+1.8*cos(4*pi*w)))
f3=log(1/(1.8125+1.71*cos(2*pi*w)-0.1*cos(4*pi*w)))
matplot(w,cbind(f1,f2),xlab=expression(bold(italic(frequency))),ylim=c(-2.5,6.5),

ylab=expression(italic(logf)~(w)),lwd=1,type="l",col=c(1,1))
lines(w,f3,lty=4)

text(locator(1),"AR(0.9,0.05)")
text(locator(1),"AR(1,-0.9)")
text(locator(1),"AR(-0.9,0.05)")

D.5 SIMULATION : SPECTRAL DENSITY WITH FITTING CURVE

Figure 4.2

y1=arima.sim(list(order=c(2,0,0),ar=c(0.9,0.05)),n=500)
y2=arima.sim(list(order=c(2,0,0),ar=c(0.9,0.05)),n=500)
y3=arima.sim(list(order=c(2,0,0),ar=c(0.9,0.05)),n=500)
y4=arima.sim(list(order=c(2,0,0),ar=c(0.9,0.05)),n=500)
y5=arima.sim(list(order=c(2,0,0),ar=c(1,-0.9)),n=500)
y6=arima.sim(list(order=c(2,0,0),ar=c(1,-0.9)),n=500)
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y7=arima.sim(list(order=c(2,0,0),ar=c(1,-0.9)),n=500)
y8=arima.sim(list(order=c(2,0,0),ar=c(1,-0.9)),n=500)
z1=arima.sim(list(order=c(2,0,0),ar=c(-0.9,0.05)),n=500)
z2=arima.sim(list(order=c(2,0,0),ar=c(-0.9,0.05)),n=500)
z3=arima.sim(list(order=c(2,0,0),ar=c(-0.9,0.05)),n=500)
z4=arima.sim(list(order=c(2,0,0),ar=c(-0.9,0.05)),n=500)

par(mfrow=c(4,3))
b1.per=spec.pgram(y1,taper=0,log="no")
b2.per=spec.pgram(y2,taper=0,log="no")
b3.per=spec.pgram(y3,taper=0,log="no")
b4.per=spec.pgram(y4,taper=0,log="no")
b5.per=spec.pgram(y5,taper=0,log="no")
b6.per=spec.pgram(y6,taper=0,log="no")
b7.per=spec.pgram(y7,taper=0,log="no")
b8.per=spec.pgram(y8,taper=0,log="no")
z1.per=spec.pgram(z1,taper=0,log="no")
z2.per=spec.pgram(z2,taper=0,log="no")
z3.per=spec.pgram(z3,taper=0,log="no")
z4.per=spec.pgram(z4,taper=0,log="no")

YY1=log(b1.per$spec)+0.57721
YY2=log(b2.per$spec)+0.57721
YY3=log(b3.per$spec)+0.57721
YY4=log(b4.per$spec)+0.57721
YY5=log(b5.per$spec)+0.57721
YY6=log(b6.per$spec)+0.57721
YY7=log(b7.per$spec)+0.57721
YY8=log(b8.per$spec)+0.57721
ZZ1=log(z1.per$spec)+0.57721
ZZ2=log(z2.per$spec)+0.57721
ZZ3=log(z3.per$spec)+0.57721
ZZ4=log(z4.per$spec)+0.57721

Y1=c(YY1,YY2,YY3,YY4)
Y2=c(YY5,YY6,YY7,YY8)
Z1=c(ZZ1,ZZ2,ZZ3,ZZ4)

## 1st ##
t1=rep(1,1000)
t2=rep(b1.per$freq,4)
T=cbind(t1,t2)

a100=matrix(b1.per$freq,250,nrow=250)
ss=function(a)
{
c=ncol(a)
r=nrow(a)
mat=matrix(1,r,ncol=c)
for(i in 1:c) {
for(j in 1:r) { mat[i,j]=1*((abs(i-j)*0.02)^4-2*(abs(i-j)*0.02)^3+(abs(i-j)*0.02)^2

-(1/30))/(-24)}
}
return(mat)
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}

m=ss(a100)
q=rbind(m,m,m,m)
Q=cbind(q,q,q,q)
W=diag(1,1000)
n=1000
lamda=0.001
M=W%*%Q%*%t(W) + diag(n*lamda,1000)
D=solve(t(T)%*%t(W)%*%solve(M)%*%W%*%T)%*%t(T)%*%t(W)%*%solve(M)%*%Y1
C=W%*%solve(M)%*%(diag(1,1000)-W%*%T%*%solve(t(T)%*%t(W)%*%solve(M)%*%W%*%T)%*%t(T)%*%
t(W)%*%solve(M))%*%Y1

beta1=T%*%D+Q%*%C
Yhat1=W%*%beta1
fit1=Yhat1[1:250]

## 2nd ##
D=solve(t(T)%*%t(W)%*%solve(M)%*%W%*%T)%*%t(T)%*%t(W)%*%solve(M)%*%Y2
C=W%*%solve(M)%*%(diag(1,1000)-W%*%T%*%solve(t(T)%*%t(W)%*%solve(M)%*%W%*%T)%*%t(T)%*%
t(W)%*%solve(M))%*%Y2

beta2=T%*%D+Q%*%C
Yhat2=W%*%beta2
fit2=Yhat2[1:250]

## 3rd ##
D=solve(t(T)%*%t(W)%*%solve(M)%*%W%*%T)%*%t(T)%*%t(W)%*%solve(M)%*%Z1
C=W%*%solve(M)%*%(diag(1,1000)-W%*%T%*%solve(t(T)%*%t(W)%*%solve(M)%*%W%*%T)%*%t(T)%*%
t(W)%*%solve(M))%*%Z1

beta3=T%*%D+Q%*%C
Yhat3=W%*%beta3
fit3=Yhat3[1:250]

## 3 fitted log-density ##
par(mfrow=c(4,3))
matplot(b1.per$freq,cbind(fit1,YY1),xlab=expression(italic(frequency)),ylab="",lwd=1,

type="l",col=c(1,1))
title(expression(italic(AR(0.9,0.05))))
matplot(b1.per$freq,cbind(fit2,YY5),xlab=expression(italic(frequency)),ylab="",lwd=1,

type="l",col=c(1,1))
title(expression(italic(AR(1,-0.9))))
matplot(b1.per$freq,cbind(fit3,ZZ1),xlab=expression(italic(frequency)),ylab="",lwd=1,

type="l",col=c(1,1))
title(expression(italic(AR(-0.9,0.05))))

matplot(b1.per$freq,cbind(fit1,YY2),xlab=expression(italic(frequency)),ylab="",lwd=1,
type="l",col=c(1,1))

title(expression(italic(AR(0.9,0.05))))
matplot(b1.per$freq,cbind(fit2,YY6),xlab=expression(italic(frequency)),ylab="",lwd=1,

type="l",col=c(1,1))
title(expression(italic(AR(1,-0.9))))
matplot(b1.per$freq,cbind(fit3,ZZ2),xlab=expression(italic(frequency)),ylab="",lwd=1,

type="l",col=c(1,1))
title(expression(italic(AR(-0.9,0.05))))
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matplot(b1.per$freq,cbind(fit1,YY3),xlab=expression(italic(frequency)),ylab="",lwd=1,
type="l",col=c(1,1))

title(expression(italic(AR(0.9,0.05))))
matplot(b1.per$freq,cbind(fit2,YY7),xlab=expression(italic(frequency)),ylab="",lwd=1,

type="l",col=c(1,1))
title(expression(italic(AR(1,-0.9))))
matplot(b1.per$freq,cbind(fit3,ZZ3),xlab=expression(italic(frequency)),ylab="",lwd=1,

type="l",col=c(1,1))
title(expression(italic(AR(-0.9,0.05))))

matplot(b1.per$freq,cbind(fit1,YY4),xlab=expression(italic(frequency)),ylab="",lwd=1,
type="l",col=c(1,1))

title(expression(italic(AR(0.9,0.05))))
matplot(b1.per$freq,cbind(fit2,YY8),xlab=expression(italic(frequency)),ylab="",lwd=1,

type="l",col=c(1,1))
title(expression(italic(AR(1,-0.9))))
matplot(b1.per$freq,cbind(fit3,ZZ4),xlab=expression(italic(frequency)),ylab="",lwd=1,

type="l",col=c(1,1))
title(expression(italic(AR(-0.9,0.05))))

D.6 SIMULATION : COMPARING AR(0.9, 0.05) WITH AR(1, -0.9) WITH
CONFIDENCE INTERVALS

Figure 4.5

## After we get Figure 4.5 ##

beta1hat=fit1-fit2 ## length = 250 ##

### 1st ####
booth=function(){
B=matrix(0,4,200)
for(i in 1:200) {
p1=sample(c(1:4),4,replace=TRUE)
B[,i]=sort(c(p1))
}
return(B)
}
sam=booth()

YMAT=cbind(YY1,YY2,YY3,YY4)
YYY=matrix(0,1000,200)
for (i in 1:200)
YYY[,i]=c(YMAT[,sam[1,i]],YMAT[,sam[2,i]],YMAT[,sam[3,i]],YMAT[,sam[4,i]])

ahn=function(YYY){
temp=matrix(0,250,200)
for ( k in 1:200){
Y=YYY[,k]
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t1=rep(1,1000)
t2=rep(b1.per$freq,4)
T=cbind(t1,t2)
a100=matrix(b1.per$freq,250,nrow=250)
ss=function(a)
{
c=ncol(a)
r=nrow(a)
mat=matrix(1,r,ncol=c)
for(i in 1:c) {
for(j in 1:r) { mat[i,j]=((abs(i-j)*0.02)^4-2*(abs(i-j)*0.02)^3+(abs(i-j)*0.02)^2
-(1/30))/(-24)}
}
return(mat)
}
m=ss(a100)
q=rbind(m,m,m,m)
Q=cbind(q,q,q,q)

W1=diag(1,1000)
n=1000
lamda=0.001
M=W1%*%Q%*%t(W1) + diag(n*lamda,1000)
D=solve(t(T)%*%t(W1)%*%solve(M)%*%W1%*%T)%*%t(T)%*%t(W1)%*%solve(M)%*%Y
C=W1%*%solve(M)%*%(diag(1,1000)-W1%*%T%*%solve(t(T)%*%t(W1)%*%solve(M)%*%W1%*%T)%*%
t(T)%*%t(W1)%*%solve(M))%*%Y
FIT1=(W1%*%T%*%D+Q%*%C)[1:250]
temp[,k]=FIT1
}
return(temp)
}
CILIT1=ahn(YYY)
v1=apply(CILIT1,1,var)

## 2nd ##
booth=function(){
B=matrix(0,4,200)
for(i in 1:200) {
p1=sample(c(1:4),4,replace=TRUE)
B[,i]=sort(c(p1))
}
return(B)
}
sam=booth()
MAT=cbind(YY1,YY2,YY3,YY4)
ZZZ=matrix(0,1000,200)
for (i in 1:200)
ZZZ[,i]=c(ZMAT[,sam[1,i]],ZMAT[,sam[2,i]],ZMAT[,sam[3,i]],ZMAT[,sam[4,i]])

ahn=function(ZZZ){
temp=matrix(0,250,200)
for ( k in 1:200){
Z=ZZZ[,k]
t1=rep(1,1000)

51



t2=rep(b1.per$freq,4)
T=cbind(t1,t2)
a100=matrix(z1.per$freq,250,nrow=250)
ss=function(a)
{
c=ncol(a)
r=nrow(a)
mat=matrix(1,r,ncol=c)
for(i in 1:c) {
for(j in 1:r) { mat[i,j]=((abs(i-j)*0.02)^4-2*(abs(i-j)*0.02)^3+(abs(i-j)*0.02)^2
-(1/30))/(-24)}
}
return(mat)
}

m=ss(a100)
q=rbind(m,m,m,m)
Q=cbind(q,q,q,q)
W1=diag(1,1000)
n=1000
lamda=0.001
M=W1%*%Q%*%t(W1) + diag(n*lamda,1000)
D=solve(t(T)%*%t(W1)%*%solve(M)%*%W1%*%T)%*%t(T)%*%t(W1)%*%solve(M)%*%Z
C=W1%*%solve(M)%*%(diag(1,1000)-W1%*%T%*%solve(t(T)%*%t(W1)%*%solve(M)%*%W1%*%T)%*%
t(T)%*%t(W1)%*%solve(M))%*%Z

FIT2=(W1%*%T%*%D+Q%*%C)[1:250]
temp[,k]=FIT2
}
return(temp)
}
CILIT2=ahn(ZZZ)
v2=apply(CILIT2,1,var)

## Theoretical value ##
w=b1.per$freq
logf1=log(1/(1.8125-1.71*cos(2*pi*w)-0.1*cos(4*pi*w)))
logf0=log(1/(2.81-3.8*cos(2*pi*w)+1.8*cos(4*pi*w)))
Beta0=logf0
Beta1=logf1-logf0

## Confidence intervl ##
z=qnorm(1/2+1/2*(0.95)^(1/250)) ## z=3.712 ##
m=2.85

sigma=sqrt(v1+v2)
fhat=CILIT1-CILIT2

upperz=beta1hat+sigma*z
lowz=beta1hat-sigma*z
upperm=beta1hat+sigma*m
lowm=beta1hat-sigma*m

par(mfrow=c(1,2)) ## graphs ##
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matplot(w[1:249],cbind(Beta1[1:249],upperz[1:249]),ylim=c(-6,6),
xlab=expression(italic(frequency)),
ylab="",lwd=1,type="l",col=c(2,4))
lines(w[1:249],lowz[1:249],lty=2,col=4)
lines(w[1:249],beta1hat[1:249],lty="dotted",col=4)
title("Independent Simultaneous CI")
matplot(w[1:249],cbind(Beta1[1:249],upperm[1:249]),ylim=c(-6,6),
xlab=expression(italic(frequency)),
ylab="",lwd=1,type="l",col=c(2,4))
lines(w[1:249],lowm[1:249],lty=2,col=4)
lines(w[1:249],beta1hat[1:249],lty="dotted",col=4)
title("Bootstrapping CI")

D.7 EXAMPLE : GRAPH OF EQUATION (4.5) WHEN GROUP 1 = AR(0.9, 0.05) AND
GROUP 2 = AR(1, -0.9)

Figure 4.4

## After we get Figure 4.5 ##

mx=rep(0,200)
for (i in 1:200){
mx[i]=max(abs((fhat[,i]-beta1hat)/sigma))}

m20=cbind(sort(mx[1:20]),sort(mx[21:40]),sort(mx[41:60]),sort(mx[61:80]),
sort(mx[81:100]),sort(mx[101:120]),sort(mx[121:140]),sort(mx[141:160]),
sort(mx[161:180]),sort(mx[181:200]))
sort(m20)
m=rep(0,401)
for (j in 1:401){
m[j]=mean(c(1/20*length(m20[,1][m20[,1]<=0.01*j]),1/20*length(m20[,2][m20[,2]<=0.01*j]),
1/20*length(m20[,3][m20[,3]<=0.01*j]),1/20*length(m20[,4][m20[,4]<=0.01*j]),
1/20*length(m20[,5][m20[,5]<=0.01*j]),1/20*length(m20[,6][m20[,6]<=0.01*j]),
1/20*length(m20[,7][m20[,7]<=0.01*j]),1/20*length(m20[,8][m20[,8]<=0.01*j]),
1/20*length(m20[,9][m20[,9]<=0.01*j]),
1/20*length(m20[,10][m20[,10]<=0.01*j])))
}

plot(seq(0,4,0.01),m,type="l",lwd=2,xlab=expression(italic(m[p])),ylab="")
abline(h=0.95,lty="dotted")
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D.8 SIMULATION : COMPARING AR(0.9, 0.05) WITH AR(-0.9, 0.05) WITH
CONFIDENCE INTERVALS

Figure 4.6

## Everything is the same as Figure 4.8 except belows ##

beta1hat=fit1-fit3
MAT=cbind(ZZ1,ZZ2,ZZ3,ZZ4)
m=2.82

y1=arima.sim(list(order=c(2,0,0),ar=c(0.9,0.05)),n=500)
y2=arima.sim(list(order=c(2,0,0),ar=c(0.9,0.05)),n=500)
y3=arima.sim(list(order=c(2,0,0),ar=c(0.9,0.05)),n=500)
y4=arima.sim(list(order=c(2,0,0),ar=c(0.9,0.05)),n=500)
z1=arima.sim(list(order=c(2,0,0),ar=c(-0.9,0.05)),n=500)
z2=arima.sim(list(order=c(2,0,0),ar=c(-0.9,0.05)),n=500)
z3=arima.sim(list(order=c(2,0,0),ar=c(-0.9,0.05)),n=500)
z4=arima.sim(list(order=c(2,0,0),ar=c(-0.9,0.05)),n=500)
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