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PARAMETER ESTIMATION FOR LATENT MIXTURE MODELS WITH

APPLICATIONS TO PSYCHIATRY

Lulu Ren, PhD

University of Pittsburgh, 2006

Longitudinal and repeated measurement data commonly arise in many scientific research

areas. Traditional methods have focused on estimating single mean response as a function of

a time related variable and other covariates in a homogeneous population. However, in many

situations the homogeneity assumption may not be appropriate. Latent mixture models

combine latent class modeling and conventional mixture modeling. They accommodate the

population heterogeneity by modeling each subpopulation with a mixing component. In

this paper, we developed a hybrid Markov Chain Monte Carlo algorithm to estimate the

parameters of the latent mixture model. We show through simulation studies that MCMC

algorithm is superior than the EM algorithm when missing value percentage is large.

As an extension of latent mixture models, we also propose the use of cubic splines as

a curve fitting technique instead of classic polynomial fitting. We show that this method

gives better fits to the data, and our MCMC algorithm estimates the model efficiently. We

apply the cubic spline technique to a data set which was collected in a study of alcoholism.

Our MCMC algorithm shows several different P300 amplitude trajectory patterns among

children and adolescents.

Other topics that are covered in this thesis include the identifiability of the latent mixture

model and the use of such model to predict a binary outcome. We propose a bivariate version

of the latent mixture model, where two courses of longitudinal responses can be modeled at

the same time. Computational aspects of such models remain to be completed in the future.
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17 Â – free knot spline (beta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

18 Diagonal elements of Σε – simulation 1 . . . . . . . . . . . . . . . . . . . . . . 65

19 Parameter matrix Γ – simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . 66

20 {γk} – simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

21 Covariance matrix Ψ – simulatioin 1 . . . . . . . . . . . . . . . . . . . . . . . 68

22 Diagonal elements of Σε – simulation 2 . . . . . . . . . . . . . . . . . . . . . . 69

x



23 Parameter matrix Γ – simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . 70

24 {γk} – simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

25 Covariance matrix Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

26 Diagonal elements of Σε – simulation 3 . . . . . . . . . . . . . . . . . . . . . . 72

27 Parameter matrix Γ – simulation 3 . . . . . . . . . . . . . . . . . . . . . . . . 73

28 {γk} – simulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

29 Covariance matrix Ψ – simulation 3 . . . . . . . . . . . . . . . . . . . . . . . 74

30 Diagonal elements of Σε – two-mixture . . . . . . . . . . . . . . . . . . . . . . 76

31 Estimate for A – two-mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

32 Estimate of γk – two-mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

33 Diagonal elements of Σε – three mixture . . . . . . . . . . . . . . . . . . . . . 77

34 Estimate for A – three mixture . . . . . . . . . . . . . . . . . . . . . . . . . . 78

35 Estimate of γk – three mixture . . . . . . . . . . . . . . . . . . . . . . . . . . 79

36 Diagonal elements of Σε – fixed knot spline . . . . . . . . . . . . . . . . . . . 81

37 Parameter matrix Γ – fixed knot spline . . . . . . . . . . . . . . . . . . . . . 82

38 {γk} – fixed knot spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

39 Covariance matrix Ψ – fixed knot spline . . . . . . . . . . . . . . . . . . . . . 83

40 Diagonal elements of Σε – free knot (truncated normal) . . . . . . . . . . . . 85

41 Parameter matrix Γ – free knot (truncated normal) . . . . . . . . . . . . . . . 86

42 {γk} – free knot (truncated normal) . . . . . . . . . . . . . . . . . . . . . . . 87

43 Covariance matrix Ψ – free knot (truncated normal) . . . . . . . . . . . . . . 87

44 Diagonal elements of Σε – free knot (beta) . . . . . . . . . . . . . . . . . . . . 88

45 Parameter matrix Γ – free knot (beta) . . . . . . . . . . . . . . . . . . . . . . 89

46 {γk} – free knot (beta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

47 Covariance matrix Ψ – free knot (beta) . . . . . . . . . . . . . . . . . . . . . 90

xi



PREFACE

I would like to thank the members of my committee, Dr. Leon J. Gleser, Dr. Shirley Y.

Hill and Dr. Wesley K. Thompson for their insightful advice and kind help throughout the

writing of this thesis.

I want to especially thank my advisor, Dr. Satish Iyenger, for his guidance during my

graduate studies. I am very grateful to have the opportunity to work with Dr. Iyengar. His

encouragement and patience helped me went through many hard times in my research. This

thesis could not have been finished without him.

I also want to thank my wonderful friends, Ana-Maria Iosif, Jim Scisciani, Ahmet Sezer,

Zhuoxin Sun, Melissa Ziegler, Jeongeun Kim and Kimberly Thomas. They have made my

life in Pittsburgh so colorful. I would miss them dearly.

Last but not least, I want to dedicate this thesis to my parents, Yizhi Ren and Yunzhi

Li, for their unconditional love and support. Also to my dearest cat friend, mimisan.

xii



1.0 INTRODUCTION

1.1 OVERVIEW

Repeated measurement and longitudinal data commonly arise in many psychological or social

research areas. Traditional methods have focused on the relationships between response

variables and covariates. Usually, the data population is considered to be homogeneous. A

single mean response is estimated as a function of a time related variable and other covariates.

However, in many situations the data come from a heterogeneous population. In these cases

researchers are interested in not only the responses’ change over time but also the differences

between each subpopulation. Examples of the methods dealing with such problems include

cluster analysis, finite mixture models, and latent class analysis. In these methods, “ the goal

is to group individuals into categories, each one of which contains individuals who are similar

to each other and different from individuals in other categories ” [24]. Heterogeneity among

the longitudinal data can be represented as multiple developmental trajectories, which are

commonly seen in alcohol, drug, and mental health research. See [27] for more examples.

In 1998, Muthén and Shedden proposed a generalized latent variable modeling framework

[23, 26], which we will call a latent mixture model in this thesis. Recall the classical mixed

model:

Yi = Xiα + Ziβi + εi, i = 1, · · · , n.

where α is the fixed effect, βi represent the individual-specific random effect and εi are inde-

pendent normally distributed error terms. Unlike the random effect model, latent mixture

models assume βi are sampled from a mixture distribution instead of one probability dis-

tribution. To determine the mixing proportions, a categorical latent variable Ci, a class
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membership indicator, is introduced into the model. The heterogeneity of the population is

therefore modeled by combining continuous latent variables and categorical latent variables

together.

To further understand the generalized latent variable modeling, it is helpful to take

a look at the conventional latent variable analysis and related modeling from which the

latent mixture modeling framework was drawn. Early applications of latent class analysis

in medicine were done by Rindskopf and Rindskopf [32], and Ubersax and Grove [43]. The

goal is to associate observed categorical variables, for instance, diagnosis or symptoms, with

unobserved latent classes; that is to find the smallest number of latent classes possible to

group the categorical variables and at the same time preserve the diversity of the data. A

continuous version of latent class analysis is the latent class growth analysis [27]. It mainly

focuses on longitudinal data, where there are multiple measurements over time for each

subject. The object of the analysis is to group subjects into classes where the mean growth

curve shape for each class is different from others, and to estimate the posterior probability

of being in each class.

Finite mixture models [42] have a very broad scope. The choice of mixing components is

flexible: Gaussian mixtures are often used for heterogeneous continuous data whereas Poisson

mixtures are commonly used for categorical data. Often, both the component distributions

and mixing proportions depend on the covariates of the subject: see [18]. As an extension

to the models above, latent mixture modeling estimates the mean growth curve for each

class and individual variation within the class. Both goals are carried out by assuming

individual-specific random effects. The details of the model will be illustrated in the section

2.1.2.

Parameter estimation for the mixture models is rather complicated. Different methodolo-

gies had been developed in the past three decades. Likelihood based approaches are central

with the Expectation Maximization (EM) algorithm [6] being a milestone. The EM algo-

rithm treats the unobserved class indicators as latent variables and augments the observed

incomplete data. It is an especially appealing idea when the augmented likelihood has a sim-

plified form, in which case maximum likelihood estimators can be easily obtained. Further

description of the EM algorithm along with some variations such as ECM and Monte Carlo

2



EM will be given in the section 2.2.1.

In practice, one also needs to take account of the missing data problem. Missing data is

a common occurrence when the measurements are taken repeatedly on the same subject over

time. Subjects may be lost due to attrition, high expense of follow up or by study design

constrains. Missing data makes standard analysis more difficult and less accurate. EM-type

algorithms can be set up to deal with the missing data problem: the missing values are

regarded as latent as well as other unknown hyperparameters. The EM algorithm augments

the data as if missing values were observed and works with the augmented likelihood. As the

complexity of the model and the missing proportion increase, EM-type algorithms become

more difficult to handle because finding the expectation of the predictive likelihood can

become very complicated and tedious.

An alternative way to analyze this complicated model is through Bayesian methods, e.g.

the Markov Chain Monte Carlo (MCMC) method. MCMC algorithms are becoming increas-

ingly popular because advanced software and high speed computers considerably reduce the

computational complexity. MCMC algorithms are stochastic sampling procedures and they

are set up to approximate the full posterior distribution instead of obtaining a point estima-

tor as in the EM algorithm. In this paper, we implemented a hybrid MCMC algorithm, a

combination of Gibbs sampler and Metroplis-Hastings algorithm, to estimate the parameters

in the latent mixture model. The details will be given in chapter 2.

1.2 MOTIVATING DATA SET

The data to be analyzed were first collected by Hill et al. [16] for the study of the associ-

ation between event-related potential (ERP) component P300 and familial risk for alcohol

dependence. An ERP is a series of positive and negative voltage deflections in the ongoing

electroencephalography (EEG) in response to certain stimuli, often visual or auditory. The

P300 component is a positive ERP component peaking at approximately 300 millisecond

(ms) after stimulus onset [50]. In the neurobiology literature, many studies have shown

that both P300 amplitude and latency are related to gender, age and psychopathology. The

3



P300 component has been studied as a potential biological marker for development of many

psychiatric disorders, including schizophrenia [28] and alcoholism [29, 35].

1.2.1 Subjects and Data Collection

Children between ages 8 to 18 whose parents enrolled in a large family study were followed

annually. The children are either at high risk or low risk for developing alcohol dependence

based on familial loading for alcohol dependence [17]. Each child was also administered the

Schedule for Affective Disorders and Schizophrenia for School-Aged Children (K-SADS; [2]).

The presence or absence of any childhood diagnosis was used to further classify subtypes of

high- and low-risk children.

Considerable evidence exists suggesting that P300 amplitude abnormality in childhood

is a risk marker for later development of alcohol dependence [17]. There is also evidence that

P300 amplitude is heritable [16]. The main goal of the analysis is to determine if risk status

confers a different developmental pattern across childhood and adolescence. The second

goal is to determine if the pattern types are associated with the individual diagnoses of the

children during the course of the study as well. We will also provide methods to study the

relationship between the P300 patterns and development of alcoholism in young adulthood.

There are 137 subjects in total, 68 boys and 69 girls. Among all subjects, 78 children are

from high risk families and 59 children are from low risk families. The response variable is

the annual measurement of P300 amplitude in microvolts (µ V ). We consider the association

between P300 and the presence of the child’s psychiatric disorders, which was measured

by the K-SADS. To avoid the high dimensionality of the data, we collapsed the K-SADS

diagnoses into two groups: internalizing and externalizing disorder diagnoses. Internalizing

disorders include depression, mania, panic attacks, separation anxiety, phobias, generalized

anxiety, dysthymia, cyclothymia, and overanxious disorder. Externalizing disorders include

conduct disorder, attention deficit disorder, oppositional disorder, alcohol abuse and drug

use disorder. Thus, the covariates for each subject included in the study were gender, risk

status, internalizing and externalizing psychiatric disorder diagnoses. All 137 subjects had

complete covariates measured and were followed into adulthood (age 21 and older), when

4



Table 1: P300 data set

High-Risk Children Low-Risk Children

Int./Ext. None Int./Ext. None

Male 24 13 11 20 68

Female 22 19 8 20 69

Total 46 32 19 40 137

the alcohol dependence and other outcomes were recorded.

Table 1 shows a break down of our data set.

1.2.2 Missing Data Problem

It would have been best if all subjects were observed each year from age 8 to 18. However,

certain subjects did drop out the study or skip one or more yearly interviews. Some subjects

only have a few observations whereas others attended almost all the interviews. In fact,

for each child we only observe a part of the P300 amplitude trajectory. The total missing

value percentage in our data set is 50.50% (defined as
total No. of missing observations
total No. of possible observations

).

Missing value frequency varies for different ages; see figure 1 for details. In this thesis,

we propose the use of a hybrid MCMC algorithm to fit the latent mixture model. This

algorithm treats missing observations as latent variables and augments the observed data

with values sampled from the conditional posterior distributions of the latent variables given

observed data and parameters. The sampling method and assessment for convergence will

be discussed in chapter 2.
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Figure 1: Missing data count vs. age

1.3 CURVING FITTING TECHNIQUES

In this study, our goal is to model the heterogeneity amongst the longitudinal courses of

P300 amplitude. To do so, an individual developmental curve must be fitted to each subject.

Múthen and Shedden proposed a polynomial fit in their latent mixture model framework.

We instead propose using cubic splines for curve fitting because spline methods have more

flexibility in describing the shape of the trajectory, especially when the curve has local

fluctuations. In our work, the knots of the spline functions are fixed first and then set as

free parameters. In section 4.5.2, we give a detailed introduction to this technique.
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2.0 BACKGROUND

2.1 LATENT MIXTURE MODELING FRAMEWORK

In the longitudinal data analysis setting, a latent mixture modeling framework [23] offers a

flexible way to study the outcome’s change over time. In many studies, it is believed that

there are different subtypes of subjects in a population. To capture the heterogeneity, the

latent mixture modeling proposes to combine the classical random effect mixture model and

the latent class model. We now will give brief introductions to both methodologies.

2.1.1 Latent Class Modeling

Latent class models are used to identify subtypes of related subjects from multivariate cat-

egorical data. They can be applied in cluster analysis, factor analysis and regression. For

example, the observed categorical variables may be a set of diagnostic variables and the

latent class variables may correspond to the presence or absence of certain risk factor. In

short, by using latent class analysis, one hopes to find a small number of underlying sub-

types that can describe the associations among the observed categorical variables. Latent

class models refer to the unobserved subtypes as latent classes. Let Y1, Y2, . . . , YJ denote

the set of observed categorical variables, and C denote the latent variable. Suppose C has

K categories, and the probability associated with class k is πC (k) , k = 1, . . . , K. Since
∑K

k=1 πC (k) = 1, there are (K − 1) free parameters in the model.

There are two standard assumptions in latent class analysis. First is called internal

homogeneity: the subjects in a certain latent class have the same distribution. Second is

called local independence: for each subject, Y1, . . . , YJ are independent within the same
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latent class [5]. Using these two assumptions, we easily obtain the joint distribution of Y

and C:

PY,C (y, k) = πC (k) PY |C(k) (y) = πC (k)
J∏

j=1

PYj |C(k) (yj) . (2.1)

The latent class model can therefore be written as:

PY (y) =
K∑

k=1

PY,C (y, k) =
K∑

k=1

πC (k) PY |C(k) (y) . (2.2)

One common application of the latent class model is the prediction of latent class membership

given parameter estimates, i.e. the prediction of C given the value of Y :

πC|Y (k) = PY,C (y, k) /PY (y)

For some examples of applications, see the work of Rindskopf [32], and Young et al. [48].

2.1.2 Random Effects Mixture Model

In classical longitudinal data analysis, random effects are often assumed to be normally

distributed, i.e.

yi = Xiα + Ziβi + εi, i = 1, . . . , N (2.3)

where yi is the ni dimensional vector of response for the ith subject, with βi ∼ N (0, D) and

εi ∼ N (0, σ2Ini
). Xi and Zi are the covariate matrices; α represents the fixed effects and

βi is the subject-specific random effect vector. It is often assumed that βi is independent of

the error term εi. Since the random effects are sampled from a single multivariate normal

distribution, this model can be called the homogeneity model.

Verbeke and Lesaffre showed that when the random effects in fact are sampled from a

finite mixture of normal distributions, the random effects may be badly estimated if homo-

geneity is assumed [44]. They proposed a heterogeneity model to accommodate clustered

β′is. This is of importance in longitudinal models where there is heterogeneity in the subject

population. For instance, in the context of the alcohol study, the subjects come from a

family with low risk or high risk for alcohol dependence.
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The heterogeneity model assumes that random effect βi is sampled from a mixture of K

multivariate normal distributions with means µk and common covariance matrix D. Each

component of the mixture represents a subtype of the population.

Let pik be the mixing proportion of the kth component for subject i,
∑K

k=1 pik = 1. The

marginal distribution of yi can be written as:

yi ∼
K∑

k=1

pkN
(
Xiα + Ziµk, ZiDZ

′
i + σ2Ini

)
(2.4)

Redner and Walker discussed the details of fitting the model using EM algorithm [30].

To check whether the correct number of mixture components was used, Verbeke and

Lesaffre suggested a goodness-of-fit test for heterogeneity using the Kolmogorov - Smirnov

test. A linear combination of the repeated measures of each subject a
′
iyi can be used to

avoid the evaluation of the multivariate normal distribution. The Kolmogorov-Smirnov test

then is performed on the cumulative density function of a
′
iyi, which are uniformly distributed

under correct model. A drawback for this test is the choice of a, the ideal choice is the one

with maximal variability in a
′
iyi due to random effects compared to the variability due to

the error terms. For more on such tests, see [44].

2.1.3 Latent Mixture Model

The latent mixture model framework was proposed by Muthén and Shedden in 1999 [23].

It incorporates the ideas of random effect mixture models and latent class models by using

both continuous and categorical latent variables.

Consider an ni-dimensional vector yi of continuous variables and an r-dimensional vector

ui of binary outcomes, which are related to each other in the model via latent variables. xi

is the vector of covariates, η is the vector of continuous latent variables and c is a vector

of latent categorical variables. Also, let ci = (ci1, . . . , ciK)
′
have a multinomial distribution,

where cik = 1 when subject i belongs to the kth latent class and is zero otherwise. The

random effect mixture part of the model can be written as:

yi = Λyηi + εi (2.5)

ηi = Aci + Γxi + ξi (2.6)
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where Λy is a ni × p matrix of constants whose values depend on the context. εi is the

error term that is independent with other variables and is distributed as N (0, Σε), with Σε

diagonal. A and Γ are parameter matrices relating the classes and covariates to the outcome.

ξi is another residual vector that is distributed as N (0, Ψ).

Next, suppose that the values of binary variables u are independent given the class mem-

bership of subject i. That is: p (ui1, . . . , uir|ci) = p (ui1|ci) . . . p (uir|ci). Let τi = (τi1, . . . , τir)
′

where τij = p (uij = 1|ci). An ordinary logit model gives:

logit (τi) = Λuci. (2.7)

Finally, define pi = (pi1, . . . , piK−1)
′
where pik = p (cik = 1|Li). The (K − 1)-dimensional

vector logit(pi) = (log [pi1/piK ] , . . . , log [piK−1/piK ]) can be modeled using logistic regression:

logit (pi) = γ
′
kx̃i. (2.8)

where γk k = 1, . . . , K − 1 are parameter vectors associated with the covariates and x̃i

represents the covariate vector of subject i with an intercept term.

Equations 2.5 - 2.8 represent the latent mixture model in a hierarchical structure. In-

dividual response is related to the covariates via continuous latent variables, i.e. random

effects. The random effects also depend on the class membership. This model allows us

to estimate the mean response vector for each class, and to predict the binary outcomes of

each individual. Also the posterior probability that individual i falls in the kth class can be

estimated. It is common in mixture models that a subject is classified to the class for which

he/she has the highest posterior probability.

2.2 COMPUTATIONAL APPROACHES

2.2.1 EM Algorithm

The Expectation Maximization (EM) algorithm was first named by Dempster et al. in 1977

[6]. Earlier applications of the EM algorithm were widely scattered in the literature. To

obtain the maximum likelihood estimators (MLE) for the parameters, traditional methods
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usually involve differentiating the log-likelihood function and solving the resulting normal

equations to locate the mode of the log-likelihood. When the model is complicated, these

steps can turn into massive computations because they often do not have analytic solutions.

Rather than performing a difficult maximization directly, the EM algorithm augments the

data with “latent data” that simplifies the calculation and subsequently performs a series of

simple maximizations [38]. The following is a detailed description of the algorithm.

Let y and z be the observed data and the augmented latent data respectively. Assume

that the likelihood of y can be written as g (y|θ). The goal is to get the MLE for θ by

maximizing the function l (θ) = log g (y|θ). In many cases, l (θ) has no easy closed form. On

the other hand, the complete data likelihood f (y, z|θ) usually is easier to deal with. The EM

algorithm therefore calculates the MLE by using f (y, z|θ) instead of the observed likelihood

l (θ). The EM algorithm is an iterative procedure, which consists of two steps: the E-step

and the M-step. At the ith iteration:

1. E-step:

Calculate Q
(
θ, θ(i)

)
= Ez

(
log p (θ|y, z) |y, θ(i)

)

2. M-step:

Find θ(i+1) which maximizes the Q function in E-step

The algorithm is iterated until ||θ(i+1) − θ(i)|| is sufficiently small.

It can be shown that the EM algorithm increases the posterior p (θ|y, z) at each iter-

ation, i.e. p
(
θ(i+1)|y, z

) ≥ p
(
θ(i)|y, z

)
Also, if the iterates θ(i) converge, they converge to

a stationary point of p (θ|y, z). This implies that to reach the global maximum, multiple

starting values may be needed to avoid the situation where EM algorithm is stuck at some

local maximum or saddle points. For more details, see [19] and [45]. Dempster et al. also

showed that the EM algorithm converges at a linear rate, with the rate depending on the

proportion of information about θ that is observed. This means that the computation time

can be quite long when a large portion of the data is missing.

“Despite of the slow convergence, the EM algorithm has become a very popular compu-

tational method in statistics”[45]. One of the advantages of the EM algorithm is its ability

of handling missing data. This feature makes the EM algorithm a useful tool for parameter
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estimation of latent mixture models. Therefore the EM algorithm is used as the default

estimation method in many commercial packages such as Mplus [25] and Amos (Distributed

by SPSS), which are designed to analyze models with latent variables.

We use notation that is in line with latent class models: yi is the observed longitudinal

response, each observation belongs to one of the K underlying classes. The class indicators

ci are unobservable. Augment ci to obtain the complete data likelihood:

L (θ|y, c) =
n∏

i=1

K∏

k=1

pikfk (θ|yi) (2.9)

where pik denotes the probability that ith subject belongs to the kth class, and ci =

(ci1, . . . , ciK) has multinomial distribution with parameters 1 and (pi1, . . . , piK). The E-step

and M-step in each iteration can be written as the following:

1. E-step:

Calculate Q
(
θ, θ(i)

)
= Ec

(
log p (θ|y, c) |y, θ(i)

)
=

∑K
k=1 [log p (θ|y, ck)] p

(
ck = 1|θ(i), y

)

2. M-step:

Maximize Q
(
θ, θ(i)

)
with respect to θ to get the new iterate θ(i+1).

2.2.2 Other EM-type Algorithms

There are many variants of the EM algorithm created to facilitate either the E-step or the

M-step. The ECM and Monte Carlo EM algorithms are two examples.

2.2.2.1 ECM algorithm ECM stands for Expectation Conditional Maximization algo-

rithm. EM algorithm becomes less appealing when the complete likelihood is complicated.

The computation required for the M-step may be difficult. Fortunately, complete likelihood

maximization can be simplified when conditional on some function of the parameters [46].

In ECM, the M-step is replaced by a CM step where for c = 1, · · · , C, we find θi+c/C that

maximizes the Q function conditional on gc (θ) = gc

(
θ(t+(c−1)/C)

)
. Simply speaking, ECM

algorithm would maximize the Q function over a subvector of the parameter vector holding

the rest fixed and then maximize the Q function over those fixed parameters given the new
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value for previous ones. To ensure the resulting mode is an unconstrained maximum in the

parameter space, gs has to be a space filling function. For more details, see [46].

2.2.2.2 Monte Carlo EM algorithm Monte Carlo Expectation Maximization refers

to a Monte Carlo E-step in the EM algorithm. The Monte Carlo method can be used to

facilitate the calculation of the Q function. Recall that Q
(
θ, θ(i)

)
= Ez

(
log p (θ|y, z) |y, θ(i)

)
;

based on the current value θ(i), Q function can be approximated by the following steps:

1. Draw z1, · · · , zm ∼ p(Z|Y, θ(i))

2. Let Q̂i+1 = 1
m

log p(θ|zj, Y ), j = 1, · · · ,m.

The choice of which algorithm to use in general depends on the data and computational

power that is available. In this paper, The conventional EM algorithm was implemented

by using a statistical package Mplus. We first fit the latent mixture model to a simulated

data set that contains three latent classes. No missing values are assumed at this point.

Besides the EM algorithm, we also developed a MCMC algorithm for parameter estimation,

which will be introduced in the following section. When we compared the results from the

two algorithms, both methods performed well. Then we simulated a data set with a large

proportion of missing values and the missing value pattern is the same as the P300 data. It

turned out that EM algorithm was not able to achieve convergence before it hit the maximum

number of iterations. In these difficult cases, the MCMC method still gave good estimates

and confidence intervals for the parameters. For more details, see section 3.2.

2.2.3 MCMC Algorithms

Even with the help of data augmentation methods, the algebra required for the EM algorithm

can be overwhelming so that obtaining the MLE is very difficult. To overcome this prob-

lem, many statisticians resort to Bayesian approaches, namely Markov Chain Monte Carlo

(MCMC) algorithms. For a wide class of problems, the method of Markov chain simulation

appears to be the easiest way to get reliable results [12]. The idea is to simulate a random

walk in the parameter space which converges to a stationary distribution that is the full

conditional posterior distribution of the parameter p (θ|y, z). MCMC algorithms, stochastic
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in nature, are set up to approximate the full distribution, which is a more ambitious task

than the point estimation needed for the EM algorithm [37].

2.2.3.1 Gibbs Sampler The Gibbs sampler is one of the most widely used MCMC

algorithms. It is especially appealing for its ability to reduce the complex multidimen-

sional problems to a sequence of much lower dimensional ones. Suppose the parame-

ter vector to be estimated is θ = (θ1, . . . , θd). It samples one component or one sub-

vector of the parameter vector at a time using the full conditional posterior distribution

p (θs|θ1, . . . , θs−1, θs+1, . . . , θd, y, z). Given the starting point θ(0) =
(
θ

(0)
1 , . . . , θ

(0)
d

)
, the sam-

pling steps are as following:

1. Sample θ
(i+1)
1 from p

(
θ1|θ(i)

2 , . . . , θ
(i)
d , y, z

)

2. Sample θ
(i+1)
2 from p

(
θ2|θ(i+1)

1 , θ
(i)
3 , . . . , θ

(i)
d , y, z

)

...
...

d. Sample θ
(i+1)
d from p

(
θd|θ(i+1)

1 , . . . , θ
(i+1)
d−1 , y, z

)
.

The vectors θ(0), θ(1), . . . , θ(i), . . . are a realization of a Markov chain. In practice, the

Gibbs sampler is usually run N iterations with a burn-in period at the beginning. The

iterates obtained after burn-in can be regarded as a random sample from the conditional

posterior distribution of θ. Inferences of the parameters can be done based on the sample.

The following convergence results had been shown by Chan [3] and Wu, Wong and Kong

[20, 21] and Tierney [41]:

Result 1. The joint distribution of
(
θ

(i)
1 , . . . , θ

(i)
d

)
converges geometrically to

p (θ1, . . . , θd|y, z) as i → ∞.

Result 2. 1
N

∑N
i=1 p

(
θ(i)

) a.s.→ ∫
p (θ) p (θ|y, z) dθ, as N → ∞.

From the sampling steps 2.2.3.1 – 2.2.3.1, we can see that the Gibbs sampler is easy

to implement when the conditional posterior distribution of the parameter has a simple

form. Unfortunately, it is not always the case in practice. One remedy is sampling from
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approximate distributions (also called a candidate density) and correcting those draws to

approximate the target posterior distribution. Many clever methods have been developed

for this purpose. The Metropolis-Hastings (M-H) algorithm is a general term for a family

of Markov chain simulation methods that are useful for drawing samples from Bayesian

posterior distributions [12]. The Metropolis algorithm (Metropolis et al. 1953) was first

developed to study the equilibrium properties of large systems of particles such as electrons

in atoms. Hastings (1970) suggested a generalization of the Metropolis algorithm [38]. In

this section, we present the general Metropolis-Hastings algorithm.

2.2.3.2 Metropolis-Hastings algorithm Assume that the target distribution p (θ|y)

can be computed up to a normalizing constant. The Metropolis algorithm simulates a

sequence of random points
(
θ(1), θ(2), . . .

)
whose distributions converge to the target distri-

bution. The algorithm proceeds as following:

1. Specify a starting value θ(0).

2. For i = 1, 2, . . .

a. Draw a candidate point θ(∗) from the candidate density q
(
θ(∗), θ(i)

)
, where θ(i) is the

current value of θ.

b. Update the chain to θ(∗) with probability α
(
θ(∗), θ(i)

)
, where

α
(
θ(∗), θ(i)

)
= min

{
p(θ(∗)|y)q(θ(i), θ(∗))
p(θ(i)|y)q(θ(∗), θ(i))

, 1

}
(2.10)

Note: if the candidate draw is not accepted, let θ(i+1) = θ(i) and the algorithm moves to

the next iteration.

Chib and Greenberg suggested using multivariate normal or multivariate t distribution

as the candidate density [4]. To better approximate the target distribution, the density

mode and inverse of the Hessian evaluated at the mode will be used as the mean and the

covariance matrix of the candidate density respectively.
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2.2.3.3 Prior Distributions The choices for the prior distributions are essential to the

convergence of the MCMC algorithm. Generally, three different kind of priors are used in

estimating finite mixtures. Take a simple mixture of normal distributions as an example.

• Independent Priors [10]: Parameters are assumed a priori independent, e.g.

p
(
µ, σ2

)
= p (µ) p

(
σ2

)
(2.11)

• Conjugate Priors [8]: Diebolt and Robert suggested a conjugate prior of the following

form:

p
(
µ, σ2

)
= p

(
µ|σ2

)
p
(
σ2

)
(2.12)

• Hierarchical Priors [31]: Green and Richardson proposed the hierarchical prior in 1997,

where a hyperparameter β is introduced into the prior distribution.

p
(
µ, σ2, β

)
= p (β) p (µ) p

(
σ2|β)

(2.13)

2.2.3.4 Label Switching Problem The identifiability problem for mixture model can

be very complicated. One common phenomenon in this context is called the label switching

problem. The likelihood of mixture model is invariant with respect to any permutation of

the mixing components. If there is no prior information to distinguish them, the likelihood

will have K! symmetric modes. There are many ways to solve such problems. One approach

is to put artificial constraints on the parameters. In the context of finite mixture model, one

can put the constrains on either the means or the variances, e.g. µ1, < µ2 < · · · < µK or

σ2
1 < σ2

2 < · · · < σ2
K . Under such constraints, the mixing components are always sorted in

certain order so that the mixture model is identifiable.

In this paper, we implemented a hybrid MCMC method, i.e. embedding a Metropolis

random-walk subchain in the Gibbs sampler in the situation where it is difficult to sample

directly from a conditional posterior distribution. This strategy was suggested by Müller in

1993 [22]. We chose independent priors as the prior distributions for the parameters. And

we overcame the label switching problem by imposing constraints on mixing components.
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3.0 PARAMETER ESTIMATION

To illustrate that the MCMC method is an appropriate approach when there is a considerable

amount of missing information in the data set, we simulated data sets each containing the

same number of subjects and same covariates as the P300 data. We also generated data sets

which have the same missing data pattern as the P300 data.

We first started with a well-separated 3-class mixture data set. We analyzed the complete

data using both the EM algorithm, a built-in procedure in M-plus package and MCMC

algorithm that we developed. We will see that the two methods agree in general. Moreover,

the MCMC algorithm yielded narrower confidence intervals for parameter estimates. Then

we deleted some points so that the simulated data has the same missing pattern as P300

data. Both methods were applied to the data again. This time, the EM algorithm had

difficulty with convergence while the MCMC algorithm still produced reasonable estimates

and confidence intervals.

We further generated a 3-class mixture data set where the class means were poorly

separated. MCMC algorithm was applied to the data. Again, the estimates and confidence

intervals for model parameters are quite good. After demonstrating MCMC algorithm is an

appropriate approach to problems of this sort, we applied it to the P300 data.

3.1 THE LATENT MIXTURE MODEL

Recall the latent mixture model framework which was introduced in section 2.1.3. To best

serve the purpose of our P300 study, we chose a matrix which contains the time points when

the measurements were taken as Λy. A second degree polynomial curve was employed to fit
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the P300 trajectory. Moreover, polynomial coefficients were treated as random effects and

latent class membership was introduced using a categorical latent variable c.

We first take the mixture part of the model to address the multiple trajectory patterns.

Assume that there are K underlying classes; n subjects in the study; ni is the number of

observations that are taken for ith subject; and each subject has Q covariates. The modified

latent mixture model then can be written as:

yi = Tηi + εi or yij = T
′
jηi + εij (3.1)

where yij is the the jth observation of the ith subject with i = 1, . . . , n, and j = 1, . . . , ni. T is

a matrix contains rows of
(
1, tj, t2j

)
, where tj is the subject’s age when the jth observation

was taken. εi is a residual term which is uncorrelated with other variables and normally

distributed with mean zero and diagonal covariance matrix Σε = diag
(
σ2

1, . . . , σ
2
ni

)
.

The random effect ηi can be modeled as:

ηi = Aci + Γxi + ξi, (3.2)

where A is a parameter matrix containing columns of intercepts of each class. Γ is another

parameter matrix containing coefficients which relate to the covariates, xi, for the ith subject.

ξi is an error term that is normally distributed with mean zero and covariance matrix Ψ.

As in (2.6), ci is a K-dimensional latent categorical vector, cik = 1 if subject i belongs to

the kth class, and zero otherwise. ci has multinomial distribution with parameters 1 and

(pi1, . . . , piK)
′
and is modeled using multinomial logit regression:

log(
pik

piK

) = γ
′
kx̃i, (3.3)

for k = 1, . . . , K − 1. x̃i is a vector contains a constant 1, and the covariates xi for subject

i.
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3.1.1 Augmented Likelihood

The MCMC algorithm augments the data with latent variables so that the likelihood can be

expressed using a series of conditional densities. In this case, all missing data, the random

coefficients and class indicators are treated as latent variables.

The parameters are: σ2
j (j = 1, . . . , ni), A, Γ, Ψ γk (k = 1, . . . , K).

The latent variables are: ci, ηi (i = 1, . . . , n), yi∗j∗ , i∗, j∗ are the indices for missing values.

Thus the complete data likelihood is:

L =
n∏

i=1

f (yi|ηi) f (ηi|ci, xi) f (ci|xi)

=
n∏

i=1

[
φ (Tηi, Σε) φ (Aci + Γxi, Ψ)

K∏

k=1

pcik
ik

]

∝
n∏

i=1

{
|Ψ|−1/2 exp

[
−1

2
(ηi − Aci − Γxi)

′
Ψ−1 (ηi − Aci − Γxi)

]

ni∏
j=1

(
σ−1

j

)
exp

(
−

(
yij − T

′
jηi

)2

2σ2
j

)
K∏

k=1

[
exp

(
γ
′
kx̃i

)
∑K

l=1 exp
(
γ
′
l x̃i

)
]cik

}

∝ |Ψ|−n
2

n∏
i=1

{
K∏

k=1

{
exp

[
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

]
exp

(
γ
′
kx̃i

)
∑K

l=1 exp
(
γ
′
l x̃i

)
}cik

ni∏
j=1

(
σ−1

j

)
exp

(
−

(
yij − T

′
jηi

)2

2σ2
j

)}
.

where φ(·, ·) is the density function of the multivariate normal distribution. Ak is the kth

column of parameter matrix A, and Tj =
(
1, ti, t

2
j

)′
.

3.1.2 Prior and Posterior Distribution

When choosing priors, we split the parameter matrices into columns, and sample one column

at a time. Here, we gave the same prior to those columns coming from the same parameter

matrix:

p (Ak) = N (0, σ2
AI) , k = 1, . . . , K;

p (Γq) = N (0, σ2
ΓI) , q = 1, . . . , Q;

p
(
σ2

j

)
= IG (a0, b0) , j = 1, . . . , ni.
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It is more convenient to sample from Ψ−1 instead of sampling from Ψ directly. Thus, let

p (Ψ−1) = WI (v, S) , a Wishart prior with v a small constant and S a positive definite

matrix.

Finally, let p (γk) = N
(
0, σ2

γI
)
, k = 1, . . . , K − 1.

It follows that:

a.

p
(
Ak|σ2

A, Γ, Ψ−1, {ηi} , {ci} , {yij}
) ∝ exp

{
−1

2

[
A
′
kΣ

−1
A Ak − 2

n∑
i=1

cikA
′
kΨ

−1 (ηi − Γxi)

]}

∼ N

(
ΣAΨ−1

n∑
i=1

cik (ηi − Γxi) , ΣA

)
(3.4)

where ΣA =
(∑n

i=1 cikΨ
−1 + 1

σ2
A
I
)−1

, k = 1, . . . , K.

b.

p
(
Γq|σ2

Γ, A, Ψ−1, {ci}
) ∝ exp

{
−1

2

[
Γ
′
qΣ

−1
Γ Γq − 2

n∑
i=1

Γ
′
qXiqΨ

−1

(
ηi − Aci −

∑

r 6=q

xirΓr

)]}

∼ N

(
ΣΓ

n∑
i=1

xiqΨ
−1

(
ηi − Aci −

∑

r 6=q

xirΓr

)
, ΣΓ

)
(3.5)

where ΣΓ =
(∑n

i=1

∑K
k=1 cikx

2
iqΨ

−1 + 1
σ2
Γ
I
)−1

, q = 1, . . . , Q.

c.

p
(
σ2

j |a0, b0, {ηi} , {yij}
) ∝ (

σ2
j

)−a0−n
2
−1

exp

{
− 1

σ2
j

[
1

2

n∑
i=1

(
yij − T

′
jηi

)2

+ b0

]}

∼ IG

(
a0 +

n

2
,

1

2

n∑
i=1

(
yij − T

′
jηi

)2

+ b0

)
(3.6)

d.

p
(
Ψ−1|v, S,A, Γ, {ηi} , {ci}

) ∝
∣∣Ψ−1

∣∣n+v−3−1
2 exp

{
−1

2
tr

[
n∑

i=1

α
′
iΨ

−1αi + S−1Ψ−1

]}

∼ WI


n + v,

(
n∑

i=1

αiα
′
i + S−1

)−1

 (3.7)

where αi = ηi − Aci − Γxi.
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e.

p (γk|σγ, {ci}) ∝ exp

{
−γ

′
kγk

2σ2
γ

} n∏
i=1

exp
(
γ
′
kx̃i

)cik

∑K
l=1 exp

(
γ
′
l x̃i

) (3.8)

Note that for the multinomial part of the model to be identifiable, γK is fixed as 0. Moreover,

the posterior distribution of γk does not have a standard form.

3.2 HYBRID MARKOV CHAIN MONTE CARLO ALGORITHM

3.2.1 Sampling Scheme

As stated in the last section, some parameters’ posterior densities have a very simple form.

Therefore, they can be sampled directly from their posterior distributions. However, some

posterior distributions are quite complicated. In order to obtain random sample from these

posterior distributions, we implemented a combination of two sampling methods: Gibbs

sampler and Metropolis-Hastings algorithm.

Given the initial values:
(
c
(0)
i , η0

i , y
(0)
i∗j∗ , σ

(0)
j , A(0), Γ(0), Ψ−1(0), γ

(0)
k

)
, where i = 1, . . . , n, j =

1, . . . , ni, k = 1, . . . , K, the sampling scheme iterates the following steps:

1. Sample ci = (ci1, . . . , ciK)
′
from multinomial (1, (pi1, . . . , piK)

′
). Where

pik =
exp

{
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

}
exp

(
γ
′
kx̃i

)

∑K
k=1 exp

{
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

}
exp

(
γ
′
kx̃i

)

i = 1, . . . , n, k = 1, . . . , K. Again, γ
(0)
K and γK are fixed at 0.

2. Sample yi∗j∗ from N(T
′
j∗ηi∗ , σ2

j∗).

3. Sample ηi from N
(
Ση

[
Ψ−1 (Aci + Γxi) + T

′
D−1yi

]
, Ση

)
,

where D = diag
(
σ2

1, . . . , σ
2
ni

)
, Ση =

(
Ψ−1 + T

′
D−1T

)−1
.

4. Sample σ2
j from IG

(
a0 + n

2
, 1

2

∑n
i=1

(
yij − T

′
jηi

)2
+ b0

)
, j = 1, . . . , ni.

5. Sample Ak from N (ΣAΨ−1
∑n

i=1 cik (ηi − Γxi) , ΣA) , k = 1, . . . , K.

6. Sample Γq from N
(
ΣΓ

∑n
i=1 xiqΨ

−1
(
ηi − Aci −

∑
r 6=q xirΓr

)
, ΣΓ

)
, q = 1, . . . , Q.

7. Sample Ψ−1 from WI
(
n + v,

(∑n
i=1 αiα

′
i + S−1

)−1
)

.
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8. Sample from the posterior distribution of γk using the Metropolis-Hastings algorithm.

Let log p (γk) denote the log conditional posterior density of γk as in (3.8).

i. Obtain m0 = arg max
γk

log p (γk) via Newton-Raphson algorithm by using quantities:

∂ log p (γk)

∂γk

= −γk

σ2
γ

+
n∑

i=1

(
cik − exp γ

′
kx̃i∑K

l=1 exp
(
γ
′
l x̃i

)
)

x̃i (3.9)

∂2 log p (γk)

∂2γk

= − 1

σ2
γ

I −
n∑

i=1

exp
(
γ
′
kx̃i

) ∑K
l 6=k exp

(
γ
′
l x̃i

)
(∑K

l=1 exp
(
γ
′
l x̃i

))2 x̃ix̃
′
i (3.10)

ii. Calculate V0 = τ
(
−∂2 log p(γk)

∂2γk
|m0

)−1

, where τ is a tunning parameter. It can be

adjusted to control the dispersion of the candidate density and the acceptance rate

of the random draws. We chose the candidate density:

q (γk|m0, V0, τ) ∝ |V0|−1/2 exp

{
−1

2
(γk −m0)

′
V −1

0 (γk −m0)

}
, (3.11)

which is a multivariate normal distribution with mean m0 and covariance matrix V0.

iii. Draw a random deviate γ
(∗)
k from the candidate density, and update the Markov

chain of γk from the current value to γ
(∗)
k with probability

α
(
γ

(∗)
k , γk

)
= min

{
p(γ

(∗)
k )q(γk|m0, V0, τ)

p(γk)q(γ
(∗)
k |m0, V0, τ)

, 1

}
. (3.12)

This completes the last step of the Gibbs sampler.
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3.3 SIMULATION RESULTS

As already mentioned at the beginning of this chapter, we generated three data sets, each

has three latent classes. In each simulation, we estimated the model parameters using EM

algorithm (Mplus package) and MCMC method. The Markov chain in MCMC algorithm

ran for 8,000 iterations after a 2000-iteration burn-in procedure. Multiple starting values

were tried on each data set, and we chose the one giving highest observed likelihood among

the ones led to convergence.

The first data set contain 137 subjects with no missing values. We tested both the EM

algorithm and MCMC method. The results are shown in the following tables1(numbers in

bold are the results from MCMC method). we can see that the estimates obtained from the

EM algorithm and the MCMC method are relatively close. Almost all the 90% CI’s contain

the true parameter values. Moreover, the MCMC method gave slightly smaller standard

errors and narrower confidence intervals.

Table 2: Mixing proportions – simulation 1

Mixing Proportion Class 1 Class 2 Class 3

True Value 10.08% 13.85% 76.07%

ML (M-plus Program) 16.90% 7.04% 76.06%

MCMC Method 11.23% 12.68% 76.06%

1For other parameters, see appendix.
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Table 3: Estimate of A – simulation 1

PARAMETER TRUE VALUE 5% ESTIMATE 95% S.E./S.D.

A11 20.0 17.7132 19.837 21.9608 1.295

17.4521 18.951 20.4625 0.905

A21 -2.3 -3.0076 -1.794 -0.5804 0.740

-2.9506 -2.125 -1.2901 0.504

A31 -0.8 -1.8489 -0.819 0.2109 0.628

-1.4770 -0.694 0.07970 0.473

A12 35.0 24.8902 35.478 46.0658 6.456

33.3011 34.828 36.3443 0.929

A22 -0.9 -2.1124 -0.556 1.0004 0.949

-1.8164 -0.977 -0.1354 0.511

A32 1.2 -1.5532 1.138 3.8292 1.641

0.7645 1.562 2.3430 0.482

A13 42 39.7116 42.27 44.8284 1.560

40.2360 41.574 42.9120 0.813

A23 -5.0 -5.9176 -4.886 -3.8544 0.629

-5.4835 -4.752 -3.9977 0.456

A33 0.04 -0.9140 0.088 1.0900 0.611

-0.5043 0.200 0.8913 0.424
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Next, we deleted a portion of points so that the resulting data set has the same missing

value pattern as the P300 data. In this case, the EM algorithm treats every missing value as

a latent variable. Finding the expectation of the predictive conditional distribution became

much more difficult. We implemented the EM algorithm on this data set using Mplus

package. The algorithm did not converge before it hit the maximum number of iterations.

Thus, only the results from the MCMC method are presented2.

Table 4: Mixing proportions – simulation 2

Mixing Proportion Class 1 Class 2 Class 3

True Value 10.08% 13.85% 76.07%

MCMC Method 14.08% 17.35% 68.57%

2For other tables see appendix
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Table 5: Estimate for A – simulation 2

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

A11 20.0 16.86056 19.5285 22.09346 1.59773

A21 -2.3 -3.78259 -2.4204 -0.87782 0.90047

A31 -0.8 -1.72956 -0.7660 0.16025 0.58249

A12 35.0 33.14202 35.8333 38.50763 1.61999

A22 -0.9 -2.33911 -1.19234 0.11313 0.74396

A32 1.2 0.51944 1.47692 2.41357 0.58771

A13 42 40.26159 42.37972 44.71559 1.33021

A23 -5.0 -6.45723 -5.44123 -4.34767 0.64115

A33 0.04 -0.76917 0.05202 0.81102 0.48051

Finally, we generated another 3-class mixture data where the 3 classes are poorly sep-

arated. Again, MCMC algorithm was able to provide resonable estimates and confidence

intervals for the parameters.

Table 6: Mixing proportions – simulation 3

Mixing Proportion Class 1 Class 2 Class 3

True Value 10.67% 67.60% 21.73%

MCMC Method 5.09% 73.78% 21.13%
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Table 7: Estimate for A – simulation 3

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

A11 8.0 3.1983 6.2295 9.5857 1.9790

A21 1.2 -1.6532 0.2628 2.1611 1.1479

A31 -2.8 -4.0392 -2.2104 -0.3677 1.1204

A12 16.0 12.7120 14.540 16.7814 1.2442

A22 1.8 0.2157 1.4014 2.6655 0.7384

A32 -3.0 -3.4910 -2.2547 -0.9661 0.7658

A13 30.0 27.2673 29.2864 31.6624 1.3841

A23 1.0 -1.1527 0.1551 1.5147 0.7989

A33 -2.8 -3.8310 -2.5288 -1.1848 0.8045
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It is known that random samples from Gibbs sampler sampling procedure are usually

correlated. We used “thinning” strategy, i.e. take one sample for every three or five iterations.

The resulting estimates were not very different from averaging the whole random sample.

We did encounter label switching problem in the simulation study. The following plot shows

a path plot of mixing proportions for a 2-class mixture model. We can see the mixing

proportions switched over after the Markov chain had already stabilized for many iterations.

To prevent label switching, we impose ordering constraints on the mixing components,

i.e:

A11 < A12 <, . . . , < A1K ,

Or A21 < A22 <, . . . , < A2K when the first components are equal.

...

The simulation study showed that MCMC algorithm can efficiently estimate the latent mix-

ture model even when there is a large amount of missing data. In the next chapter, we fit

the latent mixture model to P300 data using the MCMC algorithm.
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Figure 2: Label switching in Gibbs sampler
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4.0 CUBIC SPLINE TECHNIQUE

4.1 MOTIVATION

Second and third degree polynomials have been widely used in growth curve models. They

have also been adapted by latent mixture model users. Polynomial fitting is appropriate

when the underlying curve is somewhat smooth and the function is only evaluated at a

relatively small number of points. In many cases, though, the function which we intend to

estimate can have many fluctuations. Such problem arose when we used a second degree

polynomial to fit the P300 trajectory. A few initial runs indicated that the behavior of the

P300 amplitude over time was roughly linear. This finding was inconsistent with what had

been found in neurobiology literature. Further inspection of the raw data showed that P300

amplitude increases during early childhood to a high point and then levels off as the subject

gets older. A second degree polynomial cannot model such behavior well over a broad age

range. To overcome such shortcomings, we propose the use of splines in latent mixture

modeling.

4.2 CUBIC SPLINES

4.2.1 Piecewise Polynomial Splines

Suppose f (X) is the underlying continuous function we want to estimate. We can divide the

domain of X into several contiguous subintervals and represent f (X) by a separate polyno-

mial in each interval. When the piecewise polynomials are continuous and have continuous
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first and second order derivatives at the knots, which are the break points of the subinter-

vals, it is known as a spline. A common choice, the cubic spline, consists of polynomials of

degree three or less. Its claimed that cubic splines are the lowest-order spline for which the

knot-discontinuity is not visible to the human eye [14], and that there is rarely any good

reason to go beyond cubic-splines. One intuitive way to represent cubic spline is to use a

truncated polynomial basis. Generally a spline of degree M-1 with K knots will have M +K

basis functions:

hj (x) = xj−1, j = 1, . . . , M.

hM+1 (x) = (x− ξl)
M−1
+ , l = 1, . . . , K.

where {ξl} are the interior knots of the spline.

4.2.2 Natural Cubic Splines

A natural cubic spline adds boundary constraints to the ordinary spline, e.g. f (X) is linear

beyond the boundary knots. A natural cubic spline with K knots can be represented by

K + 2 basis functions. One can start from an ordinary cubic spline basis and then reduce

the basis by imposing boundary constrains.

Truncated power basis is not the only way to represent the spline. The B-spline basis

is another popular choice. B-spline bases have computational advantage over truncated

polynomial bases. They are defined recursively as the following:

Bi,1 (x) =





1 if ξi ≤ x < ξi+1

0 otherwise




Bi,M (x) =
x− ξi

ξi+M − ξi

Bi,M−1 (x) +
ξi+M+1 − x

ξi+M+1 − ξi+1

Bi+1,M−1 (x)

where i = 1, . . . , K + M .

Fortunately, most current statistical software packages can generate spline basis functions

for any order and sequence of knots, including the B-spline basis matrix. The B-spline basis

has important computational advantages because it has minimal local support, so there are

many off diagonal zeros when the observation points are sorted. In our paper, we propose

the use of B-spline basis to generate piecewise polynomials.
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4.3 SIMULATION STUDY

To use cubic spline in latent mixture model, we substitute the second degree polynomial

basis by B-Spline basis:

T → B




1 t1 t21

· · ·
1 tni t2ni




→




B1,4(t1) B2,4(t1) · · · BK+M,4(t1)

· · ·
B1,4(tni) B2,4(tni) · · · BK+M,4(tni)




,

where Bi,4, (i = 1, . . . , 4 + K) is the ith B-Spline basis function for a cubic spline with

K knots.

Returning to the P300 data, as we said earlier, the P300 amplitude shows a high point

at early age. Since we only evaluate the spline at 11 (ages 8-18) points, it is reasonable to

use one knot in this context. We fixed the knot to be at age 12 based on the fact that the

P300 amplitude presents different pattern before and after puberty.

Using the B-spline basis matrix increases the number of parameters while the sampling

procedure still follows through as before. To show that our algorithm performs well using

cubic spline fitting technique, we simulated a 3-class data set where the mean of each class

is a cubic spline with a knot placed at age 12.

The following tables contain the parameter estimates, standard deviation of the samples

from the posterior distribution and the 90% confidence intervals.
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Table 8: Estimate for A – fixed knot spline

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

A11 -8 -8.665147 -7.171415 -5.6265476 0.9240607

A21 2 1.394544 2.405728 3.5379609 0.6380144

A31 -5 -7.206609 -5.761632 -4.5539684 0.7760513

A41 -5 -5.297267 -4.238954 -3.1396257 0.6815811

A51 4 2.501114 3.436957 4.3711204 0.5639592

A12 2 1.943493 2.6581024 3.3414943 0.4325731

A22 6 5.166365 5.7693049 6.4070957 0.3832608

A32 8 7.760301 8.6684092 9.5120036 0.5172460

A42 -2 -2.841543 -2.1875127 -1.5100157 0.4077285

A52 -1 -1.294250 -0.7661024 -0.2273716 0.3221489

A13 9 8.258286 9.428654 10.6400421 0.7184915

A23 -2 -3.417012 -2.219586 -1.0507394 0.7282726

A33 7 5.759844 7.325635 8.9646741 0.9935571

A43 -4 -4.970921 -3.757044 -2.5465597 0.7546951

A53 6 4.745251 5.640232 6.5316172 0.5539389

Table 9: Mixing proportions – fixed knot spline

Mixing Proportion Class 1 Class 2 Class 3

True Value 31.25% 31.50% 37.25%

MCMC Algorithm 32.12% 33.58% 34.31%
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We chose multiple initial values to start the MCMC algorithm. Among the ones yielded

convergent results, we present the one leading to the highest likelihood.

8 10 12 14 16 18

−
10

−
5

0
5

10
15

x

y

Figure 3: solid lines: generated true curves; dashed lines: fitted cubic splines (fixed knot at

12)

4.4 APPLICATION

4.4.1 Modification

In this section, we show the results from using the MCMC algorithm to analyze the P300

data. We started with a second degree polynomial basis in the model. The results showed

linear trend of P300 amplitude trajectory. As we mentioned before, this finding is inconsis-

tent with existing knowledge about P300 amplitude of children and adolescents: the P300

34



amplitude trajectories are expected to increase during childhood, reach a peak and leveling

off during adolescence period. We then applied the spline fitting technique to the data set.

Before do so, we made some modifications to the latent mixture model. These modifications

are necessary adjustments to deal with actual data.

• The data was transferred to a logarithm scale. P300 amplitude is always positive by its

definition. The logarithm transform avoids the error of generating negative values for

the P300 amplitude.

• The covariance matrix Ψ was set to 0. We knew from the initial runs that the values in

Ψ are very small compare to the those in matrix Σε. In another words, we changed the

model to a fixed effect mixture model.

• The matrix Γ is set to be 0. We reasoned that in the logit model for mixing proportions,

the contribution of xi has already been taken account for: the posterior probability of

being in either class is a function of the covariates. We use the weaker assumption so

that the class means do not necessarily depend on the covariates.

Based on the above modifications, the latent mixture model can be written as:

yi = B (Aci) + εi (4.1)

logit

(
pik

piK

)
= γ

′
kx̃i (4.2)

where i = 1, · · · , n, k = 1, · · · , K − 1.

To determine the appropriate number of classes for the P300 data set, We ran both 2-class

and 3-class mixture models. The MCMC algorithm typically ran for 8,000 iterations with a

1500 burn-in period. The whole sampling procedure takes about 6-7 hours on a Pentium 4

PC with 2G RAM. The convergence of the Markov Chain was monitored by examining the

iteration path plots of the parameters.
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4.4.2 Three Classes Mixture

We can see that the majority class contains about 57% of the subjects. Other two minority

classes having similar sizes contain about 20% and 22% of the subjects respectively. In

figure 4.4.2 we can see three different P300 trajectory patterns. They are consistent with the

theory that P300 increases first and then levels off. To show that our algorithm converges,

we present an iteration path plot for the observed log likelihood function as well, see figure

5.

Table 10: Three-class mixture – P300 data

Mixing Proportions Class 1 Class 2 Class 3

MCMC Algorithm 57.67% 20.44% 21.9%
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Figure 4: Three-class mixture – P300 data: solid line class1; dotted/dashed line class 2;

dashed line: class 3
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Figure 5: Observed log likelihood – P300 data (3-class)
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4.4.3 Two Classes Mixture

Now a natural question is how well a 2-class mixture model fits the data; can the two upper

classes with similar shape be combined? The following plot showed the result from the 2-class

fit. Again an iteration plot of observed log likelihood is presented to show the convergence,

see figure 7.

Table 11: Two-class mixture – P300 data

Mixing Proportions Class 1 Class 2

MCMC algorithm 12.94% 87.06%
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Figure 6: Two-class mixture – P300 data: dashed line class 1; solid line class 2
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Figure 7: Observed log likelihood – P300 data (2-class)
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4.4.4 Conclusion

The majority class seem to preserve the shapes of the 2 upper classes in the 3-class mixture.

We calculate the Bayesian Information Criterion (BIC) to determine which model fits the

data better, where BIC=−2(logL) + log(n)d. In the 3-class mixture, BIC = 1057.7, while

in 2-class mixture BIC = 1112.2. BIC takes the number of parameters into consideration,

so it tends to penalize more when the number of mixture increases. Since the BIC score for

3-class mixture is slightly smaller, we conclude that the 3-class mixture fits the data better

than the 2-class mixture. This finding is also consistent with the results from earlier paper

by Hill. et al. [17].

4.5 FREE-KNOT CUBIC SPLINE

In the previous section, the location of the knot was chosen based on prior knowledge about

the curve. It is not hard to imagine situations where the location of the knot is unknown.

In such cases, the location of the knot is also a free parameter.

Dimatteo et al. described a fully Bayesian method for curve-fitting with free knot splines

for data drawn from an exponential family distribution [9]. We tailored that approach to

the latent mixture model.

Recall that:

yi = Btηi + εi

ηi = Aci + Γxi + ξi

log(
pik

piK

) = γ
′
kx̃i

Note that the B-Spline basis matrix Bt replaced the second degree polynomial basis

matrix T . Moreover, the value of the basis matrix depends on the location of the knot t.
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4.5.1 Sampling Scheme

The augmented likelihood is the following:

L =
n∏

i=1

f (yi|ηi) f (ηi|ci, xi) f (ci|xi)

=
n∏

i=1

[
φ (Btηi, Σε) φ (Aci + Γxi, Ψ)

K∏

k=1

pcik
ik

]

∝
n∏

i=1

{
|Ψ|−1/2 exp

[
−1

2
(ηi − Aci − Γxi)

′
Ψ−1 (ηi − Aci − Γxi)

]

ni∏
j=1

(
σ−1

j

)
exp

(
−

(
yij − (Bt)

′
jηi

)2

2σ2
j

)
K∏

k=1

[
exp

(
γ
′
kx̃i

)
∑K

l=1 exp
(
γ
′
l x̃i

)
]cik

}

∝ |Ψ|−n
2

n∏
i=1

{
K∏

k=1

{
exp

[
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

]
exp

(
γ
′
kx̃i

)
∑K

l=1 exp
(
γ
′
l x̃i

)
}cik

ni∏
j=1

(
σ−1

j

)
exp

(
−

(
yij − (Bt)

′
jηi

)2

2σ2
j

)}

The parameter vector for this model is:
{{

σ2
j

}ni

j=1
, A, Γ, Ψ, {γk}K−1

k=1 , t
}

. Adding an extra

parameter t only affects the posterior distribution of
(
σ2

j

)ni

j=1
, the missing value yi∗j∗ and ηi.

We now discuss the Gibbs sampler and Metropolis-Hastings algorithm sampling scheme.

4.5.1.1 Prior distribution In addition to the prior distributions in 3.1.2, we assign a

uniform distribution on the parameter t:

p (t) = U (t1, tni
) t1 and tni

are end points of the time interval

4.5.1.2 Gibbs sampler and M-H algorithm In Gibbs sampler, the posterior for σ2
j

changes to:

p
(
σ2

j |a0, b0, {ηi} , {yij} , Bt

) ∝ (
σ2

j

)−a0−n
2
−1

exp

{
− 1

σ2
j

[
1

2

n∑
i=1

(
yij − (Bt)

′
jηi

)2

+ b0

]}

∼ IG

(
a0 +

n

2
,

1

2

n∑
i=1

(
yij − (Bt)

′
jηi

)2

+ b0

)
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for j = 1, · · · , ni

The posterior distribution of t is:

p
(
t| {ηi} , {yij} ,

{
σ2

j

}) ∝ exp

{
−1

2

n∑
i=1

(yi −Btηi)
′
Σ−1

ε (yi −Btηi)

}

which obviously is not an easy distribution function of t. Therefore, we use the Metropolis-

Hastings algorithm to obtain random sample for t. Since t can only be in the interval

(t0, tni
), we propose two candidate densities from exponential family to approximate the

posterior distribution.

• Rescaled Beta Distribution: the candidate density is a beta distribution centered at the

current value of t with certain variance.

– Draw a random sample t(∗) from beta (tν, (1− t)ν), which has mean t and variance

t(1−t)
ν+1

. ν is a tuning parameter which can be adjusted to control the variance. In our

study, ν takes on values around 40.

– Calculate the acceptance probability

α
(
t(∗), t

)
= min

{
p(t(∗))q(t|t, ν)

p(t)q(t(∗)|t, ν)
, 1

}

where p(t) is the posterior distribution of t as in , q(t|t, ν) ∝ ttν−1(1− t)(1−t)ν−1

– Update the Markov chain to t(∗) with probability α.

• Truncated Normal Distribution: the candidate density is a normal distribution centered

at the current value of t and truncated at end points of the time domain.

– Draw a random sample t(∗) from N (t, V ). Variance V is a tunning parameter. In

our algorithm, it takes on value around 2.

– Calculate the acceptance probability

α
(
t(∗), t

)
= min

{
p(t(∗))q(t|t, V )

p(t)q(t(∗)|t, V )
, 1

}

where q(t∗|t, V ) ∝ exp
{−1

2
(t∗ − t)2/V 2

}

– Update the Markov Chain of t to t(∗) with probability α.
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Using the M-H algorithm described above, the complete Gibbs sampling procedure for latent

mixture model using free-knot cubic spline is the following:

Given the initial values:
(
c
(0)
i , η

(0)
i , y

(0)
i∗j∗ , σ

(0)
j , A(0), Γ(0), Ψ−1(0), γ

(0)
k , t(0)

)
. where i = 1, . . . , n,

j = 1, . . . , ni, k = 1, . . . , K.

The sampling scheme iterates the following steps:

1. Sample ci = (ci1, . . . , ciK)
′
from multinomial (1, (pi1, . . . , piK)

′
), where

pik =
exp

{
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

}
exp

(
γ
′
kx̃i

)

∑K
k=1 exp

{
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

}
exp

(
γ
′
kx̃i

)

for i = 1, . . . , n, k = 1, . . . , K. Again, γ
(0)
K and γK are fixed at 0.

2. Sample yi∗j∗ from N
(
(Bt)

′
j∗ηi∗ , σ2

j∗
)

3. Sample ηi from N
(
Ση

[
Ψ−1 (Aci + Γxi) + B

′
tD

−1yi

]
, Ση

)

D = diag
(
σ2

1, . . . , σ
2
ni

)
, Ση =

(
Ψ−1 + B

′
tD

−1Bt

)−1
.

4. Sample σ2
j from IG

(
a0 + n

2
, 1

2

∑n
i=1

(
yij − (Bt)

′
jηi

)2
+ b0

)
, j = 1, . . . , ni.

5. Sample Ak from N (ΣAΨ−1
∑n

i=1 cik (ηi − Γxi) , ΣA) , k = 1, . . . , K.

6. Sample Γq from N
(
ΣΓ

∑n
i=1 xiqΨ

−1
(
ηi − Aci −

∑
r 6=q xirΓr

)
, ΣΓ

)
, q = 1, . . . , Q.

7. Sample Ψ−1 from WI
(
n + v,

(∑n
i=1 αiα

′
i + S−1

)−1
)

8. Sample γk via the Metropolis-Hastings algorithm described in section 3.2.1.

9. Sample t via the Metropolis-Hastings algorithm described above.

4.5.2 Simulation Study

To test the hybrid MCMC algorithm, we ran simulation studies using both the beta and

truncated normal distributions as the candidate densities. We present a case where we

generated three cubic splines on the interval of (8, 18). A single knot was chosen to be 13.5.

Again, the simulated data set has same amount of missing data percentage as the P300

data. The following tables show the estimates for selected parameters, for a complete list of

estimates, see appendix. Figures showing the fitted spline curves are also shown below.
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Using truncated normal distribution as the candidate density:

Table 12: Mixing proportions – free knot spline (truncated normal)

Mixing Proportion Class 1 Class 2 Class 3

True Value 22.92% 64.81% 12.27%

MCMC Method 21.17% 65.30% 13.52%

Table 13: Knot location – free knot spline (truncated normal)

knot True 5% Estimate 95% S.D.

t 13.5 13.4213 13.5703 13.7154 0.0934
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Table 14: Â – free knot spline (truncated normal)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

A11 12 11.1708319 13.7283714 16.8506389 1.696141

A21 -6 -4.5270101 -0.8462035 3.1240802 2.318974

A31 8 0.3337492 4.2388006 8.2927925 2.469080

A41 -4 -5.7134314 -3.1476607 -0.2202592 1.658824

A51 6 3.5843491 5.7759939 8.0558584 1.296931

A12 15 13.9624362 14.872854 15.8622766 0.5699230

A22 20 18.3260861 19.774648 21.1369606 0.8550956

A32 -2 -4.1360351 -3.002130 -2.0405981 0.6374539

A42 10 9.8723769 10.683996 11.4376022 0.4706184

A52 11 10.3721068 10.937952 11.4412316 0.3221205

A13 19 17.2628774 19.377193 21.6487260 1.322247

A23 4 1.7125507 4.789802 8.2920609 2.007608

A33 2 -1.4682981 2.020994 4.7842285 1.897184

A43 10 8.1465558 9.864022 11.7365675 1.090248

A53 2 0.1643264 1.469370 2.7316290 0.760857
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Figure 8: solid lines: generated curves; dashed lines: free knot spline (truncated normal)

Table 15: Mixing Proportions – free knot spline (beta)

Mixing Proportion Class 1 Class 2 Class 3

True Value 22.92% 64.81% 12.27%

MCMC Method 21.90% 64.29% 13.81%
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Table 16: Knot location – free knot spline (beta)

knot True 5% Estimate 95% S.D.

t 13.5 13.4968 13.6952 13.8874 0.0928

Table 17: Â – free knot spline (beta)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

A11 12 8.4460017 11.2191761 14.0128535 1.490795

A21 -6 -4.9502522 -1.9921842 1.7322297 1.878599

A31 8 1.6699078 6.0913502 10.5989925 2.281091

A41 -4 -4.7127975 -0.6722037 4.8174379 2.268255

A51 6 -0.9532512 6.9259549 10.8814017 2.582900

A12 15 14.1756547 14.894371 15.5963046 0.3757461

A22 20 19.1698777 20.499688 22.2654261 0.8282394

A32 -2 -3.5506547 -1.925634 -0.4151692 0.8264122

A42 10 8.1842763 9.519120 10.7530173 0.6542392

A52 11 10.3539654 11.027033 11.7478272 0.3491679

A13 19 16.7017987 18.812027 20.6085828 0.9920208

A23 4 5.0687347 7.544126 10.5683583 1.4897026

A33 2 -3.9384831 -1.213159 1.5731351 1.4523661

A43 10 8.9945348 11.162569 13.3823585 1.1314062

A53 2 1.4657984 3.312512 4.9325699 0.8687165
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Figure 9: solid lines: generated curves; dashed lines: free knot spline fitting (beta)
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Figure 10: solid lines: generated curves; dashed lines: fitted cubic splines

The last figure shows the curve fitting using both the truncated normal and rescaled beta

distribution as the candidate density. In our data set, they both perform very well.
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5.0 OTHER APPLICATION AND BIVARIATE EXTENSION

This chapter consists of two separate parts. First, we discuss the use of latent mixture model

to predict a binary outcome; second, we extend the latent mixture model to the bivariate

case. For both problems, we developed the model and a way to fit the model to the data.

The computational applications remain to be completed in the future.

5.1 PREDICT A BINARY OUTCOME

Prediction for a binary outcome is useful in our application, with the subject developing

alcoholism in adulthood represented by a binary variable ui. Ordinary logistic regression

can relate this variable to the latent class membership ci.

Let wi = P (ui = 1), so the latent mixture model with prediction for the binary outcome

is:

yi = Btηi + εi

ηi = Aci + Γxi + ξi

log(
pik

piK

) = γ
′
kx̃i

log(
wi

1− wi

) = λ
′
ci
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The augmented likelihood for this model is:

L =
n∏

i=1

f (yi|ηi) f (ηi|ci, xi) f (ui|ci) f (ci|xi)

∝ |Ψ|−n
2

n∏
i=1

{
K∏

k=1

{
exp

[
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

]
exp

(
γ
′
kx̃i

)
∑K

l=1 exp
(
γ
′
l x̃i

)
}cik

exp
(
λ
′
ci

)ui

1 + exp (λ′ci)

ni∏
j=1

(
σ−1

j

)
exp

(
−

(
yij − (Bt)

′
jηi

)2

2σ2
j

)}
.

5.2 SAMPLING DISTRIBUTION

It is clear that ui contains additional information about latent class membership. The

sampling distribution for ci is changed accordingly:

p (ci|ui, xi)

∝
K∏

k=1

{
exp

{
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

}
exp

(
γ
′
kx̃i

)
∑K

l=1 exp
(
γ
′
l x̃i

)
}cik

exp
(
λ
′
ci

)ui

1 + exp (λ′ci)

∝
K∏

k=1

{
exp

{
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

}
exp

(
γ
′
kx̃i

)
∑K

l=1 exp
(
γ
′
l x̃i

) exp (uiλk)

1 + exp (λ)

}cik

Thus, ci can be sampled from a multinomial distribution with parameter 1 and pi =

(pi1, · · · , piK), where

pik =
exp

{
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

}
exp

(
γ
′
kx̃i

) exp(uiλk)
1+exp(λk)

∑K
k=1 exp

{
−1

2
(ηi − Ak − Γxi)

′
Ψ−1 (ηi − Ak − Γxi)

}
exp

(
γ
′
kx̃i

) exp(uiλk)
1+exp(λk)

,

for i = 1, · · · , n, and k = 1, · · · , K. γK is fixed at 0.

To sample λ, we gave independent prior N
(
0, 1

σ2
λ
I
)
. Thus the posterior distribution of

λ is:

p
(
λ|σ2

λ, {ci} , {ui}
) ∝ exp

{
−λ

′
λ

2σ2
λ

} n∏
i=1

(
exp

(
λ
′
ci

)

1 + exp (λ′ci)

)ui (
1

1 + exp (λ′ci)

)1−ui

We propose the Metropolis-Hastings algorithm similar to section 3.2.1 to sample λ:
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i. Obtain m0 = argmax
λ

log p (λ) via Newton-Raphson algorithm by using quantities:

∂ log p (λ)

∂λ
= − λ

σ2
λ

+
n∑

i=1

(
ui −

exp
(
λ
′
ci

)

1 + exp (λ′ci)

)
ci (5.1)

∂2 log p (λ)

∂λ∂λ′
= − 1

σ2
λ

I −
n∑

i=1

exp
(
λ
′
ci

)

(1 + exp (λ′ci))
2 cic

′
i (5.2)

ii. Calculate V0 = τ
(
−∂2 log p(λ)

∂λ∂λ
′ |m0

)−1

, where τ is a tuning parameter. It can be adjusted

to control the dispersion of the candidate density and the acceptance rate of the random

draws. The candidate density is then specified as:

q (λ|m0, V0, τ) ∝ |V0|−1/2 exp

{
−1

2
(λ−m0)

′
V −1

0 (λ−m0)

}
, (5.3)

which is a multivariate normal distribution with mean m0 and covariance matrix V0.

iii. Draw a random deviate λ(∗) from the candidate density, update the Markov chain of λ

from current value to λ(∗) with probability

α
(
λ(∗), λ

)
= min

{
p(λ(∗))q(λ|m0, V0, τ)

p(λ)q(λ(∗)|m0, V0, τ)
, 1

}

Therefore the Gibbs sampler for the latent mixture model with prediction for a binary

outcome iterates between the following steps. Given the initial values:(
c
(0)
i , η

(0)
i , y

(0)
i∗j∗ , σ

(0)
j , A(0), Γ(0), Ψ−1(0), γ

(0)
k , t(0)

)
, where i = 1, . . . , n, j = 1, . . . , ni,

k = 1, . . . , K. The sampling scheme iterates the following steps:

1. Sample ci = (ci1, . . . , ciK)
′
from multinomial (1, (pi1, . . . , piK)

′
) as in 5.1.

2. Sample yi∗j∗ from N
(
(Bt)

′
j∗ηi∗ , σ2

j∗
)

3. Sample ηi from N
(
Ση

[
Ψ−1 (Aci + Γxi) + B

′
tD

−1yi

]
, Ση

)
,

D = diag
(
σ2

1, . . . , σ
2
ni

)
, Ση =

(
Ψ−1 + B

′
tD

−1Bt

)−1
.

4. Sample σ2
j from IG

(
a0 + n

2
, 1

2

∑n
i=1

(
yij − (Bt)

′
jηi

)2
+ b0

)
j = 1, . . . , ni.

5. Sample Ak from N (ΣAΨ−1
∑n

i=1 cik (ηi − Γxi) , ΣA) k = 1, . . . , K.

6. Sample Γq from N
(
ΣΓ

∑n
i=1 xiqΨ

−1
(
ηi − Aci −

∑
r 6=q xirΓr

)
, ΣΓ

)
q = 1, . . . , Q.

7. Sample Ψ−1 from WI
(
n + v,

(∑n
i=1 αiα

′
i + S−1

)−1
)

8. Sample γk via Metropolis-Hastings algorithm described in section 3.2.1.

9. Sample λ vis Metropolis-Hastings algorithm described above.
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5.3 BIVARIATE LATENT MIXTURE MODEL

There are many times when researchers measure more than one response variable at each

time point. The resulting developmental pathways often are closely related, so that two

responses together may provide more information than one response variable alone. In the

ERP study, there are other ERP components being recorded along with P300, and those

components are the candidates for the secondary response variable.

In order to reduce the complexity of the model, only the intercepts of estimated curves

are considered random. That is, the intercept term is individual specific. We continue to

use the notations in the previous sections, and let yij1, yij2 be the two responses at jth time

point for subject i respectively. Then the bivariate response variable can be written as:

yij =


 yij1

yij2


.

We model the developmental trajectory of yij as the following:

yij = αi + B
′
Tj + εij

Parameter specification for this model is the following:

• B = (β1, β2) is a parameter matrix contains columns of polynomial coefficients (slope

and quadratic term) for each ERP component.

• αi =


 αi1

αi2


 is a 2-dimensional random coefficient vector, which plays the role of a

random intercept for each ERP component trajectory. Again, its believed that there are

K underlying trajectory classes. To depict the population heterogeneity, we assume αi’s

are sampled from a mixture of bivariate normal distributions with mixing probability

pik.

αi ∼
K∑

k=1

pikN2 (µk, Σα) .

where µk =


 µk1

µk2


 , Σα =


 σ2

1 ρσ1σ2

σ2
2


. At this point we put no further con-

straints on the covariance matrix structure.
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• Let Ii = (Ii1, . . . , IiK)
′
be the class indicator for subject i. Hence it has a multinomial

distribution with parameter 1 and (pi1, . . . , piK)
′
, with mixing proportions modeled as:

logit (pik) = log

(
pik

piK

)
= η

′
kx̃i k = 1, . . . , K − 1 (5.4)

It follows that pik =
exp(η

′
kx̃i)PK

l=1 exp(η
′
l x̃i)

, with constraints: ηK = 0, and
∑K

k=1 pik = 1.

• εij is a residual term that is independent from other variables,

εij ∼ N2

(
0, σ2

ε I
)

5.3.1 Conditional Distribution and Augmented Likelihood

We propose a MCMC algorithm similar to section 2 to fit the model. First we will give the

conditional distribution of each parameter and later we will present the sampling scheme to

be used in MCMC algorithm.

• f (Ii|x̃i) ∼ Multinomial
(
1, (pi1, . . . , piK)

′ )
, pik =

exp(η
′
kx̃i)PK

l=1 exp(η
′
l x̃i)

• f (αi|Ii) ∼ N2 (µi, Σα) , µi = µIi µ = (µ1, · · · , µK)

• f (yij|αi) ∼ N2 (vij, σ2
ε I) , vij = αi + B

′
Tj

The augmented likelihood therefore is:

L =
n∏

i=1

ni∏
j=1

f (yij|αi) f(αi|Ii)f(Ii|x̃i)

∝
n∏

i=1

ni∏
j=1

1

σ2
ε

exp

{
−(yij1 − β

′
1Tj − αi1)

2

2σ2
ε

}
exp

{
−(yij2 − β

′
2Tj − αi2)

2

2σ2
ε

}

|Σα|−1/2 exp

{
−1

2
(αi − µIi)

′
Σ−1

α (αi − µIi)

} K∏

k=1

(
exp(η

′
kx̃i)∑K

l=1 exp(η
′
l x̃i)

)Iik
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5.3.2 Prior and Posterior Distribution

The parameters to be estimated are {B, σ2
ε , {µk} , Σα, {ηk} } , k = 1, . . . , K. Again, we assign

the following independent priors:

p (β1) = p (β2) ∼ N
(
0, σ2

βI
)

p (σ2
ε ) ∼ IG (a1, b1)

p (Σ−1
α ) ∼ WI (v1, S1)

p (µk) ∼ N
(
0, σ2

µI
)
, k = 1, . . . , K

p (ηk) ∼ N
(
0, σ2

ηI
)
, k = 1, . . . , K − 1

To obtain the posterior distributions, we collect the corresponding terms in the aug-

mented likelihood and multiply it by the priors:

a.

p
(
β1|σ2

β, σ2
ε , {yij1} , {αi1}

)

∝ exp

{
−1

2

[
β
′
1

(
n

σ2
ε

ni∑
j=1

TjT
′
j +

1

σ2
β

I

)
β1 − 2β

′
1

σ2
ε

n∑
i=1

ni∑
j=1

Tj (yij1 − αi1)

]}

∼ N

(
Σβ

σ2
ε

n∑
i=1

ni∑
j=1

Tj (yij1 − αi1) , Σβ

)
(5.5)

p
(
β2|σ2

β, σ2
ε , {yij2} , {αi2}

) ∼ N

(
Σβ

σ2
ε

n∑
i=1

ni∑
j=1

Tj (yij2 − αi2) , Σβ

)
(5.6)

Where Σβ =
(

n
σ2

ε

∑ni

j=1 TjT
′
j + 1

σ2
β
I
)−1

.

b.

p
(
σ2

ε |a1, b1, B, {yij} , {αi}
)

∝ (σ2
ε )
−(a1+1) exp

{
− b1

σ2
ε

} n∏
i=1

ni∏
j=1

(σ2
ε )
−1 exp

{
−

(
yij −B

′
Tj − αi

)′ (
yij −B

′
Tj − αi

)

2σ2
ε

}

= (σ2
ε )
−(a+n·ni+1) exp



−

1

σ2
ε


b +

∑n
i=1

∑ni

j=1

(
yij −B

′
Tj − αi

)′ (
yij −B

′
Tj − αi

)

2








∼ IG


a + n · ni, b +

∑n
i=1

∑ni

j=1

(
yij −B

′
Tj − αi

)′ (
yij −B

′
Tj − αi

)

2


 (5.7)
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c.

p
(
µk|σ2

µ, Σα, {αi1} , {αi2} , {ηk}
)

∝
n∏

i=1

exp

{
−1

2
(αi − µk)

′
Σ−1

α (αi − µk)

}Iik

exp

{
−γ

′
k1γk1

2σ2
γ

}

= exp

{
−1

2

n∑
i=1

Iik (αi − µk)
′
Σ−1

α (αi − µk)− µ
′
kµk

2σ2
µ

}

∝ exp

{
−1

2

[
µ
′
k

(
n∑

i=1

IikΣ
−1
α +

I

σ2
µ

)
µ
′
k − 2

n∑
i=1

α
′
iΣ
−1
α µk

]}
(5.8)

∼ N (µαk, Σk) (5.9)

µαk = Σk

∑n
i=1 Iikα

′
iΣ
−1
α Σk =

(
1

σ2
µ
I +

∑n
i=1 IikΣ

−1
α

)−1

Where k = 1, . . . , K

d.

p
{
Σ−1

α |v1, S1, {αi} , {γk} , {Ii}
}

∝ |Σ−1
α | v1−3−1

2 exp

{
−1

2
tr

(
S−1

1 Σ−1
α

) |Σ−1
α |n2 +

{
−1

2
(αi − µIi)

′
Σ−1

α (αi − µIi)

}}

∝ |Σ−1
α | v1−3−1

2 exp

{
−1

2
tr

[(
S−1 + (αi − µIi) (αi − µIi)

′ )
Σ−1

α

]}

∼ WI

{
v1 + n,

(
S−1 + (αi − µIi) (αi − µIi)

′)−1
}

(5.10)

e. The mixing proportion part of the bivariate latent mixture model is similar to the uni-

variate case. Each subject’s class membership is related to the covariates of that subject.

The relationship is modeled by multinomial logistic regression:

p
(
ηk|σ2

η, {Ii}
) ∝ exp

{
−η

′
kηk

2σ2
η

} n∏
i=1

exp
(
η
′
kx̃i

)Iik

∑K
l=1 exp

(
η
′
l x̃i

)

As in section 3.1.2, the vector ηK will be fixed at 0 in order for the multinomial model

to be identifiable. The posterior distributions of ηk k = 1, . . . , K − 1 do not have simple

form therefore sampling from their posteriors is very complicated. Metropolis-Hastings

algorithm introduced in section 2 will be used to obtain a approximate random sample

of ηk.
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5.3.3 Sampling Scheme

In this section, we present Gibbs sampler and M-H algorithm sampling scheme for the

parameters.

1. Sample Ii = (Ii1, . . . , IiK)
′
from Multinomial

{
1, (pi1, . . . , piK)

′}
. where

pik =
exp

{
−1

2
(αi − µk)

′
Σ−1

α (αi − µk)
}

exp
(
η
′
kx̃i

)

∑K
l=1 exp

{
−1

2
(αi − µl)

′
Σ−1

α (αi − µl)
}

exp
(
η
′
l x̃i

)

i = 1, . . . , n. and k = 1, . . . , K.

2. Sample yi∗j∗ =


 yi∗j∗1

yi∗j∗2


 from N2

(
B
′
Tj∗ + αi∗ , σ2

ε I
)
.

It is noted that in the ERP study, the bivariate ERP components always are missing in

pairs. In general, when there is only one component missing, one could sample the missing

component from the conditional distribution given the other observed component.

3. Sample αi from N2 (µαi, Σi) .

where µαi = Σi

(
1
σ2

ε

∑ni

j=1

(
yij −B

′
Tj

)
+ Σ−1

α µIi

)
,

Σi =
(

ni

σ2
ε

+ Σ−1
α

)−1

, i = 1, . . . , n.

4. Sample β1 and β2 from bivariate normal distributions as in 5.5 and 5.6 respectively.

5. Sample σ2
ε from the Inverse-Gamma distribution as in 5.7.

6. Sample µk from N (µαk, Σk) as in 5.3.2, k = 1, . . . , K.

7. Sample Σ−1
α from the Inverse-Wishart distribution as in 5.10.

8. Sample ηk via Metropolis-Hastings algorithm. The sampling steps are almost the same

as section 3.2.1 except the tuning parameter needs to be adjusted accordingly. We do

not repeat the details here.
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6.0 FUTURE RESEARCH

In this last chapter of the dissertation, we will give a summary of our proposed work and

results that we have obtained. Moreover, we will discuss some interesting problems and

unsolved issues related to the topic.

Our research in this dissertation was motivated by a study of alcoholism. In the study,

the P300 amplitude trajectories of the subjects were examined through childhood and adoles-

cent period. We used a latent mixture model frame work to analyze the heterogeneity in the

trajectory population. The main focuses of our research are: first, to develop efficient com-

putational algorithm to estimate such complexed model when confronted with large amount

of missing data; second, to propose the use of cubic spline technique in curve fitting. The

computational method for this improved model also was developed. It is our expectation

that above algorithm and modeling can be widely applied in many other scientific areas.

6.1 PREDICTION FOR BINARY OUTCOME

In chapter 5.3.3, we described the use of latent mixture model for predicting a binary out-

come. So far we have not found a significant relationship between the latent class membership

and the onset of alcoholism in adulthood. Non-significant results also showed in post hoc

analysis, where we used simple logistic regression with alcoholism presence as response and

latent class membership as explanatory variable.

The phenomena may be caused by low occurrence of the alcoholism amongst the subjects.

One possible way to overcome this problem is increasing the frequency of the outcome by

grouping different psychiatric disorders as a whole. The candidate outcome variables are:
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drug dependence and abuse; depression; and eating disorder etc. However, the detailed study

of various outcomes is beyond the scope of this thesis.

6.2 LABEL SWITCHING PROBLEM

In section 2.2.3.4, we mentioned that the label switching problem was solved by imposing

artificial constrains on the mixing components, for instance,

A11 < A12 <, . . . , < A1K

Or A21 < A22 <, . . . , < A2K when the first components are equal

...

Unfortunately, above method can be problematic [1]. Consider two mixing components that

are close to each other, imposing ordering constrains can cause bias in parameter sampling.

For example, the samples for the component with smaller mean value are always bounded

from above by another component. In the future, we plan to improve our MCMC algorithm

by using other methods to avoid label switching problem. Celeux, Hurn and Robert gave

summary of possible methods; for details, see [1].

6.3 UNKNOWN NUMBER OF KNOTS

In this dissertation, we proposed the use of a single knot cubic spline in latent mixture

model. The location of the knot is a free parameter. We developed a MCMC algorithm to

accommodate the free knot cubic spline. Sometimes, there is no prior information about the

number of knots of the spline. In that case, the number of knots can be represented by a free

parameter. A reversible jump MCMC algorithm proposed by Green at al.[13] can be used

to analyze such model. Note that, during the sampling, the dimensionality of the parameter

space may change at each iteration. An application of such method can be found in [9].
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APPENDIX A

IDENTIFIABILITY

We now will take a close look at the latent mixture model to see if there exists a unique

characterization. It is important to consider identifiability in practice because otherwise the

estimation is not well defined.

The concept of identifiability of mixture models goes back to Teicher (1961). He gave

a sufficient condition that a class of finite mixtures be identifiable and from that, estab-

lished the identifiability of all finite mixtures of one-dimensional Gaussian distributions [40].

Yakowitz and Spragins modified the definition given by Teicher to include multidimensional

cdf’s [47]. Let F=
{
F (x, θ) , θ ∈ Θ, x ∈ <d

}
be the d-dimensional distribution functions

from which mixtures are to be formed. Then the class of finite mixtures of F with the

appropriate class of distribution functions, H.

Identifiability. H=
{

H(x) : H(x) =
∑K

k=1 πkF (x, θk) , πk > 0,
∑K

k=1 πk = 1,

F (x, θk) ∈F , K = 1, 2, · · · , x ∈<d
}

is the

convex hull of F . The definition of ”identifiability” implies F generates identifiable finite

mixtures if and only if H has the uniqueness of representation property:

K∑

k=1

πkFk =
K
′∑

k=1

π
′
kF

′
k (A.1)

implies K = K
′
and for each k, 1 ≤ k ≤ K there is some j, 1 ≤ j ≤ K

′
, such that πk = π

′
j

and Fk = F
′
j .
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Theorem. (Yakowitz and Spragins, 1968)

A necessary and sufficient condition that H be identifiable is that F be a linearly independent

set over the field of real numbers, <.

The proof of the theorem can be found in the Titterington, Smith and Makov [42].

In the latent mixture model (3.1) and (5.1), the joint distribution of the longitudinal

responses for subject i is the following:

fΘ (yi) = fΘ (yi1, · · · , yini
) (A.2)

=

∫

c,η

f (yi|ηi) f (ηi|ci, xi) f (ci|xi) dcidηi (A.3)

=

∫

η

f (yi|ηi)

∫

c

φ (ηi; Aci + Γxi, Ψ)
K∏

k=1

pcik
ik dci dηi (A.4)

=

∫

η

f (yi|ηi)
K∑

k=1

pikφ (ηi; Ak + Γxi, Ψ) dηi (A.5)

=

∫

η

K∑

k=1

pikφ (ηi; Ak + Γxi, Ψ) φ (yi; Tηi, Σε) dηi (A.6)

=
K∑

k=1

pikφ
(
yi; T (Ak + Γxi) , TΨT

′
+ Σε

)
(A.7)

Where pik =
exp
�
γ
′
kx̃i

�

PK
l=1 exp(γ

′
l x̃i)

.

The joint distribution shows that the model has K components, each represents a mul-

tivariate normal distribution. Yakowitz and Spragins showed that a finite mixture of multi-

variate Gaussian family is identifiable [47]. The proof is based on coming to a contradiction

to Teicher’s identifiability of one-dimensional Gaussian family result by assuming the multi-

variate Gaussian family is not identifiable. For the details, see [47] and [40].

Since the mean and the covariance matrix of a finite mixture of multivariate Gaussian

are identifiable, parameter matrix A and Γ of the latent mixture model are identifiable as

long as for each different xi, the resulting y means are different and there are more distinct x

combinations than corresponding parameters [23]. The covariance matrix is class invariant,

the variance components can be uniquely defined with some constrains on matrix Ψ. In our

Bayesian parameter estimation approach, the identifiability is governed by the priors and

posteriors of the variance components.
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APPENDIX B

SIMULATION STUDY 1
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Table 18: Diagonal elements of Σε – simulation 1

PARAMETER TRUE VALUE 5% ESTIMATE 95% S.E./S.D.

σ2
1 1.20 -0.1012 0.914 1.9292 0.619

0.9612 1.384 1.9116 0.293

σ2
2 1.06 0.5285 1.032 1.5355 0.307

0.9373 1.293 1.7375 0.249

σ2
3 0.86 0.3347 0.725 1.1153 0.238

0.6924 0.955 1.2782 0.182

σ2
4 0.58 0.16420 0.525 0.8858 0.220

0.2328 0.350 0.4957 0.082

σ2
5 0.65 0.17952 0.519 0.8585 0.207

0.3978 0.568 0.7836 0.119

σ2
6 1.02 0.38160 0.931 1.4804 0.335

0.7637 1.046 1.3978 0.196

σ2
7 0.75 0.08628 0.657 1.2277 0.348

0.6558 0.899 1.2076 0.170

σ2
8 0.32 0.0610 0.348 0.6350 0.175

0.2989 0.420 0.5737 0.085

σ2
9 0.21 0.0670 0.208 0.3490 0.086

0.1378 0.208 0.2968 0.049

σ2
10 0.31 -0.0334 0.188 0.4094 0.135

0.2505 0.384 0.5521 0.094

σ2
11 0.54 0.2318 0.855 1.4782 0.380

0.4329 0.715 1.0644 0.195
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Table 19: Parameter matrix Γ – simulation 1

PARAMETER TRUE VALUE 5% ESTIMATE 95% S.E./S.D.

Γ11 0.80 0.0129 0.828 1.6431 0.497

0.5087 1.035 1.5601 0.315

Γ21 0.05 -0.5707 -0.059 0.4527 0.312

-0.3380 -0.044 0.2324 0.174

Γ31 -0.04 -0.4042 0.014 0.4322 0.255

-0.3630 -0.093 0.1744 0.164

Γ12 -0.80 -2.2382 -1.00 0.2382 0.755

-1.2156 -0.660 -0.1081 0.340

Γ22 0.02 -0.5765 0.050 0.6765 0.382

-0.3846 -0.067 0.2379 0.189

Γ32 0.04 -0.6662 -0.084 0.4982 0.355

-0.2262 0.071 0.3692 0.181

Γ13 0.65 -0.3093 0.637 1.5833 0.577

-0.1019 0.432 0.9740 0.327

Γ23 -0.03 -0.7091 -0.140 0.4291 0.347

-0.3969 -0.098 0.1961 0.181

Γ33 0.06 -0.2682 0.214 0.6962 0.294

-0.4781 -0.198 0.0844 0.171

Γ14 0.08 -0.9099 0.056 1.0220 0.589

-0.3447 0.210 0.7705 0.343

Γ24 0.02 -0.4114 -0.003 0.4054 0.249

-0.1911 0.112 0.4128 0.185

Γ34 -0.01 -0.4170 -0.048 0.3210 0.225

-0.3977 -0.110 0.1822 0.177
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Table 20: {γk} – simulation 1

PARAMETER TRUE VALUE 5% ESTIMATE 95% S.E./S.D.

γ11 -2.510 -13.9125 -2.427 9.0612 7.005

-4.7159 -0.936 2.8798 2.310

γ12 1.293 -2.3310 2.181 6.6730 2.739

-0.4222 1.011 2.4556 0.862

γ13 -1.420 -5.4969 -1.984 1.5289 2.142

-4.7107 -2.422 -0.5478 1.278

γ14 0.015 -3.6947 -0.418 2.8587 1.998

-1.6611 -0.263 1.0863 0.842

γ15 0.76 -2.6361 0.493 3.6221 1.908

-0.5400 0.870 2.3847 0.899

γ21 -3.20 -27.7948 -2.373 23.0488 15.5011

-6.1208 -2.784 0.4653 2.0440

γ22 1.40 -7.0850 1.041 9.1670 4.9549

-0.2025 1.062 2.4137 0.8190

γ23 -0.55 -16.9544 -1.482 13.9904 9.4344

-2.2753 -0.849 0.5138 0.8593

γ24 -0.48 -6.4716 0.288 7.0476 4.1217

-0.8192 0.508 1.8386 0.8227

γ25 0.65 -9.7577 0.646 11.0497 6.3437

-1.2829 0.080 1.4172 0.8169
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Table 21: Covariance matrix Ψ – simulatioin 1

PARAMETER TRUE VALUE 5% ESTIMATE 95% S.E./S.D.

Ψ11 0.8124 0.2174 0.875 1.53264 0.401

0.6676 1.088 1.6336 0.302

Ψ21 0.2028 -0.1235 0.193 0.50952 0.193

0.1528 0.333 0.5301 0.117

Ψ31 0.3000 0.0117 0.302 0.59228 0.177

0.2690 0.462 0.7021 0.134

Ψ22 0.2919 0.0277 0.254 0.48032 0.138

0.2660 0.397 0.5643 0.093

Ψ32 0.1260 -0.0435 0.091 0.22548 0.082

0.0730 0.175 0.2947 0.068

Ψ33 0.2976 0.1664 0.291 0.41564 0.076

0.3477 0.473 0.6339 0.089
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APPENDIX C

SIMULATION STUDY 2

Table 22: Diagonal elements of Σε – simulation 2

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

σ2
1 1.20 0.24805 1.26025 2.94303 0.88174

σ2
2 1.06 0.17383 0.72246 1.82923 0.61386

σ2
3 0.86 0.42937 1.10092 2.15264 0.57190

σ2
4 0.58 0.14433 0.35096 0.66410 0.16705

σ2
5 0.65 0.45513 0.82945 1.34371 0.27753

σ2
6 1.02 0.48157 0.97990 1.65542 0.37852

σ2
7 0.75 0.47724 0.71540 1.02851 0.17055

σ2
8 0.32 0.20193 0.32654 0.48799 0.08815

σ2
9 0.21 0.11656 0.18885 0.28284 0.05196

σ2
10 0.31 0.10388 0.21171 0.36107 0.07977

σ2
11 0.54 0.30044 0.59130 0.96111 0.20377
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Table 23: Parameter matrix Γ – simulation 2

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Γ11 0.80 -0.32530 0.59925 1.69591 0.60759

Γ21 0.05 -0.19802 0.29719 0.69823 0.27570

Γ31 -0.04 -0.32413 0.03487 0.38948 0.22171

Γ12 -0.80 -1.70199 -0.78831 0.15393 0.56843

Γ22 0.02 -0.45669 -0.03181 0.39051 0.25517

Γ32 0.04 -0.36745 -0.09583 0.20151 0.17273

Γ13 0.65 -0.13979 0.70109 1.53325 0.51054

Γ23 -0.03 -0.32365 0.03506 0.38584 0.21813

Γ33 0.06 -0.18431 0.05538 0.29537 0.14606

Γ14 0.08 -0.70188 0.28200 1.21620 0.57942

Γ24 0.02 -0.49875 -0.04174 0.39194 0.27293

Γ34 -0.01 -0.22450 0.06850 0.38268 0.18576
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Table 24: {γk} – simulation 2

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

γ11 -2.510 -6.69242 -0.56118 9.36762 4.95987

γ12 1.293 -0.03808 1.84863 3.74193 1.15575

γ13 -1.420 -13.74307 -4.6108 -0.40166 4.36722

γ14 0.015 -1.61856 -0.14802 1.24490 0.87907

γ15 0.76 -0.41868 1.64326 4.44887 1.49160

γ21 -3.20 -8.19680 -3.97211 -0.33766 2.37936

γ22 1.40 0.015073 1.77787 3.85231 1.20613

γ23 -0.55 -1.95052 -0.63141 0.65688 0.79225

γ24 -0.48 -1.55743 -0.25498 1.00355 0.77428

γ25 0.65 -0.11487 1.17299 2.57253 0.81474

Table 25: Covariance matrix Ψ

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Ψ11 0.8124 0.3981 1.2656 0.5247 0.6856

Ψ21 0.2028 -0.3636 -0.0214 0.2385 0.1865

Ψ31 0.3000 -0.0033 0.2094 0.4565 0.1422

Ψ22 0.2919 0.2256 0.3954 0.6222 0.1241

Ψ32 0.1260 0.0443 0.1666 0.3042 0.0800

Ψ33 0.2976 0.2284 0.3343 0.4739 0.0759
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APPENDIX D

SIMULATION STUDY 3

Table 26: Diagonal elements of Σε – simulation 3

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

σ2
1 1.5 0.2877 0.7689 1.5356 0.4076

σ2
2 1.8 0.6347 1.9177 4.1037 1.2354

σ2
3 1.0 0.4596 0.9169 1.5903 0.3658

σ2
4 0.5 0.2616 0.6178 1.1947 0.3053

σ2
5 1.2 0.8705 1.4054 2.1066 0.3870

σ2
6 0.8 0.4760 0.7986 1.2264 0.2338

σ2
7 1.4 0.7422 1.1211 1.5984 0.2680

σ2
8 0.6 0.4221 0.6773 1.0103 0.1800

σ2
9 0.9 0.8784 1.2825 1.7973 0.2847

σ2
10 1.1 0.6743 1.1775 1.8048 0.3472

σ2
11 2.0 0.4885 1.3040 2.4303 0.6040
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Table 27: Parameter matrix Γ – simulation 3

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Γ11 0.80 -0.0892 0.7947 1.6433 0.5314

Γ21 0.10 -0.5867 -0.0663 0.4210 0.3060

Γ31 -0.25 -1.1783 -0.6692 -0.1778 0.3023

Γ12 -0.20 -0.4048 0.6170 1.5152 0.5854

Γ22 0.50 0.2759 0.8107 1.3215 0.3215

Γ32 -0.15 -0.6572 -0.1231 0.4170 0.3281

Γ13 0.65 0.2641 1.1731 2.0051 0.5278

Γ23 -0.05 -0.2718 0.2045 0.6628 0.2842

Γ33 0.12 -0.2262 0.2544 0.7446 0.2935

Γ14 -0.15 -1.2713 -0.2869 0.8108 0.6331

Γ24 -0.08 -0.5306 -0.01395 0.5037 0.3147

Γ34 -0.06 -0.8913 -0.3659 0.1550 0.3212
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Table 28: {γk} – simulation 3

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

γ11 -3.0 -14.2580 -6.9935 -1.1571 3.8058

γ12 1.2 0.3062 1.8627 3.9980 1.2555

γ13 -0.5 -1.5783 0.9363 3.8481 1.5733

γ14 2.0 -7.9389 -0.5751 2.4732 3.2837

γ15 1.0 -1.9670 0.4764 3.1430 1.5622

γ21 2.0 -1.1682 1.6900 4.4781 1.7709

γ22 0.8 1.0200 2.1880 3.4651 0.7707

γ23 -1.50 -3.8596 -2.5195 -1.1829 0.8512

γ24 0.5 -0.6255 0.5595 1.7762 0.7429

γ25 0.6 1.3612 2.7861 4.4526 0.9506

Table 29: Covariance matrix Ψ – simulation 3

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Ψ11 1.20 0.3535 1.1346 2.4951 0.6895

Ψ21 0.38 -0.5385 0.01789 0.5143 0.3193

Ψ31 0.25 -0.7300 -0.2410 0.2452 0.2983

Ψ22 0.80 0.5850 0.9325 1.3742 0.2457

Ψ32 0.50 0.2750 0.5558 0.8889 0.1881

Ψ33 1.40 1.0167 1.3773 1.8399 0.2561
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APPENDIX E

APPLICATION TO P300 DATA
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Table 30: Diagonal elements of Σε – two-mixture

PARAMETER 5% ESTIMATE 95% S.D.

σ2
1 0.08986 0.13767 0.20281 0.03617

σ2
2 0.0603 0.09586 0.14852 0.02785

σ2
3 0.1192 0.17024 0.23765 0.03676

σ2
4 0.08268 0.11472 0.15678 0.02299

σ2
5 0.14738 0.20119 0.27363 0.0388

σ2
6 0.06825 0.0916 0.1226 0.01707

σ2
7 0.11493 0.15038 0.19476 0.02506

σ2
8 0.13182 0.17301 0.23125 0.0314

σ2
9 0.15013 0.19456 0.25245 0.03156

σ2
10 0.12955 0.17121 0.22632 0.03066

σ2
11 0.11539 0.15314 0.20177 0.02667

Table 31: Estimate for A – two-mixture

PARAMETER 5% ESTIMATE 95% S.D.

A11 2.57718 2.89406 3.16567 0.18164

A21 2.77913 3.16475 3.55941 0.23713

A31 2.7623 3.23338 3.70915 0.28689

A41 1.95497 2.33458 2.81164 0.25971

A51 2.30593 2.49253 2.72612 0.12745

A12 3.43384 3.53385 3.63841 0.06302

A22 3.43604 3.58032 3.72243 0.08724

A32 3.3363 3.5313 3.71793 0.1164

A42 3.00729 3.15245 3.29589 0.08799

A52 2.92423 3.00091 3.07612 0.04621
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Table 32: Estimate of γk – two-mixture

PARAMETER 5% ESTIMATE 95% S.D.

γ11 -37.73 -27.33402 -26.78509 2.38905

γ12 19.03443 19.30655 24.46 1.18429

γ13 -2.04095 -1.93743 0.023 0.45052

γ14 -0.49 5.42361 5.73586 1.35898

γ15 15.17726 15.71505 25.9 2.34055

Table 33: Diagonal elements of Σε – three mixture

PARAMETER 5% ESTIMATE 95% S.D.

σ2
1 0.11186 0.17214 0.25749 0.04712

σ2
2 0.06002 0.09911 0.15497 0.02943

σ2
3 0.10172 0.14747 0.2072 0.03262

σ2
4 0.05778 0.08142 0.1129 0.01725

σ2
5 0.1401 0.19343 0.2626 0.03798

σ2
6 0.0443 0.05941 0.07912 0.01087

σ2
7 0.08348 0.10983 0.14334 0.01823

σ2
8 0.08228 0.11011 0.14635 0.01959

σ2
9 0.08661 0.11467 0.14991 0.0197

σ2
10 0.07826 0.10585 0.14226 0.01949

σ2
11 0.0702 0.09468 0.12566 0.01715
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Table 34: Estimate for A – three mixture

PARAMETER 5% ESTIMATE 95% S.D.

A11 3.36497 3.50963 3.66027 0.09067

A21 3.32143 3.49955 3.67096 0.10748

A31 3.40813 3.61913 3.82799 0.12839

A41 2.95539 3.10699 3.25897 0.09265

A51 2.9218 3.00033 3.082 0.04864

A12 3.03465 3.23683 3.44358 0.12589

A22 2.94653 3.22021 3.49987 0.16576

A32 3.01995 3.3496 3.66452 0.19747

A42 1.9394 2.22551 2.51373 0.17283

A52 2.33623 2.46081 2.58794 0.07661

A13 3.34269 3.54407 3.74554 0.12345

A23 3.54999 3.78281 4.0242 0.14605

A33 3.31137 3.61277 3.91611 0.1851

A43 3.17257 3.42096 3.66519 0.14938

A53 3.09481 3.24478 3.38794 0.08944

78



Table 35: Estimate of γk – three mixture

PARAMETER 5% ESTIMATE 95% S.D.

γ11 2.84036 4.06048 5.6442 0.85065

γ12 -0.01904 1.3117 2.83205 0.7758

γ13 -13.4399 -5.17196 -2.75648 3.26461

γ14 -0.29865 1.04653 4.23765 1.31103

γ15 -3.30135 -1.27727 0.86646 1.65808

γ21 -3.72696 -3.72696 -3.72696 0

γ22 2.56945 2.56945 2.56945 0

γ23 1.73152 1.73152 1.73152 0

γ24 0.30461 0.30461 0.30461 0

γ25 1.73225 1.73225 1.73225 0
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APPENDIX F

FIXED KNOT SPLINE SIMULATIONS
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Table 36: Diagonal elements of Σε – fixed knot spline

PARAMETER TRUE VALUE 5% ESTIMATE 95% S.D.

σ2
1 1.20 0.35918387 1.8163 3.4822170 0.9552

σ2
2 0.50 0.04079826 0.1417 0.3096920 0.0870

σ2
3 0.80 0.48681225 0.7576 1.0963182 0.1887

σ2
4 1.00 0.40879705 0.6252 0.9029152 0.1524

σ2
5 0.90 0.66587359 0.9609 1.3353276 0.2064

σ2
6 1.20 0.89193902 1.2114 1.6022659 0.2207

σ2
7 0.40 0.25128991 0.3743 0.5167648 0.0824

σ2
8 1.10 0.65385495 0.8821 1.1692545 0.1584

σ2
9 0.50 0.34535708 0.4943 0.6789783 0.1039

σ2
10 0.65 0.38323461 0.5790 0.8154604 0.1328

σ2
11 1.40 0.53447683 1.0262 1.6117949 0.3346
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Table 37: Parameter matrix Γ – fixed knot spline

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Γ11 0.40 -0.96379800 -0.1343131 0.6254843 0.4781829

Γ21 1.00 0.21164321 0.8805075 1.5850198 0.4153896

Γ31 1.20 -0.16601821 0.7820478 1.6891867 0.5504022

Γ41 0.80 0.15322117 0.8577256 1.5652377 0.4345983

Γ51 -0.30 -0.86938522 -0.2520641 0.3598583 0.3751993

Γ12 -0.40 -2.94282989 -1.5570944 -0.2249653 0.8400174

Γ22 0.50 -0.35690548 0.7400830 1.8095950 0.6377515

Γ32 1.10 0.20833818 1.3870110 2.6715480 0.7571014

Γ42 0.45 -0.88662590 0.2045928 1.1706297 0.6404632

Γ52 1.30 0.66954932 1.4615164 2.3089926 0.5047502

Γ13 -0.70 -1.88587036 -1.0971038 -0.3666841 0.4592052

Γ23 0.65 -0.09028497 0.6289569 1.3542915 0.4345952

Γ33 0.80 -0.48441946 0.4712866 1.3123085 0.5594229

Γ43 -1.30 -1.73361358 -1.1029953 -0.4076910 0.4030641

Γ53 0.90 -0.04055456 0.4626317 0.9621692 0.3049029

Γ14 1.00 0.92787207 1.9868170 3.3010095 0.6943474

Γ24 1.30 0.30593133 1.2407297 2.0897410 0.5452900

Γ34 -0.20 -2.04324303 -0.8534608 0.2862777 0.7005595

Γ44 1.40 0.52144472 1.3398864 2.1966744 0.5127865

Γ54 0.85 0.54303529 1.1635087 1.8092946 0.3854619
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Table 38: {γk} – fixed knot spline

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

γ11 -2.00 -9.4846366 -4.546989 -1.058199 2.5958424

γ12 -5.00 -5.3266520 -3.896036 -2.670768 0.7847861

γ13 6.00 4.3426730 7.843844 12.912302 2.6397498

γ14 2.00 0.1630886 1.256321 2.248609 0.6506906

γ15 -4.00 -4.2890295 -2.844878 -1.550955 0.8463214

γ21 3.00 2.2476022 3.7778836 5.540983 1.0093364

γ22 -4.00 -5.6639550 -4.0657961 -2.581002 1.0122094

γ23 -5.00 -7.4945965 -5.4858906 -3.621376 1.1817404

γ24 1.00 -0.5691191 0.4957370 1.565129 0.6817153

γ25 2.00 -1.0276077 0.4545812 1.927834 0.9056638

Table 39: Covariance matrix Ψ – fixed knot spline

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Ψ11 0.60 0.0809 0.7641 2.0140 0.6168

Ψ22 0.40 0.0569 0.2707 0.6290 0.1857

Ψ33 0.25 0.0601 0.3207 0.7729 0.2351

Ψ44 0.60 0.4203 0.8724 1.3844 0.2971

Ψ55 0.80 0.5917 1.1309 1.7615 0.3550
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APPENDIX G

FREE KNOT SPLINE SIMULATIONS
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Table 40: Diagonal elements of Σε – free knot (truncated normal)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

σ2
1 1.00 0.06734012 0.8116 2.418597 0.7776

σ2
2 1.20 1.49412453 3.2950 6.059737 1.4574

σ2
3 1.50 2.75697865 4.7201 7.160512 1.3647

σ2
4 2.00 0.73333549 1.3219 2.071580 0.4118

σ2
5 1.80 0.82016789 1.2343 1.765789 0.2984

σ2
6 0.90 0.46095885 0.7081 1.012589 0.1691

σ2
7 1.00 0.87062310 1.1873 1.579599 0.2178

σ2
8 2.20 1.34652253 1.7910 2.322503 0.2979

σ2
9 1.50 1.22098753 1.6417 2.150969 0.2837

σ2
10 0.85 0.72850252 1.0142 1.370584 0.1977

σ2
11 1.00 0.47131993 1.2988 2.054765 0.4750
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Table 41: Parameter matrix Γ – free knot (truncated normal)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Γ11 0.20 -1.11445436 -0.2094 0.6502545 0.5374775

Γ21 0.50 -1.15616691 0.2359 1.8465877 0.9095538

Γ31 0.30 -0.88130033 0.3417 1.3812423 0.6894895

Γ41 0.40 0.04561498 0.7353 1.4920484 0.4331153

Γ51 0.50 -0.28465026 0.2681 0.7830298 0.3286610

Γ12 0.75 -0.04328120 0.9617 1.9631243 0.6026198

Γ22 0.25 -2.58123745 -0.6582 1.0172517 1.1207814

Γ32 1.00 0.41975911 1.8638 3.4146192 0.9166958

Γ42 0.40 -0.99684440 0.0024 0.9642876 0.5927909

Γ52 0.20 0.03099701 0.5545 1.1432309 0.3432278

Γ13 0.50 -0.14859702 0.7755 1.7560901 0.5820782

Γ23 1.00 0.38517244 2.0536 3.6951880 1.0001010

Γ33 0.60 -0.65873191 0.5772 1.8663959 0.7748862

Γ43 0.50 -0.57881472 0.2057 0.9611890 0.4724274

Γ53 0.80 -0.07419930 0.4496 0.9858645 0.3250405

Γ14 -0.25 -4.54370776 -1.710 0.7627850 1.597272

Γ24 1.10 -6.47339820 -2.9183 0.2836884 1.995871

Γ34 0.40 -1.43023479 2.0452 5.6908706 2.296158

Γ44 0.30 -2.05707087 0.4500 2.9099030 1.540209

Γ54 0.50 -1.47753327 0.6335 2.8618018 1.278740
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Table 42: {γk} – free knot (truncated normal)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

γ11 -10 -8.373225 -5.282897 -1.344543 2.348120

γ12 15 5.168424 8.023552 11.869139 2.295260

γ13 -12 -11.908442 -8.100832 -5.334269 1.996313

γ14 13 9.731781 12.067107 15.066111 1.554092

γ15 20 7.290714 10.494941 15.797119 2.319339

γ21 5 4.757292 7.808832 11.375684 1.849136

γ22 4 1.639368 4.112789 6.502078 1.567111

γ23 -5 -11.176965 -8.011558 -4.973060 1.756590

γ24 10 2.642880 7.321311 10.854664 2.427488

γ25 -4 -15.046937 -7.986390 -2.855800 3.765636

Table 43: Covariance matrix Ψ – free knot (truncated normal)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Ψ11 0.45 0.1615 1.9412 3.7001 1.0845

Ψ22 0.45 0.6064 3.8952 7.8327 2.2911

Ψ33 0.45 0.0742 0.4897 1.2780 0.4110

Ψ44 0.45 0.0962 0.4663 1.0190 0.2929

Ψ55 0.45 0.0783 0.6442 1.4860 0.4383
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Table 44: Diagonal elements of Σε – free knot (beta)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

σ2
1 1.00 0.11490577 0.9118 2.136885 0.5738

σ2
2 1.20 0.33245201 0.9428 2.022528 0.4374

σ2
3 1.50 1.58004348 2.5529 4.018304 0.6227

σ2
4 2.00 2.64779607 4.1787 6.261933 0.9220

σ2
5 1.80 1.88869282 2.8065 4.077812 0.5571

σ2
6 0.90 0.50436582 0.9166 1.448328 0.2466

σ2
7 1.00 0.74113164 1.1360 1.655222 0.2338

σ2
8 2.20 1.18377276 1.7599 2.526270 0.3468

σ2
9 1.50 0.98770833 1.5628 2.298878 0.3347

σ2
10 0.85 0.52826365 1.0107 1.628164 0.2818

σ2
11 1.00 0.03854691 0.4317 1.322698 0.3575
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Table 45: Parameter matrix Γ – free knot (beta)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Γ11 0.20 -0.4346073 0.28092495 0.9726666 0.3666822

Γ21 0.50 -1.1813306 0.13954767 1.3558389 0.6695729

Γ31 0.30 -0.4946720 0.85263772 2.2456146 0.7066673

Γ41 0.40 -1.3206724 -0.15157410 1.0402946 0.6077953

Γ51 0.50 -0.7200610 -0.01474894 0.6811170 0.3539668

Γ12 0.75 -0.2064355 0.6253033 1.5613692 0.4639864

Γ22 0.25 -1.5297735 0.1879357 1.6805446 0.7771341

Γ32 1.00 0.1036115 1.6561443 3.2295323 0.8114257

Γ42 0.40 -0.5366710 0.7759965 2.0419937 0.6498700

Γ52 0.20 -0.4090822 0.4090063 1.1825971 0.4079976

Γ13 0.50 -0.3401601 0.4057803 1.2552120 0.3993963

Γ23 1.00 -0.9440144 0.5435716 2.0826422 0.7575399

Γ33 0.60 -0.7215947 0.7708687 2.2680413 0.7574871

Γ43 0.50 -1.7375071 -0.4672812 0.8701831 0.6604271

Γ53 0.80 -0.4015500 0.3152499 1.0388198 0.3702179

Γ14 -0.25 -0.6173260 1.7565596 4.3253389 1.365589

Γ24 1.10 -6.0045916 -2.0184605 0.7582995 1.668890

Γ34 0.40 -3.9313324 1.0492038 5.5834895 2.246305

Γ44 0.30 -8.1627780 -2.6663879 1.0715512 2.193610

Γ54 0.50 -4.5493651 -0.6224611 7.0391040 2.549119
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Table 46: {γk} – free knot (beta)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

γ11 -10 -11.363018 -4.922416 0.565344 3.211789

γ12 15 4.159225 7.503412 11.819270 1.901914

γ13 -12 -11.643400 -6.817899 -3.176648 2.131709

γ14 13 7.653873 10.921227 14.925553 2.018018

γ15 20 5.792401 10.870971 16.379508 2.864669

γ21 5 3.018138 7.154200 12.771643 2.497693

γ22 4 3.813814 8.607736 14.267106 2.868526

γ23 -5 -13.537123 -7.907969 -3.889450 2.479663

γ24 10 3.241150 8.659103 15.722992 3.096204

γ25 -4 -16.017718 -8.416017 -2.106191 3.933162

Table 47: Covariance matrix Ψ – free knot (beta)

PARAMETER TRUE VALUE 5% MEAN 95% S.D.

Ψ11 0.45 0.0582 0.5044 1.4401 0.3884

Ψ22 0.45 0.0397 0.5391 2.5228 0.6445

Ψ33 0.45 0.3988 2.1872 4.3988 1.0433

Ψ44 0.45 2.7281 4.8708 7.6422 1.2767

Ψ55 0.45 0.8271 2.0346 3.1971 0.5796
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