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EFFECTIVENESS OF HOLISTIC MENTAL MODEL CONFRONTATION IN 

DRIVING CONCEPTUAL CHANGE 

 Soniya Gadgil, M.S. 

University of Pittsburgh, 2009

 Students’ flawed conceptions can often be corrected during learning by successive 

contradictions from text sentences, allowing them to revise or replace their individual false 

beliefs as they read a text. Although this process supports learning new knowledge at a local 

level (i.e., individual propositions) it is less effective in facilitating systemic conceptual change. 

In contrast, constructive processes such as self-explaining can facilitate conceptual change 

through building a mental model from cumulative revisions of individual false beliefs. In the 

current experiment, I investigated whether comparing and contrasting examples can achieve the 

same outcome. Students (n=22) in the compare group were first shown a diagram of with their 

own flawed mental model, and then asked to compare it with a diagram of the correct model. 

This condition was compared with self-explaining the correct diagram (n=22), and a control 

condition in which students simply read the text twice (n=20). Results showed that the compare 

group performed better than the other two groups on questions requiring deep inference making. 
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1.0  INTRODUCTION 

In science learning, students often come into a learning situation with misconceived prior 

knowledge. These misconceptions can exist at three levels, viz. false beliefs, flawed mental 

models and incorrect ontological categories. Chi (2008) has argued that misconceptions at the 

false belief level can be rectified by direct instruction in the correct beliefs, whereas mental 

model revision requires a more systemic level of conceptual change. The current research 

examines what cognitive processes facilitate this kind of change. It is hypothesized that systemic 

conceptual change requires revision at the holistic relational level as opposed to the individual 

propositional level. To test this, I conducted an experiment that compares an instructional 

intervention designed to facilitate holistic confrontation (comparing and contrasting a 

representation of one’s misconception to an expert representation) vs. self-explanation of the 

expert representation vs. traditional instruction (i.e., reading a text). If conceptual change is 

driven by system-wide knowledge revision, then instruction aimed at holistic confrontation 

should facilitate more robust conceptual learning than those processes aimed at individual 

propositions. 

To situate the current work I first describe three levels of knowledge representation, the 

cognitive processes supporting conceptual change, and instructional interventions designed to 

facilitate those processes. 
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1.1 KNOWLEDGE REPRESENTATION 

When knowledge is misconceived at the false beliefs level, students have certain incorrect 

individual beliefs about what he or she is about to learn. A false belief is a single incorrect idea 

that can usually be stated in a single proposition. For example, if a student thinks, “all blood 

vessels have valves”, this is in direct contradiction to the correct proposition “only veins have 

valves”. When false beliefs are in direct contradiction to the correct proposition, direct refutation 

is usually sufficient to overcome this barrier to learning (Dole, 2000). 

The next level of misconceived knowledge is of flawed mental models. A mental model 

is a representation constructed by a learner that allows him or her to make inferences and reason 

qualitatively about a process or system (Gentner & Stevens, 1983; Johnson-Laird, 1980). It has a 

similar relation-structure to that of the process it represents. A mental model is more than simply 

a set of propositions, as it has complex inter-relationships that may not always be captured by the 

way of propositions. 

Even when students have a mental model that is flawed, their understanding is often 

seemingly coherent, and the student can justify it quite successfully. For example, young 

children often have a flawed mental model of the earth as a hollow sphere. When asked 

questions like “Where do people live?”, they say “On flat ground deep inside the hollow sphere.” 

(Vosniadou, 1994). Such a flawed mental model needs extensive transformation, in order for the 

children to learn the new and correct model. 

The third and most complex level of incorrect knowledge is at the level of ontology, 

when students misattribute a process to one kind of category versus another (Chi, 1997, 2005; 

Chi, & Roscoe, 2002). If misconceptions belong to one category and correct conceptions belong 

to another lateral or ontological category, then they conflict by definition of kind and/or 
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ontology. This means that conceptual change requires a shift across lateral or ontological 

categories. For example, students have been shown to possess the misconception that “hot 

objects contain heat”. Thus, they misattribute heat as being a thing or an object that can be 

contained. Instruction to correct such misconceptions should first help students determine that 

heat does not belong in the category of an object or a direct causal process, but is an emergent 

phenomenon (Chi, 2005). Such misconceptions tend to be the most robust, and require 

systemwide conceptual change. 

It is important to distinguish conceptual change from other kinds of learning processes 

such as addition of new knowledge and gap filling (Chi, 2008). Addition of new knowledge 

occurs when one has no prior knowledge about the topic whatsoever. For example, if a person 

has no prior knowledge of the human heart and circulatory system, all that the person learns 

about this topic will be represented as the addition of new knowledge components. Gap filling 

takes place when a learner has certain disjoint ideas about the material to be learned, with gaps 

that need to be filled in order to learn. For example, a person may know that the human heart has 

four chambers, but not know the names of the four chambers. In this case, learning involves 

simply gap filling. This kind of learning has also been termed enrichment (Carey, 1991) or 

accretion (Rumelhart, 1976). Gap filling and addition of new knowledge do not constitute 

conceptual change, as the learner does not need to transform his or her existing knowledge 

structure or deliberately get rid of misconceptions in order to learn. By this definition of 

conceptual change, only incorrect knowledge at the level of mental models or ontology is 

remedied by conceptual change. The first level of false beliefs is usually remedied by belief-

revision. In the current work, we will focus on conceptual change only at the level of mental 

models.  
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1.2 COGNITIVE PROCESSES SUPPORTING CONCEPTUAL CHANGE 

Self-explanation has been shown to be very effective in achieving conceptual change (Chi, de 

Leeuw, Chiu, & LaVancher, 1994). The self-explanation effect has been found to be robust 

across domains (Mwangi & Sweller, 1998) age-groups (Calin-Jageman, & Horn Ratner, 2005), 

and tasks (Pirolli & Recker, 1994; Aleven & Koedinger, 2002). The typical method used in self-

explanation studies is to have students go through a text line by line, forcing them to reconcile 

their existing flawed mental model with the correct one, resulting in the acquisition of the correct 

beliefs, which are hypothesized to culminate in the construction of a correct mental model. 

However, self-explanation need not always be in the form of students explaining aloud from 

texts. Other forms of self-explanation such as explaining with diagrams (Ainsworth, 2003) and 

sketching explanatory diagrams (Van Meter, 2006) have also been explored and shown to be 

equally beneficial.   

Chi (1994) has shown that when students were prompted to self-explain as they read a 

text, 5 out of 8 students could successfully transform their flawed prior model to acquire the 

correct model. However, the self-explanation was targeted at the belief revision level, while the 

misconceptions are at the mental model level. Students have been shown to have several correct 

beliefs, yet a flawed mental model. It is possible that the students who did not acquire the correct 

model could not transform their existing model by accumulation of beliefs. In this experiment, 

we want to see whether directing instruction at the holistic (relational) level, by means of 

comparing and contrasting one’s flawed mental with the correct expert model, is more likely to 

result in a transformed mental model. 

Similarly, past research has shown that refutation can be successful in effecting belief 

revision. In a refutation text, common misconceptions held by students are identified and 
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explicitly addressed. For example, Diakidoy (2003) gave sixth-grade students a standard science 

text about energy or another text that explicitly addressed two common misconceptions that 

students held about energy and refuted them. Students who read the refutation text performed 

better than those who read the simple expository text. However, the accretion of correct beliefs 

may not always add up to a correct understanding when the misconceptions are at the mental 

model level, and indeed some studies have reported no advantage of refutation texts over 

expository text (for example, Alvermann & Hynd, 1987; Maria & Blustein, 1986). A meta-

analysis by Guzzetti et al (1993) showed that other strategies such as group discussion could be 

used to introduce cognitive conflict, and were as effective in facilitating belief revision as a 

refutational text. These strategies were “activation activities” such as group discussion etc. This 

means constructive activities rather than direct refutation are also effective in facilitating 

conceptual change. 

A key difference between self-explanation and learning from refutational texts is that in a 

refutation text students’ misconceptions are identified in advance and explanations are provided, 

whereas in self-explanation students’ generate those explanations for themselves. It also provides 

students an opportunity to notice gaps in their own knowledge. Research in reading 

comprehension has shown that students are frequently not aware of their misconceptions 

(Kendeou & Van Den Broek, 2005). Moreover, students may recognize individual 

misconceptions while self-explaining, but not realize that their mental model is flawed. We 

hypothesize that these gaps can be made more salient by means of holistic confrontation. That is, 

by comparing one’s incorrect mental model to a correct one provides an opportunity to notice 

holistic, system-wide discrepancies and their conceptual implications. One way to facilitate 
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noticing such systems of relations is through analogical reasoning, specifically by comparing 

and contrasting examples. 

Past research in analogical comparison has shown it to be an especially powerful learning 

mechanism. For example, Gick and Holyoak (1983) found that when participants’ schemas 

contained more relevant structural features, they were more likely to solve a similar problem. It 

seems reasonable that this can apply to conceptual learning as well. Medin, Goldstone, and 

Gentner (1993), found that interpretation of an ambiguous stimulus was dependent on the 

properties borrowed from unambiguous stimuli that it was compared to. In other words, the 

process of comparison encouraged students to focus on certain features over others. Therefore, 

we hypothesized that when students are asked to compare a flawed model to a correct model they 

will be more likely to focus on the relevant structural features. 

Kurtz, Miao, & Gentner (2001) showed that students who were learning about the 

concept of heat transfer learned more when comparing examples than when studying each 

example separately. By comparing the commonalities between two examples, students could 

focus on the causal structure and improve their learning about the concept. In Chi (1994)’s work 

on self-explanation, induction of function or understanding the causal mechanisms of circulation 

was an important mediator of learning. If analogical comparison can promote focusing on the 

relevant features, then it could lead to more causal inference generation, compared to students 

seeing only the correct model.  

The process of comparison can encourage inference generation by providing scaffolding 

for explanation. Coleman (1998) has argued that encouraging students to generate explanations 

should help them to monitor themselves and others for comprehension, access and use prior 

knowledge, gain awareness of their knowledge, and thus improve their conceptual 
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understanding. Students learned about photosynthesis in a collaborative situation using 

explanation prompts that asked students to explain and justify their answers, compare past and 

current beliefs, think about nature of their explanation (e.g. scientific vs. everyday), etc.  In 

individual and collaborative post-test measures (concept mapping and problem-solving) 

completed after the learning unit, it was shown that prompted students, in contrast to unprompted 

students, acquired a more correct understanding of photosynthesis.  

Similarly, Schwartz and Bransford (1998) conducted an experiment in which 

undergraduate students studying cognitive psychology analyzed contrasting cases for one set of 

memory concepts, or simply read about cases for another set of concepts. In the contrasting cases 

condition, students graphed the data themselves, whereas for in the read-only condition, they 

were provided with the graphs instead of the raw data. All students later attended a lecture on the 

same topic. Students who analyzed and contrasted cases illustrating memory phenomena showed 

better performance on a transfer task compared to controls who simply read about the cases. 

Thus, analogical comparison led to better preparation for future learning from the lecture, by 

facilitating learning of critical aspects of the domain and noticing critical patterns that they could 

use to organize the concepts given in the lecture.  

There is also some evidence in the problem-solving literature that students are able to 

generate inferences by contrasting cases. For example, Chang (2006) showed that having 

students compare statistics problems that differed either on the surface level or structural level 

based on their prior knowledge, it increased their performance on problem-solving tasks. 

Similarly, Rittle-Johnson and Star (2007) gave seventh grade algebra students two analogous 

algebra problem solutions to compare and contrast, with the control group receiving just two 
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worked examples sequentially. Students in the compare and contrast condition outperformed the 

control group on both procedural as well as conceptual knowledge.  

These results suggest that analogical comparison can promote the cognitive processes 

such as encoding of critical features, inference generation, and schema extraction. The key 

difference between past research on contrasting cases and the current work is that previous work 

focused on giving students two correct examples to compare whereas in the current work 

students compared their own flawed model to the expert model. We hypothesized that this kind 

of comparison would facilitate inference generation, noticing of critical conceptual (relational) 

features, extraction of a schema, and provide an opportunity for system-wide change at the 

mental model level (noticing and correcting errors). We compare this instructional intervention 

to self-explaining the expert diagram and a control condition involving only reading an 

instructional text. 
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2.0  METHOD 
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2.1 PARTICIPANTS 

Eighty-one undergraduate and graduate students from University of Pittsburgh were recruited for 

the study. Sixty-four of them qualified to participate, based on a test of their prior knowledge. 

The mean age of participants was 21.67 y, sd = 2.07y. Students’ self-reported their GPAs; M = 

3.29, sd = 0.41. All students were native or fluent English speakers who had not studied the heart 

and the circulatory system before. They had no college-level courses in Biology. Participants 

were either paid $15 for the 2h study, or were part of a Psychology subject pool, wherein they 

participated in experiments for course credit. The paid and for-credit students were equally 

distributed across the three conditions.  

2.2 DESIGN 

The design was a between subjects design with the participants being randomly assigned 

to one of three instructional conditions (compare (n = 22), explain-diagram (n = 22), read-twice 

(n = 20)). There were no differences in mean age (F(2, 61) = 1.60, ns) or GPA (F(2, 61) = 0.76, 

ns) across conditions. Students who participated for credit and paid participants were equally 

divided across conditions.  
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2.3 MATERIALS AND MEASURES 

The materials consisted of a flawed (single-loop) and correct (double-loop) diagram of the 

circulatory system, and an expository text that described the structure, function, and path of 

blood flow. The flawed model was selected on the basis of prior research, which has identified 

several flawed models of the circulatory system that students tend to have (Chi, 2001). Initial 

piloting showed that college students are most likely to have a single-loop model of the 

circulatory system. Students in the compare condition were shown a diagram of their own flawed 

mental model (see Appendix A) and a diagram of correct double-loop model (see Appendix B). 

Students in the explain-diagram condition were shown only the correct double-loop model. 

Students in the read-twice condition were not shown the diagram.  

The text about the heart and circulatory system was common to all three conditions and 

was taken from a popular college-level Biology textbook (Shier, Butler, & Lewis, 2006; see 

Appendix C). The text was 72-lines long, and the diagrams were not available to the students 

when they read the text. 

 

2.3.1 Screening Test 

The mental model questions in the screening test were designed such that it would be possible to 

gauge the student’s current mental model. These questions consisted of ten questions; three 

questions were multiple-choice for one point each, and seven were short answer questions 

ranging from one to four points (see Table 1 a for an example each type). The short answer 
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questions required students to describe their current mental model. The total possible score was 

25 points. 

If a student were found to have a flawed mental model other than the single-loop model, 

he or she would be excluded from the experiment. The inclusion criterion was that a student had 

to score lower than 10 on the screening test in order to participate in the experiment. The 

screening test was question based instead of drawing a blood path diagram, because we wanted 

to minimize the chance that the students in the explain-diagram condition would covertly 

compare their model to the correct model by making their current model explicit. The inter-item 

reliability co-efficient for this test (Cronbach’s alpha) was 0.59. 

2.3.2 Definitions Test 

The definitions test consisted of declarative questions in which students were asked to define 

terms related to the circulatory system (see Table 1b for examples). This assessment was used to 

assess their declarative understanding of these terms. To help students define terms students were 

given generic prompts such as "Where is it located?", "What is it's function etc." This test was 

administered on a computer using simple word-processing software. It was administered at both 

pre and post-test to provide an assessment of declarative knowledge gains from the instructional 

intervention. There were twelve items on this test and the total possible score on this test was 45 

points. The inter-item reliability co-efficient for this test (Cronbach’s alpha) was 0.87. 

 

 

 12 



2.3.3 Knowledge-Inference Test 

The knowledge inference questions required deep reasoning on part of the students. The 

questions on this test were not directly addressed in the text or diagrams, and required students to 

integrate knowledge across text sentences, and also make connections with their prior knowledge 

in order to answer them correctly. For example, the text did not address function information 

about all parts related to the circulatory system, and students needed to make causal inferences in 

order to impute their function. These were administered only at post-test to avoid influencing the 

students’ thinking during learning. 

The knowledge inference questions were divided in two types of questions including 

integration inference and system-level questions (see Table 1c for the two types of questions). 

The integration inference questions were those that required inferences and integration across 

text sentences. These questions correspond to Category 21 questions from the Chi (2001) study. 

Out of a total of eighteen inference questions, eight were integration inference questions. The 

system-level questions required students to infer important new knowledge that could only be 

answered correctly if the students had a correct mental model. These questions corresponded to 

Category 3 and Category 4 questions from the Chi (2001) study. There were ten system-level 

questions. The total possible score on this test was 25 points. 

The inter-item reliability co-efficient for this test (Cronbach’s alpha) was 0.77. 

 

 

 
                                                 

1 Category 1 questions from the Chi (2001) study were not included because the definition and mental-model 
questions tap the same information as do the Category 1 questions in the Chi (2001) study. 
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Table 1. Examples of Learning Measures 

 

Question Type Example 

a.) Mental-model based questions Describe the path of blood from the heart to the 
various parts of the body. 

b.) Declarative Questions Definitions of terms such as aorta, ventricle, 
septum. 

c.) Knowledge Inference Questions: 
• Integration Questions 

 
• System-level Questions 

 
“Why are arteries more flexible and strong 
compared to veins? Explain the structure of 
arteries that facilitates this.” 
“Why don't we have valves in pulmonary 
veins?” 

 

2.4 PROCEDURE 

The procedure consisted of the screening test, followed by the pre-test, the instructional 

intervention, reading the text, and a post-test.  Each participant first took the screening test. 

There were two purposes for conducting the screening test. The first was, to confirm that 

students had low prior knowledge about the heart and circulatory system. The second purpose 

was to gauge the student's current mental model. A pilot study revealed that most college 

students have a single-loop model of the heart. In a single-loop model, students incorrectly 

believe that blood gets oxygenated in the heart, and flows out to different parts of the body to 

distribute oxygen, as opposed to the correct double-loop model, in which blood flows in two 

distinct loops: heart-lungs-heart, and heart-body-heart. 
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The experimenter then scored the screening test. Only students who had a single-loop 

model and scored fewer than 10 out of 25 points went on to participate in the experiment. After 

the screening test, students took a pretest on declarative knowledge described under Materials.  

Students in the compare condition were shown a diagram of a flawed model of the 

circulatory system and were instructed to compare it to the expert diagram. The experimenter 

first explained the flawed diagram to the participant, and asked whether he or she agreed with it. 

Once they agreed with it, they were told that this was not the correct model, and were shown a 

diagram of the correct model. They were then asked to make comparisons between the two 

diagrams. The experimenter guided the comparison process using prompts such as “Can you 

trace the path of blood flow in each of the diagrams?” “What are the important parts of the 

circulatory system based on each of the diagrams?” Students were instructed to talk aloud 

during the entire process (see Appendix D for a complete list of prompts).  

Students in the explain-diagram condition were only shown the correct diagram and 

asked to self-explain it. Again, they were given similar prompts, parallel to those in the compare 

condition, for example, “Can you trace the path of blood flow in the diagram?”; “What are the 

important components of the circulatory system based on this diagram?” etc. (see Appendix D 

for a complete list of prompts).  

Audio protocols were recorded for both conditions. The time spent self-explaining / 

comparing was limited to approximately 5-7 minutes in both conditions.  

Students in both conditions then read the circulatory-system text presented one line at a 

time on the computer screen. Diagrams were not available to the students as they read. Students 

in the read-twice condition simply read the text twice and did not compare or explain diagrams.  

This was followed by a post-test that consisted of drawing the blood path diagrams, and 
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answering questions. The questions at post-test consisted of the same mental model questions 

that they had taken at screening, declarative questions they had answered at pretest, and two 

additional parts that were not present in the pretest and screening test: drawing the blood path 

diagram, and answering knowledge inference questions (described under Materials). Students 

were asked to draw a diagram showing their current understanding of the heart and circulatory 

system on a provided template. They were asked to explain aloud as they drew, and audio 

protocols were collected. 

2.5 PREDICTIONS 

On the mental model based questions, the compare condition was expected to outperform 

the explain-diagram condition. The process of comparing and contrasting the students’ own 

model with the correct model would make the differences between the two more salient. When 

the student notices the discrepancy between her own model and the correct model, she is more 

likely to revise her existing model. On the other hand, while self-explaining the diagram of the 

correct model, a student may not notice the discrepancies, making it less likely for her to revise 

her existing model. Both the compare and explain-diagram group were expected to outperform 

the read-twice group. 

Both groups will be exposed to the same declarative knowledge in the form of text that 

they read in all three conditions. Therefore, on the declarative knowledge, no differences 

between groups were expected.  
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On the knowledge inference questions, again compare group was expected to outperform 

the explain-diagram group. Studying the correct diagram in relation to the flawed one will invite 

inference generation. 
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3.0  RESULTS 

The results are presented in two major sections, viz. learning outcomes and protocol analyses. 

Under learning outcomes, students’ performance on the different tests and the drawing task is 

discussed. The protocol analyses were conducted to give an insight into the kinds of cognitive 

processes the students engaged in as they learned.  

Alpha was set to .05 for all main effects and interactions, and Bonferroni corrections 

were used for all planned comparisons setting alpha to .01 (Keppel, 1991). Effect sizes were 

calculated for all main effects, interactions, and main comparisons. Cohen (1988) has suggested 

that effects be regarded as small when 0.2, as medium when 0.5, and large when 0.8.  

3.1 LEARNING OUTCOMES 

Pre-test performance. The graphs (Fig. 1 and Fig. 2) below show the learning outcomes on all 

the learning measures at pretest and post-test.  Pretests measured the students’ declarative 

understanding and mental model understanding. The post-test included a test on knowledge 

inference questions in addition to the declarative and mental model tests given at pretest.   

An Analysis of Variance (ANOVA) was conducted on participants’ pre-test scores across 

the three groups. The three groups were not significantly different on the declarative or mental 

questions, F(2, 61) = 0.37, ns and F(2, 61) = 1.32, ns, respectively. This shows that these (pre-
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screened) participants came into the experiment with extremely limited knowledge of the domain 

and there were no significant differences across the groups in prior knowledge. Therefore, any 

differences observed on the post-test can be attributed to the experimental manipulation. 

 
Figure 1. Average Pretest Scores on Declarative and Mental Model Questions 
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Figure 2. Average Posttest Scores on Declarative, Mental Model, and Inference Questions 
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Post-test performance. All three conditions showed significant learning gains from 

pretest to posttest on the declarative and mental model questions; t (63) = 18.19, p < 0.05, t (63) 

= 20.51, p < 0.05. However, the three conditions were not significantly different from each other 

in their learning on declarative (F(2, 61) = 0.76, ns) and mental model questions (F(2, 61) = 

0.99, ns). 

A one-way ANOVA was conducted on scores on the knowledge inference questions. The 

three groups were marginally different at F(2, 60)=2.62, p = 0.08. To test our a-priori hypothesis 

that the compare condition will outperform the other two conditions, contrasts were performed. 

The compare condition significantly outperformed the explain-diagram condition; t (61) = 2.061, 

p < 0.05, d = 0.52; and marginally outperformed the read-twice condition; t (61)= 1.87, p < 0.1, d 

= 0.61. The read-only and explain correct diagram condition did not differ significantly from 

each other; t (61) = -0.132, ns. 

3.2 ANALYSIS OF INFERENCE QUESTIONS BY QUESTION-TYPE 

As described in the Materials section, there were two kinds of The knowledge inference 

questions, viz. integration inference questions that required inferences and integration across text 

sentences and system-level questions that required students to infer important new knowledge 

and could only be answered correctly if the students had a correct mental model. Below, I report 

a breakdown of students’ performance by question type. 
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3.2.1 Integration Inference Questions 

A one-way ANOVA was conducted to examine the effect of the intervention on integration 

inference questions. There was no significant difference between the three groups, F(2, 

61)=2.06, ns.  

3.2.2 System-level Questions 

The compare group was expected to acquire a more robust model allowing students to perform 

especially better on system-level knowledge inference questions. A one-way ANOVA was 

conducted to examine the effect of the intervention on system-level questions. The three groups 

were marginally different, F(2,61)=2.4, p < 0.1. A contrast revealed that the compare group 

significantly outperformed the read-only group t(61) = 2.12, p < 0.05, d = 0.42. The explain-

diagram and read-twice groups were not significantly different from each other, t (61)=-0.62, ns. 

The compare group and the explain-diagram group were also not significantly different, t (61)= 

1.53 , ns (see Figure 3). 

 
Figure 3. Performance on System-Level Knowledge Inference Questions by Condition 
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3.3 FINE-GRAINED ANALYSIS OF DECLARATIVE QUESTIONS 

The three conditions did not differ from each other on declarative questions (F(2, 61) = 0.761, 

ns). However, each definition asked for different kinds of information, such as location, 

structure, function, and other related information. Therefore, each definition was broken down 

into these four components, and the students’ score on each component was assessed (see Table 

2) 

Table 2. Examples of Fine-Grained Analysis of Declarative Questions 

Attribute Description 

Location Leaves the left ventricle 

Structure Large artery 

Function Takes oxygenated blood out of left ventricle 

Other Branches off into arteries and further arterioles; Composed of three 

layers; At its base is an aortic valve that prevents blood from flowing 

back to the heart. 

 

Students’ performance on any of these components was not found to be significantly 

different by condition.  

 

3.4 ANALYSIS OF LEARNING TIME 

The time spent on learning was differed by condition (F(2, 61) = 6.59, p < .05). Students in the 

compare condition spent an average of 16.62m studying the text, those in the explain-diagrams 

condition spent 17.14 m studying the text, and those in the read-twice condition spent 24.19m 
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reading the text. Students in the read-twice condition were told they could spent between 30 and 

35 m reading the text twice, but ended up spending less time than that.  

The total time spent by students for the entire experiment was also significantly different 

by condition. (F(2, 61) = 5.129, p < 0.05). Thus, students in the compare and explain-diagram 

conditions showed a significant efficiency in learning, compared to students in the read-twice 

condition.  

3.5 DIAGRAM ANALYSIS  

Only those students who had a single-loop diagram to begin with, were included the experiment. 

The final diagrams that students generated after the learning session were coded for correctness 

of mental models. They were classified according to the following categories: 

1. Single Loop: Blood is primarily contained in blood vessels and pumped from the heart to 

the body. It returns to the heart by the way of same blood vessels.  

2. Single loop with lungs: Blood is primarily contained in blood vessels; heart pumps 

blood from body to lungs; blood returns to heart from body or lungs; heart oxygenates 

blood.  

3. DL (partially correct): Blood is primarily contained in blood vessels; heart pumps blood 

to body and lungs; lungs oxygenize the blood; oxygenated blood returns to body from 

lungs without returning to the heart; and comes back to the heart deoxygenated.  

4. Correct Double Loop: Blood is primarily contained in blood vessels; heart pumps blood 

to lungs; lungs oxygenate blood; oxygenated blood returns to heart from lungs to be sent 
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to rest of the body; when blood gets deoxygenated, it returns to heart; heart divided into 

four chambers with septum separating the heart down the middle 

5. Other (unclassifiable) 

These categories were adapted from categories of mental models in Chi (1994). 

No students were found to have a purely single loop model after instruction. The 

following table shows the outcomes of diagram analysis: 

Table 3. Performance of Students on Diagram-Drawing Task  

 Compare Explain- Diagram Read-twice 
SL 0 0 0 
SL with lungs 0 1 1 
DL (partially correct) 2 5 6 
Correct double loop 19 15 13 
Unclassifiable 1 1 0 

 

Two raters blindly coded the diagrams for correctness of mental models. Inter-rater 

reliability was K=0.94. Eighty-six percent of students in the compare condition generated a 

correct diagram, as opposed to 68% in the explain-diagram condition and 65 % in the read-

twice condition. A chi-square test showed no significant differences between conditions; 

χ2(6, N = 64) = 0.532, ns. 

3.6 PROTOCOL ANALYSIS  

Protocols generated by students in the compare and explain-diagram conditions were transcribed. 

Each protocol was between 35-50 lines. Protocols were analyzed to get an insight into the 

learning processes students engaged in, as they conducted these activities. Each protocol was be 

segmented at the grain size of idea unit. 
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Self-explaining has been shown to be a powerful learning activity. Examining the protocols was 

undertaken to help us understand whether the comparison group generated more or better 

explanations. 

3.6.1 Total Number of Explanations 

Self-explanations were operationalized as any statement that went beyond simply paraphrasing 

the information on the diagram. For example, statements in which students simply traced the 

path of blood were not counted as a self-explanation, because that information was explicit on 

the diagram. However, if students made inferences about the functions of parts (for example, 

“looks like the septum keeps the oxygenated and deoxygenated blood from mixing”), or 

elaborated something on the diagram by making connections to prior knowledge (for example, 

“probably something flows through it, because, the word reminds me like septic tanks, simulates 

like a filtering or cleaning process”), those statements were coded as self-explanations. 

Statements students made to monitor their understanding were also coded as self-explanations, 

and so were comparisons made by students in the compare condition. Comparison statements 

were coded as such when students explicitly compared the flawed and the correct diagrams.  

Students generated an average of 10.07 self-explanations across conditions. The number 

of self-explanations was significantly different by condition. Students in the compare condition 

generated an average of 12.59 self-explanation statements per protocol, whereas students in the 

explain-diagram condition generated 7.55 statements. This difference was statistically significant 

(F (1, 42) = 17.59, p < .05). 

Students in only the compare condition were prompted to make explicit comparisons with 

their initial mental models. Students generated an average of 5.14 (sd = 2.59) comparison 
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statements per protocol. Protocols of students in the explain-diagram condition were also 

examined to see whether students make explicit comparisons even without prompting. However, 

no such evidence of comparison was found in the protocols. Students did make statements such 

as “I got this wrong on the test” which suggests some comparison process going on, however, the 

frequency of such comparisons was low (occurred only three times in all of the protocols).  

3.6.2 Fine-Grained Coding of Verbal Protocols  

A more fine-grained analysis of students’ verbal utterances was undertaken using a coding 

scheme that was adapted from Renkl (1997) and adapted to suit the format of the experiment. 

For example, it did not include anticipative reasoning and principle-based explanation as 

categories, because they are more relevant to a problem-solving situation. A category of 

Comparison statements was added to address the comparison activities that students engaged in, 

in the experiment. The following categories were used to code the verbal protocols: 

i. Function-related explanation: Students explanations were coded as functrion-related 

explanations if they made inferences about the function of a component while explaining. For 

example, “the septum divides the two sides of the heart, so that the two don’t ever mix.” 

ii. Elaboration of situation: When students went beyond merely describing the flow of blood in 

the diagram, including metaphors and analogies. Renkl (1997) has described these statements as 

those indicating construction of a situation model. For example, “probably something flows 

through it, because, the word reminds me like septic tanks, simulates like a filtering or cleaning 

process” 
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iii. Revision statement: This category was modified from the category “Noticing coherence” 

from the Renkl (1997) study. This indicated when students explicitly changed a statement they 

had previously made, as they studied or compared diagrams.  

iv. Monitoring negative: These were coded when students made statements to indicate that they 

were not understanding the material. Example of monitoring negative: “I am not sure what 

deoxygenated means exactly.” 

v. Monitoring positive: 

These were coded when students made statements to indicate that they were understanding the 

material. Example of monitoring positive: “ I had no idea what the septum referred to, so now I 

know that it kind of divides” 

vi. Comparison statements: Statements were coded as comparisons statements if students were 

explicitly comparing the flawed diagram with the correct one. For example, “Well this one has 

the different chambers in it instead of just one unified thing.” 

Table 4. Results of Protocol Analyses 

 Compare 

M                      SD 

Explain diagram 

M                       SD 

Function-related explanation 4.91 2.07 3.82 1.87 

Elaboration of situation 1.05 1.17 1.32 1.21 

Revision statement 0.45 0.67 1.14 1.16 

Monitoring negative 0.68 0.89 0.82 1.00 

Monitoring positive 0.36 0.72 0.45 0.73 

Comparison statement 5.14 2.59 0.00 0.00 
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The first author coded all the protocols, and 25 % of the protocols were recoded by an 

independent coder, and reliability between the codings assessed. Reliable agreement was 

obtained between coders. (K = 0.87). 

An ANOVA showed that only function-related explanations were marginally different by 

condition, with the compare condition generating more function-related statements than the 

explain-diagram condition F(1,42) = 3.37, p < 0.1. There was also a difference in the revision 

statements, with the explain diagram condition generating more number of revision statements 

than the compare condition F (1,42)= 5.64, p < 0.05. 

Comparison statements. A significant correlation was found with the number of 

comparison statements made by students in the compare group and their scores on system-level 

knowledge inference questions; r = 0.430, p < 0.05.  

3.6.3 Features of Expert Diagram Noticed 

Features of the expert diagram that students were expected to explain as they studied the 

diagrams were identified, and the protocols were coded to determine how many features the 

students mentioned while explaining/comparing diagrams. This was to see whether students in 

the compare condition noticed more features than students in the explain-diagram condition. 

Students were able to state 7.9 statements on an average out of 12 for both groups.  

There was no difference between conditions in terms of number of diagram features 

noticed by students. 
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4.0  DISCUSSION 

Both, the compare condition and the explain-diagrams condition performed better than 

the read-twice condition, on knowledge inference questions. However, all three groups 

performed similarly on declarative questions. This was in line with our initial hypotheses that the 

comparison of the flawed diagram to the correct one will encourage inference-generation, which 

will in turn will improve performance on knowledge inference questions.  

Compared to previous research, mental model transformation as measured by analysis of 

diagrams generated by students was more frequent in the compare condition, although the 

difference between conditions was not statistically significant. Note that the percentage of 

students who changed from single-loop to double-loop was 65% and 68 % in the read-twice and 

explain diagram conditions respectively. In previous research, (Chi, 1994) self-explanation was 

shown to be successful 66 % of the times, so the findings are comparable. However, students in 

the read-twice condition also performed at comparable levels, and therefore, we don’t see a large 

self-explanation effect at the mental model level. One possible explanation for this could be that 

the topic was not sufficiently challenging for college students. The Chi (1994) study was 

conducted with eighth graders. Thus, further research may need to take into account the task 

demands, and test the paradigm with more challenging materials. Another potential explanation 

of high performance by read-twice group is that they may be doing covert self-explanation. 
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However, there was no way to assess this hypothesis because students were not asked to talk 

aloud as they studied the texts. 

On the system-level knowledge inference questions, students in the compare condition 

performed significantly better than those in the read-twice condition. These were questions that 

required generation of new knowledge, and were not directly addressed in the text. Most system-

level questions required students to induce the function of a component if only its structure or 

location was specified in the text. We saw that the compare condition produced more goal-

directed statements, in which made inferences about the function of a component while 

explaining. Moreover, the number of comparisons generated while learning correlated with 

performance on knowledge inference questions. Thus, the process of comparison facilitated 

making goal-directed inferences, which improved performance on system-level knowledge 

inference questions. 

Students in the read-twice condition did not see the diagrams as they learned, and 

performed worse than the conditions that saw a diagram.  This replicates the results by Butcher 

(2006) that visual scaffolds aid learning in this domain. However, the comparison process adds 

something over and above the diagram effect. In Butcher, the students did poorly on inference 

questions. In the present study, although all groups did better on inference questions compared to 

students in Butcher (2006), the students in the compare group performed significantly better on 

the inference questions compared to students in the other two conditions.  

Previous work on explaining with diagrams by Ainsworth and Louizou (2003) has shown 

that self-explaining a diagram led to better learning outcomes compared to self-explaining a text 

with the same content. The present experiment goes beyond this finding, and describes how 

learning from diagrams can be optimized based on students’ mental models.  
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The results of this research provide evidence that comparing an expert model to one’s 

own flawed model can be as effective as self-explanation in driving conceptual change. Further 

research should explore whether the effects of comparison are sustained even when the read-

twice condition is given a diagram. That way, we can tease apart how much of the effect can be 

attributed to the visual representation itself, and how much to the constructive process of 

comparing and contrasting. Future research can also explore whether this process of comparing 

one’s own flawed model to a correct model is helpful in the learning of problem-solving skills.  

Comparing and contrasting can have immense applications in the classroom. 

Misconceptions are common in science learning, and comparison and contrasting can be an 

effective learning technique in achieving conceptual change. Future work also needs to address 

whether the process of comparing and contrasting is especially beneficial for low-ability 

explainers. This will help us better understand how to tailor instruction according to individual 

differences.  
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APPENDIX A 

SINGLE-LOOP MODEL (FLAWED) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Single-loop model (flawed) 
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APPENDIX B 

DOUBLE-LOOP MODEL (CORRECT) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Double-loop model (Correct) 
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APPENDIX C 

EXPERIMENTAL TEXT (SHIER ET. AL., 2006) 

1. The heart is a hollow, cone-shaped, muscular pump. 
2. The heart pumps 7,000 liters of blood through the body each day, contracting some 2.5 

billion times in an average lifetime. 
3. An average adult’s heart is about 14 cm long and 9cm wide. 
4. It lies within the thoracic cavity and rests on the diaphragm. 
5. The pericardium encircles the heart 
6. Between the layers of pericardium is a space, the pericardial cavity that contains a small 

volume of serous fluid. 
7. This fluid reduces friction between the pericardial membranes as the heart moves within 

them. 
8. Internally, the heart is divided into four hollow chambers- two on the left and two on the 

right. 
9. The upper chambers, called atria, have thin walls and receive blood returning to the heart. 
10. The lower chambers, the ventricles, receive blood from the atria and contract to force 

blood out of the heart into arteries. 
11. A solid wall like septum separates the atrium and ventricle on the right side from their 

counterparts on the left. 
12. The right atrium receives blood from two large veins, the superior vena cava and the 

inferior vena cava. 
13. The large tricuspid valve, which has three tapered projections called cusps, lies between 

the right atrium and the right ventricle. 
14. The valve permits blood to move from the right atrium into the right ventricle and 

prevents backflow. 
15. When the muscular wall of the right ventricle contracts, the blood inside its chamber is 

put under increasing pressure and the tricuspid valve closes passively. 
16. As a result, the only exit for the blood is through the pulmonary trunk, which divides to 

form the left and right pulmonary arteries that lead to the lungs. 
17. At the base of this trunk is a pulmonary valve with three cusps that allows blood to leave 

the right ventricle and prevents backflow. 
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18. The left atrium receives blood from the lungs through four pulmonary veins, two from 
the right lung and two from the left lung.  

19. Blood passes from the left atrium into the left ventricle through the bicuspid valve. 
20. When the left ventricle contracts the bicuspid valve closes passively and the only exit is 

through a large artery, the aorta. 
21. At the base of the aorta is the aortic valve, which opens and allows blood to leave the left 

ventricle. 
22. The bicuspid and tricuspid valves are called atrioventricular valves because they are 

between the atria and ventricles. 
23. Blood that is low in oxygen and high in carbon dioxide enters the right atrium. 
24. As the right atrial wall contracts, the blood passes through the tricuspid valve and enters 

the chamber of the right ventricle.  
25. When the right ventricular wall contracts, the tricuspid valve closes, and blood moves 

through the pulmonary valve and into the pulmonary trunk and pulmonary arteries. 
26. From the pulmonary arteries, blood enters the capillaries associated with the microscopic 

air sacs of the lungs (alveoli) 
27. Gas exchanges occur between the blood in the capillaries and the air in the alveoli. 
28. The freshly oxygenated blood returns to the heart through the pulmonary veins that lead 

to the left atrium 
29. The left atrial wall contracts and blood moves through the bicuspid valve and into the 

chamber of the left ventricle. 
30. When the left ventricular wall contracts, the bicuspid valve closes and blood moves 

through the aortic valve and into the aorta and its branches. 
31. A heartbeat heard through a stethoscope sounds like “lubb-dupp”. 
32. The first part of a heard sound (lubb) occurs during ventricular contraction, when the 

atrioventricular valves are closing. 
33. The second part (dupp) occurs during ventricular relaxation, when the pulmonary and 

aortic valves are closing. 
34. The blood vessels form a closed circuit of tubes that carries blood from the heart to the 

cells, and back again. 
35. These vessels include arteries, arterioles, capillaries, venules, and veins. 
36. Arteries are strong elastic vessels that are adapted for carrying blood away from the heart 

under high pressure. 
37. These vessels subdivide into progressively thinner tubes and eventually give rise to finer, 

branched arterioles. 
38. The wall of an artery consists of three distinct layers. 
39. The innermost layer is composed of a simple squamous epithelium, called endothelium, 

which rests on a connective tissue membrane that is rich in elastic and collagenous fibers. 
40. The middle layer makes up the bulk of the arterial wall. 
41. It includes smooth muscle fibers, which encircle the tube and a thick layer of elastic 

connective tissue. 
42. The outer layer is relatively thin and chiefly consists of connective tissue with irregularly 

organized elastic and collagenous fibers. 
43. This layer attaches the artery to the surrounding tissue. 
44. Capillaries, the smallest diameter blood vessels, connect the smallest arterioles and the 

smallest venules. 
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45. Capillaries are extensions of the inner linings of arterioles in that their walls are 
composed of endothelium. 

46. Theses thin walls form the semipermeable layer through which substances in the blood 
are exchanged for substances in the tissue fluid surrounding body cells. 

47. The substances exchanged move through capillary walls through diffusion, filtration, and 
osmosis. 

48. Venules are the microscopic vessels that continue from the capillaries and merge to form 
the veins. 

49. The veins, which carry blood back to the atria, follow pathways that roughly parallel 
those of the arteries. 

50. Blood pressure decreases as blood moves through the arterial system and into the 
capillary networks, so little pressure remains at the venular ends of capillaries. 

51. Instead, blood flow through the venous system is only partly the direct result of heart 
action and depends on other factors, such as skeletal muscle contraction and breathing 
movements. 

52. Contracting skeletal muscles press on nearby vessels, squeezing the blood inside. 
53. As skeletal muscles press on veins with valves, some blood moves from one valve 

section to another. 
54. Respiratory movements also move venous blood 
55. During inspiration, the pressure on the thoracic cavity is reduced as the diaphragm 

contracts and the rib cage moves upward and outward. 
56. At the same time, the pressure within the abdominal cavity is increased as the diaphragm 

presses down on the abdominal viscera. 
57. Consequently, blood is squeezed out of abdominal veins into thoracic veins. 
58. During exercise, these respiratory movements act with skeletal muscle contractions to 

increase the return of venous blood to the heart. 
59. Blood vessels can be divided into two major pathways. 
60. The pulmonary circuit consists of vessels that carry blood from the heart to the lungs and 

back again. 
61. The systemic circuit carries blood from the heart to all other parts of the body and back 

again. 
62. Blood enters the pulmonary circuit as it leaves the right ventricle through the pulmonary 

trunk 
63. The pulmonary trunk extends upward from the heart. 
64. The pulmonary trunk divides into the right and left pulmonary arteries, which penetrate 

the right and left lung. 
65. After repeated divisions, the pulmonary arteries give rise to arterioles that continue into 

the capillary networks associated with the walls of the alveoli, where gas is exchanged 
between blood and air. 

66. From the pulmonary capillaries, blood enters the venules, which merge to form small 
veins, which merge to form larger veins. 

67. Four pulmonary veins, two form each lung, return blood to the left atrium, which 
completes the pulmonary look. 

68. Freshly oxygenated blood moves from the left atrium to the left ventricle. 
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69. Contraction of the left ventricle forces the blood into the systemic circuit, which includes 
the aorta and its branches that lead to all the body tissues, as well as the companion 
system of veins that returns blood to the right atrium. 

70. Blood signifies life, and for good reason, it has many vital functions. 
71. This complex mix of cells, cell fragments, and dissolved biochemicals transports 

nutrients, wastes, oxygen, and hormones; helps maintain the stability of interstitial fluids, 
and distributes heat. 

72. The blood, heart, and blood vessels form the cardiovascular system and link the body’s 
internal and external environment. 
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APPENDIX D 

List of Prompts for Compare Condition 

1. “What similarities and differences can you see in the two diagrams?” 

2. “Can you trace the path of the blood as it travels through the body?” 

3. “Can you explain to me why this one will not work?”  

4. “Take a look at the different parts shown on the correct diagram and the incorrect 

diagram. Can you say something about the functions of the different parts?” 

5. “What is the most important thing that strikes you that is different about this diagram?” 

6. “Based on both these diagrams, what would you say are the major components of the 

circulatory system?”  

List of Prompts for Explain-Diagram Condition 

1. “What do you see happening in this diagram?” 

2. “Can you trace the path of the blood as it travels through the body?” 

3. “Can you explain to me how this works?”  

4. “Can you say something about the functions of the different parts?” 

5. “What is the most important thing that strikes about this diagram?” 

6. “Based on this diagram, what would you say are the major components of the circulatory 

system?”  
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