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ABSTRACT 

 

 

 

TOWARDS THE DEVELOPMENT OF AN ARTIFICIAL OVARY 
 

Neshat M. Rowghani, M.S. 

 

University of Pittsburgh, 2003 

 

 

Ovarian preantral follicles often flatten and rupture during static culture in a tissue culture 

well.  In this study, growth and morphology were evaluated for rat and mouse preantral follicles 

cultured for 72 hours in conventional culture wells and in suspension culture systems, consisting 

of orbiting test tubes and rotating-wall vessels.  Follicles cultured in the orbiting test tubes had 

increased growth rates relative to the rate in the conventional culture wells, and experienced 

neither flattening nor rupture.  The majority of follicles cultured in the rotating-wall vessel 

appeared to experience shear damage.  In order to provide a potential barrier from shear stress 

during suspension culture, follicles were encapsulated in calcium alginate gels and growth and 

morphology were evaluated in the conventional and suspension culture systems.  Encapsulated 

follicles more closely resembled an in vivo morphology and did not flatten nor rupture. Our 

studies suggest that suspension culturing in a rotating-wall vessel in combination with 

microencapsulation supports more natural three-dimensional follicular growth and morphology.  

The approach described herein is the first step toward the development of an artificial ovary.  

Additionally, this new culture system maintains follicles in a more natural morphology and will 

provide an important new avenue for further detailed investigation of the complex regulation of 

ovarian follicle development. 
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1.0  INTRODUCTION 

 

 

 

 

1.1  Fertility Preservation 

 

 

 

Female patients undergoing aggressive radiotherapy or chemotherapy to treat cancer are 

often sacrificing their human right to procreate since these treatments are also responsible for the 

depletion of ovarian germ cells, or eggs.  Females are born with all the eggs they will ever have 

and once depleted, the ovaries are sterile.  In addition, the loss of the follicular unit surrounding 

the egg results in the inability to produce the hormone estrogen.  Although these cancer therapies 

provide greater than 90 % cure for many cancers in young females 
(1)

, infertility or severe 

subfertility is a side effect which impacts the patient’s quality of life.  When the ovaries are 

sterile, adult and adolescent women reach premature menopause and children fail to undergo 

hormonal development for puberty.  Therefore, due to the increasing survival success of cancer 

treatments, there is a great demand for preserving the fertility of young patients prior to or during 

their reproductive years 
(2)

.    

 

Studies on fertility after treatment with radiotherapy or chemotherapy have shown that a 

range of ovarian damage occurs and is dependent on the dosage and duration of treatment and 

the patient’s age, with greater risk in older women 
(3)

.  The ovaries of many prepubescent 

females are subjected to high doses of radiation for treatments of cervical, rectal, and central 

nervous system cancers as well as for Hodgkin’s disease in the pelvic lymph nodes 
(3)

.  A 

radiation dosage of 4 Gy is the estimated amount that destroys half of the egg supply 
(4)

, and 20 
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Gy is the estimated dose causing permanent ovarian failure for women less than 40 years of age 

(5)
.  A study on ovarian function in childhood and adolescence demonstrated that six out of eight 

women treated with total body irradiation obtained ovarian failure 
(6)

.  The adverse effects of 

chemotherapy on ovarian function do not seem to be as severe as with radiotherapy.  However, a 

study on the effect of chemotherapy on ovarian function in 168 young cancer patients 

demonstrated a 34 % ovarian failure rate with alkylating agents imposing the greatest risk, when 

compared to other classes of chemotherapeutic agents 
(3)

.   

 

As a result, for girls and young women facing potential infertility due to their cancer 

treatment, a technique that would allow them to bear their own children would be welcome 

indeed.  Recently, ovarian tissue cryopreservation 
(1,7)

, or removing and freezing portions of 

ovaries from girls and women undergoing potentially sterilizing treatments, has begun in the 

United States and in Europe.  Although cryopreservation is an attractive solution, it is an 

incomplete one.  There is currently no reliable technology that can subsequently produce fertile 

eggs upon thawing of this stored tissue 
(7,8)

.   
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2.0  BACKGROUND AND LITERATURE REVIEW 

 

 

 

 

2.1  Ovarian Follicle Growth and Development 

 

 

 

Eggs, or oocytes, are located in ovarian follicles, the main structural and functional unit 

of the ovary.  Healthy follicles provide an appropriate environment for oocyte growth and 

development and produce the hormones necessary for the development of secondary sexual 

characteristics and pregnancy 
(9,10)

.  As shown in Figure 1, in addition to the egg, which is 

innermost, an ovarian follicle consists of epithelial-like granulosa cells, which is surrounded by a 

basement membrane, and mesenchymal theca cells that surrounds the exterior side of the 

basement membrane 
(11)

.  In humans, follicle formation begins during mid-gestation (20 weeks), 

in which there are about 6 to 7 million oocytes, and lasts to just after birth where there are about 

300,000 to 400,000 follicles and will generally remain dormant in a resting pool 
(10)

.  It is 

believed that the remaining oocytes that do not become enclosed within follicles most likely 

undergo apoptosis 
(10)

.  
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Figure 1  Anatomy of an Ovarian Follicle 

 

 

 

 

 

 

 

 

 



 

5 

An unknown mechanism, called initial recruitment 
(10)

, activates a group of the dormant 

follicles for growth, as shown in Figure 2.  This continuous process begins after follicle 

formation and
 
occurs until the resting pool of follicles is depleted and menopause ensues.  When 

recruited from the resting pool, follicles spend most of their time developing individually 

through morphologically distinct stages known in order as, primordial, primary, and secondary 

stages 
(10,12)

.  Prior to puberty, secondary follicles develop up to the antral stage, but then 

undergo apoptosis 
(12)

.   

 

From the onset of puberty and during every reproductive cycle, where there are 

approximately 200,000 follicles present in the human ovary, a cohort of these follicles is 

recruited from the antral stage for further growth, as shown in Figure 2 
(10)

.  This cyclic 

recruitment rescues approximately 10 antral follicles (2-5 mm in diameter in humans, 0.2-0.4 

mm in diameter in rodents) 
(10)

 from apoptosis and is due to the increase in pituitary Follicle 

Stimulating Hormone (FSH) that circulates during each reproductive cycle (28 days in humans, 

4-5 days in rodents).  By selection and dominance, one follicle out of the cohort develops into a 

pre-ovulatory, or Graafian follicle 
(10)

.  The reason why one follicle proceeds to the Graafian 

stage is unknown, however it is believed that this dominant follicle may be more sensitive to 

FSH 
(13)

.  It is known that the dominant follicle grows faster than the others 
(10)

 and produces 

higher levels of estrogens and inhibins, which suppresses the release of FSH, depriving the less 

developed follicles in the cohort with enough FSH to further their development 
(14)

.  As a result, 

the remaining follicles undergo apoptosis while the Graafian follicle ovulates, releasing its 

oocyte for fertilization.   
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Figure 2  Life History of Ovarian Follicles  

(10)
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Although much is known about the development of late-stage follicles, relatively little 

has been reported on the development of follicles prior to the antral stage, or preantral follicles.  

Their slow growth rate and small size makes them more difficult to isolate for culture 
(11,15)

.  

Maintaining optimal growth and morphology in vitro is complicated due to the complex follicle 

structure and tightly controlled dynamics of follicle maturation.  Interestingly, follicle flattening 

and rupture often occurs during culture in a tissue culture well 
(16,17,18,19)

.  Follicle rupture is 

characterized by the disruption of the follicle and the movement of the granulosa cells and 

oocyte through a defect in the basement membrane. Although the granulosa cells can remain 

healthy after follicle rupture, the normal three-dimensional relationship of the follicle has been 

lost and oocyte maturation may not progress normally. Therefore, maintaining preantral follicle 

growth and morphology during in vitro culture is the issue we addressed in this study.  

 

 

 

 

2.2  Overview of In Vitro Follicle Culture 

 

 

 

In order to determine how preantral ovarian follicles mature, researchers in this field 

typically monitor follicle growth and morphology during in vitro culture.  Numerous techniques 

that vary in media recipes, incubation time, follicle size, and animal model are applied to 

investigate follicle metabolism during specific growth stages.  Currently, the most success of in 

vitro maturation has been with the mouse model.  In one study, fertile oocytes were developed in 

culture from primordial follicles within whole ovaries of neonatal mice 
(20)

.  One offspring was 

produced, but aged prematurely and did not survive very long 
(21)

.  Another study has shown that 

culture of intact preantral mouse follicles can be matured to a fertile stage 
(22)

.   
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Although there has been success with the mouse model, similar success with species that 

have larger follicles has not been reported.  Follicle structure is similar in rats, cattle, pigs, and 

humans, however the rate of follicle development varies between species 
(10)

.  As a result, there 

is a great difference in the diameter of matured oocytes and follicles 
(18)

 and also the granulosa 

cell number 
(23)

.  In addition, more than one follicle can be selected for ovulation in rodents, and 

pigs 
(10)

, while generally only one follicle dominates in the human and bovine system 
(23)

.  

Therefore, due to such variation between species, a successful culture method with one animal 

model may not necessarily lead to success with another, but may be possible with the appropriate 

adjustments.  

 

 

 

 

2.3  Follicle Culture Techniques 

 

 

 

2.3.1  Follicle Isolation 

  

 

 

Follicles are isolated from the ovary by enzymatic treatment, manual dissection, or a 

combination of the two.  Enzymatic dissociation of small follicles from an ovary is typically 

performed using collagenase with DNase and is most feasible with small mammalian ovaries.   

Isolating follicles with enzyme action is achievable with samples of fetal or young ovaries that 

have soft tissue and not achievable with the more fibrous tissue found in adult human ovaries or 

other ovaries that have more dense tissue 
(18)

.  It is possible to obtain around 140 follicles per 

ovarian biopsy when exposed to the enzyme for 1 hour at 37 
0
C and then for 36 hours at 4 

0
C 
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unless the tissue is dense 
(24)

.  Although a large number of small follicles may be obtained with 

enzyme dissociation, the follicles are isolated without the theca layer, and the basement 

membrane usually becomes damaged 
(18)

.  The basement membrane and theca are necessary for 

providing structural support to a follicle.  The theca influences the formation of an antrum 
(25,26)

 

and also has biochemical interactions with granulosa cells to promote oocyte development 
(27,28)

.  

Even when enzyme dissociated follicles are cultured in Matrigel, or basement membrane 

material, they do not seem to maintain their spherical structure and the effects of the enzyme on 

cell surface receptors and other molecules are unknown 
(18)

.   

 

As a result, manual dissection is a more reliable method.  This technique usually involves 

removing follicles from each other and from the ovary using needles on syringes and under a 

dissecting microscope.  The disadvantages of manual dissection are that it is time consuming and 

relatively difficult, thus a smaller amount of follicles can be obtained as compared to with 

enzymatic dissociation.  The advantages are that exposure to enzymes is avoided, the follicles 

retain theca and basement membrane, small and large follicles can be collected and larger and 

fibrous ovarian tissue can be dissected. 
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2.3.2  Follicle Cultures 

 

 

 

2.3.2.1  Multiple Follicle Culture.  Whole ovaries or ovarian fragments are cultured to resemble 

in vivo like conditions and is typically used to study the effects of ovulation and hormone 

responsiveness 
(20,29)

.  This type of culture is complex and results are difficult to analyze since 

ovarian fragments and whole ovaries contain viable follicles of varying sizes and stages of 

growth coexisting with apoptotic follicles and many extrafollicular cell types.  Defining the local 

biochemical and hormone control pathways is not very feasible, and a loss in viability occurs 

with larger tissue fragments due to a lack of oxygen 
(18)

.  Nevertheless, whole ovarian or ovarian 

fragment culture has been successful with newborn mice 
(20)

.   

 

 Follicles, attached and not attached to each other, are also co-cultured.  These follicles are 

either cultured for a short period (72 hours or less) to examine steroid production and hormone 

responses or for a longer period (6 to 12 days) to examine growth, endocrinology, and mostly 

interfollicular communication 
(18)

.  Non-attached follicles usually grow independently of each 

other but aggregate in culture, and growth rates of similar sized follicles tend to vary.  On the 

other hand interactions between attached follicles in culture have been more noticeable, 

especially in mice 
(30)

.    

 

 

 

 

 

 

 

 



 

11 

2.3.2.2  Individual Follicle Culture.  Follicles are commonly cultured individually in a well to 

investigate metabolism, hormonal influences, and oocyte development. Follicles that are not 

spherical, do not have a centrally located oocyte, or have a dark granulosa layer, which may be 

evidence of apoptosis, are considered irregular and are usually avoided during isolation from the 

ovary.  Early preantral follicles, or follicles just after the primordial stage that have initiated their 

growth in vivo, are generally chosen for culture.  In the mouse model, the largest size that a 

follicle generally grows to is approximately 500 µm in diameter, which is almost the size of a 

preovulatory follicle found in vivo 
(18)

.   

 

 Maintaining follicle integrity in vitro has been and still is a challenge.  For instance, it is 

reported that approximately 20 % of follicles grow irregularly and damage during isolation from 

the ovary 
(22,31)

 and apoptosis during culture are usually to blame.  In addition, follicles often 

loose their spherical structure by flattening and even rupturing during culture.  For instance, 

when placed in a culture well, follicles initially settle to the surface and flatten.  Sometimes a 

follicle will rupture at a defect in the basement membrane and as a result, the granulosa tissue 

will exit the follicle and grow over the basement membrane.  Although flattening and rupture is 

often mentioned in the literature, there has been very little investigation on the issue. 

 

A positive aspect of individual follicle culture is that between 40 % to 75 % of follicles 

cultured in vitro undergo antrum formation and continue growth, which exceeds the anticipated 

amount that occurs in vivo (20 %) in mice at an age of 28 days 
(18)

.  In addition, when placed in 

culture media, individual follicles respond to gonadotrophins, or certain hormones released from 

the pituitary gland, which stimulate their growth and development.  For instance, when follicles 
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are cultured in media containing FSH, glucose utilization, steroid production, increases in 

granulosa cell density, and antrum formation are stimulated 
(18)

.     

 

 

 

 

2.4  Tissue Culture in a Rotating-Wall Vessel (RWV) 

 

 

 

2.4.1  Introduction 

 

 

 

 The disadvantages of conventional cell and tissue culture methods are primarily 

associated with sedimentation, damaging shear stress, turbulence, and inadequate oxygenation 

(32)
.  Gravity induces cells to sediment to the bottom of a culture well or vessel where attachment 

occurs and cell morphology becomes distorted.  As a result, culturing cells in microgravity has 

recently been acknowledged as a method to maintain the three-dimensional structure of cells and 

tissue in culture by a lack of gravity induced sedimentation.  In order to successfully culture cells 

or tissue in simulated microgravity, the cells or tissue, usually cultured with microcarriers, must 

be suspended in the culture medium without turbulence or damaging shear stresses while 

delivering oxygen and nutrients. 

 

 In 1990, the Biotechnology Group at NASA’s Johnson Space Center in Houston, TX 
(33)

, 

developed the Rotating-Wall Vessel (RWV), a class of bioreactors designed for suspension 

cultures of animal cells in simulated microgravity 
(34)

.  Originally intended to protect fragile cell 

cultures from shear forces generated during space shuttle launches and landings, the RWV was 
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eventually tested for cell suspension cultures on ground 
(35)

.  It was demonstrated that cells 

aggregate and form large tissue-like structures in the ground based RWV cultures 
(35)

.  As a 

result, proliferation, differentiation, and cell-cell interactions of multiple cell types cultured in 

the RWV have been investigated.   

 

 Currently, the RWV has a broad range of applications, which include cancer research, in 

vitro toxicology research, and tissue engineering.  For instance, rat bone marrow stromal cells 

were co-cultured in a RWV with microcarrier beads 
(36)

.  Complex structures connected by a 

collagen-rich extracellular matrix and containing calcium phosphate deposits distributed in the 

newly developed matrix between the beads, were observed 
(36)

.  In another study, rat adrenal 

chromaffin cells were co-cultured in a RWV with a microvascular endothelial cell line and after 

20 days in culture self-forming “organoids” were observed 
(35)

.  These structures contained 

adrenal cells surrounded by an extracellular matrix consisting of fibronectin and type IV 

collagen, and grew to sizes similar to a normal rat adrenal gland 
(35)

.       

 

 

 

2.4.2  Design Features of the RWV 

 

 

 

  NASA developed the RWV while trying to optimize the mechanical conditions found in 

other suspension culture devices, such as a mixing flask or an air lift bioreactor, which have large 

shear effects and turbulence due to their methods of agitation.  The RWV, shown in Figure 3, is a 

cylindrical culture vessel equipped with a silicone membrane oxygenator positioned either 

coaxial as a core or flat on one side.  This device was built to suspend cell and tissue constructs 

in a completely fluid filled culture vessel by rotating it around its horizontal axis at a rate that 
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prevents sedimentation and maintains minimal shear stresses.  As the vessel wall rotates, the 

culture medium inside accelerates until everything within the vessel is rotating as the same 

angular rate as the wall 
(37)

.  
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Figure 3  Rotating-wall Vessels  

(33)
  

 

Left (A): This is a schematic of the rotating-wall vessel with a coaxial oxygenator membrane in 

which (A) a motor drives a belt to rotate (B) the culture vessel, and (C) an air pump draws 

incubator air through a (D) 0.22 µm filter and discharges it through a rotating coupling on the 

shaft that holds the vessel. The (E) oxygenator surrounds the center core.   

Right (B): This photograph is of the RWV with an oxygenator positioned (left) coaxial and 

(right) on the side. 
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 Culture medium is mixed by the vessel rotation and therefore eliminates the necessity for 

turbulence inducing impellers or stirring vanes used in other bioreactors to mix medium.  In 

addition, the RWV is completely filled with culture medium to eliminate a headspace.  In vessels 

that are incompletely filled with medium, such as roller bottles, the gas in the headspace creates 

turbulence and an increased formation of bubbles in the medium, which are a source of shear 
(33)

.  

Bubbling and sparging of air is commonly known as a source of mechanical damage to cells in 

culture.  However, in the RWV, large volumes of oxygen are delivered continuously along the 

oxygenator membrane in which dissolved gases are utilized 
(33)

.    

 

 Since 1992 the design of the RWV is being further optimized by Synthecon, Inc., a spin 

off company formed by the inventors of the bioreactor 
(38)

.  For instance, a perfusion system was 

incorporated into the design to continuously flow culture medium through the vessel and the 

oxygenator 
(39)

.  It is also equipped with inline pH, oxygen, and glucose monitors for feasible 

biochemical analysis.   

 

 

 

2.4.3  Principles of Suspension Culture in the RWV 

 

 

 

 In the RWV, a construct consisting of cells or tissue, can be suspended and grow in three 

dimensions by balancing the gravity-induced sedimentation, the centrifugal effect caused by the 

rotation of the vessel wall, and the hydrodynamic drag due to the fluid circulation, as shown in 

Figure 4 
(32,40)

.  Drag force is exerted on a construct when there is a relative motion between the 

construct and the rotating culture medium and can cause shearing 
(32)

.  One study has shown that 

if the density of a construct is less than the density of the surrounding fluid, the construct will 
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eventually migrate to an equilibrium state in the fluid 
(32)

.  In other words, the construct will have 

a circular orbit about the horizontal axis.  However, if the density of a construct is greater than 

the density of the surrounding fluid, the construct will eventually migrate away and collide with 

the wall of the vessel 
(32)

.  If the density of a construct is similar to the density of the surrounding 

fluid, the construct will generally move with the bulk fluid 
(32)

.  This is, however, an unstable 

situation because with small disruptions, the construct will migrate to different locations within 

the vessel.   
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ω
Fd

Fg

Fc

 

 

 

Figure 4  Forces on a Suspended Construct During RWV Culture  

(32,41)
  

 

Fg is the force due to gravity induced sedimentation.  Fc is the force due to the centrifugal effect 

caused by vessel rotation, ω.  Fd is the force of drag due to the fluid circulation, also called 

hydrodynamic drag force. 
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2.5  Cell and Tissue Microencapsulation 

 

 

 

2.5.1  Introduction  

 

 

 

 Cells typically exist in an immobilized state in vivo and quite often depend on their 

organization and interactions with adjacent cells.  Biotechnologists utilize immobilization 

techniques to protect cells and tissues from foreign conditions, washout, shear stress, and 

immunological rejection and also to provide an organization and structure that enables 

interactions between neighboring cells 
(42)

.  The most common objective of cell immobilization is 

to offer a controlled and effective treatment of severe disorders in humans that are mostly 

associated with subnormal or deficient metabolism and cell secretions 
(43)

.  These diseases 

include multiple sclerosis, diabetes, blood disorders, Parkinson’s disease, hemophilia, 

Alzheimer’s disease, and hepatic failure. 

 

 Microencapsulation is a technique in which cells, tissues, or any biologically active 

component is immobilized in hydrogel beads or microcapsules.  Cells are suspended in a 

hydrogel or a membrane forming material and then formed into microcapsules.  The most 

common technique to produce microcapsules is to form porous gel beads from liquid droplets.  

These beads are sometimes coated with a polymer to further protect the cells and help prevent 

the beads from breaking down.  Applying an appropriate capsule membrane biomaterial is 

essential in achieving success with cell encapsulation.  This biomaterial must be non-toxic and 

biocompatible, mechanically and chemically stable, and permeable depending on the 

environment and cell type.  
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2.5.2  Microcapsule Diameter  

 

 

 

 The diameter is one of the most important properties of a microcapsule.  The thickness of 

the gel affects mass transfer, but also provides support to the cells or tissue.  It is important to 

define an optimal size according to the application and to use a droplet formation method that 

provides the proper diameter.   

 

 A microcapsule or bead must be large enough to contain the cells or tissue and allow for 

growth.  However, it is necessary that implantable microcapsules be smaller than one half of the 

internal diameter of the injection needle 
(43)

.  Although larger beads are easier to handle, there 

may be a significant internal dead volume leading to mass transfer limitations.  In addition, when 

culturing in a bioreactor, shear and abrasion effects increase with increasing microcapsule 

diameter 
(44)

.   

 

 Obtaining the optimal diameter size is usually a compromise.  In fermentation a diameter 

of approximately 2 mm is typically suggested to facilitate handling, while a diameter of 800 µm 

is necessary to reduce mass transfer limitations 
(42)

.  In transplantation, microcapsule diameters 

are typically within the range of 300 to 800 µm, and it is often suggested to limit the size to less 

than 500 µm 
(42)

.   
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2.5.3  Droplet Formation Techniques 

 

 

 

2.5.3.1  Introduction.  Capsules or gel beads are generally formed by a droplet extrusion 

technique, as shown in Figure 5.  These involve forcing a liquid, containing a suspension of cells 

or tissues, through a nozzle or needle and into a beaker containing a solution that will solidify the 

droplets into gel beads or capsules.  As the flow rate of the liquid is increased, a droplet will 

stretch prior to detachment until the liquid forms a jet or a continuous stream from the tip of the 

needle or nozzle and naturally will break into small droplets 
(42)

.  In choosing the proper droplet 

formation method, certain parameters must be taken into account, such as: desired mean 

diameter, acceptable size dispersion, production scale, and the maximum shear stress that the 

cells or tissue can withstand 
(42)

.  The following briefly describes common techniques currently 

applied to form droplets.  

 

 

 

2.5.3.2  Droplet Formation By Gravity.  The simplest way to form droplets is to allow a liquid 

droplet to fall from the tip of a needle or nozzle by only the forces of gravity.  This technique 

generally provides droplet diameters of larger than 2 mm even when using the smallest needle 

diameters.  As a result, droplet formation by gravity has received limited interest.  
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2.5.3.3  Droplet Formation Using Coaxial Air or Liquid Flow.  A coaxial air stream or liquid 

jet stream around the needle is sometimes used to increase the force acting on the developing 

droplets.  Many research laboratories utilize this technique since it provides gel beads or 

microcapsules with diameters as small as a few micrometers to one millimeter.  For a given 

liquid concentration, type, and viscosity, the bead diameter depends only on the airflow for a 

given syringe diameter.  For instance, when using alginate as the dropping liquid, bead diameters 

in the range of 0.2 to 3 mm can be produced when using a syringe diameter of 0.27 mm and an 

airflow up to 3 l/min 
(45)

.  Although very small bead diameters can be produced, the size 

dispersion increases significantly as the bead diameter is decreased 
(42,46)

.  Therefore, this 

technique is not typically considered for scale up, but is generally appropriate for laboratory 

experiments. 

 

 

 

2.5.3.4  Droplet Formation Using Electrostatic Potential.  Droplet diameter can also be 

reduced down to 200 µm if the drag force is replaced with a high electrostatic potential between 

the nozzle and the collecting solution 
(42,47)

.  The electrostatic potential can be applied between 

the nozzle and a stainless steel ring placed below the nozzle.  As the electrostatic potential 

increases, the droplet size decreases.  In this method, the liquid leaves the tip of the nozzle as a 

jet stream that breaks up into small drops.  The main reason why small droplets form is that 

charged molecules migrate to the surface of the droplet and create repulsion between molecules 

at the air-liquid interface that is strong enough to counteract the surface tension force that holds 

the droplet at the tip of the nozzle 
(42)

.  Typical encapsulation methods apply an interaction 

between a high molecular weight polymer and a counter ion.  In order to achieve small droplets, 
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it is important that the polymer and the counter ion have the same charge.  Overall, this method 

generally provides a smaller size distribution than that obtained with coaxial airflow (standard 

deviation of approximately 15 %) 
(42)

 and is also mainly used in laboratory scale.       
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Figure 5  Droplet Formation Techniques  

(42)
 

 

(A) By Gravity, (B) By Coaxial Airflow, and (C) Under Electrostatic Potential. 
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2.5.4  Cell Entrapment By Ionotropic Gelation 

 

 

 

2.5.4.1  Introduction.  Due to its simplicity and mild process conditions, entrapment of cells in 

hydrogel beads is the most commonly applied cell immobilization technique.  Ionotropic gelation 

is a method of hydrogel bead entrapment that involves dropping a charged polymer into an 

opposite charged multivalent counter-ion solution 
(42)

.  This is an attractive method since it is 

performed under mild conditions that do not involve changes in pH or temperature, does not 

require toxic reagents, and is a simple and economical process. 

 

2.5.4.2  Alginate.  Alginate is the most widely used polymer for cell encapsulation due to its 

biocompatibility, high porosity, and ability to form gels under mild conditions 
(48,49)

.  It is a 

family of unbranched polysaccharides that are generally extracted from brown algae.  Alginate is 

composed of 1,4-linked β-D-mannuronic (M) and α-L-guluronic (G) acid residues that exist in 

varying proportions and sequences 
(45,48,49)

.  For instance, the residues are arranged in the 

polymer chain as blocks, such as poly(mannuronic acid) or M blocks, poly(guluronic acid) or G 

blocks(M-M or G-G blocks) and poly(mannuronic-alt-guluronic acid) or MG blocks, as shown in 

Figure 6 
(45,50)

.   

 

 The composition and sequence of the polymer chain affects the properties of an alginate 

gel.  Differences in flexibility arise from restrictions surrounding the carbon-oxygen bonds that 

join the monomers 
(50)

.  The linkage of G residues, which are buckled, induces more steric 

hindrance than the linkage of M residues, which are flat 
(50)

. Therefore, alginate polymers with a 
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greater M content are more flexible than alginate polymers with a greater G content 
(50)

.  On the 

other hand, alginates with a greater G content and longer G blocks offer higher mechanical 

strength, lower gel shrinkage, more stability, and higher porosity 
(45,50)

.  Alginate forms a gel by a 

highly cooperative reaction in which divalent cations, such as Ca
2+

, Sr
2+

, and Ba
2+

, tightly bind 

within G blocks from two different chains 
(50)

.  The diaxially linked G residues form 

electronegative cavities that offer binding sites for ions, giving rise to junction zones within the 

gel, and also provides a more open pore structure 
(50)

.  As a result, the length of the G blocks has 

a significant impact upon gel formation.    

 

 The encapsulation process involves simple steps under mild conditions that are 

compatible with most living cells.  Cells are mixed with a sodium alginate solution, taken into a 

syringe with a needle, and then the mixture is dripped into a solution containing divalent or 

trivalent cations, typically a calcium chloride solution.  The cations, such as calcium ions, 

instantly diffuse into the alginate droplets to form gel beads that immobilize the cells into a 

lattice of ionically cross-linked alginate 
(45)

.   

 

 A disadvantage of calcium alginate gels is that substances that have a high enough 

affinity for Ca
2+

, such as phosphate, citrate, lactate, or EDTA, will lower the stability of the gel 

by sequestering the cross-linking calcium ions 
(45)

.  The gel can also be destabilized by the 

presence of high concentrations of non-gel forming cations, such as Na
+
 and Mg

2+
; however, this 

problem can be overcome by use of a stronger gelling agent, such as barium or aluminum ions, 

and a higher G content alginate 
(45)

.   
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Figure 6  Alginate Chemical Structures  

(50)
 

 

(A) poly(guluronic acid) sequence, (B) poly(mannuronic acid) sequence, and (C) 

poly(mannuronic-alt-guluronic acid) sequence. 
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2.5.4.3  Other Biomaterials.  Other biomaterials applied in ionotropic gelation include chitosan 

and pectins.  Chitosan is a polyglucosamine polysaccharide from chitin 
(51)

.  The gel formation 

process involves dropping a chitosan solution into a solution containing polycations, such as a 

phosphate solution 
(42)

.  Unlike alginate, chitosan is stable in phosphate buffer.  Although 

alginate and chitosan beads have similar mechanical stability, the use of chitosan for cell 

encapsulation is limited due to being water soluble only for pH levels lower than 6.5 and causing 

a loss of cell viability by interactions with cell membranes 
(42)

. 

 

 Pectins are acidic polysaccharides, obtained from plant cell walls that form a strong gel 

when dropped in solutions containing calcium or aluminum ions 
(42)

.  The sensitivity of calcium 

pectate gel beads to calcium chelators or other competitors is much less than with calcium 

alginate gel beads.  In addition, beads have been produced from pectate-alginate mixtures and 

were reported to be highly stable 
(42)

.    
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3.0  RESEARCH OBJECTIVES 

 

 

 

 

3.1  Conventional Follicle Culture 

 

 

 

 Although much is known about the development of late-stage follicles, relatively little 

has been reported on the development of follicles prior to the antral stage, or preantral follicles.  

Preantral follicles grow at a slow rate and their small size makes it difficult to isolate them for 

culture 
(11)

.  Due to complex follicle structure and tightly controlled dynamics of follicle 

maturation, maintaining optimal follicle growth and morphology in vitro is difficult.  

Interestingly, follicle flattening and rupture 
(16,17,18,19)

, shown in Figure 7, often occurs around 48 

to 72 hours of static culture in a tissue culture well and is rarely addressed for investigation.  

Follicle rupture is characterized by the disruption of the follicle and the movement of the 

granulosa cells and oocyte through a defect in the basement membrane. Although the granulosa 

cells can remain healthy after follicle rupture, the normal three-dimensional relationship of the 

follicle has been lost and oocyte maturation may not progress normally.   
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Figure 7  Flattened and Ruptured Rat Preantral Follicles 

 

Left: Flattened; Right: Ruptured. 
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 Follicle flattening and rupture could be the result of a non-uniform environment of a 

follicle resting in a well, a nutrient transfer limitation, or a combination of the two.  In the ovary, 

follicles are spherical and appear uniformly supported since they are located within the ovarian 

stroma, which is rich in extracellular matrix support.  Although there are various approaches to 

follicle culture 
(8,18,52)

, follicles are conventionally cultured in tissue culture wells.  As a follicle 

rests on the surface of a well, it is possible that the dispersion of forces within the follicle 

become imbalanced, resulting in a loss of architecture and eventually a discrete rupture of the 

basement membrane.  During conventional culture, there is no agitation to prevent a follicle from 

settling to the surface of the well.  Therefore it is also likely that nutrient delivery from the media 

to the follicle is sub-optimal since nutrient diffusion is hindered on the bottom of the follicle, 

limiting the surface area exposed to the nutrient rich media.  In the study described herein, we 

examine the impact of suspension culture systems, which provide a more uniform environment 

to the follicle, on the degree of flattening and rupture. 

   

 

 

 

3.2  Suspension Culture 

  

 

 

 The suspension culture systems used in this study include orbiting test tubes and custom 

designed NASA-type rotating-wall vessels.  The test tubes are positioned in an orbiting device 

that gently agitates the media just enough to prevent a follicle from settling to a surface.  The 

rotating-wall vessels are cylindrical chambers that axially rotate the media, thereby preventing a 

follicle from settling to a surface.  Although both devices are designed to prevent cells and 
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tissues from settling, the drag force of the circulating media in the rotating-wall vessel exerts 

potentially damaging shear stress 
(32)

.  

 

 Ovarian follicles are extremely fragile and, mechanical damage may be experienced due 

to shearing.  It has been reported that damage and a loss of viability occur when anchorage 

dependent mammalian cells are exposed to shear levels in the range 3 to10 dyne/cm
2 (53,54)

.  It 

also has been reported that proliferation, morphology, and function of BHK-21 kidney cells are 

negatively affected even at a much lower shear stress level of 0.92 dyne/cm
2 (55)

.  In order to 

enhance growth and differentiation in three dimensions, shear levels of 10
-2

 dyne/cm
2
 are 

recommended when culturing any anchorage dependent mammalian cells 
(53)

.  

 

 

 

 

3.3  Microencapsulation 

  

 

 

 Semipermeable hydrogels are used to encapsulate tissue, functioning as a barrier from 

infection and mechanical stress 
(56,57)

.  Alginate is one of the most commonly applied 

biomaterials for microencapsulation due to its biocompatibility, high affinity to water, and ability 

to form gels under mild conditions when in the presence of calcium ions 
(45)

.  Alginate is 

comprised of chains of alternating blocks of mannuronic acid (M), which contributes the elastic 

property of the gel, and guluronic acid (G), which contributes mechanical strength, stability, 

porosity, and gel forming properties 
(56,58)

.  Alginates are extracted from all species of brown 

algae and contain differing compositions of MM, MG, and GG blocks offering a variation in 

strength and stability 
(45)

.  The high porosity range of a 2 % Ca
2+

 alginate gel bead, 5 nm to 200 
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nm in diameter, only limits the diffusion of large proteins, and thus may be beneficial for 

culturing immobilized whole cells, cell aggregates, or tissue 
(45)

.  It has been reported that 

substrates of molecular weight less than 2 x 10
4
, such as glucose, L-tryptophan, and α-

lactoalbumin, are able to diffuse freely into and from calcium alginate beads at approximately 

the same diffusion rate in water 
(59)

, while there is some resistance for large proteins of molecular 

weight greater than 3 x 10
5 (45)

.  Therefore, follicles imbedded in alginate beads may be protected 

from mechanical shear stress in the suspension culture systems while maintaining nutrient 

delivery and providing three-dimensional structural support. 

 

 In this study, we evaluate the impact of culturing non-encapsulated and encapsulated rat 

and mouse preantral follicles by the conventional culture system and suspension culture systems 

designed to provide uniform structural support and enhance nutrient delivery.  We investigate 

what role structural support, nutrient delivery, and mechanical shear stress may have on 

follicular growth and morphology.     
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4.0  EXPERIMENTAL PROCEDURES 

 

 

 

 

4.1  Follicle Culture Preparation 

 

 

 

Culture media consisted of α−Minimal Essential Medium (Gibco BRL, Invitrogen 

Corporation, Grand Island, NY) with additives of 8-bromo-cGMP (5 mM), ITS+ (1 % solution 

of insulin, 10 mg/L; transferrin, 5.5 mg/L; linoleic acid, 4.7 mg/L; selenium, 5 mg/L), Pen/Strep 

(1 %, penicillin 100 U/ml, streptomycin 100 µg/ml), all from Sigma Chemical Co. (St. Louis, 

MO), and recombinant Follicle Stimulating Hormone, rFSH, (100 ng/ml; Serono Laboratories, 

Geneva).  As a control group, FSH was deleted from the media of some culture wells since it is 

added to induce follicle growth 
(9,60,61)

.  Once prepared, culture media was placed into culture 

wells (150 µl/well), test tubes (500 µl/tube), and rotating-wall vessels (4000 µl/vessel) and then 

incubated to maintain conditions of 5 % CO2 and 37 
0
C.   

 

As illustrated in Figure 8, orbital culture was provided by placing the 6 ml culture tubes 

in a circular rotator plate (Glas-Col, Terre Haute, IN), having a diameter of 30.5 cm, which was 

rotated around its horizontal axis at rate between 8-15 rpm.  Therefore, as the plate rotates, the 

tubes slowly orbit the axis of the plate.  Rotational culture was achieved with the use of rotating-

wall vessels as shown in Figure 8.  These reactors were constructed in house and each cylindrical 

vessel has a diameter of 2.5 cm, a width of 0.6 cm, and a motor that rotates the vessel axially at a 

rate between 8-15 rpm. 
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Figure 8  Suspension Culture Systems 

 

Left: Orbiting Tubes; Right: Rotating-wall Vessel. 
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4.2  Ovarian Excision 

  

 

 

Ovaries were excised from euthanized female Sprague-Dawley rats or C56BL/6 mice 

between the ages of 12 to 20 days.  Animals were maintained in a certified animal care facility 

according to approved institutional guidelines.  The ovaries were dissected clean and 

immediately placed in warmed dissection medium consisting of Leibovitz L-15 Medium (Gibco 

BRL) with 1 % bovine serum albumin. 

 

 

 

 

4.3  Follicle Isolation and Culture 

 

 

 

Follicles were mechanically dissected from the ovaries under a dissecting microscope 

using 25 gauge needles.  Follicles of 140 µm to 150 µm in diameter were selected and measured 

using an inverted Zeiss microscope equipped with an ocular micrometer.  As illustrated in Figure 

9, follicle diameter was measured as the distance between the inner edges of the basement 

membrane.  Individual follicles were then immediately transferred to culture wells, test tubes, or 

rotating-wall vessels and placed in a CO2 incubator for 72 hours.  Follicle diameter was 

measured daily to evaluate the impact of orbital and rotational culture on growth.  For follicles 

that appeared flattened, the longest diameter, a, and the shortest diameter, b, were measured to 

calculate the degree of flattening, as shown in Figure 9. 
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Figure 9  Degree of Flattening 

 

 

 

 

 

Equation 1   Degree of Flattening = [1 – (b/a)] × 100 %  

 

 

 

 

Follicle diameter is measured as the distance between the basement membrane from two

sides.  When flattening occurred, two diameters, a and b, were measured, and the

degree of flattening was calculated as shown in Equation 1. 

a 

b 
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4.4  DNA Quantification 

 

 

 

 To verify that increased follicle size represented increased follicle cell number, DNA 

quantification was performed on follicles cultured in the orbiting test tubes in the presence and 

absence of FSH.  At 72 hours of culture, DNA was extracted from eight follicles per treatment 

group and was quantified using the fluorescent dye, Hoechst 33258 (bisbenzimidazole; Sigma), 

and a microplate fluorescence reader (Perkin Elmer Life Sciences, Boston, MA) at 365 nm 

excitation and 450 nm emission wavelengths 
(62)

.  A range of dilutions of salmon testes DNA 

(Sigma) was used as a standard from which an average content of DNA per follicle (ng/follicle) 

was extrapolated. 

 

 

 

 

4.5  Follicle Density and Maximum Shear Stress Calculation 

  

 

 

For a follicle to move in a circular orbit during culture in a rotating-wall vessel, the 

density of the follicle, ρf, must be less than the density of the culture medium, ρm, otherwise, if it 

is larger the follicle may eventually collide with the wall 
(32)

.   Stokes law for sedimentation, 

Equation 2, was rearranged to solve for an average density of a rat preantral follicle, ρf.  An 

average settling velocity, vs, was calculated from ten follicles by measuring the time taken for 

each one to fall through a measured distance in the bottom half of a cylinder filled with water at 

37 
0
C 

(41)
.  All other parameters, such as the acceleration due to gravity (980 cm s

 -1
), g, follicle 
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diameter (0.0148 cm), d, culture medium density at 37 
0
C (used value for water, 0.99 g cm 

-3
), 

ρm, and culture medium viscosity at 37 
0
C (used value for water, 0.007 g cm 

-1
 s 

-1
), µ, are 

known.  The calculated follicle density was then compared to the culture medium density to 

determine whether a preantral follicle is in relative motion with the medium during culture in the 

rotating-wall vessel, and if so, it may experience some shear damage. 

    

It is recommended to maintain shear stress levels as low as 10
-2

 dyne/cm
2
 to allow for 

three-dimensional growth and differentiation when culturing anchorage dependent mammalian 

tissue 
(53,54)

.  If shear stresses in the range of 3 to10 dyne/cm
2
 are exerted on mammalian tissue, 

mechanical damage and a loss of viability will occur 
(53)

.  Even when shear stresses as low as 

0.92 dyne/cm
2 

are applied, proliferation, morphology, and function are halted in culturing of 

BHK-21 cells of the kidney 
(55)

.  Therefore, we calculated an estimate for the maximum shear 

stress exerted on a follicle while it settles through media to determine if that value meets the 

recommended level of 10
-2

 dyne/cm
2
.      

  

 The maximum shear stress, τmax, exerted on the follicle, which is a function of the 

viscosity of the culture media, µ, settling velocity of the follicle, vs, and diameter of the follicle, 

d, can be calculated based on Stokes hydrodynamic drag force, Fd, (Equation 3) acting on the 

surface area of a spherical particle, S, (Equation 4) as long as the Reynolds number, Re, is less 

than 1 or the inertial forces are negligible 
(33,41,63,64)

.  An average maximum shear stress was then 

calculated from the ten preantral follicles, as shown in Equation 5. 

 

       Equation 2    vs = 0.056 g d
2 

( ρf - ρm ) / µ 
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       Equation 3      Fd = 3 π µ d vs,  if Re < 0.3 for spherical particles 

       Equation 4      S = π d 
2
,  for a spherical particle 

       Equation 5   τmax  = Fd / S = [ ( 3 µ vs ) / d ] 

 

 

 

 

4.6  Calcium Alginate Gel Encapsulation 

 

 

 

Prior to being placed in culture, some rat and mouse follicles were encapsulated in 

calcium alginate gel beads in an effort to reduce shear stresses exerted on the follicle itself and to 

provide an environment in which spatial control of follicle-follicle interactions could be analyzed 

in the future.  Once isolated from the ovary 20 to 30 follicles were transferred with glass pipettes 

to a solution of sodium alginate (1-2 % w/v; Sigma) in distilled water.  The mixture of follicles 

in sodium alginate was slowly released through a 25 gauge needle as droplets falling into a 

beaker containing a stirred solution of CaCl2 (0.1 M).  The droplets immediately gelled to form 

beads.  A stream of 0.2 µm filtered air was positioned at the tip of the needle to cut the mixture 

stream into small droplets to obtain beads with diameters between 250 µm to 500 µm.  The 

sodium alginate and calcium chloride solutions were each syringe filtered through a 0.2 µm 

membrane and maintained at 37 
0
C throughout the entire process.   

 

Beads containing follicles were then removed from the beaker using glass pipettes and 

immediately transferred to media in a well, tube, or rotating-wall vessel.  The cultures were 

placed in the incubator for a period of 72 hours during which time follicle diameter and 

morphology were examined on a daily basis to determine the impact of encapsulation.  
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4.7  Statistical Analysis of Data 

  

 

 

 Between 25 and 60 follicles were analyzed for each treatment group.  Data points in 

figures represent mean follicle diameter and error bars represent the standard error of the mean. 

The level of statistical significance between mean values was determined by repeated measures 

analysis of variance (ANOVA) followed by Student Newman Keuls or Tukey post-hoc tests.  

Significance between points was accepted at the p<0.05 level.    
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5.0  RESULTS AND DISSCUSION 

 

 

 

 

5.1  The Role of FSH on Growth of Preantral Follicles. 

 

 

 

Rat preantral follicles were cultured in the presence and absence of Follicle Stimulating 

Hormone (FSH) by the conventional culture system to evaluate the effect of FSH on growth and 

morphology over 72 hours.  Conventionally cultured preantral follicles in the absence of FSH 

(CCS Control) had a slight (2.4 %) but statistically insignificant (p>0.05) increase in diameter 

(Figure 10). Follicles cultured in the presence of FSH (CCS+FSH) had a 20.5 % (p<0.05) 

increase in average diameter during the culture period. 

 

 

 

 

5.2  Follicular Flattening and Rupture in the Conventional Culture System. 

 

 

 

 In these experiments, follicles were analyzed for flattening and rupture to determine if 

these changes are a significant occurrence in the conventional culture system (Figure 11 and 12).  

Approximately 53.5 % of the follicles cultured in the CCS+FSH group had an average diameter 

increase of 25 % (p<0.05) but flattened by a degree ranging from 5.1 % to 26 % (average of 14 

%).  Follicle rupture only occurred in CCS+FSH cultures, between 48 to 72 hours in culture, and 

comprised of 16.3 % of the group.  At the end of the 72 hour culture period, only 30.2 % of the 

follicles in the CCS+FSH group remained spherical.  These follicles had a slower rate of growth 
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than the other groups of follicles, with an average increase in diameter of 12.5 % (p<0.05).  The 

high rate of disruption in follicle morphology in static culture leads to the conclusion that an 

alternative culture technique is needed to maintain ovarian follicles for long-term developmental 

studies.   

 

 

 

 

5.3  Follicular Flattening and Rupture in Suspension Culture Systems 

 

 

 

5.3.1  Orbiting Test Tube - Suspension Culture Systems (OSCS) 

 

 

 

The mechanism of the flattening and rupturing is not known but is presumably a 

combination of biologic signals that result from the artificial culture environment of the 

conventional wells.  Our goal is to understand which features of the artificial environment 

contribute significantly to the observed morphologic changes.  Static culture wells are likely to 

experience poor nutrient delivery and we therefore explored the impact of gentle agitation on the 

growth rate and morphology of cultured follicles in a slowly orbiting test tube system. 

 

As shown in Figure 10, rat preantral follicles cultured with FSH in the slowly orbiting 

test tubes (OSCS+FSH) grew to approximately the same size as the follicles cultured in the static 

wells (CCS+FSH) during the first 24 hours.  However, after the 24 hours, the follicles cultured in 

the tubes had an increased growth rate (p<0.05).  Overall, the follicles from this group had a 42 

% increase in average diameter growth by the end of the 72 hour culture, double that obtained in 
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the conventional culture system.  Importantly, neither flattening nor rupture of follicles cultured 

in tubes was observed (Figure 13).   

 

To determine if an increase in diameter corresponded to an increase in cell number, the 

DNA content per follicle was compared for groups of rat follicles cultured in the tubes for 72 

hours in the absence or presence of FSH (Table 1).  The follicles cultured in the presence of FSH 

(OSCS+FSH) contained approximately double the amount of DNA than the follicles cultured in 

the absence of FSH (OSCS Control).  The average diameter of the OSCS+FSH group was also 

approximately double the average diameter of the OSCS Control group, indicating that an 

increase in diameter indeed corresponds to an increase in cell number for follicles cultured in the 

orbiting test tubes in the presence of FSH.          
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Figure 10  Growth of Rat Preantral Follicles 

 

 

 

 

 

 

 

 

Rat preantral follicles were cultured in the absence of FSH in the Conventional Culture

System (CCS Control  ) and in the Orbiting Test Tubes – Suspension Culture System

(OSCS Control ).  Follicles were also cultured in the presence of FSH in the

Conventional Culture System (CCS+FSH ) and in the Orbiting Test Tubes –

Suspension Culture System (OSCS+FSH  ).  Follicle diameter was measured daily

using an inverted microscope and approximately 30 follicles were analyzed per

treatment group.  Data points represent an average diameter ± SEM.  One asterisk, ∗,

represents a significant difference (p < 0.05) from both control groups, CCS Control and

OSCS Control.  Two asterisks, ∗∗, represents a significant difference (p < 0.05) also

from the CCS+FSH group. 
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Figure 11  Growth of Follicles Cultured in the Conventional Culture System 

 

 

 

 

 

 

 

Rat preantral follicles were cultured in the presence of FSH in the Conventional Culture

System.  The diameter growth was measured for follicles that appeared to flatten

(CCS+FSH flattened  ) and follicles that remained spherical (CCS+FSH spherical ).

Follicle diameter was measured daily using an inverted microscope and approximately

30 follicles were analyzed per treatment group.  Data points represent an average

diameter ± SEM.  One asterisk, ∗, represents a significant difference (p < 0.05) from the

CCS+FSH spherical group.           
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Figure 12  Morphology of Follicles Cultured in the Conventional System with FSH 
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Figure 13  Morphology of Follicles Cultured in Orbiting Test Tubes with FSH 
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Table 1  DNA Quantification 

The percent growth, diameter, and amount of DNA, was measured for eight follicles cultured in 

the absence of FSH (OSCS Control) and eight follicles cultured in the presence of FSH 

(OSCS+FSH), both in the orbiting test tubes.  The values are recorded as averages ± SEM. An 

asterisk, *, represents a significant difference (p<0.05) from the OSCS Control group. 

 

 

 Percent Growth (%) Diameter (µm) Amount of DNA (ng) 

OSCS Control 1.7 ± 1.0 144.1 ± 1.4 40.4 ± 8.1 

OSCS+FSH 31.7 ± 2.9* 186.6 ± 4.0* 80.1 ± 9.2* 

 

 

 

 

5.3.2  Rotating-wall Vessel - Suspension Culture Systems (RSCS) 

 

 

 

Although culture in the orbiting test tubes increased the rate of growth, we hypothesized 

that more aggressive mixing of the media could be beneficial.  Rotating-wall vessels have been 

used to culture complex tissues, and one might predict they would be useful for follicle culture.  

However damaging shear stress could be exerted on cells or tissue due to the drag force of the 

rotating media. We decided therefore to compare the difference in density between a preantral 

follicle and the culture medium and also determine the maximum shear stress exerted on a rat 

preantral follicle while settling through culture media.  By measuring an average settling velocity 

of 0.128 cm/s for preantral follicles, with an average diameter of approximately 148 µm, the 

density of a follicle, ρf, was calculated as 1.07 g cm
-3

, which is greater (0.08 g cm
-3

) than the 
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density of the culture medium at 37 
0
C, ρm.  The maximum shear stress, τmax, exerted on a follicle 

was calculated as 0.18 dyne/cm
2
.  This value is 18 times greater than what is recommended for 

maintaining growth and differentiation of anchorage dependent mammalian cells 
(53)

.   

 

The prediction that incubating follicles in a miniature rotating-wall vessel would affect 

their viability was tested experimentally.  Out of fifty-five follicles cultured with FSH for 72 

hours in the rotating-wall vessels 74.5 % fragmented and 16.4 % did not grow, but interestingly 

9.1 % of the follicles experienced a rapid diameter increase of 29.3 % (Figure 14).  These 

follicles had spherical morphology (Figure 15), but the darkened appearance of the granulosa 

layer suggests that the follicles may have experienced some damage, and could be a result of 

shearing (Figure 16).  Due to the difference in density between the follicle and culture medium, 

follicles may have migrated to various positions and even collided with the vessel wall.   
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Figure 14  Growth of Rat Preantral Follicles Cultured in Rotating-wall Vessels 
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Figure 15  Morphology of Follicles Cultured in the Rotating-wall Vessels with FSH 
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Figure 16  Rat Preantral Follicles Cultured in Rotating-wall Vessels 

Left: Follicle with darkened granulosa cells. 

Right: Follicle with no apparent damage. 
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5.4  The impact of microencapsulation on follicle growth and morphology. 

  

 

 

 In order to protect follicles from direct shear stress while maintaining the positive aspects 

of suspension culturing, we encapsulated rat, and for comparison, mouse follicles in alginate 

beads.  A semipermeable hydrogel, like calcium alginate, allows substrates in the culture media 

with a molecular weight of less than 3 x 10
5
 to easily diffuse through the gel.  Alginate is the 

most widely used polymer for cell encapsulation due to its biocompatibility, high porosity, and 

ability to form gel beads that are strong enough to withstand shear forces that typically exist in a 

bioreactor 
(42,45)

.   

 

 Our data show an average increase in diameter of 24.1 % for rat preantral follicles 

(Figure 17) and 29.3 % for mouse preantral follicles (Figure 18), encapsulated in calcium 

alginate beads.  This is less than the increase obtained with non-encapsulated follicles in orbiting 

test tubes, but twice that of follicles in conventional wells.  Unlike the non-encapsulated follicles 

however, neither flattening nor rupture occurred among the encapsulated follicles (Figure 19).  

They were more spherical and appeared similar to natural morphology, as shown in Figure 20.  

Therefore, it is evident from our data that microencapsulating follicles in calcium alginate 

provides the follicle with support and protection from shear stress when cultured in the rotating-

wall vessels. 
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Figure 17  Growth of Encapsulated Rat Preantral Follicles 

 

 

 

 

 

 

 

 

 

 

Rat preantral follicles were encapsulated and cultured in the presence of

FSH in the Conventional Culture System (CCS+FSH  ), in the Orbiting

Test Tubes – Suspension Culture System (OSCS+FSH  ), and in the

Rotating-wall Vessels – Suspension Culture System (RSCS+FSH  ).

Follicle diameter was measured daily using an inverted microscope and

approximately 20 follicles were analyzed per treatment group.  Data points

represent an average diameter ± SEM.  
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Figure 18  Growth of Encapsulated Mouse Preantral Follicles 

 

 

 

 

 

 

 

 

Mouse preantral follicles were encapsulated and cultured in the presence of

FSH in the Conventional Culture System (CCS+FSH  ), in the Orbiting

Test Tubes – Suspension Culture System (OSCS+FSH  ), and in the

Rotating-wall Vessels – Suspension Culture System (RSCS+FSH ).

Follicle diameter was measured daily using an inverted microscope and

approximately 20 follicles were analyzed per treatment group.  Data points

represent an average diameter ± SEM. 
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Figure 19  Morphology of all Encapsulated Follicles Cultured with FSH 
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Figure 20  Rat Preantral Follicles 

 

 

 

 

Rat preantral follicles were cultured for 72 hours in the absence of FSH in (a) the

conventional culture wells, and in (b) the orbiting test tubes.  Rat preantral follicles

were also cultured for 72 hours in the presence of FSH (c) in the conventional culture

wells, (d) in the orbiting test tubes, and calcium alginate encapsulated in (e) the

rotating-wall vessels.  

50 microns 

       (a)                (b) 

       (c)           (d)           (e) 
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6.0 CONCLUSIONS 

 

 

 

 We investigated features of conventional culture that may contribute to changes in 

follicular morphology.  This study shows that the majority of rat follicles cultured in the 

conventional system loose anatomical integrity by 72 hours of culture.  Although prolonged 

static culture of intact preantral follicles has been successful in mice 
(22,65)

, similar success with 

species that have larger follicles has not been reported.  The rate of follicle development and 

ultimate size varies between species 
(10)

 and could be a reason why conventional culture is not as 

successful for larger follicles from species, such as rat, cat, sheep, and human.     

 

  This study is the first to apply a new environment for the culture of rat preantral ovarian 

follicles.  We demonstrated that suspension culture in combination with hydrogel 

microencapsulation maintains follicular growth and morphology more effectively than 

conventional culture in tissue culture wells.  In contrast to static culture, follicles are uniformly 

supported during culture in a rotating-wall vessel, unable to adhere to a surface, and are 

protected from shear stress when embedded in calcium alginate microcapsules.  The cultures in 

this study, however, were short term and therefore studies of long term follicle culture in a 

rotating-wall vessel must be performed to optimize the culture system for follicle maturation.  

Early follicles are avascular but by the time a follicle reaches the antral stage in vivo, the theca 

layer has become vascularized with capillaries that continue to expand during follicle growth.  It 

is therefore likely that as a follicle grows the oxygen tension and vessel-wall rotation rate may 

need to be adjusted.  Further study is needed to determine if this technique will be applicable to 
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prolonged culture of ovarian follicles and which conditions are most appropriate for optimal 

follicle growth.  

 

This investigation focused on alterations of follicle architecture that occur in the 

conventional culture system.  We have developed a method that maintains preantral follicular 

morphology during culture.  Follicular maturation is a complex, prolonged, and dynamic process 

that is not yet completely understood.  More investigations of cultured microencapulated follicles 

in the rotating-wall vessel are necessary to further develop this system to support the entire 

maturation process.   
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