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Estimation and inference with Weak Instruments and Near Exogeneity 

Ying Fang, PhD 

University of Pittsburgh, 2006

 

Empirical economic studies are often confronted by the joint problem of weak instruments and 

near exogeneity, such as labor economics and empirical economic growth theory. This 

dissertation presents new evidence and solutions on estimation and inference with weak 

instruments and near exogeneity. Chapter 1 reexamines the effect of institutions on economic 

performance in Acemoglu, Johnson and Robinson (2001) where the measurement of current 

institutions is instrumented by European settler mortality rates. Since many economists argue 

that the settler mortality rates can possibly affect economic performance through other channels, 

I reexamine the effect of institutions by considering near exogeneity. I provide some evidence to 

show that the effect of institutions is not significant in many regression specifications when the 

settler mortality rates are used as the main instrument. Chapter 2 studies estimation and inference 

with weak instruments and near exogeneity in a linear simultaneous equations model. I show that 

near exogeneity can exaggerate asymptotic bias of the TSLS and the LIML estimators. When 

using critical values from chi-square distributions, Anderson-Rubin and Kleibergen tests under 

exogeneity have a large size distortion. I propose the delete-d jackknife based Anderson-Rubin 

and Kleibergen tests to automatically reduce the size distortion in finite samples without a need 

for any pretest of exogeneity. Chapter 3 extends estimation and inference with weak 

identification and near exogeneity into a GMM framework with instrumental variables. A GMM 

framework allows nonlinear and nondifferentiable moment conditions. I examine asymptotic 

results of one-step GMM estimator, two-step efficient GMM estimator and continuously 

updating estimator with weak identification and near exogeneity. Near exogeneity can produce 

relatively large bias for all these estimators. The Anderson-Rubin type and the Kleibergen type 

tests under near exogeneity converge in distribution to nonstandard distributions, which creates 

large size distortion when using critical values from chi-square distributions. The delete-d 

jackknife based approach can reduce the size distortion. 
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1.0  INTRODUCTION 

Estimation and inference with instrumental variables ( IV) have wide applications in empirical 

studies. In order to justify the IV method, it should satisfy two important criteria. One is called 

"instrument exogeneity", which means that instruments excluded from the structural equation 

should be uncorrelated with the structural errors. The other is called "instrument relevance", 

which requires that instruments should be strongly correlated with the endogenous explanatory 

variables. Finding valid instruments to satisfy the two criteria is not an easy job. 

In an influential empirical study of labor economics, Angrist and Krueger (1991) use quarter of 

birth as an instrument for education to estimate the impact of compulsory schooling laws on 

earnings. They argue that children's quarter of birth is random, so it is uncorrelated with ability 

and should be exogenous. Because of compulsory laws, average education is generally longer for 

children born near the end of the year than for children born early in the year, which means that 

quarter of birth is correlated with educational attainment. Based on large samples ( 329,000 

observations or more) from the U.S. census, they estimate the return to education by the TSLS 

procedure, using as instruments for education a set of three quarter-of-birth dummies interacted 

with fifty state-of-birth dummies and nine year-of-birth dummies respectively. But Bound, 

Jaeger and Baker (1995) point out that the instruments used in Angrist and Krueger's paper are 

weak and nearly exogenous in which case the resulting estimation and inference are misleading. 

Many authors work on improving inference under weak instruments; see, for example, Staiger 

and Stock(1997), Dufour(1997), Kleibergen(2002), Moreira(2003), among others. 

Instrument exogeneity is another important criterion for valid instruments. In empirical studies, 

the validity of instrument exogeneity is mainly based on economic reasoning. But unfortunately, 

it is almost impossible to control for all possible variables that might be correlated with 

instruments and dependent variables. As a result, the instruments might catch the effect on 

dependent variables through other channels. It is hard to argue that instruments are exogenous in 
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empirical studies. For example, Acemoglu, Johnson, and Robinson (2001) estimate the effect of 

institutions on economic performance by using as instrument the logarithm of the European 

settler mortality rates. They argue that the settler mortality rate more than 100 years ago is 

strongly correlated with current institutions in the countries colonized by Europeans in the 

history. The mortality rates expected by the first European settlers determined the settlement 

decision and then influenced the colonization strategy: introducing  "extractive states" ( bad 

institution) or "Neo-Europes" (good institution). In a study of whether a reversal in relative 

incomes among the former European colonies reflects changes in the institutions resulting from 

European colonialism, Acemoglu, Johnson, and Robinson (2002) use data on urbanization and 

population density in 1500 to proxy for economic prosperity. In order to test whether population 

density or urbanization in 1500 affects income today only through institutions, the settler 

mortality rate is used as instruments again. But Glaeser, La Porta, Lopez-De-Silanes, and 

Shleifer (2004) argue that the settler mortality rate is not an exogenous instrument because the 

mortality rate might affect today's income through other channels, for example, the human 

capital. This is a problem of near exogeneity where the instruments are weakly correlated with 

the structural errors. Due to the nature that it is almost impossible to control for all possible 

variables that might be correlated with instruments and dependent variables of interest, the 

problem of near exogeneity is prevalent in empirical studies. Angrist (1990) estimates the effect 

of veteran status on civilian earnings by using as instruments the draft lottery numbers. But 

Wooldridge (2002) argues that the draft lottery numbers might be correlated with the structural 

errors if education is not controlled in the earnings equation. Bound, Jaeger, and Baker (1995) 

argue that the instruments used by Angrist and Krueger (1991) are not only weak but also suffer 

from near exogeneity. 

This dissertation presents new evidence and solutions on estimation and inference with weak 

instruments and near exogeneity. Chapter 1 reexamines the effect of institutions on economic 

performance in Acemoglu, Johnson and Robinson (2001) by considering near exogeneity. I 

provide some evidence to show that the effect of institutions is not significant in many regression 

specifications when the settler mortality rates are used as the main instrument. Chapter 2 studies 

estimation and inference with weak instruments and near exogeneity in a linear simultaneous 

equations model. I show that near exogeneity can exaggerate asymptotic bias of the TSLS and 

the LIML estimators. When using critical values from chi-square distributions, Anderson-Rubin 
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and Kleibergen tests under exogeneity have a large size distortion. I propose the delete-d 

jackknife based Anderson-Rubin and Kleibergen tests to automatically reduce the size distortion 

in finite samples without a need for any pretest of exogeneity. Chapter 3 extends estimation and 

inference with weak identification and near exogeneity into a GMM framework with 

instrumental variables. A GMM framework allows nonlinear and nondifferentiable moment 

conditions. I examine asymptotic results of one-step GMM estimator, two-step efficient GMM 

estimator and continuously updating estimator with weak identification and near exogeneity. 

Near exogeneity can produce relatively large bias for all these estimators. The Anderson-Rubin 

type and the Kleibergen type tests under near exogeneity converge in distribution to nonstandard 

distributions, which creates large size distortion when using critical values from chi-square 

distributions. The delete-d jackknife based approach can reduce the size distortion 

 3 



2.0  REEXAMINING THE EFFECT OF INSTITUTIONS BY CONSIDERING NEAR 

EXOGENEITY 

In empirical studies, instrumental variables have wide applications by using the exogenous 

variance of instruments to estimate the effect of endogenous variables. In order for the valid use 

of the instrumental variables method, it requires a strict orthogonality condition between 

instrumental variables and the error terms in the structural equations. The validity of instrument 

exogeneity is mainly based on economists' knowledge about a specific economic issue at hand. 

But unfortunately, it is almost impossible to control for all possible variables that might be 

correlated with instruments and dependent variables. As a result, the instruments might catch the 

effect on dependent variables through other channels. It is hard to argue that instruments are 

exogenous in empirical studies. For example, Acemoglu, Johnson, and Robinson (2001) estimate 

the effect of institutions on economic performance by using as instrument the logarithm of the 

European settler mortality rates. They argue that the settler mortality rate more than 100 years 

ago is strongly correlated with current institutions in the countries colonized by Europeans in the 

history. The mortality rates expected by the first European settlers determined the settlement 

decision and then influenced the colonization strategy: introducing  "extractive states" ( bad 

institution) or "Neo-Europes" (good institution). In a study of whether a reversal in relative 

incomes among the former European colonies reflects changes in the institutions resulting from 

European colonialism, Acemoglu, Johnson, and Robinson (2002) use data on urbanization and 

population density in 1500 to proxy for economic prosperity. In order to test whether population 

density or urbanization in 1500 affects income today only through institutions, the settler 

mortality rate is used as instruments again. But Glaeser, La Porta, Lopez-De-Silanes, and 

Shleifer (2004) argue that the settler mortality rate is not an exogenous instrument because the 

mortality rate might affect today's income through other channels, for example, the human 

capital. This is a problem of near exogeneity where the instruments are weakly correlated with 
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the structural errors. Due to the nature that it is almost impossible to control for all possible 

variables that might be correlated with instruments and dependent variables of interest, the 

problem of near exogeneity is prevalent in empirical studies. For example, Angrist (1990) 

estimates the effect of veteran status on civilian earnings by using as instruments the draft lottery 

numbers. But Wooldridge (2002) argues that the draft lottery numbers might be correlated with 

the structural errors if education is not controlled in the earnings equation. Bound, Jaeger, and 

Baker (1995) argue that the instruments used by Angrist and Krueger (1991) are not only weak 

instruments but also suffer from near exogeneity. 

The usual overidentification tests, like the Sargen test and the J test, cannot solve the problem of 

near exogeneity satisfactorily. First, these overidentification tests usually have power problem in 

finite samples. Even the instruments pass through these overidentification tests, we cannot 

blindly assume a zero correlation between instruments and structural errors. Second, finding 

instruments is a creative but very tough job. It's statistically impossible to test the instrument 

exogeneity in the case of just-identification. Last, these overidentification tests cannot apply 

when there is a joint problem of near exogeneity and weak instruments. 

One of the most widely test statistics used in empirical studies is the  t  -statistic. For instance, it's 

a routine to use the  t  -statistic to test whether an estimator of interest is significant away from 

zero. We show that under the  t  -statistic has a large size distortion even when there is a slight 

violation of the orthogonality condition. The subsampling based or the delete- d   jackknife based  

 -statistic cannot help to solve the size problem. We propose the subsampling based or the 

delete- 

t

d   jackknife based Anderson-Rubin test in empirical studies under near exogeneity. We 

reexamine the estimates in Acemoglu, Johnson and Robinson (2001) by considering the effect of 

near exogeneity. 

This paper is organized as follows. Section 2.1 examines the large sample property of the  t  -

statistic and the Anderson-Rubin test and their corresponding resampling based versions when 

the knife-edge exogeneity assumption is slightly violated. Section 2.2 provides an reexamination 

of the estimates in Acemoglu, Johnson and Robinson (2001) by considering the effect of near 

exogeneity. Section 2.3 conducts simulations to compare their finite sample performance, and 

Section 2.4 concludes. Appendix is included in last section. 
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2.1 THE EFFECT OF VIOLATION OF EXOGENEITY ASSUMPTION 

In this section, we consider a linear simultaneous equations model (Hausman, 1983; Phillips, 

1983) which is popular in empirical studies when instrumental variables are used,   

y  Y  u   
 

Y  Z  V   
where  y   and  Y   are respectively an  N  1   vector and an  N  m   matrix of endogenous 

variables,  Z   is an  N  K   matrix of instruments,  u   is an  N  1   vector of structural errors,  V   

is an  N  m   matrix of reduced form errors, and errors have zero means and finite variance. The  

   and     are respectively an  m   unknown parameter vector and a   1 K  m   unknown 

matrix of parameters. Note that we require  K ≥ m  . Other covariates can be added into 

Equations (100) and (110). We can always use the Frisch-Waugh-Lovell Theorem (see Davidson 

and MacKinnon, 1993, p19) to project out these covariates so the above equations give a simple 

linear model without loss of generality. The first equation is a structural equation and the second 

equation is a reduced form equation. 

To estimate     properly we need valid instruments. Valid instruments depend on two criteria. 

First, the instruments should be well correlated with endogenous variables, i.e., instrument 

relevance. The second and more difficult criterion to satisfy is the assumption of exogeneity of 

instruments. This means that the covariance between instruments and structural errors is zero 

(  cov  ). Even for the most carefully chosen instruments in empirical studies, it is 

almost impossible to argue a strict exogeneity condition. 

Zi
′ui  0

We are interested in estimation and inference about     when there exits a small correlation 

between instruments and structural errors. We model this small correlation as near exogeneity 

which is a local to zero setup such that 

EZi
′ui   C/ N   

where  C   is a fixed  K  1   vector. This is used as our main assumption in the paper. The 

correlation between instruments and structural errors shrinks toward zero as the sample size  N   
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grows large. Fang (2005) considers near exogeneity in a linear simultaneous equations model. 

Caner (2005) considers near exogeneity in nonlinear moment restrictions in generalized 

empirical likelihood estimators. Near exogeneity is a more realistic assumption in applied works 

than the knife-edged assumption that requires a zero correlation between instruments and the 

error terms in the structural equation. We show that even a slight violation of this orthogonality 

condition can lead to a large size distortion of the t-statistic and the limiting distribution is 

different. 

2.1.1 The t-statistic under Near Exogeneity 

Consider the TSLS estimator   in a linear model, 
∧
TSLS

 
∧
TSLS  Y′PZY−1Y′PZy.   

where  PZ  ZZ ′Z−1Z ′  . Under near exogeneity assumption, it is easy to show that the TSLS 

estimator    is consistent and converges to a normal distribution with a nonzero mean. The 

main reason why we can obtain consistent estimator under near exogeneity is that the correlation 

between instruments and structural errors shrinks toward zero at the rate of the square root of  

∧
TSLS

N   

when the sample size  N   grows infinity. The nonzero mean is due to the fact of near exogeneity. 

For these details, see Lemma 1 in Appendix 1. 

Now, consider the  t  -statistic in the two-stage least squares method which is heavily used in the 

empirical literature. We want to test 

H0 : i,TSLS  i,0  
against 

H1 : i,TSLS ≠ i,0  
The  t  -statistic is given by 

t 

∧
i,TSLS − i,0

avar
∧
i,TSLS 
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where   i  ,   1, 2, . . . , m avar
∧
i,TSLS   u

2
Y′ZZ ′Z−1Z ′Yii

−1
  and  

u
2
 1

N−K−m y − Y
∧
TSLS ′y − Y

∧
TSLS   . 

 
Under near exogeneity, the  t  -statistic converges in distribution to a normal distribution with 

nonzero mean which is showed in Theorem 1 in Appendix 1. When  C  , we can obtain a 

standard normal distribution for the  t  -statistic under the exogeneity assumption. Near 

exogeneity shifts the asymptotic distribution to the right when  

 0

C  0  . Using critical values 

from the standard normal distribution can lead to a large overrejection in finite samples. Table 1 

shows the size distortion of  t  -statistic under near exogeneity from the simulation. When the 

correlation between instruments and structural errors is  0.  , the actual size can be  39.   

while the nominal size is just  10% . This means that the  t  -statistic can overreject a true null 

hypothesis in empirical studies when there is near exogeneity problem. 

15 1%

The employment of the  t  -statistic heavily relies on the exogeneity condition. A slight violation 

of the exogeneity condition like the near exogeneity assumption can exaggerate the size 

distortion immensely. We also consider whether the resampling versions of the  t  -statistic can 

correct the size problem. The delete- d   jackknife based  t  -statistic can be constructed by 

following the steps described in the appendix and Theorem 2 in Appendix 1 summarizes the 

limiting results of the delete- d   jackknife based  t  -statistic. The delete- d   jackknife based  t  -

statistic cannot replicate the near exogeneity effect in the limiting distribution and the simulation 

in Table 2 shows that it works very bad in finite samples. 

Note that bootstrap cannot be a solution to near exogeneity problem since it cannot replicate the 

correlation between instruments and structural errors in bootstrap samples. Subsampling cannot 

replicate such a correlation either. This can be seen in papers by Caner (2006) and Fang (2005). 

We should be very careful in empirical studies when using instruments and making inference 

based on the  t  -statistic. But, we will show that the delete- d   jackknife method works very well 

in the case of the Anderson-Rubin test in the next section. 
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2.1.2 The Anderson-Rubin Test 

In the last section, we show that the  t  -statistic has a large size distortion under near exogeneity. 

Another weakness of the  t  -statistic is the nonstandard limiting distribution when the nuisance 

parameter     is close to zero, which is called weak instruments in the literature (Staiger and 

Stock, 1997). The nonstandard distribution is due to the fact that the  t  -statistic depends on the 

TSLS estimator and the TSLS estimator with weak instruments is inconsistent. Instead of the  t  -

statistic, we propose the delete- d   jackknife based Anderson-Rubin test. We show that the 

delete- d   jackknife based Anderson-Rubin test is not only robust to weak instruments but also 

has only a slightly liberal limit compared to the regular asymptotics when there is near 

exogeneity. The size performance of the delete- d   jackknife based Anderson-Rubin test in finite 

samples is summarized in Table 4. 

We first examine the Anderson-Rubin test (Anderson and Rubin, 1949) under near exogeneity. 

The test is given by 

AR0  y − Y0′PZy − Y0╱y − Y0′MZy − Y0/N − K − m.   
where  MZ  IN − PZ   and  IN   is an identity matrix with dimension  N  . We test  H0 :   0   

against  H1 :  ≠ 0.                                                     

The Anderson-Rubin test is robust to weak instruments since the test itself does not use any 

information about the estimator of the first-stage parameter  
∧
  . We know that under weak 

instruments the first-stage parameter     cannot be consistently estimated. Under the null 

hypothesis of    , the test converges in distribution to a chi-square distribution with 

degrees of freedom  

 0

K  , the number of instruments. Moreira (2003) shows that the Anderson-

Rubin test is uniformly most powerful among the class of unbiased tests when  K  m  . 

The Anderson-Rubin test is also affected asymptotically by near exogeneity problem. Theorem 3 

in Appendix 1 shows that the test converges in distribution to a noncentral chi-square distribution. 

The limit of the test depends on the nuisance parameter  C   which comes from near exogeneity. 
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We obtain the result of the test as a chi-square distribution when  C  0  . Near exogeneity leads 

to a distortion in size when we use critical values from the chi-square distribution with degrees of 

freedom  K  . This can be showed by simulation results summarized in Table 3. When the 

correlation between instruments and structural errors is in the range of  0.   and  0.  , the 

actual sizes are between  20%  and  35%  while the nominal size is just  10% . 

10 15

Our strategy is to use the delete- d   jackknife procedure to mimic the noncentral chi-square 

distribution defined in the appendix. 

To introduce the delete- d   jackknife based Anderson-Rubin test, we need to explain how we 

resample the sample data. First,  d   observations are randomly chosen without replacement from 

all of the sample observation, and then we form a subsample by deleting these  d   observations 

from the whole sample. Given  d  , the block size  b   of the subsample is  N − d  . Let  yb  ,  Y   

and  

b

Zb   are respectively subvectors or submatrixes of  y  ,  Y  and  Z  . So  yb  is a  b   vector,  

  is a  b   matrix, and  

 1

Yb m Zb   is a  b  K   matrix. These variables are denoted with subscript  

  because  b yb  ,  Y   and  b Zb   represent randomly resampled data with block size  b  N − d   

from all sample observations without replacement. Let  d  N   and then  b  1 − N  . 

Various    's will be tried in simulations,  0  . From simulation results summarized in 

Table 4, we see that  

   1

 3
4   works very well in finite samples. This is also suggested by Wu 

(1990). Given     and  N  , the number of such blocks (denoted by  Nb  ) we can generate is  

Nb  N
N  . When  N  64   and    3

4  , then  b   and   16 Nb  64
48   which is a very 

large number. In the simulations, we use  1000   such random blocks. Next, we need to compute 

the Anderson-Rubin test in each block. 

Denote by  ARS   the delete- d   jackknife based Anderson-Rubin test 

ARS0  yb − Yb0′PZbyb − Yb0╱yb − Yb0′MZbyb − Yb0/b − K − m  
The delete- d   jackknife based Anderson-Rubin test can be implemented by following steps: 

Step 1: Randomly choose  d   observations from the sample without replacement, where  d  N  ; 
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Step 2: Given  d  , the block size is  b  N − d  . Our subsample data are  yb  ,  Y  , and  b Zb  . 

Compute the delete- d   jackknife based Anderson-Rubin test defined as above by using sample 

observations not deleted by Step 1 and the null hypothesis that    ;  0

Step 3: Replicate Step 1 & 2 by at least  1000   times and sort these computed delete- d   

jackknife based Anderson-Rubin test; 

Step 4: Use the  90%  quantile as the data-dependent critical value. The delete- d   jackknife 

based Anderson-Rubin test rejects the null hypothesis when the value of the Anderson-Rubin test 

for all sample observations,  AR0   defined in (160), is larger than the data-dependent critical 

value. 

Theorem 4 in Appendix 1 gives the limiting result of this delete- d   jackknife based Anderson-

Rubin test. It also converges in distribution to a noncentrality chi-square distribution. The 

noncentrality parameter is a fraction of the noncentrality parameter found in Theorem 3, which 

means the delete- d   jackknife based Anderson-Rubin test is slightly liberal in large samples. By 

increasing the block size we can expect to reduce the size distortion due to near exogeneity. We 

can also observe this fact from simulations summarized in Table 4. Wu (1990) suggests  

1
4 ≤  ≤ 3

4   for delete- d   jackknife. We propose    3
4   in finite samples. When    3

4  , 

the block size  b  . The actual sizes are  7.   and  11.   respectively when the correlation 

between instruments and structural errors is between  0.   and  0.  . Compared to actual 

sizes in Table 3, we can see that the delete- 

 16 4 8

10 15

d   jackknife based Anderson-Rubin test can reduce 

the oversize problem under near exogeneity. 

2.2 AN APPLICATION TO AJR (2001) 

In this section, we reexamine Acemoglu, Johnson, and Robinson's (2001) estimates of the effects 

of institutions on economic performance by the foregoing results. One of their main 

contributions is to exploit the effect on economic performance by using European settler 
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mortality rates as an instrument for current institution. They argue that the European mortality 

rates determined the settlement decisions and then the early institutions in the countries 

colonized by Europeans. Since institutions persisted even after independence, the authors utilize 

the source of variation in European settler mortality rates as an instrument for current institutions, 

and then use the TSLS methods to estimate the effect of institutions on economic performance. 

The linear regression model used in their paper can be summarized as follows: 

logyi    Ri  Xi
′  i

Ri     logMi  Xi
′   i

 

  
where  yi   is income per capita in country  i  ,  Ri   is the measurement of institutions, an index of 

protection against expropriation,  Xi   is a vector of other covariates,  Mi   is the European settler 

mortality rate in  1,   mean strength,    and     are random errors. The logarithm of 

European settler mortality rates is the only instrument and other covariates which appear in the 

first-stage regression also appear in the second-stage regression. 

000 i i

Although most economists agree that the effect of institutions on economic performance is 

important and significant, it's still far from clear among economists that the instrument, the 

European settler mortality rates, is exogenous in this model with only sixty-four observations. 

In empirical studies, one of the most important inference procedures is to use the  t   -statistic to 

test whether the estimator is significant away from zero. The null hypothesis is  H0 :   0   

against  H1 :  ≠ 0  . The estimator is regarded as significant when the  t  -statistic rejects the 

null hypothesis. However, with the problem of near exogeneity, both Theorem 1 and Table 1 

show the strong evidence of overrejection. Acemoglu, Johnson and Robinson (2001) obtain 

strongly significant estimators in all of their specifications. We reexamine their results by the 

delete- d   jackknife based Anderson-Rubin test which consider the effect of near exogeneity. 

The delete- d   jackknife based Anderson-Rubin statistic tests the null hypothesis  H0 :   0   

against  H1 :  ≠ 0  . Given a block size  b  , we randomly draw  1000   blocks with the block 

size  b   from  64   data observations. We calculate the value of the Anderson-Rubin statistic in 

each block under the null hypothesis, and then we can obtain the empirical distribution of the 

Anderson-Rubin test with  1000   various values. The data-dependent critical value is the top  
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90%  quantile from the smallest value to the largest value. Next we compute the Anderson-

Rubin test  AR0   of the whole sample when    . Then the delete- 0  0 d   jackknife based 

Anderson-Rubin test rejects the null hypothesis with size  10%  when  AR0   is larger than the 

data-dependent critical values. The  p  -values of the delete- d   jackknife based Anderson-Rubin 

test is calculated as the probability that the value of the Anderson-Rubin test  ARS0   

computed in each block is larger than the value of the Anderson-Rubin test  AR0   computed 

in the whole sample. From Table 4, we observe that the number of rejections of the test increases 

as the block size shrinks and  b  ,  18  ,  20   and  22   is the good range of  the block sizes 

among various choices when the sample size is  64  . When the block size is larger than  22 , the 

test is very conservative. When the block size is smaller than  14  , the test is overrejected under 

near exogeneity in simulations done by Fang (2005). 

 16

In Tables 5-8, we calculate  p  -values of regular  t  -statistic and the delete- d   jackknife based 

Anderson-Rubin test when the block size is  16 . For other block sizes, the results are reported in 

Tables 9-12. We observe that the results under  b   are not changing with other block sizes. 16

Table 5a repeats the baseline regressions in Acemoglu, Johnson and Robinson (2001). In column 

(1), the mortality rate is the only instrument and in column (2), latitude is added as a control 

variable. Columns (1) and (2) correspond columns (1) and (2) of Table 4 in Acemoglu, Johnson 

and Robinson (2001). In column (1) of Table 5b, the p-value of the resampling based AR test is  

 , which shows that institutions are significant at  10%  level. But, when the latitude is 

controlled in the regression, the  

0. 078

p  -value of the delete- d   jackknife based AR test increases to  

 , which is not significant at  10%  level. In column (3), we add Asia dummy, Africa 

dummy and other continent dummy as the controlled variables and in column (4), the latitude is 

added. Columns (3) and (4) correspond columns (7) and (8) of Table 4 in Acemoglu, Johnson 

and Robinson (2001). Both columns show that the delete- 

0. 146

d   jackknife based AR test has large  

p  -values and cannot reject the null hypothesis. 

Tables 6-8 examine the robust tests by adding additional controls. In Table 6, the British\French 

colonial dummies or the French legal origin dummy is added into the regressions, which 
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corresponds columns (1),(2), (5) and (6) respectively of Table 5 in Acemoglu, Johnson and 

Robinson (2001). Our results show that the delete- d   jackknife based Anderson-Rubin test has a 

large  p  -value and cannot reject the null hypothesis. In Table 7, religion variables or 

ethnolinguistic fragmentation is added into the regressions as the additional covariates, which 

corresponds columns (7) and (8) of Table 5 and columns (7) and (8) of Table 6 respectively in 

Acemoglu, Johnson and Robinson (2001). The delete- d   jackknife based Anderson-Rubin test 

cannot reject the null hypothesis again. In Table 8, some geographically-related health variables, 

such as malaria, life expectancy and infant mortality, are added as additional controls, which 

corresponds columns (1)-(6) of Table 7 in Acemoglu, Johnson and Robinson (2001). We observe 

that the delete- d   jackknife based Anderson-Rubin test cannot reject the null hypothesis. 

By considering the effect of near exogeneity, we only observe two significant cases of the 

institution estimator. One is the most simple case where nothing is controlled except the 

mortality rate used as an instrument. The delete- d   jackknife based Anderson-Rubin test has a  

p  -value of  0.   (see column (1) in Table 5). The other is a comprehensive specification 

where the latitude, the British\French colonial dummy, the French legal origin dummy, and 

religion variables are added into the regression simultaneously. The delete- 

078

d   jackknife based 

Anderson-Rubin test has a  p  -value of  0.   (see column (3) in Table 7). 050

We also compute  p  -values of the delete- d   jackknife based Anderson-Rubin test under various 

block sizes, which are summarized in Tables 9-12. We use block sizes  

 . From simulations summarized in Table 4, we know that there is 

size distortion when  b   if the correlation between instruments and structural errors is in 

the range of  0.   and  0.  . Except column (1) in Table 5 and column (3) in Table 7, we 

observe that the delete- 

b  12, 14, 20, 24, 28, 30, 32

 12

10 15

d   jackknife based Anderson-Rubin test cannot reject the null hypothesis 

even when  b  , which is a very strong evidence to show that the TSLS estimator is not 

significant when the mortality rate is used as an instrument for the institution. The results in 

Table 5-8 are robust to change in block size. 

 12
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2.3 MONTE CARLO SIMULATION 

We consider the linear simultaneous equations model defined in (100) and (110). Since there is 

only one endogenous variable  Y , we set  l   (the just-identified case). We also examine the 

overidentified case when  l  . Since the results from overidentification are very similar to 

those from just-identification, we only report the results from the just-identification in the paper. 

The  

 1

 2

   is the only structural parameter and we set the true value    . The  0  0 N    is the 

sample size and we set  N  64   in order to conduct comparisons of tests' performance in finite 

samples. The data     is  Zi, ui, Vi iid   which are generated from a joint normal distribution  

N0,  . 

When  l  ,  1

 

1 covZiui 0

covZiui 1 covViui

0 covViui 1

.

 
where  cov   measures the endogeneity of  Viui Y , which takes values of  0.  . When  l  ,  

  measures the degree of near exogeneity which takes values of   0  ,  0.   or  0.  . 

The data generated from above also differ over the value of  

25  1

covZiui 10 15

  . The vector     controls the 

quality of  instruments. We set     ,  0.  , or  1   in all cells of the vector to respectively 

represent nonidentification, weak instruments and strong instruments. In each simulation, the 

nominal size is 10%. 

0 1

Table 1 shows the size distortion of the regular  t  -statistic under various degrees of near 

exogeneity when instruments are strong. When the correlation between instruments and 

structural errors is zero, the actual size of the  t  -statistic is close to the nominal size 10%. When 

the correlation is not zero, we can observe a size distortion and the size distortion increases 

immensely as the correlation increases. 

Table 2 lists the actual sizes of the subsampling based or delete- d   jackknife based  t  -statistic 

under near exogeneity when instruments are strong. We choose the block size  
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b  8, 12, 16, 24, 32  . The simulation shows that under various choices of the block size the  

 -statistic always has a larger size distortion under near exogeneity than the regular 

asymptotics listed in Table 1. Theorem 2 can interpret the difference in finite sample 

performances. The limiting distribution of the  t  -statistic is a normal distribution with zero 

mean and whose variance is less than  1  . Compared to the standard normal distribution, the 

data-dependent critical values obtained from Theorem 2 are asymptotically less than the one 

from standard normal distribution, so we can observe large rejections under near exogeneity for 

the  t  -statistic. 

tS

S

S

Table 3 shows the size property of the Anderson-Rubin test under near exogeneity. When the 

correlation between instruments and structural errors is zero, the Anderson-Rubin test works 

very well. As Theorem 3 predicts, the Anderson-Rubin test has a large size distortion under near 

exogeneity. When the correlation between instruments and structural errors is  0.  , the actual 

size can be  22.  . When the correlation is  0.  , the actual size can be  34.  . Table 3 

shows that we cannot use the Anderson-Rubin test based on chi-square critical values under near 

exogeneity. 

10

6% 15 4%

Table 4 compares the size property of the delete- d   jackknife based Anderson-Rubin test under 

near exogeneity for various choices of the block size  b  . We choose the block size  

 . We also do simulations for  b   which 

shows size distortion in finite samples; see Caner (2005) and Fang (2005). Since in practice the 

delete- 

b  12, 14, 16, 18, 20, 22, 24, 28, 30, 32  6, 8, 10

d   jackknife uses moderately sized blocks, we report results with  

 . There are two parts in Table 4 which show the 

results under strong instruments and weak instruments respectively. We can observe that the 

results in two parts are very similar because the quality of instruments cannot affect the behavior 

of the test. When the block size is large, for example,  b  , the  

b  12, 14, 16, 18, 20, 22, 24, 28, 30, 32

 32 ARS  -statistic is very 

conservative. For example, the actual sizes are  0.  ,    and  2.   respectively when the 

correlation between instruments and structural errors are  0  ,  0.   and  0.  . When the block 

size shrinks, we can observe more rejections. When  b  , the actual size is  7.   when  

3 1. 3 3

1 15

 16 4%
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covZiui  0. 10   and the actual size is  11.   when  cov  . Note that when  

 ,  d   and  

8% Ziui  0. 15

b  16  48  3
4  . When  b   is smaller than  16  , we can observe overrejection. 

For example, when  b  , the actual size is  0.   when the correlation between instruments 

and structural errors is  0.  . Table 4 also shows that the  

 12 24

15 ARS  -statistic is very undersized 

when  cov   but by the choice of the right block size it works much better than the 

regular Anderson-Rubin test when the degree of near exogeneity is between  0.   and  0.  . 

Ziui  0

10 15

We suggest  b   in practice based on the simulation results summarized in Table 4. When  

 ,  

 16

b  16  3
4   which is also suggested by Wu (1989). When we begin with  b  , from 

Table 4 we know that it is very conservative. When we increase the block size, we observe more 

rejections. The block sizes  16  ,  18  ,  20   and  22   provide good size performance. When the 

block size is larger than  16  , we observe less size distortion. 

 32

2.4 CONCLUSIONS 

This paper examines the size property of the  t  -statistic when there exists a slight violation of 

the exogeneity assumption in a linear simultaneous equations model. We show a large size 

distortion of the  t  -statistic in finite samples under near exogeneity. The subsampling based or 

the delete- d   jackknife based  t  -statistic works even worse in finite samples than the regular 

asymptotics because the resampling procedures cannot catch the drift term from near exogeneity 

but produce smaller variance than the standard normal distribution. We propose the subsampling 

based or the delete- d   jackknife based Anderson-Rubin test under near exogeneity. We find that 

the sizes of the test are liberal by the choice of the block size. We propose    3
4   to choose the 

block size in practice. Since the actual size increases as the block size shrinks, we are more 

confident to reject the null hypothesis in a large block size than that in a small block size, and we 

are also more confident unable to reject the null hypothesis in a small block size than that in a 

large block size. We use our method to reexamine the estimates in Acemoglu, Johnson and 
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Robinson (2001). We find that in most cases there exists strong evidence that the TSLS estimator 

by using the mortality rate as the instrument is not significant away from zero. 

2.5 APPENDIX  

2.5.1 Appendix 1 

In the beginning of this appendix, we first list near exogeneity assumption and some moment 

conditions that are required to obtain the theorems in the paper. Assumptions 1 and 2 are 

sufficient for Lemma 1, Theorem 1 and Theorem 3. Assumptions 1 and 3 are sufficient for 

Theorem 2 and Theorem 4. 

 
 

Assumption 1 Near Exogeneity  EZi
′ui   C/ N  , where  C   is a fixed  K  1  vector. 

 
 
Assumption 2: The following limits hold jointly when the sample size  N   converges to infinity: 

(a)  u ′u/N, V ′u/N, V ′V/N
p
→ u

2 ,Vu ,VV  , where    ,     and  u
2

Vu VV   are respectively a  

  scalar, an  m   vector and an  m   matrix. 1  1  1  m

 

(b)  Z ′Z/N
p
→ QZZ   where  QZZ   is a positive definite  K  K   matrix. 

 

(c)  Z ′u/ N , Z ′V/ N 
d
→ Zu ,ZV  , and 

 

Zu

vecZV

 N
C

0
, ⊗ Q

 , where  
 

u
2 Vu

′

Vu VV  . 
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These convergences in Assumption 2 are not primitive assumptions but hold under weak 

primitive conditions. Parts (a) and (b) follow from the weak law of large numbers, and Part (c) 

follows from triangular arrays central limit theorem. Instead of a mean zero normal distribution 

in Staiger and Stock (1997), the  Zu   in (c) is a normal distribution with nonzero mean, which 

is a drift term  C   coming from the near exogeneity assumption. For any independent sequence  

 , if  Zi
′ui EZi

′ui 
2  Δ     for some     for all  i 0  1, 2, 3, . . . , N   , then Liapunov's 

theorem leads to the limiting results in (c); see Davidson (1994). 

Assumption 3: Define 

b  Eub
′ ub /b   

and 

Qb  EZb
′ Zb /b   

Assume the following conditions hold jointly for      0,

(a)   E|zb,iub |2  Δ1     for all  b  N   and all  1 ≤ i ≤ K   

(b)    E|zb,izb,j |
1  Δ2     for all  b  N   and all  1 ≤ i, j ≤ K   

(c)    E ub
2 1

 Δ3     for all  b  N   

(d)       uniformly as  bb → u
2  0 →    

(e)    Qb → QZZ   uniformly and uniformly positive definite as  b →    

 

 
Lemma 1  Suppose that Assumption 1 and 2 hold for a linear simultaneous equations model, then 

the TSLS estimator    
∧
TSLS is consistent and 

N 
∧
TSLS − 0

d
→ N′QZZ−1′C,u

2′QZZ−1  

where  u  ,′u/N → Eui
2  u

2   Z ′Z/N → EZi
′Zi  QZZ  . 

 

The proof is given in the Appendix 2. 
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Lemma 1 summarizes the limiting results of the TSLS estimator under near exogeneity. The 

reason why we can obtain a consistent estimator under near exogeneity is because the correlation 

between instruments and structural errors shrinks toward zero asymptotically. When  C  0 , 

we can obtain the regular results of the TSLS estimator under the orthogonality condition. 

Instead of a normal distribution with a zero mean, near exogeneity can shift the distribution away 

from the zero mean. The nonzero mean depends on an unknown local to zero parameter  C   

which is impossible to be estimated consistently (Andrews, 2000). 

 

Theorem 1  Suppose that Assumption 1 and 2 hold for a linear simultaneous equations model, 
then
 

t
d
→ Nu

−1′QZZ−1/2′C, 1   
where    u  is the square root of     u

2 .

 
 
The proof is given in the Appendix 2. 

Next, consider whether the resampling versions of the  t  -statistic can correct the size problem 

under near exogeneity in large samples. Denote by  t   the delete- S d   jackknife based  t  -statistic, 

t S 

∧
S,TSLS −

∧
TSLS

avar
∧
S,TSLS 

 

 

where   is the delete- 
∧
S,TSLS d   jackknife based estimator and  av   is the estimated 

variance of the corresponding TSLS estimators. The delete- 

ar
∧
S,TSLS 

d   jackknife based  t  -statistic using  

  as the nominal size can be implemented by the following steps: 10%

Step 1: Randomly choose  d   observations from the sample without replacement, where  d  N  ; 

Step 2: Given  d  , the block size  b  N − d  . Compute the TSLS estimator and the 

corresponding estimated variance by using sample observations not deleted by Step 1, and then 

compute the delete- d   jackknife based  t  -statistic; 
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Step 3: Replicate Step 1 & 2 by at least  1000   times and sort these computed delete- d   

jackknife based  t  -statistics; Use the  90%  quantile as the data-dependent critical value; 

Step 4: The delete- d   jackknife based  t  -statistic rejects the null hypothesis when the sample 

value of the  t  -statistic is larger than the data-dependent critical value which is found in Step 3. 

In order to construct asymptotic results, the delete- d   jackknife requires that  d  N  , where  

  and  0    1 N   grows to infinity (Shao and Wu, 1989). The following theorem provides the 

limiting results of the  t  -statistic under near exogeneity. S

 

Theorem 2  Suppose that Assumption 1 and 3 hold for a linear simultaneous equations model, 

then

tS
d
→ N0, 2 −  − 2 1 −    

 

where    d/N   and  0     1.  

 

The proof is given in the Appendix 2. Theorem 2 summarizes limiting results of the delete- d   

jackknife based  t  -statistic under near exogeneity. We obtain the delete- d   jackknife based  t  -

statistic when  0  . The limiting distribution defined above is obviously not the limiting 

distribution of the t-statistic under near exogeneity, and there is no drift correction. Since the 

variance of the distribution above is less than  1  , we expect a larger size distortion under near 

exogeneity than the regular standard normal asymptotics. 

   1

 

 

Theorem 3  Suppose that Assumption 1 and 2 hold for a linear simultaneous equations model, 

then under the null hypothesis of     0 ,   

AR0
d
→ K

2    

 where  K
2    is a noncentral chi-square distribution with degrees of freedom  K   and the 
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noncentral parameter    C ′ −1C  , and    u ⊗ Q2
ZZ  . 

 

The proof of the theorem is given by Fang (2005) in a linear simultaneous equations model. 

Caner (2005) provides the proof of an Anderson-Rubin type test in a generalized empirical 

likelihood model. 

 

 

Theorem 4  Suppose that Assumption 1 and 3 hold for a linear simultaneous equations model, 

then under the null hypothesis of     0 ,  

ARS0
d
→ K

2    

where  K
2    is a noncentral chi-square distribution with degrees of freedom  K   and the 

noncentral parameter  
  1 − C ′−1C  , and    d/N  . 

 

The proof of the theorem is given by Fang (2005) in a linear simultaneous equations model. 

Caner (2005) provides the proof of an Anderson-Rubin type test in a generalized empirical 

likelihood model. 

 

 

2.5.2 Appendix 2 

Proof of Lemma 1  The TSLS estimator is s defined as,  

∧
TSLS  Y′PZY−1Y′PZy.  

So we have 

N 
∧
TSLS − 0

  Y′Z
N  Z ′Z

N −1 Z ′Y
N −1 Y′Z

N  Z ′Z
N −1 Z ′u

N

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By Assumption 2, we can obtain that  

 Y′Z
N  Z ′Z

N −1 Z ′Y
N −1

p
→ ′QZZ−1

 

 

Now, we consider  

Z ′u
N

 1
N
∑
i1

N

Zi
′ui − EZi

′ui  1
N
∑
i1

N

EZi
′ui

 

By the triangular array central limit theorem, we have 

1
N
∑
i1

N

Zi
′ui − EZi

′ui
d
→ N0,u

2QZZ.
 

By the triangular array weak law of large number and Assumption 1, we have 

1
N
∑
i1

N

EZi
′ui

p
→ C.  

 

Combining above results, we obtain 

Z ′u
N

d
→ NC,u

2QZZ  
 

Then the result in the lemma follows.           Q.E.D.

 
 
Proof of Theorem 1  The result in the theorem directly follows from Lemma 1.        Q.E.D.

 

 

Proof of Theorem 2   A resampling based t-statistic is defined as,  

t S 

∧
S,TSLS −

∧
TSLS

avar
∧
S,TSLS 

 

where 
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avar
∧
S,TSLS   u,b

2
Yb

′ ZbZb
′ Zb−1Zb

′ Yb−1 ,
 

and  

u,b
2

 yb − Yb
∧
S,TSLS ′yb − Yb

∧
S,TSLS /b − K − m.

 

By Assumption 3 and weak law of large number (Fang, 2005), we have 

u,b
2 p

→ u
2   

and 


Yb
′ Zb

b 
Zb
′ Zb

b −1
Zb
′ Yb

b −1

p
→ ′QZZ−1 .

 

 

 

The  t  -statistic can be rewritten as  S

tS 

∧
S,TSLS − 0 − 

∧
TSLS − 0

avar
∧
S,TSLS 

 

 

Consider the first term in the above equation, 

b 
∧
S,TSLS − 0

 
Yb
′ Zb

b 
Zb
′ Zb

b −1
Zb
′ Yb

b −1
Yb
′ Zb

b 
Zb
′ Zb

b −1
Zb
′ ub

b


 

We know that by Assumption 3 and the triangular array central limit theorem, 

Zb
′ ub

b
 1

b
∑
i1

b

Zb,iub,i − EZb,iub,i  1
b
∑
i1

b

EZb,iub,i

d
→ N0,u

2QZZ   1 −  C

 N 1 −  C,u
2QZZ.  

So we have 
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b 
∧
S,TSLS − 0

u
2′QZZ−1

d
→ NC, 1  

 

where 

C  u′QZZ−1/2′ 1 −  C  

By the similar method, noting that  b  1 −   N  we can obtain that 

b 
∧
TSLS − 0

u
2′QZZ−1

d
→ NC, 1 − 

 

Then the result in the theorem follows.                   Q.E.D. 
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2.5.3 Appendix 3 

 

Table 2-1: Sizes of the  t  -statistic (    ) 1

 
  

CovZi
′ui 

  

 
CovZi

′ui 
  

 
CovZi

′ui 
  

Actual Size  9.   4  26.   4    39. 1

Note: The data generating process of the simulation is based on Λ with strong instruments (    ). The 

sample size is  

1
N  64   and the nominal size is  10%  . 

 

Table 2-2: Sizes of the  t  -statistic (    ) S 1

 
  

CovZi
′ui 

  

 
CovZi

′ui 
  

 
CovZi

′ui 
  

 b    8    20. 1  32.   8  42.   5

 b    12    21. 5  30.   4  45.   8

 b    16    22. 1  29.   3  54.   6

 b    24    23. 3  35.   1  48.   4

 b    32    27. 1  41.   6  54.   7

Note: The data generating process of the simulation is based on Λ with strong instruments (    ). The 

sample size is  

1
N  64   and the nominal size is  10%  . The  t  -statistic is defined in (140) and  b   

represents the block size. We compute the actual sizes of the  t  -statistic when  b  . 

S

S  8, 12, 16, 24, 32
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Table 2-3: Sizes of the Anderson-Rubin test 

 
  

CovZi
′ui 

  

 
CovZi

′ui 
  

 
CovZi

′ui 
  

     (strong instruments)                                    1     
Actual size  9.   7  21.   8    33. 5

     (weak instruments)                                  0. 1     
Actual size  10.   1  22.   6    34. 4

     (nonidentification)                                       0    
Actual size  9.   3  22.   2    33. 6

Note: The data generating process of the simulation is based on Λ.     represents the quality of instruments. 

The sample size is  N  64   and the nominal size is  10%  . The Anderson-Rubin test is computed as defined 
in (160). 
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Table 2-4: Sizes of the delete- d   jackknife based Anderson-Rubin test 

 
  

CovZi
′ui 

  

 
CovZi

′ui 
  

 
CovZi

′ui 
  

Part A:      (strong instruments)                        1    

 b    12  3.   8  10.   1    20. 2

 b    14  3.   1  8.   5    16. 1

 b    16  2.   0  7.   4    11. 8

 b    18  2.   1  6.   0    13. 5

 b    20  1.   4  5.   3    10. 4

 b    22  0.   7  4.   0    9. 5

 b    24  1.   1  3.   3    8. 4

 b    26  0.   8  2.   5    6. 0

 b    28  0.   2  1.   9    3. 7

 b    30  0.   5  1.   5    3. 2

 b    32  0.   3  1.   3    2. 3

Part B:      (weak instruments)                      0. 1    

 b    12  3.   2  9.   4    19. 4

 b    14  3.   1  9.   7    17. 3

 b    16  2.   0  7.   2    13. 0

 b    18  2.   3  6.   7    9. 4

 b    20  1.   4  3.   8    10. 7

 b    22  1.   6  3.   1    7. 0

 b    24  0.   8  3.   4    7. 0

 b    26  1.   0  3.   2    5. 2

 b    28  0.   7  1.   7    3. 6

 b    30  0.   6  0.   8    3. 3

 b    32  0.   1  1.   2    2. 6
 
Note: The data generating process of the simulation is based on Λ.     represents the quality of 

instruments. The sample size is  N  64   and the nominal size is  10%  . The  b   represents the 
block size and  b  N − d  . We compute the delete- d   jackknife based Anderson-Rubin test 
defined in Section 3 with various blocks. 
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Table 2-5: Baseline regressions 

 
  (1) (2) (3) (4) 
Table 5a: Two-Stage Least Squares           
Average protection against            0. 94  1.   00  0.   98  1.   10
expropriation risk 1985-1995     0. 16     0. 22     0. 30     0. 46
Latitude                                       −   0. 65   −   1. 20
       1. 34      1. 8
Asia dummy                                 −   0. 92  −   1. 10
        0. 40     0. 52
Africa dummy                                −   0. 46  −   0. 44
        0. 36     0. 42
"Other" continent dummy               −   0. 94  −   0. 99
        0. 85     1. 0

Table 5b:  t  -statistic and  ARS  -statistic      

  -statistic and  t p  -values      
Average protection against            5. 875  4.   545  3.   266  2.   391
expropriation risk 1985-1995   

  
 0. 000

 

  
 0. 000

   0. 001    0. 017

delete- d   jackknife based  ARS   and  p  -values      
Average protection against           12. 812  6.   847  0.   446  0.   635
expropriation risk 1985-1995    0. 078     0. 146    0. 272    0. 280

 
Note: The dependent variable in columns (1)-(4) is  log  GDP per capita in 1995. Table 5a 
reports two-stage least squares estimates of institutions, instrumenting for protection against 
expropriation risk using  log   settler mortality. The results in Table 5a are replicated from 
Acemoglu, Johnson, and Robinson (2001, p1386). The numbers in parentheses are the standard 
errors of coefficient estimators. Table 5b reports values of  t  -statistic and delete- d   jackknife 
based Anderson-Rubin test respectively. The numbers in brackets are their associated  p  -values. 
We use  b   to compute the delete-  16 d  jackknife based Anderson-Rubin test. 
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Table 2-6: Robustness-1 

 
 (1) (2) (3) (4) 
Table 6a: Two-Stage Least Squares     
Average protection against        1.10 1.16 1.10 1.20 
expropriation risk 1985-1995 (0.22) (0.34) (0.19) (0.29) 
Latitude                                     -0.75  -1.10 
              (1.70)  (1.56) 
British colonial dummy              -0.78 -0.80   
 (0.35) (0.39)   
French colonial dummy             -0.12 -0.06   
 (0.35) (0.42)   
French legal origin dummy           0.89 -0.96 
   (0.32) (0.39) 
Table 6b:  t  -statistic and  ARS  -statistic     

 t  -statistic and  p  -values     
Average protection against        5.00 3.441 5.789 4.137 
expropriation risk 1985-1995 [<0.000] [<0.000] [<0.000] [<0.000] 
delete- d   jackknife based  ARS   and  p  -values     
Average protection against        0.796 2.116 3.234 3.096 
expropriation risk 1985-1995 [0.357] [0.221] [0.174] [0.198] 

 

Note: The dependent variable in columns (1)-(4) is  log  GDP per capita in 1995. Table 6a 
reports two-stage least squares estimates of institutions, which are replicated from Acemoglu, 
Johnson, and Robinson (2001, p1389). The numbers in parentheses are the standard errors of 
coefficient estimators. Table 6b reports values of  t  -statistic and delete- d   jackknife based 
Anderson-Rubin test respectively. The numbers in brackets are their associated  p  -values. We 
use  b   to compute the delete-  16 d  jackknife based Anderson-Rubin test. 
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Table 2-7: Robustness-2 

 
 (1) (2) (3) (4) (5) 
Table 7a: Two-Stage Least Squares      
Average protection against         0.   92    1. 00  1.   10  0.   74  0.   79
expropriation risk 1985-1995     0. 15    0. 25     0. 29     0. 13     0. 17
Latitude                                        −0. 94  −   1. 70   −   0. 89
                 1. 50     1. 6      1. 00
British colonial dummy                   
      
French colonial dummy                0.   02   
       0. 69   
French legal origin dummy            0.   51   
       0. 69   

 p  -values for religion variables       0. 001   0. 004     0. 42   
      
Ethnolinguistic fragmentation          −   1. 00  −   1. 10
        0. 32     0. 34

Table 7b:  t  -statistic and  ARS  -statistic      

  -statistic and  t p  -values      
Average protection against         6.   133    4. 00  3.   793  5.   692  4.   647
expropriation risk 1985-1995  

  
 0. 000

 

  
 0. 000

 

  
 0. 000

 

  
 0. 000

 

  
 0. 000

delete- d   jackknife based  ARS   and  p  -values      
Average protection against         1.   054    0. 233  1.   278  0.   187  0.   142
expropriation risk 1985-1995    0. 123   0. 373     0. 050    0. 450    0. 576

 
Note: The results in Table 7a are replicated from Acemoglu, Johnson, and Robinson (2001, 
p1389 and p1390). The religion variables are percentage of population that are Cathoics, 
Muslims, and "other" religions. Protestant is the base case. Table 7b reports values of  t  -
statistic and delete- d   jackknife based Anderson-Rubin test respectively. The numbers in 
brackets are their associated  p  -values. We use  b   to compute the delete-  16 d  jackknife 
based  ARS   test. 
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Table 2-8: Robustness-3 

 
 (1) (2) (3) (4) (5) (6) 
Table 8a: Two-Stage Least Squares       
Average protection against         0.   69  0.   72  0.   63  0.   68  0.   55    0. 56
expropriation risk 1985-1995    0. 25    0. 30    0. 28     0. 34    0. 24   0. 31
Latitude                                       −0. 57   −   0. 53   −   0. 1
                 1. 04      0. 97     0. 95
Malaria in 1994                         −  0. 57  −  0. 60     
    0. 47    0. 47     
Life expectancy                           0.   03  0.   03   
      0. 02     0. 02   
Infant mortality                              −  0. 01  −  0. 01
        0. 005   0. 006

Table 8b:  t  -statistic and  ARS  -statistic       

 t  -statistic and  p  -values       
Average protection against         2.   76  2.   40  2.   25  2.   00  2.   291    1. 806
expropriation risk 1985-1995    0. 006    0. 016    0. 024    0. 046     0. 022   0. 071

delete- d   jackknife based  ARS   and  p  -values       
Average protection against         0.   404  0.   031  4.   090  4.   013  0.   891    0. 432
expropriation risk 1985-1995    0. 291    0. 648    0. 279    0. 235     0. 171   0. 255

 
Note: The dependent variable in columns (1)-(6) is  log  GDP per capita in 1995. Table 8a 
reports two-stage least squares estimates of institutions, instrumenting for protection against 
expropriation risk using  log   settler mortality. The results in Table 8a are replicated from 
Acemoglu, Johnson, and Robinson (2001, p1392). The numbers in parentheses are the standard 
errors of coefficient estimators. Table 8b reports values of  t  -statistic and delete- d   jackknife 
based Anderson-Rubin test respectively. The numbers in brackets are their associated  p  -values. 
We use  b   to compute the delete-  16 d  jackknife based Anderson-Rubin test. 
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Table 2-9: Baseline regressions under various block sizes 

 
 (1) (2) (3) (4) 
Table 9a: Two-Stage Least Squares          
Average protection against         0.   94  1.   00    0. 98  1.   10
expropriation risk 1985-1995     0. 16     0. 22    0. 30     0. 46
Latitude                                      −   0. 65   −   1. 20
     1. 34      1. 8
Asia dummy                                  −0. 92  −   1. 10
      0. 40     0. 52
Africa dummy                                 −0. 46  −   0. 44
      0. 36     0. 42
"Other" continent dummy                −0. 94  −   0. 99
      0. 85     1. 0

Table 9b: delete- d   jackknife based AR S  test  

under various  b  's 

   

 AR0    12.  812  6.   847    0. 446  0.   635

 b    32    0. 156    0. 211    0. 290    0. 407

 b    30    0. 157    0. 206    0. 276    0. 397

 b    28    0. 156    0. 199    0. 309    0. 387

 b    24    0. 202    0. 198    0. 284    0. 351

 b    20    0. 133    0. 176    0. 277    0. 336

 b    14    0. 097    0. 117    0. 247    0. 265

 b    12    0. 074    0. 073    0. 238    0. 217
 
Note: The dependent variable in columns (1)-(4) is  log  GDP per capita in 1995. Table 9a 
reports two-stage least squares estimates of institutions, instrumenting for protection against 
expropriation risk using  log   settler mortality. The results in Table 9a are replicated from 
Acemoglu, Johnson, and Robinson (2001, p1386). The numbers in parentheses are the standard 
errors of coefficient estimators. Table 9b reports  p  -values (in brackets) of the delete- d   
jackknife based Anderson-Rubin test under various block sizes.  AR0   represents the sample 
value of the Anderson-Rubin test when    . 0  0
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Table 2-10: Robustness-1 under various block sizes 

 
 (1) (2) (3) (4) 
Table 10a: Two-Stage Least Squares     
Average protection against         1.   10  1.   16    1. 10  1.   20
expropriation risk 1985-1995     0. 22     0. 34    0. 19     0. 29
Latitude                                      −   0. 75   −   1. 10
                 1. 70      1. 56
British colonial dummy               −   0. 78  −   0. 80   
     0. 35     0. 39   
French colonial dummy              −   0. 12  −   0. 06   
     0. 35     0. 42   
French legal origin dummy              0. 89  −   0. 96
      0. 32     0. 39

Table 10b: delete- d   jackknife based AR S  test  

under various  b  's 

   

 AR0    0.   796  2.   116    3. 234  3.   096

 b    32    0. 279    0. 233    0. 340    0. 392

 b    30    0. 298    0. 239    0. 313    0. 390

 b    28    0. 297    0. 250    0. 300    0. 394

 b    24    0. 293    0. 225    0. 260    0. 333

 b    20    0. 308    0. 249    0. 238    0. 250

 b    14    0. 325    0. 235    0. 136    0. 149

 b    12    0. 322    0. 197    0. 121    0. 114
 
Note: The dependent variable in columns (1)-(4) is  log GDP per capita in 1995. Table 10a 
reports two-stage least squares estimates of institutions, instrumenting for protection against 
expropriation risk using  log  settler mortality. The results in Table 10a are replicated from 
Acemoglu, Johnson, and Robinson (2001, p1389). The numbers in parentheses are the standard 
errors of coefficient estimators. Table 10b reports  p  -values (in brackets) of the delete- d   
jackknife based Anderson-Rubin test under various block sizes.  AR0   represents the sample 
value of the Anderson-Rubin test when    . 0  0
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Table 2-11: Robustness-2 under various block sizes 

 
 (1) (2) (3) (4) (5) 
Table 11a: Two-Stage Least Squares      
Average protection against         0.   92    1. 00  1.   10  0.   74  0.   79
expropriation risk 1985-1995     0. 15    0. 25     0. 29     0. 13     0. 17
Latitude                                        −0. 94  −   1. 70   −   0. 89
                 1. 50     1. 6      1. 00
British colonial dummy                   
      
French colonial dummy                0.   02   
       0. 69   
French legal origin dummy            0.   51   
       0. 69   

 p  -values for religion variables       0. 001   0. 004     0. 42   
      
Ethnolinguistic fragmentation          −   1. 00  −   1. 10
        0. 32     0. 34

Table 11b: delete- d   jackknife based AR S  test  

under various  b  's 

    

 AR0    1.   054    0. 233  1.   278  0.   187  0.   142

   b  32    0. 151   0. 369     0. 164    0. 423    0. 562

   b  30    0. 155   0. 371     0. 143    0. 459    0. 594

   b  28    0. 148   0. 421     0. 124    0. 455    0. 566

   b  24    0. 144   0. 369     0. 082    0. 468    0. 585

   b  20    0. 118   0. 391     0. 066    0. 454    0. 575

   b  14    0. 104   0. 373     0. 059    0. 473    0. 568

   b  12    0. 120   0. 311     0. 025    0. 463    0. 582
 
Note: The results in Table 11a are replicated from Acemoglu, Johnson, and Robinson (2001, 
p1389 and p1390). Table 11b reports  p  -values (in brackets) of the delete- d   jackknife based 
Anderson-Rubin test under various block sizes.  AR0   represents the sample value of the 
Anderson-Rubin test when    . 0  0
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Table 2-12: Robustness-3 under various block sizes 

 
 (1) (2) (3) (4) (5) (6) 
Table 12a: Two-Stage Least Squares       
Average protection against         0.   69  0.   72  0.   63  0.   68  0.   55  0.   56
expropriation risk 1985-1995     0. 25     0. 30     0. 28     0. 34     0. 24     0. 31
Latitude                                      −   0. 57   −   0. 53   −   0. 1
                  1. 04      0. 97      0. 95
Malaria in 1994                         −   0. 57  −   0. 60     
     0. 47     0. 47     
Life expectancy                           0.   03  0.   03   
       0. 02     0. 02   
Infant mortality                              −   0. 01  −   0. 01
        0. 005    0. 006

Table 12b: delete- d   jackknife based AR S

test under various  b  's 

      

 AR0    0.   404  0.   031  4.   090  4.   013  0.   891  0.   432

 b    32    0. 243    0. 645    0. 393     0. 381    0. 219    0. 383

 b    30    0. 220    0. 655    0. 366     0. 360    0. 209    0. 340

 b    28    0. 217    0. 668    0. 354     0. 336    0. 232    0. 340

 b    24    0. 259    0. 642    0. 327     0. 329    0. 197    0. 319

 b    20    0. 257    0. 632    0. 331     0. 275    0. 193    0. 300

 b    14    0. 281    0. 656    0. 228     0. 181    0. 152    0. 246

 b    12    0. 219    0. 636    0. 180     0. 119    0. 119    0. 216
 
Note: The dependent variable in columns (1)-(6) is  log GDP per capita in 1995. Table 12a 
reports two-stage least squares estimates of institutions, instrumenting for protection against 
expropriation risk using  log  settler mortality. The results in Table 12a are replicated from 
Acemoglu, Johnson, and Robinson (2001, p1392). The numbers in parentheses are the standard 
errors of coefficient estimators. Table 12b reports  p  -values (in brackets) of the delete- d   
jackknife based Anderson-Rubin test under various block sizes.  AR0   represents the sample 
value of the Anderson-Rubin test when    . 0  0
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3.0  INSTRUMENTAL VARIABLES REGRESSION WITH WEAK INSTRUMENTS 

AND NEAR EXOGENEITY 

The linear instrumental variables ( IV) regression has wide applications in empirical studies. In 

the linear simultaneous equations model, to justify the IV method, it should satisfy two important 

criteria. One is called "instrument exogeneity", which means that instruments excluded from the 

structural equation should be uncorrelated with the structural errors. The other is called 

"instrument relevance", which requires that instruments should be strongly correlated with the 

endogenous explanatory variables. Finding valid instruments to satisfy the two criteria is not an 

easy job. For example, the problem of weak instruments, which means that instruments are 

weakly correlated with endogenous explanatory variables, has recently received a lot of attention 

by both theoretical and empirical researchers ( Stock, Wright and Yogo, 2002). If instruments are 

weak, then the limits of the sample distributions of the two-stage least square (TSLS) estimator 

and the limited information maximum likelihood (LIML) estimator are in general nonstandard, 

and the resulting conventional hypothesis tests and confidence intervals are not reliable. 

In an influential empirical study of labor economics, Angrist and Krueger (1991) use quarter of 

birth as an instrument for education to estimate the impact of compulsory schooling laws on 

earnings. They argue that children's quarter of birth is random, so it is uncorrelated with ability 

and should be exogenous. Because of compulsory laws, average education is generally longer for 

children born near the end of the year than for children born early in the year, which means that 

quarter of birth is correlated with educational attainment. Based on large samples ( 329,000 

observations or more) from the U.S. census, they estimate the return to education by the TSLS 

procedure, using as instruments for education a set of three quarter-of-birth dummies interacted 

with fifty state-of-birth dummies and nine year-of-birth dummies respectively. But Bound, 

Jaeger and Baker (1995) point out that the instruments used in Angrist and Krueger's paper are 

weak and nearly exogenous in which case the resulting estimation and inference are misleading. 
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Many authors work on improving inference under weak instruments; see, for example, Staiger 

and Stock(1997), Dufour(1997), Kleibergen(2002), Moreira(2003), among others. 

Instrument exogeneity is another important criterion for valid instruments. In empirical studies, 

the validity of instrument exogeneity is mainly based on economic reasoning. But unfortunately, 

it is almost impossible to control for all possible variables that might be correlated with 

instruments and dependent variables. As a result, the instruments might catch the effect on 

dependent variables through other channels. It is hard to argue that instruments are exogenous in 

empirical studies. For example, Acemoglu, Johnson, and Robinson (2001) estimate the effect of 

institutions on economic performance by using as instrument the logarithm of the European 

settler mortality rates. They argue that the settler mortality rate more than 100 years ago is 

strongly correlated with current institutions in the countries colonized by Europeans in the 

history. The mortality rates expected by the first European settlers determined the settlement 

decision and then influenced the colonization strategy: introducing  "extractive states" ( bad 

institution) or "Neo-Europes" (good institution). In a study of whether a reversal in relative 

incomes among the former European colonies reflects changes in the institutions resulting from 

European colonialism, Acemoglu, Johnson, and Robinson (2002) use data on urbanization and 

population density in 1500 to proxy for economic prosperity. In order to test whether population 

density or urbanization in 1500 affects income today only through institutions, the settler 

mortality rate is used as instruments again. But Glaeser, La Porta, Lopez-De-Silanes, and 

Shleifer (2004) argue that the settler mortality rate is not an exogenous instrument because the 

mortality rate might affect today's income through other channels, for example, the human 

capital. This is a problem of near exogeneity where the instruments are weakly correlated with 

the structural errors. Due to the nature that it is almost impossible to control for all possible 

variables that might be correlated with instruments and dependent variables of interest, the 

problem of near exogeneity is prevalent in empirical studies. Angrist (1990) estimates the effect 

of veteran status on civilian earnings by using as instruments the draft lottery numbers. But 

Wooldridge (2002) argues that the draft lottery numbers might be correlated with the structural 

errors if education is not controlled in the earnings equation. Bound, Jaeger, and Baker (1995) 

argue that the instruments used by Angrist and Krueger (1991) are not only weak but also suffer 

from near exogeneity. 

This paper examines asymptotic properties of estimation and inference with the joint problem of 
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weak instruments and near exogeneity in a linear simultaneous equations model. Near 

exogeneity is modeled as a local to zero correlation between instruments and structural errors. 

This research is partly motivated by the argument that even a weak correlation between 

instruments and structural errors under weak instruments can lead to a large inconsistency in IV 

estimates (Bound, Jaeger, and Baker, 1995). Estimation and inference with weak instruments 

have received more and more attention since the paper by Angrist and Krueger (1991), and some 

test statistics have been developed that are robust against weak instruments. This paper is the 

first one to study the estimation and inference in a linear IV framework that allows weak 

instruments and near exogeneity to occur at the same time. Caner (2005) studies the generalized 

empirical likelihood estimators with near exogeneity and weak instruments. 

This paper obtains the limits of the TSLS estimator and the LIML estimator with weak 

instruments and near exogeneity. We show that the asymptotic bias may be larger than that in 

Staiger and Stock (1997) where only weak instruments occur. We show that the Anderson-Rubin 

test (Anderson and Rubin, 1949) and the Kleibergen test (Kleibergen, 2002) which are robust 

against weak instruments are no longer asymptotically pivotal with near exogeneity. Using 

critical values from the chi-square distribution leads to a serious size distortion. Moreira (2003) 

develops a conditional likelihood ratio test which has a correct size with weak instruments. We 

show that the conditional likelihood ratio test does not work under weak instruments and near 

exogeneity since the conditional distribution depends upon an unknown parameter. The 

conditional test using critical values obtained from simulating the conditional distribution 

ignoring the unknown parameter cannot be similar in general. 

To correct asymptotically the sizes of tests under weak instruments and near exogeneity, we 

employ the resampling based Anderson-Rubin and Kleibergen tests. We use data-dependent 

critical values obtained from resampling instead of those obtained from the regular chi-square 

distributions. We propose the delete- d   jackknife based Anderson-Rubin and Kleibergen tests to 

correct size distortion in finite samples under weak instruments and near exogeneity. 

This paper is organized as follows. Section 3.1 introduces the model and some assumptions. 

Section 3.2 provides limits of the TSLS estimator and the LIML estimator with weak instruments 

and near exogeneity. The problem of testing and inference with weak instruments and near 

exogeneity is analyzed in Section 3.3. Section 3.4 derives the resampling based tests. Section 3.5 

discusses the size properties in finite samples by using Monte Carlo simulation, and Section 3.6 
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concludes. Appendix is included in Section 3.7. 

3.1 THE MODEL AND ASSUMPTIONS 

In this article, we consider a linear simultaneous equations model (Hausman, 1983; Phillips, 

1983),  

y  Y  u

Y  Z  V

 

  

Instrumental Variables Regression with Weak Instruments and Near ExogeneityInstrumental 

Variables Regression with Weak Instruments and Near ExogeneityInstrumental Variables 

Regression with Weak Instruments and Near ExogeneityInstrumental Variables Regression with 

Weak Instruments and Near ExogeneityInstrumental Variables Regression with Weak 

Instruments and Near ExogeneityInstrumental Variables Regression with Weak Instruments and 

Near ExogeneityInstrumental Variables Regression with Weak Instruments and Near 

Exogeneitywhere  y   and  Y   are respectively an  N  1   vector and an  N  m   matrix of 

endogenous variables,  Z   is an  N  K   matrix of instruments,  u   is an  N  1   vector of 

structural errors,  V   is an  N  m   matrix of reduced form errors, and     and     are 

respectively an  m   unknown parameter vector and a   1 K  m   unknown matrix of parameters. 

Note that we require  K ≥ m  . We are interested in estimation and inference about     with 

weak instruments and near exogeneity. Assumption 1 and 2 give the models with weak 

instruments and near exogeneity considered in this paper. 

 

Assumption 1:    N  C1 / N  , where  C   is a fixed  1 K  m   matrix. 

 

Assumption 2:  EZi
′ui   C2 / N  , where  C   is a fixed  2 K  1  vector. 

 

Assumption 1 benefits from Staiger and Stock (1997), which models weak instruments as local 
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to zero on the reduced form coefficients. This means that the instruments  Z   are weakly 

correlated with the endogenous variables  Y   when the sample size  N   tends to infinity. 

Assumption 1 is widely used in weak instruments literature; see Stock, Wright and Yogo (2002). 

Assumption 1 also includes the case of nonidentification when it allows  C   to be a matrix of 

zeros. Assumption 2 models near exogeneity, which means that the instruments  

1

Z   are not 

weakly exogenous (Engle, Hendry and Richard, 1983) and the correlation is local to zero as the 

sample size  N   grows large. Caner (2005) considers near exogeneity in nonlinear moment 

restrictions in generalized empirical likelihood estimators. We observe a trade-off between weak 

instruments and near exogeneity. As the sample size  N   grows large, the reduced form 

coefficient  N   tends to being unidentified but instruments tend to exogeneity. Assumption 1 

and 2 model the idea of Bound, Jaeger, and Baker (1995) that "if the instruments are only weakly 

correlated with the endogenous explanatory variable then even a weak correlation between the 

instruments and the error in the original equation can lead to a large inconsistency in IV 

estimates". However, in this paper, we emphasize not only the problem of estimation but also the 

problem of inference with weak instruments and near exogeneity. 

In order to construct asymptotic results, we need following assumptions with respect to error 

terms and instruments. These assumptions are standard in the literature and can be obtained 

under standard moment conditions. 

Assumption 3: The following limits hold jointly when the sample size  N   converges to infinity: 

(a)  

u ′u/N, V ′u/N, V ′V/N
p
→ u

2 ,Vu ,VV  

where    ,     and  u Vu VV   are respectively a  1   scalar, an  m   vector and an  m   
matrix. 

 1  1  m

 
(b)  

Z ′Z/N
p
→ Q  

 where  Q  is a positive definite  K  K   matrix. 

 
(c)  
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Z ′u/ N , Z ′V/ N 
d
→ Zu ,ZV  

 and 
 

Zu

vecZV

 N
C2

0
, ⊗ Q

 
 where  

 
u

2 Vu
′

Vu VV

.

 
 
These convergences in Assumption 1 are not primitive assumptions but hold under weak 

primitive conditions. Parts (a) and (b) are taken from Staiger and Stock (1997), which follow 

from the weak law of large numbers. Part (c) follows from triangular array central limit theorem. 

The  Zu   in (c) is, rather than a mean zero normal distribution in Staiger and Stock (1997), a 

normal distribution with nonzero mean, which is a drift term  C   coming from the near 

exogeneity assumption. For any independent sequence  Z  , if  

2

i
′ui EZi

′ui 
2  Δ     for some  

  for all  i  0  1, 2, 3, . . . , N   , then Liapunov's theorem leads to the limiting results in (c); 

see Davidson (1994). 

We use the following definitions and notation in the paper. Let  Y  y     Y   and let   I   denote 

the identity matrix. Let  PW  WW′W−1W′   a projection on a full rank matrix  W   and  

MW  I − PW   a projection on the space orthogonal to  W  , where  W   is a general  a   

matrix with  a  . Let  

 b

≥ b PW
1/2  W′W−1/2W′  . 

For comparability, we follow the additional definitions and notation provided by Staiger and 

Stock (1997). Define    ;   ;   VV
−1/2′Vuu

−1   Q1/2C1VV
−1/2 zV  Q−1/2ZV      ; and  VV

−1/2

zu  Q−1/2Zuu
−1   where  Zu   is a normal distribution with zero mean and variance  

  u
2 ⊗ Q  .  Zu   is the centered version of  Zu  , which implies  Zu  Zu − C2  . Note 

that the  Zu   defined here is the same as the  Zu   defined in Staiger and Stock (1997) for the 

model defined by (1) and (2) in their paper. Furthermore, let  v   and  1    zV′  zV
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v 2    zV′zu .   

3.2 ESTIMATION: LIMITING RESULTS AND ASYMPTOTIC BIAS 

In this section we derive the limits of the TSLS estimator and the LIML estimator under weak 
instruments and near exogeneity. 

First, under Assumptions 1, 2 and 3, we show that limiting results of sample moments are 
different from those under weak instruments. The following lemma provides useful limiting 
results we need in this section. 
 
Lemma 1  Suppose that Assumptions 1, 2 and 3 hold for a linear simultaneous equations model, 
then the following limits hold jointly as  N →   , 
(a)   

Y′u/N, Y′Y/N
p
→ Vu,VV;  

 
(b)  

PZ
1/2u, PZ

1/2V
d
→ zuu , zVVV

1/2  
 where  

zu  zu  Q−1/2C2u
−1

 
 and  

zu
′ veczV′′

d
→ N

Q−1/2C2u
−1

0
, ⊗ IK ;

 
 where     is the    matrix with  m  1  m  1 11  1,22  Im ,12  ′   and  
21    . 
(c)  

PZ
1/2Y

d
→   zVVV

1/2 ;  
 
(d)   

Y′PZu, Y′PZY, u′PZu
d
→ VV

1/2′v 2u ,VV
1/2′v 1VV

1/2 ,u
2zu

′zu  
where  v 2    zV′zu  . 
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All the proofs are given in the appendix. 

Comparing Lemma 1 with the analogous lemmas in Staiger and Stock (1997, Lemma A1) and 

Wang and Zivot (1998, Lemma 1), we observe that the difference comes from the fact that  zu   

in our lemma replaces  zu   in the previous lemmas in the weak instruments literature. Obviously, 

the drift term  Q   in   −1/2C2u
−1 zu   is the asymptotic bias from near exogeneity. As the sample 

size  N   grows large, it seems that the correlation between instruments and structural errors tends 

to zero and instruments achieve weak exogeneity, but the convergence rate is at the square root 

of the sample size  N   , which is slower than the case of weak exogeneity. As a result, we 

observe that the asymptotic bias in Lemma 1 depends on the nuisance parameter  C  . . 2

Consider a linear simultaneous equations model defined by (101) and (111), the TSLS estimator 

of    is TSLS

∧
TSLS  Y′PZY−1Y′PZy   

and the LIML estimator of  LIML   is 

   
∧
LIML  Y′I − kMZY−1Y′I − kMZy  

where  k   is the smallest root of the determinantal equation  

Y′Y − kY′MZY  0.  
 

Let  u
2
 û′û/N − K − m   where  û  y − Y    

∧
   is the estimated error. The following 

theorem extends the limiting results of the general  k   estimators under weak instruments 

in Staiger and Stock (1997) to a general case combining weak instruments with near exogeneity. 

Note that the most popular  k   estimators are the TSLS estimator when  k   and the 

LIML estimator when  k   is defined above. 

− class

− class  1

 
Theorem 1 Suppose that Assumptions 1, 2 and 3 hold for a linear simultaneous equations  model,  

then the following limits hold jointly as the sample size  N →   , 

(a)  
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∧
TSLS − 0

d
→ uVV

−1/2v 1
−1v 2 .  

 
(b) 

TSLS
d
→ u

2S1bTSLS  
where  

S1bTSLS  1 − 2′bTSLS  bTSLS
′ bTSLS  

 and  bTSLS  v 1
−1v 2  . 

(c)  
∧
LIML − 0

d
→ uVV

−1/2v 1 − Im −1v 2 −   
where  Nk − 1     and     is the smallest root of the determinantal equation  


0
∗
−   0

 
and 


0
∗

 zu   zV′zu   zV.
 

(d)   

LIML
d
→ u

2S1bLIML  
where  

S1bLIML  1 − 2′bLIML  bLIML
′ bLIML  

 and  

bLIML  v 1 − Im −1v 2 − .  
 
The limits of the TSLS estimator and the LIML estimator in Theorem 1 under weak instruments 

and near exogeneity are analogous to Theorem 1 and Theorem 2 in Staiger and Stock (1997) for 

weak instruments. We obtain their results by replacing  zu   and  v 2   respectively by  zu   and  

 . Note that the difference in  v 2 v 2   and  v   comes from the difference in  2 zu   and  zu  , which is  

 , stemming from near exogeneity. We can obtain Staiger and Stock (1997)'s result 

by setting  

Q−1/2C2u
−1

C2  0  . Theorem 3.1 shows that the additional terms stemming from near 

exogeneity can bring larger inconsistency and asymptotic bias in the estimation of     and     u
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than those with weak instruments only. 

Consider an interesting case with strong instruments (  N  C1  ) but having the problem of 

near exogeneity. In that case, both the TSLS estimator and the LIML estimator are consistent. 

However, when the weak instruments are weakly correlated with the structural errors, Theorem 1 

shows that the inconsistency and the asymptotic bias can increase very much. 

The following corollary measures the bias of the TSLS estimator relative to the OLS estimator 

under weak instruments and near exogeneity. Let     denote the OLS estimator of  
∧
OLS   . Let  

   YY  p limY′Y/N  . Let  h  E v 1
−1  zv′zv   and  Δ  E v 1

−1  zv′Q−1/2C2u
−1

 . 

 

Corollary 1  Suppose that Assumptions 1, 2 and 3 hold for a linear simultaneous equations 

model, then  

B2  E
∧
TSLS − 0′YYE

∧
TSLS − 0/E

∧
OLS − 0′YYE

∧
OLS − 0

→ h  Δ′h  Δ/′.  
 
The relative squared bias  B2   depends on    ,  h   and  Δ  . Note that the squared bias of the OLS 
estimator is    , which stems from the correlation between  u   and  ′ V  . Weak instruments lead 
to the bias based on  h  . According to part (e) of Theorem 1 in Staiger and Stock (1997), since  

  is asymptotically proportional to the Wald statistic testing     ,  h   and then the bias 
becomes very large when the strength of the instruments is very poor. The  Δ   results from near 
exogeneity. We obtain that  

v 1 0

B2  ′h ′h/′
0

  under weak instruments in Staiger and Stock 
(1997) if we set  C  . The additional term  Δ   and the cross product terms between  Δ   and  

  can exaggerate the squared bias under weak instruments and near exogeneity. 
2 

h

3.3 INFERENCE WITH NEAR EXOGENEITY 

In a linear simultaneous equations model, we test  H0 :   0   versus  H1 :  ≠ 0  . As 

Staiger and Stock (1997) and others show, most of the conventional test statistics, for example, 

the Wald statistic, do not work under weak instruments. Given the results in the previous section, 

these test statistics of course do not work under weak instruments and near exogeneity. Wang 
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and Zivot (1998) and Zivot, Startz, and Nelson (1998) find that the limiting distributions of the  

LM   and  LR  statistics based on the TSLS and the LIML estimators are bounded by a chi-square 

distribution with degrees of freedom  K  , the number of instruments. Even these conservative 

statistics do not work under near exogeneity because the limiting distributions now depend on 

the unknown nuisance parameter  C  . It is also well known that overidentification tests do not 

work under weak instruments. As a result, it's not clear how to construct a pretest procedure for 

testing the exogeneity of instruments under weak instruments. 

2

In this section, we examine some recently developed tests robust to weak instruments. We show 

that none of these tests is robust to near exogeneity and weak instruments simultaneously. 

We first examine the Anderson-Rubin test (Anderson and Rubin, 1949) under near exogeneity. 

The test is given by 

AR0  y − Y0′PZy − Y0/ N K
1
− y − Y0′MZy − Y0

 
                                             
The Anderson-Rubin test is robust to weak instruments since the test itself is asymptotically 

pivotal, which means that the limiting distribution of the test does not depend on the nuisance 

parameter  
∧
  . The test converges, under the null hypothesis of     and Assumptions 1 

and 3, in distribution to a chi-square distribution with degrees of freedom  

 0

K  , the number of 

instruments. Moreira (2003) shows that the Anderson-Rubin test is uniformly most powerful 

among the class of unbiased tests when  K  m  . But this optimal property does not hold when  

K  m  . The power of the Anderson-Rubin test becomes low when the number of instruments  

K   is large. 

The following theorem summarizes the asymptotic result of the test under near exogeneity. 

 
Theorem 2 Suppose that Assumptions 1, 2 and 3 hold for a linear simultaneous equations model, 

then under the null hypothesis of    ,   0

AR0
d
→ K

2   
where  K

2    is a noncentral chi-square distribution with degrees of freedom  K   and the 

noncentral parameter    .  C2
′ −1C2
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Note that    u
2 ⊗ Q   is the variance covariance matrix of  Zu   and  Zu  . 

Theorem 2 shows that the Anderson-Rubin test is not asymptotically pivotal any more under near 

exogeneity. The limit of the test depends on the nuisance parameter  C   which comes from near 

exogeneity. We obtain the result of the test under weak instruments by letting  C  . So 

Theorem 2 is a more general result. Theorem 2 shows that, even under the null hypothesis, the 

Anderson-Rubin test with near exogeneity converges in distribution to a noncentral chi-square 

distribution depending on unknown nuisance parameters. Near exogeneity leads to a distortion in 

size when we use critical values from the chi-square distribution with degrees of freedom  

2

2  0

K  . 

The Kleibergen test (2002) is proposed to overcome the weakness of the Anderson-Rubin test 

that the power becomes low under a largely overidentified model. The Kleibergen test is given 

by 

 

K0  y − Y0′P
Y0

y − Y0/ 1
N − K y − Y0′MZy − Y0

 

where  

Y0  Z0  , and  

0  Z ′Z−1Z ′Y − y − Y0SV0/S0,  
where 

S0  1
N − K y − Y0′MZy − Y0

 
and 

SV0  1
N − K y − Y0′MZY.

 
 
          
The Kleibergen test is asymptotically pivotal, and converges under  H0   to the chi-square 

distribution with degrees of freedom  m  , the number of endogenous variables. Note that  0   

in (171) is a consistent estimator of the reduced form coefficients     and asymptotically 

independent of  Z  . Moreira (2003) shows that  Z   and    ′y − Y0 ′y − Y0 0   are 

sufficient statistics for     and     respectively. Note that the Kleibergen test is a LM type test 
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statistic, which is a quadratic form of  Z   conditional on   ′y − Y0 0  . Because of the 

asymptotic independence between   0   and  Z  , the Kleibergen test is 

asymptotically pivotal when instruments are valid, weak ( 

′y − Y0

N  C1 / N  ) or invalid 

( N  0  ). We extend the Kleibergen test to a more general situation combining weak 

instruments with near exogeneity, but we find that the nice property above does not hold any 

more. 

Denote by  ZU   the limit of  
1
N

Z ′Y − Z − y − Y0SV0/S0  . Let  

G  1
N

Z ′y − Y0   and  D  NZ ′Y − y − Y0SV0/S0   where     is some 

scale function of the sample size  

N

N   to make " D " have a valid limit. Denote by  G   and  D  

respectively the limiting distributions of  G   and  D . Note that both  G   and  D  are valued at 

the true value    . The following theorem summarizes the asymptotic results of the Kleibergen 

test under near exogeneity and weak instruments. 

0

 
 
Theorem 3  Suppose that Assumptions 1, 2 and 3 hold for a linear simultaneous equations model, 

then under the null hypothesis of    ,   0

K0
d
→   C2′  C2  

where  

  N0, Im   
 and  

C2  D′−1D−1/2 ′D−1C2  
and furthermore,  D  is different when the quality of instruments varies. 

(a)  When the instruments are valid (  N  C1  ),  

D
p
→ QC1 ;  

 
(b)  When the instruments are weak (  N  C1 / N   ),  
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D
d
→ ZU  QC1 ;  

 
(c)  When the instruments are invalid (  N  0   ),  

D
d
→ ZU.  

 
Note that  C   is defined in Assumption 1,  C   is defined in Assumption 2, and  Q  . 1 2  EZ ′Z

Unlike the result in Kleibergen (2003) that the Kleibergen test converges to a chi-square 

distribution robust to the quality of instruments, Theorem 3 shows that it tends to different 

nonstandard distributions when the quality of instruments varies. Although  D  varies with the 

quality of instruments, when    (no near exogeneity), the Kleibergen test is 

asymptotically a quadratic form of a standard normal distribution     conditional on  

C2  0

ZU   

robust to the quality of instruments.  ZU   is defined in the appendix. Since  ZU   is 

asymptotically independent of this standard normal variable    , the Kleibergen test converges in 

distribution to the chi-square distribution with degrees of freedom  m  . When  C  , near 

exogeneity leads to an asymptotic bias    . So the distribution of the Kleibergen test 

conditional on  

2 ≠ 0

C2

ZU   is not pivotal, and varies with different  D s. 

Theorem 3 shows that the Kleibergen test converges to a nonstandard distribution depending on 

the nuisance parameter  C  . The nonstandard distribution is a quadratic form of the sum of a 

standard normal variable     and the deviation     which is the asymptotic cost of near 

exogeneity. We obtain Kleibergen's (2003) result by setting  C  . So our theorem provides 

a more general result. Theorem 3 shows that even when the instruments are strong, the 

Kleibergen test with near exogeneity converges to a nonstandard distribution depending on 

unknown nuisance parameter  C  . Inference based on critical values from the chi-square 

distribution with degrees of freedom  m   can result in a size distortion. 

2

C2

2  0

2

Moreira (2003) develops a general method for similar tests based on the conditional distribution 

of nonpivotal statistics under weak instruments; for instance, the likelihood ratio test. He argues 

that there exist two asymptotically independent statistics which are invariant and sufficient for 
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the estimation and inference in a linear simultaneous equations model. One statistic depends on  

   but the other does not. The asymptotic independence makes it possible to construct the 

conditional null distribution that does not depend on    . As long as the conditional null 

distribution is continuous and does not depend on any unknown nuisance parameters, Moreira 

shows that its quantiles can be simulated and used to construct similar tests. Moreira (2003) 

proposes two likelihood ratio tests: 

LR1  b0
′ Y′PZYb0 /b0

′ b0 − 
min

 

where  b   is the     vector    ,  −  ,  0 m  1  1 1 0
′ ′   Y′MZY/N − K   and  min   is the 

smallest eigenvalue of  
−1/2′

Y′PZY    
−1/2

 . 

LR2  N
2 ln1  b0

′ Y′PZYb0 /b0
′ Y′MZYb0 − N

2 ln1  min /N − K
 

 
The  LR1   statistic is obtained by replacing the variance covariance matrix by a consistent 

estimator in a likelihood ratio test under assumptions of normality and known variance 

covariance matrix. The  LR2   statistic is the likelihood ratio test for the normal distribution with 

unknown variance covariance matrix. Both the  LR1   and  LR2   statistics are continuous 

functions that depend on two sufficient and asymptotically independent statistics  S   and  

T   

where  

S  Z ′Yb0  
and 

T  Z ′Y

−1
A0  

and  A0   is the     matrix    ,  m  1  m 0 Im ′  . Denote by  S, t,,0   the conditional null 

distribution conditional on  

T      , and by  ct t,,0 ,   the  1   quantile of the null 

conditional distribution of  

− 

S, t,,0  . The test rejects the null if  

S, t,,0  ct,,0 ,  . Moreira shows that their conditional distributions conditional 

on  

T       do not depend on  t   , and their quantiles are computable and can be used to 
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construct an exactly similar test. Recent studies (Andrews, Moreira and Stock, 2004) show that 

the conditional likelihood ratio test has good power under weak instruments.   

Unfortunately, the conditional likelihood ratio test does not work under near exogeneity. Note 

that under near exogeneity  

1/ N S  1/ N Z ′Yb0

 1/ N Z ′y − Y0
d
→ Zu  

where  Zu   is a normal distribution with mean  C  . So both the conditional null distribution  2

S, t,,0   and the critical value function  ct,,0 ,   depend on the unknown parameter  

 . The simulation of the conditional null distribution needs the information of  C  , but  C   

cannot be consistently estimated because  C   is a local to zero parameter. A conditional test 

based on the critical values obtained from simulating a conditional distribution ignoring the near 

exogeneity parameter  C   cannot be similar in general. 

C2 2 2

2

2

To the best of our knowledge, no test exists in the literature that is robust simultaneously to the 

joint problem of weak instruments and near exogeneity. Although Bound, Jaeger, and Baker 

(1995) notice the possible serious inconsistency of the TSLS estimators, few econometricians 

pay attention to the performance of testing for     under weak instruments and near 

exogeneity. On the one hand, overidentification tests for testing instrument exogeneity, for 

example, the Sargan test (Sargan, 1958) and the  

 0

J   test (Hansen, 1982; Newey, 1985), do not 

work under weak instruments. On the other hand, since the seminal paper by Staiger and Stock 

(1997), several tests have been developed in the literature robust to weak instruments, but we 

show that none of these tests is implementable under near exogeneity because the asymptotic 

distributions in each case are nonstandard and depend on the unknown nuisance parameters  C  . 

It's a big trouble in empirical studies when economists are confronted with the joint problem of 

weak instruments and near exogeneity. 

2

In the next section, we consider resampling methods to approximate the Anderson-Robin test and 

the Kleibergen test under weak instruments and near exogeneity. The resampling method based 

Anderson-Robin and Kleibergen tests are constructed based on the data-depedent critical values 

obtained from the resampling. 
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3.4 RESAMPLING BASED TESTS 

In this section, we employ the resampling based Anderson-Rubin and Kleibergen tests to cure 

the problem of size distortion under near exogeneity. In preceding sections, we show that the 

Anderson-Rubin test and the Kleibergen test are robust to the quality of instruments but have a 

size distortion under near exogeneity. The main reason is that near exogeneity brings a nuisance 

parameter  C   into the asymptotic distributions of the tests. We obtain chi-square distributions 

for the Anderson-Rubin test and the Kleibergen test when  C  . The tests are no longer 

asymptotically chi-square distributions under near exogeneity, and as a result, size distortion 

occurs when we use critical values from the chi-square distribution. It is well known that the 

bootstrap does not work under weak instruments since generating bootstrap samples requires 

suitable estimates of  

2

2  0

   and     (Dufour, 1997, 2003; MacKinnon, 2002). We consider the 

subsampling approach (Politis and Romano, 1994)  and delete- d   jackknife (Shao and Wu, 1989) 

as alternatives to bootstrapping. Instead of using critical values from chi-square distributions, we 

can use data-dependent critical values obtained from the resampling approaches. The resampling 

based tests are obtained by evaluating the same test statistics on each block of data, where the 

block size is much smaller than the sample size. 

Consider resampling methods in a linear simultaneous equations model. Let  XN    

 x N1 , x N2 , . . . , x NN  , a sample of  N   independent observations with a triangular array in the 

model. In order to employ the subsampling approach, let  Xb,1  ,  Xb,2  , ...,  Xb,Nb   be blocks of  

XN     x N1 , x N2 , . . . , x NN   with block size  b  . For independent data, we can construct blocks 

of  XN   in any order. For the subsampling method, the blocks are generated randomly from 

sample observations without replacement and the number of blocks we can generate is  

Nb  N
b  . For the delete- d   jackknife method, we firstly delete  d   observations randomly 

from sample observations without replacement. Given  d  , the block size for each block is  

N − d   and  Nb  N
d  . For each  Xb,j  ,  j  1, 2, . . . , Nb  , it includes  yj,b  ,  Y   and  Z   

which are subvectors or submatrixes of  

j,b j,b

y  ,  Y  and  Z   respectively. Note that  yb,j  is a  b    1
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vector,  Y   is a  b   matrix, and  Z   is a  bb,j  m b,j  K   matrix. These variables are denoted with 

subscript  b   because  yb,j  ,  Y   and  Z   represent randomly resampled data with block size  

  from sample observations without replacement. 

b,j b,j

b

Denote by  ℘   the unknown probability distribution that generates the sample observations, and 

assume that  ℘   belongs to a certain class of probability distributions  P  . Following Politis, 

Romano, and Wolf (1999), a general hypothesis testing procedure can be constructed as follows: 

the null hypothesis  H0 :   ℘    ∈   and the alternative hypothesis  P0 H1 : ℘ ∈ P1   where  

P0  P1  P  . In our case, the null hypothesis can be translated into a null hypothesis about a 

vector valued parameter     such that  P H0 :   0  P0  . Our goal is to construct a test 

with asymptotically correct size     (    1  ) based on a given statistic by using the 

resampling method. Define a test as 

 ∈ 0, 

 

TN  NtNx N1,x N2 , . . . , x NN    
where  N   is a convergence rate such that  N    →    as  N → .     
  
The corresponding cumulative distribution function is defined as    

GNz,℘  Pr℘TNx N1 , x N2 , . . . , x NN ≤ z  
We assume that there exists a continuous limiting law  G   such that   G. ,℘ Nz  ,    
converges weakly to  G   under the null as  

℘

. ,℘ N →   . Note that (221) implies that  
tNx N1 , x N2 , . . . , x NN    

p
→ 0   as  N →   . Correspondingly, the  1   quantile of the 

continuous limiting law    is defined as follows 

− 
G. ,℘

c1 − ,℘  infz : Gz,℘ ≥ 1 − .  
The idea of resampling is to approximate the sample distribution by the average of the 

corresponding empirical distributions obtained from the resampling methods. Denote by  t   

the corresponding version of  t

N,b,j

N   evaluated in a block  Xb,j  . The cumulative distribution 

function of     is tN,b,j
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Gb,jz,℘  Pr
℘
b tN,b,j ≤ z  

 
The sample distribution  GNz  ,  ℘   is approximated by  

GN,bz  1
N − b  1 ∑

j1

N−b1

1b tN,b,j ≤ z

 
 where  1   is an indicator function which takes value 1 if the inside inequality holds true and 

0 otherwise. 

. . 

Correspondingly, the  1   quantile of the  −  GN,b   is defined as 

cN,b1 −   infz : GN,bz ≥ 1 −   
Note that  cN,b1 −    is a data-dependent critical value of the resampling based tests. The 

resampling based tests reject the null hypothesis when  TN  cN,b1 −   . 

In order to construct asymptotic results, the subsampling method requires that the block size  

b →    as the sample size  N →    and  b/N → 0  . For the delete- d   jackknife method, the 

block size  b  N − d   and it requires that  d  N  , where  0  . In large samples,  

  for the subsampling method. In finite samples, the subsampling method is 

related to the choice of small blocks while the delete- 

   1

  N − b/N → 1

d   jackknife is related to the choice of 

relatively large blocks. 

Consider the resampling based Anderson-Rubin test evaluated in a block  Xb,j   

AR0N,b,j  b − Kub,j
′ Zb,jZb,j

′ Zb,j−1Zb,j
′ ub,j╱ub,j

′ MZb,jub,j

 

where  u  . We approximate the limiting distribution of  b,j  yb,j − Yb,j0 AR0   by 

GN,bz  1
N − b  1 ∑

j1

N−b1

1AR0N,b,j,n b ≤ z

 

Define  cN,b1 −    as the  1   corresponding quantile of the distribution  −  GN,bz  . The 

subsampling based Anderson-Rubin test rejects the null hypothesis when  

AR0  cN,b1 −   . 

The following theorem provides the asymptotic results of the resampling based Anderson-Rubin 
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test. 

 
 
Theorem 4   Suppose that Assumptions 1, 2 and 3 hold for a linear simultaneous equations model. 

Let  XN     x N1 , x N2 , . . . , x NN   be independent observations in triangular array defined on a 

probability distribution  ℘  . Define 

b,j
2  Eub,j

′ ub,j/b  
and 

Qb,j  EZb,j
′ Zb,j/b  

Assume the following conditions hold. For some      0,

(a)   E|zn,iun |2  Δ1     for all  1 ≤ n ≤ N   and all  1 ≤ i ≤ K   

(b)    E|zn,izn,l |1  Δ2     for all  1 ≤ n ≤ N   and all  1 ≤ i, l ≤ K   

(c)    E|un
2 |1  Δ3     for all  1 ≤ n ≤ N   

(d)      uniformly in  b,j
2 → u

2  0 j   as  b →    

(e)    Qb,j → Q   uniformly in  j   and uniformly positive definite as  b →    

Then under the null hypothesis of     and  b 0 →    as  N →   ,   

AR0N,b,j
d
→ K

2    
where  K

2    is a noncentral chi-square distribution with degrees of freedom  K   and the 

noncentral parameter   ,  0  . 
  1 − C2

′ −1C2   ≤ 1

 
 
The theorem gives asymptotic results of both the subsampling and the delete- d   jackknife based 

Anderson-Rubin tests under the null hypothesis with weak instruments and near exogeneity. 

Conditions (a), (b) and (c) imposed by the theorem are required respectively to apply the 

triangular array central limit theorem and the weak law of large numbers for the independent 

heterogeneously distributed observations. Conditions (d) and (e) state that the resampling 

versions of the variance of the structural errors and the moments of the instruments are 
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asymptotically close to the whole sample version as  b →   . Note that conditions (d) and (e) 

are common requirements for heteroskedastic observations; see Politis, Romano and Wolf (1997, 

1999). In our case, conditions (d) and (e) are satisfied trivially because of the i.i.d. assumption of  

  and  u Z  . 

When    , which implies that  b 1 /N → 0   as  N →   , Theorem 4 shows that the 

subsampling based Anderson-Rubin test converges in distribution to a chi-square distribution 

with degree of freedom  K  . The subsampling method cannot replicate the near exogeneity effect 

described by Theorem 2. When  0  , we obtain asymptotic results of the delete-    1 d   

jackknife based Anderson-Rubin test. Theorem 4 shows that the delete- d   jackknife based 

Anderson-Rubin test converges in distribution to a noncentral chi-square distribution. The 

noncentral parameter is a fraction of the noncentral parameter defined in Theorem 2, which 

means the delete- d   jackknife based Anderson-Rubin test can partially replicate the near 

exogeneity effect in the limiting distribution. We observe from simulations that by the choice of 

the block size  b  , the delete- d   jackknife based Anderson-Rubin test is slightly liberal. By 

increasing the block size we can expect to reduce the size distortion due to near exogeneity. 

Now, consider the resampling based Kleibergen test evaluated in a block  Xb,j  , 

K0 ,j  b − Kub,j
′ P

Yb,j0
ub,j/ub,j

′ MZb,jub,jN,b  
where  

Yb,j0  Zb,jb,j0   

and 

b,j0  Zb,j
′ Zb,j−1Zb,j

′ Yb,j − ub,jSV,b,j0/S,b,j0,  
 

S,b,j0  1
b − K ub,j

′ MZb,jub,j,
 

 

SV,b,j0  1
b − K ub,j

′ MZb,jYb,j.
 

 
We approximate the limiting distribution of  K0   by 
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GN,bz  1
N − b  1 ∑

j1

N−b1

1K0N,b,j ≤ z

 
 

Define  cN,b1 −    as the  1   corresponding quantile of the distribution  −  GN,bz  . The 

resampling based Kleibergen test rejects the null hypothesis when  K0  cN,b1 −   . The 

following theorem provides the asymptotic validity of the subsampling based Kleibergen test. 

 

 

Theorem 5   Suppose that Assumptions 1, 2 and 3 hold for a linear simultaneous equations  

model. Let  XN     x N1 , x N2 , . . . , x NN   be independent observations in triangular array defined 

on a probability distribution  ℘   . Define 

b,j
2  Eub,j

′ ub,j/b,  
 

Vu,b,j  Eub,j
′ Vb,j/b,  

and   

Qb,j  EZb,j
′ Zb,j/b.  

Assume the following conditions hold. For some      0,

(a)   E|zn,iun |2  Δ1     for all  1 ≤ n ≤ N   and all  1 ≤ i ≤ K   

(b)    E|zn,izn,j |1  Δ2     for all  1 ≤ n ≤ N   and all  1 ≤ i, j ≤ K   

(c)    E|un
2 |1  Δ3     for all  1 ≤ n ≤ N   

(d)    E|un
′ Vn |1  Δ4     for all  1 ≤ n ≤ N   

(e)      uniformly in  b,j
2 → u

2  0 j   as  b →    

(f)        uniformly in  Vu,b,j → Vu j   as  b →    

(g)    Qb,j → Q   uniformly in  j   and uniformly positive definite as  b →    

Then under the null hypothesis of     and  b 0 →    as  N →   , 
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K0N,b,j
d
→   1 − C2′  1 − C2  

where     is defined in Theorem 3 and  0  . C2   ≤ 1

 
 
The theorem gives asymptotic results of both the subsampling and the delete- d   jackknife based 

Kleibergen tests under the null hypothesis with weak instruments and near exogeneity. Note that 

Theorem 3 states that  C2  D′−1D−1/2 ′D−1C2   and  D  is different when the quality of 

instruments varies. Since the resampling approach is data-dependent, Theorem 5 can be applied 

to the case of near exogeneity robust to the quality of instruments. 

When    , Theorem 5 shows that the subsampling based Kleibergen test converges in 

distribution to a chi-square distribution with degree of freedom  m  , the number of instruments, 

which implies that the subsampling method cannot replicate the near exogeneity effect described 

by Theorem 3. When  0  , we obtain asymptotic results of the delete- 

 1

   1 d   jackknife 

based Kleibergen test. Theorem 5 shows that the delete- d   jackknife based Kleibergen test 

converges to a nonstandard distribution which is a square of sums of a standard normal variable 

and a random variable depending on  C  . Theorem 5 implies that the delete- 2 d   jackknife based 

Kleibergen test can partially replicate the near exogeneity effect in the limiting distribution. We 

observe from simulations that by the choice of the block size  b  , the delete- d   jackknife based 

Kleibergen test is slightly liberal. By increasing the block size we can expect to reduce the size 

distortion due to near exogeneity. 

The next section conducts a Monte Carlo simulation to compare the size performance of the 

Anderson-Rubin test, the Kleibergen test and their corresponding resampling based versions in 

finite samples under various environments. 

3.5 MONTE CARLO SIMULATION 

We consider a linear simultaneous equations model defined above. Since there is only one 
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endogenous variable  Y  , we set  K  1   (the just-identified case) and  K  2   ( the 

overidentified case). The     is the only structural parameter and we set the true value    . 

The  

0  0

N    is the sample size and we set  N  80   to conduct comparisons of tests performance in 

finite samples. The data     is  iiZi, ui, Vi d   which are generated from a joint normal distribution  

N0,  . 

When  l  ,  1

 

1 covZiui 0

covZiui 1 covViui

0 covViui 1
 

When  l    2,

 

1 0 covZi,1ui 0

0 1 covZi,2ui 0

covZi,1ui covZi,2ui 1 covViui

0 0 covViui 1
 

where  cov   measures the endogeneity of  Viui Y , which takes values of  0.  . We also do 

simulations when  cov    0.  . Since the results are similar to those when  cov    

 , we just report results when  cov    0.  . When  l  ,  cov   measures the 

degree of near exogeneity which takes values of   0  ,  0.  , or  0.  . When  l  , we set  

  and it takes values of  0  ,  0.  , or  0.  . The data generated from 

(411) and (421) also differ over the value of  

25

Viui  9 Viui 

0. 25 Viui  25  1 Ziui

10 15  2

covZi,1ui  covZi,2ui 10 15

  . The vector     controls the quality of  

instruments. We set     ,  0.  , or  1   in all cells of the vector to respectively represent 

nonidentification, weak instruments and strong instruments. 

0 1

We test  H0 : 0  0   against  H1 : 0 ≠ 0  . We study the size and power of the Anderson-

Rubin test and the Kleibergen test defined in Section 4 and their corresponding resampling 

versions defined in Section 5 under various environments. 

We conduct 1000 iterations to compare the sizes of the Anderson-Rubin test, the Kleibergen test 
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and their corresponding resampling versions under the null hypothesis     at the  10%  

nominal level in a small sample ( 

0  0

N  80  ) under various environments. We consider the just-

identified case ( l  ) and the overidentified case ( l  ) respectively. The simulation shows 

that results are similar to each other when  l   or  l   so we only report the just-identified 

case. 

 1  2

 1  2

Tables 1 reports actual rejection probabilities of the Anderson-Rubin test under the null 

hypothesis (    when the instruments are completely nonidentified (    ), weak 

(  ) or strong (    ). Tables 2 reports actual rejection probabilities of  the 

Kleibergen test under the null hypothesis (    in all the three cases. When  cov   

which means that there is no near exogeneity problem, for the Anderson-Rubin test, the actual 

sizes ranges from  9.   to  10.  . For the Kleibergen test, the actual sizes ranges from  9.   to  

 . This means both tests work very well if there is no near exogeneity. 

0  0 0

  0. 1 1

0  0 Ziui  0

1 1 1

10. 6

However, Theorems 4.1 and 4.2 show that the limits of both test statistics are not chi-square 

distributed under near exogeneity and using critical values from the chi-square distribution leads 

to large size distortion. The simulation results reflect the facts stated in theorems. For the 

Anderson-Rubin test with  cov  , actual sizes are between  22   and  25   when  

 . For the Kleibergen test with  cov  , actual sizes are between  24.   and  

  when  l  . If  cov  , the degree of size distortion increases very much. For 

the Anderson-Rubin test, actual sizes are around  24   when  l  . For the Kleibergen test, the 

actual sizes range from  37.   to  41.   when  l  . These results show that using chi-square 

critical values without taking account of near exogeneity is very misleading. 

Ziui  0. 10

l  1 Ziui  0. 10 0

24. 9  1 Ziui  0. 15

 1

8 1  1

Table 3 compares size properties of resampling based Anderson-Rubin tests under near 

exogeneity in finite samples for various choices of the block size  b  . We choose the block size  

 . Roughly speaking,  b   can correspond to subsampling 

method and other  b  s correspond to delete- 

b  5, 10, 15, 20, 25, 30, 40  5, 10

d   jackknife method. Compared to Table 1, we 

observe the reduction in size distortion in Table 3 by using data-dependent critical values 

obtained from resampling. When instruments are strong and  b  , the actual size is  9.    20 9
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when the correlation between instruments and structural errors is  0.  , and the actual size is  

  when the correlation between instruments and structural errors is  0.  . In Table 1, their 

corresponding actual sizes are  25.   and  38.   respectively. We can observe similar situations 

when instruments are weak or nonidentified. 

10

14. 9 15

1 2

Now, consider a realistic situation that the correlation between instruments and structural errors 

is between  0.   and  0.  . When the block size is large, for example,  b  , the 

resampling based Anderson-Rubin test is very conservative. For example, the actual sizes under 

strong instruments are  1.   and  4.   respectively when the correlation between instruments 

and structural errors are  0.   and  0.  . We also observe similar situations when instruments 

are weak or nonidentified. When the block size shrinks, we can observe more rejections. When  

  and  b  , we observe suitable actual sizes under near exogeneity. When  b   

and  b  , we observe overrejections. For example, when  b  , the actual rejection 

probabilities under weak instruments are  16.   and  27.   respectively when the correlation 

between instruments and structural errors are  0.   and  0.  . Note that  b   

represents subsampling methods. Theorem 4 shows that the subsampling method cannot replicate 

the near exogeneity effect and converges to the same chi-square distribution defined in Theorem 

2. The size distortion when  b   reflects this fact. Compared to the subsampling 

method, we observe that the delete- 

10 15  40

1 2

1 15

b  25  20  10

 5  5

3 8

1 15  5, 10

 5, 10

d   jackknife is slightly liberal. They are conservative when 

the block size is large and obtain right actual rejection probabilities when  b   is in the range of  

  and  25  . For example, when  b   and  cov  , the actual rejection 

probabilities are  9.  ,  9.  , and  9.   respectively under strong instruments, weak instruments 

and nonidentification. When  b   and  cov  , the actual rejection probabilities 

are  12.  ,  13.  , and  12.   respectively under strong instruments, weak instruments and 

nonidentification. 

20  20 Ziui  0. 10

9 7 5

 25 Ziui  0. 15

3 9 6

We also observe very conservative results when there is no exogeneity, that is,  cov  . 

One possible reason is that when we resample the sample data, the moment condition  

Ziui  0

 62 



∑i1
b Ziui/b   in blocks is not demeaned in finite samples, which produces larger data-

dependent critical values than those from chi-square distribution. This creates undersized results. 

Table 4 reports the resampling based Kleibergen test under near exogeneity in finite samples for 

various choices of the block size  b  . We choose the block size  b  . 

Roughly speaking,  b   can correspond to subsampling method and other  b  s 

correspond to delete- 

 5, 10, 15, 20, 25, 30, 40

 5, 10

d   jackknife method. Compared to Table 2, we observe the reduction in 

size distortion under resampling methods. We also observe similar relationship between actual 

sizes and choices of the block size to Table 3. 

3.6 CONCLUSIONS 

This paper studies the asymptotic properties of estimation and inference with weak instruments 

and near exogeneity in a linear simultaneous equations model. Weak instruments and near 

exogeneity are related to two important criteria of instrumental variables regressions. We show 

that the TSLS estimator and the LIML estimator with weak instruments and near exogeneity can 

have a relatively large asymptotic bias compared to the case where only weak instruments occur. 

We show that the limiting distributions of the Anderson-Rubin test and the Kleibergen test are no 

longer asymptotically pivotal under near exogeneity, and it leads to serious size distortion in 

hypothesis testing if we use the critical values from the chi-square distributions. We show that 

the conditional likelihood ratio test does not work in our case because the conditional distribution 

of the test under the null hypothesis depends on an unknown parameter which reflects near 

exogeneity. We propose delete- d   jackknife based Anderson-Rubin and Kleibergen tests to 

correct size distortion in finite samples under weak instruments and near exogeneity. 

 

 63 



3.7 APPENDIX 

3.7.1 Appendix 1 

Proof of Lemma 1  (a) First, substituting  Y  from the reduced form equation, we have 
 

Y′u/N  Z  V′u/N

 V ′u/N  ′Z ′u/N.  

Note that  V ′u/N
p
→ Vu   by part (a) in Assumption 3. The weak law of large numbers and 

Assumption 2 give 

 

Z ′u/N
p
→ EZi

′ui   C2 / N  
And note that    C1 / N   from Assumption 1, so we have  

Y′u/N
p
→ Vu  

since the second part tends to zero in probability. 

To show  

Y′Y/N
p
→ VV,  

we follow the proof above, so 

Y′Y/N  Z  V′Z  V/N

 V ′V/N  ′Z ′Z/N  ′Z ′V/N  V ′Z/N  
 
By part (a) in Assumption 3, we have  

V ′V/N
p
→ VV.  

Note that the last three parts tend to zero in probability because of part (b) and (c) in Assumption 

3 and Assumption 1. The result then follows. 

(b)First, we observe that  

PZ
1/2u  Z ′Z−1/2Z ′u

 Z ′Z/N−1/2Z ′u/ N   

   
Then, we have  
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Z ′u/ N  Zu  Zu  C2  
 by part (c) in Assumption 3. Note that  Zu   is a standard normal vector which is the same as 

the  Zu   defined in Staiger and Stock (1997). Part (b) in Assumption 3 gives that  

Z ′Z/N−1/2  Q−1/2 .  
 
So  

PZ
1/2u

d
→ Q−1/2Zu

 Q−1/2Zuu
−1u

 Q−1/2Zu  C2u
−1u

 zuu  Q−1/2C2

 zu  Q−1/2C2u
−1u

 zuu  
 
Note that  zu  zu  Q−1/2C2u

−1   stated in the lemma. 

The proof of  PZ
1/2V

d
→ zvVV

1/2
  is the same as that in Staiger and Stock (1997). 

(c) Note that 

PZ
1/2Y  Z ′Z/N−1/2′Z ′Y/ N 

 Z ′Z/N−1/2′Z ′Z/ N  Z ′V/ N .  

Then we know that    C1 / N   in Assumption 1 and  Z ′V/ N
d
→ ZV   and  Z ′Z/N

p
→ Q   by 

parts (c) and (b) in Assumption 3 respectively. The result directly follows. 

(d) First, we observe that 

Y′PZu  Y′Z/ N Z ′Z/N−1Z ′u/ N   

Note that  Z ′Z/N−1 p
→ Q−1   from part (b) in Assumption 3 and  Z ′u/ N  Zu   from part (c) 

in Assumption 3.Then, substituting  Y  from Equation (111), we have 

Y′Z/ N  Z  V′Z/ N

 V ′Z/ N  ′Z ′Z/ N .  
 
From part (c) in Assumption 3, we have  
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V ′Z/ N
d
→ ZV

′ .  
 Assumption 1 and part (b) in Assumption 3 give that 

′Z ′Z/ N
p
→ C1

′ Q.  
 So, we have 
 

Y′PZu d
→ ZV

′  C1
′ QQ−1Zu

 ZV  Q′C1′Q−1Zu  C2

 VV
1/2′Q1/2C1VV

−1/2  Q−1/2′ZVVV
−1/2′Q−1/2′Zuu

−1  Q−1/2′C2u
−1u

 VV
1/2′  zV′zu  Q−1/2′C2u

−1u

 VV
1/2′  zV′

z uu

 VV
1/2′v 2u  

where  
v   defined in the lemma. 2    zV′

z u

To show  u′PZu
d
→ uuzu

′zu  , note that 

 

u ′PZu  u′PZ
1/2′PZ

1/2u.  
 
The result follows directly  from part (b) in the lemma. 

Note that the proof of  Y′PZ
1/2Y     is the same as that in Staiger and Stock (1997).          

Q.E.D. 

d
→ VV

1/2′v 1VV
1/2

 
 
Proof of Theorem 1 (a) First, we have 
 

∧
TSLS − 0  Y′PZY−1Y′PZu

d
→ VV

1/2′v 1VV
1/2−1VV

1/2′v 2u

 uVV
−1/2v 1

−1v 2  

   
  Note that the second step is obtained from part (d) in Lemma 1. 

(b) The result of part (b) follows Theorem 2 in Staiger and Stock (1997) by replacing  b   by  
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bTSLS  v 1
−1v 2 .   

(c)First, replacing  y   by the structural equation in the LIML estimator, we have 

 
∧
LIML − 0  Y′I − kMZY−1Y′I − kMZu

 Y′Y − /N  1Y′MZY−1Y′u − /N  1Y′MZu
d
→ Y′Y − Y′MZY − /NY′MZY−1Y′u − Y′MZu − /NY′MZu

 Y′PZY − /NY′MZY−1Y′PZu − /NY′MZu  
The second step is obtained by the fact that  Nk − 1    . Note that  

Y′MZY/N  Y′Y/N  Y′PZY/N
p
→ VV  

from part (a) in Lemma 1 and  

Y′PZY/N
p
→ 0  

from part (d) in Lemma 1. By the similar reason, we have  

Y′MZu/N
p
→ Vu .  

 
So  

∧
LIML − 0  Y′PZY − Y′MZY/N−1Y′PZu − Y′MZu/N

d
→ VV

1/2′v 1VV
1/2 − VV−1VV

1/2′v 2u − Vu

 uVV
−1/2v 1 − Im −1v 2 −   

where  Nk − 1     and    is the smallest root of the determinantal equation  k

Y′Y − kY′MZY  0  . To complete the proof, we follow the method used in Theorem 3 in 

Staiger and Stock (1997) to find the smallest root of the limit of the determinantal equation as  

N →   . Let  
J 

1 0

− Im   and note that  YJ  u     Y  . Since   J   is a non-singular  

  matrix, the roots of the modified determinantal equation m  1  m  1

J′Y′YJ − kJ′Y′MZYJ  0   are the same as the roots of the original determinantal equation. 

Denote by 
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D  J′Y′YJ − /N  1J′Y′MZYJ

 J′Y′PZYJ − /NJ′Y′MZYJ


u′PZu u′PZY

Y′PZu Y′PZY
− 

u′MZu/N u′MZY/N

Y′MZu/N Y′MZY/N

d
→

u
2z u

′ z u u
z u
′   zvVV

1/2

VV
1/2  zv′

z uu VV
1/2  zv′  zvVV

1/2
− 

u
2 Vu

′

Vu VV


u 0

0 VV
1/2


0
∗ u 0

0 VV
1/2

−
u 0

0 VV
1/2


u 0

0 VV
1/2

 

where    is defined in the statement of Theorem 1 and  

0
∗

   is defined in the statement of 

Lemma 1. So     is the smallest root of  

0
∗
−   0  . Note that the above derivation is 

obtained from part (d) in Lemma 1. 

(d) The result of part (d) follows Theorem 2 in Staiger and Stock (1997) by replacing  b   by  

bLIML  v 1 − Im −1v 2 − . Q.E.D.  
 

 
 
Proof of Corollary 1 Employing Theorem 1 and the Dominated Convergence Theorem, we get 
 

E
∧
TSLS − 0

d
→ uVV

−1/2Ev 1
−1v 2

 uVV
−1/2Ev 1

−1  zv′zu  Q−1/2C2u
−1

 uVV
−1/2Ev 1

−1  zv′zu  uVV
−1/2Ev 1

−1  zv′Q−1/2C2u
−1

 
 
Note that  zu   is asymptotically equivalent to  zv  , so we have  

E
∧
TSLS − 0

d
→ uVV

−1/2h  Δ.  
 
Note that    

E
∧
OLS − 0

d
→ uVV

−1/2.  
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The result in Corollary 1 follows from using  YY   =  p limY′Y/N   and     being a scalar.      

Q.E.D. 

u

 
 
Proof of Theorem 2 The Anderson-Rubin test is given by      

AR0  y − Y0′PZy − Y0/ 1
N − K y − Y0′MZy − Y0

 
 
We first observe that 

1
N − K y − Y0′MZy − Y0

 1
N − K u′MZu

 1
N − K u′u − 1

N − K u′PZu
 

 
By part (a) in Assumption 3, the first term converges in probability to    , and the last term 

tends to zero by part (d) in Lemma 1. So we have 
u
2

1
N − K y − Y0′MZy − 0

p
→ u

2 .
 

 
Next, note that   

y − Y0′PZy − Y0  u′PZu.  

Define    PZ
1/2u  . Part (b) in Lemma 1 gives that 


d
→ z uu

 zuu  Q−1/2C2  NQ−1/2C2 ,u
2.  

 
   
So  

y − Y0′PZy − Y0
d
→  ′

d
→ K

2 C2
′ u

2 ⊗ Q−1C2

 K
2 C2

′ −1C2. Q.E.D.  
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Proof of Theorem 3 We first follow Kleibergen's (2003) idea to construct two asymptotically 

independent variables. 

Note that  

 1
N

Z ′y − Y0, 1
N

Z ′Y − Z
d
→ Zu ,ZV

 
 
and      

Zu

vecZV
 N

C2

0
, ⊗ Q

 
 from Assumption 3. 

  Post-multiplying it by  

1 −Vu
′ /u

2

0 Im   gives 

 1
N

Z ′y − Y0, 1
N

Z ′Y − Z − y − Y0Vu
′ /u

2
d
→ Zu ,ZU

 
where  

U  Y − Z − y − Y0Vu
′ /u

2  V − uVu
′ /u

2
 

 and 

Zu , vecZU  N
C2

−C2Vu
′ /u

2
,

u
2 0

0 VV − VuVu
′ /u

2

 
 

So  Zu   and  ZU   are asymptotically independent. Note that in Kleibergen's proof,  C   is 

zero. 

2

Next, we have  

SV0
p
→ Vu

′
 

and  

S0
p
→ u

2
 

by parts (a) and (d) in Lemma 1. So  S   and  S   are consistent estimators of     

and     respectively. This implies that  

V0 0 Vu
′

uu
1
N

Z ′Y − Z − y − Y0SV0/S0   has the 
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same limiting behavior as  
1
N

Z ′Y − Z − y − Y0Vu
′ /u

2
 . So 

 

1
N

Z ′Y − Z − y − Y0SV0/S0
d
→ ZU

 
 
and it is asymptotically independent of  Zu  . 

Now consider  


Y0  Z0

 PZY − y − Y0SV0/S0  
and we have  

P
Y0

 ZZ ′Z/N−1DD′Z ′Z/N−1D−1D′Z ′Z/N−1Z ′/N
 

where  

D  NZ ′Y − y − Y0SV0/S0.  
When the instruments are strong, we have     We have  N  1/N. N  1/ N   when the 

instruments are weak or invalid. The Kleibergen test is given by   

K0  y − Y0′P
Y0

y − Y0/ 1
N − K y − Y0′MZy − Y0

 1
N
y − Y0′ZZ ′Z/N−1DD′Z ′Z/N−1D−1D′Z ′Z/N−1

 1
N

Z ′y − Y0╱ 1
N − K y − Y0′MZy − Y0

d
→ G ′−1DD′−1D−1D′−1G  

where  G   is the limit of  G  1
N

Z ′y − Y0   and  D  is the limit of  D  and  D  is defined in 

Section 4. Part (c) in Assumption 3 gives  G     Zu   where  Zu  NC2  ,    . Note that  
1

N−K y − 0′MZy − 0
p
→ u

2
  from part (a) in Assumption 3 and part (d) in Lemma 1. 

Next, consider  

D′−1D−1/2 ′D′−1G  D′−1D−1/2 ′D′−1Zu  C2  
where  Zu   is a normal distribution with zero mean and variance covariance matrix     and we 

have  Zu  Zu  C2  . The nonzero mean  C2   comes from near exogeneity. Note that 
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D′−1D−1/2 ′D′−1Zu
d
→ N0, Im   .  

 
So we have 
 

K0
d
→   C2′  C2.  

 
Next, we show that  D  is different when the quality of the instruments varies. The following 

statements provide the limits of  D   when the instruments are strong, weak or completely 

nonidentified. 

(a) When the instruments are strong,     , C1

 
1
N Z ′Y − y − Y0SV0/S0

 1
N Z ′Y − Z − y − Y0SV0/S0  1

N Z ′Z

→ QC1  
where the first term in the first equation converges to zero since 
 

1
N

Z ′Y − Z − y − Y0SV0/S0
d
→ ZU.

 
 
(b) When the instruments are weak,    C1 / N  ,              

1
N

Z ′Y − y − Y0SV0/S0

 1
N

Z ′Y − Z − y − Y0SV0/S0  1
N

Z ′ZC1 / N

d
→ ZU  QC1 .  

 
 (c) When the instruments are completely nonidentified,     , 0
                

1
N

Z ′Y − y − Y0SV0/S0

 1
N

Z ′Y − Z − y − Y0SV0/S0

d
→ ZU . Q.E.D.  
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Proof of Theorem 4  The resampling based Anderson-Rubin test  AR0N,b,j   is defined as, 

AR0N,b,j  b − Kub,j
′ Zb,jZb,j

′ Zb,j−1Zb,j
′ ub,j╱ub,j

′ MZb,jub,j  
We accomplish the proof by three steps. 

Step 1: We want to show  

ub,j
′ ub,j/b

p
→ u

2
 

as  b →   . Note that   

ub,j
′ ub,j/b  1

b − K ∑
n∈1,2,..,N

b

un
2 .

 

   represents the summation of  b   observations which are randomly picked from the 
sample observations    . The law of large numbers and condition (c) give that  

∑
n∈1,2,..,N

b

1, 2, . . . , N

ub,j
′ ub,j/b

p
→ b,j

2

 
as  b →    and the result follows by condition (d). 
Step 2: We want to show 

Zb,j
′ Zb,j/b−1 p

→ Q−1 .
 

Note that  

Zb,j
′ Zb,j/b  1

b ∑
n∈1,2,..,N

b

zn
′ zn

 
and denote its    -th entry by p, q

Db
1p,q  1

b ∑
n∈1,2,..,N

b

zn,pzn,q

 
where  1 ≤ p, q ≤ K  . Then the law of large numbers and condition (b) give that  

Db
1p.q

p
→ Qb,j

p,q
  as  b →    for all  p   and  q   where  Q   is the    -th entry of  Q  . 

Since  Q

b,j
p,q

p, q b,j

b,j → Q   uniformly in  n   as  b →   , we have  Zb,j
′ Zb,j/b

p
→ Q  . The result in Step 2 
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follows by the continuous mapping theorem. 

Step 3: We want to show 

b−1/2Zb,j
′ ub,j

d
→ N 1 − C2 ,

 
for the delete- d   jackknife method, where    u

2 ⊗ Q   and  0      1
Note that 

b−1/2Zb,j
′ ub,j  b−1/2 ∑

n∈1,2,..,N

b

zn
′ un

 
and denote its  p  th entry by 

Db
2p  b−1/2 ∑

n∈1,2,..,N

b

zn,pun

 
where  1 ≤ p ≤ K  . By Step 1 and 2, we have  

VarDb
2p  b,jQb,j

pp → u
2Qpp  0

 
where  Q   is the    -th entry of  pp p, p Q . Then, we have  

b−1/2Zb,j
′ ub,j  b−1/2 ∑

n∈1,2,..,N

b

zn
′ un

 b−1/2 ∑
n∈1,2,..,N

b

zn
′ un − Ezn

′ un  b−1/2 ∑
n∈1,2,..,N

b

Ezn
′ un

 
 
For the first term, condition (a) provides a sufficient condition for the triangular array central 

limit theorem so we obtain 

b−1/2 ∑
n∈1,2,..,N

b

zn
′ un − Ezn

′ un
d
→ N0,

 
 where    u

2 ⊗ Q  . For the second term, from Assumption 2, we have 

b−1/2 ∑
n∈1,2,..,N

b

Ezn
′ un → b

N C2

  1 −  C2  

where    d/N  N − b/N  1 − b
N  ,  0  .    1

Now, consider the case of subsampling method. We have 
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b−1/2Zb,j
′ ub,j  b−1/2 ∑

n∈1,2,..,N

b

zn
′ un

 b−1/2 ∑
n∈1,2,..,N

b

zn
′ un − Ezn

′ un  b−1/2 ∑
n∈1,2,..,N

b

Ezn
′ un

 
The first term converges to the same distribution defined in (501). For the second term,  

b−1/2 ∑
n∈1,2,..,N

b

Ezn
′ un → b

N C2 → 0
 

since the subsampling method requires that  
b
N → 0

 
as  b →    and  N →   . So by the subsampling method we have 

b−1/2Zb,j
′ ub,j

d
→ N0,.

 

 Since when  
b
N → 0  ,    1 − b

N → 1  . The two resampling methods can be written together 
when we allow  0  . Note that  0   corresponds the delete-   ≤ 1    1 d   jackknife and  

  corresponds the subsampling.   1
Now, consider the resampling based Anderson-Rubin test, 

AR0N,b,j  b − Kub,j
′ Zb,jZb,j

′ Zb,j−1Zb,j
′ ub,j╱ub,j

′ MZb,jub,j

 b−1/2ub,j
′ Zb,jZb,j

′ Zb,j/b−1b−1/2Zb,j
′ ub,j/ 1

b − K ub,j
′ MZb,jub,j

 
Note that  

1
b − K ub,j

′ MZb,jub,j

 1
b − K ub,j

′ ub,j − 1
b − K ub,j

′ PZb,jub,j
 

By Step 2 and 3,  u   converges to a distribution, so we have b,j
′ PZb,jub,j

1
b − K ub,j

′ PZb,jub,j
d
→ 0

 
as  b →    and  K  , the number of instruments, is fixed. By Step 1, we have 

1
b − K ub,j

′ ub,j
p
→ u

2 .
 

It follows that  AR0N,b,j
d
→ K

2    where  
  1 − C ′−1C  ,   .                  

Q.E.D.                                                                                  
0   ≤ 1
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Proof of Theorem 5  The proof of Theorem 5 is very similar to the proof of Theorem 4.     

Q.E.D. 
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3.7.2 Appendix 2 

Table 3-1: Sizes of the Anderson-Rubin test under near exogeneity 

 
  

covZiui 
  

 
covZiui 
  

 
covZiui 
  

     1    9. 9  25.   1  38.   2

   0. 1     10. 1  23.   5  38.   2

     0    9. 1  22.   5  38.   3
 
Note: The data generating process of the simulation is based on Λ and  cov  . The 
sample size is  

Viui  0. 25
N  80   and the nominal size is  10%  .     is an indicator of the quality of 

instruments.      represents strong instruments, weak instruments and 
nonidentification respectively. 

1, 0. 1, 0

 
 

Table 3-2: Sizes of the Kleibergen test under near exogeneity 

 
  

covZiui 
  

 
covZiui 
  

 
covZiui 
  

     1    10. 6  24.   0  37.   8

   0. 1     9. 1  24.   9  41.   1

     0    9. 2  24.   5  40.   4
 
Note: The data generating process of the simulation is based on Λ and  cov  . The 
sample size is  

Viui  0. 25
N  80   and the nominal size is  10%  .     is an indicator of the quality of 

instruments.      represents strong instruments, weak instruments and 
nonidentification respectively. 

1, 0. 1, 0
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Table 3-3: Sizes of the resampling based AR test under near exogeneity 

 
  

covZiui 
  

 
covZiui 
  

 
covZiui 
  

Strong Instruments (    ) 1    

 b    5  6.   2    13. 6  27.   8

 b    10  4.   5    13. 4  26.   8

 b    15  4.   0    10. 0  24.   5

 b    20  1.   9    9. 9  14.   9

 b    25  1.   4    6. 3  12.   3

 b    30  0.   5    4. 3  8.   5

 b    40  0.   2    1. 1  4.   2

Weak Instruments (    ) 0. 1    

 b    5  6.   8    16. 3  27.   8

 b    10  5.   7    13. 3  25.   5

 b    15  3.   1    11. 4  19.   4

 b    20  2.   1    9. 7  16.   2

 b    25  1.   8    5. 4  13.   9

 b    30  1.   2    4. 2  9.   0

 b    40  0.   3    1. 6  2.   3
Nonidentification (    ) 0    

 b    5  5.   2    15. 7  28.   5

 b    10  5.   1    15. 5  25.   5

 b    15  3.   2    10. 5  20.   9

 b    20  1.   9    9. 5  17.   0

 b    25  1.   4    6. 9  12.   6

 b    30  1.   1    5. 0  9.   7

 b    40  0.   3    1. 2  4.   1
 
Note: The data generating process of the simulation is based on Λ and  cov  . The 
sample size is  

Viui  0. 25
N  80   and the nominal size is  10%  .  b   represents the block size used in 

simulations. We compute actual sizes when  b  .  5, 10, 15, 25, 30, 4020,
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Table 3-4: Sizes of the resampling based K test under near exogeneity 

 
  

covZiui 
  

 
covZiui 
  

 
covZiui 
  

Strong Instruments (    ) 1    

 b    5  6.   9    15. 5  27.   4

 b    10  4.   7    14. 5  27.   9

 b    15  2.   9    12. 0  23.   6

 b    20  2.   4    8. 4  17.   4

 b    25  1.   8    6. 2  13.   3

 b    30  1.   1    3. 5  8.   4

 b    40  0.   1    1. 3  3.   9

Weak Instruments (    ) 0. 1    

 b    5  4.   4    13. 3  27.   5

 b    10  4.   4    15. 9  24.   3

 b    15  3.   8    11. 4  24.   2

 b    20  3.   2    10. 2  16.   0

 b    25  1.   2    6. 1  14.   4

 b    30  0.   9    3. 7  8.   9

 b    40  0.   0    1. 6  4.   5
Nonidentification (    ) 0    

 b    5  5.   3    14. 9  26.   3

 b    10  4.   9    13. 9  26.   2

 b    15  3.   6    9. 2  20.   4

 b    20  2.   8    7. 8  15.   2

 b    25  1.   9    6. 8  14.   7

 b    30  1.   0    2. 5  8.   4

 b    40  0.   1    0. 7  3.   1
 
Note: The data generating process of the simulation is based on Λ and  cov  . The 
sample size is  

Viui  0. 25
N  80   and the nominal size is  10%  .  b   represents the block size used in 

simulations. We compute actual sizes when  b  .  5, 10, 15, 25, 30, 4020,
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4.0  GMM WITH WEAK IDENTIFICATION AND NEAR EXOGENEITY 

This chapter studies the asymptotic properties of estimation and inference with weak 

identification and near exogeneity in a GMM framework with instrumental variables. GMM is a 

natural extension of a linear simultaneous equations model which allows a set of nonlinear and 

non-differentiable equations. The technique used in Chapter 1 which is mainly based on mean 

value theorem and the classic central limit theorem cannot be applied into a nonlinear and non-

differentiable environment. We can benefit from empirical process theory and the functional 

central limit theorem to establish large sample properties. We obtained limiting results under 

weak identification and near exogeneity of general GMM estimators and some specific GMM 

estimators, such as one-step GMM estimator, two-step GMM estimator and continuous updating 

estimator. We also examine the asymptotic properties of the Anderson-Rubin type and the 

Kleibergen type tests under weak identification and near exogeneity. 

This chapter is organized as follows. Section 4.1 decribes the model and assumptions. Section 

4.2 examines the limiting results of GMM estimators under near exogeneity and weak 

identification. Section 4.3 studies inference under near exogeneity and weak identification, and 

Section 4.4 concludes. Appendix is included in Section 4.5. 

4.1 THE MODEL AND ASSUMPTIONS 

In this chapter, we consider a GMM framework with instrumental variables under weak 

identification and near exogeneity. Let     be an  m  -dimensional unknown parameter 

vector with true value     in the interior of the compact parameter space  Θ  . The 

true value     satisfies some conditional moment restrictions which can be explicitly written as 

  ′,′

0  0
′ ,0

′ ′

0
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E i0  EhYi, 0 ⊗ Zi  C/ N ,  
where  h   is a real valued  .  H  1   vector of functions,  Zi   is a  K  1   vector of instrumental 

variables, and  Y   is the observation which possibly contains endogenous variables, for  i

i  1, 2, . . . , N   and  HK ≥ m  . The  C   is a  HK  1   vector of constants. When  C   is a vector 

of zeros, this is the GMM model with instrumental variables defined by Stock and Wright (2000). 

When  C   is not all zeros, Equation (105) defines the GMM model with near exogeneity. The 

degree of near exogeneity is local to zero. When the sample size  N   grows to large, the 

correlation between  h   and the instruments  .  Zi   tends to zero. The linear simultaneous 

equations model defined in Chapter 1 is a special case of Equation (105), where                                                    

E i0  EZi
′yi − Yi0  C/ N .  

So  h   is a linear function and  Y   contains only endogenous 

variables. But in this chapter, the  h   can be a set of general nonlinear functions with possible 

non-differentiability. 

.   yi − Yi0 i  yi, Yi

. 

We follow Stock and Wright (2000)'s paper to consider a mixed case in which a subset of    , 

say    , is weakly identified. Let  Θ  A  B , where     is an  m   vector,  ∈ A 1  1 ∈ B  is 

an  m   vector, and  m  . Also, let  2  1 1  m2  m mN,  EN−1∑i1
N  i,  . Now, we 

can utilize the following identity, 

 

mN,  mN0 ,0  m1N,  m2N  
where  

m1N,  mN, − mN0 ,  
and 

m2N  mN0 , − mN0 ,0  
The identification of     requires whether the moment restrictions can be satisfied uniquely. If     

is strictly identified, then  m    should be large when    . However,  ≠ 0 m1N,   N2
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should be close to zero when     and     if     is weakly identified. We can use a 

local to zero model to define the weak identification of the    , 

≠ 0  0

 

mN, − mN0 ,  m1N,/ N  
where  m1N, : A  B → RHK   is a set of continuous functions such that  m1N → m1   

uniformly on  Θ   as  N   grows to large. The  m   is a set of continuous 

functions and is bounded on  Θ  . Also, let  

1 : B → RHKA 

m2N : B → RHK   be a set of continuous functions 

such that  m2N → m2   uniformly on  B  as  N   grows to large, where  m   

is a set of continuous functions such that  m   and  m   for    . By 

taking into account a joint case of near exogeneity and weak identification, Equation (135) can 

be rewritten as 

2 : B → RHK

20  0 2 ≠ 0 ≠ 0

 

mN,  mN0 ,0  m1N,  m2N

 C/ N  m1N,/ N  m2N  
because of Equation (105). When  C  , we can obtain the result of Stock and Wright (2000), 

in which case they don't consider the problem of near exogeneity. Now, we can give assumptions 

that formally define near exogeneity and weak identification. 

 0

 
 
Assumption 1 The true parameter     is in the interior of the compact space  0  0

′ ,0
′ ′

Θ  A  B ,  A ⊂ Rm 1  ,  B ⊂ Rm 2  , and  m  . The true parameter     satisfies the 

moment conditions defined by Equation (105). 

 m1  m2 0

 
 
Assumption 2  

EN−1∑
i1

N

 i,  C/ N  m1N,/ N  m2N, where
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(2.1)  m1N → m1   uniformly on  Θ  ,  m  , and  m   is continuous in     and 

is bounded on  Θ  ; 

10  0 1

(2.2)  m N2  → m2   uniformly on  Θ  ,    if and only if    . Define  m2  0  0

R  ∂m2/∂′   which is a  HK  m2   matrix.  R   is continuous in     and  R0   has a 

full column rank. 

 
 
We can apply the above assumptions into the linear simultaneous equations model defined in 

Chapter 2. In Chapter 2, all parameters in     are weakly identified. The identity defined above 

can be rewritten as 

 

mN  mN0  mN − mN0

 mN0  m1N/ N  

where  mN0  EN−1∑i1
N  i0  C/ N   by the near exogeneity in Assumption 2. In the 

linear simultaneous equations model, 

 

EN−1∑
i1

N

 i  EN−1∑
i1

N

Zi
′yi − Yi

 EN−1∑
i1

N

Zi
′yi − Yi0 − Zi

′Yi − 0

 EN−1∑
i1

N

Zi
′yi − Yi0 − Zi

′Zi − 0

 
By the above equation, we obtain  

EN−1∑
i1

N

Zi
′yi − Yi0  C/ N

 
Since    N  C1 / N   defined by Assumption ID in Chapter 2, we have 

mN  C/ N  m1N/ N   

where  m1N  EN−1∑i1
N Zi

′ZiC1 − 0  . The first term in (245) is due to near 
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exogeneity and the second term is used to define the weak identification of    . 

Next, we consider the GMM estimator that minimizes the objective function  SN  ,  N   for  

 , where  ∈ Θ

 

SN, N  N−1/2∑
i1

N

 i′WNNN−1/2∑
j1

N

 j

 
where  WNN   is a positive definite  HK  HK   weighting matrix and bounded in 

probability. Different GMM estimators depend upon the adoption of different weighting matrix. 

For a one-step GMM estimator, the weighting matrix is usually an identity matrix so  WNN   

doesn't depend upon the data and the unknown parameter    . For a two-step efficient GMM 

estimator (Hansen, 1982), the weighting matrix is computed by using a one-step GMM estimator. 

For a continuously updating GMM estimator (Hansen, Heaton and Yaron, 1996), the weighting 

matrix is changed with each choice of the unknown parameter    , so  WNN   can be written 

as  WN  . In order to establish the large sample properties of the GMM estimators, we need the 

uniform convergence of the weighting matrix  WN  . This is also the assumption used by Stock 

and Wright (2000). 

 
 

Assumption 3  WN
p
→ W   uniformly on  Θ  , where  W   is a   HK  HK   symmetric 

positive definite matrix and is continuous in    . 

 
 
Next, following Andrews (1994) and Stock and Wright (2000), we define an empirical process  

N   by 

 

N  N−1/2∑
i1

N

 i − E i for  ∈ Θ

 

 84 



Note that     where  Y   and  i   iYi, Zi,  i Zi   are independent observations.     can be 

regarded as a class of  

i

RHK   valued functions defined on  Y   and  i Zi   indexed by    . Let " 

 " denote weak convergence of a sequence of empirical processes. By Andrews (1994) and 

Vaart and Wellner (1996), weak convergence of the empirical process in Equation (265) can be 

defined as 

∈ Θ



 

N   if E∗fN.  → Ef.   
for all bounded, uniformly continuous real functions  f   on  B  , where  B   is the set of all 

continuous, bounded functions  

Θ Θ

f  :  Θ → R  . Note that " E∗  " is the expectation over the 

empirical process. Let  1 , 2  limN→ E  1N N2′  . The following assumption of 

weak convergence is mainly based on Pollard (1984, 1990), Andrews (1994) and Vaart and 

Wellner (1996). It's similar to Assumption A and B used in Stock and Wright (2000). 

 
 
Assumption 4  N    , where     is a Gaussian limit stochastic process on  Θ   with 
zero mean and covariance    . 



1 , 2

 
 
Assumption 4 is a kind of high level assumption which follows from three sufficient conditions 

(Andrews, 1994): (1)  Θ   is a totally bounded space; (2) finite dimensional convergence holds:  

∀1 , . . . , J ∈ Θ  ,  N1′, . . . ,NJ′′   converges in distribution; (3)  N   is 

stochastic equicontinuity. Condition (1) is satisfied by Assumption 1 that  Θ   is a compact space. 

Condition (2) is easily to verified by multivariate central limit theorem. For example, we can use 

univariate triangular array central limit theorem (Liapunov Theorem, see Davidson, 1994) to 

obtain the normal limit of the stochastic process  N   at    , say  0

 

N0
d
→ N0,0 , 0   

by imposing the moment condition such that  E ∣  i0 ∣2  Δ     for some    .  0
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For the finite dimensional convergence, we can assume a similar moment condition which holds 

uniformly on  Θ  . Condition (3) stochastic equicontinuity relies on a condition which is referred 

as entropy condition (Pollard, 1990). By Theorem 1 and 2 in Andrews (1994),     falls into a 

type II class of functions so that the Pollard's entropy condition follows from the Lipschitz 

continuity. To be summarized, Assumption 4 follows from the following primitive assumptions. 

i

 
 
(i)    is a compact parameter space; Θ

(ii)    is independent;  i

(iii)  E ∣  i ∣2  Δ    uniformly over  Θ   for some    ;  0 

(vi)  Lipschitz in    :  ∣        , and   i1 −  i2 ∣≤ Bi. ‖1 − 2‖ ∀1 , 2 ∈ Θ Bi.    

satisfies  limN→ N−1∑i1
N EBi. 2     for some   .   0

 
 
Assumption (i) implies totally boundedness. Assumptions (ii) and (iii) imply finite dimensional 

convergence. Assumptions (i) and (vi) imply stochastic equicontinuity. It's very easy to verify 

that the     defined in the linear simultaneous equations model in Chapter 1 satisfies these 

assumptions. 

i

4.2 ESTIMATION: LIMITING RESULTS OF GMM ESTIMATORS 

In this section, we derive the asymptotic results of GMM estimators under near exogeneity and 

weak identification. We firstly derive general limiting results of GMM estimators and then 

derive limiting results of some specific GMM estimators, such as one-step estimator, two-step 

efficient estimator and continuously updating estimator. In each case, we examine the limiting 

results of the weakly identified parameter     and the well identified parameter    . 
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4.2.1 General Limiting Results of GMM Estimators 

We derive the general asymptotic results of GMM estimators in this subsection. First, we 

examine the limiting results of the well identified parameter    . The following lemma shows 

that the GMM estimator  

   is consistent under near exogeneity and the convergence rate is 

square root of the sample size  N  . 

 
 

Lemma 1  N 

 − 0  Op1  . 

 
 
All proofs are given in the appendix. 

Lemma 1 shows that near exogeneity doesn't affect the convergence of a well identified 

parameter. Intuitively, the drift term in Equation (105) shrinks toward zero as the sample size  N   

grows to large. We have a similar story in the linear case. In the linear simultaneous equations 

model defined in Chapter 1, when there only exists the problem of near exogeneity, both the 

TSLS estimator and the LIML estimator are consistent. However, situations are a little 

complicated in this chapter. There are two parameters, of which one is weakly identified and the 

other is well identified. One natural question is whether the weakly identified parameter     

affect the limiting results of the well identified parameter    . A joint limiting result of     and  

   is necessary to answer such a question. The following theorem gives the joint limits of both 

parameters under near exogeneity and weak identification for a general GMM estimator. 

 
 
Theorem 1 Suppose that Assumptions 1-4 hold,  

then 

, N 

 − 0

d
→ a∗, b∗   

where 
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a∗  arg min
∈A

S∗;,0  
 

 
 

b∗  −R0′Wa∗,0R0′R0′Wa∗,0

 a∗,0  C  m1a∗,0  
 

S∗;,0  ,0  C  m1,0′M,0 , ,0

 ,0  C  m1,0  
where 

M,0 , ,0  W,0 − W,0R0

 R0′W,0R0−1

 R0′W,0  
 

 
 
The above theorem is similar to Theorem 1 in Caner (2005) and is analogous to Theorem 1 in 

Stock and Wright (2000) and Theorem 2 in Guggenberger and Smith (2005). We can obtain 

Stock and Wright's result by setting  C  . It's not surprising that   0    is not consistent since     

is a weakly identified parameter. Like the case of the linear simultaneous equations model, the 

estimator of the weakly identified parameter convergences to a nonstandard distribution  a  . 

The joint limits given in the above theorem can explain why the estimator  

∗


   of the well 

identified parameter also convergence to a nonstandard distribution  b  . The distribution of  ∗

   

depends on  a   but we cannot estimate     consistently. When we set  C   and    , 

Equation (314) can be simplified as  

∗  0  0

b∗  −R0′W0 ,0R0′R0 ′W0 ,00 ,0
d
→ N0, R0 ′−10 ,0R0  

since  m   by Assumption 2 and     by triangular 

array central limit theorem. Near exogeneity doesn't affect the convergence rate of  

10 ,0  0 0 ,0
d
→ N0,0 ,0

   but it 
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shifts the distribution of the estimator. When the drift term  C ≠ 0  , we have 

b∗
d
→ NC, R0′−10 ,0R0  

To the weakly identified parameter    , near exogeneity can enlarge the bias term which is 

obtained by Stock and Wright (2000). 

 

4.2.2 Limiting Results for Specific GMM Estimators 

We first consider a one-step GMM estimator with an identity weighting matrix. Denote by  

  the one-step GMM estimator which minimizes the following objective function 1 ,

1

S1N  N−1/2∑
i1

N

 i′N−1/2∑
j1

N

 j.

 
 

The following corollary gives the joint limits of  
1 , N 


1 − 0   under near exogeneity and 

weak identification. 

 
 
Corollary 1 Suppose that Assumptions 1, 2, 4 holds, then 

1 , N 

1 − 0

d
→ a1

∗, b1
∗   

where  

a1
∗  arg min

∈A
S1
∗, C  

 
 

b1
∗  −R0′R0−1R0′a1

∗,0  C  m1a1
∗,0  

 

S1
∗, C  ,0  C  m1,0′M1,0  C  m1,0   

where 

M1  I − R0R0′R0−1R0′.  
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The two-step efficient GMM estimator is obtained by using the one-step GMM estimator  

  to establish an estimate of the weighting matrix. Denote by     the two-step 

efficient GMM estimator which minimizes the following objective function 

1 ,

1

2 ,

2

S2N  N−1/2∑
i1

N

 i′WN
1 ,


1N−1/2∑

j1

N

 j

 
 

The following corollary establishes the joint limits of  
2 , N 


2 − 0   under near 

exogeneity and weak identification. 

 
 
Corollary 2 Suppose that Assumptions 1-4 hold, then 

2 , N 

2 − 0

d
→ a2

∗, b2
∗   

where 

a2
∗  arg min

∈A
S2
∗, a1

∗, C  
 

 

b2
∗  −R0′−1a1

∗,0R0−1R0′−1a1
∗,0

 a2
∗,0  C  m1a2

∗,0  
 

S2
∗, a1

∗, C  ,0  C  m1,0′M1, a1
∗

 ,0  C  m1,0  
where 

M1, a1
∗  −1a1

∗,0

− −1a1
∗,0R0R0′−1a1

∗,0R0−1

 R0′−1a1
∗,0  

 

 
 

In the two-step efficient GMM estimator, the weighting matrix  W   is based on the one-N
1 ,


1

 90 



step GMM estimator  1   and   , and so the weighting matrix converge to     in the 

limiting concentrated objective function  S  . 


1

−1a1
∗,0

2
∗, a1

∗, C

In the case of the linear simultaneous equations model defined in Chapter 2, when the 

conditional homoskedasticity of the errors is assumed, the objective function of the two-step 

efficient GMM estimator can be rewritten as 

S2N  y − Y′PZy − Y/

hh


 1  

where 


hh


 1  N−1∑

i1

N

Ehi

 1 − Ehi


 1

 hi

 1 − Ehi


 1′  

and 

PZ  ZZ ′Z−1Z ′.   
In the linear simultaneous equations model,  h   and all parameters in     are 

weakly identified. Since     is quadratic in  S

i  yi − Yi

2N  , we can derive an analytical solution which 

yields 


  Y′PZY−1Y′PZy   

We know this is just the TSLS estimator. 

The continuously updating estimator is obtained when the weighting matrix is continuously 

updated at the parameter value    . Denote by     the continuously updating estimator that 

minimizes the following objective function  

c,

c

ScN  N−1/2∑
i1

N

 i′WNN−1/2∑
j1

N

 j

 
 
The following corollary establishes the joint limits of the continuously updating estimator  

  under near exogeneity and weak identification. c,

c
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Corollary 3 Suppose that Assumptions 1-4 hold, then 

c , N 

c − 0

d
→ ac

∗, bc
∗   

where 

ac
∗  arg min

∈A
Sc
∗, C  

 
 

bc
∗  −R0′−1ac

∗,0R0−1R0′−1ac
∗,0

 ac
∗,0  C  m1ac

∗,0  
 

Sc
∗, C  ,0  C  m1,0′−1ac

∗,0

 I − R0R0′−1ac
∗,0R0−1R0′−1ac

∗,0

 ,0  C  m1,0.

 

 
 

 
 
Consider a special case of Corollary 3: the linear simultaneous equations model with all weakly 

identified parameters and conditional homoskedasticity defined in Chapter 2. Since  

 i  Zi
′yi − Yi   

and 

WN  N−1∑
i1

N

∑
j1

N

 i j′−1 ,

 
the objective function  S   defined in (545) can be simplified as cN

ScN  N−1/2∑
i1

N

 i′N−1∑
i1

N

∑
j1

N

 i j′−1

 N−1/2∑
j1

N

 j

 y − Y′ZZ ′Z−1Z ′y − Y/u′u

 N1  −1−1
 

where 

u  y − Y  
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  y − Y′Pzy − Y/y − Y′Mzy − Y  
and 

MZ  I − PZ.   
Note that the above equation is obtained since we have 

T−1y − Y′Mzy − Y
p
→ u′u  

The continuously updating estimator in the linear case is identical to minimize    , which is 

just the LIML estimator; see Davidson and MacKinnon (1993). 



4.3 INFERENCE WITH NEAR EXOGENEITY AND WEAK IDENTIFICATION 

In a GMM framework with instrumental variables, we want to test  H0 :   0   versus  

H1 :  ≠ 0   under near exogeneity and weak identification. Staiger and Wright (2000) 

examined several conventional test statistics under weak identification, such as Wald statistic 

and likelihood ratio statistic. These conventional test statistics do not work in general under weak 

identification. The exogeneity tests of instruments, like  J  -test (Hansen, 1982; Newey, 1985), 

cannot be valid in general under weak identification either. 

In this section, we firstly consider some robust test statistics which have been recently developed 

against weak identification in the literature, and then examine their performance under near 

exogeneity. 

We first consider an Anderson-Rubin type test proposed by Stock and Wright (2000). The test is 

given by 

 

SN0 ;0  N−1/2∑
i1

N

 i0′WN0N−1/2∑
j1

N

 j0.

 
 

 
 
Since the moment function is generally nonlinear, it's easier to work on the objective function 

 93 



rather than on the estimator as we did in the case of the linear simultaneous equations model. The 

Anderson-Rubin type test is just the objective function  S   of the continuously updating 

estimator when    . Since it utilizes the objective function  S  , it was called " 

cN

 0 cN.  S   

statistic" by Stock and Wright (2000). The  S   statistic is robust to weak identification because 

the test itself is asymptotically pivotal and convergence in distribution to a chi-square 

distribution under the null hypothesis. Note that we cannot establish an Anderson-Rubin type test 

based on the objective function of the two-step GMM estimator. The objective function of the 

two-step GMM estimator is not asymptotically pivotal because the weighting matrix in the 

objective function is derived through the one-step estimator, which is not consistent under weak 

identification. 

To examine the asymptotic property of the  S   statistic under near exogeneity, we can work 

under a much weaker assumption than Assumption 4. The following theorem summarizes the 

asymptotic result of the  S   statistic under near exogeneity. 

 
 

Theorem 2 Suppose Assumptions 1-3  hold under the null hypothesis of    , then  0

 

SN0 ;0
d
→ HK

2 C ′−10 ;0C  
where  HK

2 C ′−10 ;0C   is a noncentral chi-square distribution with noncentral parameter  

C ′−10 ;0C   and the degree of freedom  HK  . 

 
 
Theorem 2 shows that the  S   statistic is not asymptotically pivotal under near exogeneity. The 

limit of the test statistic depends on the nuisance unknown parameter  C   which comes from near 

exogeneity. We obtain a chi-square distribution with degree of freedom  HK   when we set  

C  0  . It leads to a size distortion under near exogeneity when we use critical values from the 

chi-square distribution. In empirical practice, it'll overreject a true hypothesis. 
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Kleibergen (2005) proposes a GMM version  K   statistic. The  K   statistic is also based on the 

objective function of the continuously updating GMM estimator. To establish the limits of the  K   

statistic, we need two more assumptions. Denote by  q   the first order derivative of     

with respect to     which is evaluated at    , and let 

i0 i

 0

J0  lim
N→

EN−1∑
i1

N

qi0  
 

 
Assumption 5 Let  

qi,j0  ∂ i/∂ j
′ ∣0 j  1, 2, . . . , m.

 

and  q  . We assume the following limits hold jointly i0  qi,1
′ 0, qi,2

′ 0, . . . , qi,m
′ 0′

1
N
∑
i1

N
 i0 − E i0
qi0 − Eqi0

d
→ 

′ ,q
′ ′

 
where 



q
 N0, V  

 
and  V   is a positive semi-definite symmetric     matrix  HK  mHK  HK  mHK

V 
V Vq

Vq Vqq
 

and 

V  lim
N→

EN−1∑
i1

N

∑
l1

N
 i0 − E i0
qi0 − Eqi0

 l0 − E i0
ql0 − Eqi0

′

.  
 

 

 
 
Assumption 6 Assume that the estimator of the covariance matrix  V   and the estimator of 

the derivative of  W    V   with respect to     have the limits that hold jointly 

0

0  
−10

V0
p
→ V0   

and 
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∂vecV0/∂ ′
p
→ ∂vecV0/∂ ′  

where 

V0  lim
N→

EN−1∑
i1

N

∑
l1

N

 i0 − E i0 i0 − E i0′.  
 

 

 
 
The  K   statistic is based on the first order derivative of Equation (670) with respect to    . The  

K   statistic is given by 

 

K0  1
4N ∂SN0 ;0/∂DN0′V

−1
0DN0−1

 ∂SN0 ;0/∂′  
where 

1
2 ∂SN0 ;0/∂  N0′V

−1
0DN0

 
 

DN0  qN,10 − Vq,10V

−1
0N0 . . .

. . . qN,m 0 − Vq,m 0V

−1
0N0  

and  Vq0  Vq,10′, Vq,20′, . . . , Vq,m 0′  . 

 
 

Note that  DN0   is a consistent estimator of  J0   even in the case of weak identification. 

Either under strong identification or weak identification, the  K   statistic is an asymptotically 

pivotal distribution conditional on  DN0  . Because of the asymptotic independence between  

DN0   and    , the   K   statistic converges unconditionally to a chi-square distribution with 

degree of freedom  m   under weak identification. The following theorem summarizes the 

asymptotic results of the  K   statistic under near exogeneity and weak identification. 
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Theorem 3 Suppose that Assumptions 1, 2, 5 and 6 hold under the null hypothesis of    , 

then 

 0

K0
d
→   C′  C  

where 

  N0, IHK   
 

C  D′V
−10D−1/2D′V

−10C  

and  D  is the limit of  NDN0  , and further  D  varies when 

(i)    is well identified,   D
d
→    C   q

(ii)      is weakly identified,  D
d
→    C       q  q.

(iii)    is nonidentified,   D
d
→ q.                         

where  C   which has a fixed full rank value, and     is a limiting distribution such 

that  

q  J0 q.

N−1/2vecDN0 − J0
d
→ q. .  

 

 
 
Theorem 3 shows that the  K   statistic converges to a nonstandard distribution under near 

exogeneity. The nonstandard distribution is a quadratic form of the sum of a standard normal 

variable     and the drift term     which comes from near exogeneity. When the 

identification condition varies, we obtain different limits of    . We can obtain a chi-square 

distribution with degree of freedom  m   when  

C

C

C  0  . So Theorem 3 provides a general result. 

Theorem 3 also implies that inference based on the critical value from chi-square distribution can 

result in a large size distortion. 
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4.4 CONCLUSIONS 

This chapter studies the asymptotic properties of estimation and inference under near exogeneity 

and weak identification in a GMM framework with instrumental variables. We derive the limits 

of the one-step GMM estimator, the efficient two-step GMM estimator and the continuously 

updating estimator under near exogeneity and weak identification. We consider a mixed case 

where some parameters are weakly identified and others are well identified. The GMM 

estimators of the well identified parameters are consistent but converge to a nonstandard 

distribution. In all cases, near exogeneity can bring a relatively large asymptotic bias for GMM 

estimators compared to the case where only weak identification occurs. We show that the 

Anderson-Rubin type  S   statistic and the Kleibergen type  K   statistic are no longer 

asymptotically pivotal under near exogeneity. It leads to a serious size distortion when using 

critical values from chi-square distribution. 

4.5 APPENDIX 

Proof of Lemma 1 First, we show that     is consistent. Consider the objective function  
SN, N   the first term can be rewritten as  

N−1/2∑
i1

N

 i  N−1/2∑
i1

N

 i − E i  N−1/2∑
i1

N

E i.
 

The first term converges to     by Assumption 4 and the second term can be rewritten as  

N−1/2∑
i1

N

E i  N EN−1∑
i1

N

 i

→ C  m1,  N m2  
by Assumption 2. By Assumption 3, we have 

SN, N
p
→   C  m1,  N m2′W

   C  m1,  N m2.  
Scale the above equation by  N−1  , we obtain 
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N−1SN, N
p
→ m2′Wm2  

uniformly in    . Since  W   is positive definite by Assumption 3 and  m   if and 
only if    , the consistency of  

2  0
 0    follows by the continuity of the  arg min  operator. The 

rate of convergence follows from the proof of Lemma A1 in Stock and Wright(2000). Q.E.D. 

 
 
Proof of Theorem 1  To derive the limiting results in the theorem, we work on the objective 
function  SN,, N   directly. First, we define  

b  N  − 0.   

By Lemma 1, we know that  b  . The objective function then can be written as  Op1

SN,, N  SN,0  b/ N , N

 N−1/2∑
i1

N

 i′WNNN−1/2∑
j1

N

 j.

 
The first and last terms in above equation can be written as  

N−1/2∑
i1

N

 i,0  b/ N 

 N−1/2∑
i1

N

 i,0  b/ N  − E i,0  b/ N   N−1/2∑
i1

N

E i,0  b/ N .
 

By Assumption 4 and Lemma 1, we have 

N−1/2∑
i1

N

 i,0  b/ N  − E i,0  b/ N   ,0.
 

The second term in Equation (920) can be written as 

N−1/2∑
i1

N

E i,0  b/ N   N EN−1∑
i1

N

 i,0  b/ N 

 C  m1N,0  b/ N   N m2N0  b/ N 

 

 
which follows from Assumption 2. Note that  m1N → m1   uniformly in     and by Lemma 
1, we have 

m1N,0  b/ N 
p
→ m1,0.  

We apply the mean value theorem to the last term in above equation. We can obtain 

N m2N0  b/ N   N m2N0  R

b  
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where  

 ∈ 0 ,0  b/ N    and  R     ∂   which is defined in Assumption 2. By 

Assumption 2,  m

m2/∂′

2N0 → m20  0   and  



p
→    by Lemma 1. So we have 

N m2N0  b/ N  → R0b.  
By Assumption 3, we have 

WNN
p
→ W,0.  

So the objective function has the following limits 

SN,, N  ,0  C  m1,0  R0b′

 W,0,0  C  m1,0  R0b.

 

 
 
Next, we fix     and differentiate it with respect to  b  . By solving the first order condition, we 
denote the solution by  b  , ∗

b∗  −R0′W,0R0−1R0′W,0

 ,0  C  m1,0  
 
Plug  b   into the objective function to yield the concentrated limiting objective function  ∗

S∗;,0  . To see this, note that  

R0b∗  −R0R0′W,0R0−1R0′W,0

 ,0  C  m1,0.  
So we have 

,0  C  m1,0  R0b∗

 I − R0R0′W,0R0−1R0′W,0

 ,0  C  m1,0.  
Plug  it into the objective function,  

S∗;,0

 ,0  C  m1,0′

 I − R0R0′W,0R0−1R0′W,0′

 W,0

 I − R0R0′W,0R0−1R0′W,0

 ,0  C  m1,0.  
Note that  
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I − RR′WR−1R′W′WI − RR′WR−1R′W

 I − RR′WR−1R′W′W − WRR′WR−1R′W

 I − RR′WR−1R′W′I − WRR′WR−1R′W

 I − WRR′WR−1R′W

 M,0 , ,0.  
So we obtain that  

S∗;,0  ,0  C  m1,0′

 M,0 , ,0,0  C  m1,0.  
and  ∗  arg min∈A S∗;,0  . Substituting     into  b , we can obtain  b   
defined in the theorem. 

∗ ∗ ∗∗

Since  arg min  is a continuous mapping and     is a unique minimum over  ∗ A  , by Theorem 

3.2.2 of Vaart and Wellner (1996), it follows that  
, N 


 − 0

d
→ a∗, b∗  . Q.E.D. 

 
 
Proof of Corollary 1  The result in the corollary follows by Theorem 1 when we replace the 
general objective function  SN,, N   by the one-step objective function  S1N   defined 
in (365). Q.E.D. 

 
 
Proof of Corollary 2  The two-step efficient GMM estimator depends on an estimate of the 
weighting matrix which utilizes the first-step GMM estimator. By Assumption 3, Lemma 1, and 
the definition of the two-step efficient GMM estimator, we have 

WN
1 ,


1

p
→ −1a1

∗,0.   
Following Theorem 1 by replacing the general objective function  SN,, N   by the two-
step objective function S2N   defined in (420), we can obtain the results in the corollary. Note 
that in this case the  b   depends on both the one-step estimator  a   and the two-step estimator  

 . Q.E.D. 
2
∗

1
∗

a2
∗

 
 
Proof of Corollary 3  The continuously updating estimator depends on a weighting matrix 
which is continuously updated by the value of the estimator. But, we can simplify the limiting 
weighting matrix by Lemma 1 and Assumption 3, 
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WN,  WN,0  b/ N 
p
→ −1a,0.

 

 
The limiting weighting matrix doesn't depend on  b  . Then we can follow Theorem 1 by 
replacing the general objective function  SN,, N   by the continuously updating objective 
function  ScN   defined in (545). Q.E.D. 

 
 
Proof of Theorem 2   We have 

SN0 ;0  N−1/2∑
i1

N

 i0′WN0N−1/2∑
j1

N

 j0

 
The first and the last terms can be rewritten as  

N−1/2∑
i1

N

 i0  N−1/2∑
i1

N

 i − E i  N EN−1∑
i1

N

 i

 0  C  m10  N m20  
by Assumptions 2 and 4. Since  m   and  m   from Assumption 2, we have 10  0 20  0

N−1/2∑
i1

N

 i0
d
→   NC,0 , 0.

 
By Assumption 3, we have 

WN0
p
→ −10 , 0   

So we obtain that 

SN0 ;0
d
→ ′−10 , 0
d
→ HK

2 C ′−10 , 0C. Q.E.D.  
 

 
 
Proof of Theorem 3  We follow Kleibergen's (2005) idea to construct two asymptotically 
independent variables. By Assumption 5, we have 

1
N
∑
i1

N
 i0 − E i0
qi0 − Eqi0

d
→ 

′ ,q
′ ′
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where 



q
 N0, V.

 
Pre-multiplying it by  

IHK 0

−Vq0V0−1 ImHK

,

 
and by Assumption 6, we have  

IHK 0

−Vq0V0−1 ImHK

p
→

IHK 0

−Vq0V0−1 ImHK
.

 
 
Let  

N0  ∑
i1

N

 i0 − E i0

 
and 

qN0  ∑
i1

N

qi0 − Eqi0.
 

Then, we can obtain that 

N
IHK 0

−Vq0V0−1 ImHK

N−1N0

N−1qN0

 N
N−1N0

N−1qN0 − N−1Vq0V0−1N0

d
→



q.  
where 

q.  q − Vq0V0−1  
and  
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

q.
 N0, 

V0 0

0 Vqq.0


 
Note that  

Vqq.0  Vqq0 − Vq0V0−1Vq0  

So     has a joint normal distribution with zero correlation which means the 

asymptotic independence between     and    . 


′ ,q.

′ ′

 q.

Next, note that 

N−1qN0 − N−1Vq0V0−1N0

 N−1qN0 − N−1Vq0V0−1N0 − EN−1qN0

 N−1DN0 − J0.  
So we have 

N
N−1N0

vecN−1DN0 − J0

d
→



q.
.

 
 
Now, consider the  K   statistic, 

K0  1
4N ∂SN0 ;0/∂DN0′V

−1
0DN0−1

 ∂SN0 ;0/∂′

 N−1/2N0′V

−1
0DN0DN0′V

−1
0DN0−1

 DN0′V

−1
0N−1/2N0.  

Let  

  DN0 ′V

−1
0DN0−1/2DN0′V

−1
0N−1/2N0.  

and 

  DN0′V

−1
0DN0−1/2DN0′V

−1
0

 N EN−1∑
i1

N

 i0.
 

By Assumption 2 and Assumption 4, we have 
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
    N0, IHK  

and 


p
→ C  

where 

C  D′V
−10D−1/2D′V

−10C  

and  NDN0
d
→ D  . 

When     is well identified,  J0   has full rank. We set  N  1/N  , then 

N−1DN0  1
N
 N N−1DN0 − J0  J0

p
→ Cq  

because  N vecN−1DN0 − J0
d
→ q.  . 

When     is weakly identified,  J0  J,N0  Cq / N  . We set  N  1/ N  , then 

N−1/2DN0  N N−1DN0 − J0  N J0
d
→ Cq  q.  

 
When is totally nonidentified,  J0  0  . We set  N  1/ N  , then 

N−1/2DN0
d
→ q. . Q.E.D.  
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5.0  CONCLUSIONS 

Empirical economic studies are often confronted by the joint problem of weak instruments and 

near exogeneity, such as labor economics and empirical economic growth theory. This 

dissertation presents new evidence and solutions on estimation and inference with weak 

instruments and near exogeneity. Chapter 1 reexamines the effect of institutions on economic 

performance in Acemoglu, Johnson and Robinson (2001) where the measurement of current 

institutions is instrumented by European settler mortality rates. Since many economists argue 

that the settler mortality rates can possibly affect economic performance through other channels, 

I reexamine the effect of institutions by considering near exogeneity. I provide some evidence to 

show that the effect of institutions is not significant in many regression specifications when the 

settler mortality rates are used as the main instrument. Chapter 2 studies estimation and inference 

with weak instruments and near exogeneity in a linear simultaneous equations model. I show that 

near exogeneity can exaggerate asymptotic bias of the TSLS and the LIML estimators. When 

using critical values from chi-square distributions, Anderson-Rubin and Kleibergen tests under 

exogeneity have a large size distortion. I propose the delete-d jackknife based Anderson-Rubin 

and Kleibergen tests to automatically reduce the size distortion in finite samples without a need 

for any pretest of exogeneity. Chapter 3 extends estimation and inference with weak 

identification and near exogeneity into a GMM framework with instrumental variables. A GMM 

framework allows nonlinear and nondifferentiable moment conditions. I examine asymptotic 

results of one-step GMM estimator, two-step efficient GMM estimator and continuously 

updating estimator with weak identification and near exogeneity. Near exogeneity can produce 

relatively large bias for all these estimators. The Anderson-Rubin type and the Kleibergen type 

tests under near exogeneity converge in distribution to nonstandard distributions, which creates 

large size distortion when using critical values from chi-square distributions. The delete-d 

jackknife based approach can reduce the size distortion  
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