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Complex diseases such as type 2 diabetes, hypertension and psychiatric disorders have been 

major public health problems in US.  In order to increase the power in the linkage analysis of 

complex traits, genetic heterogeneity has to be taken into account.  During the past few years, 

several methods have been proposed for dealing with this issue by incorporating covariate 

information into the affected sib pair (ASP) analysis.  However, it is still not clear how these 

approaches perform under different gene-environment (G x E) interactions.  The covariate 

statistics evaluated in this study are: (1) mixture model; (2) general conditional-logistic model 

(LODPAL); (3) multinomial logistic regression models (MLRM under no dominance, no 

additive and min-max restriction); (4) extension of the maximum-likelihood-binomial approach 

(MLB); (5) ordered-subset analysis (OSA with three different rank orders: high-to-low, low-to-

high and optimal-slice); (6) logistic regression modeling (COVLINK).  Based on the 

chromosome-based approach, we have written simulation programs to generate data under 

various G x E models and disease models.  We first define the empirical statistical significance 

thresholds using C2, the environmental risk factor, under the null hypothesis.  We then evaluate 

the power of the covariate statistics when different covariates are used.  We also compare the 

performance of the covariate statistics with the model-free methods (Sall and Spair).  In all three G 

x E interaction models, most covariate methods perform better when using C1, the covariate with 



 

 v

G x E interaction effect, than when using C2 or the random noise covariate C3, except for MLB 

and the low-to-high OSA method.  Comparing with the model-free methods (using Sall as the 

baseline), mixture model and the high-to-low OSA method perform the best of the covariate 

statistics when using C1.  However, when using C2 or C3, most covariate statistics provide less 

power than Sall.  Only MLB has comparable power to Sall across all genetic models.  According 

to our results, in different G x E interactions, one should apply the appropriate covariate statistic 

and include the suitable type of covariates carefully. 
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INTRODUCTION 

 
 

Genetic heterogeneity is an important issue that should be taken into account while performing 

affected sib pair (ASP) linkage analysis in complex diseases.  Various methods have been 

proposed for dealing with genetic heterogeneity by incorporating covariate information into the 

models.  But the power of these approaches requires investigation. 

   In this study, we generate data under three types of gene-environment (G x E) interaction 

models and eight different disease models, respectively.  We then evaluate the performance of 

the following covariate statistics: the mixture model, the multinomial logistic regression model 

approaches, the general conditional-logistic model, the extension of the Maximum-Likelihood-

Binomial approach, ordered-subset analysis, and logistic regression modeling.  We also compare 

the power of the covariate statistics with the model-free methods (allele sharing statistics: Sall and 

Spairs) and the quantitative-trait linkage (QTL) approaches (variance-component linkage analysis 

and regression-based quantitative-trait linkage analysis). 

   The specific aims are as follows: 

1. Write an efficient data simulation program based on the chromosome-based approach. 

2. Compute the empirical significance thresholds of each covariate method, based on data 

simulated under the null. 
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3. Estimate the power of covariate statistics using different types of covariates, based on 

simulation under various G x E interaction models. 

4. Compare the power of covariate statistics with the power of model-free methods and 

QTL approaches. 
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1. GENETIC HETEROGENEITY AND GENE-ENVIRONMENT INTERACTION 

 

1.1. BACKGROUND AND SIGNIFICANCE 

The twentieth-first century has been described as the post-genome era.  The completion of the 

first draft of Human Genome Sequence provided comprehensive genomic data to the scientific 

community.  Mendel’s laws were proposed in 1900’s, since then many genetic studies have been 

conducted and achieved significant results for monogenic diseases.  Particularly, since the early 

1980s, the development of new laboratory technologies has offered scientists golden 

opportunities to explore the molecular level of DNA sequences.  Since then, thousands of 

molecular markers have been genotyped and applied in gene mapping.  The various statistical 

methods applied to such marker data in linkage analyses have successfully localized 

susceptibility genes determining simple Mendelian traits.  During the past two decades, the 

emphasis of gene mapping has shifted to complex traits such as type 2 diabetes, hypertension and 

psychiatric disorders.  However, varied etiologies and genetic heterogeneity in the complex traits 

can cause difficulties in detecting true peaks representing evidence for linkage and localizing 

disease genes within those peaks (Figure 1.1).  To date, even with high-density genome-wide 

marker data, searching for susceptibility genes for complex traits is still an ongoing and 

challenging issue to geneticists. 
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Figure 1.1 A simplified model of the etiological factors predisposing to a complex trait 
(modified from Terwilliger and Weiss 1998) 

 

1.2. GENETIC HETEROGENEITY 

1.2.1. Definition 

Genetic heterogeneity is often observed in complex diseases.  Two types of genetic heterogeneity 

should be distinguished: locus heterogeneity and allelic heterogeneity.  Allelic heterogeneity can 

be defined as: (1) individuals having different alleles at the same locus leading to the same 

phenotype; (2) individuals having different alleles at the same locus leading to different 

phenotypes.  We here only consider the first definition.  When allelic heterogeneity exits, it may 

cause small effective sample size in linkage studies and case-control association studies. 

   Locus heterogeneity occurs when the trait in some pedigrees is due to a susceptibility gene 

located in one region, while the same trait in other pedigrees is caused either by another gene 

located elsewhere or by an environmental factor.  Locus heterogeneity impacts on association 

studies, as well as on linkage analysis by reducing of the effective sample size (the details about 
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the impact on linkage analysis will be provided in Section 1.2.5).  Power will increase if we 

correctly model the effects of genetic heterogeneity (Hanson and Knowler 1998). 

1.2.2. Examples 

Heterogeneity is expected in conditions where a general biochemical pathway has failed.  

Generally, the end products of long biochemical pathways are almost always heterogeneous.  If 

susceptibility loci regulating different steps in a pathway are mutated, they may lead to the same 

disease outcome.  Mental retardation, blindness, deafness and various types of cancer are typical 

examples of disease exhibiting locus heterogeneity.  A striking example is Usher syndrome, an 

autosomal recessive trait.  Phenotypes of Usher syndrome are hearing loss and retinitis 

pigmentosa.  Mutations in at least six unlinked loci have been identified: USH1A (14q31-qter), 

USH1B (11q13-q14), USH1C (11p13-p14), USH2A (1q32-q34), USH2B (3p24.2-p23) and USH3 

(3q) (Strachan and Read 1996).  

1.2.3. Methods for detecting genetic heterogeneity 

Several statistics have been developed for detecting genetic heterogeneity.  Using a parametric 

approach, Schaid et al. (2001) developed a regression-based extension of the mixture likelihood.  

The mixture likelihood for a pedigree was denoted as: L(α, θ) = α *L(θ) + (1- α)*L(0.5), where 

L(θ) was defined as the likelihood for a pedigree at recombination fraction θ, and α was defined 

as the probability that a pedigree was linked to the susceptibility locus of interest.  They modeled 

pedigree features using logistic regression to determine the probability that a pedigree was linked 

or unlinked and estimated the mixture likelihood by putting the recombination fraction and 

pedigree features in the model.  Then they tested whether the pedigree features differentiated the 

linked and unlinked groups given linkage.  This regression-based method was applied to the 

analysis of a familial prostate cancer study. 
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   In addition, tests for genetic heterogeneity in identical-by-descent (IBD) allele sharing of 

affected relatives have been suggested (Mirea et al. 2004).  These authors added a family-level 

covariate into the linear and exponential likelihood models (Whittemore 1996; Kong and Cox 

1997).  Under linkage, they evaluated Sall and Spairs allele-sharing scoring functions between two 

covariate-defined family subgroups.  Then they tested the null hypothesis H0: no covariate-

associated heterogeneity vs. the alternative hypothesis HA: covariate-associated differences in 

IBD allele sharing. 

1.2.4. Stratification vs. heterogeneity 

Accounting for gene-gene interaction using stratification has also been proposed to deal with 

genetic heterogeneity (Leal and Ott 2000).  In other words, one would stratify pedigrees by the 

IBD sharing proportions at one locus, then perform linkage analyses at a second locus.  When 

there is genetic heterogeneity of IBD allele sharing between groups, stratification may increase 

the power.  The approach was applied to an affected-sib-pair study of type I diabetes (Cordell et 

al. 1995).  Cordell et al. (1995) stratified the data on the basis of IBD sharing patterns at one 

locus, then tested for excess IBD sharing at the other locus.  However, the stratification approach 

may encounter several problems such as small sample sizes in each subset and multiple testing.  

Also, when there is no difference in IBD allele sharing between groups (homogeneity of IBD 

sharing), stratification can lead to power loss. 

1.2.5. Impact on linkage analysis 

Both parametric methods and model-free approaches have been widely applied to linkage 

analysis (detailed frameworks for both approaches are provided in Appendix A).  However, 

when dealing with complex diseases, both approaches have their limitations.  Generally, the 

development of complex diseases not only depends on genetic factors, but also depends on 
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environmental factors, gene-gene interaction and gene-environment interaction.  Disease allele 

frequencies can vary across different ethnicities.  Also, genetic and clinical heterogeneity often 

are present.  In parametric linkage analysis, in order to provide adequate power, modes of 

inheritance of the disease loci have to be accurately specified.  However, the mode of inheritance 

is often unclear and may not follow any known simple Mendelian pattern.  Penetrances therefore 

may be hard to estimate precisely.  Model-free methods may not perform well either because of 

genetic heterogeneity.  The effective sample size becomes small when genetic heterogeneity 

exists.  Previous work showed that as the proportion of unlinked families increases, the power 

decreases significantly (Figure 1.2) (Weeks and Harby 1995).  If the effect of genetic 

heterogeneity is not considered, both approaches may only provide limited power. 
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Figure 1.2 Effect of heterogeneity: recessive model with disease allele frequency = 0.27; a 2-
allele marker linked at θ = 0.00; 300 affecteds/replicate. (Modified from Weeks and Harby 1995) 
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  Huang and Vieland (2001) compared the parametric HLOD approach with model-free methods, 

the mean sharing test and the maximum likelihood score (MLS), in the presence of genetic 

heterogeneity (details about HLOD will be provided in Chapter 2, and about model-free methods 

in Appendix A).  They simulated affected sib pair (ASP) data sets under different disease models 

with two different disease allele frequencies separately.  The data sets had 200 ASPs, but only 

contained a certain proportion of linked ASPs.  The pooled set consisted of two subsets with 

70% and 20% proportion of linked ASPs individually.  The results showed that the HLOD, mean 

sharing test and MLS using the pooled set had less power than when only using the set with 70% 

linked families.  They concluded that both parametric and model-free statistics could suffer a 

loss of power when there is a heterogeneity effect. 

  Detecting linkage signals in familial breast cancer is a successful example of dealing with 

heterogeneity in linkage analysis.  Genetic heterogeneity of breast cancer in the recruited 

families appears to be stratified by age of onset.  Previous work showed that linkage of breast 

cancer yields a lod score of 5.98 to D17S74 residing at chromosome 17q21 in the early age-of-

onset families (Hall et al. 1990).  But LOD scores for late age-of-onset families were negative.  

In this study, they first ranked families according to the average age-of-onset within each family.  

Then they calculated each family’s lod score and recorded the accumulated lod scores based on 

the low-to-high rank order.  The maximum lod score of 5.98 occurred in the subset with mean 

age-of-onset less than 47.4.  Later the BRCA1 gene associated with early-onset familial breast 

cancer was discovered in the region of chromosome 17q21.  The approach here was the same 

idea as the later developed ordered-subsets analysis (Hauser et al. 1998). 
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1.3. GENE-ENVIRONMENT INTERACTION 

1.3.1. Background 

As we mentioned in Section 1.1, the etiologies of complex diseases are usually a mixture of 

genetic effects, environmental risk factors, gene-gene interaction, and gene-environment (G x E) 

interaction.  Disease in different individuals may be caused by different susceptibility genes or 

environmental risk factors.  The heterogeneity issue is  discussed in Section 1.2.  In addition to 

locus heterogeneity and allelic heterogeneity, environmental risk factors and G x E interactions 

(covariate-related genetic heterogeneity) cannot be ignored when mapping susceptibility genes 

for complex diseases. 

1.3.2. Examples 

Various types of G x E interactions can be observed in complex traits.  Ottman (1990; 1996) 

suggested five different models of G x E interaction and provided examples under these models.    

These biologically plausible models illustrate different possible relationships between genetic 

effect, environmental effect, and their interaction effect on disease outcome. 

   In Model A, the susceptibility gene does not cause the disease risk directly, but it increases the 

level of the risk factor (Figure 1.3A).  In this model, the risk factor can be a quantitative trait due 

to the susceptibility gene.  The relationship between the phenylketonuria (PKU) gene, blood 

levels of phenylalanine, and mental retardation is an example of this model.  In this example, 

blood levels of phenylalanine are not only an intermediate product in the PKU pathway, but also 

can be an environmental risk factor. 

   In Model B, the susceptibility gene exacerbates the effect of the risk factor (Figure 1.3B).  

When the risk factor is absent, the gene has no effect.  The risk factor has a direct effect on the 
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Figure 1.3A The relationship between a high-risk genotype and an environmental exposure in 
model A (Modified from Ottman 1990)  

 

 

disease risk.  An example is the relationship between xeroderma pigmentosum, ultraviolet 

radiation, and skin cancer. 

 

 

 

 

 

 

Figure 1.3B The relationship between a high-risk genotype and an environmental exposure in 
model B (Modified from Ottman 1990) 

 

 

   In Model C, the susceptibility gene directly affects the disease risk.  The risk factor exacerbates 

the genetic effect (Figure 1.3C).  The risk factor has no effect on subjects with a low-risk 

genotype.  An example of this model is porphyria variegata.  Individuals with porphyria 

variegata, an autosomal dominant disease, have skin problems with various severity levels.  If 
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the subjects with the susceptibility genotype are exposed to barbiturates, a non-harmful exposure 

for the general public, they may be paralyzed and/or die because of the acute effect of this 

exposure. 

 

 

 

 

 

 

Figure 1.3C The relationship between a high-risk genotype and an environmental exposure in 
model C (Modified from Ottman 1990) 

 

   In Model D, neither the susceptibility gene nor the risk factor affects disease risk by itself, but 

when both are present, they increase the disease risk (Figure 1.3D).  For example, individuals 

with glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked recessive disease, will 

develop severe anemia if they consume fava beans.  Individuals without G6PD deficiency can 

eat fava beans without causing anemia. 

 

 

 

 

 

 

Figure 1.3D The relationship between a high-risk genotype and an environmental exposure in 
model D (Modified from Ottman 1990) 
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   In Model E, the susceptibility gene and the risk factor each have a direct influence on disease 

outcome (Figure 1.3E).  Chronic obstructive pulmonary disease (COPD) is an example of this 

model.  Non-smokers with α-1-antitrypsin deficiency have an increased risk of developing 

COPD.  The disease risk increases in smokers regardless of α-1-antitrypsin deficiency. 

 

 

 

 

 

 

 

Figure 1.3E The relationship between a high-risk genotype and an environmental exposure in 
model E (Modified from Ottman 1990) 

 

 

   Similar to the five models described by Ottman (1990; 1996), Khoury et al. (1993) described 

six biologically plausible patterns of G x E interaction.  The magnitude of disease risk varies in 

different patterns with various directions of the genetic effect and the environmental exposure 

(Table 1.1 and Figure 1.4).  We first define the background risk as I, the genetic risk with 

exposure absence as IRg, the environmental risk with susceptibility genotype absence as IRe, and 

the G x E interaction risk (when both genetic risk and environmental risk are present) as IRge. 

The magnitude of the background risk, I, and the G x E interaction risk, IRge, are the same in the 

six patterns.  But the genetic risk and the exposure behave differently in the different patterns.  In 

Pattern 1, neither the susceptibility genotype nor the exposure alone increases the risk. Therefore, 
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Pattern 1 corresponds to Ottman’s Model D.  In Pattern 2, the exposure increases disease risk, 

but the gene does not have any effect when the environmental factor is absent.  This is the same 

as Ottman’s Model B.  Complimentary to Pattern 2, in Pattern 3, the susceptibility genotype 

alone can increase risk, but not the exposure.  Ottman’s Model C matches Pattern 3.  In Pattern 4, 

which is similar to Ottman’s Model E, presence of either the susceptibility genotype or the 

exposure increases the risk.  The susceptibility genotype in Pattern 5 has a protective effect, but 

the exposure alone does not increase the risk.  In contrast to Pattern 5, the susceptibility genotype 

in Pattern 6 has a protective effect, but the exposure alone increases the risk. 

 

Table 1.1 Six patterns (matching Figure 1.4) of genetic effect, exposure and G x E interaction 
observed in complex diseases (From Khoury et al. 1993) 

 Effect on disease risk of 

Patterns Genotype in absence of 

environment 

Environment in absence of 

genotype 

1 No effect; Rg = 1 No effect; Re = 1 

2 No effect; Rg = 1 Increases risk; Re > 1 

3 Increases risk; Rg > 1 No effect; Re = 1 

4 Increases risk; Rg > 1 Increases risk; Re > 1 

5 Decreases risk; Rg < 1 No effect; Re = 1 

6 Decreases risk; Rg < 1 Increases risk; Re > 1 
From Khoury et al. (1993) 
NOTE: Rg: genetic risk w/ exposure absence; Re: environmental risk w/ susceptibility gene absence. 

 

1.3.3. Impact on segregation analysis 

Several works have surveyed the effects of different G x E interactions on segregation analysis 

(Eaves, 1984; Tiret et al., 1993).  Tiret el al. (1993) applied a regressive model, similar to the 

class D regressive model proposed by Bonney (1984), specifying equal sib-sib correlations in  
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Figure 1.4 The magnitudes of genetic effect, exposure and G x E interaction in different patterns 
(From Khoury et al. 1993) 
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major genotypes.  But their segregation analysis model accounted for the G x E interaction 

effect.  Parameters in the regressive model were the gene frequency, the three genotype-specific 

means, and the three genotype-specific slopes.  The results showed that ignoring the G x E 

interaction effect decreases power to detect a major gene effect and leads to biased parameter 

estimates. 

1.3.4. Types of gene-environment interaction models 

As we described in Section 2.2, different types and directions of G x E interaction have different 

effects on disease outcome.  Therefore, it is important that our proposed G x E interaction 

models should be biologically plausible.  Herewith, we propose three biologically reasonable G x 

E interaction scenarios, which may commonly occur in complex diseases.  In the later chapters, 

we will investigate how the statistical methods behave under these different G x E interaction 

scenarios. 

  We consider three different types of gene-environment (G x E) interaction models.   For 

simplicity, each of these models has only one disease locus G and one environmental factor C1, 

which interacts with the disease locus G.  Each model also has an environmental factor C2 that 

influences disease risk, but does not interact with the genetic effect.  We also simulate a random 

covariate C3 that has no effect at all on disease liability. 

   Overall, the liability model is used to assign individual’s affection status according to a 

threshold in the liability distribution.  The liability model is influenced by G, covariate C1, 

covariate C2, a polygenic effect PG and a random error E.  However, whether G or C1 has direct 

effect on the liability depends on the different types of G x E interaction models.  Hence, the 

components in the liability models vary across different G x E models (details are in the 
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following sections).  We then define individual’s affection status, giving a desired prevalence, 

using a liability threshold. 

  Type I G x E interaction model: in the Type I G x E model, the disease liability is determined 

by one disease locus G, two covariates C1 and C2, a polygenic effect PG and a random effect E 

(Figure 1.5).  The susceptibility gene has a direct effect on disease outcome.  Covariate C1 does 

not have a direct effect, but it influences the disease risk by interacting with the susceptibility 

gene.  The magnitude of C1’s effect depends on the genotype-specific slopes, βG (Figure 1.6) 

(Tiret 1993).  If an individual carries a high-risk genotype, βG is equal to one.  Otherwise, βG is 

equal to zero.  In addition, we generate another environmental risk factor (covariate C2).  

Covariate C2 does not interact with the susceptibility gene G, but directly influences disease 

outcome.  Since the outcome of interest is a complex trait, we also take into account the 

polygenic effect PG and a random noise effect E as well.  The Type I G x E model is similar to a 

combination of Ottman’s Models D and E (1990; 1996). 

 

 

 

 

 

 

Figure 1.5 Type I model 
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Figure 1.6 Interaction between covariate and susceptibility genotypes under different disease 
models for the Type I G x E interaction model. 

 

 

  Type II G x E interaction model: the Type II G x E model uses one of two disease liabilities, 

depending on the value of covariate C1.  One liability is determined by one disease locus G, one 

covariate C2, a polygenic effect PG and a random effect E (Figure 1.7).  The other is determined 

only by one covariate C2, a polygenic effect PG and a random effect E.  Whether or not the 

susceptibility gene G is included in the liability model depends on the covariate C1 level.  If C1’s 

level exceeds the threshold (e.g., C1 ≥ 0), the genetic effect is included in the liability.  

Otherwise, there is no genetic effect in the liability.  We also consider an independent exposure: 

covariate C2.  The Type II G x E model is similar to Ottman’s Model C, where the risk factor 

exacerbates the genetic effect, but has no direct effect on disease outcome. 
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Figure 1.7 Type II model 

 
 

  Type III G x E interaction model: in the Type III G x E model, the disease liability is 

controlled by two covariates C1 and C2, a polygenic effect PG and a random effect E (Figure 

1.8).  The susceptibility gene does not have a direct effect on disease liability, but it influences 

the disease outcome via changing the covariate C1 level.  Covariate C2 is an independent 

environmental risk factor, like the covariate C2 in the Type I and Type II models.  The 

susceptibility gene exacerbates the risk factor’s effect, but has no direct effect on disease 

outcome in Ottman’s Models A and B, which are close to the Type III model. 
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Figure 1.8 Type III model 

 

 

 

1.4. G x E INTERACTION VS. IBD SHARING PATTERNS 

The expected IBD sharing patterns in sib pairs under different types of G x E interaction may 

deviate from those under the null hypothesis when the covariate has no effect.  Greenwood and 

Bull (1999) presented four G x E models to illustrate the covariate effect on the IBD sharing 

patterns (Table 1.2).  In model A (similar to our Type I model), the covariate increases the 

disease penetrance so that the chance of developing disease is higher for exposed individuals 

carrying high-risk genotypes.  When both sibs are exposed and the high-risk genotypes have a 

greater effect, the deviations from the null IBD sharing are more significant.  In model B (similar 

to our Type II model), the covariate is necessary for the susceptibility gene to have an effect.  

The expected IBD sharing patterns in concordant unaffected pairs and discordant pairs are the 

same as the null.  The power to detect linkage would be low if one recruits all types of sib pairs 

(both concordant and discordant).  In model C, the G x E interaction is not on an additive scale.  

Overdominance is assumed, so that heterozygotes have higher risk than homozygotes.  The 
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deviations of the IBD sharing patterns are observed.  In model D, the gene has a protective effect 

in unexposed subjects, but when the covariate occurs, the gene has a harmful effect in exposed 

subjects.  The IBD sharing patterns in discordant pairs may fall outside the possible-triangle 

boundaries (Holmans 1993) (the details of the possible-triangle boundaries are provided in 

Appendix A). 

   In addition, Guo (2000) also estimated the expected IBD sharing patterns in three examples of 

G x E interactions: (1) genetic factors interact with exposures in an additive fashion; (2) genetic 

factors increase disease risk in unexposed individuals, but decrease the risk in exposed 

individuals; (3) exposures have strong effect, but very mild G x E interaction effect.  There is a  

 
 

Table 1.2 Expected IBD sharing patterns in sib pairs under different G x E models (From 
Greendwood and Bull 1999) 

Model Exposure q * f0 
** f1 f2 z0 

*** z1 z2 

Neither sib .05 .10 .30 .24 .50 .27 
Both sib .05 .20 .60 .19 .50 .31 
One sib    .22 .50 .28 

A 

 

.05 

      
Neither sib .05 .05 .05 .25 .50 .25 

Both sib .05 .20 .60 .19 .50 .31 
One sib    .25 .50 .25 

B 

 

.05 

      
Neither sib .05 .40 .05 .15 .49 .37 

Both sib .45 .80 .45 .23 .50 .27 
One sib    .20 .49 .30 

C 

 

.01 

      
Neither sib .424 .0424 .0042 .21 .50 .30 

Both sib .10 1.00 1.00 .17 .49 .34 
One sib    .37 .50 .12 

D 

 

.20 

      
Note: 
   * q: disease allele frequency 
   ** f0, f1, f2: exposure-specific penetrances  
   *** z0, z1, z2: expected IBD sharing patterns 
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strong genetic effect in unexposed subjects, but a small effect in exposed subjects.  The results 

showed theoretically that the expected IBD sharing patterns and the required sample sizes vary 

under different G x E interaction behaviors. 

 

1.5. SUMMARY 

In order to reveal true signals in linkage analysis of complex traits, the assumptions related to 

genetic heterogeneity in the statistical models cannot be ignored and must be taken into account 

very carefully.  Otherwise, neither parametric nor nonparametric approaches in linkage analysis 

can provide adequate power due to the small effective sample size.  We discussed the impact of 

genetic heterogeneity on linkage analysis here.  We will describe how to deal with the 

heterogeneity issue in Chapter 2.
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2. STATISTICAL METHODS FOR DEALING WITH HETEROGENEITY 

 

2.1. INTRODUCTION 

Since both parametric and nonparametric approaches ignoring heterogeneity cannot provide 

adequate power to detect signals in linkage analysis for complex diseases, several statistics 

taking into account the heterogeneity issue have been proposed for the detection of linkage, 

based on both parametric and nonparametric frameworks.  We will introduce parametric 

approaches in Section 2.2, and various methods of incorporating covariate information into 

affected-sib-pair (ASP) or affected-relative-pair (ARP) analysis, based on a nonparametric 

framework in Section 2.3. 

 

2.2. PARAMETRIC APPROACHES VS. GENETIC HETEROGENEITY 

Based on the parametric framework, the M-test, the B-test and the admixture model have been 

proposed to deal with genetic heterogeneity. 

2.2.1. M-test 

The method proposed by Morton (1956), called the M-test, divides families into pre-defined 

subsets based on clinical features or ethnic background.  To test whether the recombination 

fraction (θ) varies between subsets, three hypotheses are considered.  The first hypothesis H0 is θ 

= ½ for all subsets.  “The relative support for this hypothesis is measured by the value of the log-
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likelihood function of the entire dataset evaluated at θ = ½, which we denote as ln L0” (Sham 

1998).  The second hypothesis H1 is that all subsets have the same θ, but θ < ½.  “ The relative 

support for this hypothesis is the maximum log-likelihood of the entire data set over 0 ≤ θ ≤ ½, 

which we denote as ln L1” (Sham 1998).  The third hypothesis H2 is that θ varies between 

subsets.  “The relative support for this hypothesis is obtained by maximizing the likelihood 

function over 0 ≤ θ ≤ ½, for each subset of families separately, and then summing the subset-

specific maximum log-likelihood.  We denote the value of the log-likelihood maximized over 

subset-specific recombination fractions as ln L2” (Sham 1998). 

   For n subsets, one can compare H0 with H1 using the likelihood ratio test statistic 2* (ln L1 - ln 

L0), which tests for linkage.  This is a one-sided χ2 test with 1 degree of freedom (df).  One can 

also compare H1 with H2 using 2* (ln L2 - ln L1), which tests for heterogeneity.  It is an 

asymptotically one-sided χ2 distribution with (n-1) df. 

2.2.2. B-test 
 
Similar to the M-test, Risch (1988) suggested a Bayesian approach, which is often called the B-

test.  The θ values in different subsets are assumed to follow a beta distribution with two 

parameters.  One can estimate these two parameters from the posterior distribution of θ.  The test 

statistic 2* (ln L2 - ln L1) here is also used to test for heterogeneity (L1 and L2 are the same 

notations as the ones in the M-test).  It is a one-sided χ2 distribution with 1 df.  Ott (1999) 

concluded that “the B-test is generally conservative and often more than the M-test (Risch 

1988)”. 
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2.2.3. Admixture model 

To take into account genetic heterogeneity, the method introduced by Smith (1959) used a 

likelihood composed of a mixture of two types of families, one with linkage and one without 

linkage.  This method is known as the admixture model.  Let the proportion of families with 

linkage be α, and (1-α) for families without linkage.  Then the likelihood of the ith family can be 

written as: Li(α, θ) = α*Li(θ) + (1-α)*Li(½), where Li(θ) is the likelihood, evaluated at θ = θ1 (0 

≤ θ1  ≤ ½).  The null hypothesis H0 is either θ = ½ or α = 0.  The second hypothesis H1 is 0 ≤ θ ≤ 

½, assuming α = 1.  The third hypothesis H2 is 0 ≤ θ ≤ ½ and 0 ≤ α ≤ 1.  The relative support for 

the null hypothesis is calculated by the value of the log-likelihood function evaluated at θ = ½ 

and α = 0, which we denote as ln L0.  The relative support for the second hypothesis is the 

maximum value of the log-likelihood function on the line α = 1, which we denote as ln L1.  The 

relative support for the third hypothesis is the maximum value of the log-likelihood function in 

the entire rectangle space defined by 0 ≤ θ ≤ ½ and 0 ≤ α ≤ 1, which we denote as ln L2.  

   Hence, the likelihood ratio test statistic 2* (ln L1 - ln L0) is used to test for linkage.  It is a one-

sided χ2 distribution with 1df.  The second likelihood ratio test statistic 2* (ln L2 - ln L1) is 

applied to test for locus heterogeneity.  It is a one-sided χ2 distribution with 1 df.  The third 

likelihood ratio test statistic 2* (ln L2 - ln L0) is used to test for linkage, but assuming 

heterogeneity (0 < α < 1) (often called the A-test).  Because the two parameters θ and α are 

separate under the alternative hypothesis but are confounded under the null hypothesis, the 

asymptotic distribution of this statistic is not a χ2 distribution.  An approximation is that it is a 

50:50 mixture of a probability mass at zero and the larger of two independent χ2 random 

variables each with one degree of freedom (Faraway 1993). 



 

 25

   Based on the admixture model, the lod score corresponding to the likelihood ratio for linkage 

assuming heterogeneity can be defined as: log10[ )ˆ,ˆ( αθL  / L(½, 0)], which is often called the 

heterogeneity lod score (HLOD score).  The admixture model has been implemented in the 

HOMOG program (Ott 1999).  Although use of a heterogeneity parameter, α, can make 

parametric linkage analysis more robust to model misspecification, the limitation of this 

approach is that family features, such as body mass index, that may be used to differentiate 

linked and unlinked families are not used. 

  Whittemore and Halpern (2001) reported that the estimation of the proportion, α, of pedigrees 

linked to the disease gene based on the admixture likelihood approach is sometimes problematic.  

For instance, the estimation of α is valid only when all the following assumptions are met: the 

disease mutations have no effect on family size, the mutations are rare, and the mutations of all 

susceptibility genes have equal penetrances.  Even when all assumptions were met, their work 

showed that the HLOD score is estimated on the basis of an incorrect likelihood function.  

Additionally, Hodge et al. (2001) cited several publications investigating the violations of the 

HLOD assumption: each family must either be linked or unlinked (Goldin 1992, Vieland et al. 

2001).  Hodge et al. (2001) pointed out these publications supporting the application of HLOD 

score to detect a linkage signal, even under the wrong assumed heterogeneity model. 
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2.3. METHODS FOR INCORPORATING COVARIATES INTO AFFECTED-SIB-
PAIR ANALYSIS 

 

2.3.1. Background 

We described several statistics for taking into account genetic heterogeneity in a parametric 

framework in Section 2.2. Based on nonparametric approaches, several methods have been 

suggested to incorporate covariate information into affected-sib-pair (ASP) or affected-relative-

pair (ARP) analysis.  An overview of the different covariate statistics is presented in Figure 2.1.  

Overall, there are three different approaches using covariate information in ASP or ARP 

analysis: mixture model (Devlin et al. 2002b), regression-based statistics (Greenwood and Bull  

1997; Olson 1999; Rice et al. 1999; Gauderman and Siegmund 2001; Alcaïs and Abel 2001; 

Saccone et al., 2001) and ordered-subsets analysis (Hauser et al. 1998).  The details of these 

methods will be described in the following sections. 

2.3.2. Mixture models (Devlin et al. 2002b) 
 
The idea of mixture models is that under genetic heterogeneity, the collection of family data is a 

mixture of two groups, where one group is linked to the suspected gene and the other is not.  

Devlin et al. (2002) suggested two mixture models, the “pre-clustering” model and the “Cov-

IBD” model, for clustering linked and unlinked groups using covariate information.  The pre-

clustering model first uses covariate information to cluster families and then tests for excess IBD 

sharing independent of the covariate information.  The Cov-IBD model jointly uses the covariate 

information and IBD sharing to simultaneously cluster linked and unlinked groups while 

maximizing the likelihood. 

   Devlin et al. (2002) evaluated the performance of their mixture models by generating simulated 

data that mimicked breast cancer families and their pedigree features.  They also applied the  
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mixture model approach to an anorexia nervosa study.  By incorporating several behavioral 

covariates into the model, they detected linkage signals at several regions on different 

chromosomes (Devlin et al., 2002a). 

   The mixture model approach may be summarized as follow.  For each family, we observe 

marker data Mi, and family-level covariates Xj.  We measure the family-level covariate 

information by taking the average of all family members, both affecteds and unaffecteds.  The 

full likelihood for a sib-pair is specified as a mixture model: 

α(Xj)P(Mi | linked) + [1 – α(Xj)]P(Mi | unlinked), 

where α( Xj) is an estimate of the probability that the subject belongs to the cluster of interest; 

P(Mi | linked) is computed as a function of λs, which is the recurrence risk ratio for a sibling of 

an affected individual; P(Mi | unlinked) is computed assuming λs = 1. 

   In the pre-clustering model, α( Xj) is first estimated by using covariate information only, and so 

the probabilistic clusters are determined without using the IBD sharing information.  Then the 

likelihood is maximized as a function of λs.  An alternative approach is to maximize the 

likelihood jointly with regards to covariates (α( Xj)) and IBD sharing patterns (λs).  This is called 

the Cov-IBD model.  The likelihood-ratio test is asymptotically distributed as a 50%:50% 

mixture of zero and one-sided χ2 with one degree of freedom (df).  In this study, we implement 

the pre-clustering model in our R code and analyze data with this approach.  

2.3.3. General conditional-logistic model (Olson 1999): LODPAL 
 
Olson (1999) proposed a general conditional-logistic model for ARP analysis.  This conditional-

logistic method has been extended to incorporate covariate effects. 

   The relevant part of the likelihood can be formulated as: 
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∑
Z

MZPZXAAP )|()],,|([ 12 , 

where A1 and A2 are affected sibs (sib1 and sib2), X is pair-level covariate information, M is 

marker data, Z is the IBD sharing vector (Z = 0, 1, or 2), ),,|( 12 ZXAAP is a function of two sets 

of parameters βj and δj: ),,|( 12 ZXAAP = ∑
=

+

2,1,0j

Xjje δβ  with δ0 = 0, βj = logeλj, λj is the relative 

risk of the relative pair sharing j IBD and δj are the estimated coefficient parameters of covariate 

X. 

   Instead of this original general conditional-logistic model, we evaluate the performance of their 

modified version as proposed in their prostate cancer study (Goddard et al., 2001).  The modified 

version is implemented in the LODPAL program in S.A.G.E. package (Elston 2001).  They 

applied the min-max restriction on the relative risk, λ, recommended by Whittemore and Tu 

(1998) to reduce the number of parameters from two to one.  Previous work showed that a min-

max one-parameter restriction approach is more robust than the traditional two-parameter 

methods for most genetic models (Whittemore and Tu 1998).  However, for some covariate 

values, the likelihood estimate can be negative.  In these cases, the likelihood estimate is set to an 

extremely small positive value to avoid computational difficulty.  LODPAL does not constrain 

on the covariate information.  It is difficult to decide whether one should constrain on the 

covariate information, because outliers may provide useful information.  The question is which is 

the “right” regression line for the data set as a whole or the bulk of it [Olson, personal 

communication].  We herein implement this one-parameter restriction modified version in our R 

code. 

   Although several options are provided to measure pair-level covariate information in 

LODPAL, we follow the same procedures suggested by Olson (1999).  We center the covariate 
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values: x - x , where x is the covariate values and x  is the mean of x, then take the average pair-

level covariate value into the model.  The test statistic asymptotically follows a 50%:50% 

mixture of χ2 distributions with P and P + 1 df where P is the number of covariates. 

   Olson (1999) applied this model to one simulated data set and to one Type 1 diabetes data set.  

This covariate-based linkage analysis was also used to identify potential chromosomal regions 

linked to prostate cancer (Goddard et al., 2001), to locate the second locus for a very-late-onset 

form of Alzheimer disease (Olson et al., 2002a), and to map possible regions linked to systemic 

lupus erythematosus (Olson et al., 2002b). 

2.3.4. Multinomial logistic regression model (Bull et al. 2002): MLRM 
 
Greenwood and Bull (1997) developed a method for incorporating covariate information into 

ASP linkage analysis based on a multinomial logistic regression approach, which estimates the 

proportion of expected IBD sharing conditional on covariates in affected sib pairs. 

   For each affected sib pair, the likelihood for the marker data M given pair-level covariates X is: 

P(M | X) = ∑
Z

XZPZMP )|()|(  = ∑
Z

P(Z | X)
P(Z)

M)P(Z | M)P( , 

where Z is the IBD sharing vector (Z = 0, 1, or 2), and P(Z | X) is a function of the parameter 

vector β: P(Z | X) = XX

X

ee
e j

101 ββ

β

++
 for j IBD sharing = 0, 1, 2 and β2 = 0. 

   Previous work showed that the likelihood-ratio test with IBD sharing constraints increases 

power (Holmans 1993) (details are provided in Appendix A).  However, they pointed out that 

IBD sharing patterns can fall outside the possible triangle designated by Holmans (1993) under 

certain gene-environment interactions.  Similarly, Guo (2000) also indicated that the genetic 

triangle constraints may no longer hold when there is an environmental effect and/or G x E 

interaction. 
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   In order to improve power in the covariate model, they proposed three alternative restricted 

models.  (1) Average constraints: this method proposes that the expected value of the constrained 

allele-sharing estimates has to fall within the plausible genetic region, where expectation is taken 

over the covariate distribution of affected sib pairs’ population.  (2) Subgroup-triangle 

constraints: if the covariate is categorical, one can apply the constraints in the usual possible 

triangle to each subgroup defined by the covariate, then sum the LOD scores across all 

subgroups.  (3) Simultaneous-boundary constraints: for each value of the covariate, this approach 

can be thought of as constraining the allele sharing to one of the boundaries (z1 = .5, z1 = 2*z0, 

and z1 = .355 + .58*z0) (Greenwood and Bull 1999). 

   Under the assumption of no linkage, 2ln(10)*LOD score is asymptotically distributed as a χ2 

with 2P + 2 degrees of freedom where P is the number of covariates.  For the first two 

constrained models, they suggested the use of Monte Carlo p-values for the significance of tests.  

For the simultaneous-boundary constraints model, the test statistic has an asymptotic χ2 

distribution with (P +1) degrees of freedom, instead of (2P + 2) degrees of freedom. 

   Greenwood and Bull (1997) applied their method to a bipolar affective disorder study, but 

failed to find significant heterogeneity and didn’t observe the linkage signal previously found on 

chromosome 18 (Greenwood and Bull 1997).  In a study of Canadian families with inflammatory 

bowel disease (Rioux et al. 2000), previous work had suggested a susceptibility locus on 

chromosome 5.  Bull et al. (2002) applied their method to a subset of 167 pedigrees from this 

study and found that the linkage signal increases after incorporating covariate information.  Their 

results showed heterogeneous effects of diagnostic subtypes and age of onset (Bull et al. 2002). 

   Greenwood and Bull (1999) reported that: (1) in most situations, the simultaneous-boundary 

constraints approach under no dominance assumption (z1 = .5) has the best power, compared to 
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the unconstrained model and the other constrained models suggested in their work; (2) but this 

approach under the no additive assumption (z1 = 2*z0) tends to have very low power, since the 

probability of sharing one allele IBD was estimated to be 0.497, which is very close to the null 

(z1 = 0.5), in the unconstrained model with no covariates; (3) the min-max restriction approach 

has power between those of the two other simultaneous-boundary constraints approaches.   

   We here take the mean of ASP as the measure of pair-level covariate information, and analyze 

data using our R code, which implements the simultaneous-boundary constraints approach under 

three different assumptions: no dominance variance (corresponding to z1 = .5), no additive 

variance (corresponding to z1 = 2*z0), and use of the min-max restriction (equal to z1 = .355 + 

.58*z0). 

2.3.5. Pearson’s logistic regression residuals (Alcaïs and Abel 2001): MLB 
 
Alcaïs and Abel (2001) used a logistic regression approach to account for phenotypic and 

covariate effects.  In contrast to the logistic regression approaches applied in LODPAL, MLRM 

and COVLINK, they regressed out the covariate effects, and then computed Pearson’s residuals.  

The residuals were treated as a quantitative phenotype and analyzed using an extension of the 

Maximum-Likelihood-Binomial (MLB) linkage approach (Abel et al. 1998; Alcaïs and Abel 

1999).  The MLB is based on the binomial distribution of the numbers of affected sibs carrying a 

given parental allele.  Under the null hypothesis of no linkage, each affected sib should have a 

50% chance of receiving allele A from a parent who has an AB genotype.  The test for linkage is 

whether the probability is higher than 50% in affected sibs.  The test statistic is asymptotically 

distributed as a 50%:50% mixture of zero and one-sided χ2 distribution with one df.  The 

Maximum-Likelihood-Binomial approach is implemented in the MLB program. 
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   Alcaïs and Abel (2001) accounted for the familial correlation by applying the generalized 

estimating equations (GEE) approach (Liang and Zeger 1986). The Pearson’s residuals R here 

are obtained by regressing out the effect of individual-level covariate X on the family members 

(both affected and unaffected), and taking into account familial correlation.  Then the likelihood 

for the marker data Mi given R is computed by introducing a latent binary variable T for the 

sibship that models the linkage information between the quantitative trait and the markers.  This 

allows one to write: 

P(M | R) = ∑
T

RTPRTMP )|(),|(  = ∑
T

RTPTMP )|()|( , 

where P(M | T) is a function of parameter γ, the probability that a sib with Ti = 1 received an A 

allele from an AB parent and a sib with Ti = 0 received a B allele from an AB parent.  The AB 

genotypes here represent assumed genotypes at the putative trait. 

   It is important to elucidate that either the generalized linear model (GLM) (Wedderburn 1974) 

or GEE would provide the correct Pearson’s residuals, even though GEE allows us to deal with 

familial correlation.  The only difference between GEE and GLM is that variances of the 

estimated coefficients based on GEE are smaller than those based on GLM when familial 

correlation occurs. 

   To test the MLB extension, Alcaïs and Abel (2001) conducted a simulation study, which 

contained a genetic factor, one binary genotype-dependent covariate and a quantitative covariate.  

The results showed that compared to the MLB method without accounting for covariate 

information, power increases when the allele frequency is rare, no matter whether the trait is 

dominant or recessive, and when unaffected siblings are included in the analysis. 
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2.3.6. Ordered-subsets analysis (Hauser et al. 1998): OSA 
 
Ordered-subsets analysis (OSA) carries out stratified linkage analysis using family-level 

covariate information.  First, the ASM module of GeneHunter-Plus (Kong and Cox 1997) is used 

to obtain the LOD scores of all families before adding the covariate information.  Then the OSA 

methods are implemented as follows: calculate the covariate mean value for each family, using 

the covariate values of affected sibs only.  Rank the pedigrees based on their family-specific 

mean values.  Starting with the family having the highest mean value, add one family at a time, 

in rank order.  After including each family, re-estimate the single gene effect parameter, δ, and 

compute the maximum LOD score (MLS) for each subset.  Finally report the best MLS over all 

ordered subsets of the families.  This is the high-to-low (H → L) OSA statistic.  Repeat the same 

procedure by starting with the family having the lowest family-specific mean value to perform 

the low-to-high (L → H) OSA statistic.  We also run OSA using the optimal slice option.  This 

option first defines the subset of adjacent families from the covariate distribution that maximizes 

the LOD score.  Then repeat the same procedures starting with consecutively higher ranks (e.g., 

then starting with the second rank, the third rank, etc.).  

   Significance can be obtained by performing a Monte Carlo permutation test for the subset with 

the MLS.  However, one should be careful that the p-value reported in the OSA program 

measures whether use of the covariate information significantly increases the lod score, not the 

p-value for the likelihood-ratio test statistic.  Hence, for the OSA methods, we do not use the p-

value reported in OSA program. Instead, we obtain the empirical p-values (at 1%, 5% and 10% 

levels) estimated based on our 16,000 replicates generated under the null hypothesis of no 

linkage. 
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   The OSA approach has been applied to the Finland-United States Investigation of Non-Insulin-

Dependent Diabetes Mellitus Genetics (FUSION) study (Ghosh et al. 2000) and an autism study 

(Shao et al., 2003).  Based on OSA analyses, both studies found some suggestive linkage regions 

related to the complex traits of interest. 

2.3.7. Logistic regression for predicting the IBD sharing probability (Rice et al. 1999): 
COVLINK 

 
Rice et al. (1999) introduced a logistic regression approach that includes covariates as 

independent variables.  They predict the probability of IBD sharing in sib pairs using covariate 

information as predictors in the logistic regression model.  Then they test whether or not the 

probability of IBD sharing is significantly more than 50% and whether or not there are 

significant covariate effects.  They tested their method using simulated sibling data from the 

Genetics Analysis Workshop 11 (GAW 11).  Later, they extended this logistic regression 

approach to cousin pairs, and applied it to data from the GAW 12 (Rice et al. 1999, Saccone et 

al., 2001). 

   They use logistic regression to model IBD sharing as a function of covariates.  The logistic 

model of the IBD sharing probability Π regressed on pair-level covariates Xi can be written as: 

Loge(
Π−

Π
1

) = β0 + βιXi, 

where Xi is the ith covariate in a vector of covariates and βι is the ith coefficient in a vector of the 

corresponding estimated coefficients.  Their test statistic follows a two-sided χ2 distribution with 

one df.  They implemented this method in the COVLINK program.   

     We measure the pair-level covariate information by taking the mean of sib pairs (both 

concordant and discordant pairs).  We implement their method in our R code.  Although they use 
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all sib pairs’ information (affected-affected, affected-unaffected and unaffected-unaffected), the 

major limitation of this method is that it only uses relative pairs who have unambiguously 

determined IBD sharing probabilities. 

2.3.8. Linear regression model approach (Gauderman and Siegmund 2001) 
 
Gauderman and Siegmund (2001) presented theoretical work in taking into account 

environmental factors.  Their approach, the “mean-interaction” test, was based on the framework 

of the mean test statistic (defined in Appendix A).  They first set up three factors: genetic relative 

risk in unexposed individuals (Rg), exposure relative risk in noncarriers (Re) and G x E 

interaction relative risk (Rge).  G x E interaction models were specified by varying these factors.  

Affected sib pairs were divided into three subgroups: both exposed (EE), only one exposed (EU), 

and both unexposed (UU).  Then they computed the expected proportion of IBD sharing in three 

subgroups under different G x E interaction models. 

   In the conventional mean test for linkage, one uses a z-statistic: σπ /)5.0( −= Nz  to test 

the null hypothesis that π = 0.5, where π  is the mean of πi, i = 1, 2,…, N sib pair and σ is the 

standard deviation.  Equivalently, one can fit the degenerate regression model: πi = π = εi, where 

εi is assumed to be independent and have normal distribution with mean zero and variance σ2.  

For the mean test based on this regression model, the likelihood ratio test (Tπ) can be formed and 

has a 50:50 mixture of two χ2 distributions with zero and one df.  They extended the mean test 

by adding environmental factors simultaneously into the linear regression model for IBD sharing 

estimation.  If we denote covariates as Xi, the regression model then is written as: 

πi = π + β*Xi + εi. 
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   Based on this extended regression model, they proposed a likelihood ratio test, the “mean-

interaction” test.  The likelihood of their approach can be written as P(Α | Π, X), where A is 

affection status, Π is IBD sharing and X is pair-level covariate.  And the test can be defined as: 

Tπβ = -2{ln(L[π = 0.5, β = 0]) - ln(L[π̂ , β̂ ])}. 

   The test statistic has a 50:50 mixture of two χ2 distributions with P and P+1 df (P is the number 

of covariates).  They compared the power of the “mean-interaction” test with the mean test and 

concluded that incorporating G x E interaction into the linkage test can increase power.  We do 

not investigate the performance of the “mean-interaction” test here. 

2.3.9. Analytical distribution of covariate statistics 
 
Most papers about covariate statistics describe the theoretical asymptotic distribution and 

degrees of freedom, except for OSA.  However, whether the analytical distributions of the 

covariate statistics are accurate still requires investigation.  Especially when covariates are 

included in the analysis, the theoretical asymptotic distribution may not hold (Olson 2002c, d; 

Devlin et al. 2002b, c).  The most straightforward way to address this issue is to calculate type I 

error rates based on empirical distributions.  We will discuss these issues in Chapter 5. 

 

2.4. SUMMARY 

2.4.1. Comparison of the methods 
 

One of the specific aims is to examine whether or not the covariate statistics increase power to 

detect linkage.  Does power increase by adding covariates into the statistical model?  Or does it 

lead to a loss of power because of increased degrees of freedom?  Therefore, it is not only 

important to evaluate the performance of the covariate statistics, but also important to compare 
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their power to that of conventional methods that ignore covariate information.  Since 

conventional model-free methods ignore covariate information, we use the power of the model-

free methods (allele-sharing score statistics) as a baseline for our comparisons. 

   In addition, we can treat our covariates as quantitative traits, testing for linkage of the covariate 

itself.  For this purpose, we use two approaches: variance-component linkage analysis and 

regression-based quantitative-trait linkage analysis, computing their power. 

  Allele-sharing statistics: allele-sharing statistics are widely used in model-free approaches 

which measure the excess of IBD sharing in affected relatives (Whittemore and Halpern 1994; 

Kruglyak et al 1996; Kong and Cox 1997).  Two score functions, Spairs and Sall, are commonly 

applied to capture the IBD sharing probabilities in affected pairs.  These two score functions 

weight the affected individuals in the pedigrees differently.  The details of these two score 

functions and allele-sharing statistics are provided in Appendix A. 

   The likelihood-ratio test based on these score functions is asymptotically distributed as a 

50%:50% mixture of zero and χ2 with one df.  We analyze our simulated data using allele-

sharing statistics (ignoring covariate information) and compute Spairs and Sall by Merlin (Abecasis 

et al. 2002).  Previous work showed that Sall performs consistently well over various genetic 

models (Sengul et al. 2001).  We therefore use Sall as the baseline to compare with the covariate 

methods. 

  Variance-component linkage analysis: variance-component linkage analysis (VC) estimates 

the covariance between relatives as a function of the IBD sharing at a QTL (Fulker and Cherny 

1996; Almasy and Blangero 1998).  For instance, in the simple additive model, the covariance 

matrix for a family can be written as: 



 

 39

∑ Ι+Φ+Π=Ω
=

n

i
egaii

1

222 2ˆ σσσ  

where Π̂i
is the matrix of the estimated proportions of genes that the relative pairs share IBD at 

the ith QTL, Φ  is the kinship matrix, Ι  is an identity matrix, σ 2
ai  is the additive genetic variance 

due to the ith QTL, σ 2
g  is the overall genetic variance and σ 2

e  is the variance of the random 

effect.  We then test the null hypothesis: the additive genetic variance, σ 2
ai , is equal to zero vs. 

the alternative hypothesis: σ 2
ai  > 0.  The test statistic is asymptotically distributed as a 50%:50% 

mixture of zero and χ2 with one df.  We analyze our data using the Merlin program, which 

implements the VC method.  We input the original covariate values without standardization as 

the trait values in VC analysis. 

  Regression-based quantitative–trait linkage analysis: Sham et al. (2002) developed a 

method that regresses the IBD sharing between relative pairs on the squared sums and squared 

differences of the relative pairs’ trait values (Sham et al 2002).  The weighted-least-squares 

estimators of the regression coefficients can be written as a function of three covariance 

matrices: (1) the covariance matrices of squared sums and squared differences; (2) the 

covariance matrix of estimated IBD sharing probabilities; and (3) the covariance matrix between 

the estimated IBD sharing and the squared sums and squared differences.  The elements in the 

covariance matrix (3) are proportional to the additive variance due to a QTL.  A test for linkage 

is to test whether the additive variance is equal to zero.  The test statistic is distributed as a 

50%:50% mixture of zero and χ2 with one df.  We also analyze data using this approach 

implemented in the Merlin program.  We use the default settings in Merlin: mean zero, variance 

1.5 and heritability 0.8, even though these may differ from the values in the simulated models. 
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2.4.2. Abbreviations 
 
For simplicity, we name the ‘multinomial logistic regression model’ approaches (Bull et al. 

2002): under no dominance assumption as ‘no-dominance MLRM’, under no additive 

assumption as ‘no-additive MLRM’ and under the min-max restriction as  ‘min-max MLRM’, 

the ‘general conditional-logistic model’ (Olson 1999) as ‘LODPAL’, the ‘Pearson’s logistic 

regression residuals extension of the MLB approach’ (Alcaïs and Abel 2001) as ‘MLB’ and the 

‘logistic regression for predicting the IBD sharing probability’ (Rice et al. 1999) as ‘COVLINK’.  

We will use these abbreviated forms in the following chapters (Table 5.1). 
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3. DATA FEATURES AND SIMULATION 

 

3.1. DATA FEATURES 

3.1.1. Overview 
 

We generate simulated data sets with varied sibship sizes and with different underlying disease 

models.  As described in Section 1.3.4 in Chapter 1, there are several components influencing the 

underlying liability model: one genetic factor G, one covariate C1 with a G x E interaction effect, 

one independent environmental covariate C2, a polygenic effect PG, and a random error E.  

Meanwhile, we also generate one random noise covariate C3, which is not part of the liability.  

The relative effect of each component is modified through the variance proportions of each 

component, which are described in Tables 3.1A, B, C.  Based on the empirical liability, we set a 

threshold for defining the affection status, that gives the desired prevalence.  We only ascertain 

pedigrees with two or more affected sibs. 

3.1.2. Pedigree structure 
 
We simulate nuclear families with affected and unaffected children.  The simulated data sets 

contain a mixture of various sibship sizes, with sibship size varying from 2 to 5.  The sibship size 

distribution follows a truncated negative binomial distribution.  In terms of ascertainment, we 

only include the pedigrees containing 2 or more affected sibs.  After conducting several pilot 

analyses, we decided to simulate 100 pedigrees with 2 or more affected sibs in each replicate. 

 



 

 43

3.1.3. Disease models 
 

We consider single-locus two-allele dominant and recessive models with different disease allele 

frequencies.  Data sets generated under different G x E interaction models and different disease 

models have varied penetrances and phenocopy rates.  According to the different G x E 

interaction models, the disease gene has either direct or indirect effect on the disease outcome 

(Figures 1.5, 7, 8).  We consider four different disease allele frequencies for both dominant and 

recessive models.  The disease allele frequencies used for the different dominant models are 

0.01, 0.02, 0.05, and 0.1.  The disease allele frequencies used for the different recessive models 

are 0.1, 0.2, 0.3, and 0.4. 

3.1.4. Liability and affection status 
 
To define affection status, we use a liability threshold model described in Section 1.3.4 in 

Chapter 1 where a quantitative liability value is computed for each individual.  We generate 

10,000 families to obtain an empirical liability distribution for different G x E interaction and 

disease models.  A threshold is then determined so that 5% of the simulated liability values fall 

above this threshold, giving a 5% prevalence for the disease.  Each individual's affection status 

then depends on his/her underlying quantitative disease liability value.  When the subject’s 

liability value falls within the top 5%, the subject is affected.  The individual whose liability 

value is below the top 5% threshold is unaffected.  The contribution of each component is 

defined on the basis of its variance proportions. 

3.1.5. Marker data 
 
We simulate two sets of marker data evenly spaced every 5 cM along one autosomal 

chromosome with no missing data.  The ‘unlinked’ set contains marker data without any disease 

locus residing on the chromosome.  We then use the unlinked set to estimate empirical false 
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positive rates.  The other set, the ‘linked’ set, contains a disease locus in addition to the markers.  

The linked data set allows us to evaluate power. 

   The length of the simulated chromosome is 169 cM, which mimics the length of chromosome 

10 as taken from the recent deCode map (Kong et al. 2002).  Each simulated data set contains 33 

markers.  The disease locus resides at a position 50 cM along the chromosome.  The unlinked 

dataset doesn’t contain any disease gene.  The heterozygosity of all markers is set to 0.8 and the 

number of alleles at each marker is five.  All markers have equally frequent alleles.  We will 

describe how we simulate the maker data in Section 3.2. 

3.1.6. Covariate data 

  Types of covariates: there are various types of covariates such as discrete or continuous 

variables that one can incorporate into G x E interaction models.  For instance, gender is a 

dichotomous variable, age can be either an ordinal categorical variable or a continuous variable, 

and blood glucose concentration is a continuous variable.  However, not all of the covariate 

methods can take into account discrete covariates.  For example, discrete covariates are not 

suitable for the OSA statistics and the MLB approach.  All the covariate statistics we consider 

here can handle a continuous covariate.  Therefore, we only simulate continuous covariates. 

  Number of covariates: conceptually, there is no limitation to how many covariates one could 

include in the model.  However, we usually do not know exactly which exposures are associated 

with disease outcome.  Generally, the more covariates in the model, the more complicated the 

underlying disease liability.  It also makes the results more difficult to interpret.  Furthermore, 

when we incorporate more covariates, we also introduce more degrees of freedom.  Since the 

major aim of our study is to evaluate the performance of the covariate methods, we start from the 

simplest scenario first.  Even though we generate three different covariates (C1, C2, C3), when 
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we analyze the simulated data, we only take into account one covariate at a time, instead of 

simultaneously considering the effects of all three covariates. 

 

3.2. SIMULATIONS 

3.2.1. Overview 
 

We simulate data under the three types of G x E interaction models that we described in Chapter 

1.  For G x E interaction model, we generate data under either dominant or recessive disease 

models with 4 different disease allele frequencies, separately. 

   Next, we analyze each simulated replicate using covariate statistics, model-free methods, and 

QTL approaches.  We first use the unlinked marker data and the covariate C2 (the covariate 

without a G x E interaction effect) and the covariate C3 (the random noise covariate) to obtain 

the empirical null thresholds (details will be described in Chapter 5).  We then analyze the linked 

marker data and various covariates to determine power of each statistic (details will be described 

in Chapter 6). 

3.2.2. Data simulation of three G x E interaction models 
 
  General simulation schema: for all G x E interaction models, we first simulate the parents’ 

disease locus genotypes using the distribution defined by the disease allele frequencies assuming 

Hardy-Weinburg equilibrium and linkage equilibrium.  The children’s disease locus genotypes 

are generated conditional on the parents’ genotypes.  The covariates C1 and C2 for parents and 

offspring are simulated from two multivariate normal distributions.  The parents and offspring’s 

polygenic effect are generated from a normal distribution N(0, σPG
2) and N(

2
21 PP + , 

2

2
PGσ ), 
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respectively, where P1 and P2 are the polygenic values for the parents.  The random error of 

parents and offspring is obtained from a normal distribution N(0, σΕ
2). 

   Covariate C3 is simulated from one of three different normal distributions with means (114.46, 

0, -64.59) and the same variance (35.75).  For each individual, we first pick one normal 

distribution randomly, and then simulate covariate C3 from the selected normal distribution with 

the corresponding mean and variance.  These three means correspond to three genotype 

distributions of a bi-allelic locus with allele frequencies 0.24 and 0.76 under Hardy-Weinburg 

equilibrium.  This locus is independent of the disease liability.  

   The difference in the three types of G x E interaction models is how we use the covariate C1 

information to define the liability model, and we transform the covariate C1 values in the Type 

III model.  We will describe the details in the following sections.  The parents and offspring’s 

affection status are assigned according to the threshold obtained from the empirical liability 

distribution, which gives a 5% disease prevalence.  We then ascertain families with 2 or more 

affected sibs.  For computational efficiency, we only generate maker data for the ascertained 

families. 

   Type I G x E interaction model: the simulation procedures of the Type I model were described 

above.  The simulation schema is shown in Figure 3.1.  The liability model is a function of one 

disease locus G, gene and covariate interaction (G x C1), covariate C2, PG, and E.  We assign 

individual’s affection status and ascertain families based on the threshold computed from this 

liability distribution. 

  In the Type I model, the disease liability is determined by G, the covariates C1 and C2, PG, and 

E (Figure 1.5).  Covariate C1 is generated from a multivariate normal distribution with mean 

zero and correlation 0.8; likewise, C2 is generated from a multivariate normal distribution with 
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mean zero and correlation zero.  The mean values of PG, and E are set to zero.  The variances of 

C1, C2, PG, and E are assigned so as to generate the desired variance proportions.  For both the 

dominant and recessive models, the variance proportions are as given in Table 3.1A. 

 

 

 

 

 

 

 

 

 

 

Table 3.1A Variance proportion of each component in the liability under the Type I model 

Proportion of variance due to each component Disease 
model 

Disease 
allele 
frequencies 

Disease 
gene 

G x E 
interaction 

Environmental 
factor 

Polygenetic 
effect 

Random 
effect 

Dm1 – Dm4 0.01 – 0.1 10 % 10 % 20 % 40 % 20 % 
Rm1 – Rm4 0.1 – 0.4 10 % 10 % 20 % 40 % 20 % 

Note: LI = µ + G + G * C1 + C2 + PG + E 

 

 
  Type II G x E interaction model: most simulation procedures were described in Section 3.2.2.1.  

Figure 3.2 presents the simulation schema.  In the Type II model, when C1 exceeds the threshold 

value (e.g. C1 ≥ 0), the liability is computed as a function of G, C2, PG and E.  Otherwise, G 

G 

C1 
C2

D 
C3 

LI: liability 
G: genetic effect 
C1: covariate with G x E interaction 
C2: environmental covariate 
C3: random noise covariate 

LI = µ + G + βG * C1 + C2 + PG + E 

Figure 1.5. Type I model 
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does not enter in and the liability is a function of covariate C2, PG and E (Figure 1.7).  The 

definition of affection status, and pedigrees’ ascertainment are same as in the Type I model. 

 

 

 

 

 

 

 

 

 

 

  The liability is constructed from one of two different underlying models, depending on the 

covariate C1 value, as described in Section 3.2.2.3.1.  Covariate C1 is generated from a 

multivariate normal distribution with mean zero, variance 1, and correlation 0.6; similarly, 

covariate C2 is generated from a multivariate with mean zero, and correlation 0.6.  The mean 

values of PG, and E are equal to zero.  As in the Type I model, variances of C2, PG, and E are 

assigned so as to generate the desired variance proportions.  

   In order to differentiate the power of each method, we adjust the genetic effect by using two 

genetic variances (GV = 20% or 30%).  The details of the variance proportion of each 

component are as given in Table 3.1B.

G 

C1 

C2 

D 
C3 

LI: liability 
G: genetic effect 
C1: covariate with G x E interaction 
C2: environmental covariate 
C3: random noise covariate 

If C1 ≥ 0, LI = µ + G + C2 + PG + E 
If C1 < 0, LI = µ + C2 + PG + E

Figure 1.7. Type II model 



 

 49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Data generation schema under the Type I model 

 

Simulate parents’ disease locus genotypes G 

Simulate children’s disease locus genotypes G conditional on 
parents’ genotypes 

Generate the covariates C1, C2 and C3 for both parents 
and children 

Generate the polygenic effect PG and random error E for both parents 
and children 

Assign affection status to parents and children based on the liability 

Ascertain pedigrees with 2 or more affected sibs 

Simulate marker data conditional on disease genotype for the linked 
chromosome and simulate marker data randomly for the unlinked chromosome 
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 Table 3.1B Variance proportion of each component in the liability under the Type II model 

Proportion of variance due to each component Disease 
model 

Disease allele 
frequencies Disease 

gene 
Environmental 
factor 

Polygenetic 
effect 

Random 
effect 

20 % genetic variance 
C1 ≥ 0 
Dm1 – Dm4 0.01 – 0.1 20 % 20 % 40 % 20 % 
Rm1 – Rm4 0.1 – 0.4 20 % 20 % 40 % 20 % 
C1 < 0 
Dm1 – Dm4 0.01 – 0.1 -- 25 % 50 % 25 % 
Rm1 – Rm4 0.1 – 0.4 -- 25 % 50 % 25 % 
30 % genetic variance 
C1 ≥ 0 
Dm1 – Dm4 0.01 – 0.1 30 % 20 % 40 % 10 % 
Rm1 – Rm4 0.1 – 0.4 30 % 20 % 40 % 10 % 
C1 < 0 
Dm1 – Dm4 0.01 – 0.1 -- 29 % 57 % 14 % 
Rm1 – Rm4 0.1 – 0.4 -- 29 % 57 % 14 % 

Note: C1 ≥ 0, LI = µ + G + C2 + PG + E; C1 < 0, LI = µ + C2 + PG + E 
 

 
  Type III G x E interaction model: simulation procedures were similar to those used for the other 

two models (Figure 3.3).  We first simulate the disease genotype and covariate C1 for each 

subject.  For individuals with the high-risk genotype, covariate C1 value is transformed using a 

sigmoidal curve: f(x) = 30 / (5 + 7.5 * exp(-3.5 * x)) (Figure 3.4).  For subjects with the low-risk 

genotype, covariate C1 value is re-generated from a normal distribution N(0, 0.01) (Figure 1.8).  

The definition of affection status, and ascertainment were described in Section 3.2.2.1. 

  The components in the liability are C1, C2, PG, and E (Figure 1.8).  The susceptibility gene 

affects the liability by altering the covariate C1 value in a disease genotype-dependent manner.  

C1 is first generated from a multivariate normal distribution with mean 2, standard deviation 1, 

and correlation 0.6.  Then the C1 value is modified according to individual’s disease genotype as  
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Figure 3.2 Data generation schema under the Type II model 

 

 

Simulate parents’ disease locus genotypes G 

Simulate children’s disease locus genotypes G conditional on 
parents’ genotypes 

Generate the covariates C1, C2 and C3 for both parents 
and children 

Generate the polygenic effect PG and random error E for both parents 
and children 

If C1 value < 0, assign affection 
status based on the liability w/o G 

Ascertain pedigrees with 2 or more affected sibs 

Simulate marker data conditional on disease genotype for the linked chromosome 
and simulate marker data randomly for the unlinked chromosome 

If C1 value ≥ 0, assign affection status 
based on the liability w/ G 

Assign affection status to parents and children based on the liability 
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Figure 3.3 Data generation schema under the Type III model 

Simulate parents’ disease locus genotypes G 

Simulate children’s disease locus genotypes G conditional on 
parents’ genotypes 

Generate the covariates C1, C2 and C3 for parents 
and children 

Generate the polygenic effect PG and random error E for parents 
and children 

Assign affection status to parents and sibs based on the liability 

Ascertain pedigrees with 2 or more affected sibs 

Simulate marker data conditional on disease genotype for the linked 
chromosome and simulate marker data randomly for the unlinked chromosome 

If G is high-risk genotype, C1 is 
transformed based on a sigmoidal curve 
(y = 30 / (5 + 7.5 * exp(-3.5 * x)) 

If G is low-risk genotype, C1 is re-
generated from a normal distribution 
(µ=0, s.d.=0.1) 
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described in Section 3.2.2.4.1.  C2 is generated from a multivariate normal distribution with 

mean zero and correlation 0.6.  Mean values of PG, and E are equal to zero.  As in the Type I and 

II models, we assign different variances for C2, PG, and E so as to generate the matching 

variance proportions.  The corresponding variance proportions are as given in Table 3.1C. 
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Figure 3.4 Sigmoidal curve for transforming the covariate values for individuals with a high-risk 
genotype 

C1 

G 

C2 

D 
C3 

LI: liability 
G: genetic effect 
C1: covariate with G x E interaction 
C2: environmental covariate 
C3: random noise covariate 

LI = µ + C1 + C2 + PG + E 

Figure 1.8. Type III model 
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Table 3.1C Variance proportion of each component in the liability under the Type III model 

Proportion of variance due to each component Disease 
model 

Disease 
allele 
frequencies 

Genotype-
dependent covariate 

Environmental 
factor 

Polygenetic 
effect 

Random 
effect 

G = high-risk genotype (GHR) 
Dm1 – Rm4 0.01 – 0.1 7.4 % 20.6 % 41.1 % 30.9 % 
Rm1 – Rm4 0.1 – 0.4 7.4 % 20.6 % 41.1 % 30.9 % 
G = low-risk genotype (GLR) 
Dm1 – Dm4 0.01 – 0.1 0.11 % 22.2 % 44.39 % 33.3 % 
Rm1 – Rm4 0.1 – 0.4 0.11 % 22.2 % 44.39 % 33.3 % 

Note: 
1. LI = µ + C1 + C2 + PG + E 
2. C1 is generated under a multivariate normal distribution with µ = 2, sd = 1. 

If G is GHR, C1 value is transformed to follow one sigmoidal curve: 
(y = 30 / (5 + 7.5 * exp(-3.5 * x)). 

 If G is GLR, C1 value is re-generated from a normal distribution (µ = 0, sd = 0.1). 

 

3.2.3. Data generation 
 
  Disease genotypes and covariate data: as described in Section 3.1.3, we consider 8 different 

disease models for each type of G x E interaction models.  How we generate covariate data was 

provided in Section 3.2.2. 

  Marker data simulation 

  Chromosome-based method vs. recombination-fraction approach: many simulation programs 

(e.g. SIMLINK, SIMULATE and SLINK) are available to generate marker data (Boehnke 1986; 

Weeks et al. 1990; Ott and Terwilliger 1992; Terwilliger and Ott 1994).  One common approach 

is the recombination-fraction method, as implemented in the SLINK program (Weeks et al. 

1990).  Based on the recombination-fraction method, for the “unlinked” chromosome, one can 

first simulate genotypes with phase at each marker independently for all founders under Hardy-

Weinberg equilibrium (HWE).  Next, one simulates marker segregation from the simulated 
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parents to their offspring based on the law of independent segregation and the recombination 

fraction between each adjacent pair of markers.  For the “linked” chromosome, one can create 

marker genotypes conditional on the disease phenotype, disease allele frequencies and genetic 

map distance between the adjacent markers.  The conditional probability can be written as: 

P(g | h) = P(g1 | h) * P(g2 | g1, h) * P(g3 | g1, g2, h)…, 

where g = (g1, g2, …, gn), a vector of the n subjects’ multilocus genotypes in the same family, 

and h = (h1, h2,…, hn), a vector of these n subjects’ phenotypes.  However, one drawback of this 

approach is that the simulation process can become extremely slow as the number of markers 

increases. 

   Instead of generating the marker genotypes conditional on genetic distance to the neighboring 

marker, we employ the chromosome-based approach (Terwilliger et al. 1993) to simulate our 

marker data.  In this procedure, the location and number of crossover points along a chromosome 

decide whether the offspring marker data is derived from the paternal or maternal chromosome.  

The benefit of this approach is that it is not only computationally efficient, but also allows us to 

model interference. 

  The steps of the chromosome-based approach are as follows: 

a. We first generate the parents’ marker data and disease locus genotypes under Hardy-

Weinberg equilibrium and linkage equilibrium.  Each parent is a “founder” with two 

chromosomes. 

b. For each offspring, we simulate two vectors storing the location and number of crossover 

points for both parents according to a gamma distribution with shape equal to 3.9 and rate 

equal to 7.8 (for details, see Section 3.2.3.2.2) (McPeek and Speed 1995; Broman and Weber 
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2000).  We utilize these vectors to pick the parents’ genotype data transmitted from their 

paternal or maternal chromosome to each offspring. 

c. In the “unlinked” case, we first pick the grandpaternal or grandmaternal chromosome, as an 

initial chromosome, from one of the parents by 50% chance.  Once we start with the initial 

chromosome at position zero, whether we switch to the other chromosome depends on the 

number (odd or even) and location of crossover points.  For example, we pick mother’s 

maternal chromosome at position zero as the initial chromosome by 50% chance.  While the 

first crossover event (odd number) occurs at 30 cM and the second crossover event (even 

number) occurs at 45 cM, we switch to the mother’s paternal chromosome from 30 cM to 45 

cM, then switch back to the mother’s maternal chromosome from 45 cM till we hit the third 

crossover event. 

d. In the “linked” case, we generate offspring’s disease genotype conditional on the parents’ 

disease genotypes.  Meanwhile, we index the allele of offspring’s disease genotype derived 

from father’s paternal or maternal side; we also similarly index the allele coming from the 

mother.  Therefore, for the offspring’s marker data, we start with the same chromosome as 

the one having disease genotype at position zero if the number of crossover events before the 

disease locus location is even.  If the number of crossover points is odd, we start with the 

other chromosome.  Once we know which chromosome to start with, the rule for switching to 

the other chromosome is the same as Step c.  For example, if the allele of offspring’s disease 

genotype derived from father’s paternal side, and the number of crossover events before the 

disease locus location is odd, we start with father’s maternal chromosome. 

  Interference and map function: interference is generally divided into two aspects: chromatid 

interference and chiasma (or crossover) interference.  Chromatid interference means the choice 
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of non-sister chromatids involved in a crossover is not independent.  Chiasma interference means 

the number and position of crossover in the given region interferes with the number and position 

of crossovers in the adjacent region.  We only model chiasma interference here.  Applying 

mathematical models for the crossover-point distribution subject to chiasma interference is a 

substantial topic.  The Haldane (1919) map function satisfies the no chiasma interference 

assumption; in contrast, the Kosambi (1944) map function assumes interference.  Several 

mathematical distribution models have been suggested to model interference (McPeek and Speed 

1995).  McPeek and Speed compared 6 different mathematical fitted models.  Based on their 

stochastic simulation, they showed that point process models such as gamma model (details 

provided in the following paragraph) often provides a very good fit to the observed data. 

   Two types of mathematical models are commonly used for generating crossover distribution: 

the count-location model and gamma model.  In the count-location model (Karlin and Liberman, 

1978; Risch and Lange 1979), the number of chiasma (crossover points) on the four-strand 

bundle is first generated, following a “count” distribution such as a Poisson distribution.  Then 

the locations of crossover points are independently and evenly distributed, following a “location” 

distribution such as a uniform distribution.  On the other hand, in the gamma model, the 

locations of crossover points on the four-strand bundle are determined based on a stationary 

renewal process, following a gamma distribution (Fisher et al. 1947; Foss et al. 1993).  Broman 

and Weber (2000) have reported the gamma model fits the genotype data from CEPH families 

very well.  We therefore employ gamma model to generate the number and locations of 

crossover points.  The detailed gamma model is as follows: 

   Let xi be the genetic distances between chiasmata on the four-strand bundle.  The locations of 

chiasmata can be generated according to a stationary renewal process with gamma interarrivals.  
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The xi are independent and follow a gamma distribution with shape (v) equal to 3.9 and rate (λ) 

equal to 7.8.  The values of shape and rate were obtained from the Table 3 in the Broman and 

Weber paper (2000).  Therefore, xi has the gamma density, which can be denoted as: 
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In order to properly generate the first point, we apply rejection sampling to obtain the first point 

for the non-integer shape parameter v (Ripley 1987).  The steps of rejection sampling are 

described as follows: 

a. First, find a suitable distribution h(x), known as the envelope distribution, which is always 

above the first point distribution g(x0) (Figure 3.5).  We employ the distribution: 2.8*e-1.5*x as 

the envelope distribution h(x) here. 

b. Next, choose a point y, randomly from a uniform distribution between zero and A, where A is 

the total area under the envelope distribution h(x).  Then obtain the corresponding point x by 

inverting the function H(x), which is the integral from zero to x of h(y). 

c. Then pick a random uniform point U between zero and one.  Accept the point x if U ≤ f(x) / 

h(x).  If U > f(x) / h(x), repeat steps b and c until an acceptable point is generated. 
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   Once we obtain the first point position, we then generate the other locations by using the 

gamma distribution with shape and rate of 3.9 and 7.8.  Under no interference assumption, the 

final locations of crossover points can be obtained by “thinning” the chiasma on the four-strand 

bundle: chiasmata are retained independently as crossover points with 50% probability. 

3.2.4. Simulation programs and procedures 
 
We used the R programming language to write our data simulation program (Appendix B) and 

the code for several covariate statistics: the mixture model (the “pre-clustering” model), 

LODPAL, the multinomial logistic regression model approaches (no-dominance MLRM, no- 

additive MLRM, and min-max MLRM), and COVLINK (Appendix C).  We first generate data 

using the simulation program, and apply several Perl scripts for data editing and filtering.  We  
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Figure 3.5 Distribution of first point in gamma model and the desired envelope function 

 

then analyze the data using the original programs for MLB and the OSA methods, the Merlin 

program, which implements model-free methods and QTL approaches, and our R code for the 
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other covariate methods.  We write shell scripts to connect data generation and data analysis, and 

record the outputs.  All the simulations were done using the Linux operating system.  In average, 

it takes about 20 minutes to complete data simulation and data analysis for one replicate of 100 

pedigrees when running on a 500 MHz processor, or 12 minutes when running on a 1.53 GHz 

processor. 
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4. VALIDATION AND PROPERTIES OF THE SIMULATED DATA 

 

4.1. VALIDATION OF SIMULATION PROGRAMS 

To make sure our simulation programs generate data correctly, we validate the programs in 

several ways as described in the following sections. 

4.1.1. Variance proportion of each liability component 
 
We simulate data under eight different disease models for each of the G x E interaction models.  

In each model, we generate one genetic factor G, three covariates (C1, C2, C3), a polygenic 

factor PG and a random error effect E.  The variance proportion of each component varies across 

the liability models (Tables 3.1A, B, C).  We first calculate the analytical variance for each 

component, corresponding to the desired variance proportion.  Next, we generate 10,000 families 

and calculate the mean and variance of each component.  We then check whether these values 

are very close to the analytical means and variances.  According to our results, the simulated 

means and variances are quite close to the analytical values (data not shown). 

4.1.2. Liability threshold vs. affection status 
 
We first simulate 10,000 pedigrees to obtain the empirical liability distribution and calculate top 

5% distribution as the cut-off point to assign affection status.  To check whether the liability 

threshold gives 5% disease prevalence, we generate another 10,000 families and assign 
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individuals’ affection status according to the threshold.  We then compute the population 

prevalence by two ways: (1) count the total number of affecteds, and then divided by the total 

number of subjects; (2) count the number of pedigrees whose first sib is affected and then 

divided by total family number.  The outputs show that all liability thresholds provide 

approximate 5% overall prevalence (data not shown). 

4.1.3. Recombination fraction between markers 
 
The simulated chromosome length is 169 cM.  We generate 33 markers evenly distributed along 

the chromosome with 5 cM spacing.  As described in Chapter 3, the chiasma (crossover points) 

are generated from a gamma distribution with shape 3.9 and rate 7.8.  Because the first point 

distribution needs to be treated differently, we employ rejection sampling to generate the location 

of the first point. 

   We check whether using a gamma distribution for marker generation provides the appropriate 

recombination fraction between markers.  Therefore, we first simulate 500 pedigrees with marker 

data across 22 chromosomes under gamma distributions with proper shape and rate parameters.  

The lengths of these 22 chromosomes mimic the lengths of 22 autosomal chromosomes as taken 

from the recent deCode map (Kong et al. 2002).  The shape and rate parameters in gamma 

distributions are taken from the Table 3 in the Broman and Weber paper (Broman and Weber 

2000).  We then count the crossovers between each marker pair and calculate the recombination 

fractions.  We find that the recombination fraction between each adjacent marker pair is very 

close to 0.05, as expected (data not shown). 

4.1.4. Statistics code 
 
Except for COVLINK, we have the authors’ programs implementing their covariate methods.  

But for computational efficiency, we wrote R code implementing several covariate statistics, as 
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described in Chapter 3.  To check the accuracy of our R code, we first generate various data sets 

with 100, 200, or 300 pedigrees.  We then analyze data using our R code and the authors’ 

original programs, and compare the outputs.  The results indicate that the outputs from our R 

code are close to those from the authors’ programs (data not shown).  Slight deviations exit in 

our outputs because the optimization algorithms applied in our code and the available programs 

are different.  We employ our R code to analyze the data for these statistics. 

 

4.2. PROPERTIES OF SIMULATED DATA 

4.2.1. Proportion of linked families 

We examine the proportion of linked families.  The definition of a “linked family” here is a 

family with two or more affected sibs carrying a high-risk disease genotype.  We generate 500 

replicates, where each replicate contains 100 ascertained pedigrees.  Then we calculate the mean 

and standard deviation of the proportion of linked families for each model.  We denote “the 

proportion of linked families” as α. 

   The results are presented in Table 4.1.  As the disease allele frequency increases, α increases, 

for both dominant and recessive traits.  When we look at each G x E interaction model 

separately, we find α in the Type III model is more than 90% in the common disease models (p = 

0.1 in dominant mode; p = 0.4 in recessive mode).  In the Type II model, α in the models with 

20% genetic variance is always lower than the models with 30% genetic variance.  In general, α 

in the Type II models is lower than the other models. 
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4.2.2. Recurrence risk ratio for siblings 
 

We compute the recurrence risk ratio for siblings under different models.  We pick the first two 

sibs in each family to compute the recurrence risk ratio.  Two recurrence risk ratios are defined  

 

Table 4.1 Percentage of linked families in different models, based on 500 replicates per model 

 Disease allele frequencies 

Dominant trait 0.01 0.02 0.05 0.1 

Type I model 36.68% ± 4.80% 61.93% ± 4.89% 74.87% ± 4.30% 79.51% ± 3.88% 

Type II model 

(GV = 20%) 

14.39% ± 3.55% 17.95% ± 3.79% 26.11% ± 4.38% 35.05% ± 5.03% 

Type II model 

(GV = 30%) 

16.79% ± 3.86% 24.67% ± 4.33% 32.99% ± 4.84% 43.12% ± 4.83% 

Type III model 35.55% ± 4.81% 58.68% ± 4.96% 86.10% ± 3.42% 95.71% ± 2.08% 

 Disease allele frequencies 

Recessive trait 0.1 0.2 0.3 0.4 

Type I model 23.06% ± 4.11% 54.93% ± 5.11% 69.65% ± 4.90% 74.76% ± 4.48% 

Type II model 

(GV = 20%) 

7.33% ± 2.64% 14.29% ± 3.51% 20.54% ± 4.25% 28.60% ± 4.55% 

Type II model 

(GV = 30%) 

7.68% ± 2.55% 20.39% ± 4.05% 27.15% ± 4.52% 36.07% ± 4.81% 

Type III model 14.35% ± 3.61% 50.10% ± 4.57% 77.65% ± 4.19% 92.00% ± 2.69% 

Note: 

   The definition as a “linked family” is the family with two or more affected sibs carrying high-
risk disease genotype. 

 

as: (1) λs: the probability that the 2nd sib is affected given the 1st sib is affected divided by the 

population prevalence K, [P(the 2nd sib affected | the 1st sib affected) / population prevalence K]; 

(2) λs, HR the probability that the 2nd sib is affected and carries the high-risk genotype given the 
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1st sib is affected and carries the high-risk genotype divided by the population prevalence K, 

[P(the 2nd sib affected & high-risk genotype | the 1st sib affected & high-risk genotype) / 

population prevalence K].  For each model, we simulate 10,000 families before ascertainment, 

assign the affection status (according to the threshold giving 5% disease prevalence) to each 

individual and compute the recurrence risk ratio. 

   Generally speaking, the range of λs is between 3.4 and 5.8, and the range of λs, HR is between 

2.4 and 9.3.  There is no particular pattern observed across different disease models, no matter 

which G x E interaction models (Table 4.2).  Although α increases as the disease allele 

frequencies increase (Table 4.1), the recurrence risk ratio does not follow the same trend.  One 

possible explanation may be that the liability model is determined by a combination of several 

components, not genetic factors only.  In other words, the etiologies of the first two affected sibs 

in the same family do not have to be the same.  For example, when the disease allele frequencies 

are less common, it is possible that one sib is affected due to a high-risk genotype and the other 

sib is affected due to a high environmental covariate value. 

4.2.3. Covariate values in affecteds and unaffecteds 
 

We compute the average covariate values in affecteds and unaffecteds before and after 

ascertainment across the models, respectively (Tables 4.3 A, B).  Under the Type I and III 

models, the values of C1 and C2 in affecteds are higher than those in unaffecteds.  Since C1 and 

C2 affect the disease liability, affecteds should have higher values than unaffecteds.  In addition, 

since C1 is strongly influenced by disease locus genotypes under the Type III model, we would 

expect to observe that affecteds after ascertainment have higher values than those before 

ascertainment. 
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   Under the Type II model, the C2 values in affecteds are higher than those in unaffecteds, but 

not the C1 values.  Since C2 involves in liability, we would expect affecteds to have higher 

values than unaffecteds.  However, C1 in the Type II model is used to determine whether genetic 

factor has an effect on liability.  Since the proportion of the linked families is less than 50% 

across all the Type II models, it is not surprising that the average C1 values in affecteds are often 

negative, and are not higher than those in unaffecteds. 

   The C1 and C2 values in unaffecteds across three types G x E models are close to the mean in 

the general population.  However, in the Type III model, we first generate individuals’ C1 values 

from a multivariate normal distribution with mean 2 and variance 1, and then update the C1 

values according to individuals’ genotypes.  Therefore, the original mean C1 value in the general 

population is not available here. 

   The C3 values do not differ between affecteds and unaffecteds, and do not differ before and 

after ascertainment.  Also the C3 values in both groups across three types G x E models are close 

to the mean in the general population.  Since C3 is a random noise covariate, it should not vary 

between affecteds and unaffecteds.  It is sensible to obtain such results. 
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Table 4.2 Recurrence risk ratio for siblings in different models, based on 10,000 families per 
model 

 Disease allele frequencies 

Dominant trait 0.01 0.02 0.05 0.1 

λs
* 5.40 4.50 3.56 3.84 Type I model 

λs, HR
** 9.33 7.59 4.74 4.73 

λs 5.28 4.84 4.36 4.52 Type II model 

(GV = 20%) λs, HR 6.42 4.16 3.48 3.82 

λs 5.56 4.88 4.70 4.69 Type II model  

(GV = 30%) λs, HR 6.05 4.89 3.38 3.97 

λs 3.87 4.39 5.62 5.13 Type III model 

λs, HR 5.26 7.27 6.36 5.05 

 Disease allele frequencies 

Recessive trait 0.1 0.2 0.3 0.4 

λs 3.40 3.98 3.74 3.58 Type I model 

λs, HR 5.10 5.02 4.04 4.83 

λs 5.42 3.90 3.68 3.99 Type II model 

(GV = 20%) λs, HR 4.58 2.39 2.93 2.54 

λs 5.77 5.00 4.49 3.94 Type II model 

(GV = 30%) λs, HR 6.36 5.66 3.57 2.64 

λs 3.40 4.26 5.01 4.40 Type III model 

λs, HR 3.98 4.75 5.69 4.47 

Note: 
   * λs = P(the 2nd sib affected | the 1st sib affected) / population prevalence K 
   ** λs, HR = P(the 2nd sib affected & high-risk genotype | the 1st sib affected & high-risk genotype)   / population 

prevalence K 
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Table 4.3A Average covariate values in affecteds and unaffecteds in different dominant models, 
based on 10,000 pedigrees per model 

 Disease allele frequencies 

Dominant trait 0.01 0.02 0.05 0.1 

 Mean ** Aff Un-aff Aff Un-aff Aff Un-aff Aff Un-aff 

C1 b/f 
* 0.339 -0.034 0.528 -0.037 0.914 -0.042 1.159 -0.058 

C1 a/f
 * 

0 

0.582 0.296 1.159 0.585 1.664 0.997 1.803 1.190 

C2 b/f 0.327 -0.021 0.428 -0.01 0.628 -0.034 0.842 -0.044 

C2 a/f 

0 

0.341 0.271 0.214 -0.074 0.349 -0.137 0.583 -0.192 

C3 b/f 61.83 63.29 63.56 62.11 61.54 61.81 62.22 62.00 

Type I 

model 

C3 a/f 

62.39 

62.41 61.30 61.98 61.90 62.07 62.26 62.13 62.65 

C1 b/f -0.418 0.029 -0.374 -0.006 -0.196 0.004 0.035 0.010 

C1 a/f 

0 

-0.362 -0.376 -0.298 -0.299 -0.202 -0.206 -0.076 -0.100 

C2 b/f 0.240 -0.012 0.342 -0.017 0.549 -0.034 0.754 -0.029 

C2 a/f 

0 

0.275 0.136 0.386 0.186 0.647 0.348 0.879 0.479 

C3 b/f 62.30 63.62 65.24 62.96 61.63 63.31 62.56 63.25 

Type II 

model 

(GV = 

20%) 

C3 a/f 

62.39 

63.15 63.23 63.07 62.34 63.72 63.44 63.02 63.28 

C1 b/f -0.357 0.028 -0.316 0.010 -0.110 0.021 0.015 -0.010 

C1 a/f 

0 

-0.319 -0.345 -0.236 -0.266 -0.108 -0.144 0.003 -0.046 

C2 b/f 0.203 -0.011 0.264 -0.013 0.459 -0.020 0.615 -0.025 

C2 a/f 

0 

0.219 0.097 0.316 0.149 0.507 0.256 0.708 0.369 

C3 b/f 63.42 63.17 62.49 63.76 62.70 63.13 62.13 62.79 

Type II 

model 

(GV = 

30%) 

C3 a/f 

62.39 

63.07 62.70 63.39 62.65 63.08 63.07 62.78 63.05 

C1 b/f 1.268 0.054 2.333 0.101 4.444 0.354 5.510 0.842 

C1 a/f 

NA 

2.370 0.462 3.712 0.885 5.224 1.711 5.710 2.464 

C2 b/f 1.196 -0.071 1.079 -0.022 0.878 -0.065 0.932 -0.057 

C2 a/f 

0 

1.284 0.759 1.102 0.614 0.958 0.479 1.067 0.549 

C3 b/f 63.14 62.99 63.62 63.26 64.88 63.68 62.64 62.99 

Type III 

model 

C3 a/f 

62.39 

63.36 63.08 63.45 63.89 63.49 63.01 63.25 62.96 
Note: 

   * b/f: before ascertainment; a/f: after ascertainment;    ** The mean value in the general population 
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Table 4.3B Average covariate values in affecteds and unaffecteds in different recessive models, 
based on 10,000 pedigrees per model 

 Disease allele frequencies 

Recessive trait 0.1 0.2 0.3 0.4 

 Mean ** Aff Un-aff Aff Un-aff Aff Un-aff Aff Un-aff 

C1 b/f 
* 0.035 -0.023 0.505 -0.030 0.948 -0.024 1.088 -0.065 

C1 a/f
 * 

0 

0.308 0.215 1.047 0.719 1.569 1.080 1.800 1.244 

C2 b/f 0.262 -0.012 0.408 -0.022 0.565 -0.024 0.807 -0.031 

C2 a/f 

0 

0.191 -0.037 0.254 -0.068 0.367 -0.104 0.522 -0.151 

C3 b/f 62.04 62.44 62.54 62.15 63.30 62.63 61.83 62.44 

Type I 

model 

C3 a/f 

62.39 

62.02 62.55 62.80 62.19 62.64 62.51 62.36 61.58 

C1 b/f -0.459 0.019 -0.309 0.016 -0.157 -0.002 -0.046 0.005 

C1 a/f 

0 

-0.468 -0.427 -0.379 -0.336 -0.271 -0.247 -0.116 -0.128 

C2 b/f 0.167 -0.008 0.348 -0.017 0.517 -0.029 0.700 -0.034 

C2 a/f 

0 

0.200 0.094 0.406 0.205 0.633 0.337 0.822 0.445 

C3 b/f 63.06 62.72 62.40 62.33 62.41 61.81 61.82 62.38 

Type II 

model 

(GV = 

20%) 

C3 a/f 

62.39 

62.92 62.73 62.80 62.69 63.11 62.02 62.87 62.77 

C1 b/f -0.443 0.026 -0.248 0.012 -0.151 0.001 -0.007 0.006 

C1 a/f 

0 

-0.455 -0.403 -0.307 -0.256 -0.199 -0.159 -0.073 -0.087 

C2 b/f 0.146 -0.009 0.283 -0.015 0.435 -0.019 0.581 -0.032 

C2 a/f 

0 

0.165 0.070 0.330 0.158 0.502 0.251 0.661 0.345 

C3 b/f 62.17 62.72 59.62 62.73 64.28 62.45 61.72 62.55 

Type II 

model 

(GV = 

30%) 

C3 a/f 

62.39 

62.23 62.16 62.18 62.23 62.06 62.53 61.80 62.57 

C1 b/f 0.725 0.027 2.463 0.114 4.237 0.327 5.279 0.684 

C1 a/f 

NA 

0.913 0.081 3.153 0.457 4.792 1.123 5.545 2.001 

C2 b/f 1.344 -0.046 1.061 -0.072 0.934 -0.056 0.893 -0.041 

C2 a/f 

0 

1.544 0.876 1.212 0.691 0.999 0.549 1.037 0.563 

C3 b/f 62.76 63.05 63.17 63.34 62.56 63.24 61.66 63.08 

Type III 

model 

C3 a/f 

62.39 

63.25 63.44 62.94 63.19 63.49 62.72 62.05 62.90 
Note: 

   * b/f: before ascertainment; a/f: after ascertainment;   ** The mean value in the general population 
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4.2.4. Covariate values of sib pairs 

We compare the covariate values, after ascertainment, between affected-affected, affected-

unaffected and unaffected-unaffected sib pairs across the models, respectively.  Under the Type I 

and II models, the C1 values are highly correlated between all three kinds of sib pairs.  However, 

correlation of the C2 values decreases as the disease allele frequencies increase between all three 

kinds of sib pairs.  In other words, as the disease is getting more common, more linked pedigrees 

are ascertained (Figures 4.1 – 4.24). 

   Under the Type III model, when the disease is rare, we observe more sib pairs with low C1 

values.  When the disease is common, we observe more affected pairs with high C1 values and 

most unaffected pairs with low C1 values. The C2 values do not change too much between pairs 

across the models (Figures 4.25 – 4.32). 
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Figure 4.1 Covariate values in different sib pairs under Type I dominant model with disease 
allele frequencies equal to 0.01, based on 500 pedigrees 
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Figure 4.2 Covariate values in different sib pairs under Type I dominant model with disease 
allele frequencies equal to 0.02, based on 500 pedigrees 
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Figure 4.3 Covariate values in different sib pairs under Type I dominant model with disease 
allele frequencies equal to 0.05, based on 500 pedigrees 
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Figure 4.4 Covariate values in different sib pairs under Type I dominant model with disease 
allele frequencies equal to 0.1, based on 500 pedigrees 
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Figure 4.5 Covariate values in different sib pairs under Type I recessive model with disease 
allele frequencies equal to 0.1, based on 500 pedigrees 
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Figure 4.6 Covariate values in different sib pairs under Type I recessive model with disease 
allele frequencies equal to 0.2, based on 500 pedigrees 



 

 77

 
 

Figure 4.7 Covariate values in different sib pairs under Type I recessive model with disease 
allele frequencies equal to 0.3, based on 500 pedigrees 
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Figure 4.8 Covariate values in different sib pairs under Type I recessive model with disease 
allele frequencies equal to 0.4, based on 500 pedigrees 
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Figure 4.9 Covariate values in different sib pairs under Type II dominant model with disease 
allele frequencies equal to 0.01 and genetic variance equal to 20%, based on 500 pedigrees 
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Figure 4.10 Covariate values in different sib pairs under Type II dominant model with disease 
allele frequencies equal to 0.02 and genetic variance equal to 20%, based on 500 pedigrees 
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Figure 4.11 Covariate values in different sib pairs under Type II dominant model with disease 
allele frequencies equal to 0.05 and genetic variance equal to 20%, based on 500 pedigrees 



 

 82

 
 

Figure 4.12 Covariate values in different sib pairs under Type II dominant model with disease 
allele frequencies equal to 0.1 and genetic variance equal to 20%, based on 500 pedigrees 
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Figure 4.13 Covariate values in different sib pairs under Type II recessive model with disease 
allele frequencies equal to 0.1 and genetic variance equal to 20%, based on 500 pedigrees 
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Figure 4.14 Covariate values in different sib pairs under Type II recessive model with disease 
allele frequencies equal to 0.2 and genetic variance equal to 20%, based on 500 pedigrees 
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Figure 4.15 Covariate values in different sib pairs under Type II recessive model with disease 
allele frequencies equal to 0.3 and genetic variance equal to 20%, based on 500 pedigrees 
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Figure 4.16 Covariate values in different sib pairs under Type II recessive model with disease 
allele frequencies equal to 0.4 and genetic variance equal to 20%, based on 500 pedigrees 
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Figure 4.17 Covariate values in different sib pairs under Type II dominant model with disease 
allele frequencies equal to 0.01 and genetic variance equal to 30%, based on 500 pedigrees 
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Figure 4.18 Covariate values in different sib pairs under Type II dominant model with disease 
allele frequencies equal to 0.02 and genetic variance equal to 30%, based on 500 pedigrees 
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Figure 4.19 Covariate values in different sib pairs under Type II dominant model with disease 
allele frequencies equal to 0.05 and genetic variance equal to 30%, based on 500 pedigrees 
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Figure 4.20 Covariate values in different sib pairs under Type II dominant model with disease 
allele frequencies equal to 0.1 and genetic variance equal to 30%, based on 500 pedigrees 
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Figure 4.21 Covariate values in different sib pairs under Type II recessive model with disease 
allele frequencies equal to 0.1 and genetic variance equal to 30%, based on 500 pedigrees 
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Figure 4.22 Covariate values in different sib pairs under Type II recessive model with disease 
allele frequencies equal to 0.2 and genetic variance equal to 30%, based on 500 pedigrees 
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Figure 4.23 Covariate values in different sib pairs under Type II recessive model with disease 
allele frequencies equal to 0.3 and genetic variance equal to 30%, based on 500 pedigrees 
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Figure 4.24 Covariate values in different sib pairs under Type II recessive model with disease 
allele frequencies equal to 0.4 and genetic variance equal to 30%, based on 500 pedigrees 
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Figure 4.25 Covariate values in different sib pairs under Type III dominant model with disease 
allele frequencies equal to 0.01, based on 500 pedigrees 
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Figure 4.26 Covariate values in different sib pairs under Type III dominant model with disease 
allele frequencies equal to 0.02, based on 500 pedigrees 
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Figure 4.27 Covariate values in different sib pairs under Type III dominant model with disease 
allele frequencies equal to 0.05, based on 500 pedigrees 
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Figure 4.28 Covariate values in different sib pairs under Type III dominant model with disease 
allele frequencies equal to 0.1, based on 500 pedigrees 
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Figure 4.29 Covariate values in different sib pairs under Type III recessive model with disease 
allele frequencies equal to 0.1, based on 500 pedigrees 
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Figure 4.30 Covariate values in different sib pairs under Type III recessive model with disease 
allele frequencies equal to 0.2, based on 500 pedigrees 
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Figure 4.31 Covariate values in different sib pairs under Type III recessive model with disease 
allele frequencies equal to 0.3, based on 500 pedigrees 
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Figure 4.32 Covariate values in different sib pairs under Type III recessive model with disease 
allele frequencies equal to 0.4, based on 500 pedigrees
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5. EMPIRICAL THRESHOLD CALCULATION 

 

For estimating the empirical threshold for statistical significance, we first generate data under the 

null hypothesis, analyze the simulated data, and record the outputs.  We then compute the 

“chromosome-wide” empirical thresholds for each statistic (Tables 5.2, 3, 4).  The scale of the 

empirical thresholds is the LOD score scale, except for COVLINK, which reports the overall χ2 

values.  The abbreviation of each statistic is defined in Table 5.1. 

 

5.1. DATA SETS FOR THRESHOLD ESTIMATION 

5.1.1. Covariate statistics 
 

In order to calculate empirical thresholds, we generate three data sets under the null hypothesis 

of no linkage.  The first set and the second set contain 8,000 replicates, respectively: 1,000 

replicates per disease model under the Type I G x E interaction model; but C2 in the first set with 

familial correlation 0.8, and C2 in the second set without familial correlation.  We then analyze 

these two sets by incorporating C2, separately.  The third set has only 4,000 replicates: 1,000 

replicates per model (2 dominant and 2 recessive models) under the Type I model.  Likewise, we 

analyze the third set, but using C3. 
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Table 5.1 Abbreviation for each statistic 

Method Abbreviation 
Mixture model Mixture model 
General conditional-logistic model LODPAL 
Multinomial logistic regression model under no dominance 
assumption 

No-dom MLRM 

Multinomial logistic regression model under no additive 
assumption 

No-add MLRM 

Multinomial logistic regression model using min-max 
restriction 

Min-max MLRM 

The extension of Maximum-Likelihood-Binomial linkage 
approach 

MLB 

Ordered-subsets analysis using rank order from high to low H → L OSA 
Ordered-subsets analysis using rank order from low to high L → H OSA 
Ordered-subsets analysis using optimal slice option Optimal-slice OSA 
Logistic regression modeling COVLINK 
Allele-sharing statistic using Sall score function Sall 
Allele-sharing statistic using Spairs score function Spairs 
Variance-component linkage analysis  VC 
Regression-based quantitative-trait linkage analysis RB 
 
 

5.1.2. Model-free and QTL approaches 
 

In addition to covariate statistics, we also calculate the empirical thresholds for the model-free 

methods and the QTL approaches.  We simulate 8,000 replicates under the null hypothesis: 1,000 

replicates per model under the Type I model.  We analyze these replicates using the model-free 

methods, ignoring covariate information.  For the QTL approaches, we treat three covariates as 

three quantitative traits, separately, and analyze the same 8,000 replicates. 

 

 

 

 

 



 

 105

5.2. THRESHOLDS FOR THE CORRESPONDING FALSE POSITIVE RATES 

5.2.1. Thresholds for covariate statistics 
 

We want to compute the empirical thresholds corresponding to the appropriate false positive 

rates.  We first compare the thresholds estimated using C2 with and without familial correlation, 

respectively.  The results indicate that the thresholds at 1%, 5% and 10% levels are similar using 

C2 with and without familial correlation (Table 5.2A).  Moreover, we examine their distributions 

by generating Q-Q plots (with familial correlation vs. without familial correlation) for each 

covariate method.  Based on Q-Q plots, these two distributions are almost identical (data not 

shown).  Hence we pool all the simulated statistics using C2 (8,000 replicates with and 8,000 

replicates without familial correlation), and calculate the overall empirical thresholds based on 

16,000 replicates. 

   We also calculate the thresholds using C3, and compare with the thresholds using C2.  

According to the results, the thresholds using C2 are very close to those obtained using C3 

(Table 5.2B).  We compare these two distributions using Q-Q plots (C2 vs. C3).  The results 

indicate the distributions are almost the same for most covariate statistics, except that those for 

the optimal-slice OSA method are only very close (data not shown).  In addition, comparing with 

the analytical thresholds for some covariate methods, the thresholds using C2 are closer than 
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Table 5.2A Thresholds of the corresponding false positive rates using the environmental 
covariate C2 with and without familial correlation, based on 8,000 replicates 

10% level 5% level 1% level Method 
With Without With Without With Without 

Mixture model 0.373 0.365 0.628 0.608 1.290 1.253 
LODPAL 0.877 0.898 1.199 1.230 2.015 2.100 
No-dom MLRM 1.000 0.998 1.298 1.298 2.000 1.999 
No-add MLRM 0.976 0.978 1.279 1.272 1.991 1.956 
Min-max MLRM 0.991 0.990 1.292 1.284 1.998 1.984 
MLB 0.346 0.346 0.572 0.581 1.158 1.189 
H → L OSA 0.788 0.783 1.197 1.175 2.003 1.951 
L → H OSA 0.788 0.777 1.190 1.171 1.990 1.963 
Optimal-slice OSA 1.639 1.593 2.110 2.060 2.923 2.870 
COVLINK 6.135 6.101 7.664 7.624 11.263 11.095 
 

those using C3 (Table 5.2B).  We therefore apply the thresholds (computed using C2) in Table 

5.2B to estimate the power of covariate statistics in Chapter 6. 

 

Table 5.2B Thresholds of the corresponding false positive rates using the environmental 
covariate C2 or the random noise covariate C3 vs. analytical thresholds 

10% level 5% level 1% level Method 
C2 a C3 b AT c C2 C3 AT C2 C3 AT 

Mixture model 0.369 0.385 0.356 0.618 0.648 0.587 1.272 1.337 1.175 
LODPAL 0.887 0.860 0.794 1.215 1.223 1.068 2.057 2.383 1.720 
No-dom MLRM 0.999 0.963 1.000 1.298 1.241 1.301 1.999 1.898 2.000 
No-add MLRM 0.977 0.763 1.000 1.276 1.079 1.301 1.974 1.786 2.000 
Min-max MLRM 0.990 0.958 1.000 1.288 1.247 1.301 1.991 1.940 2.000 
MLB 0.346 0.347 0.356 0.576 0.575 0.587 1.172 1.167 1.175 
H → L OSA 0.785 0.802 NA 1.186 1.222 NA 1.977 2.038 NA 
L → H OSA 0.782 0.808 NA 1.181 1.224 NA 1.976 2.083 NA 
Optimal-slice OSA 1.616 1.733 NA 2.085 2.215 NA 2.898 3.040 NA 
COVLINK 6.118 6.126 NA 7.644 7.719 NA 11.188 11.399 NA 
Note: 

a. Pooled data set with 16,000 replicates 
b. Data set with 4,000 replicates 
c. Analytical threshold at the corresponding FPR 
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5.2.2.  “Chromosome-wide” thresholds vs. “point-specific” thresholds 
 

We herein compute the “chromosome-wide” thresholds, instead of “point-specific” thresholds.  

Outputs of most covariate methods have 161 data points, which are approximately spaced every 

1 cM along the chromosome, except the OSA methods have 153 points, which do not have 

information at the last 8 points, and COVLINK only has 33 points, which are spaced evenly 

every 5 cM.  We calculate empirical thresholds using all points, and using a single point at 4 

different positions (the first, middle, the last, and the disease locus location), separately.  We then 

compare the thresholds obtained from both approaches.  The results show that the “chromosome-

wide” thresholds at 1%, 5% and 10% levels are almost the same as the “point-specific” 

thresholds (Tables 5.3A, B, C). 

   If there is no correlation between the adjacent points, all points along the chromosome are 

completely independent.  In this situation, the “chromosome-wide” thresholds should be very 

close to the “point-specific” thresholds, because the “chromosome-wide” thresholds are the pools 

of all the independent “point-specific” thresholds.  However, the data points are spaced 

approximately either every 1 cM or every 5 cM along the chromosome.  Hence, data correlation 

issues cannot be neglected.  But, in contrast to no correlation, if the adjacent points are  
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Table 5.3A Comparison of chromosome-wide and point-specific thresholds at 10% level, based 
on 16,000 replicates 

Method Empirical threshold at 10% level 
 All points First point Locus* Middle End point 
Mixture model 0.369 0.363 0.373 0.379 0.365 
LODPAL 0.887 0.883 0.885 0.903 0.873 
No-dom MLRM 0.999 1.008 1.013 0.998 1.007 
No-add MLRM 0.977 0.972 1.003 0.976 0.980 
Min-max MLRM 0.990 0.992 1.001 0.988 0.996 
MLB 0.346 0.343 0.330 0.350 0.344 
H → L OSA 0.785 0.748 0.772 0.768 0.735 
L → H OSA 0.782 0.717 0.761 0.794 0.726 
Optimal-slice OSA 1.616 1.476 1.630 1.656 1.526 
COVLINK 6.118 6.020 6.199 6.058 6.059 
Note: 
   * The disease locus position is at 50 cM along the chromosome, but it is a “non-existent” locus 

in the null data. 
 

 

Table 5.3B Comparison of chromosome-wide and point-specific thresholds at 5% level, based 
on 16,000 replicates 

Method Empirical threshold at 5% level 
 All points First point Locus Middle End point 
Mixture model 0.618 0.624 0.631 0.656 0.607 
LODPAL 1.215 1.195 1.229 1.220 1.203 
No-dom MLRM 1.298 1.309 1.322 1.289 1.307 
No-add MLRM 1.276 1.276 1.314 1.268 1.274 
Min-max MLRM 1.288 1.276 1.318 1.287 1.294 
MLB 0.576 0.553 0.558 0.578 0.563 
H → L OSA 1.186 1.197 1.182 1.176 1.197 
L → H OSA 1.181 1.172 1.172 1.201 1.188 
Optimal-slice OSA 2.085 2.068 2.138 2.094 2.044 
COVLINK 7.644 7.504 7.679 7.612 7.624 
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Table 5.3C Comparison of chromosome-wide and point-specific thresholds at 1% level, based 
on 16,000 replicates 

Method Empirical threshold at 1% level 
 All points First point Locus Middle End point 
Mixture model 1.272 1.266 1.361 1.337 1.221 
LODPAL 2.057 2.074 2.081 2.074 2.074 
No-dom MLRM 1.999 2.017 2.080 2.000 1.992 
No-add MLRM 1.974 1.954 1.959 1.926 1.990 
Min-max MLRM 1.991 2.007 2.034 1.970 1.964 
MLB 1.172 1.158 1.153 1.180 1.183 
H → L OSA 1.977 2.017 2.052 1.961 2.034 
L → H OSA 1.976 2.001 1.921 2.014 1.970 
Optimal-slice OSA 2.898 2.895 3.004 2.884 2.906 
COVLINK 11.188 10.997 11.193 11.113 11.411 
 

 

completely correlated, the “chromosome-wide” thresholds then would be identical to the “point-

specific” thresholds.  When the data points are “completely correlated”, or “completely not 

correlated”, the thresholds obtained from both approaches should be the same, or almost the 

same.  Hence, this assures that the “chromosome-wide” thresholds that we use for power 

evaluation are appropriate. 

   Unlike the other points, the IBD sharing probabilities at the end point (either the first or the last 

point) are estimated only based on the data between two points.  One might expect that the 

thresholds estimated from the first or the last point are smaller than those from the other points.  

However, according to our results, we do not observe such end effects (Tables 5.3A, B, C). 

5.2.3. Thresholds for model-free and QTL approaches 
 

For the model-free methods (Sall and Spairs) and the QTL approaches (VC and RB), we compute 

the empirical thresholds at 1%, 5% and 10% levels (Table 5.4).  The empirical thresholds of Sall, 

Spairs and RB (C1, C2 and C3) correspond to the expected analytical p-values, but not for VC.  
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We do not normalize covariate values when we analyze the data using VC.  Because VC is very 

sensitive to departure from the normal distribution assumption, the empirical thresholds may be 

biased.  Since C3 is generated from one of three different normal distributions (details provided 

in Section 3.2.2), the overall C3 distribution is not followed a normal distribution.  Therefore, the 

empirical thresholds for VC using C3 as a quantitative trait are not close to the expected 

analytical thresholds (Table 5.4). 

 

Table 5.4 Thresholds for the model-free methods and QTL approaches, based on 8,000 
replicates 

Method 10% level p-value a 5% level p-value 1% level p-value 
Sall 0.36 0.10 0.60 0.05 1.17 0.01 
Spairs 0.36 0.10 0.59 0.05 1.18 0.01 
VC - C1 b 0.51 0.06 0.86 0.02 1.76 0.002 
VC - C2 0.57 0.05 0.94 0.02 1.94 0.001 
VC - C3 0.80 0.03 1.36 0.01 2.79 0.0002 
RB - C1 0.386 0.09 0.659 0.04 1.34 0.006 
RB - C2 0.371 0.10 0.623 0.05 1.26 0.008 
RB - C3 0.368 0.10 0.613 0.05 1.27 0.008 
Note: 

a. Analytical p-value corresponding to the empirical threshold 

b. C1, C2 and C3 are three different environmental covariates defined in Chapter 1 

 

 

5.3. ANALYTICAL THRESHOLDS VS. EMPIRICAL THRESHOLDS 

As we mentioned in Chapter 2, most papers of covariate methods describe the analytical 

distribution.  Therefore we compared our empirical thresholds with the analytical thresholds at 

1%, 5% and 10% significance levels (Table 5.5).  Based on our results, the empirical thresholds 

of the mixture model, the MLRM approaches and MLB are close to the analytical thresholds, but 

the empirical threshold of the mixture model at 1% level is slightly higher than the analytical 
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threshold.  However, the analytical thresholds of LODPAL are markedly smaller than the 

empirical thresholds at all three levels.  When we examine the results in Q-Q plots (empirical vs. 

analytical), as the distribution gets closer to the tail, the empirical thresholds of LODPAL deviate 

more from the analytical thresholds (Figure 5.1).  One may easily reach false-positive 

conclusions if using the analytical p-values of LODPAL. 

 

Table 5.5 Asymptotic distribution vs. empirical distribution in covariate methods 

Method 10% level 5% level 1% level 

 ET a p-value b AT c ET p-value AT ET p-value AT 
Mixture model 0.369 0.096 0.356 0.618 0.046 0.587 1.272 0.0078 1.175 
LODPAL 0.887 0.086 0.794 1.215 0.039 1.068 2.057 0.0054 1.720 
No-dom MLRM 0.999 0.100 1.000 1.298 0.050 1.301 1.999 0.0100 2.000 
No-add MLRM 0.977 0.105 1.000 1.276 0.053 1.301 1.974 0.0106 2.000 
Min-max MLRM 0.990 0.102 1.000 1.288 0.052 1.301 1.991 0.0102 2.000 
MLB 0.346 0.103 0.356 0.572 0.052 0.587 1.172 0.0101 1.175 
H → L OSA 0.785 NA NA 1.186 NA NA 1.977 NA NA 
L → H OSA 0.782 NA NA 1.181 NA NA 1.976 NA NA 
Optimal-slice OSA 1.616 NA NA 2.085 NA NA 2.898 NA NA 
COVLINK 6.118 NA NA 7.644 NA NA 11.188 NA NA 

Note: 
a. Empirical threshold 
b. Analytical p-value corresponding to the empirical threshold 
c. Analytical threshold 
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Figure 5.1 QQ plots of empirical distribution vs. analytical distribution for covariate methods 
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6. POWER EVALUATION 

 

The empirical thresholds corresponding to false positive rates of 1%, 5% and 10% were 

described in the Chapter 5.  The thresholds obtained using C2 at the 5% level are used to 

evaluate power.  The power for each method is based on 500 replicates.  We here present power 

of the covariate statistics, the model-free methods, and the QTL approaches (Figures 6.1 – 6.8).  

The three columns in each figure represent: (column 1) using the gene-environment interaction 

covariate, the “right” covariate C1; (column 2) using the independent environmental covariate, 

the “wrong” covariate C2; (column 3) using the random noise covariate, covariate C3.  As 

described in Chapter 1, allele-sharing statistic, Sall score function, performs quite well on average 

across a wide variety of genetic models (Sengul et al. 2001).  We therefore use Sall as the 

baseline to compare with the covariate methods.  The number, symbol and abbreviation 

representing each statistic in the Figures are provided in Table 6.1.  The recurrence risk ratio (λs) 

and the proportion of linked families, as described in Chapter 4, are provided in the Figures as 

well. 

  

6.1. TYPE I G x E INTERACTION MODEL 

6.1.1. Dominant models 
 
Figure 6.1 shows the power and the corresponding 95% confidence interval (CI) of the statistics 

under the dominant Type I models.  Except for the MLB approach and the L → H OSA method, 
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Table 6.1 Number, symbol and abbreviation of each statistic in texts and figures  

Number 
on x axis 

Symbol Abbreviation Statistics 

1  Mixture model Mixture model 

2  LODPAL General conditional-logistic model  

3  No-dominance 
MLRM 

Multinomial logistic regression model 
under dominance assumption  

4  No-additive 
MLRM 

Multinomial logistic regression model 
under additive assumption  

5  Min-max MLRM Multinomial logistic regression model 
using the min-max restriction  

6  MLB The extension of Maximum-
Likelihood-Binomial linkage approach  

7  H → L OSA Ordered subset analysis; rank order 
from high to low  

8  L → H OSA Ordered subset analysis; rank order 
from low to high  

9  Optimal-slice 
OSA 

Ordered subset analysis; rank order 
using the optimal slice method  

10  COVLINK Logistic regression for predicting the 
IBD sharing probability  

11  Sall Model-free method 

12  Spairs Model-free method 

13  VC Variance-component linkage analysis 

14  RB Regression-based quantitative–trait 
linkage analysis 

 
 

the covariate statistics perform better when using the “right” covariate C1 than when using the 

“wrong” covariate C2, but not necessarily better than when using the random noise covariate C3. 

   We then compare the performance of the covariate statistics with Sall.  When C1 is used, the 

power of the mixture model, MLB and the H → L OSA method is significantly greater than Sall’s 

power for the rare dominant model (disease allele frequencies, d, = 0.01).  The power of 

LODPAL, no-dominance MLRM, optimal-slice OSA and COVLINK is close to Sall’s power for 

the same model.  However, except for the MLB and the H → L OSA method, the other covariate 
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methods have lower power than Sall for the models with d = 0.05 and 0.1.  When C2 or C3 is 

used, only the power of MLB is significantly better than Sall for the rare model (d = 0.01), and 

has similar power to Sall for the other models (Figure 6.1). 

6.1.2. Recessive models 
 

The power of the statistics under the recessive Type I G x E models is shown in Figure 6.2.  

Except for the L → H OSA method, the covariate statistics have higher power when using the 

“right” covariate C1 than when using the “wrong” covariate C2, but not necessarily better than 

when using the random noise covariate C3. 

   When C1 is used, the power of the mixture model and MLB is significantly higher than Sall’s 

power, and the power of LODPAL, the MLRM methods and the H → L OSA method is almost 

the same as Sall’s power for the model with d = 0.1.  The mixture model, LODPAL and MLB 

have the similar power to Sall for the other three models (d = 0.2, 0.3 and 0.4).  But the other 

covariate statistics have lower power than Sall in the common model (d = 0.4).  When C2 is used, 

only the MLB method performs as well as Sall for all models.  When C3 is used, LODPAL and 

MLB have comparable power to Sall for all models (Figure 6.2). 
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λs             % 

 
 λs: recurrence risk ratio; %: percentage of linked families 
 

Figure 6.1 Power and 95% CI for each statistic at the 5% level under different dominant Type I 
models, based on 500 replicates 
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4.5 62 

3.6 75 

3.8 80 



 

 117

λs             % 

 
λs: recurrence risk ratio; %: percentage of linked families 

 

Figure 6.2 Power and 95% CI for each statistic at the 5% level under different recessive Type I 
models, based on 500 replicates 

3.4 23 

4.0 55 

3.7 70 

3.6 75 
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6.2. TYPE II G x E INTERACTION MODEL 

For the Type II model, we generate data with two different genetic variances (20% and 30%), 

separately.  The results are discussed in the following sections. 

6.2.1. Dominant models 

The power of each statistic under the dominant Type II models is presented in Figures 6.3 and 

6.4.  For both genetic variances (GV = 20% and 30%), the covariate methods have better power 

when using C1 than when using C2, but not for MLB, the L → H OSA method and COVLINK.  

   Compared to the Sall’s power, the mixture model and the H → L OSA method have 

significantly higher power than Sall for the models with d = 0.01, 0.02 and 0.05 (GV = 20% and 

30%).  The power of LODPAL, the MLRM approaches, MLB and the optimal-slice OSA 

method is equivalent to Sall’s power for the same models.  But when using C2, only MLB and the 

L → H OSA method perform as well as Sall for all models (GV = 20% and 30%) (Figures 6.3, 

6.4). 

6.2.2. Recessive models 
 
Figures 6.5 and 6.6 indicate the power under the recessive Type II models.  Except for MLB and 

the L → H OSA method, the covariate statistics perform better for all models (with GV = 20% 

and 30%) when using C1 than when using C2 or C3. 

   When C1 is used, the mixture model and the H → L OSA method perform significantly better 

than Sall for all models (with GV = 20% and 30%).  LODPAL and the MLRM approaches 

perform significantly better than Sall only for the model with d = 0.2 and GV = 30%.  But they 

have the equivalent power to Sall for all models.  When C2 is used, the power of LODPAL, MLB 

and the L → H OSA method is equivalent to Sall’s power for all models.  However, when C3 is 

used, only MLB has the same power as Sall for all models (Figures 6.5, 6.6). 
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λs             % 

 
 λs: recurrence risk ratio; %: percentage of linked families 
 

Figure 6.3 Power and 95% CI for each statistic at the 5% level under different dominant Type II 
models with genetic variance equal to 20%, based on 500 replicates  
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λs             % 

 
 λs: recurrence risk ratio; %: percentage of linked families 
 

Figure 6.4 Power and 95% CI for each statistic at the 5% level under different dominant Type II 
models with genetic variance equal to 30%, based on 500 replicates 
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 λs             % 

 
 λs: recurrence risk ratio; %: percentage of linked families 

Figure 6.5 Power and 95% CI for each statistic at the 5% level under different recessive Type II 
models with genetic variance equal to 20%, based on 500 replicates 
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λs             % 

 
 λs: recurrence risk ratio; %: percentage of linked families 
 

Figure 6.6 Power and 95% CI for each statistic at the 5% level under different recessive Type II 
models with genetic variance equal to 30%, based on 500 replicates 
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6.3. TYPE III G x E INTERACTION MODEL 

6.3.1. Dominant models 

The power under the dominant Type III models is presented in Figure 6.7.  Except for MLB and 

the L → H OSA method, when C1 is used, the covariate methods have higher power than when 

C2 or C3 is used. 

   Compared to Sall’s power, the power of the mixture model, LODPAL, no-dominance MLRM 

and min-max MLRM is significantly higher than Sall’s power for the rare model (d = 0.01), and 

the power is close to Sall’s power for the model with d = 0.02, when using C1.  When C2 is used, 

the power of MLB is significantly better than Sall’s power for the model with d = 0.01, and is 

similar to Sall’s power for the other models (d = 0.02, 0.05, and 0.1).  When C3 is used, MLB has 

the equivalent power to Sall for all models (Figure 6.7).  But when C1 is used, MLB has 

extremely low power, in contrast with the results under the Type I and II models. 

   In contrast to the results under the Type I and II models, the power reaches almost 100% when 

treating C1 as a quantitative trait in the QTL approaches.  But the power of the QTL approaches 

is very low when using C2 or C3. 

6.3.2. Recessive models 
 
The power under the recessive Type III models is shown in Figure 6.8.  When C1 is used, the 

covariate methods have higher power than when C2 or C3 is used, but not for MLB and the L → 

H OSA.  However, the power of the mixture model is lower when using C1 than when using C2 

for the common model (d = 0.4), which is the only case in all G x E models. 

   When using C1, the power of the mixture model, LODPAL, the MLRM methods, the H → L 

OSA is significantly higher than Sall’s power for the models with d = 0.1 and 0.2.  The power of 

LODPAL, no-dominance MLRM, min-max MLRM and COVLINK is close to Sall’s power for 
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the models with d = 0.3 and 0.4.  When using C2 or C3, only the MLB’s power is equivalent to 

Sall’s power for all models.  Similar to dominant models, when C1 is used, the power of MLB is 

very low, in contrast with the results under the Type I and II models.  The power almost reaches 

100% when treating C1 as a quantitative trait, but drops significantly when using C2 or C3 as a 

quantitative trait. 

 

6.4. SUMMARY 

6.4.1. Using different covariates 

The performance of covariate statistics has been investigated under three G x E interaction 

scenarios (Figures 1.4, 6, 7).  These G x E interaction models mimic G x E relations observed in 

the real cases (Ottman 1996).  In terms of empirical thresholds, our results show that thresholds 

are quite consistent across different disease models, regardless of the covariate choice: C2 or C3 

(Tables 5.2A, B).  We analyze the data generated under the null hypothesis of no linkage.  And 

sibship size only varies from 2 to 5 across the disease models.  Hence, the thresholds should be 

independent of the disease models. 

   With respect to power, we find that the performance of the covariate statistics varies across the 

different G x E interaction models.  In all three G x E models, most covariate methods perform 

better when using C1 than when using C2 or C3 (Figures 6.1 – 6.8).  Overall, most covariate 

methods perform better (relative to Sall) for the rare models (both dominant and recessive traits).  

Moreover, when C3 is used, the mixture model and the H → L OSA method have better power 

than when C2 is used for almost all models.  However, MLB and the L → H OSA method  
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λs             % 

 
 λs: recurrence risk ratio; %: percentage of linked families 

Figure 6.7 Power and 95% CI for each statistic at the 5% level under different dominant Type III 
models, based on 500 replicates 

3.9 36 

4.4 59 

5.6 86 

5.1 96 
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λs             % 

 
 λs: recurrence risk ratio; %: percentage of linked families 
 

Figure 6.8 Power and 95% CI for each statistic at the 5% level under different recessive Type III 
models, based on 500 replicates

3.4 14 

4.3 50 

5.0 78 

4.4 92 
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behave differently from most covariate statistics.  Especially when using C2 or C3, MLB 

provides much higher power than when using C1 for the Type III models (Figures 6.7, 6.8).  The 

L → H OSA method generally performs better when using C2 than when using C1 for all 

models. 

6.4.2. Covariate statistics vs. Sall and QTL approaches 
 

We generated data under 32 different genetic models (8 disease models in the Type I and III 

models, respectively, and 16 disease models in the Type II model) and evaluated the percentage 

of times that the covariate statistics significantly increase the power relative to Sall’s power.  We 

use all models except the ones with GV equal to 20% in the Type II model.  Compared to the 

power of Sall, the percentage of the times that the covariate method performs significantly better 

than Sall when using C1 is as follow: 62.5% for the mixture model; 50% for the H → L OSA 

method; 25% for no-dominance MLRM; 20.83% for min-max MLRM; 16.67% for LODPAL, 

no-additive MLRM and MLB; 8.33% for the optimal-slice OSA method; zero for the L → H 

OSA method, and COVLINK (the greater details are provided in Table 6.2A).  

   With respect to the performance when C2 is used, MLB and the L → H OSA method yield 

significantly higher power than Sall (25% and 4.17%, individually).  When C3 is used, only MLB 

yields significantly higher power than Sall (25%).  The power of the mixture model and the H → 

L OSA method is always lower than Sall’s power across all models when C2 is used.  When C3 is 

used, only the power of MLB is equivalent to Sall’s power for almost all models (the greater 

details are provided in Tables 6.2B, C). 

   Regarding the QTL approaches, our results indicate that the QTL approaches almost have 

100% power for all Type III models when treating C1 as a quantitative trait, but not C2 or C3 

(Figures 6.7, 6.8).  They have extremely low power for all Type I and II models regardless of 
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covariate choice.  Hence, the covariate statistics only perform worse than the QTL approaches 

when using C1 under Type III model.  Since the C1 values are dramatically different between the 

subjects carrying a high-risk genotype and those carrying a low-risk genotype, it is not surprising 

that the QTL approaches have extremely high power under the Type III models. 
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7. DISCUSSION AND FUTURE WORK 

 

7.1. DISCUSSION 

7.1.1. Why do covariate statistics not perform better than Sall? 
 
To deal with genetic heterogeneity, the covariate statistics take covariate information into 

account.  One would expect that covariate statistics should have increased power to detect 

signals when using more information.  According to our results (Figures 6.1 – 6.8), most 

covariate statistics provide significantly better power than Sall only for few models, when using 

C1, the covariate with G x E interaction effect (Table 6.2A).  In addition, when the 

environmental covariate C2 or the random noise covariate C3 is used, only MLB and the L → H 

OSA method yield significantly higher power than Sall (Tables 6.2B, C).  Why do covariate 

statistics not perform better than Sall as one might expect?  There are several caveats one should 

consider when interpreting the results. 

   First, the sample size of “linked families” varies across disease models.  A “linked family” here 

is defined as a family with 2 or more affected children carrying the high-risk disease genotype.  

The results in Chapter 4 show as the disease allele frequency increases, more linked families are 

ascertained (Table 4.1).  When the data set is more genetically homogeneous, Sall has adequate 

power.  Therefore, we observe that most covariate methods perform better than Sall in rare 

disease models (d = 0.01 in dominant trait; d = 0.1 in recessive trait).  But the power of covariate 

statistics becomes smaller than Sall’s power as the disease becomes more 



 

 133

common.  It may be because less linked families are ascertained in the rare models, and more 

linked families in the common models.  When a majority of pedigrees is linked, Sall should have 

enough power.  Hence, the covariate statistics can only increase the power a bit at best, since 

only few unlinked pedigrees can be “removed”.  In addition, the covariate approaches use a 

degree of freedom to distinguish the linked and unlinked groups, which may not be worth while 

almost all pedigrees are linked. 

   Second, the covariate methods estimate more parameters than the model-free methods, so they 

have more degrees of freedom.  This may lead to a loss of power if the covariate does not 

provide enough beneficial information.  When C2, the covariate without G x E interaction effect, 

is used, the power decreases for most covariate statistics because use of C2 only increases 

degrees of freedom while adding no useful information to the model.  Also, we observe similar 

results when using C3. 

   Third, we measure covariate information by taking the average covariate values across either 

the affected sib pairs or the whole family.  Based on our G x E interaction models, the average 

covariate values in affecteds are higher than those in unaffecteds (Tables 4.3A, B), but the 

affecteds do not necessarily carry high-risk genotypes.  Is taking the average the best way to 

capture covariate information for covariate statistics?   If the measure of covariate information 

does not divide pedigrees into more homogeneous subgroups, the covariate methods may not 

increase power, even when using the “right” covariate. 

   Fourth, different types of G x E interactions influence the power of the covariate statistics.  The 

genetic factor interacts with C1 in various ways in the types of G x E models.  The genetic factor 

has a dramatically strong effect on C1 under the Type III model, and so the covariate methods 

have better power than Sall.  But under the Type I model, the G x E interaction effect is moderate 
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and under the Type II model, C1 only influences whether the genetic factor has an effect on 

disease risk.  Adding the covariate information may provide little useful information and cannot 

influence power to a significant degree. 

7.1.2. What is the “right” covariate? 
 
Often, there are two main kinds of covariates involved in complex diseases (Hauser et al. 2003).  

The first kind is a covariate with a G x E interaction effect.  One can enhance power to reveal a 

genetic effect by including such covariates in the model.  Because this type of covariate interacts 

with the genetic factors, it can be viewed as an “effect modifier”, to use terminology from 

epidemiological studies (Rothman and Greenland 1998).  The second kind is a covariate with an 

environmental risk effect, independent of the genetic effect.  One would prefer to remove the 

variability due to such covariates before proceeding with linkage analysis.  This type of 

covariates can be thought of as a “confounder”.  The most critical difference between these two 

types of covariates is that one would remove the confounder effect prior to analysis, while one 

would consider the effect modifier as a finding to be reported rather than a bias to be avoided (or 

removed).  

   Therefore, we need to clarify what we mean by “biologically meaningful” covariates very 

carefully, and why we use the terminology: “right” and “wrong” covariates herein.  The “right” 

covariate C1 represents a covariate with G x E interaction effect.  The “wrong” covariate C2 

indicates a covariate with an environmental risk effect.  In a real study, we would not know 

whether or not the covariates interact with genetic factors.  Hence, we are not only interested in 

the performance of covariate statistics, but also in detecting the covariates with G x E interaction.  

In some circumstances, accounting for the environmental risk factor can also increase power to 
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detect the linkage signals since removing the confounding effect may make the data more 

genetically homogeneous.  This would be a good issue to investigate. 

   Our results indicate that using different types of covariates (with or without G x E interaction) 

affects the power of covariate statistics.  Some covariate methods, e.g. the mixture model and the 

H → L OSA method, have better power when using the G x E interaction covariate.  But some 

covariate approaches, e.g. MLB, performs better when adjusting the environmental risk factor.  

   In a real case, one often collects several covariates, which are thought to be associated with a 

complex disease.  Hence, how should one determine whether a covariate is an effect modifier or 

a confounder?  It is still very challenging.  In addition, if there are more than one “right” 

covariates, how many covariates should we simultaneously add into the model?  Will adding in 

more “right” covariates give us higher power?  How will the covariate methods perform if one 

includes one “right” and one “wrong” covariate simultaneously in the model?  These are still 

open questions for investigation. 

7.1.3. What is the best way to abstract covariate information? 
 
As we described in Section 7.1.1, to include covariate information, we compute the mean 

covariate values across either the affected sib pairs (ASP) or the whole family (Table 7.1).  The 

mixture model and the OSA methods use family-level covariate values.  LODPAL, the MLRM 

methods and COVLINK require sib-pair-level covariate values.  To account for the covariate 

information, taking the average is not the only way, and it may not be the optimal way. 

   Using the “Haseman-Elston regression” methods as an example, the original Haseman-Elston 

regression (Haseman and Elston 1972) measured quantitative trait information by taking the 

squared trait differences of sib pairs.  Wright (1997) pointed out that this measure discards some 

useful information.  He showed that if information from the trait sums of sib pairs are also  
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Table 7.1 Abstract covariate information in different covariate methods 

 Family level Sib-pair level Individual level 

 All member Affected 
sibs 

Affected 
sibs 

All sibs All members 

Mixture model √     

LODPAL   √   

MLRM   √   

MLB     √ 

OSA  √    

COVLINK    √  

 

 

included, a certain amount of power can be gained.  Since then, various “revised Haseman-

Elston” approaches have been suggested (Drigalenko 1998; Elston et al. 2000, Xu et al. 2000; 

Forrest 2001; Sham and Purcell 2001; Visscher and Hopper 2001).  All of these revised 

approaches combine the squared trait sum and the squared trait difference in various ways, and 

increase the power successfully while preserving the robustness of the regression framework 

(Feingold 2002). 

   None of published articles indicates that taking the average is the best measure of covariate 

information.  It is important to investigate what is the best (or appropriate) measure for covariate 

information.  The LODPAL program in S.A.G.E. package offers several alternative options, such 

as taking difference of ASP covariate values, summing the ASP covariate values, using the 

maximum ASP covariate values, or using the minimum ASP covariate values.  It would be of 

interest to evaluate the performance of the covariate methods using these alternative approaches. 
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7.1.4. What are the desirable features for covariate statistics? 
 
The covariate statistics we investigate behave variously under different G x E models and when 

using different types of covariates.  The unique features of the covariate statistics are described 

as follows. 

  Mixture model: the mixture model is sensitive to which covariate type is used.  It performs 

very well when using C1, the covariate with G x E interaction.  As long as C1 is used, it is robust 

across different types of G x E interaction models, and performs the best of the covariate 

statistics.  The power of the mixture model is also significantly greater than Sall’s power for 

62.5% of the models.  But when using C2, the covariate does not interact with a genetic factor, 

the power of the mixture model is low.  This can be viewed as a desirable property, in that it may 

help one determine which covariate out of many is relevant and interacts with the susceptibility 

genes determining the disease of interest. 

  The OSA methods: we here run the OSA methods three times, based on the different rank 

orders (H → L, L → H and optimal-slice).  When C1 is used, the H → L OSA method provides 

good power consistently across all three G x E interaction models.  It has significantly greater 

power than Sall for 54.17% of all models.  When C2 is used, the power of the L → H OSA 

method is higher than Sall’s power for 8.33% of all models.  According to our simulated data, the 

“linked” families tend to have high C1 values and low C2 values.  Hence, it is not surprising that 

the H → L OSA method has better power when C1 is used, and the L → H OSA method 

provides higher power when C2 is used.  

   However, whenever we run OSA, we always run it at least twice (H → L and L → H).  Thus, 

we must take into account this multiple testing issue.  One way to deal with this issue may be 

that one can run OSA twice in the H → L and L → H rank orders, and then only use the 
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maximum value from these two tests to compute the empirical thresholds and evaluate the 

power.  We apply this “max(H → L, L → H)” approach and the results indicate that the power of 

this alternative approach is often between the power of the H → L OSA and the L → H OSA 

methods (Figures 7.1, 7.2, 7.3).  The power of this alternative approach is generally retained well 

across all models. 

  The MLB method: MLB performs well when using C1 in the Type I models, but not in the 

Type II or Type III models.  However, it has significantly higher power than Sall for 37.5% of all 

Type II models and 25% of all Type III models when C2 is used.  The MLB approach regresses 

out the covariate effect, takes the Pearson’s residuals from the regression model, and then treats 

the residuals as a quantitative trait.  From an epidemiological point of view, this approach would 

deal better with confounders than with effect modifiers.  Since C1, a strong effect modifier, in 

the Type III models is highly correlated to the disease genotypes, regressing out C1 is equivalent 

to regressing out the genetic effect.  This leads very low power for MLB. 

   On the other hand, C1 in the Type I models is a relatively moderate effect modifier, compared 

with the Type III models.  Hence, even though we regress individual’s affection status on C1, a 

moderate level of genetic effect still remains in the residuals.  Therefore, MLB has certain power 

when using C1 under the Type I models. 

   Alcaïs and Abel (2001) in their simulation study showed that power increases when the disease 

allele frequency is rare and when unaffected siblings are included in the analysis.  Our results 

also indicate that MLB often performs well when the disease allele frequency is rare (Tables 

6.1A, B, C).  However, MLB has significantly higher power than Sall for only 16.67% of all 
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Number on x-axis: 1. H → L; 2. L → H; 3. max(H → L, L → H); 4. optimal-slice; 5. Sall 

Figure 7.1 Power and 95% CI for the OSA methods and Sall at the 5% level under different Type 
I models, based on 500 replicates 
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Number on x-axis: 1. H → L; 2. L → H; 3. max(H → L, L → H); 4. optimal-slice; 5. Sall 
 

Figure 7.2 Power and 95% CI for the OSA methods and Sall at the 5% level under different Type 
II models with genetic variance = 30%, based on 500 replicates 
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Number on x-axis: 1. H → L; 2. L → H; 3. max(H → L, L → H); 4. optimal-slice; 5. Sall 
 

Figure 7.3 Power and 95% CI for the OSA methods and Sall at the 5% level under different Type 
III models, based on 500 replicates 
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models.  Alcaïs and Abel (2001) only compared MLB using the whole sibship to MLB using 

affected sib pairs when accounting for the covariate effect.  It would be interesting to compare 

the two MLB approaches to Sall as a baseline. 

  Logistic regression approaches: generally, logistic regression approaches (LODPAL, the 

MLRM methods and COVLINK) herein do not perform well across the models.  One possible 

interpretation is that their performance highly depends on how we measure the covariate 

information.  As we discussed in Section 7.1.3, we measure the covariate information by taking 

the average covariate values across sib pairs.  Based on logistic regression approaches, if the 

average pair-level covariate values are close in three different IBD sharing patterns, the power 

may not increase, since we only increase degrees of freedom while no useful information is 

added.  The sib pairs here may be affected because both siblings carry high-risk disease 

genotypes, but this is not necessarily the case.  It could be that one carries a high-risk genotype, 

while the other carries a low-risk genotype.  According to our simulated data, if the affecteds do 

not carry high-risk genotype, they tend to have high C2 values under the Type I and II models. 

   Another reason for COVLINK is that we only use the pairs with unambiguous IBD sharing 

probabilities.  Therefore, the sample size in COVLINK is smaller than in the other covariate 

methods.  Holmans (2002) suggested a conditional logistic regression for detecting gene-gene 

interactions using affected sib pair analysis (Holmans 2002).  This approach is similar to 

COVLINK, but is applicable to partially informative IBD data.  It would be of interest extending 

COVLINK using all IBD sharing data and re-evaluating the performance. 

   The articles that proposed LODPAL and the MLRM approaches describe the theoretical 

asymptotical distribution (Olson 1999; Greenwood and Bull 1999).  Our results show that the 

empirical thresholds of the MLRM approaches are very close to the analytical thresholds, but the 
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analytical thresholds of LODPAL are markedly smaller than the empirical thresholds in the tail 

of the distribution (Table 5.5 and Figure 5.1).  Previous work compared the performance of 

LODPAL and GENEFINDER (Glidden et al. 2003) using the Genetic Analysis Workshop 13 

(GAW13) simulation data (Hsu et al. 2003).  Hsu et al. (2003) concluded that LODPAL has 

more reasonable power than GENEFINDER, but both approaches have high possibility of 

leading to false-positive conclusions.  Therefore, one should avoid false-positive results based on 

the LODPAL approach by using the empirical p-values rather than analytical p-values. 

   With respect to the MLRM approaches, Greenwood and Bull (1999) concluded that: (1) the 

MLRM approach under no dominance assumption has the best power; (2) the min-max 

restriction approach has power between those under no dominance and no additive assumptions; 

(3) but the MLRM approach under no additive assumption tends to have very low power.  Based 

on our G x E models, our results indicate the same conclusions. 

   Schaid et al. (2003) pointed out that LOD scores for testing the covariate influence should be 

identical between LODPAL and the MLRM under the min-max restriction, z1 = 0.335 + 0.58* z0, 

where zi is two of three IBD sharing probabilities (Table 7.2).  We observe very close, but not 

identical results for these two methods.  Two reasons may explain the very mild difference in 

these two methods. 

   First, as we described in Chapter 2, we use the “centered” average pair-level covariate value 

for LODPAL.  But we use the average of the original pair-level covariate value for the MLRM 

approaches.  Second, for some covariate values, the likelihood estimate obtained from LODPAL 

can be negative.  In these situations, the LOD score is set to a very small positive value to avoid 

computational difficulty.  We observe the similar situation in the MLRM approaches.  In these 

cases, we set a very small positive value to the likelihood estimate instead of the LOD score. 
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7.1.5. How important are unaffecteds? 
 
Does including unaffecteds increase the power?  We here cannot reach a conclusion.  According 

to our results, the mixture model and the H → L OSA method perform quite well across the 

models when C1 is used.  We use all family members’ data, both affecteds and unaffecteds, to 

 
 

Table 7.2 Logistic regression models for IBD sharing probabilities and covariates (From Schaid et 
al. 2003) 

Model z0(X; β) a z1(X; β) z2(X; β) 
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Note: 
a. zi: three IBD sharing probabilities; X: a pair-specific covariate 
b. LODPAL and MLRM approaches without constraints (β1, 0, β1, 1): coefficients for IBD = 1 

vs. IBD = 0; (β2, 0, β2, 1): coefficients for IBD = 2 vs. IBD = 0 
c. LODPAL under min-max restriction 
d. MLRM under min-max restriction 

 

 

cluster pedigrees for the mixture model, but only use affected siblings’ information for the OSA 

methods.  Although Alcaïs and Abel (2001) showed that using the whole sibships has better 
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power than using affected sibs only in their simulation study, we do not reach the same 

conclusion as theirs.  Based on our results, when we use both affecteds and unaffecteds’ data for 

MLB and COVLINK, they do not perform well.  It may be because we generate simulated data 

under different G x E interaction scenarios.  Hence, this issue is still unresolved. 

7.1.6. What is the “right” study design? 
 

“In the presence of strong (statistical) G-E interaction, there can be a gain in power to detect 

genetic linkage/ association…  But, for discrete outcomes, gains in power are modest except 

when effects (and their interaction) are strong” [quoted from Clayton’s slides].  Poisson et al. 

(2003) reported that when the genetic effect and environmental effect are independent, family-

based association testing with covariate adjustment may reduce the power.  Do those imply that 

accounting for covariate information in linkage analysis/ association studies for complex 

diseases can only increase power a little, or even reduce power?  It requires more thorough 

investigation to address this issue.  One straightforward way to enhance the power is selecting 

the right study design. 

   Our results indicate that the performance of the covariate statistics is influenced by the types of 

G x E models, and as well as the types of covariates.  Guo (2000) reported the required sample 

size in three different G x E interaction examples: (1) genetic factors interact with exposures in 

an additive scale; (2) genetic factors increase disease risk in unexposed subjects, but decrease the 

risk in exposed subjects; (3) exposures have strong effect, but small G x E interaction effect.  In 

the example 3, there is a strong genetic effect in unexposed subjects, but a small effect in 

exposed subjects.  The results indicated that the required sample sizes vary under different G x E 

interaction scenarios (Table 7.3).  Therefore, one should select appropriate study designs and 
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suitable covariate methods for dealing with various G x E scenarios and covariates in complex 

diseases. 

 

Table 7.3 Sample size required to reach 80% power using the affected-sib-pairs method (ASP) 
and the transmission disequilibrium test (TDT) in various study designs (modified from Guo 
2000) 

ASP TDT Design 

Example 1 Example 2 Example 3 Example 1 Example 2 Example 3 

Unexp-con a 95 2,466 28 15 183 8 

Exp-con b 4,748 278 474,877 145 45 4,074 

Concordant 442 477 13,080 45 51 1,131 

Discordant c 452 241 707 27 1,542 18 

Note: 
a. Unexp-con: both affected sibs are unexposed 
b. Exp-con: both affected sibs are exposed 
c. Discordant: affected-unaffected sib pairs 

 

 

7.2. FUTURE WORK 

7.2.1. Use more than one covariate 

Here we only apply the covariate statistics to one covariate at a time.  Most covariate methods 

evaluated here can handle more than one covariate simultaneously.  Often, in reality, several 

covariates interact with different disease genes, or several covariates interact with the same 

disease gene.  So it is of interest to be able to use more than one covariate at a time.  However, 

the drawback to using more covariates is it increases the degrees of freedom.  But if one only 

adds “correct” covariates into the model, this may lessen the impact of increasing the degrees of 
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freedom.  In the future, we would like to investigate the performance of the covariate methods 

using two or more covariates simultaneously.  

7.2.2. Generate more complicated G x E interaction model 

We simulate the disease models under three different G x E interaction scenarios.  However, 

only one genetic factor is included in the underlying liability.  The major aim here is to evaluate 

whether covariate statistics increase power to detect signals.  We therefore start from the 

simplest scenarios first.  Our results offer valuable information regarding choosing appropriate 

covariate statistics and suitable types of covariates.  

   But these models do not completely capture the reality of complex diseases.  It would be more 

realistic if we can inspect the performance of the covariate methods using more complicated G x 

E interaction models.  In addition, the recurrence risk ratio for siblings, λs, is relatively high (3.4 

– 5.8) across the models, which is not observed in complex traits usually.  Hence, in the future, 

we plan to generate the genetic models with two genetic factors and two corresponding G x E 

interaction covariates and with lower λs value, and then analyze the data using the covariate 

statistics. 

7.2.3. Empirical thresholds vs. number of covariates 
 

We estimate the empirical thresholds at 1%, 5% and 10% level using the environmental risk 

covariate C2 or the random noise covariate C3, separately.  But we only incorporate one 

covariate at a time.  Our results indicate that using analytical p-values for some covariate 

statistics may lead to false-positive conclusions (Table 5.5 & Figure 5.1).  We plan to compute 

the thresholds from the empirical distribution using more than one covariate, and then compare 

these with the analytical distribution. 
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7.2.4. Estimate genome-wide empirical thresholds 
 
Because several covariate statistics apply optimization algorithms to maximize the likelihood, 

the simulations are computationally intensive and time-consuming.  In average, it takes about 20 

minutes to complete simulation and analysis for one replicate of 100 pedigrees on a 500 MHz 

processor, or around 12 minutes using a 1.53 GHz processor under the Linux operating system.  

Because of the computational limitations, the empirical thresholds herein are estimated by using 

33 markers on one chromosome.  Based on the chromosome-based approach, our simulation 

program can generate the marker data across the whole genome very efficiently.  Ultimately, it 

will be of interest to obtain the genome-wide thresholds for the covariate statistics. 

7.2.5. Measure covariate information in various ways 

As we described in Section 7.1.3, taking the average across families or sib pairs may not be the 

most efficient measure of covariate information.  We will evaluate the performance of the 

covariate methods using the alternative measures, e.g. taking difference, summing the covariate 

values or using the maximum (or minimum) covariate values.  

7.2.6. Add discordant sib pairs into logistic regression approaches 
 

Schaid et al. (2003) indicated that it is feasible to include both concordant (as well as unaffected 

pairs) and discordant sib pairs by using a dummy variable that codes concordance status.  

Although COVLINK takes into account unaffected sibs, it only uses unambiguous IBD sharing 

data, which limits the power.  Insofar, LODPAL and the MLRM methods only include affected 

sib pairs.  The power may be increased by adding in unaffected sibs.  Therefore, it would be 

noteworthy to extend LODPAL and the MLRM methods to include concordant unaffected sib 

pairs and discordant sib pairs. 
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7.2.7. Compare with different approaches 
 
Certainly, the covariate statistics is not the only choice for handling genetic heterogeneity.  As 

we introduced in Chapter 2, the statistics based on parametric framework (e.g. admixture model) 

also account for heterogeneity and have been applied to linkage analysis.  Tree-based recursive 

partitioning techniques have been also suggested for dealing with this issue (Shannon et al. 2001; 

Zhang et al. 2002).  It will be of interest to compare the performance of the statistics, based on 

these different frameworks. 

 

7.3. CLOSING REMARKS 

The findings herein present: 1) a rapid data simulation program; 2) the performance of covariate 

statistics under various G x E interaction models and various disease models; 3) the comparison 

between covariate statistics, model-free methods and QTL approaches; 4) the effect of different 

types of covariates.  In summary, covariate statistics can provide reasonable power under 

different types of G x E interaction scenarios.  The prior knowledge of the relationship between 

genetic factors and the types of covariates cannot be neglected.  Therefore, one should apply the 

appropriate covariate method and utilize the covariate information carefully in different 

situations.  Moreover, it will be crucial to scrutinize the covariate statistics through applying 

genome-wide thresholds, employing more comprehensive G x E interaction models, adding more 

covariates in the model, measuring the covariate information in alternative ways, and comparing 

with different approaches. 
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APPENDIX A 

 

OVERVIEW OF LINKAGE ANALYSIS 

 

The aim of linkage analysis is to make statistical inference about the relative positions of 

different genetic loci according to the observed phenotypic and genotypic data on individuals in 

the same pedigree.  In linkage analysis, the null hypothesis is no linkage and the alternative 

hypothesis is that there is linkage between two loci.  Both parametric and nonparametric 

approaches have been widely employed in linkage analysis.  On the basis of both approaches, 

many methods have been proposed to detect linkage between genetic loci.  We briefly introduce 

these two approaches in the following sections. 

 

A.1  PARAMETRIC LINKAGE ANALYSES 

A.1.1. Characteristics and model specification 

Parametric linkage analyses, also known as model-based methods, have been commonly used to 

map genetic loci that follow simple Mendelian inheritance (Morton 1955; Chotai 1984; Cleves 

and Elston 1997).  To carry out parametric linkage analysis, one needs to collect phenotypic and 

genotypic data from families to estimate the overall pedigree likelihood.  The samples may 

consist of collections of one or more nuclear families, or large pedigrees containing different 

degrees of relatives.  The parameter primarily of interest is the recombination fraction, 
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commonly denoted by θ, which is the probability that two loci, a putative disease locus and a 

marker locus, on the same chromosome will segregate to different gametes during meiosis.  

Consequently, the aim of linkage analysis is to estimate θ given an assumed underlying disease 

model.  The parametric linkage approach generally provides good power if the underlying 

disease model is specified correctly.  

   The components in the likelihood equation are the population frequencies of the trait locus 

alleles, penetrances and transmission probabilities.  We define )( founderGPrior  as population 

frequency, )|( ii GXPen  as penetrance and ),|( mdo GGGTrans  as transmission probability of 

genotype Go.  The overall likelihood then can be written as: 

∑ ∑ ∏ ∏ ∏=
1

},,{
),|()|()(...G G

founder i mdo
mdoiifoundern

GGGTransGXPenGPriorL , 

where G1…Gn are the n marker data, Gi is the genotyping data of the ith subject, Xi is the phenotypic 

data of the ith subject, and Gi runs over all members in the family (o: offspring, d: dad, m: mom). 

A.1.2. Algorithms for likelihood calculation 

The likelihood introduced in Section A.1.1. is computed by summing the products of founder 

probability, penetrance probability and transmission probability over all possible combinations 

of genotypes of all pedigree members.  Two algorithms, the Elston-Stewart algorithm (Elston 

and Stewart 1971) and the Lander-Green algorithm (Lander and Green, 1987), have been 

proposed to compute the exact pedigree likelihood and implemented in various programs. 

   The Elston-Stewart algorithm prescribes an order for the iterated sum which minimizes the 

total number of additions and multiplications in the likelihood function calculation in such a way 

that the computational time of the algorithm is linear in pedigree size, but exponential in the 

number of markers.  The likelihood function of a nuclear family with N children can be 

decomposed as: 
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   The genetic programs that implement the Elston-Stewart algorithm are LINKAGE (Lathrop et 

al. 1984), Mendel (Lange et al. 1988) and VITESSE (O’Connell and Weeks 1995). 

   Lander and Green (1987) proposed an alternative approach, the Lander-Green algorithm, to 

compute the pedigree likelihood function.  The algorithm is based on a hidden Markov Model of 

the inheritance pattern at the ordered genetic loci (Sham 1997).  The Lander-Green algorithm 

works as follows.  Let xL = (xL1, xL2,…, xLN) denote the collection of phenotypes at locus i, and 

gL = (gL1, gL2,…, gLN) denote the collection of ordered genotypes at these loci for the individuals.  

Under the assumption of no crossover interference, the likelihood function can be defined as: 

∑ ∑ ∏
∈ ∈ −
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   The computational time of the Lander-Green algorithm is linear in the number of markers, but 

exponential in number of individuals in the pedigrees; consequently, the algorithm is 

complementary to that of Elston-Stewart.  The algorithm is implemented in the programs Allegro 

(Gudbjartsson et al. 2000), GeneHunter (Kruglyak et al. 1996), Mendel and Merlin (Abecasis et 

al. 2002). 

 

A.2  MODEL-FREE LINAKGE ANALYSES 

In complex diseases, the mode of inheritance is often unclear.  Power can drop significantly in 

parametric linkage methods if one assumes an incorrect disease model.  As an alternative, model-

free methods, also known as nonparametric methods, have been suggested and do not require 
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explicit specification disease model (Penrose 1953; Green et al. 1983; Payami et al. 1985; Weeks 

and Lange 1988; Davis and Weeks 1997). 

A.2.1. Identical-by-decent sharing pattern vs. relative pairs 

The best known and most widely applied model-free approaches are the affected sib pair (ASP) 

and the affected relative pair (ARP) methods, which were introduced by Penrose (1935).  The 

basic concept of these model-free methods is, if a specific genetic marker is not linked to a 

putative disease gene, then the identical-by-decent (IBD) sharing pattern among the relative pairs 

will depend only on their relationship and not on their disease status.  However, if the marker is 

linked to the disease gene, one would expect an excess of IBD sharing among the affecteds over 

the null IBD sharing expectation.  Taking sib pairs as an example, under the null hypothesis of 

no linkage, the probabilities of the pair sharing 0, 1, and 2 alleles IBD are ¼, ½, and ¼, 

respectively (Suarez et al. 1978).  If a specific marker linked to the disease, one would expect an 

excess of IBD sharing in the affected sib pairs.  Risch (1990a, b) provided a detailed description 

of the strategies, advantages and power of allele-sharing analysis to detect susceptibility genes in 

complex diseases. 

   During the past several years, varied extensions and modifications of the ASP/ARP approaches 

have been reported (Lange and Sobel 1991; Thomas and Cortessis 1992; Fulker and Cardon 

1994; Kong and Cox 1997).  Several studies have also pointed out that, for the diseases with high 

recurrence risk, using the discordant sib pair (DSP) approach provides substantial power to 

detect linkage as the ASP approaches (Risch and Zhang 1995; Rogus and Krolewski 1996). 

A.2.2. Statistics 

The statistics often used to test the null hypothesis in a model-free approach are introduced as 

follows.  The first approach is the mean sharing statistic (Blackwelder and Elston 1985), which 
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compares the mean number of alleles shared IBD with the expected sharing number under the 

null hypothesis, and can be written as: 

Z = (Mean sharing – Expected sharing) / SD(sharing). 

However, the mean sharing test is only applied to sibling data. 

   The second approach is the likelihood-ratio-test statistic.  We first define Znull as the vector of 

the IBD sharing probabilities in affected relative pairs under the null hypothesis.  Let ẑ  denote 

the estimated vector of the observed IBD sharing frequencies, and let ni denote the number of 

affected relative pair with IBD sharing i.  We then write the test as: )(/)ˆ( nullZLZL , “where 

211
210)( nnn ZZZZL ∝  is the multinomial likelihood of the observed IBD sharing frequencies when the 

true IBD sharing probability is Z” (Shih and Whittemore 2001) and Zi is the parameter 

corresponding to i IBD allele sharing.  Under the H0, twice the log-likelihood ratio has an 

asymptotic χ2 distribution with two degrees of freedom.  The likelihood-ratio test is usually 

applied to sibs. 

   The third approach is the allele-sharing statistic, which are often used to measure IBD sharing 

among affecteds within a pedigree (Whittemore and Halpern 1994; Kruglyak et al 1996).  Spairs and 

Sall are the two score functions most often used.  The details are as follows. 

   We first denote the inheritance vector v(x) = (p1, m1, p2, m2,…, pn, mn), which captures an IBD 

sharing pattern between relatives at a given location x, where n is the number of non-founders, pi 

represents the grandpaternal or grandmaternal allele from the paternal is transmitted to the 

individual i, mi for the maternal is the similar definition as pi.  However, that a founder’s alleles 

are inherited from the grandpaternal or grandmaternal side is often unobservable.  Two identical-

by-states are considered to be equivalent.  The equivalent classes are called IBD configurations.  

Then the score function Spairs can be defined as: 
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where ∏ is the IBD configuration, n is number of affected individuals, v is the inheritance vector 

in the IBD configuration ∏, and )(vfij
 is one-fourth the number of alleles shared IBD between 

relative i and j.  

   The score function Sall can be written as: 
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where ∏ is the IBD configuration, n is number of affected individuals, f is the number of 

founders, h is a collection of alleles obtained by choosing one allele from each affected 

individual, and ci (h)! is the number of times that founder allele i appears in the collection h. 

   Given a score function si on a location x in the ith pedigree, the test statistic is: 
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where Φ  is the phenotypic data, µi = E(si | H0) and σi is the variance under the null hypothesis of 

no linkage for the ith  pedigree.  Note that Zi has mean zero and variance one under H0.  The test 

statistic for N pedigrees is then: 
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where ri is the weighting factor for the ith pedigree. 

   Various allele-sharing statistics have been incorporated into the programs Allegro 

(Gudbjartsson et al. 2000), GeneHunter (Kruglyak et al. 1996), GeneHunter-Plus (Kong and Cox 

1997) and Merlin (Abecasis et al. 2002). 
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A.2.3. Constraints on the IBD sharing estimates 

The likelihood-ratio-test statistic for ASP analysis (described in Section A.2.2) is a robust 

method for dealing with incomplete genotypic data.  Moreover, Holmans (1993) introduced the 

“possible-triangle” method to improve power of the likelihood-ratio-test statistic by restricting 

maximization to the region that is consistent with a possible genetic model.  He proved that the 

genetically-consistent allele-sharing estimates (Z0, Z1 and Z2) fall within a possible triangle 

(Figure A.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 The possible triangle of allele sharing estimates 

 

 

   The line Z1 = 0.5 corresponds to the no dominance variance assumption, and the line Z1 = 2 * 
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likelihood-ratio test satisfying the possible triangle constraints has higher power than the general 

unrestricted likelihood-ratio test. 
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APPENDIX B 

 

DATA SIMULATION PROGRAM 

 

Introduction 

   The code in Appendix B will simulate data under a G x E model.  In the Part I, the model-

specifications are defined in order to generate the data under the corresponding disease model.  

The code in the Part II allows users to generate the genome-wide data under the model specified 

in the Part I.  The examples of the R command and output file are provided in the Part III. 

 

Part I: Parameter setting 
 
# *************************** 
#  Model-specifications 
# *************************** 
 
# LI = G1 + βG1*C1 + C2 + PG + E 
# model contains one gene, one interaction and one independent covariate 
# proportion of var: 10% gene, 10% inter, 20% cov, 40% pg, 20% ran 
# prevalance: 5% 
 
mod <- function()  
{ 
cat("model = Dm1 \n") 
 
# model=(loci,a,d,-a,p) 
model <- rbind(c(1,1,1,-1,0.01), c(2,1,1,-1,0.24)) 
colnames(model) <- c("loci","a","d","-a","p") 
 
# beta=(NA,b1,b2,b3) 
beta <- c(NA,1,1,0) 
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names(beta) <- c("NA","b1","b2","b3") 
 
# mvr = (mu,var,rho) 
mvr <- rbind(c(0,3.9196,0.8),c(0,0.156,0)) 
colnames(mvr) <- c("mu","var","rho") 
 
# tri=(NA,mu1,mu2,mu3)  
tri <- c(NA, 114.46, 0, -64.59) 
names(tri) <- c("NA","mu1","mu2","mu3") 
vtri <- 35.75 
 
vpg <- 0.312 
vran <- 0.156 
threshold <- 0.4 
 
return(list(model=model, beta=beta, mvr=mvr, tri=tri, vtri=vtri, vpg=vpg, vran=vran, 
threshold=threshold)) 
} 
 
 
Part II: Data simulation code 
 
# Type I model: one gene, one G x E interaction and one independent covariate 
 
library("MASS") 
 
# ---------------------------------------------------------- 
# Generate genotypes of disease loci for parents 
# ---------------------------------------------------------- 
 
# Input: pgeno(model,nloci) 
# Output: return genotypes and allele types of each locus 
 
pgeno <- function(model,nloci) { 
 
allele <- NULL 
 
gty <- function(m) {geno <- sample(2:4,1,replace=T, c(m[5]*m[5],2*m[5]*(1-m[5]), 
           (1-m[5])*(1-m[5])));return(geno)} 
gtype <- gty(model) 
 
alle <- switch(paste(gtype), "1" = NULL, "2" = c(1,1), "3" = c(1,2), "4" = c(2,2)) 
allele <- rbind(allele,alle) 
 
return(gtype,allele) 
} 



 

 160

 
# ------------------------------------------------------- 
# Generate genotypes of disease loci for sibs 
# Conditional on parents genotypes 
# ------------------------------------------------------- 
# Input: sgeno(dalle,malle,nsib,nloci) 
# Output: 1. return matrics w/ ONE allele randomly picked from parents 
#              2. return sibs' genotypes of each locus 
#              3. return the first two sibs' IBD sharing of each locus 
 
sgeno <- function(dalle,malle,nsib,nloci) { 
 
# Generate alleles of sibs from parents and track the origins of alleles 
  
dibd.alle <- apply(dalle,1, function(alle) { 
a <- sample(c(1,2),nsib,replace=T,c(0.5,0.5));return(a,alle[a])}) 
mibd.alle <- apply(malle,1, function(alle) { 
a <- sample(c(1,2),nsib,replace=T,c(0.5,0.5));return(a,alle[a])}) 
 
dadibd <- NULL 
dadall <- NULL 
momibd <- NULL 
momall <- NULL 
 
for (i in 1:nloci) { 
dadibd <- cbind(dadibd,dibd.alle[[i]][[1]]) 
dadall <- cbind(dadall,dibd.alle[[i]][[2]]) 
momibd <- cbind(momibd,mibd.alle[[i]][[1]]) 
momall <- cbind(momall,mibd.alle[[i]][[2]]) 
} 
  
# Obtain genotype data from allele-type data  
 
gtype <- dadall + momall 
 
return(dadall,momall,gtype,dadibd,momibd) 
} 
 
# ------------------------------------------------------------------------ 
# Generate mean value for each genotype in each pedigree 
# ------------------------------------------------------------------------ 
# Input: genom(nloci,gtype,model) 
# gtype: genotype at a locus 
# Output: return the mean value of each locus 
 
genom <- function(nloci,gtype,model) { 
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pheno <- NULL 
for (i in 1:nloci) { 
  mg <- model[gtype[,i]] 
  pheno <- cbind(pheno,mg) 
} 
 
return(pheno) 
} 
 
# ---------------------------------------------------------------------------------- 
# Generate covariate values under multivariate normal distribution 
# ---------------------------------------------------------------------------------- 
# Input: covar(nper,mu,v,rho) 
# nper: no. of persons in the family; mu: mean; v: var 
# Output: return covariate values for each person 
 
covar <- function(nper,mu,v,rho) { 
 
sg <- matrix((rho*v),nper,nper) 
diag(sg) <- (v) 
 
return(mvrnorm(1,rep(mu,nper),sg)) 
} 
 
# --------------------------------------------------------- 
# Generate genotype-specific covariate effect 
# --------------------------------------------------------- 
# Input: eff(i,nloci,nper,tble,pedicov,b) 
# i: indicator of the covarite w/ genotype-specific effect 
# tble: current table contains the information of genotypes and covariate 
# values; b: coefficient values in the 'beta' matrix 
# Output: return the vaules of gene-covariate interaction for each person 
 
eff <- function(i,nloci,nper,tble,pedicov,b) { 
 
eff <- rep(NA,nper) 
geno <- tble[,i] 
 
# j is the indicator of persons in each pedigree 
 
for (j in 1:nper) { 
  eff[j] <- b[geno[j]]*pedicov[j,i] 
} 
 
return(eff) 
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} 
 
# ------------------------------------------------------------------------------------------ 
# Generate marker genotypes (two-allele type) for parents 
# ------------------------------------------------------------------------------------------ 
# Heterozygosity is 80% and 5 equal-freq alleles for each marker 
 
pmark <- function(n.mar) { 
 
par.mar <- vector("list", length(n.mar)) 
# names(par.mar) <- as.character(1:length(n.mar)) 
 
for(i in 1:length(n.mar)) { 
   for(j in 1:n.mar[i]) { 
      alle <- sample(1:5,2,replace=T,c(0.2,0.2,0.2,0.2,0.2)) 
      par.mar[[i]] <- cbind(par.mar[[i]],alle) 
   } 
colnames(par.mar[[i]]) <- NULL 
} 
 
return(par.mar) 
} 
 
# ------------------------------------------------------------ 
# Simulate no. of CE and place their positions 
# ------------------------------------------------------------ 
 
cross <- function(len.chr,vpar,r) { 
 
pos.chias <- vector("list", length(len.chr)) 
loc.chias <- vector("list", length(len.chr)) 
loc.cross <- vector("list", length(len.chr)) 
# vpar <- c(5,4,4.2,4.6,3.9,4.7,5.9,2.6,3.8,3.9,4.1,5.5,4.3,7.3,5,4.2,5.3,5,6.9,2.7,5.4,3.4) 
 
for (i in 1:length(len.chr)) { 
 
# Use rejection sampling to generate a sample from the first point  
# distribution of a gamma renewal process with parameters (v, 2v). 
# Here, v should be in the range of 2.6 to 7.3 in order for the chosen majorizing function to work. 
 
# The Gamma distribution with parameters, `shape' = a, `scale' = s and 'rate' = r, has density: 
# f(x)= 1/(s^a Gamma(a)) x^(a-1) e^-(x/s), for x > 0, a > 0 and s > 0. 
 
if (vpar[i] < 2.6 || vpar[i] > 7.3) stop("ERROR: v out of range") 
 
  repeat { 
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    # Generate uniform from (1,A), where A = area under h(x) 
    x <- runif(1,min=0,max=(1.866666)) 
    # Invert to find y 
    y <- log(1 - x*0.5357143)/(-1.5) 
    # Generate U from the uniform distribution on the interval (0,1) 
    u <- runif(1) 
    # If u <= g(y)/h(y), deliver y 
    pg <- 2*(1-pgamma(y,shape=vpar[i],rate=r[i])) 
    ex <- 2.8*exp(-1.5*y) 
    if (pg > ex) stop(paste("ERROR: pg = ",pg,">","ex =",ex)) 
    if (u <= pg/ex) break 
  } 
 
  pos.chias[[i]] <- y 
  while (sum(pos.chias[[i]]) <= len.chr[i]) { 
     pos.chias[[i]] <- c(pos.chias[[i]],rgamma(1,shape=vpar[i],rate=r[i])) 
  } 
  if (length(pos.chias[[i]]) >= 2) { 
     pos.chias[[i]] <- pos.chias[[i]][1:(length(pos.chias[[i]])-1)]*100 
  } else { 
     pos.chias[[i]] <- 0 
  } 
  loc.chias[[i]][1] <- pos.chias[[i]][1] 
  if (length(pos.chias[[i]]) >= 2) { 
     for (j in 2:length(pos.chias[[i]])) { 
        loc.chias[[i]][j] <- loc.chias[[i]][j-1]+pos.chias[[i]][j] 
     } 
  } 
} 
 
for(i in 1:22) { 
   for (j in 1:length(loc.chias[[i]])) { 
      x <- sample(1:2,1,replace=T) 
      if (x == 1) { 
         loc.cross[[i]] <- c(loc.cross[[i]],loc.chias[[i]][j]) 
      } 
   } 
   if (length(loc.cross[[i]])==0) { 
       loc.cross[[i]] <- 0 
   } 
   names(loc.cross[[i]]) <- rep("C", length(loc.cross[[i]])) 
} 
 
return(loc.cross) 
} 
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# --------------------------------------------------------------------------- 
# Generate map and decide the positions of markers 
# --------------------------------------------------------------------------- 
 
map <- function(len, n.mar, eq.spacing = TRUE) { 
 
n.chr <- length(n.mar) 
map <- vector("list", n.chr) 
names(map) <- as.character(1:n.chr) 
 
  for (i in 1:n.chr) { 
     if (eq.spacing) { 
         map[[i]] <- seq(0, len[i]*100, length = n.mar[i]) 
     } else  { 
         map[[i]] <- sort(c(map[[i]], runif(n.mar[i], 0, len[i]*100))) 
     } 
     names(map[[i]]) <- paste("D", names(map)[i], "M", 1:n.mar[i], sep = "") 
  } 
 
return(map) 
} 
 
# --  ---------------------------------------- 
# Check the number is odd or even 
# ---  --------------------------------------- 
 
is.odd <- function (x) { 
 
  if (is.numeric(x)) { 
      if (x%%2 == 0) { 
          FALSE 
      } else { 
          TRUE 
      } 
  } else { 
     print("Warning: Input must be an integer value") 
  } 
 
} 
 
is.even <- function (x) { 
 
  if (is.numeric(x)) { 
      if (x%%2 == 0) { 
          TRUE 
      } else { 
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          FALSE 
      } 
  } else { 
      print("Warning: Input must be an integer value") 
  } 
 
} 
 
# ------------------------------------------------------------------------------------------------------------------ 
# Generate the list of chromosome based on the locations of CE for UNLINKED chromosomes 
# ------------------------------------------------------------------------------------------------------------------ 
 
list.unlink <- function(pos.mar, pos.cross) { 
 
# Order positions of markers and CE in one vector 
  
names(pos.mar) <- NULL 
names(pos.cross) <- NULL 
comb <- vector("list", 22) 
 
for (i in 1:22) { 
   comb[i] <- list(sort(c(unlist(pos.mar[i]),unlist(pos.cross[i])))) 
} 
 
# Generate the index list to pick which chromosome for data based on the CE 
 
pick <- vector("list",1) 
 
for (j in 10) { 
  if (comb[[j]][2] != 0) { 
     a <- rbind(pos.cross[[j]],pos.cross[[j]]) 
     b <- matrix(c(pos.mar[[j]][1],a,pos.mar[[j]][length(pos.mar[[j]])]), nrow=2) 
     if (is.odd(ncol(b))) { 
        b <- matrix(c(pos.mar[[j]][1],a,rep(pos.mar[[j]][length(pos.mar[[j]])],3)), nrow=2) 
     } 
 
     z <- sample(c(1,2),1,replace=T,c(0.5,0.5)) 
     for (k in 1:(length(b)/4)) { 
        pick1 <- rep(z,length(comb[[j]][comb[[j]] > b[1,(2*k-1)] & comb[[j]] < b[1,2*k]])) 
        pick2 <- rep((3-z),length(comb[[j]][comb[[j]] > b[2,(2*k-1)] & comb[[j]] < b[2,2*k]])) 
        pick[[1]] <- c(pick[[1]],pick1,pick2) 
     } 
     pick[[1]] <- c(pick[[1]][1],pick[[1]],pick[[1]][length(pick[[1]])]) 
  } else { 
     pick[[1]] <- rep(sample(c(1,2),1,replace=T,c(0.5,0.5)),length(pos.mar[[j]])) 
  }   
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} 
 
return(pick,comb[[10]],comb[[17]]) 
} 
 
# -------------------------------------------------------------------------------------------------------- 
# Generate the list of chromosome based on  
# odds or even no. of CE b/f disease loci for LINKED chromosomes (c10 & c17) 
# -------------------------------------------------------------------------------------------------------- 
 
list.link <- function(pos.dis,chr10,len.dischr,dadibd,momibd,nloci,dischr,x) { 
 
# Count the no. of CE b/f the positions of disease loci on c10 and c17 
# "i" is for dad and mom 
 
count.10 <- NULL 
for (i in 1:2) { 
   if (chr10[[i]][[2]] != 0) { 
      cnt <- 0 
      for (j in 1:len.dischr[1,i]) { 
         if ((chr10[[i]][j] < pos.dis[1]) && (names(chr10[[i]][j]) == "C")) { 
            cnt <- cnt + 1 
         } 
      } 
   } else { 
      cnt <- 0 
   } 
   count.10 <- c(count.10,cnt) 
} 
 
count <- count.10 
 
# Pick the origin of chromosomes based on odds or even no. of CE 
# x indicates the "x"th sib in the family 
 
chrom.dad <- NULL 
for (i in 1:nloci) { 
  if (is.even(count[1])) { 
    chr.dad <- dadibd[x,i] 
  } else { 
    chr.dad <- 3 - dadibd[x,i] 
  } 
  chrom.dad <- c(chrom.dad,chr.dad) 
} 
 
chrom.mom <- NULL 
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for (i in 1:nloci) { 
   if (is.even(count[2])) { 
      chr.mom <- momibd[x,i] 
   } else { 
      chr.mom <- 3 - momibd[x,i] 
   } 
   chrom.mom <- c(chrom.mom,chr.mom) 
} 
 
chrom <- rbind(chrom.dad,chrom.mom) 
colnames(chrom) <- "c10" 
 
# Generate a list containing the info of the vectors  
# which indicate marker data coming from which chromosome 
 
pick.dad <- vector("list", nloci) 
pick.mom <- vector("list", nloci) 
a <- list(chr10[[1]],chr10[[2]]) 
 
for (i in 1:nloci) { 
   pick.dad[[i]] <- chrom[1,1] 
   for (j in 2:len.dischr[1,1]) { 
      if (names(a[[1]][j]) == "C") { 
         chr <- 3 - pick.dad[[i]][j-1] 
      } else { 
         chr <- pick.dad[[i]][j-1] 
      } 
      pick.dad[[i]] <- c(pick.dad[[i]],chr) 
   } 
 
   pick.mom[[i]] <- chrom[2,1] 
   for (j in 2:len.dischr[1,2]) { 
      if (names(a[[i+1]][j]) == "C") { 
          chr <- 3 - pick.mom[[i]][j-1] 
      } else { 
          chr <- pick.mom[[i]][j-1] 
      } 
      pick.mom[[i]] <- c(pick.mom[[i]],chr) 
   } 
} 
 
index.dad <- vector("list",nloci) 
index.mom <- vector("list",nloci) 
list.dad <- vector("list",nloci) 
list.mom <- vector("list",nloci) 
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for (i in 1:nloci) { 
   idx.dad <- rbind(names(a[[i]]),pick.dad[[i]]) 
   idx.mom <- rbind(names(a[[i+1]]),pick.mom[[i]]) 
   index.dad[[i]] <- idx.dad 
   index.mom[[i]] <- idx.mom 
 
   list.dad[[i]] <- as.integer(index.dad[[i]][2, (index.dad[[i]][1,] != "C")]) 
   list.mom[[i]] <- as.integer(index.mom[[i]][2, (index.mom[[i]][1,] != "C")]) 
} 
 
return(list.dad,list.mom) 
} 
 
 
 
# ********************************************* 
#  Main function generates the pedigree data 
# ********************************************* 
 
pedi <- function(nped,model,beta,mvr,ncov,sdpgp,sdpgs,sdran,nloci,ncov.geno,threshold,n.mar, 
             len.chr,dischr,pos.dis,pos.mar,vpar,r) { 
 
tb1 <- NULL 
tb2 <- NULL 
family.unlink.data <- NULL 
family.link.data <- NULL 
# count.cross <- vector("list",22) 
 
ped <- 1 
total.nsib <- 0 
 
while (ped <= nped) { 
  tble1 <- NULL 
  tble2 <- NULL 
 
# Generate disease loci's genotypes of parents 
 
  tble1 <- rbind(tble1,c(ped,1,0,0,1)) 
  dadg <- pgeno(model,nloci) 
  tble2 <- rbind(tble2,dadg$gtype) 
  tble1 <- rbind(tble1,c(ped,2,0,0,2)) 
  momg <- pgeno(model,nloci) 
  tble2 <- rbind(tble2,momg$gtype) 
 
# Generate disease loci's genotypes of kids conditional on parents 
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  nsib <- sample(2:5,1,replace=TRUE,prob=c(0.37551,0.29057,0.20237,0.13155)) 
  nper <- nsib+2 
 
  gender <- sample(1:2, nsib, replace=T, prob=c(0.5,0.5)) 
  for(i in 1:nsib) { 
     tble1 <- rbind(tble1,c(ped,(i+2),1,2,gender[i])) 
  } 
  sibg <- sgeno(dadg$allele,momg$allele,nsib,nloci) 
  dadall <- sibg$dadall; momall <- sibg$momall 
  sgtype <- matrix(sibg$gtype,nrow=nsib) 
  dadibd <- sibg$dadibd; momibd <- sibg$momibd 
  tble2 <- rbind(tble2,sgtype) 
 
# Generate means of the major genes in a nper * nloci matrix for each pedigree 
 
gmean <- genom(nloci,tble2,model) 
 tble2 <- cbind(tble2,gmean) 
 
# Generate genotype-specific covariate values within a family 
 
  famcovg <- NULL 
  pedicovg <- NULL 
  for (i in 1:ncov.geno) { 
     famcovg <- covar(nper,mvr[i,1],mvr[i,2],mvr[i,3]) 
     famcovg <- matrix(famcovg,nrow=(nper)) 
     pedicovg <- cbind(pedicovg,famcovg) 
     tble2 <- cbind(tble2,famcovg) 
  } 
 
# Generate non-genotype-effect covariate values within a family 
 
  famcov <- NULL 
  pedicov <- NULL 
  for (i in (ncov.geno+1):ncov) { 
     famcov <- covar(nper,mvr[i,1],mvr[i,2],mvr[i,3]) 
     famcov <- matrix(famcov,nrow=(nper)) 
     pedicov <- cbind(pedicov,famcov) 
     tble2 <- cbind(tble2,famcov) 
  } 
 
# Generate genotype-specific covariate effect 
 
  inter <- NULL 
  for (i in 1:ncov.geno) { 
     coveff <- eff(i,nloci,nper,tble2,pedicovg,beta) 
     coveff <- matrix(coveff,nrow=(nper)) 
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     inter <- cbind(inter,coveff) 
     tble2 <- cbind(tble2,coveff) 
  } 
 
# Generate polygenic-effect values 
 
  dadp <- rnorm(1,0,sdpgp); momp <- rnorm(1,0,sdpgp) 
  sibp <- NULL 
  sibp <- c(sibp, rnorm(nsib,(dadp+momp)/2,sdpgs)) 
  poly <- c(dadp,momp,sibp) 
  poly <- matrix(poly,nrow=(nper)) 
   tble2 <- cbind(tble2,poly) 
 
# Generate random-effect values 
 
  raneff <- rnorm(nper,0,sdran) 
  raneff <- matrix(raneff,nrow=(nper)) 
  tble2 <- cbind(tble2,raneff) 
 
# Define affection status based on LI and count the no. of affected sibs 
 
  li <- gmean+pedicov+inter+poly+raneff 
 
  affect <- li 
  affect[li > threshold] <- 2; affect[li <= threshold] <- 1 
  aff <- affect[3:nper] 
  naff <- length(aff[aff==2]) 
 
  tble1 <- cbind(tble1,affect) 
  tble2 <- cbind(tble2,li) 
 
  if (naff >= 2) { 
#  tble2 <- cbind(tble2,gmean,pedicovg,pedicov,inter,poly,raneff,li) 
    tb1 <- rbind(tb1,tble1) 
    tb2 <- rbind(tb2,tble2) 
 
# Generate parent's data and offspring linked and unlinked marker data 
 
    dad.mar <- pmark(n.mar); mom.mar <- pmark(n.mar) 
    offs.mar <- vector("list",nsib) 
 
    for (x in 1:nsib) { 
 
# Generate no. and the location of CE 
# pos.cross, pos.mar and list.chr are lists 
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# 2 here is for dad and mom 
 
      list.final <- vector("list",2) 
      chr10 <- vector("list",2) 
      chr17 <- vector("list",2) 
 
# "k" is for dad and mom 
 
      for (k in 1:2) { 
        pos.cross <- cross(len.chr,vpar,r) 
 
        unlink.chr <- list.unlink(pos.mar, pos.cross) 
        list.final[[k]] <- unlink.chr[[1]] 
 
        link10 <- unlink.chr[[2]]; link17 <- unlink.chr[[3]] 
        chr10[[k]] <- link10; chr17[[k]] <- link17 
 
# Record CE position for all sibs in all simulated pedigrees 
 
#      for (m in 1:22) { 
#        if (pos.cross[[m]] != 0) { 
#          count.cross[[m]] <- append(count.cross[[m]],pos.cross[[m]]) 
#        } 
#        if (length(count.cross[[m]]) == 0) { 
#          count.cross[[m]] <- -1 
#        } 
#      } 
 
      } 
 
      len.dischr <- rbind(c(length(chr10[[1]]),length(chr10[[2]])), 
                                    c(length(chr17[[1]]),length(chr17[[2]]))) 
 
# Generate offspings’ unlinked marker data conditional on: 
# 1. parents' marker data; 2. the locations of CE 
# "1" is for dad; "2" is for mom 
 
      offs.unlink <- vector("list", 1) 
 
      for (i in 10) { 
         dadt <- t(dad.mar[[i]]); momt <- t(mom.mar[[i]]) 
         dad.final <- t(rbind(c(1:length(list.final[[1]][[1]])),list.final[[1]][[1]])) 
         mom.final <- t(rbind(c(1:length(list.final[[2]][[1]])),list.final[[2]][[1]])) 
         offs.unlink[[1]] <- rbind(dadt[dad.final],momt[mom.final]) 
      } 
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# Generate offsprings linked marker data conditional on: 
# 1. parents' marker data; 2. the location of disease loci 
# 3. odds or even no. of CE before the position of disease loci 
 
      list.offs <- list.link(pos.dis, chr10, len.dischr, dadibd, momibd, nloci, dischr, x) 
 
      offs.link <- vector("list", nloci) 
 
      for (i in 1:nloci) { 
         for (j in 1:(n.mar[dischr[i],1])) { 
            kid.linmar <- rbind(dad.mar[[dischr[i]]][list.offs$list.dad[[i]][j],j], 
                                  mom.mar[[dischr[i]]][list.offs$list.mom[[i]][j],j]) 
            offs.link[[i]] <- cbind(offs.link[[i]], kid.linmar) 
         } 
      } 
 
      offs.mar[[x]] <- c(offs.unlink,offs.link) 
    } 
 
# Generate a LINKAGE-format matrix w/ all marker data 
 
    dad.tb1 <- tble1[1,]; mom.tb1 <- tble1[2,] 
 
    for (i in 10) { 
       dad.tb1 <- c(dad.tb1,matrix(dad.mar[[i]],nrow=1)) 
       mom.tb1 <- c(mom.tb1,matrix(mom.mar[[i]],nrow=1)) 
    } 
 
    dad.tb2 <- c(tble1[1,],dad.mar[[10]]); mom.tb2 <- c(tble1[2,],mom.mar[[10]]) 
 
    sib.tb1 <- vector("list",nsib); sib.tb2 <- vector("list",nsib) 
    offs.tb1 <- NULL; offs.tb2 <- NULL 
 
    for (i in 1:nsib) { 
       sib.tb1[[i]] <- tble1[(i+2),] 
       sib.tb2[[i]] <- c(tble1[(i+2),],matrix(offs.mar[[i]][[2]],nrow=1)) 
 
       for (j in 1) { 
          sib.tb1[[i]] <- c(sib.tb1[[i]],matrix(offs.mar[[i]][[j]],nrow=1)) 
       } 
       offs.tb1 <- rbind(offs.tb1,sib.tb1[[i]]); offs.tb2 <- rbind(offs.tb2,sib.tb2[[i]]) 
    } 
 
    family.unlink.data <- rbind(family.unlink.data, dad.tb1,mom.tb1,offs.tb1) 
    family.link.data <- rbind(family.link.data, dad.tb2,mom.tb2,offs.tb2) 
 



 

 173

    total.nsib <- total.nsib + nsib 
    ped <- ped + 1 
  } 
} 
 
# Generate the title names for tables 
 
colnames(tb1) <- c("ped","per","dad","mom","sex","affect") 
 
name.gene <- NULL 
for(i in 1:nloci) { 
   name.gene <- c(name.gene,paste("geno",i,sep="")) 
} 
for (i in 1:nloci) { 
   name.gene <- c(name.gene,paste("mg",i,sep="")) 
} 
 
name.cov <- NULL 
for (i in 1:ncov) { 
   name.cov <- c(name.cov,paste("cov",i,sep="")) 
} 
 
name.int <- NULL 
for (i in 1:ncov.geno) { 
   name.int <- c(name.int,paste("gc",i,sep="")) 
} 
 
colnames(tb2) <- c(name.gene,name.cov,name.int,"pg","e","li") 
rownames(tb2) <- NULL 
 
# Convert one genotype into two alleles and replace the genotype data in tb2 
 
allele1 <- NULL 
allele2 <- NULL 
 
for (i in 1:nloci) { 
   for (j in 1:(length(tb2)/length(colnames(tb2)))) { 
      alle <- switch(paste(tb2[j,i]), "1" = NULL, "2" = c(1,1), "3" = c(1,2), "4" = c(2,2)) 
      allele1 <- rbind(allele1,alle) 
   } 
   allele2 <- cbind(allele2,allele1) 
   allele1 <- NULL 
} 
 
name.alle <- NULL 
for (i in 1:nloci) { 
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   for (j in 1:2) { 
      name.alle <- c(name.alle,paste("g",i,j,sep="")) 
   } 
} 
 
# Generate a matrix w/ pedigree structure, info of disease loci, interaction and covariates 
 
cov.data <- cbind(tb1,round(tb2,digits=3)) 
 
# colnames(allele2) <- name.alle 
# rownames(allele2) <- NULL 
rownames(family.unlink.data) <- NULL 
rownames(family.link.data) <- NULL 
colnames(cov.data) <- c(colnames(tb1),colnames(tb2)) 
rownames(cov.data) <- NULL 
 
# group <- vector("list",22) 
# count.rf <- vector("list",22) 
 
# Summarize the counts of recombination fraction in each interval of markers 
 
# for (i in 1:22) { 
#    group[[i]] <- cut(count.cross[[i]],pos.mar[[i]]) 
#    count.rf[[i]] <- tapply(count.cross[[i]],group[[i]],function (x) {length(x)/(total.nsib*2)}) 
# } 
 
# tb2 <- cbind(allele2,tb2[,(nloci+1):(length(colnames(tb2)))]) 
 
colnames(family.unlink.data) <- NULL 
colnames(family.link.data) <- NULL 
 
return(family.unlink.data,family.link.data,cov.data) 
} 
 
 
# ****************************************************** 
#   Start main program to generate pedigrees and replicates       
# ****************************************************** 
 
sim <- function(nped) { 
 
# Adjust the values of parameters in the model 
 
model.value <- mod() 
model <- model.value$model 
beta <- model.value$beta 
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mvr <- model.value$mvr 
sdpgp <- sqrt(model.value$vpg) 
sdpgs <- sqrt(model.value$vpg/2) 
sdran <- sqrt(model.value$vran) 
threshold <- model.value$threshold 
 
nloci <- length(model)/5   
ncov.geno <- length(beta)/4  
ncov <- length(mvr)/3 
 
print(mod()) 
cat("No. of loci \n"); print(nloci) 
cat("No. of covariates \n"); print(ncov) 
cat("No. of covariates with genotype-specific effect \n"); print(ncov.geno) 
 
if (nloci <= 0) stop("No. of loci must be at least one") 
if (nloci < ncov.geno) 
stop("No. of loci must be more than no. of covaraites w/ genotype-specific effect") 
if (ncov < ncov.geno) 
stop("No. of covariates must be more than no. of covariates w/ genotype-specific effect") 
 
# Specify the total lengths of chromosomes and the corresponding Gamma paramters 
 
len.chr <- matrix(c(2.84,2.62,2.19,2.07,1.98,1.89,1.79,1.64,1.6,1.69,1.46,1.69,1.15, 
                1.28,1.17,1.29,1.26,1.25,1.01,0.96,0.5,0.57),nrow=1) 
vpar <- c(5,4,4.2,4.6,3.9,4.7,5.9,2.6,3.8,3.9,4.1,5.5,4.3,7.3,5,4.2,5.3,5,6.9,2.7,5.4,3.4) 
r <- 2*vpar 
 
# Generate no. of markers on a chromosome 
 
n.mar <- apply(len.chr,1, function(a) {as.integer(a*100/5)}) 
# cat(total.mar,"\n") 
 
# Generate the positions and labels of marker data 
 
pos.mar <- map(len.chr, n.mar) 
 
# Specify the position of disease loci 
 
dischr <- c(10,17) 
pos.dis <- c(50, 30) 
cat("Location of disease loci are on the chromosome:", dischr,"\n") 
 
pedigree <- pedi(nped,model,beta,mvr,ncov,sdpgp,sdpgs,sdran,nloci, 
                   ncov.geno,threshold,n.mar,len.chr,dischr,pos.dis,pos.mar,vpar,r) 
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write.matrix(pedigree$family.unlink.data,file=paste("pedin_all.",nped,sep="")) 
write.matrix(pedigree$family.link.data,file=paste("pedin_dis.",nped,sep="")) 
write.table(pedigree$cov.data,file=paste("covariate.",nped,sep=""),col.names=T, 
                  row.names=F,sep="  ",quote=F) 
 
# return(pedigree$count.rf) 
} 
 
 
 
Part III: Examples 
 
   For running the data simulation program, users need to prepare a model-specification R code, 

which is provided in the Part I.  After evoking R environment, the R commands are as follows: 

 
# call in the model-specification R code, which is named as ("Dm1.R") here 
source("Dm1.R") 
 
# call in the data simulation R code, which is named as ("main_1g1cov1int.R ") here 
source("main_1g1cov1int.R") 
 
# use sim() function in the data simulation R code to generate 100 pedigrees 
sim(100) 
 
 
   The program puts its results in three output files: “covariate.*”, “pedin_all.*” and 

“pedin_dis.*”, * here means number of pedigrees in the simulated data set.  The “covariate.*” 

file contains the covariate information.  The simulated marker data without and with linking to 

the disease locus are in the “pedin_all.*” and “pedin_dis.*” files, separately. 
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APPENDIX C 

 

STATISTICAL PROGRAM 

 

Introduction 

   The code in Appendix C will analyze the data using four covariate methods: mixture model, 

LODPAL, MLRM and COVLINK, and write out the results into the “summary.txt” file.  Before 

running this program, users need to obtain the IBD sharing probabilities by running the 

GeneHunter program.  The statistical code is provided in the Part I.  The examples of the R 

command and output file are provided in the Part II. 

 

Part I: Statistical program 
 
# This code implements four covariate methods: mixture model, LODPAL, MLRM and 
COVLINK 
 
stat <- function(nped,repli,chr) 
{ 
 
library(MASS) 
library(mclust) 
source("chiglm.R") 
 
# Compute LR(alpha, lamda); lrwa: LR with alpha values 
# function for the mixture model 
 
lrwa <- function(lamda,data) 
{ 
  z0 <- data[,8] 
  z1 <- data[,9] 
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  z2 <- data[,10] 
  alpha <- data[,11] 
 
return(-2*sum(log(alpha*(z0/lamda+z1+z2*(2-(1/lamda)))+(1-alpha)))) 
} 
 
# Compute LR(alpha=1, lamda); lraone: LR with alpha=1 
# function for the mixture model 
 
lraone <- function(lamda,data) 
{ 
  z0 <- data[,8] 
  z1 <- data[,9] 
  z2 <- data[,10] 
 
return(-2*sum(log(z0/lamda+z1+z2*(2-(1/lamda))))) 
} 
 
# IBD sharing z0, z1 and z2 under the null for sib pairs are 0.25, 0.5, 0.25 
# alp.mode is a mode of inheritance parameter in LODPAL in SAGE package 
# deminant -> alp.mode = 1; recesive -> alp.mode = 10 or go to Inf 
# we use default alp.mode value: 2.634 for minmax model 
# we specify w = 1 in the model -> w: weights corresponding to the pairs 
 
lodpal <- function(param,data) 
{ 
 
beta <- param[1] 
delta <- param[2] 
 
posit <- data[1,2] 
 
# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.cen <- data[,8] 
est.par <- exp(beta+delta*cov.cen) 
 
lr <- (z0 + z1*est.par + z2*(3.634*est.par-2.634))/ 
        (0.25 + 0.5*est.par + 0.25*(3.634*est.par-2.634)) 
 
if (lr <= 0 | lr == "NaN") { 
  warning("LR is negative or NaN") 
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} 
 
lr[lr=="NaN"] <- 1e-20 
lr[lr<=0] <- 1e-20 
 
return(sum(log10(lr))) 
} 
 
# MLRM under no dominance assumption 
 
epart.1 <- function(beta00,beta01,data) 
{ 
 
# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.pair <- data[,8] 
 
ez0 <- exp(beta00+beta01*cov.pair)/(2+2*exp(beta00+beta01*cov.pair)) 
ez2 <- 0.5-ez0 
 
denom <- 4*z0*ez0 + z1 + 4*z2*ez2 
 
zi0 <- (4*z0*ez0) / denom 
zi1 <- z1 / denom 
zi2 <- (4*z2*ez2) / denom 
 
return(zi0,zi1,zi2) 
} 
 
mpart.1 <- function(param,data) 
{ 
 
beta00 <- param[1] 
beta01 <- param[2] 
 
# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.pair <- data[,8] 
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est.z0 <- exp(beta00+beta01*cov.pair)/(2+2*exp(beta00+beta01*cov.pair)) 
 
lod <- z0*log(est.z0)+z2*log(0.5-est.z0) 
 
if (lod == "NaN") { 
   warning("lod in model 1 is NaN") 
} 
 
lod[lod == "NaN"] <- 1e-20 
 
return(sum(lod)) 
} 
 
# MLRM under no additive assumption 
 
epart.2 <- function(beta00,beta01,data) 
{ 
 
# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.pair <- data[,8] 
 
ez0 <- exp(beta00+beta01*cov.pair)/(3+3*exp(beta00+beta01*cov.pair)) 
ez1 <- 2*ez0   
ez2 <- 1-ez0-ez1 
 
denom <- 4*z0*ez0 + 2*z1*ez1 + 4*z2*ez2 
 
zi0 <- (4*z0*ez0) / denom 
zi1 <- (2*z1*ez1) / denom 
zi2 <- (4*z2*ez2) / denom 
 
return(zi0,zi1,zi2) 
} 
 
mpart.2 <- function(param,data) 
{ 
 
beta00 <- param[1] 
beta01 <- param[2] 
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# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.pair <- data[,8] 
 
est.z0 <- exp(beta00+beta01*cov.pair)/(3+3*exp(beta00+beta01*cov.pair)) 
 
lod <- z0*log(est.z0)+z1*log(2*est.z0)+z2*log(1-3*est.z0) 
 
if (lod == "NaN") { 
   warning("lod in model 2 is NaN") 
} 
 
lod[lod == "NaN"] <- 1e-20 
 
return(sum(lod)) 
} 
 
# MLRM under min-max restriction 
 
epart.3 <- function(beta00,beta01,data) 
{ 
 
# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.pair <- data[,8] 
 
ez0 <- 0.645*exp(beta00+beta01*cov.pair)/(1.58+1.58*exp(beta00+beta01*cov.pair)) 
ez1 <- 0.355+0.58*ez0 
ez2 <- 1-ez0-ez1 
 
denom <- 4*z0*ez0 + 2*z1*ez1 + 4*z2*ez2 
 
zi0 <- (4*z0*ez0) / denom 
zi1 <- (2*z1*ez1) / denom 
zi2 <- (4*z2*ez2) / denom 
 
return(zi0,zi1,zi2) 
} 
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mpart.3 <- function(param,data) 
{ 
 
beta00 <- param[1] 
beta01 <- param[2] 
 
# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.pair <- data[,8] 
 
est.z0 <- 0.645*exp(beta00+beta01*cov.pair)/(1.58+1.58*exp(beta00+beta01*cov.pair)) 
 
lod <- z0*log(est.z0)+z1*log(0.335+0.58*est.z0)+z2*log(0.645-1.58*est.z0) 
 
if (lod == "NaN") { 
   warning("lod in model 3 is NaN") 
} 
 
lod[lod == "NaN"] <- 1e-20 
 
return(sum(lod)) 
} 
 
# Compute LOD score for MLRM under no dominance assumption 
 
lod.score1 <- function(beta00,beta01,data) 
{ 
 
# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.pair <- data[,8] 
 
ez0 <- exp(beta00+beta01*cov.pair)/(2+2*exp(beta00+beta01*cov.pair)) 
ez1 <- 0.5 
ez2 <- 0.5-ez0 
 
lod <- log10(4*z0*ez0+2*z1*ez1+4*z2*ez2) 



 

 183

 
return(sum(lod)) 
} 
 
# Compute LOD score for MLRM under no additive assumption 
 
lod.score2 <- function(beta00,beta01,data) 
{ 
 
# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.pair <- data[,8] 
 
ez0 <- exp(beta00+beta01*cov.pair)/(3+3*exp(beta00+beta01*cov.pair)) 
ez1 <- 2*ez0 
ez2 <- 1-ez0-ez1 
 
lod <- log10(4*z0*ez0+2*z1*ez1+4*z2*ez2) 
 
return(sum(lod)) 
} 
 
# Compute LOD score for MLRM under min-max restriction 
 
lod.score3 <- function(beta00,beta01,data) 
{ 
 
# estimated prob. of IBD sharing 
 
z0 <- data[,5] 
z1 <- data[,6] 
z2 <- data[,7] 
 
cov.pair <- data[,8] 
 
ez0 <- 0.645*exp(beta00+beta01*cov.pair)/(1.58+1.58*exp(beta00+beta01*cov.pair)) 
ez1 <- 0.355+0.58*ez0 
ez2 <- 1-ez0-ez1 
 
lod <- log10(4*z0*ez0+2*z1*ez1+4*z2*ez2) 
 
return(sum(lod)) 
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} 
 
# ************************************************************ 
# Start reading covariate information and preparing proper mean values 
# ************************************************************ 
 
# Read in covariate information 
 
fam.cov <- read.table(file=paste("covariate.",nped,sep=""),header=T) 
attach(fam.cov) 
names(fam.cov) 
 
# Figure out the no. of members in each family 
# Compute the family-level average using all members data 
 
fam <- as.factor(fam.cov$ped) 
lev.fam <- levels(fam) 
ped <- unique(fam.cov$ped) 
nmemb <- tapply(fam.cov$per,fam,max) 
lev.cov1 <- tapply(fam.cov$cov1,fam,mean) 
 
# Read in IBD sharing file, which is generated from GH 
 
ibd <- read.table(paste("ibd.c",chr,sep=""),skip=1) 
attach(ibd) 
names(ibd) <- c("pos","ped","pair","pz0","pz1","pz2","z0","z1","z2") 
 
# Compute pair-level covariate mean using all sibs 
 
pair.mean <- NULL 
 
for (i in 1:length(lev.fam)) { 
  b <- fam.cov[fam.cov$ped==lev.fam[i],] 
  for (j in 3:(nmemb[i]-1)) { 
    for (k in (j+1):nmemb[i]) { 
       pmean <- cbind(i,j,k,b$affect[j],b$affect[k], 
                mean(c(b$cov1[j],b$cov1[k])),mean(c(b$cov2[j],b$cov2[k])),  
                mean(c(b$ran.cov[j],b$ran.cov[k]))) 
       pair.mean<- rbind(pair.mean,pmean) 
    } 
  } 
} 
 
# Compute pair-level covariate mean using affected sib-pair only 
 
ap.mean <- pair.mean[pair.mean[,4]==2 & pair.mean[,5]==2,] 
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ap.mean <- data.frame(ap.mean,fac=(paste(ap.mean[,2],",",ap.mean[,3],sep=""))) 
 
aspm <- cbind(ap.mean[,1],ap.mean[,9],ap.mean[,6:8]) 
colnames(aspm) <- c("ped","pair","mc1","mc2","mc3") 
aspm$key <- paste(aspm$ped, aspm$pair) 
 
# Center the mean (x-xbar) 
 
ap.mean <- cbind(ap.mean,ap.mean[,6]-mean(ap.mean[,6]), 
                   ap.mean[,7]-mean(ap.mean[,7]),ap.mean[,8]-mean(ap.mean[,8])) 
ap.mean <- cbind(ap.mean[,1],ap.mean[,9:12]) 
colnames(ap.mean) <- c("ped","pair","cmcov1","cmcov2","cmcov3") 
ap.mean$key <- paste(ap.mean$ped, ap.mean$pair) 
 
# Cluster families by the covariate values and estimate the alpha value of each family 
 
  hcTree <- hcE(as.matrix(lev.cov1)) 
  clust.fam <- hclass(hcTree,2) 
  cf <- as.data.frame(cbind(clust.fam,lev.cov1)) 
  names(cf) <- c("clust.fam","lev.cov1") 
  alp <- qda(clust.fam~lev.cov1,data=cf,method='mle') 
  i <- NULL 
  i[alp$mean[1] > alp$mean[2]] <- 1 
  i[alp$mean[1] <= alp$mean[2]] <- 2 
  alpha <- as.vector(predict.qda(alp,cf)$posterior[,i]) 
  fam.alp <- as.data.frame(cbind(ped,alpha)) 
 
# Merge IBD sharing with alpha for all sib pairs in each pedigree 
 
  sibd <- ibd[ibd$pz0==0.25 & ibd$pz1==0.5 & ibd$pz2==0.25,] 
  sibd$key <- paste(sibd$ped, sibd$pair) 
  sibd.alpha <- merge(sibd,fam.alp,by='ped') 
  sibd.alp <- merge(sibd.alpha,ap.mean,by='key') 
 
#******************** 
#  The mixture model 
#******************** 
 
  pos <- unique(sibd$pos) 
 
  res.mix <- NULL 
 
  for (i in 1:length(pos)) 
  { 
    pos.ibd <- sibd.alp[sibd.alp$pos==pos[i],] 
 



 

 186

    a <- optim(1.2,lrwa,method = "L-BFGS-B",lower=1,upper=30,data=pos.ibd) 
 
    lam.hat <- a$par 
    LOD <- log10(exp(-1*a$value/2)) 
#    pval <- 0.5 - 0.5*pchisq(-1*a$value,1) 
    pos.alp <- cbind(pos[i],LOD) 
    res.mix <- rbind(res.mix,pos.alp) 
  } 
 
# Generate the subset of the 'sibd' object 
 
sibd <- cbind(sibd[,1:3],sibd[,7:10]) 
 
# Merge IBD-sharing prob w/ pair-specific mean for each pair in the same family 
# the mean covariate values are centered 
 
ap.mean <- ap.mean[,3:6] 
sibd.cmean <- merge(sibd, ap.mean, by='key') 
 
#************** 
#  LODPAL 
#************** 
 
res.lodpal <- NULL 
 
  for (i in 1:length(pos)) 
  { 
    pos.ibd <- sibd.cmean[sibd.cmean$pos==pos[i],] 
 
    a <- optim(c(0.002,0.002),lodpal,method="L-BFGS-B",lower=c(0,-5), 
            upper=c(5,5),data=pos.ibd,control=list(fnscale=-1))  
 
    beta.hat <- round(a$par[1],digits=3) 
    delta.hat <- round(a$par[2],digits=3) 
    LOD <- round(a$value,digits=5) 
    pos.lod <- cbind(pos[i],LOD) 
    res.lodpal <- rbind(res.lodpal,pos.lod) 
  } 
 
# Creat two dummy variables for AA, AU, UU pairs 
 
aff1 <- NULL 
aff1[pair.mean[,4]==2 & pair.mean[,5]==2] <- 1 
aff1[pair.mean[,4]==1 & pair.mean[,5]==2] <- 1 
aff1[pair.mean[,4]==2 & pair.mean[,5]==1] <- 1 
aff1[pair.mean[,4]==1 & pair.mean[,5]==1] <- 0 
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aff2 <- NULL    
aff2[pair.mean[,4]==2 & pair.mean[,5]==2] <- 1         
aff2[pair.mean[,4]==1 & pair.mean[,5]==2] <- 0         
aff2[pair.mean[,4]==2 & pair.mean[,5]==1] <- 0         
aff2[pair.mean[,4]==1 & pair.mean[,5]==1] <- 0 
 
 
# Compute pair-specific covariate mean using all sib pairs 
 
clink.mean <- data.frame(pair.mean,fac=(paste(pair.mean[,2],",",pair.mean[,3],sep=""))) 
clink.mean <- cbind(clink.mean[,1],clink.mean[,9],clink.mean[,6:8],aff1,aff2) 
colnames(clink.mean) <- c("ped","pair","mcov1","mcov2","mcov3","aff1","aff2") 
 
# Merge IBD-sharing prob w/ pair-specific mean for each pair in the same family 
 
clink.mean$key <- paste(clink.mean$ped, clink.mean$pair) 
clink.mean <- clink.mean[,3:8] 
sibd.mean <- merge(sibd, clink.mean, by='key') 
 
# Extract the data w/ unambiguous IBD sharing 
 
unamb.ibd <- sibd.mean[(sibd.mean$z0==1 & sibd.mean$z1==0 & 
sibd.mean$z2==0) | (sibd.mean$z0==0 & sibd.mean$z1==1 & sibd.mean$z2==0) | 
(sibd.mean$z0==0 & sibd.mean$z1==0 & sibd.mean$z2==1),] 
 
ibd.zero <- cbind(unamb.ibd[unamb.ibd$z0==1,],0) 
names(ibd.zero) <- c(names(unamb.ibd), "cnt") 
ibd.one.1 <- cbind(unamb.ibd[unamb.ibd$z1==1,],0) 
names(ibd.one.1) <- c(names(unamb.ibd), "cnt") 
ibd.one.2 <- cbind(unamb.ibd[unamb.ibd$z1==1,],1)  
names(ibd.one.2) <- c(names(unamb.ibd), "cnt") 
ibd.two <- cbind(unamb.ibd[unamb.ibd$z2==1,],1) 
names(ibd.two) <- c(names(unamb.ibd), "cnt") 
 
mer.ibd <- rbind(ibd.zero,ibd.zero,ibd.one.1,ibd.one.2,ibd.two,ibd.two) 
 
#************* 
# COVLINK  
#************* 
 
una.pos <- sort(unique(mer.ibd$pos)) 
res.covlink <- NULL 
 
  for (i in 1:length(una.pos)) 
  { 
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    pos.mer <- mer.ibd[mer.ibd$pos==una.pos[i],] 
 
    clink <- glm(pos.mer$cnt~pos.mer$aff1+pos.mer$aff2+pos.mer$mcov1, 
             data=pos.mer,family=binomial) 
 
    chi <- round(chiglm(clink)[[1]],digits=3) 
    clink <- cbind(una.pos[i],chi) 
    res.covlink <- rbind(res.covlink,clink) 
    rownames(res.covlink) <- NULL 
  } 
 
# Merge IBD-sharing prob w/ pair-specific mean for each pair in the same family 
# the mean values are not centered or standardized 
 
aspm <- aspm[,3:6] 
sib.mean <- merge(sibd, aspm, by='key') 
 
 
#************************ 
# The MLRM approaches 
#************************ 
 
# Start the EM steps for the model under no dominance assumption 
 
res.bull <- NULL 
miter <- 30 
 
  for (i in 1:length(pos)) 
  { 
    pos.ibd <- sib.mean[sib.mean$pos==pos[i],] 
    iter <- 1 
    convg <- F 
 
# Initialization of the EM steps 
 
    beta00 <- 0.02 
    beta01 <- 0.02 
    zi0 <- 0.25 
    zi1 <- 0.5 
    zi2 <- 0.25 
    lod.mstep <- 1e+7  
 
    while (iter < miter) { 
 
# Set the zi's values in the previous E-step to 'zi*.old' 
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    zi0.old <- zi0 
    zi1.old <- zi1 
    zi2.old <- zi2 
    lod.mstepold <- lod.mstep 
 
# Run E-step to compute zi's values 
        
    a <- epart.1(beta00,beta01,pos.ibd) 
    zi0 <- a[[1]] 
    zi1 <- a[[2]] 
    zi2 <- a[[3]] 
 
# Run M-step to estimate beta00  and beta01 
 
    b <- optim(c(beta00,beta01),mpart.1,method="BFGS",data=pos.ibd,control=list(fnscale=-1)) 
 
    beta00 <- b$par[1] 
    beta01 <- b$par[2] 
    lod.mstep <- b$value 
 
# Check if the program converges 
 
    if (abs(lod.mstep-lod.mstepold) < 1e-10) { 
       convg <- T 
       break 
    } 
 
    iter <- iter + 1 
    } 
 
# Compute the LOD scores based on the estimated parameters 
 
    LOD <- round(lod.score1(beta00,beta01,pos.ibd),digits=5) 
    pos.lod <- cbind(pos[i],LOD) 
    res.bull <- rbind(res.bull,pos.lod) 
  } 
 
# Record the results to the object -- m1 
 
res.m1 <- res.bull 
# colnames(m1) <- c("pos","beta00","beta01","LOD","iter","convg","meth") 
 
# Start the EM steps for the model under no additive assumption 
 
res.bull <- NULL 
miter <- 30 
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  for (i in 1:length(pos)) 
  { 
    pos.ibd <- sib.mean[sib.mean$pos==pos[i],] 
    iter <- 1 
    convg <- F 
 
# Initialization of the EM steps 
 
    beta00 <- 0.02 
    beta01 <- 0.02 
    zi0 <- 0.25 
    zi1 <- 0.5 
    zi2 <- 0.25 
    lod.mstep <- 1e+7  
 
    while (iter < miter) { 
 
# Set the zi's values in the previous E-step to 'zi*.old' 
 
    zi0.old <- zi0 
    zi1.old <- zi1 
    zi2.old <- zi2 
    lod.mstepold <- lod.mstep 
 
# Run E-step to compute zi's values 
        
    a <- epart.2(beta00,beta01,pos.ibd) 
    zi0 <- a[[1]] 
    zi1 <- a[[2]] 
    zi2 <- a[[3]] 
 
# Run M-step to estimate beta00 and beta01 
 
    b <- optim(c(beta00,beta01),mpart.2,method="BFGS",data=pos.ibd,control=list(fnscale=-1)) 
 
    beta00 <- b$par[1] 
    beta01 <- b$par[2] 
    lod.mstep <- b$value 
 
# Check if the program converges 
 
    if (abs(lod.mstep-lod.mstepold) < 1e-10) { 
       convg <- T 
       break 
    } 
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    iter <- iter + 1 
    } 
 
# Compute the LOD scores based on the estimated parameters 
 
    LOD <- round(lod.score2(beta00,beta01,pos.ibd),digits=5) 
    pos.lod <- cbind(pos[i],LOD) 
    res.bull <- rbind(res.bull,pos.lod) 
  } 
 
# Record the results to the object -- m2 
 
res.m2 <- res.bull 
# colnames(m2) <- c("pos","beta00","beta01","LOD","iter","convg","meth") 
 
# Start the EM steps for the min-max restriction model 
 
res.bull <- NULL 
miter <- 30 
 
  for (i in 1:length(pos)) 
  { 
    pos.ibd <- sib.mean[sib.mean$pos==pos[i],] 
    iter <- 1 
    convg <- F 
 
# Initialization of the EM steps 
 
    beta00 <- 0.02 
    beta01 <- 0.02 
    zi0 <- 0.25 
    zi1 <- 0.5 
    zi2 <- 0.25 
    lod.mstep <- 1e+7  
 
    while (iter < miter) { 
 
# Set the zi's values in the previous E-step to 'zi*.old' 
 
    zi0.old <- zi0 
    zi1.old <- zi1 
    zi2.old <- zi2 
    lod.mstepold <- lod.mstep 
 
# Run E-step to compute zi's values 
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    a <- epart.3(beta00,beta01,pos.ibd) 
    zi0 <- a[[1]] 
    zi1 <- a[[2]] 
    zi2 <- a[[3]] 
 
# Run M-step to estimate beta00 and beta01 
 
    b <- optim(c(beta00,beta01),mpart.3,method="BFGS",data=pos.ibd,control=list(fnscale=-1)) 
 
    beta00 <- b$par[1] 
    beta01 <- b$par[2] 
    lod.mstep <- b$value 
 
# Check if the program converges 
 
    if (abs(lod.mstep-lod.mstepold) < 1e-10) { 
       convg <- T 
       break 
    } 
 
    iter <- iter + 1 
    } 
 
# Compute the LOD scores based on the estimated parameters 
 
    LOD <- round(lod.score3(beta00,beta01,pos.ibd),digits=5) 
    pos.lod <- cbind(pos[i],LOD) 
    res.bull <- rbind(res.bull,pos.lod) 
  } 
 
# Record the results to the object – min-max restriction model 
 
res.m3 <- res.bull 
# colnames(m3) <- c("pos","beta00","beta01","LOD","iter","convg","meth") 
 
# res.bull <- rbind(m1,m2,m3) 
 
# Fill in missing value -99 for the position w/ data for COVLINK 
 
covlink <- NULL 
j <- 1 
for (i  in 1:length(pos)) { 
   if (pos[i]==res.covlink[j,1]) { 
      tcov <- c(res.covlink[j,2]) 
      j <- j + 1 
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    } else { 
      tcov <- c(-99) 
      j <- j 
    } 
   covlink <- cbind(covlink,tcov) 
} 
 
# Merge all outputs and organize by the position 
 
mix <- rbind(res.mix[,2]) 
lodpal <- res.lodpal[,2] 
m1 <- res.m1[,2] 
m2 <- res.m2[,2] 
m3 <- res.m3[,2] 
 
res.all <- round(rbind(mix,lodpal,m1,m2,m3,covlink),digits=3) 
res.all <- cbind(rep(repli,6),c(1,2,3.1,3.2,3.3,4),res.all) 
 
# Write out all outputs and the header (stat + position) 
 
write.table(res.all,file="summary.txt",quote=F,col.names=F,row.names=F) 
} 
 
 
 
Part II: Examples 

   Before running this program, users need to obtain the IBD sharing probabilities by running the 

GeneHunter program.  After evoking R environment, the R commands are as follows: 

# run the code for mix, lodpal, mlrm and covlink 
# this code needs two input files: covariate.* and ibd.c$ 
# *: no. of pedigrees in the data set; $: chromosome no. 
# call in the statistical program, which is named as ("four_stat.R ") here 
 
source("four_stat.R") 
 
# use stat() function to run these four statistics 
# *: no. of pedigrees in the data set; !: replicate no.; $: chromosome no. 
 
stat(*,!,$) 
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   The program puts its results in the output file: “summary.txt”, which reports the LOD score 

from the covariate statistics: mixture model, LODPAL, MLRM and COVLINK. 
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GLOSSARY 

 

Allele: different forms of a locus or gene. 

Allele frequency: the rate of an allele occurring in the general population. 

Ascertainment: the pedigree recruitment through an affected sibling, proband. 

Complex trait: a trait whose mode of inheritance does not follow the Medelian laws. 

Dominant: a disease is transmitted in a dominant way (only one copy of the disease allele is 
required to develop disease). 

 

Gene: a region of DNA sequences coding for a protein product. 

Genotype: the type of alleles found at a locus  

Identical by descent (IBD): alleles in an individual or in two people are identical because they 
have been transmitted from the same common ancestor. 

 

Identical by state (IBS): coincidental possession of identical alleles in an individual or in two 
people. 

 

Locus: a region of chromosome. It can be a gene or a marker. 

LOD score: a measure of the likelihood that there is linkage between two loci. 

Marker: any polymorphism determined by segregation at a locus in a known fashion. 

Model-free analysis: linkage analysis in which no mode of inheritance needs to be specified. 
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Parametric analysis: linkage analysis in which a mode of inheritance needs to be specified. 

Penetrance: the probability that an individual carrying the disease allele(s) will develop the 
disease phenotype. 

 

Phenotype: the observable manifestations of a gene. 

Recessive: a disease is transmitted in a recessive way (two disease alleles are required to develop 
disease). 

 

Recombination fraction: the probability of occurrence of a recombinant event (usually denoted 
as θ). 

 

Segregation analysis: a statistical methodology for investigating the mode of inheritance of a 
phenotype from family data. 

 

Transmission probabilities: the probability that an allele is transmitted from one generation to 
the next generation. 
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