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THREE ESSAYS ON BARGAINING OVER

DECISION RIGHTS AND CONTESTS

Wooyoung Lim, PhD

University of Pittsburgh, 2010

This dissertation consists of three chapters where the first two chapters study models of

bargaining over decision rights and the third chapter studies a model of contests.

In the first chapter, “Selling Authority,” I consider bargaining over decision-making au-

thority in which an informed but self-interested agent makes a price offer to buy decision-

rights to an uninformed principal who then decides either to accept or to reject the offer.

No matter how large the difference between parties’ preferences, there exists a continuum of

perfect Bayesian equilibria, each of which yields an ex-post efficient action for any realization

of the state. In these equilibria, delegation takes place with probability one and no informa-

tion is transmitted, even though the informed agent’s price offers could have been used as

a signaling device. However, there exists an infinite sequence of informative equilibria that

approximates ex-post efficiency in the limit.

The second chapter, “Communication in Bargaining over Decision Right,” develops a

model of bargaining over decision-rights between an uninformed principal and an informed

but self-interested agent. The uninformed principal makes a price offer to the agent who

then decides either to accept or to reject the offer. Contrary to the prediction the Coase

Theorem provides, actions induced in the unique perfect Bayesian equilibrium do not always

satisfy ex-post efficiency. Once we introduce explicit communication into the model, however,

there exists a truth-telling perfect Bayesian equilibrium, even when the conflict of interest is

arbitrarily large. The truth-telling equilibrium outcome is ex-ante Pareto superior to that of

several dispute-resolution schemes studied in the framework of Crawford and Sobel (1982)
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and Holmström (1977).

The third chapter, “Contests with a stochastic number of players,” studies the Tullock’s

(1980) n-player contest where each player has an independent probability 0 < p ≤ 1 to

participate. A unique symmetric equilibrium is found for any n and p and its properties

are analyzed. We show that for a fixed n > 2 the individual equilibrium spending is non-

monotonic whereas the total equilibrium spending is monotonically increasing in p and n.

We also show that the ex-post over-dissipation is a natural feature of the equilibrium.

Keywords: Decision-rights, Bargaining, Cheap Talk, Information Transmission, Contests,

Rent-seeking.

iv



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1.0 SELLING AUTHORITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Bargaining Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Ex-post Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Informative Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Properties and Examples . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.2 No Upper Bound in N : Uniform Quadratic Example . . . . . . . . . . 24

1.6 Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.1 No Ex-Ante Pareto Ranking . . . . . . . . . . . . . . . . . . . . . . . 28

1.6.2 Benefit from Trading Decision-making Authority . . . . . . . . . . . . 29

1.7 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8 State-dependent Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.0 COMMUNICATION IN BARGAINING OVER DECISION RIGHTS 40

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



2.2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.2 Ex-post Efficient Actions . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Benchmark: Tacit Bargaining . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.1.1 Example: uniform distribution . . . . . . . . . . . . . . . . . . 50

2.3.1.2 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Explicit Bargaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.1 Truth-telling Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.2 Robustness of the Truth-telling Equilibrium . . . . . . . . . . . . . . . 60

2.4.2.1 Neologism-proofness . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.2.2 NITS (No Incentive To Separate) . . . . . . . . . . . . . . . . 62

2.4.2.3 Support Restriction and Perfection . . . . . . . . . . . . . . . 63

2.5 Welfare Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5.1 Comparisons to Other Schemes . . . . . . . . . . . . . . . . . . . . . . 65

2.5.2 Comparisons to Bargaining with Agents Making Offers . . . . . . . . 68

2.6 Discussion and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.6.1 Multidimensional State Space . . . . . . . . . . . . . . . . . . . . . . 69

2.6.2 Optimal Bargaining Mechanism . . . . . . . . . . . . . . . . . . . . . 72

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.0 CONTESTS WITH A STOCHASTIC NUMBER OF PLAYERS . . . . 77

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Individual Spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Total Spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.2 Over-dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.3 The same expected number of players . . . . . . . . . . . . . . . . . . 89

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

APPENDIX A. PROOFS AND CALCULATIONS FOR CHAPTER 1 . . . 92

APPENDIX B. PROOFS FOR CHAPTER 2 . . . . . . . . . . . . . . . . . . . 106

vi



APPENDIX C. PROOFS FOR CHAPTER 3 . . . . . . . . . . . . . . . . . . . 110

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vii



LIST OF FIGURES

1 Timing of the game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Nonexistence of equilibria with a non-degenerately informative offer . . . . . 15

4 Ex-post Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 2-step Monotonic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 3-step Non-monotonic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Construction of 5-step Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 25

8 (a) Agent’s expected payoff (b) Principal’s expected payoff . . . . . 31

9 Equilibrium payment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10 Ex-post Efficient Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11 Timing of the game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

12 The agent’s decision rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13 Equilibrium Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

14 Optimal Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

15 Communication before Bargaining . . . . . . . . . . . . . . . . . . . . . . . . 55

16 Neologism-proofness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

17 (a) Agent’s expected payoff (b) Principal’s expected payoff . . . . . 66

18 (a) Agent’s expected payoff (b) Principal’s expected payoff . . . . . 68

19 Constructing a truth-telling equilibrium . . . . . . . . . . . . . . . . . . . . . 70

20 Equilibrium individual spending when rV = 1. . . . . . . . . . . . . . . . . . 86

21 Expected total equilibrium spending. rV = 1. . . . . . . . . . . . . . . . . . . 87

22 (a) realized total spending when n = 3 (b) realized total spending when n = 10 89

viii



PREFACE

The best luck I have ever got in my life is to meet my advisor, Andreas Blume. I am

very grateful for his invaluable guidance, encouragement and support. I also thanks other

committee members, Oliver Board, Alexander Matros, and Pierre Liang for their help and

support. My peers at the University of Pittsburgh have been consistently helpful and will-

ing to contribute comments relative to my papers. Especially helpful were Ernest K. Lai,

Jonathan Lafky, and Yeolyong Sung. There are others who has helped me in different ways

that I would like to thank—Sourav Bhattacharya, Yeon-koo Che, John Duffy, Maria Golts-

man, Tymofiy Mylovanov, and Thomas Rawski. Last but not least, I express my endless

love to my wife Jungeun Song and to my son Yujun Lim.

ix



1.0 SELLING AUTHORITY

1.1 INTRODUCTION

In many economic situations, a party, such as a government or firm (principal), initially has

full authority to make a decision, but lacks information about the task or project at hand.

There is often another, better-informed party (agent) but it lacks the authority to make the

decision. Examples of this principal-agent relationship include an international manufacturer

who is less informed about specific national market conditions than a domestic distributer, a

patentee who is less-experienced in commercializing than a manufacturing company, a policy-

maker who knows less about potential impact of a fiscal policy than an economist, a central

office who is less informed about a local division than a lower level division manager, and a

private investor who is less informed about stock market conditions than a fund manager.

Sometimes the informed agent’s interest is so different from the uninformed principal’s

interest that the informed agent does not want to share useful information with the prin-

cipal. Crawford and Sobel [27] show that if costless communication, cheap-talk, is allowed

between parties whose preferences diverge, then information is transmitted in a strategic way.

That is, the informed agent has no incentive to fully reveal his information. Furthermore,

when the parties’ interests diverge substantially information cannot be transmitted through

cheap-talk at all. Although more complicated communication protocols such as communi-

cation via a neutral trustworthy mediator (Goltsman, Hörner, Pavlov and Squintani [38]), a

biased mediator (Ivanov [53]), an extensive communication (Krishna and Morgan [61]), and

communication including noise (Blume, Board, and Kawamura [18]) could facilitate com-

munication between parties, meaningful information is not transmitted when the degree of

conflict is sufficiently large.
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Organizational theory suggests that delegation of authority might resolve this problem.

For example, Milgrom and Roberts [77] point out that comprehensive decision making in a

large organization must involve considerable delegation of authority to lower levels of the

organization. However, the principal is not always willing to delegate authority because the

agent has his own agenda: Dessein [28] shows that the uninformed principal does not prefer

to delegate his decision-making authority to the informed agent when the preferences diverge

substantially.1 Although the principal can optimally delegate authority with the restricted

set of actions that the agent can take, it is optimal for the principal not to delegate authority

when the degree of conflict is large enough (Alonso and Matouschek [3], Holmström [51],

Kováč and Mylovanov [56] and Melamud and Shibano [75]).

In this paper, we show that the inefficiency caused by the informational loss can be

resolved by efficient reallocation of authority via bargaining with monetary transfers over

authority to make a decision, no matter how large the difference between parties’ preferences

is. This idea is inspired by Coase [22] who asserts that if property rights are well-defined,

voluntary bargaining between parties results in an efficient outcome under complete infor-

mation. Since we can think of the authority to make decisions as a well-defined property

right, it is natural to investigate how bargaining over the decision-making authority affects

the social outcome. One might also expect a socially efficient outcome in our framework.

However, the result is not certain in our case because of the presence of an informational

asymmetry between the parties. For example, Farrell [30] shows that in the presence of

two-sided private information, voluntary negotiation does not lead to the first-best outcome

that maximizes joint surplus.

We consider a bargaining game in which an informed but self-interested agent makes a

price offer for decision-making authority to an uninformed principal who then decides either

to accept or to reject the offer. We demonstrate that this simple bargaining can remove

inefficiency by two different ways. First, we find that there exists a continuum of equilibria

in which delegation takes place (almost) always and no information is transmitted by the

1When conflict of interest is large enough, full delegation cannot lead to ex-post efficient outcome because
it is not incentive compatible for the principal. That is, by taking her ex-ante ideal action the principal can
get higher payoff than that from full delegation.
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agent’s price offers.2 Second, we show that there is an equilibrium that approximates full

revelation of information in all states of nature. To be more precise, we construct an infinite

sequence of informative equilibria with n number of partition intervals in which the agent

types in the same interval makes a common price offer to the principal. As n goes to infinity,

the length of each partition interval goes to zero and as a result, the principal can take an

action arbitrarily close to her ideal action when she retains her decision rights.

Bargaining over authority to make a decision is common in the corporate world between

two separately owned companies. When an international manufacturer enters a particular

national market, it typically lacks relevant information about local market conditions and has

difficulties making decisions on pricing, marketing, advertising, distribution and so on. As a

result, it sells an exclusive distributorship to a domestic company who is better-informed but

lacks authority to make such decisions. If a license agreement is reached through bargaining,

the domestic company pays license fees in return for the exclusive right to make decisions

about pricing, marketing, advertising, distribution, and so on in the domestic market.3 For

example, I.B.M., the world’s largest computer maker in the 1990’s, agreed to allow Mitsubishi

to sell an I.B.M. mainframe computer under its own name in Japan in April, 1991.4 More

recently, tobacco industry leader Philip Morris International announced an agreement with

Chinese National Tobacco under which Chinese National Tobacco will manufacture Marlboro

cigarettes for marketing in China.5 If international manufacturers cannot find any partners

to make a license agreement, then they are able to found their own corporation in the national

market and to start their businesses by themselves. For instance, in the mid-1990s, dozens of

foreign beer brewers such as Annheuser-Busch, Heineken, South African Breweries (SAB),

Carlsberg, Interbrew, San Miguel, Kirin, Lion Nathan and Foster’s entered the Chinese

market without making any license agreement.6

2This equilibrium is uninformative in a sense that the agent makes a common price offer regardless of his
type.

3This license agreement is different from contracting in the adverse selection literature: the international
manufacturer does not make a contracting offer which is contingent on every possible decisions or actions.
Instead, it usally sells “the right” to make a decision.

4Andrew Pollack, “IBM Model to Be Sold By Mitsubishi,” The New York Times (April 29, 1991), 17.
5Nicholas Zamiska and Juliet Ye, “Chinese Cigarettes to Go Global” The Wall Street Journal, (January

30, 2008) B4.
6After years of failing to break into the market, many of them have recently been cutting back, even

selling their new state-of-the-art production facilities to local brewers. See Heracleous [44] for more details.
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The situation considered arises frequently in the pharmaceutical industry, especially be-

tween an R&D firm with a patent who is less-experienced in commercializing and an ex-

perienced manufacturing company. For instance, Animas Corporation, an insulin infusion

pump manufacturing company, set up license and development agreements with the Swiss

R&D company, Debiotech for intellectual property related to next-generation insulin pumps

and micro-needles. In return for the exclusive worldwide license to make, use and sell prod-

ucts utilizing the intellectual property portfolio that includes over 70 issued patents, Animas

paid $12 million in cash and issued 400,000 restricted share of Animas common stock for the

right.7

The efficiently reallocated authority via bargaining allows parties to make a full use

of the decision-relevant information and as a result, leads to a Pareto improvement. We

compare the equilibrium outcomes of the model with several dispute resolution schemes

studied in the literature such as communication (Crawford and Sobel [27]), optimal mediation

(Goltsman, Hörner, Pavlov and Squintani [38]), optimal delegation (Alonso and Matouschek

[3], Holmström [51], Kováč and Mylovanov [56] and Melamud and Shibano [75]) and optimal

compensation contract (Krishna and Morgan [60]). We show that any equilibrium outcomes

of this model are Pareto superior to outcomes of those other schemes when the parties’

preferences diverge to a substantial degree.

The rest of the paper is organized as follows. In the next section, we discuss the related

literature. In section 3, we describe the model. Focusing on the principal’s binary decision

between accepting and rejecting a price offer, Section 4 provides the full characterization

of the set of perfect Bayesian equilibrium outcomes of the model and its properties are

analyzed. In section 5, we show that if we extend the principal’s strategy space by allowing

randomization between accepting and rejecting price offers, there exists an equilibrium with

informative price offers that always yields almost efficient outcomes ex-post. Section 6 is

devoted to analyzing welfare of the model. In section 7, we adopt a stronger equilibrium

concept called sequential perfect equilibrium and show that this refinement gives us the

unique outcome of the game, which satisfies ex-post efficiency. In section 8, we investigate

7Rick Baron, “Animas acquires technology for disposable insulin micro-pumps and micro-neddles,”
http://www.bioalps.org/Bioalps/en/Internet/Documents/1996.pdf
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the robustness of the existence of ex-post efficient equilibrium against state-dependent biases.

We conclude in section 9.

1.2 RELATED LITERATURE

We may divide literature on strategic interactions between an uninformed principal and a

self-interested but informed agent into two strands: one on the reallocation of decision rights

and the other on the strategic transmission of information.

Holmström [50], [51] initiates works on the reallocation of authority or delegation prob-

lem: the uninformed principal’s choice from a set of admissible actions from which the agent

can take an action. Focusing on the uniform distribution of the state space and particular

preferences, Melumad and Shibano [75] provide full characterization of equilibria. With more

general distributions of the state space and preferences, Alonso and Matouschek [3] show

that the optimal set of admissible actions takes the form of a single interval if the informed

party’s preferences are sufficiently similar to the uninformed party’s. While most papers

have restricted attention to deterministic mechanisms, Kováč and Mylovanov [56] study rel-

ative performance of both stochastic and deterministic mechanisms and show that stochastic

mechanisms perform strictly better than deterministic ones under some circumstances.

Another strand of the literature investigates the strategic information transmission or

simply cheap talk between an informed but self-interested agent and an uninformed principal.

Crawford and Sobel [27] (hereafter CS) develop a model of strategic communication in which

a better-informed agent sends a possibly noisy signal to a principal, who then takes an

action that determines the welfare of both. They show that all equilibria in their model have

the form of partition equilibria in which there is only a finite number of actions chosen in

equilibrium and each action is associated with an interval of states. This means that the final

outcome of communication may still be inefficient, even though it can improve social welfare

by helping parties to transmit information. An important question arises here concerning

how to facilitate communication between parties or when the information transmission can

be improved. Several papers answer this question by modifying the CS model to allow
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more extensive communication (Krishna and Morgan [61]) or to consider the possibility of

error in communication (Blume, Board and Kawamura [18].) Recently, Goltsman, Hörner,

Pavlov and Squintani [38] allow the parties to use any communication protocol including

ones that call for a neutral trustworthy mediator and show that information transmission is

improved under the optimal mediation rule. Ivanov [53] demonstrates that for any bias in

the parties’ preferences, there exists a biased mediator that provides the highest expected

payoff to the principal as if the players communicated through a neutral mediator. Although

there is no explicit communication in our setting, information transmission is an important

issue because the informed agent’s price offer can be used as a signalling device. We show

that meaningful information can be transmitted through bargaining in which the parties are

allowed to use monetary transfers, no matter how widely the parties’ preferences diverge.

Some recent papers either allow parties to reallocate both information and authority, or

consider the principal’s choice between communication and delegation. In a setting with a

single decision and a single agent, Dessein [28] studies the optimal allocation of decision-

making authority when the uninformed party only can commit to an ex-ante allocation of

decision rights. He assumes that cheap talk takes place whenever the uninformed principal

retains some decision rights and shows that complete delegation dominates communication

if the conflict of interests is not serious. The same result is obtained in settings with a

multi-divisional organization in which there are two agents who have independent private

information (Alonso, Dessein and Matouschek [4].) By exploring a setting with multiple, in-

terdependent decisions, Alonso [2] shows that if activities are complementary the uninformed

principal can always improve the informativeness of communication by sharing control with

the informed agent.

Although we also consider the reallocation of decision-making authority, our paper is

significantly different from others in the following ways. First, we allow explicit monetary

transfers for parties which are not possible in other papers mentioned above. Second, con-

trary to most papers on the delegation problem, the informed agent has commitment power

in our model so that he makes a price offer for authority to make decisions. This assumption

makes the strategic information transmission, which is not an issue in other papers on the

delegation problem, play an important role in our paper. Interestingly in our paper, the as-
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pects of both information transmission and delegation appear at the same time, even though

we neither allow the parties to communicate via cheap talk nor consider the principal’s choice

between communication and delegation. This is because the principal may be able to get

meaningful information from the price offer for decision-making authority, which is a main

determinant for the reallocation of authority.

There are several papers that consider contracting with monetary transfers in the frame-

work of CS. Krishna and Morgan [60] and Bester and Strausz [16] consider the imperfect

commitment model in which the uninformed principal is able to commit on the schedule

of transfer payment but not on his action rule. Contrary to our model, the uninformed

principal always retains decision-making authority in these models since commitment is only

on the transfer but not on the allocation of decision-making authority. Under an optimal

contract in Krishna and Morgan [60], the principal should never induce the agent to fully

reveal what he knows even though this is feasible. Moreover, the principal never pay the

agent for imprecise information. Krähmer [57] considers message-contingent delegation in

which the principal can commit the allocation of decision rights after observing cheap talk

messages from the informed agent and shows that it creates incentives for information reve-

lation. Bester [15] also studies the contracting problem in the setting with monetary transfer

when only decision rights are contractible ex-ante and focuses on the question of whether a

direct and truthful mechanism can implement the same allocation of decision rights as under

perfect information. Contrary to all these papers, the informed agent has a bargaining power

in our setting so that he makes an offer to the principal.

Our paper shows that reallocation of decision-making authority is important to attain

ex-post efficient outcomes, whereas most papers mentioned above focus their attention on

either informativeness of equilibrium or the principal’s welfare. In this sense, our paper

is related to the incomplete contracting literature. Grossman and Hart [41] and Hart and

Moore [46] develop a theory of property rights based on incentives by considering incomplete

contracting between principal and agent. They assume that parties are not able to make a

complete contract that encompasses all contingencies that might arise and argue that it can

lead to inefficient outcomes. They suggest an optimal allocation of decision-making authority

that minimizes the ex-post inefficiency. In this framework, Aghion and Tirole [1] explore the
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determinants of control rights in an alliance between a research unit and a customer firm to

develop new technologies when the lack of financial resources makes the research unit eager

to form the alliance with a customer.8 They consider two different cases: when the research

unit has bargaining power and when the customer does. When the research unit has the

bargaining power, the ownership of the research output will be efficiently allocated. However,

when the customer has the bargaining power, an inefficient allocation of the property rights

might occur. Instead of assuming the lack of financial resources, however, this paper focuses

on the lack of information that the principal faces and shows that voluntary bargaining over

decision-making authority yields efficient outcomes ex-post.

1.3 THE MODEL

1.3.1 Environment

There are two parties, a principal (P) and an agent (A). The principal who initially has

decision-making authority has little information about the state of the world θ ∈ Θ ≡

[0, 1]. She has her prior distribution F over [0, 1] which has an absolutely continuous density

function f > 0. The agent who has different interests from the principal knows the true state

of the world θ but does not have decision-making authority. The payoffs for a given allocation

of authority depend on an action y taken by the party who has decision-making authority

and the state of the world θ. The payoff functions of the parties for a given action being taken

are of the form UP (y, θ) = −l(|y − θ|) for the principal and UA(y, θ, b) = −l(|y − (θ + b)|)

for the agent.9 We refer to l as the loss function and assume that l′′(·) > 0, l′(0) = 0 and

l(0) = 0. This means that the ideal action of the principal is yP (θ) = θ and the ideal action

of the agent is yA(θ, b) = θ + b where b > 0 is a parameter that measures how nearly the

agent’s interest coincides with that of the principal. All of these are common knowledge

between parties.

8In Aghion and Tirole [1], the research unit initially has decision-making authority. Thus, it is natural
to think of the research unit as a principal in our framework.

9A special case is a quadratic utility (UP (y, θ) = −(y− θ)2 and UA(y, θ, b) = −(y− θ− b)2) which we are
assumed in most examples and applications.
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Figure 1: Timing of the game

1.3.2 Bargaining Game

Consider bargaining over the decision-making authority between the informed agent and the

uninformed principal. The timing of the game is as follows:

1. The agent privately observes the state of the world θ ∈ Θ ≡ [0, 1].

2. The agent offers to pay a price p ∈ R for the authority to take an action.10

3. The principal decides whether to accept or reject the offer.

4. If the principal accepts the offer then the agent pays the price offered by himself and takes

an action, denoted by yA. In this case, payoffs become UP (yA, θ) + p and UA(yA, θ, b) − p

for the principal and the agent respectively. If the principal rejects the offer, however, she

takes an action, denoted by yP , without transferring the decision-making authority. Then

payoffs are UP (yP , θ) and UA(yP , θ, b) for the principal and the agent, respectively.

The solution concept we use here is perfect Bayesian equilibrium. For the agent, a strat-

egy consists of a price offer and an action rule. The price offer µA : Θ → ∆(R) specifies the

agent’s choice of p when the state is θ. The agent’s action rule yA : Θ×R → R specifies the

agent’s choice of action after the principal’s acceptance of p, i.e. yA(θ, p) is the action taken

by the agent type θ whose offer of p is accepted. For the principal, a strategy consists of a

decision rule and an action rule. The decision rule, denoted by dP : R → {0, 1}, specifies the

principal’s binary decision between accepting and rejecting for each price offer p ∈ R that

the principal might receive. That is, dP (p) = 0 implies that the principal accepts the offer

p while dP (p) = 1 implies that she rejects the offer. It is important to note that we don’t

allow the principal to use mixed-strategies in her decision rule and we are focusing on the

10We allow p to be negative, which means that the principal pays to the agent.
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principal’s pure strategy for a while. In section 5, we will investigate equilibria in which the

principal is mixing in her decision rule. The action rule yP : R → R specifies the principal’s

choice of action for each price offer that the principal might receive. The strategy profile

{µA, yA, dP , yP} and the principal’s posterior belief ρ form a perfect Bayesian equilibrium if:

(BA1) for each θ ∈ [0, 1],
∫

R µA(p|θ)dp = 1 and if p∗ ∈ R is in the support of µA(·|θ)

then p∗ solves

max
p∈R

dP (p)UA(yP (p), θ, b) + (1− dP (p))(UA(yA(θ, p), θ, b)− p)

(BA2) for each p ∈ R, dP (p) solves

max
dP∈{0,1}

(1− dP )(p +

∫ 1

0

UP (yA(θ, p), θ)ρ(θ|p)dθ) + dP

∫ 1

0

UP (yP (p), θ)ρ(θ|p)dθ

(BA3) for each θ ∈ [0, 1] and each p ∈ R, yA(θ, p) solves

max
y∈R

UA(y, θ, b)

(BA4) for each p ∈ R, yP (p) solves

max
y∈R

∫ 1

0

UP (y, θ)ρ(θ|p)dθ

where ρ(θ|p) is given by Bayes’ rule whenever possible.

Notice that the optimal behavior of the informed agent type θ is to take an action

yA(θ, b) = θ + b. After substituting this into (BA1), (BA2), and (BA3), we have the fol-

lowing conditions for the equilibrium.

(BA1′) for each θ ∈ [0, 1],
∫

R µA(p|θ)dp = 1 and if p∗ ∈ R is in the support of µA(·|θ)

then p∗ solves

max
p∈R

dP (p)UA(yP (p), θ, b)− p(1− dP (p))

(BA2′) for each p ∈ R, dP (p) solves

max
dP∈{0,1}

(1− dP )(p− l(b)) + dP

∫ 1

0

UP (yP (p), θ)ρ(θ|p)dθ

(BA3′) for each θ ∈ [0, 1] and each p ∈ R, yA(θ, p) = θ + b.
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1.4 ANALYSIS

In this section, we identify the set of equilibria of the model. In what follows, we will first

categorize equilibrium candidates into several subcategories according to their properties.

Then we will show that it is impossible for some of those candidates to be equilibria of

the model. Notice that price offers could be used as signaling devices which convey some

information to the principal since the informed agent makes an offer in our model. Thus,

a price offer could be either informative or uninformative. Formally, a price offer on the

equilibrium path is informative if and only if the posterior belief after observing the price

offer is not the same as its prior belief so that the expected value of θ conditional on p is

different from EP (θ), the prior expectation of θ.

Definition 1. A price offer p ∈ R on the equilibrium path is informative if EP (θ|p) 6= EP (θ)

where EP (θ|p) =
∫

Θ
θ · ρ(θ|p)dθ.

Moreover, the agent’s price offer could be either a costless or a costly message. Whether

it is costless or costly is determined endogenously in equilibrium. To see this explicitly, let

us define the set of acceptable prices in equilibrium as

Pα := {p ∈ R|dP (p) = 0}

and the set of prices offered in equilibrium as

Po := {p ∈ R|∃θ ∈ [0, 1] s.t. µA(p|θ) > 0}.

A price offer p is acceptable if p ∈ Pα. A price offer p is unacceptable if p /∈ Pα. Given Pα, if

an agent type θ makes an offer p ∈ Pα then the principal accepts the offer and the authority

to make a decision is transferred to the agent. Then the principal and agent’s payoffs are

UP (yA, θ) + p and UA(yA, θ, b)− p, (1.1)

respectively. In this case, the agent’s price offer is a costly message.11

11This is true only if the agent’s price offer is not equal to zero. The price offer p = 0 is always costless no
matter whether the principal accepts or not.
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On the other hand, if the agent type θ makes an offer p /∈ Pα then the principal rejects

the offer and she retains the authority to make a decision. Then the principal’s payoff and

the agent’s payoff are

UP (yP , θ) and UA(yP , θ, b), (1.2)

respectively. In this case, the agent’s price offer is a costless message because it is not

included in the payoffs above.

Therefore, a price offer could be one of the followings: informative and acceptable (costly)

price offer, informative but unacceptable (costless) price offer, uninformative but acceptable

(costly) price offer, and uninformative and unacceptable (costless) price offer.

1.4.1 Equilibrium

This section provides the full characterization of equilibrium outcomes of the model. We

first focus on the simplest kind of equilibria, in which all agent types make a common

price offer which is acceptable. The next proposition shows that there exists a contin-

uum of such equilibria in this model. Let σ = −
∫ 1

0
UP (yP , θ)f(θ)dθ > 0 where yP =

argmaxy

∫ 1

0
UP (y, θ)f(θ)dθ. That is, −σ is the principal’s expected utility from her ex-ante

optimal action yP .

Proposition 1. For any p∗ ∈ [l(b)−σ, l(b)], the following strategies and belief form a perfect

Bayesian equilibrium.

i) For all θ ∈ [0, 1], the agent makes a price offer p∗ with probability 1.

ii) dP (p) =

 0 if p ≥ p∗,

1 otherwise.

iii) yP (p) =

 yP if p ≥ p∗,

0 otherwise.

iv) For any θ ∈ [0, 1] and any p ∈ R, yA(θ, p) = θ + b.

v) For any p < p∗, ρ(θ|p) =

 0 ∀θ ∈ (0, 1],

1 if θ = 0,
and for any p ≥ p∗, ρ(θ|p) = f(θ) ∀θ ∈ [0, 1].

Proof. See the appendix.

12



10

b

1

y

θ

45
accept

reject

p

( )l b

p∗

( )l b σ−

bθ +

Py

Figure 2: Equilibrium

13



Figure 2 illustrates the equilibria described in Proposition 1. The horizontal axis mea-

sures the state of the world θ. The vertical axis above zero stands for the action taken by

players in different states, whereas the vertical axis below zero stands for the price offers

made in different states. The dotted line in the upper quadrant represents the agent’s ac-

tion. It is clear that the equilibrium action should be θ + b, which is the ideal action for

the agent in each state. The solid line in the upper quadrant represents the principal’s ac-

tion whenever she has the authority. Since the equilibrium price offer is uninformative, the

principal’s action should be the same as her ex-ante optimal one, yP . The solid line in the

lower quadrant depicts the price offers made in different states. It is constant in θ because

otherwise the price offer conveys some information to the principal. Lastly, the figure shows

that the equilibrium price offer must be in-between l(b)− σ and l(b).

Observe that in the equilibrium with p∗ = l(b) demonstrated in Proposition 1 the agent

type 0 is indifferent between making a price offer p∗ and making any unacceptable price offer

p < p∗. Therefore, there exists an equilibrium where agent type 0 reveals itself by making

an unacceptable price offer, which results in the principal’s action 0, and all the other types

make a price offer l(b), which is accepted.

Proposition 2. The following strategies and belief form a perfect Bayesian equilibrium.

i) For all θ ∈ (0, 1], the agent makes a price offer l(b) with probability 1.

i) When making a price offer, the agent type θ = 0 randomizes over (−∞, l(b)] .

iii) dP (p) =

 0 if p ≥ l(b),

1 otherwise.

iv) yP (p) =

 yP if p ≥ l(b),

0 otherwise.

v) For any θ ∈ [0, 1] and any p ∈ R, yA(θ, p) = θ + b.

vi) For any p < l(b), ρ(θ|p) =

 0 ∀θ ∈ (0, 1],

1 if θ = 0,
and for any p ≥ l(b), ρ(θ|p) = f(θ)

∀θ ∈ [0, 1].

Proof. Since the proof is obvious, I skip it.

We say that an equilibrium price offer is non-degenerately informative if there is an-
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Figure 3: Nonexistence of equilibria with a non-degenerately informative offer

other informative price offer on the equilibrium path. In the equilibrium above, there is an

informative price offer but not non-degenerately informative price offer. In the remainder

of the paper, we simply say that an equilibrium is informative if and only if there exists a

non-degenerately informative price offer on the equilibrium path. Is there any equilibrium

with a non-degenerately informative price offer? It is interesting to notice that if all agent

types make unacceptable offers in equilibrium, then price offers play exactly the same role

as cheap talk messages so that outcome should be the same as one of the equilibria of CS

model.12 That is, unacceptable price offers could be informative non-degenerately. However,

not only is there no such equilibrium in this model but also an unacceptable price offer made

by a positive measure of agent types can never be part of an equilibrium.

Lemma 1. There is no equilibrium in which a positive measure of agent types makes an

unacceptable offer.

Proof. See the appendix.

Why does a positive measure of agent types not make an unacceptable offer in equi-

librium? Notice that an unacceptable price offer in our model plays exactly the same role

12In this case, the message space is R\Pα.
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as a costless message in CS model13 so that if there is an unacceptable price offer on the

equilibrium path then the set of agent types who make the offer should be an interval. As

a result, the unacceptable price offer could not convey precise information without noise to

the principal. However, as shown in Figure ??, some agent types in the interval strictly

prefer to take an action by themselves after obtaining decision-making authority rather than

allowing the principal to make a decision based on imprecise information. In this figure, the

solid curve depicts the agent’s expected payoff from making the unacceptable offer p that

induces the principal’s action yP (p), whereas the dotted line depicts the agent’s expected

payoff from deviating to the acceptable offer l(b). Notice that the principal accepts any price

offer greater than l(b) because accepting the offer always gives her nonnegative expected

payoff, while rejecting it could give her at most zero expected payoff. This implies that each

agent type in the interval should get at least −l(b) from making the unacceptable offer and

does not have an incentive to make an acceptable offer. This is impossible because in any

given interval, yP (p) is in the interior of this interval so that the agent types on the right of

yP (p) are strictly better off by deviating to making the acceptable offer l(b).

This result tells us that there remain only two possibilities: a price offer can be either an

informative and acceptable offer or an uninformative but acceptable offer. The next lemma

tells even more about the equilibrium price offer and allows us to eliminate the possibility

for having an informative price offer made by a positive measure of agent types.

Lemma 2. There is no equilibrium in which a positive measure of agent types makes an

informative price offer.

Proof. See the appendix.

Where does the nonexistence of equilibrium with a non-degenerately informative price

offer come from? In our model two different price offers on the equilibrium path cannot

be accepted at the same time, because otherwise the agent type who makes a higher price

offer has an incentive to make the lower offer. Thus, if an equilibrium is informative, there

13 In CS, every equilibrium should be an interval partitional, i.e. for every message on the equilibrium
path, the set of sender types who send the message is a convex interval. This implies that a cheap talk
message sent by the informed sender conveys imprecise information to the receiver in equilibrium.
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should be at least one unacceptable price offer on the equilibrium path, which leads to a

contradiction.

Lemma 1 and 2 result in the following proposition.

Proposition 3. All equilibria are outcome equivalent to equilibria demonstrated in Proposi-

tion 1 and 2.

Proof. See the appendix.

1.4.2 Ex-post Efficiency

In this section, we demonstrate ex-post efficiency of the equilibrium outcome in this model.

Although the model of informed agent and uninformed principal has been extensively studied

in the literature on communication (Crawford and Sobel [27]) and optimal delegation (Holm-

ström [50]), most of the schemes considered do not completely resolve ex-post inefficiency

caused by the tension between access to information and authority to make a decision. We

demonstrate ex-post inefficiency of these schemes in the following example and show that

our model leads to a Pareto efficient outcome.

Example: Suppose that F is uniform and utilities are quadratic. Let b = 1/5 and the

realized state of the world θ = 7/8. As you can see in Figure ??, if an action y is not in

[θ, θ + b] = [7/8, 43/40], then there exists another action y′ such that both parties strictly

prefer y′ to y. Suppose that parties communicate via cheap talk. In the most informative

equilibrium, only two actions y1 = 1
20

and y2 = 11
20

are induced.14 Since y1 < θ and y2 <

θ, both actions are inefficient ex-post. Alternatively, suppose that the principal optimally

proposes the set of admissible actions that the agent can take. In the optimal delegation,

the proposed set is [0, 1 − b] = [0, 4/5].15 As the result, the agent cannot take any action

y ∈ [7/8, 43/40].

14See the leading example of Crawford and Sobel [27].
15See Holmström [50][51], Melumad and Shibano [75], Alonso and Matouschek [3] and Kováč and Mylo-

vanov [56].
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Our focus is on whether an ex-post efficient action y ∈ [θ, θ + b] can be taken for any

realization of the state of the world θ in an equilibrium of our model. From the previous

analysis, we know that parties come to an agreement for (almost) all realization of the state

of the world so that the informed agent takes his ex-post ideal action θ + b. Therefore, a

socially efficient outcome is always attained in our model. To be more formal, define ex-post

efficiency as follows. An action is said to be efficient ex-post if and only if there is no other

feasible action that makes some individual better off without making other individuals worse

off after the true state of the world θ is publicly known.

Definition 2. An action y ∈ R is efficient ex-post at θ if there is no other action z ∈ R

such that

UP (z, θ) ≥ UP (y, θ) and UA(z, θ, b) ≥ UA(y, θ, b) (1.3)

with at least one strict inequality.

Now, we are ready to state the main result of this section. It is important to notice that

in any perfect Bayesian equilibrium of this model the informed agent makes a decision after

buying authority from the principal. The agent is able to use her private information fully

so that a socially desirable outcome is attained. The following proposition summarizes this

result.
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Proposition 4. In any perfect Bayesian equilibrium of the model an ex-post efficient action

is taken for all θ ∈ [0, 1].

Proof. Since an action y = (θ + b) is a unique maximizer of UA(y, θ, b), any other actions

make the agent worse off. Similarly, an action y = θ is a unique maximizer of UP (y, θ), any

other actions make the principal worse off. Notice that the action taken by the party in

control in any equilibrium is either θ or θ + b. This completes the proof.

One might be tempted to argue that the concept of ex-post efficiency should be defined

over the space of actions and transfers. However, in this paper, it is assumed that decision-

right is transferable and contractible but not the decision or action itself. The principal

can commit only on the ex-ante allocation of decision rights and corresponding monetary

transfers. Once the ex-ante allocation of decision rights is determined and monetary transfers

are made according to the agreement, the monetary transfers have no effect on the incentives

of a decision-maker at all and what action can be taken is only an informational issue.

Therefore, it is reasonable to discuss efficiency of actions separately from monetary transfers,

especially when actions are not contractible.

1.5 INFORMATIVE EQUILIBRIA

Several recent papers provide theoretical evidence showing that uncertainty could improve

the informativeness of communication (Blume, Board and Kawamura [18], Krishna and

Morgan [61], and Goltsman, Hörner, Pavlov and Squintani [38].) How then does uncertainty

affect the informativeness of equilibria in our model? Instead of introducing an exoge-

nous source of uncertainty, we consider the strategic uncertainty resulting from the players’

randomization by allowing the principal to use mixed strategies in her decision rule and

investigate the effect of the strategic uncertainty on the informativeness of equilibria. In

what follows, we first investigate some general properties of informative equilibria and show

that there exist both monotonic16 and non-monotonic equilibria with informative price of-

16The equilibrium action taken by the principal is a nondecreasing function of the state.
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fers. Next, we study the ex-post efficiency of these equilibria and see that there exists an

informative equilibrium that yields an outcome arbitrarily close to the ex-post efficient one.

Let dP : R → [0, 1] be the principal’s decision rule. Precisely, dP (·) specifies the rejection

probability for each price offer p ∈ R that the principal might receive. The first question

that arises is whether there is an informative equilibrium in this extended strategy space.

The following proposition tells us that there is no fully separating equilibrium, even though

we allow mixing in the principal’s decision rule. Intuitively, if the agent type θ makes an

informative price offer that fully reveals her private information, then the principal has a

strong incentive to take her optimal action θ by herself after rejecting the offer. Therefore,

it is profitable for the agent type θ − b to imitate the agent type θ.

Proposition 5. There is no fully separating equilibrium.

Proof. See the appendix.

The nonexistence of a fully separating equilibrium does not imply that there is no equi-

librium with informative price offers. There indeed exist equilibria with informative price

offers in this model. Before we start looking at some examples of informative equilibria in

the next section, let us explain why we suddenly have such equilibria once we remove the

restriction on the principal’s decision rule. Recall that two different acceptable price offers

cannot be made by agent types in equilibrium if we prohibit the principal from mixing her

strategies because otherwise, making the lower price offer is profitable for the agent types

who are making higher but still acceptable offers. This prevents us from having an equi-

librium with informative price offers. It turns out that two (or even more) price offers can

be accepted with positive probability in equilibrium of the extended model. To see details,

suppose that there are two (high and low) price offers that will be accepted by the princi-

pal with some positive probabilities. It is clear that all agent types get higher payoff from

making the low-price offer if it is accepted. However, some agent types might still prefer

to make the high-price offer because they infer that an action induced by the offer is much

more attractive to them in case of rejection that takes place with positive probability. We

will discuss more on this by looking at some examples of informative equilibria in the next

session.
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1.5.1 Properties and Examples

What do equilibria with informative price offers look like? Recall that, by Lemma 2, there is

no (non-degenerately) informative equilibrium when the principal uses pure strategies. This

implies that for equilibria to be informative it is necessary for the principal to use a mixed

strategy in her decision rule. Thus, on the equilibrium path, agent types make some offers

that the principal is indifferent between accepting and rejecting.

Lemma 3. In any (non-degenerately) informative equilibrium, agent types make price offers

that the principal is indifferent between accepting and rejecting.

To get a clear picture of the informative equilibria, we first focus on the monotonic equi-

librium in which the equilibrium action taken by the principal is an increasing function of the

state, which is often reported in the cheap talk literature. Let Θ(N) ≡ (Θ0(N), ..., ΘN(N))

denote a partition of [0, 1] with N steps and dividing points between steps θ0(N),...,θN(N),

where 0 = θ0(N) < θ1(N) < · · · < θN+1(N) = 1. Whenever it can be done without loss

of clarity in what follows, we shall write θ or θn instead of θ(N) or θn(N). Define, for all

θ, θ ∈ [0, 1] with θ ≤ θ,

y(θ, θ) =

 argmax
∫ θ

θ
UP (y, θ)f(θ) if θ < θ,

θ if θ = θ
(1.4)

Then in any monotonic informative equilibria the following indifference conditions are nec-

essary.

Proposition 6. In any N-step monotonic informative equilibria,

pn − l(b) =

∫ θn

θn−1

UP (y(θn−1, θn), θ) ρ(θ|pn)dθ, (ID − P )

UA (y(θn−1, θn), θn, b) dn−pn(1−dn) = UA (y(θn, θn+1), θn, b) dn+1−pn+1(1−dn+1), (ID−A)

and

UA (y(θn−1, θn), θn, b) dn − pn(1− dn) ≥ −l(b), ∀θ ∈ Θn,

for all n = 1, 2, ....N − 1.
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(ID−P ) is the indifference condition of the principal for equilibrium price offers and (ID−A)

is the indifference condition of the critical agent types. The third condition tells us that

equilibrium payoffs of agent types are at least −l(b) so that there are no agent types who

have incentives to deviate to off-the-equilibrium-path price offers. The following example

gives us one of the simplest two-step equilibrium. In this example, we take a uniform

distribution and quadratic utilities for simplicity.

Example 1 (Monotonic equilibrium). Consider the following strategy profile.

• The agent types in [0, θ1] makes a price offer p1 = b2 − θ2
1

12
.

• The agent types in (θ1, 1] makes a price offer p2 = b2 − (1−θ1)2

12
.

• The principal rejects the price offers p1 with probability dP (p1) ∈ (0, 1) but accepts p2 with

probability 1.

• The principal accepts any price offer p ≥ b2 with probability 1 but rejects any p < b2 which

is different from p1 and p2 with probability 1.

• The principal takes an action y = 0 whenever she rejects a price offer p < b2 which is

different from p1 or p2. The principal takes an action y = 1
2

whenever she rejects a price

offer p ≥ b2.

• The principal takes an action y1 = θ1

2
if she rejects p1 and takes an action y2 = 1+θ1

2
if she

rejects p2.

• The agent type θ takes an action θ + b whenever she has decision-making authority.

It is interesting to see that, for any b > 0, we can find proper beliefs and dP (p1) ∈

(0, 1) that form a perfect Bayesian equilibrium together with the strategy profile specified

above. The strategy profile satisfies all three necessary conditions in Proposition 6. Figure

5 illustrates this equilibrium. All missing calculations can be found in the appendix.

In CS model, there exist indifference conditions similar to (ID − A) for critical agent

types which are both necessary and sufficient. Unlike CS, however, the above conditions are

not sufficient for equilibria in our model because the agent’s interim utility function does

not satisfy the single-crossing property, the sorting condition crucially used by CS to get a

full characterization of equilibria. This may give us another type of equilibria called non-

monotonic equilibria in which equilibrium action taken by the principal is not an increasing
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function of the state. In a setting with a multi-stage communication, Krishna and Morgan

[61] report the existence of such non-monotonic equilibria. Similarly, there are non-monotonic

equilibria in our model. Again, for simplicity, we take a uniform distribution and quadratic

utilities in the following example.

Example 2 (Non-monotonic equilibrium). Consider the following strategy profile as a simple

candidate for the (three-step) non-monotonic informative equilibrium. Specifically, suppose

that b = 1, θ1 = 49
100

, and θ2 = 99
100

.

• The agent types in [0, θ1] ∪ [θ2, 1] make a price offer p1 that the principal is indifferent

between accepting and rejecting.

• The agent types in (θ1, θ2) make a price offer p2 that the principal is indifferent between

accepting and rejecting.

• The principal rejects the price offers p1 and p2 with probability dP (p1) and dP (p2) respec-

tively.

• The principal accepts any price offer p ≥ b2 with probability 1 but rejects any p < b2 which
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is different from p1 and p2 with probability 1.

• The principal takes an action y = 0 whenever she rejects a price offer p < b2 which is

different from p1 or p2. The principal takes an action y = 1
2

whenever she rejects a price

offer p ≥ b2.

• The principal takes an action y1 =
1+θ2

1−θ2
2

2(1+θ1−θ2)
if she rejects p1 and takes an action y2 = θ1+θ2

2

if she rejects p2.

• The agent type θ takes an action θ + b whenever she has decision-making authority.

Figure 6 illustrates this equilibrium. Again, all missing calculations can be found in the

appendix.

1.5.2 No Upper Bound in N : Uniform Quadratic Example

What is the full characterization of the equilibrium with informative price offers in this

model? While we cannot offer a complete answer, this section demonstrates the existence

of the infinite sequence of informative equilibria with N partition elements that converges

to an ex-post efficient equilibrium as N tends to infinity, by focusing on uniform prior and

quadratic utilities.17

Let us construct a monotonic equilibrium with N interval partitions. Notice that a price

offer in equilibrium depends solely on the conditional variance which is determined by the

length of the interval in the case of a uniform distribution due to the indifference condition

(ID − P ). Thus, no two interval partitions can have the same length. Finally, we have the

following necessary conditions for monotonic informative equilibria:

1) The lengths of intervals are different from each other.

2) The agent types in each interval make a price offer which the principal is indifferent

between accepting and rejecting.

3) The principal randomizes in her decision rule for any price offer on the equilibrium path.

4) The critical agent type θn is indifferent between making price offer pn and pn+1, for

n = 1, 2, ...N − 1.

Figure 7 illustrates this monotonic informative equilibrium in which the lengths of inter-

17For simplicity we have this assumptions, but the result is clearly not driven by these assumptions.
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vals are strictly decreasing in n for N = 5. Let x and δ denote the length of the first interval

and the difference between the lengths of any two adjacent intervals, respectively. Then by

the principal’s indifference condition, the price offer pn made by the agent types in the nth

interval is strictly increasing in n. Notice that any pn is less than b2. By sequential ratio-

nality, an agent type takes an action θ + b whenever she has the authority. If the principal

rejects an offer pn, she then takes the action which is a mid-point of the nth interval. The

principal randomizes between accepting and rejecting for any pn. The following proposition

demonstrates the existence of such informative equilibria for any positive integer N and any

positive b.

Proposition 7. Suppose that F is uniform and utilities are quadratic. For any b > 0 and

any positive integer N , there exist δ ∈ (0, 1) and x ∈ (0, 1) such that the following strategy

profile forms a perfect Bayesian equilibrium;

i) For all θ ∈ [θn−1, θn] the agent makes a price offer pn with probability 1, for all n =

1, ......, N .

ii) dP (p) =


0 if p ≥ b2,

d∗ = δ
4(3b+δ)

if p = pn for all n = 1, ...., N,

1 if p < b2 and p 6= pn.

iii) yP (p) =


1
2

if p ≥ b2,

yn if p = pn for all n = 1, ...., N,

0 if p < b2 and p 6= pn.

iv) For any θ ∈ [0, 1] and any p ∈ R, yA(θ, p) = θ + b.

v) ρ(θ|p) =

 0 if θ ∈ (0, 1],

1 if θ = 0.
for any p < b2 and p 6= pn, and

ρ(θ|pn) =

 1
θn−θn−1

if θ ∈ (θn−1, θn],

0 otherwise.
for all n = 1, ...., N , and ρ(θ|p) = 1 for any p ≥ b2,

where

(a) θn = nx− n(n−1)δ
2

for all n = 1, ......, N ,

(b) θ0 = 0 and θN = 1

(c) pn = b2 − (x−(n−1)δ)2

12
for all n = 1, ......, N ,

(d) yn = (2n−1)x
2

− (n−1)2δ
2

for all n = 1, ......, N .
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Proof. See the appendix.

It is important to note that for any b > 0 there is no upper bound for N in this propo-

sition. This means that meaningful information can be transmitted without limit, even

though the agent’s bias is so great that communication would not be possible via cheap

talk. Surprisingly, this remains true even if the divergence of interests is sufficiently large

that no meaningful communication occurs in an equilibrium that allows parties to use any

communication protocol including the neutral trustworthy mediator studied by Goltsman,

Hörner, Pavlov and Squintani [38]. Our model, however, allows the parties to use monetary

transfers excluded in Goltsman, Hörner, Pavlov and Squintani [38]. Krishna and Morgan

[60] show that if parties can use monetary transfers, then full revelation of agent’s private

information can be induced by some contract, no matter how largely the parties’ preferences

diverge. Therefore, our result is consistent with that of contracting with monetary transfers.

Observe that these equilibria do not need to yield an ex-post efficient outcome. Any

equilibrium with informative price offers, including the equilibria demonstrated in Proposi-

tion 7, contains the principal’s mixing in her decision rule. Since there is no fully separating

equilibrium, an action taken by the principal after the rejection of any equilibrium price offer

is based on imprecise information. As a result, it has to yield an ex-post inefficient outcome

in some states. However, it is always possible to achieve an outcome arbitrarily close to the

ex-post efficient one in some equilibria. By construction of the equilibrium in Proposition 7,

the length of each interval decreases as the number of partitions, N , increases. This implies

that increasing N gives more precise information to the principal and allows her to choose

an action very close to her (ex-post) optimal one, even though ex-post optimality is not

guaranteed.

1.6 WELFARE

In this section, we assume that utilities are quadratic in order to get not only more precise

welfare analysis of our model but also clear welfare comparisons to other models that studied
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quadratic utility functions. That is,

UP (y, θ) = −(y − θ)2 and UA(y, θ, b) = −(y − θ − b)2. (1.5)

1.6.1 No Ex-Ante Pareto Ranking

Facing multiplicity of perfect Bayesian equilibria, what criterion can we use to get a unique

prediction of the game? CS use ex-ante Pareto ranking to select the most informative

equilibrium. We might also use the same argument to select one equilibrium if there is such

a Pareto ranking among equilibria in this model. However, there is no Pareto ranking in our

model.

Let p(θ) be an equilibrium price offer made by the agent type θ. Define the ex-ante

expected payoff of the principal as

EUP =

∫ 1

0

{−(yP (p(θ))− θ)2dP (p(θ)) + (1− dP (p(θ)))(p(θ)− b2)}f(θ)dθ, (1.6)

and the ex-ante expected payoff of the agent as

EUA =

∫ 1

0

{−(yP (p(θ))− θ − b)2dP (p(θ))− (1− dP (p(θ)))p(θ)}f(θ)dθ

=

∫ 1

0

{−(yP (p(θ))− θ)2dP (p(θ))− (1− dP (p(θ)))p(θ)}f(θ)dθ − b2

∫ 1

0

d(p(θ))f(θ)dθ

= EUP − 2

∫ 1

0

(1− dP (p(θ)))p(θ)f(θ)dθ + b2

∫ 1

0

(1− 2dP (p(θ)))f(θ)dθ. (1.7)

While equilibrium actions taken by the principal and the bias between parties are the

only determinant of parties’ expected payoffs in CS, price offers and corresponding rejection

probabilities play an additional important role to determine parties’ payoffs in (1.7) so that

we cannot have any Pareto ranking between equilibria in this model.

By (ID − P ), the following holds in any informative equilibrium:∫ 1

0

−(yP (p(θ))− θ)2dP (p(θ))f(θ)dθ =

∫ 1

0

(p(θ)− b2)dP (p(θ))f(θ)dθ. (1.8)

After substituting this into (1.6) and (1.7), we have

EUP =

∫ 1

0

p(θ)f(θ)dθ − b2 and EUA = −
∫ 1

0

{(1− 2dP (p(θ)))p(θ) + 2dP (p(θ))b2}f(θ)dθ.

(1.9)

Notice that by (ID−P ), p(θ) ∈ (b2 − σ, b2) for all θ ∈ [0, 1]. This gives the following result.
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Proposition 8. Suppose that utility functions satisfy (1.5). In any informative equilibria,

EUP ∈ (−σ, 0) and EUA ∈ (−b2, σ − b2).

Proof. See the appendix.

This result tells us that although there is no general ex-ante Pareto ranking among

equilibria, both uninformative and informative equilibria should be in between two extreme

pure-strategy equilibria- E1 (the perfect Bayesian equilibrium with p∗ = b2 − σ) and E2

(the perfect Bayesian equilibrium with p∗ = b2) in terms of ex-ante payoffs. This means that

E1(E2) is the best(worst) equilibrium for the agent and at the same time the worst(best)

equilibrium for the principal, in terms of the ex-ante payoffs. We use this result to get a

clear welfare comparison between our model and other models studied in the literature on

Crawford and Sobel [27] and Holmström [50][51].

1.6.2 Benefit from Trading Decision-making Authority

In this section, we demonstrate the benefit from trade of decision-making authority by com-

paring the equilibrium outcomes of our model to those of several dispute resolution processes

studied in the same framework: communication (Crawford and Sobel [27]), optimal media-

tion (Goltsman, Hörner, Pavlov, and Squintani [38]), optimal delegation (Holmström [50][51],

Melumad and Shibano [75], Alonso and Matouschek [3] and Kováč and Mylovanov [56]) and

optimal compensation contract (Krishna and Morgan [60]). To get more clear comparative

results we focus on the uniform distribution in this section. It will be shown that there exist

perfect Bayesian equilibria of this model Pareto superior to the equilibrium outcomes of all

of these schemes especially when the parties’ preferences are misaligned to a substantially

large degree.

CS consider a situation in which the principal has no commitment power at all and

sends cheap-talk messages to the agent. It is shown that all equilibria in their model are

interval partitional so that there is only a finite number of actions chosen in equilibrium,

each associated with an interval of states. With uniform quadratic assumption, they show
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that the number of distinct equilibrium outcome, denoted by NCS(b), is

NCS(b) =
〈
− 1

2
+

1

2

√
1 +

2

b

〉
(1.10)

where 〈z〉 denotes the smallest integer greater than or equal to z. Moreover, there is a

Pareto ranking among NCS(b) equilibria so that, for any b > 0, the number of elements of

the partition associated with the Pareto dominant equilibrium, which we will call the best

equilibrium, is NCS(b). The expected payoff of the principal in this best equilibrium is

EUP
CS(b) = − 1

12NCS(b)2
− b2(NCS(b)2 − 1)

3
(1.11)

while the ex-ante expected payoff for the informed agent is

EUA
CS(b) = EUP

CS(b)− b2. (1.12)

Recently, Goltsman, Hörner, Pavlov, and Squintani [38] allow the parties to use any

communication protocol, including the ones that call for a neutral trustworthy mediator.

According to the optimal mediation rule, the parties’ expected payoffs are

EUP
mediation(b) = −b(1− b)

3
and EUA

mediation(b) = EUP
mediation(b)− b2. (1.13)

Holmström [50][51], Melumad and Shibano [75], Alonso and Matouschek [3] and Kováč

and Mylovanov [56] study the principal’s optimal choice of the set of admissible actions that

the agent can take and show that under the optimal delegation scheme, the principal restricts

project choices of the agent to be from 0 up to a maximum of 1− b. Under this scheme, the

parties’ expected payoffs are

EUP
delegation(b) = −b2(3− 4b)

3
and EUA

delegation(b) = −8b3

3
. (1.14)

In these papers, the principal also has imperfect commitment power so that she can only

commit on the ex-ante allocation of decision rights. Moreover, the monetary transfer is

impossible.

Krishna and Morgan [60] consider the situation in which the principal can commit to

pay the agent for his advice but retains decision-making authority. They fully characterize

the optimal compensation contract: the optimal compensation contract involves separation
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Figure 8: (a) Agent’s expected payoff (b) Principal’s expected payoff

in low states and a finite number of pooling intervals in high state and the principal never

pays for imprecise information. In this optimal compensation contract, the expected payoffs

for the principal and the agent are

EUP
contract(b) = −

∫ a0

0

(2b(a0 − θ) + t0)dθ − 1

12

K∑
i=1

(
1

K
− a0

K
− 2b(K − 2i + 1)

)3

(1.15)

and

EUA
contract(b) = EUP

contract(b)− b2 + 2

∫ a0

0

(2b(a0 − θ) + t0)dθ (1.16)

where

K =
〈
− 1

2
+

1

2

√
1 +

3

2b

〉
,

a0 =
3

4
− 1

4

√
4 +

1

3
(3− 8bK(K − 1))(8bK(K + 1)− 3) and

t0 =
(1− a0 − 2K(K − 1)b)(2bK(K + 1)− (1− a0))

4K2
.

In our model, the principal has stronger commitment power so that she can commit

on the allocation of decision rights that corresponds to the agent’s monetary transfers. In
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equilibrium, the agent takes an action θ+b after paying the price p∗ ∈ [b2− 1
12

, b2] of authority

to the principal.18 As a result, the equilibrium payoffs are

EUA(p∗, b) =

∫ 1

0

− ((θ + b)− θ − b)2 f(θ)dθ − p∗ = −p∗ (1.17)

EUP (p∗, b) =

∫ 1

0

− ((θ + b)− θ)2 f(θ)dθ + p∗ = p∗ − b2 (1.18)

for the agent and the principal, respectively.

The (ex-ante) payoff comparison between equilibrium outcomes of these schemes and

equilibria of our model is shown in Figure 8. E1 and E2 represent the perfect Bayesian

equilibria with p∗ = b2− 1
12

and p∗ = b2, respectively. For any b > 0 and any p∗ ∈ [b2− 1
12

, b2],

the informed agent’s expected payoff in our model is strictly greater then the equilibrium

payoff of CS and optimal mediation. Although optimal delegation yields higher expected

payoff than some equilibrium of this model for the agent for small b, there always exists a

continuum of equilibria that gives strictly higher payoff to the agent than all other schemes

compared. Furthermore, for any b > 0, the set of equilibria that give the principal strictly

higher payoff than the equilibrium of any other schemes is nonempty. It is interesting

to note that this set becomes larger as b increases. When b > 1
2
, all equilibria in our

model are Pareto superior to all other schemes considered. This result is summarized in

the following proposition. Detailed proofs are omitted since Figure 8 demonstrates a clear

welfare comparison.

Proposition 9. Suppose that F is uniform and utilities are quadratic. For any b > 0,

there exists a perfect Bayesian equilibrium in this model which is ex-ante Pareto superior

to equilibria of several other dispute resolution schemes such as communication, optimal

mediation, optimal delegation and optimal contract. Moreover, for sufficiently large b, all

equilibria in this model are ex-ante Pareto superior to equilibria of these schemes.

This welfare result does not imply that bargaining mechanism is superior to all other

schemes considered in the literature. The higher ex-ante utilities comes from different as-

sumptions on the principal’s commitment power. Unlike the most papers in the literature,

18Note that 1
12 is a variance of the random variable distributed uniformly over [0, 1].
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this model assumes not only the principal can commit on the ex-ante allocation of decision

right but also monetary transfer is available. The welfare comparison shows the benefit of

using monetary transfer to trade decision rights in our environment.

1.7 REFINEMENT

From the previous sections, we know that there is a continuum of pure strategy equilibria,

each of which has a different price offer on the equilibrium path and (at least) infinitely many

mixed strategy equilibria. Therefore, it seems necessary to reduce the set of equilibrium out-

comes to understand the model completely. In this section, we apply a stronger equilibrium

concept called perfect sequential equilibrium developed by Grossman and Perry [43] to refine

equilibria. We will first show that there is a unique pure-strategy perfect sequential equilib-

rium for any b > 0 in our model. Next, we will extensively apply the refinement to the mixed

strategy equilibria and show that there is no mixed strategy perfect sequential equilibrium

when b < l−1(σ).

Where does the multiplicity of equilibria come from? In any equilibrium of this game,

there exists a continuum of out-of-equilibrium path price offers. If the price offer is one

to which the equilibrium assigns positive probability, a posterior distribution of an agent’s

type can be computed using Bayes’ rule. However, Bayes’ rule does not determine the

posterior distribution over type after observing the price offer to which the equilibrium assigns

probability 0. Notice that the principal’s choice of action after rejection of out-of-equilibrium

price offer depends solely on the principal’s posterior belief that we are completely free to

choose. Therefore, without additional restriction on beliefs off the equilibrium path, any

action can be induced as a best response to some beliefs off the equilibrium path and this

leads to multiplicity of perfect Bayesian equilibrium.

To see this more precisely, compare the following extreme perfect Bayesian equilibria

from proposition 1.

E1 : the perfect Bayesian equilibrium with p∗ = l(b)− σ,

E2 : the perfect Bayesian equilibrium with p∗ = l(b)
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Notice that the price offer in E1 is the least costly and most attractive to the agent. Thus, it

seems reasonable that the agent makes this price offer to minimize the loss from the payment.

This is also true in any equilibrium including E2. However, this could not happen in E2

(and also any other equilibria except E1 ) because the price offer l(b)− σ would be rejected

in the equilibrium. Interestingly, the reason why the principal rejects the offer is that she

certainly believes the state of the world is θ = 0 if she accidently observes the offer. This

belief gives the principal higher expected payoff from the rejection than from the acceptance,

even though the price offer is the least costly. However, there is no reason why the principal

has such an extreme belief off the equilibrium path. Thus, E2, as well as any other equilibria

except E1, might not be supported by some different belief.

How could we eliminate some perfect Bayesian equilibria which contain unreasonable

behaviors? In other words, how can we find a reasonable restriction on the belief off the

equilibrium path? We adopt a stronger refinement called perfect sequential equilibria in-

troduced by Grossman and Perry [43]. This refinement is closely related to the concept

of neologism-proof equilibria developed by Farrell [31].19 The refinement involves a con-

sistent interpretation of a deviation from a perfect Bayesian equilibrium.20 Formally, an

interpretation of a deviation is a hypothesized (nonempty) subset of the type space by the

principal who observes the deviation that members of the specified subset are responsible for

the deviation. For a given interpretation, the principal’s posterior belief is her prior belief

renormalized over the interpretation. Then, sequential rationality determines whether the

principal accepts or rejects the deviation. Each agent type θ in [0, 1] can compute its payoff

from offering the deviation and can compare this with its payoff in the perfect Bayesian

equilibrium. A consistent interpretation is a fixed point of the map described above.

Definition 3 (Gertner, Gibbons and Scharfstein). An interpretation of a deviation is

consistent if the set of agent types who strictly prefer its payoff from offering the deviation

to its equilibrium payoff is equivalent to the interpretation.

19However, neologism-proof differs from perfect sequential equilibria because it imposes stronger require-
ment to an equilibrium. Precisely, an equilibrium is neologism-proof only if it is supported by all, rather
than one, credible updating rules for interpreting deviations off the equilibrium path.

20A consistent interpretation of a deviation is used first by Gertner et al [37]. It is equivalent to the
credibility of neologism in Farrell [31] and consistent belief derived by credible updating rule in Grossman
and Perry [43].
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It seems reasonable to take the associated posterior belief for the principal if a deviation

has a consistent interpretation. By construction, this belief destroys the equilibrium by mo-

tivating agent types in the interpretation to deviate. This argument gives us the following

additional restriction on the perfect Bayesian equilibrium.

(BA5) There is no deviation with a consistent interpretation.

An equilibrium that satisfies condition (BA1)∼(BA5) is called as a perfect sequential equi-

librium.

Let us go back to the previous comparison to see if there is a perfect sequential equi-

librium. Does the deviation p̂ = p∗ − ε > l(b) − σ (with arbitrarily small ε > 0) have a

consistent interpretation in equilibrium E2? Observe that this deviation might be beneficial

for all agent types in [0, 1] if they believe that the deviation is acceptable. So, assume that

the principal who observes the deviation interprets the deviation as an offer from all agent

types in [0, 1]. The principal’s posterior belief is the same as her prior so that her optimal

action is µ once the offer is rejected. Then the principal expects to get −σ from rejecting

the offer. However, accepting the offer gives the principal p̂ − l(b) > −σ so that it is op-

timal for the principal to accept the offer. Under the deviation being accepted, all agent

types become strictly better off by deviating to the offer. As the result, the deviation p̂ in

equilibrium E2 has a consistent interpretation [0, 1]. Notice that this is true for any perfect

Bayesian equilibria except E1. Therefore, any perfect Bayesian equilibrium with the price

offer p∗ ∈ (l(b)− σ, l(b)] does not satisfy the condition (BA5). It remains to show that the

set of perfect sequential equilibria is nonempty.21 The following proposition shows that the

perfect Bayesian equilibrium with the price offer p∗ = l(b)− σ demonstrated in proposition

1 is indeed a perfect sequential equilibrium.

Proposition 10. There is a unique pure-strategy perfect sequential equilibrium in this model.

In the perfect sequential equilibrium, all agent types make a common price offer l(b)−σ and

the principal accepts the offer.

21It is possible that the set of perfect sequential equilibria is empty. See Grossman and Perry [43].
Neologism-proof equilibria are also suffering from the same problem. See Farrell [31].
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Proof. See the appendix.

Remark: The above result points to an interesting relationship between the equilibrium

price offer and the parameter b, which measures the divergence of preferences. Notice that

if b > l−1(σ), then the equilibrium price offer is positive. (See Figure 9.) This means

that the agent pays some amount of money to the principal for the authority. In reality,

such payment is often called a license fee. Intuitively, when b is large, using the agent’s

private information by means of selling authority becomes less valuable or sometimes even

harmful for the principal because it allows the agent to choose her optimal action, which is

distant from the principal’s optimal one. Thus, the agent has to give the principal monetary

compensation in order to get authority. This explains the positive price offer when b is

large. When b < l−1(σ), however, the equilibrium price offer is negative. This means that

the principal pays the agent, as we frequently observe in interfirm relationships. Examples

include consulting fees in projects conducted through the outside consultation by other

firms. Intuitively, small b increases the principal’s relative value of information against the

authority because the agent’s private information allows her to choose an action similar

to the principal’s optimal action. Therefore, the principal is willing to pay some amount

of money to the informed agent for giving her the authority to make a decision that fully
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reflects the agent’s private information.

We can apply the same logic to refine outcomes of informative perfect Bayesian equilibria.

Take an arbitrary informative equilibrium of the model and consider the deviation p̂ =

l(b)− σ. Notice that an agent type’s interim payoff is a convex combination of the price he

would pay and some negative utility driven by some action taken by the principal. Since the

price offer made by the principal in any equilibrium should be less than l(b)− σ, any agent

type in [0, 1] prefers to make the price offer p̂ if p̂ > 0. Together with the fact that p̂ is one

of the acceptable common price offer of uninformative equilibria, this results in the following

proposition.

Proposition 11. There is no informative perfect sequential equilibrium if b < l−1(σ).

Proof. See the appendix.

1.8 STATE-DEPENDENT BIASES

In this section, we investigate the robustness of the existence of the equilibrium in which

an ex-post efficient action is taken for any realization of the state under state-dependent

biases: we find the necessary and sufficient condition for such equilibria to exist. The state-

dependent biases are studied by several papers in the literature, for example, Alonso and

Matouschek [3], Melumad and Shibano [75] and Gordon [39].

Let b(θ) be the state-dependent bias, a continuous function from type space to real num-

ber. Since the type space is compact and the function is continuous, b(θ) has its maximum

and minimum. Recall that if there exists any ex-post efficient equilibrium then it should be

pooling equilibria. This allows us to start with the following strategy of the agent: all agent

types make a common price offer p∗. Since the equilibrium has to be efficient ex-post, the

principal should accept the price offer with probability 1. This gives the following necessary

condition:

−σ ≤ p∗ −
∫ 1

0

l(|b(θ)|) · f(θ)dθ = p∗ − b, (1.19)

where b =
∫ 1

0
l(|b(θ)|) · f(θ)dθ.
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Consider the principal’s strategy as conservative as possible that includes the worst action

for agent types who deviate from the equilibrium behavior: the principal accepts any price

offer p ≥ p∗ and rejects any price offer p < p∗. After rejecting p < p∗, she takes an action y∗

where

y∗ = arg min
y∈[0,1]

(
max
θ∈[0,1]

UA(y, θ, b(θ))

)
. (1.20)

Notice that such a y∗ exists since the set of state is compact and utilities are continuous.

Under the principal’s strategy specified above, the following is sufficient for any agent type

in [0, 1] not to have an incentive to deviate to any price offer p < p∗:

min
y∈[0,1]

(
max
θ∈[0,1]

UA(y, θ, b(θ))

)
≤ −p∗. (1.21)

An ex-post efficient equilibrium exists if and only if there exists p∗ satisfying (1.19) and

(1.21).

Proposition 12. There exists an equilibrium in which an ex-post efficient action is taken

for any realization of the state if and only if

min
y∈[0,1]

(
max
θ∈[0,1]

UA(y, θ, b(θ))

)
≤ σ − b. (1.22)

Observe that the left-hand side of equation (1.22) is at most 0. This means that if b is

small enough then there always exists an equilibrium in which an ex-post efficient action is

taken for any realization of the state.

1.9 CONCLUSION

This paper considers bargaining over the authority to make a decision between an unin-

formed principal and a privately informed but self-interested agent. In spite of private

information, bargaining between parties results in ex-post efficient outcomes. This explains

why we frequently observe delegation in both interfirm and intrafirm relationships.

Meaningful information can always be transmitted in equilibrium, however, if we allow

mixing in the principal’s decision rule. Although equilibria with informative price offers may
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not yield ex-post efficient outcomes, there exists an informative equilibrium that yields an

outcome arbitrarily close to the ex-post efficient one.

Some extensions of this model might be interesting. We may investigate bargaining mod-

els with different procedures such as, multi-stage bargaining with alternative offers. More-

over, it seems natural that bargainers can communicate through cheap-talk in bargaining

procedures. So, it might be worthwhile to consider bargaining either before or after com-

munication. More general contracting offers by informed agents in the same environment is

worth investigating. We leave them for future research.
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2.0 COMMUNICATION IN BARGAINING OVER DECISION RIGHTS

2.1 INTRODUCTION

In many economic situations a party, such as a government or firm (principal), initially has

full authority to make a decision but lacks information about the task or project at hand.

There is often another, better-informed party (agent), but its interest may be so different

from that of the principal that it may not be willing to share useful information with the

uninformed principal.1 This creates an incentive for the principal to delegate his or her

decision-rights to the agent in order to make full use of the agent’s private information.

When the principal delegates decision-making authority to the agent, it may be beneficial

for the principal to make some restriction on the set from which the agent can choose an

action. The principal’s optimal choice of the restricted set of actions is extensively studied

in the literature of optimal delegation (Holmström [?, ?], Goltsman, Hörner, Pavlov, and

Squintani [38], Alonso and Matouschek [3], Kováč and Mylovanov [56] and Melumad and

Shibano [75]).

It is remarkable that most of papers in the delegation literature focus on settings without

monetary transfers.2 Although there are many settings in which the use of monetary trans-

fers is limited or ruled out, sometimes it is more natural to assume that nothing prevents

parties from using financial incentives. In practice, the principal can and do use contracts or

bargaining mechanisms that include financial incentives in order to transfer decision-rights.3

1See Crawford and Sobel [27]. For more general communication mechanisms, see Goltsman, Hörner,
Pavlov, and Squintani [38].

2There are few exceptions in the literature on optimal delegation. See, for example, Krähmer [57].
Recently, Ambrus and Egorov [5] investigate the effect of money burning on the optimal delegation structure.

3In the framework of incomplete contracts (Grossman and Hart [41] and Hart and Moore [46]), Baker,
Gibbons and Murphy [10] model the allocation of decision-rights via contracts. They assume that decisions
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For example:

• Workers and managements typically negotiate the right and responsibility to choose how

workers spend their time in workplace or how workers participate in the firm’s man-

agemental decision-making process. There is a strong empirical evidence that shows a

positive relation between degree of delegation and wage levels, controlling for a variety

of worker and firm characteristics (Caroli and Van Reenen [19], Black, Lynch and Kriv-

elyova [17], Bauer and Brender [12]). Managements rarely have good information about

the ease with which workers could increase their personal productivity. In some settings,

workers may also have superior information about changes in workplace organization,

job descriptions, or work flows that would increase firm productivity. Managements also

may not have very good information about worker preferences, such as the trade-offs

workers would be willing to make between such matters as safety, work rates, wages, job

security, and the like (Bainbridge [9]).

• When launching into a new business partnership, auto manufacturers and their dealers

negotiate the right to determine the size and qualification of the sales force, or the right

to set prices. Auto manufacturers may not have very good information about consumer

preferences so that they get some difficulties to determine price, advertising strategy

and so on. Arruñada, Garicano, and Vasquez [7] empirically analyze the allocation of

rights and monetary incentives in automobile franchise contracts. Similarly, when an

international manufacturer enters a particular national market, it typically lacks rele-

vant information about local market conditions and has difficulties making decisions on

pricing, marketing, advertising, distribution and so on. As a result, it sells an exclusive

distributorship to a domestic company who is better-informed but lacks authority to

make such decisions. If a license agreement is reached through bargaining, the domes-

tic company pays license fees in return for the exclusive right to make decisions about

pricing, marketing, advertising, distribution, and so on in the domestic market.4

are not contractible ex post, the parties cannot negotiate over the decision after the state is revealed. Instead,
the party in control simply takes her self-interested decision.

4For example, I.B.M., the world’s largest computer maker in the 1990’s, agreed to allow Mitsubishi to
sell an I.B.M. mainframe computer under its own name in Japan in April, 1991. See Andrew Pollack,
“IBM Model to Be Sold By Mitsubishi,” The New York Times (April 29, 1991), 17. More recently, tobacco
industry leader Philip Morris International announced an agreement with Chinese National Tobacco under
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• It is typical that venture capitalists face substantial uncertainty when financing new ven-

tures. (Kaplan and Strömberg [54] and Dessein [29]). Due to this uncertainty, biotech-

nology companies often sell its patent or legal rights to manufacture the final product

to pharmaceutical firms who are better-informed through a license and development

agreements.5

All these examples share the following commonalities: (i) there is a principal who has to

make a decision but lacks decision-relevant information or knowledge; (ii) there is another

party who is better-informed or more-experienced but it has its own agenda; (iii) these

two parties negotiate the allocation of decision-rights by using various monetary incentives

schemes; (iv) the final decision made by the party in control determines both parties’ welfare.

In order to capture this situation, we follow the framework of Crawford and Sobel [27] and

Holmström [?, ?]: there are two parties, uninformed principal (P) and informed but self-

interested agent (A), with one dimensional decision-making that affects welfare of both under

one dimensional uncertainty.

The novel feature of this model is as follows: we investigate reallocation of decision-rights

in settings with monetary transfers. In particular, we consider an uninformed principal’s

optimal choice of a price offer for decision-rights when an informed agent decides either to

accept or to reject the offer. If the price offer is accepted then the agent pays the principal the

price for decision-rights and makes a decision. Otherwise, the principal retains decision-rights

without making any monetary transfers. We call this game bargaining over decision-rights.6

Our main finding is as follows: it is optimal for the uninformed principal to use the price

offer as a device for screening some agent types out. In equilibrium, the principal makes

a price offer that is accepted by some agent types but not by all agent types. It means

which Chinese National Tobacco will manufacture Marlboro cigarettes for marketing in China. See Nicholas
Zamiska and Juliet Ye, “Chinese Cigarettes to Go Global” The Wall Street Journal, (January 30, 2008) B4.

5For instance, Animas Corporation, an insulin infusion pump manufacturing company, set up a li-
cense and development agreements with the Swiss R&D company, Debiotech, for intellectual property re-
lated to next-generation insulin pumps and micro-needles. In return for the exclusive worldwide license
to make, use, and sell products utilizing the intellectual property portfolio that includes over 70 issued
patents, Animas paid $12 million in cash and issued 400,000 restricted shares of Animas common stock.
See Rick Baron, “Animas acquires technology for disposable insulin micro-pumps and micro-neddles,”
http://www.bioalps.org/Bioalps/en/Internet/Documents/1996.pdf. Also see Lerner and Merges [64] and
Higgins [47] for some empirical evidences.

6A companion model of bargaining is considered by Lim [65] by focusing on the situation where the
informed agent has bargaining power so that he makes a take-it-or-leave-it price offer.
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that the principal sometimes retains decision-rights while lacking precise information. As a

result, actions taken by the principal without precise information may be inefficient ex-post

for some realization of the state. That is, sometimes there exists an action that makes the

principal better off without making the agent worse off or vice versa, once the true state of

the world becomes public.

This result seems to be contrary to Coase [22] who asserts that if the market outcome

is inefficient and there are no transaction costs, then the parties concerned will negotiate

their way to efficiency. The main obstacle to the efficient bargaining seems to be bargaining

costs due to incomplete or asymmetric information. Farrell [30] shows that in the presence of

private or incomplete information, voluntary negotiation could not lead to the first-best out-

come that maximizes joint surplus. The important issue is how to interpret “no transaction

costs” in the presence of private information. In the basic model, we assume that bargaining

is tacit in the sense that parties can communicate only by making a price offer that directly

affects their payoffs. As pointed out by Crawford [26], real bargaining, by contrast, is usually

explicit, in that parties can furthermore communicate by sending non-binding messages with

no direct effects on their payoffs. Thus, it is natural to interpret the absence of transaction

costs in bargaining under asymmetric information as the absence of communication costs:

people freely get together and communicate with each other without any costs. Therefore, it

is impetuous to conclude that Coase’s assertion is unwarranted in our environment without

investigating the impact of communication into the tacit bargaining carefully.

There are several theoretical evidences showing that such cheap talk messages play an

important role in coordinating bargainers’ expectations so that they can reach agreement

and in determining how they share the resulting surplus (Farrell and Gibbons [34] and

Matthews [72]). Farrell and Gibbons [34] study a two-stage bargaining game in which talk

may be followed by the sealed-bid double auction studied by Chatterjee and Samuelson

[20], a well-known model of bargaining under incomplete information. They show that talk

can matter in the sense that the cheap talk equilibrium features bargaining outcomes that

could not be an equilibrium behavior in the absence of talk. Matthews [72] considers a

specific bargaining situation with a veto-threat and shows there exists an equilibrium in

which an informed party (proposer) tells the other (chooser) which of two sets contains his
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type. This equilibrium behavior is not a part of equilibrium behavior in the absence of talk.

These results intimate that communication may resolve inefficiency caused by the presence

of incomplete or asymmetric information in our model.

How then does introducing talk into the tacit bargaining affect the behaviors of the

parties? To answer this question, we devote the second half of our paper to bargaining over

decision-making rights with explicit communication. Specifically, we assume the informed

agent can send a cheap talk message before bargaining begins.7 Once we allow parties to

communicate via cheap talk before bargaining, there exists a truth-telling equilibrium. The

existence of the truth-telling equilibrium is surprising because neither the tacit bargaining

nor communication via cheap talk alone allows parties to make full use of the agent’s private

information to make a decision. In this equilibrium, the principal uses the following trigger

type of strategy: “Tell me the truth and prove your honesty by accepting my price offer.

I will make a specific message-independent price offer that must be accepted by a truthful

agent. Thus, I consider the rejection of my price offer as evidence for your dishonesty so

that I will punish you by taking an action that makes you much worse than telling the truth.”

The threat action compels the agent to report the true state in the cheap talk stage and to

accept the equilibrium-path price offer from the principal in the bargaining stage. It turns

out that the threat action coincides with the unique agent type who rejects the price offer

on the equilibrium path with positive probability. Consequently, taking the threat action

becomes rational for the principal, and more importantly, to be credible to the agent. In

this truth-telling equilibrium, induced actions always satisfy ex-post efficiency.

We apply two standard cheap-talk refinements, neologism-proofness (Farrell [31]) and

NITS (Chen, Kartik and Sobel [21]), and show that the existence of the truth-telling equi-

librium is robust against those refinements: no matter how large the difference between

parties’ preferences is, the equilibrium is neologism proof in Farrell [31]’s sense. Moreover,

it is the unique neologism-proof equilibrium under some parameter value. Imposing NITS

(no incentive to separate), the criterion proposed by Chen, Kartik and Sobel [21] to refine

equilibria in cheap-talk games (Crawford and Sobel [27]) leads to the same result. That

7However, our main result, the existence of the truth-telling equilibrium, does not depend on the exact
timing of the game.
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is, not only the truth-telling equilibrium always satisfies NITS, but also it is the unique

equilibrium satisfying NITS under some parameter value. We also consider the notion of

sequential perfect equilibrium or extensive-form trembling-hand perfection and show that

the truth-telling equilibrium is robust against those refinements too.

We also show that the truth-telling equilibrium outcome of the explicit bargaining is

ex-ante Pareto superior to that of several other protocols studied in the literature, such as

communication (Crawford and Sobel [27]), optimal mediation (Goltsman, Hörner, Pavlov,

and Squintani [38]), optimal delegation (Holmström [50][51], Alonso and Matouschek [3],

Kováč Mylovanov [56] and Melumad and Shibano [75]) and optimal compensation contract

(Krishna and Morgan [60]) if parties’ interests are substantially misaligned. This might

explain why bargaining over decision-rights often takes place between two separately owned

companies whose interests diverge widely.

We extend the original model with unidimensional state space to multidimensional state

space case. Interestingly, the main result, the existence and characterization of fully reveal-

ing equilibria, still holds with multidimensional state space if the space is compact. The

result shows that compactness, as opposed to the dimensionality, of state space plays an

important role for fully revealing equilibria to exist. Contrary to the main finding of the

multidimensional cheap talk literature, compactness of state space is a sufficient condition

for the existence of fully revealing equilibria.8

The rest of the paper is organized as follows. The next section describes the environment.

In section 3, we setup the basic model of bargaining over decision-making authority and show

that there is no equilibrium in which an ex-post efficient action is taken for any realization

of the state. Full characterization of equilibria is provided assuming the parties’ prior beliefs

are uniform. In section 4, we extend the basic model and allow parties to communicate

before bargaining by sending cheap talk messages. We show that there exists a truth-telling

perfect Bayesian equilibrium in which actions induced are efficient ex-post. The robustness of

the truth-telling equilibrium is also discussed. We devote section 5 to welfare comparisons.

We discuss two extensions of the basic model in section 6. First, we consider the model

8For example, unboundedness of state space is a sufficient condition for fully revealing equilibria to exist
in Ambrus and Takahashi [6].

45



with multidimensional state space and investigate the existence of truth-telling equilibria.

Second, we follow a mechanism design approach and show that under certain conditions the

explicit bargaining is an optimal bargaining mechanism that maximizes a joint surplus of

parties. We conclude in section 7.

2.2 BASIC MODEL

2.2.1 Environment

There are two parties, a principal (P) and an agent (A). The principal who initially has

decision-making authority has little information about the state of the world θ ∈ Θ ≡ [0, 1].

She has a prior distribution F over [0, 1] with an absolutely continuous density function f > 0.

The agent who has different interests from the principal knows the true state of the world θ

but does not have decision-making authority. The payoffs for a given allocation of authority

depend on an action y taken by the party who has decision-making authority and the state

of the world θ. The payoff functions of the parties are of the form UP (y, θ) = −l(|y − θ|)

for the principal and UA(y, θ, b) = −l(|y − (θ + b)|) for the agent.9 We refer to l as the loss

function and assume that l′′(·) > 0, l′(0) = 0 and l(0) = 0. This means that the ideal action

of the principal is yP (θ) = θ and the ideal action of the agent is yA(θ, b) = θ + b where

b > 0 is a parameter that measures how nearly the agent’s interest coincides with that of

the principal. All of these are common knowledge between parties.

2.2.2 Ex-post Efficient Actions

When utility functions are quasi-linear there exists unique ex-post efficient action in between

two ideal actions, which maximizes a joint surplus of parties. For example, if both UA and

UP are quadratic, the ex-post efficient action is the mid-point of θ and θ+b. It is well known

that property rights and voluntary private negotiation are not able to achieve this first-best

9A special case is a quadratic utility (UP (y, θ) = −(y− θ)2 and UA(y, θ, b) = −(y− θ− b)2) which we are
assumed in most examples and applications. Similar utility functions are assumed in many other paper, for
example, Dessein [28]. To see more papers assuming quadratic utilities, see Kováč and Mylovanov [56].
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efficient outcomes in the presence of important private information.10 In this section, we shall

argue for some kind of second-best comparison as against comparing things with first-best

efficiency.

Define a (second-best) ex-post efficient action as follows. An action is said to be (second-

best) efficient ex-post if and only if there is no other feasible action that makes some indi-

vidual better off without making other individuals worse off after the true state of the world

θ is publicly known.

Definition 4. An action y ∈ R is efficient ex-post at θ if there is no other action z ∈ R

such that

UP (z, θ) ≥ UP (y, θ) and UA(z, θ, b) ≥ UA(y, θ, b) (2.1)

with at least one strict inequality.

In our environment, an action y is (second-best) efficient ex-post if and only if y ∈ [θ, θ+b]

when the realization of the state is θ, as one can see in Figure 10. Notice that most mecha-

nisms considered in the literature on strategic information transmission (Crawford and Sobel

[27]) and optimal delegation (Holmstrom [50][51]) lead to efficient actions for some states of

the world but not all. The following example demonstrates ex-post inefficiency of actions in

cheap talk and optimal delegation.

Example 1. Suppose that F is uniform and utilities are quadratic. Let b = 1/5 and

the realized state of the world θ = 7/8. As you can see in Figure 10, if an action y is

not in [θ, θ + b] = [7/8, 43/40], then there exists another action y′ such that both parties

strictly prefer y′ to y. Suppose that parties communicate via cheap talk. In the most

informative equilibrium, only two actions, y1 = 1
20

and y2 = 11
20

, are induced.11 Since y1 < θ

and y2 < θ, both actions are inefficient ex-post. Alternatively, suppose that the principal

optimally proposes the set of admissible actions that the agent can take. In the optimal

delegation, the proposed set is [0, 1 − b] = [0, 4/5].12 As the result, the agent cannot take

any action y ∈ [7/8, 43/40].

10See, for example, Myerson and Satterthwaite [75].
11See the leading example of Crawford and Sobel [27].
12See Holmström [50][51], Melumad and Shibano [75], Alonso and Matouschek [3] and Kováč and Mylo-

vanov [56].
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Figure 10: Ex-post Efficient Actions

2.3 BENCHMARK: TACIT BARGAINING

Consider bargaining over decision-making authority between the informed agent and the

uninformed principal. The timing of the game is as follows:

1. The agent privately observes the state of the world θ ∈ Θ ≡ [0, 1].

2. The principal makes an offer p ∈ R for the authority to take an action.13

3. The agent decides whether to reject or accept the offer.

4. If the agent accepts the offer then he pays the price to the principal and takes an action,

denoted by yA. In this case, payoffs become UP (yA, θ) + p and UA(yA, θ, b) − p for the

principal and the agent respectively. If the agent rejects the offer, however, the principal

takes an action, denoted by yP , without transferring the decision-making authority. Then

payoffs are UP (yP , θ) and UA(yP , θ, b) for the principal and the agent, respectively.

The equilibrium concept we use is perfect Bayesian equilibrium. For the principal, a

strategy consists of a price offer p∗ and an action rule yP . The action rule, denoted by

yP : R → R specifies the principal’s action after the rejection of each price offer p ∈ R

that the he might make. Since the utility function is strictly concave in y, the principal will

never use mixed strategies in equilibrium. For the agent, a strategy consists of a decision

13We allow p to be negative, which means that the principal pays |p| to the agent.
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rule and an action rule. The decision rule, denoted by dA : Θ × R → [0, 1], specifies the

probability of rejection for each price offer p ∈ R that the agent might receive. The action

rule yA : Θ × R → R, specifies the agent’s choice of action after he accepts the principal’s

price offer p. The strategy profile {(p∗, yP ), (dA, yA)} forms a perfect Bayesian equilibrium

if:

(B1) p∗ solves

max
p∈R

∫ 1

0

{dA(θ, p)UP (yP (p), θ) + (1− dA(θ, p))(p− l(b))}f(θ)dθ

(B2) for each p ∈ R and each θ ∈ [0, 1], dA(θ, p) solves

max
dA∈[0,1]

(1− dA)(−p) + dA · UA(yP (p), θ, b)

(B3) for each θ ∈ [0, 1] and p ∈ R, yA(θ, p) = yA(θ) = θ + b

(B4) for each p ∈ R, yP (p) solves

max
y∈R

∫ 1

0

UP (y, θ)ρ(θ|p)dθ

where ρ(θ|p) is the principal’s updated belief after observing the agent’s rejection of p, which

is given by Bayes’ rule whenever possible.
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2.3.1 Equilibrium

2.3.1.1 Example: uniform distribution In this section, we illustrate the main idea

behind our analysis while assuming that f is uniform over [0, 1]. This setting, together with

quadratic utilities, is a leading example of Crawford and Sobel [27] and has been widely

used in the literature on strategic information transmission and optimal delegation. We will

extend our result to more general distributions in the next subsection. In what follows we

first focus on the agent’s decision whether to accept a given price offer or not. We will show

that the agent’s decision rule satisfies an interesting property called monotonicity. Next,

with the full characterization of the agent’s decision rule we show there exists a unique price

offer that maximizes the principal’s expected utility.

For an arbitrary p ∈ R, define the set of agent types who accept p with probability one

as

Θ(p) = {θ ∈ [0, 1]|d(θ, p) = 0}.

Define the set of agent types who reject the offer p with probability one as

Θ−1(p) = {θ ∈ [0, 1]|d(θ, p) = 1}.

Lemma 4 (Monotonicity). For any price offer, if there is an agent type θ who accepts

the offer with positive probability then all agent types higher than θ have to accept it with

probability one.

Proof. See the appendix.

To see the intuition of Lemma 4, consider the decision problem of agent type θ ∈ [0, 1]

who observes a price offer p. Define the agent type θ’s willingness to pay as follows:

W (θ, p, yP (p)) = UA(yA(θ), θ, b)− UA(yP (p), θ, b) = l(|yP (p)− (θ + b)|), (2.2)

where yP (p) is the action taken by the principal after the price offer p is rejected and

yA(θ) = θ + b is the agent type θ’s optimal action. The agent type θ accepts the offer only if

the gain of getting decision-making authority (or willingness to pay for authority) is at least

as big as the loss of it, that is,

W (θ, p, yP (p)) ≥ p.
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It is not possible that yP (p) is on the right of θ, because otherwise, the quasi-concavity of

UA implies that the set of agent types who reject the offer should be on the right of θ and

the mid-point of the set should be yP (p)− b but not yP (p), which is contradicted by (B4).

It means that yP (p) is on the left of θ, and as a result, the agent type θ′ > θ whose most

preferred action is higher than that of the agent type θ is willing to pay more to get authority

to make a decision, that is,
∂W (θ, p, yP (p))

∂θ
≥ 0.

This means that agent type θ accepts any price offer which is accepted by agent type θ′ < θ.

Lemma 4 implies that for any p ∈ R, both Θ(p) and Θ−1(p) are convex if they are non-

empty. Further, Θ(p) cannot be to the left of Θ−1(p). These guarantee that for any p ∈ R

there is at most one agent type who is indifferent between accepting and rejecting the offer.

Let θp ∈ [0, 1] denote the agent type if it exists. Then we can write that Θ(p) = (θp, 1] and

Θ−1(p) = [0, θp). From the indifference condition at θp we have

p = l(|yP (p)− θp − b|), (2.3)

where yP (p) = arg maxy

∫ θp

0
−l(|y − θ − b|) · 1

θp
dθ = θp

2
. Thus, we have

p = l(
θp

2
+ b) or θp = 2(l−1(p)− b). (2.4)

Since θp ∈ [0, 1], we have the following corollary.

Corollary 1.

Θ(p) =


[0, 1] if p < l(b),

(2(l−1(p)− b), 1] if l(b) ≤ p ≤ l(b + 1
2
),

∅ if p > l(b + 1
2
)

In words, all agent types in [0, 1] accept a low price offer (p < l(b)) with probability one,

and once the price offer becomes greater than l(b) then low agent types start rejecting it.

As p increases, the set Θ(p) becomes smaller and finally all agent types in [0, 1] reject a high

price offer (p > l(b + 1
2
)) with probability one.

In Figure 12, we see the clear trade-off between higher price and more rejections that

the principal faces. Although a higher price offer gives a higher payoff to the principal if
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Figure 12: The agent’s decision rule

accepted, it does not seem to be optimal for the principal to make a very high offer because

it cannot be accepted (Figure 12(a)). Similarly, making a price offer that could be accepted

by all agent types does not seem to be optimal either because it is very low (Figure 12(c)).

These suggest that the principal’s optimal price offer should lie halfway between two extremes

(Figure 12(b)). To confirm this idea, consider the principal’s optimal price offer as a best

response to the agent’s strategy. The principal chooses p∗ to solve

max
p∈R

EUP =

∫ θp

0

−l(|yP (p)− θ|)dθ + (1− θp)(p− l(b)) (2.5)

s.t. yP (p) =
θp

2
and θp = 2(l−1(p)− b).

Notice that there exists a unique interior solution of this maximization problem because of

the strict concavity of EUP in p. From the first order condition, we get

p∗ = l(
1

4
+ b) and θp∗ =

1

2
. (2.6)

This implies that it is optimal for the principal to make the price offer that is acceptable

for some agents of high type but not for the remaining agents of low type. This result is

summarized in the following proposition.

Proposition 13. In equilibrium, the principal makes a price offer p∗ = l(1
4

+ b). The agent

type θ ∈ [0, 1
2
) rejects the offer with probability one and θ ∈ (1

2
, 1] accepts the offer with

probability one. As a result, ex-post efficiency does not hold.
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Figure 14: Optimal Delegation

It is interesting to compare this result with the outcome of optimal delegation studied

by Holmström [50][51], Melumad and Shibano [75], Alonso and Matouschek [3], Goltsman

et al. [38] and Kováč and Mylovanov [56]. They studied the uninformed principal’s optimal

choice of the set of admissible actions that the informed agent can take. According to the

optimal delegation rule in the model with a uniform prior and quadratic utility functions, the

informed agent can enforce any decision he likes, as long as it does not exceed 1−b (see Figure

14). The intuition is as follows: since the informed party’s most preferred action is always

higher than that of the principal, it pays to impose an upper bound on the allowable actions.

In case of the low state, on the other hand, the best way to make use of the informed agent’s

information is to grant complete freedom of choice of the action to the informed agent.

Although the outcome of the equilibrium in this model in which the agent obtains com-

plete freedom of choice of the action only in case of the high state looks exactly opposite of

that of optimal delegation, the underlying intuition is exactly the same as that of optimal

delegation. Recall that the type θ agent’s willingness to pay is strictly increasing in the dis-

tance between yP (p) and (θ + b) where yP (p) is determined by Bayes’ rule. This means that

the principal can maximize the willingness to pay by choosing yP (p) and the agent’s most

preferred action (θ + b) as distant as possible. Since b > 0, the principal can maximize this

distance by making the price offer that the agent rejects in case of a low state and accepts
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in case of high state so that yP (p) is low and (θ + b) is high. Clearly, we should get exactly

the opposite outcome in which the informed agent gets a complete freedom to choose the

action in case of low state if the agent’s most preferred action is always lower than that of

the principal.

2.3.1.2 General Case In this section, we extend the analysis in the previous section

to more general distributions. Recall that in the previous section the monotonicity of the

agent’s decision rule allows us to have a unique optimal price offer for the principal. The

following regularity condition on the parties’ prior belief f is necessary for us to have the

same monotonicity of the agent’s decision rule and as a result, ensures that all results we

got in the previous section are preserved.

Condition 1. For a given value of b > 0,

y(θ, θ)− b <
θ + θ

2
(2.7)

for any θ and θ with 0 ≤ θ ≤ θ ≤ 1, where

y(θ, θ) =

 argmax
∫ θ

θ
UP (y, θ)f(θ)dθ if θ < θ,

θ if θ = θ.

In words, this condition implies that for any interval subset of Θ, an action that maximizes

the expected payoff for a principal who believes that agent type is in the interval is not

lopsided too much toward the right of the interval. Any prior f satisfies this regularity

condition if b ≥ 1/2. Moreover, this condition holds for any b > 0 if f is non-increasing

in θ. In particular, it is satisfied in the setting with uniform distribution considered in the

previous subsection.

Under this regularity condition, the agent types’ decision rule satisfies the monotonicity.14

As we already saw in the example with uniform distribution, the monotonicity makes it

optimal for the principal to use her price offer as a screening device. This result is summarized

in the following proposition.

14In the proof of Lemma 4, we first show that under condition 1 the agent’s decision rule satisfies the
monotonicity. The proof is completed by pointing the fact out that the condition 1 holds with the uniform
distribution.
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Proposition 14. Under Condition 1, there exists a unique perfect Bayesian equilibrium. In

the equilibrium, the principal makes a price offer accepted by positive measure of agent types

but not all.

Proof. See the appendix.

2.4 EXPLICIT BARGAINING

In this section, we explore how introducing explicit communication into the basic model

affects its outcomes. The timing of the game is as follows:

1. The agent privately observes the state of the world θ ∈ Θ ≡ [0, 1].

2. The agent sends a message m ∈ M to the principal.

3. After observing the message from the agent, the principal makes a price offer p ∈ R for

authority to take an action.

4. The agent decides whether to accept or reject the offer.

5. If the agent accepts the offer then he pays the price offered by the principal and takes an

action, denoted by yA. In this case, payoffs become UP (yA, θ) + p and UA(yA, θ, b) − p for

the principal and the agent respectively. If the agent rejects the offer, however, the principal

takes an action, denoted by yP , without transferring the decision-making authority. Then

payoffs are UP (yP , θ) and UA(yP , θ, b) for the principal and the agent, respectively.

learns θ
Agent

accepts

rejects

takes an action

takes an action
Agent

Agent

Principalsends a message m
Agent

makes an offer p
Principal

Cheap-talk Stage Bargaining Stage

Figure 15: Communication before Bargaining

Again, the equilibrium concept we use is perfect Bayesian equilibrium. For the agent,

a strategy consists of a message rule, a decision rule and an action rule. The message rule
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µ : Θ → ∆(M) specifies the choice of message for each type θ ∈ Θ. The decision rule, de-

noted by d : Θ×M×R → [0, 1], specifies the probability of rejection for each price offer p ∈ R

that the agent who sent the message m might receive. The action rule yA : Θ×M ×R → R,

specifies the action taken by the agent type θ who sent a message m and accepted the prin-

cipal’s price offer p. For the principal, a strategy consists of a price rule and an action rule.

The price rule p∗ : M → R specifies the principal’s choice of price offer for each message

m ∈ M that the principal might receive. The action rule, denoted by yP : M × R → R

specifies the action taken by the principal who observed a message m and her price offer p

was rejected. The strategy profile {(µ, d, yA), (p∗, yP )} and the principal’s posterior beliefs

ρ1 and ρ2 form a perfect Bayesian equilibrium if:

(CB1) for each θ ∈ [0, 1],
∫

M
µ(m|θ)dm = 1 and if m∗ ∈ M is in the support of µ(·|θ)

then m∗ solves

max
m∈M

d(θ,m, p∗(m))UA(yP (m, p∗(m)), θ, b)− p∗(m)(1− d(θ,m, p∗(m)))

(CB2) for each m ∈ M , p∗(m) solves

max
p∈R

∫ 1

0

{d(θ,m, p)UP (yP (m, p), θ) + (1− d(θ,m, p))(p− l(b))}ρ1(θ|m)dθ

(CB3) for each θ ∈ [0, 1], m ∈ M , and p ∈ R, d(θ,m, p) solves

max
d∈[0,1]

(1− d)(−p) + d · UA(yP (m, p), θ, b)

(CB4) for each θ ∈ [0, 1], m ∈ M , and p ∈ R, yA(θ,m, p) = θ + b

(CB5) for each m ∈ M and p ∈ R, yP (m, p) solves

max
y∈R

∫ 1

0

UP (y, θ)ρ2(θ|m, p)dθ

(CB6)

ρ1(θ|m) =
µ(m|θ)∫ 1

0
µ(m|θ′)dθ′

and ρ2(θ|m, p) =
d(θ, m, p)ρ1(θ|m)∫ 1

0
d(θ′, m, p)ρ1(θ′|m)dθ

where ρ1(θ|m) is the principal’s updated belief after observing the message m from the agent

and ρ2(θ|m, p) is the updated belief of the principal receiving the message m and observing

the rejection of the price offer p.
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2.4.1 Truth-telling Equilibrium

Is it possible that communication before bargaining is informative and as a result, improves

efficiency of bargaining? Surprisingly, there exists a truth-telling perfect Bayesian equilib-

rium once we allow parties to communicate before bargaining.

Consider the following strategy profile: the principal makes a price offer l(b) regardless

of the message he observed and takes an action y = yP (0) = 0 if the offer is rejected. The

agent fully reveals his private information by sending a truth-telling message in the cheap

talk stage and accepts any offer less than or equal to l(b) with probability one but rejects

any other offer with probability one. If the principal makes any price offer p 6= l(b) and it

is rejected, then the principal takes an action y = θ. It is easy to see that the agent types’

strategy is a best response to the principal’s strategy. First, no agent type has an incentive

to deviate in cheap talk stage because the principal’s price offer is message-independent.

Second, no agent type has an incentive to reject the offer in the bargaining stage because for

all θ ∈ [0, 1]

−l(b)︸ ︷︷ ︸
from accepting l(b)

≥ −l(|0− θ − b|)︸ ︷︷ ︸
from rejecting l(b)

= −l(θ + b).

Given the agent’s strategy specified above, the principal’s best response is to make an offer

l(b), the highest price offer accepted by agent types who tells the truth in the cheap talk

stage. The principal does not have an incentive to make any offer p < l(b) because such a

price offer will be accepted by all agent types and gives a strictly less payoff to the principal

than making the price offer l(b). The principal does not have a strict incentive to make any

offer p > l(b) because such a price offer will be rejected by all agent types and the action

taken by the principal after p > l(b) is rejected will give him exactly the same payoff as he

could get by making the offer p = l(b). After the price offer l(b) is rejected, the principal

believes that the true state of the world is θ = 0 with probability one. This is a reasonable

belief in the sense that the agent with type θ = 0 is the only type who is indifferent between

accepting and rejecting the offer l(b), and all other agent types strictly prefer accepting the

offer. We will discuss this issue more carefully in section 2.4.2.3.

Proposition 15 (Truth-telling equilibrium). For any b > 0, there exists a perfect Bayesian

equilibrium in which the informed agent fully reveals his private information by sending
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truth-telling messages in cheap talk stage.

Proof. The proof is constructive. Consider the following strategies and belief:

i) The agent type θ fully reveals his private information by sending a message θ.

ii) For any m ∈ M , the principal makes the price offer l(b).

iii) For any θ ∈ [0, 1], the agent accepts the offer p with probability one if p ≤ l(b) but rejects

p with probability one if p > l(b), regardless of the message he sent.

iv) If a price offer p = l(b) is rejected then the principal takes an action y = 0 regardless of

the message she received. If a price offer p 6= l(b) is rejected then the principal who received

a message m takes an action y = m.

v) For any m ∈ M , ρ1(θ|m) =

 0 ∀θ ∈ [0, 1] \m,

1 if θ = m.

vi) For any m ∈ M and any p = l(b), ρ2(θ|m, p) =

 0 ∀θ ∈ (0, 1],

1 if θ = 0.

vii) For any m ∈ M and any p 6= l(b), ρ2(θ|m, p) =

 0 ∀θ ∈ [0, 1] \m,

1 if θ = m.

First, consider the agent’s incentive. Under the principal’s strategy and beliefs above,

the agent has no incentive to deviate in his message rule because the principal makes the

message-independent price offer l(b). For any m ∈ M , any agent type θ ∈ [0, 1] accepts an

offer p with probability one if p ≤ l(b) since he gets −p which is greater than or equal to

−l(b) from accepting the offer, but the expected payoff of the agent type θ from rejecting

the offer is

−l(|0− θ − b|) = −l(θ + b) ≤ −l(b), ∀θ ∈ [0, 1].

Any agent type θ ∈ [0, 1] who reveals his private information fully rejects an offer p with

probability one if p > l(b) since he gets −p which is less than −l(b) from accepting the offer,

but the expected payoff of the agent type θ from rejecting the offer is −l(b).

Second, consider the principal’s incentive. Under the agent’s strategy and beliefs above,

the principal’s optimal behavior after observing a truthful message (or a message θ) is to

make the price offer l(b), because any offer less than l(b) will be accepted by all types of

agent with probability one and give her the expected payoff strictly less than 0, the principal’s

expected payoff from making the offer l(b) and any offer greater than l(b) will be rejected with
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probability one and induces the principal’s action θ which gives the principal the expected

payoff 0.

By the construction, no price offer is rejected with positive probability on the equilibrium

path so that we cannot use Bayes’ rule to determine beliefs that the principal has after price

offers are rejected. The principal’s action rule specified above is sequentially rational under

the beliefs we take. This completes our proof.

In this truth-telling equilibrium, the informed agent accepts the equilibrium price offer

l(b) with probability one so that the final outcome is always efficient ex-post. This is sur-

prising because neither the tacit bargaining nor communication via cheap talk alone allow

parties to make full use of the agent’s private information to make a decision. This result

is similar to Farrell and Gibbons [32] in the sense that not only information conveyed by

cheap talk in equilibrium, but the equilibrium outcomes differ from any that could occur in

an equilibrium without talk.

What is the role of communication in this equilibrium? In fact, the principal completely

ignores the messages she got from the agent in the cheap-talk stage on the equilibrium

path. Nonetheless, the role of communication is clear in this equilibrium. The principal uses

her information she got from communication when any off-the-equilibrium-path price offer

p 6= l(b) is rejected, and takes an action y = θ. Hence, the agent types who send truthful

messages in the cheap-talk stage would not want to accept any price offer p > l(b). This

leads the principal not to make any price offer p > l(b) in this equilibrium. As a result,

making a price offer l(b) is optimal for the principal. Recall that without communication,

making the price offer l(b) is not optimal. Since almost all of agent types still accept a price

offer l(b) + ε with an arbitrarily small ε > 0, the principal has an incentive to make an offer

l(b) + ε in the case without communication.

It is remarkable to see that the existence of this equilibrium is robust against the exact

timing of the game. To be more precise, consider the game in which bargaining comes first

and communication comes next under the contingency that an agreement is not reached.

Then there exists the following perfect Bayesian equilibrium in this game which is outcome

equivalent to the truth-telling equilibrium in the original model. The construction of the
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equilibrium is almost the same as before: the principal makes a price offer l(b) and takes an

action y = 0 regardless of the message she received from the agent if the offer is rejected.

All agent types in Θ always accept the offer l(b) with probability one and fully reveal their

private information by sending truth-telling messages off the equilibrium path (i.e. when

any offer is rejected.) Since it is straightforward to see that this strategy profile satisfies the

mutual best response under some belief derived by Bayes’ rule, I skip the detailed proof.

2.4.2 Robustness of the Truth-telling Equilibrium

In this section, we apply two equilibrium refinements for cheap-talk models- neologism-

proofness developed by Farrell [31] and NITS (no incentive to separate) developed by Chen,

Kartik, and Sobel [21]. We show that the truth-telling equilibrium satisfies both neologism-

proofness and NITS condition for any b > 0 whereas the babbling equilibrium does not

satisfy either of them for some parameter value of b. Moreover, we discuss robustness of the

truth-telling equilibrium against support restriction, the assumption used by several papers

such as Grossman and Perry [43][42], Harrington [45], Kreps and Wilson [58] and Rubinstein

[85]. The extensive-form trembling hand perfection by Selten [86] and sequential equilibria

by Kreps and Wilson [59] will be discussed.

2.4.2.1 Neologism-proofness There are several papers (see Gertner, Gibbons, and

Scharfstein [37], Farrell and Gibbons [32][33], and Matthews [72]) that use neologism proof-

ness (Farrell [31]) to refine equilibrium outcomes of cheap talk games, to refine their equilib-

rium outcomes. In what follows, we show that the truth-telling perfect Bayesian equilibrium

is always neologism proof and for some parameter values, it is a unique neologism-proof

equilibrium.

According to Farrell [31], assume that for every non-empty subset X of Θ, and for every

perfect Bayesian equilibrium of the game, there exists a message m(X) that is unused in the

equilibrium and whose literal meaning is that θ ∈ X. If the principal observes the message

m(X), then she hypothesizes that some members of specified subset X are responsible for

the message and makes a price offer that is a best response under the posterior belief derived
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by Bayes’ rule from her prior. For example, by Lemma 4 and the tacit bargaining analysis,

for any convex X ⊆ Θ it is the principal’s best response against getting the message m(X)

to make a price offer which is rejected by agent types in the low half of X and accepted by

remaining agent types in X. The parties’ behaviors in the remainder of the game satisfy

sequential rationality and the final payoffs for the agent types from sending the message

m(X) are determined. Let P (X) denote the set of all agent types that strictly prefer their

payoffs from sending the message m(X) to their equilibrium payoffs. We say that a subset

X is self-signaling if P (X) = X. The neologism m(X) is credible if X is self-signaling. If

there is a credible neologism available in an equilibrium, we say that such an equilibrium is

not neologism proof.

The notion of neologism-proofness has a refining power in our model. To see this, suppose

that parties’ prior belief is uniform over [0, 1] and utilities are quadratic. Notice that in the

babbling equilibrium, it might be the case that some agent types prefer to reveal their types

because either the unique action induced in equilibrium is too small (1
4
) for them or the

amount of money they should pay to the principal (p = (1
4

+ b)2) is too high (See Figure

16). We therefore investigate if there is a self-signaling subset of the form X = [θ̃, 1] with

θ̃ > 0. Suppose that X = [θ̃, 1] send a neologism to the principal. Then, by Lemma 4 and

analysis on the tacit bargaining, the principal’s optimal response is to make a price offer,

p′, which is rejected by [θ̃, θ̃+1
2

] but accepted by ( θ̃+1
2

, 1]. From the indifference condition at

θ̃+1
2

, we have p′ = (1−θ̃
4

+ b)2. For X to be self-signaling, it is necessary and, for θ̃ ∈ (0, 1),

sufficient that i) the agent type θ̃ is indifferent between sending the neologism inducing the

action 3θ̃+1
4

and sending his equilibrium message inducing the action 1
4

and ii) the agent type

0 does not want to deviate to the neologism m(X). This requires that

1

4
− θ̃ − b = −3θ̃ + 1

4
+ θ̃ + b (2.8)

and

−(
1

4
− b)2 ≥ −p′ = −(

1− θ̃

4
+ b)2. (2.9)

If the equation (2.8) gives a value of θ̃ in the range of (0, 1) and the value of θ̃ satisfies the

inequality (2.9), then we have constructed a self-signaling subset X. It is immediately clear
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Figure 16: Neologism-proofness

that θ̃ satisfies both conditions if and only if 1
24
≤ b < 1

4
. Therefore, if 1

24
≤ b < 1

4
, then any

babbling equilibrium is not neologism proof.

It is well-known that a neologism-proof equilibrium may select only a pooling equilibrium

(Gertner, Gibbons, and Scharfstein [37]). Moreover, there might be no neologism-proof

equilibrium in some models (Matthews [72]). However, truth-telling is always neologism

proof in our model.

Proposition 16. For any b > 0, the truth-telling perfect Bayesian equilibrium is neologism

proof.

Proof. See the appendix.

The proof in the appendix shows that for any non-empty subset X of Θ there must be

an agent type θ ∈ X such that sending the neologism m(X) generates a payoff less than

−l(b), the payoff from the truth-telling equilibrium.

2.4.2.2 NITS (No Incentive To Separate) Chen, Kartik, and Sobel [21] pose a crite-

rion to select equilibria in Crawford and Sobel [27] cheap-talk games: NITS, for no incentive

to separate. An equilibrium satisfies NITS if the agent of the lowest type weakly prefers
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the equilibrium outcome to credibly revealing his type. They show that equilibria satisfy-

ing NITS always exist in Crawford and Sobel [27], and the most informative equilibrium

outcome is the unique equilibrium satisfying NITS under the monotonicity condition M in

Crawford and Sobel [27]. In this section, we apply NITS to our model and show that the

criterion is selective; under some value of b the babbling equilibrium does not survive, while

the truth-telling equilibrium does survive for any b > 0.

Suppose that parties’ prior belief is uniform over [0, 1] and utilities are quadratic. Notice

that in the babbling equilibrium, the agent of the lowest type gets −(1
4
− 0− b)2. Thus, the

babbling equilibrium does not satisfy NITS if and only if

−(
1

4
− b)2 < −b2,

which is equivalent to b < 1
8
.

It is straightforward that NITS holds in the truth-telling equilibrium, in which all agent

types reveal their types fully.

Proposition 17. For any b > 0, the truth-telling perfect Bayesian equilibrium satisfies

NITS.

2.4.2.3 Support Restriction and Perfection One might be tempted to argue that

the truth-telling equilibrium is not very reasonable because it does not satisfy “support

restriction”, the assumption used by several papers such as Grossman and Perry [43][42],

Harrington [45], Kreps and Wilson [58] and Rubinstein [85]. This restriction requires that

the support of beliefs at an information set should be contained in the supports of beliefs at

preceding information sets.

In our truth-telling equilibrium the principal has probability one beliefs after getting

messages in the cheap-talk stage and switches away from these beliefs to the new belief that

assigns probability one to the type θ = 0 after observing “rejection” of the equilibrium price

offer which takes place off-the-equilibrium path, and therefore the equilibrium violates the

support restriction. There are two responses to the support restriction. First, it has been

shown, however, that not only the support restriction may be based on a wrong interpretation

of the concept of a belief in some games but also violations of the support restriction may
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represent a sensible reasoning process which supports interesting equilibrium behaviors by

Madrigal, Tan and Werlang [69] and Nöldeke and van Damme [82]:

... violations of the support restriction may very well reflect the fact that once a deviation
from equilibrium behavior has been observed, a reassessment of all previous beliefs - which
were based on the assumption that equilibrium strategies are followed - is called for. In
this light such “switching beliefs” is not an unfortunate problem, which cannot be avoided
in some cases, but actually is a natural consequence of observing a deviation. (Nöldeke and
van Damme [82], p. 9.)

Second, there exists another truth-telling equilibrium in which there is no such a problem

off the equilibrium path. Recall that in the previous equilibrium the agent type θ = 0 is

indifferent between accepting and rejecting the equilibrium-path price offer p = l(b). Now,

consider the strategy profile that has only one difference from the previous construction: on

the equilibrium path, the principal makes a message-independent price offer l(b) and all agent

types (0,1] accept it with probability 1 but the agent type 0 rejects it with probability 1.15

Except this, all of the strategy profile are exactly the same as before. It is straightforward

that this strategy profile forms a perfect Bayesian equilibrium. Importantly, “rejection” of

p = l(b) is not an off-the-equilibrium-path event anymore in this construction. That is, there

is no switching away from beliefs so that this equilibrium satisfies the support restriction.

One may also wonder if the truth-telling equilibrium is robust against the extensive-

form trembling-hand perfection by Selten [86] or sequential equilibria by Kreps and Wilson

[59]. While the definition of trembling-hand perfect equilibria or sequential equilibria does

not directly apply to our game16, the truth-telling equilibrium does not violate any possible

implementation of sequential equilibria or trembling-hand perfect equilibria. To see this,

suppose that some trembles are allowed in the bargaining stage so that the principal makes

some rejected offers with a positive probability. As a result, beliefs after every history can

be derived by Bayes’ rule. Then, regardless of the trembles made, the principal facing the

price offer by trembles sticks to the belief he updated through the cheap-talk stage and thus

taking an action y = θ is optimal.

15It is not necessary in this construction that the agent type 0 rejects l(b) with probability 1. If the agent
type θ = 0 accepts p = l(b) with a positive probability, then we have an equilibrium in which “rejection” of
p = l(b) is not an off-the-equilibrium-path event anymore.

16For more details, see Simon and Stinchcombe [87]
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2.5 WELFARE COMPARISON

2.5.1 Comparisons to Other Schemes

In this section, we demonstrate the benefit from trade of decision-rights by comparing the

equilibrium outcomes of our model to those of several dispute resolution schemes stud-

ied in the framework of Crawford and Sobel [27]: communication (Crawford and Sobel

[27]), optimal mediation (Goltsman, Hörner, Pavlov, and Squintani [38]), optimal delegation

(Holmström [50][51], Melumad and Shibano [75], Alonso and Matouschek [3] and Kováč and

Mylovanov [56]) and optimal compensation contract (Krishna and Morgan [60]). For the

comparison, we assume that f is uniform and utility functions are quadratic as follows:

UP (y, θ) = −(y − θ)2 and UA(y, θ, b) = −(y − θ − b)2.

Crawford and Sobel [27] consider a situation in which the principal has no commitment

power at all and sends cheap-talk messages to the agent. It is shown that all equilibria in

their model are interval partitional so that there is only a finite number of actions chosen in

equilibrium, each associated with an interval of states. With uniform quadratic assumption,

they show that the number of distinct equilibrium outcomes, denoted by NCS(b), is

NCS(b) =
〈
− 1

2
+

1

2

√
1 +

2

b

〉
(2.10)

where 〈z〉 denotes the smallest integer greater than or equal to z. Moreover, there is a

Pareto ranking among NCS(b) equilibria so that, for any b > 0, the number of elements of

the partition associated with the Pareto dominant equilibrium, which we will call the best

equilibrium, is NCS(b). The expected payoff of the principal in this best equilibrium is

EUP
CS(b) = − 1

12NCS(b)2
− b2(NCS(b)2 − 1)

3
(2.11)

while the ex-ante expected payoff for the informed agent is

EUA
CS(b) = EUP

CS(b)− b2. (2.12)
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Figure 17: (a) Agent’s expected payoff (b) Principal’s expected payoff

Recently, Goltsman, Hörner, Pavlov, and Squintani [38] allow the parties to use any

communication protocol, including the ones that call for a neutral trustworthy mediator.

According to the optimal mediation rule, the parties’ expected payoffs are

EUP
mediation(b) = −b(1− b)

3
and EUA

mediation(b) = EUP
mediation(b)− b2. (2.13)

Holmström [50][51], Melumad and Shibano [75], Alonso and Matouschek [3] and Kováč

and Mylovanov [56] study the principal’s optimal choice of the set of admissible actions that

the agent can take and show that under the optimal delegation scheme, the principal restricts

project choices of the agent to be from 0 up to a maximum of 1− b. Under this scheme, the

parties’ expected payoffs are

EUP
delegation(b) = −b2(3− 4b)

3
and EUA

delegation(b) = −8b3

3
. (2.14)

In these papers, the principal also has imperfect commitment power so that she can only

commit on the ex-ante allocation of decision-rights. Moreover, the monetary transfer is

impossible.

Krishna and Morgan [60] consider the situation in which the principal can commit to

pay the agent for his advice but retains decision-making authority. They fully characterize
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the optimal compensation contract: the optimal compensation contract involves separation

in low states and a finite number of pooling intervals in high state, and the principal never

pays for imprecise information. In this optimal compensation contract, the expected payoffs

for the principal and the agent are

EUP
contract(b) = −

∫ a0

0

(2b(a0 − θ) + t0)dθ − 1

12

K∑
i=1

(
1

K
− a0

K
− 2b(K − 2i + 1)

)3

(2.15)

and

EUA
contract(b) = EUP

contract(b)− b2 + 2

∫ a0

0

(2b(a0 − θ) + t0)dθ (2.16)

where

K =
〈
− 1

2
+

1

2

√
1 +

3

2b

〉
,

a0 =
3

4
− 1

4

√
4 +

1

3
(3− 8bK(K − 1))(8bK(K + 1)− 3) and

t0 =
(1− a0 − 2K(K − 1)b)(2bK(K + 1)− (1− a0))

4K2
.

Figure 17 illustrates the comparison. As the figure shows, the truth-telling equilibrium

outcome of explicit bargaining is ex-ante Pareto superior to communication, optimal medi-

ation rule and optimal contract for any b > 0. Furthermore, it is ex-ante Pareto superior

to all other schemes (including optimal delegation) when b > .375. This might explain why

bargaining over decision-rights often takes place between two separately owned companies

whose interests diverge widely.

It is impertinent to interpret this welfare comparison as a result showing that bargaining

mechanism we considered is superior to all other schemes considered in the literature. It

is more appropriate to say that the higher ex-ante utilities for both parties comes from

different assumptions on the principal’s commitment power rather than from the superiority

of the mechanism. Unlike the most papers in the literature on communication and optimal

delegation, this model assumes not only the principal can commit on the ex-ante allocation

of decision-rights but also monetary transfer is available. The welfare comparison shows the

benefit of using monetary transfer to trade decision-rights in our environment though. The

use of monetary incentives allows parties to make full use of the agent’s private information

when making a decision, and as a result, the truth-telling outcome of explicit bargaining is
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ex-ante Pareto superior to the outcomes of several dispute-resolution schemes studied in the

literature.

2.5.2 Comparisons to Bargaining with Agents Making Offers

Lim [65] considers bargaining over decision-making authority in which the informed agent

makes a price offer (A-offer Bargaining) and shows that there are continuum of perfect

Bayesian equilibria, each of which yields an ex-post efficient outcome. Although there is

no general Pareto ranking among equilibria, Lim [65] shows that there exists the principal

optimal equilibrium and the agent optimal equilibrium. Moreover, the principal optimal

equilibrium gives the lowest payoff to the agent among all equilibria of the model and vice

versa. By using the refinement of perfect sequential equilibrium (Grossman and Perry [43]),

Lim [65] gets a unique equilibrium outcome, which coincides with the agent optimal equilib-

rium.
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Figure 18: (a) Agent’s expected payoff (b) Principal’s expected payoff

Since the uninformed principal makes a price offer in our model (P-offer Bargaining),

the equilibrium outcomes are quite different from those of A-offer Bargaining. Interestingly,

the truth-telling equilibrium outcome of P-offer Bargaining coincides with the outcome of

the principal optimal equilibrium of A-offer Bargaining. Figure ?? illustrates this result.

It tells us that although bargaining over decision-rights can lead to a Pareto-efficient out-
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come regardless of who has bargaining power, allocation of initial bargaining power plays an

important role in determining how they share the resulting surplus.

2.6 DISCUSSION AND EXTENSIONS

2.6.1 Multidimensional State Space

In this section, we extend our model to the case where the state space is multidimensional.

We show that the compactness, as opposed to dimensionality, of the state space plays a

crucial role for the existence of the truth-telling equilibrium. Suppose that the state space

Θ is a compact subset of Rd. Similarly, the action space Y is a subset of Rd. b ∈ Rd is a bias

of the agent. For state θ and action y, the principal’s utility is −
∑d

j=1 l(|yj − θj|) and the

agent’s utility is −
∑d

j=1 l(|yj − θj − bj|) where yj, θj, and bj are jth coordinate of y, θ, and

b, respectively.

It is straightforward to see that the construction of truth-telling equilibrium from the

previous section can be extended to the current model with multidimensional state space, if

the state space is compact. Let W j and W j denote minimum and maximum of j’s coordinate

of Θ, respectively. Define θ∗ = (θ∗1, θ
∗
2, ......, θ

∗
d) such that θ∗j = W j if bj ≥ 0 and θ∗j = W j

otherwise. The following strategy profile constitutes a perfect Bayesian equilibrium: (i) All

agent types fully reveal their types in the cheap talk stage. (ii) All agent types but θ∗ accept

any offer p ≤
∑d

j=1 l(|bj|) with probability one and otherwise, reject with probability one.

(iii) The agent type θ∗ rejects the offer p =
∑d

j=1 l(|bj|) with positive probability and behaves

in the same way as other agent types for any other price offers. (iv) The principal makes

a price offer
∑d

j=1 l(|bj|) regardless of the message he received from the agent. (v) If the

offer p =
∑d

j=1 l(|bj|) is rejected, the principal believes that the type is θ∗ with probability

one and takes an action y = yP (θ∗) = θ∗. (vi) If the offer p 6=
∑d

j=1 l(|bj|) is rejected, the

principal believes messages from agent types and takes an action y = θ. (vii) If any offer is

accepted, the agent type θ takes his ideal action θ + b.

This equilibrium is graphically illustrated in Figure 19. In this figure, the solid circle
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represents the indifference curve of the agent at the threat action θ∗ (in this example, it is 0)

that would be taken by the principal in case that the equilibrium price offer
∑d

j=1 l(|bj|) is

rejected. The distance between θ and θ+b represents the equilibrium price offer
∑d

j=1 l(|bj|).

As you can see in this figure, any agent type θ 6= 0 has to accept the equilibrium price offer

since the distance between θ and θ + b is shorter than the radius of the circle with the

origin of θ + b. Remarkably, those two coincide with each other only if θ = θ∗ = 0, which

means that the agent type θ∗ is indifferent between accepting and rejecting
∑d

j=1 l(|bj|).

Taking the action θ∗ turns out to be rational for the principal (and as a result credible to

the agent) under the belief that the agent type θ∗ is the only type who randomizes between

accepting and rejecting the price offer. Again, truth-telling is optimal for the agent since the

principal makes a message-independent price offer
∑d

j=1 l(|bj|). The dotted circle represents

the indifference curve of the agent at the action y = θ. Truth-telling guarantees the agent

the utility level in the dotted indifference curve so that truthful agent will always reject a

price offer higher than
∑d

j=1 l(|bj|). This makes it optimal for the principal to make such an

offer
∑d

j=1 l(|bj|) regardless of messages.

Figure 19 also highlights the importance of the compactness of the state space. Especially,

the construction of the credible threat action heavily relies upon compactness of the state

space. If each of the unidimensional subspaces of the entire state space is neither bounded

below nor bounded above, then it is impossible to construct any credible threat action or

equivalently an agent type who is indifferent between accepting and rejecting some message-

independent price offer. Indeed, compactness of the state space is a sufficient condition for

truth-telling equilibrium to exist. This result is summarized in the following proposition.

Proposition 18. Suppose that Θ ⊂ Rd is compact. For any b ∈ Rd, there exists a truth-

telling equilibrium.

Proof. It suffices to show that there exists z ∈ Θ such that −l(|b|) > −l(|z − θ − b|) for all

θ ∈ Θ \ {z}. Since l′(·) < 0, the condition is equivalent to |b| < |z − θ − b| or

b · b < b · b + 2b · (θ − z) + (θ − z) · (θ − z), ∀θ ∈ Θ \ {z}.
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Consider a function b · θ. Notice that it is a continuous function on the compact set Θ and

therefore achieves a minimum on Θ. Set z to be a minimizer of b ·θ on Θ. Then 1) b ·θ ≥ b ·z

for all θ ∈ Θ and 2) (θ − z) · (θ − z) > 0 for all θ ∈ Θ \ {z}. This completes the proof.

It is interesting to compare this result to the main finding of multi-dimensional cheap talk

literature. Battaglini [11] shows that full revelation of information in all states of nature is

generically possible if there is more than one sender and the state space is multidimensional.

Ambrus and Takahashi [6] further investigate the existence of fully revealing equilibrium and

find that boundedness, as opposed to dimensionality, of the state space plays an important

role in determining the qualitative feature of a cheap talk model. They show that if the

state space is bounded and biases are large enough then there is no fully revealing perfect

Bayesian equilibrium. It is worth emphasizing that although the boundedness of state space

also plays an important role for fully revealing equilibria to exist in our model, the role is

not the same as in Ambrus and Takahashi [6]. If the state space is compact, then there

exists a fully revealing equilibrium even when conflict of interest is arbitrarily large. Unlike

Battaglini [11] and Ambrus and Takahashi [6], multiple agents are not necessary even though

the construction does not rely on the fact that there is only one agent. The direction of biases

does not matter for this result.

2.6.2 Optimal Bargaining Mechanism

One important observation is that bargaining over decision-rights that we have considered

is not the only bargaining mechanism for decision-rights in our environment. For example,

after the principal’s price offer is rejected, the principal may want to make another price offer

instead of taking action by herself. It may be possible that the agent makes a price offer to

buy decision-rights after he rejects a price offer from the principal in the first round. By a

bargaining mechanism, we mean any kind of scheme by which principal and agent make offers

directly, indirectly, once, repeatedly, sequentially, simultaneously, alternatively and so on.

Accordingly, we have infinitely many alternatives as a bargaining mechanism for decision-

rights. In this section, we follow a mechanism design approach and show that the explicit

bargaining we have considered is an optimal mechanism among all feasible mechanisms in the
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sense that it achieves the upper bound of the ex-ante social welfare. Although the analysis

in this section is restricted to the quadratic utility functions, I believe that one can get a

similar result for a broader class of utility functions.17

A bargaining mechanism is one in which the informed agent send a message to a mediator

who then credibly commits to the final allocation of decision-rights and the monetary trans-

fers. We restrict our attention to a direct bargaining mechanism in which the informed agent

reports the true state of the world to a mediator who then determines the final allocation

of decision-rights and the monetary transfers. This means that a direct mechanism is char-

acterized by two outcome functions, denoted by x(·) and p(·), where x(θ) is the probability

that the decision-right is transferred to the agent and p(θ) is the expected payment from the

agent to the principal if θ is the reported state of the world from the agent.

Bester and Strausz [16] shows that the standard revelation principle by Myerson [70]

may fail if the mechanism designer is not able to credibly commit to the outcome of the

mechanism. In our case, however, it is straightforward to see that the standard argument

for the revelation principle holds. Consider an indirect mechanism (x, p) where the agent

follows a message rule m : Θ → M in an equilibrium of the mechanism where M is a Borel-

measurable message space. In this mechanism, 1) the agent takes an action θ+b and p(m(θ))

is transferred from the agent to the principal with probability x(m(θ)) and 2) the principal

takes an action based on the information she updated from observing p(m(θ)) and x(m(θ))

with probability 1−x(m(θ)). Define a direct mechanism (x′, p′) ≡ (x◦m, p◦m). The outcome

of this mechanism is that 1) the agent takes an action θ + b and p′(θ) is transferred from

the agent to the principal with probability x′(θ) and 2) the principal takes an action based

on the information she updated from observing p′(θ) and x′(θ) with probability 1 − x′(θ).

By definition of the direct mechanism, p(m(θ)) = p′(θ) and x(m(θ)) = x′(θ) for any state of

the world θ ∈ Θ. Furthermore, this implies that for any state of the world the actions taken

by the principal under two mechanisms are exactly the same since the same information is

transmitted from the agent to the principal through the mechanisms. Therefore, these two

mechanisms are outcome equivalent. By invoking this version of revelation principal, we

restrict our attention to a direct mechanism without loss of generality.

17However, the result does not depend on the distribution function.
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Our goal is to find a mechanism that maximizes a social welfare which is defined as the

sum of expected payoff of the principal and of the agent. By focusing on this mechanism,

we are able to see if a bargaining mechanism can achieve the first-best efficient outcome in

our environment. Recall that in the quasi-linear environment there exists a unique first-best

outcome that maximizes the joint surplus of parties. In case of quadratic utility, it is the

midpoint of θ and θ + b. At the first-best outcome, the social welfare is − b2

4
. Does any

bargaining mechanism achieve this first-best outcome? Otherwise, what is the efficiency

bound?

Given a mechanism (p, x), define U as a social welfare. Then

U = EUA + EUP

=

∫
Θ

{x(θ) · UA(yA(θ), θ, b) + (1− x(θ)) · UA(yP (p(θ)), θ, b)− p(θ)}f(θ)dθ

+

∫
Θ

{x(θ) · UP (yA(θ), θ) + (1− x(θ)) · UP (yP (p(θ)), θ) + p(θ)}f(θ)dθ

=

∫
Θ

{−x(θ) · l(b) + (1− x(θ)) · [UP (yP (p(θ)), θ) + UA(yP (p(θ)), θ, b)]}f(θ)dθ.(2.17)

We say that a mechanism (p, x) is optimal if it maximizes the social welfare. That is, an

optimal mechanism is a solution for the following optimization problem:

max
p(·),x(·)

U

subject to the incentive compatibility constraint.

Equation (2.17) shows that an optimal mechanism should assign decision-rights to the

principal if and only if the sum of interim utilities resulting from the action yP (p(θ)) is

greater than −l(b) where yP (p(θ)) is an action taken by the principal who updates her belief

after observing p(θ). Thus, if a mechanism achieves a social welfare U > l(b), there exists a

nonempty set of agent types, denoted by S, such that

∀θ ∈ S x(θ) = x and p(θ) = p, (2.18)

and ∫
S

[UP (yP (p), θ) + UA(yP (p), θ, b)]f(θ)dθ > −l(b) (2.19)
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where

yP (p) = argmaxy

∫
Θ

UP (y, θ)
q(p|θ)f(θ)∫

Θ
q(p|θ′)f(θ′)dθ′

dθ

= argmaxy

∫
S

UP (y, θ)f(θ)dθ.

Let U denote the upper bound of the social welfare. The next proposition shows that

when the utility function is quadratic the upper bound of the social welfare is −l(b) = −b2

in any bargaining mechanism.

Proposition 19. Suppose that the utility function is quadratic. Then U = −l(b) = −b2.

Proof. See the appendix.

The intuition of this result is straightforward. A bargaining mechanism determines the

final allocation of decision-rights but has no effect on the incentive in the decision-making

stage. That is, the final decision depends only on the decision-making party’s own interest

and private information the party possess. It is well-known from the cheap-talk literature

that more precise information is always beneficial ex-ante not only to the principal but also to

the agent. Therefore, the social welfare cannot be higher than −l(b), the social welfare that

results from the most informative decision-making. Recall that the explicit bargaining we

have considered in the previous sections leads to the social welfare −l(b) in the truth-telling

equilibrium. This leads to the following corollary.

Corollary 2. When the utility function is quadratic, the explicit bargaining is an optimal

mechanism.

Notice that the efficiency of bargaining mechanisms is bounded away from the first-

best efficiency. Therefore, one can interpret this result as theoretical supports reinforcing

the previous finding that property rights and voluntary private negotiation are not able to

achieve this first-best efficient outcomes when information is asymmetrically distributed.
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2.7 CONCLUSION

This paper studies bargaining over decision-making rights between an informed but self-

interested agent and an uninformed principal in which the uninformed principal makes a

price offer to the agent who then decides either to accept or to reject it. We show that

the unique perfect Bayesian equilibrium outcome does not satisfy ex-post efficiency. Once

we introduce explicit communication into the model, however, there exists a truth-telling

perfect Bayesian equilibrium, which is not only efficient ex-post but also neologism proof.

Moreover, it is the unique neologism-proof equilibrium if parties’ preferences are sufficiently

similar.

We compare the equilibrium outcome of our model to that of some dispute resolution

schemes studied in the framework of Crawford and Sobel [27] and and Holmström [50] and

show that it is ex-ante Pareto superior to all other schemes when the parties’ interests diverge

substantially. This might explain why bargaining over decision-rights often takes place be-

tween two separately owned companies whose interests diverge widely. Although bargaining

over decision-rights can lead to a Pareto-efficient outcome regardless of who has bargaining

power, allocation of initial bargaining power plays an important role in determining how

they share the resulting surplus.
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3.0 CONTESTS WITH A STOCHASTIC NUMBER OF PLAYERS

3.1 INTRODUCTION

Contest theory, which started from the famous Tullock’s [89] paper,1 is used to consider a

fixed number of players.2 However, sometimes players do not know the actual number of

players participating in the contest. For example, in many rent-seeking contests an individual

lobbyist does not know how many other lobbyists are competing for the rent when she exerts

her effort.3 In this paper, we consider Tullock’s n-player contests where each player has an

independent probability 0 < p ≤ 1 of participation. It means that the actual number of

players in the contest can vary between 0 and n.

We show that such contests have a unique symmetric equilibrium which can be described

in the closed form. Our main interest is to analyze properties of this equilibrium and com-

pare the individual and the total equilibrium spending in the standard Tullock’s and our

cases. Note that the standard Tullock’s model is a particular case of our model where the

participation probability is one, p = 1. The individual equilibrium spending, X∗(r, V, n, p),

depends on four parameters: the marginal return, the prize value, the number of potential

players, and the probability of participation. It turns out that the individual equilibrium

spending is strictly increasing in the marginal return and the value of the prize for any fixed

n and p. Therefore, the total equilibrium spending is also strictly increasing in the same

1Models similar to Tullock’s have been studied in the literature on advertising and rivalry for market
shares. Friedman’s [36] paper is probably one of the first in the literature.

2Surveys of the contest literature can be found in Nitzan [81], Szymanski [88], Congleton, et al. [23], and
Konrad [55].

3The same situation often takes place in R&D races when each firm does not know the actual number
of R&D race competitors. Another example is a usual lottery where one player wins a unique main prize.
Typically, when players buy lottery tickets they do not know the actual number of players.
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parameters. These observations are of course consistent with the standard Tullock’s model,

p = 1.

We show that the individual equilibrium spending as a function of the participation prob-

ability p is single-peaked. Moreover, for any number of potential players n, a unique positive

probability which maximizes the individual equilibrium spending is always below one. It

means that each active player spends more under some uncertainty about the number of

players than under certainty, in the Tullock’s case. There are several reasons why it is im-

portant to know about the individual equilibrium spending. Sometimes, the contest outcome

depends solely on the winner’s individual spending. In many R&D races, for instance, losing

firms can not have patents or rights to produce so their effort and investments are socially

wasteful. In this case, the total spending is not important but the individual spending made

by the winning firm is. Our analysis suggests that it can be beneficial for the society to have

some degree of uncertainty in this case.

We also demonstrate that the single-crossing property4 holds for the individual equilib-

rium spending: for a fixed marginal return and a prize value, any two individual equilibrium

spending curves (as functions of participation probability p) with different potential numbers

of players cross only once. This property is surprising and important. First, the single-

crossing property helps to identify the unique probability which maximizes the individual

equilibrium spending. We prove that two adjacent individual equilibrium spending curves

cross at the peaked point of the curve with a higher number of potential players. Second,

based on the single-crossing property, we show that the interval of participation probabilities

is divided into two parts. If p > 0.9, then the standard contest result that the individual

equilibrium spending is decreasing in the number of participating players holds. However, if

0 < p < 0.9, then the above result does not hold.

It turns out that the comparative statics is much simpler for the total equilibrium spend-

ing than for the individual equilibrium spending. Even though the individual equilibrium

spending is strictly increasing in only two out of four parameters, the total equilibrium

spending is strictly increasing in all four parameters. In particular, unlike the individual

4This property is different from the Spence’s single crossing condition that has an important role in
signaling, contract theory, and mechanism design.

78



equilibrium spending, the ex-ante total equilibrium spending (as a function of probability p)

is maximized under certainty, p = 1.

Our model provides another possible answer for a long-standing question about over-

dissipation in the equilibrium. Since Krueger [62], Posner [83], and Tullock [89], there have

been continuous endeavors including Corcoran [24], Corcoran and Karels [25], Higgins, et al.

[48], Michaels [76], and Leininger and Yang [63] to explain over-dissipation within theoretical

framework. Now, it is a well-known result that ex-ante over-dissipation is not consistent with

an equilibrium behavior.5 The ex-ante over-dissipation never takes place in our model too.

Since the total equilibrium spending is monotonically increasing in p, the highest expected

(ex-ante) total spending is achieved in the Tullock’s certain case, p = 1.

Hillman and Samet [49] and Baye, et al. [13][14] show that ex-post over-dissipation can

take place as a particular realization of a mixed-strategy equilibrium. We demonstrate that

ex-post over-dissipation is a natural feature of the pure-strategy equilibrium if the number of

players is stochastic. The intuition for this observation is straightforward. If the participation

probability is below one, p < 1, the actual number of players in the contest can be different

from the expected number of players. We demonstrate that if n > 3 and the actual number

of players is “much higher” than the expected number of players, the ex-post over-dissipation

occurs. However, the expected number of players always coincides with the actual number of

players if p = 1 and, therefore, the ex-post over-dissipation never takes place in the certain

world (Tullock’s model).

Games with uncertain or stochastic number of players are a natural extension of games

with a fixed number of players. In the auction theory, McAfee and McMillan [74] are the

first to study the model with a stochastic number of bidders. They show that the standard

auction theory is sensitive to the assumption that a number of players is common knowledge.

Levin and Smith [67] consider auctions with stochastic entrants resulting from endogenous

entry. They extend the revenue-equivalence and ranking theorems and show that the seller

and society can benefit from policies that reduce market thickness. Levin and Ozdenoren

[66] investigate bidders’ and seller’s responses to ambiguity about a number of bidders in the

5Recently, Baharad and Nitzan [8] have shown that over-dissipation is possible in equilibrium, when the
contestants distort their winning probabilities.
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standard auctions with independent private valuations. They show that the general revenue

equivalence breaks down under ambiguity about a number of bidders. Myerson [79] develops

a mathematical framework to analyze games with population uncertainty and shows special

properties of the Poisson games.6

Myerson and Wärneryd [80] and Münster [78] are the first to consider contests with a

stochastic number of players. Myerson and Wärneryd [80] analyze a model with infinitely

many potential players where the number of players is a random variable. They show that if

it is known for certain that there will be at least one participant, then the total equilibrium

spending is strictly lower in a contest with population uncertainty than in a non-uncertain

contest with the same expected number of players. In our model, the number of players is

a random variable which follows the binomial distribution. Even though we do not require

that it has to be at least one participant in the contest, we are also able to demonstrate

the same result as in Myerson and Wärneryd [80]. Münster [78] considers a model similar

to ours. However, he focuses on the players’ risk attitude and shows that equilibrium rent

seeking efforts are lower under risk aversion if and only if the expected fraction of active

contestants is low.

The rest of the paper is organized as follows. In the next section, we describe the

model and present a unique symmetric equilibrium. We focus on the properties of the

individual equilibrium spending in Section 3. Section 4 is devoted to the properties of the

total equilibrium spending. We conclude in Section 5. All proofs are in the Appendix.

3.2 THE MODEL

Consider a contest with N potential risk neutral players. We assume that each potential

player participates (becomes active) in the contest with independent probability p ∈ (0, 1].

All active players compete for a single prize of value V . The timing of the game is as

follows. First, the nature chooses active players. Then, without knowing the actual number

of participants, each active player i makes an expenditure, denoted by Xi ≥ 0. The winner

6In the Poisson game, the number of players is a random variable which follows Poisson distribution.
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of the contest is determined through the following contest success function

Pi(Xi;M) =


Xr

i

Xr
i +

∑
j∈M Xr

j
, if Xi > 0,

0, if Xi = 0,
(3.1)

where M is the set of active players in the contest.

If player i participates in the contest, she maximizes the following objective function

max
Xi

V ·

 ∑
M∈PNi

p|M|(1− p)|Ni\M|Pi(Xi;M)

−Xi, (3.2)

where Ni is the set of player i’s possible opponents, PNi is the set of all subsets of Ni and

|M| denote the cardinality of the set M.

The first order condition for player i is

V ·

 ∑
M∈PNi

p|M|(1− p)|Ni\M| rXr−1
i

∑
j∈M Xr

j

(Xr
i +

∑
j∈M Xr

j )
2

− 1 = 0. (3.3)

We focus on a symmetric equilibrium where X1 = ... = Xn = X∗. Then the first order

condition (3.3) becomes

X∗ = rV ·

 ∑
M∈PNi

p|M|(1− p)|Ni\M| |M|
(|M|+ 1)2

 . (3.4)

Note that there are Cn−1
|M| different ways to make a set which has exactly |M| elements from

the set Ni. Using this fact, we can rewrite the individual spending (3.4) as follows

X∗ = rV ·
(

Cn−1
n−1p

n−1 (n− 1)

n2
+ ... + Cn−1

1 p1 (1− p)n−2 1

22

)
,

where Cn−1
j = (n−1)!

j!(n−j−1)!
.

Now we can state the main result of this section.

Theorem 1. Suppose that 0 < r ≤ n+1
n

. Then, there exists a unique symmetric pure-strategy

equilibrium where each player expenditure is

X∗(r, V, n, p) = rV ·

(
n−1∑
i=1

Cn−1
i pi (1− p)n−i−1 i

(i + 1)2

)
. (3.5)
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Note that the original Tullock’s model is a particular case of our model where all players

participate in the contest with probability 1. Thus, we get the following corollary.

Corollary 3 (Tullock’s individual spending). If 0 < r ≤ n+1
n

and p = 1, then

X∗(r, V, n, 1) =
(n− 1)

n2
rV. (3.6)

3.3 INDIVIDUAL SPENDING

In this section, we examine the impact of each parameter on the individual equilibrium

spending, X∗(r, V, n, p). First, we consider a marginal return and a prize value. It is straight-

forward to see from (3.5) that the individual equilibrium spending is strictly increasing in

both r and V . This means that Tullock’s (p = 1) finding that the individual equilibrium

spending is a strictly increasing function of a marginal return and a prize value is robust to

introducing a stochastic number of players.

Let us move our attention to the remaining parameters, the number of players and the

participation probability. Note that if there are only two potential players, then the individ-

ual equilibrium spending is monotonic (strictly increasing) in the probability of participation,

p, because

X∗(r, V, 2, p) =
rV

4
p. (3.7)

However, our next example demonstrates that the individual equilibrium spending is not

monotonic in the probability of participation for n ≥ 3.

Example 3. Suppose that n = 3 and r = V = 1. Then

X∗(1, 1, 3, 0.8) = 0.222 < X∗(1, 1, 3, 0.9) = 0.225 > X∗(1, 1, 3, 1) = 0.222.

This example shows that the individual equilibrium spending can be higher if there is some

degree of uncertainty (p < 1) than under certainty (p = 1). The following theorem demon-

strates that this observation is true in general: the individual equilibrium spending is single-

peaked in p.
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Theorem 2 (Single-Peak Property). For any n ≥ 3, there exists a unique p∗(n) ∈ (0, 1)

that maximizes the individual equilibrium spending. Moreover, for given r, V , and n,

X∗(r, V, n, p) is single-peaked in p.

In order to see the intuition behind the single-peaked property, let us take a derivative

in equation (3.5) with respect to p

1

rV

∂X∗(r, V, n, p)

∂p
=

n−1∑
i=1

Cn−1
i pi−1(1− p)n−i−1

(
i

i + 1

)2

︸ ︷︷ ︸
Positive effect

−
n−2∑
i=1

Cn−1
i pi(1− p)n−i−2 (n− i− 1)i

(i + 1)2︸ ︷︷ ︸
Negative effect

. (3.8)

There are two competing effects in (3.8) on the individual equilibrium spending: positive

and negative. The positive effect: a player wants to increase her spending, because she faces

just a few opponents and she wants to increase her chance to win in this case. The negative

effect: a player wants to decrease her spending, because she faces a lot opponents and her

chance to win is small, so she does not want to waste a lot of resources in this case. When p is

small (big), the expected number of players is small (big), therefore, the positive (negative)

effect dominates the negative (positive) effect and the individual equilibrium spending curve

increases (decreases). At the peak point the positive and negative effects cancel each other

out. The following identity demonstrates the relationship between two adjacent individual

spending curves and helps to characterize graphically the peak points.

Theorem 3. Suppose that n ≥ 3, then

(n− 1)(X∗(r, V, n, p)−X∗(r, V, n− 1, p)) ≡ p · ∂X∗(r, V, n, p)

∂p
. (3.9)

Since the right-hand side of (3.9) can be equal to zero only at p∗(n) from the single peak

property, the individual equilibrium spending curves X∗(r, V, n, p) and X∗(r, V, n− 1, p) can

only intersect once if p ∈ (0, 1). Moreover, the intersection point must be the peak point of

the curve X∗(r, V, n, p). This gives the following corollary.

Corollary 4. For all n ≥ 2, curve X∗(r, V, n, p) intersects curve X∗(r, V, n + 1, p) at the

peak point of X∗(r, V, n + 1, p).
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What is the participation probability p∗(n) which maximizes the individual equilibrium

spending for given r, V , and n? Although it is hard to obtain an analytical description of

p∗(n) for all n ≥ 2, we can investigate properties of p∗(n). In fact, p∗(n) and X∗(r, V, n, p∗(n))

decrease as n increases. These results are derived directly from the single peak property and

identity (3.9).

Theorem 4. Suppose that r and V are given. Then,

i) p∗(n) strictly decreases as n increases;

ii) X∗(r, V, n, p∗(n)) strictly decreases as n increases.

Theorem 4 shows that the point p∗(n) where the positive and negative effects cancel

each other out “moves to the left” as the number of potential players increases. In other

words, the negative effects becomes stronger as the number of potential players increases.

This observation is intuitive, because more potential players means more expected players,

therefore, the negative effects dominates for smaller participation probabilities.

Let us move our attention to the relationship between individual equilibrium spending

curves with different potential number of players. In the original Tullock’s [89] model, the

individual equilibrium spending is a strictly decreasing function of the number of players.

However, the following example shows that this is not the case under uncertainty, p = 0.8.

Example 4. Suppose that p = 0.8 and r = V = 1. Then

X∗(1, 1, 2, 0.8) = 0.2 < X∗(1, 1, 3, 0.8) = 0.2222 > X∗(1, 1, 4, 0.8) = 0.2053.7

It is possible to describe all participation probabilities where the individual equilibrium

spending is decreasing in the number of participating players. First, we show that any two

individual equilibrium spending curves with different number of potential players cross only

once on the interval p ∈ (0, 1]. The following theorem states it formally.

Theorem 5 (Single-Crossing Property). For any 2 ≤ m < n, there exists a unique p(m, n) ∈

(0, 1) such that

X∗(r, V, m, p(m, n)) = X∗(r, V, n, p(m,n)). (3.10)

7Münster (2006) also points this possibility out.
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Moreover,

X∗(r, V, m, p) < X∗(r, V, n, p), if 0 < p < p(m,n)

and

X∗(r, V, m, p) > X∗(r, V, n, p), if p(m, n) < p < 1.

There are two competing effects on the individual equilibrium spending again. Both

effects are stronger if there are more potential players. Therefore, before two individual

equilibrium spending curves with different number of potential players cross, the curve with

more potential players is always above the curve with less potential players: the positive

effect is stronger. The situation is completely opposite after the curves cross, because the

negative effect is stronger now.

Theorem 5 demonstrates that the individual equilibrium spending curves do not intersect

on the right of p∗(2). Since p∗(2) = 0.9, the following corollary describes all participation

probabilities where the individual equilibrium spending is decreasing in the number of par-

ticipating players

Corollary 5. Suppose that r and V are given and 0.9 < p ≤ 1. Then, the individual

equilibrium spending, X∗(r, V, n, p), is monotonic in n.

All results of this section can be seen on Figure 1.

3.4 TOTAL SPENDING

In this section, we examine the impact of each parameter on the the total equilibrium

spending. Even though in the previous section we show that the individual equilibrium

spending is not monotonic in p and n, here, we demonstrate that the total equilibrium

spending is monotonic in all parameters. Then, we show that ex-post over-dissipation can

occur. Finally, we discuss properties of the total equilibrium spending if the expected number

of players if fixed.
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Figure 20: Equilibrium individual spending when rV = 1.

3.4.1 Properties

Let N∗ and T ∗ denote the ex-ante expected number of players and the ex-ante total equi-

librium spending, respectively. Then

N∗ = Cn
npnn + Cn

n−1p
n−1(1− p)(n− 1) + ... + Cn

1 p(1− p)n−11 = np. (3.11)

Note that the expected number of players is the same as an expectation of the random

variable which follows a binomial distribution B(n, p) where the probability of success is p

and the number of trials is n.

The expected total equilibrium spending is

T ∗(r, V, n, p) = rV ·

(
n∑

i=1

Cn
i pi (1− p)n−i

(
1− 1

i

))
. (3.12)

From equation (3.12), it is straightforward to see that the total spending increases as either

V or r increases.

Consider now how a participation probability and the number of potential players effect

the total equilibrium spending. From Theorem 2 (Theorem 5), it is clear that for a small
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Figure 21: Expected total equilibrium spending. rV = 1.

p < p∗(n) (0 < p < p(m, n), m < n) the expected number of players and the individual

equilibrium spending will both increase if p (n) increases. Therefore, the total equilibrium

spending will increase too. However, if p ≥ p∗(n) (p(m,n) < p < 1), then an increase of p

(n) has two different effects on the expected total equilibrium spending. First, as we can see

in equation (3.11), it always increases the expected number of players. Second, it decreases

the individual equilibrium spending. The following theorem shows that the first effect is

always stronger.

Theorem 6. Suppose that r and V are given. Then,

i) for any n ≥ 2, the expected total equilibrium spending increases as p increases;

ii) for any p ∈ (0, 1], the expected total equilibrium spending increases as n increases.

Theorem 6 shows that the expected total equilibrium spending is monotonic in the par-

ticipation probability and in the number of potential players. Figure 21 illustrates Theorem

6.
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3.4.2 Over-dissipation

In this subsection, we show that ex-post over-dissipation can be a natural feature of the

pure-strategy equilibrium. It happens if the actual number of players in the contest is “much

higher” than the expected number of players.

Denote by RT ∗(r, V, n, p; k) the actual total spending, where k is the actual number of

players. Then in the symmetric equilibrium,

RT ∗(r, V, n, p; k) = k ·X∗(r, V, n, p).

The ex-post over-dissipation takes place if and only if the actual total spending exceeds the

prize value, V . That is,

RT ∗(r, V, n, p; k) = k ·X∗(r, V, n, p) > V. (3.13)

From (3.13) and (3.5), it follows that ex-post over dissipation occurs if

n ≥ k > k∗ :=
1

r ·
(∑n−1

i=1 Cn−1
i pi (1− p)n−i−1 i

(i+1)2

) . (3.14)

It is clear from (3.14) that ex-post over-dissipation never happens if the critical number k∗

is greater than the number of potential players k∗ ≥ n. This happens for small numbers of

potential players, n = 2, 3. For example, if n = 3, we get

V > 0.9V = RT ∗(4/3, V, 3, 0.9; 3) ≥ RT ∗(r, V, 3, p; k), for all r ∈ (0, 4/3] and p ∈ (0, 1].

The smallest number of potential players when ex-post over-dissipation is possible is 4:

RT ∗(5/4, V, 4, 2/3; 4) ≈ 1.049V > V.

Figures 22a and 22b illustrate the ex-post under-dissipation in the case of n = 3 and the

ex-post over-dissipation in the case of n = 10. We can see on Figures 22b that ex-post

over-dissipation can occur if k ≥ 6. Moreover, the range of p where ex-post over-dissipation

can occur becomes wider as k increases.

It is important to note that ex-post over-dissipation never takes place in the certain

world, p = 1, because the actual number of players is the same as the expected number of
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Figure 22: (a) realized total spending when n = 3 (b) realized total spending when n = 10

players in this case. Therefore, some uncertainty must be present, p < 1, in order to have

ex-post over-dissipation. This intuition is similar to the idea behind Baye, et al. [13][14]

who show that ex-post over-dissipation can take place as a particular realization of a mixed-

strategy equilibrium.

We summarize this subsection in the following theorem.

Theorem 7. Ex-post over-dissipation takes place if and only if condition (3.14) holds. More-

over, if n = 2 or 3, the ex-post over-dissipation never occurs; for any n ≥ 4 there exist

p ∈ (0, 1) and r ∈ (0, n+1
n

] such that ex-post over-dissipation is possible.

The possibility of ex-post over-dissipation is reminiscent to Proposition 3 in Levin and

Smith [67]. They study auctions with stochastic entrants and show that in the common-value

auction “without the entry fee, entry would be excessive from social and private points of

view.”

3.4.3 The same expected number of players

In this subsection, we fix the expected number of players, n = np, and compare the total

equilibrium spending across the total-equilibrium-spending curves in Figure 2. In particular,
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we are interested to compare the total equilibrium spending in the certain (if p = 1, n = n),

T ∗(r, V, n, 1), and in uncertain cases (if 0 < p = n
n

< 1, n > n), T ∗(r, V, n, n
n
). Note that the

expected number of players is the same in both cases.

From equations (3.6) and (3.12), we obtain

T ∗(r, V, n, 1) = rV
(n− 1)

n

and

T ∗(r, V, n,
n

n
) = rV ·

(
n∑

i=1

Cn
i

(
n

n

)i(
1− n

n

)n−i(
i− 1

i

))
. (3.15)

The following theorem presents the main result of this subsection that the total equilibrium

spending is strictly lower in any uncertain case in comparison with the certain case.

Theorem 8. Suppose that n ≥ 2. Then

T ∗(r, V, n, 1) > T ∗(r, V, n,
n

n
),

for any n > n.

Theorem 8 shows that uncertainty about the actual number of players induces lower ex-

ante under-dissipation. This result is consistent with Myerson and Wärneryd’s [80] finding

for another distribution of potential players. They consider a contest with infinitely many

potential players where the number of players is a random variable with expectation µ > 1

and show that the total equilibrium spending is strictly lower in such a contest than in a

contest where the number of players is known with certainty to be µ.
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3.5 CONCLUSION

We consider Tullock’s n-player contest where each player has an independent probability to

participate. We find a unique symmetric equilibrium and analyze its properties.

There are several natural extensions of our paper. It will be interesting to test our

theory in the experimental lab. In particular, our predictions about single-peak and single-

crossing properties of the individual equilibrium spending and the monotonicity of the total

equilibrium spending should be checked.

Finally, the actual number of players in our contest follows the Binomial distribution,

B(n, p). This assumption captures the main source of the population uncertainty that results

from the uncertainty each individual faces. Moreover, it is a well-know result that the

binomial distribution converges towards the Poisson distribution with parameter λ = np as

n goes to infinity while the product np remains fixed.8 In this sense, we analyze a finite

version of the “Poisson contest.”

8See, for example, Feller [35].

91



APPENDIX A

PROOFS AND CALCULATIONS FOR CHAPTER 1

Proof of Proposition 1. First, consider the principal’s incentives on the equilibrium path.

After observing p∗, the principal updates her belief by Bayes’ rule, i.e.

ρ(θ|p∗) =
µA(p∗|θ)f(θ)∫ 1

0
µA(p∗|θ′)f(θ′)dθ′

= f(θ), ∀θ ∈ [0, 1]

Under this belief, the principal’s optimal action after observing p∗ is

yP (p∗) = arg max
y

∫ 1

0

UP (y, θ)f(θ)dθ = yP

Then the principal would get the expected payoff
∫ 1

0
UP (yP (p∗), θ)dθ = −σ from rejecting

p∗ whereas she would get p∗ − l(b) from accepting p∗. Since p∗ ≥ l(b)− σ, the principal has

no incentive to reject p∗.

Second, consider the principal’s incentives off the equilibrium path. Notice that we are

completely free to take any out-of-equilibrium path belief. Let us take the following out-of-

equilibrium-path belief for any p < p∗:

ρ(θ|p) =

 0 ∀θ ∈ (0, 1],

1 if θ = 0.

In words, this implies that the principal is so certain and confident that she believes the true

state of the world is θ = 0 for sure whenever she observes any p < p∗. Under the belief we

take, yP (p) = 0 for any p < p∗. Then the principal would get 0 in expectation from rejecting
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any p < p∗ while she would get p− l(b) from accepting it in expectation. Since p < p∗ ≤ l(b),

the principal rejects the offer p.

Let us take the following out-of-equilibrium-path belief for any p > p∗:

ρ(θ|p) = f(θ)

Under the belief we take, yP (p) = µ for any p > p∗. Then the principal would get −σ

in expectation from rejecting any p > p∗ while she would get p − l(b) from accepting it in

expectation. Since p∗ ≥ l(b)− σ, the principal accepts the offer p.

Third, consider the agent’s incentives. Given the principal’s strategy and belief above, if

the agent type θ makes an acceptable offer p > p∗ then her expected utility is −p < −p∗. If

the agent type θ makes an unacceptable offer p < p∗, then she gets −l(|θ+b|) < −l(b) ≤ −p∗.

If the agent type θ offers p∗ then she gets −p∗ because the principal would accept this offer

and the agent chooses her optimal action yA(θ, p∗) = θ + b. Notice that p∗ ≤ l(b). Since any

agent type in [0, 1] would get a payoff less than −p∗ by offering any p 6= p∗, offering p∗ with

probability 1 is optimal for all agent types in [0, 1]. This completes the proof.

Proof of Lemma 1. The proof of Lemma ?? consists of three claims. Let P ≡ {p|dP (p) =

1 and yP (p) = y}. We say that principal’s action y is induced by an agent type θ if∫
P

µ(p|θ)dp > 0.

Claim 1. In any equilibrium, for every action y, the set of agent types who induce principal’s

action y is an interval. If this interval has a nonempty interior, then all types in the interior

induce only action y.

Proof. To get a contradiction, suppose that agent types θ1 and θ2 with θ1 < θ2 both induce

the principal’s action y, but an agent type θ3 ∈ (θ1, θ2) induces the principal’s action y1 > y.

Then since UA
12(y, θ, b) > 0, agent type θ2 strictly prefer y1 to y. Thus, types θ3 ∈ (θ1, θ2)

never induce an action y1 > y. Similarly, types θ3 ∈ (θ1, θ2) never induce an action y2 < y,

because otherwise, by single crossing property agent type θ1 strictly prefer y2 to y. Hence

agent types in the interval (θ1, θ2) have no incentive to induce actions different from y.
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Next, let us show that the agent type θ3 has no incentive to make an acceptable offer. To

see this, suppose that the agent type θ3 ∈ (θ1, θ2) makes an acceptable price offer, denoted

by ω. Then revealed preference yields UA(y, θ1, b) ≥ −ω and UA(y, θ2, b) ≥ −ω. However,

by the concavity of UA in θ, UA(y, θ3, b) > −ω. That is, the agent type θ3 strictly prefers to

induce the action y rather than make the acceptable price offer ω. This is a contradiction.

Thus, agent types in the interval (θ1, θ2) have no incentive to make an acceptable offer. This

completes the proof.

Claim 2. In any equilibrium, for any principal’s action y, y is in the interior of the set of

agent types who induce the action.

Proof. Let y denote the action taken by the principal after rejecting p. By Lemma 1, the set

of agent types who induces the action y is an interval. f > 0 and the concavity of UP in y

complete the proof.

Claim 3. There is no equilibrium in which a positive measure of agent types makes an

unacceptable offer.

Proof. To get a contradiction, suppose that an unacceptable price offer p is made by a positive

measure of agent types in equilibrium. Let y denote the action taken by the principal after

rejecting p. By Claim 1 and 2, the set of agent types who induces the action y can be denoted

by [x, z] where 0 ≤ x < y < z ≤ 1. By the concavity of UA in θ, we have

UA(y, θ, b) < UA(y, y, b) = −l(b), ∀θ ∈ (y, z] (A.1)

However, by the sequential rationality (BA2′) the principal should accept any price offer

p > l(b) because she expects to get at most 0 from rejecting it while she expects to get

p− l(b) > 0 from allowing the agent to take an action by accepting it. This implies that we

are always able to find ε > 0 such that the acceptable price offer l(b) + ε is profitable for

these agent types. This leads to a contradiction.

Proof of Lemma 2. I claim that Pα ∩ Po is a singleton.
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Proof. To get a contradiction, suppose that p′, p′′ ∈ Pα∩Po where p′ > p′′. Then there exist

θ′, θ′′ ∈ [0, 1] (possibly θ′ = θ′′) such that µA(p′|θ′) > 0 and µA(p′′|θ′′) > 0. Since p′, p′′ ∈ Pα,

dP (p′) = 0 and dP (p′′) = 0. Then from (BA1′), the agent type θ′ gets −p′ if she makes

the offer p′ while she gets −p′′ if she makes the offer p′′. Since p′ > p′′, making the offer p′′

is profitable for the agent type θ′. This is a contradiction. This implies that two different

prices cannot be accepted in equilibrium.

Proof of Proposition 3. From Lemma 1 and 2, the set of agent types making an unac-

ceptable price offer is either a singleton or an empty set. Suppose that it is a singleton. Let

θ̂ denote the agent type making the unacceptable price offer. Let p∗ denote an acceptable

price offer in the equilibrium. Since the agent type θ̂ reveals a weak preference for making

the unacceptable price offer over making the acceptable price offer, we have

p∗ ≥ l(b). (A.2)

Moreover, any agent types except θ̂ reveal a weak preference for making the acceptable price

offer over making the unacceptable price offer, we have

−l(θ̂ − θ − b) ≤ −p∗, ∀θ ∈ Θ \ {θ̂}. (A.3)

By (A.2) and (A.3), we have

θ̂ = 0 and l(b) = p∗.

This implies that any equilibria with informative price offer have to be outcome equivalent

to the equilibrium demonstrated in Proposition 2.

Now, suppose that the set of agent types making an unacceptable price offer is empty.

Suppose that all agent types in [0, 1] make an acceptable price offer p < l(b) − σ. Notice

that the principal would get p− l(b) < −σ from accepting the offer. However, rejecting the

offer is profitable for the principal because she can get the expected payoff −σ by choosing

yP (p) = yP . This is a contradiction. Suppose that all agent types in [0, 1] make an acceptable

price offer p > l(b). Suppose that the principal would take an action y ∈ [0, 1] if the
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equilibrium price offer p is rejected. Since all agent types in [0, 1] reveal a weak preference for

making an acceptable price offer over making an unacceptable price offer, we have ∀y ∈ [0, 1],

−l(y − θ − b) ≤ −p, ∀θ ∈ [0, 1].

This implies that p ≤ l(b) which leads to a contradiction. Therefore, any equilibria with an

uninformative price offer have to be outcome equivalent to one of the equilibrium demon-

strated in Proposition 1.

Proof of Proposition 5. Suppose that there is a separating equilibrium. Then the agent

type θ induces either the principal’s action yP = θ after the rejection, the agent’s action

yA = θ + b after the acceptance, or both with positive probability. Since two different price

offers cannot be accepted with probability 1 in equilibrium, there is at most one agent type

who makes an acceptable price offer. Moreover, the principal randomizes accepting and

rejecting only if she is indifferent between them, i.e. p − l(b) = 0. Hence, there is at most

one agent type who makes the price offer of which the principal randomizes accepting and

rejecting. This implies that there are at most two agent types who make the offer accepted

with positive probability. Thus, almost all agent types in [0, 1] make a price offer rejected

with probability 1 in this separating equilibrium. Therefore, we can choose one agent type,

denoted by θ1, who makes an offer rejected with probability 1 such that there exists an agent

type θ2 ∈ (θ1, θ1 + b] who also makes an offer rejected with probability 1 for any b > 0. Since

−l(|θ1 − θ1 − b|) = −l(b) < −l(|θ2 − θ1 − b|), the agent type θ1 has an incentive to pretend

to be an agent type θ2. This is a contradiction.

Calculations for Example 1. In order to verify that the strategy forms a perfect Bayesian

equilibrium with some belief, let us consider the principal’s incentive on the equilibrium path.

After observing p1, the principal updates her belief by Bayes’ rule, i.e.

ρ(θ|p1) =
µA(p1|θ)∫ 1

0
µA(p1|θ′)dθ′

=

 1
θ1

if θ ∈ (0, θ1],

0 otherwise.
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Under this belief, the principal’s optimal action after observing p1 is

y1 = arg max
y

∫ 1

0

−(y − θ)2 · ρ(θ|p1)dθ =
θ1

2

Notice that the expected payoff from accepting p1 is exactly the same as the expected payoff

from rejecting p1 because

∫ 1

0

−(y1 − θ)2 · ρ(θ|p1)dθ = −(θ1)
2

12
= p1 − b2.

Hence, the principal is indifferent between accepting and rejecting p1. Therefore, any

dP (p1) ∈ [0, 1] is sequentially rational. Applying the same logic to p2 allows us to con-

clude that the principal is indifferent between accepting and rejecting p2 so that rejecting p2

with probability 1 is also sequentially rational.

Second, let us look at the principal’s incentive off the equilibrium under the following

beliefs;

ρ(θ|p) =

 0 if θ ∈ (0, 1],

1 if θ = 0
for any p < b2 and p 6= p1, p2,

and

ρ(θ|p) = 1 for any p ≥ b2.

Suppose that the out-of-equilibrium price offer is p < b2. Then the principal’s action, which

is sequentially rational under the belief we take, is yP (p) = 0. Then the principal’s expected

payoff from rejecting any p < b2 is 0 while she would expect to get p− b2 < 0 from accepting

the offer. Therefore, the principal rejects the offer whenever p < b2. On the other hand,

suppose that the out-of-equilibrium price offer is p ≥ b2. Then the principal’s action, which

is sequentially rational under the belief we take, is 1
2
. Then the principal would expect to

get − 1
12

from rejecting any p ≥ b2 while her expected payoff from accepting the offers is

p− b2 ≥ 0. Thus, the principal accepts the price offer whenever p ≥ b2.

Third, consider the agent’s incentives. Let us define the agent type θ’s expected utility

from making a price offer pi as follows;

EU(θ, pi) = −(yi − θ − b)2 · dP (pi)− (1− dP (pi)) · pi. (A.4)
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We will show that any agent of type θ ∈ (θn−1, θn) has no incentive to make an offer pm

where m 6= n. By the strict concavity of EU(θ, p1) on θ and the linearity of EU(θ, p2) on θ,

it is sufficient to show that the boundary type θ1 is indifferent between making the offers p1

and p2. Formally, we need to find θ1 ∈ (0, 1) such that

EU(θ1, p1) = EU(θ1, p2). (A.5)

Plugging equation (??) into (??) gives the following;(
θ1

2
+ b

)2

· dP (p1) +

(
b2 − θ2

1

12

)
· (1− dP (p1)) = b2 − (1− θ1)

2

12
. (A.6)

After some rearrangement, we have

4dP (p1)θ
2
1 + 2(6bdP (p1)− 1)θ1 + 1 = 0. (A.7)

Since dP (p1) 6= 0, the above equation can be treated as a polynomial in θ1. Therefore,

θ1 =
(1− 6bdP (p1))±

√
(1− 6bdP (p1))2 − 4dP (p1)

4dP (p1)
. (A.8)

To complete our discussion on the existence of monotonic informative equilibrium, it is

necessary to show that there exist dP (p1) ∈ (0, 1) and θ1 ∈ (0, 1) that satisfy the equation

(??). It is easy to verify that equation (A.8) is satisfied by the following parameters:

θ1 = 0.6 and dP (p1) =
5

36(1 + 5b)
.

Since 0 < 5
36(1+5b)

< 1 for all b > 0, we conclude that for any b > 0, there exists a (two-step)

monotonic perfect Bayesian equilibrium with informative price offers.

Calculations for Example 2. Let us look at the principal’s incentive. Under the strategy

profile above, if the principal observes the price offer p1 she then updates her belief by Bayes’

rule, i.e.

ρ(θ|p1) =

 1
1+θ1−θ2

if θ ∈ [0, θ1] ∪ [θ2, 1],

0 if θ ∈ (θ1, θ2).
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The principal’s optimal action y1 after rejecting p1 is the following;

y1 = arg max
y

∫ 1

0

−(y − θ)2ρ(θ|p1)dθ =
1 + θ2

1 − θ2
2

2(1 + θ1 − θ2)
=

13

50
(A.9)

If the principal observes the price offer p2 then she again updates her belief by Bayes’ rule,

i.e.

ρ(θ|p2) =

 1
θ2−θ1

if θ ∈ (θ1, θ2),

0 otherwise.

The principal’s optimal action y2 after rejecting p2 is the following;

y2 = arg max
y

∫ 1

0

−(y − θ)2ρ(θ|p2)dθ =
θ1 + θ2

2
=

37

50
(A.10)

Thus, the principal’s actions induced by the price offers on the equilibrium path are sequen-

tially rational under the posterior belief derived from Bayes’ rule. It is easy to see that the

principal’s out-of-equilibrium strategy is sequentially rational if we have the same belief as

in the previous example.

Since the principal should be indifferent between accepting and rejecting p1, we have

p1 = b2 +

∫ 1

0

− (y1 − θ)2 ρ(θ|p1)dθ = b2 +
(y1 − θ1)

3 − y3
1 + (y1 − 1)3 − (y1 − θ2)

3

3(1 + θ1 − θ2)
=

29081

30000
(A.11)

Similarly, we have

p2 = b2 +

∫ 1

0

− (y2 − θ)2 ρ(θ|p2)dθ = b2 − (θ1 − θ2)
2

12
=

47

48
(A.12)

To see that the agent’s price offers are incentive compatible, it is sufficient to show that

the boundary types θ1 and θ2 are indifferent between making the offer p1 and p2. From these

arbitrage conditions, we get

EU(θ1, p1) = EU(θ1, p2) (A.13)

and

EU(θ2, p1) = EU(θ2, p2), (A.14)

where the agent type θ’s expected payoff from making the offer pi is

EU(θ, pi) = −(yi − θ − b)2dP (pi)− (1− dP (pi))pi.
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From (A.9), (A.10), (A.11), (A.12), (A.13), and (A.14), we get

dP (p1) = 0.00844682 and dP (p2) = 0.0125013.

It remains to show that no agent type has an incentive to deviate to offers off the

equilibrium path. This is equivalent to showing that all agent types who make the offer pi

get higher expected payoff than −b2 for all i = 1, 2. Formally, we need to show that

EU(θ, p1) > −b2, ∀θ ∈ [0, θ1] and EU(θ, p2) > −b2, ∀θ ∈ (θ1, 1] (A.15)

Notice that two indifference conditions and the convexity of utility function on θ guar-

antee that for any θ ∈ [0, θ1] ∩ [θ2, 1], EU(θ, p1) > EU(1, p1) and for any θ ∈ [θ1, θ2],

EU(θ, p2) > EU(1, p1). Since we have EU(1, p1) = −0.986752 > −1 = −b2, there is no

agent type who wants to deviate to any other price offers. This completes our discussion on

the existence of non-monotonic equilibria.

Proof of Proposition 7. First, consider the principal’s incentives on the equilibrium

path. After observing pn, the principal updates her belief using Bayes rule, i.e.

ρ(θ|pn) =
µA(pn|θ)∫ 1

0
µA(pn|θ′)dθ′

=

 1
θn−θn−1

if θ ∈ (θn−1, θn],

0 otherwise.

Under this belief, the principal’s optimal action after observing pn is

yP (pn) = arg max
y

∫ 1

0

−(y − θ)2 · ρ(θ|pn)dθ =
θn−1 + θn

2

Rewriting this by using (a) gives us the following:

yP (pn) =
(2n− 1)x

2
− (n− 1)2δ

2
.

Notice that the expected payoff from accepting pn is exactly the same as the expected payoff

from rejecting pn because∫ 1

0

−(yP (pn)− θ)2 · ρ(θ|pn)dθ = −(x− (n− 1)δ)2

12
= pn − b2

Hence, the principal is indifferent between accepting and rejecting pn for any n = 1, ...N .
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Second, consider the principal’s incentives off the equilibrium path. Suppose that the out-

of-equilibrium price offer p < b2. Then the principal’s action which is sequentially rational

under the belief we take is yP (p) = 0. Then the principal would get 0 in expectation from

rejecting any p while she would get p− b2 < 0 from accepting it in expectation. Therefore,

the principal rejects the offer whenever p < b2. On the other hand, suppose that the out-

of-equilibrium price offer p > b2. Then the principal’s action which is sequentially rational

under the belief we take is yP (p) = 1
2
. Then the principal would get − 1

12
in expectation from

rejecting any p > b2 while she would get p− b2 from accepting it in expectation. Thus, the

principal accepts the price offer whenever p > b2.

Third, consider the agent’s incentives. We will show that we can choose δ ∈ (0, 1) and

x ∈ (0, 1) such that the agent’s price offers are incentive compatible. As a first step, we will

show that any agent type θ ∈ (θn−1, θn) has no incentive to make an offer pm where m 6= n.

As a second step, we will show that any agent type θ ∈ [0, 1] has no incentive to make an

offer off the equilibrium path.

Given yn, pn, d∗ and θn, let us define the agent type θ’s expected utility from making a

price offer pn as follows;

EU(θ, pn) = −(yn − θ − b)2 · d∗ − (1− d∗) · pn. (A.16)

Then, it is easy to see that

EU(θn, pn) =
b(−12b2 + x2 + n(n− 1)δ2 + (x(1− 2n)− 4b)δ)

4(3b + δ)
= EU(θn, pn+1) (A.17)

Therefore, the following arbitrage condition hold for all n = 1, ......, N − 1.

EU(θn, pn) = EU(θn, pn+1). (A.18)

We need to show that for any θ ∈ (θn−1, θn),

EU(θ, pn) ≥ EU(θ, pm), ∀m 6= n.

By the arbitrage condition and the strict concavity of EU(θ, p) on θ, this is the same as

showing that

EU(θn, pn)− EU(θn, pm) ≥ 0, ∀m 6= n. (A.19)
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From equation (??), we have

EU(θn, pn)− EU(θn, pm) = −(yn − θn − b)2d∗ − (1− d∗)pn + (ym − θn − b)2d∗ + (1− d∗)pm

=
δ

16(3b + δ)
(m− n)(m− n− 1)(−2x + (m + n− 2)δ)(−2x + (m + n− 1)δ). (A.20)

Notice that the length of each interval should be positive, i.e.

x− (n− 1)δ > 0. (A.21)

Then,

−2x + (m + n− 2)δ < (m− n)δ, and − 2x + (m + n− 1)δ < (m− n + 1)δ. (A.22)

Thus, if m ≤ n− 1 then

EU(θn, pn)− EU(θn, pm) >
δ3

16(3b + δ)
(m− n)2((m− n)2 − 1) ≥ 0. (A.23)

Suppose that m ≥ n + 1. Then the choice of δ ∈ (0, 2x
m+n−1

) gives us

(−2x + (m + n− 2)δ) < 0 and (−2x + (m + n− 1)δ) < 0, (A.24)

so that condition (A.19) holds. Choose δ = δ∗1 ∈ (0, x
N−1

). Then, for all n = 1, ....N ,

EU(θn, pn) ≥ EU(θn, pm), for all m 6= n (A.25)

It remains to show that for all n = 1, ...., N , EU(θ, pn) > −b2 for any agent type

θ ∈ (θn−1, θn). Since EU(θn, pn) < EU(θ, pn) for all θ ∈ (θn−1, θn), it is sufficient to show

that EU(θn, pn) > −b2. From equation (A.16), we have

EU(θn, pn) + b2 =
b(x2 + n(n− 1)δ2 + nδ(1− 2n))

4(3b + δ)
. (A.26)

Therefore, if we choose δn ∈ (0, x2

n(2n−1)
), then EU(θn, pn) + b2 > 0. Since N is finite, we can

choose δ∗2 = min{δ1, δ2, ..., δN}. Take δ = min{δ∗1, δ∗2}.

Notice that from the condition (a) and (b) we have δ = 2x
N−1

− 2
(N−1)N

. To complete

this proof, we need to show that there exists x ∈ (0, 1) such that δ ∈ (0, min{δ∗1, δ∗2}] =
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(0, min{ x
N−1

, x2

N(2N−1)
}]. Take x = 1

N
+ ε with arbitrarily small ε > 0. Then δ = ε

N−1
. Since

both δ∗1 and δ∗2 are strictly increasing in x, min{δ∗1, δ∗2} > min{ 1
N(N−1)

, 1
N3(2N−1)

} = 1
N3(2N−1)

.

It is straight forward to see that with an arbitrarily small ε > 0 (or more precisely when

0 < ε < N−1
N3(2N−1)

), δ = ε
N−1

< 1
N3(2N−1)

so that δ ∈ (0, min{δ∗1, δ∗2}]. This completes the

proof.

Proof of Proposition 8. The first result is directly from the previous discussion. It remains

to show that EUA ∈ (−b2, σ− b2). Before I show this, I will first show that dP (p(θ)) ∈ [0, 1
2
]

for all θ ∈ [0, 1] and use this to prove the result. Take an arbitrary price offer p0 on the

equilibrium path and let Θ0 be the set of all agent types who make the offer p0. Let σ0 denote

the conditional variance of θ, i.e. σ0 = V ar(θ|θ ∈ Θ0). Then by (ID − P ), p0 = b2 − σ0.

Moreover, in order for any agent types in Θ0 not to have an incentive to deviate to off the

equilibrium price offers, it is necessary that

−dP (p0) · (yP (p0)− θ − b)2 − (1− dP (p0))(b
2 − σ0) ≥ −b2. (A.27)

Take integral with respect to θ in both sides. After some rearrangements, we get

dP (p0)(−2σ2
0) + σ2

0 ≥ 0 or dP (p0) ≤
1

2
(A.28)

This is true for any equilibrium price offers so that we have dP (p(θ)) ∈ [0, 1
2
] as was to be

shown.

Next, to get the upper bound of EUA, let us rearrange (1.9).

EUA = −
∫ 1

0

p(θ)f(θ)dθ + 2

∫ 1

0

dP (p(θ)){p(θ)− b2}f(θ)dθ.

Since p(θ)− b2 ∈ (−σ, 0), p(θ) ∈ (b2 − σ, b2), and dP (p(θ)) ∈ [0, 1
2
] for all θ ∈ [0, 1], we have

−σ − b2 < EUA < σ − b2. (A.29)

In order for the agent type not to have an incentive to deviate to off-the-equilibrium-path

price offers,

−(yP (p(θ))− θ − b)2dP (p(θ))− (1− dP (p(θ)))p(θ) ≥ −b2, ∀θ ∈ [0, 1].
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The non-existence of fully separating equilibrium gives

−(yP (p(θ))− θ − b)2dP (p(θ))− (1− dP (p(θ)))p(θ) > −b2, for some θ ∈ [0, 1].

Taking integral with respect to θ in both sides gives

EUA > −b2. (A.30)

From (A.29) and (A.30), we have EUA ∈ (−b2, σ − b2). This completes our proof.

Proof of Proposition 10. First, we claim that the perfect Bayesian equilibrium with

p∗ = l(b) − σ demonstrated in proposition 1 satisfies the condition (BA5). To see this,

suppose that the principal observes the deviation p < p∗ and hypothesizes that a subset Θ′

of Θ is responsible for the deviation. Let yP (Θ′) be the principal’s optimal action under the

posterior belief that is the prior belief renormalized over Θ′. Then the principal’s expected

payoff from rejecting the deviation is
∫

Θ′ U
P (yP (Θ′), θ) ·ρ(θ|p)dθ ≥ −σ. Since the principal’s

expected payoff from accepting the deviation is p − l(b) < −σ, the principal rejects the

deviation. Then the agent type θ gets UA(yP (Θ′), θ, b) from offering the deviation while she

gets −p∗ = σ − l(b) in equilibrium. In order for Θ′ to be a consistent interpretation for the

deviation p, we need the following condition:

σ − l(b) < UA(yP (Θ′), θ, b), ∀θ ∈ Θ′. (A.31)

After rearranging the righthand side of the equation , we get

σ < l(b)− l(|θ − yP (Θ′) + b|), ∀θ ∈ Θ′. (A.32)

Since yP (Θ′) ∈ C(Θ′), where C(Θ′) is the convex hull of Θ′, there exists θ ∈ Θ′ such that

θ > yP (Θ′). Then at θ > yP (Θ′), l(b) < l(|θ − yP (Θ′) + b|) so that we have

σ < 0,

which leads to a contradiction. Therefore, any deviation p < p∗ cannot have a consistent

interpretation.
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Similarly, suppose that the principal observes the deviation p > p∗ and hypothesize that

a subset Θ′ of Θ is responsible for the deviation. If the sequential rationality determines

that the principal accepts the deviation, then the agent type θ gets −p < −p∗ from offering

the deviation. Therefore, there is no agent type who wants to offer the deviation. If the

sequential rationality determines that the principal rejects the deviation, then the agent

type θ gets −l(|yP (Θ′)− θ− b|) from offering the deviation while she gets −p∗ = σ− l(b) in

equilibrium. Then, we get the condition (A.31) again for Θ′ to be a consistent interpretation

for the deviation p. This is a contradiction. Therefore, any deviation p > p∗ of the perfect

Bayesian equilibrium cannot have a consistent deviation.

Second, I claim that in any perfect Bayesian equilibrium with p∗ 6= l(b)− σ, a deviation

p̂ = p∗ − ε (with arbitrarily small ε > 0 so that p̂ > l(b) − σ) has a consistent interpre-

tation Θ = [0, 1]. To prove this, suppose that the principal observes the deviation p̂ and

hypothesizes that all agents types are responsible for the deviation. Then the principal’s

posterior belief is the same as the prior belief. Given this belief, the principal optimally

chooses an action µ if he rejects the deviation and his expected payoff is −σ. If he accepts

the deviation, then he also gets the expected payoff (p∗ − ε) − l(b) > −σ. Thus, it is op-

timal for the principal to accept the deviation. Then the agent type θ gets −p̂ = σ − l(b)

from the deviation while he gets −p∗ < −p̂. Therefore, all agent types in [0, 1] strictly prefer

their payoffs from offering the deviation to their equilibrium payoff. This completes the proof.

Proof of Proposition 11. Suppose that b < l−1(σ). Take any informative perfect Bayesian

equilibrium and consider a deviation p̂ = 0. Suppose that the principal hypothetically as-

sumes that p̂ is from [0, 1]. Then the principal accepts the offer because accepting the offer

gives −l(b) while rejecting it gives −σ. Notice that, for all θ ∈ [0, 1], the equilibrium payoff

of the agent type θ is strictly less than 0. Thus, all agent types in [0, 1] strictly prefer mak-

ing p̂ to making equilibrium price offers. This implies that the deviation p̂ has consistent

interpretation [0, 1], which destroys the original equilibrium.
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APPENDIX B

PROOFS FOR CHAPTER 2

Proof of Lemma 4. First, any price offer p < 0 is accepted by all agent types because for

any θ ∈ [0, 1], UA(y, θ, b) < −p for any action y ∈ R. Thus, in the remainder of the proof,

take p ≥ 0. Let y denote the principal’s action induced by the offer p. Suppose that an

agent type θ ∈ [0, 1] accepts the price offer p with positive probability in equilibrium. Then

we have UA(y, θ, b) ≤ −p. By continuity, there exists θp ∈ [0, 1] such that UA(y, θp, b) = −p.

(Otherwise, we have UA(y, θ, b) < −p for any θ ∈ [0, 1] so that all agent types accept the

offer, which means the proof is done.) Now, suppose that θp > θ. Then by quasi-concavity

of UA, the set of agent types who reject p with probability one is (θp, θ
′] with θp < θ′ ≤ 1.

Since the agent type θ′ rejects the offer, we have UA(y, θ′, b) ≥ −p. However, by (B4) and

Bayes’ rule, we have y = y(θp, θ
′) and by Condition 1, UA(y, θ′, b) < UA(y, θp, b) = −p, which

leads to a contradiction. Thus, we have θp ≤ θ. Then, by the strict-concavity of UA, we

get UA(y, θ, b) < −p for all θ > θp. This implies that under Condition 1, the monotonic-

ity holds. We complete our proof by pointing out that the uniform prior satisfies Condition 1.

Proof of Proposition 14. Lemma 4 implies that for any p ∈ R, both Θ(p) and Θ−1(p)

are convex if they are non-empty. Further, Θ(p) cannot be to the left of Θ−1(p). These

guarantee that for any p ∈ R there is at most one agent type who is indifferent between

accepting and rejecting the offer. Let θp ∈ [0, 1] denote the agent type if it exists. Then we

can write that Θ(p) = (θp, 1] and Θ−1(p) = [0, θp). From the indifference condition at θp we
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have

p = l(|yP (p)− θp − b|), (B.1)

where

yP (p) = arg max
y

∫ θp

0

−l(|y − θ|) · f(θ)

F (θp)
dθ = y(0, θp). (B.2)

Notice that y(0, θp) < θp. Then from (??), we have

θp = y(0, θp) + l−1(p)− b. (B.3)

Then the principal chooses p∗ to solve

max
p∈R

EUP =

∫ θp

0

−l(|yP (p)− θ|)dθ + (1− θp)(p− l(b)) (B.4)

s.t. (??).

Since, from (B.2), ∂yP (p)
∂θp

= ∂y(0,θp)

∂θp
and f has a full support, 0 < ∂yP (p)

∂θp
< 1. From (B.3),

we have
∂θp

∂p
=

∂yP (p)

∂θp

· ∂θp

∂p
+

∂l−1(p)

∂p
.

After some rearrangement, we get

∂θp

∂p
=

1

1− ∂yP (p)
∂θp

· ∂l−1(p)

∂p
.

Since ∂l−1(p)
∂p

≥ 0, we have ∂θp

∂p
≥ 0. This, together with 0 < ∂yP (p)

∂θp
< 1, implies that

∂yP (p)
∂p

> 0. Taking a derivative in (??) w.r.t. p yields

∂EUP

∂p
=

∂θp

∂p
· (−l(|y(0, θp)− θp|)− p + l(b)) + (1− θp). (B.5)

At θp = 0, we have

∂EUP

∂p

∣∣∣
θp=0

=
∂θp

∂p

∣∣∣
θp=0

· (l(b)− l(b)) + (1− 0) = 1 > 0. (B.6)

At θp = 1, we have

∂EUP

∂p

∣∣∣
θp=1

=
∂θp

∂p

∣∣∣
θp=1

· (−l(|y(0, 1)− 1|)− l(|1− y(0, 1) + b|) + l(b)) < 0. (B.7)
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Taking a derivative in (B.5) w.r.t. p yields

∂2EUP

∂p2
=

∂2θp

∂p2
· (−l(|y(0, θp)− θp|)− p + l(b))

+
∂θp

∂p
· (−l′(|y(0, θp)− θp|) · (−

∂y(0, θp)

∂p
+

∂θp

∂p
)− 1)− ∂θp

∂p
. (B.8)

It is routine to verify that
∂2EUP

∂p2
< 0 if θp ∈ [0, 1].

Therefore, by continuity, the principal’s optimal price offer p∗ is unique and θp∗ ∈ [0, 1]. This

completes our proof.

Proof of Proposition 16. Note that for any θ ∈ Θ, the agent’s payoff in the truth-

telling equilibrium is −l(b). Any singleton subset of Θ could not be self-signaling because

sending a neologism message by himself reveals his true type to the principal so that the

agent type in the set could not get more than −l(b). Thus, suppose that an arbitrary non-

singleton subset Θ̂ of Θ sends a neologism message m̂ to the principal. Let p̂ denote the

price offer induced by Θ̂. Then p̂ ≥ l(b) because, otherwise, all agent types in Θ would be

strictly better off by accepting the offer p̂ which implies Θ̂ = Θ. However, by Lemma 4,

making the price offer p̂ < l(b) is never optimal for the principal who believes that Θ̂ = Θ.

Thus, the price offer induced by Θ̂ is greater than or equal to l(b). In order for the neologism

m̂ to be credible, all agent types in Θ̂ should reject p̂ since accepting p̂ gives them at most

−l(b). However, rejecting p̂ cannot give all agent types in Θ̂ higher payoff than −l(b) either

because the principal’s action induced by Θ̂, denoted by yP (p̂), is always in the interior of

C(Θ̂), convex hull of Θ̂, and as a result, there always exist some agent types to the right

of yP (p̂) who get strictly less payoff than −l(b). Therefore, m̂ cannot be a credible neologism.

Proof of Proposition 19. It suffices to show that for an arbitrary subset S of Θ such

that for any θ ∈ S x(θ) = x and p(θ) = p ,

∫
S

[UP (yP (p), θ) + UA(yP (p), θ, b)]f(θ)dθ ≤ −l(b) = −b2. (B.9)
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It is well-known from cheap-talk literature that∫
S

UA(yP (p), θ, b)f(θ)dθ =

∫
S

UP (yP (p), θ)f(θ)dθ − b2.

Therefore, we get∫
S

[UP (yP (p), θ) + UA(yP (p), θ, b)]f(θ)dθ =

∫
S

2UP (yP (p), θ)f(θ)dθ − l(b) ≤ −l(b) = −b2.
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APPENDIX C

PROOFS FOR CHAPTER 3

Proof of Theorem 1. In order to verify that (3.5) is indeed an equilibrium, we have

to check the second order condition and confirm that individual spending (3.5) leads to a

non-negative expected payoff for each player.

In the symmetric equilibrium, player i’s expected payoff is

V ·

(
n−1∑
i=0

Cn−1
i pi (1− p)n−i−1 (1− r)i + 1

(i + 1)2

)
≥ 0. (C.1)

It means that each player prefers to spend (3.5) instead of nothing, 0, given that each other

player also spends (3.5). Condition (C.1) is equivalent to

0 < r ≤
∑n−1

i=0 Cn−1
i pi (1− p)n−i−1 1

(i+1)∑n−1
i=0 Cn−1

i pi (1− p)n−i−1 i
(i+1)2

. (C.2)

The second order condition, from equation (3.3), is

V ·

( ∑
M∈PNi

p|M|(1−p)|Ni\M| r
∑

j∈M Xr
j

(Xr
i +

∑
j∈M Xr

j )
3

(
(r−1)Xr−2

i (Xr
i +
∑
j∈M

Xr
j )−2rX2r−2

i

))
≤ 0.

In the symmetric equilibrium, this condition becomes

0 < r ≤
∑n−1

i=0 Cn−1
i pi(1− p)n−i−1 i

(i+1)2∑n−1
i=0 Cn−1

i pi(1− p)n−i−1 i(i−1)
(i+1)3

. (C.3)

Note that if 0 < r ≤ n+1
n

, then inequalities (C.2) and (C.3) always hold.
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Proof of Theorem 2. Fix n ≥ 3. Then from (3.5) and (3.8)

1

rV
· ∂X∗(r, V, n, p)

∂p
=

(n− 1)(1− p)n−2

4
+

n−2∑
i=1

(n− 1)!

i!(n− i− 2)!
pi(1− p)n−i−2

(
i + 1

(i + 2)2
− i

(i + 1)2

)
=

1

rV
· ∂X∗(r, V, n, p)

∂p
= (n− 1)(1− p)n−2

(
1

4
−G(p, n)

)
, (C.4)

where

G(p, n) =
n−2∑
i=1

Cn−2
i

(
p

1− p

)i(
i2 + i− 1

(i + 1)2(i + 2)2

)
. (C.5)

Note that
1

rV
· ∂X∗(r, V, n, 0)

∂p
=

(n− 1)

4
> 0

and since n ≥ 3

1

rV
· ∂X∗(r, V, n, 1)

∂p
=
−n2 + 3n− 1

n2(n− 1)
=
−n(n− 3)− 1

n2(n− 1)
< 0.

Since 1
rV
· ∂X∗(r,V,n,p)

∂p
is a continuous function of p on the interval [0, 1], there must exist an

interior p∗(n) ∈ (0, 1) such that 1
rV
· ∂X∗(r,V,n,p∗(n))

∂p
= 0. Now, we shall show that p∗(n) is

unique.

Note that G(p, n) > 0 for all p ∈ [0, 1] and function G(p, n) is strictly increasing in p

since
∂

∂p
G(p, n) =

n−2∑
i=1

Cn−2
i

(
p

1− p

)i−1
i

(1− p)2

(
i2 + i− 1

(i + 1)2(i + 2)2

)
> 0. (C.6)

It means that G(p, n) is equal to 1/4 only at the unique point p∗(n). Therefore, there exists

a unique p∗(n) such that 1
rV
· ∂X∗(r,V,n,p∗(n))

∂p
= 0. Finally, from equations (C.4) and (C.6) it

is clear that if p < p∗(n) (p > p∗(n)), then ∂X∗(r,V,n,p)
∂p

> 0(< 0). This completes the proof.

Proof of Theorem 3. From equation (3.5), we have

X∗(r, V, n, p)−X∗(r, V, n− 1, p)

rV
=

= pn−1 (n− 1)

n2
+

n−2∑
i=1

Cn−1
i pi (1− p)n−i−1 i

(i + 1)2 −
n−2∑
i=1

Cn−2
i pi (1− p)n−i−2 i

(i + 1)2
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= pn−1 (n− 1)

n2
+

n−2∑
i=1

(Cn−2
i + Cn−2

i−1 )pi (1− p)n−i−1 i

(i + 1)2 −
n−2∑
i=1

Cn−2
i pi (1− p)n−i−2 i

(i + 1)2

=
p

(n− 1)

(
n−1∑
i=1

Cn−1
i pi−1 (1− p)n−i−1 i2

(i + 1)2 −
n−2∑
i=1

Cn−1
i pi (1− p)n−i−2 i(n− i− 1)

(i + 1)2

)

=
p

(n− 1)
· 1

rV

∂X∗(p, n)

∂p
. (C.7)

Proof of Theorem 4. First, we shall show that p∗(n) strictly decreases as n increases.

From equation (C.4), the unique optimizer p∗(n) must satisfy

G(p∗(n), n) =
1

4
. (C.8)

Since

G(p, n + 1)−G(p, n) =(
p

1− p

)n−1(
n2 − n− 1

n2(n + 1)2

)
+

n−2∑
i=1

i

n− i− 1
Cn−2

i

(
p

1− p

)i(
i2 + i− 1

(i + 1)2(i + 2)2

)
> 0,

for any p ∈ (0, 1) and ∂G(p∗,n)
∂p∗

> 0, we get

p∗(n) > p∗(n + 1), for n ≥ 2. (C.9)

Second, we shall show that function X∗(r, V, n, p∗(n)) strictly decreases as n increases.

From Theorem 3, we have

X∗(r, V, n, p∗(n)) = X∗(r, V, n− 1, p∗(n)). (C.10)

From (C.9), it follows that p∗(n) < p∗(n−1). By the definition of p∗(n−1) and its uniqueness,

we get

X∗(r, V, n− 1, p∗(n− 1)) > X∗(r, V, n− 1, p∗(n)). (C.11)

Therefore, from (C.10) and (C.11)

X∗(r, V, n− 1, p∗(n− 1)) > X∗(r, V, n, p∗(n)).
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Proof of Theorem 5. First, we show that two curves X∗(r, V, m, p) and X∗(r, V, n, p)

intersect. Note that G(0, n) = G(0, m) = 0. Therefore, from (C.4), we get

∂X∗(r, V, n, 0)

∂p
>

∂X∗(r, V, m, 0)

∂p
> 0. (C.12)

From (3.5) and (3.6), we have

X∗(r, V, n, 0) = 0 = X∗(r, V, m, 0) (C.13)

and

X∗(r, V, n, 1) =
(n− 1)

n2
rV <

(m− 1)

m2
rV = X∗(r, V, m, 1). (C.14)

Continuity of X∗(r, V, n, p) in p together with (C.12), (C.13), and (C.14) provide the existence

of an interior solution of equation (3.10). Now, we demonstrate that this interior solution is

unique.

From Theorem 3, if m = n − 1, then there exists a unique interior solution of equation

(3.10), p(n− 1, n) = p∗(n). It means that for all n > m ≥ 2 the following equations have a

unique interior solution

X∗(r, V, n, p∗(n)) = X∗(r, V, n− 1, p∗(n))

and

X∗(r, V, m, p∗(m + 1)) = X∗(r, V, m + 1, p∗(m + 1)).

Moreover, from Theorem 4

X∗(r, V, n, p) > X∗(r, V, n− 1, p), if 0 < p < p∗(n)

and

X∗(r, V, n, p) < X∗(r, V, n− 1, p), if p > p∗(n).

Analogously,

X∗(r, V, m, p) < X∗(r, V, m + 1, p), if 0 < p < p∗(m)
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and

X∗(r, V, m, p) > X∗(r, V, m + 1, p), if p > p∗(m).

Since n > m, Theorem 4 gives p∗(n) < p∗(m). Therefore,

X∗(r, V, n, p) > X∗(r, V, m, p), if 0 < p < p∗(n)

and

X∗(r, V, n, p) < X∗(r, V, m, p), if p > p∗(m).

Hence, X∗(r, V, m, p) and X∗(r, V, n, p) can cross only on the interval [p∗(n), p∗(m)]. Note

that function X∗(r, V, m, p) is strictly increasing and function X∗(r, V, n, p) is strictly de-

creasing on the interval p ∈ [p∗(n), p∗(m)]. Therefore, if there exists a solution of equation

(3.10), it must be unique.

Proof of Theorem 6. First, we prove part i). Equation (3.12) yields

1

rV n
· ∂T ∗(r, V, n, p)

∂p
=

n−1∑
i=1

Cn−1
i pi(1−p)n−i−1 i

(i + 1)
−

n−2∑
i=1

Cn−1
i pi+1(1−p)n−i−2 (n− i− 1)i

(i + 1)2

=
(n− 1)

2
p(1−p)n−2+

n−2∑
i=1

(
Cn−1

i+1 pi+1(1−p)n−i−2 (i + 1)

(i + 2)
−Cn−1

i pi+1(1−p)n−i−2 (n− i− 1)i

(i + 1)2

)

=
(n− 1)

2
p(1− p)n−2 +

n−2∑
i=1

pi+1(1− p)n−i−2 (n− 1)!

(i + 1)!(n− i− 2)!

(
(i + 1)

(i + 2)
− i

(i + 1)

)

=

(
n−2∑
i=0

Cn−1
i+1 pi+1(1− p)n−i−2 1

(i + 1)(i + 2)

)
> 0.

We prove part ii) now. From equation (3.12), we have

1

rV

(
T ∗(r, V, k + 1, p)− T ∗(r, V, k, p)

)
=

pk+1 k

(k + 1)
+

k∑
i=1

Ck+1
i pi(1− p)k−i+1 (i− 1)

i
−

k∑
i=1

Ck
i pi (1− p)k−i (i− 1)

i
=

k+1∑
i=1

Ck
i−1p

i(1− p)k−i+1 (i− 1)

i
−

k∑
i=1

Ck
i pi+1 (1− p)k−i (i− 1)

i
=
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k+1∑
i=2

Ck
i−1p

i(1− p)k−i+1 1

i(i− 1)
> 0.

Proof of Theorem 8. From equation (3.12), we get

T ∗(r, V, n, p) = rV ·

(
1− (1− p)n −

n∑
i=1

Cn
i pi(1− p)n−i 1

i

)
. (C.15)

Note that the function 1
i

is strictly convex. By the Jensen’s inequality, we have

n∑
i=1

Cn
i pi(1− p)n−i 1

i
>

(
∑n

i=1 Cn
i pi(1− p)n−i)2∑n

i=1 Cn
i pi(1− p)n−ii

=

=
(
∑n

i=1 Cn
i pi(1− p)n−i)2

n
=

(1− (1− p)n)2

n
. (C.16)

Combining inequality (C.16) with equation (C.15), we obtain

T ∗(r, V, n, p) < rV ·
(

1− (1− p)n − (1− (1− p)n)2

n

)
=

rV
(n− 1)

n
+ rV

(
2(1− p)n

n
− (1− p)n − (1− p)2n

n

)
< T ∗(r, V, n, 1)− rV (1− p)2n

n
.

The last inequality comes from the fact that n ≥ 2. This completes the proof.
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