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MODELING AND TARGETING SIGNAL TRANSDUCTION PATHWAYS 

GOVERNING CELL MIGRATION 

Sourabh Prakash Kharait, MD, PhD. 

University of Pittsburgh, 2006 

ABSTRACT 

 

Cell migration is a complex biophysical event that is dysregulated in a variety of human diseases 

including cancer. The ability of tumor cells to migrate enables cancer dissemination causing 

significant mortality thus making it an important therapeutic target. Motility is exhibited 

epigenetically by activation of numerous signaling pathways that transmit extracellular cues to 

the final effectors of cell movement. Such signaling switches are a part of larger and highly 

complex signaling (proteomic) networks that are under the control of numerous activators or 

inhibitors. Although majority of the proteins that are ‘required’ during cell motility have been 

identified, it is yet unclear wherein they fit within the signaling network to govern motility. Thus, 

a ‘systems biology’ approach is needed to understand the complex interplay of signaling 

cascades in mediating cell motility so that better therapeutic targets can be defined.  

We utilized a mathematical modeling approach, called decision tree analysis to map the 

interplay between five key signaling proteins known to regulate vital biophysical processes of 

fibroblast motility downstream of EGF receptor activation. Interestingly, our model identified 

myosin light chain (MLC) mediated cell contractility as a crucial node for maximal motility. 

Even more non-intuitively the decision tree model predicted that subtotal inhibition of MLC can 

actually increase motility. Confirmatory experiments with fibroblasts and cancer cells have 

shown that to be the case.  
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Since the model proposed that total abrogation of contractility can limit cell migration, 

we asked if such an intervention can limit tumor invasion. Since PKCδ is implicated in EGF 

receptor mediated transcellular contractility, we abrogated PKCδ using pharmacological 

(Rottlerin) and molecular (RNAi) interventions. Such depletion of PKCδ reduced migration as 

well as invasiveness of prostate carcinoma cells predominantly by decreasing their contractility 

through myosin light chain (MLC). Additionally, activation of PKCδ correlated with human 

prostate cancer progression as assessed by immunohistochemistry of prostate tissue sections. 

  In summation our studies illustrate the importance of quantitative (total versus subtotal) 

disruption of key signaling nodes in mediating a desired cell response. Novel computational 

modeling approaches are needed to identify newer molecular switches from existing proteomic 

networks that can be explored, using classical experimental methods, as therapeutic targets. 
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novel modeling approach towards understanding cell motility. This chapter predominantly 

describes the construction of a new methodology, Decision trees, and its application to cell 

migration. In the third chapter, we describe the utilization of the model to predict cellular 

biophysical events based on the activation status of key biochemical signals. We extract 

important predictions from the model and test them experimentally to validate such predictions. 

In the fourth chapter we apply such predictions to prostate cancer cells and show that abrogating 

cellular contractility, as predicted by the model, can limit prostate cancer invasiveness. We 

include some final perspectives in chapter 5. 
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1.0  INTRODUCTION 

1.1 OVERVIEW OF CELL MIGRATION 

The homeostasis of the human body depends on a variety of complex processes, cell migration 

being one of them. In a variety of physiological states, migration of specific cells is key to a 

biological response; e.g. during inflammation, cytokines and chemokines enable chemotaxis of 

white blood cells in tissues to help ward off any infection by micro-organisms. During wound 

healing, fibroblast and keratinocyte migration into the denuded area is necessary for an 

appropriate wound healing response [1, 2]. In pathology too, migration of cells determines the 

fate of the organism. Indeed, one of the key phenomenon responsible for mortality and morbidity 

in cancer is its ability to disseminate into surrounding tissue forming metastatic foci. Motility of 

tumor cells is a pre-requisite factor in metastasis [3]. While cell migration has been best studied 

in the fields mentioned above, its role is obvious in numerous other disease states including 

Rheumatoid arthritis and systemic lupus erythematosus [4]. In both these ailments, inflammation 

of synovial membranes (and other vital organs) is responsible for much of the morbidity. Many 

medications like colchicine and indomethacin, used commonly in treating acute arthritis mediate 

their effects by retarding migration of inflammatory cells into joint space [5].  

Targeting cell motility has been a long-standing challenge. Numerous signaling proteins 

governing redundant biophysical responses that are crucial for motility have been discovered in 

the last decade [6, 7]. While each of these proteins is necessary for cell movement, it is 

insufficient alone in mediating migration. This begs some fundamental questions that still need 

to be answered in cell biology -- where does a certain protein fit in dictating certain biophysical 

responses? How crucial is it to target such a protein if cell motility needs to be manipulated? 

Which proteins need to be inhibited together for the most optimal response?[8]. Answering some 

of these questions needs a novel methodology that can integrate the enormous data generated 
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during the last decades into fundamental testable hypotheses [9, 10]. While traditional 

experimental laboratory methods still remain the most widely employed tools for such data 

measurements, advanced computational methods enable expansion of such data sets by 

simulation techniques that can further be useful in deriving any significant biological 

conclusions. Such observations have burgeoned the concept of a “systems biology” approach to 

studying major biological phenomena. We have employed one such technique, Decision tree 

analysis, to answer some of the intriguing questions related to cell migration [11]. The following 

sections describe in detail, some fundamental concepts in cell migration.  

1.2 BIOPHYSICS AND BIOCHEMISTRY OF 

CELL MIGRATION 

Cell migration is a net result of a series of coordinated biophysical events [6, 12, 13]. While each 

of these events described individually, is necessary for migration, they are not independent of 

each other. In other words, the optimal migratory response is a result of both the spatial as well 

as temporal coordination as well as repetitive cycling of such events. 

Various simplistic models for cell migration have now been elucidated [6, 12, 13]. In 

order for a cell to move, it first has to be polarized or attain a sense of directionality. This leaves 

the cell with a tail or a rear end and a front end upon stimulation with a motogenic agent like 

epidermal growth factor (EGF). Attainment of polarity is accompanied by extension of dominant 

lamellipodia at the ‘front end’. This is followed by detachment of the cell’s rear end and 

subsequent transcellular contractility that provides the necessary force for locomotion (Figure 1). 

Each of these processes are controlled by numerous intracellular signaling molecules, some of 

them being involved in other cellular responses as well. Substantial evidence suggests that 

disruption of these individual biophysical events like lamellipodal protrusion or rear cell-

membrane detachment by targeting the underlying signaling switches offers a very promising 

approach to novel drug discovery [14-16]. 
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Figure 1. Biophysical processes and underlying biochemistry of cell motility.  
Different signaling molecules that govern one or more of the biophysical processes described below are shown. 
Adapted with permission from Cell motility in cancer invasion and metastasis; 2005, Edited by Alan Wells; Elsevier 
publications. 
 

1.2.1 Lamellipodal protrusion 

Upon stimulation with a motogenic agent like EGF, the first step towards cell locomotion 

involves extensions of the cell membrane, as lamellipodia, in the direction of movement.  

Lamellipodia are principally composed of cytoskeletal elements like actin and myosin along with 

integrin receptors and signaling molecules [17]. The Phospholipase C-γ (PLCγ) signaling 

pathway is shown to be crucial in lamellipodial extension in fibroblasts and cancer cells upon 

activation by growth factors, though it likely plays little, if any, role in integrin-mediated 

extension [12]. Phosphoinositide 3-OH kinase (PI3K) is also active at the front of the cell during 

adhesion receptor-induced as well as growth factor-induced motility but in epithelial and not 

fibroblastoid cells [18]. Both of these enzymes alter the phosphoinositide face of the inner 

membrane, with PI3K creating phosphoinositol 3,4,5-trisphosphate (PIP3) and PLCγ 

hydrolyzing and removing the PIP2. This alters the docking sites for a variety of molecules that 
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impinge on the actin cytoskeleton. New sites are created by PIP3 and the loss of PIP2, 

particularly by PLCγ hydrolysis which releases prebound molecules including vinculin, gelsolin, 

cofilin and profilin [19-21]. All of these molecules then act to disassemble focal adhesions and 

accelerate actin polymerization, enabling protrusion of lamellipodia [20]. 

 Emergence of a dominant lamellipod marks the state of polarity of the cell [13]. 

The small GTPase cdc42 is required to either establish or maintain a persistent cell polarity and 

directionality that leads to productive locomotion [22-24]. This is tightly balanced in that either 

under- or over-activation of cdc42 tips the balance and either no lamellipodia are formed or none 

is established as dominant and the cell ‘dances’ in place [25]. These membrane extensions or 

lamellipodia are then stabilized by attachment of the protruding lamellipodia to the substratum, 

thereby enabling new focal contacts between cell and extracellular matrix. Thus, cell-substratum 

adhesion is a crucial element for migration of a variety of cells and is achieved principally by the 

action of integrins and other adhesion receptors [13].  

 

1.2.2 Cell – substratum adhesion 

Motility of cells require adhesion of its membrane with the underlying substratum. Sites of cell-

substratum adhesion are not merely sites of passive contact between the cell and the extracellular 

matrix but are active in cell signaling. Focal adhesions are rich not only in cytoskeletal proteins, 

integrins, other adhesion receptors and linker proteins, but also various signaling kinases [26, 

27]. The non-receptor tyrosine kinases focal adhesion kinase (FAK), src, and integrin-linked 

kinase (ILK), all modulate cell-adhesion dependent growth, survival and motility by activating 

numerous signaling pathways [28]. These have been shown to interact directly with the adhesion 

complex and to be activated therein. Additionally, the adhesiveness of substratum also dictates 

the biophysical response [29]. While too much surface adhesion strength prevents detachment of 

the cell, too little adhesiveness provides minimal force for contraction, retarding motility at both 

these extremes [30, 31]. Active cell movement depends on formation of new focal adhesions 

along with breakage of others. Thus, the net movement is a product of cell-substratum adhesion 

strength that is controlled in turn by surface ligand concentration, receptor number and ligand-

receptor affinity [30]. During high surface adhesiveness, calpain cleaves the integrin cytoplasmic 
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edges enabling rear detachment. However, during lower surface adhesiveness, breakage of focal 

adhesions via contraction is adequate for motility [32, 33]. Although a variety of different 

signaling proteins are implicated in this event, the principal effect is for the cell to “walk-on” a 

surface, with the surface providing the necessary scaffold as well as signaling from the 

extracellular mileu.  

1.2.3 Transcellular contractility 

Upon sustaining contacts with the substratum, the cell contracts and generates sufficient force 

needed for translocation. Adhesion sites are vital as a fulcrum for mechanical forces. 

Transcellular contractility is achieved via a consorted action of actin-myosin cytoskeletal 

machinery. In fibroblasts and prostate cancer cells at least, growth factors can activate the 

regulatory element within myosin light chain (MLC) proteins of myosin II via Protein kinase Cδ 

(PKCδ) [34]. Such contractility is needed by tumor cells for motility and by fibroblasts during 

contraction of the wound edges during later stages of wound healing [35, 36]. Studies from our 

laboratory have shown that invasion of DU145 and PC3 prostate cancer cells through a thin layer 

of Matrigel is substantially reduced by pharmacological and molecular inhibition of the PKCδ - 

MLC signaling pathway (Kharait et al, Biochem & Biophy Res Commun., 2006, In press). The 

reduction in invasiveness was predominantly a result of reduced cellular motility. Transcellular 

tension also leads to membrane detachment by fracturing focal adhesions during lower 

substratum adhesiveness [32, 33]. Overall, the phosphorylation/activation state of MLC is 

controlled by a balance between the activating MLC Kinase (MLCK) and deactivating MLC 

Phosphatase (MLCP) enzymes with such inputs utilized by a majority of cells. A second 

pathway, upstream of MLCK, occurs via Rho Kinase which directly activates MLCK and 

inhibits MLCP, thereby stimulating cell contractility and motility; this pathway is likely used by 

adhesion receptor signaling [37, 38]. Additionally, Rho Kinase can directly activate MLC by 

phosphorylating the 19th serine residue of regulatory light chain [39]. However, both MLCK and 

Rho Kinase can distinctly and exclusively regulate MLC phosphorylation at differential 

subcellular locations, with MLCK regulating MLC activation at the cell periphery whereas 

ROCK controlling it more at the center [40]. Sequential activation and subcellular localization of 

these two distinct MLC pools occurs during different cellular biophysical events such as cell 
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motility, spreading and adhesion. Abrogation of Rho Kinase in PC3 prostate carcinoma cells 

substantially inhibited their migration and invasion in vitro and in vivo [41]. To add to the list, 

other enzymes have recently shown to be involved in regulating MLC activation. These include 

zipper-interacting protein (ZIP) kinase and Integrin linked kinase (ILK) [42, 43]. While both of 

these are responsible for MLC activation during integrin mediated haptokinetic motility, PKCδ 

mediated contractility occurs downstream of growth factor (mainly EGF) receptor signaling. 

  

1.2.4 Detachment of the cell membrane at the rear end 

Adhesion of the lamellipodia to the substratum at the front end is accompanied by the 

detachment of the cell membrane at the rear that enables the cell to move forwards [12]. Rear 

detachment is both passive in response to transcellular tension driven by MLC [32, 33], and 

active in that adhesion sites in the rear are weakened through active signaling. Transcellular 

tension is sufficient only under regimes of low adhesivity [33], under which overall locomotion 

of fibroblasts is actually decreased. Active deadhesion is achieved largely by the intracellular 

protease calpain, two isoforms of which are found within motile fibroblasts and prostate cancer 

cells [44]; Calpain-I (μ-calpain) and calpain-II (M-calpain) activated in vitro by micromolar and 

millimolar levels calcium respectively. Calpain II has been shown to be activated by direct 

phosphorylation by ERK/MAP kinase downstream of signaling from EGFR and other receptor 

tyrosine kinases [45]. In the absence of receptor tyrosine kinase activity, it is possible that 

calpain I subsumes this role being activated by calcium influx upon triggering stretch-activated 

calcium channels [46]. Calpain cleaves the cytoplasmic tails of integrins and/or linker proteins 

such as talin, loosening the attachment to substratum [44]. Coupled with transcellular 

contractility this leads to membrane de-adhesion at the rear end of the cell. Rear membrane 

detachment primarily occurs via either a rapid mechanism seen in conditions of lower surface 

adhesiveness and involves the dissociation of integrin receptors with the extracellular matrix or a 

slow detachment mechanism seen during conditions of higher surface adhesiveness involving 

breakage of integrin receptor-cytoskeletal linkages [47]. During such dissociations, a large 

number of integrins is ripped off from the cell membrane and are found left at the site of broken 

adhesions [47]. The importance of this biochemical event in cancer progression was shown by 
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abrogation of calpain using molecular and pharmacological agents substantially inhibiting 

migration and invasion of prostate cancer cells [14]. In addition, calpains may be involved in 

lessening the cell-cell adhesions required for tumor cell dissemination from the primary localized 

mass by targeting E-cadherins [48]. 

 Careful orchestration of these individual biophysical events enables productive cell 

locomotion. By conceptually segregating these discrete events, we have begun to understand 

how intracellular switches act in concert to produce the optimal response. Many of these 

biophysical events, as mentioned earlier, are now potential targets in anti-cancer drug research. 

 

1.3 CELL MOTILITY IN TUMOR INVASION 

 

The ability of tumor cells to burrow through the stroma enables formation of metastatic foci. The 

process of invasion is a highly coordinated one [3]. As compared to normal cells, tumor cells 

have an increased capability to loosen their connections to the substratum and break cell-cell 

adhesions. Integrin receptors that mediate the cell-substratum adhesion and cadherins that 

mediate cell-cell cohesion, are pivotal in this behavior. Integrins serve a double role, as they 

interact as adhesion receptors with the substratum during tumor cell migration. Migration 

through the extracellular matrix (ECM) barriers, while mainly occuring via natural cleavage 

planes, also requires matrix remodeling accomplished by various proteases including matrix 

metalloproteinases [49-51]. This motile strategy is used both to invade local adnexia and gain 

access to conduits for distant dissemination. 

Tumor cells disseminate mainly via bloodstream or lymphatics (Figure 2). During this 

process, the tumor cells must survive the de-adhesion induced anoikes either by cell intrinsic 

changes rendering them resistant or by forming clumps to recreate the ‘attached’ cell signals. 

These individual cells or clusters of cells reach target organs, extravasate, and migrate to 

appropriate sites within the tissues. If the target tissue provides the missing extrinsic signals, the 

cells will proliferate to form a metastatic focus. Both local invasion and metastasis are significant 

issues in the early dissemination of prostate carcinoma, as opposed to breast cancer in which 
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invasiveness is a later event or ovarian carcinoma in which peritoneal spread predates 

demonstrable metastases. Thus, maximum benefit may accrue from deciphering and targeting a 

tumor cell acquired property that is critical for both, such as motility.  

Recent research in tumor biology has bolstered the concept that tumor invasion is the net 

result of dysregulated cell motility [3]. Invasiveness of tumors can directly be attributed to their 

migratory potential since epithelial (carcinomatous) cells that have transitioned to a 

mesenchymal phenotype are highly motile and possess higher capability to penetrate through the 

matrix barrier. Such a transition is achieved via genetic as well as epigenetic perturbations within 

the transformed cell. Overexpression of certain growth factor receptors (including the EGF 

receptor) is pivotal in oncogenesis as well as tumor progression.  

The ErbB family of growth factor receptors has been implicated in the progression of variety of 

tumors including that of the breast, brain, lung, urinary bladder and prostate [52-57]. These 

tumors secrete a variety of ligands for growth factor receptors in an autocrine manner 

establishing intrinsically self-stimulating autocrine loops [57-59]. Such aberrant and continual 

signaling drives tumor cell proliferation, survival, migration and invasion. Thus, tumors acquire 

invasive properties, atleast in part by boosting autocrine systems that keep the intracellular 

signaling cascades in an active state. Indeed EGFR overexpressing prostate cancer cells (DU145) 

were shown to exhibit higher invasiveness as compared to parental cells [60]. Targeting EGFR 

induced motility reduced their invasiveness.  
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Figure 2. Overview of the metastatic process. 
The various steps during metastatic progression are shown. Motility of tumor cells is vital during invasion through 
the stroma, extravasation into the blood vessels and final ‘homing’ of tumor cells into a distant focus.  
 
 
 
 

While conventional chemotherapy targets population of cells undergoing proliferation, it 

has substantial adverse effects like gastrointestinal intolerance and alopecia often leading to 

discontinuation of treatment due patient compliance issues. Motility-specific chemotherapy can 

be proposed to circumvent some of these adverse effects if developed and utilized clinically. In a 

variety of laboratory based experiments, targeting motility of tumor cells left proliferation 

unaffected [14, 15]. Such an approach can render a tumor less invasive but more amenable to 

surgical removal without exhibiting deleterious adverse effects. Thus, a thorough mapping of 

intracellular ‘motility-specific’ signaling switches that can be ‘turned off’ is the key to future 

anti-cancer drug development that can be better tolerated by patients. 
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1.3.1 Cell motility in Prostate carcinoma invasion  

Cancer is the second leading cause of death in the United States, second only to cardiovascular  

disease. Prostate cancer is the most commonly diagnosed cancer in men, with more than 70 % of 

prostate cancers being diagnosed in men over 65. Prostate cancer is rare in young men and the 

probability rises steeply with increasing age with the risk being 1 in 7 after the age of 60 as 

compared to a risk of 1 in 44 between the age 40 and 59 years. Organ-confined prostate cancer 

advances slowly with survival lasting over a decade even in untreated cases. This creates a 

therapeutic dilemma in older patients, as surgical and radiological ablation of the tumor (and the 

prostate) carry significant morbidity and even subsequent mortality [61]. The current therapeutic 

management of advanced prostate cancer involves chemical or physical castration to induce an 

androgen-withdrawal apoptosis of the tumor cells. However, this prolongs survival by only about 

10% on average with the relapse being androgen-independent. The progression to invasion and 

metastasis is thus only slowed and not blocked. 

 Local extracapsular invasion of prostate cancer continues to be a significant 

problem especially in elderly patients, with limited options of radiotherapy and combination 

chemotherapy [62, 63]. Invasion of the adnexia results in compromised function of the renal and 

genital systems with significant physiological and psychological sequelae. Additionally, 

metastatic spread carries a high mortality burden. A recent study on autopsy of patients that died 

of hormone refractory prostate cancer analyzed the proteomic and genomic signatures as well as 

the metastatic sequelae that led to mortal complications [64]. In this cluster of 30 patients 

autopsied, bone was the most common site of metastasis (approximately 83 %) with majority of 

the lesions affecting the vertebral column. Once in bone, the prostate carcinoma cells induced an 

osteoblastic response that was responsible for debilitating bone pain in majority of these patients. 

Other frequent sites of metastasis included the liver (66 %), lymph nodes (63 %) and lungs (50 

%). Brain metastasis, initially thought of as a rare (1-2 %) complication, was identified in 23 % 

of these cases and probably carried the worst prognosis with a maximum life expectancy of 6 – 7 

months.  

Prostate cancer mortality results mainly from progression to the invasion and metastatic 

state. Significant morbidity ensues from surgical or radiological ablation of non-invasive, organ-

confined carcinomas, and these adverse effects are greatly amplified once the tumor breaches the 
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prostate capsule or migrates out along neurovascular conduits [61]. The approach to organ-

confined carcinomas is still uncertain as development of clinically insignificant prostate 

adenocarcinoma appears to be a consequence of aging with small carcinomas found upon 

autopsy examination of most men dying in their 90s. Still, the current practice is to remove 

carcinomas as advanced prostate cancer responds poorly to the current generation of therapies. 

This is due in large part to these agents being optimized to kill growing cells while prostate 

cancer present mitogenic indices far lower than many normal tissues. As such, future 

interventions need to focus on the cell properties that enable prostate carcinomas to migrate from 

an organ-confined situation to invade adnexia and metastasize to distant organs. Recent studies 

have highlighted a central role for cell motility in acquiring the ability of prostate tumor cells to 

reach a metastatic focus [65].  

Increase in migratory potential of prostate cancer cells is impelled by vigorous 

upregulation of certain growth factor receptors including the EGF receptor and the HGF 

receptor, c-Met [66-68]. In prostate cancer, signaling through EGFR is increased mainly via 

increased secretion of its ligand TGF-α by transformed epithelial (autocrine) as well as stromal 

(paracrine) cells [68]. Thus, the net result is sustained activation of intracellular signaling 

cascades, downstream of EGFR signaling axis, that promote tumor progressive properties. 

Targeting such signaling switches in laboratory experimental settings has been effective in 

limiting prostate cancer cell motility and invasion [14, 15, 69]. In addition to epigenetic 

alterations, upregulated growth factor receptor signaling causes increased expression of certain 

pro-metastatic genes like the urokinase plasminogen activator (uPA) and its receptor (uPAR) 

[69] and matrix metalloproteinases [70, 71]. These signaling systems are one of the many that 

enable degradation of the stroma and tumor dissemination through the matrix. Thus, limiting 

tumor cell motility by targeting growth factor receptor signaling can prevent cancer 

dissemination and its progression. 
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1.4 THE EGF RECEPTOR (EGFR) SYSTEM IN 

CELL MOTILITY 

1.4.1 Introduction 

The type 1 growth factor receptor tyrosine kinase (RTK) family, also known as erbB or Human 

Epidermal growth factor receptor family comprises of four well characterized receptors [72]. 

These include c-erbB1 (or HER-1) or EGF receptor (EGFR), c-erbB2 (or HER-2/neu), c-erbB3 

(HER-3) and c-erbB4 (or HER-4). Several ligands have been identified for these receptors except 

for HER-2, for which a ligand is yet to be found. However, much of the signaling from this 

family of receptors involves cross activation and hetero-aggregation of members. Specific 

ligands to EGFR (HER-1) include epidermal growth factor, transforming growth factor-α, 

heparin-binding EGF and amphiregulin; the high affinity ligands for HER-3 and HER-4 are 

heregulins, with the first member also known as neu differentiation factor [73]. Upon binding of 

the ligand to the extracellular domain, these RTKs are activated by homo- or hetero-dimerization 

thereby leading to tyrosine phosphorylation at multiple residues within the long cytoplasmic tails 

[74]. These phosphotyrosine residues then serve as multiple docking sites for various SH2- or 

PTB-containing adaptor proteins. Direct activation of these docking proteins often by 

phosphorylation, or indirect activation of their downstream effectors elicits the multiple cell 

responses. 

EGFR was the first receptor identified as a proto-oncogene and, thus, the first to be 

implicated by upregulation in numerous human cancers. Interestingly, the level of EGFR 

activation correlated with tumor progression and not carcinogenesis [3]. Various genetic 

alterations such as gene amplification or alternatively spliced variants have been found in 

glioblastomas [75] and other carcinomas with this correlating with worse clinical prognosis. In 

prostate cancer the relationship appears primarily epigenetic with a vigorous upregulation of 

ligand production and autocrine stimulation [57]. ErbB2 was initially invoked as a proto-

oncogene when a chemically-induced tumor model system was found due to an activating 

mutation in the transmembrane domain of this receptor [76]. While this mutation has yet to be 

defined in human carcinomas, increased levels of erbB2 have been noted in many human 

carcinomas, breast cancer in particular [56]. The precise role of erbB3 and erbB4 in prostate 
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cancer is still very unclear. ErbB3 at least must function via transactivation and aggregation with 

other members of the family, as it lacks intrinsic kinase activity. 

The primary role of these receptors in cancer progression in general is highlighted by the 

fact that two new therapies specifically target EGFR (Iressa by AstraZeneca and Tarceva by OSI 

Pharmaceuticals) and erbB2 (Herceptin by Genentech). These are the first biologicals to target 

signaling receptors and the first, along with Gleevec (anti-abl), to inhibit tyrosine kinase 

function. While these therapies have been approved for other carcinomas, they are being 

explored in prostate carcinomas due to the upregulation of signaling through these receptors in 

this cancer [77, 78]. 

 

1.4.2 Signaling from the EGF receptor 

EGFR is a prototypical receptor tyrosine kinase and activates a myriad of signaling cascades 

upon ligand occupancy [74] (Figure 4). Not unexpectedly, many activated signaling proteins 

participate in multiple cellular responses; e.g. ERK(1/2) MAPKinases when active are involved 

in cell proliferation as well as motility. In this vein, the precise locale of the active signaling 

protein dictates its participation in a specific cellular response. ERK, translocates to the nucleus 

where it modifies transcription of certain genes needed in cell growth, whereas membrane 

translocated ERK (seen upon EGFR activation) can mediate detachment of the cell membrane 

via calpain activation [79]. Similarly, PKCδ is required for EGFR induced transcellular 

contractility [34] but it also known as a pro-apoptotic signal in diverse cell types when activated 

[80]. As seen with ERK, nuclear versus cytoplasmic PKCδ exhibit completely diverse functions. 

Thus, the ultimate fate of a cell depends not just on the activation of signaling receptors but also 

on the locale of its final effector molecules. It appears that the cell chooses among these 

sometimes mutually exclusive responses depending on the current cell proteome, other signaling 

pathway extant, and the temporospatial aspects of EGFR and secondary effector signaling. 

Ligand occupancy drives activated EGFR into a conformational change which leads to 

receptor dimerization and auto (cross) phosphorylation of multiple tyrosine residues within the 

cytoplasmic domains. Binding of multiple adapting molecules, including Grb2, Shc and Sos, to 

these phosphotyrosine residues activates the well characterized Ras - Raf - Mek signaling 
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pathway that finally activates ERK/MAP Kinase pathway required for cell proliferation and gene 

expression [81, 82]. As mentioned above, transient ERK activation is employed at the cell 

membrane for cell detachment [79]. Another signaling pathway activated by EGFR involves 

phospholipase C-γ (PLCγ) activation that enables motility via reorganizing cellular cytoskeletal 

architecture [21]. The PLCγ signaling pathway is motility specific and is not required for 

proliferation [83]. Upon activation, PLCγ hydrolyses membrane bound PIP2 leading to liberation 

of actin modifying proteins that impinge on actin and promote its polymerization [84, 85]. EGFR 

also activates the signal transducer and activator of transcription (STAT) group of transcription 

factors, small GTPases including rac, rho, and cdc42, Phosphatidylinositol 3-kinase (PI3K), 

certain Protein kinase C isoforms (PKCδ), and to a lesser extent phospholipase D and tyrosine 

kinase Src [74]. While the STAT group of transcription factors are predominantly linked to 

growth factor mediated cell proliferation and survival, unpublished reports from our laboratory 

have highlighted their role in EGF induced migration as well.  

The phosphatidylinositol 3-Kinase (PI3K) signaling pathway is likely as contributory as 

Ras - ERK pathway to cell proliferation and survival [86] and occurs downstream of both growth 

factor receptor signaling as well as integrin activation. PI3K’s most evident action is to 

phosphorylate the 3’ position of  the inositol ring, with preference for the membrane 

phospholipid PI(4,5)P2 to produce phosphatidylinositol 3,4,5- triphosphate (PIP3). The 

counterregulatory tumor suppressor PTEN antagonizes PI3K actions by removing this 

modification [87]. The production of PIP3 leads to activation of Akt/Protein Kinase B via 

intermediary kinase(s) PDK1 (and possibly PDK2). Akt signaling strongly promotes cell survival 

and proliferation [88]. 

 PI3K activity has also been linked to increased migration, matrix 

metalloproteinase production and stromal invasion of certain tumors [89, 90], with some of this 

occuring through activation of Akt1 [91, 92]. Overexpression of Akt2 / Protein kinase Bβ, 

increases migration and invasion of breast and ovarian cancer cells via upregulation of β1 

integrins [93]. Integrins also activate PI3K, with the PI3Kinase pathway being required for αvβ3 

mediated migration of highly invasive PC3 cells [94]. 
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1.4.3 Ligand-receptor interactions in EGFR signaling  

Upon binding the known, high affinity ligands, EGF receptors undergo internalization and 

subsequent degradation within the endosomes [74, 95]. This serves primarily as an attenuation 

mechanism [95]. However, internalized EGF-EGFR complexes still activate certain signaling 

pathways that are crucial in cell proliferation and gene expression [96, 97]. Once internalized, 

EGFR occupancy determines receptor and ligand fate (Figure 3). EGF remains tightly bound to 

the receptor driving both ligand and receptor to degradation. TGF-α, which does not signal from 

the endosomes since the endosomal acidic pH leads to dissociation of TGF-EGFR complex, 

results in EGFR recycling, while ligand sorts with the fluid phase in that 2/3 is shunted to the 

lysosome. Interestingly, when ligand is replenished in an autocrine fashion, TGF-α produces 

more prolonged EGFR signaling as the receptor is ‘spared’ compared to EGF autocrine 

production [98]. Thus, the specific ligand present during autocrine stimulation of prostate 

carcinomas, predominantly being TGF-α, dictates EGFR signaling in a temporal and spatial 

manner.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Ligand induced trafficking and disposition of EGF receptor. 
EGF-EGFR complexes are tightly bound and undergo degradation whereas TGF-α dissociates in the acidic 
environment within the lysosomes and the EGFR is recycled to the membrane. Adapted with permission from Wells 
A. EGF receptor. 1999, Int Jour. of Biochem and Cell Bio; 31, 637-643. 
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A second mode of EGFR activation that also limits EGFR degradative attenuation 

involves transient binding by ultra-low affinity ligands [99, 100]. Some of the EGF-like repeats 

in the ECM components tenascin-C, laminin, and decorin bind to EGFR but in a manner that is 

sufficiently transient so as not to drive internalization [99-101]. This restricts signaling from 

EGFR to the plasma membrane, and under this restriction motility appears preferential to 

proliferation at limiting levels of ligand (unpublished observations). These low affinity EGFR 

ligands can be liberated or unmasked from the extracellular matrix via the action of matrix 

metalloproteinases during conditions of organogenesis, matrix remodeling or tumor invasion 

[100]. The fact that many of the ECM proteins, tenascin-C in particular, are upregulated (or 

dysregulated) in a variety of pathophysiological states strengthens the observation that cell-ECM 

interactions or “sensing of the stroma” by the cell is a vital element during cell migration [102]. 
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Figure 4. EGF receptor signaling. 
Signaling through EGFR activates a myriad of signaling cascades that are involved in diverse cellular processes 
including cell migration. Some of the crucial effectors and the key biophysical processes they control are shown. In 
red are signaling proteins that are relatively ‘motility specific’ whereas blue represent proteins involved in 
proliferation as well as motility (e.g. STATs, ERK). Adapted with permission from Cell motility in cancer invasion 
and metastasis; 2005, Edited by Alan Wells; Elsevier publications. 
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1.5 ADHESION RECEPTORS IN CELL 

MOTILITY 

Migration of cells is mediated by integrin adhesion receptors, which comprise a family of 

homologous, transmembrane heterodimers built specifically from a combination of one of the 

twelve alpha and one of the nine beta subunits [103]. These receptors recognize the cues, both 

soluble and matrix embedded, from by the cell’s immediate surrounding environment, the 

extracellular matrix [104]. Integrins physically connect the extracellular matrix proteins like 

fibronectin and laminin to cellular cytoskeleton and provide tractional forces both to and from 

the substratum during migration [105]. In addition, signaling through these receptors is pivotal 

for motility over a range of adhesive conditions [29, 30]. Integrin engagement with extracellular 

matrix ligands is required for RTK mediated activation of downstream signaling cascades [27]. 

Clustering of integrins at points of substratum attachment recruits several cytoskeletal proteins 

including actin, talin, vinculin, paxillin, etc. as well as several non-receptor tyrosine kinases like 

FAK and src to the site of focal adhesions [106-110]. Evidently, focal adhesions are not merely 

sites of attachment but also signal actively and are the principal mediators of signal transduction 

events from the external environment to the intracellular mileu [111, 112]. Prevention of cell 

adhesion to the substratum via blocking specific integrin receptors has evidently shown to 

abrogate cell migration [113]. In addition, integrin receptor signaling is crucial in mediating cell 

survival in a variety of conditions, with apoptosis observed immediately with loss of cell 

adhesion in a variety of untransformed cells [103, 104, 114, 115]. Malignant cells overcome this 

problem by altering the integrin receptor subtypes that provide the necessary ‘adhesion’ signals 

despite cell detachment during tumor extravasation and dissemination [116, 117]. This has been 

observed with α6β4 integrin subtype that binds laminin and transmits survival signals via 

activation of Rac [117]. 

Integrin receptors provide the interface with the surfaces. These adhesion receptors 

actively signal during this process, enabling or preventing the receptor tyrosine kinase (RTK)-

mediated responses, or even, themselves, driving the motility [118]. Extensive evidence suggests 

that unregulated growth and migration of tumor cells is due in part to an alterations of integrin 

expression [114] accompanied with a loss of cell-cell adhesion molecules [119-121], particularly 

E-cadherin with this finding ubiquitious to almost all carcinomas[122-125]. Cadherins mediate 
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cell-cell cohesion in normal cells but is downregulated in majority of cancers leading to a loss of 

cell-cell contacts [126]. In prostate cancer cells, EGFR is preferentially localized only along the 

tight baso-lateral surfaces. A loss of cell-cell cohesion exposes the EGF receptors on the baso-

lateral surfaces and enables significant autocrine signaling through ligand (TGF-α) – receptor 

binding [127]. Autocrine signaling further downregulates E-cadherin expression with this cycle 

finally continuing to tumor invasion.   

Epigenetic alterations within the cellular proteome enable tumor invasion through the 

stroma by enabling the tumor cells to perceive the cues from the extracellular matrix. In addition, 

altered integrin expression remodels the ECM to a tumor cell’s own advantage by selective 

signaling via ‘beneficial’ integrin receptors [103]. Tumor cells specifically acquire invasive 

properties by selective elimination of certain integrin receptor subtypes/subunits like β4 [128, 

129] while retaining others that favor tumor stromal invasion, particularly the α6β1 class[115, 

128]. In addition, changes in integrin receptor expression alter the intracellular signaling through 

various signal transduction pathways including the well characterized PI3K and ERK pathways 

[114, 130] enabling tumor cell survival in a variety of ‘abnormal’ conditions seen during 

metastatic colonization. It must be noted that while the intracellular signaling cascades activated 

might share the same molecular members as those derived from RTK, the temporospatial aspects 

of signaling are quantitatively and likely qualitatively different, and thus drive distinct cell 

behaviors. Thus, it is sufficient to say, that alterations within integrin receptor expression, like 

selective deletion of some subtypes with upregulation of others, enable tumor cell motility. 

 

 

1.6 MATHEMATICAL MODELING 

APPROACHES TO CELL MOTILITY 

1.6.1 Motivation 

Cellular responses are guided by different environmental cues that vary during different 

pathophysiological states. A cell can make intelligent decisions by responding to specific 
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environmental signals since it is equipped with a highly effective, albeit complex, signaling 

network comprising thousands of signaling proteins [131]. Such a connected proteomic network 

enables the cell to choose among certain mutually exclusive tasks; e.g. a cell can choose 

proliferation over motility or apoptosis given the right environmental cues and extant of other 

signaling pathways. Most human diseases are a result of dysregulation of one or more signaling 

pathways and hence identifying such ‘altered’ signaling nodes can not only furnish our 

understanding about disease pathogenesis but also guide future therapeutic goals [8, 132]. Cell 

motility is one such complex biophysical response that is required for biological homeostasis and 

is dictated by a variety of extracellular signals including growth factors (EGF,VEGF, PDGF) and 

their signaling receptors, cytokines (interleukins like IL-6), chemokines (IP-9, IP-10, PF4), the 

extracellular matrix components (fibronectin, collagen) and other networks [65]. Thus, multiple 

stimuli converge on redundant signaling pathways through specific receptors which enables the 

cell to ‘process’ such information flow and make decisions accordingly. Thus, to target cell 

motility for therapeutic purposes, it is crucial to understand where individual proteins function as 

connecting nodes within such a signaling network.  

Cell migration is a complex cellular response guided by spatio-temporal activation of a 

myriad of activated proteins. Our understanding of this cellular response is limited to semi-

quantitative patterns at best. Traditional experiments have generated gigantic number of data sets 

with hundreds of measured variables. Some of these players act upstream (like PLCγ) directly 

activated by growth factor receptors while others are more downstream effectors like actin and 

myosin. The complexity of this ‘motility specific’ proteomic network is not limited to these and 

includes other members like rho, rac, cdc42, PI3K, etc. Each of these molecules is needed for 

motility since their inhibition retards migration of target cells [34, 133]. However, it is yet 

unclear how these proteins interact together in such a network system. This is because rarely 

have all the signal transduction cascades been studied from a ‘systems biology’ perspective. 

Moreover, studying all these proteins together is not always feasible using traditional laboratory 

based experimental protocols (like western blotting, kinase assays, ELISA) which are time 

consuming and can only be applied to a few molecules at a time. Thus, to assimilate all the 

information content, computational / mathematical modeling is needed that enable studying 

proteomic networks created from such measurements in a holistic manner. Such a sophisticated 

analysis can interpret the quantitative relationships of ‘signals’ with ‘responses’ [134].  
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1.6.2 Choosing a modeling approach 

The choice of a model depends upon multiple experimental parameters some which include the 

availability of data sets, the amount of variables within the data, the number and reproducibility 

of measurements, the applicability of the measured data to the in vivo milieu and the most 

important of all, the biological question(s) that need to be answered using the model [134, 135]. 

Thus, a wide spectrum of computational techniques is available depending upon the answers that 

are sought [135] (Figure 5). Many mathematical models have been indispensable for explaining 

complex biological phenomena; e.g. Janes et al, have used partial least-squares modeling to 

predict cellular responses from measurements of upstream signaling network in cytokine induced 

apoptosis [136]. This model identifies two groups of intracellular signals that are activated using 

concomitant cytokine (apoptotic) and growth factor (survival) stimulation: stress-apoptosis 

signal group and a survival signal group and explains how a cell chooses to undergo apoptosis 

versus survival depending upon the status of intracellular activated signals. Woolf et al have 

utilized Bayesian network analysis to link proteomic signaling activities with embryonic stem 

cell differentiation responses to extracellular cues [137]. This model non-intuitively predicted the 

association of ERK activation with ES cell differentiation along with Raf phosphorylation with 

proliferation of differentiated ES cells. Thus, these novel modeling approaches, when applied to 

biology, have the power to predict complex cell behaviors based on intracellular signaling 

events.  
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Figure 5. Decision tree for selecting different modeling approaches. 
Models with differing levels of detail are organized vertically, and parameter requirements are arranged horizontally 
on a logarithmic scale. Blue arrows illustrate potential interconnections between models: (i) statistical tests leading 
to new insights into network structure; (ii) data-driven models that reveal new network mechanisms; and ordinary 
differential equations that test the need for (iii) spatial detail or (iv) stochasticity. Reproduced with permission from 
Janes et al. A biological approach to computational models of proteomic networs. Current opinion in Chemical 
Biology 2006, 10:73-80. 

 
 

 

Modeling is based upon the data set chosen for a given set of experimental conditions. 

This begs some important questions that need to be addressed like which variables (such as 

signaling proteins) need to be measured under a given condition to generate such a data set? Is 

the data set sufficient to draw counter-intuitive predictions and conclusions from the model? 

During cell proliferation for example, multiple kinases and transcription factors are actively 

signaling leading to gene expression. Since measurements of all different molecules is time 

consuming and cumbersome to undertake, the ‘most significant’ molecules that have shown to 

impact proliferation under given set of conditions are selected empirically. One drawback of this 
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technique is that it relies on ‘judgement’ and can exclude some critical signaling switches that 

may have a bigger impact on the measured response. As a result, model construction usually 

suffers from two hurdles. Models with too little detail tend to be constrained but erroneously 

oversimplified whereas models that incorporate too many details lack credibility since the 

additional confounding parameters can reduce the ‘predictive power’ of the model. In addition, 

predictions from such detailed models are difficult to test experimentally due to their complex 

experimental designs. Thus, an ideal model should contain enough parameters and measured 

variables that capture an important biological trend from experiments and which can be then 

utilized to predict and test non-intuitive biological conclusions using accepted laboratory 

methods.  

 

1.6.3 Algorithm for model construction 

Despite significant advances in biotechnology, the complexity of human biological situations 

often renders the experimental data to be limited in its ability to draw significant conclusions. 

Thus, an interpolation (or expansion) of the measurements is a must to create a biologically 

relevant data set. Polynomial modeling offers one such avenue for data expansion and has been 

widely utilized [11]. While some noise cannot be excluded from experimental measurements due 

to technical errors, consistent and technically reproducible data is the key for constructing a 

scientifically valid model that simulates a biological phenomenon. The model can also suffer 

from inaccurate or inadequate predictions due to a lack of proper variables chosen for 

measurements, which most often are decided from empirical judgement. Many probabilistic 

models like Bayesian networks assume the data to be uncertain and hence can comply with a 

variable amount of noise within the data set [137]. Usually, models are simplified so that they 

extract only the most significant variables that are linked to the biological responses. Thus for 

model construction, it is pivotal to chose variables like activated proteins that are most relevant 

to the biological phenomenon; e.g. measuring activation status of ERK, PLCγ , PKCδ, MLC, 

calpain, etc. for motility. A brief algorithm of model construction is shown below. 
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Identify a biological question; e.g. cell migration, apoptosis etc.  

 

 

 Identify key variables (like signaling proteins) and response (like 
apoptosis, migration ) to be measured   

 

 
Generate quantitative experimental data set by measuring variables (like 
signaling proteins) using laboratory methods like western blots, ELISA, 
Kinase assays 

Interpolate simulated data from original data set  

 

 

 

 

 

 

 
Choose a modeling approach depending upon the questions to be 
answered using a model; e.g. Bayesian networks, decision tree 
analysis, principal component analysis, etc. 

 

 

 

 
Model the data to explain associations of variables with key 
biological phenomena. Extract non-intuitive predictions from the 
model  
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1.7 SUMMARY AND INTEGRATION 

The genesis of diseases and their progression results from dysregulation of various critical 

intracellular signaling nodes within diverse human tissues. Such altered signaling leads to 

dysregulated cell functions, motility, being one of them. Clearly, the complexity of such a 

biophysical event requires holistic approaches to elucidate contributions by various intracellular 

signaling switches since these are amenable to pharmacological interventions. Cancer 

progression for example, results, atleast in part, from epigenetic perturbations within multiple 

signaling cascades that lead to an aggressive cellular phenotype. One characteristic of such 

phenotype is its increased motility that is central to invasion. Since most biological cellular 

responses are accomplished via epigenetic modifications (phosphorylation, translocation, 

cleavage) of existing signaling proteins without a significant change in their stoichiometry, our 

understanding can only be expanded by accurate high through - put proteomic measurements that 

can be incorporated in computational models for simulation. Such models can then non-

intuitively identify signaling nodes, which if targeted together, can most significantly influence a 

biological response.  

Our studies, as described below, outline a novel mathematical modeling approach to 

understanding such complex proteomic networks that govern cell motility. Further, as an 

application of such a modeling approach, we show that after identifying crucial signaling nodes, 

targeting them using conventional methods, can limit invasion of prostate cancer cells. 
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2.1 ABSTRACT 

Motivation: Signal transduction cascades governing cell functional responses to stimulatory 

cues play crucial roles in cell regulatory systems and represent promising therapeutic targets for 

complex human diseases. However, mathematical analysis of how cell responses are governed 

by signaling activities is challenging due to their multivariate and nonlinear nature. Diverse 

computational methods are potentially available, but most are ineffective for protein-level data 

that is limited in extent and replication. 

 

Results: We apply a decision tree approach to analyze the relationship of cell functional 

response to signaling activity across a spectrum of stimulatory cues. As a specific example case, 

we studied 5 intracellular signals influencing fibroblast migration under 8 conditions: 4 

substratum fibronectin levels and presence vs. absence of epidermal growth factor. We propose 

techniques for preprocessing and extending the experimental measurement set via interpolative 

modeling in order to gain statistical reliability. For this specific case study, our approach 

achieves 70 % overall classification accuracy, and the decision tree model reveals insights 

concerning the combined roles of the various signaling activities in governing cell migration 

speed. We conclude that decision tree methodology may facilitate elucidation of signal-response 

cascade relationships and generate experimentally testable predictions, which can be used as 

directions for future experiments. 
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2.2 INTRODUCTION 

Physiological cell behavioral functions, such as proliferation, death, differentiation, and 

migration, are governed to a large degree by networks of signaling proteins whose activities are 

influenced by a variety of extracellular cues: environmental agents such as chemical ligands, 

mechanical forces, radiation, toxins, pathogens, and so forth. Dysregulation of these networks is 

often associated with inappropriate cell and tissue behavior, so that signaling cascades are 

considered to be promising therapeutic targets for complex pathologies such as diabetes, cancer, 

and inflammatory diseases [181].   

Quantitative experimental measurement of cell signaling protein properties - i.e., their 

levels, states (phosphorylation, cleavage, etc.), activities, locations - is more challenging, as 

opposed to gene - level  measurements, to undertake in highly multivariate fashion. 

Consequently, while measurement of mRNA expression for hundreds and thousands of genes 

across a spectrum of conditions has become commonplace, analogous measurement of protein 

properties as listed above remains limited to the order of tens at best. A critical consequence of 

this situation is that many of the informatics methods by which computational analyses of 

genomic data are now being typically pursued are not readily applicable to proteomic (if that 

term can be used properly for coverage of only about tens of proteins) data. This is the problem 

that our effort here is directed toward addressing: finding appropriate computational techniques 

to elucidate useful models of the relationships between protein signals and cell functional 

responses to extracellular cues given the quantitative data across diverse conditions. 

As a motivating case study, we consider cell migration, which is a central biological 

process in several pathological states such as tumor invasion as well as physiological ones such 

as wound healing [138]. Migration can be strongly influenced by both soluble environmental 

cues (e.g. growth factors and cytokines) and insoluble substratum cues (e.g. extracellular matrix 

proteins). In our specific experimental problem, we are studying the migration of tissue 

fibroblasts in response to four levels of surface fibronectin (Fn) concentrations in the absence or 

presence of epidermal growth factor (EGF), thus offering eight cue conditions. Fn is a ligand for 

integrin adhesion receptor-mediated signaling pathways and it has been shown to significantly 

effect migration of fibroblasts as well as other cell types including many tumor cells [58]. EGF 

also exhibits a strong influence on migration of normal tissue cells, including fibroblasts, and 
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various types of cancer cells, via signaling pathways mediated by EGF receptor (EGFR) [31]. 

Indeed, the EGFR system has been associated with the development and progression of a large 

number of tumors and is one of the most prominent pathways for therapeutic targets in human 

cancers. Furthermore, integrin and EGF pathways have been identified to crosstalk during cell 

migration, so it is highly relevant to study them together. While a very large number (in the 

dozens, easily) of signaling proteins downstream of integrins and EGFR potentially involved in 

regulation of migration can be identified, our experimental measurements focus here on the 

following five which have been shown to be among the key molecular switches in the motility 

signaling cascades: EGFR itself, extracellular-regulated kinase (ERK), myosin light chains 

(MLC), protein kinase Cδ (PKCδ), and phospholipase Cγ (PLCγ). These signaling proteins play 

significant roles in driving major biophysical processes, such as lamellipod protrusion, cell / 

substratum attachment and detachment, and cell contractile force generation and transmission, 

which underlie the net cell migration behavior [6]. Our experimental measurements are 

accomplished by quantitative immunoblotting, a standard but laborious procedure that typically 

limits the number of proteins and conditions which can be examined for any given situation 

under normal (at least academic laboratory) circumstances. 

Many data-driven modeling approaches aim at finding correlations or cause-effect 

relations between genes or proteins. The resulting model is usually validated by comparing 

selected parts of the modeled relations with literature or with additional biological experiments 

without considering how good the model is for predicting outcomes of biological processes. In 

contrast, we are seeking to achieve two objectives in our analysis of signal transduction cascades. 

The first objective is to build a model from which the most relevant signaling proteins in regard 

to response can be identified. The second objective is to assess prediction accuracy of the model. 

The algorithmic methodology we propose to accomplish these goals is decision tree modeling. 

Often, as in our present case, the experimental data are noisy and the amount of observations is 

inadequate for dependency modeling or prediction. Therefore, before analyzing the data with 

decision trees, the data should be preprocessed and, if the amount of the data is insufficient for 

robust analysis, interpolative simulation of additional, internally-consistent data points might be 

considered as a computational aid.  

The order of this study is as follows. First, we discuss an analysis of variance (ANOVA) 

based quality control approach, a minimum description length (MDL) based polynomial fitting 
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method to simulate data points and prediction with decision trees. Second, we apply these 

approaches to a case study, where we aim at classifying cell migration speed using 

phosphorylation levels of five signaling proteins.   
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2.3 APPROACH 

In this section, a strategy to analyze a signal transduction cascade in regard to a cellular outcome 

is presented. Depending on how the signaling protein activation levels are measured, the 

resulting data set is often times noisy. Therefore, data quality control and normalization are 

imperative along the course of signal transduction cascade analysis. In Section 2.3.1 we present a 

quality control protocol for replicate measurements. In Section 2.3.2 we create additional data 

points via interpolating polynomial models that are chosen according to the Minimum 

Description Length (MDL) principle, and undertake validation efforts in Section 2.3.3. A 

procedure for constructing decision tree models is described in Section 2.3.4, and the 

experimental methods including data preprocessing are summarized in Sections 2.3.5 and 2.3.6. 

 

2.3.1 Quality Control 

A topic that has been somewhat neglected in several systems biology studies is data quality 

control. The objective of the quality control step is to identify samples that are aberrant due to 

non-biological reasons (e.g. technical or measurement errors). If such outliers are not identified, 

they may confuse the analysis method and result in spurious conclusions. On the other hand, a 

very stringent quality control criterion and discarding outliers without careful consideration can 

cause loss of valuable information. Therefore, measures taken after identifying an outlier sample 

should be dependent on the reasons why the sample was aberrant. 

Here we present a statistical quality control algorithm for data sets consisting of 

multidimensional samples with replicates. Let vector  contain measurements for jth 

sample. We assume here that n is the same across all the samples but the algorithm below allows 

missing values. In our case study there are four fibronectin levels for each EGF level and since 

the EGF levels are dealt with separately until decision tree analysis and therefore n = 4 for each 

p

1nx
i Rp ∈

i. Further, let ri denote the number of replicates for jth sample. Now, outlier replicate samples 

can be found using the following analysis of variance (ANOVA) based algorithm: 

For jth sample 
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Test H0: μ1 = μ2 = … = μr with a one-way ANOVA and perform a multiple comparison 

for the ANOVA results using the Tukey-Kramer with significance level  α. 

If any of the replicate samples is aberrant, flag it according to the following rules: 

R1 If a sample is statistically different from two or more samples, 

       flag the sample. 

R2 If there are several samples that could be flagged with R1, or two 

samples are statistically different, flag the sample whose deletion gives the 

minimum standard deviation for the means of the remaining samples. 

Repeat (a)--(b) until H0 is not rejected. 

Repeat until all samples are processed. 

The crux of the above algorithm is the ANOVA with the Tukey-Kramer multiple comparison 

test [185]. In general, the following assumptions are needed for the ANOVA: 

• Samples are independent. 

• Variances are constant across the samples. 

• Observations are approximately Gaussian distributed. 

As the quality control algorithm is applied to identify outliers among replicates and the 

replicates are usually measured with the same or similar kind of apparatus, it is reasonable to 

assume that variances are approximately the same. Further, except in cases of failures to clean or 

calibrate the measurement apparatus after use, samples should be independent. The ANOVA is 

not very sensitive to violations of the normality assumption, so the normality assumption is not a 

major one. Moreover, often times several independent sources affect the measurements and due 

to central limit theorem the data tend to be approximately normally distributed. The assumptions 

behind the ANOVA are usually fulfilled in biomedical research, so ANOVA based quality 

control algorithm could be applicable to many experimental setups. 
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Figure 6. An example of quality control plot for Myosin light chain (MLC), EGF = 0. 
A circle denotes a mean and a line corresponds to a comparision interval. Replicate 8 (marked with a star) is 
aberrant from all the other replicates and is discarded. Replicates 1 and 8 correspond to bands A and B in figure 2 
respectively. 

 

2.3.2 Parametric model for the data 

An insufficient number of data points relative to the number of variables and interaction 

processes may impede or prevent identification of dependencies among the variables. A solution 

to this problem is to create a parametric mathematical model based on the data at hand, which is 

then used to interpolatively simulate additional data points so that dependencies between 

variables can be modeled and used in prediction. It is imperative to emphasize that the objective 

of this approach is to merely generate multiple realizations of pseudo-measurements that are 

internally consistent with the statistical distribution of the actual measurements, rather than 

creating new information in a more extrapolative manner.  

 If a preprocessed data set consists of several replicates, it may be worthwhile to 

replace replicate observations with a single value that is the most plausible value given the data. 

This value is referred to as a point estimate. Traditionally, the point estimator is chosen to be 
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(arithmetic) sample average because it is the best linear unbiased estimator for Gaussian 

distributed data and error estimates are straightforward to calculate. However, the breakdown 

point for the sample average estimator is 1/n, where n denotes the number of data points, 

meaning that even one outlier drastically affects the point estimate. This is highly undesirable, 

and therefore we use the median, which has breakdown point of 1/2, as a point estimator.  

One drawback with the median is that deriving error estimates analytically may be 

difficult. This drawback can be overcome with bootstrapping [183]: First, create B bootstrapping 

samples and compute median value for each bootstrapping sample. Error estimate for a point 

estimate is standard deviation of the bootstrapped medians. 

With few exceptions, a trend for a biological process can be linear, biphasic or plateauing at one 

end. Several of these trends can be captured using polynomial models that have several benefits: 

 

• Reliable polynomial modeling can be done with a relatively small sample size while still 

capturing highly nonlinear trends. 

• Polynomial modeling is not confounded by few missing values. 

• Discontinuous trends can be modeled with piece-wise polynomials.  

• Polynomial fitting procedures, such as least-squares and maximum likelihood methods, 

are included in practically every statistical modeling software.  

• Simulation of the polynomial model is straightforward and fast. 

 

The polynomial equations for the parametric model data simulation are described in detail in 

Appendix A. 

 

2.3.3 Validation of the parametric models 

After a parametric polynomial model is constructed with the NML procedure, it is useful to 

check how good the model is for the original measurements. Since we assume the data to be 

approximately Gaussian, the goodness of the model can be checked by considering a Gaussian 

distribution whose mean is the simulated value and the standard deviation is obtained via 

Equation 7 (Appendix A). If each point estimate is located close to the mean and, for example, 

 34 



not above or below 2.5 % of right and left tails, the model can be considered as statistically 

feasible.   

It may also be useful to perform statistical tests such as the Z-test to test whether the  

point estimate (or original measurements) could originate from the model. If several point 

estimates belong to the extreme ends of the distribution, doubts may be cast over the validity of 

the model. 

2.3.4 Finding dependencies between variables with the decision tree analysis 

The majority of the studies in the field of systems biology aim at finding dependencies between 

variables. These models are, however, rarely used to predict the outcomes of cellular processes. 

In this section we provide means to achieve both of these objectives with decision trees [182]. 

Decision trees have several virtues that are useful for biomedical research: 

 

• Decision trees can be effectively applied to any data structure, in particular to discrete, 

continuous or mixed data.  

• Decision trees are capable of resulting in good prediction accuracies for highly nonlinear 

prediction problems.  

• Prediction rules are easy to interpret.  

• Decision trees perform a stepwise variable selection and reduce complexity.  

• Decision trees are very robust against outliers. 

 

The basic idea behind the decision trees is to first identify prediction rules from the data and 

then illustrate them as a binary tree where each terminal node (leaf) corresponds to a class and 

the other nodes represent measured variables. An example of a rule is “IF the phosphorylation 

level of ERK is high AND the phosphorylation level of MLC is high THEN cells migrate at 

medium speed.” This rule can be readily seen in Figure 11. The rules are constructed by 

recursively splitting the data into smaller and smaller regions so that after each split the new data 

subset is “purer” than the old data subset [182]. A pure decision tree predicts all the classes in the 

training set correctly. In real world applications a pure (or close to pure) decision tree is very 
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large and almost surely suffers from overfitting. Thus, a decision tree is usually constructed in 

two phases. The first phase, tree growing, is done until splitting does not significantly improve 

the measure of purity. The second phase, tree pruning, is done in order to avoid overfitting. Here, 

we use the cost-complexity pruning approach  [182] because we are able to create a separate 

pruning data set. Briefly, the tree pruning phase starts with a very large (overfitted) decision tree. 

The cost-complexity pruning method selectively produces a sequence of subtrees until only the 

root node is included in the subtree. In the cost-complexity pruning approach the sequence of 

subtrees is achieved by minimizing the sum of misclassification cost and the complexity of the 

tree. For profound discussion on the tree growing and the cost-complexity pruning methods we 

refer to  [182].   

In general, decision trees suffer from two drawbacks: Masking and instability [182]. Masking 

may occur if the relation between class (i.e. migration speed) and measured variables (i.e. 

signaling proteins) is very complex. In this case a variable may be partially duplicated by another 

variable and if two variables result in almost equally pure subsets, the level of noise may govern 

which variable is used in the splitting. If this happens in the early phase of tree growing, two 

decision trees may look dissimilar potentially hindering the interpretation of the results. In 

addition, masked variables may not show in the decision tree, which may again hinder 

understanding the results. These drawbacks are further discussed in Section 2.4.2. 

2.3.5 Signaling protein experiments 

We utilized NR6 mouse fibroblasts for our studies. These cells are derived from the 3T3 lineage 

and are devoid of endogenous EGF receptor (EGFR). We have overexpressed human EGFR in 

these cells, hence refered to as NR6 wild type (NR6 WT), and they provide and excellent model 

system to study EGFR mediated signaling events as well as cellular biophysical processes like 

migration [139]. Equal number of NR6 WT cells were plated on fibronectin coated surfaces and 

allowed to grow in alpha modified eagle’s medium containing 7.5 % fetal bovine serum (FBS) 

for 24 hours, by which time cells reached about 90 % confluence. Fibronectin coating 

concentrations of the surfaces were 0.1, 0.3, 1 and 3 μg/ml . 

Subsequently, cells were quiesced in a medium containing 0.5 % dialyzed (with minimum 

growth factors) FBS for another 24 hours, to remove the effect of exogenous growth factors 

}3,1,3.0,1.0{∈Fn
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present in the serum. Cells were either lysed in the quiescent medium without any exogenous 

human EGF or stimulated with 10 nM (saturating concentration) of human EGF for five minutes. 

In the subsequent discussion, 0 nM EGF and 10 nM EGF conditions are denoted with EGF = 0 

and EGF = 1, respectively. After stimulation, cells were washed once with ice cold PBS, and 

then lysed in lysis buffer containing 50 mM HEPES, pH 7.4, 150 mM NaCl, 1 % Triton X-100, 1 

mM Na Vanadate and 10 % glycerol supplemented with protease inhibitors including 1μg/ml 

Leupeptin, 1 μg/ml Aprotinin and 1 mM Phenylmethylsulfonylfluoride (PMSF). Cell lysates 

were quantitifed using Biorad protein assay. Equal amount of total proteins were mixed with the 

loading buffer containing 4 % SDS (w/v), 0.1 M Tris-HCl, pH 6.8, 20 % glycerol, 0.2 % 

Bromophenol blue and 5 % β-mercaptoethanol, boiled for 5 minutes and then loaded on either 

7.5 %  (for analysis of  pPKCδ, pERK, pEGFR, pPLCγ) or 15 % (for pMLC) SDS 

polyacrylamide gels. Cell lysates were resolved by electrophoresis and subsequently transferred 

onto nitrocellulose membranes, after which, membranes were immunoblotted with specific 

antibodies to detect the specific proteins or their activated phospho-protein forms. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Two immunoblots for myosin light chain (MLC).  
All Fibronectin (FN) and EGF conditions with non-normalized values are shown. FN values of the substrates were 
0.1, 0.3, 1, 3 μg/ml and EGF was used as 10 nM. 
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Table 1. The number of replicates for signaling proteins before and after quality control. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Polynomial estimates and standard deviation estimates for signaling proteins under presence and absence 
of EGF using NML criterion. 
β is polynomial estimate and σ is standard deviation estimate. 
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2.3.6 Data preprocessing 

Immunoblots were quantified with the NIH image analysis densitometry software. The software 

generates an area plot for each protein band, the density of which represents the amount of the 

protein in each lane. In the signaling protein experiments, the quantitative values generated 

represented the activated status of a protein since the proteins detected were in their activated or 

phosphorylated state. Examples of two immunoblotting bands are given in Figure 7. 

For the NML and decision tree analysis, the band densities were normalized by the value 

of the first lane (Fn = 0.1 and EGF = 0) for each immunoblot (between-band normalization). 

After this normalization, results become comparable between immunoblots since the 

experimental conditions in each of the experiment were kept constant. For quality control, the 

bands were within-band normalized: all protein conditions in a band without exogenous EGF 

were normalized by the value with EGF = 0 and Fn = 0.1, while all protein conditions in a band 

with exogenous EGF were normalized by the value with EGF = 1 and Fn = 0.1. The within-band 

normalization ensures that proteins under the same EGF condition within a band are comparable. 

Prior normalization all basal values below 250 were converted to 250 in order to prevent division 

by a small value that is likely due to noise. After normalization, all the values were log2-

transformed. 

Normalization was followed by the ANOVA based quality control approach (Section 

2.3.1) with α = 0.05. An example of a quality control plot for MLC is given in Figure 6. 

Replicate 8 (marked with a star) is aberrant from the seven other replicates and is discarded. Also 

replicate 2 is discarded due to rule R1 given in Section 2.3.1. Replicates 1 and 8 correspond to 

bands A and B in Figure 1, respectively. The numbers of the replicates before and after the 

quality control are given in Table 1. 
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Figure 8. Point estimates, cross; upper triangle and lower inverted triangle, error estimates and fitted polynomial for 
ERK across Fibronectin levels. 
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Figure 9. Point estimates, cross; upper triangle and lower inverted triangle, error estimates and fitted polynomial for 
MLC across Fibronectin levels. 
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2.4 RESULTS 

Cell migration is a crucial cellular function that contributes, for example, to wound healing, 

normal immune responses, as well as drives progression of diseases such as tumor invasion and 

metastasis [138]. In general, migration consists of a complex assembly of five biophysical 

processes: polarization, protrusion, adhesion, contractility and retraction. While the effects of 

biophysical processes to migration speed are somewhat well-known, the effects of signaling 

proteins that govern these processes and their dependencies are less so. In this section we explore 

how five signaling proteins (EGFR, ERK, MLC, PKCδ and PLCγ) affect cell migration speed 

under combinations of two extracellular cues using the methods discussed in Section 2.3. 

The cues used here are four different surface fibronectin concentrations with or without 

additional stimulation with EGF. Earlier studies [31] have shown that if migration speed is 

measured as a function of fibronectin levels, presence or absence of EGF has a dramatic impact 

on migration speed: If EGF is present, migration speed is biphasic, while in the absence of EGF, 

cells migrate at a constant speed. The data in [31] consist of four fibronectin-levels for 0nM and 

25nM EGF, resulting in eight measurements. Accordingly, we measured the phosphorylation 

levels of the five signaling proteins using the same condition for EGF = 0 (0nM EGF) as in [31]. 

For condition EGF = 1, we used 10nM EGF for the signaling proteins, while it was 25nM in 

[31]. Since both 10nM and 25nM EGF are identical in motility and both are saturating, the data 

for signaling protein and cell migration speed are comparable. 

2.4.1 Parametric model for the signaling proteins and migration speed 

Having four observations per one EGF-level is not enough for reliable identification of 

dependencies between the signaling proteins and migration speed. Therefore, we applied the 

procedure given in Section 2.3.2 to generate more data using simulation. Before applying the 

NML approach, we computed median phosphorylation level for each protein for all Fn-levels 

using the data from replicate experiments. Each median was accompanied with an error estimate 

that was computed with bootstrapping (B = 5,000).  

 Due to the small number of the data points we restricted the maximal polynomial degree 

in the NML approach to two, i.e. Ω = {1,2,3}. Further, the polynomial models were constructed 

 42 



separately for the values under EGF = 0 and EGF = 1 conditions. Polynomial orders for the 

signaling proteins using the NML criterion are given in Table 2. An example of the polynomial 

models and associated point and error estimates for ERK and MLC is given in Figures 8 and 9. 

Standard deviations and point estimates for migration speed are given in [31]. We 

computed pooled standard deviation with Equation. 7, where we made a conservative 

approximation that ri = 70 since the estimates were based on 70-100 cells. The pooled standard 

deviations were 3.0 and 3.4 for EGF = 1 and EGF = 0. Polynomial fitting for migration speed 

was done in log-log space based on the model validation procedure depicted in Section 2.3.3. For 

EGF = 1 the polynomial order was two (-0.49x2+0.07x+5.8), while for EGF = 0 it was zero. As 

our objective was to predict slow, at medium speed or fast migrating cells, the values were 

further discretized into three categories (slow, medium speed, fast) using the Lloyds algorithm 

[186], where the training data were obtained from the noiseless polynomial model. The model, 

discrete categories, simulated data and the original measurements for migration speed are 

illustrated in Figure 10. 

2.4.2 Decision tree for migration speed 

Using the polynomial models we simulated observations between Fn = 0.1 and Fn = 3 using Δ= 

0.0001 resulting in 58,002 observations per variable. The protein phosphorylation values were 

discretized with the Lloyds algorithm so that the number of the discrete categories equaled to the 

number of parameters in the polynomial models for each protein: EGFR = {0,1,2}, ERK = {0,1}, 

MLC = {0,1,2}, PKDδ = {0,1} and PLCγ = {0,1,2,3}. With this discretization approach proteins 

that are affected more by the extracellular stimuli, and thereby can be considered more 

informative, are described with more discretization categories than proteins with lower 

polynomial degrees. Discrete categories reflect relative phosphorylation levels. For example, 

given that there are two and three discrete categories for ERK and MLC, respectively, ERK = 1 

denotes that ERK is highly phosphorylated, while MLC = 1 means that the phosphorylation level 

of MLC is medium. 
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Figure 10. Polynomial fit (solid line), discretization categories (dotted line), original observations (cross) and 
simulated, noisy data (dots) for migration speed. 
 The change from EGF = 1 and EGF = 0 is marked with an arrow. 

 
 
 

In order to overcome the instability problem with the decision trees we first constructed 

10,000 decision trees without pruning. The parameters for growing the decision trees were as 

follows. Splitting criterion was Gini-index [182], prior probability for minimum number of 

observations for impure nodes to split was set to be five. We defined the misclassification costs 

to be such that for misclassifying a slow (medium) speed to medium speed (fast) cost is one, but 

if slow speed is misclassified to fast, cost is two. This resulted in the following cost matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

012
101
210

, 

 
where each row and column corresponds to a migration speed category. 

After the tree growing phase, all 10,000 trees were pruned with the cost-complexity 

pruning method [182]. For the validation step we created 1,000 data sets. Due to computational 
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reasons Δ was set to 0.001, so each validation and pruning data set consisted of 5,802 

observations. The following criterion was used to choose the best tree model:  

∑ −=
T

i
ii yy

T
D ˆ1 ,  (7) 

 

where yi denotes true classes for ith test data set, yi denotes predicted classes and T is the number 

of test data sets (here 1,000). After the pruning and validation, there were 23 separate decision 

tree models and the best decision tree was the one that minimized Equation. 7. Although the best 

decision tree is chosen using Equation. 7, we report also mean classification accuracy (CA), 

which is the mean of the classification accuracies across 1,000 test cases. Classification accuracy 

corresponds to the number of correct classifications divided by all cases. The best decision tree 

(CA = 70 %) is given in Figure 11. Round nodes correspond to the signaling proteins and square 

nodes to the migration speed classes. Classification rules and their relative importance can be 

seen easily from Figure 11. For example, IF ERK = 1 AND MLC = 1, THEN cells migrate fast, 

and 62 % of the measurements for the fast migration class (in the training set) can be explained 

with this rule. 

If the signaling proteins were not discretized, the best decision tree consists of only MLC 

and PLCγ (results not shown) and CA was slightly below 70 %. Now, based on this decision tree 

graph, it could be argued that cell migration speed is dependent only on MLC and PLCγ, and 

ERK is irrelevant when predicting cell migration speed. However, earlier studies have shown 

that ERK is one of the key signals governing migration speed [79, 140] so its absence in the 

decision tree model was unexpected. When we searched for explanations for the exclusion of 

ERK it turned out that ERK was masked by MLC. This can be seen by comparing data for ERK 

and MLC in Figures 8 and 9. When EGF = 0, both ERK and MLC are constant with approximate 

the same level of phosphorylation. However, when EGF = 1, phosphorylation levels for ERK are 

again almost constant but very high, whereas MLC activity is increasing linearly. Thus, the 

decision tree growing algorithm considered ERK useless for migration speed classification given 

MLC, which was undesirable. While some guidelines for detecting masked variables are given in 

[182], these are not helpful in getting the masked variable into the model. 
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Figure 11. The best decision tree for classifying migration speed using signaling proteins. 
Round nodes denote variables whereas square nodes denote migration speed categories. Integers attached to the arc 
correspond to the split of the parent nodes. Under each migration speed category the fraction of cases explained by 
that classification rule is given. For example, if ERK = 0, the migration speed category is 0 and 90 % of the 
observations (in the training set) for the migration speed category 0 can be explained by this rule. 

 

 

 

 

 

This case study provides a proof-of-principle that the proposed data-driven modeling 

approach is applicable to biomedical research. Accordingly, detailed discussion on biological 

implications of the results is out of the scope of this study and will be elaborated elsewhere 
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(manuscript in preparation). Briefly, ERK and MLC regulate the adhesion / contraction ratio  

[34, 140], which is one of the most important biophysical processes during the migration cycle 

[6]. Thus, it is not surprising that these two proteins together are fairly good predictors for 

migration speed. This immediately suggests that in further studies, ERK and MLC should be 

studied together rather than individually. 
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2.5 DISCUSSION 

Analysis of signal transduction cascades is an important application in several biomedical 

research. In this study we have presented a data-driven modeling approach to perform such 

analysis. In our case study we have applied the modeling approach to model and predict whether 

cells are moving slowly, at medium speed or fast, using a set of intracellular signaling proteins 

under various levels of fibronectin and EGF cues. The resulting decision tree graph indicates that 

the phosphorylation level of ERK alone tells whether cells are migrating slowly. In order to 

obtain higher classification accuracy for the cells migrating at medium speed or fast, also MLC, 

PLCγ and PKCδ are needed. These results highlight the central idea of systems biology, i.e. 

complex biological processes cannot be analyzed by perturbing only one component at a time but 

there is a need to study several components simultaneously. However, usually it is not known 

what these components are. Our results indicate that the decision tree analysis can be used to 

suggest what components should be studied together. 

Based on Table 2 it can be argued that the information content of the signaling protein 

data set is low. Degrees of the polynomial functions, however, do not tell the whole truth. For 

example, ERK has zero order polynomial in the presence and absence of EGF, but the absolute 

difference between these constants is large. That is, ERK acts like a switch triggered by the EGF 

status and clearly brings in information to the analysis. Further, after inducing EGF, cell 

migration measurements were performed after eight hours in order to observe maximal migratory 

response for the cell type used in this study [31]. Therefore, it was expected that in five minutes 

the changes in the signaling proteins phosphorylation levels may not yet be visible at the 

migration speed level. From another standpoint, the conclusion that a data set is not rich in its 

information content may also be valuable information, and the NML modeling with decision tree 

analysis provide means to assess this issue. One of our future directions is to measure signaling 

protein activities in regard to cell migration speed at different time points, and the methods given 

here can be used to approximate time it takes for extracellular stimuli to have an effect on the 

signaling proteins. These results may be used when estimating rate constants for temporal 

mathematical modeling. 

Quality control is an unavoidable part of biomedical research; studies not performing 

quality control implicitly state a 100 % confidence in the measurements. In this study we applied 
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a statistical quality control approach for replicate measurements with 95 % confidence level. We 

also tested 80 % confidence level and no quality control and the resulting decision trees resulted 

in 62 % and 67 % classification accuracies, respectively (results not shown). Detailed discussion 

on quality control issues and choices of the confidence levels is beyond the scope of this study, 

but it would make an interesting topic for further study. In essence, one of our future directions is 

to first identify quality features, learn a classifier with them, and use the trained classifier to 

assess quality control as described in [141]. 

The overall obtained classification accuracy for simulated data, 70 %, for three migration 

speed categories is quite good given that original signaling protein measurements were done at 

one time point of only five minutes after stimulation, whereas cell migration was measured at 

eight hours. Furthermore, cell migration speed data and signaling protein measurements originate 

from different studies: The cell migration data set was done in 1999 while signaling protein data 

set was done in 2004. As a consequence, there are some differences between the experimental 

setups causing noise to the analysis. Classification accuracy can also be used as a yard-stick for 

sufficiency of the measured data set in regard to modeling a biological process. If classification 

accuracy is poor, it could be an indication that the data set does not comprise enough variables or 

information in order to model the biological process in question. In our case study, the 

classification accuracies for medium and high migration speeds were fair. The most likely reason 

for this is that our measurements cover only a limited portion of the signaling network 

components critically involved in governing migration. Merely as one relevant facet of this 

highly multi-variate system, for instance, there is accumulating evidence that virtually all of the 

key MAP kinases influence cell motility in diverse ways [142]. This shortcoming can, of course, 

be addressed by enlarging the scope of the measured signaling component space to the extent 

cost-effective. Accordingly, the decision tree results can be helpful to determine what 

components should be measured in future experiments, and whether there is a need to measure 

additional components. On the other hand, our results demonstrate that decision trees are 

applicable to studies where several key components are not observed. 

To our knowledge this is first study where cell migration speed is quantitatively predicted 

using phosphorylation levels of signaling proteins. Several other modeling approaches such as 

Bayesian networks [137,187], neural networks or support vector machines [184] have their own 

benefits and drawbacks. The two latter methods are very good classifier approaches in various 
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applications but they suffer from a major drawback; dependencies between the variables and 

their relevancies are practically impossible to obtain from the model. In contrast, Bayesian 

networks have been mainly used to obtain dependencies between variables but it is not self-

evident that a Bayesian network that aims at describing dependencies between the variables 

performs well when predicting cellular outcomes. Moreover, the variables used in learning a 

Bayesian network are usually required to be discrete or Gaussian distributed, which may be an 

implausible requirement. 

The decision tree based modeling is not supported by a unique and solid mathematical 

background. Thus, it is imperative to report parameter settings in detail so that the results can be 

reproduced. Furthermore, decision trees require a relatively large training data set, which may 

not be feasible to obtain. This requirement, however, is not unique to decision trees but is present 

with the other classification and modeling approaches as well. Here we have expanded the data 

set via interpolating polynomial functions whose order was determined with the MDL principle. 

Parameters for polynomial functions are straightforward to estimate and several well-established 

methods exist for this purpose. When polynomial functions do not yeild satisfactory results, the 

alternative might be Monte Carlo based techniques. However, as Monte Carlo methods are 

notorious for being computationally demanding, we argue that the polynomial models should be 

applied before trying more complex methods.   

When additional data are simulated, it is important to choose the extracellular conditions 

so that they span over a large range because it is safer to interpolate than extrapolate. Another 

requirement is that there should be enough data points so that nonlinear trends can be captured. 

The methods presented in this study do not pose upper limits for the extracellular cues but in its 

current form the decision tree analysis can be applied to only one biological process at a time. 

One of our future directions is to develop a multidimensional decision tree that is capable of 

predicting several cellular outcomes simultaneously. A multidimensional decision tree would 

enable, for example, identification of signaling proteins that are associated with high cell 

migration speed and avoidance of apoptosis. 
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2.6 CONCLUSIONS 

We have presented a decision tree-based modeling approach for analysis of complex and 

multidimensional signal transduction cascades. Our case study demonstrates that decision trees 

can provide several insights to signal transduction cascades. We conclude that decision tree 

methodology may facilitate elucidation of signal-response cascade relationships and generate 

experimentally testable predictions, which can be used as directions for future experiments. 
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3.1 INTRODUCTION 

Physiological cell behaviors are, to a large extent dependent upon various extracellular cues like 

chemical ligands, micro-organisms, toxins, radiation, and so forth. Such stimuli exhibit distinct 

cell responses by selectively mediating signaling from signal transduction cascades. Signaling 

events in turn ensue due to the spatial and temporal fluctuations in the activation status of 

numerous proteins that act like switches within larger proteomic networks [8]. Such proteins are 

activated epigenetically by phosphorylation of various residues, cleavage by proteases, 

enzymatic activity and subcellular translocation making such protein measurements challenging. 

However, to modulate cell behavior in therapy, a thorough understanding of these biochemical 

switches in needed so they can be effectively targeted. 

Migration of a variety of cells is crucial for various homeostatic biological responses 

during wound healing and inflammation [1]. Such biological property of cell motility is 

dysregulated in cancers leading to cancer progression and metastasis [58]. Thus targeting 

motility, can be employed in limiting mortality and morbidity of a variety of human diseases 

including cancer [143]. But such targeting suffers from limitations since variety of cancers utilize 

alternative pathways within the protein networks to promote their progression. While each of 

such target disruption has shown to be effective in abrogating motility and invasiveness of tumor 

cells in vitro, this cannot be readily applied to in vivo situation due to our limited understanding 

of how the intracellular signaling networks work. Thus, a clear delineation of the interplay of key 

proteins mediating cellular properties is crucial to future efforts aimed at drug discovery and 

individualized treatment [144, 145]. 

Targeting cell motility is a challenge given its complexity. One approach towards 

understanding motility is to break it down into discrete and individual biophysical components 

[6, 138]. The principal required processes include acquisition of cell directionality with a front 

and a rear end with lamellipodal protrusion at the front and detachment of cell membrane at the 

rear (Figure 1). The polarized cell then contracts using the ubiquitous actin-myosin contractile 

machinery to produce the force needed for locomotion. Thus productive migration ensues due to 

the repetitive cycling of these complex biophysical events in a temporally organized manner. It is 

thus evident, that such a complex event is exhibited by a coordinated signal propogration and 

amplification / attenuation within existing intracellular proteomic networks. Our goal is to define 
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key signaling switches governing cell migration that can be targeted for modifying this cellular 

behavior. 

Research efforts in the field of cell biology have generated enormous ‘raw-data’ that 

needs further stratification using sophisticated methods. Computational modeling can compile 

and classify gigantic proteomic data sets produced by experimental laboratory techniques and 

extract vital information not readily apparent by conventional analytical techniques. In addition, 

mathematical models can expand data sets to proportions that can be used to make non-intuitive 

predictions related to biological responses [11]. We have previously described [11] a novel 

approach, namely Decision tree analysis (chapter 2), in studying cell migratory events based on 

measurements of key intracellular signaling proteins. This study was inspired by previous 

observations from Maheshwari et al that elucidated the biophysical components of fibroblast 

migration across a range of different extracellular cues. Different cellular biophysical processes 

including cell speed were measured across 8 different experimental conditions (4 different 

surface FN levels and presence or absence of EGF). The observations indicated that cells move 

fastest with EGF stimulus when the surface fibronectin concentration (or cell-substratum 

adhesiveness) is in the intermediate range whereas minimal motility was observed at the two 

extreme conditions. However, substratum fibronectin concentration (and also the extracellular 

matrix) alters motility not just by altering surface adhesiveness but also by actively signaling 

through the integrins towards intracellular downstream cascades [29]. Thus in this study we 

aimed at elucidating the ‘quantitative contributions’ of different signaling proteins in dictating 

cellular motility across different extracellular cues (FN and EGF). In this study as well, we 

measured, using quantitative western blotting, the activation status of five key signaling proteins 

under the same 8 experimental conditions. Decision trees were created by compiling this data 

with the measurements of cell speed from Maheshwari et al. The decision trees were applied to 

map the hierarchial interplay of signaling proteins in governing crucial cellular biophysical 

events (including cell speed). Our model places MLC mediated cell transcellular contractility as 

the most vital element in motility. Further, the model also predicts that differences in its 

quantitative inhibition (total versus subtotal) by targeting MLC can have drastically divergent 

cellular effects. We have tested these non-intuitive predictions from the model using 

experimental methods thereby validating the model. Such studies have profound implications in 
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therapy in identifying crucial signaling nodes that should be quantitatively disrupted for the most 

significant biological response. 

3.2 APPROACH 

Detailed experimental protocols are provided in chapter 2.0 under specific sections. To avoid 

unnecessary repetition, only a brief overview of the approach and experimental methods is 

presented in this chapter.  

The study is conducted as follows: We first generate quantitative immunoblotting data 

under the specific conditions of four different fibronectin levels of the substratum and presence 

or absence of EGF (FN of 0.1, 0.3, 1, 3 μg/ml and – or + of 10 nM EGF). We have previously 

measured key biophysical processes across the same experimental conditions. EGF of 10 nM is 

saturating of EGF receptor and was added for 5 minutes (acute), 1 hour (intermediate) and 16 

hour (long term) to elucidate signaling events during a wide range of time. The immunoblots 

were quantitated using NIH image to generate quantitative data followed by normalization using 

the first experimental condition i.e. FN of 0.1 μg/ml and no EGF (see section 2.3.5 / 6). We 

utilize ANOVA based quality control to exclude any data point if it classified as an ‘outlier’ 

depending upon the rest of the samples within that data set (section 2.3.1). We then expand the 

data using polynomial modeling and generate approximately 50,000 replicates of each signaling 

protein within the 8 different experimental conditions (4 FN levels and – or + EGF) (section 

2.3.2). Similarly, we use polynomial modeling to generate additional replicates for cell speed 

based on the initial measurements from Maheswhari et al [31] within the 8 experimental 

conditions (four different FN levels and – or + EGF). We then generate decision trees by 

integrating this quantitative data of biochemistry (western blots) and biophysics (cell speed 

across fibronectin) that provides a hierarchial map of key intracellular switches in governing cell 

speed (section 2.3.4 and 2.4.2).  
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3.3 RESULTS  

3.3.1 Quantitative immunoblotting 

Our aim is to elucidate the relative contributions of different signaling proteins in mediating 

migration across different extracellular conditions. The biophysical data included cell speed, 

membrane protrusion activity, cell spread area, surface adhesion, and membrane retraction and 

has been previously measured by Maheshwari et al [31]. We utilized 10 nM of EGF for our 

studies in NR6WT cells whereas Maheshwari et al have utilized 25 nM. Both of these 

concentrations are saturating for the EGF receptor numbers in these cells and thus can be 

assumed to be similar in their cellular effects. In addition, EGF was added to the cells for periods 

of 5 minutes, 1 hour and 16 hours to capture the entire (temporal) activation spectrum of 

signaling proteins.  

Addition of EGF activated EGFR within minutes and this signal was transmitted 

downstream to all other signaling cascades measured (Figure 12). Interestingly, EGFR activation 

profile mirrored that of ERK within early time periods of EGF stimulation (5 minutes). ERK 

activation was robust compared to quiesced (control) cells and was minimal at 1 hour (of EGF 

stimulus) due to signal attenuation with minimal change over different surface fibronectin 

concentrations (Figure 13).  Thus ERK functioned like a ‘switch’ turned on dependent mainly on 

EGFR signaling. EGFR signaling also activated PLCγ and PKCδ linearly across increasing 

surface FN levels with resultant MLC activation through PKCδ. MLC activation begins within a 

few minutes of EGF stimulation and reaches a plateau at about 2 hours and can be appreciated 

upto 24 hours after EGF stimulus. Interestingly, MLC activity was inversely biphasic with 

lowest levels at intermediate FN concentration (0.3 and 1 μg/ml) captured after 1 hour of EGF 

stimulation (Figure 13). Thus, using these experimental conditions, we captured important 

quantitative and temporal trends of molecular activation. One representative immunoblot for 5 

minutes and 1 hour of EGF stimulation is shown (Figures 12 and 13). Quantitation and 

normalization of this data has been previously described in detail (sections 2.3.5 / 6). 
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Figure 12. Western blotting data for EGF of 5 minutes across different fibronectin concentration of surfaces. 
Tissue culture plates were coated with different fibronectin (FN) concentrations. NR6WT cells were grown on these 
surfaces for 24 hours in complete growth medium and quiesced for another 24 hours in medium containing 0.5 % 
dialyzed FBS. EGF was added for a period of 5 minutes, cells washed once with PBS and lysed. Cell lysates were 
resolved using SDS-PAGE and immunoblotted using specific antibodies for various phosphorylated proteins. 
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Figure 13. Western blotting data for EGF treatment of 1 hour across different fibronectin concentration of surfaces. 
Tissue culture plates were coated with different fibronectin (FN) concentrations. NR6WT cells were grown on these 
surfaces for 24 hours in complete growth medium and quiesced for another 24 hours in medium containing 0.5 % 
dialyzed FBS. EGF was added for a period of 1 hour, cells washed once with PBS and lysed. Cell lysates were 
resolved using SDS-PAGE and immunoblotted using specific antibodies for various phosphorylated proteins. 
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3.3.2 Data expansion using polynomial interpolation 

An insufficient number of data points can limit effective conclusions that can be drawn about 

dependencies among variables (signaling proteins). Thus, the measured experimental data has to 

be expanded using mathematical models to interpolate new data points. These simulated data 

points are multiple realizations of pseudomeasurements that are internally consistent with the 

statistical distribution of the original measured data points [11]. The details of creating 

polynomial equations and their application to data interpolation have been previously explained 

in section 2.3.2 and Appendix A. The polynomial interpolations for cell speed, based on the 

original data from Maheshwari et al, is shown in figure 14. Similarly, polynomial data for 

phospho-MLC is shown in figure 15. The data points are discretized in three levels depending 

upon the activation status as 0= low, 1= medium, 2= high. This is true both for signaling proteins 

as well as cell speed measurements. Crosses denote the actual measurements, either cell speed or 

signaling protein data, whereas the red lines denote the distribution of ‘simulated’ data points. It 

is evident that pMLC is inversely biphasic across fibronectin coating concentration of surfaces 

with lowest levels found at intermediate FN levels and highest levels found either below FN of 

0.5224 μg/ml or more than 2.6 μg/ml. This also corresponds to highest cell speed observed 

within this FN concentration range. The interpolated data from all other signaling proteins (along 

with MLC) was employed for constructing decision trees. 

Once the polynomial model is constructed, it is necessary to check how good the new 

‘simulated’ data set (and hence the polynomial model) is for original measurements. The new 

data is assumed to be in Gaussian distribution with its mean as the simulated value and standard 

deviation estimated from equation 7 (appendix A). If each of the data points lies close to the 

mean and does not fall below or above the 2.5 % of the left or right tails, the model can be 

considered statistically feasible. Examples of polynomial modeling for signaling protein 

measurements at 5 minutes of EGF stimulation (the variables) is shown in figure(s) 8 and 9. A 

similar example of polynomial modeling and data simulation for cell speed (the response) is 

shown in figure 10. 
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Figure 14. Polynomial interpolation data for cell speed under EGF stimulation.  
Crosses are actual measurements, upper and lower triangles are error estimates red line denotes the range of 
distribution of the interpolated values using fitted polynomial across a range of fibronectin coating concentrations. 
Cell speed is biphasic and discretized as low (0), medium (1) and high (2) across FN; i.e. High speed is seen 
between FN of approximately 0.52 to 2 μg/ml. 
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Figure 15. Fitted Polynomial interpolation data for activated MLC from the 1 hour EGF treatment data set.  
Crosses are actual measurements, upper and lower triangles are error estimates red line denotes the range of 
distribution of the interpolated values using fitted polynomial across a range of fibronectin coating concentrations. 
pMLC is discretized as low (0), medium (1) or highly activated (2) along FN concentrations. Thus, high pMLC is 
seen with EGF treatment if FN is less than 0.5224 and more than 2.6305 μg/ml. 
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3.3.3 Decision tree analysis of signaling proteins predicts a critical role of MLC based cell 

contractility in mediating cell migratory responses 

Rarely have complex cellular behaviors been studied from a ‘systems biology’ perspective. A 

complex and well orchestrated cellular response like cell migration can only manifest from 

optimal quantitative activation of tens and hundreds of signaling proteins. Thus, an important 

question that is to be asked when altering cell motility in therapy is ‘what are the relative 

quantitative contributions of each of the hundreds of signaling proteins towards such a biological 

response?’ Or specifically ‘how much of ERK and MLC need to be activated for cells to exhibit 

maximum motility?’ By answering some of these questions, we can begin identify such crucial 

switches needed to be abrogated or amplified depending upon the desired cell response. This is 

the problem that we have approached using decision tree analysis. 

The construction of decision trees has been covered in detail is sections 2.3.4 and 2.4.2. 

We conducted decision trees using the above five key signaling proteins activated by different 

time periods of EGF treatment. The decision trees obtained from three different EGF treatments 

(5 minute, 1 hour and 16 hour measurements) yielded different classification efficiencies of 

observations from the training set. The 5 minute decision tree predicted 70 % of observations 

from the training data set (figure 12), where as the 1 hour decision tree had a predictive power of 

76 % (figure 13). The 16 hour decision tree could only predict 54 % of the observations from the 

training data set and hence was eliminated due to the questions of its applicability in making 

biologically valid predictions.  
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Figure 16. Decision tree of signaling proteins for cell speed using 1 hour of EGF stimulus data. 
Round nodes denote variables whereas square nodes denote migration speed categories. Integers attached to the arc 
correspond to the split of the parent nodes. Under each migration speed category the fraction of cases explained by 
that classification rule is given. For example, if EGFR is high  = 1 or 2 and MLC is low or 0, the migration speed 
category is 2 (high) and 68 % of the observations (in the training set) for the migration speed category 2 can be 
explained by this rule. Compare with 5 min decision tree in figure 11. 
 
 
 

3.3.3.1 Cell contractility mediated by myosin light chain filament activation is central to 

motility 

Contractile force production is enabled through the actin-myosin coupling upon activation of 

regulatory myosin light chains [34, 42]. That cell contractility is required for cell movement, was 

described by Iwabu et al [34]. Interventions that totally disrupted PKCδ mediated MLC 
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activation abrogated cell motility by decreasing cell contractility. Each of the molecules selected 

for modeling (like PLC, ERK) governed one or more individual biophysical events during 

motility (described in section 1.2). As such, our decision tree analysis was useful in predicting 

which molecules, and therefore which of the biophysical processes they controlled, were 

hierarchically important in governing motility. Interestingly, after EGFR activation, MLC 

mediated contractiliy was the most crucial ingredient. The decision tree discretized MLC 

activation into low (0), medium (1) and high (2). According to the predictions, the cells move 

with highest speed, when after EGFR activation, MLC phosphorylation is low (Figure 16) and 68 

% of cells that move with high speed can be explained with this rule alone. Thus, lowering MLC 

mediated contractility can actually increase cell speed whereas total MLC inhibition can abrogate 

cell motility. While the effects of total MLC inhibition on cell motility have been intuitive and 

published by Iwabu et al, the biphasic nature of cell migration (speed) upon subtotal inhibition is 

non-intuitive and novel. Thus, our decision tree model predicted MLC to be an important 

regulatory node governing cell motility and predicted that subtotal versus total abrogation of this 

node can have drastically opposite cell responses. 
 

3.3.3.2 Subtotal inhibition of MLC activation increases cell speed 

Our model predicted that subtotal lowering of MLC activation increases cell speed. This was 

particularly relevant to the conditions where surface FN concentrations were below 0.522 μg/ml 

or greater than 2.6 μg/ml as derived from figure 14 and 15. Both of these conditions are 

associated with high phosphorylated MLC levels with minimal cell speed and there is apparent 

dsyregulation in the balance between the substratum adhesion strength versus contractility; i.e. 

despite high MLC activation in both conditions, there is too little substratum adhesion at 0.1 

μg/ml while it is in excess at 3 μg/ml [31]. Thus at 0.1 μg/ml, contractility supersedes adhesion 

strength whereas this phenomenon is reversed at the condition of 3 μg/ml of surface fibronectin. 

 To test the model predictions under such conditions, we employed a well described and 

validated MLCK inhibitor ML-7 to measure fibroblast migration speed under the same 

extracellular conditions (4 FN concentrations - / + EGF). Such a downstream inhibitor was 

chosen (over PKCδ inhibitor Rottlerin) because it is MLCKinase specific and hence the resultant 

cellular responses can be attributed directly and specifically to MLC inhibition since PKCδ is 
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involved in diverse cellular responses other than motility [146]. This is likely reflected in the 

Decision tree analysis wherein MLC lies hierarchically above PKCδ. 

We initially measured cell migration on fibronectin using the ‘scratch assay’ under a 

range of ML-7 concentrations within the culture medium containing saturating levels of EGF. In 

parallel, Western blot analysis of activated MLC (with EGF treatment) showed a linear decrease 

in phosphorylated MLC levels with increasing ML-7 concentration (not shown). Under the same 

conditions, lower ML-7 concentration (2-3 μM) increased fibroblast migration relative to EGF 

alone (Figure 17). Specifically, within fibronectin concentration of 1 and 3 μg/ml, subtotal 

inhibition of MLC increased cell migration; i.e. migration distance was greater in conditions that 

had EGF and ML-7 within the medium relative to EGF alone (Figure 17 A). In the condition 

with FN of 0.1 μg/ml, any further lowering of MLC activation did not increase cell migration but 

rather reduced it. Total inhibition of MLC using ML-7 (at a range of 10-15 μM) completely 

abrogated motility. These initial experiments were in accordance with the predictions from our 

decision tree model.  

To apply these predictions specifically to individual biophysical events during motility, 

we measured fibroblast migration speed using single cell tracking under exactly same 

experimental conditions. Speed was measured as the distance traveled by an individual cell over 

a given period of time (10 hours) [31]. We found that lower ML-7 concentrations increased cell 

migration distance as well as speed relative to EGF alone (experiments in progress). Again, 

motility was totally abrogated with complete MLCKinase inhibition. Thus, the biphasic response 

of cell speed was shown to be dependent upon MLC mediated contractility. Our decision tree 

model predicted this phenomenon whereas our experimental conditions validated the model 

predictions. These observations are preliminary and the experiments are still in progress to 

compile the quantitative data. 
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Figure 17. Subtotal inhibition of myosin light kinase increases cell migration. 
NR6WT fibroblasts were grown on surfaces coated with three different fibronectin concentrations ( 0.1, 1, 3μg/ml ) 
and quiesced in serum restricted conditions for 24 hours. The cells were scraped using a pipet tip and the migration 
of cells into the denuded area was assessed over a period of 24 hours. EGF (E above) and ML-7 ( ML above) was 
added throughout the experimental conditions. Lower doses of ML-7 (2-5 μM) were shown to increase cell 
migration as compared to EGF treatment alone. A. Migration values normalized to the first condition, FN of 
0.1μg/ml without EGF. B. Migration values normalized to EGF treatment within each FN condition. 
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3.3.3.3 Subtotal inhibition of myosin light chain activity increases migration of cancer cells 

To assess if our predictions could be employed to different cells under a range of experimental 

condtions, we utilized MDA-MB-231 breast cancer cell lines and assess their migratory response 

across a range of MLCKinase (and hence MLC) inhibition. These cells overexpress EGF 

receptor and actively exhibit  autocrine stimulatory loops that drive their migration and 

invasiveness [147]. Motility was assessed using a transwell Boyden chamber with EGF as a 

chemotactic cue in the bottom wells and ML-7 within the seeding medium. In accordance with 

the findings in fibroblasts, migration of MDA-MB-231 cells was substantially higher when the 

medium contained low to medium concentration (3-10 μM) of ML-7 in addition to EGF as 

compared to EGF alone (Figure 18). The term ‘low’ or ‘medium’ in regards to ML-7 

concentration is obtained by titration of activated MLC levels and varies with cell types; i.e. for 

NR6WT cells, 10 μM of ML-7 is high whereas the same is ‘medium’ for MDA-MB-231 cells. In 

other words, the amount of MLC downregulation that is achieved by 10 μM in NR6WT cells is 

approximately similar to that achieved by 15 μM in MDA-MB-231 cells. Transmigration was 

completely blocked when ML-7 concentration completely abrogated MLC activity (>30 μM).  
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Figure 18. Subtotal inhibition of MLC increases migration of MDA-MB-231breast cancer cells. 
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20,000 cells were subjected to transmigration across a boyden chamber in serum restricted conditions for 24 hours. 
EGF(E) and increasing concentration of MLCK inhibitor, ML-7, (ML above) were added to the medium where 
indicated. The migrated cells were fixed in formaldehyde, stained and manually counted.  

3.4 DISCUSSION AND CONCLUSIONS 

Most disease states like cancer, are a result of perturbations within multiple signal transduction 

pathways rather than single genetic mutations commonly underlying diseases like cystic fibrosis. 

These signaling pathways comprise of nodes act as signal amplifiers, transmitters or distributors 

to different signaling proteins within the network. Thus, numerous and usually, proteins with 

redundant activity profiles govern such complex cellular phenomena. Evidently, altering cell 

behaviors is difficult without a thorough understanding of how these signaling switches work 

synergistically. While enormous data sets are available for biological conditions, such data sets 

have not been integrated to provide information about the interlinked and branched signaling 

networks. Therefore, targeted therapies often fail because cells utilize parallel and alternative 

pathways to mediate the necessary biological functions. Identification and modulation of key 

signaling nexi from such complex networks can alter cell behaviors and yield favorable 

responses [148, 149]. 

We utilized decision tree analysis to identify the crucial effectors of cell motility 

depending upon a set of extracellular cues. Fibronectin was selected since NR6WT fibroblast 

express alpha5beta1 integrin receptors that are actively involved in cell signaling during motility. 

Also, these being adhesion receptors provide a counter-balance against the motogenic EGF 

receptor that is overexpressed in these cell lines. Such adhesion versus motility balance is present 

in vivo environments, where motility of cells is dictated by the cellular ecology, cell-substratum 

and cell-cell adhesion profile, extracellular matrix components along with a spectrum of soluble 

and matrix-embedded extracellular stimuli [1, 99]. Our model was based on the quantitative 

measurements of five signaling proteins that are activated downstream of the EGFR and are 

known to mediate key biophysical events of motility. Arguably, such model could suffer from 

predictive power due to the possible exclusion of other key signaling proteins (like FAK, calpain, 

etc). However, our model predicted 76 % observations within the training data set accurately. 

Future experiments are aimed at incorporating other key signaling proteins within this 
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foundational decision tree model. The model will then be similarly tested for predicting cellular 

biophysical events with any discrepancies be refined and the model accordingly ‘fine-tuned’ to 

maximize its classification efficiency. 

Our decision tree model clearly identified MLC mediated contractility as the most crucial 

biophysical event during EGF induced motility. This does not mean however, that disrupting 

other cellular events, like PLCγ based lamellipodal protrusion, will not abrogate motility. The 

utility of decision trees is to predict the switches that upon disruption, can produce the ‘most 

significant’ response. It also identifies molecules that need to be inhibited together to alter 

motility. In our model that was based on 5 minute and 1 hour EGF stimulation data set (Figures 

12 and 13), contribution by ERK was masked by similar activation profile observed with EGFR. 

This does not mean that ERK is not vital in motility since disrupting ERK reduces migration [79] 

but rather means that ERK activation profile was captured by measuring EGFR activation. 

Further, the model predicted in accordance with Glading et al [79] that motility requires 

functional ERK activation since 90% of cells that migrated could be explained to operate using 

this rule alone (Figure – 11, 5 minute decision tree). Furthermore, even the 5 minute data set 

predicted 70 % observations within the training set correctly although maximum motility is 

observed atleast 4-8 hours after EGF addition. This was due the fact that 5 minute data 

measurements captured activation trends of important molecules like ERK that are indispensable 

for cell migration but are usually attenuated at 1-2 hours after EGF stimulus when motility has 

started becoming a stable biophysical response. Such transient activation is sufficient to elicit 

motility since ERK transmits the signal downstream towards the final effectors of motility before 

attenuation. Additionally, the model indicates that ERK functions like an ‘on-off’ switch during 

motility: if ERK (and/or the EGFR) is active, the cells will move depending upon the profile of 

other signaling proteins but if ERK is inactive, the motility is practically negligible since 90 % of 

cells with minimal motility could be predicted by this rule (Figure 11). This also points to a new 

proposition: targeting MLC and ERK together to retard cell migration.  

Our model, non-intuitively predicted that lowering MLC activation, but not totally 

abrogating it, can paradoxically increase cell speed. These predictions held true, atleast in part, in 

our population based ‘scratch assay’ that assessed cell migration under different concentrations 

of MLCKinase inhibitor, ML-7. Of interest, subtotal inhibition of MLCKinase under higher 

fibronectin concentration of substratum increased cell speed (Figure 17) whereas under lower 
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substratum adhesive conditions (0.1 μg/ml), further reduced it. Motility is a function of optimum 

balance between cell-substratum adhesion versus cell contractility that enables cells to break 

some cell-substratum adhesions but form newer ones as the cell moves [30]. This is evident at 

intermediate FN concentration of surfaces in our experiments [31]. The adhesion-contractility 

balance is impaired at the two extreme conditions where too little adhesion precludes a cell from 

generating sufficient adhesions for locomotion; hence further lowering of contractility even by 

subtotal inhibition of MLC further reduces motility (figure 15). On the other hand, too much 

surface adhesiveness (FN of 3 μg/ml) maintains a cell in a ‘stuck’ situation due its inability to 

detach. This is because higher surface fibronectin promotes excessive integrin receptor 

engagement evenly on the surface rather than keeping it selective at focal adhesions. Cell-

substratum adhesiveness is a result of ligand concentration, receptor number or ligand-receptor 

affinity, with maximum motility (and cell speed) occurring at intermediate level of cell-

substratum adhesion strength [30].  Thus a higher FN concentration results in a cell stuck to the 

surface with a high intrinsic contractile force. In such situations, any decrease in contractility can 

be predicted to increase cell motility by reinstating the adhesion versus contractility balance and 

enabling cell detachment, breakage of focal adhesions with formation of new ones. This was 

indeed confirmed by our initial experiments (Figure 17) using ‘scratch assay’and observed in 

single cell tracking experiments. 

Using the popular ‘scratch assay’, we found that cell motility was highest when cells 

migrated on 0.1 μg/ml of FN under EGF influence (figure 17 A). This is in contrast to the data 

from Maheshwari et al where motility was least at the two extreme fibronectin concentrations ; 

i.e. at 0.1 and 3 μg/ml. We attribute this discrepancy to the nature of the ‘population’ based 

scratch assay we used to assess total cell migratory distance versus single cell tracking that 

Maheshwari et al employed to measure cell speed. In addition, while performing the ‘scratch’ on 

the confluent monolayer, it is possible to scrape the layer of fibronectin coated for the precise 

experimental situation. Thus, ‘scratch assay’ can only be utilized to test preliminary predictions 

from the model. Our initial experiments to assess cell speed using single cell tracking under the 

above experimental conditions have confirmed findings from Maheshwari et al. In addition we 

have unequivocally found that subtotal reduction of MLC activation can indeed increase speed of 

cell migration. These experiments are in progress.  
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Changes in the extracellular matrix components alter cell signaling during many patho-

physiological states. Fibronectin has been shown to be deposited along the wound beds during 

wound contraction, and enables the recruitment of fibroblasts into the denuded area [150]. Once 

there, fibroblasts contract and approximate the wound edges enabling closure of the wound edges 

{Allen, 2002 #343}. During these states, the lack of motogenic signal like EGF drives signaling 

through the integrins and transmits contractile force back to the matrix rather than used for 

motility [105]. In our experiments, a range of these condition were  reproduced (although 

simplified) by coating the surface with linear ranges of fibronectin concentration (0.1 to 3 

μg/ml). Thus, lowering MLC activation, under such conditions, can enable cell motility by 

‘redirecting’ such contractile force for locomotion as well as lowering cell-adhesiveness enabling 

cellular detachment from the substratum [151]. Thus, MLC based contractility is identified as the 

fulcrum which if tipped in one direction can promote motility over adhesion. 

These findings have profound implications for therapy. Identifying key nodes enables 

quantitative manipulations using pharmacologic methods for specifically desired cellular 

responses. It also points to the importance of how these signaling proteins are regulated 

stoichiometrically. Our predictions held true even when applied to breast cancer cells, where 

lower doses of ML-7 promoted cell migration. While a complete abrogation of MLC can be 

beneficial in limiting tumor cell motility, partial inhibition using lower pharmacological doses 

can increase tumor cell motility and invasion leading to devastating consequences. This further 

points to the importance of applying newer modeling approaches to fully characterize the role of 

signaling cascades in mediating cellular behaviors. Such understanding will enable precise 

therapeutic targeting of key signaling nodes and open the door to individualized ‘patient-tailored 

therapy’ [148]. 
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4.1 ABSTRACT 

Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from 

growth factor receptors including that for the epidermal growth factor (EGF) family of ligands. 

The resultant aberrant signaling drives the key cellular responses of proliferation, migration and 

invasion. Recently, Protein Kinase Cδ (PKCδ) was shown to be involved in EGFR-mediated 

fibroblast contractility and motility. We hypothesized that PKCδ-mediated transcellular 

contractility is required for migration of prostate tumor cells and can be explored as a possible 

target for therapeutic intervention. Two invasive prostate tumor cell lines, DU145 cells 

overexpressing wildtype human EGFR (referred to as DU145WT) and PC3 cells, were studied. 

PKCδ is overexpressed in these prostate carcinoma cells relative to normal prostate epithelial 

cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin 

light chain (MLC) activity. EGFR-mediated activation of PKCδ and its key target substrates was 

reduced by pharmacological (Rottlerin) or molecular (siRNA) abrogation in both the DU145WT 

and PC3 cell lines, and these interventions significantly decreased EGF-induced migration and 

invasion of both cell lines in vitro. As an initial exam of the human situation, PKCδ protein was 

greater in two human prostate cancer tissue lysates as compared to normal donor prostate. 

Immunohistochemical analysis of active (phosphorylated) PKCδ in prostate tissue sections 

showed robust PKCδ activity in prostate cancer tissue as compared to almost undetectable levels 

in normal donor prostate tissue. In prostate carcinomas, activated PKCδ was observed both at the 

cytoplasmic and nuclear locale. Thus, we conclude that PKCδ is a critical governor of prostate 

cancer cell migration and that its abrogation can limit prostate tumor invasiveness. 

 

 

Key Words: Myosin light chain, cell contractility, prostate carcinoma, migration, invasion. 
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4.2 INTRODUCTION 

Prostate cancer is the most commonly diagnosed cancer in men. The morbidity and mortality 

associated with prostate cancer results from both invasiveness through the capsule into 

surrounding tissues and formation of distant metastases [61]. Tumor progression is achieved by 

genetic as well as epigenetic changes including amplification and upregulated signaling through 

cell surface receptors, particularly the epidermal growth factor receptor (EGFR) [3, 58]. EGFR is 

overexpressed in a variety of solid tumors including those of the breast, prostate, brain 

(glioblastoma multiforme), bladder, and lung [52-57], with this increased signaling correlating 

with tumor progression to invasion and metastasis [58]. As tumor cells also secrete the autocrine 

activating ligands such as TGF-α [59], these autocrine activating loops provide a rationale for 

targeting this signaling axis [152, 153]. While such agents have reached accepted clinical use, 

their efficacy has been limited by systemic toxicity and the ability of other receptors to supply 

the tumor progression signals. Thus, selectively targeting key intracellular molecular switches 

for the required cell behaviors would be one avenue to augment our armamentarium aimed at 

preventing tumor invasion and metastasis. 

 Increased cell motility facilitates, at least in part, tumor progression [154]. In 

many tumors, autocrine signaling through upregulated growth factors impels this [58]. Targeting 

EGFR-induced motility, however, needs a thorough understanding of this highly orchestrated 

process. One well-characterized approach is to break down the overall cellular migratory 

response into discrete biophysical processes. Principally, migration of a polarized cell results 

from protrusion of lamellipods at the front end, attachment at or near the leading edge, 

transcellular contractility, and finally detachment of the cell membrane at its rear end to enable 

productive locomotion [6]. In recent years, key molecular switches have been identified for each 

of these steps. Previous experiments have shown that targeting specific signaling pathways that 

control discrete cellular biophysical events needed for migration can be effective in abrogating 

motility and invasion of prostate tumor cells[14-16, 155]. However, while each step is required 

for motility, it is not known how they interact to regulate motility. Recently, we have used a 

modeling approach to define the information content hierarchy of these switches, and found that 
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transcellular contractility is central to productive locomotion [11]. As the actomyosin contraction 

machinery is central to many cellular processes required during homeostasis, we sought the key 

steps between it and EGFR, and to the recently identified protein kinase Cδ (PKCδ) switch [34]. 

 The protein kinase C (PKC) enzyme family comprises at least 11 members 

classified into three groups: the classical, the novel and the atypical, depending upon their 

requirement for calcium and diacylglycerol (DAG) for activation. PKCδ, almost ubiquitously 

expressed, belongs to the novel group, and is independent of calcium for its activity, but it still 

can be activated by DAG, phospholipids and phorbol esters [146, 156]. PKCδ mediates diverse 

cellular functions in normal as well as cancer cells and is in majority of human tissues [146, 

156]. In addition to its documented role in cancer cell survival and acquisition of 

chemotherapeutic resistance [146, 157], PKCδ mediates migration of a variety of cells, including 

carcinoma cells [34, 158]. Studies have shown PKCδ to be involved in sustained migration of 

EGFR-overexpressing breast cancer cells [158]. Histopathologic studies on breast cancer tissue 

specimens have also shown marked overexpression of PKCδ in aggressive tumors [159]. 

Another study in prostate tumor specimens correlated multiple alterations in expression patterns 

of PKC isoenzymes with different grades of tumor invasiveness, though they did not highlight a 

role for PKCδ  [160]. Interventions that down regulated PKCδ in invasive breast cancer cells, 

substantially reduced their ability to invade in vivo, predominantly by reducing their motility 

[161]. Taken together, its role in modulating cellular migratory properties combined with the 

observation that it is overexpressed in certain tumors, point towards a possible role of PKCδ in 

promoting tumor progression. However, how this key effector is regulated and where it fits 

within tumor progression networks is not known. 

 As PKCδ signaling contributes to the transcellular contractility required during 

growth factor induced motility [34], we asked if PKCδ abrogation could reduce invasiveness of 

prostate tumor cells as such invasiveness has been shown to occur downstream of growth factor 

receptor signaling, that being primarily from EGFR in prostate carcinomas [58]. Using two 

different invasive prostate cancer cell lines, we showed that inhibiting PKCδ pharmacologically 

and molecularly reduced migration and invasion of prostate cancer cells downstream of EGFR 

signaling. Additionally, activated, as well as total PKCδ levels are higher in prostate carcinomas 

as compared to normal prostate tissue as assessed by immunohistochemistry and immunoblot 
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analysis. Thus we propose that PKCδ is a crucial mediator of invasiveness of prostate carcinoma 

cells and a potential therapeutic target in limiting prostate tumor invasion and metastasis. Such 

molecule-specific inhibition of the morbid and mortal prostate cancer invasion and metastasis 

could represent an important new approach because the slow growth of prostate carcinomas 

limits the efficacy of cell cycle-directed agents.  
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4.3 MATERIALS AND METHODS 

4.3.1 Cell lines  

DU145 (also referred to as DU145 parental or DU145P) cells represent an invasive prostate 

cancer cell line. We have overexpressed EGF receptor (EGFR) in these cells, thereby refered to 

as DU145WT [60, 162]. These cells exhibit increased motility and invasiveness as compared to 

the parental DU145 as previously shown [60, 162]. DU145 cells were grown in Dulbecco’s 

modified Eagle’s medium containing 10% fetal bovine serum, and 1% supplement of each of the 

following: MEM non-essential amino acids, sodium pyruvate, penicillin/streptomycin and L-

glutamine (all from GIBCO, Gaithersburg, MD). The DU145WT cells were grown in selection 

medium (for EGFR) containing a final concentration of 350 μg/ml of G418. Cells were quiesced 

in serum free medium for a period of 24 hours for studies with EGF stimulation. 

 To confirm our findings pertaining to invasive prostate tumor cell lines, we tested 

a second invasive prostate tumor cell line, PC3, that is derived from a metastatic focus in the 

bone [163]. Cells were grown in F12K medium (GIBCO) containing 10% FBS and 1% of 

supplement as described above. Cells were quiesced in medium containing 0.5% dialysed FBS 

for a period of 24 hours for studies with EGF stimulation. 

 Normal prostate epithelial cells were obtained from Cambrex Inc. (Walkersville, 

MD) and grown as per the manufacturer’s instructions.  

 

4.3.2 siRNA constructs and transfections  

Two specific siRNA duplexes to PKCδ (GenBankTM accession number NM_006254) were 

designed and purified by Integrated DNA Technologies (IDT) (Coralville, IA). The first 

(PKCδ1) siRNA1 sequence was 5’– GGUCCUGGGCAAAGGCAGCTT – 3’ whereas the  

second (PKCδ2) siRNA2 sequence was 5’- GGACAUCCUGGAGAAGCUCTT - 3’. The siRNA 
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sequence to green fluorescent protein (GFPsiRNA) was 5’- GACCCGCGCCGAGGUGAAGTT 

– 3’ and was used as a negative control. For a second control, we constructed a mutant siRNA to 

PKCδ by changing C to G at 4th and G to C at the 16th  nucleotide positions within the siRNA2 

sequence to PKCδ as described above. All siRNA transfections were performed using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA) as per the user instructions. Cells were plated in 

growth medium without any antibiotics in a 6 well plate and were allowed to reach ~ 80 % 

confluence on the day of transfections. Briefly, 4 μl of 20 μM siRNA (80 picomoles) was diluted 

in 200 μl of OPTI-MEM. 4 μl of Lipofectamine 2000 was diluted in 200 μl of OPTI-MEM and 

incubated at room temperature (RT) for 5 minutes. The diluted siRNA was combined with the 

diluted Lipofectamine and the sample incubated for another 20 minutes at RT. 400 μl of siRNA-

Lipofectamine complexes were then added to the growth medium and the cells incubated for 24 

hours at 37o C in a tissue culture incubator. Medium was then changed to complete growth 

medium and cells were incubated for another 24 hours. Cells were lysed and lysates resolved 

using SDS-PAGE to analyze the knockdown of PKCδ protein levels using immunoblotting. 

 

4.3.3 Reagents and antibodies 

Polyclonal antibodies to PKCδ (catalog number sc-937), PKCα and phosphorylated MARCKS 

were purchased from Santa Cruz Biotechnology (SantaCruz, CA). Antibodies against 

phosphorylated (thr505) PKCδ (catalog number 9374), phosphorylated PKCα/βII, 

phosphorylated (serine) PKC substrates, phosphorylated (ser19/thr18) MLC (catalog number 

3674) and phosphorylated ERK/MAPKinase were purchased from Cell Signaling Technology 

(Beverly, MA). Monoclonal antibody to MLC was obtained from Sigma (St. Louis, MO). 

Rottlerin, a specific PKCδ inhibitor and PD153035, a specific EGF receptor tyrosine kinase 

inhibitor, was purchased from Calbiochem (San Diego, CA). In vitro invasion of cells was 

assessed using Matrigel coated Invasion chambers obtained from BD Biosciences (Discovery 

Cellware) (Bedford, MA). 
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4.3.4 Immunoblotting 

Upon indicated treatment conditions, cells were scraped and lysed in preheated (SDS) sample 

buffer as described above and boiled for 5 minutes. The samples were then cooled at room 

temperature, resolved by SDS-polyacrylamide gel electrophoresis (gels ranging from 7.5 to 15 

%) and transferred onto PVDF membranes. The membranes were blocked for 1 hour using 5 % 

non-fat milk and incubated with respective primary antibodies for another 2 hours at room 

temperature. The membranes were washed using Tris buffered saline containing Tween 20 for 30 

minutes and incubated with secondary antibodies linked to horse radish peroxidase for 1 hour at 

room temperature. The proteins were detected using enhanced chemiluminescence method using 

standard protocols (Pierce, Rockford, IL ). 

 

4.3.5 In vitro two-dimensional motility 

Cell migration was measured as the distance traveled by the cells into an acellular area [83]. 

Cells were seeded in 6 - well tissue culture plates for a period of 24 hours in growth medium. 

Cells were quiesced for another 24 hours in serum free medium at which time cells formed a 

confluent monolayer. A denuded area was created by scraping with a pipet tip, washed three 

times with phosphate buffered saline (PBS) to remove dead cells, and kept under serum free 

conditions throughout the experiment. EGF at 10 nM (and inhibitors or diluent as indicated) was 

added to the serum free medium. Cells were then photographed using an inverted microscope 

immediately following scraping (0 hour condition) and 24 hours later (24 hour condition) in 

exactly same three different areas. The photographs were merged and analyzed using Adobe 

photoshop program to determine the average distance traveled by the cells in 24 hours. All 

experiments were performed in triplicate and repeated at least three times. 

 

 80 



4.3.6 In vitro transmigration assay 

To assess the migratory potential of transfected cells, we used the modified Boyden (transwell) 

chambers available from BD Biosciences (Bedford, MA). Transmigration was assessed by the 

ability of cells to migrate through a porous (8 micron) PET membrane towards a chemotactic 

cue. Inserts were placed in corresponding wells of a 24 well plate. The bottom wells contained 

complete growth medium with 10 % FBS. Equal number ( 2.5 x 104 ) of cells were plated in the 

cell culture inserts in serum free medium containing 1 % BSA. After, 24 hours the medium was 

changed to serum free medium and the cells were allowed to transmigrate through the porous 

membrane filter for another 24 hours. The un-migrated cells at the top of the membrane filter 

were removed by a cotton swab while the cells at the bottom of the filter were fixed in 2 % 

formaldehyde, stained using Diff Quik stain (Allegiance, McGraw Park, IL) and manually 

counted in three different fields. All experiments were performed in triplicate and repeated at 

least three times. 

 

4.3.7 In vitro Matrigel invasion assay 

Invasive potential of cells was determined by their ability to invade through a multi-cell thick 

layer (~100 μM) of extracellular matrix (Matrigel). The invasion assay has been previously 

described [14]. Briefly 25,000 cells were plated in each of the invasion chambers on top of the 

matrigel layer. The bottom chambers contained complete growth medium with 10% FBS. Cells 

were initially plated in serum free medium containing 1% BSA for the first 24 hours. The 

medium was changed to serum free medium for the next 24 hours of the experiment. Where 

indicated, EGF, 10nM was added both to the top insert of the chamber containing cells as well as 

the bottom chamber. After 48 hours, the chambers were removed from the bottom well plates 

and the non-invasive cells on top of the membrane filter were removed with a cotton swab. 

Invaded cells at the bottom of the chambers were fixed in 2% formalin for 30 minutes and 

stained with Diff Quik staining kit according to standard staining protocols. The cells within 

each membrane filter were manually counted under a light microscope in three different fields, 

and each experiment was similarly performed in triplicate and repeated at least three times. 
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4.3.8 Cell proliferation assay 

To assess the effects of Rottlerin and/or siRNA transfections on cell growth, we directly counted 

cells using a Coulter counter. Briefly, cells were grown in complete growth medium in 12 well 

plates for 24 hours. The growth medium was replaced by serum free medium containing 10 μM 

of Rottlerin and cells incubated for another 24 hours. Before counting, the cells were washed 

twice with PBS to remove the dead cells, trypsinized and resuspended in 1 ml of complete 

medium. The cells were then centrifuged at 4 degrees C at 1000 rpm for 5 minutes and the cell 

pellet was resuspended in 1 ml of fresh growth medium. The cells were then counted using a 

standardized coulter counter method. Counts from Rottlerin treated cells were compared to 

DMSO treated cells which served as vehicle control. Similar protocol was used to assess 

proliferation of cells transfected with specific siRNA. In the siRNA experiments, Day 1 

represented the day of transfection where as Day 3 and Day 5 represented 48 and 96 hours post-

transfection. At these time points, cells were trypsinized and counted using the automated coulter 

counter. Each experiment was performed in triplicate and three times. 

 

4.3.9 Prostate tissue lysates 

Frozen prostate tissue was obtained from the University of Pittsburgh Health Sciences tissue 

bank according to the institutional review board (IRB) guidelines under the supervision of a 

genitourinary pathologist. Two samples of prostate cancer tissue with a gleason score of 7, and 

two samples of normal donor prostate tissue without any evidence of prostate disease, matched 

for age (55-65 years), were assessed for the expression level of PKCδ. Briefly, 100 mg of 

prostate tissue was homogenized using a hand held homogenizer on ice in 1 ml of a buffer 

containing 50mM HEPES, pH 7.4, 150 mM of NaCl, 1mM Na - Vanadate, 1 % Triton-X and 10 

% glycerol. Protease inhibitors (10 μg/ml of leupeptin, 100 μg/ml of aprotinin and 1 mM of 

AEBSF) were added to the buffer just before cell lysis. The lysates were incubated on ice for 20 

minutes, then centrifuged at 40 C for 20 minutes at 11,000 rpm. The supernatent was collected in 

a fresh eppendorf tube, and the lysates frozen at - 200 C until used. For immunblotting, the 
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lysates were thawed on ice, and the protein concentration in each sample estimated using BioRad 

Protein assay. The samples containing equal amount of protein were then mixed with equal 

volume of sodium dodecyl sulfate (or SDS) - sample buffer containing 0.1 M Tris-HCl, pH 6.8, 4 

% SDS, 20 % glycerol, 0.2% bromophenol blue and 5 % β-mercaptoethanol (reducing agent) 

and immunoblotting carried out using the protocol described below.  

 

4.3.10 Immunohistochemistry of prostate tissue specimens 

Immunohistochemical staining to detect phosphorylated (activated) PKCδ (pPKCδ) was 

performed on paraffin embedded prostate tissue sections using a Dako Auto-Immunostainer. 

Five tissue sections of prostate carcinoma with Gleason scores of 7 or 8 on diagnosis and 5 

normal donor prostate sections were analyzed using an antibody to pPKCδ. Briefly, the paraffin 

sections were initially deparaffinized and heat induced epitope retrieval was performed using a 

Biocare decloaking chamber.  The sections were then quenched with 3% hydrogen peroxide, 

blocked with  10% normal goat serum and incubated with primary antibody (phospho-PKCδ, 

threonine 505) for 45 minutes followed by the rabbit envision + polymer. DAB was the 

chromogen used for the localization of the antigen. Counterstaining was performed with 

hematoxylin. The slides were then dehydrated and coverslips were applied. Photographs were 

taken using 40 X objectives and images processed using SPOT software. Reading was performed 

by a genito-urinary pathologist (R. D.). 
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4.4 RESULTS 

4.4.1 PKCδ is overexpressed and active in prostate carcinoma cells 

To investigate the role of PKCδ in prostate cancer, we first quantified the levels of PKCδ in 

prostate cancer cell lines. We compared the total PKCδ levels in normal prostate epithelial cells 

(PrE) to those in carcinoma cell lines (PC3, DU145WT and DU145 Parental) using immunoblot 

analysis of cell lysates. Our data indicate that PKCδ protein levels are significantly higher in 

these prostate cancer cell lines as compared to normal epithelial cells (Figure 19A).  

 To determine if PKCδ is activated by EGFR in prostate cancer cell lines, we 

stimulated DU145WT cells with 10 nM of EGF for 10 minutes and probed for active 

(phosphorylated) PKCδ protein using a specific phospho-(Threonine 505) PKCδ antibody 

(Figure 19B). Phosphorylation of threonine 505 residue can contribute to activation as well as 

stability of PKCδ since this residue lies within the activation loop domain of the enzyme [164]. 

EGF induced a boost in PKCδ activity that was inhibited by the specific EGFR tyrosine kinase 

inhibitor PD153035.  
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Figure 19.  Expression and activation of PKCδ in prostate cancer cells. 
A. Total cell lysates were prepared from different prostate cancer cell lines (PC3, DU145WT and DU145 Parentals) 
and analyzed using SDS - PAGE for expression levels of total PKCδ using western blotting. Normal prostate 
epithelial cells (PrE) were used as control to compare the PKCδ expression level. A representative immunoblot of 
three independent experiments is shown. B. PC3 and DU145WT cells were grown in complete growth media and 
quiesced in serum free medium for a period of 24 hours when they were 80% confluent. 10nM of EGF was added to 
the medium for a period of 30 minutes. The cells were lysed and samples resolved using SDS-PAGE. Activated 
status of PKCδ was probed using a specific phosphorylated (Thr505) PKCδ antibody. 
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4.4.2 EGF induced motility and invasion of prostate carcinoma cells is PKCδ-dependent 

 At doses up to 10 μM, Rottlerin has minimal effects on other PKC isoenzymes, thus selectively 

inhibiting PKCδ activity [158, 161, 165]. In PC3 and DU145WT cells, 7.5 μM Rottlerin 

significantly abrogated EGF induced phosphorylation of PKCδ (Figure 20A). As expected, the 

phosphorylation of other PKC isoenzymes (PKCα, βI/II) was unaffected. Also, phosphorylated 

ERK MAPKinase levels within the cells were unaffected at this dosage confirming that the 

decrease in PKCδ activity was not due to pan-inhibitory effects of Rottlerin. Additionally, 

Rottlerin decreased activated (phosphorylated) status of key PKC target sites including 

MARCKS and phospho- (serine) PKC substrates (Figure 20B). Our experiments reinforce 

previously published observations that Rottlerin can be used in prostate cancer cells to abrogate 

PKCδ activity [158].  

Because pharmacological agents are typically not devoid of non-specific effects that 

cannot be completely assessed, we downregulated PKCδ protein levels using genetic (RNAi) 

interventions. siRNA to PKCδ decreased PKCδ levels by >70% as analyzed by immunoblotting 

of cell lysates (Figure 21). PKCα levels within the transfected cells were unaffected under the 

same conditions confirming the specificity of siRNA against the PKCδ isoenzyme. 
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A)            B) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 20. Abrogation of PKCδ activity using Rottlerin in prostate carcinoma cells. 
A.  DU145WT (top panel) and PC3 cells (bottom panel) were grown in complete growth media, quiesced for 24 
hours in serum free media and stimulated with 10 nM of EGF for 30 minutes. Where indicated, 7.5 μM of Rottlerin 
was added to the serum free media, 30 minutes prior to EGF stimulation. Representative blot series of three different 
experiments are shown. B.  Rottlerin decreases activation status of selective PKC substrates. Samples were prepared 
as mentioned above, resolved by SDS-PAGE and immunoblotted for activated MARCKS. Similarly, we probed for 
activated status of key PKC (serine) substrates in both cell lines. The experiment was performed three times. 
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Figure 21. Downregulation of PKCδ using siRNA.  
A. Specific or Mock (GFP) siRNA was transfected in prostate carcinoma cells as described in materials and 
methods. Immunoblot analysis of cell lysates 48 hours after transfection shows downregulation of PKCδ protein by 
more than 70% as determined by densitometry. A representative immunoblot of three independent experiments is 
shown. B. For a second control, cells were transfected with a mutated PKCδ siRNA sequence (siMut). Mutation in 
the siRNA sequence did not downregulate PKCδ levels as seen in the immunoblot confirming the specificity of the 
siRNA sequence.  
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Inhibition of PKCδ activity with Rottlerin decreased the EGF-stimulated migration of 

prostate cancer cell lines into the acellular area (Figure 22). Interestingly and in contrast to PC3 

cells, Rottlerin did not reduce basal migration of DU145WT cells, consistent with the 

observation that basal (or unstimulated) phosphorylated levels of PKCδ were unaffected by 

Rottlerin at 7.5 μM concentration. These observations point towards a limitation of 

pharmacological agents in achieving complete inhibition of an enzyme at non-toxic doses. In 

accordance with this, cells that were transfected with PKCδ siRNA showed substantially lower 

transmigration through the 8 micron pores of PET membrane (Figure 23). Here, both basal as 

well as EGF stimulated transmigration was significantly reduced as compared to cells transfected 

with GFP siRNA that served as controls. 

Motility is a required process for invasion of tumor cells through the surrounding stroma. 

Whether this reduced motility of PKCδ depleted cells led to reduced invasiveness, we assessed 

the invasive potential of both cell lines across Matrigel under the same conditions. EGF induced 

invasiveness of PC3 and DU145WT cells was significantly reduced by Rottlerin (Figure 24). 

PKCδ specific siRNA transfected cells were significantly less invasive than mock (GFP siRNA) 

transfected cells (Figure 25). Here, too, basal invasiveness was reduced in the cells lacking 

functional PKCδ. Thus, the decrease in invasiveness of prostate carcinoma cells as noted above 

correlated with their decrease in motility. 

 

 

 

 

 

 

 

 

 

 

 

 89 



 

 

 

 

**

**
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22. Abrogation of PKCδ activity using Rottlerin decreases migration of prostate carcinoma cell lines. 
Rottlerin decreases migration of DU145WT (grey bars) and PC3 (black solid bars) cells. Cells were grown to a 
confluent monolayer in complete growth media, quiesced for 24 hours and scraped with a pipette tip to create a 
wound. The migration of cells into the acellular area was studied by incubating them in serum free medium 
containing 10 nM of EGF and 7.5 μM of Rottlerin for 24 hours. Each experiment of three was performed in 
triplicate; average ± S.E.M. are shown; ( ** = p < 0.05 comparing Rottlerin to diluent alone, or EGF plus Rottlerin 
to EGF alone). 
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Figure 23. PKCδ depleted cells exhibit lesser transmigration across a transwell chamber.  
PKCδ in DU145WT and PC3 cells was depleted using 2 siRNA sequences and 25,000 cells were loaded into the 
upper part of each transwell chamber. The data are average ± S.E.M. of three independent experiments performed in 
triplicate; ( ** = p < 0.05 as compared across the bars). 
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Figure 24. PKCδ abrogation using Rottlerin decreases invasion of prostate carcinoma cells.   
25,000 DU145WT (grey bars) or PC3 cells (black solid bars) were loaded onto the upper well of each chamber and 
challenged with serum free medium containing 10 nM of EGF and 7.5 μM of Rottlerin. Data represent average ± 
S.E.M. of  3 different experiments each in triplicate; ( ** = p < 0.05 comparing EGF to diluent alone, or EGF plus 
Rottlerin to EGF alone). Representative pictures (top) of the membrane filters were taken at 10X magnification 
using a phase contrast microscope. 
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Figure 25. PKCδ downregulation using RNAi reduces invasion of prostate cancer cells.  
Cells were subjected to the Matrigel invasion assay for 48 hours. The data represent the average ± S.E.M. of three 
independent experiments performed in triplicate; ( ** = p < 0.05 as compared across the bars . Representative 
pictures (top) of the membrane filters were taken at 10X magnification using a phase contrast microscope (twice as 
many cells were loaded for these pictures compared to those in Figure 3 to accentuate the decrease from basal noted 
for the siRNA). 
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4.4.3 PKCδ modulates activation status of myosin light chain in PC3 cells 

PKCδ modulates cellular contractility of fibroblasts [34], and reports have implicated a role for a 

PKC intermediary in EGF mediated myosin II activation and apparent subcellular localization in 

prostate carcinoma cells [166]. Limiting activation of the regulatory myosin light chains can 

inhibit motility via reducing cell contractility. We found that EGF activates myosin light chain in 

PC3 cells (Figure 26A).  We assessed if PKCδ was an intermediary in mediating EGF induced 

cellular contractility in prostate cancer cells. Indeed, Rottlerin limited basal as well as EGF 

induced phosphorylation of MLC in PC3 cells (Figure 26B). Activation of MLC is evident 

within 15 minutes of addition of saturating levels of EGF and peaks at around 3-4 hours when 

motility becomes a stable biophysical response. We assessed MLC activation at 30 minutes and 

3 hours of EGF treatment in both cell lines under specific siRNA transfected conditions. PKCδ 

siRNA transfected PC3 cells showed significantly lesser activation of MLC in response to EGF 

(Figure 26C). As our model of migration-related pathways from EGFR utilizes MLC-mediated 

contraction, an initial experiment demonstrated that blocking MLC activation pharmacologically 

limited invasion (data not shown). This finding is confirmatory of others well established in the 

literature [167, 168], though these earlier communications did not place MLC actions in the 

context of growth factor-mediated invasiveness. 
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Figure 26. PKCδ modulates myosin light chain (MLC) phosphorylation in PC3 prostate carcinoma cells. 
A.  PC3 cells were grown in complete medium, quiesced for 24 hours and stimulated with 10 nM of EGF for 3 
hours. Immunoblotting for specific proteins was carried out using SDS-PAGE. PD153035 at 1μM was added 30 
minutes before EGF. B.  Addition of Rottlerin decreases phosphorylation of myosin light chains in PC3 cells. C. 
PC3 cells were transfected with specific siRNAs as previously described. 48 hours after transfection, cells were 
quiesced for another 24 hours and stimulated with 10 nM of EGF for 30 minutes (short term) and 3 hours as 
indicated.  In all sections, shown are one of three similar immunoblot series. 
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4.4.4 Depletion of PKCδ using siRNA does not affect proliferation of prostate cancer cell 

lines 

 To rule out the possibility that the decrease in invasion was a result of decreased cell viability, 

we assessed proliferation of transfected cells on the 3rd day (48 hours) and 5th day (96 hours) 

after siRNA transfection by direct live cell counting (Figure 27A). The PKCδ-depleted cells 

showed no difference in proliferation as compared to mock-transfected cells. Similarly, Rottlerin 

even at a higher concentration (10 μM), showed no significant toxicity as assessed by serial cell 

counts at 24 hours (Figure 27B). These time points correspond to the assay times in the 

invasiveness measurements above and are excess to those for motility and transmigration. 
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Figure 27. PKCδ signal abrogation does not affect proliferation of prostate carcinoma cells.  
A.  Downregulation of PKCδ using siRNA does not affect cell proliferation. Prostate cancer cells were transfected 
with 80 picomoles of specific siRNAs (GFPsiRNA – open bars; PKCδsiRNA-black solid bars) as indicated on Day 
1. Cell proliferation was assessed by live cell counting using an automated coulter counter method. 48 hours post-
transfection siRNA transfected cells were resuspended in 1 ml of growth medium. Cells were then counted using a 
Coulter counter. Similarly, cells were counted 96 hours post-transfection or on Day 5. B. Rottlerin does not affect 
cell proliferation/viability at 10 μM concentration. To assess the toxicity of Rottlerin on prostate cancer cells, we 
incubated equal number of both PC3 and DU145WT cells with 10 μM Rottlerin in serum free medium for 24 hours 
and assessed live cell count using the coulter counter method as mentioned above. Open bars represent day 1 and 
black solid bars represent cell count on day 2. In both parts, shown are mean ± S.E.M. of three experiments each in 
triplicate.  
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4.4.5 PKCδ is overexpressed and activated in human prostate cancer 

 As PKCδ is linked to properties of carcinoma progression, we determined whether this was also 

found in de novo-occurring human prostate carcinomas. We found that prostate cancer tissue 

overexpressed PKCδ protein relative to normal donor prostate in two specimens of each (Figure 

28A). Based on this, we analyzed five prostate adenocarcinoma tissue sections for activated 

PKCδ using  IHC against phosphorylated PKCδ. Immunohistochemical analysis showed that all 

five prostate cancer tissue sections presented pPKCδ staining predominantly in the nucleus while 

relatively lower staining was visible in the cytoplasm. Significantly lower pPKCδ staining was 

noted in normal donor prostates (Figure 28B). While all the prostate carcinomas were of 

moderately severe nature (Gleason scores of 7 or 8), this positive staining also included foci of 

high grade prostatic intraepithelial neoplasia (PIN). Initial staining with a prostate tissue tumor 

micro-array demonstrates similar distinction of CaP and PIN from normal donor prostate, 

strongly suggesting that differences were not due to staining issues. While a more-extensive and 

indepth study is underway to evaluate pPKCδ as a marker for prostate cancer and/or its 

progression, these initial findings demonstrate a clear distinction in PKCδ and pPKCδ levels in 

human prostate cancer. 
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Figure 28. PKCδ is overexpressed and activated in prostate cancer specimens. 
A. Tissue lysates were prepared from two normal donor prostate and two prostate cancer tissue samples as 
described. 10 μg of protein was loaded in each lane and total PKCδ levels were probed; GAPDH served as a loading 
control. A representative immunoblot of three independent experiments in shown. B. Representative 
photomicrographs from one of the five normal prostate tissues and one of five prostate adenocarcinomas are shown. 
The tumor tissue section also contains foci of prostatic epithelial neoplasia (PIN). These specimens were evaluated 
for activated PKCδ using immunohistochemistry (IHC) against pPKCδ. Normal prostate tissue shows no staining 
with phosphorylated-PKCδ antibody as compared to a strong staining in all five prostate carcinomas including 
prostatic epithelial neoplasia (PIN).  
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Condition Mean Range s.e.m.

CaP 1.80  1 -- 3 0.37 

PIN 2.20  1 -- 3 0.37 

Nl Donor 1.00  1 -- 1 0.00 

 

 
Table 3. Quantitation of the prostate cancer (CaP), PIN, and normal donor prostate staining.  
The nuclear staining was scored on a scale of 0 to 3, with 0 being no epithelial cell staining, 1 being <10% of nuclei 
staining, 2 being >10% but <25%, and 3 being >25%. Both CaP and PIN are different from normal donor at P < 
0.05 but similar to each each other, using the Student ttest.  
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4.5 DISCUSSION 

Growth factor - or cytokine - induced cell motility is a crucial determinant of progression and 

dissemination of many tumors, particularly prostate cancer [169]. Previous studies have shown 

that targeting one or more biophysical events underlying cell motility can be an effective 

modality in limiting cancer spread in experimental systems [14, 15]. One outstanding question is 

which key molecular switch to target in an attempt to limit tumor progression [138]. 

Mathematical modeling of cellular signaling cascades has recently highlighted the central role of 

myosin light chain and hence, transcellular contractility, in cell motility [11]. As such, we 

determined whether abrogating PKCδ, a molecular switch for growth factor receptor - mediated 

contractility and thereby migration, limits the motility and invasiveness of prostate cancer cell 

lines.  

PKCδ activity was reduced both pharmacologically and molecularly. This dual approach 

was used to avoid the unanticipated side effects and unknown targets of any singular 

intervention. While the interventions did not alter the level or phosphorylation of the other 

classical PKC isoforms expressed in these prostate carcinoma cells – namely PKCα and PKCβ 

(DU145 cells also present message for PKCε (data not shown)), other unknown targets cannot be 

excluded. To address the question of the specificity of molecular interventions, we constructed a 

mutated siRNA for PKCδ by changing G to C at two nucleotide positions within the 

PKCδsiRNA sequence. This mutant siRNA did not lower PKCδ (nor PKCα) protein levels nor 

did it alter the transmigration of cells as compared to the control (untransfected) or mock 

(GFPsiRNA) transfected cells (Figure 21B). Additionally, similar results were obtained using 

two specific albeit different PKCδsiRNA sequences (Figures 21A and 23). These results 

indicated that the resultant reduced motility and invasiveness were due to disruption of PKCδ 

signaling.  

 EGFR autocrine signaling drives prostate tumor cell invasiveness both in vitro 

and in vivo [60, 162]. Of the two cell lines utilized, DU145WT cells present substantially higher 

autocrine signaling predominantly due to higher number of EGF receptor expression on the cell 

surface and exhibit significantly higher invasiveness compared to both PC3 and DU145 parental 

cells [60, 162]. Such autocrine signaling evidently induces sustained activation of numerous 
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intracellular signaling molecules enabling tumor proliferation and invasion. In above studies and 

in contrast to PC3 cells, Rottlerin did not abrogate the basal (unstimulated) migration of 

DU145WT cells. In a “closed” cell system enriched with active autocrine circuit loops, it is 

likely that additional signaling molecules other than PKCδ provide the necessary signals during 

such basal migratory conditions. 

Of interest, the previously described activation of myosin contractility due to 

phosphorylation of MLC [34], was downregulated in PC3 cells but was muted in DU145WT 

cells. This argues for additional inputs into transcellular contractility in the DU145WT cells. Rho 

kinase, zipper-interacting protein kinase (ZIP Kinase), and integrin linked kinase (ILK) are 

obvious candidates under investigation [37, 38, 42, 170], but such ongoing studies lie beyond the 

realm of the present communication. As abrogation of PKCδ signaling is effective in limiting 

motility and invasiveness in DU145WT cells, it also raises the questions of additional targets for 

PKCδ in these cells. MARCKS, when phosphorylated, can associate with actin and actin 

modifying proteins and can affect cellular cytoskeletal reorganization as well as motility of a 

variety of cells[171]. Additionally, when activated using PMA or EGF, PKCδ translocates to the 

plasma membrane and the cytoskeleton [172], where it can modify by phosphorylation, the 

activity of numerous cytoskeleton associated proteins such as adducins that are crucial for 

motility [159]. In this vein, PKCδ is known to affect focal adhesion protein turnover by 

modulating focal adhesion kinase and paxillin activation as well as subcellular vinculin 

distribution [173]. Thus, a subtotal depletion of PKCδ as achieved by siRNA can affect cell 

motility not only by downregulating PKCδ activity but also by inhibiting PKCδ – cytoskeletal / 

focal adhesion protein interactions. Future investigations beyond the current scope of this 

manuscript are aimed at elucidating different focal adhesion proteins that are affected by PKCδ 

in prostate cancer cells. 

 PKCδ has been implicated in PMA induced apoptosis of androgen responsive 

prostate cancer (LnCaP and C4-2) cells [80], leading to the question of whether apoptosis may 

play a role in our decreased invasiveness. We do not note decreased number of PC3 and DU145 

cells in our studies; this may be due to the fact that these are both androgen independent cell 

lines which present vigorous autocrine growth factor receptor stimulatory loops. While these 

cells were never challenged with PMA in our studies, activation of PKCδ, via EGF failed to 

induce spontaneous apoptosis but rather induced motility, at least in part by downstream 
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activation of MLC. Thus, it is clear that mere activation of PKCδ is not sufficient to dictate a 

signal for apoptosis, though it is possible that the pools of PKCδ activated by PMA and EGFR 

are distinct. Additionally, although PKCδ is required for apoptosis in LnCaP cells in response to 

PMA, it alone is insufficient in doing so and requires additional and redundant signaling from 

either PKCα or PKCε  [156]. These underline the fact that the role PKCδ plays in survival / 

apoptosis of prostate cancer cells is yet to be clearly elucidated, but preliminary reports suggest, 

that apoptosis is actively signaled by this kinase in androgen-dependent cells, whereas more 

mesenchymally-transitioned cancer cells utilize it for promoting their invasive properties. In such 

cells, PKCδ may be preferentially activated by continual EGFR autocrine signaling. 

Our experimental findings are supported by the analysis of PKCδ levels (total and 

activated) in prostate cancer tissue. Although some expected quantitative variation in total PKCδ 

levels within the samples is observed, both total and activated PKCδ levels are substantially 

higher in prostate cancer relative to normal donor prostate. Interestingly, activated PKCδ is 

readily found within the nucleus of tumor cells. Nuclear PKCδ has been shown to phosphorylate 

acidic fibroblast growth factor (aFGF or FGF-1) and control its export to the cytoplasm thereby 

modulating cell growth and migration [174]. Reinforcing autocrine signaling cascades have been 

defined in prostate cancer lines downstream of EGFR signaling [3]. This finding opens a new 

avenue for exploration in prostate cancer biology.  

 Our data present for the first time that PKCδ signaling is critical for prostate 

cancer cell invasiveness. This agrees with an earlier report employing breast cancer cell lines 

[159, 161], but herein we further demonstrate that this signaling results from EGFR activation 

that functions in an autocrine manner in practically all prostate carcinomas. Further, we provide 

evidence linking PKCδ activity to prostate cancer in de novo-occurring human prostate cancers. 

These findings support the potential of PKCδ as a target for rationale cancer interventions aimed 

at limiting tumor dissemination. 
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5.0  PERSPECTIVES AND CONCLUSIONS 

5.1 MODELING APPROACH TO CELL 

BIOLOGY 

Our studies consist of two distinct approaches driven towards cell biology—first, identification 

of critical signaling pathways that govern cellular responses and second, targeting such signaling 

switches to alter cell behavior. Such an approach is necessary to answer some of the questions in 

cell biology. The answers are obviously difficult to extract, given the complexity of signal 

transduction events, and hence demand innovative techniques that can help ‘sort’ the laboratory 

data into stratifications which explain signal-response associations. We applied such an 

approach, Decision tree analysis, towards understanding cellular biophysical events during 

migration. This approach is innovative since for the first time, this methodology has been utilized 

to elucidate proteomic events with biophysical responses. Our observations shed light upon how 

crucial activated signaling switches collaborate during cell migration over a range of 

extracellular conditions. 

The limited amount of data from experimental work, such as ours, often prevents 

derivation of insightful conclusions about intricate biological cell phenomena.  In our case, we 

measured, using western blotting, the activated status of key signaling proteins using 

phosphorylated-specific antibodies. These proteins are actively recruited by cells during one or 

more biophysical events during motility. Quantitative measurements of such proteins were 

interpolated using polynomial modeling to create simulation data points that accurately 

represented (and expanded) actual measurements. We utilized a strict quality control method, 

using 95% confidence interval to such replicates and eliminated any outliers. Thus, the data was 

‘filtered’ and expanded using polynomial modeling. Such mathematical solutions are critical 

since traditional biology experiments need tremendous effort and technical consistency to 
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produce few data points in a reasonable amount of time. Similar replicates were created for cell 

speed measurements. These data were then utilized to create decision trees that mapped the 

hierarchy of different signaling proteins in mediating cell migration speed. Our model discretized 

speed into three different categories; low, medium and high. Each of the molecules within the 

decision tree model was also discretized into the above three levels depending upon their 

activation status. Our model showed a ‘step-by-step’ regulation of cell speed by different 

signaling molecules. More importantly, it addressed the quantitative contributions of signaling 

proteins in dictating such a response. Central to this model was the EGFR activation. Each node 

was further divided into two branches corresponding to the activated status of downstream 

signaling proteins. The final speed of migrating cells was predicted by traversing down the 

branches of the decision trees and delineated specific molecular quantitative contributions. Our 

model predicted 76% observations (for cell speed) within the training data set accurately based 

solely on the activated state of these five proteins. Even more non-intuitively the model pointed 

out the role of transcellular contractility as a critical ‘balancing switch’ in cell motility. Specific 

‘quantitative’ abrogation of myosin light chain activation is the key to desired cell response. This 

prediction applied to cancer cells as well. Complete limitation of cellular contractility retarded 

tumor cell motility and invasion whereas its partial abrogation paradoxically increased these two 

properties. These findings have immense implications in therapy of diseases, such as cancer 

where dysregulation of cell motility is central to its pathogenesis and progression. Our approach 

is unique in that it is one of the first few systems biology studies applied to cell migration. 

 

5.2 UNDERSTANDING CELL MOTILITY USING 

SYSTEMS BIOLOGY APPROACH 

Traditional biology experiments have grown on simplified models of cell migration. One such 

model is to divide motility into individual biophysical events (as elaborated in the introduction 

section). These individual biophysical events are very complicated and dictated by a myriad of 

signaling proteins. Thus, integrating these events to study migration is a daunting task. Almost 

all of these studies were carried out by abrogating or ‘knocking out’ one or more individual 
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molecules and showing that motility is retarded under such conditions. While such experiments 

provide a proof of principle about the molecule’s requirement in motility, it sheds little light, if 

any, on how such a molecule interacts with other similar crucial molecules within the motility–

signaling network. It is vital to understand such ‘complementary signaling’ within a proteomic 

network to target specific ‘un-expendable’ signaling nodes needed to manipulate cell behaviors. 

In cancer for example, this can minimize signaling from alternative pathways and lead to more 

effective therapy. Thus, a holistic approach is required to understand protein-protein interactions 

in a variety of biological phenomena, motility being one of them.  

 We took a systems biology path towards understanding cell migration based on the level 

of activation of intracellular signals. This approach is relevant for many purposes, but most 

significantly because intracellular signals transmit extracellular information within the network 

that leads to the ultimate cell decisions. Secondly, they can be abrogated or amplified as required 

using pharmacological or genetic methods to manipulate cell fate. Pharmaceutical agents have 

exploited this property and have been designed precisely on such a concept. But pharmacological 

agents have a limited impact in therapy because, at least in chronic diseases, multiple signaling 

switches are dysregulated. Hence, targeting nodes, where these signaling pathways intersect, 

holds the key to future therapeutic goals.  

Systems biology answers this particular concern. This is because it involves a 

simultaneous measurement of multiple signaling events over a range of stimuli (inputs) within 

the ‘cell system’. Such signals are then integrated and processed to generate important output 

responses. Using a variety of mathematical or statistical applications, the signaling events that 

are most relevant to the response are mapped out; e.g. Janes et al have elucidated, using principal 

component analysis, the set of activated signals that govern apoptosis or survival (output) upon 

simultaneous stimulation with apoptotic (TNF-α) or survival (Insulin, EGF) signals (inputs). 

Despite the computational modeling and (pseudo)expansion of data sets, the signaling events are 

able to accurately predict the biological phenomena since the original data is measured from such 

experimental conditions. The net concept is to generate a holistic model of input-signal-response 

associations and accurately predict responses from a signature of activation profile of 

intracellular switches. Thus, signaling events are studied as a whole and represents a final 

outcome of such proteomic interactions rather than individual linear phenomena. 
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5.3 IMPLICATIONS FOR CELL BIOLOGY 

We generated an extracellular cue-signal-motility model using decision tree analysis. This model 

was based on measuring activation profile of five signaling proteins over a range of extracellular 

cues (EGF, FN). Both EGF and Fibronectin play a crucial role in motility of a variety of cells 

including fibroblasts and keratinocytes during wound repair. As such, the experimental 

conditions as well as the findings are applicable to the in vivo environment. Additionally, there is 

substantial crosstalk between these two physiological ligands and their respective receptors 

during wound healing; e.g. EGF increases fibronectin expression via PKCδ in human dermal 

fibroblasts during wound healing [175]. Similarly, fibronectin concentration of substratum 

influences EGF induced directional persistence in migrating cells by mediating cellular 

lamellipodal attachments to the substratum [176]. Thus the paradigm “adhesion is required for 

migration” holds true even further and warrants the need to study these two events together.  

The physiological implications of our model can be summarized into three points: 

[1] Our model delineates the quantitative signaling events that govern cell speed. Since most 

pharmacological interventions depend on quantitative parameters, such an approach is essential 

to further understanding of ‘how much’ an individual signaling switch contributes to motility. 

This contribution is relative to and dependent on that of other signaling proteins. The decision 

tree also explains how each molecule further depends on the others to mediate speed; e.g. 

interpreting from Figure 16, if EGFR is actively signaling (1 and/or 2) and MLC activation is 

low (0), then cells move with higher (2) speed. However if the MLC activation is intermediate 

(1) then the cells move with higher speed (2) if PKCδ activity is low (0). Thus, by reading the 

decision tree down each node, more proteins get incorporated into the equation. However, this 

does not mean that the predictions solely based on maximum number of signaling proteins are 

more accurate. As previously explained, models have to be utilized to extract the most significant 

information while reducing unnecessary complexity. This is because the experimental designs of 

such complex predictions are too complicated and as such, the use of many pharmacological 

agents to test such predictions can have unwanted ‘off-target’ effects confounding the 

experimental results. Furthermore, it is important to assess the number (or percentage) of 

observations that the model correctly predicts from the training data-set. If that percentage is 

very low, it means that more information is needed, probably by incorporating additional 
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molecules within the model to make such predictions. Our model will be ‘refined’ by 

incorporating other key players that have shown to be involved in EGFR-integrin receptor 

crosstalk during motility. Some of these are FAK, calpain and Rho GTPases. Thus, a future 

‘fine-tuned’ model will seek to incorporate the above mentioned players, at the least, and will be 

expected to predict cell speed with better accuracy. 

[2] Simplistically, our model places MLC mediated transcellular contractility as the most 

significant event in EGFR induced motility. Total disruption of any of the key biophysical 

events, including contractility, has shown to arrest cell motility. However, our model also 

predicted that the effects of subtotal MLC inhibition are completely opposite. We found that 

subtotal interventions increased motility of both fibroblasts and breast cancer cells rather than 

decreasing it linearly. The effect of MLC inhibition on cell migration is thus biphasic with 

highest motility found at relatively lower contractile state. This reflects on the importance of 

adhesion versus contractility balance that controls cell locomotion. Cells cannot move if surface 

adhesiveness is too less or too high for the cells to break adhesions and form newer ones with the 

substratum. Thus only when the contractility/adhesion balance is optimal, does the cell move 

fastest. This level is represented by a surface coated with 1 μg/ml of fibronectin in our 

experimental set up.  

[3] Our model was based on data generated through laboratory experiments. The model can be 

utilized to extract and answer other non-intuitive questions; e.g. what are the effects of subtotal 

inhibition of ERK (or rear detachment) and PLCγ (or lamellipodal protrusion) on cell speed? Can 

lowering of membrane detachment increase contractility and retard cell speed? More 

importantly, does subtotal MLC inhibition modulate cell adhesiveness and how is it different at 

the two extreme fibronectin conditions? How does surface fibronectin concentration affect EGF 

induced contractility during total and subtotal MLC inhibition? Thus the model answers some 

questions but posits newer ones. Answering some of these questions can lead to a great insight 

into how migration is coordinately regulated. From our experiments that involve both cell 

contractility and adhesiveness, it is apparent that MLC inhibition shifts the balance between 

adhesion and contractility towards the optimal level. When cells find the optimum 

contractility/adhesion ratio, they attain a maximum speed of movement. 

 In summary, we present a systems biology approach to understanding cell migration. 

Such approaches warrant further employment in cell biology since a single response (or the 
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ultimate cellular outcome) is mediated by numerous interacting signaling molecules that 

fluctuate in their activation status within the ‘cell system’. Thus, studying such molecules 

together can shed light on their contributions during the most complex biological events. Our 

model elucidates the interaction between the key players in a simplified motility-signaling 

network and explains how these proteins together control cell migration.  

5.4 IMPLICATIONS FOR CANCER BIOLOGY 

AND THERAPY 

Tumor cell motility is a crucial determinant of cancer progression to metastasis and results from 

a cell’s acquisition of a variety of properties within its proteome. This is possible since a tumor 

cell can epigenetically modify signaling through its protein networks via vigorous upregulation 

of certain receptors and/or ligands that transmit ‘beneficial’ signals downstream. Most 

chemotherapeutic agents target the proliferative property of tumor cells. Hence, in cancers like 

that of prostate, where tumor growth is evidently slow, such agents are of limited efficacy and 

rather produce pronounced systemic toxicities. Thus, novel agents that target ‘motility-specific’ 

signaling switches are needed so they can be more effectively utilized in preventing cancer 

metastasis by increasing patient compliance.  

One difficult question however, is to identify which signaling node, amongst hundreds, to 

disrupt in an attempt to successfully retard tumor cell migration. Our modeling approach 

identified MLC mediated contractility as a crucial biophysical event during migration. Based on 

such a prediction, we targeted one such switch, PKCδ, and found that such selective nodal 

disruption retards tumor invasion principally by decreasing cell contractility and motility. 

Abrogation of PKCδ did not affect proliferation or survival of tumor cells. Such ‘motility- 

specific’ molecular abrogation offers a promising approach in treatment of cancers such as those 

of prostate where much of the morbidity and mortality results from invasion of tumor cells 

through the stroma and forming metastatic foci. PKCδ additionally represents an important target 

since it is overexpressed in prostate cancer cells but not in normal prostate epithelial cells and is 

activated downstream of EGFR, signaling through which is vigorously upregulated in a variety 

of solid tumors including that of prostate. Reinforcing autocrine signaling through EGFR is 

 110 



evident in prostate cancer progression with this property correlating with the emergence of a 

more aggressive ‘androgen independent’ cancer phenotype typically seen after few years of 

conventional androgen deprivation therapy [68, 177]. At such a stage, tumors depend on 

autocrine growth factors rather than androgens for their growth and survival. Thus, innovative 

therapy of aggressive prostate cancer should target such growth factor receptors that provide 

aberrant signaling inputs favoring tumor invasion. Such multiple and continual inputs cause 

tremendous alterations in the cellular interactive proteome. A systems biology approach is 

particularly relevant to studying tumor biology since continual autocrine signaling prevents 

rational interpretation of experiments involving growth factor stimulation. Thus a simultaneous 

measurement of protein clusters involved in tumor proliferation or migration can enable creation 

of a systems model for a cancer cell. Mathematical modeling techniques such as decision tree 

analysis constructed in fibroblasts can serve as a reference or ‘normal’ model with predictions 

being applied to a variety of cancer cells. The discrepancies, obviously apparent, can enable 

further understanding of how motility is dysregulated in cancer invasion with such findings 

confirmed using laboratory experiments. More importantly, it can identify quantitative proteomic 

alterations underlying such altered cell behavior. Such proteins can be targeted together or 

singularly to arrest tumor invasion.  

Our study targeting PKCδ in tumor invasion opens a new avenue for cancer drug 

research. Since cancer is now known to be an aberrant overgrowth of cell populations that are 

heterogenous in their proteomic as well as genomic signatures [64], future treatments need to be 

personalized by further stratification of tumor phenotypes depending on their ‘kinome’[178]. 

Reverse protein microarrays offer one such technology that enables detection of numerous 

intracellular activated kinases in selected cancer cells isolated using laser capture 

microdissection of tumor tissue samples [179, 180]. Depending upon the signature of signaling 

proteins, each tumor tissue sample can then be further sub-categorized. Thus, patients would then 

receive a particular chemotherapeutic regimen depending upon a ‘set of active signaling protein 

profile’ detected within the tumor biopsy [132]. This phenomenon was clearly responsible for 

rapid symptomatic improvement and tumor regression in a subset of lung cancer patients treated 

with EGFR tyrosine kinase inhibitor, Gefitinib (Iressa) [191, 192]. Majority of these patients 

harbored activating mutations in EGF receptor tyrosine kinase catalytic domain that enabled 

signaling events leading to tumor survival and proliferation. Such mutant receptor was readily 
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abrogated using Gefitinib [192]. Thus, by further dissecting the molecular aspects of cancer cells, 

treatment options can be individualized for patients. Such personalized therapy is expected to 

grow in future. With newer biological agents arriving in the market everyday, it is clear that 

careful selection of targets and their disruption within proteomic networks is key to the treatment 

of this deadly disease. 
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APPENDIX A 

POLYNOMIAL EQUATIONS FOR PARAMETRIC MODEL DATA 

For data simulation we assume the following model for ith value of jth observed variable such as 

the migration speed or a signaling protein: 

g2(yi(j)) = fp(j) (g1(xi(j))) + εj,  (1) 
 

where xi denotes ith experimental condition (e.g. the level of fibronectin and the absence 

or presence of EGF) for jth variable, fp(j) is pth order polynomial for jth variable with parameters 

β(p)T = [βp βp-1,…, β0], g1,2 are transformation functions and εj is an error term. For 

example, when p=2 and g1, and g2 are identity functions, yi(j) = f2(j) (xi(j)) + εj = ... . Although 

transformation functions are usually identity functions, sometimes it is beneficial to perform the 

fitting in log-space  (g1(x) = log(x)) or in log-log space (g1(x)= g2(x)= log(x)). In general, 

experimental conditions may vary between the variables and therefore quantities in Eq.1 depend 

on j. In the subsequent discussion, however, the subscript j is dropped for notational 

convenience. 

 The challenge with polynomial modeling is to choose order of the polynomial (p) that 

describes the data best without overfitting. In order to solve this challenge we use the minimum 

description length (MDL) principle [188]. The basic idea behind the MDL principle in model 

selection is to find the model that gives the minimum stochastic complexity relative to the model 

class [189]. Stochastic complexity can be understood as a measure of the goodness-of-fit of a 

model based on the model's ability to compress the data given a model class. As statistical 

inference is viewed as a data compression problem, there is no need to assume underlying, 

``true'' data generating distributions. Thus, apart from choosing the model class, there is no need 

to make subjective assessments.  
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 To be more precise, we use normalized maximum likelihood (NML) approach [190], 

which follows when the MDL principle is applied to the maximum likelihood estimation. Let 

γ belong to Ω and be a restricted set of indices for the current polynomial order k 

and RnxkRX ∈γ
nxk be a matrix of predictor values with indices gamma. For example, in our case 

study when k=2 (line fitting) the first column of Xγ  is [0.1 0.3 1 3]T and the second 1. 

We assume that εi ~ N(0,τ), so the response data (yn = y1,…, yn) are also  Gaussian distributed 

with density function ))(
2
1exp(

)2(
1),,,( 2∑ −=

i
i

T
i

n xyyf β
τπτ

τβγ . Thus, maximum likelihood 

solutions for a fixed γ are ,  (2) nTn yXZy γβ 1)(ˆ −=

∑ −= 2))(ˆ(1ˆ i
Tn

i xyy
n

βτ ,                                      (3) 

where Z = Xγ
T Xγ = nΣγ. In subsequent discussion the subscript γ is dropped. 

The NML density function is defined as 

∫
=

),( 0

))(ˆ),(ˆ,,(
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RY

nnn

n
n

zzzf
yfyf

τ
τβγ

τβγγ ,               (4) 

 

where yn is restricted to the set Y(τ0,R) = . Parameters τ})(ˆ)(ˆ,)(ˆ:{ 0 Ryyzz nnTnn ≤Σ≥ ββττ 0 

and R are determined so that the maximum likelihood estimates are within Y(τ0,R). 

 The NML density function is unique solution to the minmax problem: 

where q range over any distributions [190]. Therefore, solving Eq.4 results in the best model for 

the data relative to the chosen model class. Evaluation of Eq. 4 (for details, see~ [190] gives the 

final decomposition for finding the best polynomial order:  

)}1()ln()1()ˆln()ˆln(){(min +−
−

−−++−
Ω∈

k
kn

nknRnkkn τ
γ

, (6) 

 where . In our case study, the NML criteion (Eq. 6) is used to find the best 

polynomial order (p).  

)(ˆ)(ˆˆ nnT yyR ββ Σ=

  

After finding the best polynomial order, the parameters for that model are known from Eq. 2 and 

these are taken to estimate β. In addition to estimating the parameters for fp in Eq. 1, it is 
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necessary to have an estimate for the standard deviation for εj. One way to get this is to first pool 

individual bootstrap error estimates: 

∑

∑

−

−
= m

i
i

m

i
ii

pooled

mn

sn
js

2

)(
)1(

,                                                 (7) 

where si  is a bootstrap error estimate and then either use s(pooled)j
i directly or squared. 
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