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CONTROL OF BUDDED DOMAINS IN AMPHIPHILIC BILAYER MEMBRANES 

William Eric Uspal, B.Phil 

University of Pittsburgh, 2007

 

 

Phase separated domains in multicomponent vesicles form spherical buds to reduce interfacial 

energy.  We study the response of a multicomponent budded vesicle to an imposed shear flow 

with dissipative particle dynamics.  We find that shear can either act to stretch the bud open or 

separate the bud from the vesicle, depending on bud orientation.  We examine the interplay of 

interfacial tension, bending energy, and shear in determining the behavior of the vesicle, and 

provide criteria for the design of vesicles for controlled bud release.   

The neck connecting the budded domain with the bulk vesicle assumes a catenoid shape 

to minimize bending energy.  We model the mechanism for pinch-off of catenoid necks with 

continuum elastic theory and dissipative particle dynamics.  We examine pore nucleation and 

growth driven by Gaussian energy, by the adhesion energy of an encapsulated particle, and by 

the line energy of an interface between two amphiphile species, aiming to provide principles for 

the design of vesicles for biomimetic phagocytosis.   
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1.0  INTRODUCTION 

Amphiphiles contain both hydrophilic head and hydrophobic tail groups and, in sufficient 

concentration, spontaneously self-assemble into structures like micelles and bilayers.  These 

structures shield the hydrophobic tail groups from the surrounding solvent, maximizing entropy.  

Bilayers can further reduce edge free energy by closing to form vesicles, which contain an 

interior pocket of solvent isolated from the external environment.  Additional structure is 

possible in multicomponent membranes, where phase separation can be followed by the 

formation of mushroom-like buds that protrude from the two dimensional membrane into the 

surrounding three dimensional space.  These buds reduce the contact length between the two 

different membrane domains.   

Bilayer membranes and vesicles are ubiquitous in cell biology.  The plasma membrane 

separates the cell interior and exterior, anchors the cytoskeleton, and contains a host of proteins 

that identify the cell and mediate interactions with the surrounding environment. Within the 

eukaryotic cell, biochemical reactions are often contained within membrane bound organelles, 

and membrane bound proteins can serve to catalyze these reactions.  For instance, within the 

double membraned mitochondria, the molecular machinery of ATP synthase exploits a proton 

gradient across the inner membrane to drive synthesis of ATP.  In chloroplasts, photon energy is 

harvested by integral proteins in stacked thylakoid membranes.  Vesicles are vital to intracellular 

packaging and transport.  In exocytosis, interior vesicles fuse with the plasma membrane, 
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expelling their contents without causing the loss of cytosol  Likewise, in endocytosis, particles 

from the environment are engulfed by the plasma membrane, and the resultant bud is pinched off 

as an interior vesicle.  While many events in the biological membrane are active, driven by 

metabolic energy, much remains to be understood on the basis of passive physical forces. One 

theoretical study, for instance, models how a membrane-bound protein, caveolin, can drive 

formation of an invagination or bud through the exertion of asymmetrical forces on the 

membrane.1 

Furthermore, simple amphiphilic vesicles have recently begun to play an important role 

in industrial applications, e.g. in drug delivery by liposomes and, increasingly, block 

copolymersomes.  Further down the road, amphiphilic bilayers could be important to soft, 

biomimetic nanotechnology.  For instance, synthetic vesicles could be engineered to selectively 

remove nanoparticle contaminants from the environment in biomimetic endocytosis.  Vesicles 

could serve as robust containers (“test tubes”) for chemical reactions.  More fancifully, synthetic 

bilayers could provide the platform for biomimetic energy harvesting and macromolecule 

synthesis, and deformable vesicles could circulate through the channels of microfluidic devices 

in the manner of human erythrocytes.   

Numerous experimental, computational, and theoretical studies have been undertaken to 

illuminate the physical properties of bilayer membranes and vesicles.  Phase separation and 

budding in multicomponent giant unilamellar vesicles has been resolved with florescence 

microscopy.2,3  Continuum elastic theory has been applied to equilibrium shapes of 

multicomponent vesicles, 4 intermediates in membrane fusion5 and membrane adhesion to colloid 

particles.6  Molecular modeling has been used to study the dynamics of budding and fission,7,8 

intermediate structures in fusion, and pore nucleation in stretched membranes.9   
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However, no previous study has examined structural changes of budded multicomponent 

vesicles in shear flow.  Understanding the dynamics of vesicles in shear flow is crucial to 

applications in microfluidics and drug delivery.  If the conditions for shear-driven bud pinch-off 

were known, multicomponent vesicles could be designed to target specific flow regions for 

delivery of daughter vesicles (“packets”) containing the interior fluid.  Via coarse-grained 

molecular simulation, we pinpoint the conditions for pinch-off of the budded minority domain.  

Our results are described in Section 4. 

Likewise, we know of no previous study that has closely examined the mechanism of 

pinch-off in the neck of membrane encapsulated particles.  Understanding the physical principles 

of fission driven by adhesion energy is important to applications in targeted drug delivery and 

biomimetic phagocytosis.  Via continuum elastic theory, we model the energetics of fission via 

pore nucleation and growth in a homogeneous membrane, in a membrane in contact with an 

adhesive particle, and in a membrane with an interface between two lipid species.   With 

dissipative particle dynamics, we simulate interface and adhesion driven fission.  Ultimately, we 

aim to connect the elastic theory with the statistics of our simulations.  This work is detailed in 

Section 5.  

The Dissipative Particle Dynamics (DPD) simulation method is described in Section 2.  

DPD is a coarse-grained, mesoscopic simulation scheme that is suited to the time and length 

scales characteristic of membrane behavior.  It retains relevant details of molecular architecture 

while allowing a larger simulation time-step.   

Preliminary to the studies of Sections 4 and 5, in Section 3 we apply the DPD method to 

the equilibrium conformations of single and multicomponent membranes.  We show that our 

simulation scheme correctly reproduces the lipid density distribution and stress profile for a 
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bilayer membrane, and compare equilibrium vesicle shapes to those obtained in previous 

analytical and numerical studies.  In order to connect our simulation results with continuum 

theory, we determine the elastic parameters K , Σ , , 0,la κ , and gκ  as a function of DPD 

simulation parameters.   

We summarize our results and conclude in Section 6, discussing relevance of our results 

for engineering applications and directions for further study. 
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2.0  SIMULATION METHODOLOGY 

2.1 DISSIPATIVE PARTICLE DYNAMICS 

Dissipative particle dynamics (DPD) is an alternative to traditional MD introduced by 

Hoogerbrugge and Koelman in 1992, intended to model the hydrodynamics of complex 

fluids.10,11  DPD replaces the usual Lennard-Jones potential with a soft repulsive interaction that 

allows coarse graining in time and space.  The atomistic representation of a polymer chain can be 

replaced by a bead-spring model, while the simulation time step can be significantly enlarged 

without introducing instability.  This coarse graining allows access to time and length sales that 

are prohibitively computationally expensive in MD, while preserving relevant molecular 

architectural detail that continuum approaches omit.  Secondly, DPD allows for recovery of 

hydrodynamics, as the soft repulsive interaction and all forces in the system act pairwise, are 

Galilean invariant, and preserve angular and linear momentum.  In featuring both molecular 

detail and correct hydrodynamics, DPD bridges the continuum and atomistic approaches and 

opens opportunities for simulation of mesoscale supramolecular phenomena.   

Like MD, DPD models the Newtonian time evolution of a many-body system through 

numerical simulation of the Second Law: 
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where the sum runs over all beads j within a cutoff radius .  The conservative force is a soft 

central force: 

cr

ijijij
C

ij rratF )1()( −=  

The drag force is given by: 

ijijijijD
D

ij rvrrtF ))(()( ⋅−= γω  

where γ is a simulation parameter and )( ijD rω  is a weight function which goes to zero at .  

Finally, the stochastic force is 

cr

ijijijR
R

ij rrtF ξαω )()( =  

where ijξ  is a Gaussian distributed random variable with zero mean and unit variance.  Since the 

thermostat forces are pairwise and act along particle separation vectors, they conserve angular 

and linear momentum.  Here DPD can be contrasted with Brownian dynamics, which can only 

simulate diffusive, not hydrodynamic, phenomena.  Likewise, use of relative velocity  does 

not privilege any particular reference frame; the system is Galilean invariant. 

ijv

Recovery of hydrodynamics imposes additional conditions on the random variable, the 

simulation parameters, and the weight function.  In the calculation of forces for particle j , 

jiij ξξ = .  Furthermore, Espanol and Warren show that the following fluctuation-dissipation 

relations must hold between the dissipative and random forces: 

2)()( ijRijD rr ωω =  

γα TkB2=  

where one weight function can be chosen arbitrarily.12  Groot and Warren choose: 

 6 



22 )1()()( ijijRijD rrr −== ωω  

for . cij rr <

Because the dissipative force, and therefore the total force, is dependent on velocity, the 

velocity-Verlet algorithm must be modified to be an iterative predictor-corrector scheme.  

Forces, velocities, and positions at time t are known; they must be calculated for time tt Δ+ , 

where  is the simulation timestep.  The position at time tΔ tt Δ+ is calculated just as it is in the 

ordinary velocity-Verlet algorithm: 

2

2
)()()()( t

m
tfttvtrttr Δ+Δ+=Δ+  

Ordinarily, the velocity would be calculated from the forces  and )( ttvi Δ+ )(tfi )( ttfi Δ+ : 

t
m

ttftftvttv ii
ii Δ

Δ++
+=Δ+

2
)()()()(  

However, since  depends on )( ttf i Δ+ )( ttvi Δ+  as well as on )( ttri Δ+ , a prediction  

)(' ttvi Δ+ for velocity is calculated from the force : )(tfi

)()()(' ttftvttv iii Δ+=Δ+ λ  

Groot and Warren choose 2
1=λ , as the actual velocity-Verlet algorithm would be recovered for 

this value if the velocity dependent force . The updated position and predicted velocity 

are used to calculate the force at time 

0=D
ijF

tt Δ+ : 

 

))('),(()( ttvttrfttf iii Δ+Δ+=Δ+  

Finally, this force is used to correct the velocity at time tt Δ+ : 
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All simulations are conducted with the open source LAMMPS package.13 

2.2 WALL BOUNDARY CONDITIONS 

The chief advantage of DPD is the use of repulsive soft potentials that allow coarse graining.  

However, this features presents a problem for simulation of wall-driven simple shear, for even 

close-packed walls of DPD particles are too soft to prevent penetration by solvent particles.  

Therefore, an additional boundary condition must be imposed: reflection.  Specular reflection, 

however, does not correctly reproduce the no-slip boundary condition.  One must use 

bounceback reflection, whereby if 

0)( <⋅ wallold nv  

for a particle in the wall region, then its velocity is reassigned as  

oldwallnew vvv −= 2  

A representative velocity profile is shown below: 
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Figure 1 – Velocity profile obtained with bounceback boundary condition 

2.3 DPD PARAMETERS AND AMPHIPHILE ARCHITECTURE 

We take as the characteristic length scale and  as the characteristic energy scale in our 

simulations. It follows that the characteristic time scale is 

cr TkB

Tkmr Bc
2=τ . We set the remaining 

DPD simulation parameters as noise parameter 3=α  and timestep τ02.0=Δt , with a total bead 

number density of .  3/3 cr=ρ

We construct amphiphiles (“lipids”) from beads connected by harmonic spring bonds.  

Each amphiphile consists of three hydrophilic head beads (H) and six hydrophobic tail beads (T), 

with the latter arranged in two tails: 
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Figure 2 – Twin-tail amphiphile architecture.  Cyan beads are hydrophilic head groups, and black beads 

are hydrophobic tail groups. 

 

The bond potentials are: 

2)/)(( cbondbond rbrKE −=  

where  is the bond constant and b is the equilibrium bond length.  We use bondK 64=bondK  and 

. We also insert a weaker bond (5.0=b 10=′bondK ) between the first beads on the two tails to 

keep the tails oriented in the same direction. 

An angle triple potential stiffens the tails, increasing the stability and bending rigidity of 

the bilayers.  The form of this potential is  

( )θcos1+= angleangle KE  

where θ is the angle defined by three adjacent beads.  We set the coefficient to 10=angleK  or 

.  Additionally, the amphiphiles are immersed in solvent beads (S).  All beads have 

mass . 

20=angleK

1=m

 10 



For beads of identical type, we set the DPD conservative interaction parameter to 

.  For the remaining interactions, we set 25=iia 25=HSa , 100=HTa , and .  When we 

examine heterogeneous membranes, we further designate two head and two tail types H1, H2 and 

T1, T2, where the subscript indicates the lipid species.  We set 

100=STa

25
2121
>= TTHH aa , which causes 

the lipids to phase separate.  A homogeneous membrane is shown in Figure 3 below, and the 

density profile for this system is shown in Figure 4. 

 

 

Figure 3 – A homogeneous membrane.  The system is periodic in the x, y, and z directions.  Cyan beans 

are head groups, black beads tail groups, and green points solvent particles. 
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Figure 4 – Density profile in the z-direction for the membrane shown in Figure 3. 

 

From Figure 4, we can estimate the thickness h  of the membrane from the distance 

between the two head peaks: . 4≈h
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3.0  VESICLES IN EQUILIBRIUM 

3.1 MEMBRANE ENERGETICS 

The equilibrium conformation of a membrane is determined by minimization of the 

Helfrich free energy functional.  For a homogeneous membrane, the free energy is the sum of 

mean curvature, Gaussian curvature, and stretching energies: 

bendelastic FFF +=  

The bending energy is given by 

( )∫ ⎥⎦
⎤

⎢⎣
⎡ ++= 21

2
212

CCCCdAF Gbend κκ  

where  and are two principal curvatures, 1C 2C κ  the mean curvature bending modulus, and Gκ  

the Gaussian curvature modulus.  The Gaussian term is generally neglected in calculation of 

membrane conformation.  According to the Gauss-Bonnet theorem, the integral of Gaussian 

curvature over a surface is constant, provided the genus and boundaries of the surface remain the 

same.   

For small deviations from the equilibrium area per lipid , the stretching energy is 

given by  

0,la
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2

0,

0,

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

l

ll
elastic a

aaKF  

where  is the area per lipid,  the equilibrium area per lipid, and la 0,la K the elastic modulus.  The 

membrane tension is therefore defined by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

∂
∂

=Σ
0,

0,

l

llelastic

a
aa

K
a

F  

If two lipid species are present in the membrane, phase separation will introduce a line 

tension term to the total free energy: 

lF lineline σ=  

where l  is the length of the interface.  Finally, the energy of a bound colloid or surface is  

adhadhadh AeF −=  

where  is some energy per unit area and  is the contact area. adhe adhA

3.2 CHARACTERIZATION OF MEMBRANE PROPERTIES 

In order to compare experimental results and elastic theory with the results of our 

numerical simulations, we need to determine the values of the macroscopic parameters K , Σ , 

, 0,la κ , and Gκ  as a function of simulation parameters.   
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3.2.1 Elastic parameters from membrane stress profile 

Estimation of several macroscopic parameters relies on measurement and manipulation of the 

stress difference across a flat membrane )]([ zNT Σ−Σ . )(zTΣ  and are diagonal 

components of the stress tensor , i.e. 

)(zNΣ

αβΣ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Σ
Σ

Σ
=Σ

N

T

T

00
00
00

αβ  

The tangential term  appears twice because the system is isotropic in the plane of 

the membrane, while the off diagonal terms are zero because the membrane has zero shear 

modulus, i.e. is a fluid.   is the component of the stress tensor normal to the membrane.  

We measure  as in Goetz and Lipowsky.14 The interfacial tension can then be calculated as 

the (numerical) integral of the stress profile: 

)(zTΣ

)(zNΣ

αβΣ

( )∫
∞

∞−
Σ−Σ=Σ dzzz NT )()(  

We measure Σ  as a function of  for several values of the angle coefficient.  The 

system is periodic with dimensions , , and . The membrane spans the system in the x 

and y directions, for which the cross-sectional area of the system is . The area per 

lipid is defined as  where is the total number of lipids and the factor of 2 

accounts for the two sides of the bilayer. 

la

xL yL zL

yxC LLA =

NAal C /2= N
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Figure 5 – Graph of tension versus area per lipid for an angle coefficient of 10  

 

Obviously,  can be determined from 0,la 0)( 0, =Σ la , the tensionless state of the 

membrane.  From a linear fit of  at low membrane tension, we find .  An 

analysis of thin elastic films shows that 

( laΣ ) 2/2.33 cB rTkK ≈

κ  can be estimated as , where h  is the 

membrane thickness, in good agreement with direct numerical15 and experimental 

measurements.16  Substituting in our value for K, we obtain 

48/2Kh=κ

TkB11≈κ  for our system. 

From the tensionless state of the membrane, we can determine the Gaussian modulus gκ  

as the integral of the second moment of the stress profile:17 

( )∫
∞

∞−
Σ−Σ= dzzzz NTg )()(2κ  

We show gκ  as a function of angle coefficient  below: angleK
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Figure 6 – Gaussian modulus as a function of angle coefficient 

 

Note that we can construct lipids with both positive and negative values of gκ .  The former will 

favor saddle morphologies, the latter spherical morphologies.   

Next we consider measurement of the line tension associated with a pore, edgeσ , or with 

an interface between two lipid species, intσ .  To determine edgeσ , we measure the stress tensor 

for a membrane in a periodic box that spans the box in the x direction and has free edges in the 

 direction, with y z the coordinate normal to the membrane.  The stress tensor is diagonal and 

has two components,  and , in the plane of the membrane.  We measure the difference 

 and integrate in the 

XΣ YΣ

( YX Σ−Σ ) y  direction to determine a surface tension .  To 

convert to a line tension, we integrate in the direction: 

(∫
∞

∞−
Σ−Σ dyYX )

z
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( )∫ ∫
∞

∞−

∞

∞−
Σ−Σ= dzdyYXedgeσ  

By this procedure, we determined the energy of a free edge to be cBedge rTk /9.4≈σ . 

Similarly, to obtain an interfacial tension intσ , we have measure the stress tensor of a 

membrane that spans a periodic box in the x and y  directions with a line interface normal to the 

y  direction.  We again integrate the stress difference to obtain the interfacial tension: 

( )∫ ∫
∞

∞−

∞

∞−
Σ−Σ= dzdyYXintσ  

We vary the line tension by varying the repulsion coefficient between the head groups of the two 

lipid species.  intσ  is shown as a function of this DPD repulsion coefficient in the graph below: 

 

 

Figure 7 – Interfacial tension as a function of the head-head repulsion parameter for two lipid species 
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3.2.2 Estimation of adhesion energy 

Adhesion energy  arises in our simulations when we increase the repulsion coefficient 

between a solid surface or particle and solvent from 

adhe

25=PSa .  It then becomes energetically 

advantageous for head groups in a lipid membrane, for which 25=HPa , to make contact with 

the solid particle.  To calculate , we set up a simulation box periodic in the adhe x  and y  

directioms, with solid walls normal to the  direction spanning the box.  We fill the box with 

solvent, and initially set .  We measure the surface tension of the wall-solvent interface 

as .  We then increase  above 25 and measure the surface tension of the wall-solvent 

interface as .  We can then determine the adhesion energy  for this value of  as  

z

25=PSa

coatede PSa

uncoatede adhe PSa

coateduncoatedadh eee −=  

In this manner, we vary  over PSa 6030 ≤≤ PSa  and calculate .  For this range of , we 

find  to be on the order of 

adhe PSa

adhe 2141 cB rTk− .  The results of these measurements are shown in 

the figure below: 
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Figure 8 – Adhesion energy per unit area as a function of particle-solvent repulsion parameter aPS 

3.3 PREPARATION OF VESICLES 

We prepare a simulation box that is periodic in the x  and directions and has solid walls 

normal to the  axis.  Walls are constructed out of rigidly frozen, FCC close packed particles, 

oriented such that their (111) planes are normal to the  axis. The dimensions of the box 

are , , and between the parallel walls. 

y

z

z

cx rL 70= cy rL 52= cz rL 70=

We form vesicles of radius crR 15= , as measured from the origin to the bilayer midplane, 

by randomly distributing lipids across the inner and outer monolayers on a spherical surface.  We 

fix membrane thickness , calculating the number of inner lipids  and outer lipids crh 3= innern
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outern such that both leaflets have area per lipid .  At this value the vesicle has zero 

surface tension; is determined as in Section III.  Lipid architecture is as described in Section 

II, with and .  Furthermore, we tether the vesicle to the center of the 

simulation box with a harmonic bond potential  

235.1 cl ra =

0,la

20=angleK 64=bondK

2
0 )( rrKE tethertether −=  

where , 50=tetherK r is the center of mass of all lipids, and 00 =r .  The spring force is equally 

distributed across all lipid beads. 

We solvate the box such that , with 3/3 cr=ρ N solvent particles distributed in the 

vesicle interior. 

In order to create multicomponent vesicles, we designate the lipids between the angles 0φ  

and πφ = as type 2, where πφπ ≤≤ 02/ , with the remaining lipids designated as type 1.  In this 

manner, we create a circular, minority domain with area  

)]cos(1[2 0
2 φπ += RAd  

We define the relative domain size as  

24/ RAa d π=  

With the vesicle constructed, we allow the system to relax and equilibrate for several thousand 

timesteps.   

Solvation of the vesicle interior by N particles can introduce a surface tension if 

.  In order to determine , we create a small hole in a single component vesicle and 

allow the system to equilibrate.  The vesicle exchanges interior solvent with the exterior fluid 

eqNN > eqN
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until interior and exterior pressures are equalized, thereafter closing.  In this fashion we 

determined .  We define reduced volume by  84000≈eqN *V

eqNNV /* =  

For , a vesicle is flaccid and has excess area in the lipid membrane.  Vesicles with  

are tense, owing to excess interior pressure. 

1* <V 1* >V

3.4 EQUILIBRIUM CONFORMATIONS OF SINGLE COMPONENT MEMBRANES 

The shape of a single component vesicle is primarily determined by reduced volume .  We 

construct vesicles for various values of .  Figure 9 shows two such vesicles.  At , as in 

Figure 9a, a single component vesicle is spherical; at , as in Figure 9b, it is an oblate 

ellipsoid. 

*V

*V 1* =V

86.0* =V
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Figure 9 – Equilibrium conformations of a single component vesicle.  Figure (a) shows a spherical 

homogeneous vesicle with V* = 1.  Figure (b) shows an oblate ellipsoid with V* = 0.86.  

3.5 EQUILIBRIUM CONFORMATIONS OF MULTICOMPONENT MEMBRANES 

The equilibrium shape of a multicomponent vesicle is determined by the balance of stretching, 

bending and line energies.  Line energy will favor budding, which is the mushroom-like 

protrusion of the minority domain into the space surrounding the vesicle, as it reduces the length 

of the domain interface.  On the other hand, budding requires the introduction of bud curvature, 

and therefore an increase in bending energy.  The interplay of these energies determines the 

radius of the neck connecting the budded domain to the vesicle bulk.  The ratio of line and 

bending energy strengths can be nondimensionalized as: 

κσσ /int
* R=  

Introducing a second lipid species, then, introduces two additional nondimensional 

parameters.  ,  and determine the equilibrium conformation of a multicomponent *σ a *V
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membrane.  We measure κ and intσ as described in Section III.  By varying , , and by 

varying , 

*σ a *V

2121 TTHH aa = 0φ , and N , we can simulate equilibrium vesicle shapes. 

In order to verify our simulations, we compare the equilibrium shapes to the free energy 

minimizing shapes calculated by Julicher and Lipowsky.4  Figure 8 of Julicher shows 

equilibrium vesicle shapes for , 9.0* =σ 1.0=a , and varying .  Varying accordingly, we 

observe good agreement with the predicted shapes: 

*V *V

 

 

Figure 10 – Equilibrium conformations of multicomponent vesicles with a = 0.1,  = 0.9, and varying 

V*.  For (a), V* = 0.98; for (b), V* = 0.95; for (c), V* = 0.9.  

*σ

 

Although we find that the minority domain pinches off for higher than the predicted , 

this is attributable to the finite thickness of the membrane, which makes the diameter of the neck 

less than it would be for an infinitesimally thin membrane. 

*V

We next set  and vary and .  We find that for each , there is a critical 

value  for which no stable bud exists. (Figure 11) The minority domain buds and pinches 

23.0=a *σ *V *V

crit
*σ
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off, with the neck diameter constricting to nearly zero, at which point the bud detaches as a 

daughter vesicle.  For , the initial vesicle shape is nearly spherical before line 

tension is turned on, and the vesicle cannot deform to create a bud.  Accordingly, increasing 

causes the vesicle to tear along the domain interface, which remains open without complete 

detachment of the minority domain.   

92.09.0 * ≤≤V

*σ

 

 

Figure 11 – Phase diagram of equilibrium conformations of multicomponent membranes for V* vs. .  

Blue circles indicate stable budding, red crosses unstable buds that pinch off, and green triangles ripping at the 

domain interface. 

*σ
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4.0  VESICLES UNDER SHEAR 

4.1 INTRODUCTION 

Single component vesicles in shear have already seen considerable study.  Their behavior is 

known to depend on the viscosity contrast between the membrane and the surrounding fluid, 

which determines whether vesicle behavior is solidlike or liquidlike, i.e. whether the vesicle 

undergoes tumbling or tank-treading.  The behavior of multicomponent budded vesicles in shear, 

however, has hitherto not been examined.  We find that similar results obtain for 

multicomponent vesicles as for single component vesicles, with the ratio of shear to line tension 

playing the role of the viscosity contrast in determining vesicle behavior.   However, we also find 

that shear can drive morphological and even topological change not seen in single component 

vesicles: flattening and pinch-off of the budded minority domain.  We work out the phase 

diagram of such morphological change and determine the conditions for pinch-off, providing 

guidelines for vesicle design for drug delivery. 

A solidlike single component vesicle is akin to a rigid ellipsoid.  The rotational motion of 

a rigid ellipsoid in shear was first studied by Jeffrey, whose analytical theory18 has been 

corroborated by more recent experimental19 and numerical20,21 studies.  In shear, a rigid ellipsoid 

will align its major axis parallel to the shear plane.  Since there is no stable, steady state solution 

to the Navier-Stokes equations for a stationary ellipsoid that satisfies the no-slip boundary 
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condition, such an ellipsoid must rotate around its minor axis, which is normal to the shear plane. 

A prolate vesicle, for instance, must flip end over end. 

In tank-treading vesicles, on the other hand, viscous stresses are sufficiently strong to 

drive tangential flow of the membrane.  The no-slip boundary condition for solids does not 

apply, and the vesicle behaves like a liquid droplet, maintaining a fixed angle of orientation with 

the direction of flow as the membrane fluid circulates around the vesicle body.22  

In a budded multicomponent vesicle, the domain line tension can play the same role as 

the viscosity contrast in determining whether the vesicle undergoes tumbling or tank-treading.  If 

the ratio of shear to line tension is small, shear is insufficient to increase the contact length and 

deform the vesicle into the ellipsoidal shape necessary for tank-treading; tumbling must occur.   

Furthermore, shear forces can drive morphological change in budded multicomponent 

vesicles.  From the familiar decomposition of simple shear into rotational and elongation 

components, (Figure 12) one can see that the elongational component can either promote 

flattening or pinch-off, depending on the bud position.  If the angle of orientation of the vesicle is 

sufficiently small and the bud is at the vesicle tip, then the elongational component is mainly 

parallel to the axis connecting the vesicle body and the bud.  If, on the other hand, the bud is 

located in the elongated region of the vesicle, then the elongational component is mainly 

perpendicular to this axis.  (Figure 13)  Bud circulation caused by the rotational component 

allows the bud to experience both flow environments, and the bud can be driven to either pinch-

off or flatten.  (Figure 14) 
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Figure 12 – Decomposition of simple shear into elongational and rotational components 

 

 

Figure 13 – The effect of the elongational component of simple shear on a budded domain depends on the 

bud position 

 

 

Figure 14 – Alternative pathways for a budded vesicle in shear 

 

Whether the vesicle undergoes such a morphological change is determined by the size of 

the energy barriers for pinch-off and flattening, relative to the size of the shear force.  For 

flattening, the barrier is the difference in interface length between the budded state and the 
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flattened state, multiplied by the interfacial tension.  For pinch-off, the energy barrier is the 

stretching energy associated with the reduction of the neck diameter.  

Using DPD, we investigate multicomponent vesicles in shear flow, first examining the 

tumbling to tank-treading transition with contrast , and thereafter examining the effect of 

shear on the morphology of the budded domain.  Via construction of a vs. phase diagram, 

we illuminate the conditions for pinch off and vesiculation.   

** /σγ

*γ *σ

4.2 PREPARATION OF VESICLES 

Vesicles are prepared as described in Section 3.4.  We impose the bounceback condition 

discussed in Section 2.2 to ensure that no solvent particles penetrate the walls. We designate x  

the flow direction and  the transverse direction, with y cx rL 70= , , and 

between the parallel walls.   

cy rL 52=

cz rL 70=

We allow the vesicles to equilibrate for several thousand time steps before turning on 

shear.  Shear )0,0,( zu γ= is imposed through motion of the parallel walls.   

4.3 DIMENSIONLESS PARAMETERS AND RELATION TO EXPERIMENT 

As discussed in Section III, the equilibrium conformation of a multicomponent vesicles is 

determined by the balance of line, bending, and stretching energies, or the dimensionless 
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parameters , , and .  For our shear simulations, we choose to fix  and .  

Shear introduces another force in the system.  The force of shear is approximately 

*σ a *V 23.0=a 86.0* =V

2Rfshear γμ≈  

where μ  is the fluid viscosity.  From our chosen DPD parameters, DPDcDPD rm τμ /9.0≈ .11  We 

define a dimensionless shear rate as  

κγμγ /3* R≈  

Based on the values of intσ  and κ  calculated in Section III, we determine that our 

simulations lie in the range of  and .  For a mixed lipid membrane vesicle, 

and , the value of agrees well with our simulations 

when

52* −≈σ 84* −≈γ

J1910−≈κ mJ /10 12−≈σ *σ

mR μ25.0 −≈ .3,16  By comparing values of and taking *γ sPa ⋅= 001.0μ for water, we 

find our simulations are equivalent to  for s/104* =γ mR μ5.0≈  or to for s/102* =γ mR μ2≈ .  

These are realistic shear rates for flow in a microchannel.22 

4.4 RESULTS AND DISCUSSION 

We first examine the tumbling-to-tank treading transition with the ratio   To save 

computation time, we prepare a system of size 

./ ** σγ

cx rL 48= , cy rL 40= , and .  From 

previous work on ellipsoidal particles, we would expect that tumbling would result from any 

initial orientation relative to the flow field.  To test this prediction, we simulate the response of a 

budded vesicle whose major axis is initially perpendicular to the shear plane in low  flow 

(  and ).  We find that the vesicle orients its major axis to the flow plane in 

cz rL 50=

** /σγ

15.2* =σ 0.2* =γ
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approximately the time for a single rotation, tumbling such that the bud and vesicle body 

repeatedly flip over each other.  Increasing the contrast -- the shear analogue of viscosity 

contrast – we find that tank-treading does indeed occur at high .   

** /σγ

** /σγ

 

 

Figure 15 -- Shear-driven rotation of a budded vesicle whose major axis is initially perpendicular to the 

flow plane.  V* = 0.86, a = 0.275, σ* = 2.15, and γ* = 2.0.  Images (a) and (b) show the initial configuration of the 

vesicle from a side and top view, respectively; image (b) omits the walls.  Images (c) and (d) show the vesicle after 

one complete rotation of the bud about the body, from the same perspectives as (a) and (b).  The upper wall is 

moved to the right and the lower wall to the left in all images.  
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Knowing that vesicles align with shear flow, we investigate the effect of shear on the 

budded domain.  We find that three major behaviors accompany the introduction of shear: 

1. The bud remains closed and circulates periodically around the vesicle 
2. The bud is stretched open, and the entire vesicle undergoes tank treading 
3. After migrating to the vesicle tip, the bud detaches from the body in a smooth pinch-off 

process 
 

Additionally, behavior intermediate between cases 1 and 2 is possible; the budded 

domain may only partially flatten and circulate around the vesicle.  As discussed in the 

introduction, the qualitatively different behaviors are due to the multiple roles shear can play, 

depending on the bud location.  By way of example, a set of parameters giving very weak shear, 

and therefore behavior 1, is , 86.0* =V 23.0=a ,  and .  In Figure 16, we see 

the vesicle body is elongated, but the bud is relatively undeformed.  It remains budded as it 

circulates around the vesicle. 

15.2* =σ 91.3* =γ
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Figure 16 – Circulation of an undeformed bud.  V* = 0.86, a = 0.23, σ* = 2.15, and γ* = 3.91. 

 

When shear is increased to for the same vesicle, shear forces overcome line 

tension and flatten the domain when it arrives in the central region of the vesicle. (Figure 17c)  It 

is in this region that elongational forces act to flatten the domain.  The result is a prolate shape, 

much like that seen for single component vesicles in shear.  The flattened domain is then 

convected by the tank-treading motion of the vesicle, not changing significantly as it passes the 

vesicle tips.  (Figure 17d) 

52.6* =γ
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Figure 17  – Flattening of a budded domain for V* = 0.86, a = 0.23, σ* = 2.15, and γ* = 6.52.  The bud 

flattens when it arrives in the central region of the vesicle, and the vesicle is deformed to a prolate shape. 

 

Finally, with high line tension ( ), even weak flow ( ) is sufficient to a 

drive a normally stably budded domain over the energy barrier for vesiculation.  Figure 18 shows 

the time sequence for shear-driven pinch off for this vesicle.  When the bud arrives at the vesicle 

tip, it becomes “stuck,” and is stretched away from the vesicle body by the shear force.  The neck 

constricts, leading eventually to pinch off.  Examination of the pinch off event reveals it is 

initiated by the creation of a pore at the domain interface.  To ensure that pinch off does not 

depend on the initial orientation of the bud, we simulated this set of parameters for the initial 

orientations in Figure 16a and Figure 17a as well as that in Figure 18a.  We did not see any 

75.2* =σ 91.3* =γ
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dependence on the initial orientation; the outcome is not due to the initial placement of the bud 

near the vesicle tip.   

 

 

Figure 18 – Pinch-off of a budded domain for V* = 0.86, a = 0.23, σ* = 2.75, and γ* = 3.91.  The bud 

migrates to the vesicle tip, where the pinch-off process occurs.   

 

We work out a phase diagram for varying  and , allowing the vesicle to equilibrate 

before turning on shear.  (Figure 19)  For small line tension , we observe only a 

transition from circulation to flattening, while for large line tension we find that the budded 

domain pinched off for sufficiently high shear rate . 

*σ *γ

15.2* =σ

*γ
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Figure 19  – Phase diagram of vesicle behavior in shear flow for σ* vs. γ*.  Blue circles indicate a stable, 

circulating bud; black squares indicate bud flattening; and red crosses indicate bud pinch-off. 

4.5 CONCLUSIONS 

We examine the behavior of multicomponent budded vesicles in shear flow, finding that 

can play the same role as the viscosity contrast in determining whether membrane 

behavior is solidlike or liquidlike, i.e. whether the vesicle tumbles or undergoes tank-treading.  

Budded vesicles are observed to orient their major axes in the flow plane.    Furthermore, we 

examined the effect of imposed shear on bud morphology, finding shear can drive morphological 

and topological changes in the vesicle.  We probe the conditions for domain flattening and 

domain pinch off, and explain vesicle behavior on the basis of membrane energetics and the 

** /σγ
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decomposition of simple shear.  These results provide guidelines for the design of “packet” 

release in drug delivery.  Vesicles could be tailored to release “packets” in specific flow regions, 

e.g. specific regions of the human bloodstream.   
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5.0  FISSION OF CATENOID NECKS 

Increasingly, physical scientists are turning their attention to cellular biology, both to understand 

biology on the basis of physical principles and for inspiration for the design of synthetic systems.  

Phagocytosis, the uptake of particles by the cell membrane, is one cell phenomenon that could be 

modeled physically and mimicked by synthetic soft materials.  Understanding of the mechanism 

of biological phagocytosis would greatly aid targeted drug delivery.  Moreover, the toxicity of 

nanoparticle contaminants has recently been a subject of controversy.  Synthetic vesicles 

designed for selective biomimetic phagocytosis could remove such contaminants from the 

environment.   

In previous work, Smith et al. studied the uptake of particles of radius on the order of the 

membrane thickness, illuminating the conditions for complete wrapping and phagocytosis.24  The 

length scale of that study, however, limited examination of the mechanism of pore creation and 

neck scission.  Numerically and analytically, we model the fission of large encapsulated particles 

via pore nucleation and growth in the narrow neck region.  We delineate the physical conditions 

for pore nucleation and growth, providing principles for the physical operation of biological cells 

and criteria for the design of synthetic vesicles that take up large colloidal particles.  Secondly, 

since such necks are formed by large phase segregated domains, e.g. in peanut-shaped vesicles 

composed of two types of lipids, we examine fission driven by a domain interface located in the 

neck. 
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Whereas the work of Smith et al. was largely exploratory, we calculate pore energetics on 

the basis of continuum elastic theory, considering both membranes with an interface between 

two lipid species, and membranes in contact with an adhesive particle.  For the purposes of 

comparison, we also consider the energetics of a simpler case, a homogeneous membrane with a 

neck.  For all cases we determine the conditions for pore stability and the height of the energy 

barrier for pore nucleation.  

Using Dissipative Particle Dynamics (DPD), we model fission in heterogeneous 

membranes and in adhesive particle/membrane systems.  Macroscopic elastic parameters were 

calculated as a function of simulation parameters in Section 3, allowing us to compare the 

statistics of our simulations with the statistics predicted by elastic theory. 

Accordingly, we first develop the analytical theory, thereafter discussing our numerical 

methodology.  Finally, we present and discuss preliminary numerical results.  Ultimately, we  

aim to compare them to the predictions made by the elastic theory. 

5.1 PORE ENERGETICS 

Common to the fission of budded domains and of encapsulated particles is the role of 

pore growth in the membrane neck. In the initial stage of large particle phagocytosis, the particle 

is wrapped by the membrane, with the degree of envelopment determined by the balance of 

adhesion and stretching energies.  Previous analytical studies have worked out the phase diagram 

for large colloid wrapping and the conditions for complete envelopment.6  When completely 

enveloped, the encapsulated particle is connected to the bulk membrane by a narrow neck.   

Likewise, after phase segregation and budding of a large domain, the bulk and minority domains 
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are also connected by such a neck.  Given the length scale of the system, curvature energy to 

wrap the particle or form the budded domain is negligible and the neck can be considered to 

connect two flat membranes.  Neck radius is then determined by the balance of line or adhesion 

energy, which favor constriction, and stretching energy, which promotes neck expansion. 

This neck can reduce its curvature energy by relaxing to a saddle shape, acquiring 

principal curvatures of opposite sign, and therefore low mean curvature.  The catenoid, the 

surface of revolution of the caternary, has exactly zero mean curvature.  Like the bicontinuous 

cubic phase, it is a minimal surface, and it approximately describes the shape of the membrane in 

the neck region.  The catenoid is completely characterized by one parameter, the neck radius. 

With formation of a catenoid neck, no further smooth deformation of the membrane 

promotes endocytosis.  Fission must proceed through nucleation and growth of a pore.  If the 

neck is sufficiently small, little of the interior solvent or cytosol will be lost to the environment.25   

Pore creation is favored by Gaussian energy, as well as either adhesion or interfacial 

energy, and opposed by edge energy.  Gaussian energy is normally neglected in calculations of 

equilibrium membrane conformations.  According to the Gauss-Bonnet theorem, Gaussian 

energy is unchanged for any deformation of a surface with fixed genus and boundaries.  For 

catenoids and other unbounded genus zero surfaces, Gaussian energy is given by 

ggaussE πκ4−=  
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In the catenoid most of this Gaussian energy is concentrated in the narrow neck region.  

Since the creation of a pore constitutes a change in genus and boundaries, a catenoid can 

significantly reduce Gaussian energy via creation of a pore in the neck region.   

We first develop the theory for pore growth driven only by Gaussian energy, thereafter 

considering pore growth with adhesion and pore growth with an interface. 

5.2 PORE ENERGETICS WITHOUT ADHESION 

When the neck relaxes to a catenoid, the curvature term in the usual Helfrich expression of the 

membrane free energy becomes zero, leaving only stretching and Gaussian curvature energies: 

[ ]∫ += 21CCfdAF Ga κ  

Nucleation and growth of a pore introduces an edge energy while reducing Gaussian 

energy.  Neglecting stretching energy, we take the free energy of a pore as the sum of Gaussian 

and edge energies: 

edgegaussian EEE Δ+Δ=Δ  

In this section we derive an expression for the free energy of a pore in a catenoid and determine 

the conditions for pore stability.   

5.2.1 Gaussian energy 

Consider a pore of height  and a width subtended by angle hΔ θΔ : 
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Δθ 

Figure 20 – System considered by elastic theory 

 

To obtain the change in Gaussian energy, one must integrate the Gaussian curvature over the 

pore area: 

∫ ∫
Δ

Δ−

Δ

Δ−

−=Δ
2/

2/

2/

2/
21

z

z
ggauss dzrdccE θκ

θ

θ

 

The catenary is a plane curve described by the equation )/cosh()( RzRzr = , where R  is the 

radius at , the narrowest point of the neck.  We take the first principal curvature to be that 

of the circle of revolution: .  The second principal curvature is simply that of the 

0=z

)(/1)(1 zrzc =

)(zr  plane curve: 2/322 ))('1(
)(''

zr
zrc

+
−

= .  We therefore have 
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∫
Δ

Δ−

Δ=Δ
2/

2/

2 )/(sec)/1()(
z

z
ggauss dzRzhRE θκ  

)2/tanh()(2 RzE ggauss ΔΔ=Δ θκ  

We define dimensionless Gaussian modulus  as *
gκ Redge

g
g σ

κ
κ =* , the dimensionless energy *EΔ  

as 
R

EE
edgeσ2

* Δ
=Δ , and dimensionless height *zΔ  as .  The nondimensionalized 

Gaussian energy is then 

Rzz /* Δ=Δ

)2/tanh()( *** zE ggauss ΔΔ=Δ θκ  

5.2.2 Edge energy 

If edgeσ  is the line tension of a pore edge, we can write the edge energy as  

∫=Δ dlE edgeedge σ  

The two horizontal and two vertical edges comprise the path of the integral: 

⎥⎦
⎤

⎢⎣
⎡ ++Δ−Δ+ΔΔ=Δ ∫

Δ

Δ−

2/

2/

2)('12)2/()()2/()(
z

zedgeedge dzzrzrzrE θθσ  

[ ])2/sinh(2)2/cosh()(2 RzRRzRE edgeedge Δ+ΔΔ=Δ θσ  

Nondimensionalizing as before, we have 

[ ])2/*sinh(2)2/*cosh()(* zzEedge Δ+ΔΔ=Δ θ  

The free energy of the pore is therefore 
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[ ])2/*sinh(2)2/*cosh()()2/*tanh()(** zzzE G Δ+ΔΔ+ΔΔ=Δ θθκ  

5.3 EQUILIBRIUM PORE WITHOUT ADHESION 

For a pore to be in equilibrium, we require 0*
=

Δ∂
Δ∂
θ

E  and 0
*
*
=

Δ∂
Δ∂

z
E .  The first criterion yields 

0)2/cosh()2/tanh( *** =Δ+Δ eqeqg zzκ  

01)2/sinh()2/(sinh ***2 =+Δ+Δ eqgeq zz κ  

Solving this quadratic equation for , we have *
eqzΔ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −±−
=Δ

2
4

arcsinh 2  
**

* gg
eqz

κκ
 

For , the values of  are complex; is a bifurcation point and two real 

equilibrium solutions exist for .  Equilibrium values of 

2* −>gκ
*

eqzΔ 2* −=gκ

2* −<gκ θΔ  are determined by the second 

equilibrium criterion: 

0)2/cosh(2)2/sinh(2/)2/(sec)()2/1( ***2* =Δ+ΔΔ+ΔΔ eqeqeqeqeq zzzh
g

θθκ  

)2/sinh()2/(sec
)2/cosh(2

**2*
eqeqg

eq
eq zzh

z
Δ−Δ−

Δ
=Δ

κ
θ  

Substituting this equation into the equation for  determines*
eqzΔ eqθΔ . 

Figures 20 and 21 show  and *
eqzΔ eqθΔ  as functions of , where solid (green) lines 

represent stable equilibria and dashed (blue) lines represent unstable equilbria.  For  no 

*
gκ

2* −>gκ
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physical solutions exist.  For , the only physical solutions are the set of stable equilibria, 

as the unstable equilibria have negative 

2* −<gκ

eqθΔ . 
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Figure 21 – Equilibrium Δz* for pores in a homogeneous neck.  Real solutions emerge in a bifurcation at 

κg* = -2; green is stable/negative root and blue is unstable/positive root. 
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Figure 22 -- Equilibrium Δθ* for pores in a homogeneous neck.  Real solutions emerge in a bifurcation at 

κg* = -2; green is the stable root and blue is the unstable root. 

 

When the energetic landscapes are plotted for various values of , it can clearly be seen 

that the equilibrium pores are saddle points. The saddle point energy is plotted in Figure 3 as a 

function of , giving the size of the energy barrier to pinch-off. 

*
gκ

*
gκ
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Figure 23 – Energy of saddle point in homogeneous membrane 
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Figure 24 –Energetic landscape of homogeneous membrane for κg* = -1.9.  This figure demonstrates that 

the system has no physical equilibria for κg* > -2. 
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Figure 25 -- κg* = -2.  Onset of a stable pore at Δθ → ∞. 
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Figure 26 -- κg* = -2.5.  Note the axes have been changed to show more detail. 
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Figure 27 -- κg* = -3. 

5.4 PORE ENERGETICS WITH ADHESION 

From the preceding, it is clear that for neck pinch-off to be driven by change in Gaussian energy, 

 must be less than -2, with the activation energy for the pinch-off process given by Figure 3.  

However, if an adhesive surface, such as an engulfed particle, is in contact with the membrane, 

the surface promotes pore formation if the pore area is transferred to the surface.  Pinch-off for 

membranes with  > -2 is therefore possible.   Adhesion introduces another energetic term to 

the Helfrich equation 

*
gκ

*
gκ
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where  is the energy of adhesion per unit area.  Substituting the caternary equation for , adhe )(zr

)2/sinh(2 2 RzReE adhadhesion ΔΔ=Δ θ  

We define dimensionless adhesion energy as 
edge

adh Ree
σ

=* , and find  that 

)2/*sinh(** zeEadhesion ΔΔ=Δ θ  

Adding this term to the total energy, we have 

[ ] )2/*sinh()2/*sinh(2)2/*cosh()()2/*tanh()(* ** zezzzE g ΔΔ+Δ+ΔΔ+ΔΔ=Δ θθθκ   

5.5 EQUILIBRIUM PORE WITH ADHESION 

Via the equilibrium criterion, we find that adhesion introduces an additional term to Equation 25: 

)sinh()2/*(1)2/sinh()2/(sinh ****2
eqeqgeq zezz Δ−=+Δ+Δ κ  

or 

)2/(sinh1)2/sinh(*1)2/sinh()2/(sinh *2****2
eqeqeqgeq zzezz Δ+Δ−=+Δ+Δ κ  

Squaring both sides and rearranging, we have a quartic equation: 
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01)2/sinh(2)2/(sinh)*2()2/(sinh2)2/(sinh)*1( ***222**3**42 =+Δ+Δ−++Δ+Δ− eqgeqgeqgeq zzezze κκκ
  

The solutions to such equations are cumbersome, but they do exist in closed form.  In 

order to obtain eqθΔ , we apply the second equilibrium criterion.  Differentiating and solving for 

eqθΔ , 

)2/cosh(*)2/sinh()2/(sec
)2/cosh(2

***2*

*

eqeqeqg

eq
eq zwzzh

z
Δ+Δ+Δ

Δ−
=Δ
κ

θ  

We determine the critical parameter  for emergence of a pore as a function of 

Gaussian modulus , , in the following manner.  For each point , we determine the 

real and imaginary parts of the four roots of the associated quartic equation as a function of .  

For instance, the imaginary parts of the roots of the equation with  = -1.5 are shown in Figure 

27, and the real parts in Figure 28.   We determine  as the first  with a strictly real, 

physical solution: , ,  and 

*
crite

*
gκ )( **

gcrite κ *
gκ

*e

*
gκ

*
crite *e

0)Im( * =Δz 0* >Δz 0>Δθ .  This yields a plot of , shown in 

Figure 29. 

*
crite
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Figure 28 – Imaginary part of roots of quartic equation for κg* = -1.5 
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Figure 29 – Real part of roots of quartic equation for κg* = -1.5 
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Figure 30 – Critical adhesion energy for emergence of a stable pore as a function of κg*. 

 

As one would expect from the preceding subsection, for  < -2, the critical value of the 

adhesion strength goes to zero; the pore can form spontaneously, driven by the gain in Gaussian 

free energy.  For positive , a real solution emerges at  because the leading order term 

in the equation for energy is eliminated.  For cubic equations, the existence of at least one real 

root follows from the intermediate value theorem.  As before, we obtain saddle point solutions.  

We show examples in Figures 30 and 31.  Energy is plotted in Figure 32 as a function of  for 

various values of . 

*
gκ

*
gκ 1* −=e

*
gκ

*e
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Figure 31 -- κg* = 2, e* = -1.5.  This figure illustrates that a saddle point can exist for positive κg*. 
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Figure 32 -- κg* = -1.5, e* = -1. 
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Figure 33 – Saddle point energy for a membrane in contact with an adhesive particle.  For blue crosses,  

e* = -1.5; for green diamonds, e* = -1; for red squares, e* = -1.5; for yellow asterisks, e* = -2. 

5.6 PORE ENERGETICS WITH INTERFACE 

Finally, we examine the energetics of pore nucleation in the neck of a heterogeneous membrane.  

The interface between two lipid domains introduces a line tension: 

∫= dlE intint σ  

The length is simply the circumference of the circle of revolution at the narrowest point 

of the neck, where the interface is located.  Therefore, the change in energy given by the creation 

of a pore is 
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Nondimensionalizing, 
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We therefore have 

[ ] *
int

** )2/*sinh(2)2/*cosh()()2/*tanh()( θσθθκ Δ−Δ+ΔΔ+ΔΔ=Δ zzzE g  

for the free energy of a pore in a heterogeneous membrane. 

5.7 EQUILIBRIUM PORE WITH INTERFACE 

As before, we apply the equilibrium criterion, obtaining 

0)2/cosh()2/tanh( *
int

*** =−Δ+Δ σκ eqeqg zz  

)2/(sinh11)2/sinh()2/(sinh *2*
int

***2
eqeqgeq zzz Δ+=+Δ+Δ σκ  

Squaring both sides and rearranging, we again have a quartic equation: 

0)1()2/sinh(2)2/(sinh)2()2/(sinh2)2/(sinh 2*
int

***22*
int

2**3**4 =−+Δ+Δ−++Δ+Δ σκσκκ eqgeqgeqgeq zzzz
  

The solutions of this equation determine . To find *
eqzΔ eqθΔ , we apply the other equilibrium 

criterion.  Since the reduction in interfacial energy does not depend on , we find the same 

expression for 

*zΔ

eqθΔ  as in the homogeneous case: 
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As before, we calculate , shown in Figure 34.  Of course, there are no saddle 

points for , as the line energy is only a functon of 

*
int,critσ

0* >gκ θΔ  and therefore can only drive 

angular growth of the pore. 
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Figure 34 – Critical interfacial tension for formation of a stable pore as a function of κg*. 
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5.8 PREPARATION OF MEMBRANES WITH ADHESIVE PARTICLE 

As noted above, we need only simulate two flat membranes connected by a catenoid neck, as the 

particle size is large relative to the membrane thickness .  We initially assemble two flat 

membranes connected by a cylindrical neck, with one membrane in contact with a solid wall.  

The number of lipids in the system is . 

h

n

 

 

Figure 35 – Initial setup of membrane in contact with adhesive particle. 

 

A cross section of the cylindrical neck is shown below: 

 

Figure 36 – Cross section of cylindrical neck. 
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In order to realistically simulate membrane dynamics, we introduce a rigid channel in the 

upper membrane.  This channel allows solvent to pass from between the two membranes to the 

region above the upper membrane.  Without this channel, the number of solvent particles in the 

region between the membranes would be constrained, artificially stabilizing the neck.  In the 

membrane systems we are modeling, the region around the neck is open to the surrounding 

aqueous environment, allowing solvent to freely enter or leave the region. This channel is shown 

below: 

 

 

Figure 37 – Top-down view of membrane with rigid channel, allowing passage of solvent region to region 

above upper membrane. 

 

With initially set to 25, we allow the system to relax over several thousand timesteps. The 

system assumes a catenoid neck with equilibrium radius : 

PSa

)(nR
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Figure 38 – Relaxed catenoid neck in cross section. 

 

From this relaxed state, we vary and run the simulation for several thousand 

more timesteps.  We determine whether the membrane ruptures for each , as well as the 

number of time steps to rupture. 

25>PSa

PSa

5.9 PREPARATION OF MEMBRANE WITH INTERFACE 

To simulate fission driven by an interfacial energy, we construct the system and allow it to relax 

as above.  We then designate all lipid molecules with head groups below the catenoid neck 

midplane as type 2.  We set the repulsion parameter 25
2121
>= TTHH aa , maintaining 25=PSa .  

As before, we run the system for several thousand more time steps, determining the time to 

rupture. 
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Figure 39 – Neck with interface in cross section. 

5.10 SIMULATION RESULTS AND DISCUSSION 

In membranes that rupture, small embryonic pores nucleate and close in the neck region until one 

achieves critical radius.  Critically large pores quickly grow until they wrap entirely around the 

neck, separating the two upper and lower bilayers.  The separated bilayers then close their 

resultant holes, eliminating the associated edge energy.  This sequence is shown in Figures 40 

through 42. 
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Figure 40 – A pore nucleates in the neck 

 

Figure 41 – The pore wraps around the neck, severing the two bilayers 

 

Figure 42 – The two separate bilayers completely close 
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5.11 CONCLUSIONS 

A promising potential application of amphiphilic vesicles is in biomimetic phagocytosis, e.g. in 

remediation of nanoparticle environmental contaminants.  Previous work in our group examined 

encapsulation of small particles, i.e. particles with radius on the order of the membrane 

thickness.   That study delineated conditions for complete particle envelopment and vesiculation, 

but did not examine the mechanism of neck scission.  In this work, we considered uptake of 

large particles.  The scale of our study permitted investigation of pore nucleation and growth in 

the catenoid neck of the encapsulated particle.  Since such necks are also formed in 

heterogeneous systems with large budded domains, we also considered membranes with an 

interface in the neck between two amphiphilic domains.     

Via continuum elastic theory, we modeled pore energetics, determining the energy barrier 

to pinch-off and vesiculation. With dissipative particle dynamics, we studied the 

membrane/particle and heterogeneous systems numerically, observing neck behavior and 

recording the statistics of pinch-off events.  Via the measurement of macroscopic elastic 

parameters from Section 3, we aim to connect the statistics of pinch-off to the elastic theory.  

Ultimately, we anticipate providing criteria for the design of vesicles for uptake of colloidal 

particles.  Our preliminary results encourage us to continue our studies. 
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6.0  CONCLUSIONS 

Bilayer vesicles and membranes will play an important role in microfluidics and soft, biomimetic 

nanotechnology.  These supramolecular assemblies are composed of amphiphilic molcules, 

which self-assemble to shield their hydrophobic tail groups from solvent.  In multicomponent 

systems, phase separated domains can form mushroom-like “buds” that protrude in the 

surrounding space, reducing interfacial energy.  Via dissipative particle dynamics, a coarse-

grained molecular simulation method, we investigated morphological and topological changes in 

multicomponent budded vesicles driven by imposed shear.  We found that shear tends to flatten 

or detach the budded domain, depending on the position of the bud.  We explain vesicle behavior 

on the basis of the interplay of shear, bending energy, and interfacial energy, providing criteria 

for the design of synthetic vesicles for controlled release.  Budded synthetic vesicles could be 

tailored to controllably release their buds in targeted flow regions, e.g. in specific regions of the 

bloodstream.    

In certain energetic conditions membranes can completely envelop adhesive colloidal 

particles.  The neck of an encapsulated particle will assume a catenoid shape to eliminate 

bending energy.  A previous study in our group examined uptake of small particles, outlining 

conditions for envelopment and pinch-off.  However, the length scale of that study did not permit 

examination of the specific mechanism of neck scission.  In this study we considered uptake of 

large particles, studying pore nucleation and growth in the encapsulated particle neck.  Since 
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catenoid necks are also found in hetereogeneous systems, we also considered membranes with an 

interface in the neck between two lipid domains.   We modeled pore energetics with continuum 

elastic theory, pinpointing the conditions for vesiculation and measuring the energy barrier of the 

pinch-off process.  With dissipative particle dynamics, we simulated these systems numerically, 

measuring the statistics of pinch-off events.  Ultimately, we aim to connect the elastic theory 

with the results of our numerical simulations.  Preliminary simulation results, detailed in Section 

5.10, encourage continued study.   
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