
 
 

DENDRITIC CELLS, RAPAMYCIN and TRANSPLANT TOLERANCE 
 
 
 
 

by 
 
 

Timuçin Taner 
 
 

MD, Hacettepe University, Turkey, 2000 
 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 
 
 

The Immunology Department  
Of the School of Medicine 

in partial fulfillment 
 
 

of the requirements for the degree of 
 
 

Doctor of Philosophy 
 
 
 
 
 
 

University of Pittsburgh 
 
 

2005 



 
UNIVERSITY OF PITTSBURGH 

 
SCHOOL OF MEDICINE 

 
 
 
 

This dissertation was presented  
 
 

by 
 
 
 

Timuçin Taner 
 
 
 

It was defended on 
 
 

2.25.2005 
 
 

and approved by 
 
 

Pawel Kalinski, MD, PhD 
 
 

Adrian E Morelli, MD, PhD 
 
 

Paul D Robbins, PhD 
 
 

Walter J Storkus, PhD 
 
 

Adriana Zeevi, PhD 
 
 

Angus W Thomson, PhD, DSc 
Dissertation Director 

 

 ii



The following is copyright free except where noted. 
Its use for educational purposes is both welcome and encouraged. 

 iii



 
 

DENDRITIC CELLS, RAPAMYCIN and TRANSPLANT TOLERANCE 
 

Timuçin Taner, MD, PhD 
 

University of Pittsburgh, 2005 
 
 

Dendritic cells (DC) are uniquely well-equipped, professional antigen-presenting cells (APC), 

with the ability to initiate and regulate immune responses. In transplantation, DC of both donor 

and host origin contribute to graft rejection by inducing T cell activation and proliferation, via 

the direct and indirect pathways of allorecognition, respectively. Evidence has also accumulated, 

however, that DC, particularly in an immature state, can promote tolerance induction and 

prolong organ allograft survival. Rapamycin is a potent immunosuppressant pro-drug that is 

well-recognized for its inhibitory effects on T cell proliferation. Despite extensive research on 

rapamycin’s impact on lymphocytes, little is known to date regarding its effects on DC. The 

central hypothesis in these studies was that, rapamycin interferes with the DC maturation and 

enhances their tolerogenic potential. We first analyzed the influence of rapamycin, in 

pharmacologically-relevant concentrations, on the maturation, functional activation and T cell 

stimulatory potential of murine myeloid DC. Herein we show that rapamycin targets DC antigen 

(Ag)-uptake and IL-4-mediated maturation both in vitro (in bone marrow-derived DC), and in 

vivo (in freshly-isolated DC, following in vivo administration of rapamycin). Exposure to 

rapamycin impairs inflammatory cytokine production and effective T cell stimulation by DC. 

Furthermore, rapamycin-treated DC induce Ag-specific T cell anergy. Next, we determined that 

presentation of alloAgs to T cells by rapamycin-pretreated DC of host origin, under in vivo (pre-

transplant) steady-state conditions, could induce hyporesponsiveness to subsequent challenge 

and prolong organ (heart) graft survival. A single infusion of these cells, seven days prior to 
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transplant, led to a significant improvement in transplant outcome in an Ag-specific manner. 

Furthermore, repeated infusion resulted in marked prolongation of graft survival. These studies 

demonstrate, for the first time, that the immunosuppressive action of rapamycin can be ascribed, 

in part, to its inhibitory effects on DC and that rapamycin can potentiate the tolerogenic 

properties of DC. They also reveal the potential of rapamycin-treated DC as therapeutic vectors 

of transplant tolerance.     
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1. CHAPTER ONE1     

      INTRODUCTION 

 

1.1. Dendritic cells 

1.1.1. Origins, Subsets and Functions 
Dendritic cells (DC) are a heterogeneous group of professional antigen-presenting cells (APC) 

that are essential for the immune system to recognize and react to antigens (Ag). These latest 

members of the immune system to be identified2 are recognized for their diversity and 

remarkable developmental and functional dynamism at a single cell level. It is only fitting then, 

that this dynamism is also reflected on the -ever-evolving- information acquired about their 

origins, functions and different subsets.  Currently, DC are known to induce immune responses 

to i) a variety of infectious agents, ii) tumors, iii) self Ags, prompting autoimmune reactions, and 

iv) foreign tissue Ags, instigating transplant rejection. In addition to this now well-recognized 

immunostimulatory role, DC are increasingly more acknowledged for their bridging role 

between the innate and adaptive immune responses. DC also take part in induction of central 

(thymic) and peripheral tolerance. Hence, DC appear to be critically positioned in the immune 

system where the decision of ‘if’ and ‘how’ to respond to an Ag is made.   

DC are derived from CD34+ bone marrow (BM) hematopoietic stem cells. Both common 

myeloid progenitors (CMP) and common lymphoid progenitors (CLP) can give rise to DC (2). In 

vitro, either of these progenitor populations can be induced to differentiate into DC, using 

granulocyte/macrophage colony-stimulating factor (GM-CSF) and/or fms-like tyrosine kinase 3 

                                                 
1 This chapter contains modified excerpts from reviews co-written by the author in the journals Transplantation and 
Current Opinion in Molecular Therapeutics. 
2 With the exception of epidermal Langerhans cells that were first identified in 1868 (1). 
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ligand (Flt3L). Blood monocytes also give rise to DC when cultured with GM-CSF and 

interleukin (IL)-4, presenting a possible intermediary cell in DC development (3). In vivo, GM-

CSF or FLt3L administration results in expansion of DC. Step-by-step developmental pathways 

of different subsets of DC (discussed below), however, remains to be determined in vivo.  

In the mouse, DC in the secondary lymphoid organs are comprised of at least three different 

subsets: CD8α- classic myeloid (M)DC, CD8α+ ‘lymphoid-related’ (L)DC and CD45/B220+ 

plasmacytoid (p)DC. Whereas human counterparts of MDC and pDC exist, CD8α+ DC have not 

been demonstrated in humans. MDC are found primarily in the marginal zones of the spleen and 

the outer edges of the paracortex in the lymph nodes (4). In contrast CD8α+ DC are embedded 

deep in the T cell areas. Beside the differences in surface markers, these subsets appear to have 

different functions. These differences seem to be associated with how different antigenic stimuli 

are handled by the immune system.  Plasmacytoid DC are known to produce large amounts of 

type I interferons (IFN) (e.g. IFN-α) in response to viral infection (5), whereas bacterial cell wall 

components stimulate MDC and LDC to secrete IL-12 (6). CD8α+ cells are superior to other 

subsets in taking up dying cells, contributing to tolerance induction to self Ags (7-10). In 

addition to these well-defined lymphoid tissue populations, DC are found in virtually every 

organ, usually embedded in the interstitium, including the skin (epidermal Langerhans cells and 

dermal DC), mucosa of alimentary and respiratory tracts, reproductive system, liver, kidney and 

heart. It should be noted that, regardless of embryologic origin of the tissue they are found in, all 

DC (dendritic leukocytes) are BM-derived.    

The nature of the response initiated by DC is determined mainly by their differentiation stage, 

termed as maturation. Maturation is a complex process of end-stage DC differentiation, entailing 

several important changes in their phenotype and function (Figs. 1 & 2). When freshly-isolated 
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from in vivo sources, or in the early stages of in vitro differentiation, DC are immature. In the 

immature state, DC have the ability to capture Ags through a variety of mechanisms. They take 

up soluble Ags by means of micropinocytosis and receptor-mediated endocytosis, and particulate 

Ags by phagocytosis. Despite the similarities with macrophages in the Ag uptake mechanisms, 

immature DC differ from the former in several ways: DC are up to four times more efficient than 

macrophages in micropinocytosis (11), presenting a quantitative advantage; and Ags taken up by 

receptor-mediated endocytosis by DC are directed to the major histocompatibility complex 

(MHC) class II processing pathway, as opposed to lysosomes for destruction in the macrophages, 

representing a qualitative advantage (12). Ag uptake is almost always followed by initiation of 

DC maturation that increases the efficiency of DC to present the Ag. During maturation, DC 

upregulate surface expression of MHC and T cell costimulatory molecules, and increase 

production of inflammatory cytokines such as IL-12, all leading to an enhanced 

immunostimulatory capacity. Maturation also leads to a major shift in chemokine receptor 

expression by DC, such that the Ag-bearing DC traffic to the T cell areas of the lymph nodes 

where T cell priming occurs. This localization is associated with upregulation of CCR7 (13) and 

downregulation of CCR5 that mediates chemoattraction of the immature/semi-mature DC to the 

inflammatory sites, where Ag encounter takes place (14). Therefore DC are uniquely well-

equipped to recognize, take up and convey Ags -especially those that are pathogen-associated, to 

T cells to induce an immune response. With these properties, DC are now regarded as the 

sentinels of the immune system. Their role, however, is not limited to inflammatory situations. In 

the steady state, DC continuously scavenge for self and non-self Ags. Uptake of apoptotic cells 

in the quiescent state by DC triggers CCR7 upregulation without stimulating maturation (15). 

Presentation of Ags by the immature DC leads to induction of unresponsiveness of the 
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corresponding T cells to subsequent antigenic challenge (16), preventing autoimmune reactions 

that would occur otherwise. Therefore DC maturation is a key control mechanism whereby the 

appropriate immune response to an Ag is initiated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Morphology and ultrastructure of immature and mature murine BM-derived DC 
Immature DC possess short, blunt prolongations (A), a round nucleus with prominent nucleoli, 
multiple cytoplasmic vesicles, mitochondria, few lysosomes (C), and typical ‘veils’ (E). After 
maturation, CD86+ DC show typical dendritic morphology, with eccentric, indented nuclei (B, 
D) and a veiled surface with delicate filamentous projections with knob-like tips (F, arrow). (A-
B) May-Grunwald-Giemsa. (C-D) TEM x6000 (E-F) SEM x3500. Bar, 5µm. Copyright 
American Society of Hematology, used with permission. 
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Figure 2. Immature and mature BM-derived DC function. 
(A) FITC-Dextran and FITC-Albumin uptake by murine CD11c+ bead-sorted CD86- (immature) 
and CD86+ (mature) C57BL/10 mouse BM-derived DC. Only immature DC internalized FITC-
Dextran and FITC-Albumin at 37ºC, a phenomenon downregulated at 0 ºC. Results are 
representative of three independent experiments. (B) Allostimulatory activity of γ-irradiated, 
FACS-sorted immature (closed triangles) or mature DC (open triangles), assessed using C3H 
splenic T cells as responders. The MLR stimulatory activity of freshly isolated allogeneic (B10; 
open circles) or syngeneic (C3H; closed circles) bulk spleen cells is also shown. Copyright 
American Society of Hematology, used with permission. 

 
 
 
 

Several distinct types of stimuli lead to DC maturation. Thus, maturation can be induced by 

inflammatory cytokines (IL-1, IL-4, tumor necrosis factor [TNF]-α and IFNγ) or microbial 

constituents (lipopolysaccharide [LPS], unmethylated CpG oligonucleotides). The latter are 

recognized by DC through pattern recognition receptors (PRR). PRRs are evolutionarily-

conserved receptors of the innate immune system, that detect microbial pathogen-associated 

molecular patterns. Both human and murine DC express numerous PRRs, including Toll-like 

receptors (TLR), C-type lectins and mannose receptors (4). Among these, TLR are the best 

characterized, and at least 10 different TLR have been demonstrated in DC. DC can recognize 
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Gram(+) bacterial wall peptidoglycans  by TLR2, Gram(-) bacterial LPS by TLR4, flagellins by 

TLR5 and unmethylated CpG motifs of bacterial DNA by TLR9. Viruses are detected by TLR3 

(double-stranded RNA), TLR7 (single-stranded viral DNA) and TLR9. Expression of these 

receptors varies with DC subset and maturation status. Human monocyte-derived immature DC 

express TLR1, 2, 4 and 5, all of which are downregulated upon maturation (17). In the mouse, all 

splenic DC subsets express TLR1, 2, 4, 6, 8, 9. Interestingly, both human and murine pDC lack 

TLR3 expression, but can detect viruses effectively through TLR7 and 9, and secrete high 

concentrations of type I IFNs during viral infection. Taken together, DC, by virtue of maturation 

through TLR, appear to be a major link between innate and adaptive immune responses. Apart 

from the cytokine and microbial ligands, several other stimuli in the inflammatory 

microenvironment can drive DC to maturation. Necrotic cells -possible by release of heat shock 

proteins (18) or high mobility group box protein 1 (HMGB1) (19), and CD40 ligand (CD154) 

expressed on activated T cells, induce DC maturation. The latter accounts for an important 

feedback mechanism, as ligation of CD40 on T cells stimulates their proliferation (20).  

 

1.1.2. DC in Transplantation 

1.1.2.1. DC as instigators of transplant rejection 
To understand the critical role of DC in transplant rejection (or survival), it is important 

to point out the mechanisms by which host T cells recognize the graft as ‘foreign’. 

Allorecognition occurs through two distinct pathways; direct and indirect. Although programmed 

in the thymus to recognize only self MHC molecules, 1-10% of mature T cells in the periphery 

can respond to intact allogenic MHC molecules directly (21), presumably due to homology in 

either the MHC molecule or the peptide presented in the peptide-binding groove. This direct 

recognition leads to activation of multiple T cell clones, resulting in a high frequency T cell 
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response against the graft (22, 23). By contrast, a much smaller fraction of T cells recognize 

foreign MHC Ags when these are internalized, processed and presented on the recipient APC 

though self MHC. Hence, this ‘indirect’ pathway of allorecognition resembles the recognition of 

any given Ag in the periphery. Indeed, only <0.01% of all T cells react to a given autoAg (24) 

and <1% of reactive T cells recognize alloAgs presented indirectly (25). Although other cell 

types may contribute to activation of T cells through either pathway, donor-derived (direct) and 

host DC (indirect) are the main instigators of alloreactive T cell activation, because i) they 

possess ample amounts of MHC for recognition, ii) are equipped for efficient Ag-presentation, 

and iii) unlike other cells, are capable of providing necessary costimulation (signal 2). 

Accordingly, in a rat renal transplant model, restoration of donor DC causes rejection of 

otherwise permanently accepted donor passenger leukocyte-depleted grafts (26). Recent 

evidence suggests that these two pathways are not mutually exclusive, and interactions occur 

between them: first, in a mouse cardiac transplant model where donor DC can only provide 

MHC but not costimulation, ‘in trans’ costimulation by the host DC was shown to mediate acute 

rejection (27). Second, DC can acquire intact allogeneic MHC on their cell surface and present 

these to T cells in vitro or in vivo, -this has been termed the ‘semidirect pathway’ by Lechler’s 

group (28). Strikingly, DC are the main players in either case. It is also known that indirect 

alloreactivity regulates, negatively or positively, direct activation of T cells (29-31).  

The direct pathway was long thought to be the central mechanism instigating allograft 

rejection.  However, it is now widely accepted that the direct pathway mediates mainly early 

(within the first several months post-transplant) alloimmune responses, whereas the indirect 

pathway contributes to chronic rejection (32).  This concept is based on several studies that have 

demonstrated that direct alloreactivity diminishes with time from transplant, as donor DC are 
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depleted. These observations, performed on human organ recipients, have been made for a 

variety of organ grafts (renal, cardiac and lung transplants) and show that, the indirect pathway 

response increases over time with increased frequencies of T cells with indirect specificities (33-

37). In the mouse model, T cells reactive to single self-restricted allopeptides (i.e. the indirect 

pathway) mediate rejection of skin grafts with characteristic chronic, fibrotic changes (38). In 

human lung transplant recipients, there is a strong correlation with chronic allograft rejection and 

development of indirect alloreactivity against donor MHC class I or class II peptides (33, 34).  In 

addition, there is increasing evidence that development of humoral immunity (de novo donor-

specific anti-HLA antibodies) is strongly associated with chronic rejection (39). It should be 

noted, however, that the indirect pathway is not merely a ‘late’ response, as indirect recognition 

by itself can induce acute rejection of skin grafts in mice (40-42), depending presumably, on the 

extent of donor/recipient MHC mismatch.  

 

1.1.2.2. DC as a therapy for transplant rejection 
The concept of cell therapy in human organ transplantation dates back to the original 

studies demonstrating the beneficial effect of blood transfusion before clinical renal 

transplantation (43). With the advancement of knowledge in DC biology and their role in the 

transplant rejection, it is now thought that the tolerogenic effect of blood transfusion may be due 

mainly to DC (44). In parallel with the initial characterization of rejection as a result of 

predominantly the direct pathway, the tolerogenic potential of donor (as opposed to recipient) 

DC in transplantation was examined first. Our group first demonstrated that intravenous (i.v.) 

administration of in vitro-propagated, donor-derived, immature MDC, seven days prior to 

transplantation, resulted in significant prolongation of murine pancreatic islet or cardiac graft 

survival in the absence of immunosuppression (45, 46). Since these original observations, 
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immature donor DC infusion has been shown to prolong solid organ transplantation survival, in 

some cases indefinitely, in different rodent models (47-49). By contrast, studies using recipient 

DC as part of a therapeutic regimen to prevent transplant rejection have been limited, until 

recently.  Prolongation of cardiac or pancreatic islet graft survival in anti-lymphocyte serum 

(ALS)-pretreated rats after i.v. infusion of immunodominant donor class I MHC peptide-pulsed 

recipient DC (50, 51) remain the only such reports in the literature.      

 

 
1.1.3. DC and tolerance induction 

Although recognized initially solely for their potential in instigating immune responses, 

the role of DC in tolerance is now well-documented. Over the past two decades, DC have been 

demonstrated to induce both central and peripheral tolerance in animal models, as well as in 

humans. The first evidence regarding DC tolerogenicity was the establishment of their roles in 

generation of intrathymic self-tolerance (52, 53). The CD8α+ thymic DC mediate negative 

selection of developing T cells in the thymic medulla (54). This process constitutes an important 

central checkpoint against development of self-reactive T cells. Neonatal intrathymic injection of 

Mls (minor lymphocyte-stimulating locus)-incompatible spleen or thymic DC can induce 

tolerance via T cell clonal anergy (55), -defined conventionally as T cell receptor (TCR)-

mediated inactivation of certain potential responses, in the absence of suppressor cells or 

inhibitory cytokines (56).  Similar results have been reported in BM chimeric and transgenic (tg) 

mice (57, 58).  Intrathymic inoculation of alloAg results in tolerance and this appears to be 

dependent on thymic DC (59). Furthermore, BM-derived host MDC, pulsed with allopeptide, 

and injected intrathymically, can induce organ or pancreatic islet transplant tolerance in ALS-

conditioned hosts (60, 61). 
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 DC are also involved in the maintenance of peripheral tolerance (62-64). There is ample 

evidence that the presentation of peripherally-derived Ag by DC within secondary lymphoid 

tissue is not only effective for T cell priming, but also for the induction of T cell tolerance to 

self-Ags expressed exclusively by peripheral (extralymphoid) tissues (65, 66). Initially assigned 

to the CD8α+ LDC, this immunoregulatory function is now believed to be possessed also by 

MDC (66). Splenic CD8α+ LDC are found in T cell areas of murine lymph nodes and they 

express high levels of MHC class II/self peptide (62, 64). They kill CD4+ T cells via Fas 

(CD95)-mediated apoptosis (67) and exhibit tolerogenic activity in vivo (68). In the eye, an 

immune privileged organ, apoptotic cells enter the circulation and are captured by splenic CD8α+ 

CD11c+ LDC, which are responsible for tolerance induction when these apoptotic cells are 

coupled to a model Ag (trinitrophenyl) (69, 70). In contrast to MDC, mouse CD8α+ LDC lack 

the myeloid marker CD11b, and express high levels of the multilectin receptor CD205. In mice, 

CD8α- MDC induce T cell proliferation without concomitant cytokine (IL-2, IL-3, IFN-γ, GM-

CSF) production (63, 71).  Based on these properties of CD8α+ LDC, speculation arose that 

CD8α+ LDC and MDC were specialized for induction of tolerance and immunity, respectively 

(72). MDC, however, have also been shown to induce tolerance, in several animal models. For 

instance, i.v. inoculation of immunodominant peptide-pulsed MDC of host origin induces long 

term, Ag-specific survival of pancreatic islet transplants in a rat model (51).  Furthermore, 

influenza matrix peptide- or keyhole limpet hemocyanin-pulsed immature autologous MDC 

induce tolerance to these Ags in healthy human volunteers (73).  In mice, adoptive transfer of 

Ag-pulsed CD8α+ LDC or MDC appears to induce predominant Th1 or Th2 responses, 

respectively (74, 75). The converse has been reported for human (plasmacytoid) DC2 and 
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(monocytoid) DC1 in vitro (76). Thus, it appears that either subset can induce tolerance, 

depending on the experimental conditions, animal models, species and the Ag.  

 Apart from the above-mentioned differences in DC subsets, the capacity of DC to 

stimulate or suppress immune reactivity may depend on their level of maturity, the route of their 

in vivo administration, the temporal relationship between their administration and that of Ag, the 

number of cells injected, the amount and physical condition (soluble or particulate) of Ag 

presented by DC.  Thus, DC loaded with low doses of tumor Ag enhance tumor rejection, while 

those loaded with high doses, or injection of large numbers of tumor Ag-pulsed DC, inhibit their 

anti-tumor effect (77).  BM-derived MDC can prolong skin allograft survival when administrated 

via the portal vein, but not after i.v. immunization (78). By contrast, subcutaneously (s.c.)-

injected, trinitrobenzenesulphate (TNBS)-pulsed DC sensitize for contact hypersensitivity in 

syngeneic recipients, whereas i.v. injected DC do not (79). Murine immature MDC, infused 

systemically, can prolong cardiac or islet allograft survival, whereas mature MDC from the same 

donor strain, accelerate rejection (45, 46). Similarly, in the mouse model where LDC are 

responsible for cross-tolerization to apoptotic cell-bound Ag, immunity rather than tolerance 

develops if agonistic CD40 mAb is administered concomitantly, indicating that the fate of the 

immune response depends on the level of maturity of DC. In the same system, tolerance 

induction ensues when CD40/CD40L interaction is blocked with anti-CD40 mAb, keeping DC at 

an immature stage (70).  

Several mechanisms by which DC regulate immune reactivity have been proposed over 

the last few years: induction of T cell anergy and/or apoptosis, Th1/Th2 immune deviation and 

induction of regulatory T cell (Treg) subsets (80-85). These mechanisms, at large, concur with 

those that are widely accepted for the induction of tolerance (86). Evidence for each mechanism 
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is summarized below. It should be noted that the mechanisms postulated may not be mutually 

exclusive, and may collectively contribute to tolerance induction. 

 

1.1.3.1. Induction of T cell anergy or apoptosis 
DC maturity, as discussed above, is an important determinant of the immune response generated 

against the Ags presented by DC. Several groups have demonstrated that when maturation of DC 

is suppressed by blockade of costimulatory molecule expression (87) or by exposure to anti-

inflammatory cytokines (IL-10 and transforming growth factor [TGF]-β) (88-91), they induce 

Ag-specific T cell hyporesponsiveness. This is in accordance with the current model of tolerance 

induction that postulates that T cells, when activated in the absence of Signal 2, become anergic 

and therefore unresponsive to further stimuli. In the quiescent state, immature DC convey self 

Ag and induce T cell anergy/deletion in the periphery, resulting in tolerance to the particular self-

Ag (92). In a similar fashion, presentation of tumor-associated and self-Ag peptide by DC can 

induce T cell anergy in vivo (93). Interestingly, in mice, intrathymic injection of soluble Ag 

(ovalbumin; OVA), leading to interaction with thymic DC (presumed LDC), results in peripheral 

T cell anergy (94), possibly mediated by DC migrating from the thymus (95).  

  DC have also been shown to promote T cell apoptosis, through various death-associated 

molecules. Thus, Fas ligand (FasL; CD95L) (67, 96) or nitric oxide (NO) (97) expressing DC 

can promote activation-induced T cell death. FasL-Fas pathway appears to be important in the 

DC-induced apoptosis of alloreactive T cells, following blockade of the  B7/CD28 pathway by 

CTLA4Ig (96). DC expressing influenza virus hemagglutinin (HA) can induce tolerance in the 

periphery by inducing anergy and deletion of naïve mature T cells (98). 
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1.1.3.2. Selective activation of Th2 cells (immune deviation) 
Immune deviation (skewing of T cells toward the Th2 type) is another mechanism that has been 

shown to underlie tolerance induction. Several groups have shown that DC can induce immune 

deviation in autoimmune disease and transplant models. DC that are rendered incapable of IL-

12p70 synthesis have been shown to activate Th2 cells selectively (99). CTLA4Ig-pretreated 

splenic DC, when pulsed with myelin basic protein (MBP) and infused systemically, block 

development of experimental allergic encephalitis (EAE) in rats. (100). The protective 

mechanism in this model appears to be immune deviation, as immunohistology of the central 

nervous system demonstrates almost complete inhibition of IL-2 and IFNγ, with upregulation of 

IL-4 and IL-13 production (100). Thus, tolerogenic DC, obtained by blocking costimulatory 

molecule expression with soluble protein, appear to lose their capacity to induce Th1 

responses/immunity, and can selectively activate Th2 cells.  IL-10, a signature cytokine for Th2 

response, appears to provide positive feedback to DC, as it skews the Th1/Th2 balance to Th2 

cells by blocking IL-12p70 synthesis by DC (88).  Accordingly, DC of any origin/lineage can 

favor stimulation of either Th1 or Th2, mostly depending on the nature of the stimulus, 

experimental and local environmental conditions (101). For instance, in the presence of high 

dose Ag, both MDC and pDC induce Th1 development, whereas low Ag dose favors Th2 

development regardless of the DC subset (102). In contrast to several reports demonstrating the 

beneficial effect of immune deviation in different autoimmune disease models, the role of this 

mechanism in transplant tolerance remains controversial (103, 104). The graft prolongation 

observed in some models is presumably due mainly to the dampened Th1 response, since Th2 

cells are equally effective in the allograft rejection process (105, 106). 
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1.1.3.3. Induction of Treg Cells 
Since the recent repopularization of the concept of ‘extrinsic’ T cell suppression by Treg cells, 

the role of DC in the induction of these regulatory cells is increasingly being recognized. 

Strikingly, this role entails promotion of not only a single type, but a variety of Treg cells in 

different models (107, 108). In vitro, repeated stimulation of human naïve T cells with allogeneic 

immature DC results in IL-10 producing CD4+ T cell population with regulatory capacity (109). 

Moreover, in humans an Ag-specific, IL-10 secreting CD8+ T cell subset can be induced by 

immature, Ag-pulsed DC (73). In the mouse, a murine liver-derived B cell-like DC 

(CD205+B220+CD19-) can induce allogeneic T cells with a cytokine profile resembling Tr1 cells 

(110). Based on these and similar studies, a paradigm has evolved over the last several years 

whereby DC maturation is a control point for the generation of effector (by mature DC) vs. 

regulatory T cells (by immature DC) (111). This paradigm, however, has been challenged 

recently by reports that demonstrate induction of Treg cells by mature myeloid (112) and 

plasmacytoid-like (CD11clowCD45RBhigh) DC (113) in mouse. Taken together, these 

observations provide evidence that DC can promote development of Treg cells and potentially be 

used for therapy in transplantation, since Treg cells have been repeatedly isolated from tolerated 

allografts and draining lymphoid tissues in animal models (114).   

 

 
1.1.4. DC plasticity 
With the development of culture methods that allowed researchers to generate large numbers of 

DC in vitro, much information has accumulated in recent years about their functions under 

different environmental conditions. These observations have also revealed the remarkable 

plasticity of DC. This plasticity allows DC generated from a single source to be modified to 

either boost immunity -as in cancer and infectious diseases, or induce tolerance -in autoimmunity 
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and transplantation. Different approaches to ‘program’ DC for tolerance induction include 

genetic (transgene insertion), biologic (differential culture conditions, anti-inflammatory 

cytokine exposure) and pharmacologic manipulation (23, 115) (Fig. 3). 

 

 

 

Figure 3. Strategies for generating regulatory/tolerogenic DC. 
Regulatory DC can be designed by biological (differential culture conditions), pharmacological 
or genetic modification of in vitro generated DC. These approaches allow researchers to tailor 
the tolerogenic properties of DC, exploring their use for immunotherapy in immune-mediated 
conditions. Modified from (115). 
 
 

1.1.4.1. Biologic modification of DC 
Presently, DC, particularly of the myeloid subset, can be generated from either BM precursors 

(BMDC) or human peripheral blood monocytes (MoDC). Both approaches use combinations of 

GM-CSF and IL-4 as the baseline DC growth factors. During the past decade, several different 

culture methods have been introduced to produce DC capable of regulating T cell responses. 

When cultured in low-dose GM-CSF, in the absence of IL-4, BM precursors give rise to 

immature DC, which can prolong allograft survival, when infused into recipients prior to 
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transplant (46, 48). Both human MoDC and BMDC acquire regulatory functions when cultured 

with IL-10 (88-90) and/or TGF-β1 in addition to GM-CSF and IL-4 (116, 117). These DC induce 

T cell anergy through either the direct or the indirect pathway (118), and show protective effects 

when infused 2 days after BM transplantation in mice. Interestingly, the regulatory action of 

these DC is twofold: they inhibit mature DC-mediated T cell stimulation and induce generation 

of CD4+CD25+ Treg cells constitutively expressing CD152 (CTLA-4). Even if these two 

mechanisms may not be mutually exclusive, it is important to note that Treg cells can be 

generated by IL-10-conditioned regulatory DC in the presence of mature DC. Murine BMDC 

matured with short-term (4 h) TNF-α treatment become poor producers of the inflammatory 

cytokine IL-12, despite their mature phenotype. These DC induce IL-10-producing CD4+ T cells 

and prevent EAE in the mouse model (119). Together, these studies underscore the importance 

of stably immature DC that fail to produce Signal 2 (i.e. costimulation) or Signal 3 (i.e. 

inflammatory cytokine secretion), in promoting T cell tolerance.  

When prostaglandin E2 (PGE2) is used (as a part of maturation stimuli) in DC cultures, the 

cells become severely impaired in their ability to produce IL-12p70 (99, 120). These DC are 

refractory to further stimuli, and promote selective Th2 activation. Like PGE2, PGD2 inhibits IL-

12 secretion by both BMDC and MoDC, and promotes a type 2 response. (121, 122). Similarly, 

addition of adenosine (123) and Atrial Natriuretic Peptide (ANP) (124) into DC cultures 

promotes generation of DC with ability to selectively induce Th2 activation. MoDC stimulated 

with adenosine upregulate expression of MHC and costimulatory molecules, but become poor 

producers of IL-12p70, TNF-α and CXCL10 (ligand for CXCR3, which is preferentially 

expressed by Th1 cells) in response to LPS. Adenosine also enhances LPS-induced IL-10 and 

CCL17 (ligand for CCR4, which is expressed preferentially by Th2 cells) secretion by DC.  
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1.1.4.2. Genetically engineered DC 
Their unique role in either generating or regulating the immune responses, coupled with the 

potential to deliver the desired gene products locally makes DC highly attractive vectors for all 

immunotherapeutic approaches. Significant findings have been reported recently regarding 

genetically modification of DC to enhance their tolerogenic potential. One of these 

immunoregulatory transgenes, IL-4, has been introduced successfully into DC. IL-4 is a Th2-

driving cytokine that inhibits IL-2 and IFNγ production by Th1 cells and inflammatory cytokine 

production by macrophages. Hence, DC producing IL-4 provide potential in situations where 

selective Th1 silencing is required. DC transfected adenovirally to express IL-4 prevent the onset 

of diabetes in non-obese diabetic (NOD) mice and alter the Th1:Th2 cytokine ratio in favor of 

the latter in the pancreas (125). These findings support earlier reports showing inhibition of 

murine collagen-induced arthritis (CIA) by IL-4-transduced DC (126, 127). In contrast, research 

from our group has revealed that IL-4-transduced DC produce increased amounts of IL-12, 

become better stimulators of T cells and accelerate graft rejection when infused 7 days prior to 

transplantation. Combined, these reports illustrate the distinct responses to the same approach to 

DC manipulation in different animal models and underline the differences between syngeneic 

(i.e. autoimmunity) vs. allogeneic (i.e. transplantation) systems.  In a similar manner, DC 

transduced to express FasL have been reported to improve pre-established CIA after a single i.v. 

infusion (128), whereas they may induce rejection of skin grafts after s.c. injection (129), 

demonstrating the importance of their route of delivery. Indolamine 2,3-dioxygenase (IDO), an 

enzyme involved in catabolism of tryptophan, has lately become the focus of attention due to its 

role in controlling autoimmunity. When MoDC are made to overexpress IDO, they lose their T 

cell allostimulatory capacity, presumably due to increased T cell death exerted by tryptophan 

catabolites (130). At present, it is not clear if this is the main mechanism of immunoregulation by 
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IDO-expressing DC. Nevertheless, these in vitro effects merit exploration in transplant and 

autoimmunity models. In a different approach, attempting to interfere with their maturation by 

inhibiting NF-κB, MoDC transduced to overexpress IκBα were found to lose their stimulatory 

activity for Ag-specific T cells in vitro (131). Interestingly, the mechanism underlying this effect 

was not anergy, but increased T cell apoptosis. When IL-12 production by DC is targeted by 

small interfering (si)RNA technology, IL-10 production is significantly upregulated and these 

DC promote Th2 polarization, both in vitro and in vivo (132).  In the rhesus monkey, adenoviral 

transduction of TGF-β1 in MoDC inhibits their T cell allostimulatory capacity and makes them 

capable of abrogating Ag-specific immune responses induced by mature DC (133).   

1.1.4.3. Pharmacologic modification of DC 
The onset of increased popularity in altering DC function by means of pharmacologic 

intervention coincides with interest in influence of immunosuppressive drugs on DC. Although 

most of the immunosuppressive agents used in clinics owe their approval to earlier studies 

performed predominantly on lymphocytes, their potent effects on DC have now been well-

established. Once studied extensively, this approach has the potential of using the 

immunosuppressive agents in a more selective, specifically targeted way, by means of 

manipulated DC. In addition to the immunosuppressives, a wide variety of pharmacologic agents 

(e.g. Vitamin D, Aspirin, N-acetyl cysteine) are being investigated for their impact on DC. In 

these studies, typically DC are either generated in vitro and exposed to the agent of interest for 

different durations, much as the differential culture methods discussed above, or they are isolated 

freshly from animals after in vivo administration of the agent.  

Cyclosporine A (CsA) has been shown to inhibit the maturation and allostimulatory 

capacity of mouse MDC, by inhibiting NF-ĸB translocation (134). CsA also impairs IL-6 and IL-
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12 production by DC, and DC-triggered production of IFNγ, IL-2 and IL-4 by T cells in the bi-

directional DC-T cell system (135). By contrast, human MoDC appear resistant to the inhibitory 

effects of CsA on their maturation and allostimulatory capacity (136). Similarly, another 

calcineurin inhibitor, FK506, has been reported to have heterogenous effects on DC maturation, 

depending on the stimuli used to trigger DC maturation in each experimental system (137). 

Glucocorticoids inhibit LPS- or CD40L-induced DC maturation, and DC production of IL-12 

and TNF-α. DC exposed to dexamethasone fail to prime Th1 cells efficiently, and repeated 

stimulation of T cells with these DC generates IL-10-producing Treg cells (138). Sanglifehrin, a 

novel immunophilin-binding immunosuppressive agent, targets DC more selectively by 

suppressing IL-12 and TNF-α production without affecting differentiation, maturation and cell 

viability (139). In addition to these immunosuppressant agents, several other pharmacologic 

agents with anti-inflammatory properties have been shown to target DC function (137). Hence, 

Vitamin D (140), aspirin (141), N-acetyl cysteine (142), glatiramer acetate (143) and BAY (an 

NF-κB translocation blocker) (144) have all been shown to inhibit DC maturation, stimulatory 

function and/or their ability to produce IL-12. However, the advantage of using the above-

mentioned classic immunosuppressives to ‘program’ tolerogenic DC lies in the fact that this 

approach provides a relatively safe passage into pre-clinical large animal (non-human primate) 

and –potentially- clinical trials, as these agents currently constitute the mainstream therapy for 

graft rejection.   
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1.2. Rapamycin 

1.2.1. Clinical development 
Rapamycin, a macrolide antibiotic pro-drug derived from Streptomyces hygroscopicus, was first 

isolated from a soil sample taken from Easter Island (Rapa Nui) in 1973, during a discovery 

program for new antimicrobial agents (145). It was first recognized for its potent antifungal 

actions. Shortly after, however, its immunosuppressive properties were documented by Dr. Suren 

Sehgal and his collegues at the Ayerst Laboratories, where the drug was first characterized. In 

the first animal experiments, rapamycin was demonstrated to inhibit the development of adjuvant 

arthritis and EAE in rodent models (146). It was later shown to prevent onset of type-1 diabetes 

in NOD mice, prolong survival in MRL/l mice (model of systemic lupus erythematosus [SLE]) 

and inhibit incidence and severity of polyarthirits in CIA mouse (147). Rapamycin’s 

antirejection activity in organ transplantation was first described by Sir Roy Calne in rats 

receiving heart and in pigs receiving kidney grafts (148). After numerous single- and multi-

center clinical trials, rapamycin was approved by the FDA in 1999 to be used for kidney 

transplant rejection, as part of a combination therapy.  

 

1.2.2.  Mechanism of Action  
Similar to the earlier discovered immunosuppressant FK506, rapamycin forms a complex with 

the intracellular immunophilin FK506 binding protein (FKBP12). Unlike FK506, however, 

rapamycin does not inhibit calcineurin phosphatase activity. Instead, the rapamycin-FKBP12 

gain-in-function complex inhibits the function of the serine/threonine kinase mammalian target 

of rapamycin (mTOR), a central effector protein that is shared by several signal transduction 

pathways (Figure 4) (145). The TOR protein is highly conserved from yeast to mammals. It 

controls cap-dependent translation initiation by phosphorylating eukaryotic translation initiation 

factor 4E (eIF4E)-binding protein 1 (4E-BP1). In the unphosphorylated form, 4E-BP1 binds and 
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inhibits activation of eIF4E. Phosphorylation by TOR promotes dissociation of 4E-BP1 and 

eIF4E (149, 150). When released, eIF4E, along with other initiation factors, forms the eIF4F 

complex. This complex is required for translation initiation of 5’-capped mRNAs in eukaryotes. 

TOR also phosphorylates -either directly or indirectly- and activates the ribosomal p70 S6 kinase 

(S6K). S6K activation is associated with translation of 5’ terminal oligopyrimidine tract (TOP) 

mRNAs, which exclusively encode for proteins involved in translational machinery (all 

ribosomal proteins, elongation factors, and the poly-A binding protein). Activation of eIF4e and 

S6K is induced by serum, growth factors and insulin, and blocked by rapamycin. A recently-

identified adaptor protein named regulatory associated protein of TOR (raptor) binds to TOR and 

its two downstream effectors S6K and 4E-BP1. It appears that, at least in vitro, raptor is required 

for efficient phosphorylation of 4E-BP1 and S6K (150). Rapamycin disrupts the mTOR-raptor 

complex, thereby preventing downstream pathways (151). Complete inhibition of TOR by 

rapamycin causes only partial inhibition of TOP mRNA translation (152), but blocks eIF4F-

mediated cap-dependent translation initiation (153). Despite comparatively limited suppression 

of protein translation, due to their selective properties, inhibition of TOR leads to an arrest in cell 

growth, both in size (by mimicking nutrient deprivation) and in number (by inhibition of cell 

cycle). Thus, activated eIF4E and S6K cooperate to control cell size (154) and to promote cell 

cycle progression (155). Selective translation of mRNAs encoding growth factors such as the 

fibroblast growth factor (FGF) and the vascular endothelial growth factor (VEGF) may also be 

prompted by eIF4E, accounting for another mechanism whereby TOR inhibition leads to the 

arrest of cell growth (156).  
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Figure 4. TOR is a central regulator of cell growth and proliferation in response to 
environmental and nutritional conditions. 

TOR signaling is regulated by growth factors, amino acids, ATP and O2 levels; second 
messengers (for example, phosphatidic acid); and, possibly, mitochondrial stress. Signaling 
through TOR seems to regulate several downstream pathways that impinge on cell-cycle 
progression, translation initiation, transcriptional stress responses, protein stability and survival. 
Dashed lines indicate pathways that are best described in yeast. ATP, adenosine triphosphate; 
ASK1, apoptosis-signal-regulating kinase 1; S6K1, ribosomal p70 S6 kinase 1; eIF4E, 
eukaryotic translation initiation factor 4E; 4E-BP1, eIF4E-binding protein 1. Figure taken from 
(149). 
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1.2.3. Immunosuppressive and tolerogenic effects 
The immunosuppressive effects of rapamycin are associated mainly with inhibition of T cell 

activity (145). This inhibition occurs through several distinct mechanisms. During T cell 

activation, ligation of CD28, the best described costimulatory receptor on T cells, results in 

activation of the transcription factor Rel-1, a CD28 response element-binding factor. In the 

absence of CD28-mediated costimulation, Rel-1 is sequestered in the cytoplasm by the 

regulatory protein IκBα. Ligation of CD28 leads to phosphorylation and subsequent degradation 

of IκBα, allowing Rel-1 translocation to the nucleus. Downregulation of IκBα is blocked by 

rapamycin, therefore inhibiting CD28-mediated transcription in T cells (157). In addition, 

rapamycin inhibits IL-2-mediated T cell mitogenesis by inhibiting activation of S6K and cyclin-

dependent kinase (cdk) through elimination of the cdk inhibitor protein p27kip1 (158), hence 

blocking their entry into S phase (159). By and large, rapamycin prevents T cell proliferation in 

response to a variety of stimuli, including mitogens, cytokines and CD3-CD28 crosslinkage, in 

both humans and rodents (160-163). Stimulation of T cell clones in the presence of rapamycin 

leads to an anergic state (164). Furthermore, in the anergic T cell clones, reversal of anergy by 

IL-2 is blocked by rapamycin (165). Apart from these well-defined potent suppressive activities 

on T cells, rapamycin also inhibits B cell proliferation (166) and differentiation into 

immunoglobulin (Ig)-producing plasma cells (167); spontaneous and FGF-mediated proliferation 

of endothelial cells and fibroblasts (168), and basic (b)FGF and platelet-derived growth factor 

(PDGF)-driven proliferation of vascular smooth muscle cells (169, 170) (Table 1). The latter 

effects provide rapamycin an advantage over other commonly-used anti-rejection agents in 

controlling chronic allograft rejection. In fact, rapamycin stops the progression of graft vascular 

disease (GVD) in a non-human primate model (171) and slows cardiac transplant vasculopathy 

progression in humans (172).  
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Table 1. In vitro cellular effects of rapamycin (sirolimus). 

Table taken from (145), with permission from Elsevier. 
 
 
Strikingly, rapamycin has emerged as a “tolerance-sparing” immunosuppressant in recent years. 

Currently, two lines of evidence support this paradigm. First; unlike other commonly-used 

immunosuppressive agents, rapamycin does not interfere with tolerance induction in different 

animal models (173, 174). This unique ability is attributed, at least partly, to rapamycin’s 

capacity to allow activation-induced cell death (AICD) in T cells. In mice, AICD is a crucial 

component of tolerance induction (175). Therefore, administration of rapamycin facilitates 

peripheral tolerance in mice (174). Rapamycin blocks the proliferative effects of IL-2 on T cells, 

without interfering with its pro-apoptotic actions (176). Second, rapamycin acts synergistically 

with costimulation blockade in animal models, a unique action that is not shared by the 

conventional immunosuppressive agents like corticosteroids and FK506, which have a negative 

impact on the efficacy of costimulation blockade (177).  
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SCOPE OF THIS THESIS 

As organ transplantation has become a common practice around the world, transplant recipients 

on life-long immunosuppression, with compromised defenses against life-threatening infections 

and cancers, have increased in number. There is a clear and urgent need to better understand the 

mechanisms underlying allograft rejection, and to develop strategies that promote the induction 

of Ag-specific transplant tolerance. Until recently, the influence of commonly-used 

immunosuppressive agents on DC have been ignored, due mainly to their well-known, potent 

anti-lymphocyte activities. In this thesis, we have investigated systematically the inhibitory 

activities of rapamycin on events leading to T cell activation, focusing on the functional 

immunobiology of DC. In Chapter Two, we present our findings regarding the impact of 

rapamycin on mouse BM-derived DC (BMDC), using mainly in vitro approaches. In Chapter 

Three, we expand our observations to DC freshly-isolated from (both steady-state and growth 

factor-mobilized) rapamycin-treated mice. Here, along with the in vivo/ex vivo analyses, we 

employ adoptive transfer of DC to naïve animals in order to evaluate their tolerogenic function. 

Based on our findings in these two chapters, in Chapter Four, we examine the impact of 

exposure of BMDC to rapamycin on their subsequent capacity for alloAg presentation and 

tolerance induction via the indirect pathway. We have also tested the efficacy of pre-transplant 

infusion of these cells in a clinically-relevant transplant model in order to evaluate their potential 

as therapeutic vectors.     
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2. CHAPTER TWO3 

IMPACT OF RAPAMYCIN ON IN VITRO-GENERATED DC  

 

2.1. ABSTRACT 

MDC with potent allostimulatory capacity can be generated in large numbers from BM 

precursors with GM-CSF ± IL-4 (BMDC). Given the recently-reported ‘tolerance-sparing’ 

impact of the immunosuppressant rapamycin, and the paucity of information on its impact on 

DC, here, we have investigated the effects of rapamycin on the phenotype and functions of 

BMDC. Rapamycin, in clinically-relevant doses (1-10 ng/ml), inhibited maturation and 

allostimulatory capacity of GM-CSF + IL-4 expanded DC, without interfering with their 

differentiation in vitro. These effects were strictly IL-4 dependent, and not observed when DC 

were expanded with GM-CSF alone. Studies to explore the underlying mechanism revealed that 

rapamycin suppressed surface expression of both subunits of the IL-4 receptor complex on DC. 

In addition, rapamycin inhibited macropinocytosis and receptor-mediated endocytosis by DC, 

nonetheless, in an IL-4-independent manner. These effects were not due to increased apoptotic 

cell death and by contrast, rapamycin had a protective effect against LPS-induced apoptotic DC 

death. Strikingly all these effects were mediated through FKBP12 binding and mTOR inhibition, 

as molar excess of FK506 antagonized the suppressive effects of rapamycin on DC.  

 

 

 

 

                                                 
3Data presented in this chapter is excerpted from (178) and (179). 
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2.2. INTRODUCTION 

Rapamycin is now a commonly used immunosuppressive agent for prevention and treatment of 

transplant rejection. Owing to its broad inhibitory action on the cell cycle and protein synthesis, 

rapamycin or its derivatives are also in clinical trials for treatment of several tumors and 

atherosclerotic coronary artery disease (149). During the clinical development of rapamycin, 

much like other immunosuppressants, T cells had been considered the principal therapeutic 

targets (180). A much less studied aspect is the possible impact of rapamycin on DC, and their 

ability to present Ag to T cells prior to Ag-specific lymphocyte activation and proliferation. As 

discussed above, DC are ubiquitously distributed APC that play critical roles as initiators and 

modulators of immune responses (181). Among the most striking features underlying the 

efficiency of DC as APC is their unsurpassed capacity to take up Ags via constitutive 

macropinocytosis and mannose receptor-mediated endocytosis (11) and to subsequently process 

and present MHC-Ag complexes on their surface (181).  The capacity of DC to endocytose and 

to present Ag is under tight developmental control: immature DC are excellent at internalizing 

Ag, but express low surface MHC class II, whereas mature DC downregulate endocytotic 

activity and upregulate MHC class II and costimulatory molecules (CD40, CD80, CD86) that 

promote T-cell activation. The ability of DC to initiate an immune response depends on their 

transition from Ag-processing to Ag-presenting cells. This transition constitutes an important 

checkpoint in mounting an immune response, as immature DC not only fail to prime T cells 

effectively (87, 182), but also serve  to promote tolerance induction (46, 73, 109, 115). 

In this chapter, we have systematically investigated the influence of rapamycin on DC 

functions in vitro. For this, we used mouse BMDC generated in GM-CSF ± IL-4, that are known 

for their remarkable allostimulatory capacity (183). Our results reveal that rapamycin, while 
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allowing DC generation from BM precursors, interferes with DC function at various levels, 

impairing immune reactivity at the earliest stages. We show that DC, when exposed to 

rapamycin in vitro, exhibit an immature phenotype and fail to stimulate allogeneic T cells. 

Strikingly, rapamycin treatment inhibits Ag uptake by DC, dissociating this important function 

from DC maturation. The inhibitory effect of rapamycin on functional DC maturation appears 

due, at least partly, to interference with IL-4 signaling. These novel insights into the action of 

rapamycin are likely to contribute to the understanding of the immunosuppressive action of this 

agent in transplantation, and aid the development of this and other agents that impact on DC 

function for the treatment of autoimmune diseases. In addition, rapamycin appears to be a good 

candidate to enhance the tolerogenic potential of DC, that could potentially be used as 

therapeutic vectors to induce tolerance.  
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2.3. MATERIALS and METHODS 

2.3.1. Animals 
Eight-to 12-week-old C57BL/10 (B10; H2Kb) and C3H/HeJ (C3H; H2Kk) mice were purchased 

from The Jackson Laboratory (Bar Harbor, ME) and maintained in the specific pathogen-free 

Central Animal Facility of the University of Pittsburgh Medical Center. IL-4 receptor (R) α-

deficient mice (BALB/c background) (184) were obtained from the Institute for Clinical 

Microbiology and Immunology, University of Erlangen, Germany.   

 

2.3.2. Generation of BMDC 
BMDC were generated as described previously (141). Briefly, B10 BM cells were flushed from 

femurs and tibias using PBS. These cells then were cultured for 7 days in RPMI-1640 with 10% 

heat-inactivated fetal calf serum (FCS), L-glutamine, non-essential amino-acids, sodium 

pyruvate, penicillin-streptomycin, HEPES (N-2-hydroxyethylpiperazine-N'-2-ethane-sulfonic 

acid), 2- mercaptoethanol (all from Life Technologies, Gaithersburg, MD), 1000 U/ml 

recombinant (r) murine GM-CSF (Schering-Plough, Kenilworth, NJ) ± 1000 U/ml r murine IL-4 

(R&D Systems, Minneapolis, MN). 1-100 ng/ml rapamycin (Sigma, St. Louis, MO) ± 10-100 

ng/ml FK506 (tacrolimus; Prograf® for i.v. use, Fujisawa Healthcare, Deerfield, IL) was added at 

day 2. Every 2 days, 75% supernatant was replaced with fresh, cytokine-containing medium (± 

rapamycin or FK506).  On day 4, non-adherent cells were removed; on day 7, ≥50% of the non-

adherent cells expressed CD11c. 

 

2.3.3. Phenotypic analysis of DC 
DC surface Ag expression was analyzed by flow cytometry on day 7 of BM culture. Fluorescein 

isothiocyanate (FITC)-, phycoerythrin (PE)-, CyChrome-conjugated or biotinylated monoclonal 
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antibodies (mAbs) used to detect expression of CD11c (HL3), CD40 (HM40-3), CD54 (ICAM-

1; 3E2), CD80 (16-10A1), CD86 (GL1), IAb β chain (25-9-17), H2Kb (AF6-88.5), IAd (AMS-

32.1), CD124 (Institute for Microbiology and Immunology, University of Erlangen, Germany) or 

CD132 (TUGm2), as well as isotype-matched control mAbs and Streptavidin-CyChrome, were 

purchased from BD PharMingen (San Diego, CA), unless otherwise noted. Five × 105 cells were 

blocked with 10% v/v normal goat serum (10 min; 4 °C) then stained with mAb (30 min; 4 °C). 

Appropriate isotype-matched Igs were used as negative controls. The cells were analyzed using 

an EPICS Elite flow cytometer (Beckman Coulter, Hialeah, FL).   

 

2.3.4. Mixed Leukocyte Reaction (MLR) 
For evaluation of their T cell allostimulatory activity, graded numbers of γ-irradiated (20Gy), 

immunomagnetic bead-purified B10 BMDC were cocultured with nylon-wool column-enriched 

allogeneic (C3H) splenic T cells for 72h, in a volume of 200 µl in round-bottom plates. For the 

final 18h, cells were pulsed with 1 µCi [3H]/well. The amount of radioisotope incorporated was 

determined using a β-scintillation counter. 

 

2.3.5. RNase protection assay  
The procedure adopted for RNase protection assay was performed as described in detail (185). 

Briefly, RNA was isolated from 5 × 106 snap-frozen, immunomagnetic-bead sorted DC using a 

total RNA Isolation Kit (BD PharMingen). The RNase protection assay was performed using the 

RiboQuant Multi-Probe RPA System (BD PharMingen) with 32P-UTP-labeled antisense RNA 

probes specific for CD124, CD132 and the housekeeping genes L32 and glyceraldehyde-3-

phosphatedehydrogenase (GAPDH) according to the manufacturer’s instructions. Mouse RNA 

and RNA degradation controls were included. Yeast tRNA served as negative control.  
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2.3.6. Analysis of apoptosis  
DC were stimulated with LPS (1 µg/ml RPMI culture medium) or left without any stimuli and 

apoptosis was analyzed over time by staining of phosphatidylserine translocation with FITC-

Annexin-V in combination with the vital dye 7-AAD (BD PharMingen) according to the 

manufacturer’s instructions. Cells were co-stained for CD11c to allow specific analysis of DC by 

flow-cytometry. 

 

2.3.7. Endocytosis  
Quantitative analysis of endocytosis was performed as described (141) with minor modifications. 

Five × 105 cells were incubated with 5 µg/ml FITC-Albumin  (MW 66,000, Sigma) or 0.1 mg/ml 

FITC-Dextran (MW 42,000, Sigma) at either 37 °C or 4 °C for 60 min. Endocytosis was stopped 

by two washes in ice-cold 0.1% sodium azide/1% FCS/PBS. Cells were stained for CD11c 

(HL3), and in some experiments, for MHC class II expression (IAb β-chain, 25-9-17) as 

described (mAbs from BD PharMingen).  

 

2.3.8. Statistical analyses  
Statistical analyses were performed using Student’s ‘t’ test or the Wilcoxon rank sum test. All 

tests were performed two-tailed; P<0.05 was considered significant. Normal distribution of 

values, a prerequisite for using Student’s ‘t’ test, was established by employing the Kolmogorov-

Smirnov test.  
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2.4. RESULTS 

2.4.1.  Rapamycin does not inhibit DC differentiation in vitro 
To investigate the impact of rapamycin on in vitro DC generation, we first compared the cell 

yield in cultures grown in the presence or absence of rapamycin. When added on day 2 of the 7-

day DC cultures, rapamycin concentrations within the human whole blood trough therapeutic 

range (186) inhibited total cell expansion in a dose-dependent manner, but did not significantly 

block the differentiation of precursor cells into CD11c+ DC as evidenced by the similar yield of 

CD11c+ DC. CD11c is a very reliable marker for murine DC (187) and is not expressed in 

significant amounts by murine macrophages (188). The decrease in total cell number was 

antagonizable by a 20-fold molar excess of FK506. Achievement of similar DC yields was due to 

consistently increased percentages of CD11c+ DC with characteristic DC morphology in the 

rapamycin-treated cultures, as observed by flow-cytometry and under the microscope, 

respectively. 

 

Figure 5. Numbers of DC are 
comparable in normal vs. rapamycin 
cultures 
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2.4.2. Rapamycin inhibits maturation of BMDC in an IL-4 dependent manner  
As outlined in the introduction, DC maturation is an important check point by which the outcome 

of the immune reaction is determined. Thus, next we examined the impact of rapamycin on DC 

maturation. Rapamycin (1-10 ng/ml) decreased surface expression of CD40, CD80, CD86 and 

MHC class II molecules on GM-CSF+IL-4 expanded DC harvested on day 7 of culture (Fig. 

6A). Accordingly, the T cell allostimulatory activity of CD11c immunobead-purified DC was 

also markedly impaired by rapamycin in a dose-related manner, whereas the structurally-related 

macrolide immunosuppressant FK506 had no effect on DC phenotype or function (Fig. 6A, B). 

Rapamycin, when added late, at day 5 of culture, inhibited DC maturation similarly as compared 

to day 2, though to a slightly lesser extent (e.g. 57% of control DC vs. 30% of rapamycin-treated 

cells expressed MHC class II, 50% vs. 32% expressed CD86, and 47% vs. 16% expressed 

CD40); ruling out the possibilities that, i) rapamycin affects the generation of a certain DC 

subtype in culture, and ii) its inhibitory effect on DC maturation is limited to earlier stages of 

differentiation.  

Next we analyzed whether the inhibition of DC maturation by rapamycin was IL-4-

dependent, since IL-4 promotes DC maturation (87, 189) and performed similar experiments in 

the absence of IL-4. For this, DC were generated from BM precursors with GM-CSF alone, in 

the presence or absence of rapamycin. Generation of murine DC in GM-CSF is a well-

established culture method (183). The results (Fig. 6C) demonstrated that rapamycin’s 

suppressive effect on DC maturation was IL-4 dependent as no significant inhibition of 

upregulation of MHC class II or costimulatory molecules was observed in the absence of the 

cytokine. Additionally, the T cell allostimulatory activity was unaffected (Fig. 6D). DC 

maturation was also not impaired when BMDC from IL-4R α-deficient animals were expanded 

with GM-CSF + IL-4 in the presence of rapamycin (Fig. 6E).  These data indicate that rapamycin 
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inhibited IL-4 mediated DC maturation. Importantly, in all experiments, cells were gated on the 

DC-specific marker CD11c in order to analyze costimulatory molecule expression specifically 

on DC and to rule out confounding effects due to different total numbers of DC. 
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Figure 6. The inhibitory effect of rapamycin on DC maturation is IL-4-dependent and 
mediated via FKBP-12 binding.  

BMDC were generated with GM-CSF ± IL-4 and analyzed on day 7. (A-B)  In the presence of 
IL-4, rapamycin (Rapa) inhibited cell surface expression of CD40, CD80, CD86 and MHC class 
II molecules and the allostimulatory activity of purified CD11c+ DC, whereas FK506 exhibited 
no effect. Competition for rapamycin’s intracellular receptor FKBP12 by a molar excess of 
FK506 (A; second column from right) antagonized the inhibitory effects of rapamycin on DC 
maturation. (C-E) In the absence of IL-4 (C-D), or in IL-4 receptor-α deficient mice (E), 
rapamycin exerted no inhibitory effect on DC surface expression of CD40, CD80, CD86, or 
MHC class II molecules, or T cell allostimulatory activity.  (A, C, E) Cells were gated on 
CD11c. The incidence of CD11c+ cells expressing the Ag of interest is indicated. Results show 
representative data from ten (A), three (B, E), five (C), and two (D) similar experiments. 

 

 

2.4.3. Rapamycin downregulates post-transcriptional expression of the functional IL-4 
receptor complex on DC 

To elucidate the underlying mechanism of IL-4 mediated DC maturation inhibition in the 

presence of rapamycin, we investigated expression of both chains of the functional IL-4 receptor 

(IL-4R) complex on purified DC at both the transcriptional and posttranscriptional levels by 

RNase protection assay and flow cytometry, respectively. The high-affinity functional IL-4R is a 

heterodimer composed of the IL-4R α chain (IL-4Rα; CD124) and the common cytokine 

receptor γ chain (CD132). The results revealed that while rapamycin suppressed cell surface 

expression of both CD124 and CD132 subunits, their mRNA expression was not altered (Fig. 7). 

These data suggest that rapamycin targets IL-4-mediated myeloid DC maturation via post-

transcriptional inhibition of both chains of the functional IL-4R complex and is in agreement 

with rapamycin’s potent inhibitory effects on protein translation (145, 190) .  

 

 

36 



 

A B

 

 

Figure 7. Rapamycin suppresses DC high-affinity IL-4 receptor complex expression at the 
posttranscriptional level.  
BMDC were generated with GM-CSF + IL-4, purified by immunomagnetic-bead sorting and 
subjected to RNase protection assay or directly analyzed by flow cytometry. (A) Comparative 
RNase protection assay analysis indicates no effect of rapamycin (Rapa) on CD124 or CD132 
mRNA expression. L32 and GAPDH represent internal controls. (B,C) Downregulation of 
CD124 and CD132 cell surface expression by rapamycin. Cells were gated on CD11c. The 
incidence of CD11c+ cells expressing the Ag of interest is indicated. Results show representative 
data of three (A, B) and five (C) experiments.  
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2.4.4. Rapamycin inhibits endocytosis by DC in an IL-4 independent manner 
After observing the inhibitory activity of rapamycin on DC maturation, we analyzed the Ag 

uptake ability of rapamycin-treated DC. As discussed in Section 1.1.1., DC maturation entails a 

sequence of events, including marked downregulation of Ag uptake (11). Immature DC, in turn, 

are known for their remarkable endocytotic capacity. Analysis of GM-CSF+IL-4 expanded, BM-

derived DC harvested at day 7 of culture revealed a reduced capacity of cells exposed to 

rapamycin to exhibit macropinocytosis of FITC-Albumin and mannose-receptor mediated 

endocytosis of FITC-Dextran. This was evident both with respect to the incidence (Fig. 8A, B) 

and the mean fluorescence intensity (MFI) of CD11c+ cells (Fig. 8D).  

Since previous experiments indicated that the inhibitory effect of rapamycin on DC 

maturation was IL-4 dependent (Section 2.4.2.), we expanded DC with GM-CSF only. 

Additionally, in order to determine more precisely the endocytotic activity of homogenous DC at 

the same stage of maturation, we specifically analyzed immature MHC IIlow DC. These 

experiments confirmed the inhibitory effects of rapamycin on DC endocytosis and indicated that 

they were not IL-4 related (Fig. 9A-C). Again, low concentrations of 1 ng/ml rapamycin (1.1 

nmol) were sufficient to significantly and markedly suppress endocytotic activity. Using 1 ng/ml 

rapamycin, the relative MFI of immature MHC class IIlo CD11c+ DC compared to controls was 

<42% and <32% with respect to FITC-Albumin and FITC-Dextran respectively (Fig. 9C).  

Given that the mean trough whole blood level of rapamycin in renal transplant patients is 17.3 

ng/ml (5 mg rapamycin/day) (186) and that the free plasma fraction is 8%, these concentrations 

are clinically relevant. When rapamycin was added at day 6 of culture, it still inhibited DC 

endocytosis, but the overall effect was weaker (relative MFI 69% and 53% for FITC-Albumin 

and FITC-Dextran respectively at 5 ng/ml rapamycin).  
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2.4.5. Rapamycin’s inhibitory effects on DC maturation and endocytosis are not due to 
increased apoptosis 

Having established that rapamycin inhibited DC maturation and endocytosis, we analyzed 

whether these effects were due to increased apoptotic cell death. In contrast to a previous report 

regarding rapamycin-treated human monocyte- and CD34-derived DC (191), the incidence of 

apoptosis at day 7 of culture was consistently low (<10%), and was not affected significantly by 

rapamycin, even at a ‘supra’-pharmacological dose of 100 ng/ml, as determined independently 

by Annexin-V/7-AAD and TUNEL staining (Fig. 10A, B).  Similar results were obtained with 

GM-CSF+IL-4 expanded DC and at day 4 of culture (data not shown). 

To ascertain whether rapamycin increased the susceptibility of DC to apoptosis induction, 

we either stimulated DC propagated in GM-CSF+IL-4 with LPS only (in the absence of 

cytokines) or cultured DC with medium alone in the absence of any stimuli (LPS, cytokines), 

then analyzed apoptosis in CD11c+ DC, 24 and 72 hours later by Annexin-V/7-AAD staining. 

The results show that rapamycin inhibited DC death when cells were stimulated for an extended 

period with LPS only (Fig. 10C) but did not significantly affect DC death when cells were 

cultured for an extended period in the absence of LPS (Fig. 10D). Thus, it is unlikely that in 

these experiments rapamycin acts primarily on DC via apoptosis induction.  

 

41 



 

 

 

 

A

0

4

8

12

16

control Rapa 1
ng/ml

Rapa 10
ng/ml

Rapa 100
ng/ml

Annexin V pos/ 7-AAD neg

Annexin V pos/ 7-AAD pos

 p
os

iti
ve

 c
el

ls
  (

%
) 

24h
 

control

1 ng/ml 1 ng/ml 
+ FK-506 20 ng/m

2

71

16

11

1

81

6

12

3

71

16

11

5 ng/ml 

0

90 

2

8

5 ng/ml 
+FK-506 100 ng/m
3

71 

16 

11 

0

92 

2

6

7-
A

A
D

An

10 ng/ml
B

 

0

4

8

1

1

2

6

control Rapa 1
ng/ml

Rapa 10
ng/ml

Rapa 100
ng/ml

TUNEL staining

 p
os

iti
ve

 c
el

ls
  (

%
) 
C

 

l

l

72h

1 ng/ml 1 ng/ml 
+FK-506 20 ng/ml

6

27

35

32

6

54

27

13

5  ng/ml 

3

81

8

8

2

87

4

7

5 ng/ml 
+FK-506 100 ng/ml

6

35

34 

25 

6

32

33

29

nexin V

10 ng/ml

control 

42 



 

  

 

 

 

 

 

Fi
pr
 
BM
7 
rep
or 
de
inh
do
ab
rep
we
 
 

 

 

 

 

 

 

D

 p

os
iti

ve
 c

el
ls

  (
%

) 

0

20

40

60

80

24h control 24h Rapa
10 ng/ml 

72h Control 72h Rapa
10 ng/ml 

7-AAD neg./ Annexin-V pos.
7-AAD pos./ Annexin-V pos.

gure 10.  Rapamycin does not induce DC apoptosis under steady state conditions, but 
otects DC from LPS-induced apoptosis 

DC were expanded for 7 days with GM-CSF + IL-4. (A, B) Apoptosis of CD11c+ DC on day 
was determined by annexin-V/7-AAD staining (A) and the TUNEL assay (B). Numbers 
resent mean values (± SE). Incidences of apoptotic (annexin-V+/7-AAD- or TUNEL positive) 
late apoptotic/necrotic (annexin-V+/7-AAD+) cells were consistently lower than 10%. (C) Cell 
ath is induced when DC are stimulated on day 7 with LPS (1µg/ml). Rapamycin (Rapa) 
ibits LPS-induced DC apoptosis and death in a dose- and time-dependent manner, (D) but 

es not affect the incidence of cell death when DC are cultured for an extended time in the 
sence of any stimuli. (C) Incidence of cells in each quadrant is indicated. Results show 
resentative data from two (A), three (B), four (C) and three (D) experiments. Similar results 
re obtained with DC generated in GM-CSF only.    

43 



 

2.4.6. Suppressive effects of rapamycin on DC maturation, endocytosis and apoptosis 
are antagonized by competition for FKBP12 binding 

To reveal whether the suppression of DC maturation and apoptosis were specific rapamycin 

related effects, we performed additional control experiments in the presence of a molar excess of 

the immunophilin ligand FK506. This structurally similar macrolide competes for rapamycin's 

intracellular receptor FKBP12 and thus prevents specific interaction of the rapamycin-FKBP12 

complex with mTOR and subsequent inhibition of TOR signaling (145). In fact, binding of 

rapamycin to FKBP12 and TOR inhibition can be antagonized in vitro by FK506 (192). Addition 

of a ≥ 10-fold molar excess of FK506 antagonized the inhibitory action of rapamycin on DC 

maturation (Fig. 6A), apoptosis (Fig. 10C) and endocytosis (Fig. 8A, B, D; 9A-C), indicating 

that these were related to FKBP12-mediated TOR inhibition. Although a near-complete 

antagonism could be achieved for most of rapamycin’s effects on DC, in some cases the 

antagonistic effect of FK506 was incomplete, especially with respect to mannose receptor-

mediated endocytosis. In this particular case, similar results were obtained over a wide range of 

drug concentrations (1-20 ng/ml rapamycin; 10-250 ng/ml FK506) and at different 

FK506/rapamycin ratios (10-55 molar). This suggested that other FKBP might also be involved 

in endocytosis inhibition. One candidate is FKBP25, that has >100 times greater binding affinity 

for rapamycin than FK506 (193). 
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2.5. DISCUSSION 

Numerous studies have demonstrated rapamycin’s potent suppression of the effectors of immune 

responses, -T and B lymphocytes (145, 194), but its influence on DC, the most specialized 

inducers of immune responses, are not well understood. Here we provide comprehensive in vitro 

evidence that rapamycin potently targets functional DC activation. The principal findings of this 

study provide novel insight into the immunopharmacology of this agent and have implications 

with respect to the therapeutic application of rapamycin.  

First, rapamycin targets responsiveness to the key DC regulatory cytokine IL-4. This 

effect is associated with downregulation of the high-affinity IL-4R complex, which consists of 

the IL-4R α-chain and the common cytokine receptor γ-chain. The inhibitory effects on DC 

maturation are mediated through rapamycin’s intracellular receptor FKBP12. However, 

inhibition of IL-4-mediated DC activation is only one of several aspects by which rapamycin can 

interfere with DC function. Downregulation of the common cytokine receptor γ-chain, which is 

an indispensable component not only of the IL-4R, but also the functional IL-2R, IL-7R, IL-9R, 

IL-15R, and IL-21R complexes (195-198), may have important additional implications with 

respect to the immunosuppressive effects of rapamycin on DC and other cells. This finding 

matches with a recent series of reports regarding rapamycin’s inhibitory impact on various 

cytokine signaling pathways in DC.  Thus, rapamycin has recently been reported to inhibit GM-

CSF-induced human DC survival by disrupting this cytokine’s signaling pathways inside DC 

(199), whereas in murine DC, rapamycin suppresses autocrine IL-12 signaling through inhibition 

of Jak2/Stat4 pathway (200).   

Second, rapamycin inhibits DC endocytosis, providing evidence that it may interfere with 

immune responses at a very early stage. Strikingly, rapamycin disrupts the sequential pairing of 
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DC Ag uptake and immaturity, thereby rendering them unable to both acquire and present Ag. 

This is in contrast to other anti-inflammatory drugs, like corticosteroids (201) or salicylates 

(141), that have recently been shown to suppress DC maturation and as a consequence, enhance 

their endocytotic activity. Our findings regarding inhibition of Ag-uptake were confirmed 

recently in rapamycin-treated human monocyte-derived DC (202). The precise mechanism(s) by 

which rapamycin inhibits DC endocytosis remains to be determined. In this context, it is 

important to note that the Rho GTPases CDC42 and Rac that interfere with the endocytotic 

activity of DC (203, 204) complex with and activate the p70 S6 kinase (205) that belongs to the 

central signaling pathway disrupted by rapamycin (145). In addition, rapamycin’s inhibition of 

TOR signaling downregulates protein translation and has been demonstrated to suppress actin 

synthesis (206).  These novel findings, coupled with parallel results in the human system, may 

provide further incentive for the use of rapamycin in clinical settings other than transplantation, 

e.g. in autoimmune disease.   

Third, rapamycin does not affect DC differentiation and viability in vitro. In contrast to a 

recent report indicating that rapamycin induced apoptosis specifically in DC in the human 

system (191), we found the frequency of apoptotic or dead cells to be consistently less than 10% 

in BM-derived, in vitro-generated, rapamycin-treated DC. Moreover, when DC were stimulated 

with LPS, rapamycin inhibited cell death in a dose-dependent, FKBP12-mediated manner. Thus, 

it is unlikely that rapamycin acts primarily on DC via apoptosis induction. It should be noted that 

there have been several reports that rapamycin can exert anti-apoptotic effects on different cell 

populations (207-210). It is of particular importance that comparatively large numbers 

(comparable to normal DC cultures) of rapamycin-treated, immature DC can be generated in 
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vitro, since these cells could potentially provide a source as therapeutic vectors to be used in 

transplant tolerance induction regimens (see Chapter Four). 

In conclusion, we show in this chapter, for the first time, that rapamycin can enhance the 

tolerogenic potential of murine BMDC in vitro by interfering with their functional activation at 

different levels. These observations, while they need to be confirmed in vivo to further analyze 

the mechanistic actions of rapamycin as an immunosuppressant, provide insight into better and 

perhaps broader use of this agent in situations where immune dysregulation occurs.      
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3. CHAPTER THREE4 

IMPACT OF RAPAMYCIN ON DC FOLLOWING IN VIVO ADMINISTRATION 

 

3.1. ABSTRACT 

Immunosuppressive agents are commonly and increasingly used in clinical medicine, not least 

because of the growing numbers of organ transplant recipients. Due to the complex nature of the 

immune system, studies that dissect the impact of immunosuppressants on each component of 

the system may potentially aid in better use of these agents. Here, building on our findings 

presented in Chapter Two, we have analyzed the influence of rapamycin on DC development and 

function in vivo. For these studies, normal or Flt3L-treated mice were injected with rapamycin 

(0.5 mg/kg/day) or the drug vehicle for 7-10 days. The data show that rapamycin significantly 

decreased (40-50% reduction; P<0.002) DC numbers in BM and spleen, both under steady-state 

conditions and Flt3L-mediated DC expansion. Freshly-isolated DC from rapamycin-treated mice 

were impaired in their ability to upregulate surface costimulatory molecules (CD80, CD86) and 

secrete TNF-α and IL-12p70. In vivo exposure to rapamycin also inhibited DC Ag uptake. 

Furthermore, T cells of mice that had been injected with freshly-isolated, purified DC from 

rapamycin-treated donors, showed significantly reduced proliferation, and IL-2 and IFNγ 

production upon restimulation with donor alloAgs.  

 

 

 

 

                                                 
4 Data presented in this chapter is excerpted from (178) and (179).  

48 



 

3.2. INTRODUCTION  

Organ transplantation remains the only definitive treatment for various end-stage organ failures. 

Despite significant advances in this field, -especially in short-term graft outcomes-, long-term 

outcome continues to be limited due to several reasons. Transplant recipients almost invariably 

rely on life-long heavy immunosuppression and its devastating side effects. On the other side of 

the spectrum, lowering the level of immunosuppression almost always brings the risk of 

rejection. In addition, current immunosuppressive regimens have limited protective impact on 

generation of chronic rejection. In theory, it would be ideal to program the recipient’s immune 

system in advance to tolerate the new organ. Ag-specific tolerance can be achieved through 

several approaches in experimental animal models, however  this ‘holy grail’ of transplant 

immunology remains far from reach in clinical transplantation at the moment, except for a 

minority of cases -particularly liver recipients-, for reasons and mechanisms still to be 

determined. Unmistakably, any attempt to induce donor Ag-specific tolerance needs to be 

evaluated in animal models under cover of clinically available immunosuppression, as this would 

be the strict condition when these approaches are translated into clinical trials. It is therefore 

critical to determine the optimum conditions of immunosuppression, under which tolerance 

could be achieved. 

Current immunosuppressive regimens rely on inhibition of lymphocyte activation and 

proliferation, and not on DC:lymphocyte interaction where the crucial fate of the immune 

response appears to be determined. Since most of the mechanisms of tolerance induction require 

initial activation of lymphocytes, immunosuppressive drugs that disrupt pathways associated 

with T cell activation can interfere with the development of tolerance (175, 211-213). One 

exception is rapamycin, which allows AICD in alloreactive T cells, an effect that promotes 

tolerance induction (174, 175). This tolerance-sparing effect of rapamycin may partially be due 
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to its impact on DC functions. In the previous chapter, we have shown, for the first time, that 

exposure to clinically relevant doses of rapamycin inhibits maturation and allostimulatory 

potential of BMDC. In this chapter, we investigated the impact of rapamycin on DC in vivo. Our 

aims were three-fold: 1) to test if the observed impact of rapamycin on DC in vitro can be 

translated in vivo; 2) to examine if in vivo administration of rapamycin has any effect on DC 

differentiation; and 3) to assess the immunomodulatory effect of i.v.-infused rapamycin-treated 

DC on alloimmune responses. The latter investigation bridges this chapter with the next, where 

rapamycin-treated DC will be used as therapeutic vectors for transplant tolerance induction.  

Our results show that in vivo administration of rapamycin interferes with DC antigen 

uptake, maturation, allostimulatory function and bioactive IL-12p70 production. Furthermore, 

these DC, when adoptively transferred, induce T cell hyporesponsiveness. We also show that 

rapamycin blocks the in vivo effects of Flt3L, a potent endogenous DC growth factor that also 

regulates the proliferation of hematopoeitic precursor/stem cells and monocytic precursors (214, 

215). These novel observations provide new insights into actions of rapamycin and have 

significant implications for the development of new therapeutic strategies in disease processes in 

which DC may play a crucial immunopathologic role.   
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3.3. MATERIALS AND METHODS 

3.3.1. Animals 
Eight-to 12-week-old C57BL/10 (B10; H2Kb) and C3H/HeJ (C3H; H2Kk) mice were purchased 

from The Jackson Laboratory (Bar Harbor, ME) and maintained in the specific pathogen-free 

Central Animal Facility of the University of Pittsburgh Medical Center. 

 

3.3.2. In vivo DC expansion and rapamycin administration  
The in vivo effects of rapamycin were investigated in normal animals and in mice in which DC 

were expanded by administration of r human Flt3L (Chinese hamster ovary [CHO] cell-derived; 

10µg/day, intraperitoneally (i.p.); d1-10; Immunex, now Amgen, Seattle, WA). Rapamycin 

(Wyeth-Ayerst, Princeton, NJ) was dissolved in 51% PEG300, 5% polysorbate 80, 5% ethanol 

(vehicle, all reagents from Sigma). Mice were injected with rapamycin (0.5 mg/kg/d; i.p.) or 

vehicle for 7 or 10 days (d3-d10; d1-10). Due to the long elimination half-life, mice received a 

loading dose on day 1 (1.5 mg/kg), according to the recommendation of Mahalati and Kahan 

(216). 

 

3.3.3. DC isolation and purification  
Spleens were injected with 100 U/ml type IV collagenase (Sigma) in RPMI-1640, disrupted and 

chopped with fine scissors and the resulting cell suspension kept at 4°C. The remaining tissue 

fragments were digested in 400 U/ml collagenase/RPMI-1640 solution for 45 min at 37°C. 

Finally, the cells were pooled, passed through a strainer and washed in sterile, ice-cold, Ca2+-

free PBS. DC were further enriched by density gradient centrifugation using 16% w/v 

metrizamide (Sigma) in PBS at 1200 x g for 20 min at 4°C. BM cells were isolated from femurs 

and tibias and subjected to density gradient centrifugation. To obtain highly-purified DC 
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populations for analysis of allostimulatory activity, cytokine production or their adoptive 

transfer, the cells were labeled with magnetic bead-conjugated anti-CD11c mAb (Miltenyi 

Biotec, Auburn, CA) followed by positive selection through paramagnetic columns (LS columns, 

Miltenyi Biotec) according to the manufacturer’s instructions. DC purity of 90-95% was 

consistently achieved.  

 

3.3.4. Phenotypic analysis of DC 
DC surface antigen expression was analyzed by flow cytometry as described in the previous 

chapter. FITC-, PE, CyChrome-conjugated or biotinylated mAbs used to detect expression of 

CD11c (HL3), CD40 (HM40-3), CD54 (ICAM-1; 3E2), CD80 (16-10A1), CD86 (GL1), IAb β 

chain (25-9-17), H2Kb (AF6-88.5), as well as isotype-matched control Igs and Streptavidin-

CyChrome, were purchased from BD PharMingen (San Diego, CA). Five × 105 cells were 

blocked with 10% v/v normal goat serum (10 min; 4 °C) then stained with mAb (30 min; 4 °C). 

Appropriate isotype-matched Igs were used as negative controls. The cells were analyzed using 

an EPICS Elite flow cytometer (Beckman Coulter, Hialeah, FL).   

 

3.3.5. Cytokine quantitation and allostimulatory activity  
IL-12p70 and TNF-α production were measured in 24h supernatants of LPS-stimulated (2 

µg/ml), immunomagnetic bead-purified DC (106/ml) using ELISA kits (Quantikine, BD 

PharMingen). LPS stimulation was performed in the presence of low dose GM-CSF (Schering-

Plough, Kenilworth, NJ; 50 U/ml RPMI-1640 culture medium) and graded concentrations (0-

1000 U/ml) of IL-4 (R&D Systems, Minneapolis, MN), where indicated. IL-2, IL-4, IL-10, and 

IFNγ were quantified in 72h supernatants of MLR cultures using reagents and procedures 
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recommended by the manufacturer (BD PharMingen). Graded numbers of γ-irradiated (20 Gy), 

magnetic bead-sorted B10 DC were used as stimulators in 72h MLR with nylon-wool column 

purified allogeneic (C3H) splenic T cells as responders (2×105/ml) as described.  

 

3.3.6. Endocytosis  
Quantitative analysis of endocytosis was performed as described in Chapter Two. Five × 105 

cells were incubated with 500 µg/ml FITC-Albumin (Sigma) or 1 mg/ml FITC-Dextran (MW 

42,000, Sigma) at either 37 °C or 4 °C for 40 min. Endocytosis was stopped by two washes in 

ice-cold 0.1% sodium azide/1% FCS/PBS. Cells were stained for CD11c (HL3), and in some 

experiments, for MHC class II expression (IAb β-chain, 25-9-17) as described (mAbs from BD 

PharMingen).  

 

3.3.7. Statistical analyses  
Statistical analysis was performed using Student’s ‘t’ test or the Wilcoxon rank sum test. All 

tests were performed two-tailed; P<0.05 was considered significant.  
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3.4. RESULTS 

3.4.1. Rapamycin suppresses DC generation in vivo  
To address its in vivo effects, we first analyzed the impact of rapamycin on DC generation in 

normal mice. Mice were injected with 0.5 mg/kg/day rapamycin for 10 days, then DC in spleen 

were purified and quantitated. Rapamycin administration significantly reduced (>50%) the 

number of DC in comparison to animals injected with the drug vehicle (Fig. 11A). To explore 

the effects of rapamycin on DC expansion in vivo under dynamic conditions, we expanded DC 

injecting the endogenous DC growth factor Flt3L for 10 days in combination with either 

rapamycin or vehicle. Using this model, we confirmed that rapamycin impaired DC expansion, 

as evidenced by 40-50% reduction in BM and spleen DC numbers (Fig. 11B, C). In Flt3L-treated 

animals, the inhibitory effect of rapamycin on cell expansion was apparent from the appearance 

and significant reduction in weights of the spleens (Fig. 11D, E). To ascertain whether this 

difference was due to an ongoing induction of DC death in response to rapamycin, we analyzed 

the incidence of cell death ex vivo. The rate of apoptosis in DC freshly-isolated from rapamycin-

treated animals was consistently low (≤ 8%, n=3/group), similar to data we obtained previously 

from in vitro BMDC cultures (Chapter Two). 

 

 

 

 

 

 

54 



 

 

 

6

Fi
In
(B
DC
an
BM
rap
Fl
 

 

3.4

Fr

ph

co

LP

up
A

 

0

100

200

300

400

vehicle Rapa

0

0.5

1

1.5

2

vehicle Rapa

Normal Spleen 

D
en

dr
iti

c 
ce

lls
 (x

10
)

*

Sp
le

en
 w

ei
gh

t (
m

g)
 

*

D 

gure 11. DC generation in the 
 vivo administration of rapamyc
, C) dynamic conditions. (A-C)
/tissue on day 10 (with 

imals/treatment group. *P=0.00
), P=0.002 vs. vehicle (C, F

amycin or drug vehicle on sp
t3L-treated animals on day 10.  *

.2. In vivo administration
not MHC class II molecules

eshly-isolated DC from rapam

enotype. To test whether in vi

stimulatory molecules, we stim

S (50 ng/ml). DC from rapam

regulation of the costimulatory
B

0
10
20
30
40
50
60

0

2

4

6

8

vehicle Rapa

Flt3L Bone marrow

*

E

  Untreated      Flt3L      Fl

steady-state and under dynam
in (Rapa) suppresses DC genera
 Effect of rapamycin or drug ve
or without Flt3L). Results 
5 vs. vehicle (A, normal spleen)
lt3L spleen); two-tailed Stude
leen weight and appearance (
P=0.004 vs. vehicle; two-tailed

 of rapamycin impairs upreg
 on DC, and inhibits their T c
ycin and vehicle-injected an

vo administration of rapamyci

ulated DC from rapamycin- o

ycin-injected animals showed s

 molecules CD80, CD86, and 

55 
C

vehicle Rapa

Flt3L Spleen 

*

t3L+Rapa 

 

ic conditions. 
tion under (A) steady-state and 
hicle on the number of CD11c+ 

are representative of 8-10 
, P=0.003 vs. vehicle (B, Flt3L 
nt’s ‘t’ test. (D, E) Effect of 
8 animals/treatment group) in 
 Student’s ‘t’ test. 

ulation of costimulatory, but 
ell stimulation capacity 
imals displayed an immature 

n affected the upregulation of 

r vehicle-treated animals with 

ignificantly impaired (P<0.01) 

the adhesion molecule CD54, 



 

whereas the expression of MHC class II was unaffected (Fig. 12A, B). This pattern of reduced 

costimulatory molecule expression but unaffected MHC class II expression in response to LPS 

was detected reproducibly in spleen and BM DC (freshly-isolated) from both normal and Flt3L-

treated animals. To assess the in vivo effects of rapamycin on the capacity of DC to stimulate T 

cells on a per cell basis, animals were treated with 0.5 mg/kg/d rapamycin or vehicle (7-10 days) 

and DC purified by density gradient centrifugation and immunomagnetic-bead sorting to >90% 

purity, as determined by CD11c+ staining. DC generated in vivo in the presence of rapamycin 

were found to be less efficient stimulators of fully allogeneic naïve C3H T cells in 72h MLR 

(Fig. 12C). 
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Figure 12. Effect of in vivo rapamycin administration on the surface phenotype and 
allostimulatory capacity of DC. 
Mice were injected with either rapamycin (Rapa) or the drug vehicle for 10 days (with or without 
Flt3L). Splenic DC were purified and stimulated ex vivo with LPS. The MFI (A) and relative 
MFI (B) of CD11c+ cells expressing the antigen of interest in comparison with cells from drug 
vehicle-treated control animals is indicated. (A) Typical data from one representative experiment 
on day 10 of treatment. (B) Each point represents a single experiment with 3-6 animals (with or 
without Flt3L per treatment group after in vivo administration of rapamycin. *P<0.01 vs. vehicle 
(Wilcoxon test). (C) Allostimulatory activity of freshly-isolated, immunogenic bead-purified 
B10 DC (H2Kb, IAb) from rapamycin- or drug vehicle-treated (10 days) animals. Mean 
proliferative activity of fully allogeneic C3H responder T cells (H2Kk, IAk) in 72h MLR (± SD) 
is shown.  *P<0.05 vs. control DC. 
 

 

 

3.4.3. In vivo administration of rapamycin inhibits DC endocytosis 
To investigate the in vivo relevance of DC endocytosis inhibition observed during our studies 

presented in Chapter Two, we analyzed endocytotic activity in splenic DC of animals that were 

injected with rapamycin (0.5 mg/kg/day, 10 days i.p.) or vehicle, and in which DC were 

expanded with Flt3 ligand as described earlier. After 10 days, the animals were killed and FITC-

Albumin and FITC-Dextran uptake by freshly-isolated splenic CD11c+ DC was analyzed. The 

phenotype of these DC was immature in both treatment groups. As shown in Fig. 13, CD11c+ 

DC of rapamycin-treated animals displayed a significantly reduced macropinocytotic activity, 

both with respect to the number of positive cells and the relative MFI (P=0.001 and P=0.002,  

respectively). Similar findings were obtained with respect to FITC-Dextran uptake (41.5% 

positive cells vs. 24.8% in rapamycin injected animals, P<0.05; relative MFI 74.7%, P<0.05).  
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3.4.4. DC exposed to rapamycin in vivo induces allogeneic T cell hyporesponsiveness 
after adoptive transfer 

Next, we investigated the in vivo priming ability of DC isolated from rapamycin-injected animals 

by performing adoptive i.v. transfer of 5x105 purified DC into naïve, allogeneic C3H recipients 

(Fig. 14A). Control recipients were injected with DC purified from age- and sex-matched control 

mice that had been injected with drug vehicle. Two weeks later, the animals were killed, and 

recipient T cells were restimulated with donor splenocytes. T cells of mice that had been injected 

with DC purified from rapamycin-treated donors showed markedly reduced T cell proliferative 

responses compared to controls indicating that rapamycin impaired the in vivo priming efficacy 

of the DC (Fig. 14B, C), regardless to whether they are from normal or Flt3L-treated animals. 

We also examined the cytokine profile of challenged T cells primed by rapamycin-exposed DC. 

These T cells displayed significantly reduced IL-2 and IFNγ production (Fig. 15A, B), whereas 

IL-4 and IL-10 (Fig. 15C, D) secretion was not significantly affected in response to restimulation 

with donor alloAgs. 
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3.4.5. In vivo administration of rapamycin promotes IL-4 hyporesponsiveness of DC and 
dramatically impairs TNF-α secretion 

Based on our in vitro finding indicating that rapamycin only affected IL-4-dependent DC 

maturation, we hypothesized that in vivo-generated DC might be hyporesponsive to IL-4. To 

address this question, we took account of the finding that IL-4 is a major inducer of bioactive IL-

12p70 production in DC.  Splenic DC harvested from animals injected with drug vehicle were 

then stimulated with increasing IL-4 concentrations in the presence of LPS, exhibited a striking 

increase in IL-12p70 production, in agreement with Hochrein et al. (217). By contrast, when DC 

from rapamycin-injected animals were stimulated in the same manner, IL-4-induced production 

of IL-12p70 was abrogated, in an IL-4 dependent manner (Fig. 16A, B). We then analyzed 

production of TNF-α, a second major pro-inflammatory cytokine induced in DC by LPS 

stimulation. In contrast to the IL-12p70 data, TNF-α production by purified DC was dramatically 

impaired at all IL-4 concentrations. This finding (Fig. 16C) suggested IL-4-independent 

suppression of TNF-α production by rapamycin. 
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3.5. DISCUSSION 

Evidence accumulated in the past two decades has provided insight into how masterfully DC 

orchestrate the immune system, with their unique abilities to sense and react to various ‘danger’ 

signals. Albeit mostly beneficial -e.g. recognizing microorganisms-, this master role can, in some 

instances, lead also to immune dysregulation causing autoimmunity or transplant rejection. 

Therefore there is a clear need for identifying agents that can modulate DC functions in vivo. In 

this chapter, we have studied the impact of rapamycin on DC generation and functions in vivo. 

Our results show that in vivo administration of rapamycin inhibits upregulation of costimulatory 

molecule expression, as assessed by flow cytometry, and the in vivo priming capacity of DC in 

naïve, fully allogeneic recipients, as tested by adoptive transfer experiments. These findings were 

obtained in two different in vivo models, and suggest that rapamycin is effective at impairing DC 

activation. In addition, we found markedly reduced production of the pro-inflammatory cytokine 

IL-12p70 and TNF-α by DC isolated from animals injected with rapamycin. Our results also 

suggest that rapamycin can interfere with immune responses at a very early stage by inhibiting 

DC endocytosis, confirming the observations made in vitro. Thus, rapamycin targets a unique 

function of DC that influences the induction of immunity against microbial pathogens (e.g. 

Salmonella (218)) and allergens (219). This effect may also suppress indirect alloantigen 

processing following transplantation.  

Pharmacological suppression of DC proliferation and activation by rapamycin has 

important implications for impairment of immune responses at the level of the APC. These cells 

are of pivotal importance in pathological conditions where DC perpetuate chronic inflammatory 

immune responses, e.g. chronic graft vasculopathy (220), atherosclerosis (221) and autoimmune 

diseases (222). One disease that may be especially amenable to rapamycin’s inhibitory action on 
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DC is SLE. Intriguingly, Blanco et al. demonstrated that serum from SLE patients contained 

elevated levels of IFN-α that induced normal monocytes to differentiate into DC (223). They 

were able to correlate disease activity with the capacity of patients’ serum to induce DC 

differentiation, and concluded that unabated induction of DC by IFN-α may drive the 

immunopathologic process in SLE (223). Farkas et al (224) reported that pDC, which represent 

the natural IFN-α producing cells, accumulate in cutaneous SLE lesions. In this context it is of 

interest that rapamycin has been reported to arrest pathophysiological changes in murine SLE 

(225, 226). Thus, based on the pathogenetic importance of altered DC function in SLE, results 

from animal models, and our present findings, we contend that rapamycin merits evaluation for 

the treatment of SLE.   

Interestingly, rapamycin inhibits not only the in vivo generation of DC under steady-state 

conditions in normal animals, but also Flt3L-induced in vivo expansion of DC. Through 

reduction of the total DC pool, this action compounds the inhibitory effect of rapamycin 

independent of its effect at the single cell level. As discussed in Chapter Two, we carefully tested 

the hypothesis that the observed effects might be related to apoptosis. Similar to results obtained 

in vitro, the frequency of apoptotic or dead cells was consistently < 10% in in vivo-generated DC 

obtained from animals injected with rapamycin. These findings indicate unexpectedly the 

potential of rapamycin for the treatment of hematological malignancies where increased Flt3 

signaling is involved in disease pathogenesis. Our data demonstrate that rapamycin effectively 

inhibits Flt3L-induced DC expansion in vivo, as well as accompanying splenomegaly. With 

respect to this finding, it is of interest that activating Flt3 mutations are present in >25% of 

patients with acute myelogenous leukemia and the most common form, internal tandem 

duplications, confers a poor prognosis (227-231). Therefore, in addition to the recently-published 
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therapeutic effects of rapamycin on solid tumor progression and metastasis (232), this finding 

provides an incentive to examine the therapeutic effects of rapamycin in models of acute 

myelogenous leukemia.  

In summary, by using two different in vivo models, we have provided evidence that 

rapamycin potently targets functional DC activation and expansion in vivo, mirroring its effects 

in vitro. These findings provide new insight into the immunopharmacology of rapamycin, and 

also have significant implications for the development of new therapeutic strategies in disease 

processes in which DC may play a crucial role.  
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4. CHAPTER FOUR5 

RAPAMYCIN-TREATED DC AS THERAPEUTIC VECTORS TO INDUCE 

TRANSPLANT TOLERANCE 

 

4.1. ABSTRACT 

Tolerogenic properties of DC, particularly those in the immature state, and their therapeutic 

potential are increasingly being recognized. Among several distinct approaches to generate 

stably immature DC, pharmacologic manipulation stands out as a promising and clinically 

applicable option. In the previous chapters we have demonstrated that rapamycin can inhibit DC 

maturation and their effector functions. Here, we examined the impact of rapamycin exposure on 

subsequent alloAg presentation by MDC via the indirect pathway. Rapamycin-treated, allogeneic 

donor cell lysate-pulsed host DC (Rapa-DC) were inferior stimulators of syngeneic T cells, 

compared to donor cell lysate-pulsed, otherwise untreated DC. Rapamycin exposure did not 

block alloAg uptake by DC in extended cultures nor impair their in vivo homing to splenic T cell 

areas after adoptive transfer.  T cells primed by rapamycin-treated, alloAg-pulsed DC showed 

decreased capacity to produce IL-2 and IFNγ, and were hyporesponsive to subsequent challenge 

via both the direct and indirect pathways, in an Ag-specific manner. When infused one week 

before transplantation, Rapa-DC significantly prolonged alloAg-specific heart graft survival. 

This effect was reversed by systemic IL-2 administration in the early post-operative period, but 

enhanced by either repeated infusion of the cells, or a short post-transplant course of FK506. 

These therapeutic effects, achieved by targeting both major pathways of allorecognition, provide 

the basis for a clinically-applicable strategy to suppress graft rejection. 

                                                 
5 Parts of the data presented in this chapter is excerpted from (233). 
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4.2. INTRODUCTION 

As discussed elsewhere in this thesis, DC are BM-derived professional APC with the unique 

ability to both initiate and regulate immune responses (16, 80). The nature of the immune 

response elicited by DC depends on their state of maturation and functional differentiation, that 

is influenced by microenvironmental factors (microbial products, cytokines and cyclooxygenase 

metabolites) (181). In the immature state, DC are inherently tolerogenic (66) and can suppress T 

cell responses to self or foreign Ag (16).  By contrast, their maturation in response to 

inflammatory stimuli is associated with the acquisition of potent immunostimulatory function, 

linked to upregulated expression of cell surface MHC and costimulatory molecules. This 

dichotomous function of DC, combined with their remarkable plasticity, provides a basis for the 

design of DC-based therapeutic applications to either boost or regulate the immune reaction (23, 

137, 234). Owing mainly to the initial immunostimulatory role assigned DC, there has been 

considerable advance in the use of DC-based vaccines for cancer immunotherapy. Thus far, 

nearly 100 clinical trials using this approach proved the potential of DC-based, tailored cancer 

therapy, although optimization of this approach still remains to be achieved (234). In these 

studies, typically tumor Ag-pulsed, mature DC are used to induce Ag-specific antitumor T cell 

responses. 

By contrast, there has been little clinical testing of DC-based tolerogenic strategies. 

Immature DC can mature once administered in vivo, limiting their tolerogenic potential. It is 

conceivable that if immature, tolerogenic DC can be stabilized at that stage, then by mimicking 

cancer studies, Ags to which tolerance is desired can be derived through DC-based ‘negative 

vaccination’ strategies. We have shown in previous chapters that in vitro or in vivo exposure of 

DC to rapamycin inhibits their maturation, inflammatory cytokine (bioactive IL-12p70 and TNF-

α) secretion and T cell allostimulatory capacities. Thus, rapamycin appears to be a good 
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candidate for pharmacological suppression of DC functions and the generation of DC with 

tolerogenic/immunoregulatory activity. Indeed, as demonstrated in Chapter Three, rapamycin-

treated DC induce T cell hyporesponsiveness to donor Ag following their injection into 

allogeneic recipients. 

In this chapter, we have further explored the immunoregulatory capacity of rapamycin-

treated DC in the context of alloimmune reactivity. More specifically, we have examined the 

function of rapamycin-treated DC in indirect alloAg presentation and their role in modulation of 

organ transplant rejection. Our results show that these cells can be loaded effectively with Ag 

derived from donor cell lysates to induce alloAg-specific T cell hyporesponsiveness in vivo. 

Furthermore, infusion of these rapamycin-treated, alloAg-pulsed DC (Rapa-DC) prior to 

transplantation prolongs fully MHC-mismatched heart allograft survival, in some cases 

indefinitely, in otherwise untreated mice. The regulatory effect of these DC is more marked in 

animals given a short, postoperative course of subtherapeutic FK506. These novel findings 

provide insight into clinically applicable strategies for immunomodulation using 

pharmacologically-modified DC of host origin for therapy of graft rejection, with implications 

for use of regulatory DC in other immune-mediated disorders.  
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4.3. MATERIALS and METHODS 

4.3.1. Animals 
Eight- to 12-week-old C57BL/10 (B10; H2Kb), C3H/HeJ (C3H; H2Kk) and BALB/c (H2Kd) 

mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and maintained in the 

specific pathogen-free Central Animal Facility of the University of Pittsburgh Medical Center. 

Experiments were conducted under an institutional animal care and use committee-approved 

protocol and in accordance with National Institutes of Health-approved guidelines. 

 

4.3.2. Generation of BM-derived DC 
BMDC were propagated as described in Chapter Two. Briefly, BM cells were removed from 

femurs and tibias of C3H mice and depleted of erythrocytes by hypotonic lysis. Erythroid 

precursors, B lymphocytes and granulocytes were removed by complement depletion using a 

cocktail of mAbs (anti-TER-119 [TER-119], anti-B220 [RA3-6B2] and anti-Gr1 [RB6-8C5]; BD 

PharMingen, San Diego, CA) followed by incubation (45 min; 37°C) with low-toxicity rabbit 

complement (Cedarlane, Hornby, ON, Canada). The cells were cultured for 7 days in RPMI-1640 

with 10% v/v heat-inactivated FCS, L-glutamine, non-essential amino acids, sodium pyruvate, 

penicillin-streptomycin, HEPES, 2-mercaptoethanol (all from Life Technologies, Gaithersburg, 

MD), 1000 U/ml r murine GM-CSF (Schering-Plough, Kenilworth, NJ) and 1000 U/ml r murine 

IL-4 (R&D Systems, Minneapolis, MN). On day 2, 10 ng/ml rapamycin (Sigma, St Louis, MO) 

was added. Every 2 days, 75% of the culture supernatant was replaced with fresh cytokine-

containing medium (with or without rapamycin). On day 4, non-adherent cells were removed; on 

day 7, 50% or more of the non-adherent cells expressed CD11c.  
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4.3.3. Phenotypic analysis of DC 
DC surface Ag expression was analyzed by flow cytometry on day 8 of BM culture, 24h after 

alloAg pulsing. Stimulation was performed with LPS (0.1 to 1 µg/ml, Escherichia coli serotype 

026:B6; Sigma) in the presence of low-dose GM-CSF (50 U/ml) in RPMI-1640 for 16h at 37°C. 

FITC-, PE- or CyChrome-conjugated, or biotinylated mAbs used to detect expression of CD11c 

(HL3), CD80 (16-10A1), CD86 (GL1), IAk α chain (11-5.2), H2Kb (AF6-88.5) as well as 

isotype-matched control Igs and streptavidin-CyChrome, were purchased from BD PharMingen, 

unless otherwise noted. Cells (5x105) were blocked with 10% v/v normal goat serum (Vector, 

Burlingame, CA) (10 min; 4°C) then stained with mAb (30 min; 4°C). Appropriate isotype-

matched IgGs were used as negative controls. The cells were analyzed using an EPICS Elite flow 

cytometer (Beckman Coulter, Hialeah, FL).  

 

4.3.4. Pulsing of DC and autologous MLR 
CD11c immunomagnetic bead (Miltenyi Biotec, Auburn, CA)—purified DC were incubated 

with allogeneic splenocyte lysates at a DC: splenocyte equivalent ratio of 1:10 for 24 h at 37°C. 

Normal B10 splenocyte lysates were obtained by three cycles of rapid freeze/thaw exposure in 

PBS. To disrupt DC:lysate clumps, the cells were washed extensively (3x, 700x g, 5 min) with 

PBS containing 5 mM ethylenediamine tetra-acetic acid (EDTA) following pulsing. Graded 

numbers of γ-irradiated (20 Gy) DC were then used as stimulators in 72 h MLRs with nylon-wool 

column-enriched syngeneic (C3H) splenic T cells as responders (2x105/ml) in 96-well, round-

bottom plates. For the final 18 h, individual wells were pulse-labeled with 1 µCi [3H] thymidine. 

The amount of radioisotope incorporated was determined using a β scintillation counter. 

Recombinant murine IL-2 (R&D Systems; 100 U/ml) was added at the beginning of cocultures, 

where indicated. Results are expressed as mean c.p.m. ± 1 SD of triplicates. 
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4.3.5. Analysis of Ag uptake 
Uptake of cell lysates by C3H DC was analyzed by flow cytometry. Thus, B10 splenocytes 

(H2Kb+) were labeled with carboxyfluoroscein succinimidyl ester (CFSE) (Molecular Probes, 

Eugene, OR) according to the manufacturer’s protocol, prior to lysis. CFSE enters the cells 

freely and is cleaved by non specific esterases once inside. Cleaved CFSE binds to cellular 

proteins irreversibly for days to months. Following pulsing, the percentage of 

CD11c+CFSE+H2Kb- cells was quantified as Ag-loaded DC. 

 

4.3.6. Analysis of T cell apoptosis and intracellular cytokine expression 
T cells cocultured with DC at a 10:1 ratio were harvested on day 3 of MLR. Apoptosis was 

analyzed over time by staining externalized phosphatidylserine with FITC-annexin-V, in 

combination with the vital dye 7-amino-actinomycin D (7-AAD; BD PharMingen) according to 

the manufacturer's instructions. Cells were costained for CD3 (anti-CD3, 17A2; BD 

PharMingen) to allow specific analysis of DC by flow cytometry. For intracellular cytokine 

analysis, harvested T cells were restimulated with plate-bound anti-CD3 and soluble anti-CD28 

(37.51; BD PharMingen) in the presence of Brefeldin A (Sigma), -the latter to block cytokine 

secretion, for 5 h. After extracellular staining with fluorochrome-conjugated anti-CD3, CD4 or 

CD8 mAbs, cells were permeabilized with 1% saponin and stained for IL-2, IL-4, IL-5, IL-10 or 

IFNγ (BD PharMingen). Appropriate isotype-matched IgGs were used as negative controls. 

 

4.3.7. In vivo imaging of labeled DC and immunohistochemical staining of tissue sections 
DC were labeled green with PKH-67 (Sigma), according to the manufacturer’s protocol and 

infused i.v. (1.5x106 in 0.1 ml PBS) via the lateral tail vein. Spleen blocks were embedded in 

Tissue-Tek OCT (Miles Laboratories, Elkhart, IN), snap frozen in isopentane/liquid nitrogen, and 

stored at -80°C. Cryostat sections (8 µm) were fixed in 96% ethanol (10 min), blocked with 10% 
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v/v normal goat serum, and incubated overnight (4°C) with biotinylated-anti-CD3 mAb. As a 

second step, slides were incubated with 1:3000 Cy3-streptavidin (Jackson Immunoresearch Lab, 

West Grove, PA), for 30 min at room temperature. Cell nuclei were stained with DAPI 

(4,6 diamidino-2-phenylindole; Molecular Probes, Eugene, OR). Slides were fixed in 2% 

paraformaldehyde, mounted in glycerol/PBS, and examined with a Zeiss Axiovert 

135 microscope equipped with appropriate filters and a cooled CCD camera (Photometrics 

CH250, Tucson, AZ). Signals from different fluorochromes were acquired independently, and 

montages edited using the Adobe Photoshop software program (Adobe Systems, Mountain View, 

CA). 

 

4.3.8. Vascularized heart transplantation 
Heterotopic (intra-abdominal) heart transplantation was performed from B10 to C3H mice, as 

described (46). Briefly, the heart was transplanted into the abdomen with end-to-side 

anastomosis of aorta to aorta, and pulmonary artery to vena cava, under methoxyflurane 

inhalation anesthesia (Medical Development, Springvale, Australia). Graft survival was assessed 

by daily transabdominal palpation. Rejection was defined as total cessation of cardiac contraction 

and was confirmed by histological examination. Animals received either no treatment or were 

injected i.v. with 1.5x106 immunobead-sorted alloAg-pulsed DC (day –7, or days –10, -3 and 0). 

A subtherapeutic dose of 1 mg/kg/day FK506 (Prograf® for i.v. use; Fujisawa Healthcare, 

Deerfield, IL) was administered i.m. for 10 consecutive days (days 0 to 9) in two groups.  For the 

IL-2 treatment protocol, recipient mice were treated with 60,000 U rhIL-2 (Proleukin®, Chiron 

Therapeutics, Emeryville, CA) i.p every 8 h for 3 days, starting 8 h posttransplant (235). Graft 

survival was assessed by daily transabdominal palpation. Rejection was defined by the complete 

cessation of cardiac contraction, and was confirmed histologically. 

73 



 

4.3.9. Immunofluorescence staining of tissue sections  
Blocks from heart grafts were embedded in Tissue-Tek OCT (Miles Laboratories, Elkhart, IN), 

snap frozen in isopentane/liquid nitrogen, and stored at -80°C. Cryostat sections (8 µm) were 

fixed in 96% ethanol (10 min), blocked with 10% normal goat serum, and incubated overnight 

(4°C) with each of the following biotin-mAbs: anti-CD4, anti-CD8α, anti-Gr1 (all from BD 

PharMingen) or anti-F4/80 (Bachem). As a second step, slides were incubated with 1:3000 Cy3-

streptavidin (Jackson Immunoresearch Lab, West Grove, PA), for 30 min at room temperature. 

Cell nuclei were stained with DAPI (4,6 diamidino-2-phenylindole; Molecular Probes, Eugene, 

OR). Slides were fixed in 2% paraformaldehyde, mounted in glycerol/PBS, and examined with a 

Zeiss Axiovert 135 microscope equipped with appropriate filters and a cooled CCD camera 

(Photometrics CH250, Tucson, AZ). Signals from different fluorochromes were acquired 

independently, and montages edited using the Adobe Photoshop software program (Adobe 

Systems, Mountain View, CA). 

 

4.3.10. RNase protection assay  
The procedure was performed as described previously. Briefly, RNA was isolated from 5x106 

snap-frozen, magnetic-bead sorted DC using a total RNA Isolation Kit (BD PharMingen). RNase 

protection assay was performed using the RiboQuant Multi-Probe RPA System (BD 

PharMingen) with 32P-UTP-labeled antisense RNA probes specific for IL-2, IL-4, IL-10, IL-15, 

IFNγ and the housekeeping genes L32 and GAPDH according to the manufacturer’s instructions. 

Mouse RNA and RNA degradation controls were included. Yeast tRNA served as negative 

control. Quantification of bands was performed by densitometry (Personal densitometers 1; 

Molecular Dynamics, Sunnyvale, CA). The signals from specific mRNAs were normalized to 
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signals from housekeeping genes (L32 and GADPH) run on each lane to adjust for loading 

differences. 

 

4.3.11. Statistical analyses 
Statistical analysis was performed using the two-tailed Student's ‘t’ and Mann-Whitney tests, and 

a P value of <0.05 was considered significant. Graft survival data were compared by Kaplan-

Meier analysis and the log-rank test. Results are expressed as means ± 1SD. 
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4.4. RESULTS 

4.4.1. Rapamycin inhibits DC maturation and their subsequent capacity to stimulate T 
cells through the indirect pathway 

DC generated from C3H BM in the presence or absence of a clinically relevant concentration of 

rapamycin (10 ng/ml) were incubated overnight on day 7 with freeze-thaw lysates of B10 

splenocytes. Preliminary experiments revealed that a DC:splenocyte equivalent ratio of 1:10 was 

optimal for pulsing DC, and gave the most consistent results (data not shown). After pulsing, DC 

were analyzed for both spontaneous and LPS-induced maturation by flow cytometry. AlloAg-

pulsed, gated CD11c+ Rapa-DC showed decreased surface expression of CD80, CD86 and MHC 

class II (IAk) molecules compared with alloAg-pulsed untreated control DC (Fig. 1A). These DC 

were then washed extensively, purified by CD11c magnetic beading, and then used as 

stimulators of naïve C3H splenic T cells. Rapamycin-treated, alloAg-pulsed DC were poorer 

stimulators of T cells compared to alloAg-pulsed control DC (Fig.1B). Lysates alone did not 

exhibit a significant stimulatory capacity for allogeneic naïve T cells, demonstrating that the 

direct pathway, a possible contributing factor that may arise from contamination of lysates with 

intact splenocytes or membrane fragments, was not a significant contributor to the induction of T 

cell proliferative responses.  
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Figure 17. Inhibition of DC maturation and T cell allostimulatory function via the indirect 
pathway. 
(A) C3H BM-derived DC were generated as described in the ‘Materials and Methods’, in the 
presence or absence of 10 ng/ml rapamycin. Rapamycin inhibited cell surface expression of 
CD80, CD86 and MHC-II on gated CD11c+ cells on day 8, following alloAg pulsing. 
Upregulation of these molecules in response to LPS (1µg/ml) was also suppressed by exposure 
of DC to rapamycin. The mean fluorescence intensity of CD11c+ cells expressing the marker of 
interest is indicated. (B) B10 alloAg-pulsed, Rapa-DC were inferior stimulators of naïve 
syngeneic C3H T cells, compared to alloAg-pulsed control (Ctr) DC. The ratio of DC:T cells is 
indicated in parentheses. Data are representative of results obtained from three (A) and four (B) 
similar experiments. 
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4.4.2. Rapamycin treatment does not interfere with lysate uptake by DC 
To ensure that the suppressed T cell stimulatory activity observed was due to active regulation 

and not simply to decreased uptake of lysates by Rapa-DC, we pre-labeled B10 splenocytes with 

CFSE, a fluorescent reagent that binds stably to intracellular proteins, prior to cell lysis. Using 

the standard overnight pulsing protocol, we examined the uptake of lysates by CD11c+ cells 

using flow cytometry. To eliminate false-positive co-staining due to DC-lysate cell surface 

adherence, we used a fluorochrome-conjugated mAb against MHC class I expressed by the 

allogeneic lysates (H2Kb) and compared CD11c+CFSE+H2Kb- populations of control and Rapa-

DC (H2Kb is expressed by the B10-derived lysates, but is absent on the surface of C3H DC). As 

seen in Fig. 18, Rapamycin treatment did not significantly block lysate uptake by DC when the 

DC were incubated with allogeneic cell lysates for an extended time period.  

          

Figure 18.  Exposure to rapamycin does 
not block alloAg uptake by DC. 
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4.4.3. Rapamycin treatment does not affect homing of DC to the spleen after their 
adoptive transfer, but confers capacity to suppress alloAg-specific responses 

Next, to explore their potential for delivery of tolerogenic signals in vivo, we examined the in 

vivo migratory capacity of Rapa-DC. Following i.v. infusion (1.5-2x106) into naïve C3H 

recipients, C3H Rapa-DC labeled (green) with the lipophilic marker PKH-67 localized to T cell 

areas in spleen (Fig. 19B) as efficiently as control DC (Fig. 19A), as our laboratory has shown 

previously for immature DC (236). To investigate the in vivo T cell priming ability of Rapa-DC, 

we isolated T cells from the spleens of recipient mice, 7 days after the adoptive transfer of these 

cells. The T cells were challenged ex vivo by either DC of B10 origin (Fig. 20A) or B10 lysate-

pulsed, C3H-derived DC (Fig. 20B). T cells that had been primed in vivo by alloAg-pulsed Rapa-

DC showed markedly decreased proliferative responses to secondary stimulation, via either the 

direct- or indirect pathways of allorecognition. This hyporesponsiveness was alloAg-specific, as 

T cells responded strongly to third party (BALB/c; H2Kd) DC (Fig. 20A). Addition of 100 U/ml 

of exogenous rIL-2 at the start of cultures abrogated this hyporesponsiveness and restored the T 

cell proliferative responses to levels similar to those of T cells primed by alloAg-pulsed, control 

DC.  
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Figure 20. AlloAg-pulsed, rapamycin-treated DC induce Ag-specific T cell 
hyporesponsiveness in vivo. 
AlloAg-pulsed (B10), immunobead-purified control (Ctr)- or Rapa-DC were adoptively 
transferred (i.v) to syngeneic C3H mice (1.5 x 106/animal). Seven days later, recipient animals 
were killed and splenic T cells challenged ex vivo with graded numbers of γ-irradiated allogeneic 
(B10) DC or third party (BALB/c) DC (A), or alloAg-pulsed syngeneic (C3H) DC (B). Mean 
proliferation of responder T cells in 72 hour MLRs is shown (± 1 SD). At the beginning of 
cocultures, 100 U/ml rmIL-2 was added to the groups indicated. T cells from non-immunized 
animals (naïve) were used as controls. Results are from a single experiment representative of 
four (each) experiments performed. 
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4.4.4.  Rapamycin-treated, alloAgs-pulsed DC do not increase the incidence of T cell 
death but markedly inhibit T cell IL-2 and IFNγ production 

To investigate other possible mechanisms underlying the regulatory influence of Rapa-DC on 

alloreactive T cell responses, we tested their potential to promote T cell apoptosis in vitro. We 

harvested T cells from DC:T cell cultures on day 3 and assessed the percentage of early apoptotic 

(Annexin-V+/7-AAD-) and late apoptotic/necrotic (Annexin-V+/7-AAD+) T cells. As seen in Fig. 

21A, there was no difference in the incidence of T cell death between cultures in which control 

or rapamycin-treated, alloAg-pulsed DC were used as stimulators. We also performed 

intracellular cytokine staining of T cells from these MLR cultures. Whereas a significant 

proportion of T cells primed indirectly by alloAg-pulsed control DC expressed IL-2 and IFNγ, 

production of these cytokines was markedly reduced in T cells stimulated by alloAg-pulsed 

Rapa-DC (Fig. 21B, C). Expression of the Th2 signature cytokines IL-4, IL-5 and IL-10 was also 

decreased, but to a lesser extent, in these allostimulated T cells (Fig. 21D). 

 

 

 

 

 

 

 

 

 

 

 

82 



 

A B
11.7 8.811.0

D
 
Ctr-DC
CD4 CD8
IL

-2

IF
N
γ

1.82.5
3.6

4.0
Annexin-V

37.3

4.4
D

C

0

2

4

0 1 2 43IFNIL-2 γ

* *

Fo
ld

 re
du

ct
io

n

4.4

9.8

A
A

7-

Rapa-DC
Ctr-DC
IL
-5

CD4

2.12.21.7 IL
-1

0

IL
-4

Rapa-DC

 

 

Figure 21. Rapa-DC suppress IL-2 and IFNγ production by T cells, without affecting the 
incidence of T cell death. 
Naïve T cells were cultured with alloAg-pulsed control (Ctr)- or Rapa-DC at 10:1 ratio for 3 
days. (A) Cells were then analyzed after staining of phosphatidylyserine externalization with 
FITC-annexin-V in combination with the vital dye 7-AAD. The incidence of CD3+ cells 
expressing the marker of interest is indicated. (B-D) T cells were also permeabilized and 
analyzed for intracellular cytokine production. T cells primed in vitro by alloAg-pulsed Rapa-DC 
produced lower amounts of IL-2 and IFNγ (B, C); nevertheless this was not selective for these 
Th1 cytokines as IL-4, IL-5 and IL-10 production (D) were also decreased compared to T cells 
primed with Ctr-DC. Numbers in upper right quadrants indicate percent positive CD3+ cells for 
the cytokines indicated. (C) Results of four different experiments are shown. Results are 
representative of three (A), four (B, C) and three (D) experiments. *P<0.05 vs. Ctr-DC (Mann-
Whitney test). 
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4.4.5. A single infusion of alloAg-pulsed, rapamycin-treated DC prolongs alloAg-specific 
heart graft survival; multiple infusion leads to long-term survival 

Next, to explore the therapeutic potential of alloAg-pulsed, Rapa-DC in vivo, we employed a 

fully MHC-mismatched (B10 to C3H) heterotopic vascularized heart transplant model. In this 

model, B10 heart grafts are rejected by C3H recipients within 7-11 days (MST=9.1 days) without 

immunosuppressive treatment. Graft survival was improved minimally, although not 

significantly, when alloAg-pulsed, control syngeneic DC were infused i.v. on day –7 (Fig. 22). 

By contrast, a single infusion of donor alloAg-pulsed, rapamycin-treated DC prolonged graft 

survival significantly (MST=23.8 days; P<0.005). This effect was Ag-specific, as no graft 

prolongation was observed in the group that received Rapa-DC pulsed with third party (BALB/c) 

alloAg, and was reversed by systemic administration of 8-hourly rIL-2 for 3 days, commencing 

8h post transplant. In addition, the beneficial effect of donor alloAg-pulsed Rapa-DC was 

improved to a MST of 46.8 days (P=0.0005 vs. untreated; and P=0.0029 vs. Rapa-DC alone) by 

short-term administration of a subtherapeutic dose of FK506 (1 mg/kg/day, i.m., days 0-9), 

which alone did not prolong graft survival. Strikingly, repeated infusion of donor alloAg-pulsed 

Rapa-DC, but not Ctr-DC (x3; days -10, -3 and 0) led to indefinite graft survival (>100 days) in 

40% of otherwise unmodified graft recipients (Fig. 22).  
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igure 22. AlloAg-pulsed Rapa-DC prolong heart graft survival. 
lloAg-pulsed, control (Ctr)- or Rapa-DC of host origin were injected i.v. into syngeneic C3H 
ice, 7 days before the transplantation (day 0) of B10 heat grafts. FK506 (1 mg/kg/day) was 

dministered i.m. for 10 days (days 0-9) and IL-2 (60000 U/animal/8h) was administered i.p. for 
 days from the time of transplant, where indicated. Untreated, third party (BALB/c) lysate-
ulsed Rapa-DC-treated mice were used as control recipients. Alternatively, the alloAg-pulsed 
apa-DC or alloAg-pulsed Ctr-DC were infused i.v. x3 (days -10, -3 and 0) into otherwise 
nmodified graft recipients. Statistical differences are analyzed by the log-rank test. 
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4.4.6. Analysis of mechanisms involved in prolonged graft survival in response to 
alloAg-pulsed Rapa-DC 

In order to elucidate the mechanisms underlying prolonged graft survival, we repeated transplant 

experiments. Recipient mice that were pre-infused once (on day -7) with alloAg-pulsed control- 

or rapamycin-treated DC, or those that were otherwise untreated, were killed on day 7, and grafts 

as well as spleens were harvested. Splenic T cells of Rapa-DC-treated recipients were 

hyporesponsive to challenge with donor alloAg (Fig. 23A), confirming that this effect observed 

previously in adoptive transfer experiments was contributing to graft prolongation. Graft 

histology of the same group revealed minimal tissue disruption (Fig. 23B), whereas grafts from 

the otherwise untreated controls were severely damaged, with heavy cellular infiltration. Further 

analysis of the grafts confirmed that on day 7, grafts were infiltrated by granulocytes, 

macrophages, CD4+ and CD8+ cells (Fig. 24). Strikingly, grafts taken from Rapa-DC-preteated 

recipients had markedly reduced levels of infiltration. Furthermore, the latter showed 

significantly reduced levels of IFNγ gene expression, compared to control grafts (Fig. 25 A, B). 

In all cases, pretreatment with alloAg-pulsed control DC appeared to have an 

immunomodulatory effect, albeit less than that of Rapa-DC, that can account for the insignificant 

prolongation of graft survival following their administration (MST of 10.4 days vs 9.1 days in 

the untreated group; Fig. 22).      
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Figure 24. Inflammatory cell infiltration into grafts on day 7 is reduced in Rapa-DC-
pretreated heart graft recipients. 
Immunofluorescence staining of heart grafts harvested from otherwise untreated (LH column) or 
control DC- (middle column) or Rapa-DC- (RH column) pretreated recipients. Decreased 
infiltration of GR1+ (red, top row), F4/80+ (red, second row), CD4+ (green, third row) and CD8+ 
(green, fourth row) cells into graft is evident following treatment with Rapa-DC. Results are 
representative of multiple sections at various levels from two animals in each group. 
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e 25. Intragraft IFNγ gene expression is decreased in Rapa-DC pretreated recipients. 
 days post transplant, recipients were killed and heart grafts harvested. Total RNA was 
d and analyzed for common inflammatory cytokine signals by RNase protection assay. 

 was a significant reduction in IFNγ gene expression in the Rapa-DC group vs. the 
ted group (*P<0.05, Student’s ‘t’ test). 
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4.5. DISCUSSION 

DC, once known almost exclusively for their unrivalled capacity to stimulate immune responses, 

are now recognized increasingly for their roles in immune regulation and the 

induction/maintenance of tolerance (16, 23, 66). In the immature state, DC exhibit inherent 

tolerogenic properties, as they fail to provide adequate costimulation for T cell activation. They 

can increase pancreatic islet (45) and vascularized organ transplant survival (46, 48). DC can 

also delay the onset or regulate the severity of autoimmune diseases in animal models (91, 119, 

237, 238). In the transplantation setting, both donor and recipient DC contribute to immune 

responses that lead to allograft rejection (25, 26, 239-241). Direct alloAg presentation, mediated 

by donor APC, results in the activation of host T cells by allogeneic MHC and costimulatory 

molecules expressed on these donor APC. This in turn, leads to vigorous T cell proliferation and 

anti-graft effector immune responses. As donor DC undergo attrition, their role as presenters of 

alloAg subsides, and recipient DC, that can traffic to the graft, become the predominant APC 

(242). Emerging evidence suggests that, once recipient DC populate the graft, they convey and 

present alloAg indirectly to T cells, in much the same way as other Ags in the periphery are 

presented in the normal steady state (243).  

Reports of the induction by DC of peripheral tolerance to self or MHC class II Ags 

encountered in the absence of inflammatory stimuli (62, 98), coupled to evidence that direct 

alloAg presentation diminishes with time after transplantation, provide a strong impetus for 

targeting indirect allorecognition via DC-induced cross-tolerance. In healthy human volunteers, 

subcutaneous injection of Ag (influenza matrix peptide or keyhole limpet hemocyanin)-pulsed 

autologous, immature, monocyte-derived DC led to specific inhibition of Ag-specific effector T 

cell functions (73). Moreover, IL-10-treated human monocyte-derived DC induce T cell anergy 

via cross-presentation of phagocytosed necrotic fragments (118). Similarly, immature DC 
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pretreated with N-acetyl-L-cysteine induce alloAg-specific T cell hyporesponsiveness after 

loading with apoptotic cells (244). Further, while mice infused i.v. with alloAg-pulsed peritoneal 

exudate cells (PEC) develop a delayed-type hypersensitivity (DTH) response similar to that of 

allograft recipients after challenge with the alloAg, i.v. infusion of PEC pulsed with alloAg in the 

presence of IL-10/transforming growth factor (TGF)-β results in an anti-inflammatory, “allograft 

acceptor-like” DTH (245). Herein we show for the first time, that DC exposed to rapamycin 

become resistant to maturation and induce Ag-specific T cell hyporesponsiveness via indirect Ag 

presentation. In this model, T cells cross-primed by alloAg-pulsed, Rapa-DC become 

hyporesponsive to subsequent challenge with the same Ag, not only through the indirect 

pathway, but also the direct pathway, providing evidence for regulation of both these major 

pathways of allorecognition by pharmacologically-modified DC.  

The Ag-specific T cell hyporesponsiveness induced by our approach appeared to be the 

result of Rapa-DC trafficking to secondary lymphoid tissue and active regulation of T cell 

function that was reversible by exogenous IL-2. Freshly-isolated immature DC differ from 

mature DC in that they cannot provide adequate costimulation (signal 2) and inflammatory 

cytokine (e.g. IL-12p70) support (signal 3) in conjunction with their ability to ligate TCR 

through Ag presentation (signal 1). Whereas stimulation of T cells by mature DC results in their 

activation, priming by immature DC causes T cell anergy (246). Different approaches to 

generation of either stably immature or “alternatively-activated” DC, such as those conditioned 

with IL-10 (247, 248), have been reported over the past few years. IL-10-conditioned DC (90) 

and Vitamin D3-treated DC (140) both induce allogeneic T cell anergy. Repetitive stimulation of 

human T cells by allogeneic immature DC generates anergic T cells with limited resistance to 

IL-2 stimulation (109). In a similar manner, rapamycin-treated DC become stably immature, and 

91 



 

as demonstrated in previous chapters, lose their capacity to produce IL-12p70 and TNF-α upon 

LPS stimulation. Importantly, after exposure to rapamycin, DC retain their capacity to take up 

cell lysate Ag in extended overnight culture (16-24 h), in contrast to previous reports by us 

(Chapters Two and Three) and others (202) that concern inhibition of Ag uptake over much 

shorter periods (≤ 2h). Moreover, it should be noted that the overnight pulsing with cell lysates 

was performed in the absence of rapamycin. 

The T cell hyporesponsiveness induced by Rapa-DC was not the sole result of the cells’ 

inability to prime T cells effectively. It was rather due to immunomodulatory activity of these 

cells since T cells primed by Rapa-DC later responded strongly to 3rd party DC challenge, but 

responded to DC from the same donor comparatively poorly. These in vitro and ex vivo 

observations were confirmed by Ag-specific prolongation of organ graft survival following 

systemic infusion of alloAg-pulsed Rapa-DC. We also observed a striking inhibition of the two 

main mediators of the type 1 T cell response, i.e. IL-2 and IFNγ production by T cells stimulated 

with Rapa-DC. Although there was a clear balance shift in type 1 vs. type 2 T cell biosignatures 

in the MLR cultures, there was no increase per se in the expression of the latter (IL-4, IL-5 and 

IL-10). This universal T cell cytokine downregulation is likely a contributing mechanism to the 

effects of Rapa-DC in transplant models, as Th2 cells play a role in alloimmune responses (25) 

and can be sufficient for graft rejection (105, 106, 249). Furthermore, IL-4 is recognized for its 

stimulatory effect on IL-12p70 production by DC (217). Thus it is possible that by reducing IL-4 

production, activation of “bystander” APC in the recipient is also inhibited by Rapa-DC. In our 

studies, we were not able to demonstrate an increase in incidence or activity of T cells with 

previously defined Treg cell phenotype such as CD4+CD25+, in response to either in vitro or in 

vivo stimulation by Rapa-DC. It should be emphasized that the Treg cell analyses were done 7 
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days after priming of T cells by Rapa-DC, and in light of current evidence showing requirement 

for repeated stimulation for generation of Treg cells, we cannot rule out their induction by Rapa-

DC as a possible mechanism in long-term graft survivors.    

Strategies to utilize DC for the induction of donor-specific tolerance and the prolongation 

of organ allograft survival have until now been concerned mainly with donor DC (46, 48, 87, 

250, 251), whereas studies exploiting recipient DC in therapeutic approaches to graft rejection 

have been limited. One exception is the use of DC-DC hybrids, that express MHC of both 

parental APC, to delay the onset of alloAg-specific graft-versus-host disease (GVHD) when 

engineered to overexpress CD95L (252). Recently, in a rat kidney transplant model, preoperative 

infusion of dexamethasone-treated immature F1 DC, followed by CTLA4Ig and a short 

postoperative course of calcineurin inhibition, was found to promote indefinite graft survival and 

immune regulation via the indirect pathway (253).  

It has also been shown that intrathymic or i.v. injection of recipient BM-derived or thymic DC, 

pulsed with immunodominant alloMHC-I-derived peptide, prior to transplantation, prolongs 

cardiac or pancreatic islet allograft survival in ALS-treated rats (50, 60, 61, 254). These latter 

effects have been attributed, in part, to the induction of central tolerance by the allopeptide-

pulsed DC, as they were abrogated when the recipient rats were thymectomized prior to cell 

infusion (51). Clinical application of this strategy, however, is limited by the necessity to identify 

unrelated donor MHC peptides. The advantage and comparative simplicity of the present model 

lies in the use of whole donor cell lysates, which constitute the complete library of donor alloAgs 

to be presented indirectly by Rapa-DC. This approach also permits Ag-specific 

immunomodulation, as opposed to alternative approaches that target recipient DC via 

pharmacologic treatment of the host, -a method shown to induce tolerogenic DC in graft 
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recipients (255). The incomplete prolongation of graft survival we observed uniformly following 

a single infusion of the DC was presumably due to activation of T cells via the direct pathway, 

since once this early response was suppressed, albeit minimally, by a transient subtherapeutic 

dose of FK506 (which alone did not prolong allograft survival), rejection was more markedly 

and significantly delayed. Calcineurin inhibition might also work in other ways to augment the 

beneficial effect of pretreatment with alloAg-pulsed Rapa-DC, e.g. by inhibiting donor DC 

migration (256). Notably, we were able to enhance the tolerogenic potential of Rapa-DC by 

repeated infusion of the alloAg-pulsed cells, -40% of recipients in this protocol exhibited long-

term graft survival, confirming the hyporesponsiveness achieved to both direct and indirect 

challenge in vitro.     

In summary, rapamycin-treated, alloAg-pulsed host DC can induce Ag-specific T cell 

hyporesponsiveness in vivo and prolong the survival of MHC-mismatched vascularized heart 

allografts. This approach, that obviates systemic delivery of the DC-modifying pharmacologic 

agent, constitutes a clinically applicable, cell-based ‘negative vaccination’ strategy for 

suppression of allograft rejection. 
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5. SUMMARY  

With the advancement in surgical techniques and modern pharmacological immunosuppression, 

human organ transplantation, -merely an experimental procedure 50 years ago, has become the 

therapy of choice for end-stage vital organ failure. This relatively novel ‘therapy’, however, is 

far from being the ideal ‘treatment’ for the majority of allogeneic organ graft recipients, as they 

rely on life-long immunosuppression and become chronically immunosuppressed. Thus, the next 

frontier in transplant immunology is to achieve therapeutic, drug-free, Ag-specific tolerance. 

Activation of T cell clones reactive to self Ags (or to ‘newly-self’ Ags in the case of 

transplantation) is believed to be the main mechanism underlying initiation of autoimmunity and 

transplant rejection. Although most known autoimmune diseases have a genetic component, due 

to involvement of complex environmental factors, it is hard to predict whether an individual will 

develop autoimmune reactivity before the disease is manifest. This, in turn, limits Ag-specific 

therapeutic approaches aimed at autoimmunity. By contrast, in transplantation, Ags to which the 

host will react can be predicted, even before they are introduced to the host’s immune system. 

Indeed in the U.S., live kidney donation (usually from a relative or spouse) exceeds cadaveric 

kidney donation. This ‘predictability’ in transplantation presents an advantage in this field for 

trials of tolerance induction. It is now well-documented that Ags, when introduced to the 

immune system under steady-state conditions, can lead to tolerance. Studies by others and us 

have consistently shown that immature DC can induce tolerance to Ags that they express in vivo. 

By virtue of their remarkable plasticity however, immature DC-based therapeutic tolerance 

approaches face the risk of instigating immunogenic responses should the DC ‘mature’ in vivo. 

In transplantation, for instance, both the inflammatory responses due to surgical trauma and 

ischemia-reperfusion injury can promote DC maturation and generation of subsequent 
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alloimmune responses. It is therefore important to devise approaches to predictably prevent DC 

maturation in vivo. 

We have demonstrated herein that the commonly used immunosuppressant rapamycin 

inhibits spontaneous and TLR4-mediated maturation of MDC, without interfering with their 

ability to present Ag to T cells. Rapamycin-treated DC, either in vitro or in vivo, lose their 

capacity to produce inflammatory cytokines (IL-12p70 and TNF-α), and induce Ag-specific T 

cell anergy. This study, for the first time, demonstrates that stably-immature DC can be pulsed 

with complex antigenic mixtures (257), and used as therapeutic vectors to induce allograft 

tolerance. Under steady-state conditions before organ transplant, administration of rapamycin-

conditioned, donor Ag-loaded DC prolongs heart graft survival significantly. This effect is 

enhanced when the initial acute inflammation, presumably due to surgery, is controlled by a 

short, post-operative course of FK506, and abrogated by administration of exogenous IL-2.   

Rapamycin was found to inhibit DC maturation and inflammatory cytokine production in 

two different strains (B10 and C3H) and under two different experimental conditions (in vitro 

and in/ex vivo) in the mouse. DC pretreated with rapamycin remain immature after exposure to 

both LPS and allogeneic cell lysates. Rapamycin treatment also inhibits the DC response to IL-4 

(in vitro) and Flt3L (in vivo). In Chapter Two, we showed that the suppression of the IL-4-

mediated in vitro maturation of murine BMDC is due to downregulation of the IL-4R complex 

on these cells upon exposure to rapamycin. Due to the broad mechanism of action of rapamycin, 

however, it is likely that this effect is only partially responsible for the IL-4 hypo-

/unresponsiveness and intracellular IL-4 signaling pathways may also be affected. Indeed, 

rapamycin may be targeting a common signaling pathway for IL-4R and Flt3, hence blocking the 

DC differentiation and maturation associated with ligation of these receptors, as discussed in 
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Chapters Two and Three. One possible common target is the JAK/Stat pathway that is active in 

signal transduction pathways of both receptors.  

We believe that data presented in this thesis provide a framework on which novel 

strategies to use tolerogenic DC as therapeutic vectors may be based. In the light of these 

findings in mice, we propose to use rapamycin-conditioned DC-based regimens to promote 

transplant tolerance in a clinically-relevant large animal model. Based on this work, and to 

achieve a reliable outcome, several important parameters still need to be evaluated. Although 

rapamycin-treated DC induce Ag-specific T cell hyporesponsiveness in vivo, suggesting they 

retain their immature phenotype after i.v. administration, we have not formally evaluated their 

response to maturation stimuli, other than those mentioned above. Therefore, it will be of interest 

to analyze the expression of TLR4 and other TLRs on the DC surface following their exposure to 

rapamycin, and their response to TLR ligands and CD40 agonism (CD40L). In order to achieve 

predictable, long-term graft survival, the dose, frequency and timing of rapamycin-conditioned 

DC administration will need to be optimized. Data presented in Chapter Three provide evidence 

for use of rapamycin in vivo to control activation of ‘intrinsic’ DC (of host and donor origin) 

post-transplant, that may synergize with the tolerogenic potential of pre-administered Rapa-DC. 

At present, the main predictable hurdle with translation of this approach to the clinic is the 

induction of apoptosis in human DC by rapamycin. Studies by two different groups (191, 202) 

have demonstrated that rapamycin, while not affecting differentiation of either monocyte-derived 

or CD34+ hematopoietic progenitor-derived human DC, reduces cell recovery up to 50%, under 

concentrations comparable to those used in this thesis (10 ng/ml). This difference could be 

attributed to the fundamental differences between mouse and human systems, and the distinct 

starting population in DC cultures. However, it should also be noted that timing and duration of 
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rapamycin exposure are different in those and the current study, such that rapamycin is added at 

the beginning of human DC cultures, whereas we have opted to begin exposing murine cells to 

rapamycin on day 2.   

Studies presented in this thesis investigating mechanisms underlying prolonged graft 

survival will also need to be repeated in long-term graft (tolerant) survivors. As discussed in 

Chapters Two and Three, DC exposed to rapamycin either in vitro or in vivo have a potent, yet 

incomplete inhibitory impact on alloreactive T cell proliferation and inflammatory cytokine 

production. This is in parallel to the limited, albeit statistically significant reduction of intragraft 

IFNγ expression post-transplant, following a single injection of Rapa-DC. Since multiple pre-

transplant infusions of these cells lead to long-term graft survival in a fraction of the recipients -

in a strain combination where spontaneous graft acceptance never occurs-, it is reasonable to 

presume that mechanisms other than induction of T cell anergy by rapamycin-pretreated DC are 

in effect, e.g. generation/expansion of T cells with regulatory capacity. Pharmacologically-

modified (with dexamethasone) DC expressing both donor and host alloAgs (F1) have recently 

been shown to induce indefinite survival of rat renal allografts, through induction of indirect 

pathway Treg cells (253). It would be interesting, then, to look for Treg cells in bulk T cell 

populations stimulated repeatedly with Rapa-DC. Additionaly, Rapa-DC need to be investigated 

for their capacity to expand naturally occurring (e.g. CD4+CD25highFoxp3+) Treg cells.    

Although we have used exclusively donor alloAg to pulse DC in our work, other Ags can 

potentially be introduced to the immune system through ‘tolerogenic’ DC. Recent evidence has 

suggested that indirect pathway stimulation with autoAg in the context of transplantation may be 

an important mechanism leading to immune-mediated allograft injury. Development of 

autoimmunity to the autoAg cardiac myosin (CM) (in human cardiac transplant recipients) (258) 
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and type V collagen (in human lung transplant recipients) (259) has been correlated with 

destructive immunity against the graft.  It has been suggested that these autoAgs, which are 

usually ‘hidden’ from immunologic surveillance, may be released during ischemia-reperfusion 

injury or during alloimmune-mediated injury to the graft.  CD4+ T cells reactive against CM 

have been isolated in a mouse model of heart transplantation (258).  Furthermore, anti-CM 

autoimmune responses appear to be associated with the development of chronic heart graft 

rejection. Given the potential pathologic implications of autoimmunity to CM in heart transplant 

recipients, the use of rapamycin-conditioned DC to tolerize recipients to CM may be 

advantageous.  

In addition to demonstrating its role in potentiating DC tolerogenicity, our findings also 

expand knowledge of rapamycin’s mechanism of action as an immunosuppressant. As outlined 

in Chapter One, rapamycin has been noted traditionally for inhibiting signaling pathways 

associated with activating/inflammatory cytokines in T cells. In light of our data, we hereby 

argue that rapamycin may also suppress production of these cytokines by T cells upon 

stimulation by rapamycin-pretreated DC. Since, in vivo, all immune cells are exposed to the 

agent, this effect is likely a component of overall immusuppression, demonstrating the 

importance of designing studies dissecting the impact of immunosuppressants on different cell 

types, rather than concentrating solely on effector T cell populations.  

In summary, the studies presented herein have provided insight into the fields of 

pharmacologic immunosuppression and DC manipulation. Our discovery that rapamycin 

enhances the tolerogenic potential of DC, and that these cells can be loaded with complex Ag 

mixtures to promote tolerance, will likely provide impetus to further investigate this and similar 

approaches to develop DC-based therapeutic vectors for the treatment of allograft rejection. 

99 



 

BIBLIOGRAPHY 

 

1. Maurer, D., and G. Stingl. 2001. Langerhans cells. In Dendritic Cells, 2nd edition. M. T. 
Lotze, and A. W. Thomson, eds. Academic Press, San Diego. 

 
2. Manz, M. G., D. Traver, K. Akashi, M. Merad, T. Miyamoto, E. G. Engleman, and I. L. 

Weissman. 2001. Dendritic cell development from common myeloid progenitors. Ann N 
Y Acad Sci 938:167. 

 
3. Romani, N., S. Gruner, D. Brang, E. Kampgen, A. Lenz, B. Trockenbacher, G. 

Konwalinka, P. O. Fritsch, R. M. Steinman, and G. Schuler. 1994. Proliferating dendritic 
cell progenitors in human blood. J Exp Med 180:83. 

 
4. Iwasaki, A., and R. Medzhitov. 2004. Toll-like receptor control of the adaptive immune 

responses. Nat Immunol 5:987. 
 
5. Siegal, F. P., N. Kadowaki, M. Shodell, P. A. Fitzgerald-Bocarsly, K. Shah, S. Ho, S. 

Antonenko, and Y. J. Liu. 1999. The nature of the principal type 1 interferon-producing 
cells in human blood. Science 284:1835. 

 
6. Aliberti, J., C. Reis e Sousa, M. Schito, S. Hieny, T. Wells, G. B. Huffnagle, and A. Sher. 

2000. CCR5 provides a signal for microbial induced production of IL-12 by CD8 alpha+ 
dendritic cells. Nat Immunol 1:83. 

 
7. Huang, F. P., N. Platt, M. Wykes, J. R. Major, T. J. Powell, C. D. Jenkins, and G. G. 

MacPherson. 2000. A discrete subpopulation of dendritic cells transports apoptotic 
intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 191:435. 

 
8. Iyoda, T., S. Shimoyama, K. Liu, Y. Omatsu, Y. Akiyama, Y. Maeda, K. Takahara, R. M. 

Steinman, and K. Inaba. 2002. The CD8+ dendritic cell subset selectively endocytoses 
dying cells in culture and in vivo. J Exp Med 195:1289. 

 
9. Liu, K., T. Iyoda, M. Saternus, Y. Kimura, K. Inaba, and R. M. Steinman. 2002. Immune 

tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196:1091. 
 
10. Schulz, O., and C. Reis e Sousa. 2002. Cross-presentation of cell-associated antigens by 

CD8alpha+ dendritic cells is attributable to their ability to internalize dead cells. 
Immunology 107:183. 

 
11. Sallusto, F., M. Cella, C. Danieli, and A. Lanzavecchia. 1995. Dendritic cells use 

macropinocytosis and the mannose receptor to concentrate macromolecules in the major 
histocompatibility complex class II compartment: downregulation by cytokines and 
bacterial products. J Exp Med 182:389. 

 

100 



 

12. Salter, R. D., and X. Dong. 2001. Regulation of antigen capture, MHC biosynthesis, and 
degradation of dendritic cells. In Dendritic Cells. M. T. Lotze, and A. W. Thomson, eds. 

 
13. Forster, R., A. Schubel, D. Breitfeld, E. Kremmer, I. Renner-Muller, E. Wolf, and M. 

Lipp. 1999. CCR7 coordinates the primary immune response by establishing functional 
microenvironments in secondary lymphoid organs. Cell 99:23. 

 
14. Sallusto, F., P. Schaerli, P. Loetscher, C. Schaniel, D. Lenig, C. R. Mackay, S. Qin, and 

A. Lanzavecchia. 1998. Rapid and coordinated switch in chemokine receptor expression 
during dendritic cell maturation. Eur J Immunol 28:2760. 

 
15. Verbovetski, I., H. Bychkov, U. Trahtemberg, I. Shapira, M. Hareuveni, O. Ben-Tal, I. 

Kutikov, O. Gill, and D. Mevorach. 2002. Opsonization of apoptotic cells by autologous 
iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and 
up-regulates CC chemokine receptor 7. J Exp Med 196:1553. 

 
16. Steinman, R. M., D. Hawiger, and M. C. Nussenzweig. 2003. Tolerogenic dendritic cells. 

Annu Rev Immunol 21:685. 
 
17. Visintin, A., A. Mazzoni, J. H. Spitzer, D. H. Wyllie, S. K. Dower, and D. M. Segal. 

2001. Regulation of Toll-like receptors in human monocytes and dendritic cells. J 
Immunol 166:249. 

 
18. DeFillipo, A. M., J. Dai, and Z. Li. 2004. Heat shock-induced dendritic cell maturation is 

coupled by transient aggregation of ubiquitinated proteins independently of heat shock 
factor 1 or inducible heat shock protein 70. Mol Immunol 41:785. 

 
19. Messmer, D., H. Yang, G. Telusma, F. Knoll, J. Li, B. Messmer, K. J. Tracey, and N. 

Chiorazzi. 2004. High mobility group box protein 1: an endogenous signal for dendritic 
cell maturation and Th1 polarization. J Immunol 173:307. 

 
20. Cayabyab, M., J. H. Phillips, and L. L. Lanier. 1994. CD40 preferentially costimulates 

activation of CD4+ T lymphocytes. J Immunol 152:1523. 
 
21. Suchin, E. J., P. B. Langmuir, E. Palmer, M. H. Sayegh, A. D. Wells, and L. A. Turka. 

2001. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old 
question. J Immunol 166:973. 

 
22. Saiki, T., T. Ezaki, M. Ogawa, K. Maeda, H. Yagita, and K. Matsuno. 2001. In vivo roles 

of donor and host dendritic cells in allogeneic immune response: cluster formation with 
host proliferating T cells. J Leukoc Biol 69:705. 

 
23. Morelli, A. E., and A. W. Thomson. 2003. Dendritic cells: regulators of alloimmunity 

and opportunities for tolerance induction. Immunol Rev 196:125. 
 

101 



 

24. Anderson, A. C., L. B. Nicholson, K. L. Legge, V. Turchin, H. Zaghouani, and V. K. 
Kuchroo. 2000. High frequency of autoreactive myelin proteolipid protein-specific T 
cells in the periphery of naive mice: mechanisms of selection of the self-reactive 
repertoire. J Exp Med 191:761. 

 
25. Benichou, G., A. Valujskikh, and P. S. Heeger. 1999. Contributions of direct and indirect 

T cell alloreactivity during allograft rejection in mice. J Immunol 162:352. 
 
26. Lechler, R. I., and J. R. Batchelor. 1982. Restoration of immunogenicity to passenger 

cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 
155:31. 

 
27. Mandelbrot, D. A., K. Kishimoto, H. Auchincloss, Jr., A. H. Sharpe, and M. H. Sayegh. 

2001. Rejection of mouse cardiac allografts by costimulation in trans. J Immunol 
167:1174. 

 
28. Herrera, O. B., D. Golshayan, R. Tibbott, F. S. Ochoa, M. J. James, F. M. Marelli-Berg, 

and R. I. Lechler. 2004. A novel pathway of alloantigen presentation by dendritic cells. J 
Immunol 173:4828. 

 
29. Lee, R. S., M. J. Grusby, L. H. Glimcher, H. J. Winn, and H. Auchincloss, Jr. 1994. 

Indirect recognition by helper cells can induce donor-specific cytotoxic T lymphocytes in 
vivo. J Exp Med 179:865. 

 
30. Wise, M. P., F. Bemelman, S. P. Cobbold, and H. Waldmann. 1998. Linked suppression 

of skin graft rejection can operate through indirect recognition. J Immunol 161:5813. 
 
31. Marshall, S. E., S. P. Cobbold, J. D. Davies, G. M. Martin, J. M. Phillips, and H. 

Waldmann. 1996. Tolerance and suppression in a primed immune system. 
Transplantation 62:1614. 

 
32. Lechler, R. I., O. A. Garden, and L. A. Turka. 2003. The complementary roles of deletion 

and regulation in transplantation tolerance. Nat Rev Immunol 3:147. 
 
33. SivaSai, K. S., M. A. Smith, N. J. Poindexter, S. R. Sundaresan, E. P. Trulock, J. P. 

Lynch, J. D. Cooper, G. A. Patterson, and T. Mohanakumar. 1999. Indirect recognition of 
donor HLA class I peptides in lung transplant recipients with bronchiolitis obliterans 
syndrome. Transplantation 67:1094. 

 
34. Reznik, S. I., A. Jaramillo, K. S. SivaSai, K. L. Womer, M. H. Sayegh, E. P. Trulock, G. 

A. Patterson, and T. Mohanakumar. 2001. Indirect allorecognition of mismatched donor 
HLA class II peptides in lung transplant recipients with bronchiolitis obliterans 
syndrome. Am J Transplant 1:228. 

 
35. Mason, P. D., C. M. Robinson, and R. I. Lechler. 1996. Detection of donor-specific 

hyporesponsiveness following late failure of human renal allografts. Kidney Int 50:1019. 

102 



 

36. Hornick, P. I., P. D. Mason, R. J. Baker, M. Hernandez-Fuentes, L. Frasca, G. Lombardi, 
K. Taylor, L. Weng, M. L. Rose, M. H. Yacoub, R. Batchelor, and R. I. Lechler. 2000. 
Significant frequencies of T cells with indirect anti-donor specificity in heart graft 
recipients with chronic rejection. Circulation 101:2405. 

 
37. Liu, Z., A. I. Colovai, S. Tugulea, E. F. Reed, P. E. Fisher, D. Mancini, E. A. Rose, R. 

Cortesini, R. E. Michler, and N. Suciu-Foca. 1996. Indirect recognition of donor HLA-
DR peptides in organ allograft rejection. J Clin Invest 98:1150. 

 
38. Valujskikh, A., D. Matesic, A. Gilliam, D. Anthony, T. M. Haqqi, and P. S. Heeger. 

1998. T cells reactive to a single immunodominant self-restricted allopeptide induce skin 
graft rejection in mice. J Clin Invest 101:1398. 

 
39. Terasaki, P. I. 2003. Humoral theory of transplantation. Am J Transplant 3:665. 
 
40. Fluck, N., O. Witzke, P. J. Morris, and K. J. Wood. 1999. Indirect allorecognition is 

involved in both acute and chronic allograft rejection. Transplant Proc 31:842. 
 
41. Braun, M. Y., I. Grandjean, P. Feunou, L. Duban, R. Kiss, M. Goldman, and O. Lantz. 

2001. Acute rejection in the absence of cognate recognition of allograft by T cells. J 
Immunol 166:4879. 

 
42. Auchincloss, H., Jr., R. Lee, S. Shea, J. S. Markowitz, M. J. Grusby, and L. H. Glimcher. 

1993. The role of "indirect" recognition in initiating rejection of skin grafts from major 
histocompatibility complex class II-deficient mice. Proc Natl Acad Sci U S A 90:3373. 

 
43. Opelz, G., D. P. Sengar, M. R. Mickey, and P. I. Terasaki. 1973. Effect of blood 

transfusions on subsequent kidney transplants. Transplant Proc 5:253. 
 
44. Soulillou, J. P. 1998. Donor-specific transfusion-induced tolerance: mechanisms 

revisited. Transplant Proc 30:2438. 
 
45. Rastellini, C., L. Lu, C. Ricordi, T. E. Starzl, A. S. Rao, and A. W. Thomson. 1995. 

Granulocyte/macrophage colony-stimulating factor-stimulated hepatic dendritic cell 
progenitors prolong pancreatic islet allograft survival. Transplantation 60:1366. 

 
46. Fu, F., Y. Li, S. Qian, L. Lu, F. Chambers, T. E. Starzl, J. J. Fung, and A. W. Thomson. 

1996. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, 
CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. 
Transplantation 62:659. 

 
47. Hayamizu, K., P. Huie, R. K. Sibley, and S. Strober. 1998. Monocyte-derived dendritic 

cell precursors facilitate tolerance to heart allografts after total lymphoid irradiation. 
Transplantation 66:1285. 

 

103 



 

48. Lutz, M. B., R. M. Suri, M. Niimi, A. L. Ogilvie, N. A. Kukutsch, S. Rossner, G. Schuler, 
and J. M. Austyn. 2000. Immature dendritic cells generated with low doses of GM-CSF 
in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur 
J Immunol 30:1813. 

 
49. Gao, J.-X., J. Madrenas, W. Zeng, M. Cameron, Z. Zhang, J.-J. Wang, and R. Zhong. 

1999. CD-40 deficient dendritic cells producing interleukin-10, but not interleukin-12, 
induce T-cell hyporesponsiveness in vitro and prevent acute allograft rejection. 
Immunology 98:159. 

 
50. Garrovillo, M., A. Ali, H. A. Depaz, R. Gopinathan, O. O. Oluwole, M. A. Hardy, and S. 

F. Oluwole. 2001. Induction of transplant tolerance with immunodominant allopeptide-
pulsed host lymphoid and myeloid dendritic cells. Am J Transplant 1:129. 

 
51. Oluwole, O. O., H. A. Depaz, R. Gopinathan, A. Ali, M. Garrovillo, M. X. Jin, M. A. 

Hardy, and S. F. Oluwole. 2001. Indirect allorecognition in acquired thymic tolerance: 
induction of donor-specific permanent acceptance of rat islets by adoptive transfer of 
allopeptide-pulsed host myeloid and thymic dendritic cells. Diabetes 50:1546. 

 
52. Jenkinson, E. J., P. Jhittay, R. Kingston, and J. J. Owen. 1985. Studies of the role of the 

thymic environment in the induction of tolerance to MHC antigens. Transplantation 
39:331. 

 
53. Matzinger, P., and S. Guerder. 1989. Does T-cell tolerance require a dedicated antigen-

presenting cell? Nature 338:74. 
 
54. Brocker, T., M. Riedinger, and K. Karjalainen. 1997. Targeted expression of major 

histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells 
can induce negative but not positive selection of thymocytes in vivo. J Exp Med 185:541. 

 
55. Inaba, M., K. Inaba, M. Hosono, T. Kumamoto, T. Ishida, S. Muramatsu, T. Masuda, and 

S. Ikehara. 1991. Distinct mechanisms of neonatal tolerance induced by dendritic cells 
and thymic B cells. J Exp Med 173:549. 

 
56. Quill, H. 1996. Anergy as a mechanism of peripheral T cell tolerance. J Immunol 

156:1325. 
 
57. Gao, E. K., D. Lo, and J. Sprent. 1990. Strong T cell tolerance in parent----F1 bone 

marrow chimeras prepared with supralethal irradiation. Evidence for clonal deletion and 
anergy. J Exp Med 171:1101. 

 
58. Widera, G., L. C. Burkly, C. A. Pinkert, E. C. Bottger, C. Cowing, R. D. Palmiter, R. L. 

Brinster, and R. A. Flavell. 1987. Transgenic mice selectively lacking MHC class II (I-E) 
antigen expression on B cells: an in vivo approach to investigate Ia gene function. Cell 
51:175. 

 

104 



 

59. Oluwole, S. F., M. X. Jin, N. C. Chowdhury, K. Engelstad, O. A. Ohajekwe, and T. 
James. 1995. Induction of peripheral tolerance by intrathymic inoculation of soluble 
alloantigens: evidence for the role of host antigen-presenting cells and suppressor cell 
mechanism. Cell Immunol 162:33. 

 
60. Ali, A., M. Garrovillo, M. X. Jin, M. A. Hardy, and S. F. Oluwole. 2000. Major 

histocompatibility complex class I peptide-pulsed host dendritic cells induce antigen-
specific acquired thymic tolerance to islet cells. Transplantation 69:221. 

 
61. Garrovillo, M., A. Ali, and S. F. Oluwole. 1999. Indirect allorecognition in acquired 

thymic tolerance: induction of donor-specific tolerance to rat cardiac allografts by 
allopeptide-pulsed host dendritic cells. Transplantation 68:1827. 

 
62. Inaba, K., M. Pack, M. Inaba, H. Sakuta, F. Isdell, and R. M. Steinman. 1997. High levels 

of a major histocompatibility complex II-self peptide complex on dendritic cells from the 
T cell areas of lymph nodes. J Exp Med 186:665. 

 
63. Shortman, K., and C. Caux. 1997. Dendritic cell development: multiple pathways to 

nature's adjuvants. Stem Cells 15:409. 
 
64. Steinman, R. M., M. Pack, and K. Inaba. 1997. Dendritic cells in the T-cell areas of 

lymphoid organs. Immunol Rev 156:25. 
 
65. Adler, A. J., D. W. Marsh, G. S. Yochum, J. L. Guzzo, A. Nigam, W. G. Nelson, and D. 

M. Pardoll. 1998. CD4+ T cell tolerance to parenchymal self-antigens requires 
presentation by bone marrow-derived antigen-presenting cells. J Exp Med 187:1555. 

 
66. Steinman, R. M., S. Turley, I. Mellman, and K. Inaba. 2000. The induction of tolerance 

by dendritic cells that have captured apoptotic cells. J Exp Med 191:411. 
 
67. Suss, G., and K. Shortman. 1996. A subclass of dendritic cells kills CD4 T cells via 

Fas/Fas-ligand- induced apoptosis. J Exp Med 183:1789. 
 
68. Grohmann, U., F. Fallarino, S. Silla, R. Bianchi, M. L. Belladonna, C. Vacca, A. 

Micheletti, M. C. Fioretti, and P. Puccetti. 2001. CD40 ligation ablates the tolerogenic 
potential of lymphoid dendritic cells. J Immunol 166:277. 

 
69. Ferguson, T. A., and T. S. Griffith. 1997. A vision of cell death: insights into immune 

privilege. Immunol Rev 156:167. 
 
70. Ferguson, T. A., J. Herndon, B. Elzey, T. S. Griffith, S. Schoenberger, and D. R. Green. 

2002. Uptake of apoptotic antigen-coupled cells by lymphoid dendritic cells and cross-
priming of CD8(+) T cells produce active immune unresponsiveness. J Immunol 
168:5589. 

 

105 



 

71. Kronin, V., K. Winkel, G. Suss, A. Kelso, W. Heath, J. Kirberg, H. von Boehmer, and K. 
Shortman. 1996. A subclass of dendritic cells regulates the response of naive CD8 T cells 
by limiting their IL-2 production. J Immunol 157:3819. 

 
72. Fazekas de St Groth, B. 1998. The evolution of self-tolerance: a new cell arises to meet 

the challenge of self-reactivity. Immunol Today 19:448. 
 
73. Dhodapkar, M. V., R. M. Steinman, J. Krasovsky, C. Munz, and N. Bhardwaj. 2001. 

Antigen-specific inhibition of effector T cell function in humans after injection of 
immature dendritic cells. J Exp Med 193:233. 

 
74. Maldonado-Lopez, R., T. De Smedt, P. Michel, J. Godfroid, B. Pajak, C. Heirman, K. 

Thielemans, O. Leo, J. Urbain, and M. Moser. 1999. CD8alpha+ and CD8alpha- 
subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J 
Exp Med 189:587. 

 
75. Pulendran, B., J. L. Smith, G. Caspary, K. Brasel, D. Pettit, E. Maraskovsky, and C. R. 

Maliszewski. 1999. Distinct dendritic cell subsets differentially regulate the class of 
immune response in vivo. Proc Natl Acad Sci U S A 96:1036. 

 
76. Rissoan, M. C., V. Soumelis, N. Kadowaki, G. Grouard, F. Briere, R. de Waal Malefyt, 

and Y. J. Liu. 1999. Reciprocal control of T helper cell and dendritic cell differentiation. 
Science 283:1183. 

 
77. Knight, S. C., R. Hunt, C. Dore, and P. B. Medawar. 1985. Influence of dendritic cells on 

tumor growth. Proc Natl Acad Sci U S A 82:4495. 
 
78. Gorczynski, R. M., Z. Cohen, X. M. Fu, Z. Hua, Y. Sun, and Z. Chen. 1996. Interleukin-

13, in combination with anti-interleukin-12, increases graft prolongation after portal 
venous immunization with cultured allogeneic bone marrow-derived dendritic cells. 
Transplantation 62:1592. 

 
79. Lappin, M. B., J. M. Weiss, V. Delattre, B. Mai, H. Dittmar, C. Maier, K. Manke, S. 

Grabbe, S. Martin, and J. C. Simon. 1999. Analysis of mouse dendritic cell migration in 
vivo upon subcutaneous and intravenous injection. Immunology 98:181. 

 
80. Banchereau, J., and R. M. Steinman. 1998. Dendritic cells and the control of immunity. 

Nature 392:245. 
 
81. Lu, L., and A. W. Thomson. 2001. Dendritic cell tolerogenicity and prospects for 

dendritic cell-based therapy of allograft rejection and autoimmune disease. In Dendritic 
Cells, Second Edition. M. T. Lotze, and A. W. Thomson, eds. Academic Press, San 
Diego, p. 587. 

 
82. Morelli, A. E., H. Hackstein, and A. W. Thomson. 2001. Potential of tolerogenic 

dendritic cells for transplantation. Semin Immunol 13:323. 

106 



 

83. Morelli, A. E., and A. W. Thomson. 1999. Dendritic cells as regulators of tolerance and 
immunity: relevance to transplantation. Graft 2:34. 

 
84. Steptoe, R. J., and A. W. Thomson. 1996. Dendritic cells and tolerance induction. Clin  

Exp Immunol 105:397. 
 
85. Thomson, A. W., and L. Lu. 1999. Are dendritic cells the key to liver transplant 

tolerance? Immunol Today 20:27. 
 
86. Zhai, Y., and J. W. Kupiec-Weglinski. 1999. What is the role of regulatory T cells in 

transplantation tolerance? Curr Opin Immunol 11:497. 
 
87. Lu, L., D. McCaslin, T. E. Starzl, and A. W. Thomson. 1995. Bone marrow-derived 

dendritic cell progenitors (NLDC 145+, MHC class II+, B7-1dim, B7-2-) induce 
alloantigen-specific hyporesponsiveness in murine T lymphocytes. Transplantation 
60:1539. 

 
88. De Smedt, T., M. Van Mechelen, G. De Becker, J. Urbain, O. Leo, and M. Moser. 1997. 

Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 
27:1229. 

 
89. Enk, A. H., V. L. Angeloni, M. C. Udey, and S. I. Katz. 1993. Inhibition of Langerhans 

cell antigen-presenting function by IL-10. A role for IL-10 in induction of tolerance. J 
Immunol 151:2390. 

 
90. Steinbrink, K., M. Wolfl, H. Jonuleit, J. Knop, and A. H. Enk. 1997. Induction of 

tolerance by IL-10-treated dendritic cells. J Immunol 159:4772. 
 
91. Yarilin, D., R. Duan, Y. M. Huang, and B. G. Xiao. 2002. Dendritic cells exposed in vitro 

to TGF-beta1 ameliorate experimental autoimmune myasthenia gravis. Clin Exp Immunol 
127:214. 

 
92. Hawiger, D., K. Inaba, Y. Dorsett, M. Guo, K. Mahnke, M. Rivera, J. V. Ravetch, R. M. 

Steinman, and M. C. Nussenzweig. 2001. Dendritic cells induce peripheral T cell 
unresponsiveness under steady state conditions in vivo. J Exp Med 194:769. 

 
93. Grohmann, U., R. Bianchi, E. Ayroldi, M. L. Belladonna, D. Surace, M. C. Fioretti, and 

P. Puccetti. 1997. A tumor-associated and self antigen peptide presented by dendritic 
cells may induce T cell anergy in vivo, but IL-12 can prevent or revert the anergic state. 
J-Immunol 158:3593. 

 
94. Chen, W., S. Issazadeh, M. H. Sayegh, and S. J. Khoury. 1997. In vivo mechanisms of 

acquired thymic tolerance. Cell Immunol 179:165. 
 

107 



 

95. Chen, W., M. H. Sayegh, and S. J. Khoury. 1998. Mechanisms of acquired thymic 
tolerance in vivo: intrathymic injection of antigen induces apoptosis of thymocytes and 
peripheral T cell anergy. J Immunol 160:1504. 

 
96. Lu, L., S. Qian, P. A. Hershberger, W. A. Rudert, D. H. Lynch, and A. W. Thomson. 

1997. Fas ligand (CD95L) and B7 expression on dendritic cells provide counter-
regulatory signals for T cell survival and proliferation. J Immunol 158:5676. 

 
97. Lu, L., C. A. Bonham, F. G. Chambers, S. C. Watkins, R. A. Hoffman, R. L. Simmons, 

and A. W. Thomson. 1996. Induction of nitric oxide synthase in mouse dendritic cells by 
IFN-gamma, endotoxin, and interaction with allogeneic T cells: nitric oxide production is 
associated with dendritic cell apoptosis. J Immunol 157:3577. 

 
98. Lambolez, F., K. Jooss, F. Vasseur, and A. Sarukhan. 2002. Tolerance induction to self 

antigens by peripheral dendritic cells. Eur J Immunol 32:2588. 
 
99. Kalinski, P., C. M. Hilkens, A. Snijders, F. G. Snijdewint, and M. L. Kapsenberg. 1997. 

IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote 
type 2 cytokine production in maturing human naive T helper cells. J Immunol 159:28. 

 
100. Khoury, S. J., L. Gallon, R. R. Verburg, A. Chandraker, R. Peach, P. S. Linsley, L. A. 

Turka, W. W. Hancock, and M. H. Sayegh. 1996. Ex vivo treatment of antigen-
presenting cells with CTLA4Ig and encephalitogenic peptide prevents experimental 
autoimmune encephalomyelitis in the Lewis rat. J Immunol 157:3700. 

 
101. Shortman, K., and Y. J. Liu. 2002. Mouse and human dendritic cell subtypes. Nat Rev 

Immunol 2:151. 
 
102. Boonstra, A., C. Asselin-Paturel, M. Gilliet, C. Crain, G. Trinchieri, Y. J. Liu, and A. 

O'Garra. 2003. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in 
directing T helper type 1 and 2 cell development: dependency on antigen dose and 
differential toll-like receptor ligation. J Exp Med 197:101. 

 
103. Strom, T. B., P. Roy-Chaudhury, R. Manfro, X. X. Zheng, P. W. Nickerson, K. Wood, 

and A. Bushell. 1996. The Th1/Th2 paradigm and the allograft response. Curr Opin 
Immunol 8:688. 

 
104. Zhai, Y., R. M. Ghobrial, R. W. Busuttil, and J. W. Kupiec-Weglinski. 1999. Th1 and 

Th2 cytokines in organ transplantation: paradigm lost? Crit Rev Immunol 19:155. 
 
105. VanBuskirk, A. M., M. E. Wakely, and C. G. Orosz. 1996. Transfusion of polarized 

TH2-like cell populations into SCID mouse cardiac allograft recipients results in acute 
allograft rejection. Transplantation 62:229. 

 
106. Zelenika, D., E. Adams, A. Mellor, E. Simpson, P. Chandler, B. Stockinger, H. 

Waldmann, and S. P. Cobbold. 1998. Rejection of H-Y disparate skin grafts by 

108 



 

monospecific CD4+ Th1 and Th2 cells: no requirement for CD8+ T cells or B cells. J 
Immunol 161:1868. 

 
107. Wood, K. J., and S. Sakaguchi. 2003. Regulatory T cells in transplantation tolerance. Nat 

Rev Immunol 3:199. 
 
108. Walsh, P. T., D. K. Taylor, and L. A. Turka. 2004. Tregs and transplantation tolerance. J 

Clin Invest 114:1398. 
 
109. Jonuleit, H., E. Schmitt, G. Schuler, J. Knop, and A. H. Enk. 2000. Induction of 

interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by 
repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 
192:1213. 

 
110. Lu, L., C. A. Bonham, X. Liang, Z. Chen, W. Li, L. Wang, S. C. Watkins, M. A. 

Nalesnik, M. S. Schlissel, A. J. Demestris, J. J. Fung, and S. Qian. 2001. Liver-derived 
DEC205+B220+CD19- dendritic cells regulate T cell responses. J Immunol 166:7042. 

 
111. Roncarolo, M. G., M. K. Levings, and C. Traversari. 2001. Differentiation of T 

regulatory cells by immature dendritic cells. J Exp Med 193:F5. 
 
112. Lavelle, E. C., E. McNeela, M. E. Armstrong, O. Leavy, S. C. Higgins, and K. H. Mills. 

2003. Cholera toxin promotes the induction of regulatory T cells specific for bystander 
antigens by modulating dendritic cell activation. J Immunol 171:2384. 

 
113. Wakkach, A., N. Fournier, V. Brun, J. P. Breittmayer, F. Cottrez, and H. Groux. 2003. 

Characterization of dendritic cells that induce tolerance and T regulatory 1 cell 
differentiation in vivo. Immunity 18:605. 

 
114. Graca, L., S. P. Cobbold, and H. Waldmann. 2002. Identification of regulatory T cells in 

tolerated allografts. J Exp Med 195:1641. 
 
115. Taner, T., and A. W. Thomson. 2004. Fashioning regulatory dendritic cells: what is 

currently in vogue? Curr Opin Mol Ther 6:78. 
 
116. Sato, K., N. Yamashita, M. Baba, and T. Matsuyama. 2003. Modified myeloid dendritic 

cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood 
101:3581. 

 
117. Sato, K., N. Yamashita, N. Yamashita, M. Baba, and T. Matsuyama. 2003. Regulatory 

dendritic cells protect mice from murine acute graft-versus-host disease and leukemia 
relapse. Immunity 18:367. 

 
118. Sato, K., N. Yamashita, and T. Matsuyama. 2002. Human peripheral blood monocyte-

derived interleukin-10-induced semi-mature dendritic cells induce anergic CD4(+) and 

109 



 

CD8(+) T cells via presentation of the internalized soluble antigen and cross-presentation 
of the phagocytosed necrotic cellular fragments. Cell Immunol 215:186. 

 
119. Menges, M., S. Rossner, C. Voigtlander, H. Schindler, N. A. Kukutsch, C. Bogdan, K. 

Erb, G. Schuler, and M. B. Lutz. 2002. Repetitive injections of dendritic cells matured 
with tumor necrosis factor alpha induce antigen-specific protection of mice from 
autoimmunity. J Exp Med 195:15. 

 
120. Kalinski, P., C. M. Hilkens, E. A. Wierenga, and M. L. Kapsenberg. 1999. T-cell priming 

by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol 
Today 20:561. 

 
121. Gosset, P., F. Bureau, V. Angeli, M. Pichavant, C. Faveeuw, A. B. Tonnel, and F. 

Trottein. 2003. Prostaglandin D2 affects the maturation of human monocyte-derived 
dendritic cells: consequence on the polarization of naive Th cells. J Immunol 170:4943. 

 
122. Faveeuw, C., P. Gosset, F. Bureau, V. Angeli, H. Hirai, T. Maruyama, S. Narumiya, M. 

Capron, and F. Trottein. 2003. Prostaglandin D2 inhibits the production of interleukin-12 
in murine dendritic cells through multiple signaling pathways. Eur J Immunol 33:889. 

 
123. Panther, E., S. Corinti, M. Idzko, Y. Herouy, M. Napp, A. la Sala, G. Girolomoni, and J. 

Norgauer. 2003. Adenosine affects expression of membrane molecules, cytokine and 
chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood 
101:3985. 

 
124. Morita, R., N. Ukyo, M. Furuya, T. Uchiyama, and T. Hori. 2003. Atrial natriuretic 

peptide polarizes human dendritic cells toward a Th2-promoting phenotype through its 
receptor guanylyl cyclase-coupled receptor A. J Immunol 170:5869. 

 
125. Feili-Hariri, M., D. Falkner, A. Gambotto, G. Papworth, S. Watkins, P. Robbins, and P. 

Morel. 2003. Dendritic cells transduced to express IL-4 prevent diabetes in nonobese 
diabetes with advanced insulitis. Human Gene Therapy 14:18. 

 
126. Kim, S. H., S. Kim, C. H. Evans, S. C. Ghivizzani, T. Oligino, and P. D. Robbins. 2001. 

Effective treatment of established murine collagen-induced arthritis by systemic 
administration of dendritic cells genetically modified to express IL-4. J Immunol 
166:3499. 

 
127. Morita, Y., J. Yang, R. Gupta, K. Shimizu, E. A. Shelden, J. Endres, J. J. Mule, K. T. 

McDonagh, and D. A. Fox. 2001. Dendritic cells genetically engineered to express IL-4 
inhibit murine collagen-induced arthritis. J Clin Invest 107:1275. 

 
128. Kim, S. H., S. Kim, T. J. Oligino, and P. D. Robbins. 2002. Effective treatment of 

established mouse collagen-induced arthritis by systemic administration of dendritic cells 
genetically modified to express FasL. Mol Ther 6:584. 

 

110 



 

129. Buonocore, S., F. Paulart, A. Le Moine, M. Braun, I. Salmon, S. Van Meirvenne, K. 
Thielemans, M. Goldman, and V. Flamand. 2003. Dendritic cells overexpressing CD95 
(Fas) ligand elicit vigorous allospecific T-cell responses in vivo. Blood 101:1469. 

 
130. Terness, P., T. M. Bauer, L. Rose, C. Dufter, A. Watzlik, H. Simon, and G. Opelz. 2002. 

Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing 
dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447. 

 
131. Calder, V. L., J. Bondeson, F. M. Brennan, B. M. Foxwell, and M. Feldmann. 2003. 

Antigen-specific T-cell downregulation by human dendritic cells following blockade of 
NF-kappaB. Scand J Immunol 57:261. 

 
132. Hill, J. A., T. E. Ichim, K. P. Kusznieruk, M. Li, X. Huang, X. Yan, R. Zhong, E. Cairns, 

D. A. Bell, and W. P. Min. 2003. Immune modulation by silencing IL-12 production in 
dendritic cells using small interfering RNA. J Immunol 171:691. 

 
133. Asiedu, C., S. S. Dong, A. Pereboev, W. Wang, J. Navarro, D. T. Curiel, and J. M. 

Thomas. 2002. Rhesus monocyte-derived dendritic cells modified to over-express TGF-
beta1 exhibit potent veto activity. Transplantation 74:629. 

 
134. Lee, J. I., R. W. Ganster, D. A. Geller, G. J. Burckart, A. W. Thomson, and L. Lu. 1999. 

Cyclosporine A inhibits the expression of costimulatory molecules on in vitro-generated 
dendritic cells: association with reduced nuclear translocation of nuclear factor kappa B. 
Transplantation 68:1255. 

 
135. Matsue, H., C. Yang, K. Matsue, D. Edelbaum, M. Mummert, and A. Takashima. 2002. 

Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, 
and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen 
presentation. J Immunol 169:3555. 

 
136. Woltman, A. M., J. W. de Fijter, S. W. Kamerling, L. C. Paul, M. R. Daha, and C. van 

Kooten. 2000. The effect of calcineurin inhibitors and corticosteroids on the 
differentiation of human dendritic cells. Eur J Immunol 30:1807. 

 
137. Hackstein, H., and A. W. Thomson. 2004. Dendritic cells: emerging pharmacological 

targets of immunosuppressive drugs. Nat Rev Immunol 4:24. 
 
138. Matyszak, M. K., S. Citterio, M. Rescigno, and P. Ricciardi-Castagnoli. 2000. 

Differential effects of corticosteroids during different stages of dendritic cell maturation. 
Eur J Immunol 30:1233. 

 
139. Steinschulte, C., T. Taner, A. W. Thomson, G. Bein, and H. Hackstein. 2003. Cutting 

edge: sanglifehrin A, a novel cyclophilin-binding immunosuppressant blocks bioactive 
IL-12 production by human dendritic cells. J Immunol 171:542. 

 

111 



 

140. Penna, G., and L. Adorini. 2000. 1 Alpha,25-dihydroxyvitamin D3 inhibits 
differentiation, maturation, activation, and survival of dendritic cells leading to impaired 
alloreactive T cell activation. J Immunol 164:2405. 

 
141. Hackstein, H., A. E. Morelli, A. T. Larregina, R. W. Ganster, G. D. Papworth, A. J. 

Logar, S. C. Watkins, L. D. Falo, and A. W. Thomson. 2001. Aspirin inhibits in vitro 
maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. J 
Immunol 166:7053. 

 
142. Vosters, O., J. Neve, D. De Wit, F. Willems, M. Goldman, and V. Verhasselt. 2003. 

Dendritic cells exposed to nacystelyn are refractory to maturation and promote the 
emergence of alloreactive regulatory t cells. Transplantation 75:383. 

 
143. Vieira, P. L., H. C. Heystek, J. Wormmeester, E. A. Wierenga, and M. L. Kapsenberg. 

2003. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and 
increased IL-10 production through modulation of dendritic cells. J Immunol 170:4483. 

 
144. Martin, E., B. O'Sullivan, P. Low, and R. Thomas. 2003. Antigen-specific suppression of 

a primed immune response by dendritic cells mediated by regulatory T cells secreting 
interleukin-10. Immunity 18:155. 

 
145. Sehgal, S. N. 2003. Sirolimus: its discovery, biological properties, and mechanism of 

action. Transplant Proc 35:7S. 
 
146. Martel, R. R., J. Klicius, and S. Galet. 1977. Inhibition of the immune response by 

rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 55:48. 
 
147. Carlson, R. P., W. L. Baeder, R. G. Caccese, L. M. Warner, and S. N. Sehgal. 1993. 

Effects of orally administered rapamycin in animal models of arthritis and other 
autoimmune diseases. Ann N Y Acad Sci 685:86. 

 
148. Calne, R. Y., D. S. Collier, S. Lim, S. G. Pollard, A. Samaan, D. J. White, and S. Thiru. 

1989. Rapamycin for immunosuppression in organ allografting. Lancet 2:227. 
 
149. Bjornsti, M. A., and P. J. Houghton. 2004. The TOR pathway: a target for cancer therapy. 

Nat Rev Cancer 4:335. 
 
150. Hay, N., and N. Sonenberg. 2004. Upstream and downstream of mTOR. Genes Dev 

18:1926. 
 
151. Kim, D. H., D. D. Sarbassov, S. M. Ali, J. E. King, R. R. Latek, H. Erdjument-Bromage, 

P. Tempst, and D. M. Sabatini. 2002. mTOR interacts with raptor to form a nutrient-
sensitive complex that signals to the cell growth machinery. Cell 110:163. 

 
152. Stolovich, M., H. Tang, E. Hornstein, G. Levy, R. Cohen, S. S. Bae, M. J. Birnbaum, and 

O. Meyuhas. 2002. Transduction of growth or mitogenic signals into translational 

112 



 

activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated 
pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 22:8101. 

 
153. Gingras, A. C., B. Raught, and N. Sonenberg. 2001. Regulation of translation initiation 

by FRAP/mTOR. Genes Dev 15:807. 
 
154. Fingar, D. C., S. Salama, C. Tsou, E. Harlow, and J. Blenis. 2002. Mammalian cell size is 

controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 
16:1472. 

 
155. Fingar, D. C., C. J. Richardson, A. R. Tee, L. Cheatham, C. Tsou, and J. Blenis. 2004. 

mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-
BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24:200. 

 
156. Koromilas, A. E., A. Lazaris-Karatzas, and N. Sonenberg. 1992. mRNAs containing 

extensive secondary structure in their 5' non-coding region translate efficiently in cells 
overexpressing initiation factor eIF-4E. Embo J 11:4153. 

 
157. Lai, J. H., and T. H. Tan. 1994. CD28 signaling causes a sustained down-regulation of I 

kappa B alpha which can be prevented by the immunosuppressant rapamycin. J Biol 
Chem 269:30077. 

 
158. Nourse, J., E. Firpo, W. M. Flanagan, S. Coats, K. Polyak, M. H. Lee, J. Massague, G. R. 

Crabtree, and J. M. Roberts. 1994. Interleukin-2-mediated elimination of the p27Kip1 
cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372:570. 

 
159. Kuo, C. J., J. Chung, D. F. Fiorentino, W. M. Flanagan, J. Blenis, and G. R. Crabtree. 

1992. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 
358:70. 

 
160. Kay, J. E., L. Kromwel, S. E. Doe, and M. Denyer. 1991. Inhibition of T and B 

lymphocyte proliferation by rapamycin. Immunology 72:544. 
 
161. Metcalfe, S. M., and F. M. Richards. 1990. Cyclosporine, FK506, and rapamycin. Some 

effects on early activation events in serum-free, mitogen-stimulated mouse spleen cells. 
Transplantation 49:798. 

 
162. Kahan, B. D., S. Gibbons, N. Tejpal, S. M. Stepkowski, and T. C. Chou. 1991. 

Synergistic interactions of cyclosporine and rapamycin to inhibit immune performances 
of normal human peripheral blood lymphocytes in vitro. Transplantation 51:232. 

 
163. Dumont, F. J., M. J. Staruch, S. L. Koprak, M. R. Melino, and N. H. Sigal. 1990. Distinct 

mechanisms of suppression of murine T cell activation by the related macrolides FK-506 
and rapamycin. J Immunol 144:251. 

 

113 



 

164. Powell, J. D., C. G. Lerner, and R. H. Schwartz. 1999. Inhibition of cell cycle progression 
by rapamycin induces T cell clonal anergy even in the presence of costimulation. J 
Immunol 162:2775. 

 
165. Powell, J. D., D. Bruniquel, and R. H. Schwartz. 2001. TCR engagement in the absence 

of cell cycle progression leads to T cell anergy independent of p27(Kip1). Eur J Immunol 
31:3737. 

 
166. Aagaard-Tillery, K. M., and D. F. Jelinek. 1994. Inhibition of human B lymphocyte cell 

cycle progression and differentiation by rapamycin. Cell Immunol 156:493. 
 
167. Kim, H. S., J. Raskova, D. Degiannis, and K. Raska, Jr. 1994. Effects of cyclosporine and 

rapamycin on immunoglobulin production by preactivated human B cells. Clin Exp 
Immunol 96:508. 

 
168. Akselband, Y., M. W. Harding, and P. A. Nelson. 1991. Rapamycin inhibits spontaneous 

and fibroblast growth factor beta-stimulated proliferation of endothelial cells and 
fibroblasts. Transplant Proc 23:2833. 

 
169. Gregory, C. R., P. Huie, M. E. Billingham, and R. E. Morris. 1993. Rapamycin inhibits 

arterial intimal thickening caused by both alloimmune and mechanical injury. Its effect 
on cellular, growth factor, and cytokine response in injured vessels. Transplantation 
55:1409. 

 
170. Marx, S. O., T. Jayaraman, L. O. Go, and A. R. Marks. 1995. Rapamycin-FKBP inhibits 

cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res 76:412. 
 
171. Ikonen, T. S., J. F. Gummert, M. Hayase, Y. Honda, B. Hausen, U. Christians, G. J. 

Berry, P. G. Yock, and R. E. Morris. 2000. Sirolimus (rapamycin) halts and reverses 
progression of allograft vascular disease in non-human primates. Transplantation 70:969. 

 
172. Mancini, D., S. Pinney, D. Burkhoff, J. LaManca, S. Itescu, E. Burke, N. Edwards, M. 

Oz, and A. R. Marks. 2003. Use of rapamycin slows progression of cardiac 
transplantation vasculopathy. Circulation 108:48. 

 
173. Blaha, P., S. Bigenzahn, Z. Koporc, M. Schmid, F. Langer, E. Selzer, H. Bergmeister, F. 

Wrba, J. Kurtz, C. Kiss, E. Roth, F. Muehlbacher, M. Sykes, and T. Wekerle. 2003. The 
influence of immunosuppressive drugs on tolerance induction through bone marrow 
transplantation with costimulation blockade. Blood 101:2886. 

 
174. Wells, A. D., X. C. Li, Y. Li, M. C. Walsh, X. X. Zheng, Z. Wu, G. Nunez, A. Tang, M. 

Sayegh, W. W. Hancock, T. B. Strom, and L. A. Turka. 1999. Requirement for T-cell 
apoptosis in the induction of peripheral transplantation tolerance. Nat Med 5:1303. 

 

114 



 

175. Li, Y., X. C. Li, X. X. Zheng, A. D. Wells, L. A. Turka, and T. B. Strom. 1999. Blocking 
both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells 
and induction of peripheral allograft tolerance. Nat Med 5:1298. 

 
176. Zheng, X. X., A. Sanchez-Fueyo, M. Sho, C. Domenig, M. H. Sayegh, and T. B. Strom. 

2003. Favorably tipping the balance between cytopathic and regulatory T cells to create 
transplantation tolerance. Immunity 19:503. 

 
177. Elster, E. A., D. A. Hale, R. B. Mannon, L. C. Cendales, S. J. Swanson, and A. D. Kirk. 

2004. The road to tolerance: renal transplant tolerance induction in nonhuman primate 
studies and clinical trials. Transpl Immunol 13:87. 

 
178. Hackstein, H., T. Taner, A. J. Logar, and A. W. Thomson. 2002. Rapamycin inhibits 

macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived 
dendritic cells. Blood 100:1084. 

 
179. Hackstein, H., T. Taner, A. F. Zahorchak, A. E. Morelli, A. J. Logar, A. Gessner, and A. 

W. Thomson. 2003. Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro 
and dendritic cell mobilization and function in vivo. Blood 101:4457. 

 
180. Sigal, N. H., and F. J. Dumont. 1992. Cyclosporin A, FK-506, and rapamycin: 

pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol 10:519. 
 
181. Banchereau, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and 

K. Palucka. 2000. Immunobiology of dendritic cells. Annu Rev Immunol 18:767. 
 
182. Lu, L., J. Woo, A. S. Rao, Y. Li, S. C. Watkins, S. Qian, T. E. Starzl, A. J. Demetris, and 

A. W. Thomson. 1994. Propagation of dendritic cell progenitors from normal mouse liver 
using granulocyte/macrophage colony-stimulating factor and their maturational 
development in the presence of type-1 collagen. J Exp Med 179:1823. 

 
183. Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R. 

M. Steinman. 1992. Generation of large numbers of dendritic cells from mouse bone 
marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J 
Exp Med 176:1693. 

 
184. Mohrs, M., B. Ledermann, G. Kohler, A. Dorfmuller, A. Gessner, and F. Brombacher. 

1999. Differences between IL-4- and IL-4 receptor alpha-deficient mice in chronic 
leishmaniasis reveal a protective role for IL-13 receptor signaling. J Immunol 162:7302. 

 
185. Morelli, A. E., A. F. Zahorchak, A. T. Larregina, B. L. Colvin, A. J. Logar, T. Takayama, 

L. D. Falo, and A. W. Thomson. 2001. Cytokine production by mouse myeloid dendritic 
cells in relation to differentiation and terminal maturation induced by lipopolysaccharide 
or CD40 ligation. Blood 98:1512. 

 

115 



 

186. MacDonald, A., J. Scarola, J. T. Burke, and J. J. Zimmerman. 2000. Clinical 
pharmacokinetics and therapeutic drug monitoring of sirolimus. Clin Ther 22:B101. 

 
187. Grabbe, S., E. Kampgen, and G. Schuler. 2000. Dendritic cells: multi-lineal and multi-

functional. Immunol Today 21:431. 
 
188. Metlay, J. P., M. D. Witmer-Pack, R. Agger, M. T. Crowley, D. Lawless, and R. M. 

Steinman. 1990. The distinct leukocyte integrins of mouse spleen dendritic cells as 
identified with new hamster monoclonal antibodies. J Exp Med 171:1753. 

 
189. Falcone, M., B. Yeung, L. Tucker, E. Rodriguez, T. Krahl, and N. Sarvetnick. 2001. IL-4 

triggers autoimmune diabetes by increasing self-antigen presentation within the 
pancreatic Islets. Clin Immunol 98:190. 

 
190. Raught, B., A. C. Gingras, and N. Sonenberg. 2001. The target of rapamycin (TOR) 

proteins. Proc Natl Acad Sci U S A 98:7037. 
 
191. Woltman, A. M., J. W. de Fijter, S. W. Kamerling, S. W. van Der Kooij, L. C. Paul, M. 

R. Daha, and C. van Kooten. 2001. Rapamycin induces apoptosis in monocyte- and 
CD34-derived dendritic cells but not in monocytes and macrophages. Blood 98:174. 

 
192. Dumont, F. J., M. R. Melino, M. J. Staruch, S. L. Koprak, P. A. Fischer, and N. H. Sigal. 

1990. The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal 
antagonists in murine T cells. J Immunol 144:1418. 

 
193. Jin, Y. J., S. J. Burakoff, and B. E. Bierer. 1992. Molecular cloning of a 25-kDa high 

affinity rapamycin binding protein, FKBP25. J Biol Chem 267:10942. 
 
194. Kahan, B. D., and J. S. Camardo. 2001. Rapamycin: clinical results and future 

opportunities. Transplantation 72:1181. 
 
195. Asao, H., C. Okuyama, S. Kumaki, N. Ishii, S. Tsuchiya, D. Foster, and K. Sugamura. 

2001. Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 
receptor complex. J Immunol 167:1. 

 
196. Di Santo, J. P., F. Colucci, and D. Guy-Grand. 1998. Natural killer and T cells of innate 

and adaptive immunity: lymphoid compartments with different requirements for common 
gamma chain-dependent cytokines. Immunol Rev 165:29. 

 
197. Habib, T., S. Senadheera, K. Weinberg, and K. Kaushansky. 2002. The common gamma 

chain (gamma c) is a required signaling component of the IL-21 receptor and supports IL-
21-induced cell proliferation via JAK3. Biochemistry 41:8725. 

 
198. Sugamura, K., H. Asao, M. Kondo, N. Tanaka, N. Ishii, K. Ohbo, M. Nakamura, and T. 

Takeshita. 1996. The interleukin-2 receptor gamma chain: its role in the multiple 

116 



 

cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 
14:179. 

 
199. Woltman, A. M., S. W. van der Kooij, P. J. Coffer, R. Offringa, M. R. Daha, and C. van 

Kooten. 2003. Rapamycin specifically interferes with GM-CSF signaling in human 
dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 101:1439. 

 
200. Chiang, P. H., L. Wang, C. A. Bonham, X. Liang, J. J. Fung, L. Lu, and S. Qian. 2004. 

Mechanistic insights into impaired dendritic cell function by rapamycin: inhibition of 
Jak2/Stat4 signaling pathway. J Immunol 172:1355. 

 
201. Piemonti, L., P. Monti, P. Allavena, M. Sironi, L. Soldini, B. E. Leone, C. Socci, and V. 

Di Carlo. 1999. Glucocorticoids affect human dendritic cell differentiation and 
maturation. J Immunol 162:6473. 

 
202. Monti, P., A. Mercalli, B. E. Leone, D. C. Valerio, P. Allavena, and L. Piemonti. 2003. 

Rapamycin impairs antigen uptake of human dendritic cells. Transplantation 75:137. 
 
203. de Baey, A., and A. Lanzavecchia. 2000. The role of aquaporins in dendritic cell 

macropinocytosis. J Exp Med 191:743. 
 
204. West, M. A., A. R. Prescott, E. L. Eskelinen, A. J. Ridley, and C. Watts. 2000. Rac is 

required for constitutive macropinocytosis by dendritic cells but does not control its 
downregulation. Curr Biol 10:839. 

 
205. Chou, M. M., and J. Blenis. 1996. The 70 kDa S6 kinase complexes with and is activated 

by the Rho family G proteins Cdc42 and Rac1. Cell 85:573. 
 
206. Miyamoto, S., and B. Safer. 1999. Immunosuppressants FK506 and rapamycin have 

different effects on the biosynthesis of cytoplasmic actin during the early period of T cell 
activation. Biochem J 344:803. 

 
207. Castedo, M., K. F. Ferri, J. Blanco, T. Roumier, N. Larochette, J. Barretina, A. 

Amendola, R. Nardacci, D. Metivier, J. A. Este, M. Piacentini, and G. Kroemer. 2001. 
Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis 
involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-
mediated p53 phosphorylation. J Exp Med 194:1097. 

 
208. Castedo, M., K. F. Ferri, and G. Kroemer. 2002. Mammalian target of rapamycin 

(mTOR): pro- and anti-apoptotic. Cell Death Differ 9:99. 
 
209. Gonzalez, J., T. Harris, G. Childs, and M. B. Prystowsky. 2001. Rapamycin blocks IL-2-

driven T cell cycle progression while preserving T cell survival. Blood Cells Mol Dis 
27:572. 

 

117 



 

210. Johnson, K. L., and A. Lawen. 1999. Rapamycin inhibits didemnin B-induced apoptosis 
in human HL-60 cells: evidence for the possible involvement of FK506-binding protein 
25. Immunol Cell Biol 77:242. 

 
211. Kirk, A. D., L. C. Burkly, D. S. Batty, R. E. Baumgartner, J. D. Berning, K. Buchanan, J. 

H. Fechner, Jr., R. L. Germond, R. L. Kampen, N. B. Patterson, S. J. Swanson, D. K. 
Tadaki, C. N. TenHoor, L. White, S. J. Knechtle, and D. M. Harlan. 1999. Treatment 
with humanized monoclonal antibody against CD154 prevents acute renal allograft 
rejection in nonhuman primates. Nat Med 5:686. 

 
212. Larsen, C. P., E. T. Elwood, D. Z. Alexander, S. C. Ritchie, R. Hendrix, C. Tucker-

Burden, H. R. Cho, A. Aruffo, D. Hollenbaugh, P. S. Linsley, K. J. Winn, and T. C. 
Pearson. 1996. Long-term acceptance of skin and cardiac allografts after blocking CD40 
and CD28 pathways. Nature 381:434. 

 
213. Wekerle, T., J. Kurtz, S. Bigenzahn, Y. Takeuchi, and M. Sykes. 2002. Mechanisms of 

transplant tolerance induction using costimulatory blockade. Curr Opin Immunol 14:592. 
 
214. Antonysamy, M. A., and A. W. Thomson. 2000. Flt3 ligand (FL) and its influence on 

immune reactivity. Cytokine 12:87. 
 
215. Lyman, S. D. 1998. Biologic effects and potential clinical applications of Flt3 ligand. 

Curr Opin Hematol 5:192. 
 
216. Mahalati, K., and B. D. Kahan. 2001. Clinical pharmacokinetics of sirolimus. Clin 

Pharmacokinet 40:573. 
 
217. Hochrein, H., M. O'Keeffe, T. Luft, S. Vandenabeele, R. J. Grumont, E. Maraskovsky, 

and K. Shortman. 2000. Interleukin (IL)-4 is a major regulatory cytokine governing 
bioactive IL-12 production by mouse and human dendritic cells. J Exp Med 192:823. 

 
218. Niedergang, F., J. C. Sirard, C. T. Blanc, and J. P. Kraehenbuhl. 2000. Entry and survival 

of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do 
not require macrophage-specific virulence factors. Proc Natl Acad Sci U S A 97:14650. 

 
219. Noirey, N., N. Rougier, C. Andre, D. Schmitt, and C. Vincent. 2000. Langerhans-like 

dendritic cells generated from cord blood progenitors internalize pollen allergens by 
macropinocytosis, and part of the molecules are processed and can activate autologous 
naive T lymphocytes. J Allergy Clin Immunol 105:1194. 

 
220. Oguma, S., B. Banner, T. Zerbe, T. Starzl, and A. J. Demetris. 1988. Participation of 

dendritic cells in vascular lesions of chronic rejection of human allografts. Lancet 2:933. 
 
221. Ludewig, B., S. Freigang, M. Jaggi, M. O. Kurrer, Y. C. Pei, L. Vlk, B. Odermatt, R. M. 

Zinkernagel, and H. Hengartner. 2000. Linking immune-mediated arterial inflammation 

118 



 

and cholesterol-induced atherosclerosis in a transgenic mouse model. Proc Natl Acad Sci 
U S A 97:12752. 

 
222. Ludewig, B., T. Junt, H. Hengartner, and R. M. Zinkernagel. 2001. Dendritic cells in 

autoimmune diseases. Curr Opin Immunol 13:657. 
 
223. Blanco, P., A. K. Palucka, M. Gill, V. Pascual, and J. Banchereau. 2001. Induction of 

dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 
294:1540. 

 
224. Farkas, L., K. Beiske, F. Lund-Johansen, P. Brandtzaeg, and F. L. Jahnsen. 2001. 

Plasmacytoid dendritic cells (natural interferon- alpha/beta-producing cells) accumulate 
in cutaneous lupus erythematosus lesions. Am J Pathol 159:237. 

 
225. Warner, L. M., L. M. Adams, and S. N. Sehgal. 1994. Rapamycin prolongs survival and 

arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis 
Rheum 37:289. 

 
226. Warner, L. M., T. Cummons, L. Nolan, and S. N. Sehgal. 1995. Sub-therapeutic doses of 

sirolimus and cyclosporin A in combination reduce SLE pathologies in the MRL mouse. 
Inflamm Res 44:S205. 

 
227. Abu-Duhier, F. M., A. C. Goodeve, G. A. Wilson, R. S. Carr, I. R. Peake, and J. T. 

Reilly. 2002. FLT3 internal tandem duplication mutations are rare in agnogenic myeloid 
metaplasia. Blood 100:364. 

 
228. Brown, P., S. Meshinchi, M. Levis, T. A. Alonzo, R. Gerbing, B. Lange, R. Arceci, and 

D. Small. 2004. Pediatric AML primary samples with FLT3/ITD mutations are 
preferentially killed by FLT3 inhibition. Blood 104:1841. 

 
229. Kiyoi, H., T. Naoe, Y. Nakano, S. Yokota, S. Minami, S. Miyawaki, N. Asou, K. 

Kuriyama, I. Jinnai, C. Shimazaki, H. Akiyama, K. Saito, H. Oh, T. Motoji, E. Omoto, H. 
Saito, R. Ohno, and R. Ueda. 1999. Prognostic implication of FLT3 and N-RAS gene 
mutations in acute myeloid leukemia. Blood 93:3074. 

 
230. Yamamoto, Y., H. Kiyoi, Y. Nakano, R. Suzuki, Y. Kodera, S. Miyawaki, N. Asou, K. 

Kuriyama, F. Yagasaki, C. Shimazaki, H. Akiyama, K. Saito, M. Nishimura, T. Motoji, 
K. Shinagawa, A. Takeshita, H. Saito, R. Ueda, R. Ohno, and T. Naoe. 2001. Activating 
mutation of D835 within the activation loop of FLT3 in human hematologic 
malignancies. Blood 97:2434. 

 
231. Yokota, S., H. Kiyoi, M. Nakao, T. Iwai, S. Misawa, T. Okuda, Y. Sonoda, T. Abe, K. 

Kahsima, Y. Matsuo, and T. Naoe. 1997. Internal tandem duplication of the FLT3 gene is 
preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among 
various hematological malignancies. A study on a large series of patients and cell lines. 
Leukemia 11:1605. 

119 



 

 
232. Guba, M., P. von Breitenbuch, M. Steinbauer, G. Koehl, S. Flegel, M. Hornung, C. J. 

Bruns, C. Zuelke, S. Farkas, M. Anthuber, K. W. Jauch, and E. K. Geissler. 2002. 
Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: 
involvement of vascular endothelial growth factor. Nat Med 8:128. 

 
233. Taner, T., H. Hackstein, Z. Wang, A. E. Morelli, and A. W. Thomson. 2005. Rapamycin-

treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and 
prolong graft survival. Am J Transplant 5:228. 

 
234. Schultze, J. L., S. Grabbe, and M. S. von Bergwelt-Baildon. 2004. DCs and CD40-

activated B cells: current and future avenues to cellular cancer immunotherapy. Trends 
Immunol 25:659. 

 
235. Alters, S. E., H. K. Song, and C. G. Fathman. 1993. Evidence that clonal anergy is 

induced in thymic migrant cells after anti-CD4-mediated transplantation tolerance. 
Transplantation 56:633. 

 
236. Takayama, T., K. Kaneko, A. E. Morelli, W. Li, H. Tahara, and A. W. Thomson. 2002. 

Retroviral delivery of transforming growth factor-β1 to myeloid dendritic cells: inhibition 
of T cell priming ability and influence on allograft survival. Transplantation 74:112. 

 
237. Clare-Salzler, M. J., J. Brooks, A. Chai, K. Van Herle, and C. Anderson. 1992. 

Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer. J Clin Invest 
90:741. 

 
238. Xiao, B. G., Y. M. Huang, L. Y. Xu, M. Ishikawa, and H. Link. 1999. Mechanisms of 

recovery from experimental allergic encephalomyelitis induced with myelin basic protein 
peptide 68-86 in Lewis rats: a role for dendritic cells in inducing apoptosis of CD4+ T 
cells. J Neuroimmunol 97:25. 

 
239. Gould, D. S., and H. Auchincloss, Jr. 1999. Direct and indirect recognition: the role of 

MHC antigens in graft rejection. Immunol Today 20:77. 
 
240. Larsen, C. P., P. J. Morris, and J. M. Austyn. 1990. Migration of dendritic leukocytes 

from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J 
Exp Med 171:307. 

 
241. Lechler, R. I., W. F. Ng, and R. M. Steinman. 2001. Dendritic cells in transplantation - 

friend or foe? Immunity 14:357. 
 
242. Rogers, N. J., and R. I. Lechler. 2001. Allorecognition. Am J Transplant 1:97. 
 
243. Heath, W. R., and F. R. Carbone. 2001. Cross-presentation, dendritic cells, tolerance and 

immunity. Annu Rev Immunol 19:47. 
 

120 



 

244. Nouri-Shirazi, M., and E. Guinet. 2002. Direct and indirect cross-tolerance of alloreactive 
T cells by dendritic cells retained in the immature stage. Transplantation 74:1035. 

 
245. Bickerstaff, A. A., J. J. Wang, D. Xia, and C. G. Orosz. 2002. Allograft acceptance 

despite differential strain-specific induction of TGF-beta/IL-10-mediated 
immunoregulation. Am J Transplant 2:819. 

 
246. Schwartz, R. H. 2003. T cell anergy. Annu Rev Immunol 21:305. 
 
247. Goerdt, S., and C. E. Orfanos. 1999. Other functions, other genes: alternative activation 

of antigen-presenting cells. Immunity 10:137. 
 
248. Nolan, K. F., V. Strong, D. Soler, P. J. Fairchild, S. P. Cobbold, R. Croxton, J. A. 

Gonzalo, A. Rubio, M. Wells, and H. Waldmann. 2004. IL-10-conditioned dendritic 
cells, decommissioned for recruitment of adaptive immunity, elicit innate inflammatory 
gene products in response to danger signals. J Immunol 172:2201. 

 
249. Buonocore, S., V. Flamand, M. Goldman, and M. Y. Braun. 2003. Bone marrow-derived 

immature dendritic cells prime in vivo alloreactive T cells for interleukin-4-dependent 
rejection of major histocompatibility complex class II antigen-disparate cardiac allograft. 
Transplantation 75:407. 

 
250. Min, W. P., R. Gorczynski, X. Y. Huang, M. Kushida, P. Kim, M. Obataki, J. Lei, R. M. 

Suri, and M. S. Cattral. 2000. Dendritic cells genetically engineered to express Fas ligand 
induce donor-specific hyporesponsiveness and prolong allograft survival. J Immunol 
164:161. 

 
251. O'Connell, P. J., W. Li, Z. Wang, S. M. Specht, A. J. Logar, and A. W. Thomson. 2002. 

Immature and mature CD8alpha+ dendritic cells prolong the survival of vascularized 
heart allografts. J Immunol 168:143. 

 
252. Matsue, H., K. Matsue, M. Kusuhara, T. Kumamoto, K. Okumura, H. Yagita, and A. 

Takashima. 2001. Immunosuppressive properties of CD95L-transduced "hybrids" created 
by fusing donor- and recipient-derived dendritic cells. Blood 98:3465. 

 
253. Mirenda, V., I. Berton, J. Read, T. Cook, J. Smith, A. Dorling, and R. I. Lechler. 2004. 

Modified dendritic cells coexpressing self and allogeneic major histocompatability 
complex molecules: an efficient way to induce indirect pathway regulation. J Am Soc 
Nephrol 15:987. 

 
254. Gopinathan, R., H. A. DePaz, O. O. Oluwole, A. O. Ali, M. Garrovillo, K. Engelstad, M. 

A. Hardy, and S. F. Oluwole. 2001. Role of reentry of in vivo alloMHC peptide-activated 
T cells into the adult thymus in acquired systemic tolerance. Transplantation 72:1533. 

 

121 



 

255. Gregori, S., M. Casorati, S. Amuchastegui, S. Smiroldo, A. M. Davalli, and L. Adorini. 
2001. Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate 
mofetil treatment mediate transplantation tolerance. J Immunol 167:1945. 

 
256. Chen, T., J. Guo, M. Yang, C. Han, M. Zhang, W. Chen, Q. Liu, J. Wang, and X. Cao. 

2004. Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor 
expression and inhibiting cyclooxygenase-2 expression. Blood 103:413. 

 
257. Chaussabel, D., and J. Banchereau. 2005. Dendritic cells, therapeutic vectors of immunity 

and tolerance. Am J Transplant 5:205. 
 
258. Fedoseyeva, E. V., F. Zhang, P. L. Orr, D. Levin, H. J. Buncke, and G. Benichou. 1999. 

De novo autoimmunity to cardiac myosin after heart transplantation and its contribution 
to the rejection process. J Immunol 162:6836. 

 
259. Haque, M. A., T. Mizobuchi, K. Yasufuku, T. Fujisawa, R. R. Brutkiewicz, Y. Zheng, K. 

Woods, G. N. Smith, O. W. Cummings, K. M. Heidler, J. S. Blum, and D. S. Wilkes. 
2002. Evidence for immune responses to a self-antigen in lung transplantation: role of 
type V collagen-specific T cells in the pathogenesis of lung allograft rejection. J Immunol 
169:1542. 

 
 

122 


	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	CHAPTER ONE
	INTRODUCTION
	Dendritic cells
	Origins, Subsets and Functions
	Figure 1. Morphology and ultrastructure of immature and matu
	Figure 2. Immature and mature BM-derived DC function.

	DC in Transplantation
	DC as instigators of transplant rejection
	DC as a therapy for transplant rejection
	DC and tolerance induction
	Induction of T cell anergy or apoptosis
	Selective activation of Th2 cells (immune deviation)
	Induction of Treg Cells

	DC plasticity
	Figure 3. Strategies for generating regulatory/tolerogenic D
	Biologic modification of DC
	Genetically engineered DC
	Pharmacologic modification of DC



	Rapamycin
	Clinical development
	Mechanism of Action
	Figure 4. TOR is a central regulator of cell growth and proliferation in response to environmental and nutritional conditions.

	Immunosuppressive and tolerogenic effects
	Table 1. In vitro cellular effects of rapamycin (sirolimus).



	SCOPE OF THIS THESIS
	CHAPTER TWO
	ABSTRACT
	INTRODUCTION
	MATERIALS and METHODS
	Animals
	Generation of BMDC
	Phenotypic analysis of DC
	Mixed Leukocyte Reaction (MLR)
	RNase protection assay
	Analysis of apoptosis
	Endocytosis Quantitative analysis of
	Statistical analyses

	RESULTS
	Rapamycin does not inhibit DC differentiation in vitro


	Figure 5. Numbers of DC are comparable in normal vs. rapamyc
	Rapamycin inhibits maturation of BMDC in an IL-4 dependent m

	Figure 6. The inhibitory effect of rapamycin on DC maturatio
	Rapamycin downregulates post-transcriptional expression of the functional IL-4 receptor complex on DC
	Figure 7. Rapamycin suppresses DC high-affinity IL-4 receptor complex expression at the posttranscriptional level.
	Rapamycin inhibits endocytosis by DC in an IL-4 independent manner
	Figure 8. Rapamycin inhibits endocytosis by GM-CSF+IL-4 expanded DC.
	Figure 9. Rapamycin inhibits endocytosis by GM-CSF expanded immature BMDC.
	Rapamycin’s inhibitory effects on DC maturation and endocytosis are not due to increased apoptosis
	Figure 10.  Rapamycin does not induce DC apoptosis under ste
	Suppressive effects of rapamycin on DC maturation, endocytos
	DISCUSSION

	CHAPTER THREE
	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Animals
	In vivo DC expansion and rapamycin administration
	DC isolation and purification
	Phenotypic analysis of DC
	Cytokine quantitation and allostimulatory activity
	Endocytosis
	Statistical analyses

	RESULTS
	Rapamycin suppresses DC generation in vivo


	Figure 11. DC generation in the steady-state and under dynam
	In vivo administration of rapamycin impairs upregulation of 

	Figure 12. Effect of in vivo rapamycin administration on the
	In vivo administration of rapamycin inhibits DC endocytosis

	Figure 13. In vivo administration of rapamycin inhibits endo
	DC exposed to rapamycin in vivo induces allogeneic T cell hy

	Figure 14. DC exposed to rapamycin in vivo induce allogeneic
	Figure 15. Effect of adoptive transfer of DC on IFN(, IL-2, IL-4 and IL-10 production by recipient T cells after restimulation with donor alloantigen (splenocytes).
	In vivo administration of rapamycin promotes IL-4 hyporesponsiveness of DC and dramatically impairs TNF-( secretion

	Figure 16. In vivo administration of rapamycin promotes IL-4 hyporesponsiveness of DC and suppresses TNF-α production.
	DISCUSSION
	CHAPTER FOUR
	ABSTRACT
	INTRODUCTION
	MATERIALS and METHODS
	Animals
	Generation of BM-derived DC
	Phenotypic analysis of DC
	Pulsing of DC and autologous MLR
	Analysis of Ag uptake
	Analysis of T cell apoptosis and intracellular cytokine expr
	In vivo imaging of labeled DC and immunohistochemical staini
	Vascularized heart transplantation
	Immunofluorescence staining of tissue sections
	RNase protection assay
	Statistical analyses

	RESULTS
	Rapamycin inhibits DC maturation and their subsequent capaci


	Figure 17. Inhibition of DC maturation and T cell allostimul
	Rapamycin treatment does not interfere with lysate uptake by
	Rapamycin treatment does not affect homing of DC to the spleen after their adoptive transfer, but confers capacity to suppress alloAg-specific responses

	Figure 18.  Exposure to rapamycin does not block alloAg upta
	Figure 19. Rapamycin treatment does not affect the homing of
	Figure 20. AlloAg-pulsed, rapamycin-treated DC induce Ag-spe
	Rapamycin-treated, alloAgs-pulsed DC do not increase the inc

	Figure 21. Rapa-DC suppress IL-2 and IFNγ production by T ce
	A single infusion of alloAg-pulsed, rapamycin-treated DC pro

	Figure 22. AlloAg-pulsed Rapa-DC prolong heart graft surviva
	Analysis of mechanisms involved in prolonged graft survival 

	Figure 23. Rapa-DC-pretreated graft recipients show T cell h
	Figure 24. Inflammatory cell infiltration into grafts on day
	Figure 25. Intragraft IFNγ gene expression is decreased in R
	DISCUSSION

	SUMMARY
	BIBLIOGRAPHY

