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ESSAYS IN SEMIPARAMETRIC ECONOMETRICS AND PANEL DATA

ANALYSIS

Martin Burda, PhD

University of Pittsburgh, 2007

Limited dependent variable (LDV) panel data models pose substantial challenges in maxi-

mum likelihood estimation. The likelihood function in such models typically contains multi-

variate integrals that are often analytically intractable. To overcome such problem in a panel

probit model with unobserved individual heterogeneity and autocorrelated errors, in Chapter

1 - co-authored with Roman Liesenfeld and Jean-François Richard - we perform classical and

Bayesian analysis of the model based on the E¢ cient Importance Sampling (EIS) technique

(Richard and Zhang, 2006). We apply our method to the product innovation activity of a

panel of German manufacturing �rms in response to imports and foreign direct investment

con�rming their positive e¤ects. Nonetheless, our key coe¢ cient estimates are smaller than

found in previous literature which can be explained by our �exible model assumptions. The

remaining two chapters present my work on new estimation methods for models based on

conditional moment restrictions. Such models are frequently stipulated by economic theory

but only a few estimators based directly on them have so far been analyzed in the literature.

Indeed, estimation of parameters therein poses a di¢ cult ill-posed inverse problem. Rather,

these models are typically converted into unconditional moment restrictions that are easier

to handle. However, such conversion results in a loss of information compared to the original

speci�cation. Using the information-theoretic framework of so-called Generalized Minimum

Contrast (GMC) estimation, in Chapter 2 I propose a new class of estimators based directly

on conditional moment restrictions that encompasses the entire GMC family. Moreover, I

show that previous literature covering a few special cases of the GMC class use an arbitrary
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uniform weighting scheme over the space of exogenous variables that can be improved upon

with optimal local weighting. All currently available GMC estimators are based on moments

containing �nite-dimensional Euclidean parameters. To alleviate a potential misspeci�cation

problem resulting from strong parametric assumptions, in Chapter 3 I propose a new Sieve-

based Locally Weighted Conditional Empirical Likelihood (SLWCEL) estimator containing

also in�nite dimensional unknown functions, thus extending a special case of Chapter 2 to

the semiparametric environment. Much of Chapter 3 is devoted to analysis of SLWCEL�s

asymptotic properties.
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1.0 INTRODUCTION

Limited dependent variable (LDV) panel data models pose substantial challenges in maxi-

mum likelihood estimation. The likelihood function in such models typically contains mul-

tivariate integrals that are often analytically intractable. This obstacle is usually overcome

with the use of simulation methods that replace integrals with computationally inexpensive

Monte Carlo (MC) estimates. Highly accurate smooth probability simulators are indispens-

able for a successful implementation of MC estimators. In particular, the recently developed

E¢ cient Importance Sampling (EIS) technique (Richard and Zhang, 2000, 2006) has been

found highly competitive with previous alternatives.

In Chapter 1 � co-authored with Roman Liesenfeld and Jean-François Richard � we per-

form an EIS-based classical and Bayesian analysis of a panel probit model with unobserved

individual heterogeneity and autocorrelated errors. We do not impose any orthogonality

condition on the unobserved individual e¤ects with respect to the observed regressors. In

the LDV context, the classical EIS-based approach has been implemented for analyzing a

binary logit panel data model in Richard and Zhang (2006) as a Monte Carlo simulation

pilot study, and in Liesenfeld and Richard (2006b) as an application in estimating a model

of union/non-union decision of young men. Here we adopt the procedure to the panel pro-

bit case. A Bayesian analysis of an LDV model under our �exible assumptions has, to our

knowledge, thus far not been performed and represents a methodological contribution. We

embed EIS within the Markov Chain Monte Carlo (MCMC) simulation method to perform

posterior analysis. Speci�cally, we implement the Gibbs sampling scheme where we aug-

ment the data with latent variables. We sample the unobserved individual heterogeneity

component as N individual Gibbs blocks drawing from a piece-wise linear approximation

to the marginal posterior density constructed with a nonparametric form of EIS. The time
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e¤ects are simulated as another Gibbs block with a parametric EIS proposal density for an

Acceptance-Rejection Metropolis-Hastings step.

We apply our method to the product innovation activity of a panel of German manu-

facturing �rms in response to imports, foreign direct investment and other control variables.

The same dataset was analyzed by Bertschek and Lechner (1998) and Greene (2004) for

di¤erent types of estimators under more restrictive assumptions providing a useful bench-

mark for comparison with our results. Our �ndings con�rm the positive e¤ect of imports

and FDI on �rms�innovation activity found in previous literature. However, our coe¢ cient

estimates of these variables were smaller than the ones reported in the benchmark studies.

This discrepancy can be explained by the exclusion of three far outliers from our estimation

and also by our �exible model assumptions relative to previously utilized models.

The remaining two chapters present my work on proposing an analyzing new estima-

tion methods in the realm of models based on moment restrictions. In particular, economic

theory frequently stipulates conditional moment restrictions as a model basis for estimation

and inference in various economic problems. However, since estimation of parameters in

such models in general poses a di¢ cult ill-posed inverse problem, these models are typically

converted into unconditional moment restrictions that are much easier to handle. The con-

version is usually performed by multiplying the vector of moment functions with an arbitrary

matrix-valued function of instruments. This procedure is used under the presumption that

the chosen instruments identi�es the model parameters which may not be true even if the

parameters are identi�ed in the conditional model. Moreover, the conversion to uncondi-

tional moments results in a loss of e¢ ciency with respect to the information contained in

the conditional moments.

The methods typically employed for estimation of the resulting unconditional model have

also been subject to criticism. While the optimally-weighted two-step GMM is �rst-order

asymptotically e¢ cient, its �nite sample properties have been increasingly recognized as rel-

atively poor. A number of alternative estimators, such as the Empirical Likelihood, have

been suggested to overcome this problem. These alternative estimators have been shown to

fall into broader families of estimators such as the Generalized Empirical Likelihood (GEL)

estimators and the Generalized Minimum Contrast (GMC) estimators that share numer-
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ous common properties. The GEL/GMC estimators circumvent the need for estimating a

weight matrix in the two-step GMM procedure by directly minimizing a discrepancy measure

between the estimated distribution and the empirical distribution. Speci�cally, the GMC

family is derived on the basis of an information-theory-based concept of closeness between

probability measures. A growing body of Monte Carlo evidence has revealed favorable �nite-

sample properties of the special cases of the GEL/GMC estimators compared to the GMM.

Speci�cally, the Empirical Likelihood has been singled out as being higher-order e¢ cient

relative to other GEL/GMC estimators (Newey and Smith, 2004).

Most of the GEL/GMC estimators analyzed in previous literature are based on uncon-

ditional moment restrictions subjected to the criticism mentioned above. In addressing this

problem, Kitamura, Tripathi, and Ahn (2004) (KTA) recently developed a Conditional Em-

pirical Likelihood (CEL) estimator that makes e¢ cient use of the information contained in

conditional moment restrictions. Their one-step estimator achieves the semiparametric ef-

�ciency bound without explicitly estimating the optimal instruments. Similar analysis has

been performed by other special cases of GEL/GMC: Antoine, Bonnal, and Renault (2006)

for the case of Conditional Euclidean Likelihood and Smith (2003, 2006) for the Cressie-Read

family of estimators.

Using the GMC information-theoretic framework, in Chapter 2 I extend this line of

research by proposing a new class of estimators based directly on conditional moment re-

strictions that encompasses the entire GMC family. Moreover, I show that in constructing

their special cases the previous literature use an arbitrary uniform weighting scheme over

the space of exogenous variables. This leads to minimizing a discrepancy from a probability

measure that is di¤erent, almost surely, from the one under which the data was distributed.

The reason for this phenomenon is that the previously analyzed estimators were all based

on simple local kernel smoothing of the unconditional moment restrictions model over the

exogenous variables. In contrast, in deriving the new class of conditional GMC estimators

I consider an information-theoretic dual locally weighted GMC optimization problem built

directly on the conditional moment restrictions that minimizes a discrepancy from a proba-

bility measure according to which the data was distributed. As a result, the newly proposed

class of estimators not only includes the previously analyzed conditional estimators as spe-
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cial cases but seeks to replace them with locally weighted alternatives that improve on the

former in terms of �nite sample properties. Particular attention is devoted to the Locally

Weighted Conditional Empirical Likelihood (LWCEL) based on the conjecture that its desir-

able higher-order e¢ ciency found in the unconditional case will carry over to the conditional

environment. I analyze the di¤erences between the new LWCEL and KTA�s CEL in detail

and show in a Monte Carlo study that the LWCEL estimator exhibits better �nite-sample

properties than the CEL. Asymptotic properties of the LWCEL are considered as a special

case of the ones derived for its semiparametric extension in the following Chapter.

All currently available GMC/GEL estimators analyzed in the literature are based on mo-

ment conditions containing �nite-dimensional Euclidean parameters. Such models impose

relatively strong restrictions in assuming that social phenomena occur in a certain speci�c

way. Yet, economic theories seldom produce exact functional forms warranting purely para-

metric models, and misspeci�cations in functional forms may lead to inconsistent parameter

estimates. By specifying the model partially, i.e. by including an unknown function as

a part of the unknown parameters, the inconsistency problem can be alleviated. For this

purpose, in Chapter 3 I propose a new Sieve-based Locally Weighted Conditional Empirical

Likelihood (SLWCEL) estimator for models of conditional moment restrictions containing

�nite-dimensional unknown parameters and in�nite dimensional unknown functions, extend-

ing the LWCEL analyzed in Chapter 2. I �rst derive consistency of the SLWCEL under a

general metric. Then I show that the estimator converges to its population counterpart un-

der the Fisher metric su¢ ciently fast to yield asymptotic normality of SLWCEL�s parametric

component.

The GMC/GEL-based SLWCEL is a one-step information-theoretic alternative to the

two-step Sieve Minimum Distance (SMD) estimator analyzed by Ai and Chen (2003). The

SMD estimator is the only current simultaneous estimation technique that can be used to

estimate models of semiparametric conditional moment restrictions. The SMD�s founding

optimization problem of minimizing the distance between vectors of moment conditions

is akin to the one used in the parametric GMM estimators. Hence, development of an

alternative GMC/GEL-based estimator appears desirable in the light of the above-mentioned

comparisons of parametric GMM - GMC/GEL estimators promulgated in the literature.
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2.0 PANEL DATA PROBIT MODEL

Full title: Classical and Bayesian Analysis of a Probit Panel Data Model with

Unobserved Individual Heterogeneity and Autocorrelated Errors

Co-authored with Roman Liesenfeld and Jean-François Richard

It has long been recognized that maximum likelihood analysis of limited dependent vari-

able (LDV) models with panel data is feasible only under relatively restrictive assumptions

(Butler and Mo¢ tt, 1982). The di¢ culty that such models pose in general lies in the likeli-

hood function containing multivariate integrals that are often analytically intractable. This

obstacle is typically overcome with the use of simulation methods (see e.g. Geweke and

Keane, 2001, and references therein) that replace integrals with computationally inexpen-

sive Monte Carlo (MC) estimates. By the law of large numbers, such integral estimates can

be made arbitrarily accurate by increasing the size of the simulated data.

Simulation-based estimation methods for LDV models generally take one of two ap-

proaches (Hyslop, 1999). The �rst approach, often called the Simulated Maximum Like-

lihood1 (SML), involves obtaining an unbiased simulator2 for the likelihood function and

maximizing the resulting log simulated likelihood function instead of the actual likelihood

function. The second approach utilizes simulation of an expression for the score of the like-

lihood. Two leading examples are the Method of Simulated Moments (MSM) estimator

(McFadden, 1989) and the Method of Simulated Scores (MSS) estimator (Hajivassiliou and

McFadden, 1998). Under the MSM estimator, the score of the likelihood is �rst expressed as

a moment condition, the moment condition is then simulated and the estimator solves for the

1Gourieroux and Monfort (1996) provide the essential statistical background for the SML estimator.
2Here we refer to a method of drawing random numbers involving an appropriate density for the random

draws.
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root of the simulated condition. The MSS estimator solves for the root of the simulated score

directly. Based on available MC evidence, Geweke and Keane (2001, p. 3505)report that "in

most contexts the choice between SML and MSM is not important."3 On the other hand,

Hyslop (1999, p. 1268-1269) expresses preference for SML based on ease of implementation,

numerical stability and computational burden. Notably, while SML is comparatively simple

to implement, "MSM and MSS often require signi�cant manipulation of the score function."

For a successful implementation of any of these estimators, it is essential to use a highly

accurate smooth probability simulator. Among the currently available methods, the GHK

simulator4 (developed by Geweke, 1991; Börsch-Supan and Hajivassiliou, 1993; Keane, 1994)

is the most popular one and it has been reported to perform very well in MC studies for

simulating the multivariate normal choice probabilities (see Geweke and Keane, 2001, and

references therein). However, the recently developed E¢ cient Importance Sampling tech-

nique (Richard and Zhang, 2000, 2006) has been found highly competitive with the GHK

sampler. Zhang and Lee (2004) show in an MC study that while the performance of GHK-

SML and EIS-SML is comparable for short panels (T = 8), for longer panels (T > 50) the

GHK-SML estimates of the lagged dependent variable coe¢ cient and the serial correlation

coe¢ cient are biased (upward and downward, respectively), while the EIS-SML estimates

avoid this bias. The appealing theoretical justi�cation for EIS is one of minimizing the MC

sampling variance in construction of the SML whereas the GHK simulator lacks this prop-

erty. Moreover, the EIS sequential implementation (Danielsson and Richard, 1993; Richard

and Zhang, 2006) is well suited for evaluation of likelihood functions expressed as integrals

with very high dimensions (>1,000).

In this paper, we perform EIS-SML classical and Bayesian analysis of a panel probit

model with unobserved individual heterogeneity and autocorrelated errors. We do not impose

any orthogonality condition on the unobserved individual e¤ects with respect to the observed

3These authors note that one known exception is the case of panel data models with serially correlated
errors - the type of models considered in this paper. This conclusion is based on a study by Lee (1997)that
compared the perfomance of SML and MSM based on the GHK simulator and found GHK-SML serial
correlation parameters severely biased relative to GHK-MSM. However, in this paper we use a di¤erent
simulator, the EIS, which has been found to improve on the GHK simulator in terms of bias (Zhang and
Lee, 2004).

4It is sometimes also called the Smooth Recursive Conditioning (SRC) simulator (Börsch-Supan and
Hajivassiliou, 1993).
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regressors. Our model thus falls outside of the class of what is called in the traditional

econometric parlance "random e¤ects" models (Wooldridge, 2001, p. 252).

In the LDV context5, the classical EIS-SML approach has been implemented in Richard

and Zhang (2006) as a binary logit model in a Monte Carlo simulation pilot study, and in

Liesenfeld and Richard (2006b)analyzing the union/non-union decision of young men with

the data set of Vella and Verbeek (1998). Here we adopt the EIS-SML procedure to the panel

probit case. Two other studies that used the SML method for the panel probit model with

the same assumptions as ours are Falcetti and Tudela (2006), and Hyslop (1999). However,

these authors utilized the competing GHK simulator which is tantamount to using a di¤erent

estimation technique in the construction of the simulated log likelihood function.

In the Bayesian part, we embed EIS within the Markov Chain Monte Carlo (MCMC) sim-

ulation method to perform posterior analysis. Speci�cally, we implement the Gibbs sampling

scheme where we augment the data with latent variables. We sample the unobserved individ-

ual heterogeneity component as N individual Gibbs blocks drawing from a piece-wise linear

approximation to the marginal posterior density constructed with a nonparametric form of

EIS. The time e¤ects are simulated as another Gibbs block with a parametric EIS proposal

density for an Acceptance-Rejection Metropolis-Hastings step. The general approach to aug-

mented Gibbs sampling has been implemented in Liesenfeld and Richard (2003, 2006a) in

models of stochastic volatility for sampling the autocorrelated error component. However,

Bayesian analysis of an LDV model with unobserved heterogeneity and autocorrelated er-

rors has, to our knowledge, thus far not been performed and represents a methodological

contribution of this paper. The use of nonparametric EIS represents another novel feature.

We apply our method to the product innovation activity of a panel of German manu-

facturing �rms in response to imports, foreign direct investment and other control variables.

The same dataset was analyzed by Bertschek and Lechner (1998) and Greene (2004) for dif-

ferent types of estimators under more restrictive assumptions providing a useful benchmark

for comparison with our results.6 Speci�cally, Bertschek and Lechner (1998) proposed sev-

5The EIS technique has been successfully implemented in other models, speci�cally stochastic volatil-
ity models (Liesenfeld and Richard, 2003, 2006a), dynamic parameter models involving counts (Jung and
Liesenfeld, 2001), and stochastic autoregressive duration models (Bauwens and Hautsch, 0003).

6Similar data set was used in an interesting paper by Inkmann (2000) but with some regressors di¤erent
from ours.
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eral variants of a GMM estimator based on the period speci�c regression functions. Greene

(2004) performed maximum likelihood analysis with GHK-SML and the Butler and Mof-

�tt (1982) Hermite quadrature method. None of these authors considered a model with

unobserved individual heterogeneity and autocorrelated errors as analyzed in this paper.

2.1 EMPIRICAL EXAMPLE

The goal of our empirical application is to investigate �rms�innovative activity as a response

to imports and foreign direct investment (FDI). This problem was originally considered in

Bertschek (1995) who suggested that imports and inward FDI had a positive e¤ect on the

innovative activity of domestic �rms. The rationale behind this argument is that imports and

FDI represent a competitive threat to domestic �rms. Competition on the domestic market

is enhanced and the pro�tability of the domestic �rms might be reduced. Consequently,

these �rms have to produce more e¢ ciently. One possibility to react to this competitive

threat is to increase innovative activity.

The analyzed dataset contains N = 1270 cross-section units observed over T = 5 time

periods. The dependent variable yit in the data takes the value one if a product innovation

occurred within the last year and the value zero otherwise. TheK�vector of control variables

is denoted by zit and the corresponding vector of parameters to be estimated by �. The

independent variables refer to the market structure, in particular the market size of the

industry (ln(sales)), the shares of imports and FDI in the supply on the domestic market

(import share and FDI share), the productivity as a measure of the competitiveness of the

industry as well as two variables indicating whether a �rm belongs to the raw materials or

to the investment goods industry. Also, including the relative firm size accounts for the

innovation ��rm size relation often discussed in the literature. All variables with exception of

the �rm size are measured at the industry level. Descriptive statistics and further discussion

appear in Bertschek and Lechner (1998) and Greene (2004).

Two distinct sources of time dependence have been identi�ed in the literature.7 In the

7An illuminating discussion is provided in Falcetti and Tudela (2006, p. 454), drawing on Heckman (1981)
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context of our empirical application, the �rst arises from the possibility that innovation

occurring in the present period may alter the conditions for the occurrence of innovation

in the next period. In this case past experience has a behavioral e¤ect in the sense that

otherwise identical company that did not experience the event would behave di¤erently from

the company that experienced the event. This phenomenon is known as true state dependence

and is typically captured by including a lagged dependent variable among the regressors.

The second source of time dependence derives from the fact that companies may di¤er

in their propensity to innovate. Two components are distinguished in this case. The �rst

one relates to the existence of company-speci�c attributes that are time-invariant. This

component is typically called unobserved heterogeneity and we allow for it by including a

time-invariant company-speci�c error term � i: It may re�ect institutional factors that are

di¢ cult to control for by direct inclusion among the regressors. The second component takes

into account that economy-wide factors in�uencing all companies alike may be correlated

over time. Improper treatment of the error structure may result in a conditional relationship

between future and past experience that is termed spurious state dependence (Hyslop, 1999).

We avoid this problem by assuming an AR(1) structure for the latent error term �t:

2.2 EXISTING PANEL PROBIT MODEL SPECIFICATIONS

The panel probit model has been analyzed extensively under various assumptions in the

literature. In this Section, in addition to the basic probit model, we brie�y review two

studies, Bertschek and Lechner (1998) and Greene (2004), which used the same dataset as

in this paper and are therefore of particular relevance as benchmarks for discussion of our

results. In doing so, we present only the least restrictive models of the ones analyzed by

these authors.

and Börsch-Supan et al. (1992).
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2.2.1 Model 1: Pooled Probit

This is the simplest probit estimator that treats the entire sample as if it were a large

cross-section. Speci�cally, it postulates the latent variable probit model speci�cation

y�it = �0
0
zit + �it (2.1)

with the observation rule

yit = 1 (y
�
it � 0) ; i : 1; :::; N ; t : 1; :::T (2.2)

where 1 (�) denotes the indicator function. The error terms �it are normally distributed with

zero mean and unit variance.

2.2.2 Model 2: Panel Probit with Autocorrelated Errors

Bertschek and Lechner (1998) assume the latent variable probit model speci�cation (2.1) with

the observation rule (2.2). However, their error terms �i = (�i1; :::; �iT )
0 are modeled as jointly

normally distributed with mean zero and covariance matrix �: Also, �i are independent of

the explanatory variables which implies strict exogeneity of the latter. The error terms

may be correlated over time for a given �rm, but uncorrelated over �rms. The diagonal

elements of � are set to unity to facilitate identi�cation of � and the o¤-diagonal elements

are considered nuisance parameters. On the basis of the model (2.1) Bertschek and Lechner

(1998) formulated the following set of moment conditions

E[W (Z; �0)jX] = 0

W (z; �) = [w1(Z1; �); :::; wT (ZT ; �)]
0

wt(Zt; �) = Yt � �(�0zit) (2.3)

where � denotes the CDF of a univariate normal distribution. The main advantage of using

these moments is that their evaluation does not require multidimensional integration and

they do not depend on the T (T � 1)=2 o¤-diagonal elements of �: In line with the GMM

literature, (2.3) implies

EfA(X)W (Z; �0)g = 0

10



where A(X) is a P � T matrix of instrumental variables. The e¢ cient GMM estimator of

�0 is then de�ned as b�N = argmin
�
g0N(�)


�1gN(�) (2.4)

where

gN(�) =
1

N

NX
i=1

A(xi)W (Zi; �)

Bertschek and Lechner (1998) obtained a nonparametric estimate of the optimal weighting

matrix 
 using a k-nearest neighbor (k-NN) approach.

2.2.3 Model 3: Random Parameters Model

Greene (2004) noted that the dataset used contains a considerable amount of between group

variation (97.6% of the FDI variation and 92.9% of the imports share variation is accounted

for by di¤erences in the group means). Thus, the dataset was likely to contain signi�cant

degree of unobserved individual heterogeneity, while none of the models above accounted

for it. Greene (2004) suggested two alternative formulations of the panel probit model: the

Random Parameters Model and the Latent Class Model (discussed further below). The

Random Parameters Model (or �Hierarchical�or �Multilevel�Model) is based on the latent

variable probit model speci�cation

y�it = �0
0
zit + �it

with the observation rule (2.2), �it � NID[0; 1]; and

�i = �+�zi + �wi

where � is K � 1 vector of location parameters, � is K � L matrix of unknown location

parameters, � is K�K lower triangular matrix of unknown variance parameters, zi is L� 1

vector of individual characteristics, wi is K � 1 vector of random latent individual e¤ects.

It holds that E[wijXi; zi] = 0 and V ar[wijXi; zi] = V; a K � K diagonal matrix of known

constants. Hence E[�ijXi; zi] = � + �zi and V ar[�ijXi; zi] = �V �0: Conditional on wi;

11



observations of yit are independent across time; timewise correlation would arise through

correlation of elements of �i: The joint conditional density on yit is

f (yijXi; �) =
YT

t=1
�[(2yit � 1)�0zit] (2.5)

The contribution of this observation to the log-likelihood function for the observed data is

obtained by integrating the latent heterogeneity out of the distribution. Thus

logL =
NX
i=1

logLi =
NX
i=1

log

Z
�i

YT

t=1
�[(2yit � 1)�0zit]g(�ij�;�;�; zi)d�i (2.6)

Estimates of �; � and � are obtained by maximizing the SML version of (2.6).

2.2.4 Model 4: Latent Class, Finite Mixture Model

This model arises if we assume a discrete distribution for �i instead of the continuous one

postulated in the previous Random Parameters Model. Alternatively, the Latent Class model

can be viewed as arising from a discrete, unobserved sorting of �rms into groups, each of

which has its own set of characteristics. If the distribution of �i has �nite, discrete support

over J points (classes) with probabilities p(�jj�;�;�; zi); j = 1; :::; J; then the resulting

formulation of the analog of Li from (2.6) is

Li =
XJ

j=1
p(�jj�;�;�; zi)f

�
yijXi; �j

�

The model can then be estimated using the EM algorithm (see Greene, 2004, for details).
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2.3 ALTERNATIVE PANEL PROBIT MODEL

Our panel probit model di¤ers from the ones described above by an explicit inclusion of vari-

ables for both individual unobserved heterogeneity and time e¤ects accounting for spurious

state dependence. Speci�cally, our standardized probit model speci�cation assumes a latent

variable regression for individual i and time period t

y�it = �0zit + � i + �t + �it; i : 1; :::; N ; t : 1; :::T (2.7)

under the observation rule (2.2), where zit is a vector of explanatory variables and �it �

N(0; 1) is a stochastic error component uncorrelated with any other regressor. � i � N(0; �2� )

represents individual unobserved heterogeneity that can be arbitrarily correlated with other

regressors. �t captures latent time e¤ects and is assumed to follow a stationary autoregressive

process

�t = ��t�1 + �t

where �t � N(0; �2�) such that the mean of �t is zero and the variance �
2
� is stationary. It

is assumed that �ti; � i and �t are mutually independent. The vector of parameters to be

estimated is � = (�0; �� ; �1; :::; �k; ��)
0: Denote � = (�1; :::; �T )0 and � = (� 1; :::; �N)0:

The likelihood function associated with y = (y11; :::; yTN)0 can be written as

L(�; y) =

Z
g(� ; �; �; y)p(� ; �; �)d�d� (2.8)

with

g(� ; �; �; y) =
NY
i=1

TY
t=1

[�(vit)]
yit [1� �(vit)]1�yit

where

�(vti) =
1p
2�

Z vti

�1
exp

�
�1
2
t2
�
dt

vit = �0zit + � i + �t

p(� ; �; �) = ��N� (2�)�N=2 exp

"
� 1

2�2�

NX
i=1

� 2i

#
(2�)�T=2 j��j�1=2 exp

�
�1
2
�0��1� �

�
(2.9)

and �� denotes the stationary variance-covariance matrix of �:
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2.3.1 EIS Evaluation of the Likelihood

We factorize the global high-dimensional E¢ cient Importance Sampling (EIS) optimization

problem associated with (2.8) into a sequence of low-dimensional subproblems according to

an appropriate factorization of the integrand �(� ; �; �; y) = g(� ; �; �; y)p(� ; �; �): Thus (2.8)

becomes

L(�; y) =

Z " NY
i=1

TY
t=1

[�(vit)]
yit [1� �(vit)]1�yit

#

���N� (2�)�N=2 exp

"
� 1

2�2�

NX
i=1

� 2i

#
(2�)�T=2 j��j�1=2 exp

�
�1
2
�0��1� �

�
d�d�

=

Z
(2�)�T=2 j��j�1=2 exp

�
�1
2
�0��1� �

�
��N� (2�)�N=2

�
NY
i=1

(
exp

�
� 1

2�2�
� 2i

� TY
t=1

[�(vit)]
yit [1� �(vit)]1�yit

)
d�d�

=

Z
�0(�; �)

NY
i=1

�i(� i; �; �; y)d�d� (2.10)

where

�0(�; �) = (2�)
�T=2 j��j�1=2 exp

�
�1
2
�0��1� �

�
��N� (2�)�N=2

�i(� i; �; �; y) = exp

�
� 1

2�2�
� 2i

� TY
t=1

[�(vit)]
yit [1� �(vit)]1�yit (2.11)

Since �i introduces interdependencies between � i and �t; the e¢ cient sampler can be

constructed as a sequence of sampling densities with an unconditional density m0(�;�0) for

� and a sequence of conditional densities mi(� ij�;�i) for � ij�: The resulting factorization is

given by

m(� ; �j�) = m0(�;�0)
NY
i=1

mi(� ij�;�i)

For any given value of �; the likelihood (2.10) can be rewritten as

L(�; y) =

Z
�0(�; �)

m0(�;�0)

NY
i=1

�i(� i; �; �; y)

mi(� ij�;�i)
m(� ; �j�)d�d� (2.12)
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The corresponding EIS estimate is given by

eLS;m(�; y) = 1

S

SX
r=1

�0(e�r (�0) ; �)
m0(e�r (�0) ;�0)

NY
i=1

�i(e� ir (�i) ; e�r (�0) ; �; y)
mi(e� ir (�i) je�r (�0) ;�i) (2.13)

where
nhe� 1r (�1) ; :::;e�Nr (�N) ; e�r (�0)i ; r = 1; :::; So are iid draws from the auxiliary im-

portance sampling density m(� ; �j�):

A density kernel ki(� i;�;�i) for mi(� ij�;�i) is given by

mi(� ij�;�i) =
ki(� i;�;�i)

�i(�;�i)

with

�i(�;�i) =

Z
ki(� i;�; �i)d� i

The likelihood (2.12) can now be rewritten as

L(�; y) =

Z
�0(�; �)

QN
i=1 �i(�;�i)

m0(�;�0)

NY
i=1

�i(� i; �; �; y)

ki(� i;�;�i)
m(� ; �j�)d�d�

where i is a proportionality constant.

The EIS optimization problem requires solving a sequence of N+1 weighted LS problems

of the form

b�i = argmin
�i

SX
r=1

n
ln�i(e� i; e�; �; y)� qi � ln ki(e� i; e�;�i)o2 gi(e� i; e�; �; y) (2.14)

for i = 1; :::; N and

b�0 argmin
�0

SX
r=1

(
ln

"
�0(e�r; �) NY

i=1

�i(e�r; b�i)� q0 � lnm0(e�r;�0)
#)2

where e� ; e� are draws fromm(� ; �j�): Based on these draws, the EIS estimate of the likelihood

(2.13) is calculated as

eLr;m(�; y) = �0(
e�r; �)QN

i=1 �i

�e�r; �i�
m0(e�r;�0)

NY
i=1

�i(e� ir; e�r; �; y)
ki(e� irje�r;�i) (2.15)

For further details on implementation, see Appendix 2.1.
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2.3.2 Bayesian MCMC Approach Based on EIS

Bayesian MCMC simulation methods such as Gibbs sampling rely upon sampling from con-

ditional posterior distributions in order to construct a Markov chain whose equilibrium dis-

tribution is the joint posterior of the parameters given the data. For the panel probit model,

the joint posterior distribution of parameters can be augmented with the vectors of latent

variables � and �: The complete joint posterior f(�; � ; �jZ) can then be drawn from using

Gibbs sampling. The main di¢ culty with such an MCMC approach is that of e¢ ciently

sampling from � i and � since the corresponding multivariate posterior distributions are

high-dimensional and have no closed-form solution. To overcome this problem, Liesenfeld

and Richard (2006a) proposed combining the EIS sampler with the Acceptance-Rejection

Metropolis-Hastings (AR-MH) algorithm of Tierney (1994) in simulating the autocorrelated

error component in stochastic volatility models. We adopt the approach to the panel probit

model by simulating � ij�; Z and �j�; Z as Gibbs blocks: We sample the unobserved indi-

vidual heterogeneity component � ij�; Z as one Gibbs block drawing from a piece-wise linear

approximation to the marginal posterior density constructed with a nonparametric form of

EIS. The time e¤ects �j�; Z are simulated as another Gibbs block with a parametric EIS

proposal density for an AR-MH step. The basis of this procedure is that the EIS densi-

ties for � ij�; Z and �j�; Z provide very close approximations to f(� ij�; Z) and f(�j�; Z);

respectively. The piece-wise linear approximation to f(� ij�; Z) is dominated by f(� ij�; Z)

everywhere and can be made arbitrarily precise by increasing the size of the simulated grid.

For f(�j�; Z) given the model assumptions, one can expect that the EIS parametric den-

sity provides an e¢ cient proposal density for the target posterior f(�j�; Z) in the AR-MH

step. This conjecture has been validated by AR-MH acceptance rates close to 100% in our

empirical application.

Liesenfeld and Richard (2006a) list three attractive features that hold for the EIS-AR-

MH approach in general: 1) only minor modi�cations of the code for the classical SML

analysis are necessary in order to obtain a corresponding code for the Bayesian analysis (and

vice versa), 2) it allows for a direct comparison between Bayesian and classical estimation

results and for a corresponding analysis of the impact of the prior density on the inference
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process, and 3) its basic structure does not depend upon a speci�c model.

For a given vector of parameters (�;�) the augmented likelihood L(�;�;Z) is de�ned in

(2.8). Let � without the subvector �j be denoted by �=�j . For each Gibbs block of a generic

parameter �j the Bayesian optimal updating of prior beliefs, �(�j); with new information

(data Z) takes the form

f(�jj�=�j ;�; Z) / L(�;�;Z)�(�j) (2.16)

The individual Gibbs blocks used are �; �� ; ��; �; �; and � ; given data and the remaining

augmented parameters. Throughout the analysis we make use of non-informative priors.

Details of sampling from the posterior distributions are described in Appendix 2.2.

2.4 EMPIRICAL RESULTS

In this section, we �rst reproduce the pooled probit estimates and the results obtained by

Bertschek and Lechner (1998) and Greene (2004) as a benchmark for comparison with our

results. Although these authors also report estimates of models other than shown below, we

only select the ones with the least restrictive assumptions on the underlying probit models.

Table 2.1 presents the basic case of Pooled Estimator of Model 1 in (2.1) estimated in

Stata using the command �probit�. Table 2.1 also reports the Bertschek and Lechner (1998)

GMM parameter estimates of Model 2 with a k-NN estimate of 
 in (2.4) and the Greene

(2004) random parameter model prior means estimates of Model 3. As discussed in Greene

(2004), there are some substantial di¤erences compared to the other two models. Especially

noteworthy are the greater impacts of the two central parameters of imports and FDI share

on innovations as implied by the random parameters model. Nonetheless, these e¤ects are

positive in all cases as predicted.

Table 2.2 lists the Greene (2004) latent class estimates of Model 4. According to Greene

(2004), working down from the number of classes J = 5 the estimates stabilized at the

reported J = 3: Despite a large amount of variation across the three classes, the original

conclusion that FDI and imports positively a¤ect the probability of product innovation

continued to be supported.
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Table 2.3 presents our classical EIS-SML estimates and Bayesian posterior means of pa-

rameters in the model (2.7) with unobserved heterogeneity and autocorrelated errors. Pos-

terior marginal densities of the Bayesian analysis are given in Figure 2.1 and autocorrelation

functions of the parameter draws in Figure 2.3.

We excluded from estimation three distant outliers with relative �rm size larger than

0:1 and productivity larger than 0:8 (see Figure 2.2) as these observations were inducing

numerical instabilities into our EIS-SML estimator. Thus our sample size was N = 1267 and

T = 5: The EIS-SML asymptotic (statistical) standard errors were obtained as the square

root of the diagonal of the negative of the inverse of the Hessian evaluated at the estimated

parameter values. The EIS-SML estimates are all within one standard deviation from the

EIS-MCMC posterior means. One exception is the unobserved heterogeneity parameter �� :

Its EIS-MCMC value b�� = 1:021 lies close to the value 1:1707 of an analogous parameter

reported by Greene (2004, p.35) for the random e¤ects model, but its EIS-SML value is

about half that size. This can be explained by a potentially high skewness of its sampling

density for companies whose response variable was constant (1 or 0) throughout the sample

period. Both estimates of b�� indicate that the role of time e¤ects in this dataset is very
small relative to individual unobserved e¤ects. Large standard errors on b� and its posterior
distribution imply that this parameter could not be empirically identi�ed, which further

con�rms the small signi�cance of the time e¤ects.

Most of our coe¢ cient estimates �t into a convex combination of Greene (2004)�s Class

1 �Class 3. The estimates of the two key parameters of FDI and import share are positive,

further validating the original hypothesis. However, both our estimates of the FDI coe¢ cient

are smaller relative to previous results. The import share coe¢ cient estimates are also very

close to the lower bound of Greene (2004)�s Class1 �Class 3 estimates. We attribute this

�nding to our �exible model assumptions whereby the in�uence the unobserved e¤ects on

product innovation was previously unaccounted for and channeled through FDI and import

share in the model. Also, the exclusion of far outliers on this variables from our estimates

may have played a role in this respect. The three excluded observations with large relative

size have also disproportionately large values of import share and FDI ; the means of the

three outliers are 0:402 and 0:208 contrasting with means of the rest of the sample of 0:252
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Table 2.1: Panel Probit - Models 1-3

Pooled Probita Model 1b Model 2c

Variable Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.

Constant �1:960�� 0:230 �1:74�� 0:37 �3:134 0:191

log sales 0:177�� 0:022 0:15�� 0:034 0:306 �

Rel size 1:072�� 0:142 0:95�� 0:20 3:735 0:184

Imports 1:133�� 0:151 1:14�� 0:24 1:582 0:126

FDI 2:853�� 0:402 2:59�� 0:59 3:111 0:320

Prod. �2:341�� 0:715 �1:91�� 0:82 �5:786 0:755

Raw Mtl �0:279�� 0:081 �0:28�� 0:12 �0:346 0:077

Inv good 0:188�� 0:039 0:21�� 0:063 0:238 0:453
a
Estimated in Stata by the simple command �probit�.

b
Bertschek and Lechner (1998), WNP-joint uniform estimates with k = 880, Table 9, standard errors

from Table 10. Reprinted from Journal of Econometrics, Vol. 87(2), Bertschek, I. and M. Lechner,
"Convenient estimators for the panel probit model," 329-371, Copyright (1998), with permission from
Elsevier.
c
Greene (2004), �̂ in Table 5. Reprinted from Empirical Economics, Vol. 29(1), Greene, W.,

"Convenient estimators for the panel probit model: Further results," 21-47, Copyright (2004), with
kind permission of Springer Science and Business Media.
�
Indicates signi�cant at the 95% level

��
Indicates signi�cant at the 99% level
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Table 2.2: Panel Probit - Model 4

Class 1 Class 2 Class 3

Variable Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.

Constant �2:32�� 0:768 �2:71�� 0:766 �8:97�� 2:50

log sales 0:323�� 0:075 0:233�� 0:0675 0:571�� 0:197

Rel size 4:38�� 0:882 0:720�� 0:253 1:42� 0:616

Imports 0:936�� 0:491 2:26�� 0:503 3:12� 1:35

FDI 2:20 2:54 2:80�� 0:926 8:37�� 2:27

Prod. �5:86�� 1:69 �7:70�� 1:16 �0:910 1:26

Raw Mtl �0:110 0:172 �0:599�� 0:295 �0:856� 0:424

Inv good 0:131 0:143 0:413�� 0:132 0:469� 0:225

Greene (2004), Table 7. Reprinted from Empirical Economics, Vol. 29(1), Greene, W., "Convenient
estimators for the panel probit model: Further results," 21-47, Copyright (2004), with kind permission
of Springer Science and Business Media.
�
Indicates signi�cant at the 95% level

��
Indicates signi�cant at the 99% level
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and 0:045 for import share and FDI, respectively. The outliers�means thus correspond

to approximately to the 82nd percentile and 98th percentile, respectively, of the remaining

observations of these variables.

2.5 CONCLUSION

In this paper, we performed classical simulated maximum likelihood (SML) and Bayesian

analysis of a panel probit model with unobserved individual heterogeneity and autocorrelated

errors. The SML analysis was facilitated with the E¢ cient Importance Sampling (EIS)

method that was found competitive with the GHK simulator in previous studies and was

newly adopted to the panel probit case in this paper. In the Bayesian part, we embedded

EIS within an Markov Chain Monte Carlo (MCMC) simulation method to perform posterior

analysis augmented with both the time and cross-section latent variables. Thus, the posterior

for the unobserved individual heterogeneity was sampled from as one Gibbs block, using a

nonparametric version of EIS to form a piece-wise linear approximation to the posterior as

a proposal density. The posterior for the vector of latent time e¤ects was treated as another

Gibbs block, using a parametric EIS approximation as the proposal density for an AR-

MH step. This approach represents a methodological contribution to the limited dependent

variable panel literature.

We applied our method to the product innovation activity of a panel of German manu-

facturing �rms in response to imports, foreign direct investment and other control variables.

Our �ndings con�rm the positive e¤ect of imports and FDI on �rms� innovation activ-

ity found in previous literature. However, our coe¢ cient estimates of these variables were

smaller than the ones reported by Bertschek and Lechner (1998) and Greene (2004) who

analyzed the same dataset under more restrictive model assumptions. This discrepancy can

be explained by the exclusion of three far outliers from our estimation and also by our weak

model assumptions relative to these authors.

The work presented in this paper can be extended in several directions. First, the para-

metric EIS used in the classical evaluation of the likelihood function can be replaced by
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Table 2.3: Panel Probit - EIS-SML and EIS-MCMC

EIS-SMLe EIS-MCMCf

Variable Estimate Std.Err. MC Err. Posterior mean Std.Err.

Constant �1:612�� 0:215 0:054 �1:427�� 0:347

log sales 0:155�� 0:022 0:006 0:137�� 0:035

Rel size 0:613�� 0:134 0:030 0:795�� 0:197

Imports 0:947�� 0:176 0:061 0:753�� 0:231

FDI 2:057�� 0:465 0:128 2:010�� 0:577

Prod. �3:035�� 1:592 0:460 �2:787 2:015

Raw Mtl �0:108 0:308 0:018 �0:108 0:166

Inv good 0:141�� 0:046 0:015 0:147�� 0:059

�� 0:471�� 0:015 0:001 1:021�� 0:030

�� 0:036� 0:010 0:012 0:041g �

� 0:002 0:567 0:001 0:002 0:571
e
EIS-SML estimates are the averages of 10 estimation rounds starting with di¤erent CRNs. Each round is based

on an MC sample size S = 600. An average of 6-7 EIS iterations were needed for full parameter convergence. A
grid search optimization procedure in Fortran 90 took approximately 9 hours, with relative function tolerance of
10�4 on a 1.7 GHz opteron unix machine.
f

Posterior moments are based on 12; 000 Gibbs iterations (discarding the �rst 2; 000 draws). One Gibbs
iteration took approximately 28 seconds on a 1.7 GHz opteron unix machine. The EIS simulation smoother is
based on an MC sample of 400. On average, it took less than 6 EIS iterations for full convergence of the EIS
parameters in sampling from the posteriors of the latent variables � and �. The AR and MH acceptance rates
for � were 99:00% and 99:85%, respectively.
g
Due to the skewness of the marginal posterior distribution (see Figure 1), the median is reported. The mean

is 0:07842, interquartile range [0:022; 0:072], and the 95% con�dence interval is [0:006; 0:255].
�
Indicates signi�cant at the 95% level

��
Indicates signi�cant at the 99% level
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Figure 2.1: Marginal Posterior Densities
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the nonparametric EIS version used in sampling from the posterior of � i: Implementation

of the nonparametric EIS for approximating the density kernels of the unobserved �rm het-

erogeneity component is currently subject to our research. We anticipate further e¢ ciency

improvements in the SML evaluation relative to the present parametric EIS. Second, despite

the theoretical appeal of EIS, the current Monte Carlo evidence comparing its performance

to other samplers is rather sparse. An MC study comparing both the parametric and non-

parametric EIS to, for example, GHK in the SML, MSM, and MSS environments would

undoubtedly be of interest to applied researchers using simulation estimators. Furthermore,

EIS as a procedure for fast and accurate numerical evaluation of multivariate integrals can

be imbedded in more complicated structural models beyond its current reduced form use.
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Figure 2.2: Descriptive Histograms for the Data
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In line with Bertschek and Lechner (1998) and Greene (2004) we have normalized the relative size by the
factor of 30.
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Figure 2.3: Autocorrelation Functions of the Parameters
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The autocorrelation functions are based on 12,000 parameter draws.
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APPENDIX

Appendix 2.1: EIS Likelihood Evaluation

We consider the density kernel ki for � ij� as given by

ki(� i;�; �i) = exp

�
�1
2

�
b0ivi + v

0
iCivi

�
� �2i
2�2�

�
(2.17)

where

bi = (b1i; :::; bTi)
0

Ci = diag(ci)

ci = (c1i; :::; cTi)
0

vi = �+ � i�+ Zi�

� = (1; :::; 1)0

Zi = (z1i; :::zTi)
0

and the auxiliary parameters are �i = (b
0
i; c

0
i)
0 :

Let li = �+ Zi� which implies vi = li + � i�: Then

ki(� i;�; �i) = exp

�
�1
2

��
1

�2�
+ �0Ci�

�
�2i +

�
b0i�+ 2�

0Cili
�
� i + b

0
ili + l

0
iCili

��
(2.18)

Matching (2.18) with a Gaussian kernel we obtain the conditional mean of � ij� as

�i (�i) = ��2i
�
1

2
b0i�+ �

0Cili

�
(2.19)

and variance of � ij� as

�2i (�i) =

�
1

�2�
+ �0Ci�

��1
=

�2�
(1� �2� �0Ci�)

(2.20)

In what follows we will suppress dependence of �i and �
2
i on �i for notational convenience. Inte-

grating ki with respect to � i leads to the following form of the integrating constant

�i (�; �i) =
p
2��i exp

�
�1
2

�
b0ili + l

0
iCili

�
+
1

2

�2i
�2i

�
(2.21)

which itself is a Gaussian density kernel for �:
Let

mi(� ij�;�i) =
ki(� i;�;�i)

�i(�;�i)
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The EIS regression (without weights) introduced in (2.14) is derived for each i from (2.11) and
(2.17) as

ln�i(e� i; e�; �; y) = qi + ln ki(e� i; e�; �i) + �ir
� e�2i
2�2�

+
TX
t=1

[(1� yti) ln [1� �(evtir)] + yti ln�(evtir)]
= qi �

1

2

�
b0ievir + ev0iCievir�� e�2i

2�2�
+ �ir

TX
t=1

[(1� yti) ln [1� �(evtir)] + yti ln�(evtir)] = qi �
1

2

�
b0ievir + ev0irCievir�+ �ir

= qi + (�b1i=2) ev1ir + :::+ (�bTi=2) evTir (2.22)

+(�c1i=2) ev21ir + :::+ (�cTi=2) ev2Tir + �ir
with weights

gi(e� ir; e�; �; y) = exp �� e�2i
2�2�

� TY
t=1

[�(evitr)]yit [1� �(evitr)]1�yit
where �ir denotes the regression error term and fevtir : r = 1; :::; Sg are the simulated draws vti:

Using (2.21), the function to be approximated by the Gaussian sampler m0 is given by

�0(�; �)

NY
i=1

�i (�; �i) = (2�)�T=2 j��j�1=2 exp
�
�1
2
�0��1� �

�
��N� (2�)�N=2

�
NY
i=1

p
2��i exp

�
�1
2

��
b0ili + l

0
iCili

�
� �2i
�2i

��
(2.23)

Consider for the moment the very last term �2i
�2i
of (2.23)

�2i
�2i
= 2�2i�

0ci

�
c0iZi� +

1

2
�0bi

�
+ �2i�

0cic
0
i�+ �

2
i

"�
c0iZi�

�2
+

�
1

2
b0i�

�2
+ b0i�c

0
iZi�

#
(2.24)

Substituting (2.24) into (2.23) yields

�0(�; �)
NY
i=1

�i (�; �i) = (2�)
�T=2 j��j�1=2��N� (2�)�N=2 (2�)1=2

"
NY
i=1

�i

#

� exp
(
�1
2

"
�0��1� �+

NX
i=1

�
b0ili + l

0
iCili �

�2i
�2i

�#)

=  exp

(
�1
2

 
�0

NX
i=1

�
�ai + bi + 2CiZi�

�
+ �0

"
��1� +

NX
i=1

[Ci �Bi]
#
�+ r

!)
(2.25)
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where

 = (2�)�(T+N�1)=2 j��j�1=2��N�
NY
i=1

�i

r =
NX
i=1

"
b0iZi� + �

0Z 0iCiZi� � �2i

"�
c0iZi�

�2
+

�
1

2
b0i�

�2
+ b0i�c

0
iZi�

##

Matching a multivariate Gaussian kernel with (2.25) yields the variance-covariance matrix of � on
m0

�0 (�0) =

"
��1� +

NX
i=1

�
Ci � �2i cic0i

�#�1
(2.26)

and the mean of � on m0

�
0
(�0) = �0

NX
i=1

�
�2i ci

�
c0iZi� +

1

2
�0bi

�
� 1
2
bi � CiZi�

�
(2.27)

Matching the last term of (2.25) with a multivariate Gaussian kernel we obtain the integrating
constant of � on m0

�0 = (2�)
T=2 j�0 (�0)j

1=2  exp

�
�1
2

�
r � �0

0
��10 �

0

��
The EIS estimate of the likelihood (2.13) is calculated from (2.15) as

eLr;m(�; y) = (2�)�(N�1)=2 j�0 (�0)j
1=2 j��j�1=2 exp

�
�1
2

�
r � �0

0
��10 �

0

��
���N�

"
NY
i=1

�i

#
NY
i=1

�i(e� ir; e�r; �; y)
ki(e� irje�r;�i)

and the log-likelihood as

ln eLS;m(�; y) =
1

S

SX
r=1

ln eLr;m(�; y)
= �N � 1

2
ln(2�) +

1

2
(ln j(�0 (�0)j � ln j��j)�

1

2

�
r � �0

0
��10 �

0

�
�N ln��

+
NX
i=1

ln�i + ln

"
1

S

SX
r=1

exp

(
NX
i=1

�
ln�i(e� ir; e�r; �; y)� ln ki(e� irje�r;�i)�

)#
(2.28)

Algorithm
Based on these derivations, the computation of an e¢ cient MC estimate of the likelihood for

the panel probit model requires the following steps:
Step (1): Use the natural sampling density p in (2.9) to draw S independent realizations of the

latent process (e� r; e�r).
Step (2): Use these random draws to solve the sequence of N weighted (unweighted for the

�rst iteration of the importance sampling construction) LS problems de�ned in equation (2.22).
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Step (3): Use the sampling density from m0 with moments given in (2.26) and (2.27) to draw

S trajectories
ne�r(b�0) : r = 1; :::; So : Conditional on these trajectories, draw from the conditional

densities fmig characterized by the moments (2.19) and (2.20) the vectors fe� r(b�1; :::; b�N ); r =
1; :::; Sg. Throughout the text, these draws are denoted by a shorthand notation e� r and e�r:

Step (4): Maximize the simulated log-likelihood (2.28), evaluated at e� r and e�r in each step,
with respect to the parameters �:

Appendix 2.2: Sampling from Posterior Densities

Sampling from f(�j�=� ;�; Z)
Here we adopt the methodology elaborated in (Albert and Chib, 1993). In our panel application,

Y �i = Zi� + �+ � i�+ "i

Y �=�;i = Y �i � �� � i�+ "i
Y �=�;i = Zi� + "i

Assigning a noninformative prior �(�) to � results in

f(�j�=� ;�; Z) = N(b�; b��) (2.29)

where b� = (Z 0Z)�1 Z 0Y �=� ; the dependent variable is a (NT � k) matrix Y �=� = (Y
�0
=�;1; :::; Y

�0
=�;N )

0

and b�� = (Z 0Z)�1 : The random variables Y �it are independent with

f(Y �it j�;�; Z) = N(��it; 1)

��it = Zit� + �t + � i (2.30)

truncated at the left by 0 if Yit = 1 and truncated at the right by 0 if Yit = 0. Given a previous
value of �; � i and �t, one cycle the Gibbs algorithm would produce Y �it and � from the distributions

(2.30) and (2.29); see Train (2003, p. 210) for simulation algorithm. The starting value �(0) may
be taken to be the ML estimate.

Sampling from f(� ij�; �; Z)
From (2.10),

f(� ij�; �; Z) / ��1� exp

�
� 1

2�2�
�2i

� TY
t=1

[�(vit)]
yit [1� �(vit)]1�yit (2.31)

The posterior f(� ij�; �; Z) is a convolution of a Gaussian density and a product of standard normal
CDFs. As such, it can be asymmetric with the direction of skewness depending on the particular
realization of the vector of dependent variables y

i
: Therefore, for our simulator we use a piece-wise

linear approximation to f(� ij�; �; Z) which is a form of nonparametric EIS capable of accurately
sampling from any distribution irrespective of its shape. The procedure works as follows. First, we
obtain an empirical distribution function of f(� ij�; �; Z) evaluated over an equispaced grid of � i
around the importance region and then we invert S draws from U [0; 1] through this edf to obtain
a new grid whose values are concentrated in the importance region. We update the edf over this
grid and iterate this process until the change of the maxima of the edf parameters (intercept and
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slope of individual segments) converges within a tolerance level around zero. Then we invert one
draw from U [0; 1] for the given � i via the �nal edf to obtain the new value of the � i in the Gibbs
block. Aside from shape adaptability, another advantage of this nonparametric form of EIS is that
the degree of accuracy of this procedure can be made arbitrarily precise by increasing the size of
the mesh, at the expense of computational cost.

Sampling from f(�j� ; �; Z)
Given a relatively small T = 5; we perform a one-shot EIS to draw from this posterior. Let

g(�t) �
NY
i=1

[�(vit)]
yit [1� �(vit)]1�yit

and note that

f(�j� ; �; Z) / p(�j�)
TY
t=1

g(�t)

where

p(�j�) = (2�)�T=2 j��j�1=2 exp
�
�1
2
�0��1� �

�
(2.32)

We approximate p(�j�)
QT
t=1 g(�t) with a Gaussian kernel k(�j� ; �; Z; ) in � such that

k(�j� ; �; Z; ) = p(�j�)
TY
t=1

kt(�t; t) (2.33)

Due to independence of kt(�t; t) over time, we can perform the EIS regressions of ln g(�t) on
ln kt(�t; t) for each t individually using

ln kt(�t; t) = �
1

2

�
0;t + 1;t�t + 2;t�

2
t

�
(2.34)

and then recombine kt(�t; t) with p(�j�) into a joint multivariate Gaussian kernel. Let 
2
=�

2;1; :::; 2;T
�0
; �2 = diagf

2
g; and 

1
=
�
1;1; :::; 1;T

�0
: From (2.32), (2.33) and (2.34) we obtain

k(�j� ; �; Z; ) = (2�)�T=2 j��j�1=2 exp
�
�1
2
�0��1� �

�
exp

�
�1
2

�
�0�2�+

0
1
�+ c

��
(2.35)

where c =
PT
t=1 0;t: Thus (2.35) is a multivariate Gaussian kernel of

M(�j� ; �; Z; ) � N
�
�m; �m

�
= �

�
� ; �; Z; 

��1
k(�j� ; �; Z; )

where

�m =
�
��1� + �2

��1
�
m

= �1
2
�m1
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and the integrating constant

�
�
� ; �; Z; 

�
= j�mj1=2j��j�1=2 exp

�
1

2

�
�0
m
��1m �

m
� c
��

AR-MH Algorithm
Given K draws f�1; :::; �Kg from the EIS-MCMC algorithm, potential new candidate draws

are sampled from m(�j� ; �; Z; b) until acceptance of a candidate e� in the AR step with probability
P (�) = min

�
f(�j� ; �; Z)

M(�j� ; �; Z; b) ; 1
�

In the MH-step e� is accepted as the K + 1�th draw �K+1 from the EIS-MCMC algorithm with
probability �(�K ; e�); otherwise �K+1 is set to equal �K . It holds that

�(�K ;
e�) = min

0@ f(e�j� ; �; Z)min �f(�j� ; �; Z);M(�j� ; �; Z; b)�
f(�j� ; �; Z)min

h
f(e�j� ; �; Z);M(e�j� ; �; Z; b)i ; 1

1A
The AR-MH step for � i is repeated 10 times before the parameters are updated in the Gibbs
sequence.

Sampling from f(�2� j�=�� ;�; Z)
We follow the same philosophy of simulated data augmentation as applied in (Albert and Chib,

1993) to draws from f(�j�=� ;�; Z): Since

� i � N(0; �2� )

the likelihood of the sample � ; treated as a function of �2� ; is

L(� j�2� ) =
�
2��2�

��N=2
exp

�
�1
2

S�
�2�

�
where

S� =
NX
i=1

�2i

A commonly used prior for the variance of Gaussian random variables is the inverted gamma-2
density IG(s0; v0) with kernel

k� (�
2
� ) = ��(v0+2)� exp

�
� s0
2�2�

�
(see Train, 2003, ch. 12). The posterior is then

f(�2� j�=�� ;�; Z) / ��N� exp

�
�1
2

S�
�2�

�
��(v0+2)� exp

�
� s0
2�2�

�
= ��(v0+2+N)� exp

�
�1
2

S� + s0
�2�

�
= ��(v1+2)� exp

�
�1
2

s1
�2�

�
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which is a kernel of IG(s1; v1) with s1 = s0 + S� and v1 = v0 +N:
Following Bauwens et al. (1999, p. 114) we specify a non-informative prior �(�2� ) as the limit

of the IG(s0; v0) kernel

k� (�
2
� ) = ��(v0+2)� exp

�
� s0
2�2�

�
where s0 ! 0 and v0 = 0: Thus

f(�2� j�=�� ;�; Z) = IG(s1; v1)

s1 = S�

v1 = N

To draw from this posterior, draw z � U [0; 1], compute y1 = Ga�1
�
v1
2 ; 1; z

�
; y2 =

2
s1
y1 and

�2� = y�12 :

Sampling from f(�j�=�;�; Z)

The time random e¤ects �t are assumed to follow a stationary autoregressive process of order
p

A(L)�t =

pX
i=0

(aiL
i)�t = �t

with �t � N(0; �2�): For AR(1) process, the likelihood function is given by

L(a; y) / f(�1; :::; �tj�2�; �)

=
YT

t=1
p(�tj�t�1; �)

where f(�1; :::; �tj�2�; �) is the joint density of f�tg
T
t=1 ; and

p(�tj�t�1; �) /

8<: exp
�
� (1��2)

2�2�
�21

�
; t = 1

exp
�
� 1
2�2�
(�t � ��t�1)2

�
; t = 2; :::; T

The joint density is given by

f(�1; :::; �tj�2�; �) / 1r
2�

�2�
(1��2)

exp

�
�(1� �

2)

2�2�
�21

�

�
TY
t=1

8<: 1q
2��2�

exp

�
� 1

2�2�
(�t � ��t�1)2

�9=;
/ �� exp

 
�1
2

"
�2
1

�2�

 
TX
t=2

�2t�1 � �21

!
� � 2

�2�

TX
t=2

�t�t�1

#!

� exp
 
�1
2

"
1

�2�

TX
t=1

�2t

#!
(2.36)
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where

�� =

p
(1� �2)
2��2�

Matching (2.36) with a Gaussian kernel yields

�2� = �2�

 
TX
t=2

�2t

!�1

�� =
�2�
�2�

TX
t=2

�t�t�1

� = � 1

2�2�

TX
t=1

�2t �
�2�
�2�

Hence, draw � from 1
exp(�)

N(��; �
2
�) truncated to j�j < 1:

Sampling from f(�2�j�=�� ;�; Z)

For a given � and � the likelihood function can be formulated as

L(��; a; y) / ��T�

�
exp� S�

2�2�

�
where, for AR(1),

S� = (1� �2)�21
TX
t=2

(�t � ��t�1)2

Similarly to the case of f(�2� j�=�� ;�; Z); we postulate the prior on �2� as the inverted gamma-2
density IG(s0; v0) with kernel

k�(�
2
�) = �

�(v0+2)
� exp

�
� s0
2�2�

�
The posterior becomes

f(�2�j�=�� ;�; Z) / ��T�

�
exp� S�

2�2�

�
��(v0+2)� exp

�
� s0
2�2�

�
= ��(2+T+v0)� exp

�
�1
2

S� + s0
�2�

�
= ��(v1+2)� exp

�
�1
2

s1
�2�

�
which is a kernel of IG(s1; v1) with s1 = s0+S� and v1 = v0+T:We again specify a non-informative
prior �(�2� ) as the limit of the IG(s0; v0) kernel with s0 ! 0 and v0 = 0: Thus

f(�2�j�=�� ;�; Z) = IG(s1; v1)

s1 = S�

v1 = T

To draw from this posterior, draw z � U [0; 1], compute y1 = Ga�1
�
v1
2 ; 1; z

�
; y2 =

2
s1
y1 and

�2� = y�12 :
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3.0 LOCALLY WEIGHTED GENERALIZED MINIMUM CONTRAST

ESTIMATION UNDER CONDITIONAL MOMENT RESTRICTIONS

Moment restrictions frequently provide the basis for estimation and inference in economic

problems. A general framework for analyzing economic data (Y;X) is to postulate condi-

tional moment restrictions of the form

E [g (Z; �0) jX] = 0 (3.1)

Typically, faced with the model (3.1) for estimation of �0; researchers would pick an arbitrary

matrix-valued function a(X) and estimate E [a(X)g (Z; �0)] = 0 which is an unconditional

moment model implied by (3.1) with an estimator such as the Generalized Method of Mo-

ments (GMM) (see e.g. Kitamura, 2006, p 26 for a discussion). This procedure is used under

the presumption that the chosen instrument a(X) identi�es �; which may not be true even

if � is identi�ed in the conditional model (3.1) (Domínguez and Lobato, 2004). Moreover,

the conversion to unconditional moments results in a loss of e¢ ciency with respect to the

information contained in (3.1). Chamberlain (1987) showed that such loss can be avoided

by using the optimal IV estimator a�(X) = D0(X)V �1(X) where D(X) = E [r�g (Z; �0) jX]

and V (X) = E
�
g (Z; �0) g (Z; �0)

0 jX
�
: In practice, a�(X) can be estimated with a two-step

procedure (Robinson, 1987; Newey, 1993). First an ine¢ cient preliminary estimator e� for
�0 is obtained and the unknown functions D(X) and V (X) are estimated via a nonpara-

metric regression of r�g(Z;e�) and g(Z;e�)g(Z;e�)0 on X: Second, the estimate of a�(X) is
constructed with the estimates of D(X) and V (X) from the �rst step. However, as noted by

Domínguez and Lobato (2004), the resulting moment condition E [a�(X)g (Z; �0)] = 0 may

fail to identify � while � is identi�ed under the original model (3.1). Moreover, satisfactory
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implementation of the nonparametric regression may require large samples thereby a¤ecting

the �nite-sample performance of the feasible estimator of a�(X).

The methods typically employed for estimation of E [a(X)g (Z; �0)] = 0 have also been

subject to criticism. While the optimally-weighted two-step GMM (Hansen, 1982) is �rst-

order asymptotically e¢ cient, its �nite sample properties have been reported as relatively

poor. For example, a simulation study by Altonji and Segal (1996) documented a substantial

small-sample bias of GMM when used to estimate covariance models. Other Monte Carlo

experiments have shown that tests based on GMM often have true levels that di¤er greatly

from their nominal levels when asymptotic critical values are used (Hall and Horowitz, 1996).

Indeed, it has been widely recognized that the �rst-order asymptotic distribution of the GMM

estimator provides a poor approximation to its �nite-sample distribution (Ramalho, 2005).

A number of alternative estimators have been suggested to overcome this problem: Em-

pirical Likelihood (EL) (Owen, 1988; Qin and Lawless, 1994; Imbens, 1997), the Euclidean

Likelihood (EuL) corresponding to the Continuous Updating Estimator (CUE) (Hansen

et al., 1996) the Exponential Tilting Estimator (ET) (Kitamura and Stutzer, 1997; Imbens

et al., 1998), and variations on these such as the Exponentially Tilted Empirical Likelihood

(ETEL) (Schennach, 2006). The EL, EuL and ET share some common properties and can be

derived from a common model basis for estimation. Thus, they and can be viewed as mem-

bers of broader classes of estimators such as the Generalized Empirical Likelihood (GEL)

estimators (Smith, 1997; Newey and Smith, 2004) and the Generalized Minimum Contrast

(GMC) estimators (Bickel et al., 1998). Recently, Kitamura (2006) showed that for uncondi-

tional moment restriction models, the GEL class is essentially equivalent to the GMC class

even if the GEL are derived somewhat di¤erently from the GMC. Both GEL and GMC

lead to the same saddle-point optimization problem yielding the same form the individual

estimators.

The GEL/GMC estimators circumvent the need for estimating a weight matrix in the

two-step GMM procedure by directly minimizing an information-theory-based concept of

closeness between the estimated distribution and the empirical distribution. A growing body

of Monte Carlo evidence has revealed favorable �nite-sample properties of the GEL/GMC

estimators compared to GMM (see e.g. Ramalho, 2005, and references therein). Recently,
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Newey and Smith (2004) showed analytically that while GMM and GEL share the same

�rst-order asymptotic properties, their higher-order properties are di¤erent. Speci�cally,

while the asymptotic bias of GMM often grows with the number of moment restrictions,

the relatively smaller bias of EL does not. Moreover, after EL is bias corrected (using

probabilities obtained from EL) it is higher-order e¢ cient relative to other bias-corrected

estimators.1

It is worth emphasizing that the GMM and GEL/GMC estimators mentioned so far are

all based on unconditional moment restrictions

E [g (X; �0)] = 0 (3.2)

burdened by the potential pitfalls described above. In addressing this problem, Kitamura,

Tripathi, and Ahn (2004) (henceforth KTA) recently developed a Conditional Empirical

Likelihood (CEL) estimator that makes e¢ cient use of the information contained in (3.1).

Their one-step estimator achieves the semiparametric e¢ ciency bound without explicitly

estimating the optimal instruments. Similar analysis has been performed by Antoine, Bonnal,

and Renault (2006) (henceforth ABR) for the case of Conditional Euclidean Likelihood2 and

Smith (2003, 2006) for the Cressie-Read family of estimators.

In this Chapter we extend this line of research by proposing a new class of estimators

based directly on conditional moment restrictions that encompasses the entire GMC family.

Moreover, using the GMC information-theoretic framework we show that in constructing the

estimators for the conditional moment restrictions (3.1) the previous literature implicitly

use an arbitrary uniform weighting scheme. This leads to minimizing a discrepancy from a

probability measure that is di¤erent from the one under which the data was distributed. The

reason for this phenomenon is that the previously analyzed estimators for (3.1) are based on

local kernel smoothing of the unconditional statistical model (3.2). In contrast, we consider

an information-theoretic dual locally weighted GMC optimization problem built directly

on (3.1) that minimizes a discrepancy from a probability measure according to which the

1Accordingly, the initial focus of this paper lies in EL as opposed to any other member of the GEL family
of estimators.

2ABR show that the Euclidean empirical likelihood estimator coincides with the continuously updated
GMM (CUE-GMM) as �rst proposed by Hansen et al. (1996).
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data was distributed. Consequently, our newly proposed class of estimators includes locally

weighted alternatives to the estimators analyzed in previous literature, in particular the

Locally Weighted Conditional Empirical Likelihood (LWCEL) . We analyze the di¤erences

between the new LWCEL and KTA�s CEL in detail. In a Monte Carlo study we show that

the LWCEL estimator exhibits better �nite-sample properties than found in the previous

literature.

EXISTING METHODS

Information-theoretic Approaches to Estimation

In this Section we will now develop some intuition useful for subsequent analysis by brie�y

introducing the heuristic background behind GMM estimation and information-theoretic

alternatives such as empirical likelihood. In general terms, suppose that theory is represented

by the prediction EQ [g (X; �0)] = 0: GMM-type estimators are de�ned by setting the sample

moments as close as possible to the zero vector of population moments �xed by the probability

measure Q:

In contrast, the information-theoretic approach focuses on a change of measure dQ=d�

which enables � 6= �0 to satisfy the transformed condition E� [g (X; �)] = 0: The estimator

of �0 then sets the probability measure � as close as possible to Q: Such approach thus uses

closeness of probability measures, rather than moments, to estimate �0:

More speci�cally, de�ne by P(�) the set of probability measures � that satisfy a given

condition, such as E� [g (X; �)] = 0: In order to �nd the most suitable � for each � 2 �, the

information-theoretic approach suggests the use of the convex optimization problem

min
�2P(�)

D (�; Q) s.t. E� [g (Z; �)] = 0 (3.3)

where D (�; Q) is a measure of divergence between � and Q;

D (�; Q) =

Z
�

�
d�

dQ

�
dQ (3.4)

37



(Csiszar, 1967). For a �nite sample distributed according to Q; the resulting estimator of

�0 minimizes the �nite-sample counterpart of (3.3) over �: In practice, this involves "re-

weighting" the sample data to �t the given restriction.

The information-theoretic approach has a long history in mathematical statistics. Its

theoretical basis includes maximum entropy principle (Jaynes, 1957) and the principle of

minimum discrimination information (Kullback and Leibler, 1951). These principles are

related to Bayesian methods in that they make explicit use of prior information (Kullback,

1997).

Unconditional Moment Restrictions

A substantial body of literature has been devoted to estimation under the unconditional

moment restriction (3.2). In contrast to the conditional case (3.1), under the unconditional

framework all data is treated as exogenous which results in signi�cant simpli�cations in sub-

sequent analysis. Most notably, Qin and Lawless (1994), Hansen et al. (1996), Kitamura

and Stutzer (1997), Imbens et al. (1998), Newey and Smith (2004), and Schennach (2006)

belong to this category. In a comprehensive manuscript, Kitamura (2006) elaborates on the

use of duality theory from convex analysis in construction of a general class of unconditional

GMC estimators. This elegant framework enables one to derive a computationally friendly

saddle-point GMC estimator from a dual optimization problem directly related to a primal

unfeasible optimization problem that is based on an information-theoretic population speci-

�cation. This approach, which we build on herein, is tantamount to a generic version of the

Lagrange multiplier derivation of GEL estimators utilized in earlier literature.

Conditional Moment Restrictions

Estimation techniques based directly on the conditional moment restrictions (3.1) have so far

been analyzed for special cases of the �nite-sample conditional counterpart of the divergence

measure (3.4): the Conditional Empirical Likelihood (CEL) with

�

�
�(xij)

q(xij)

�
= � log

�
�(xij)

q(xij)

�
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by KTA, the Conditional Euclidean Likelihood with

�(x) =
1

2

"�
�(xij)

q(xij)

�2
� 1
#

by ABR, and the Cressie-Read parametric family with

�

�
�(xij)

q(xij)

�
=

2

( + 1)

"�
�(xij)

q(xij)

��
� 1
#

where  2 R by Smith (2006). These estimators are all based on local kernel smoothing of

the unconditional model (3.2).

CONDITIONAL MOMENT RESTRICTIONS: ALTERNATIVE

ESTIMATION METHOD

In this Chapter, we derive a new class of estimators for a generic functional form of � requir-

ing only that � be convex on its domain. Based on such generic � we specify an information-

theoretic dual locally weighted conditional GMC optimization problem that minimizes a

discrepancy from a probability measure according to which the data was distributed. Conse-

quently, we propose a new class of estimators that include locally weighted alternatives to the

estimators analyzed in previous literature, in particular the Locally Weighted Conditional

Empirical Likelihood (LWCEL).

The theoretical foundations of our new class of estimators extend the dual GMC ap-

proach of Kitamura (2006) to account speci�cally for the conditional moment restrictions.

In contrast to a single GMC optimization problem utilized in Kitamura (2006) suitable for

the unconditional moments (3.2), though, we consider a continuum of GMC optimization

problems - one at each X: The resulting estimator then minimizes the expected value of

the primal or dual GMC value functions, the expectation being taken with respect to the

marginal distribution of the exogenous variables X:
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Stochastic Environment

Suppose that the observations f(xi; yi) : i = 1; :::; ng are drawn independently from the

joint distribution Q(x; y) with support X � Y where X is a compact subset of RdX and Y

is a subset of RdY . Suppose that the unknown distribution Q(x; y) satis�es the conditional

moment restrictions given by (3.1), where g : Z � � ! Rdg is a known mapping, up to an

unknown vector of parameters �0 2 �; and Z � (Y 0; X 0
z)
0 2 Y � XZ � Z � RdZ where

XZ � X: The restriction (3.1) can then be reformulated as

Z
g (Z; �0) dQ(yjx) = 0

where Q(yjx) is the "true" conditional distribution of Y given X:

Information-theoretic Model of the Conditional GMC Problem

In addition to conditioning, our general approach to specifying the GMC optimization prob-

lem di¤ers from Kitamura (2006) by another important aspect: instead of Q and � we

will formulate the population speci�cation as one involving the derivatives all probability

measures taken with respect to the Lebesgue measure using the concept of Radon-Nikodym

derivative (Royden, 1987). This will enable us to account explicitly for the di¤erences be-

tween marginal and conditional densities and hence derive the conditional version of the

GMC estimator. In Kitamura (2006)�s unconditional case, such distinction was unnecessary

and therefore not speci�ed. Hence, denote by �(yjx), q(yjx); �(x; y); q(x; y); �(x); q(x) the

Radon-Nikodym derivatives of the probability measures �(yjx); Q(yjx); �(x; y); Q(x; y);

�(x); Q(x) with respect to the Lebesgue measure m(�); respectively.

LetMY denote the set of all probability densities on RdY and let

�(X; �) �
�
�(yjx) 2MY :

Z
�(yjx)g (Z; �) dm(yjx) = 0; X 2 X

�

De�ne the set of all probability densities that are compatible with the conditional moment

restriction (3.1) by

�(X) � [�2��(X; �)
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The set �(X) indexed by X represents a statistical model that is correctly speci�ed if

q(yjx) 2 �(X):

Consider the measure of conditional divergence3

D (�(yjx); Q(yjx)) =

Z
Y
�

�
d�(yjx)
dQ(yjx)

�
dQ(yjx)

=

Z
q(yjx)�

�
�(yjx)
q(yjx)

�
dm(yjx) (3.5)

where � is a convex function and �(yjx) is absolutely continuous with respect to Q(yjx) (for

other cases let D � 1). Note that D (�; Q(yjx)) attains its minimum at Q(yjx): For a given

X 2 X ; at the population level, the GMC optimization problem is speci�ed as

inf
�2�

� (�;Q(x; y)) � inf
�(yjx)2�(X)

D (�(yjx); q(yjx)) (3.6)

which, using (3.5), corresponds to the the constrained optimization problem

v(X; �) = inf
�(yjx)2MY

D (�(yjx); Q(yjx))

= inf
�(yjx)2MY

Z
q(yjx)�

�
�(yjx)
q(yjx)

�
dm(yjx)

subject to

Z
�(yjx)g (Z; �) dm(yjx) = 0Z

�(yjx)dm(yjx) = 1

for a given � 2 � where v(X; �) is the value function. In convex analysis, such problem is

called the primal problem (Borwein and Lewis, 2006). Our formulation corresponds to the

conditional version of the primal convex optimization problem (3.3).

The estimator of �0 should minimize the value function in the primal problem. Since our

value function v(X; �) is de�ned for each X; we specify the estimator as one that minimizes

the expected value function where the expectation is taken over X with respect to the

3This conditional measure of divergence is a natural extension of the conditional discrepancy measure
formulated by Shannon (1948) for the special case of conditional entropy with �(x) = x log(x).
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probability measure Q(x) according to which the exogenous X were distributed. Hence, as

the basis for �nite-sample estimation, �0 solves

�0 = argmin
�2�

EQ(x) [v(X; �)] (3.7)

= argmin
�2�

Z
v(X; �)dQ(X)

= argmin
�2�

Z
q(X)v(X; �)dm(x)

The marginal distribution of X is independent of the parameter � and hence the former can

be estimated directly from the data. The same holds for the "choice" marginal distribution

�(x) in the optimization problem and hence �(x) = Q(x): Multiplying the argument inside

� (�) by d�(x)
dQ(x)

= �(x)
q(x)

= 1 we obtain

EQ(x) [v(X; �)] =

Z �
inf

�(yjx)2MY

Z
q(yjx)�

�
�(yjx)
q(yjx)

�
dm(yjx)

�
dQ(x) (3.8)

=

Z
q(x)

�
inf

�(yjx)2MY

Z
q(yjx)�

�
�(yjx)
q(yjx)

�
dm(yjx)

�
dm(x)

= inf
f�(yjx)2MY :X2Xg

Z Z
q(x)q(yjx)�

�
�(yjx)
q(yjx)

�(x)

q(x)

�
dm(yjx)dm(x)

= inf
�(x;y)2fMY :X2Xg

Z
q(x; y)�

�
�(x; y)

q(x; y)

�
dm(x; y)

= inf
�(x;y)2fMY :X2Xg

D (�(x; y); Q(x; y))

and hence �0 minimizes the divergence between the two joint distributions �(x; y) and

Q(x; y):

Since the primal problem involves a numerically unfeasible optimization over function,

it is bene�cial to convert it into its dual form that facilitates feasible �nite-dimensional

optimization. There are numerous results in convex analysis that specify the conditions for

existence of the dual form (see e.g. Luenberger, 1969; Borwein and Lewis, 2006). For a given

X 2 X ; the primal problem (3.6) corresponds to the dual problem

v�(X; �) = max
�(X)2Rdg ;�(X)2R

�
��

Z
q(yjx)�� (�(X) + �(X)0g (Z; �)) dm(yjx)

�
(3.9)
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where ��(�) is the convex conjugate (or Legendre transformation) of �(�): This is a �nite-

dimensional unconstrained convex maximization problem. By Fenchel duality,

v(X; �) = v�(X; �)

Analogously to (3.6), �0 solves the minimization problem

inf
�2�

EQ(x) [v
�(X; �)] = inf

�2�

Z
q(x) max

�2Rdg ;�2R

�
�(X)�

Z
q(yjx)�� (�(X) + �(X)0g (Z; �)) dm(yjx)

�
dm(x)

= inf
�2�

max
�2Rdg ;�2R

�Z
q(x)�(X)dm(x)�

Z Z
q(x)q(yjx)�� (�(X) + �(X)0g (Z; �)) dm(yjx)dm(x)

�
= inf

�2�
max

�2Rdg ;�2R

�Z
q(x)�(X)dm(x)�

Z
q(x; y)�� (�(X) + �(X)0g (Z; �)) dm(x; y)

�

Given a sample f(xi; yi) : i = 1; :::; ng from Q(x; y); the population criteria described

above provide a basis for statistical inference wherein we replace the unknown probability

measures Q(x; y) and Q(yjx) with their empirical counterparts Q(xi; yj) and Q(yjjxi); re-

spectively. However, in contrast to the unconditional case where it su¢ ces to set q(xi) = 1=n;

the densities q(x; y) and q(yjx) now need to be estimated nonparametrically as probability

mass functions q(xi; yj) and q(yjjxi) with support on the data. Numerous methods have

been suggested in the literature to obtain such estimates with various desirable properties

using e.g. kernels, series or nearest neighbors to name just a few (see e.g. Pagan and Ullah,

1999, and references therein).

A sample version of the GMC problem (3.6) is

minimize bv(�) �
8<:

nX
i=1

nX
j=1

q(xi; yj)�

�
�(yj jxi)
q(yj jxi)

�
:
nX
j=1

�(yj jxi)g (zj ; �) = 0;
nX
j=1

�(yj jxi) = 1

9=; (3.10)

This leads to the Locally Weighted Conditional GMC estimator for �

b� = argmin
�2�

bv(�) (3.11)

This estimator corresponds to the conditional locally weighted forms of the "Minimum Dis-

crepancy Statistic" of Corcoran (1998) and the "Minimum Distance Estimator" of Newey

and Smith (2004).
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The primal optimization problem (3.10) corresponds to a computationally convenient

dual problem (Borwein and Lewis, 2006)

b� = argmin
�2�

bv�(�) (3.12)

where

bv�(�) � max
�2Rdg ;�2R

"
nX
i=1

q(xi)�(xi)�
nX
i=1

nX
j=1

q(xi; yj)�
� (�(xi) + �(xi)

0g (zj; �))

#

For a sample f(yi; xi) : i = 1; :::; ng estimation of q(yjx) and q(x; y) amounts to the

use of localization methods (Tibshirani and Hastie, 1987). In the stream of literature most

relevant to this paper, localization schemes have been used in the conditional moment context

in LeBlanc and Crowley (1995), Zhang and Gijbels (2003), KTA for CEL, ABR for the

EuL, and Smith (2003, 2005) for GEL. Information on Q(yjx) is inferred from the nearby

observations if we assume that Q(yjx) is continuous with respect to X. In other words, in

a neighborhood around xi we approximate Q(yjx) by Q(yjx) � Q(yjxi): This implies that

all the zj with xj lying in this neighborhood can be roughly viewed as observations from

Q(yjxi): Note that, unlike in the unconditional moment case (3.2) where q(xi) = 1=n, now the

q(xi; yj) and q(yjjxi) are not derived directly from observed data, since only one realization

of the random vector yj was actually observed at xi: Rather, these probability masses are

inferred from neighboring observations. The data-determined q(xi; yj) and q(yjjxi) are then

used as a benchmark in the value function of the GMC optimization problem in derivations

of b�:
Locally Weighted Conditional Empirical Likelihood

Various choices for the discrepancy measure �(�) lead to various special cases of the Dual

Locally Weighted Conditional GMC estimator. Setting �(x) = � log(x) corresponds to Lo-

cally Weighted Conditional Empirical Likelihood (LWCEL). The unfeasible GMC estimator

of (3.7) becomes

b� = argmin
�2�

bv(�) �
8<:�

nX
i=1

nX
j=1

q(xi; yj) log

�
�(yj jxi)
q(yj jxi)

�
:
nX
j=1

�(yj jxi)g (zj ; �) = 0;
nX
j=1

�(yj jxi) = 1

9=; (3.13)
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The convex conjugate of �(x) = � log(x) is ��(y) = �1� log(�y): Using this expression in

the feasible dual formulation (3.12) we obtain

b�LWCEL = argmin
�2�

bv�(�) � max
�2Rdg ;�2R

24 nX
i=1

q(xi)�(xi)�
nX
i=1

nX
j=1

q(xi; yj) log (��(xi)� �(xi)0g (zj ; �))

35
From (3.8), it is worth noting that on the population level, the LWCEL minimizes the

discrepancy measure

D (�(x; y); Q(x; y)) =

Z
log

�
dQ(x; y)

d�(x; y)

�
dQ(x; y)

= K(Q(x; y);�(x; y))

where K(Q(x; y);�(x; y)) is the Kullback-Leibler (KL) divergence between the joint proba-

bility measuresQ(x; y) and �(x; y) withQ(x; y) being the true probability measure according

to which the data are distributed. The b�LWCEL then solves the minimization problem

inf
�2�

inf
�(x;y):�(x;y)2fMY :X2Xg

K(Qn(x; y);�(x; y))

whereQn(x; y) is the empirical measure and �(x; y) represents the moment conditions model.

Note that this estimator contains two important modi�cations in comparison to the

Conditional Empirical Likelihood (CEL) analyzed by KTA speci�ed in our notation as

b�CEL = argmin
�2�

max
�2Rdg

"
nX
i=1

nX
j=1

q(yjjxi) log (1 + �(xi)0g (zj; �))
#

First, the weight of the logarithmic function in b�CEL is q(yjjxi) as opposed to q(xi; yj) inb�LWCEL: This is a consequence by taking simple summation of the local discrepancies at

xi in derivation of b�CEL as opposed to a weighted sum that would capture the relative

importance of each local discrepancy in the global objective function. Thus, in the popu-

lation version of the GMC optimization problem with Em(X) [v(X; �)] the b�CEL minimizes
D (�(yjx); U(X)Q(yjx)) as opposed to D (�(x; y); Q(x; y)) for b�LWCEL, where U(x) is the

uniform probability measure over X. However, Q(x; y) 6= U(x)q(yjx), almost surely. Second,b�CEL sets �(xi) = 1 which is an artefact of using a speci�c kernel estimation method where
individual weights sum up to 1. In general, however, �(xi) 6= 1 a.s.
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A closer look on the structure of the optimization problem behind b�LWCEL reveals in-

teresting comparisons with the form of empirical likelihood established in the literature for

unconditional moment restrictions. Taking �rst-order conditions of the GMC Lagrangian

L(�; �; �; �) =

nX
i=1

nX
j=1

q(xi; yj) ln

�
�(yjjxi)
q(yjjxi)

�
�

nX
i=1

�(xi)
0
nX
j=1

�(yjjxi)g (zj; �) (3.14)

�
nX
i=1

�(xi)

 
nX
j=1

�(yjjxi)� 1
!

corresponding to the GMC objective function (3.13) yields

bq(xi; yj)b�(yjjxi) = b�(xi)0g
�
zj;b��+ b�i ; 8i; j (3.15)

nX
j=1

b�(yjjxi)g �zj;b�� = 0 ; 8i (3.16)

nX
j=1

b�(yjjxi) = 1 (3.17)

Summing (3.15) over j and using (3.16) yields, for each i,

�(xi) �
nX
j=1

bq(xi; yj)
= b�(xi)0 nX

j=1

b�(yjjxi)g �zj;b��+ b�(xi) nX
j=1

b�ij
= b�(xi) (3.18)

Substituting (3.18) into (3.15) gives, for each i and j,

b�(yjjxi) = bq(xi; yj)
�(xi) + b�(xi)0g �zj;b�� (3.19)

Substituting (3.19) into the Lagrangian (3.14), and using (3.16) and (3.17), yields

L(�; �) =

nX
i=1

nX
j=1

wij ln

0@ bq(xi)
�(xi) + b�(xi)0g �zj;b��

1A (3.20)

Then the Locally Weighted Conditional Empirical Likelihood estimator with the new weight-

ing scheme is de�ned as b�LWCEL = argmax
�2�

L(�; �i) (3.21)
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where b�i solves4
nX
j=1

bq(xi; yj)g �zj;b��
�i + b�0ig �zj;b�� = 0

obtained from (3.16) and (3.19). As discussed above, in general �i 6= 1: The presence of �i
is the hallmark of LWCEL compared to the previous literature where, invariably, �i = 1.

The b�LWCEL estimator de�ned in (3.21) is a special case of a corresponding estimator

derived under semiparametric conditional moment restrictions in the next Chapter. For this

reason, we will perform the asymptotic analysis pertaining to both estimators in the next

chapter. The MD estimator analyzed by Smith (2003, 2005) as well as the CEL estimator

elaborated in KTA achieve the semiparametric e¢ ciency lower bound (see Chamberlain,

1987). The weighting introduced for b�LWCEL in this paper postulates more �exible weights

that improve on the �xed-bandwidth kernel weights in �nite samples in terms of MSE. We

conclude that our new forms of the MD and CEL estimators exhibit �rst-order asymptotic

equivalence in terms of consistency and asymptotic normality with the ones formulated in

the previous literature, and hence also achieve the �rst-order asymptotic semiparametric

e¢ ciency lower bound. However, our b�LWCEL improves on its previously analyzed forms in

terms of �nite sample performance.

Other GMC Class Members

Other choices of �(x) lead to various other estimators but these are not the subject of focus

of this Dissertation. Therefore, we will only brie�y touch upon their derivation from the

GMC class without performing the asymptotic analysis verifying their validity.

Let �(x) = x log(x) implying ��(y) = ey�1: From (3.12), the Locally Weighted Condi-

tional Exponential Tilting (LWCET) estimator is obtained as

b�LWCET = argmin
�2�

bv�(�) � max
�2Rdg ;�2R

24 nX
i=1

q(xi)�(xi)�
nX
i=1

nX
j=1

q(xi; yj)�
� (�(xi) + �(xi)

0g (zj ; �))

35
4In line with KTA we adopt the notation b�i as shorthand for b�(xi;b�): In the same spirit, we denote �(xi)

with �i in the sequel. When necessary, we explicitly write the full form to ensure that our arguments are
unambiguous.
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In the primal GMC problem, using (3.7) and (3.8), the exponential tilting estimator mini-

mizes

EQ(X) [v(X; �)] = inf
�(x;y)2fMY :X2Xg

Z
q(x; y)�

�
�(x; y)

q(x; y)

�
dm(x; y)

= inf
�(x;y)2fMY :X2Xg

Z
�(x; y)

q(x; y)
q(x; y) log

�
�(x; y)

q(x; y)

�
dm(x; y)

= inf
�(x;y)2fMY :X2Xg

Z
�(x; y) log

�
�(x; y)

q(x; y)

�
dm(x; y)

= inf
�(x;y)2fMY :X2Xg

Z
log

�
�(x; y)

Q(x; y)

�
d�(x; y)

= inf
�(x;y)2fMY :X2Xg

Z
K(�(x; y); Q(x; y))

which is the KL divergence with the roles of Q(x; y) and �(x; y) reversed relative to empirical

likelihood.

A particularly convenient parametrization of �(x); the Cressie-Read (CR) form �(x) =

2
(+1)

(x� � 1) has been used extensively in the literature on the unconditional case (3.2).

The conjugate is given by ��(y) = � 2


�
�+1

2
y
� 
+1 + 2

(+1)
: Parameter values  = �2;�1; 0

and 1 yield Euclidean likelihood, exponential tilting, empirical likelihood and Pearson�s �2;

respectively. The conditional case (3.1) has been analyzed by Smith (2006). Nonetheless,

an analogous di¤erence as described for b�LWCEL vs. b�CEL also holds for the locally weighted
CR family of estimators introduced here as opposed to the ones considered in Smith (2006).

SIMULATION

To evaluate the �nite sample performance of the estimator b�LWCEL de�ned in (3.21) against

KTA�s b�CEL we have conducted a small scale pilot Monte Carlo (MC) simulation study aimed
at maximum simplicity of the simulation design. We set Z = X and Y = �1X + �2X

2 +

�3X
3 + e with heteroskedastic e = 0:5ujXj; u = U(�5; 5): A random sample N = 100

of X~N(0; 2) was truncated at �1 and 1 and spread over the interval [�4; 4] to avoid far

outliers. The true parameter values were set at �1 = �0:2; �2 = 0:1; �3 = 0:3: A typical

data draw looks as illustrated in 3.1
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Figure 3.1: Sample Simulated Data
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In order to deal with possible negative arguments in the log function, we followed the

approach suggested by Owen (2001) cited in Kitamura (2006) (p. 51): for a small number

� = 0:2 we used the objective function

log� y =

8<: log(y) if y > �

log(�)� 1:5 + 2y=� � �2=2�2 if y � �

Indeed, the proportion of y � � in the overall sample was 6:6 � 10�3 and 4:7 � 10�3 forb�LWCEL and b�CEL; respectively. The Nadaraya-Watson kernel estimator (Pagan and Ullah,
1999, p.86) with the Gaussian kernel, employing the Silverman�s rule of thumb for the

bandwidth determination (Silverman, 1986, p.45), was used to calculate q(xi; yj) the case ofb�CEL: Thus each i-th local conditional empirical likelihood of b�CEL was normalized with its
corresponding

PN
j=1 q(xi; yj) in the denominator of the Nadaraya-Watson kernel estimator.

In contrast, the denominator of the Nadaraya-Watson kernel estimator was replaced with

n�1
PN

i=1

PN
j=1 q(xi; yj) for the case of b�LWCEL: This is equivalent (up to a constant of

proportionality) to weighting each i-th local conditional empirical likelihood of b�LWCEL with

�i. We compared bias, variance and mean-square error over 100 MC iterations on the three

estimated coe¢ cients �1; �2 and �3: The results are presented in Table 3.1.
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Table 3.1: Simulation Results

Criterion Estimate CEL LWCEL

Bias b�1 �9:100� 10�2 �8:619� 10�2b�2 1:436� 10�2 1:471� 10�2b�3 1:050� 10�2 9:416� 10�3

Variance b�1 8:297� 10�3 6:189� 10�3b�2 2:474� 10�3 2:351� 10�3b�3 4:202� 10�4 3:916� 10�4

MSE b�1 1:652� 10�2 1:362� 10�2b�2 2:681� 10�3 2:568� 10�3b�3 5:304� 10�4 4:802� 10�4

Both estimators performed relatively well under the simulation scenario which can be

attributed to the relatively well-behaved nature of the data. Nonetheless, the b�LWCEL im-

proved on the b�CEL in all cases, barring one bias term. The values of �i were also retained
as an interesting byproduct of the b�LWCEL estimation procedure, weighting individual local

conditional empirical log likelihoods. Naturally, their magnitude follows the density of the

data juxtaposed against �i in Figure 3.2:

CONCLUSION

In this Chapter we proposed a new class of estimators based directly on conditional moment

restrictions that encompasses the entire GMC family. Moreover, using the GMC information-

theoretic framework we showed that in constructing the estimators for the conditional mo-

ment restrictions previous literature implicitly use an arbitrary uniform weighting scheme.

This lead to minimizing a discrepancy from a probability measure that is di¤erent from
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Figure 3.2: Plot of sigma against x
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the one under which the data was distributed. The reason for this phenomenon is that the

previously analyzed estimators were based on local kernel smoothing of the unconditional

statistical model. In contrast, we considered an information-theoretic dual locally weighted

GMC optimization problem built directly on the conditional restrictions that minimizes a

discrepancy from a probability measure according to which the data was distributed. Conse-

quently, our newly proposed class of estimators includes locally weighted alternatives to the

estimators analyzed in previous literature, in particular the Locally Weighted Conditional

Empirical Likelihood (LWCEL). We analyzed the di¤erences between the new LWCEL and

the CEL of Kitamura, Tripathi, and Ahn (2004) in detail. In a Monte Carlo study we

showed that the LWCEL estimator exhibits better �nite-sample properties than found in

the previous literature.
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4.0 SIEVE-BASED EMPIRICAL LIKELIHOOD

Full title: Sieve-based Empirical Likelihood under Semiparametric Conditional

Moment Restrictions

A general framework for analyzing economic data (Y;X) is to postulate conditional

moment restrictions of the form

E [g (Z; �0) jX] = 0 (4.1)

where Z � (Y 0; X 0
z)
0; Y is a vector of endogenous variables, X is a vector of conditioning

variables (instruments),Xz is a subset ofX; g(�) is a vector of functions known up a parameter

�; and FY jX is assumed unknown. The parameters of interest �0 � (�00; h
0
0)
0 contain a

vector of �nite dimensional unknown parameters �0 and a vector of in�nite dimensional

unknown functions h0(�) � (h01(�); :::; h0q(�))0: The inclusion of h0 renders the condition (4.1)

semiparametric, encompassing many important economic models. It includes for example

the partially linear regression g (Z; �0) = Y �X 0
1�0 � h0(X2) analyzed by Robinson (1988)

and the index regression g (Z; �0) = Y � h0(X
0�0) studied by Powell, Stock, and Stoker

(1989) and Ichimura (1993).

Recently, Kitamura, Tripathi, and Ahn (2004) (henceforth KTA) analyzed the Condi-

tional Empirical Likelihood (CEL)1 based on a parametric counterpart (without h0) of (4.1)

E [g (Z; �0) jX] = 0 (4.2)

1A note on terminology: CEL is called �smoothed�and �sieve�empirical likelihood in KTA and Zhang
and Gijbels (2003), respectively. Other types of smoothing have been introduced by Otsu (2003a) on moment
restrictions in the quantile regression setting and hence KTA�s original method is referred to as "conditional"
empirical likelihood to avoid confusion. The CEL terminology was also adopted in Kitamura (2006).
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The CEL estimator was shown to exhibit �nite-sample properties superior to the General-

ized Method of Moments. A conjecture that a similar type of result will also hold in the

semiparametric scenario provided the intuitive basis for our analysis.

In this chapter we extend the LWCEL estimator analyzed in the previous chapter to the

semiparametric environment de�ned by (4.1) proposing a new Sieve-based Locally Weighted

Conditional Empirical Likelihood (SLWCEL) estimator. The SLWCEL can be viewed as a

one-step information-theoretic alternative to the two-step Sieve Minimum Distance (SMD)

estimator analyzed by Ai and Chen (2003) (henceforth AC). The SMD is based on a similar

estimating principle as the GMM by �rst estimating a weighting matrix and then setting

the weighted distance between vectors of moments close to zero. We approximate h with a

sieve and estimate �0 and h0 simultaneously with LWCEL. We establish consistency of the

resulting one-step SLWCEL and asymptotic normality for its parametric component of �.

A semiparametric extension of (4.2) to model (4.1) is unquestionably desirable because

economic theories seldom produce exact functional forms, and misspeci�cations in functional

forms may lead to inconsistent parameter estimates. By specifying the model partially (i.e.

including h0 as part of the unknown parameters), the inconsistency problem can be alleviated.

In general, semiparametric literature related to the model (4.1) has been growing rapidly

(see e.g. Powell, 1994; Pagan and Ullah, 1999, for reviews). Most of the available results

are derived using a plug-in procedure: �rst h0 is estimated nonparametrically by bh and then
�0 is estimated using a parametric method (e.g. GMM or GEL) with h0 replaced by bh:
However, such plug-in estimators are not capable of handling models where the unknown

functions h0 depend on the endogenous variables Y; because in such models �0 a¤ects h0 as

well. Thus, in models where h0 depends on an endogenous regressor, h0 and �0 need to be

estimated simultaneously. There are very few results concerning simultaneous estimators.

Earlier applications include a semiparametric censored regression estimator (Duncan, 1986)

and a semi-nonparametric maximum likelihood estimator (Gallant and Nychka, 1987).

However, a general estimation method for the model (4.1) that permits dependence of

h0 on Y and �0 was not well analyzed until a recent work by AC. These authors proposed

a Sieve Minimum Distance (SMD) estimator of �0 under (4.1), based on identi�cation and

consistency conditions derived by Newey and Powell (2003). Subsequent applications of the
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SMD estimator include Chen and Ludvigson (2006) in a habit-based asset pricing model

(with unknown functional form of the habit) testing various hypotheses on stock return

data, Blundell et al. (2006) in a dynamic optimization model describing the allocation of

total non-durable consumption expenditure, and Ai et al. (2006) investigating co-movement

of commodity prices.

The �rst analysis that ventured into the realm of GEL-type estimators subject to con-

ditional moment restrictions containing unknown functions is due to Otsu (2003b).2 His

shrinkage-type estimator is based on a penalized empirical log-likelihood ratio (PELR) which

utilizes a penalty function J(h) con�ning the minimization problem to a parameter space

speci�ed by the researcher. Usually, J(h) is used to control some physical plausibility of

h such as roughness of h. Otsu (2003b)�s penalized likelihood method di¤ers from sieve

analysis and hence his treatment of asymptotics di¤ers from ours.3

Otsu (2003b) suggests (in Remark 2.2) that it is also possible to use a deterministic

sieve approximations, instead of the penalty function approach, resulting in a deterministic

sieve empirical likelihood estimator (DSELE) that would also be, under suitable conditions,

[�rst-order] asymptotically equivalent to the SMD of AC. Similar conjecture has been raised

in Nishiyama et al. (2005) who noted the lack of theoretical justi�cation for such procedure.

Chen (2005, footnote 39) made the same type of conjecture in relation to the conditional

parametric Euclidean empirical likelihood estimator of Antoine, Bonnal, and Renault (2006)

(henceforth ABR). However, despite calls for a theoretical justi�cation of such procedures,

no previous paper has performed the necessary theoretical analysis. Yet, in analogy to the

parametric literature described above, developing a one-step simultaneous GEL-type sieve

alternative to the two-step simultaneous SMD in the semiparametric case can lead to a

similar type of improvement in terms of bias and higher-order e¢ ciency and is therefore of

great theoretical and practical interest.

All of the simultaneous estimators mentioned above are based on the method of sieves

2Up to date, the author has not been able to obtain a full copy of this paper. Only a google-cached html
version containing parts of the paper�s text is currently publicly available.

3In the seminal paper by Shen (1997), penalized likelihood and the method of sieves are treated as
two separate concepts. To achieve asymptotic normality, Otsu (2003b) extends Theorem 2 of Shen (1997),
whereas we extend Theorem 1 of Shen (1997) which is a separate result derived under di¤erent conditions
from the former.
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(Grenander, 1981; Chen, 2005) where h0 is estimated over a compact subspace that is dense

in the full parameter space as sample size increases. This feature of sieves conveniently

simpli�es the in�nite-dimensional model h0 to its �nite-dimensional counterpart suitable for

estimation. Here we also adhere to the sieve methodology. However, the currently available

relevant general theory papers dealing with sieve M-estimation (Wong and Severini, 1991;

Shen and Wong, 1994; Shen, 1997; Chen and Shen, 1998) consider only one set of exogenous

variables without endogenous regressors and hence we can not apply these results directly

in our case. Therefore, in the asymptotic analysis we combine them with several results of

AC and our own new results necessitated by the speci�c nature of SLWCEL under (4.1). In

particular, among other issues we derive an extension of Shen (1997) theorem on asymptotic

normality of general simultaneous sieve estimators for the case of endogenous regressors under

strong conditions and then apply it to the SLWCEL case under weak primitive conditions.

SIEVE-BASED CONDITIONAL EMPIRICAL LIKELIHOOD

In this chapter we will use series estimation (see e.g. Newey, 1997) as a particular form of

linear sieves in both approximating h and determining the weights wij. Series estimators

are known to contain functional bases that are superior in terms of MSE criteria to �xed-

bandwidth kernel estimators, especially in the presence of spatial inhomogeneities in the

data (see e.g. Ramsey, 1999). Silverman (1984) showed that series estimators with spline

basis functions behave approximately like the variable-bandwidth kernel estimator which

improves on �xed-bandwidth kernels in terms of MSE by the virtue of local adaptation.

Another advantage of working with the LWCEL estimator based on series approximation is

that truncation arguments in regions with small data density are not required in contrast to

kernel weights.

The environment setup parallels the one of Newey and Powell (2003) and AC. Suppose

that the observations f(Yi; Xi) : i = 1; :::; ng are drawn independently from the distribution

of (Y;X) with support Y�X ; where Y is a subset of RdY and X is a compact subset of RdX .

Suppose that the unknown distribution of (Y;X) satis�es the semiparametric conditional
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moment restrictions given by (4.1), where g : Z � A ! Rdg is a known mapping, up to

an unknown vector of parameters, �0 � (�00; h
0
0)
0 2 A � � � H; and Z � (Y 0; X 0

z)
0 2

Y � XZ� Z �RdZ where XZ � X : We assume that � � Rd� is compact with non-empty

interior and that H � H1 � :::�Hdh is a space of continuous functions. Since H is in�nite-

dimensional, in constructing a feasible estimator we follow the sieve literature (Grenander,

1981; Chen, 2005) by replacingH with a sieve spaceHn� H1
n�:::�Hdh

n which is a computable

and �nite-dimensional compact parameter space that becomes dense in H as n increases.

Next, we introduce the series estimator used in the analysis (Newey, 1997), AC. For each

l = 1; :::; dg; and for a given �; let fp0j(X); j = 1; 2; :::kng denote a sequence of known basis

functions (power series, splines, wavelets, etc.) and let pkn(X) � (p01(X); :::; p0kn(X))
0 : Let

further pkn(X) be a tensor-product linear sieve basis, which is a product of univariate sieves

over dX (for details see AC). Let P = (pkn(x1); :::; pkn(xn))0 be an (n� kn) matrix. Consider

the model (4.1) and denote the conditional mean function

m(X;�) � E [g (Z; �) jX]

=

Z
g (Z; �) dFY jX (4.3)

Let bm(X;�) � (bm1(X;�); :::; bmd�(X;�))
0: A consistent nonparametric linear sieve estimator

of ml(X;�) is given by

bml(X;�) = pkn(X)0b�l
where h in � = (�0; h0)0 is restricted to the sieve space Hn and b�l is an OLS estimate obtained
by regressing gl (Y;Xz; �) on pkn(X);

b�l = (P 0P )
�1
P 0gl (Z; �)

=
nX
j=1

pkn(xj)
0 (P 0P )

�1
gl (zj; �) (4.4)
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and hence

bml(xi; �) = bEZjX [gl (Z; �) jX = xi]

= pkn(xi)
0b�l

=
nX
j=1

pkn(xj)
0 (P 0P )

�1
pkn(xi)gl (zj; �)

=
nX
j=1

wijgl (zj; �)

after substituting from (4.4), l = f1; :::; dgg: In the vector form

bm(xi; �) = nX
j=1

wijg (zj; �)

The weights are given by

wij = pkn(xj)
0 (P 0P )

�1
pkn(xi) (4.5)

and

�i =
nX
j=1

wij

=
nX
j=1

pkn(xj)
0 (P 0P )

�1
pkn(xi)

= i0P (P 0P )
�1
pkn(xi)

where i is a (n� 1)�vector of ones.

We now turn to the derivation of LWCEL under (4.1). The Lagrangian4 for the local

semiparametric EL estimator is

max
�ij

nX
i=1

nX
j=1

wij ln �ij s.t. �ij � 0;
nX
j=1

�ij = 1;
nX
j=1

g (zj; �n)�ij = 0; for i; j = 1; :::; n

where �n is � restricted to the sieve space An: Then,

b�ij = wij
�i + �0ig (zj; �n)

(4.6)

4As discussed above, omission of qij from the denominator of ln (�ij=qij) is inconsequential in the case of
LWCEL.
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and for each �n 2 An; �i solves

nX
j=1

wijg (zj; �n)

�i + �0ig (zj; �n)
= 0 (4.7)

The Sieve-based Locally Weighted Conditional Empirical Likelihood (SLWCEL) evaluated

at �n is de�ned as

LSLWCEL(�n) =

nX
i=1

nX
j=1

wij ln

�
wij

�i + �0ig (zj; �n)

�

where �i solves (4.7). The estimator of �0 is de�ned as

b�n = arg max
�n2An

LSLWCEL(�n) (4.8)

Solving (4.8) is equivalent to solving

b�n = arg max
�n2An

Gn(�n) (4.9)

where

Gn(�n) = �
1

n

nX
i=1

nX
j=1

wij ln f�i + �0ig (zj; �n)g (4.10)

Implementing our estimator is straightforward. One advantage of the sieve approach

is that once h 2 H is replaced by hn 2 Hn; the estimation problem e¤ectively becomes a

parametric one. Commonly used statistical and econometric packages can then be used to

compute the estimate. From (4.7) it follows that

�i = arg max
�2Rdg

nX
j=1

wij ln f�i + �0g (zj; �n)g (4.11)

This is a well-behaved optimization problem since the objective function is globally con-

cave and can be solved by a Newton-Raphson numerical procedure. The outer loop (4.9)

can be carried out using a numerical optimization procedure. For a relevant discussion of

computational issues, see for example Kitamura (2006, section 8.1).
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CONSISTENCY

In this section we present some asymptotic results for the smoothed empirical likelihood

estimator as de�ned in (4.8). The general approach follows closely the one developed in

KTA. The following de�nitions, adopted from AC, are introduced:

De�nition 1. A real-valued measurable function g(Z; �) is Hölder continuous in � 2 A if

there exist a constant � 2 (0; 1] and a measurable function c2(Z) with E [c2(Z)2jX] bounded,

such that jg(Z; �1)� g(Z; �2)j � c2(Z) k�1 � �2k� for all Z 2 Z, �1; �2 2 A:

The Hölder space of smooth functions �(X ) of order  > 0 and the corresponding

Hölder ball �c (X ) � fg 2 �(X ) : kgk� � c < 1g with radius c are de�ned in AC, p.

1800.

De�nition 2. A real-valued measurable function g(Z; �) satis�es an envelope condition over

� 2 A if there exists a measurable function c1(Z) with E fc1(Z)4g <1 such that jg(Z; �)j �

c1(Z) for all Z 2 Z and � 2 A:

The following Assumptions are made to facilitate the analysis:

Assumption 4.1. For each � 6= �0 there exists a set X� such that Pr fx 2 X�g ; and

E [g (z; �) jx] 6= 0 for every x 2 X�:

Assumption 4.2. (i) The data f(Yi; Xi)
n
i=1g are i.i.d.; (ii) X is compact with nonempty

interior; (iii) the density of X is bounded and bounded away from zero.

Assumption 4.3. (i) The smallest and the largest eigenvalues of E
�
pkn(X)� pkn(X)0

�
are

bounded and bounded away from zero for all kn; (ii) for any g (�) with E [g(X)2] <1, there

exists pkn(X)0� such that E
h�
g(X)� pkn(X)0�

	2i
= o(1).

Assumption 4.4. (i) There is a metric k�k such that A � � � H is compact under k�k ;

(ii) for any � 2 A, there exists �n� 2 An � ��Hn such that k�n�� �k = o(1):

Assumption 4.5. (i) E
�
jg (Z; �0)j2 jX

�
is bounded; (ii) g (Z; �) is Hölder continuous in

� 2 A:

Let k1n � dim(Hn) denote the number of unknown sieve parameters in hn 2 Hn:

Assumption 4.6. k1n !1; kn !1; kn=n! 0 and dgkn � d� + k1n:
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Assumption 4.7. E kxk1+% <1 for some % <1:

Assumption 4.8. E fsup�2A kg (Z; �)k
mg <1 for some m � 8:

Assumption 4.1 is Assumption 3.1 in KTA that guarantees identi�cation of �0: Assump-

tions 4.2�4.6 are essentially the same conditions imposed in Newey and Powell (2003) and

AC. Assumption 4.2 rules out time series observations. Assumptions 4.3�4.6 are typical

conditions imposed for series (or linear sieve) estimation of conditional mean functions. As-

sumption 4.4(i) restricts the parameter space as well as the choice of the metric k�k : It is a

commonly imposed condition in the semiparametric econometrics literature, and is satis�ed

when the in�nite-dimensional parameter space H consists of bounded and smooth functions

(see Gallant and Nychka, 1987). Assumption 4.4(ii) is the de�nition of a sieve space. As-

sumption 4.5 is typically imposed on the residual function in the literature on parametric

nonlinear estimation. Assumption 4.6 restricts the growth rate of the number of basis func-

tions in the series approximation. Assumption 4.7 is Assumption 3.4(ii) in KTA, used in

Lemma A.1. Assumption 4.8 is Assumption 3.2 in KTA used in Lemma A8.

The following Theorem provides a consistency result:

Theorem 4.1. Let the Assumptions 4.1�4.7 hold. Then kb�n � �0k = op(1):

The proof is derived in the Appendix. The proof proceeds along the lines of KTA.

However, the fact that the sieve parameter space Hn grows dense in an in�nite-dimensional

space H now needs to be addressed. The inclusion of �i in the LWCEL objective function

compared to KTA�s CEL also complicates matters. We achieve some simpli�cations arising

from not having to make use of truncation arguments for kernels. Since we are not dealing

with kernels, unlike KTA we can not use Lemma B.1 of Ai (1997) to determine uniform

convergence rates. For this purpose, we specialize Lemma A.1(A) of AC, derived for the

combined space X �A; to the space X only, with g (zj; �) evaluated at a given �xed �: Since

we do not have to account for growth restrictions on the parameter space in this Lemma, we

are able to obtain faster convergence rate e�1n than AC.
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CONVERGENCE RATES

Theorem 4.1 established consistency of b�n = (b�n;bhn) under a general metric k�k constrained
only by Assumption 4.4(i). In order to ascertain asymptotic normality of b�n; one typically
needs that b�n converge to �0 at a rate faster than n�1=4 (see e.g. Newey, 1994). As noted by
Newey and Powell (2003), for model (4.1) where the unknown h0 can depend on endogenous

variables Y; it is generally di¢ cult to obtain fast convergence rate under k�k : Nonetheless,

as demonstrated by AC, in simultaneous estimation of (b�n;bhn) it is su¢ cient to show fast
convergence rate of b�n = (b�n;bhn) for only a special case of k�k to derive asymptotic normality
of b�n: Naturally, we will also follow this approach. However, since the objective function of
the problem analyzed in AC is di¤erent from ours, our metric also di¤ers. While AC used a

quadratic form type metric, we perform the analysis under the Fisher metric k�kF which is

the natural choice for a likelihood-based scenario.

Some additional notation is necessary to introduce the Fisher metric. The properties

of A and the notation for pathwise derivatives established in this paragraph borrows from

AC. Suppose the parameter space A is connected in the sense that for any two points �1;

�2 2 A there exists a continuous path f�(t) : t 2 [0; 1]g in A such that �(0) = �1 and

�(1) = �2: Also, suppose that A is convex at the true value �0 in the sense that, for

any � 2 A; (1 � t)�0 + t� 2 for small t > 0: Furthermore, suppose that for almost all Z;

g(Z; (1�t)�0+t�) is continuously di¤erentiable at t = 0: Denote the �rst pathwise derivative

at the direction [�� �0] evaluated at �0 by

dg(Z; �0)

d�
[�� �0] �

dg(Z; (1� t)�0 + t�)

dt

����
t=0

a.s. Z

and for any �1; �2 2 A denote

dg(Z; �0)

d�
[�1 � �2] �

dg(Z; �0)

d�
[�1 � �0]�

dg(Z; �0)

d�
[�2 � �0]

dm(X;�0)

d�
[�1 � �2] � E

�
dg(Z; �0)

d�
[�1 � �2]

����X� (4.12)

Furthermore, let

' (X;Z; �) � ln f�x + �0(X;�)g (Z; �)g (4.13)

 (X;�) � E [' (X;Z; �) jX] (4.14)
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where �x stands for �i evaluated at a generic X = x: For any �1; �2 2 A the Fisher norm

k�kF (see e.g. Wong and Severini, 1991, p. 607) is de�ned5 as

k�1 � �2kF =

s
E

�
E

��
d' (X;Z; �0)

d�
[�1 � �2]

�0
d' (X;Z; �0)

d�
[�1 � �2]

����X�� (4.15)

Let V denote the closure of the linear span of A� f�0g under the metric k�kF : Then�
V; k�kF

�
is a Hilbert space with the inner product

hv1; v2iF = kv1 � v2k2F

We will now show that our metric k�1 � �2kF is equivalent to a conditional version of

the metric used in AC. Let

s(X;Z; �) � �0(�;X)g (Z; �)

$ (X;Z; �) � d' (X;Z; �0)

ds(X;Z; �)

=
1

�x + s(X;Z; �)

where s(X;Z; �) and $ (X;Z; �) is scalars. Note that from the conditional moment restric-

tion (4.1), under the expectation taken over Z conditional on X

�(X;�0) = 0 (4.16)

which means that the constraints on FY jX imposed by (4.1) are satis�ed with equality and

the Lagrange multiplier �(X;�0) takes on the value 0: This is also apparent from Lemma

A.8. We have

E

"�
d' (X;Z; �0)

d�
[�1 � �2]

�0
d' (X;Z; �0)

d�
[�1 � �2]

�����X
#

= E

"
$ (X;Z; �0)

2

�
ds(X;Z; �0)

d�
[�1 � �2]

�0
ds(X;Z; �0)

d�
[�1 � �2]

�����X
#

= E

24 $ (X;Z; �0)
2
�
�0(X;�0)

dg(Z;�0)
d� [�1 � �2] + g(Z;�0)d�

0(X;�0)
d�

�0
�
�
�0(X;�0)

dg(Z;�0)
d� [�1 � �2] + g(Z;�0)d�

0(X;�0)
d�

�
������X
35

= A1 +A2 +A3 +A4 (4.17)

5We use the inner product notation for the pathwise derivatives to explicitly account for the special case
when � � � 2 Rd� :
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where

A1 = E

"
$ (X;Z; �0)

2

�
dg(Z;�0)

d�
[�1 � �2]

�0
�(X;�0)�

0(X;�0)
dg(Z;�0)

d�
[�1 � �2]

�����X
#

A2 = E

"
$ (X;Z; �0)

2

�
d�(X;�0)

d�
[�1 � �2]

�0
g(Z;�0)�

0(X;�0)
dg(Z;�0)

d�
[�1 � �2]

�����X
#

A3 = E

"
$ (X;Z; �0)

2

�
dg(Z;�0)

d�
[�1 � �2]

�0
�0(X;�0)g(Z;�0)

d�0(X;�0)

d�
[�1 � �2]

�����X
#

A4 = E

"
$ (X;Z; �0)

2

�
d�(X;Z; �0)

d�
[�1 � �2]

�0
g(Z;�0)g

0(Z;�0)
d�0(X;Z; �0)

d�
[�1 � �2]

�����X
#
(4.18)

Using (4.16) yields A1 = A2 = A3 = 0. By the de�nition of �(X;�) in (4.11), �(X;�) is a

function of g(Z; �) which is a function of �: Moreover, �(X;�) is a function of � only via

g(Z; �): Hence, under the expectation taken over Z conditional on X

d�(X;�)

d�
[�1 � �2] =

d�(X;�)

dg(Z; �)

dg(Z; �)

d�
[�1 � �2] (4.19)

In particular, under the expectation over Z conditional on X; �(X;�) is de�ned implicitly

as a function of g(Z; �) by the relation

F (�; g) = E

�
g(Z; �)

�x + �0(X;�)g(Z; �)

����X� = 0
By the Implicit Function Theorem

d�(X;�)

dg(Z; �)
=

@F (�; g)=@g(Z; �)

@F (�; g)=@�(X;�)

= E

"
(�x + �0(X;�)g(Z; �)� �0(X;�)g(Z; �))= (�x + �0(X;�)g(Z; �))

2

�g(Z; �)g0(Z; �)= (�x + �0(X;�)g(Z; �))
2

�����X
#

= ��x fE [g(Z; �)g0(Z; �)jX]g�1

= ��x�(X;�)�1 (4.20)

Substituting (4.20) into (4.19) we obtain

d�(�;X;Z)

d�
[�1 � �2] = ��x�(X;�)�1

dg(Z; �)

d�
[�1 � �2] (4.21)

Substituting (4.21) into (4.18) yields

A4 = �2xE

�
$ (X;Z; �0)

2

�
dg(Z; �0)

d�
[�1 � �2]

�0
W0(X;Z)

�1dg(Z; �0)

d�
[�1 � �2]

����X�
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where

W0(X;Z)
�1 � �(X;�0)�1g(Z; �0)g0(Z; �0)�(X;�0)�1

Using (4.16) in $ (X;Z; �0) results in

A4 = E

��
dg(Z; �0)

d�
[�1 � �2]

�0
W0(X;Z)

�1dg(Z; �0)

d�
[�1 � �2]

����X� (4.22)

Substituting (4.22) into (4.18) and (4.15) yields

k�1 � �2kF =

s
E

�
E

��
dg(Z; �0)

d�
[�1 � �2]

�0
W0(X;Z)�1

dg(Z; �0)

d�
[�1 � �2]

����X��
(4.23)

The expression (4.23) can be viewed as a conditional version of the metric used in AC.

In particular, if dg(Z;�0)
d�

[�1��2] and g(Z; �0) are independent conditional on X, then (4.23)

reduces to

s
E

��
dm(X;�0)

d�
[�1 � �2]

�0
�(X;�0)�1

dm(X;�0)
d�

[�1 � �2]

�
which is the metric used

in AC with the e¢ cient weighting matrix.

Note that by (4.16)

E

�
d' (X;Z; �0)

d�
[�1 � �2]

����X� = �0(X;�0)E

�
dg(Z; �0)

d�
[�1 � �2]

����X�
+
d�0(X;�0)

d�
[�1 � �2]E [g(Z; �0)jX]

= 0

and hence

E

"�
d' (X;Z; �0)

d�
[�1 � �2]

�0
d' (X;Z; �0)

d�
[�1 � �2]

�����X
#
= V ar

�
d' (X;Z; �0)

d�
[�1 � �2]

����X�

implying

k�1 � �2kF =

s
E

�
V ar

�
d' (X;Z; �0)

d�
[�1 � �2]

����X��
hv; viF = E

�
V ar

�
d' (X;Z; �0)

d�
[v]

����X��
We will now introduce the conditions under which the desired convergence rates are

derived.
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Assumption 5.1. (i) A is convex in �0, and g(Z; �) is pathwise di¤erentiable at �0; (ii)

for some c1; c2 > 0;

c1E
�
m(X;�n)

0W0(X)
�1m(X;�n)

	
� k�n � �0k2F

� c2E
�
m(X;�n)

0W0(X)
�1m(X;�n)

	
holds for all �n 2 An with k�n � �0k = o(1):

Assumption 5.2. For any eg(�) in �c (X ) with  > dx=2; there exists pkn(�)0� 2 �c (X ) such

that supX2X
��eg(X)� pkn(X)0�

�� = O(k
�=dx
n ); and k�=dxn = o(n�1=4):

Assumption 5.3. (i) Each element of g(Z; �) satis�es an envelope condition in �n 2 An;

(ii) each element of m(X;�) 2 �c (X ) with  > dx=2; for all �n 2 An:

In line with AC, let �0n � supX2X
pkn(X)

E
; which is nondecreasing in kn: Denote

N(�;An; k�k) as the minimal number of radius � covering balls of An under the k�k metric.

Assumption 5.4. k1n � lnn� �20n � n�1=2 = o(1):

Assumption 5.5. ln
�
N("1=�;An; k�k)

�
� const:� k1n � ln(k1n="):

Assumption 5.6. �0(X) � V ar [g(Z; �0)jX] is positive de�nite for all X 2 X :

The following result gives the convergence rate of the SLWCEL estimator under the

Fisher metric. The proof is provided in the Appendix.

Theorem 5.1. Under Assumptions 4.1 - 5.6, we have kb�n � �0kF = op(n
�1=4):

ASYMPTOTIC NORMALITY

To derive the asymptotic distribution of b�n; it su¢ ces to derive the asymptotic distribution
of f (b�n) � � 0b�n for any �xed non-zero � 2 Rd� : The di¤erence f (b�n) � f (�0) is linked to

the pathwise directional derivatives of the sample criterion function via the inner product

involving a Riesz representor v�: Application of a Central Limit Theorem for triangular

arrays of functions indexed by a �nite-dimensional parameter then shows the desired result.
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In this Section we introduce the necessary notation, compute the Riesz representor v� and

state the Theorem of
p
n-normality of b�n:

Since f (�) � � 0� is a linear functional on V, it is bounded (i.e. continuous) if and only

if

sup
0 6=���02V

jf (�)� f (�0)j
k�� �0kF

<1

The Riesz Representation Theorem states that there exists a representor v� 2 V satisfying

kv�kF � sup
0 6=���02V

jf (�)� f (�0)j
k�� �0kF

(4.24)

and

f (�) = f (�0) + hv�; �� �0iF

Hence,

f (b�n)� f (�0) = hv�; b�n � �0iF

Let
dg(Z; �0)

d�
[�� �0] �

dg(Z; �0)

d�0
(� � �0) +

dg(Z; �0)

dh
[h� h0] (4.25)

For any h 2 H; there exists wj(�) 2 W for j = 1; :::; d� such that

h� h0 = � (w1; :::; wd�) (� � �0) = �w (� � �0)

De�ne

dg(Z; �0)

dh
[w] �

�
dg(Z; �0)

dh
[w1] ; :::;

dg(Z; �0)

dh
[wd� ]

�
Dw(Z) � dg(Z; �0)

d�0
� dg(Z; �0)

dh
[w] (4.26)

where Dw(Z) is a dg � d��matrix valued function. De�nitions (4.25) and (4.26) imply

dg(Z; �0)

dh
[h� h0] = �

dg(Z; �0)

dh
[w] (� � �0)

and hence

Dw(Z) (� � �0) =
dg(Z; �0)

d�0
(� � �0)�

dg(Z; �0)

dh
[w] (� � �0)

=
dg(Z; �0)

d�0
(� � �0) +

dg(Z; �0)

dh
[h� h0]

=
dg(Z; �0)

d�
[�� �0] (4.27)
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By de�nition of k�kF this implies

k�� �0k2F = E

�
E

��
dg(Z; �0)

d�
[�� �0]

�0
W0(Z;X)

�1
�
dg(Z; �0)

d�
[�� �0]

�����X��
= E

�
E
�
(� � �0)

0Dw(Z)
0W0(Z;X)

�1Dw(Z) (� � �0)
��X�	 (4.28)

Let w� =
�
w�1; :::; w

�
d�

�
be the solution to

inf
wj2W;j=1;:::;d�

E
�
E
�
(� � �0)

0Dw(Z)
0W0(Z;X)

�1Dw(Z) (� � �0)
��X�	 (4.29)

where "inf" is in positive semide�nite matrix sense. Using the de�nitions of w�; f (�) ; (4.24)

and (4.28)

kv�k2F � sup
0 6=���02V

jf (�)� f (�0)j2

k�� �0k2F

=
(� � �0)

0 �� 0 (� � �0)

(� � �0)
0E fE [Dw(Z)0W0(Z;X)�1Dw(Z)jX]g (� � �0)

= � 0
�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 � (4.30)

where v� � (v�� ; v�h) 2 V: By the de�nition of w�; v�h = �w� � v�� : From this and (4.27) we

have
dg(Z; �0)

d�
[v�] = Dw�(Z)v

�
� (4.31)

Let

v�� =
�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 � (4.32)

Substituting (4.32) into the de�nition of k�k2F in (4.15) via the expression for (4.31) yields

kv�k2F = E

�
E

��
dg(Z; �0)

d�
[v�]

�0
W0(Z;X)

�1
�
dg(Z; �0)

d�
[v�]

�����X��
= E

�
E
�
(Dw�(Z)v

�
�)
0W0(Z;X)

�1 (Dw�(Z)v
�
�)
��X�	

= v�0� E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	 v��
= � 0

�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1
�E

�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	
�
�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 �
= � 0

�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 �
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which matches (4.30) and thus validates (4.32) shown unique by the Riesz Representation

Theorem.

The following additional conditions correspond to Assumptions 4.1-4.3 in AC and are

su¢ cient for the
p
n-normality of b�n:

Assumption 6.1. (i) E fE [Dw(Z)
0W0(Z;X)

�1Dw(Z)jX]g is positive de�nite; (ii) �0 2

int(�); (iii) �0(X) � V ar[g(Z; �0)jX] is positive de�nite for all X 2 X :

Assumption 6.2. There is a v�n = (v�� ;��nw� � v��) 2 An � �0 such that kv�n � v�kF =

O(n�1=4):

Following AC, let N0n � f�n 2 An : k�n � �0k = o(1); k�n � �0kF = o(n�1=4)g and

de�ne N0 the same way with An replaced by A: Also, for any v 2 V; denote

dg(Z; �)

d�
[v] � dg(Z; � + tv)

dt

����
t=0

a.s. Z

and
dm(Z; �)

d�
[v] � E

�
dg(Z; �)

d�
[v]

����X� a.s. Z

Assumption 6.3. For all � 2 N0; the pathwise �rst derivative (dg(Z; �(t))=d�)[v] exists a.s.

Z 2 Z: Moreover, (i) each element of (dg(Z; �(t))=d�)[v�n] satis�es the envelope condition

and is Hölder continuous in � 2 N0n; (ii) each element of (dm(Z; �(t))=d�)[v�n] is in �

c (X );

 > dx=2 for all � 2 N0:

The following result is proved in the Appendix.

Theorem 6.1. Under Assumptions 4.1-4.8, 5.1-5.6 and 6.1-6.3,
p
n(b�n � �0)

d�! N (0;
)

where


 = E

�
V ar

�
d' (X;Z; �0)

dg (Z; �)
Dw�(Z)

����X��
=

�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1 (4.33)

Note that if Dw(Z) and g(Z; �0) are independent conditional on X then the expression

(4.33) reduces to the asymptotic variance-covariance formula (22) in AC that is shown to
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be asymptotically e¢ cient by these authors. A consistent estimator of 
 can be obtained in

the following way: First estimate W0(xi; zj)
�1 with

wij = pkn(xj)
0 (P 0P )

�1
pkn(xi)b�(xi; b�n) =

nX
j=1

wijg(zj; b�n)g0(zj; b�n)
cW0(xi; zj)

�1 = b�(xi; b�n)�1g(zj; b�n)g0(zj; b�n)b�(xi; b�n)�1 (4.34)

Then for each s = 1; :::; d� estimate w�s with bw�s which is a solution to the minimization
problem

min
ws2Hn

1

n

nX
i=1

nX
j=1

wij

�
dg(zj; b�n)

d�s
� dg(zj; b�n)

dh
[ws]

�0cW0(zj; xi)
�1

�
�
dg(zj; b�n)

d�s
� dg(zj; b�n)

dh
[ws]

�

and let bw� = ( bw�1; :::; bw�d�) implying
bD bw�(zj) = dg(zj; b�n)

d�s
� dg(zj; b�n)

dh
[ bw�] (4.35)

Finally, use (4.34) and (4.35) in a �nite-sample analog of (4.33) to obtain

b
 = " 1
n

nX
i=1

nX
j=1

w0ij
bD bw�(zj)0cW0(xi; zj)

�1 bD bw�(zj)
#�1

We note that for linear sieves computing bw�s does not require nonlinear optimization and
thus the covariance estimator is easy to compute.
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CONCLUSION

In this Chapter extended the LWCEL estimator proposed in the previous Chapter to the

semiparametric environment de�ned by models of conditional moment restrictions containing

both � and in�nite dimensional unknown functions h; formallyE [g (Z; �0) jX] = 0:We estab-

lished consistency of the new estimator b�n, convergence rates of b�n under the Fisher norm,
and asymptotic normality of the �nite-dimensional component b�n. The new Sieve-based LW-
CEL estimator (SLWCEL) is a direct alternative to the Sieve Minimum Distance estimator

considered by AC that is based on an optimization principle similar to the one of GMM. As

shown by Newey and Smith (2004), GEL-type estimators, such as EL, outperform the GMM

estimator in terms of higher-order properties in parametric models E [g (Z; �0) jX] = 0. We

conjecture that a similar type of improvements is likely to occur also in the semiparametric

context of E [g (Z; �0) jX] = 0.
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APPENDIX

Appendix 4.1: Proofs of Main Results

Discussion of Consistency

In outlining our consistency proof, we follow the discussion as given by KTA and extend it to
our case of in�nite dimensional parameter space. For a standard extremum estimation procedure
(for example via maximization), consistency can be shown by considering the sample objective
function and its population counterpart and arguing in the following manner. Consider an arbitrary
neighborhood of the true parameter value. Check that:

(A) Outside the neighborhood, the sample objective function is bounded away from the maxi-
mum of the population objective function achieved at the true parameter value, w.p.a. 1:

(B) The maximum of the sample objective function is by de�nition not smaller than its value
at the true parameter value. The latter converges to the population objective function evaluated
at the true value, due to the LLN.

By (A) and (B) the maximum of the sample objective function is unlikely to occur outside the
(arbitrarily de�ned) neighborhood for large samples. This shows the consistency.

While Newey and Powell (2003) were able to recast their estimator as an argmin of a quadratic
form delivering (A), in Chen (2005) (Theorem 3.1) (A) is assumed. In our problem, however, such
approach cannot be applied directly. Speci�cally, showing (A) is problematic here, since the ob-
jective function Gn de�ned in (4.10) contains the Lagrange multiplier �(�n) which is endogenously
determined at each �n: Therefore, in our proof we follow the KTA approach binding Gn with a
dominating function and then check (A) for the latter by comparing the convergence rates of Gn
at �0 and outside a ��neighborhood of �0: The convergence rate of Gn(�0) is a new result which
di¤ers from the one of KTA since the de�nition of our Gn contains an additional term �i arising
from the use of a di¤erent weighting scheme and due to our estimator being based on series rather
than kernel weights. In our proof, a Uniform Law of Large Numbers (ULLN) for the dominating
function is used only for �n outside the ��neighborhood of �0:

Regarding the complications incurred by considering an in�nite dimensional parameter space �,
we note that our consistency proof di¤ers from the ones used in Newey and Powell (2003) (Theorem
1) and Chen (2005) (Theorem 3.1) for M-estimators with �. Using a ULLN over the sieve space,
these authors show that the sample objective function Gn and its expectation are, w.p.a 1; within a
��neighborhood of each other when evaluated at a parameter e�n in the sieve space that converges
to the true parameter value �0. Existence of such parameter e�n is guaranteed by the de�nition
of the sieve space. This approach, however, would necessitate evaluating the convergence rates
of Gn(e�n) to its expectation which is problematic in our saddle-point case since it is di¢ cult to
capture the behavior of the endogenous �i(�) away from �0: Recall that b�n is de�ned as maximizing
Gn(�n) over the sieve space An and thus using Gn(�); � 2 A for estimation purposes would yield
an unfeasible estimator. Nonetheless, the function g(zj ; �) and hence the functions Gn(�) and
�n(xi; �) can theoretically be evaluated at a generic parameter value � 2 A not restricted to the
sieve space. Hence the asymptotic rate of convergence of Gn(�0) at the true parameter value can
be derived to facilitate asymptotic analysis.
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Further Notation
Let us introduce some additional notation. Let k�kE denote the Euclidean norm. De�ne

ai � �i � 1

=

nX
j=1

wij � 1

= i0P
�
P 0P

��1
pkn(xi)� 1

For generic n vectors z and a vector x we drop the subscript i and use

ax � i0P
�
P 0P

��1
pkn(x)� 1 (4.36)

Further de�ne B(�0; �) and Bn(�0; �) as ��neighborhoods around �0 with B(�0; �) � A and
Bn(�0; �) � An; respectively. Consider the function  (X;�) as de�ned in (4.14). Denote

 n(xi; �) �
nX
j=1

wij' (xi; zj ; �)

=

nX
j=1

wij ln
�
�i + �

0
ig (zj ; �)

	
(4.37)

Gn(�n) � � 1
n

nX
i=1

 n(xi; �)

= � 1
n

nX
i=1

nX
j=1

wij' (xi; zj ; �)

= � 1
n

nX
i=1

nX
j=1

wij ln
�
�i + �

0
ig (zj ; �n)

	
(4.38)

�n(xi; �) �
nX
j=1

wijg(zj ; �)g
0(zj ; �) (4.39)

�(X;�) � EZ [�n(X;�)]

and recall the de�nition of �0(X) � V ar[g(Z;�0)jX] in Assumption 6.1 (iii).
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Main Proofs

Proof of Theorem 4.1. Following KTA, in the asymptotic analysis we will replace �i(�) by

u (xi; �) =
E [g (z; �) jxi]

(1 + kE [g (z; �) jxi]k)

For a constant ec 2 (0; 1) de�ne a sequence of truncation sets
Cn =

�
z : sup

�2A

��ax + u0 (x; �n) g (z; �n)�� � ecn1=m� (4.40)

and let
sn � n�1=m

�
ax + u

0 (x; �n) g (z; �n)
�
I fz 2 Cng (4.41)

Let

qn (x; z; �n) = � log
�
1 + n�1=m

�
ax + u

0 (x; �n) g (z; �n)
�
I fz 2 Cng

�
= � log (1 + sn)

The modi�ed objective function is

Qn(�n) =
1

n

nX
i=1

nX
j=1

wijqn (xi; zj ; �n) (4.42)

Note that
Gn(�n) � Qn(�n) (4.43)

for all �n 2 An by the optimality of �i:
Then by the Taylor series expansion for logarithms

qn(x; z; �n) = � log (1 + sn)

= �sn +
es2n
2

= �sn +
s2n

2(1� tsn)

= �n�1=m
�
ax + u

0 (x; �n) g (z; �n)
�
I fz 2 Cng+

s2n
2(1� tsn)

= n�1=m
�
ax + u

0 (x; �n) g (z; �n)
�
� n�1=m

�
ax + u

0 (x; �n) g (z; �n)
�

�n�1=m
�
ax + u

0 (x; �n) g (z; �n)
�
I fz 2 Cng+

s2n
2(1� tsn)

= �n�1=m
�
ax + u

0 (x; �n) g (z; �n)
�

+n�1=m
�
ax + u

0 (x; �n) g (z; �n)
�
(1� I fz 2 Cng) +

s2n
2(1� tsn)

= �n�1=m
�
ax + u

0 (x; �n) g (z; �n)
�
+Rn(t; ax; �n) (4.44)
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where

Rn(t; ax; �n) = n�1=m
�
ax + u

0 (x; �n) g (z; �n)
�
(1� I fz 2 Cng)

+
n�2=m [ax + u0 (x; �n) g (z; �n)]

2 I fz 2 Cng
2(1� tn�1=m [ax + u0 (x; �n) g (z; �n)] I fz 2 Cng)2

Note that, by the triangle and Cauchy-Schwarz inequalities

jRn(t; ax; �n)j � n�1=m
�
jaxj+

u0 (x; �n) kg (z; �n)k� (1� I fz 2 Cng)
+
n�2=m

h
a2x + 2 kaxk ku0 (x; �n)k kg (z; �n)k+ ku0 (x; �n)k

2 kg (z; �n)k2
i
I fz 2 Cng

2(1� tn�1=m [ax + u0 (x; �n) gn (z; �n)])2

and by ku0 (x; �n)k < 1 we obtain

jRn(t; ax; �n)j � n�1=m [jaxj+ kg (z; �n)k] (1� I fz 2 Cng)

+
n�2=m

h
a2x + 2ax kg (z; �n)k+ kg (z; �n)k

2
i

2(1� tn�1=m [ax + u0 (x; �n) gn (z; �n)])2

From (4.40) it follows that

ec � n�1=m sup
�2A

��ax + u0 (x; �n) g (z; �n)��
� n�1=m

��ax + u0 (x; �n) g (z; �n)��
� tn�1=m

��ax + u0 (x; �n) gn (z; �n)��
and hence

jRn(t; ax; �n)j � n�1=m [jaxj+ kg (z; �n)k] (1� I fz 2 Cng)

+
n�2=m

h
a2x + 2ax kg (z; �n)k+ kg (z; �n)k

2
i

2(1� ec)2
= n�1=m [jaxj+ kg (z; �n)k] (1� I fz 2 Cng)

+n�2=m
a2x

2(1� ec)2 + n�2=m
h
2ax kg (z; �n)k+ kg (z; �n)k2

i
2(1� ec)2

taking sup over A we obtain

sup
�2A

jRn(t; ax; �n)j � n�1=m
�
jaxj+ sup

�2A
kg (z; �n)k

�
(1� I fz 2 Cng) + n�2=m

a2x
2(1� ec)2

+
n�2=m

h
2ax sup�2A kg (z; �n)k+ sup�2A kg (z; �n)k2

i
2(1� ec)2 (4.45)

In view of (4.44) and (4.45) approximate n1=mQn(�n) by n1=mQn(�n) where

Qn(�n) = �
1

n1+1=m

nX
i=1

u0 (xi; �n)E [g (z; �n) jxi] (4.46)
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Lemma A.2 shows that

n1=mQn(�n) = n1=mQn(�n) + op(1) uniformly in �n 2 An (4.47)

Next, we will apply a uniform law of large numbers to n1=mQn(�) over the whole parameter
space A. Under Assumptions 4.4(i), 4.5, and 4.6 E [g (z; �) jxi] is continuous in � 2 A by Corollary
4.2 of Newey (1991), and so is

�u0 (xi; �)E [g (z; �) jxi] = �
kE [g (z; �) jxi]k2

1 + kE [g (z; �) jxi]k

Under Assumption 4.5(i) E [sup�2A j�u0 (xi; �)E [g (z; �) jxi]j] <1. These, together with Assump-
tion 4.4(i) satisfy the conditions of Lemma A2 of Newey and Powell (2003) implying the following
uniform law of large numbers:

sup
�2A

���n1=mQn(�)� E ��u0 (xi; �)E [g (z; �) jxi]���� = op(1) (4.48)

where �E [�u0 (xi; �)E [g (z; �) jxi]] is continuous in A: This function is bounded above by

�E
�
u0 (xi; �)E [g (z; �) jxi]

�
� �E

h
I fx 2 XAg kE [g (z; �) jxi]k2 = (1 + kE [g (z; �) jxi]k)

i
(4.49)

By Assumption 4.1, the right-hand side of this inequality is strictly negative at each � 6= �0:
Therefore, by continuity of �E [u0 (xi; �)E [g (z; �) jxi]] and compactness ofA; there exists a strictly
positive number H(�) such that

sup
�2AnB(�0;�)

E
�
�u0 (xi; �)E [g (z; �) jxi]

�
� �H(�) (4.50)

By (4.43), (4.47), and Assumption 4.4(ii) we have

sup
�n2An

n1=mGn(�n) � sup
�n2An

n1=mQn(�n) = sup
�n2An

n1=mQn(�n) + op(1) (4.51)

Together (4.51) with (4.50) and (4.48) imply that

Pr

(
sup

�n2AnnBn(�0;�)
Gn(�n) > �n�1=mH(�)

)
< �=2 eventually: (4.52)

Next, we evaluate Gn at the true value �0 and show that Gn(�0) converges to its expectation
faster than Gn(�n) with �n outside a ��neighborhood of �0 whose convergence rate is given in
(4.52). Having established this fact the conclusion of the proof is then straightforward. This
approach was taken by KTA for the �nite-dimensional parameter � and we extend it to the in�nite-
dimensional parameter �: Our way of deriving the rate of convergence of Gn(�0) di¤ers from KTA,
though, because we do not make use of kernel-based results. Rather, based on the series literature,
we derive a new result for the rate of convergence by specializing Lemma A.1(A) of AC to our case.

Using Lemma A.4 and the fact

1 + ai =

nX
j=1

wij > 0 for each i
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we obtain

Gn(�0) = � 1
n

nX
i=1

nX
j=1

wij log
�
1 + ai + �

0
i (�0) g (zj ; �0)

�
� � 1

n

nX
i=1

nX
j=1

wij
�
ai + �

0
i (�0) g (zj ; �0)

�
= � 1

n

nX
i=1

�0i (�0)
nX
j=1

wijg (zj ; �0)

� � max
1�i�n

k�i(�0)k max
1�i�n


nX
j=1

wijg (zj ; �0)


Then by Lemmas A.1 and A8,

Gn(�0) =

�
op(e�1n) + op� 1

n%�1=m

��2
= op(r

2
n)

where

rn � op(e�1n) + op� 1

n%�1=m

�
with e�1n de�ned in Lemma A.7 and % de�ned in 4.7. Therefore, we have the following LLN

Pr
�
Gn(�0) < �r2nH(�)

	
< �=2 eventually: (4.53)

Denote

bQ1(�) � n1=mGn(�)bQ2(�) � r�2n Gn(�)

Q1(�) � �E
�
u0(x; �)E [g(z; �)jx]

�
Q2(�) � E bQ2(�)

where the last expectation is taken with respect to the joint density of (Y;X) : Under Assumptions
4.4(i), 4.5, and 4.6 Q2(�) is continuous in � 2 A by Corollary 4.2 of Newey (1991). Note that since
n1=mr2n ! 0 and n1=mGn(�) � 0; by (4.48) and (4.51), w.p.a. 1,

r�2n > n1=mbQ2(�) � bQ1(�) (4.54)

If we retain �i(�) instead of u(x; �) in the de�nition of Qn(�) in (4.42), using �i(�) = Op(1) which
follows from (4.11), we can derive an analog of Qn(�) in (4.46) as

Q2n(�) = �
1

n1+1=m

nX
i=1

�0i(�)E [g (z; �) jxi]
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By a corresponding analog of (4.47) and the moment restriction E [g (z; �0) jxi] = 0 it follows that
Q2n(�0) = 0 and Q2(�0) = 0: Also, by (4.49) Q1(b�n) < 0 for each � 6= �0 and thus

Q1(b�n) � 0 (4.55)

Then, w.p.a. 1;

Q1(b�n) � bQ1(b�n) +H(�)=2 (4.56)

� bQ1(�0) +H(�)=2 (4.57)

� bQ2(�0) +H(�)=2 (4.58)

> Q2(�0) +H(�) (4.59)

= H(�) (4.60)

where (4.56) holds by (4.48) and (4.51), (4.57) holds by the de�nition of b�n; (4.58) by (4.54), (4.59)
by LLN at �0 (4.53), and (4.60) by Q2(�0) = 0. By (4.55) and � being arbitrary, taking H(�)! 0;

bQ1(b�n) p! 0

Then, using Assumption 4.4(ii), Pr
���� bQ1(b�)�Q2(�0)��� � H(�)

�
! 0 and by (4.52)

Pr (b�n 2 AnnBn (�0; �))! 0:

Proof of Theorem 5.1. In deriving the convergence rates under the Fisher norm k�kF we will proceed
in a way that is similar to the proof of Theorem 3.1 in AC. Speci�cally, we will use their Lemma
A.1 and Corollary A.1 that hold for a generic function m(X;�) and the Euclidean metric. However,
since our objective function and metric di¤ers from the ones used by these authors, we need to
derive the counterparts of their Corollaries A.2 and B.1 for our case.

Recall the de�nition of Gn(�n) in (4.38)

Gn(�n) � �
1

n

nX
i=1

nX
j=1

wij ln
�
�i + �

0
ig (zj ; �n)

	
and de�ne

Gn(�n) � �
1

n

nX
i=1

E
�
ln
�
�i + �

0
ig (z; �n)

	
jxi
�

(4.61)

Let �0n = o(n�1=4) and denote �n0 = ��0 (the orthogonal projection of �0 onto the sieve space).

P (kb�n � �0kF � �0n) = P

0@ sup
fkb�n��0kF��0n;�n2AngGn(�n) � Gn(�n0)

1A
Note that Assumptions 3.1-3.2, 3.6-3.8 and 4.1(iii) in AC are equivalent to our Assumptions 4.2,

4.3, 5.2, 4.5, 4.6, 5.3-5.5 and 5.6, respectively. Assumption 3.3 in AC is implied by our Assumption
4.1 and the condition (4.1). The analog of AC�s Assumption 3.4 for our �n(xi; �) de�ned in (4.39)
is satis�ed by AC�s Corollary A.1(i). Thus Assumptions of AC�s Lemma A.1 and Corollary A.1 are
satis�ed.

Lemma B.1 states the counterparts of their AC�s Corollaries A.2 and B.1 for our case. We
note that condition (A) of our consistency proof was shown to hold for Gn(�n) in Theorem 4.1.
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Since eGn(�n) � Gn(�n); by (4.51) the condition also holds for eGn(�n): Thus the identi�cation
condition is satis�ed. Satisfying Assumptions of Theorem 1 of Shen and Wong (1994) is also a
necessary condition for AC�s Theorem 3.1. Since the role of the pseudodistance in Theorem 1 of
Shen and Wong (1994) is performed by our metric k�k2F in a way topologically equivalent to the
AC�s one, and the remaining AC�s Assumptions hold as described above, this condition is also
satis�ed. Invocation of AC�s Theorem 3.1, with their objective function and metric replaced with
ours, completes the proof.

Proof of Theorem 6.1. Substituting (4.32) into (4.31) yields

dg(Z;�0)

d�
[v�] = Dw�(Z)

�
E
�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	��1 � (4.62)

Note that by the chain rule

d' (X;Z; �0)

d�
[v�] =

d' (X;Z; �0)

dg (Z;�)

dg (Z;�0)

d�
[v�] (4.63)

Using Lemma C.1 and (4.62) in (4.63), we obtain

d' (X;Z; �0)

d�
[v�] =

d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1 � (4.64)

We will now check the conditions for Theorem 7.1 in Appendix 3 that is an extension of
Theorem 1 of Shen (1997) to our conditional case. Lemma C.2 shows that under our Assumptions,
Conditions A is satis�ed. Since fg (z; �n) : �n 2 Ang � �c (X ), Condition B follows directly from
Lemma B.1. Since kb�n � �0kF = op(n

�1=4); then �n = n�1=4 and hence for Condition C we require

sup
f�n2An:k�n��0k��ng

k"nu� � "nu�nk = Op(�
�1
n "2n)

= Op(n
�1=4)

which is satis�ed by Assumption 6.2. Condition D follows from the smoothness of d'(xi;zj ;�0)d� [���0]
in N0n: Condition F is satis�ed by the de�nition of f (b�n) � � 0b�n, ! = 1; and Assumption 6.2.
Condition G is satis�ed by Assumption 6.1.

By Theorem 7.1 in Appendix 3, for arbitrarily �xed � 2 Rd� with j� j 6= 0;

p
n� 0(b�n � �0) d�! N(0;�v�)

where

�v� � E

�
V ar

�
d' (X;Z; �0)

d�

����X��
= � 0
� (4.65)

and hence p
n(b�n � �0) d�! N(0;
)
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Using (4.64) in (4.65) we obtain


 =
�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1
�E

�
V ar

�
d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

����X��
�
�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1 (4.66)

Using Lemma C.1 and (4.66)


 =
�
E
�
E
�
Dw�(Z)

0W0(Z;X)
�1Dw�(Z)

��X�	��1

Appendix 4.2: Auxiliary Results

Consistency

Lemma A.1 (B.3). Let Assumptions 4.5 and 4.7 hold. Then, pointwise for a given � 2 A;

max
1�i�n


nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]

 = op(e�1n) + op� 1

n%�1=m

�

where e�1n is de�ned in Lemma A.7 and % in Assumption 4.7.
Proof. Decompose

nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]

 � max
1�i�n


nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]

 Ii;n
+ max
1�i�n


nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]

 max1�i�n
Ici;n

Note that he results of Lemma D.3 and D.5 in KTA hold also for wij as de�ned in this paper.
Therefore

max
1�i�n


nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]

 max1�i�n
Ici;n = op

�
1

n%�1=m

�
Next, pick any � > 0; cn # 0; and observe that

Pr

8<:max1�i�n


nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]

 Ii;n > �cn

9=;
� Pr

8<: supX2X


nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]

 > �cn

9=;
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Using Lemma A.7,

Pr

8<: supX2X


nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]

 > �cn

9=; � �

if
cn = e�1n

where e�1n is de�ned in Lemma A.7. Hence
max
1�i�n


nX
j=1

wijg (zj ; �)� E [g (z; �) jxi]

 Ii;n = op

�e�1n�
and the desired result follows.

Lemma A.2 (B.8). Let Assumptions 4.5 and 4.7 hold. Then

sup
�n2An

��Qn(�n)�Qn(�n)�� = op(n
�1=m)

Proof. Substituting from (4.44) for qn (xi; zj ; �n) we obtain

n1=m sup
�n2An

������ 1n
nX
i=1

nX
j=1

wijqn (xi; zj ; �n) +
1

n1+1=m

nX
i=1

u0 (xi; �n)E [g (z; �n) jxi]

������
� n1=m sup

�n2An

������ 1n
nX
i=1

nX
j=1

wij

n
�n�1=m

�
ai + u

0 (xi; �n) g (zj ; �n)
�o
+

1

n1+1=m

nX
i=1

u0 (xi; �n)E [g (z; �n) jxi]

������
+n1=m sup

�n2An

������ 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

������

= sup
�n2An

������� 1n
nX
i=1

nX
j=1

wijai +
1

n

nX
i=1

u0 (xi; �)E [g (z; �n) jxi]�
1

n

nX
i=1

nX
j=1

wiju
0 (xi; �n) g (zj ; �n)

������
+n1=m sup

�n2An

������ 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

������
� � sup

�n2An

������ 1n
nX
i=1

nX
j=1

wijai

������+ sup
�n2An

1

n

nX
i=1

E [g (z; �n) jxi]�
nX
j=1

wijg (zj ; �n)


+n1=m sup

�n2An

������ 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

������
The �rst term drops out by Lemma A.4, the second term is op(1) by Corollary A.1(i) in AC,

p. 1824, and the third term is op(1) by Lemma A.3.
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Lemma A.3. Let Assumptions 4.5 and 4.7 hold. Then

n1=m sup
�n2An

������ 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

������ = op(1)

Proof. Note that by (4.45)

n1=m sup
�n2An

������ 1n
nX
i=1

nX
j=1

wijRn(t; ai; �n)

������
� 1

n1�1=m

nX
i=1

nX
j=1

wij sup
�n2An

jRn(t; ai; �n)j

� 1

n

nX
i=1

nX
j=1

wij

�
jaij+ sup

�n2An
kg (zj ; �n)k

�
(1� I fzj 2 Cng)

+
1

n1+1=m
1

2(1� ec)2
nX
i=1

a2i

nX
j=1

wij

+
1

n1+1=m

nX
i=1

nX
j=1

wij

h
2ai sup�n2An kg (zj ; �n)k+ sup�2A kg (zj ; �n)k

2
i

2(1� ec)2
= D1 +D2 +D3

By Assumption 4.5(i) and 4.4(ii), sup�n2An kg (z; �n)k < 1: By Lemma A.5 jaij < 1 and hence
by Lemma A.6

1

n

nX
i=1

nX
j=1

wij

�
jaij+ sup

�n2An
kg (zj ; �n)k

�
= Op(1):

Since max1�j�n I fzj =2 Cng = op(1); D1 = op(1): By Lemma A.6 D2 = op(1):

D3 =
1

n1+1=m

nX
i=1

nX
j=1

wij

h
2ai sup�n2An kg (zj ; �n)k+ sup�2A kg (zj ; �n)k

2
i

2(1� ec)2
=

1

n1+1=m(1� ec)2
nX
i=1

nX
j=1

wijai +
1

n1+1=m

nX
i=1

nX
j=1

wij
sup�n2An kg (zj ; �n)k

2

2(1� ec)2
where the �rst part drops out by Lemma A.4 and the second part is op(1) by Assumption 4.5(i),
4.4(ii) and Lemma A.6.

Lemma A.4. Under Assumptions 4.3 and 4.4, for wij de�ned in (4.5) and ai de�ned in (4.36),
it holds that

1

n

nX
i=1

nX
j=1

wijai = 0
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Proof.

1

n

nX
i=1

nX
j=1

wijai =
1

n

nX
i=1

ai

nX
j=1

wij

=
1

n

nX
i=1

24 nX
j=1

wij � 1

35 nX
j=1

wij

=
1

n

nX
i=1

h
i0P
�
P 0P

��1
pkn(xi)i

0P
�
P 0P

��1
pkn(xi)� i0P

�
P 0P

��1
pkn(xi)

i
=

1

n

nX
i=1

h
i0P
�
P 0P

��1
pkn(xi)p

kn(xi)
0 �P 0P ��1 P 0i� i0P �P 0P ��1 pkn(xi)i

= i0P
�
P 0P

��1 �
P 0P

� �
P 0P

��1
P 0i� 1

n

nX
i=1

i0P
�
P 0P

��1
pkn(xi)

=
1

n
i0P
�
P 0P

��1
P 0i� 1

n
i0P
�
P 0P

��1
P 0i

= 0

Lemma A.5. Under Assumptions 4.3 and 4.4, for wij de�ned in (4.5),

nX
j=1

wij = O(1)

for each X 2 X :

Proof. By Assumption 4.3, for any E [�l (Z;�) jxi] there exists pkn(xi)0�l =
Pn
j=1wijgl (zj ; �) such

that

E

24E [gl (Z;�) jxi]� nX
j=1

wijgl (zj ; �)

35 = O(1)

The result follows by boundedness of gl (zj ; �).

Lemma A.6. Under Assumptions 4.3 and 4.4, for wij de�ned in (4.5),

1

n

nX
i=1

nX
j=1

wij = Op(1)

Proof. Follows directly from Lemma A.5.

Lemma A.7. Let

�0n � sup
X2X

pkn(X)
E

�1n � sup
X2X

@pkn(X)@x0


E
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Let eg : Z ! R denote a generic measurable function of the data Z 2 Z; evaluated at a given �xed
parameter �: De�ne " (Z;�) = eg(Z;�)� E [eg(Z;�)jX] and "(�) = (" (Z1; �) ; :::; " (Zn; �))0 :

Suppose that Assumptions 4.2 and 4.3(i) and the following are satis�ed:
(i) There exists a constant c1n and a measurable function c1(Z) : Z ! [0;1) with E[c1(Z)p] <

1 for some p � 4 such that jeg(Z;�)j � c1nc1(Z) for all Z 2 Z;
(ii) There exists a positive value e�1n = op(1) such that

ne�21n
ln
h
( �1nc1n�1n

)dx
i
max

n
�20nc

2
1n; �

2+2=p
0n �

1�2=p
1n c

1+2=p
1n

o !1

Then
pkn(X)0(P 0P )�1P 0"(�) = op(�1n)

uniformly over X 2 X :

Proof. This result specializes Lemma A.1(A) in AC, derived for the combined space X �A to the
space X only, with g (zj ; �) evaluated at a given �xed �: Since we do not have to account for growth
restrictions on the parameter space, we are able to obtain faster convergence rate �1n than AC.

Let c denote a generic constant that may have di¤erent values in di¤erent expressions. For any
pair X1 2 X and X2 2 X ���pkn(X1)0(P 0P )�1P 0"(�)� pkn(X2)0(P 0P )�1P 0"(�)���

=

����hpkn(X1)� pkn(X2)i0 (P 0P )�1P 0"(�)����
Note that pkn(X1)0 � pkn(X2)02

E
� �21n kX1 �X2k

2
E

It follows that

����hpkn(X1)� pkn(X2)i0 (P 0P )�1P 0"(�)���� � �21n kX1 �X2k
2
E

vuut 1

n�n

nX
i=1

" (Zi; �)
2

where �n denotes the smallest eigenvalues of P 0P=n: Condition (i) implies

1

n

nX
i=1

" (Zi; �)
2 � c21n

n

nX
i=1

(c1 (Zi) + E [c1 (Zi) jXi])2

Assumption 4.3(i) implies �n = Op(1):Applying the weak law of large numbers and E
�
(E [c1 (Zi) jXi])2

	
�

E
�
c1(Z)

2
	
; we obtain

1

n

nX
i=1

(c1 (Zi) + E [c1 (Zi) jXi])2 = Op(1)

Thus there exists a constant c such that

Pr

0@vuut 1

n�n

nX
i=1

(c1 (Zi) + E [c1 (Zi) jXi])2 > c

1A < �
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for su¢ ciently large n:
For any small � partition X into bn mutually exclusive subsets Xm; m = 1; :::; bn; whereX1 2 Xm

and X2 2 Xm imply kX1 �X2k2E � �e�1n=(c1n�1nc): Then with probability approaching one we have���pkn(X1)0(P 0P )�1P 0"(�)� pkn(X2)0(P 0P )�1P 0"(�)��� � �e�1n
Let Xm denote a �xed point in Xm: For any X there exists an m such that kX1 �X2k2E �
�e�1n=(c1n�1nc): Then with probability approaching one

sup
X2X

���pkn(X)0(P 0P )�1P 0"(�)��� � �e�1n +max
m

���pkn(Xm)0(P 0P )�1P 0"(�)���
Hence

Pr

�
sup
X2X

���pkn(X)0(P 0P )�1P 0"(�)��� > 2�e�1n�
< 2� + Pr

�
max
m

���pkn(Xm)0(P 0P )�1P 0"(�)��� > 2�e�1n�
For some constant c; let

Mn =

�
c�0nc1n
�1n��

�2=p
De�ne din = I fc1(Z) �Mng : De�ne g1(Zi; �) = ding1(Zi; �) and g2(Zi; �) = (1� din) g1(Zi; �):
De�ne "1(Zi; �) and "2(Zi; �) accordingly. It follows that

Pr
�
max
m

���pkn(Xm)0(P 0P )�1P 0"(�)��� > 2�e�1n�
� Pr

 
max
m

�����pkn(Xm)0(P 0P )�1
nX
i=1

"1(Zi; �)

����� > �e�1n!

+Pr

 
max
m

�����pkn(Xm)0(P 0P )�1
nX
i=1

"2(Zi; �)

����� > �e�1n!
� P1 + P2

AC show that P2 � �, along with

�2m � nE

8<:
"
pkn(Xm)

0(P 0P )�1
nX
i=1

pkn(Xi)"1(Zi; �)

#29=; = O(c21n�
2
0n)

and ���pkn(Xm)0(P 0P=n)�1pkn(Xi)"1(Zi; �)��� � Mn�
2
0nc1n
�n

Noting that

Pr

 �����pkn(Xm)0(P 0P )�1
nX
i=1

"1(Zi; �)

����� > �e�1n!

= E

"
Pr

 �����pkn(Xm)0(P 0P )�1
nX
i=1

"1(Zi; �)

����� > �e�1n j X1; :::; Xn!#
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AC apply the Bernstein inequality for independent processes to obtain

Pr

 �����pkn(Xm)0(P 0P )�1
nX
i=1

"1(Zi; �)

����� > ��1n

!
� 2E

h
exp

�
�n"2e�21n=�c�2m +Mn�

2
0nc

2
1n�

�1
n "e�1n��i

where E[�] is taken with respect to the joint distribution of (X1; :::; Xn): Hence

P1 < 2bnE
h
exp

�
�n"2e�21n=�c�2m +Mn�

2
0nc

2
1n�

�1
n "e�1n��i

which is arbitrarily small if

ne�21n
max

n
�20nc

2
1n;Mn�

2
0nc1n

e�1no � ln(bn)!1

Since X is a compact subset in Rd, we have

bn = O

0@ e�1n
c1n�1n

!�dx1A
Substituting for Mn and bn we obtain

ne�21n
ln(bn)max

n
�20nc

2
1n;Mn�

2
0nc1n

e�1no

= O

0BB@ ne�21n
ln

�� e�1n
c1n�1n

��dx�
max

n
�20nc

2
1n; �

2+2=p
0n

e�1�2=p1n c
1+2=p
1n

o
1CCA

Thus, for P1 < � for su¢ ciently large n by condition (ii).

Lemma A.8 (part of B.1). Let Assumptions 4.2-4.6 and 4.8 hold. Let also n1=me�1n # 0 and
� > 2=m where e�1n is de�ned in Lemma A.7 and % in Assumption 4.7. Then

max
1�i�n

k�i(�0)k = op(e�1n) + op� 1

n%�1=m

�
(4.67)

This Lemma is analogous to Lemma B.1 of KTA. However, the analysis is somewhat complicated
due to the extra term �i: Moreover, here we do not make use of results related to kernel estimation.
Thus, for example, consistency of the variance-covariance matrix �n(xi; �0) follows from series
results of AC.
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Proof. In this Lemma, we will use the F.O.C.s (3.17) and (3.19) that combine to

nX
j=1

wij
1 + ai + �

0
ig (xj ; �)

=
nX
j=1

wij
�0ig (xj ; �) + �i

=

nX
j=1

b�ij
= 1 (4.68)

Let
�i (�0) = �i�i (4.69)

where �i � 0 and �i 2 Rdg : It holds that

nX
j=1

wij

�
ai + �

0
i (�0) g (zj ; �0)

�2
1 + ai + �

0
i (�0) g (zj ; �0)

= a2i

nX
j=1

wij
1 + ai + �

0
i (�0) g (zj ; �0)

+
2ai�i

Pn
j=1wij�

0
ig (zj ; �0)

1 + ai + �
0
i (�0) g (zj ; �0)

+
�2i �

0
i�n(xi; �0)�i

1 + ai + �
0
i (�0) g (zj ; �0)

(4.70)

For the �rst term of the RHS sum of (4.70), using (4.68), it holds that

a2i

nX
j=1

wij
1 + ai + �

0
i (�0) g (zj ; �0)

= a2i

= (�i � 1)2

= �2i � 2�i + 1 (4.71)

Substituting (4.71) into (4.70) yields

nX
j=1

wij

�
ai + �

0
i (�0) g (zj ; �0)

�2
1 + ai + �

0
i (�0) g (zj ; �0)

= �2i � 2�i + 1 +
2ai�i

Pn
j=1wij�

0
ig (zj ; �0)

1 + ai + �
0
i (�0) g (zj ; �0)

+
�2i �

0
i�n(xi; �0)�i

1 + ai + �
0
i (�0) g (zj ; �0)

(4.72)

Note that for a generic constant c

c2

1 + c
=

c2

1 + c
+ (1� c)� (1� c)

=
c2

1 + c
+
(1� c) (1 + c)

1 + c
� (1� c)

=
c2

1 + c
+
1� c2
1 + c

� (1� c)

=
1

1 + c
� 1 + c
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Using this fact, letting c = ai + �
0
i (�0) g (zj ; �0), we have

nX
j=1

wij

�
ai + �

0
i (�0) g (zj ; �0)

�2
1 + ai + �

0
i (�0) g (zj ; �0)

=

nX
j=1

wij

�
1

1 + ai + �
0
i (�0) g (zj ; �0)

� 1 + ai + �0i (�0) g (zj ; �0)
�

=
nX
j=1

wij
1 + ai + �

0
i (�0) g (zj ; �0)

�
nX
j=1

wij +
nX
j=1

wijai

+
nX
j=1

wij�
0
i (�0) g (zj ; �0)

= 1�
nX
j=1

wij +
nX
j=1

wijai +
nX
j=1

wij�
0
i (�0) g (zj ; �0) (4.73)

By the de�nition of �i;

1�
nX
j=1

wij + ai

nX
j=1

wij = 1� �i + (�i � 1)�i

= �2i � 2�i + 1 (4.74)

Substituting (4.74) into (4.73) gives us

nX
j=1

wij

�
ai + �

0
i (�0) g (zj ; �0)

�2
1 + ai + �

0
i (�0) g (zj ; �0)

= �2i � 2�i + 1 + �i
nX
j=1

wij�
0
ig (zj ; �0) (4.75)

Combining (4.72) and (4.75) yields, after canceling �2i � 2�i + 1 from both sides,

2ai�i
Pn
j=1wij�

0
ig (zj ; �0)

1 + ai + �
0
i (�0) g (zj ; �0)

+
�2i �

0
i�n(xi; �0)�i

1 + ai + �
0
i (�0) g (zj ; �0)

= �i

nX
j=1

wij�
0
ig (zj ; �0) (4.76)

Using Assumption 4.8, by Lemma D.2 in KTA,

max
1�j�n

kg (zj ; �0)k = op(n
1=m) (4.77)

and this op(n1=m) term does not depend on i; j; or �n 2 An: By (4.77) it holds that

0 � 1 + ai + �0i (�0) g (zj ; �0) � 1 + ai + �i kg (zj ; �0)k = 1 + ai + �iop(n1=m) (4.78)

Using (4.78) in (4.76) and canceling �i yields

2ai
Pn
j=1wij�

0
ig (zj ; �0)

1 + ai + �iop(n
1=m)

+
�i�

0
i�n(xi; �0)�i

1 + ai + �iop(n
1=m)

�
nX
j=1

wij�
0
ig (zj ; �0) (4.79)

87



By Corollary D.1 of AC, �n(xi; �0) = �(xi; �0) + op(1) uniformly over X 2 X . Using the fact
that �0i�(xi; �0)�i is bounded away from zero on (xi; �i) 2 RdX � Rdg ; we can divide (4.79) by
�0i�n(xi;�0)�i

1+ai+�iop(n
1=m)

and rearrange terms to obtain

�i �
h
1 + ai + �iop(n

1=m)
i Pn

j=1wij�
0
ig (zj ; �0)

�0i�n(xi; �0)�i
� 2ai

Pn
j=1wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

= (1� ai)
Pn
j=1wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i
+ �iop(n

1=m)

Pn
j=1wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

and hence

�i

 
1� op(n1=m)

Pn
j=1wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

!
� (1� ai)

Pn
j=1wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

�i � (1� ai)
Pn
j=1wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

�
 
1� op(n1=m)

Pn
j=1wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i

!�1
(4.80)

For the last term of the RHS of (4.80), using Lemma A.1 and
�0i <1 for all i; it holds that

op(n
1=m)

Pn
j=1wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i
= op(n

1=m)
�0i max

1�i�n


nX
j=1

wijg (zj ; �0)


= op(n

1=m)O(1)

�
op(e�1n) + op� 1

n%�1=m

��
= op(n

1=me�1n) + op� 1

n%�2=m

�
(4.81)

while for the �rst term of the RHS of (4.80), using also Lemma A.5,

(1� ai)
Pn
j=1wij�

0
ig (zj ; �0)

�0i�n(xi; �0)�i
= O(1)

�0i max
1�i�n


nX
j=1

wijg (zj ; �0)


= O(1)O(1)

�
op(e�1n) + op� 1

n%�1=m

��
= op(e�1n) + op� 1

n%�1=m

�
(4.82)

Under our assumptions, n1=me�1n # 0 and n�%+2=m # 0 in (4.81). This used in (4.80) along with
(4.82) and consistency of �n(xi; �0); implies that

max
1�i�n

k�ik = op(e�1n) + op� 1

n%�1=m

�
which yields the desired result by the de�nition of �i in (4.69).
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Convergence Rates

Lemma B.1. Consider the functions Gn(�n) and Gn(�n) de�ned in (4.38) and (4.61), respectively.
Assumptions 4.1-4.3, 4.5, 4.6, 5.1-5.6 imply: (i) Gn(�n) � Gn(�n) = op(n

�1=4) uniformly over
�n 2 An; and (ii) Gn(�n)�Gn(�0)�

�
Gn(�n)�Gn(�0)

	
= op(�nn

�1=4) uniformly over �n 2 An
with k�n � �0kF � o(�n); where �n = n�� with � � 1=4:

Proof. This Lemma shows the counterpart of AC�s Corollary B.1 for our case. Since �i(�n) solves

nX
j=1

wijg (zj ; �n)

�i + �
0
ig (zj ; �n)

= 0 (4.83)

denote by �i0(�n) the solution to

E

�
g (zj ; �n)

�i + �
0
ig (zj ; �n)

����xi� = 0
Lemma A.5 and Assumption 4.5(i) su¢ ce to satisfy the pointwise convergence condition of Lemma
3.3.5 (p. 311) in Van der Vaart and Wellner (1996) (henceforth) VW for the objective function
(4.83). Note that fg (z; �n) : �n 2 Ang � �c (X ) and �c (X ) is a Donsker class by Theorem 2.5.6
in VW. Since �i (�n) 2 Rdg , f�i (�n) : �n 2 Ang belongs to the Donsker class. By Example 2.10.8
(p. 192) in VW f�0ig (z; �n) : �n 2 Ang is Donsker. Since 0 < �i < 1 is a data-determined
scalar by Lemma A.5, by Example 2.10.9 (p. 192) in VW (4.83) is Donsker in �n 2 An. Hence
the Assumptions of Lemma 3.3.5 (p. 311) in VW are satis�ed and we can invoke Theorem 3.3.1
(p. 310) in VW to conclude that k�i(�n)� �i0(�n)kE = Op(n

�1=2); uniformly over �n 2 An; for
each i: Lemma A.1(A) of AC (de�ning �1n) states that

Pn
j=1wijg (zj ; �n) �m (xi; �n) = op(�1n)

uniformly over X �An: These two rate results for �i(�n) and g (zj ; �n) ; simple law of large numbers
for �i and continuity of the log function satisfy the satisfy the pointwise convergence condition of
Lemma 3.3.5 (p. 311) in VW for the objective function Gn(�n). By Theorem 2.10.6 (p. 192) in
VW fln[�i + �0ig (zj ; �n)] : �n 2 Ang is Donsker. By Lemma A.5, 0 < �i <1 for each i and thus
we can renormalize �i by dividing by sup1�i�n �i that guarantees

Pn
i=1 �i < 1: By Theorem 2.10.3

(p. 190) in VW

��Gn(�n)�Gn(�n)�� =

������ 1n
nX
i=1

nX
j=1

wij ln
�
�i + �

0
ig (zj ; �n)

	
� 1

n

nX
i=1

E
�
ln
�
�i + �

0
i0g (z; �n)

	
jxi
�������

= Op(n
�1=2)

uniformly over �n 2 An; which shows the result (i) in this Lemma.
In order to show part (ii) of the proof, we �rst derive the counterpart of AC�s Corollary A.2 that

is a building block for their Corollary B.1 (ii). Note that since m(X;�0) = 0, k�n � �0kF = op(1)
and AC�s result (i:1) of the proof of their Corollary A.2 holds also for our km(X;�)k2E ; we only need
to show the counterpart of their part (i:2). We replace Assumption 3.9 of AC by our Assumption
5.1 which applies to our metric k�kF . This Assumption together with Lemma C.1 imply that
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Efkm(X;�)k2Eg and k�� �0k
2
F are (topologically) equivalent. Then by Assumptions 4.1, 5.1, and

5.3(i); we have

E

�h
km(X;�)k2E

i2�
� E

n
km(X;�)k2E

o
�
"
sup
X;�

fkm(X;�)kEg
#2
� const:� k�n � �0k2F

satisfying part (i:2). Part (ii) of AC�s Corollary A.2 holds for our metric k�kF by replacing their
Assumption 3.9 with our Assumption 5.1. This, along with AC�s Corollary A.1 shows (ii):

Asymptotic Normality

Lemma C.1. Under Assumptions 4.1-5.6,

E

�
V ar

�
d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

����X��
= E

�
E
�
Dw(Z)

0W0(Z;X)
�1Dw(Z)

��X�	
= E

�
E

�
Dw(Z)

0d' (X;Z; �0)

dg(Z;�)

�
d' (X;Z; �0)

dg(Z;�)

�0
Dw(Z)

����X��

Proof. Using (4.27) and (4.25)

E

�
d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

����X� = E

�
d' (X;Z; �0)

dg (Z;�)

dg(Z;�0)

d�
[v�]

����X�
= E

�
d' (X;Z; �0)

d�
[v�]

����X�
= E

�
d' (X;Z; �0)

d�0
(u�� � �0) +

d' (X;Z; �0)

dh
[u�h � h0]

����X�
= E

�
d' (X;Z; �0)

d�0

����X� (u�� � �0) + E � d' (X;Z; �0)dh
[u�h � h0]

����X�
= 0

by the de�nition of �0: Hence

V ar

�
d' (X;Z; �0)

dg (Z;�)
Dw�(Z)

����X� = E

�
Dw�(Z)

0d' (X;Z; �0)

dg(Z;�)

�
d' (X;Z; �0)

dg(Z;�)

�0
Dw�(Z)

����X�

Taking expectation over X yields the required result.

Lemma C.2. Consider the notation for vn(�) and er[�] de�ned in Appendix 3. Then, under As-
sumptions 4.1-5.6,

n�1=2vn (er[�n � �0; X; Y ]� er[Pn��(an; "n)� �0; X; Y ]) = op(n
�1=4)
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Proof. This Lemma performs a similar function as Lemmas C.1 - C.3 in AC. By the de�nition of
vn(�) and er[�];

n�1=2vn (er[�n � �0; X; Y ]� er[Pn��(an; "n)� �0; X; Y ])
= n�1

nX
i=1

nX
j=1

�
wij fer[�n � �0; xi; yj ]� er[Pn��(an; "n)� �0; xi; yj ]g
�E fer[�n � �0; X; Y ]� er[Pn��(an; "n)� �0; X; Y ]g

�
= A1 �A2

A1 = n�1
nX
i=1

nX
j=1

wijer[�n � �0; xi; yj ]� Eer[�n � �0; X; Y ]
A2 = n�1

nX
i=1

nX
j=1

wijer[�n + "nu�n � �0; xi; yj ]� Eer[�n + "nu�n � �0; X; Y ]

A1 = A11 �A12

A11 = n�1
nX
i=1

nX
j=1

wij' (xi; zj ; �)� E' (z; x; �)

A12 = n�1
nX
i=1

nX
j=1

wij
d' (xi; zj ; �0)

d�
[�� �0]� E

�
d' (x; z; �0)

d�
[�� �0]

�

A2 = A21 �A22

A21 = n�1
nX
i=1

nX
j=1

wij' (x; z; �n + "nu
�
n)� E' (x; z; �n + "nu�n)

A22 = n�1
nX
i=1

nX
j=1

wij
d' (xi; zj ; �0)

d�
[�n + "nu

�
n � �0]� E

�
d' (x; z; �0)

d�
[�n + "nu

�
n � �0]

�

The goal is to show A11 � A12 � A21 + A22 = Op("
2
n) = op(n

�1=4): Note that A11 = op(n
�1=4)

and A21 = op(n
�1=4) follows from parts A and B of AC�s Lemma A.1. A12 = op(n

�1=4) and
A22 = op(n

�1=4) follows from the rate results for A11 and A21; respectively, and the continuous
mapping theorem.
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Appendix 4.3: Sieve Conditional Variance Proof

In this Appendix we extend Theorem 1 of Shen (1997) to our conditional case.6 Consider the setup
as in Shen (1997), with the following modi�cations. Suppose that the observations f(Xi; Yj) : i; j =
1; :::; ng are drawn independently distributed according to density p(�0; Xi; Yj):

De�ne
K(�0; �) = E0l(�0; Xi; Yj)� E0l(�;Xi; Yj)

Let the empirical criterion be

Ln(�) = n�1
nX
i=1

nX
j=1

wijl(�;Xi; Yj)

where l(�; Yj ; Xi) is the criterion based on a single observation. Consider l(�; x; y) for which (analog
of Shen�s (4.1))

er[�� �0; x; y] = l(�; x; y)� l(�0; x; y)� l0�0 [�� �0; x; y] (S 4.1)

where l0�0 [� � �0; x; y] is de�ned as limt!0[l(a + t[� � �0]; x; y) � l(�0; x; y)]=t: Denote b�n the
maximizer of Ln(�n) over �n 2 An: We estimate a real functional of b�n denoted as f(�): With b�n
as de�ned, f(�) is estimated by a substitution estimate f(b�n): By the de�nition of b�n; we have
(analog of Shen�s (2.1))

Ln(b�n) � sup
�2An

Ln(�n)�O("2n) (S 2.1)

where "2n ! 0 as n!1: For any generic function g(X;Y ) let

�n(g) = n�1
nX
i=1

n1=2

8<:
nX
j=1

wijg(Xi; Yj)� E [g(X;Y )jX = xi]

9=;
be the empirical process induced by g: Let the convergence rate of the sieve estimate under k�k be
op(�n) and let "2n = op(n

�1=2):

The following conditions are modi�ed versions of Shen (1997)�s (p. 2568) conditions:

Condition A (Stochastic Equicontinuity). For er[�� �0; x; y] de�ned in (S 4.1),
sup

f�n2An:k�n��0k��ng
n�1=2�n (er[�n � �0; X; Y ]� er[�n + "nu�n � �0; X; Y ]) = Op("

2
n)

Condition B (Expectation of Criterion Di¤erence).

sup
f�n2An:k�n��0k��ng

[K (�0; �n + "nu
�
n)�K (�0; �n)]�

1

2

h
k�n + "nu� � �0k2 � k�n � �0k2

i
= Op("

2
n)

6Measurability with respect to the underlying probability space is assumed throughout the paper and
hence we do not distiguish outer expectation from the usual one.
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Condition C (Approximation Error).

sup
f�n2An:k�n��0k��ng

k"nu� � "nu�nk = Op(�
�1
n "2n)

In addition,

sup
f�n2An:k�n��0k��ng

n�1=2�n
�
l0�0 ["nu

� � "nu�n; X; Y ]
�
= Op("

2
n)

Condition D (Gradient).

sup
f�n2An:k�n��0k��ng

n�1=2�n
�
l0�0 [�n � �0; X; Y ]

�
= Op("n)

Condition E (Smoothness).
Suppose the functional f has the following smoothness property: for any �n 2 An��f�n � f�0 � f 0�0 [�n � �0]�� � un k�n � �0k!F (S 4.2)

as k�n � �0kF ! 0 where ! is the degree of smoothness of f 0�0 [�n � �0] at �0:

Condition F (Convergence Rates and Smoothness). un�
!
n = Op(n

�1=2):

Condition G (Variance). V ar
�
l0�0 [v

�; X; Y ]
�
<1 is positive de�nite for all X 2 X ; y 2 Y:

Theorem 7.1. Let the Conditions A-G hold. Then for the approximate substitution sieve estimate
de�ned in (S 2.1),

n�1=2(f(b�n)� f(�0)) d! N(0; E
�
V ar

�
l0�0 [v

�; Y ]
�
jX
�
)

Proof of Theorem 7.1. Rearrange (S 4.1) as

l(�; x; y) = er[�� �0; x; y] + l(�0; x; y) + l0�0 [�� �0; x; y]
Subtract from (S 4.1) its expectation (under P (�0; Xi; Yj) denoted by E0), for a given (Xi; Yj) to
obtain

l(�; xi; yj)� E0l(�; xi; yj) = l(�; xi; yj)� E0l(�; xi; yj)
+l0�0 [�� �0; xi; yj ]� E0l

0
�0 [�� �0; xi; yj ]

+er[�� �0; xi; yj ]� E0er[�� �0; xi; yj ]
rearrange

l(�; xi; yj) = l(�; xi; yj)� [E0l(�; xi; yj)� E0l(�; xi; yj)]
+l0�0 [�� �0; xi; yj ]� E0l

0
�0 [�� �0; xi; yj ]

+er[�� �0; xi; yj ]� E0er[�� �0; xi; yj ]
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take a weighted average over i; j with weights wij

n�1
nX
i=1

nX
j=1

wijl(�; xi; yj) = n�1
nX
i=1

nX
j=1

wijl(�0; xi; yj)

�n�1
nX
i=1

nX
j=1

wij [E0l(�0; xi; yj)� E0l(�; xi; yj)]

+n�1
nX
i=1

nX
j=1

wij
�
l0�0 [�� �0; xi; yj ]� E0l

0
�0 [�� �0; xi; yj ]

�
+n�1

nX
i=1

nX
j=1

wij (er[�� �0; xi; yj ]� E0er[�� �0; xi; yj ])
and hence using the notation above, for any Pn�n 2 fPn�n 2 An : kPn�n � �0k � �ng, we have

Ln(Pn�n) = Ln(a0)�K(�0; Pn�n)
+n�1=2�n(l

0
�0 [Pn�n � �0; X; Y ])

+n�1=2�n(r[Pn�n � �0; X; Y ]) (S 9.1)

Substituting Pn�n by b�n here above, we obtain
Ln(b�n) = Ln(a0)�K(�0; b�n)

+n�1=2�n(l
0
�0 [b�n � �0; X; Y ])

+n�1=2�n(r[b�n � �0; X; Y ]) (S 9.2)

Subtracting (S 9.2) from (S 9.1) and substituting �n by ��(b�n; "n) in (S 9.1), we have
Ln(Pn�

�(b�n; "n))� Ln(b�n)
= Ln(�0)� Ln(�0)

�K(�0; Pn��(b�n; "n) +K(�0; b�n)
+n�1=2�n(l

0
�0 [Pn�

�(b�n; "n)� �0; X; Y ])� n�1=2�n(l0�0 [b�n � �0; X; Y ])
+n�1=2�n(r[Pn�

�(b�n; "n)� �0; X; Y ])� n�1=2�n(r[b�n � �0; X; Y ])
which yields

Ln(b�n) = Ln(Pn�
�(b�n; "n))

� [K(�0; b�n)�K(�0; Pn��(b�n; "n)]
+n�1=2�n(l

0
�0 [b�n � Pn��(b�n; "n); X; Y ])

+n�1=2�n(r[b�n � Pn��(b�n; "n); X; Y ])
By Condition A (second line of the following)

n�1=2�n(r[Pn�
�(b�n; "n)� �0; X; Y ])� n�1=2�n(r[b�n � �0; X; Y ])

= n�1=2�n(r[b�n � Pn��(b�n; "n); X; Y ])
= Op("

2
n)
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Using Condition B on the di¤erence in Ks, we obtain

Ln(b�n) = Ln(Pn�
�(b�n; "n))� 1

2

h
kb�n � �0k2 � kPn��(b�n; "n)� �0k2i

+n�1=2�n(l
0
�0 [b�n � Pn��(b�n; "n); X; Y ])

+Op("
2
n)

By Condition C (applicable to the second line)

kPn��(b�n; "n)� ��(b�n; "n)k = O(��1n "2n)

Hence, using (S 2.1) we have

�O("2n) � �1
2

h
kb�n � �0k2 � kPn��(b�n; "n)� �0k2i

+n�1=2�n(l
0
�0 [b�n � ��(b�n; "n); X; Y ]) (S 9.3)

+Op("
2
n)

We will use the relation

b�n � ��(b�n; "n) = b�n � b�n + "nb�n � "nu� � "n�0
= �"n (u� � (b�n � �0))

in �n(l0�0 [b�n � ��(b�n; "n); X; Y ]) to get ��n(l0�0 ["n (u� � (b�n � �0)) ; X; Y ]):
In (S 9.3) we have

kPna�(ban; "n)� a0k2 = kPn��(ban; "n)� ��(ban; "n) + ��(ban; "n)� �0k2
= kPn��(ban; "n)� ��(ban; "n) + (1� "n)(b�n � �0) + "nu�k2
� k(1� "n)(b�n � �0)k kPn��(ban; "n)� ��(ban; "n) + "nu�k
� k(1� "n)(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k

+ k(1� "n)(b�n � �0)k k"nu�k
= (1� "n) k(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k

+(1� "n) hb�n � �0; "nu�i
We multiply kban � �0k by the factor

1� (1� "n)2 = 1� (1� 2"n + "2n)
= 2"n � "2n
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which is a positive fraction that preserves the inequality. We also multiply kPn��(ban; "n)� �0k2 by
2 which also preserves the inequality. Hence we obtain

�O("2n) � �1
2

�
1� (1� "n)2

�
kb�n � �0k2

+(1� "n) k(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k
+(1� "n) hb�n � �0; "nu�i
�n�1=2�n(l0�0 ["n (u

� � (b�n � �0)) ; X; Y ])
+Op("

2
n)

Adding "n k(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k still preserves the inequality. For the �rst line,
"2n kb�n � �0k2 = Op("

2
n). Hence

�O("2n) � �"n kb�n � �0k2 + k(b�n � �0)k kPn��(ban; "n)� ��(ban; "n)k
+(1� "n) hb�n � �0; "nu�i � n�1=2�n(l0�0 ["n (u� � (b�n � �0)) ; X; Y ]) +Op("2n)

Note that

�"n kb�n � �0k2 = Op("n)op(�
2)

= op(�
2)

By Condition C
kPn��(ban; "n)� ��(ban; "n)k = Op(�

�1"2n)

since
kb�n � �0k = op(�)

then

kb�n � �0k kPn��(ban; "n)� ��(ban; "n)k = op(�)Op(�
�1"2n)

= op("
2
n)

and using Conditions C and D

n�1=2�n(l
0
�0 ["n (u

� � (b�n � �0)) ; X; Y ]) = n�1=2�n(l
0
�0 [u

�; X; Y ]) +Op("
2
n) +Op("

2
n)

Hence
�(1� "n) hb�n � �0; u�i+ n�1=2�n(l0�0 [u�; X; Y ]) = op(n

�1=2) (S 9.4)

This gives, together with the inequality in (S 9.4) with u� replaced by �u�;

���hb�n � �0; u�i � n�1=2�n(l0�0 [u�; X; Y ])��� = op(n
�1=2)

so
hb�n � �0; v�i = n�1=2�n(l

0
�0 [v

�; X; Y ]) + op(n
�1=2)
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Hence, by (S 4.2)

f�n � f�0 = f 0�0 [�n � �0] + op(un k�n � �0k
!
F )

= hb�n � �0; v�i+ op(n�1=2)
= n�1=2�n(l

0
�0 [u

�; X; Y ]) + op(n
�1=2)

= n�1
nX
i=1

n1=2

8<:
nX
j=1

wijl
0
�0 [u

�; Xi; Yj ]� E
�
l0�0 [u

�; X; Y ]
��X = xi

�9=;
The result then follows from the Central Limit Theorem (CLT) for triangular arrays (Propo-
sition) in Andrews (1994, p. 2251). Note that the conditions of the Proposition are satis-
�ed under our assumptions. In particular, � � Rd� is compact, �nite-dimensional convergence
of n1=2

Pn
j=1wijl

0
�0 [u

�; Xi; Yj ] � E
�
l0�0 [u

�; X; Y ]
��X = xi

�
holds for each xi due to the classical

Lindeberg-Levy CLT, and Condition A satis�es the stochastic equicontinuity requirement of the
Proposition.
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