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REGRESSION ANALYSIS IN LONGITUDINAL STUDIES WITH

NON-IGNORABLE MISSING OUTCOMES

Changyu Shen, PhD

University of Pittsburgh, 2004

One difficulty in regression analysis for longitudinal data is that the outcomes are often

missing in a non-ignorable way (Little & Rubin, 1987). Likelihood based approaches to

deal with non-ignorable missing outcomes can be divided into selection models and pattern

mixture models based on the way the joint distribution of the outcome and the missing-data

indicators is partitioned. One new approach from each of these two classes of models is

proposed. In the first approach, a normal copula-based selection model is constructed to

combine the distribution of the outcome of interest and that of the missing-data indicators

given the covariates. Parameters in the model are estimated by a pseudo maximum likelihood

method (Gong & Samaniego, 1981). In the second approach, a pseudo maximum likelihood

method introduced by Gourieroux et al. (1984) is used to estimate the identifiable parameters

in a pattern mixture model. This procedure provides consistent estimators when the mean

structure is correctly specified for each pattern, with further information on the variance

structure giving an efficient estimator. A Hausman type test (Hausman, 1978) of model

misspecification is also developed for model simplification to improve efficiency. Separate

simulations are carried out to assess the performance of the two approaches, followed by

applications to real data sets from an epidemiological cohort study investigating dementia,

including Alzheimer’s disease.
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PREFACE

This dissertation is organized as follows. In Chapter 1, I give an introduction on missing

data problems in longitudinal data analysis. In Chapter 2, I review some approaches that

have been used to analyze non-ignorable missing responses with some success and present

the motivation of the two proposed methods described with greater detail in Chapter 3 and

Chapter 4. Finally, I conclude this dissertation with a conclusion chapter.
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1.0 INTRODUCTION

1.1 MISSING DATA IN LONGITUDINAL STUDIES

Longitudinal studies are characterized by a series of measurements of interest on the same

unit over time. Failure to obtain a full set of observations results in incomplete data or

missing data. This phenomenon is quite common in longitudinal studies. For example, in an

epidemiological cohort study, subjects might drop-out, move away, be too sick to measure

data on, die, and so forth. This can result in a serious missing-data problem. In general,

the missing-data pattern can be divided into either a monotone missing or an intermittent

missing-data pattern. The first one refers to the scenario where all observations after a cer-

tain follow-up time are missing, so that all other missing scenarios belong to the intermittent

missing-data pattern.

One point that needs to be emphasized is that, in most longitudinal studies, knowledge

of the mechanisms that lead to certain values being missing is usually very limited. Missing-

data mechanisms can be very complicated and diversified due to the various reasons that

cause missing values. This is quite different from other type of studies, in which the missing-

data process is under the control of the individuals who design the experiment. For example,

double sampling is a survey methodology where missing data arise as part of the sampling

scheme. A sample is selected from the population and some characteristics are measured.

Then a subsample is selected from the original one and more variables are measured. Thus

the missing-data process is related to the extra variables that are not measured in each sub-

ject in the original sample and is under the control of the sampler, who has all the knowledge

pertaining to the missing-data mechanism. Therefore, missing data in longitudinal studies

pose a much more difficult problem for statistical inference.
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The question of greatest interest is related to the handling of missing data in an anal-

ysis. That is, if we analyze the observed data and ignore the missing-data process, what

and how much do we lose, as compared with what we would obtain were there no missing

data? It is obvious that we lose efficiency since there are few data available for estimation

and inference. For example, suppose we want to estimate the mean of a variable from a

population. If we randomly lose 1/3 of the data, then the variance of the observed sample

mean is 50% larger than the variance of the complete sample mean. In fact, a more serious

problem in most longitudinal analyses is that we might have a biased estimate. Although

this is not always the case, it can be enough of a problem to result in an invalid analysis.

In the example above, instead of random missingness, suppose that all of the measurements

smaller than a certain value are lost due to some unknown reason. Then the mean of the

observed measurements is obviously invalid or biased since the observed data are actually

from a truncated distribution of the underlying one. Therefore, the key problem is the form

of the missing-data mechanism, on which we often have little, if any, information.

Clearly, the handling of missing data is not only a statistical issue, but also related to

the process of data collection and the scientific problem at hand. Statisticians have been

trying to develop strategies and methods to reduce the bias and improve the efficiency for

the last two decades. However, it should be emphasized that in order to obtain a valid infer-

ence when missing data are present, one should gather any information regarding the data

collection and the missing-data process. The optimal strategy is of course to avoid missing

data by every effort. However, it is often not possible to do this.

One naive way to deal with multivariate data with missing values is to ignore the obser-

vations with missing values and analyze only the complete cases (complete case analysis or

CC). This is obviously not efficient and can seriously bias the results of an analysis. Apart

from the CC approach, current statistical procedures to deal with missing values can be

divided into three classes based on the nature of the approaches: (i) imputation-based pro-

cedures; (ii) weighting procedures and (iii) model-based procedures.

(i) Imputation-based procedures

Basically, this type of procedure fills in the blanks in the data set with some values based

on the observed data to create a full data set. Then standard procedures are applied on
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the “full” data set. Essentially, the full data set does not have more information than the

observed data can provide us since the imputation is based on the observed data. This pro-

cedure has been used extensively in many epidemiological studies. Two typical imputation

methods are mean imputation and conditional mean imputation. The first one fills in the

blanks with the means of observed values. For example, a missing measurement of a certain

variable at a certain time point is taken to be the mean of the two observed measurements

that are closest to it on the time axis. Conditional mean imputation fills in the blanks by the

predictive values based on a regression model fit to the observed data. For example, suppose

some responses are not observed in a regression analysis. Then one can fit a regression model

on the observed response and predict the unobserved response based on the corresponding

covariates (assume that covariates are always observed). Currently, a multiple imputation

technique (Rubin, 1987) is a popular tool for many missing-data problems. Essentially, this

approach creates m complete data sets based on the observed data and some model and then

standard statistical procedures are applied to each one of them. Finally, the results from the

m data sets are combined to make the ultimate inference. This technique is “designed to

handle the problem of missing data in public-use data bases where the data-base constructor

and the ultimate user are distinct entities and there typically is no one accepted reason for

the missing data” (Rubin, 1996).

(ii) Weighting procedures

The idea here is to analyze the observed data by assigning different weights to different

observations (Robins et al., 1995). The full data can be seen as a random sample from the

underlying distribution and hence each observation is equally weighted. The missing-data

process causes some observations to be observed with greater likelihood than others. Thus

the intention is to put more weight on those observations that are less likely to be observed.

This type of approach is mostly used in analyzing sample survey data where the weights are

known due to the sampling scheme. However, the concept is quite general and later we will

see that some model-based approaches share the same strategy.

(iii) Model-based procedures

Most of the current regression analysis techniques for missing data belong to this class of

procedures. A model is built for the data, including the missing-data process, and inference

3



is drawn directly from the model. The model based procedures are particularly useful to

handle responses that are Missing Not At Random (MNAR). This class of procedures will

be discussed in greater detail in Section 1.2.

In summary, missing data are very common in longitudinal studies. The missing-data

process can be very complicated and ignoring it can sometimes lead to invalid inference.

The three major statistical approaches discussed here have been used to analyze data sets

with missing values with some success. However, the model-based procedures and newer ap-

proaches based on weighting offer the most flexible approaches to attacking these problems.

1.2 MODEL-BASED APPROACHES

Longitudinal studies record many variables on the same experimental unit repeatedly. Usu-

ally regression analysis is used to relate a variable to other variables in the data set. To

establish the notation, the subject index is suppressed throughout this section for simplic-

ity. Let Y = (Y1, Y2, . . . , Ym)T be the response vector and X = (XT
1 , XT

2 , . . . , XT
m)T be the

covariate matrix, where Xi is a row vector coding the covariates at time i. Therefore (X, Y )

is the full data. In the following context, it is assumed that X is always fully observed and

elements of Y are subject to missingness. There are three types of missing-data mechanisms

that are defined as follows (Rubin, 1976; Little, 1995):

(i) Missing Completely At Random (MCAR): the probability that yi is observed de-

pends neither on X nor Y . Under this assumption, the observed response yi can be treated

as a random sample from the distribution of Yi for i = 1, 2, . . . , m.

(ii) Missing At Random (MAR): the probability that yi is observed can depend on the

observed y values and X as well, but not on unobserved y values. Therefore MCAR is just

a subclass of MAR. Another subclass of MAR that is bigger than MCAR is the Covariate

Dependent Missing (CDM). In that case, the probability of being observed can depend only

on X. Under CDM, the observed response yi is not necessarily a random sample from the

distribution of Yi, it is a random sample from the conditional distribution [Yi|X].

(iii) Missing Not At Random (MNAR) or Non-Ignorable Missing (NIM): if the

missing-data process is not MAR, it usually belongs to this class. Basically, it says that
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the probability that yi is observed depends on unobserved y values (possibly on observed

y values and X as well). Since whether or not a missing-data process is ignorable depends

on what approach one takes for the analysis, “ignorable” here means that the missing-data

mechanism can be ignored when using likelihood based approaches to analyze the data.

When a missing-data process is MCAR or MAR and the parameters associated with the

missing-data process are distinct from the regression parameters, likelihood based approaches

ignoring the missing-data process can be applied to make valid inference. However, in many

longitudinal studies, the missing-data process involved belongs to the MNAR class, which

turns out to be the most difficult missing-data mechanism to deal with since unverifiable

assumptions regarding the missing-data process have to be made for inference. In this case,

model based approaches have to take into account the missing-data mechanism in order to

draw valid inferences about the distribution of the response.

To write out the likelihood function for the model based approach, let y = (yT
obs, y

T
mis)

T

be a full realization, where yobs and ymis are the observed part and missing part of y, respec-

tively. Furthermore, let R = (R1, R2, . . . , Rm)T be a vector composed of binary variables

such that Ri = 1 indicates that yi is observed and 0 otherwise. Therefore the observed

likelihood is obtained by integrating out the missing values:

(1.1) L(λ; yobs, r) =

∫
p(yobs, ymis, r|X, λ)dymis,

where λ is the parameter that indexes the conditional distribution of (Y, R) given X. There

are two ways to partition this distribution, which results in two classes of models that tackle

the missing problem differently. In the following discussion, it is always assumed that X is

fixed. Thus any distribution that is mentioned is actually the distribution conditional on X.

(i) Selection models

This class of models partitions the joint distribution of (Y, R) to be the distribution of Y

and the conditional distribution of R given Y . Therefore,

(1.2) p(y, r|X, λ) = p(y|X, β)p(r|y, X, γ),

where λ = (β, γ) and β indexes the distribution of Y and γ indexes the conditional distri-

bution of R given Y . In most practical studies β and γ are assumed to be distinct. The
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terminology “selection model” is originally from the sample survey literature. In that area,

p(r|y,X, λ) represents the probability of being “selected” given the characteristics. Then if

the missing-data process is MAR, or p(r|y, X, γ) = p(r|yobs, X, γ), (1.1) can be written as

L(β, γ; yobs, r) =

∫
p(yobs, ymis, r|X, λ)dymis

=

∫
p(yobs, ymis|X, β)p(r|yobs, X, γ)dymis

= p(yobs|X, β)p(r|yobs, X, γ).

Thus the likelihood function ignoring the missing-data process is proportional to the full

likelihood function when β and γ are assumed to be distinct. Therefore we can just ignore

the missing-data process and apply the standard likelihood based methods (e.g. MLE) to

the observed data.

Because of the problems that arise with missing data it is natural to ask if we can test

if the data is MAR or MNAR. If the test does not reject MAR, then we can ignore the

missing-data process and proceed with standard methods. Unfortunately, it is impossible

to construct this type of test based on the observed data (Laird, 1988). Or in other words,

the observed data provide insufficient information about p(r|y,X, γ). In this sense, selection

models are under-identified.

(ii) Pattern-mixture models

As an alternative to selection models, pattern-mixture models partition the joint distribution

of (Y,R) to be the distribution of R and the conditional distribution of Y given R, i.e.

(1.3) p(y, r|X,λ) = p(r|X, π)p(y|r,X, φ),

where λ = (π, φ) and π indexes the distribution of R and φ indexes the conditional distri-

bution of Y given R. Thus the observed likelihood function can be written as

L(π, φ; yobs, r) =

∫
p(r|X, π)p(yobs, ymis|X, r, φ)dymis

= p(r|X, π)p(yobs|X, r, φ).

Therefore if π and φ are distinct, they can be estimated separately. Moreover, one can build

entirely different models for the response given a certain missing-data pattern.
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From the construction of pattern-mixture models one can see that not all of the param-

eters associated with the model are estimable (e.g. not every element of φ is estimable).

Obviously, the data provide no information on the regression parameters of the unobserved

response as a function of the observed response for any missing-data pattern. Consider bi-

variate data (Yi1, Yi2) with Yi1 observed for all i and Yi2 subject to missingness. Therefore

the data are composed of two patterns: both variables are observed and only Yi1 is observed.

Assume that for each of the two patterns, the two variables follow a bivariate normal dis-

tribution. Then there is no way we can estimate the regression parameters of Y2 on Y1 for

the incomplete pattern. Or in other words, the observed data provide no information on the

marginal distribution of the second variable and the correlation between the two variables

for the incomplete pattern. Therefore, pattern-mixture models are also under-identified. In

order to fully identify the model, one needs to put certain constraints on the parameter space

of the model. This issue will be discussed with more detail in Chapter 2.

Selection models partition the joint distribution of the response and the missing-data

indicators in a natural way. Therefore it has been popular for the analysis of missing data.

However, to evaluate the likelihood function, one needs to integrate out the missing values.

Although the EM algorithm and Markov Chain Monte Carlo (MCMC) procedures provide

powerful tools to optimize complicated integrals, the computational burden inevitably limits

its practical application. Moreover, selection models can be very sensitive to misspecifica-

tion of the missing-data process. If the selection process we propose deviates from the true

missing-data process in a certain manner, then the estimator can be very biased. Pattern-

mixture models formulate different models for different missing-data patterns and standard

statistical procedures are applied to each pattern. Therefore the computation is straight

forward and one does not have to specify the missing-data process. However, constraints on

the parameter space can be very hard to postulate. Moreover, often one is interested in the

marginal distribution of the response, which is a weighted sum of the distribution within

each pattern. Thus pattern-mixture models do not model the marginal distribution of the

response in a direct way.
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2.0 MODEL-BASED APPROACHES TO THE ANALYSIS OF MISSING

DATA

In this chapter, methods that haven been used to analyze longitudinal data with non-

ignorable missing responses in the statistical literature are briefly reviewed, followed by

the motivation of the two proposed methods described in Chapter 3 and Chapter 4.

2.1 SELECTION MODELS

Wu & Carroll (1988) developed a likelihood-ratio test for informativeness of a monotone

missing-data process and maximum likelihood estimates for the expected rates of change and

the parameters of the right-censoring process under the framework of a linear random-effects

model with a probit model for the right-censoring process. In their model, the missing-data

process can depend on the random effects and thus depends on the unobserved response

indirectly. When such a dependency does exist, or when the missing-data process is infor-

mative, they showed that the bias can be substantial if the dependency is ignored.

Diggle & Kenward (1994) used a similar strategy to analyze monotone missing data.

They assumed a linear Gaussian model for the response and a logistic model for the missing-

data process. In the logistic model, the probability of dropping out of the study at a certain

time point is assumed to be dependent on the current and the previous responses, but not on

the future responses. They used the simplex algorithm by Nelder & Mead (1965) to maximize

the observed likelihood function. Evaluation of the likelihood function requires numerical

integration, which was carried out by the probit approximation to the logit transformation.

Troxel, Harrington & Lipsitz (1998a) extended Diggle & Kenward’s (1994) approach to in-
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clude non-ignorable non-monotone missing data. Again, the authors assumed a multivariate

normal model for the response and a logistic model for the missing-data indicator given the

current response (perhaps the previous responses as well). To fit within the framework of

the non-monotone missing-data pattern, they also assumed a first order Markov property for

the multivariate normal model. The two papers introduced above clearly demonstrate that

the estimation task in a selection model may require a substantial amount of computation

due to the complexity of the likelihood function.

Follmann & Wu (1995) proposed a “shared parameter” model to deal with missing out-

comes in longitudinal data. They assumed separate models for the response and the missing-

data process, which are linked by a common random parameter. Conditional on the random

parameter, they assumed independent generalized linear models for the response and the

missing-data process. Based on this setting, the response and the missing-data process are

connected in an implicit way, which as shown by the authors, includes the non-ignorable

missing-data mechanism. Although the explicit observed likelihood function can be written

out as an integral over the range of the random parameter, it is rather complicated. There-

fore the authors based their inference on the distribution of the response given the number of

observed responses. With a simulation study, they demonstrated that the empirical Bayesian

estimates based on the conditional distribution can recover the true values.

Troxel, Lipsitz & Harrington (1998b) proposed a marginal approach for longitudinal mea-

surements with non-ignorable non-monotone missing data. They assumed a normal model

for the marginal distribution and a logistic model for the missing-data indicator of the cur-

rent response given the current response. The authors further forced the outcomes and the

associated missing-data indicators to be independent within each subject. Estimates of pa-

rameters were calculated by maximizing the “pseudolikelihood function”. It was shown that

the estimators are consistent and asymptotically normal, provided that the model for the

missing-data indicator given the corresponding response was correctly specified. However,

the authors did emphasize that the estimates can be sensitive to misspecification of the

logistic model. Ibrahim, Chen & Lipsitz (2001) proposed an approach for a non-ignorable

non-monotone missing response in the framework of a generalized linear mixed model. In

modelling the missing-data process, they partitioned the joint distribution of the missing-
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data indicators into a series of conditional distributions with each conditional distribution

assumed to follow a logistic model. Under the assumption that the missing-data indicator

depends only on the response and the possible covariates, but not on the random effects,

they developed a Monte Carlo EM algorithm to maximize the observed likelihood function.

Robins et al. (1994, 1995) proposed a class of semi-parametric estimators for repeated

outcomes in the presence of missing data in the framework of weighted estimating equations.

Their model for the response only requires correct specification of the functional form of the

mean. They assumed that the missing-data process is either known or can be estimated

based on a parametric model. They showed that their estimators are consistent and that

the asymptotic variance of the optimal estimator in their class reaches the semi-parametric

variance bound. Other selection model based research includes Conaway (1992, 1993), Little

(1995) and Robins (1997).

2.2 PATTERN-MIXTURE MODELS

Little (1993) discussed pattern-mixture models for multivariate data with a general pattern

for the missing values, with an emphasis on the restrictions of non-identifiable parameters.

In the paper, the author defined the missing variable (MV) distribution for each missing-

data pattern to be the conditional distribution of the missing values given the observed

values. One simple restriction is the complete-case missing variable (CCMV) restriction,

which equates all parameters associated with MV distributions to their identifiable analogs

in the stratum of complete cases. Consider the example of bivariate data with the second

variable subject to missingness. We again assume that for each pattern, the data follow a

bivariate normal distribution. If we let φ(r) = (µ
(r)
1 , µ

(r)
2 , σ

(r)
11 , σ

(r)
22 , σ

(r)
12 ) denote the means,

variances and covariance of Y1 and Y2 for pattern r, where r = 1 refers to the complete case

and r = 2 refers to the pattern with Y2 missing. Then obviously (µ
(2)
2 , σ

(2)
22 , σ

(2)
12 ) are not iden-

tifiable. By reparameterization, it is equivalent to the non-identifiability of (β
(2)
0·12, β

(2)
1·12, v

(2)
12 ),

where β
(2)
0·12, β

(2)
1·12 and v

(2)
12 are the intercept, coefficient and variance of the error term in the

regression of Y2 on Y1 for r = 2. In this case, the CCMV restriction will equate these regres-

sion parameters to their analogs in the complete cases: (β
(2)
0·12, β

(2)
1·12, v

(2)
12 ) = (β

(1)
0·12, β

(1)
1·12, v

(1)
12 ).
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An alternative to the complete case restriction is to equate the non-identifiable parameters

in a missing-data pattern to a weighted sum of the identifiable counterparts in a set of other

patterns. A natural choice for the weight is the proportion of each pattern in the set.

Little (1994) discussed a pattern-mixture model for bivariate monotone data, assuming

that the response follows a bivariate normal distribution for each of the two patterns. In

the paper, the author demonstrated the nature of the restriction that is embedded within a

pattern-mixture model under different assumptions for the missing-data process. In partic-

ular, when the probability of being a complete case depends only on the first or the second

variable, a complete case restriction is automatically embedded within the pattern-mixture

model. Large sample inference and small sample Bayesian inference were also described in

the paper. Little & Wang (1996) further extended this approach to multivariate incomplete

data with covariates. The data they analyzed were of a special format: certain elements of

the outcome vector were always observed and other elements were either fully observed or

were always missing. Thus the data can be seen as a general format of the data analyzed in

Little (1994). Maximum likelihood and Bayesian methods were used to estimate regression

parameters.

Park & Lee (1999) applied a pattern-mixture model to urinary incontinence data within

the framework of generalized estimating equations. Subjects have at most three repeated

binary measurements with the last two subject to missingness, leading to four missing-data

patterns in the data. The CCMV assumption was used for the scale and correlation pa-

rameters. Estimates of the regression parameters were obtained by plugging into the GEE

the pattern indicators and their interactions with other covariates, with the non-identifiable

parameters set to be equal to their analogs in the complete cases. Kenward, Molenberghs

& Thijs (2003) identified a family of restrictions where drop-out does not depend on future

unobserved observations for pattern-mixture models.

The major difficulty associated with pattern-mixture models is the under-identifiability

of such models. Two major strategies to deal with this problem are identifying restrictions

and model simplification (Thijs et al., 2002). For the first strategy, non-identifiable MV dis-

tributions of the incomplete patterns are set equal to functions of their identifiable analogs in

other patterns (e.g. the CCMV restriction). On the other hand, the second strategy allows
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different patterns to share certain parameters so that the incomplete patterns can borrow

information from patterns with more data points. Roy (in press) proposed a slightly different

approach within the framework of pattern-mixture models based on latent class variables,

which is similar to the second strategy described above.

2.3 MOTIVATION AND CONTRIBUTION OF THE PROPOSED

METHODS

2.3.1 NORMAL COPULA BASED SELECTION MODELS

The key feature of a selection model is the modelling of the missing-data process. To simplify

the likelihood function, one might want to specify certain restrictions on the distribution of

the response (e.g. Markov property) and the missing-data process (e.g. dependent on the

history of the response but not the future response). However, estimates obtained from selec-

tion models can be sensitive to misspecification of the missing-data mechanism. Therefore,

as we simplify the problem, we are paying a price for a possible serious deviation from the

true values. Ideally, one wants to include as many mechanisms as possible in their selection

model in order to include the true mechanism or a mechanism that is close to the true one.

This inevitably increases the complexity of the inference. One strategy is to find a balance

point between these two extremes. For the modelling of multivariate outcome data, the use

of the copula function has proved to be a promising approach (Nelsen, 1998). Hence, it can

be used to model the correlation between the response and its missing-data indicators. A

copula family can provide a diversified correlation structure, yet maintain the simplicity of

the model to a reasonable extent.

In Chapter 3, a selection model based on a normal copula is proposed in the hope of

balancing simplicity and robustness. This method models the joint distribution of a contin-

uous outcome and its missing-data indicators directly through a multivariate normal copula

function, which, as a result, defines a class of missing-data mechanism. The method allows

one to check the correlation between the outcome and the missing-data indicators by the

estimates of the parameters associated with the copula function. Since a copula function
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defines a correlation structure among random variables that is independent of their margins,

it also allows one to experiment different margins and copula families.

2.3.2 PATTERN-MIXTURE MODEL WITH PSEUDO MAXIMUM LIKELI-

HOOD ESTIMATION

For pattern-mixture models, there are two issues that have not received sufficient attention.

First, the conditional distribution of the response given a missing-data pattern can be very

complicated even though the marginal distribution is of a simple form, mainly due to the

complexity of the missing-data process. Therefore a semi-parametric model without the need

to specify the distributional form for each pattern is desirable. Second, as Hogan and Laird

(1997) have pointed out, the dimension of the parameter vector in general pattern-mixture

models is so large that estimation requires that each missing-data pattern occurs sufficiently

often. Therefore, model simplification has been an important issue for this class of models.

Currently, most proposals have been focused on allowing incomplete patterns and patterns

with more data points to share certain parameters so that the model is identifiable. For

instance, in a model for a continuous outcome where time is the only covariate and the

missing-data process is monotone, the slope of time is inestimable for patterns with only 1

observation. Then setting it equal to the slope for the pattern with two observations makes

the model identifiable if the functional form of time is linear. However, no one has focused

on further simplification of the identifiable model in a systematic manner. Thus the focus

of this work is to create models where patterns share parameters in order to maintain iden-

tifiability and improve efficiency. Considering the above example, one might want to ask if

the intercept is different across patterns or some patterns share the same intercept? This is

an important supplement to the issue of under-identifiability since one already loses some

efficiency by missing data.

In Chapter 4, a semi-parametric approach armed with a model misspecification test is

presented to address these two issues. This method only requires the specification of the

first (and second) moment(s) of each pattern for estimation since often we are unwilling to

make assumptions about the distributional form due to the complexity of the missing-data
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process. The estimation procedure is a direct generalization of the Pseudo Maximum Like-

lihood Estimation proposed by Gourieroux et al. (1984), which is itself a multi-dimensional

extension of the Quasi Likelihood Function discussed by Wedderburn (1974). The model

misspecification test statistic is readily calculated after the estimates are obtained. The test

provides clues on model simplification, which captures the major differences across patterns

and ignore the small ones in order to improve efficiency.

The proposed approach is similar to that of Park & Lee (1999) and Fitzmaurice & Laird

(2000). However, none of the above authors raised the issue of efficiency improvement. More-

over, the new treatment on the methodology provides a more rigorous and general framework

to simplify identifiable pattern-mixture models.
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3.0 NORMAL COPULA BASED SELECTION MODELS

In this chapter, a class of selection models based on a multivariate normal copula function is

introduced. It turns out that the normal copula specifies a class of selection models that can

be very useful for the modelling of continuous missing data. The conditional distribution of

the missing-data indicators R given Yobs is expressed as a weighted sum (with weight being 1

or -1) of a multivariate normal CDF evaluated at different points. This is the extra term that

is used to adjust the likelihood function due to non-ignorable missingness. This approach is

particularly useful when the number of repeated measures is not large and can be applied

to non-monotone missing scenarios.

The major advantage of copula-based selection models is that the correlation structure

between the outcome and its missing-data indicators and their marginal distributions can

be modelled independently of each other. This allows for flexibility in the choice of both

the margins and the copula that defines the missing-data process. Many selection models

are constructed through a “shared parameter”, conditional on which the outcome and the

missing-data indicators are independent. Although this hierarchical structure allows one to

fit complicated models, it is often hard to see how the outcome and the missing-data pro-

cess are correlated. On the other hand, the normal copula based selection models allow one

to check the correlation directly from the estimates of the parameters associated with the

copula function.

Selection models require a substantial amount of computation due to the complicated in-

tegrals to be evaluated. In the proposed selection models, this is reduced to the evaluation of

the CDF of a multivariate normal distribution at different points, which can be approximated

by the Monte Carlo approach since sampling from a multivariate normal distribution has

been standardized in many software packages. Another advantage of the copula-based selec-
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tion models is that a pseudo maximum likelihood estimation procedure (Gong & Samaniego,

1981) can be readily applied to reduce the dimension of the parameter vector for optimiza-

tion.

The concept of copula functions and the multivariate normal copula function are de-

scribed in Sections 3.1 and 3.2, respectively. The general form of the model is presented in

Section 3.3. In Section 3.4, the robustness of the model under different missing-data pro-

cesses that differ from that specified by the copula model is studied through simulations.

The proposed method is applied to a real data set from an epidemiologic study in Section

3.5, followed by a discussion section.

3.1 COPULA

A copula function can be thought as a link function between a multivariate distribution

function and its marginal univariate distributions (Nelsen, 1998). In this section, the bivari-

ate copula functions are first introduced, followed by an extension to multivariate copula

functions.

3.1.1 BIVARIATE COPULA FUNCTIONS

Some preliminaries are needed to lead to the mathematical definition of a bivariate copula

function. As will be seen from the process of building a copula function, a function has to

satisfy certain conditions to be the link function of a bivariate distribution and its marginal

distributions. Nevertheless, many families of bivariate copula functions have been identified

and they provide diversified dependence structures between two random variables.

Let R denote the real line (−∞,∞), R̄ denote the extended real line [−∞,∞], and

R̄
2

denote the extended real plane. A rectangle in R̄
2

is the Cartesian product B of

two closed intervals: B = [x1, x2] × [y1, y2]. The vertices of a rectangle B are the points

(x1, y1), (x1, y2), (x2, y1) and (x2, y2). The unit square I2 is the product I× I where I = [0, 1].

Then a 2-place real function H is a function whose domain, DomH, is a subset of R̄
2

and

whose range, RanH, is a subset of R.
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Let S1 and S2 be nonempty subsets of R̄, and let H be a function such that DomH=S1×
S2. Let B = [x1, x2] × [y1, y2] be a rectangle all of whose vertices are in DomH. Then the

H-volume of B is given by

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) + H(x1, y1).

Then a 2-place real function H is 2-increasing if VH(B) ≥ 0 for all rectangles B whose

vertices lie in DomH.

Suppose S1 has a least element a1 and that S2 has a least point a2. We say that a function

H from S1 × S2 into R is grounded if H(x, a2) = 0 = H(a1, y) for all (x, y) ∈ S1 × S2. It

can be shown that a grounded 2-increasing function with domain S1 × S2 is nondecreasing

in each of its two arguments.

Now we are ready to define a bivariate copula function. A bivariate copula function is a

function C with the following properties:

(i) DomH=I2;

(ii) C is grounded and 2-increasing;

(iii) For every u and v in I,

C(u, 1) = u and C(1, v) = v.

Note that for every (u, v) in I2, 0 ≤ C(u, v) ≤ 1.

Up to this point, we have not mentioned any roles that a bivariate copula function might

play in the relationship between bivariate distribution functions and their univariate margins.

This is elucidated by Sklar’s theorem, which has been the foundation of many applications

of copula functions.

Sklar’s Theorem: Let H be a bivariate joint distribution function with margins F and

G. Then there exists a copula C, such that for all x and y in R̄,

H(x, y) = C(F (x), G(y)).
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If F and G are continuous, then C is unique; otherwise, C is uniquely determined on

RanF × RanG. Conversely, if C is a copula and F and G are distribution functions, then

the function H defined above is a joint distribution function with margins F and G.

Thus a bivariate copula function can be thought of as a bivariate cumulative distri-

bution function with margins that are uniform on I. The significance lies in that bivariate

copula functions provide a way to construct different bivariate distribution functions based

on fixed margins. On the other hand, it is also possible for different bivariate distributions

to share the same copula function.

3.1.2 MULTIVARIATE COPULA FUNCTIONS

The idea of bivariate copula functions extends to the multivariate case quite naturally. Let

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two points in R̄
n
. We say a ≤ b if ak ≤ bk

for all k; and a < b if ak < bk for all k. For a ≤ b, we will use [a,b] to denote the

n-box B = [a1, b1] × [a2, b2] × · · · × [an, bn]. The vertices of an n-box B are the points

c = (c1, c2, . . . , cn) where each ck is equal to either ak or bk. An n-place real function H is a

function whose domain, DomH, is a subset of R̄
n

and whose range, RanH, is a subset of R.

Suppose S1, S2, . . . , Sn are nonempty subsets of R and H is an n-place real function such

that DomH = S1 × S2 × · · · × Sn. Let B = [a,b] be an n-box all of whose vertices are in

DomH. Then the H-volume of B is given by

VH(B) =
∑
c

sgn(c)H(c),

where the sum is taken over all vertices c of B, and sgn(c) is given by

sgn(c) =





1, if ck = ak for an even number of k’s,

−1, if ck = ak for an odd number of k’s.

Then an n-place real function H is n-increasing if VH(B) ≥ 0 for all n-boxes B whose vertices

lie in DomH.

Now suppose that each Sk has a least element ak. We say that H is grounded if H(t) = 0

for all t in DomH such that tk = ak for at least one k. It can be shown that a grounded
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n-increasing function with domain S1 × S2 × · · · × Sn is nondecreasing in each argument.

Furthermore, if each Sk has a greatest element bk, then we say that H has margins, and the

one-dimensional margins of H are the functions Hk given by DomHk = Sk and

Hk(x) = H(b1, . . . , bk−1, x, bk+1, . . . , bn).

Thus an n-dimensional copula is a function C with the following properties:

(i) DomC = In;

(ii) C is grounded and n-increasing;

(iii) Each margin Ck (k = 1, 2, . . . , n) satisfies

Ck(u) = u for all u in I.

Note that for every u in DomC, 0 ≤ C(u) ≤ 1. Moreover, the 2-dimensional Sklar’s theorem

extends to the n-dimensional case directly.

Copula functions provide structural information about multivariate distributions. On

one side, the marginal distributions determine the behavior of each component as a single

random variable. The copula function then determines how these random variables behave

as a random vector. In other words, the copula function reveals the correlation structure

embedded within a multivariate distribution. It is this property of copula functions that

makes it a useful tool for the modelling of correlated repeated measurements. There are

many copula families that represent different correlation structures and hence provide for

a wide range of models. For the approach to be discussed later in this chapter, a normal

copula function is used to model continuous outcomes and their missing-data indicators

simultaneously. The hope is that the proposed normal copula family can capture the essential

dependence between the outcomes and the missing-data indicators in order to reduce the

bias that would arise if we ignore the missingness.

3.2 NORMAL COPULA

One example of a multivariate copula function is the multivariate normal copula, which is

of the form:
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CΩ(u1, u2, . . . , um) = Φ(Φ−1(u1), Φ
−1(u2), . . . , Φ

−1(um)|0, Ω),

where Ω is a correlation matrix, Φ(.) denotes the standard normal CDF and Φ(.|0, Ω) denotes

the CDF of a multivariate normal vector (m× 1) with mean 0 and covariance matrix Ω. It

is obvious that any subset of the m variables also has a multivariate normal copula whose

correlation matrix is a submatrix of Ω that matches the corresponding elements in the subset.

Clearly, Ω provides the essential correlation structure among the m variables, which is free

of the margins.

For a multivariate CDF with a normal copula function, Ω does not necessarily stand for

the correlation matrix for the random vector unless the margins are normal distributions.

The question is how Ω affects the dependence among the elements of the random vector. It

turns out that this type of “dependency” is closely connected to Kendall’s tau . Let (X1, Y1)

and (X2, Y2) be i.i.d. continuous random bivariate vectors with joint distribution function

H. Then Kendall’s tau is defined as the probability of concordance minus the probability of

discordance:

τX,Y = Pr[(X1 −X2)(Y1 − Y2) > 0]− Pr[(X1 −X2)(Y1 − Y2) < 0].

It is easy to see that the range of Kendall’s tau is [-1,1]. For a bivariate random vector,

Kendall’s tau is a measure of the likelihood that “large” values of one variable tend to result

in “large” values of the other variable. It is precisely the copula function that captures this

kind of dependence. In fact, if X and Y are continuous random variables whose copula is

C, then Kendall’s tau is given by

τX,Y = 4

∫ ∫

I2
C(u, v)dC(u, v)− 1.

In figure 3.1, the relationship between ρ and τ is shown for a bivariate normal copula func-

tion, where ρ is the off-diagonal element of Ω. It is clear from the graph that ρ has an

approximate linear relationship with τ with a positive slope within the range of (-0.5, 0.5).

Graphically, ρ can be seen as a new version of τ that stretches τ towards -1 and 1. Although

ρ need not be the correlation coefficient, it reflects the dependence of the two variables in a

way that is similar to Kendall’s τ . Therefore, ρ can be thought as a measure of dependence
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between two random variables. Note that this measure is independent of the marginal dis-

tributions of the two random variables.

There are two major advantages to using a normal copula function to model the joint

distribution of the response and missing-data indicators: (i) the elements of Ω represent the

dependence of corresponding variables and (ii) the margins can change freely. An additional

advantage of using a normal copula to build selection models is that one can apply the Monte

Carlo method directly to avoid numerical integration since sampling from a multivariate nor-

mal distribution has been standardized in many statistical software packages.

3.3 MODEL SPECIFICATION AND ESTIMATION

3.3.1 MODEL SPECIFICATION

To ease the notation, the index denoting subject is suppressed unless otherwise noted. Let

Y = (Y1, Y2, . . . , Ym)T be an m× 1 continuous outcome vector and X be an m×p covariate

matrix. Let Xj be the jth row of X and R = (R1, R2, . . . , Rm)T be the missing-data indicator

vector. Here Rj = 1 indicates that yj is observed and Rj = 0 indicates that yj is missing.

Throughout this chapter, it is assumed that X is always fully observed. Let F (.; β,Xj) be

the CDF of [Yj|Xj], G(.; θ, Xj) be the CDF of [Rj|Xj] and Ω(γ, X) be a correlation matrix.

Particularly, G(1; θ, Xj) = 1 and G(0; θ, Xj) = Pr[Rj = 0|θ, Xj]. Then the complete CDF

based on a multivariate normal copula is given by

Hc(y, r|X) =

Φ[Φ−1(F (y1)), . . . , Φ
−1(F (ym)), Φ−1(G(r1)), . . . , Φ

−1(G(rm))|0, Ω]

= Φ[Φ−1(F (y)), Φ−1(G(r))|0, Ω],(3.1)

where Φ−1(F (y)) = (Φ−1(F (y1)), . . . , Φ
−1(F (ym))) and Φ−1(G(r)) is similarly defined. Now

suppose that Ω can be partitioned as

 Ωyy Ωyr

Ωry Ωrr


 ,
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where Ωyy, Ωrr and Ωyr are measures of the correlation among Yi’s, Ri’s and that between

Yi’s and Ri’s, respectively. Moreover, let uj = Φ−1(F (yj)) and u = (u1, u2, . . . , um)T . Then

we have

Pr[Y ≤ y,R = r] =
∑
w≤r

(−1)[s(r)−s(w)]Pr[Y ≤ y,R ≤ w] =
∑
w≤r

(−1)[s(r)−s(w)]Hc(y, w|X)

=
∑
w≤r

(−1)[s(r)−s(w)]Φ(Φ−1(F (y)), Φ−1(G(w))|0, Ω)

=
∑
w≤r

(−1)[s(r)−s(w)]

∫ u

−∞
[φ(µy|0, Ωyy)

∫ Φ−1(G(w))

−∞
φ(µr|λy, Σ)dµr]dµy,

where λy = ΩryΩ
−1
yy µy, Σ = Ωrr − ΩryΩ

−1
yy Ωyr and φ(.|µ, ∆) is the multivariate normal

density function with mean µ and covariance matrix ∆. The function s(x) takes the sum

of the elements in x. The sum in the equation above ranges over all vectors w of length m

whose elements are either 0 or 1, such that wj ≤ rj for all j = 1 to m. Now, let Dj = u′j(yj)

and λ = ΩryΩ
−1
yy u. Then the complete likelihood function can be written as

Lc(β, θ, γ) =
∂m

∂y1 . . . ∂ym

Pr[Y ≤ y,R = r]

= [
m∏

j=1

∂uj

∂yj

]φ(u|0, Ωyy)
∑
w≤r

(−1)[s(r)−s(w)]

∫ Φ−1(G(w))

−∞
φ(µr|λ, Σ)dµr

= [
m∏

j=1

Dj][φ(u|0, Ωyy)][
∑
w≤r

(−1)[s(r)−s(w)]Φ(Φ−1(G(w))|λ, Σ)](3.2)

= D(β)Q(β, γ)V (β, θ, γ).(3.3)

It can be shown that DQ represents the distribution of [Y |X] and V plays the role of

selection, that is, [R|X,Y ].

If we let yo be the observed values of length k with the jth element yo,j and Ωo be the

submatrix in Ω that corresponds to the observed values, including r, then the observed CDF

is of the form:

(3.4) Ho(yo, r|X) = Φ[Φ−1(F (yo)), Φ
−1(G(r))|0, Ωo].
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We can then define Ωo,yy, Ωo,yr, Ωo,ry, Ωo,rr, uo,j, Do,j, λo and Σo as in the complete likelihood

function. Then we have

Lo(β, θ, γ) = [
k∏

j=1

Do,j][φ(uo|0, Ωo,yy)][
∑
w≤r

(−1)[s(r)−s(w)]Φ(Φ−1(G(w))|λo, Σo)](3.5)

= Do(β)Qo(β, γ)Vo(β, θ, γ).(3.6)

Therefore the total observed likelihood is

(3.7) Ltotal(β, θ, γ) =
n∏

i=1

L(i)
o =

n∏
i=1

D(i)
o (β)Q(i)

o (β, γ)V (i)
o (β, θ, γ),

where i = 1, . . . , n is the subject index.

Note that in equation (3.6), Vo provides the extra term used to adjust the likelihood

function in order to obtain an unbiased estimator. It is known that a wrongly specified

missing-data process can also cause a serious bias problem. In Section 3.4, a simulation study

is undertaken to show how this model performs under different missing-data mechanisms.

3.3.2 ESTIMATION

Meester & Mackey (1994) applied a standard maximum likelihood estimation procedure to

estimate the dependence parameters of a copula and the marginal parameters simultaneously.

In this chapter a pseudo maximum likelihood method is used to estimate the parameters

in (3.7) (Gong & Samaniego, 1981; Parke, 1986). The basic idea of Gong & Samaniego’s

approach is that, to estimate a parameter of interest in the presence of a nuisance parameter,

one can replace the nuisance parameter with a consistent estimator and maximize the like-

lihood as a function of the parameter of interest. The resulting estimator is consistent and

asymptotically normal with asymptotic variance-covariance matrix properly adjusted based

on the variance-covariance matrix of the consistent estimator of the nuisance parameter.

To be more specific, let the likelihood function Ln(δ, π) for a sample of size n be defined

over two parameter vectors, δ and π with true values δ0 and π0, respectively. Here π is a

nuisance parameter. The information matrix I for the vector (δ, π)T can be partitioned as


 I11 I12

I21 I22


 .
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Suppose that π̃n is a consistent estimator of π such that

√
n(π̃n − π0)

d→N(0, Σ).

Then the estimator δ̂n of δ that maximizes Ln(δ, π̃n) is consistent and asymptotically normal:

(3.8)
√

n(δ̂n − δ0)
d→N(0, I−1

11 + I−1
11 I12ΣI21I

−1
11 ).

In our case, we can treat θ in (3.7) as a nuisance parameter and replace it with a consistent

estimator θ̃. Recall that θ is associated with the marginal distribution of Rj given Xj. Since

it is assumed that Xj is fully observed, the GEE method (Liang & Zeger, 1986) is used to

obtain θ̃ with Rj as the binary outcome and Xj as the covariate vector. Then we can replace

θ with θ̃ in (3.7) and maximize the corresponding likelihood function to obtain (β̂, γ̂). In this

case, the Σ is the sandwich type variance-covariance matrix from the GEE and I11 and I12

can be calculated by taking the second derivative of the negative log-likelihood function with

respect to β and γ. The asymptotic variance-covariance matrix of (β̂, γ̂) is then calculated

based on equation (3.8).

For real data in Section 3.5 the Nelder-Mead simplex method (Nelder & Mead, 1965)

is used to compute β̂ and γ̂. The major computational burden is the evaluation of Vo

since there are many permutations to carry out when the number of repeated measures is

large. Numerical integration can be used to evaluate the CDF of the multivariate normal

distributions. An alternative is the Monte Carlo method, which is feasible since sampling

from a multivariate normal distribution has been standardized in many software packages. To

choose the starting point for the Nelder-Mead optimization, the estimates from the standard

maximum likelihood procedure ignoring the missingness provide a reasonable choice. For

inference, numerical differentiation is used to obtain the information matrix since the hessian

matrix is not automatically computed when using the Nelder-Mead method.

For the simulation study described in next section, Newton-Raphson and trust region

based algorithms (Gay, 1983) are used to maximize the likelihood function. The Newton-

Raphson algorithm is first carried out. If it fails to converge, then the trust region algorithm

is used.
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3.4 A SIMULATION STUDY

A simulation study is conducted to evaluate the performance of the copula model when

the true missing-data process deviates from that specified by the copula model. Consider a

simple linear regression:

Y = β0 + β1X + ε,

where ε follows a normal distribution with mean 0 and variance σ2. Suppose y is subject

to missingness and x is always observed. If we let γ be the off diagonal element of the

correlation matrix Ω, then the missing-data process defined by a bivariate normal copula

function is

(3.9) Pr[R = 1|x, y] = Φ

[
−Φ−1(1− Pr[R = 1|x]) + γu√

1− γ2

]
,

where u = (y − β0 − β1x)/σ. Note that Pr[R = 1|x] can be any function of x whose range

falls in [0,1].

The following three missing-data processes are considered:

Pr[R = 1|x] = logit−1(θ0 + θ1x) and (3.9)(3.10)

Pr[R = 1|x] = arctan(θ0 + θ1x)/π + 0.5 and (3.9)(3.11)

and

Pr[R = 1|x, y] = 0.5I(l ≤ 0)el + I(l > 0)(1− 0.5e−l),(3.12)

where l = θ0x + θ1y. We will refer to (3.10) as the copula model with a logistic missing-

data process (COPLOGI), (3.11) as the copula model with an atan missing-data process

(COPATAN) and (3.12) as the exponential missing-data process (EXPONEN). Throughout

the simulation study, the covariate X is generated from a standard normal distribution.

In the study we compare four different estimation procedures. They will be denoted as

follows: (i) the complete cases analysis (CC) which consists of simple linear regression on the

observed data; (ii) a copula model with pseudo maximum likelihood estimation (CPPML)

which assumes model (3.10), estimating the θ’s first and then plugging the estimates back

into the likelihood function to estimate other parameters; (iii) a copula model with maximum
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likelihood estimation (CPML) which assumes model (3.10) and simultaneously estimates all

parameters and (iv) true maximum likelihood estimation (TRML), which correctly specifies

the missing-data process (assuming θ’s are known). Therefore, for model (3.10), the CPPML

and CPML correctly specify the functional form of the missing-data process; for model (3.11)

they correctly specify the missing-data process in the sense of (3.9), but not [R|X]; and for

model (3.12) the CPPML and CPML entirely misspecify the missing-data process.

In the simulation study, β0 = β1 = σ2 = 1 and γ = 0.5. The values for the θ’s are chosen

so that for each of the three missing-data processes approximately 65% of the yi’s will be

observed. The simulation results are presented in Table 3.1 and 3.2, which are based on a

sample size of 500 and 1000, respectively (1000 replicates). It can be seen that under all three

missing-data processes the CC is seriously biased. Specifically, β0 is always overestimated

and σ2 is always underestimated. The CPPML and CPML perform quite similarly in general

and occasionally the CPPML has slightly smaller MSE than the CPML. For model (3.10),

the CPPML, CPML and TRML perform equally well since all of them correctly specify the

missing-data process. For model (3.11) the CPPML and CPML have slightly higher standard

errors when compared with the TRML, which is due to the wrongly specified margin [R|X].

But on average they are still close to the correct values. The CPPML and CPML still

perform well even in (3.12), when the missing-data mechanism belongs to a totally different

class. As the sample size increases, the bias of the CPPML, the CPML and the TRML tends

to be smaller, except for the COPATAN process. Moreover, the coverage probabilities of the

CPML and CPPML are closer to 95%, though the rate of convergence seems to be slow. In

summary, the CPPML and CPML are satisfactory in reducing bias. The loss of efficiency as

compared to the TRML is due to the deviation of the assumed missing-data process from

the true one.

Essentially (3.9) states that the selection process defined by a bivariate normal copula is

of the form:

(3.13) Pr[R = 1|x, y] = Φ(ay + f(x)).

Thus the probability of being observed is a monotone function of the outcome y and depends

on x and y through the sum of an arbitrary function of x and a linear function of y. As a
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matter of fact, the EXPONEN process has a shape similar to (3.13), which is why the CPPML

and CPML have ignorable bias. Although most missing-data processes are complicated, we

often have some “qualitative” clue as to how the values of the outcomes affect the probability

of their being observed. For example, it might be reasonable to assume that subjects who

perform poorly in a cognitive test tend to be more likely to refuse to take the test. Therefore

(3.9) provides a class of missing-data processes for consideration when such a “qualitative”

assumption can be made.

3.5 APPLICATION TO THE VERBAL FLUENCY TEST (VETFA)

We apply the proposed method to a dataset from the Monongahela Valley Independent Elder

Survey (MoVIES). MoVIES is a prospective epidemiologic study of dementia, investigating

incidence, risk factors and outcomes of late-life dementia, including Alzheimer’s disease. The

study started in 1987 and ended in 2002. The study cohort of 1681 subjects from southwest-

ern Pennsylvania was reassessed on average every 2 years in a series of data collection waves.

Attrition between waves was due to death (on average 9%-14% between waves), dropout

and relocation (on average, 2.7% between waves). In addition, some subjects skipped cer-

tain waves, resulting in non-monotone missing cases.

The response variable in our example is a psychiatric test score called Verbal Fluency:

Fruits and Animals or VETFA (Lezak, 1995). This test measures impairment in verbal flu-

ency, semantic memory and language. Each subject is asked to name things that belong

to each category of fruits and animals as fast as possible within one minute. The subject’s

score is the number of words given in each 15-second-interval. Repetitions, improper nouns

and different forms of the same instance (e.g. bear, black bear) are not counted.

Data from wave 1, wave 3 and wave 5 are included for this analysis. Thus each sub-

ject has at most 3 measurements on VETFA (VETFA has to be observed at wave 1 to

be included in our analysis). The following covariates are included in the analysis: age at

baseline (age), sex (female: 1-female, 0-male), education level (highedu: 1-high school or

higher, 0-otherwise) and time (t) from baseline in years. Table 3.3 shows the distribution of

the missing-data patterns. It is clear from Table 3.3 that males and subjects with less than
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a high school education level tend to have more missing VETFA scores as compared with

females and subjects with a higher education level.

Our experience suggests that subjects tend to drop out of the study or refuse to take

the test as their test scores get lower. Or in other words, subjects who have all three test

scores available are relatively healthier. Therefore the missing-data process is assumed to be

non-ignorable. To connect the mean of the response and the covariates, an additive model

and a multiplicative model were fit to the data.

3.5.1 ADDITIVE MODEL

A linear mixed effects model is combined with the copula structure. Let Z be the submatrix

of X that contains the intercept and time from baseline. Then a mixed effects model states

(3.14) Y = Xβ + Zα + ε,

where α = (α0, αt)
T ∼ N(0, Ψ) and ε ∼ N(0, σ2I). Thus Ωyy is determined by the model

above. To model Ωyr and Ωrr, the following correlation structure was used:

ωij
yr = exp(−η(δ + |ti − tj|))(3.15)

ωkj
rr = exp(−τ |tk − tj|),(3.16)

where i = 1, 2 or 3 and j, k = 2 or 3 since response is always observed at baseline. Thus in

the framework of (3.7), (β, γ) = (β, η, δ, τ, Ψ, σ2). To estimate these parameters, GEE was

first applied to R = (R2, R3)
T with baseline age, sex, education level and time from baseline

as the covariates. The resulting estimates were then “plugged” into the copula-based like-

lihood function. Parameter estimates from the GEE (not shown) confirm again that males

and subjects with a lower education level tend to have a greater number of missing outcomes.

Moreover, subjects who are older at baseline are more likely to have missing outcomes as

expected.

For the response model, a main effects model and a second model with two interaction

terms age∗t and female∗t (the only two two-way interaction terms that are significant from

a mixed effects model ignoring the missingness) were fit to the data. Results from the mixed
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effects model and the normal copula-based selection model are shown in Table 3.4. It is clear

that the major difference between the mixed effects model and the copula selection model is

the slope of time. Ignoring the missingness results in a slower decline rate. Intuitively, since

subjects with lower outcomes tend to drop out of the study, regression on the observed data

tend to produce a less steep slope for time. Similarly, since male subjects and subjects who

are older at baseline tend to drop from the study due to lower scores, the absolute values of

βfemale∗t and βage∗t from the mixed effects model should be underestimated as is the case in

Table 3.4. Moreover, η, δ and τ provide a measure of the correlation between the outcomes

and the missing-data indicators. For example, ωii
yr = exp(−0.032 × 36.78) = 0.31 based on

the main effects model.

3.5.2 MULTIPLICATIVE MODEL

One of the major advantages of copula based parametric models is that one can fit any

marginal distribution without changing the correlation structure. In a second experiment, a

gamma model for the marginal distribution was fit to the data. Specifically,

[Yj|Xj] ∼ Gamma(µj, νj)(3.17)

logµj = Xjβ.(3.18)

Here µj is the mean and νj is the scale parameter for j = 1, 2 or 3. Therefore, each of the

three time points has its own scale parameter. It is in the sense of the link (3.18) that we

call the model multiplicative. To model Ωyy, consider the same model as (3.16):

(3.19) ωij
yy = exp(−ρ|ti − tj|)

for i, j = 1, 2 or 3. In this analysis, Ωyr and Ωrr are the same as in the additive model. Then

in the framework of (3.7), (β, γ) = (β, ν1, ν2, ν3, ρ, η, δ, τ). The results are shown in Table

3.5. Again, we see a similar pattern as for the additive model in βt, βage∗t and βfemale∗t.

Thus this example clearly demonstrates how the bias can be reduced by a copula selection

model.
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In summary, females and younger subjects tend to have higher VETFA scores. Moreover,

the performance of older subjects tend to decline faster. Ignoring the missing-data process

in this example results in underestimating the decline rate of the score.

3.6 DISCUSSION

In this chapter, a normal copula based selection model is proposed for continuous responses

subject to non-ignorable non-monotone missing-data processes. A simulation study is carried

out to compare the performance of the model under different missing-data processes and the

method is applied to a real dataset. Essentially, the normal copula specifies a particular class

of selection models defined by V in (3.3). The concept is straight forward and the method is

easy to implement in practical application. The model is related to Heckman’s (1976) probit

selection model and the Tobit model by Amemiya (1984). From the likelihood function (3.5

and 3.6) it can be seen that if Ωyr = 0 then the missing-data mechanism is ignorable. In our

example, this can be checked by testing that ηδ is larger than some big number.

The major computational burden of the proposed method is the calculation of Vo. Essen-

tially, the normal copula-based selection model reduces the integration of “missing outcomes”

for selection models to the evaluation of the CDF of a multivariate normal distribution at

different points. When the number of repeated measurements is large, evaluation of the like-

lihood function may take a substantial amount of time. Since many software packages have

subroutines for sampling from the multivariate normal distribution, Monte Carlo methods

provide an alternative method to numerical integration.

The “Shared parameter” selection model has been a popular tool to model non-ignorable

non-monotone missing outcomes. However, it is often hard to see directly how the outcomes

and the missing-data indicators are correlated since they are connected by a random param-

eter. Copula based selection models provide a more clear insight on how the outcome drives

the missing-data process. Moreover, it allows for flexibility in the choice of both the margins

and the copula that defines the missing-data process.
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4.0 PATTERN-MIXTURE MODEL WITH PSEUDO MAXIMUM

LIKELIHOOD ESTIMATION

In this chapter, the focus is on the development of pattern-mixture models for data with a

non-ignorable missing response. In estimating the regression parameters that are identifi-

able, we use the pseudo maximum likelihood method introduced by Gourieroux et al. (1984).

This procedure provides consistent estimators when the mean structure is correctly specified

for each pattern, with further information on the variance structure giving an efficient esti-

mator. A “three step” estimation approach is used to calculate the efficient estimator. The

proposed method can be used to handle a variety of continuous and discrete outcomes. A

Hausman type test (Hausman, 1978) of model misspecification is also developed for model

simplification in order to improve efficiency. Throughout this chapter, it is assumed that

models are already identifiable and the focus is on parameter estimation and simplification of

such models. It should be emphasized that this approach by no means indicates a complete

strategy for the fitting of pattern-mixture models. The idea is to provide an extension to the

current pattern-mixture model approach in terms of estimation and efficiency improvement.

Although the focus is monotone missing data in this chapter, the approach can be applied

to data with general missing-data patterns directly. Pseudo maximum likelihood estimation

and the test of model misspecification are introduced in Sections 4.1.1 and 4.1.2, respectively.

Simulation studies are presented in Section 4.2 to evaluate the performance of the proposed

estimation method and the power of the proposed test. The proposed method is applied to

an epidemiologic cohort study to examine cognition decline among elderly in Section 4.3.

Finally, we conclude this chapter with a discussion section.
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4.1 APPLICATION OF PSEUDO MAXIMUM LIKELIHOOD

ESTIMATION TO PATTERN-MIXTURE MODELS

4.1.1 PSEUDO MAXIMUM LIKELIHOOD

One of the difficulties encountered in fitting pattern-mixture models is that the distribution

for each missing-data pattern can be very hard to model parametrically. This is due to the

complexity of the missing-data process. A simple example is that the conditional distribu-

tion for a certain missing-data pattern is not normal even we can reasonably assume that the

unconditional distribution is normal, unless the missing-data process depends on the out-

come in a specific manner. Therefore, a semi-parametric pattern-mixture model that does

not require the modelling of the exact distributional form is desirable. In this subsection, a

pseudo maximum likelihood based estimation procedure is proposed within the framework of

pattern-mixture models requiring only the specification of the first (and second) moment(s)

for each pattern.

Gourieroux et al. (1984) proposed a regression model with specification of the mean

structure up to unknown parameters. They then assumed the conditional distribution of the

response given the covariates follows some distribution that belongs to an exponential family.

They proved that the corresponding Pseudo Maximum Likelihood Estimator (PMLE) that

maximizes the assumed likelihood function is consistent even though the true distribution

does not belong to the proposed family, provided that the mean structure is correctly speci-

fied. Moreover, some exponential families have an additional nuisance parameter η = g(µ, Σ),

where µ and Σ are the mean and covariance, respectively. Here g defines a one to one func-

tion of Σ for any fixed µ. The normal distribution with mean µ and variance σ2, is a typical

example of this type of distribution with η = σ2. Thus if we know the true functional form

of the variance and there are consistent estimators of the parameters associated with the

mean and variance, then we can consistently estimate η. Gourieroux et al. (1984) showed

that the estimator based on an exponential family with nuisance parameters replaced by

corresponding consistent estimators is efficient over the PMLE. They named this estimator

the Quasi Generalized Pseudo Maximum Likelihood Estimator (QGPMLE). Gourieroux et
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al.’s approach can be seen as a multi-dimensional version of the quasi-likelihood functions

proposed by Wedderburn (1974) and is closely connected to the GEE (Liang & Zeger, 1986).

To illustrate the idea, consider a simple regression problem E(Y |X) = θX, where

X, θ > 0, and Y takes non-negative integer values. Then we can assume a normal dis-

tribution p(Y |x) = φ(y; x, θ) = N(θx, 1) of Y given X, which results in the same estimator

as the least square estimator, θ̂NOR =
∑

xiyi/
∑

x2
i . Alternatively we can also assume a

Poisson distribution, p(Y |x) = λ(y; x, θ) = POI(θx), which results in θ̂POI = ȳ/x̄. If the

proposed mean structure is correct with true value θ0, then both θ̂NOR and θ̂POI will converge

to θ0 regardless of the true distribution of [Y |X] since the normal distribution with known

variance and the Poisson distribution are exponential families.

Now suppose we also know that V ar(Y |x) = αh(x) with h known. Then α can be

consistently estimated as

α̃ =
n∑

i=1

(yi − xiθ̂NOR)2

h(xi)
/n.

Then we assume that the variance of [Yi|xi] is α̃h(xi) and again assume a normal distribution

to obtain the efficient estimator θ̂QGPMLE by maximizing the corresponding pseudo likelihood

function. Therefore a strategy to compute the QGPMLE is composed of three steps (Lipsitz

et al., 1992): (i) obtain a PMLE, (ii) estimate the nuisance parameter based on the PMLE

and (iii) calculate the QGPMLE. Step (ii) is not trivial in general. However, under some

model structure it is indeed quite straight forward.

To apply the above estimation procedure to pattern-mixture models, consider a single

observation with y = (y1, y2, . . . , ym)T an m × 1 outcome vector and X an m×p covariate

matrix. We temporarily drop the subject index for the sake of clarity. Suppose y is subject

to a monotone missing-data process and let R be the missing-data pattern indicator, where

R = r indicates that the subject has r observed outcomes. Let y(j) and X(j) be the vector

composed of the first j elements of y and the matrix composed of the first j rows of X,

respectively. It is assumed that X(r) is always fully observed. In a regression analysis, the

primary interest is E[Y |X, θ, φ], which can be written as

(4.1) E[Y |X, θ, φ] =
m∑

r=1

E[Y |X, r, θ]p(r|X,φ),

39



where p(r|X, φ) represents the probability mass function for [R|X]. Here it is assumed that

θ and φ are distinct. As mentioned at the beginning of this chapter, it is also assumed that

θ is identifiable. Note by the way equation (4.1) is presented, we avoid specification of the

distributional form of Y due to the semi-parametric nature of the approach that is going to

be proposed.

For simplicity, it is assumed that the distribution of R conditional on X only depends

on time-independent covariates, which is fully observed. Then multinomial regression can

be used to estimate φ if the number of observed missing-data patterns is not great. For θ,

inference is based on the specification of the first two moments of the conditional distribution

of Y(r):

E[Y(r)|X, r, θ] = fr(X(r), θ(r)),(4.2)

V ar[Y(r)|X, r, α] = Ωr(X(r), α(r)).(4.3)

Here θ =
⋃

r θ(r) ∈ Θ ⊂ Rd and α =
⋃

r α(r) ∈ Λ ⊂ Rq, where θ(r) and α(r) are the

subsets of θ and α that are associated with the mean and variance specification of pattern

r. For fixed r, θ(r) and α(r) need not be distinct. Furthermore, θ(r)’s and α(r)’s need not

be distinct across patterns. Note it is assumed that the distribution of Y(r) does not depend

on future X values conditional on X(r).

Now suppose there are nr subjects from pattern r and let n =
∑m

r=1 nr. Let yrj and Xrj

be the observed outcome vector and corresponding covariate matrix for subject j in pattern

r. Then the following two theorems are a direct extension of Theorems 3 and 4 in Gourieroux

et al. (1984). The proof is given in the appendix.

THEOREM 1. Consistency and Asymptotic Normality of PMLE

Let er(y, µr) = exp(Ar(µr) + Br(y) + Cr(µr)y) be an exponential family density function on

Rr with mean µr, where Ar, Br are scalars and Cr a row vector of size r. Then under

regularity conditions the estimator θ̂n of θ0 that maximizes

m∑
r=1

nr∑
j=1

log[er(yrj, fr(Xrj, θ(r))]
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is consistent and asymptotically normal:

√
n(θ̂n − θ0)

d→N(0, J−1IJ−1),

J = E

(
∂fR

∂θ0

(Σθ0
R )−1∂fR

∂θ′0

)
,

I = E

(
∂fR

∂θ0

(Σθ0
R )−1ΩR(Σθ0

R )−1∂fR

∂θ′0

)
,

where Σθ0
r (X) is the covariance matrix associated with er(., fr(X(r), θ0(r))).

Theorem 2. Consistency and Asymptotic Normality of QGPMLE

Suppose the functional form of Ωr is known. Let e∗r(y, µr, ηr) = exp(Ar(µr, ηr) + Br(ηr, y) +

Cr(µr, ηr)y) be a density function on Rr with mean µr and ηr = gr(µr, Σr), where Σr is the

covariance matrix. Let θ̃n and α̃n be strongly consistent estimators of θ0 and α0, such that
√

n(θ̃n − θ0) and
√

n(α̃n − α0) are bounded in probability, then under regularity conditions

the estimator θ̂n of θ0 that maximizes

m∑
r=1

nr∑
j=1

log[e∗r(yrj, fr(Xrj, θ(r)), gr(fr(Xrj, θ̃n(r)), Ωr(Xrj, α̃n(r))))]

is consistent and asymptotically normal:

√
n(θ̂n − θ0)

d→N(0, V = [E

(
∂fR

∂θ0

(ΩR)−1∂fR

∂θ′0

)
]−1).

Moreover, V is the lower bound of the asymptotic variance of the estimator introduced in

theorem 1.

These two theorems provide the basis for the computation of the PMLE and QGPMLE.

As noted in Theorem 2, to find the QGPMLE one first needs to provide a consistent esti-

mator θ̃n. The PMLE provides such an estimate and this estimate can be used to obtain

α̃n (Gourieroux et al., 1984). This estimation approach is similar to the method of Lipsitz

et al. (1992). The advantage is that it simplifies a difficult estimation problem by reducing

the number of parameters, bypassing the need to simultaneously obtain θ̃n and α̃n. For the

QGPMLE, one does not need a
√

n-consistent estimator for every element of α. It is enough
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to have
√

n-consistent estimators of those that are associated with the variance specification

of the observed vector for each pattern.

Under the linear mean structure framework, the PMLE and QGPMLE are of the form:

(4.4) (
m∑

r=1

X̃T
r W−1

r X̃r)
−1(

m∑
r=1

X̃T
r W−1

r Ỹr).

The asymptotic variance of the PMLE and QGPMLE are consistently estimated as follows:

V̂1 = n(
m∑

r=1

X̃T
r Σ̂−1

r X̃r)
−1(

m∑
r=1

nr∑
j=1

XT
rjΣ̂

−1
rj ε̂rj ε̂

T
rjΣ̂

−1
rj Xrj)(

m∑
r=1

X̃T
r Σ̂−1

r X̃r)
−1,(4.5)

V̂2 = n(
m∑

r=1

X̃T
r Ω̂−1

r X̃r)
−1.(4.6)

Here Wr = Σ̂r for the PMLE and Wr = Ω̂r for the QGPMLE; X̃r is the covariate matrix with

respect to θ, stacking over subjects within pattern r; Ỹr is the response vector, stacking over

subjects within pattern r; Σ̂rj is the “working” covariance matrix; Σ̂r is the block diagonal

matrix composed of Σ̂rj; ε̂rj is the residual and Ω̂r is the block diagonal matrix composed

of Ω̂rj, which is the estimated true covariance matrix. We will apply equation (4.4)-(4.6) to

the simulation study in Section 4.2 and the Mini Mental State Exam in Section 4.3.

For a linear pattern-mixture model, we are mainly interested in the marginal parameter

estimator (θ̂mar). This estimator can be computed as a weighted sum of the estimator of

each pattern (θ̂(r)) with the estimated proportion of each pattern (π̂r) as the weight. Thus

we have

θ̂mar =
m∑

r=1

π̂rθ̂(r).

Here π̂r can be calculated according to the multinomial regression model, which results in

the covariates-specific marginal parameter vector; or one can use empirical proportion of

pattern r as π̂r to obtain the overall marginal parameter vector. Delta method or bootstrap

approach can be used to estimate the variance of θ̂mar.

42



4.1.2 MODEL MISSPECIFICATION

To limit the loss of the degrees of freedom of a model, we would want to simplify an iden-

tifiable pattern-mixture model. This is of particular significance due to the large dimension

of the parameter vector. For example, if there are five patterns and for each pattern there

are five parameters to be estimated, then the length of the parameter vector is 25. For such

a model, inference requires each pattern to have a sufficient number of data points, which

in practice might not be easy to achieve. Although a Wald type test can be used to check

certain constraints on model parameters in a semi-parametric setting, a test that can be

used to evaluate the overall adequacy of a model is desirable for our purpose.

Hausman (1978) proposed a test for model misspecification that can be extended to

address this issue. Suppose a model is not misspecified, or in other words, there exists a

θ0 ∈ Θ such that the corresponding member f(x, θ0) of the proposed family of distributions

f(x, θ) is the true distribution g(x). Then under regularity conditions, the θ̂n that max-

imizes
∑

i log[f(xi, θ)] converges to θ0. If such a θ0 does not exist, then under regularity

conditions θ̂n converges to a θ∗ that minimizes the Kullback-Leibler (Kullback & Leibler,

1951) Information Criterion (KLLC):

I(g : f, θ) = Eg

{
log

g(X)

f(X, θ)

}
.

For example, both θ̂NOR and θ̂POI in Section 4.1.1 will converge to the true value when the

linear structure is correct. On the other hand, suppose the linear structure is not correct.

Let g(x, y) be the true joint distribution of (X, Y ) and

INOR = Eg

{
log

g(X,Y )

φ(Y ; X, θ)

}

IPOI = Eg

{
log

g(X,Y )

λ(Y ; X, θ)

}
.

Then θ̂NOR and θ̂POI will converge to θ∗ and θ∗∗, respectively, where θ∗ minimizes INOR and

θ∗∗ minimizes IPOI . In general, θ∗ 6= θ∗∗ and we expect to detect such a difference as the

sample size gets large.

Thus the general strategy is to construct two different estimators of θ that will both con-

verge to the true value if the model is correctly specified and will converge to different limits
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if the model is wrong. The PMLE and QGPMLE provide candidates for such estimators.

The next theorem sets up the null distribution of a test statistic based on the PMLE and

QGPMLE. For the theoretical development of this type of test, see White (1981, 1982). A

sketch of the proof is shown in the appendix.

Theorem 3. Let θ̂n and θ̃n be the estimators of theorem 1 and theorem 2 with asymptotic

variance-covariance matrix Vh and Vt. Then under the assumption that the mean structure

and the variance structure (for θ̃n) are correctly specified we have

n(θ̂n − θ̃n)T (Vh − Vt)
−1(θ̂n − θ̃n)

d→χ2
d,

provided that Vh − Vt is positive definite. Moreover, the same limit distribution holds if Vh

and Vt are replaced by their corresponding consistent estimators.

Thus this test provides a convenient tool to check model adequacy after the PMLE and

QGPMLE are calculated. This test will be applied to an example in Section 4.3.

4.2 SIMULATION STUDIES

4.2.1 COMPARISON OF THE PMLE AND QGPMLE WITH OTHER AP-

PROACHES

To study the properties of the proposed estimators a simulation study is conducted. The

PMLE and QGPMLE are compared to estimators obtained under the MLE based on com-

plete cases (CC), the MLE based on observed data ignoring the missing-data mechanism

(MLE1), the weighted estimating equation (Rotnitzky et al., 1998) by correctly specifying

the weight (WEE) and the MLE based on the correct specification of the missing-data pro-

cess (MLE2). The purpose of the study is to evaluate how well the PMLE and QGPMLE

do when compared to the CC and MLE1 that ignore the missing-data process and how they

compare with the WEE that is another semi-parametric approach to handle missing data.

Intuitively, we expect that the PMLE and QGPMLE are less biased than the CC and MLE1
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under a non-ignorable missing-data process. However, efficiency is also of our interest since

the PMLE and QGPMLE do not use the information of distributional forms. The difference

between the WEE and PMLE (QGPMLE) is that the WEE uses information regarding the

missingness in the format of the probability of being in each pattern instead of the moment

specification for each pattern.

Three missing-data mechanisms considered are: (i) missing-data mechanism only de-

pends on covariates or covariates dependent missing (CDM), (ii) missing-data process de-

pends on observed outcome or missing at random (MAR) and (iii) missing-data process

depends on unobserved outcome or missing not at random (MNAR).

To be more specific, let the random triple (X,Y1, Y2) be generated by the following model:

X ∼ U[0, 1], [Y1|x] ∼ EXP(αx), [Y2|x, y1] ∼ EXP(
β

α
y1).

Here α, β > 0, U[0, 1] refers to the uniform distribution on [0, 1] and EXP(µ) refers to the

exponential distribution with mean µ. Thus E(Y1|x) = αx and E(Y2|x) = βx. Note also

that given x, Y1 and Y2 are positively correlated.

To generate the different missing scenarios, suppose that x and y1 are always observed

and that y2 is subject to missingness. Let R be the missing-data indicator such that R = 1

indicates that y2 is observed and R = 0 indicates that y2 is missing. Then the three missing-

data processes are of the form:

CDM: Pr[R = 1|x, y1, y2] = xk1 ,(4.7)

MAR: Pr[R = 1|x, y1, y2] = exp(− y1

k2αx
),(4.8)

MNAR: Pr[R = 1|x, y1, y2] = exp(− y1

k3αx
− αy2

k3βy1

).(4.9)

Here k1, k2 and k3 are all positive. Note that although (4.8) is MAR, the missing-data

process does depend on the regression parameter α. Thus the estimator of α by MLE1 is

not efficient since it ignores the missing-data process. For the CDM, (Y1, Y2) and R are

independent given X. For the MAR, observations with a higher value of y1 have a lower

probability of being complete cases, so that the mean of y1 for complete cases should be

smaller than the marginal mean and that of the incomplete cases should be larger than the
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marginal mean. Since Y1 and Y2 are positively correlated, we should expect to see a smaller

mean of Y2 for complete cases as compared with its marginal mean. It turns out that similar

observations can also be made under the MNAR as in the MAR. The mean structure for

each of the two patterns is of the form:

CDD: E[Y1|x,R = 1] = αx

E[Y2|x,R = 1] = βx

E[Y1|x,R = 0] = αx

MAR: E[Y1|x,R = 1] =
k2

k2 + 1
αx

E[Y2|x,R = 1] =
k2

k2 + 1
βx

E[Y1|x,R = 0] =
2k2 + 1

k2 + 1
αx

MNAR: E[Y1|x,R = 1] =
k3

k3 + 1
αx

E[Y2|x,R = 1] =

(
k3

k3 + 1

)2

βx

E[Y1|x,R = 0] =
3k2

3 + 3k3 + 1

2k2
3 + 3k3 + 1

αx.

For the PMLE and QGPMLE, the pseudo likelihood function is based on the (bivariate)

normal distribution. For the PMLE, Σ̂rj = Ir, where Ir is the r-dimensional identity matrix

(see (4.4) and (4.5)). The PMLE is then used to estimate the QGPMLE (see Theorem 2).

For the PMLE and QGPMLE it is assumed that k2 and k3 are known. In the simulation,

α = 2 and β = 4. Approximately 50% of the y2 values will be missing by setting k1 = 1,

k2 = 1 and k3 = 2.4, and 25% of the y2 values will be missing by setting k1 = 0.3, k2 = 3

and k3 = 6.5.

Tables 4.1 and 4.2 show the simulation results based on 1000 replicates. Note that al-

though some of the quantities are analytically solvable, the results from the simulation are

used for purpose of consistency. In the tables, both bias and S.E. are calculated as the values

obtained from the simulated data divided by the corresponding true parameters (relative bias

and standard error). It is clear that under all three missing-data processes the QGPMLE

is at least as good as the PMLE in terms of standard error and mean squared error, both
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of which are essentially unbiased. The gain in efficiency of the QGPMLE over the PMLE is

obvious. On the other hand, the MLE1 always has less bias and MSE when compared to the

CC. As expected, under the MAR and MNAR, the CC is seriously biased. Note also that

the MLE1 is seriously biased for β under the MNAR. The MLE1 has slightly larger standard

errors than the MLE2 for α under MAR since it ignores the missing-data process that is

dependent on α. The WEE is basically unbiased under all three missing-data mechanisms.

However, its standard errors are larger than other approaches most of the time. Part of

the reason is that the weighted estimating equation used is not the optimal one (Robins &

Rotnitzky, 1995) since it would require knowledge of the exact distributional form, which

is assumed to be unknown due to the semi-parametric nature of the WEE. However, as

Robins & Rotnitzky (1995) showed in their simulation study, the improvement in efficiency

of the optimal estimating equation relative to the general one is around 10-15%. Therefore,

it appears that the WEE have larger standard errors than the QGPMLE. In general, the

coverage probabilities for the WEE tend to be a little lower.

Regarding the estimation of α, the QGPMLE is at least as good as the MLE1 in terms

of bias and standard error. The standard errors of the WEE are always larger than that of

the QGPMLE and sometimes they are more than twice as large. Moreover, the QGPMLE

essentially has the same efficiency as the MLE2. For the estimation of β, the WEE again

has larger standard errors than the QGPMLE. The QGPMLE has a slightly larger stan-

dard error than the MLE2, which could come from lack of information of the distributional

form. However, given the semi-parametric nature of the QGPMLE its performance is quite

satisfactory. The QGPMLE also has reasonably small bias, which decreases as sample size

increases. Moreover, the coverage probability of the QGPMLE is good for reasonable sample

size.

In summary, the QGPMLE enjoys both distribution-free and easy-to-compute properties.

Its performance is very close to that of the MLE that correctly specifies the missing-data

process. Compared with the WEE, the QGPMLE is much more efficient. Since sometimes

it is easier to model the mean structure for each pattern than to model the missing-data

process, the QGPMLE provides a good alternative to the WEE. Even if it is hard to model

the variance-covariance structure for each pattern under certain situations, the PMLE is
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another alternative whose performance is similar to the WEE as can be seen from Tables

4.1 and 4.2.

4.2.2 POWER OF THE TEST OF MODEL MISSPECIFICATION

In Section 4.1.2, a Hausman (1978) type test to check model adequacy was proposed. The

purpose of introducing this test is that it will be used in the construction of a parsimonious

model. More specifically, it will be used to test whether or not some patterns share the same

regression parameters though the shape of the distributional form is different from pattern

to pattern. In this section, a small simulation study is presented to compare the power of

this test under different distributional assumptions.

Consider a random bivariate vector (X, Y ) such that the conditional distribution of Y

given x, [Y |x], is a mixture of two models with the first model having probability p of being

selected to generate y. The two models are of the form:

Model 1: E(Y |x) = β1x V ar(Y |x) = e|β1x|,

Model 2: E(Y |x) = β2x V ar(Y |x) = e|β2x|.

Moreover, suppose that there are three possible distributional forms for model 1 and model

2: (i) Normal Distribution (NOR), (ii) Double Exponential Distribution (DEP) and (iii)

Triangle Distribution (TRI). The shapes of the three distributional forms are shown in Fig

4.1. Note that under all three distributional shapes, the mean and variance entirely determine

the density function. It can be seen that under both of the models, the conditional variance

of Y given x has an exponential relationship with the absolute value of the conditional

mean. Therefore there is a substantial amount of variation that makes it relatively difficult

to compare β1 and β2. Moreover, it is assumed that one does not know from which model

each data point is drawn, which makes the problem even more complicated. Later we will

see that the test we proposed in Section 4.1.2 can be used to detect the difference between

β1 and β2.

Consider the null hypothesis H0 : β1 = β2 versus HA : β1 6= β2. Throughout the

simulation X follows a standard normal distribution and p = 0.5. Three combinations of
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values of β1 and β2 are considered: (i) β1 = β2 = −1, (ii) β1 = −1, β2 = 1 and (iii)

β1 = −2, β2 = 2. Six combinations of the distributional forms are considered: (a) (NOR,

NOR), (b) (NOR, DEP), (c) (NOR, TRI), (d) (DEP, DEP), (e) (DEP, TRI) and (f) (TRI,

TRI). Here the first entry refers to the shape for the first model and the second entry refers

to the shape for the second model. Thus (NOR, DEP) indicates that the first model is a

normal model and the second model is a double exponential model and so on.

The simulation results based on 1000 replicates are shown in Table 4.3. It can be seen that

the power is quite similar among the six combinations of distributional shapes, particularly

when the sample size reaches 500. Therefore the exact distributional form seems not to

have a large influence on the power of this test. Moreover, the gain in power and the size

of the test are limited as sample size increases from 200 to 500, which suggests that the

converge rate might be relatively slow after the sample size increases beyond 200. It should

be emphasized that lack of information on which model each of the data points is drawn from

greatly limits the statistical power to detect the difference between β1 and β2. In this regard,

lack of information on the exact distributional form has less influence. Another observation

is that the difference between β1 and β2 seems to have a greater influence on power than the

sample size does within the simulation setting.

Generally speaking, the power of the proposed test in Theorem 3 is hard to conjecture

when applied to complicated models since many factors are involved. Since the test is most

powerful for large difference in parameters as seen in Table 4.3, the idea is to sacrifice a little

bias to achieve improvement in efficiency.

4.3 APPLICATION TO THE MINI MENTAL STATE EXAM (MMSE)

The proposed method was applied to a data set from the MoVIES. In the analysis data from

waves 1 to 5 are included with intermittent missing cases and subjects whose outcomes were

not observed at baseline excluded. The dataset is then composed of 1323 subjects, among

which 271(20.5%), 164(12.4%), 144(10.9%), 155(11.7%) leave the study at wave 2 (R = 1),

3 (R = 2), 4 (R = 3) and 5 (R = 4), respectively, and 589(44.5%) are completers (R = 5)

(see Table 4.4).
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The response variable in our example is a neuropsychological test score called the Mini

Mental State Exam (Folstein et al., 1975), or MMSE, which measures global cognitive per-

formance and has generally been used as part of a screening battery to detect dementia.

The MMSE was administered at 5 separate time points and we are interested in the score

trajectory. The empirical trajectories of the mean MMSE over the five waves for different

patterns are shown in Fig 4.2. Fig 4.2 clearly demonstrates that the score at baseline and

the slope are different across patterns. Particularly, subjects who stay longer in the study

tend to have a higher baseline score. It appears that the slopes for R = 2, 3 and 4 are quite

similar, and are steeper than that of R = 5. From the observed data, it seems a linear model

is a good approximation to describe the trajectory. Since no information is available with

respect to the score beyond the dropout time, extrapolation based on the linear model is

used to describe the trajectory after the dropout time. This certainly is not the strategy to

fully explore a pattern-mixture model, which usually requires sensitivity analysis assuming

different model structures regarding the under-identifiability issue. Here the purpose is to

demonstrate the idea of simplification of identifiable pattern-mixture models and try to avoid

other complications that might distract from the key point we are trying to make.

The dimension of the parameter space associated with the mean configuration in a

pattern-mixture model is quite flexible, depending on the assumptions made. Several dif-

ferent linear models are chosen for the analysis of this data, assuming dropout is related to

the unobserved MMSE score. Additionally, since the PMLE and QGPMLE lend themselves

to comparison across models using the proposed test statistic given in Theorem 3, we also

consider three variance structures for modelling this data. Let σr
ij denote the covariance

between the ith and jth outcomes for a subject in pattern r. The three variance structures

(all of them are independent of covariates) that will be considered are:

(i) σr1
ij = σr2

ij for any r1 ,r2 ≥ max(i, j). For example σr
23 is the same for all r = 3, 4, 5.

(ii) Let A1 = {1, 2, 3} and A2 = {4, 5}, then (i) holds for any r1, r2 both in A1 or both in

A2 and does not hold otherwise.

(iii) σr1
ij 6= σr2

ij for any r1 ,r2 ≥ max(i, j) unless r1 = r2.

In other words, (i) requires that all estimable covariance parameters are the same across

the missing-data patterns, (iii) specifies the structure in exactly the opposite way and (ii)
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requires that the estimable covariance parameters be the same within the two groups of

missing-data patterns and different between the two groups.

Both the PMLE and QGPMLE are calculated from pseudo likelihood functions based on

the (multivariate) normal distribution. To obtain the PMLE, an identity covariance matrix

is assumed for each pattern. For the QGPMLE, a consistent estimator of the covariance

matrix is obtained for each pattern by averaging the residuals (calculated based on the

PMLE) under each of the three covariance structures described above. Following covariates

are included: age at baseline (age), sex (female: 1-female, 0-male), education level (highedu:

1-high school or higher, 0-otherwise) and time (t) from baseline in years.

To obtain information regarding how to simplify models, a saturated pattern-mixture

model was first fitted to the data in which parameters from each pattern are set to be dis-

tinct except that the slope of t for pattern R = 1 is set to be the same as that of pattern

R = 2, assuming variance structure (iii). The estimates and standard errors are shown in

Table 4.5. From Table 4.5 it can be seen that some estimates across patterns are quite dif-

ferent (female for pattern R = 3 and R = 4) and some are very close (intercept for pattern

R = 2 and R = 3). Then we try different pattern-mixture models (slope of t for R = 1

is always set to be equal to that of R = 2) to allow certain patterns to share certain pa-

rameters according to the observations from Table 4.5. Moreover, the test in Theorem 3 is

used to check the adequacy of the different models in explaining the data. Several simpli-

fied models are obtained that seem to explain the data well. Furthermore, all of them give

similar marginal parameter estimates. We pick one model which we will call the parsimo-

nious pattern-mixture model (PPM) and compare it with the complete case analysis (CC),

the observed data analysis (OD) and the saturated pattern-mixture model (SPM). Both the

CC and OD are based on pseudo maximum likelihood estimation, ignoring the missing-data

process. The PPM (χ2(9) = 10.5, p = 0.31) assumes variance structure (i) and specifies the

mean structure to be

E(MMSEij) = β01 ∗ I(Ri = 1) + β023 ∗ I(Ri = 2 or Ri = 3) + β045 ∗ I(Ri = 4 or Ri = 5)

+βt5 ∗ I(Ri = 5) ∗ tij + βt1234 ∗ I(Ri < 5) ∗ tij + βf3 ∗ I(Ri = 3) ∗ femalei

+βf1245 ∗ I(Ri 6= 3) ∗ femalei + βh ∗ highedui + βa ∗ agei,
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where i and j are subject index and wave index, respectively. Essentially the PPM says: (i)

the effects of age at baseline and education level are the same across missing-data patterns;

(ii) intercepts of the missing-data patterns form three distinct groups: (R = 1), (R = 2,

R = 3) and (R = 4, R = 5); (iii) slopes of time are different for completers (R = 5) and

other patterns and (iv) sex effect is different for pattern R = 3 and other patterns. This

model reflects some observations made from Table 3 and Fig 4.2. For example, the effect of

gender for R = 3 is quite different from that of other patterns and completers have a less

steep decline (Fig 4.2) than other patterns. We also fit larger models to take into account

more subtle differences in parameters across patterns (e.g. sex effect can form 3 distinct

groups: (R = 1, R = 2, R = 4), (R = 3) and (R = 5)). It turns out that these models give

marginal parameter estimates that are similar to those obtained from the PPM. Moreover,

although the effect of age at baseline seems to be heterogenous across patterns as can be seen

from the SPM (p = 0.09 for Wald test of equality of age effects across patterns), models that

distinguish it yield similar pooled parameter estimates as the PPM. Empirical calculation

shows that some elements in the variance-covariance matrix across patterns are quite close

whereas some are not. However, as long as the mean structure of the PPM is correctly

specified, the estimates are still consistent even the variance-covariance structure deviates

from the true one. The parameter estimates from the PPM are shown in Table 4.6.

In Table 4.7 we compare the marginal parameter estimates of the PPM and SPM (em-

pirical proportion of each pattern as the weight) with parameter estimates of the CC and

OD. From all four estimation procedures we see that females and subjects with a high school

education or higher tend to have higher test scores and older subjects at baseline tend to

have lower test scores. Clearly, the CC overestimates the baseline score since it is based

on completers, who are much healthier than the rest of the population. It is also seen that

both the CC and OD underestimate the decline rate since they do not take into account

those test scores that would have been observed had the subjects not left the study. As a

matter of fact, the test of model adequacy rejects the OD (χ2(5) > 100 for all three variance

structures, p < 0.001), which indicates that MCAR assumption almost surely does not hold.

The OD and the SPM can be thought as two extreme points of pattern-mixture models with

the OD being the “smallest” pattern-mixture model and the SPM being the “largest” one.
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The PPM is an “intermediate” model (most estimates fall between that of the OD and the

SPM except the variable female). Although the efficiency improvement of PPM relative to

the SPM is not substantial for most pooled parameters, the gain in efficiency for the slope of

time is quite apparent. Thus the proposed approach allows one to balance bias and efficiency

by fitting models with different complexity.

4.4 DISCUSSION

In this chapter a pseudo maximum likelihood approach is proposed for the estimation of pa-

rameters in a pattern-mixture model. Although analyses based on generalized linear models

have been a major tool for non-Gaussian longitudinal data, it is often hard to justify the

distributional assumptions for each missing-data pattern due to the complexity and limited

information of the missing-data process. The theory of pseudo maximum likelihood estima-

tion guarantees consistent estimators by assuming an exponential family even though the

true distribution might not belong to this class, provided the mean structure is correctly

specified. The work in this chapter is a direct extension of pseudo maximum likelihood

estimation by applying the theory to the problem of estimating parameters based on more

than one data generation mechanisms, for which monotone missing data present a typical

example. Other semi-parametric methods include Robins et al. (1994, 1995) and Rotnitzky

et al. (1998), who developed an approach for nonresponses in the framework of weighted

estimating equations.

Another point we are trying to convey in this chapter involves efficiency consideration.

We want to emphasize that although obtaining an unbiased estimator has been the main

goal for most research on missing data, the gain in practical applications is often limited

because the missing-data process is poorly understood most of the time. On the other hand,

there is still room for improvement in efficiency, which is also important since we already lose

efficiency due to nonresponse. Sensitivity analysis has been an important strategy to explore

different assumptions regarding the unverifiable elements in a pattern-mixture model for a

non-ignorable missing outcome. The approach described in this chapter can be thought of

as a supplement to such analysis in the hope to balance unbiasness and efficiency.
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For the example in Section 4.3, the covariance components are independent of the co-

variates. An alternative is to assume a linear mixed effects Gaussian model for our data (e.g.

with intercept and t as the random effects). Gourieroux et al. (1984) introduced a consis-

tent estimator based on the quadratic exponential family, among which is the multivariate

normal distribution. Then a simultaneous estimator of all the parameters involved (both

parameters of mean structure and variance structure) by maximizing the pseudo likelihood

function based on the multivariate normal distribution is consistent and asymptotically nor-

mal, provided the mean and variance structure are correctly specified. However, this will

need a numerical algorithm and thus lose the advantage of an explicit solution. Since the

time interval between two consecutive waves in our example is approximately two years for

each subject, it is reasonable to assume a homogeneous covariance structure.
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Table 4.4: Distribution of the missing-data patterns of the MMSE from MoVIES data

R Wave1 Wave2 Wave3 Wave4 Wave5 Frequency(%)

1 • × × × × 271 (20.5)

2 • • × × × 164 (12.4)

3 • • • × × 144 (10.9)

4 • • • • × 155 (11.7)

5 • • • • • 589 (44.5)

Total 1323 (100)

•: Observed, ×: Missing
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(i) Normal Distribution

(iii) Triangle Distribution

(ii) Double Exponential Distribution

Figure 4.1: Three distribution forms
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Figure 4.2: The mean MMSE scores over waves for R = 1, 2, 3, 4 and 5
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5.0 CONCLUSIONS

A parametric selection model based on a multivariate normal copula and a semi-parametric

pattern-mixture model are proposed for regression analysis with non-ignorable missing out-

comes in longitudinal studies. The first approach connects the missing-data process and the

outcome directly through a normal copula so that the correlation between them is reflected

in the copula function. The second approach relaxes assumptions regarding the distribu-

tional form for each pattern in a pattern-mixture model and only requires specification of

the first two moments. Since the two methods fall into selection models and pattern-mixture

models, they share the same advantages and disadvantages of other models within the same

class. The major contribution of the normal copula-based selection model is that it provides

a framework to combine the outcomes and missing-data indicators together. With different

copula functions, this method can be quite general and capable of handling different missing-

data processes. Pattern-mixture models with pseudo maximum likelihood estimation allow

one to include a more general class of distributions for each pattern. Moreover, the model

misspecification test based on the PMLE and QGPMLE allows one to balance unbiasness

and efficiency in model fitting.

A more general form of the copula-based selection models can be constructed through

a linkage function (Li et al., 1996). A linkage function is a tool to construct multivariate

distributions with given multivariate margins. Thus one can model [Y |X] and [R|X] sepa-

rately and join them together by a linkage function. In that way, the dependence structure

of Y and R given X is independent of [Y |X] and [R|X]. This is a desirable property for

modelling the joint distribution of the outcomes and the missing-data indicators since often

we need [Y |X] and [R|X] to possess a specific dependence structure that is independent
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of their multivariate margins. This method can be an extension of the model discussed in

Chapter 3 for future investigation. For pattern-mixture models, Roy (in press) proposed a

latent class-based pattern-mixture model, in which each pattern has different probabilities

to fall into each latent class. Then the distribution of the response for a given pattern is

a weighted sum of the distribution within each latent class. A linear random effects model

is then built for each latent class. Therefore, as long as the data include complete cases,

all parameters are identifiable. The semi-parametric method described in Chapter 4 can be

applied to this setting directly. Moreover, simplification of a model in Chapter 4 is done by

allowing different patterns to share the same regression parameters. A more general form is

to allow parameters in a set of patterns to be a function (e.g. linear) of their counterparts

in another set of patterns.

Due to the under-identification nature of models for non-ignorable missing outcomes,

it is essentially impossible to verify assumptions made to build a model unless extra rele-

vant information is available. Therefore, sensitivity analysis is of great significance in that

it allows one to evaluate the variation of the results based on different assumptions. Our

approaches provide a starting point to do such sensitivity analysis. For example, one can

compare the results obtained from selection models built on different copula families or one

can experiment with different simplified pattern-mixture models based on different assump-

tions as to the non-identifiable parameters. It is in this way that we might have a better

understanding of the missing-data process involved.
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APPENDIX A

PROOF OF THEOREM 1 AND 2

Consistency

I assume that the parameter space, Θ, is a Cartesian product of the subspaces of θ’s el-

ements. Assume also that Θ is compact. For all r, the θ(r)’s are identifiable in the sense

that fr(x, θ1(r)) = fr(x, θ2(r)) a.s. with respect to the distribution of X|R = r implies

θ1(r) = θ2(r). Other regularity conditions referred to in the proof can be found in Gourier-

oux et al. (1984).

Let l̄nr(θ(r)) =
∑nr

j=1 log[er(yrj, fr(xrj, θ(r))]/nr and l̄n(θ) =
∑m

r=1 wr l̄nr , where wr =

nr/n. Moreover, φr(θ(r)) = E{log[er(Y(r), fr(X(r), θ(r))]|R = r}. Thus under regularity

conditions and due to the properties of the exponential family, we have the following facts

for all r: φr has a unique maximum at θ0(r) over Θr, where Θr is the parameter space of

θ(r); l̄nr(θ(r))
a.s.→ φr(θ(r)); θ̂nr = argmaxl̄nr converges a.s. to θ0(r) (Gourieroux et al., 1984).

Moreover, φr(θ(r)) is a continuous function of θ(r) and l̄nr(θ(r)) converges to φr(θ(r))

uniformly. These two conditions imply that ∀ ε > 0, for large enough n,

l̄n(θ0) =
∑

wr l̄nr(θ0(r)) >
∑

wr l̄nr(θ̂nr)− ε.

Since θ̂n maximizes l̄n and l̄n(θ0) can be arbitrarily close to its upper bound, l̄nr(θ̂n(r))

has to become arbitrarily close to l̄nr(θ̂nr) for large enough n and for all r. Again, due

to the uniform convergence of l̄nr(.) and uniform continuity of φr(.), for large enough n,

|φr(θ̂n(r))− φr(θ0(r))| < ε for all r.
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Now suppose θ̂n = argmaxl̄n(θ) does not converge to θ0. Then ∃ δ > 0 such that

|θ̂n − θ0| ≥ δ infinitely often. Thus |θ̂n(r) − θ0(r)| ≥ δ/
√

m infinitely often for at least

one r. Since Θr is compact, φr(.) assumes its maximum Mr on Θ∗
r = Θr − N(δ), where

N(δ) = {θ(r) : |θ(r) − θ0(r)| < δ/
√

m}. Since φr has a unique maximum at θ0(r) over Θr,

Mr < φr(θ0(r)). However, there is an infinite sequence θ̂n(r) on Θ∗
r such that φr(θ0(r)) is

the supremum of the corresponding sequence φr(θ̂n(r)). Therefore Mr = φr(θ0(r)). Contra-

diction. Thus θ̂n
a.s.→ θ0.

Asymptotic normality

Expand l̄′n(θ̂n) at θ0: 0 = l̄′n(θ̂n) = l̄′n(θ0) + l̄′′n(θ0)(θ̂n − θ0) + op(θ̂n − θ0), resulting in

√
n(θ̂n − θ0) = [−l̄′′n(θ0)]

−1[
√

nl̄′n(θ0)] + op(1).

By the strong law of large numbers,

−l̄′′n(θ0)
a.s.→

m∑
r=1

brE[
∂fr

∂θ0

(Σθ0
r )−1∂fr

∂θ′0
|R = r] = E[

∂fR

∂θ0

(Σθ0
R )−1∂fR

∂θ′0
] = J,

where br = Pr[R = r].

Moreover,
√

nl̄′n(θ0) =
∑m

r=1

√
nr/n

√
nr l̄

′
nr

(θ0(r))
d→∑m

r=1

√
brZr, where the Zr’s are in-

dependently distributed as N(0, E[∂fr

∂θ0
(Σθ0

r )−1Ωr(Σ
θ0
r )−1 ∂fr

∂θ′0
]|R = r]). Therefore we have

√
nl̄′n(θ0)

d→N(0, I).

Then the asymptotic covariance matrix of the PMLE in Theorem 1 follows.

According to Burguete et al.’s (1982) results, the asymptotic covariance matrix of the

QGPMLE can be calculated as if the nuisance parameter was known. Then the asymptotic

covariance matrix of the QGPMLE follows directly. The proof that this covariance matrix is

the lower bound of that in Theorem 1 is exactly the same as what was shown in Gourieroux

et al. (1984).
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APPENDIX B

PROOF OF THEOREM 3

Here I show the proof when there is only one pattern. The same reasoning also applies to

general situations. In this setting, i is the subject index.

Let

λn(θ) =
n∑

i=1

log[e(yi, f(xi, θ))]/n,

ψn(θ) =
n∑

i=1

log[e∗(yi, f(xi, θ), g(f(xi, θ̆n), h(xi, ᾰn)))]/n.

Here θ̆n and ᾰn are strongly
√

n-consistent estimators.

By Taylor expansion:

0 =
∂λn(θ̂n)

∂θ
=

∂λn(θ0)

∂θ
+

∂2λn(θ∗)
∂θ∂θ′

(θ̂n − θ0),

0 =
∂ψn(θ̃n)

∂θ
=

∂ψn(θ0)

∂θ
+

∂2ψn(θ∗∗)
∂θ∂θ′

(θ̃n − θ0).

Here θ∗ and θ∗∗ are points on the segment that connects θ0 with θ̂n and θ̃n.

Let l = loge, l∗ = loge∗ and define

A(θ0) = E

{
−∂2l(Y, f(X, θ0)

∂θ∂θ′

}
,

B(θ0) = E

{
∂l(Y, f(x, θ0)

∂θ

∂l(Y, f(x, θ0)

∂θ′

}
,

C(θ0) = E

{
−∂2l∗(Y, f(X, θ0)

∂θ∂θ′

}
,

D(θ0) = E

{
∂l∗(Y, f(x, θ0)

∂θ

∂l∗(Y, f(x, θ0)

∂θ′

}
.
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Then it is easy to show that:

√
n


 θ̂n − θ0

θ̃n − θ0


 d→N(0, V ), V =


 V11 V12

V21 V22


 ,

where

V11 = A(θ0)
−1B(θ0)A(θ0)

−1, V12 = A(θ0)
−1K(θ0)C(θ0)

−1,

V21 = V ′
12, V22 = C(θ0)

−1D(θ0)C(θ0)
−1,

and

K(θ0) = E

{
∂l(Y, f(x, θ0)

∂θ

∂l∗(Y, f(x, θ0)

∂θ′

}
.

After some algebra, it can be shown that D(θ0) = C(θ0) and K(θ0) = A(θ0). Then
√

n(θ̂n−
θ̃n)

d→N(0, G), where G = V11 + V22−V12−V21 = V11−V22 = Vh(θ0)−Vt(θ0). Therefore the

result of Theorem 3 follows.
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