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Heritable trait variation and differential fitness among trait variants are conditions required for 

pollinator-mediated natural selection on attractive traits like floral scent.  However, previous 

studies of floral scent have focused on assessing evolution through stereotypical pollination 

syndromes and often fail to evaluate the conditions of natural selection.  I assess the potential for 

pollinator-mediated natural selection on the floral scent of color polymorphic Hesperis 

matronalis (Brassicaceae).  A study that assessed the importance of shared biochemistry between 

floral scent and color found significant diurnal variation in scent emission and a population-

specific effect of floral color on floral scent composition.  Specifically, purple morphs tended to 

be similar, while white morphs tended to differ significantly.  A survey of five wild populations 

across part of H. matronalis’s introduced range supported this trend, particularly for aromatic 

composition; both scent composition and overall emission rates varied among populations.  An 

experiment comparing scent profiles of plants grown in a common garden environment 

suggested both environmental and genetic causes of among-population variation.  A three-part 

study assessed the relationship between scent and fitness.  Experimental augmentation of floral 

targets with color-specific floral scent revealed increased syrphid fly visitation in response to 

increased scent emission rate, predicting a positive linear relationship between plant fitness and 

emission rate.  An experiment limiting pollinator access to plants showed this expected 

relationship for plants exposed to diurnal pollinators, but no relationship for plants exposed to 
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night pollinators.  In contrast, I found a negative quadratic relationship between daytime 

emission rate and fitness across plants in four large wild populations, suggesting possible costs 

of scent production under wild conditions, i.e., attraction of herbivores or energetic expenditures. 

 Overall, this dissertation suggests strong potential for pollinator-mediated natural 

selection on H. matronalis floral scent.  Additionally, the results illustrate the importance of 

assessing all conditions necessary for natural selection of floral scent rather than relying on the 

observational pollination syndrome framework to describe the evolutionary trajectory of a 

species. 
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1.0  INTRODUCTION 

Three conditions are necessary for any trait to evolve though the process of natural selection: 

trait variation, fitness differences between the trait variants (as mediated by some selective 

agent), and the ability for the trait to be inherited (Endler, 1986).  For floral characteristics, it is 

thought that pollinators play the role of selective agent; one of the main functions of floral traits 

such as shape, size, and color is to attract vectors that can carry pollen to suitable mates, 

potentially maximizing the fitness of an individual and their offspring (Waser and Price, 1981; 

Stanton, 1987; Nagy, 1997; Schemske and Bradshaw, 1999; Gómez, 2000; Ashman, 2003; Irwin 

and Strauss, 2005).  This is epitomized in pollination ecology by the classic concept of 

“pollination syndromes”: plants are thought to evolve a suite of traits that is maximally attractive 

to a specific effective pollinator (Baker, 1961; Knudsen and Tollsten, 1993; Raguso et al., 2003; 

Fenster et al., 2004).  Thus, it is assumed that by simply defining the floral characteristics of a 

species, you can determine the most closely associated pollinators. 

Floral scent is thought to play a particularly important role in defining pollination 

syndromes, and thus has been a focus for many studies (i.e., Knudsen and Tollsten, 1993; 

Knudsen et al., 2006 and references therein).  However, research suggests that for many species, 

defining a specific pollination syndrome does not completely capture the complex relationships 

between floral traits and pollinator behavior.  Instead, it may be more appropriate to describe 

clusters of interacting traits as “sensory billboards” (Raguso, 2004); in some cases, floral scent 



acts as one of several redundant signals to draw in pollinators, whereas in others floral scent 

serves as a long distance attraction cue while visual characteristics elicit feeding and landing 

behaviors (Lunau, 1992; Ômura et al., 1999; Kunze and Gumbert, 2001; Raguso and Willis, 

2002; Raguso, 2004 and references therein).  Such a perspective allows researchers to both 

consider the interaction of attractive characteristics and to focus on features that are not 

traditionally incorporated into the scope of pollination syndromes.   

The concept of pollination syndromes is further complicated by the potential for floral 

trait correlations; if two traits are associated due to genetic and/or physiologic constraints (e.g., 

Armbruster, 2002), pollinators may be unable to effectively select for traits independently of one 

another.  This may be particularly true for characteristics such as floral scent and floral color, as 

some floral scent volatiles are produced by branches of biochemical pathways that produce 

certain types of floral pigments; changes in pigmentation can lead to concurrent changes in floral 

scent (e.g., Zuker et al., 2002).  In cases such as this, a grouping of trait characteristics may not 

be representative of simultaneous natural selection by a specific pollinator, but rather correlated 

selection due to preferences for one specific characteristic (reviewed in Ashman and Majetic, 

2006).  A pollination syndrome viewpoint limits one’s ability to explore this possibility.    

Few studies have attempted to examine floral scent evolution beyond descriptive studies 

based on pollination syndromes (e.g., Knudsen and Tollsten, 1993; Andersson et al., 2002) or 

pollinator physiology and behavior (Knudsen et al., 1999; Kunze and Gumbert, 2001; Raguso 

and Willis, 2002; Schiestl, 2004; Ashman et al., 2005).  Rather than relying on a limited 

pollination syndrome based framework, scientists can more effectively study floral scent 

evolution by examining plant-pollinator systems for the objective conditions required for natural 

selection outlined by Endler (1986), while actively considering the possibility for trait 
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associations or interactions (see Galen and Newport, 1988; Valdivia and Niemeyer, 2006; 

Salzmann et al., 2007b).  In this way, we can explicitly determine whether floral scent is a target 

of natural selection, as is commonly assumed by pollination syndrome theory.  In this 

dissertation, I assess the potential for pollinator-mediated natural selection on the floral scent of 

the introduced species Hesperis matronalis within the context of a possible trait association 

between floral scent and floral pigmentation.  H. matronalis is an extremely fragrant species that 

displays a floral color polymorphism (purple vs. white flowers) throughout its introduced range, 

making this an excellent focal species for such a study. 

In Chapter 2, I report the results of a study that examines the nature of a possible 

association between floral color and floral scent profile (including composition of volatiles and 

amount of scent emitted) in H. matronalis.  This research was conducted in collaboration with 

Dr. Tia-Lynn Ashman and Dr. Stephen Tonsor at the University of Pittsburgh and Dr. Robert 

Raguso at Cornell University; it was published in Phytochemistry (Majetic et al., 2007). 

In Chapter 3, I present the results of a survey study assessing the contribution of within- 

and among-population variation to overall phenotypic variation in floral scent profiles of H. 

matronalis across a geographic gradient.  This study further examines whether among-population 

variation is driven by environment, genetics, or a combination of both factors.  This research, 

conducted with assistance in the field from Sarah Papperman, represents collaboration with Dr. 

Tia-Lynn Ashman and Dr. Robert Raguso and is currently in preparation for the American 

Journal of Botany. 

In Chapter 4, I report the results of a manipulative experiment that determines the 

relationship between variation in H. matronalis floral scent profiles and pollinator behavior.  

Furthermore, I examine the relationship between floral scent variation and female fitness in an 
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array experiment limiting pollinator access and in wild populations of H. matronalis to determine 

whether these relationships coincide with the outcomes predicted by floral scent-pollinator 

relationships.  This research was conducted in collaboration with Dr. Tia-Lynn Ashman and Dr. 

Robert Raguso, with field assistance from Sarah Papperman and Rachel Pileggi.  It is in 

preparation for Ecology. 

In Chapter 5, I review my findings, discussing the significance of this work to the study 

of plant evolutionary ecology.  I also describe several potential future directions for my research. 
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2.0  FLOWER COLOR-FLOWER SCENT ASSOCIATIONS IN POLYMORPHIC 

HESPERIS MATRONALIS (BRASSICACEAE) 

2.1 ABSTRACT 

Floral scent emission rate and composition of purple and white flower color morphs of Hesperis 

matronalis (Brassicaceae) were determined for two populations and, for each, at two times of 

day using dynamic headspace collection and GC-MS.  The floral volatile compounds identified 

for this species fell into two main categories, terpenoids and aromatics.  Principal component 

analysis of 30 compounds demonstrated that both color morphs emitted more scent at dusk than 

at dawn.  Color morphs varied in chemical composition of scent, but this differed between 

populations.  The white morphs exhibited significant differences between populations, while the 

purple morphs did not.  In the white morphs, one population contains color-scent associations 

that match expectations from classical pollination syndrome theory, where the flowers have 

aromatic scents, which are expected to maximize night-flying moth pollinator attraction; in the 

second population, white morphs were strongly associated with terpenoid compounds.  The 

potential impact that pollinators, conserved biosynthetic pathways, and the genetics of small 

colonizing populations may have in determining population-specific associations between floral 

color and floral scent are discussed. 
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2.2 INTRODUCTION 

Floral traits have long been recognized as important targets of pollinator-mediated selection.  

Pollinators respond to visual cues such as floral shape, size, and color (e.g., Waser and Price, 

1981; Stanton, 1987; Campbell, 1991; Rausher and Fry, 1993; Conner et al., 1996; Caruso, 2000; 

Jones and Reithel, 2001), as well as olfactory cues (reviewed in Raguso, 2001), but the latter 

have received much less attention.  In the past, researchers have focused on pollinator attraction 

through combinations of specific floral traits, such as scent and color, in the form of pollination 

syndromes (Baker, 1961; Knudsen and Tollsten, 1993; Raguso et al., 2003).  For example, 

studies of pollination syndromes give rise to the hypothesis that white (null pigment) flower 

morphs should emit more of the aromatic compounds (especially alcohols and esters) that 

characteristically attract nocturnal moths as pollinators (Baker, 1961; Haynes et al., 1991; Plepys 

et al., 2002; Raguso et al., 2003).  While such color-scent relationships are generally more 

complex than predicted by simple ecological observation, recent studies have shown that visual 

and olfactory cues often function synergistically to attract pollinators.  For instance, in several 

well-studied day-flying insect pollinators, visual cues elicit long-range attraction while scent 

provides a landing cue; in contrast, night-flying pollinators are initially attracted by scent and 

land or probe in response to visual cues (Ômura et al., 1999; Raguso and Willis, 2002, 2005; 

Andersson and Dobson, 2003).  Moreover, the combination of scent and visual cues increases the 

number of visits and degree of foraging activity for many pollinators (Honda et al., 1998; Kunze 

and Gumbert, 2001; Raguso and Willis, 2002, 2005; Andersson and Dobson, 2003), as well as 

floral constancy (Gegear, 2005).  Thus, evidence is accumulating that specific associations 

between floral scent and visual stimuli such as flower color can form a complex selection target, 

maximizing attractiveness to pollinators and potentially enhancing plant reproductive success. 
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Biochemical processes might also account for associations between floral scent and color.  

Recent work suggests a link between constitutive chemical herbivore defense systems and plant 

pigmentation via shared substrates and conserved metabolic pathways (Coley and Kursar, 1996; 

Armbruster et al., 1997; Fineblum and Rausher, 1997; Agrawal and Karban, 2000; Clegg and 

Durbin, 2000).  Many of the precursors, products, and/or by-products of these biosynthetic 

systems may be volatilized into recognized olfactory stimuli (Linhart and Thompson, 1995; 

Raguso and Pichersky, 1999).  In this way, scent and color combinations may be passive 

consequences of conserved biochemical pathways (Armbruster, 2002) or their regulatory 

elements, and may not be easily dissociated by natural selection.  This outcome may be 

particularly clear in a species that is polymorphic for flower color, where null mutants, often 

represented by individuals lacking pigment, may display radical changes in the amount or type of 

volatile compounds emitted as compared to brightly colored morphs, due to changes in metabolic 

flux (e.g., Zuker et al., 2002). 

I sought to determine whether there are associations between floral color and scent in 

hermaphroditic Hesperis matronalis L. (Brassicaceae).  This plant is a biennial, introduced from 

Eurasia, and commonly found in disturbed areas throughout the northeastern United States 

(Mitchell and Ankeny, 2001).  In all populations surveyed in the study area of western 

Pennsylvania, H. matronalis displays a striking flower color polymorphism consisting of purple 

and white petaled morphs (Appendix A), although other studies have documented a pink 

intermediate (Dvorak, 1982; Mitchell and Ankeny, 2001; Rothfels et al., 2002).  Initial crossing 

experiments suggest that color in this plant species is determined by a simple one or two locus 

Mendelian system, with white dominant to purple (Appendix C).  A previous study of 
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greenhouse-reared plants in the European range documented diurnal variation in floral scent 

emission, but no evidence of a difference between color morphs (Nielsen et al., 1995). 

I addressed three questions: (1) Does overall floral volatile emission rate or chemical 

composition differ between purple and white flowered H. matronalis? (2) Do H. matronalis 

color morphs differ in diurnal pattern of floral volatile emission or composition? (3) Are there 

population-level differences in floral scent emission or composition between H. matronalis color 

morphs? 

2.3 RESULTS AND DISCUSSION 

2.3.1 Characterization of H. matronalis scent 

I identified 33 volatile compounds from H. matronalis flowers (Table 2.1) and these generally 

fell into two categories – those consisting of ester or alcohol-modified compounds with benzene 

rings (hereafter “aromatics”; Nielsen et al., 1995; Honda et al., 1998; Raguso et al., 2003), and 

those composed of isoprene units (hereafter “terpenoids”; Linhart and Thompson, 1995; Nielsen 

et al., 1995; Honda et al., 1998; Raguso and Pichersky, 1999; Raguso et al., 2003).  All 17 

compounds previously identified by Nielsen et al. (1995) from the floral scent of Danish 

populations of H. matronalis were also detected in my samples (Table 2.1).  I identified an 

additional 7 aromatic compounds, including those derived from benzoic acid (benzaldehyde, 

benzyl proprionate, and benzyl acetate) and from phenylalanine (phenyl acetonitrile and 

eugenol), as well as one compound produced as an intermediate of tryptophan biosynthesis 

(methyl anthranilate).  I also identified terpenoid compounds with irregular carbon skeletons, 
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such as E-4,8-dimethyl-1,5,7-nonatriene, and oxidized derivatives of the two most abundant 

volatiles, pyranoid linalool oxide ketone (from linalool) and E-beta-ocimene epoxide. 

Principal components analysis (PCA) was performed on the thirty most abundant 

compounds.  PCA is a multivariate method for rotating axes in the original multidimensional 

data space to find the orthogonal (i.e., statistically independent) axes of variation among a set of 

partially co-varying traits.  PCA, with its eigenvalues and eigenvectors, can be of value in two 

ways. First, scent compounds that partially share biochemical production pathways can be highly 

correlated, obscuring the true patterns in the data (Gotelli and Ellison, 2004) by making 

statistical analysis difficult or misleading.  PCA provides a reduced number of independent axes 

of variation, principal components (PCs).  A PC’s eigenvalue is the variance explained by that 

PC and this can be tested for significance. Second, the eigenvectors consist of coefficients that 

indicate how much each scent compound influences the PC.  Interpretation of the patterns of 

variation among the scent compounds’ coefficients can give some biological insight into the 

observed variation in scent composition. 

PCA yields a single set of PCs for an entire data set, and therefore provides no parametric 

test of significance.  Therefore, the significance of the PC eigenvalues was tested using a 

randomization test (Tonsor, unpub. program a) in SAS (2001) macro language.   This 

significance test randomly permutes each column of scent values, thus breaking up any real 

associations between compounds in the permuted data set.  The randomly associated trait values 

are then subjected to PCA.  This is done 1,000 times, each time using a newly permuted data set.  

This provides a distribution of possible values for the PCs given the null hypothesis.  The actual 

PC values are then compared to this null hypothesis distribution.  If the observed PC lies beyond 

the central 95% of this distribution, it is considered significant (i.e., P<0.05). Of the 6 factors 
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identified with eigenvalues greater than one, only the two largest PCs were significant based on 

randomization tests (observed PC 1 eigenvalue=14.27, null hypothesis confidence intervals: 

upper 95% CI=4.06, lower 95% CI=3.02; observed PC 2 eigenvalue=4.70, null hypothesis 

confidence intervals: upper 95% CI=3.39, lower 95% CI=2.71), and together explained 86% of 

the variance in floral scent.   

The eigenvector coefficient scores of the first two PCs were next examined for their 

biological meaning. While the set of eigenvector coefficients is significant for PC 1 and PC 2 

(where the eigenvalue presents the variance explained by the eigenvector), interpreting which of 

the coefficients within that vector have meaning is difficult. Bootstrap confidence intervals 

appear to be the best means of interpretation (Peres-Neto et al., 2003). They are nevertheless of 

low power, especially in an experiment such as this one where sample size is small. In addition, 

for PCs of relatively low magnitude, axis reflection and axis reordering can inflate the estimated 

bootstrap confidence interval (Jackson, 1995).  I tested the eigenvector coefficients of each scent 

compound for both significant PCs using bootstrap 95% confidence intervals (Tonsor, unpub. 

program b).  For the first PC, where the variance explained is greatest (60%), these confidence 

intervals are useful.  For the second smaller PC (only 26% of variance explained), they are not. 

The only practical option for PC 2 is to use an arbitrary cut-off value.  I used a cut-off of ±0.15 

because this gave us the approximate upper 50th percentile. Less stringent cutoffs have 

unacceptable type I error rates. Any more stringent cutoff provides the same clear biochemical 

interpretation as ±0.15 (this can seen by inspection of the coefficient scores in Table 1). 

All compounds loaded positively onto PC 1.  In studies of floral and vegetative traits, 

PCs where all factors load positively are often interpreted to represent plant size (e.g., Gotelli 

and Ellison, 2004).  Similarly, positive loading onto PC 1 (outside the 95% confidence intervals 
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expected by chance alone) by all but one of my chemical compounds (an unidentified terpenoid) 

indicates that this factor reflects overall volatile emission rate (Table 2.1). 

The compounds with the greatest effect on PC 2 fell into two chemically distinct 

categories; terpenoid compounds generally associated negatively and aromatics generally 

associated positively with this factor (Table 2.1).  Seven compounds displayed negative 

coefficients beyond a threshold value of ±0.15: alpha-pinene, sabinene, limonene, 1,8 cineole, Z-

β-ocimene, 6-methyl 5-hepten-2-one, and E,E-4,8,12-trimethyl- 1,3,7,11-tridecatetraene. These 

compounds all fall into the terpenoid compound category.  In contrast, eight compounds had 

positive coefficients above 0.15: benzyl acetate, benzyl proprionate, phenylethyl actetate, benzyl 

alcohol, unidentified aromatic (m/z = 43, 57, 77, 92, 105, 115), eugenol, benzyl benzoate, and E-

β-ocimene epoxide.  All but the last of these compounds fall into the aromatic category.  When 

the threshold value is made more stringent (e.g., ±0.20), the general result does not change.  

Thus, PC 2 can be interpreted as a crude descriptor of the chemical composition of volatile 

emission: plants that have a more negative principal component score are associated with greater 

amounts of terpenoid-derived compounds in scent emission, while plants with a more positive 

score are associated with greater amounts of aromatic-derived compounds.  Such an 

interpretation does not suggest that plants with a negative score do not emit aromatic-based 

compounds, but that the floral scent of these individuals has a stronger association with terpenoid 

compounds relative to other plants in my study. 

Because the PCs are uncorrelated, they can be used in independent statistical tests 

(Gotelli and Ellison, 2004).   The potential sources of variation in PC scores were then analyzed 

with individual fixed effects ANOVAs on the two significant PCs (PROC GLM, SAS, 2001), 

and the effects of color morph (purple, white), time of day (dawn, dusk), source population (RM, 
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RD), and their two-way interactions tested.  The three-way interaction was never significant and 

was eliminated from analyses.  Post-hoc tests for significant differences were conducted using 

Tukey’s tests on least squares means (LSMEANS statement, SAS, 2001).  

2.3.2 Does overall floral volatile emission rate or chemical composition differ between H. 

matronalis color morphs? 

Analysis of variance on PC values shows that color morphs on average did not differ 

significantly in their overall scent emission rates (PC 1; Table 2.2) or in scent composition (PC 

2; Table 2.2, but see below).  This result is consistent with the results of Nielsen et al. (1995), 

who found no differences between the color morphs when using compound-by-compound 

comparisons. 

2.3.3 Do H. matronalis color morphs differ in diurnal pattern of floral volatile emission or 

composition? 

Total volatile emission rate and composition of scent varied with time of day (PC 1; Table 2.2):  

H. matronalis flowers emitted more scent at dusk than at dawn, as evidenced by higher values 

for PC 1 in both study populations (Fig. 2.1), and scent emitted at dusk was composed of a 

significantly higher proportion of aromatic compounds (positive scores for PC 2) and a lower 

proportion of terpenoid compounds than scent emitted at dawn (PC 2; Table 2.2; Fig. 2.1).  

However, across time periods the color morphs, on average, did not differ significantly in their 

bulk emission (PC 1; Table 2.2) or in scent composition (PC 2; Table 2.2).  
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The marked increase in the emission of aromatic compounds at night by both color 

morphs of H. matronalis corroborates the findings of Nielsen et al. (1995), who charted scent 

emission on plants in Denmark across the course of a 24-hour period.  I chose dawn and dusk as 

time points that were biologically relevant (to pollinator visitation) and thus could give higher 

priority to the number of plants sampled.  The dusk-emitted compounds identified here are 

similar to those emitted on nocturnal rhythms in night-pollinated Nicotiana spp. (Kolosova et al., 

2001; Raguso et al., 2003).  The terpenoid compounds that dominate dawn-emitted scent are 

similar to those in day-pollinated species including Brassica rapa, Ligustrum japonicum, and 

Fragaria virginiana (Honda et al., 1998; Ômura et al., 1999; Ashman et al., 2005).  This 

suggests that timing of emission of different floral volatile compounds in H. matronalis may 

reflect patterns of diurnal vs. nocturnal pollinator fauna attraction in either the introduced or 

native range of this species.  Indeed, the H. matronalis populations described here are visited by 

both diurnal and nocturnal pollinator species (Appendix B; Appendix D; C. Majetic, University 

of Pittsburgh, pers. obs.; H. Sahli, Michigan State University, pers. obs.), making the pattern of 

emission found in this study relevant to potential pollinator attraction in the species’ introduced 

range.  However, it is interesting to note that 1,8-cineole and several other monoterpenoid 

compounds found to be emitted at daytime in both Nielsen et al. (1995) and this study are 

entrained to a striking nocturnal rhythm in all species of Brazilian Nicotiana (Raguso et al., 

2003; Raguso et al., 2006).  Such differences in emission patterns across species suggest that 

both ecological and phylogenetic contexts are important in understanding the function and origin 

of floral scent in H. matronalis. 
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2.3.4 Are there population-level differences in floral scent emission or composition 

between H. matronalis color morphs? 

Populations differed in their bulk emission rates and scent composition (PC 1 and PC 2; Table 

2.2; Fig. 2.2): plants from population RM emitted significantly less scent that was more strongly 

dominated by aromatics, while plants from population RD emitted large amounts of terpenoid-

dominated scent (Table 2.2; Fig. 2.2).  In addition, there was a significant interaction between 

population and flower color in floral scent composition (PC 2; Table 2.2, p=0.01).  Plants in 

population RD, the smaller of the two populations, tended to have a scent composition rich in 

terpenoid compounds (negative PC 2 values), but white morphs had a much stronger terpenoid 

component than purple-flowered individuals (Fig. 2.3).  In contrast, population RM contained 

plants with more aromatic-dominated floral scent; here again, the white morphs had a stronger 

association with the dominant compound type (aromatics) as compared to their purple 

counterparts (Fig. 2.3).  Consequently, white morphs differed significantly between populations 

in terms of scent composition while purple morphs scent composition did not.  These differences 

may be explained by population dynamics.  As with many invasive species, H. matronalis 

populations are often small and transient (C. Majetic, University of Pittsburgh, pers. obs.; 

Meekins and McCarthy, 2002).  These small populations may be composed of few founders and 

thus be subject to genetic drift (Conner and Hartl, 2004).  Differences in fragrance of purple and 

white morphs in a population thus may be a result of genetic drift from founders with specific 

color-scent combinations.  However, for some invasive species, disturbance and recolonization 

may also actually serve as a source of genetic variation (Dietz et al., 1999).  Given that in 

Denmark Nielsen et al. (1995) uncovered unusually high variance in scent between individuals 

of H. matronalis, the between-population differences in floral scent and color combinations 
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recorded here may represent differences in founding and/or recolonization events.  At the same 

time, the two morphs showed similarity in their floral scent within populations, which may 

reflect some form of stabilizing selection on floral scent across the color morphs in each locale.  

However, this explanation does not account for the fact that white morphs differ strongly in scent 

composition between populations, unless the optimal phenotype differs between populations or 

white morphs reflect nulls from different colored backgrounds (see below). 

2.3.5 The potential impact of pollinators and the role of biosynthetic pathways 

The results presented here deviate from predictions derived from pollination syndromes, where 

white morphs are expected to have scents of greater aromatic composition in order to maximize 

attraction of night-flying moth pollinators (e.g., Loughrin et al., 1990; Raguso et al., 2003; Huber 

et al; 2006).  This is true only in one population (RM), where both morphs have an aromatic-

biased scent but white morphs tend to have a stronger association with these compounds.  In this 

population, the presence of aromatic-associated scent across all color morphs may illustrate a 

method of pollinator assurance by providing the purple morphs with some ability to compensate 

for reduced visual contrast at night (compared with white flowers) and thus achieve some level 

of crepuscular pollination.  A similar situation may be taking place in the terpenoid-associated 

scent population (RD) – here purple morphs have a weaker association to terpenoid compounds 

as compared to their white counterparts.  Such a weak association may make any aromatic 

compounds they produce more noticeable to pollinators, ensuring visitation to these dark-colored 

morphs.  One caveat to this prediction is that several hawkmoth species possess true color vision 

even under very dark conditions, and appear to innately prefer blue-colored flowers in many 

cases (White et al., 1993; Cutler et al., 1995; Kelber et al., 2002, 2003).  Additionally, although 
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noctuid and sphingid moths are highly attracted to oxygenated aromatic compounds, they can 

also learn to associate nectar rewards with terpenoids such as alpha-pinene and linalool (Daly et 

al., 2001; Cunningham et al., 2004; Cunningham et al., in press), compounds that are present day 

and night in both color morphs of H. matronalis.   Populations of H. matronalis are visited by 

both day and night-flying pollinators, including bumblebees, small bee species, butterflies, 

syrphid flies, and sphingid moths (Appendix D; C. Majetic, University of Pittsburgh, pers. obs.).  

Such a variety of pollinators may be supported, in part, by morph-specific combinations of floral 

traits that cater to pollinators with different preferences.  Future experimentation is needed to 

assess how different suites of pollinators impact fitness of floral color-scent variants.   

While the potential for biotic agents such as pollinators to select for particular floral 

scent-color combinations is great, there remains the possibility that scent-color correlations are 

influenced predominantly by innate biochemical processes.  I suggested earlier that, in some 

cases, white flower morphs might release more aromatic scent compounds because they 

represent null mutants with blocked biosynthetic pigment pathways.  Scent production often 

involves multiple pathways (Dudareva et al., 2004).  In mutants, the compounds that are 

normally processed to generate pigment may be diverted to other pathways within the network.  

Increased use of these alternative pathways could then lead to changes in the type or amount of 

volatile compounds produced.  Such a pattern has been found in carnations: anti-sense 

suppression of flavanone-3-hydroxylase, a gene encoding a critical enzyme in anthocyanin 

biosynthesis, resulted in increased emissions of methyl benzoate and methyl salicylate, whereas 

emissions of beta-caryophyllene, a terpenoid compound unrelated to anthocyanin metabolism, 

remained unchanged (Zuker et al., 2002).  However, this combination of floral cues was 

observed in the white morphs of only one of my populations of H. matronalis.  Initial crossing 
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experiments suggest a simple Mendelian inheritance for flower color in H. matronalis, with 

white dominant to purple, although the specific genetic model (single-locus vs. two locus) for 

flower color in this species has not yet been determined (C. Majetic, University of Pittsburgh, 

unpub. data).  In some Brassicaceae, namely wild radish (Raphanus sativus), pink pigmentation 

is dominant to white phenotype (Stanton, 1987).  However, other members of this family are 

thought to show dominance of white petal color (Anstey, 1955; Stanton et al., 1986; Séguin-

Swartz et al., 1999; Gómez, 2000).  In either case, blockage of biochemical synthesis can often 

be caused by any of a number of mutations throughout the pathway, as studies of induced 

mutations, gene insertions, and spontaneous mutants in pigmentation synthesis have shown (e.g., 

Nakatsuka et al., 2005; Nishihara et al., 2005).  It is possible then that the white morphs observed 

in my two populations are the result of different mutations.  While molecular mechanisms 

regulating production of volatile compounds tend to be similar within and across species 

(Kolosova et al., 2001), different mutations in a biochemical pathway might have a variety of 

effects on volatile production, leading to striking differences in scent due to increased production 

of certain by-product compounds (e.g., Zuker et al., 2002; Verdonk et al., 2003).  Selection by 

pollinators may not effectively decouple these two traits, leading to the maintenance of floral 

scent and color polymorphism within populations.  The identity of the persisting scent-color 

combinations within a particular population may be determined by the local pollinator fauna or 

gene flow from other populations. 
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2.4 CONCLUDING REMARKS 

This study demonstrates naturally occurring variation in flower color and scent in two non-native 

populations of H. matronalis, with populations differing in both emission and chemical 

composition of the floral scent.  Although plants in both populations emit a greater total amount 

of scent at dusk compared to dawn, the dusk emissions are more heavily dominated by 

aromatics.  Interestingly, the color morphs do not differ overall in their bulk emission of volatile 

compounds, but do exhibit contrasting patterns in the two populations, where the white morphs 

show much differentiation between populations, but the purple morphs do not.  Indeed, the white 

morphs have more extreme associations with certain classes of scent compounds than do purple 

morphs.  The causes of these color-scent associations may include natural selection on one or 

both traits by pollinators, as well as neutral mutations in metabolic pathways and/or genetic drift.  

Future studies of pollinator response to, and fitness consequences of, all possible floral scent and 

color combinations, as well as floral scent analyses of individuals with known mutations in the 

anthocyanin pathway, are needed to understand the degree of association between these two 

traits in H. matronalis. 

2.5 EXPERIMENTAL 

2.5.1 Floral scent collection 

Plant material for this experiment was obtained from two source populations in northwestern PA 

(Crawford County): RM consisted of ~ 300 individuals and was located on the slope of a highly 
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disturbed road shoulder (N 41° 36.156’; W 080° 25.788’); RD (~ 50 individuals) was located on 

the edge of a disturbed drainage ditch (N 41° 37.152’; W 080° 27.155’).  Both populations 

experienced moderate levels of shade throughout the day and minor flooding events following 

heavy rain (C. Majetic, University of Pittsburgh, pers. obs.)   

On June 1-3, 2004, dynamic headspace scent collection (Raguso and Pellmyr 1998) was 

performed indoors at the Pymatuning Laboratory of Ecology (PLE – Crawford County, 

Pennsylvania) on harvested inflorescences of each color morph across two time periods, dawn 

(6am-9am) and dusk (6pm-9pm).  Harvesting inflorescences does not cause any significant 

changes in the composition of floral volatiles emitted by H. matronalis (Majetic et al., unpub. 

data; Nielsen et al., 1995); thus, inflorescences from four purple and four white-flowered plants 

were harvested ten minutes prior to sampling. Sixteen plants (four per morph per time period) 

were sampled per population.  The number of open flowers on each inflorescence was recorded 

(a range of 12-24 flowers per inflorescence) and the fresh mass of flowers per inflorescence was 

determined to the nearest 0.10g using a Sartorius balance (Sartorius Research, Goettingen, 

Germany).   

To collect fragrances, the inflorescences were placed into vials of water and covered with 

a 0.5L Reynolds Oven Bag (Reynolds Inc., Richmond, Virginia, USA) following Raguso and 

Pellmyr (1998).  Each bag was secured with a plastic tie around the stem, thus slowing the flow 

of air into and out of the bag.  Bagging the inflorescences in this way limits potential external 

contaminants and ensures that the volatile headspace of the plant is appropriately sampled.   A 

scent trap, consisting of a Pasteur pipette containing 10mg Porapak Super Q adsorbent (Alltech 

Associates, Inc, Deerfield, Illinois, USA) and a plug of silanized quartz wool, was attached to 

each bag.  Each scent trap was then connected to a vacuum pump (model number 2522B-01, 
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Welch Vacuum/Thomas Industries, Skokie, Illinois, USA) using Tygon tubing.  Inflorescences 

were sampled for one hour, with a flow rate from the bag through the scent trap of 250mL 

air/minute.  After this sampling period, volatiles were eluted from the scent traps using 300μL of 

pure hexane.  Two control air samples (empty bags) at each time period were also collected.  All 

samples were stored in a -20°C freezer in glass vials with Teflon caps until GS-MS analysis. 

2.5.2 Quantitative analysis of scent samples 

Thirty-one floral scent samples (one sample dried out) were analyzed at the University of South 

Carolina.  To determine chemical composition and total emission, I rapidly (~20 seconds) 

concentrated our samples from 300μL to a volume of 75μL using N2 gas and added 5μL of 

0.03% toluene (16ng) as a standard as in Raguso et al. (2003), resulting in quantification of all 

compounds as toluene equivalents.  This can cause complications when composition is 

determined, as many biochemical products volatilize differently, leading to partial or total loss of 

certain compounds.  It is unlikely that I have completely lost compounds; however, the 

possibility that certain compounds may have been volatilized at different rates in different 

samples suggests that analysis based on this technique must be interpreted with caution.  An 

aliquot (1μL) of each sample was injected into a Shimadzu GC-17A with a QP5000 quadrupole, 

electron impact MS detector for analysis (Shimadzu Corporation, Kyoto, Japan).  The oven was 

then heated to 240°C to vaporize each sample for separation of components on an EC wax GC 

column (Alltech Associates, Inc., Deerfield , Illinois, USA).   

Thirty-three scent compounds were identified using computerized mass spectroscopic 

libraries and retention times; all identified compounds are known terpenoid or aromatic floral 

volatiles.  The MS compound peaks for each sample were then integrated using Shimadzu 
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GCMS Solutions Software (version 1.02A, Shimadzu Corporation, Kyoto, Japan), and the 

amount of each compound in a sample was quantified through comparison to the 16ng internal 

toluene standard as in Ashman et al. (2005).   

For each plant, the emission rate of each compound was determined as the amount (in μg) 

per gram fresh mass or number of flowers per hour (Table 2.1).  These values were normally 

distributed and largely homoscedastic, and thus did not require any transformations for statistical 

analysis.  Analyses on emission rates standardized by fresh mass and number of flowers were 

similar; thus for simplicity, only the results controlling for fresh mass are reported. 

2.5.3 Statistical analysis 

To determine the separate effects of floral scent emission and composition, a correlation-based 

principal components analysis (PCA) in SAS (PROC PRINCOMP; SAS, 2001) was performed 

on emission rates per sample for the 30 most abundant volatile compounds identified (Table 2.1).  

The three rarest compounds (contributing less than <0.22% total to overall scent emission: Z-

pyranoid linalool oxide, E-pyranoid linalool oxide, and methyl salicylate) were removed from 

the data set for PCA analysis.  Because they were entirely absent in some samples, their 

inclusion could have biased the analysis, giving these compounds more prominence than is 

biologically relevant (Pielou, 1984). 

The significance of PC eigenvalues and coefficient scores were determined using 

randomization (Tonsor, unpub. program a) and bootstrap confidence interval tests (Tonsor, 

unpub. program b), respectively.  The two PCs found to be significant were then examined 

further using individual fixed effects ANOVA (PROC GLM, SAS, 2001). 
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Table 2.1 Summary of H. matronalis scent chemical composition.  Principal component scores for each 

scent compound emitted from flowers are given in the first two columns; compounds followed by an 

asterisk were omitted from principal components analysis.  Retention times and mean emission of volatile 

compounds (reported in nanograms of scent per gram fresh mass per hour) found in color morphs (purple 

and white) across two populations (RM and RD) are reported in the remaining columns;  values in 

parentheses are standard errors.  Compounds in bold were also found by Nielsen et al. 1995.  

Compound PC 1 PC 2 Retention 
Times 

RM Mean (SE) 
Emisson Rate 

RD Mean (SE) 
Emisson Rate 

    Purple 
(N=7) 

White 
(N=8) 

Purple 
(N=8) 

White 
(N=8) 

Aromatics        
   Benzaldehyde 0.17     0.07     12.69 0.976 

(0.286) 
1.324 
(0.387) 

0.823 
(0.248) 

1.335 
(0.449) 

   Phenylacetaldehyde 0.24 0.01     14.23 0.163 
(0.077) 

0.220 
(0.091) 

0.186 
(0.072) 

0.555 
(0.278) 

   Benzyl acetate 0.18     0.30     15.24 3.756 
(1.534) 

6.828 
(3.698) 

4.858 
(1.946) 

4.361 
(2.442) 

   Benzyl proprionate 0.04     0.19     16.02 0.010 
(0.004) 

0.073 
(0.034) 

0.006 
(0.005) 

0.025 
(0.024) 

   Phenylethyl actetate 0.21     0.21     16.28 0.048 
(0.018) 

0.128 
(0.061) 

0.090 
(0.035) 

0.106 
(0.054) 

   Benzyl alcohol 0.17     0.29     16.86 0.427 
(0.084) 

0.947 
(0.320) 

0.504 
(0.230) 

0.582 
(0.341) 

   2-phenylethanol 0.25     0.09     17.27 0.065 
(0.019) 

0.118 
(0.060) 

0.119 
(0.043) 

0.197 
(0.095) 

   Phenylacetonitrile 0.19     0.04     17.52 0.031 
(0.011) 

0.019 
(0.007) 

0.011 
(0.004) 

0.026 
(0.012) 

   Unidentified aromatic  
   (m/z = 43, 57, 77, 92, 105, 
115) 

0.11     0.34     19.75 0.017 
(0.011) 

0.196 
(0.144) 

0.024 
(0.015) 

0.045 
(0.018) 

   Eugenol 0.13     0.37     19.92 0.264 
(0.148) 

0.891 
(0.515) 

0.127 
(0.046) 

0.274 
(0.202) 

   Methyl anthranilate 0.23     -0.09     21.07 0.028 
(0.012) 

0.054 
(0.014) 

0.067 
(0.014) 

0.120 
(0.030) 

   Benzyl benzoate 0.23     0.16     24.11 0.529 
(0.217) 

0.839 
(0.351) 

0.481 
(0.161) 

1.146 
(0.564) 

   Methyl salicylate* N/A N/A 15.9 0.008 
(0.004) 

0.033 
(0.020) 

0.009 
(0.007) 

0.032 
(0.017) 

Terpenoids        
   α-pinene 0.07     -0.19     4.84 0.469 

(0.000) 
0.336 
(0.021) 

0.352 
(0.031) 

0.533 
(0.046) 

   β-pinene 0.20     -0.05     6.27 0.193 
(0.000) 

0.169 
(0.027) 

0.189 
(0.036) 

0.308 
(0.047) 

   Sabinene 0.17     -0.27     6.54 0.163 
(0.032) 

0.091 
(0.015) 

0.309 
(0.036) 

0.543 
(0.087) 

   β-myrcene 0.23     -0.09     7.33 0.137 
(0.042) 

0.111 
(0.024) 

0.298 
(0.080) 

0.399 
(0.131) 

   Limonene 0.20     -0.15     7.87 0.089 
(0.030) 

0.087 
(0.026) 

0.137 
(0.027) 

0.295 
(0.108) 

   1,8 cineole 0.15     -0.28     8 0.798 
(0.211) 

0.545 
(0.080) 

2.104 
(0.249) 

3.728 
(0.682) 
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Table 2.1 continued 

Compound PC 1 PC 2 Retention 
Times 

RM Mean (SE) 
Emisson Rate 

RD Mean (SE) 
Emisson Rate 

    Purple 
(N=7) 

White 
(N=8) 

Purple 
(N=8) 

White 
(N=8) 

Terpenoids        
   Z-β-ocimene 0.20      -0.16     8.5 0.336 

(0.075) 
0.315 
(0.092) 

0.819 
(0.162) 

0.805 
(0.195) 

   E-β-ocimene 0.16      0.08      8.75 8.488 
(1.837) 

8.628 
(1.755) 

11.346 
(2.305) 

8.400 
(1.564) 

   E-4 dimethyl 1,3,7 
nonatriene 

0.21      -0.05    9.64 0.025 
(0.005) 

0.023 
(0.005) 

0.043 
(0.007) 

0.058 
(0.020) 

   6-methyl 5-hepten-2-one 0.22      -0.17     10.07 0.124 
(0.031) 

0.129 
(0.025) 

0.243 
(0.046) 

0.388 
(0.099) 

   Z-furanoid  linalool oxide 0.16      -0.07     11.56 0.059 
(0.011) 

0.054 
(0.018) 

0.130 
(0.041) 

0.129 
(0.038) 

   E-furanoid linalool oxide 0.12      -0.10     11.96 0.146 
(0.037) 

0.116 
(0.035) 

0.179 
(0.044) 

0.263 
(0.075) 

   Pyranoid linalool oxide 
ketone 

0.15      0.06      12 0.144 
(0.026) 

0.126 
(0.028) 

0.080 
(0.018) 

0.115 
(0.052) 

   Linalool 0.16      -0.02     12.93 5.804 
(1.066) 

4.330 
(0.591) 

3.543 
(0.663) 

12.276 
(3.658) 

   E-β-ocimene epoxide 0.18      0.21      12.2 0.393 
(0.083) 

0.405 
(0.085) 

0.157 
(0.039) 

0.329 
(0.116) 

   α-terpineol 0.24      -0.14     14.84 0.161 
(0.061) 

0.124 
(0.051) 

0.283 
(0.057) 

0.782 
(0.218) 

   E,E-4,8,12-trimethyl- 
1,3,7,11-tridecatetraene 

0.21      -0.22     16.22 0.062 
(0.008) 

0.070 
(0.012) 

0.151 
(0.044) 

0.311 
(0.086) 

   Unidentified terpenoid 
  (m/z=41, 43, 55, 67, 69, 83, 
95, 119, 123, 137) 

-0.03     0.12      10.95 0.300 
(0.065) 

0.316 
(0.068) 

0.370 
(0.110) 

0.142 
(0.070) 

   Z-pyranoid linalool oxide* N/A N/A 15.35 0.051 
(0.033) 

0.016 
(0.009) 

0.014 
(0.007) 

0.018 
(0.012) 

   E-pyranoid linalool oxide* N/A N/A 15.59 0.014 
(0.009) 

0.001 
(0.001) 

0.021 
(0.012) 

0.043 
(0.019) 
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Table 2.2 F-statistics and P-values from ANOVAs on the two principal components of floral scent in H. matronalis 

flowers.  The complete model includes three main effects and their interactions, the main effect variables being color 

(purple vs. white); time of day (dawn vs. dusk); and source population (RM vs. RD).   

                                        PC 1 (60%)1 PC 2 (26%) 
 

Source 
 

 
F(Ndf,Ddf) 

 
P 

 
F(Ndf,Ddf) 

 
P 

Model 3.66(7,23) 0.008 5.18(7,23) 0.001 
     
Color 2.44(1,23) 0.13 0.06(1,23) 0.81 
Time of Day 13.32(1,23) 0.001 4.49(1,23) 0.05 
Source Population 4.45(1,23) 0.05 21.19(1,23) 0.0001 
     
Color x Time 1.09(1,23) 0.31 0.85(1,23) 0.37 
Color x Source 1.52(1,23) 0.23 7.00(1,23) 0.01 
Time x Source 1.76(1,23) 0.20 1.18(1,23) 0.29 
 

1Values in parentheses represent percent of total variance in floral scent described by each principal component. 
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Figure 2.1 Mean (± SE) PC 1 (A) and PC 2 (B) of floral scent for both time periods (dawn, dusk) and populations 

(RM, RD) of H. matronalis.  PC 1 describes overall amount of scent emitted.  PC 2 represents scent composition; a 

bar presenting a negative mean suggests a more terpenoid-based scent, while a positive mean suggests a more 

aromatic-rich scent (Table 1).  Means not sharing letters are significantly different (P<0.05) as determined by 

Tukey’s tests. 
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Figure 2.2 Mean (± SE) PC 1 (A) and PC 2 (B) of floral scent for populations of H. matronalis.   Means not sharing 

letters are significantly different (P<0.05) as determined by individual ANOVAs. 
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Figure 2.3 Mean (± SE) PC 2 of floral scent for color morphs and populations for H. matronalis.  PC 2 describes 

predominantly negative loading of terpenoids and predominantly positive loading of aromatics (Table 1).  Bars not 

sharing letters are statistically significant at P<0.05. 

  27



3.0  FLORAL SCENT VARIATION IN HESPERIS MATRONALIS 

(BRASSICACEAE): ASSESSING POTENTIAL CAUSES OF WITHIN- AND AMONG-

POPULATION VARIATION 

3.1 ABSTRACT 

Phenotypic variation in floral scent is well-documented for a large number of species and largely 

attributed to pollinator-mediated selection.  However, very few studies attempt to partition this 

variation into within-population and among-population components.  In this study, I examine the 

contributions of these components to floral scent profiles of color polymorphic Hesperis 

matronalis.  Measurement of in situ floral scent from five populations suggests that patterns of 

correlation with floral pigmentation contribute to within-population variation in scent 

composition, but not scent emission rates.  I also find significant among-population variation in 

both composition and emission rate in these wild populations, but this variation is not associated 

with population geography.  I further explore scent variation by comparing volatile profiles of 

purple morphs from two populations, grown in common garden conditions.  This comparison 

suggests that environment contributes to between-population variation, i.e., floral scent may be 

plastic.  In addition, I find evidence for a possible genes-by-environment interaction in floral 

scent composition.  These results suggest that future experiments on floral scent should assess 
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the possibility of both within- and among-population effects before solely focusing on pollinator-

driven hypotheses of trait evolution. 

 

3.2 INTRODUCTION 

For evolution by natural selection to occur, there must be heritable phenotypic variation for the 

particular trait under consideration (Endler, 1986).  Because this condition forms such a basic 

requirement for evolutionary research, a vast number of studies have been published 

documenting phenotypic variation in a variety of floral traits.  Floral scent is no exception; 

emission rate and/or composition vary widely, and researchers often draw on known pollinator 

relationships or pollination syndromes to explain such variation (e.g., Raguso et al., 2003).  

These studies occur at many levels of biological organization, including among species, among 

populations of a species, and among individuals in a population (e.g., Knudsen and Tollsten, 

1993; Grison-Pigé et al., 2001a; Knudsen, 2002) with studies documenting variation among 

species being particularly common.  However, studies at the population level, where natural 

selection occurs, tend to be limited in scope and sample size (Knudsen et al., 2006 and references 

therein).  Perhaps more importantly, these studies rarely attempt to assess potential sources or 

causes of phenotypic variation in floral scent within populations. 

Phenotypic variation among populations may reflect phenotypic plasticity (an effect of 

environment, e.g., Jakobsen and Olsen, 1994; Nielsen et al., 1995; Agrawal and Karban, 2000; 

Schemske and Bierzychudek, 2001; Coberly and Rausher, 2003), genetic differentiation (a 

genetic effect, e.g., Galen and Kevan, 1980; Ackerman et al., 1997), genetic variation in 
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phenotypic plasticity (a genes by environment interaction, e.g., Pigliucci, 2001), or all three.  In 

some cases, geography may provide insight into trait variation patterns among populations.  

Factors related to location, such as gene flow or natural selection by similar forces, may lead 

proximal plant populations to have similar scent composition or emission rates (Knudsen, 2002; 

Svensson et al., 2005).  Genetic differentiation among populations, in contrast, can be the result 

of differential selection, genetic drift, or founder effects (Conner and Hartl, 2004).  The casual 

observer thus cannot discern whether variation is caused by environmental effects, genetic 

differences among populations, or an interaction between the two.   

Genetic differences among individuals in a population (and therefore within-population 

variation) can occur in quantitatively varying traits (e.g., flower size or number: Ashman, 2003) 

and polymorphic qualitative traits (e.g., flower color: Stanton, 1987; Rausher and Fry, 1993).  

Floral color is a particularly tractable trait polymorphism to study, as the genetics of 

pigmentation are often known.  More importantly, variation in floral color may contribute, albeit 

indirectly, to floral scent variation.   For instance, purple pigmentation in most plants is derived 

from the synthesis of a subset of anthocyanin pigments by a branch of the shikimate pathway 

(Taiz and Zeiger, 1998; Clegg and Durbin, 2000).  The shikimate pathway is also involved in the 

production of a large class of volatile compounds, the aromatics (Schuurink et al., 2006).  One 

may expect purple-flowered plants in a polymorphic population to produce anthocyanins in 

combination with certain aromatic floral volatiles due to their shared biosynthetic pathway.  In 

contrast, if white-flowered plants owe their phenotype to null mutations in pigment biosynthesis 

(e.g., Levin and Brack, 1995; Nakatsuka et al., 2005), pleiotropic effects may result in the release 

of different kinds or quantities of volatile compounds.  In this way, an association between floral 

color and some aspects of floral scent may contribute significantly to variation in floral scent 
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within populations.  However, this relationship may not hold for all floral scent compounds.  

Another major class of volatiles, the terpenoids, is produced by both the mevalonate and 

methylerythritol phosphate pathways (Dudareva et al., 2004).  Neither of these pathways is 

connected explicitly to anthocyanin pigment production; therefore, one might expect terpenoid 

volatile production to be more independent of floral pigmentation. 

Given that variation in floral scent could be accounted for by genetic and/or 

environmental factors, research must not only document variation in floral scent amount and 

composition, but attempt to assess the relative contribution of among- and within-population 

effects to trait variation.  This is especially true in a species where composition in floral scent 

may be influenced by floral color.  Thus, color polymorphic plant species provide an attractive 

system for addressing these questions.  Examining the floral scent profiles of color morphs 

across multiple populations may show a pattern in which individuals from the same population 

cluster regardless of floral color (Table 2.1a).  Such a result suggests that population 

differentiation contributes strongly to floral scent variation.  However, patterns of similarity 

between individuals of the same color morph regardless of population (Table 2.1b) suggest that 

floral color, a genetic polymorphism within populations, explains at least some of the variation in 

floral scent. 

In the case described above, population differentiation occurs when there is significant 

variation or differences among populations.  Variation among populations can be driven by 

environmental or genetic differences.  A classic technique for assessing the contribution of these 

to variation in any given trait is to grow plants from multiple populations in a common garden 

(e.g., Núñez-Farfán and Schlichting, 2001 and references therein; Stinchcombe et al., 2004; 

Thorpe et al., 2005).  For example, if floral scent varies based on environmental factors alone, 
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plants reared in the same environment will have similar volatile profiles regardless of their origin 

(Table 2.2a), indicating plasticity.  If floral scent variation is caused by genetic differences 

between populations, plants reared in a common garden environment will have a volatile profile 

similar to that of plants reared in their home environment (Table 2.2b), assuming a random and 

representative sample of plants assessed in both sites.  Finally, if floral scent variation is due to 

both genetic and environmental effects, response of volatile profile to rearing environment will 

vary among populations (Table 2.2c).  This last outcome is consistent with genetic variation in 

phenotypic plasticity. 

An excellent plant system in which to explore both within and among population effects 

is Hesperis matronalis (Brassicaceae).  This non-native biennial is polymorphic for flower color, 

with anthocyanin-producing (purple) morphs and non-anthocyanin-producing (white) morphs 

(Mitchell and Ankeny, 2001; Majetic et al., 2007).  Previous studies, although limited in scope, 

suggest there is variation in floral scent within and between populations (Nielsen et al., 1995; 

Majetic et al., 2007), and phenotypic association between floral scent and floral color (Majetic et 

al., 2007).  In addition, H. matronalis is widespread in its introduced range in North America.  I 

used H. matronalis as a model system to conduct a two-part study consisting of an in situ scent 

survey of both color morphs in wild populations across a latitudinal gradient and a comparative 

study of wild and garden reared purple-flowered plants from two source populations. In my 

previous work, I found that H. matronalis color morphs differed in their floral scent composition; 

the scent of purple morphs tended to be similar across two populations, while the scent of white 

morphs differed between the populations.  By utilizing a more comprehensive sampling protocol 

across a larger geographic range, coupled with a manipulative experiment and more 

sophisticated analysis techniques that are strongly suited to floral scent data, I aimed to extend 
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our knowledge about the causes of floral scent variation in this species.  Specifically by 

examining patterns in both terpenoid and aromatic scent compounds, I sought to answer the 

following questions: 1) In wild populations of H. matronalis, is variation in in situ volatile 

profile attributable to flower color and/or population membership? If population identity is a 

source of variation, then are populations that are geographically distant less similar than those 

that are in close geographic proximity? 2) Are differences between populations that are observed 

in situ maintained when plants are grown in a common environment? That is, is volatile profile 

of H. matronalis affected by rearing environment, and if so, do populations respond in the same 

manner? 

 

3.3 MATERIALS AND METHODS 

3.3.1 Study Species 

Hesperis matronalis (Brassicaceae) is an herbaceous biennial that has been introduced to the 

United States and is found in disturbed areas throughout all but the southernmost parts of the 

country (United States Department of Agriculture, 2007).  It has been designated as an invasive 

plant in some areas due to increased spread in recent years (United States Department of 

Agriculture, 2007; Pennsylvania Department of Conservation and Natural Resources, 2007).  

Plants over-winter as vegetative rosettes before bolting in mid to late spring in Pennsylvania.  

Inflorescences reach a maximum height of 20 – 100 cm when flowering (C. Majetic, University 

of Pittsburgh, pers. obs.), with floral displays reaching 20 flowers per inflorescence open at a 
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time (Mitchell and Ankeny, 2001).  Flowers of H. matronalis are hermaphroditic and at least 

partially self-compatible in western Pennsylvania (individual flowers that are hand-pollinated 

with self pollen or allowed to autonomously self produce seeds, although the seed set is reduced; 

Appendix B).  However, studies in other locations (Mitchell and Ankeny, 2001; Weeks and Frey, 

2007) find H. matronalis to be self-incompatible.  Daytime pollinators in the introduced range 

include bees (including Bombus and Apis species), lepidopterans, and syrphid flies, with 

occasional evening moth visitation documented in some locales (Mitchell and Ankeny, 2001; 

Appendix B, Appendix D).  

In all populations surveyed in western Pennsylvania, as well as many populations 

throughout its northern range, H. matronalis displays a flower color polymorphism consisting of 

purple or white petaled morphs (Appendix A), although other studies have documented a pink 

intermediate (Dvořák, 1982; Mitchell and Ankeny, 2001; Rothfels et al., 2002).  Purple flowers 

contain high levels of anthocyanin pigments while white flowers contain little or no 

anthocyanins (Appendix A).  No associations have been found between flower color and flower 

size or shape (Appendix A).   Previous studies of this species suggest that floral volatile emission 

(and therefore production) in H. matronalis peaks at dusk (Nielsen et al., 1995; Majetic et al., 

2007), and floral color morphs differ in their scent composition (Majetic et al., 2007).   

 

3.3.2 Plant material 

In situ plants – In May and June of 2006, I conducted a survey of five wild populations of H. 

matronalis across part of its introduced geographical range in North America: two populations in 

southern Ontario (“ONT1”: N 44º 01’, W 79º 31’ and “ONT2”: N 43º 32’, W 79º 31’), two 
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populations in northwestern Pennsylvania (“PA1”: N 41º 36’, W 80º 25’ and “PA2”: N 41º 36’, 

W 80º 27’), and a population in northern Virginia (“VA”: N 39º 05’, W 78º 04’).  These 

populations were strongly polymorphic (50-80% purple morphs, Appendix D) and chosen to 

represent much of the latitudinal distribution of H. matronalis.  During peak flowering in each 

population, ten purple morphs and ten white morphs were selected at random and marked for 

study.  At each location, the composition of the visitor fauna was observed and was found to be 

similar (Appendix D). 

Common garden plants – In late April and early May of 2006, H. matronalis rosettes 

showing initial signs of bolting were collected from populations PA1 and PA2.  Approximately 

30 rosettes were transplanted into 4.5” pots using Fafard Middleweight Mix #4 soil (Conrad 

Fafard, Inc., Agawam, Massachusetts, USA) and moved to a shady area at the University of 

Pittsburgh’s Pymatuning Laboratory of Ecology (Crawford County, Pennsylvania) within 3 km 

of the source populations.  Plants were watered daily using either a sprinkler system or hand-

powered water pump and fertilized once following transplantation with ~ 10 Osmocote pellets 

(14-14-14 N-P-K, The Scotts Company, Marysville, Ohio, USA).  Upon flowering, plants were 

assessed for flower color and assigned to the common garden experiment (N = 28 plants).  While 

I did attempt to include both color morphs in our common garden, it was not possible to 

determine flower color for plants harvested at the rosette stage.  Thus, the resulting garden 

consisted mostly of purple-flowered plants; therefore, while I discuss both color morphs in wild 

populations, I focus any comparisons between garden and home reared plants on purple morphs 

only. 
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3.3.3 Floral scent collection 

Floral scent was collected using dynamic headspace extraction for one hour at dusk (between 

1800 and 2100 hours) and one hour at dawn (between 0600 and 0900 hours) following the 

protocol outlined by Majetic et al. (2007).  Briefly, I covered inflorescences (open flowers and 

buds) with a Reynolds, Inc. nylon resin oven bag attached to a scent trap; scent volatiles were 

pulled into the trap by vacuum pump, collected by elution with hexane, and stored at -20ºC for 

later chemical analysis as described by Majetic et al. (2007).  While floral scent was collected at 

both dawn and dusk, for the purposes of this paper I chose to focus on scent emitted at dusk, 

given that it is the time of peak production.  Floral scent collections took place over a two to 

three day period in each wild population, coinciding with peak flowering time at a particular site.  

Temperatures at time of collection were similar for most populations (~ 16 ºC to 23 ºC), with the 

exception of PA2, which was somewhat cooler (~ 13 ºC on days of sampling).  I measured plant 

height as a proxy for plant size at flowering, as height is strongly correlated with several 

vegetative traits (e.g., leaf length: P < 0.0001, r = 0.58; leaf width: P = 0.02, r = 0.37; stem 

diameter: P = 0.04, r = 0.32; N = 40; Appendix A).  To calculate emission rates based on the 

amount of floral tissue sampled, I counted the number of flowers on each inflorescence.  

Previous study suggests that rates calculated using flower number and rates calculated using 

fresh biomass are comparable (Majetic et al., 2007), and this non-destructive method allowed us 

to maintain plants to further assess seed fitness later in their life cycle.  I collected in situ floral 

scent from wild plants at flow rates of c. 200 mL air/minute using vacuum pumps powered by 

portable batteries (xPower Powerpack 1500, Xantrex Technology, Inc., Burnaby, British 

Columbia, Canada; Husky Portable Power System, Husky Power Products, Ft. Lauderdale, 

Florida, USA).  Plants reared in the common garden environment were moved to a shelter for 

  36



scent sampling, where vacuum pumps could be run using outlet power; previous studies of H. 

matronalis suggest that use of a temporary sampling location does not change the number, type, 

or amount of volatiles emitted (Majetic et al., 2007; C. Majetic, University of Pittsburgh, unpubl. 

data).  Ambient air controls were collected concurrently with floral scent samples at all 

locations. 

 

3.3.4 Gas chromatography-mass spectroscopy characterization of floral volatiles 

To determine the chemical composition of our sampled volatiles, I performed gas 

chromatography-mass spectroscopy (GC-MS) at the University of South Carolina as described in 

Majetic et al. (2007).  Thirty-nine scent compounds (see Appendix D, Table D.3) were identified 

using computerized mass spectral libraries and retention times, all of which are known terpenoid 

or aromatic floral volatiles.  The compounds identified included 31 volatiles found in my original 

study of H. matronalis floral scent, as well as 8 additional compounds.  The compounds fall into 

6 subcategories based on their biochemical pathway of origin (as in Knudsen and Tollsten, 1993; 

Knudsen et al, 2006).  Within the terpenoids, compounds were categorized as monoterpenoids, 

oxygenated monoterpenoids, or irregular and sesquiterpenoids.  Within the aromatics, 

compounds were categorized as benzenoids, phenyl propanoids, or nitrogen-containing 

benzenoids (see Appendix D, Table D.3).  Resulting MS compound peaks for each sample were 

then integrated using Shimadzu GCMS Solutions Software (version 1.02A, Shimadzu 

Corporation, Kyoto, Japan).  The floral volatile profiles described here have two components: 

emission rate and composition.  I consider the data manipulations and analyses of each of these 

in turn below.   
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3.3.5 Scent emission rate calculations 

To accurately quantify the amount of each compound emitted, I conducted GC-MS analysis of 7 

external standards (1,8 cineole, E-β-ocimene, benzaldehyde, linalool, benzyl acetate, 2-

phenylethanol, and eugenol), generating dose-response curves and equations.  Each floral 

emitted compound was then matched to an external standard based on knowledge of vaporization 

rates and structural similarity (see Appendix D, Table D.3) (Debbrecht, 1977, Jennings et al., 

1997) and peak area was transformed by equation to μg of compound emitted per flower per 

hour.    When an appropriate external standard was not present, the internal toluene standard was 

used to mathematically transform the data, as in Majetic et al. (2007).  In a few cases, use of 

external standards led to underestimations when peaks on chromatograms were present but too 

small to accurately estimate quantity with my equipment.  When transformation of a peak’s area 

to amount resulted in a zero or negative value, the value was replaced by the arbitrary but 

reasonable value 0.0001 μg per flower per hour.  By doing so, I could account for the presence of 

all compounds, including those too small to accurately quantify, as contributors to total scent 

emission.  Compound amounts were summed to obtain total emission rate (μg per flower per 

hour) within each subcategory.  Emission rates for total aromatics and total terpenoids were 

calculated by pooling the appropriate subcategories, and grand total amount of scent emitted per 

flower per hour was calculated by summing across all data.  Prior to statistical analysis, emission 

rate data (6 subcategories, 2 categories, and the total emission rate) were natural-log-transformed 

to improve normality and conform to the assumptions of ANOVA. 
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3.3.6 Patterns of floral scent composition 

In situ wild populations – To address whether floral scent composition in wild populations was 

affected by floral color or population membership, I performed non-metric multidimensional 

scaling analyses (Borg and Lingoes, 1987).  For this technique, I assessed chromatograms and 

coded all floral scent compounds as either present (“1”) or absent (“0”).  This presence-absence 

data was then divided into two categories (aromatics and terpenoids) and used in two NMDS 

analyses (PC-ORD, McCune and Mefford, 2006; Borg and Lingoes, 1987), one for each 

category.   I first calculated the aromatic and terpenoid compositional similarities between two 

plants measured by Sorensen’s dissimilarity index (NMDS using Euclidean distance instead 

produced similar results).  The resulting scores were then used in an iterative process to generate 

a new set of axes (here, 50 iterations of the axis fitting process), placing the individuals sampled 

on these axes in a way that represents their compositional similarity spatially (as in Jürgens et al., 

2002).  Analysis can result in any number of axes, so the most appropriate number of axes for 

display is determined by examining the stress coefficient.  This coefficient is a measure of how 

much the resulting ordination relationship departs from relationships found in the original data 

set; generally, the lower the coefficient, the better the fit of the ordination, although 

interpretation is somewhat subjective (Borg and Lingoes, 1987).  Stress coefficients in this 

analysis resulted in a model with 2 axes to represent aromatic composition (stress = 16.96) and a 

model with 3 axes for terpenoid composition (stress = 14.13) (McCune and Mefford, 2006).  

From these models I could distill the ordination axis scores for each plant.  I averaged these 

scores by source population and flower color to determine the mean position for each color 

morph within each population and to visualize these graphically.  Populations that cluster 

together are interpreted as more similar in their scent composition than those that are very distant 
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(Borg and Lingoes, 1987).  By identifying the source population and floral color for these 

individuals, I assessed whether clustering is driven by biologically meaningful categories.  While 

descriptive in nature, NMDS is a commonly used technique that provides unbiased insight into 

patterns of association in the “phenotype-space” of floral scent or other multivariate characters 

(e.g., Clarke, 1993; Jürgens et al., 2002; Jürgens, 2004; Dötterl et al., 2005; Castilho et al., 2007; 

Davies et al., 2007; Laughlin and Abella, 2007; Roberts et al., 2007).  Thus, clustering of color 

morphs suggests that pigmentation, a genetic polymorphism within populations, explains part of 

the variation in floral scent composition, while clustering of purple and white means from the 

same population suggests that among-population effects play a more important role than flower 

color in determining floral scent composition (Table 2.1). 

Following graphical representation by NMDS, I wished to determine if the clustering 

patterns found by this technique were statistically different.  I thus performed analysis of 

similarity (ANOSIM) on the presence/absence data used in NMDS for aromatics and terpenoids 

respectively, using the ANOSIM procedure in the PAST program (PAlenotological Statistics, 

version 1.73: Hammer et al, 2001).  ANOSIM is a non-parametric, post hoc permutation analysis 

to assess the similarity between two or more groups of individuals in terms of a set of 

independent variables, such as the abundance or presence/absence of a given taxa or species 

(Clarke, 1993; Hammer et al, 2001). This technique is increasingly used in scent studies to 

identify statistically meaningful patterns, substituting the presence/absence or abundance of a 

specific scent compound for a taxa or species (e.g., Jürgens et al., 2006).  For this analysis, 

individual plants were assigned to a group corresponding with clustering patterns in NMDS (see 

Results).  Distances are calculated between and within groups; the distances are ranked, and 

these ranks are used to calculate a value R, between -1 and 1, for each group comparison.  An R-
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value of zero suggests no difference between the two groups, while a large positive R suggests 

dissimilarity.  The significance of R-values is tested by a permutation test of group membership 

(Hammer et al, 2001).  I also determined the identity of the major compounds contributing to 

differences between groups using the Similarity Percentage (SIMPER) procedure in PAST, a 

sorting technique based on the distances between groups (Hammer et al, 2001).  This procedure 

provides a list of the compounds used in the analysis, their individual contributions (overall and 

percentage) to the dissimilarity between two groups, and their mean abundances in each group.  

Techniques such as NMDS and ANOSIM allow me to qualitatively compare data sets 

that contain compounds that are non-normally distributed and/or categorical (i.e., zeros are 

prevalent).  While PCA might allow quantitative analysis of data, the presence of such conditions 

in this data set represents two major violations of the assumptions of PCA (Borg and Lingoes, 

1987; Gotelli and Ellison, 2004), making NMDS/ANOSIM the more appropriate approach.  

However, because these techniques use presence-absence data to describe the similarity of 

individuals, finer-scale differences such as the relative abundance of scent compounds are 

overlooked.  To help further visualize patterns of chemical differences, I generated pie charts of 

the relative amount of individual terpenoid and aromatic compounds for each color morph in 

each population.  While those compounds with a very small contribution to aromatic or terpenoid 

scent may not be visible (see Appendix D, Table D.4 for mean values of all compounds), these 

charts help to determine which compounds may be driving differences between color morphs or 

among populations. 

Similarity of patterns found in floral scent composition may also be explained by 

geographic location of populations (e.g., Azuma et al., 2001; Knudsen, 2002; Svensson et al., 

2005).  To assess this possibility, I performed a Mantel test with 5000 permutations (PAST, 
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Hammer et al., 2001), using distance between population pairs in my first matrix and mean 

Sorensen’s index of either terpenoid or aromatic scent composition for population pairs in my 

second matrix.  A large correlation R value, along with a significant permutation p-value, would 

suggest that the distance between populations has a strong effect on their similarity in floral scent 

composition. 

Common garden vs. in situ home environment comparison – I performed a second set of 

NMDS analyses using data from PA1 and PA2 purple morphs reared either in their home 

population or a common garden environment.  These analyses resulted in ordinations with 3 axes 

for both terpenoid and aromatic composition (Terpenoid Stress = 12.11, Aromatic Stress = 

10.12).  Again, the resulting ordination scores were averaged, this time to find the mean for each 

population in each rearing environment, and the data was visually examined for patterns based 

on these two variables.  I identified four groups (see Figure 3.4) and examined them for 

significant differences using ANOSIM/SIMPER, as described above.  Significant differences 

between plants reared in situ and in the common garden suggest a role for environment in 

determining scent floral scent composition.  

 

3.3.7 Floral scent emission rate 

In situ wild populations – To determine the effects of floral color and population membership on 

floral scent emission rates, I conducted individual fixed factors ANOVAs for grand total scent, 

total aromatics, and total terpenoids emitted (PROC GLM, SAS, 2007).  Because a non-random 

sample of populations along a latitudinal gradient was selected in this study, I treated population 

as a fixed effect (Gotelli and Ellison, 2004).  A significant effect of floral color suggests a role 
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for within-population effects tied to biochemical pathways and pigment production, while a 

significant effect of source population suggests that populations are differentiated with respect to 

scent.  When population effects were significant, I performed post-hoc Tukey’s tests to 

determine the pattern of those differences.   To further explore which subcategories might be 

contributing to significant differences in aromatics and terpenoids, I conducted two MANOVA 

analyses (PROC GLM with MANOVA statement, SAS, 2007), one using emission rates from 

the 3 terpenoid subcategories as dependent variables and one using rates from the 3 aromatic 

subcategories. 

I also performed correlation analyses (PROC CORR, SAS, 2007) analyses between 

population mean emission rates (grand total, total aromatics, and total terpenoids) and population 

latitude to determine if geography influenced floral scent emission rates.  A significant 

correlation would suggest that population location does affect the amount of floral scent emitted. 

Common garden population – To determine whether floral scent emission responds to 

environment or if population differences remain when plants are grown in a common 

environment, I conducted individual ANCOVAs for grand total scent, total aromatics, and total 

terpenoids emitted (PROC GLM, SAS, 2007) on common garden purple morphs from 

populations PA1 and PA2.  Source population was designated as a fixed factor; a significant 

effect would suggest that scent emission depends on population of origin, despite common 

growing/flowering conditions.  I also included plant height at flowering as a covariate to control 

for the effects of plant vigor on scent production.  To further explore which subcategories might 

be contributing to observed significant differences, I conducted two MANCOVA analyses 

(PROC GLM with MANOVA statement, SAS, 2007) using emission rates from the terpenoid 

and aromatic subcategories respectively as dependent variables. 
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3.4 RESULTS 

3.4.1 Question 1: floral color and population membership 

Floral scent composition – Mean aromatic compound NMDS values for purple morphs are 

centrally located and generally cluster together, regardless of population, whereas population 

means for white morphs are widely divergent (Figure 3.1a).  Specifically, three white groups are 

visible relative to the central purples: whites from PA1 occur near the purples (I - top right 

quadrant), PA2/ONT2 cluster together and near the purples along axis 2 (II - left quadrant), and 

lastly VA/ONT1 cluster together (III) in the lower left quadrant of the graph (Figure 1a).  

Examination of these four clusters by ANOSIM suggests that group III (the VA/ONT1 white 

morph group), while not significantly different from the cluster of purple morphs, is marginally 

different from the PA1 white group (I - R = 0.21; Bonferroni adjusted p = 0.08) and significantly 

different from the PA2/ONT2 white group (II - R = 0.11; Bonferroni adjusted p = 0.05).  Results 

from SIMPER suggest that this difference is driven in part by a larger mean abundance of 

eugenol, methyl eugenol, and 2-phenylethanol in VA/ONT1 white morphs in comparison to 

other white morph groupings.  To further understand this result, I also examined the relative 

contributions of individual aromatic compounds for each color morph in each population (Figure 

3.2a).  Benzaldehyde and benzyl alcohol had large contributions to floral scent across all 

populations and color morphs.  However, purple morphs generally had more benzyl propionate 

and benzyl benzoate than white morphs regardless of population, while white morphs from some 
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populations (ONT1, ONT2, and VA) were more likely to have nitrogen-containing benzenoids 

such as benzothiazole and larger amounts of eugenol and methyl eugenol present (Figure 3.2a, 

Appendix D, Table D.4).  Taken together, these patterns suggest that purple morphs show a more 

conserved aromatic floral scent composition than white morphs.   

The composition pattern differs when I consider terpenoids.  Mean NMDS values for all 

purple morphs and for white morphs from 3 of the 5 populations cluster tightly with relatively 

positive axis 3 values, while whites from 2 populations (VA and ONT1) diverge towards more 

negative values (Figure 3.1b).  Despite this visual pattern, ANOSIM suggests these groupings 

(VA/ONT1 white morphs vs. all other morphs) are not significantly different in terms of 

composition (R = -0.07; p = 0.8).  Additionally for terpenoids, color morphs from the same 

population are often found near one another, suggesting some effect of population affiliation in 

determining terpenoid floral scent composition.  Examination of the mean relative amounts of 

terpenoids further supports these patterns.  Floral scent in all populations is dominated by E-β-

ocimene and other monoterpenoids (Figure 3.2b).  Despite this, scent profiles of the two color 

morphs are very similar within populations, supporting the general outcome of our NMDS 

analysis (Figure 3.2b).  Populations ONT1 and VA, those with white morphs that diverge, are an 

exception to this pattern; here, white morphs are more likely to have α-farnesene and 

unidentified terpenoid 4 than any of the other populations or purple color morphs.  In addition, 

white morphs from VA are more likely to have the furanoid linalool oxides and E-β-ocimene 

epoxide than any other plants.  It is intriguing to note that white morphs from these two 

populations are also highly unusual in terms of their aromatics (Figure 3.1a) and yet they are 

geographically distant.  In fact, Mantel tests comparing Sorensen’s index values to a matrix of 

geographic distances were non-significant for both aromatic and terpenoid composition 
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(Aromatics: R = 0.33, P = 0.28, N = 25; Terpenoids: R=0.12, P = 0.44, N = 25), suggesting that 

similarity in floral scent composition is not related to the relative distance between populations. 

Floral scent emission – There were no significant differences between color morphs, but 

highly significant differences among populations in the grand total, total terpenoid, and total 

aromatic scent emission rates (Table 3.3, Figure 3.3).  In particular, PA1 and VA consistently 

produced the largest amount of floral scent per flower, regardless of chemical type.  PA2 emitted 

a low level of terpenoid compounds and consequently had a low overall emission rate.  

Populations ONT1 and ONT2, in contrast, had low emission rates for aromatic compounds and 

intermediate rates for terpenoids; however, as aromatics contribute less to overall scent emission 

than terpenoids, these two populations had resulting grand total rates that were also intermediate 

in value.  The interaction between floral color and source population was also not significant for 

grand total scent and total terpenoids, and only marginally significant for total aromatics (Table 

3.3).  Analysis of volatile compound subcategories similarly showed significant differences 

among populations but not between color morphs (Appendix D, Tables D.5 and D.6).  No 

significant relationship was found between the latitude of a population and its grand total 

emission rate, nor with emission of aromatics or terpenoids (Grand total: r = -0.66, P = 0.23; 

Total Aromatics: r = -0.77, P = 0.12; Total Terpenoids: r = -0.62, P = 0.27; N = 5 for each). 

 

3.4.2 Question 2: common environment 

Floral scent composition – Purple morphs from PA1 and PA2 differ in terms of both aromatic 

and terpenoid scent composition when reared at home (Figure 3.4; ANOSIM: Aromatics – p = 

0.03, R = 0.22; Terpenoids – p = 0.01, R = 0.25), especially in terms of eugenol and modified 
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linalool compounds (furanoid linalool oxides and linalool epoxide).  However, the scent 

compositions of both populations are not significantly different when plants are reared in a 

common-garden environment (Figure 3.4).  Together, these results suggest that response to 

environment plays an important role in determining the scent composition of purple morphs.  

Perhaps even more interestingly, while both populations show changes, the degree of change 

differs.  For PA1, this composition shift is a result of significant differences between home and 

garden reared plants in terms of both aromatic and terpenoid scent (Figure 3.4; ANOSIM: 

Aromatics – p = 0.01, R = 0.30; Terpenoids – p = 0.06; R = 0.20); differences between home and 

garden reared plants for PA2 are not significant.  Such an outcome suggests possible genetic 

variability in responses to rearing environment. 

Floral scent emission rate – Common-garden reared plants from populations PA1 and 

PA2 differ in the amount of total aromatics they emit (Table 3.4, Figure 3.5); here, population 

PA1 emits less aromatic scent than PA2 while the opposite pattern occurs when scent is 

examined in situ (see Figure 3.3).  Analyzing specific compound emission rates indicates that 

only total benzenoid emission differs between the populations (Appendix D, Table D.7).  In 

contrast, the populations do not differ in their total terpenoid or grand total emission rates (Table 

3.4, Figure 3.5; Appendix D, Table D.8).  Taken together, these patterns suggest a significant 

effect of environment on the amount of scent emitted by purple morphs; rearing plants in a 

common garden either homogenizes the quantity of total scent emitted or changes the direction 

of differences in emission seen between natural populations. 

 

  47



3.5 DISCUSSION 

3.5.1 Floral scent from wild populations: within-population variation 

I found mixed evidence for within-population variation in floral scent.  While I found no 

association between floral scent emission rates or terpenoid composition and floral color, I saw a 

consistent relationship between aromatic composition and pigmentation (Figure 3.1).  In 

particular, composition of purple morphs tended to be conserved, as predicted by shared 

biochemistry, while that of white morphs was more divergent.  This pattern held across a wide 

introduced range of H. matronalis and therefore these results significantly build on previous 

work on two local populations (Majetic et al., 2007).  Few studies have considered the possibility 

of association between floral scent composition and floral pigmentation.  Beyond this work, only 

Zuker et al. (2002) reports that alterations to anthocyanin-based floral color led to changes in 

floral scent, namely the production of more methyl benzoate when pigmentation was removed by 

antisense suppression of the flavanone 3-hydroxylase gene in the anthocyanin pathway.  Flamini 

et al. (2002) also suggest a link between scent and color, showing that purple- and yellow-

flowered Viola etrusca color morphs differed in terpenoid scent composition; however, they do 

not describe the pigment biochemistry involved in this system.  Pecetti and Tava (2000) suggest 

that darkly-pigmented flower morphs of Medicago sativa emitted more volatiles than light-

colored morphs, but fail to report whether these patterns were attributable to different volatile 

compound categories or specific pigmentation production.  This paucity of research suggests that 

more studies are needed to explicitly evaluate the connections between anthocyanin production 

and the production of floral volatiles. 

  48



Perhaps the most intriguing pattern found in this study is the divergent floral scent 

composition associated with white color morphs.  In H. matronalis, white coloration is 

associated with a lack of anthocyanins (Appendix A). These morphs could arise through a 

number of mutations in the pigmentation production pathway, as found for other plant species 

and through studies of transposable elements (e.g., van Houwelingen et al., 1998; Clegg and 

Durbin, 2000; Nakatsuka et al., 2005).  It is possible that white morphs in different populations 

result from different null alleles for anthocyanin pigmentation, and thus may vary in their 

potential pleiotropic impact on benzenoid scent emissions.  Studies exploring the genetics of 

aromatic floral scent often find that a single gene product can catalyze the production of several 

volatile compounds (Negre et al., 2002) and blocking the formation of one volatile product may 

lead to increased emission of other volatiles in a given pathway (Orlova et al., 2006).  Such 

results suggest that changes to the flux of a biochemical pathway can have profound effects on a 

variety of end products.  Indeed, one group of populations (VA and ONT1) tended to differ from 

the other white morphs in aromatic composition by the relative greater presence of methyl 

eugenol and eugenol (phenyl propanoids), as well as 2-phenylethanol (a benzenoid).  These 

compounds are found in the same biochemical pathway, with 2-phenylethanol and (iso)eugenol 

likely produced in parallel branches from phenylalanine (Orlova et al., 2006).  Methyl eugenol is 

produced in several plants, often through the methylation of eugenol by an O-methyltransferase 

(Lewinsohn et al., 2000).  Thus, a mutation early in the metabolic pathway leading from 

phenylalanine to anthocyanins could change the composition of scent.  If any of a number of null 

mutations (biochemical blockages) can arise to make a flower white (e.g., van Houwelingen et 

al., 1998; Nakatsuka et al., 2005), then there could also be a large number of possible changes in 

the production of associated floral scent compounds, including the presence or absence of the 3 
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compounds described above.  For example, if the mutation occurs upstream of the production of 

scent compounds and anthocyanin pigment, one might get white flowers with no scent due to a 

lack of flux through the pathway.  However, a mutation downstream of the production of scent 

compounds that blocks pigmentation (e.g., a null chalcone synthase mutation) might result in a 

white morph that produces many more benzenoid and/or phenyl propanoid odors due to an added 

flux of precursors, much like the results seen in Zuker et al. (2002).  Finally, white pigmentation 

may be caused by the presence of flavonols in petal tissue (e.g., Frey, 2004); flavonols are also 

produced by the shikimate pathway and could also potentially alter scent characteristics.  Such a 

possibility has not been assessed for H. matronalis.   Future studies using a variety of pigment 

knock-out mutants would allow me to definitively assess these possibilities. 

 

3.5.2 Floral scent from wild populations: among-population variation 

In my study, populations differed significantly in both floral scent composition and emission 

rates (Figure 3.1, Figure 3.3), adding to evidence for such variation across plant species (e.g., 

Knudsen et al., 2006 and references therein). These results are unique, however, in that they 

attempt to assess possible causes of population differentiation by using geography as a crude 

proxy for all potential environmental differences between populations.  The use of geography 

collapses both potential population isolation and environmental differences into a highly 

simplistic variable.  Perhaps not surprisingly, I did not find a significant relationship.  In fact, 

few studies of floral scent variation have documented a relationship between population-specific 

scent and a geographic pattern.  Azuma et al. (2001) found that populations of Magnolia kobus 

are extremely variable in floral scent and that this variation does not reflect any kind of spatial 
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patterning.  Svensson et al. (2005) found no relationship between chemical and geographic 

distances in Yucca filamentosa scent.  In contrast, Knudsen (2002) found a negative relationship 

between geographic distance and quantitative scent similarity in populations of Geonoma 

macrostachys.  In all of these studies, while one may be able to eliminate the possibility of 

similarity in scent among proximal populations, the lack of relationship between geography and 

floral scent cannot rule out the possibility that floral scent is associated with finer-scale 

environmental variability, such as soil moisture, plant nutrition, or herbivory levels.   

 

3.5.3 Common environment 

I found that floral scent responds significantly to changes in environment.  Although I am unable 

to pinpoint the exact environmental changes associated with this experiment, the outcome 

suggests that a plant’s volatile profile may be plastic and that environmental differences are 

likely to contribute to among-population variation.  While research on floral scent production has 

concentrated on conserved biochemical pathways, genes, and enzymes in a handful of model 

species (e.g., Lewinsohn et al., 2000; Barkman, 2003; Dudareva et al., 2003; Negre et al., 2003; 

Dudareva et al., 2005), many studies have documented changes in vegetative and floral volatile 

production driven by abiotic factors, including temperature, humidity, and nutrient availability 

(i.e., Loper and Lapioli, 1971; Jakobsen and Olsen, 1994; Nielsen et al., 1995; Staudt and Bertin, 

1998; Gouinguene and Turlings, 2002). While these latter changes are rarely referred to as 

plastic responses, they clearly fall into this category, suggesting an important role of 

environment.  Moreoever, differences in herbivory or pollination can elicit wounding responses 

or induce post-pollination changes in volatile production (i.e., Theis and Raguso, 2005; as 
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reviewed in Dudareva et al., 2006).  Such patterns suggest that floral scent is indeed highly 

plastic; future studies should explore the degree of plasticity in floral scent, including the 

potential for natural selection on the plasticity of floral scent. 

I also found that one population greatly changed its floral scent composition in response 

to growth in a common environment while the other did not.  This result is suggestive of genetic 

variation in environment response (plasticity), specifically a genes-by-environment interaction (if 

this study effectively incorporates a random genetic sample from each population).  Such 

interactions are rarely considered in studies of floral scent, with most studies that manipulate the 

environment ignoring genetics (i.e., Jakobsen and Olsen, 1994; Nielsen et al., 1995) and most 

studies of genetics relegated to only a few individuals in the highly controlled conditions of 

growth chamber, lab, or greenhouse settings (i.e., Dudareva et al., 2003; Negre et. al., 2003, but 

see studies like Lewinsohn et al., 2000, where multiple chemotypes are used).  My study 

represents an important first step in explicitly exploring the interactions between genes and 

environment on floral scent production in the wild.  This is an area that is wide open for 

additional research. 

 

3.5.4 Conclusions 

The study described here finds both within-population and among-population sources of 

variation in floral scent; the former is attributable to shared biochemistry between floral color 

and floral scent, while the latter appears to involve environmental variation and potential genes 

by environment interactions.  This uniquely suggests that a plant’s floral scent profile is defined 

by a combination of both genetic/chemical background and growing location, a perspective often 
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ignored in studies of floral scent.  Given my results, future research must work to disentangle the 

effects of environment, genetics, and trait associations on floral scent profiles, as well as 

consider the potential for phenotypic plasticity in this characteristic.  Only then will it be possible 

to truly understand the processes driving variation in floral scent.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  53



Table 3.1 Hypothetical predictions for wild populations if variation in floral scent is driven by factors that differ A) 

Among Populations or B) Within Populations (namely flower color).  Predictions are given for both components of 

volatile profile: composition (in a “morpho-space” defined by two axes (X and Y)) and quantitative emission rate (as 

defined in statistical terminology).  In the hypothetical graphs pictured, shapes represent different source 

populations, with purple shapes representing purple morphs and white shapes representing white morphs.   

Composition 
Expectation

Significant effect of 
floral color

Significant effect 
of population

Emission Rate 
Expectation 

B) Within 
Population 
Variation (Floral 
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X

Y

X

Y

Composition 
Expectation

Significant effect of 
floral color

Significant effect 
of population

Emission Rate 
Expectation 
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Population 
Variation (Floral 
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Variation
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Table 3.2 Hypothetical predictions for population differentiation in floral scent driven by A) Environment, B) 

Genetics, or C) Genetics and Environment.  Predictions are given for the scent composition component of volatile 

profile (presented in a “morpho-space” defined by X and Y axes).  In the hypothetical graphs pictured, shapes 

represent different source populations, with red shapes representing plants reared in their home environment and 

blue shapes representing plants reared in a common-garden environment. 

Composition 
Expectation

C) Genetics and 
Environment

B) GeneticsA) Environment

X

Y

X

Y

X

Y

Composition 
Expectation

C) Genetics and 
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B) GeneticsA) Environment

X

Y

X
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X

Y

X
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X
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Table 3.3 Individual ANOVAs assessing the effects of floral color and population on three categories of in situ 

floral scent emission rates in H. matronalis.   

Variable DF Total Scent Total Aromatics Total Terpenoids 
  F P F P F P 
Model 9 5.84     0.0001 8.83     0.0001 4.32     0.0001 
Color 1 1.32     0.25 0.42     0.52 1.90     0.17 
Population 4 10.95    0.0001 17.52    0.0001 8.12     0.0001 
Color x Population 4 1.69     0.16 2.10     0.09 0.99     0.42 
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Table 3.4 Individual ANCOVAs assessing the effects of source population (controlling for plant size) on three 

categories of floral scent emission rates in common garden reared purple H. matronalis.   

Variable DF Total Scent Total Aromatics Total Terpenoids 
  F P F P F P 
Model 2 0.16     0.85 2.05     0.15 0.05     0.95 
Source Population 1 0.30     0.59 4.09     0.05 0.08     0.78 
Plant Height 1 0.03     0.87 0.01     0.94 0.03     0.87 
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Figure 3.1 NMDS plots of in situ scent composition for wild populations of Hesperis matronalis in terms of (a) 

Aromatics and (b) Terpenoids.  Purple symbols represent means for purple plants and open symbols represent means 

for white plants.  Populations are represented as follows: triangles=PA1; circles=ONT1; diamonds=VA; 

squares=PA2; and inverted triangles=ONT2. 
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Figure 3.2 Mean relative amount of floral scent volatiles in five populations of Hesperis matronalis color morphs in 

terms of (a) aromatics and (b) terpenoids.  Populations are ordered from north to south.  Within aromatics, moving 

clockwise from the top of each graph, are benzenoids 1-9 (teal), phenyl propanoids 1 and 2 (purple), and nitrogen 

containing benzenoids 1-3 (blue).  Within terpenoids are monoterpenoids 1-7 (pink), irregular and sesquiterpenoids 

1-4 (peach), oxygenated monoterpenoids 1-12 (red), and unidentified terpenoid 1 (white).  Due to the limitations of 

this visualization method, not all compounds may be visible in each pie diagram; for a complete list of the amount of 

each compound, in the order presented here, see Appendix D Table D.4. 
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Figure 3.3 In situ scent emission rates for wild populations of Hesperis matronalis in terms of (a) Aromatics, (b) 

Terpenoids, and (c) Total Scent.  Data has been untransformed for presentation.  Purple bars represent purple plants 

and white bars represent white plants; error bars represent standard error.  Letters over bars represent Tukey’s test 

differences between population means. 
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Figure 3.4 NMDS plots of scent composition for purple morphs from two populations of Hesperis matronalis – (a) 

Aromatics and (b) Terpenoids.  Red symbols represent scent from home environment in situ plants while blue 

symbols represent scent from plants reared in a common environment.  Population PA1 in represented by triangles 

and population PA2 is represented by squares.  Arrows indicate the direction of shift from home environment to 

common garden floral scent composition; black arrows represent a significant difference between groups determined 

by ANOSIM and gray arrows represent a non-significant difference. 
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Figure 3.5 Scent emission rates for purple Hesperis matronalis plants grown in common garden environments in 

terms of (a) Aromatics, (b) Terpenoids, and (c) Total Scent.  Data has been untransformed for presentation.  Error 

bars represent standard error.  Bars not sharing letters are significantly different as determined by ANOVA. 
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4.0  SMELL OF SUCCESS: FLORAL SCENT AFFECTS POLLINATOR 

ATTRACTION AND SEED FITNESS IN HESPERIS MATRONALIS 

4.1 ABSTRACT 

Patterns of floral scent are generally assumed to have been shaped by pollinator-mediated natural 

selection.  However, while many studies document behavioral responses of pollinators to floral 

scent, few document the relationship between floral scent and fitness.  In this study, I explore the 

effect of variation in floral scent emission rate in color polymorphic Hesperis matronalis on both 

pollinator visitation and seed fitness.  Using target inflorescences augmented with color-specific 

floral scent extracts, I find that diurnal floral visitors significantly prefer higher scent emission 

rates.  Such a result suggests that if pollinator visitation is an important component of plant 

fitness, then plants with greater scent emission rates will have higher fitness, unless there are 

countervailing forces, i.e., costs of producing excess floral scent, or of attracting enemies. I 

characterized the relationship between natural variation in floral scent emission rate and seed 

production for plants under two settings: 1) in small experimental arrays exposed to either day- 

or night-flying pollinators, and 2) in wild populations exposed to all pollinators. In arrays, I 

found greater emission rates led to higher seed fitness, but only in plants exposed to day-flying 

pollinators. In contrast, I found a significant negative quadratic relationship between daytime 

floral emission rates and seed fitness in wild populations.  The difference in results between 
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arrays and wild populations could be due to differences in pollinators or herbivores, density-

effects on scent cues/perception, or pollen limitation of seed production. My results suggest that 

a more comprehensive approach to the study of floral scent evolution is needed. 

 

4.2 INTRODUCTION 

Evolutionary studies of floral characteristics have traditionally focused on visual traits assumed 

to be attractive to pollinators, including floral display size, shape, and color (e.g., Stanton et al., 

1986; Stanton, 1987; Schemske and Bradshaw, 1999; Caruso, 2000; Worley and Barrett, 2000; 

Ashman, 2003; Irwin and Strauss, 2005).  Two key components of these studies are assessment 

of pollinator response to trait variation, and examination of the relationship between trait 

variation and plant fitness.  A significant trait-fitness relationship is one of the three conditions 

necessary for evolution by natural selection (Endler, 1986); finding this provides initial support 

for hypotheses involving pollinator-mediated natural selection.  Similar processes are also 

invoked to explain the evolution of non-visual floral traits, with some recent studies describing 

and testing pollinator response to floral scent (e.g. Waelti et al. 2008).  However, little is known 

about the relationship between floral scent and plant fitness.   

 Floral scent is highly variable and often assumed to be an important target of 

pollinator-mediated selection (Miyake and Yafuso, 2003; Salzmann et al., 2007b).  Observations 

of pollinator fauna on plants with known scent characteristics suggest that both day- (e.g., Galen 

and Kevan, 1980; Pombal and Morellato, 2000; Theis et al., 2007) and night-active floral visitors 

have distinct olfactory preferences (e.g., Knudsen and Tollsten, 1993; Raguso and Willis, 2005; 
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Raguso et al., 2003; Hoballah et al., 2005), particularly for aromatic and terpenoid compounds 

(Dobson, 2006).  Likewise, behavioral choice assays show that bees, butterflies, and moths can 

discriminate in both qualitative (e.g., Heath et al, 1992; Ômura et al., 1999; Cunningham et al., 

2004, 2006; Theis, 2006) and quantitative aspects of floral scent composition (e.g., Heath et al., 

1992; Andersson, 2003; Andersson and Dobson, 2003; Wright et al., 2005). Floral visitors often 

prefer scented flowers over unscented ones, translating into increased pollinator approaches, 

landings or preference (Knudsen et al., 1999; Kunze and Gumbert, 2001; Raguso and Willis, 

2002; Schiestl, 2004; Ashman et al., 2005).  These findings provide strong evidence for the 

importance of floral scent across the specialization-generalization spectrum of pollination. 

 Thus, it is perhaps surprising that the direct relationship between plant fitness and 

variation in floral scent has rarely been explored.  Many studies view the rate of pollinator 

visitation as a proxy for plant fitness (e.g., Ayasse et al., 2000; Diaz and Kite, 2006), assuming a 

positive linear relationship between these variables.  However, only a few studies specifically 

document fitness-scent relationships, with mixed results.  In some cases, the presence of a less-

preferred scent type or lower scent emission led to reduced fitness, through changes in pollinator 

activity (e.g., Galen, 1985; Galen and Newport, 1988; Miyake and Yafuso, 2003). Other studies 

found no significant relationship between scent variation and fitness (e.g., Ackerman et al., 1997; 

Valdivia and Niemeyer, 2006; Salzmann et al., 2007a, 2007b).  Moreover, no studies have 

explicitly tested for non-linear relationships between floral scent and fitness, despite several 

reasons to expect one.  Specifically, a negative quadratic relationship might exist between 

emission rate and fitness if scent production is costly. For example, if scent production is 

energetically costly (as tested in Grison-Pigé et al., 2001), then seed production may decline at 

high emission rates, especially when resources are limiting.  Similarly, floral scent may incur 
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ecological costs, such as attraction of florivores or herbivores by increased scent production, 

resulting in a net fitness decrease (e.g., Raguso, 2004 and references therein; Theis, 2006; Theis 

et al., 2007).  Lastly, high rates of floral scent emission may actually repel the same pollinators 

that are attracted at low emission rates (e.g., Terry et. al., 2007), potentially leading to 

intermediate rates being optimal. Given the paucity of empirical evidence for linear or non-linear 

scent-fitness relationships, we are not yet in a position to evaluate the role of pollinator-mediated 

selection in the evolution of floral scent. 

 To address this gap, I explored whether higher floral scent emission leads to 

increased pollinator visitation and seed fitness in Hesperis matronalis (Brassicaceae). This plant 

is well suited for such studies because its purple or white flowers emit variable amounts of color-

specific scent rich in terpenoid and aromatic compounds (Nielsen et al., 1995; Majetic et al., 

2007; Chapter 2) known to be attractive to the insect taxa (Dobson 2006) that visit its flowers 

during day and night (Mitchell and Ankeny, 2001; Appendix B and D).  I conducted a three part 

study focusing on the fitness effects of floral scent emission while controlling for flower color: a 

scent augmentation experiment, an array experiment where I manipulated pollinator-access, and 

an observational experiment across several large wild populations. I asked three main questions: 

1) How do diurnal floral visitors respond to increased scent emission? 2) Does scent emission 

rate influence seed fitness when plants are exposed to diurnal vs. nocturnal pollinators? If so, is 

the relationship due to the emission rates of specific subsets (aromatics or terpenoids) of the 

scent blend? 3) Can variation in seed fitness in wild populations be explained by floral scent 

emission rates during day vs. night? If so, is the relationship due to aromatic or terpenoid 

emission rate?  I predicted that increased emission of floral scent would lead to increased 

pollinator visitation and increased seed fitness, unless costs are associated with high floral 
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emission rates.  I expected stronger scent-fitness relationships for day-exposed plants, given 

greater abundance of day-flying pollinators observed in wild populations (Majetic, 2008), as well 

as positive relationships between fitness and both aromatic and terpenoid volatile emission rates, 

given their demonstrated roles in pollinator attraction.   

 

4.3 METHODS 

4.3.1 Study species 

Hesperis matronalis (Brassicaceae) is an introduced, potentially invasive (Annen, 2007), 

herbaceous biennial common to the northern tier of the United States (Mitchell and Ankeny, 

2001).   Plants over-winter as vegetative rosettes and flower in May. Inflorescences can have as 

many as 20 flowers open at a time (Mitchell and Ankeny, 2001).  H. matronalis flowers are 

hermaphroditic and partially self-compatible in some populations (Majetic, 2008, but see 

Mitchell and Ankeny, 2001; Weeks and Frey, 2007).  Self compatible plants set some seed 

autonomously, but those that receive pollinator visits have three-fold higher seed set (Appendix 

B). During the day, flower visitors in the United States are predominately bees (including 

Bombus spp. and Apis mellifera) and syrphid flies (a combined ~80% of visitors), with less 

frequent visits by lepidopterans, including crepuscular moths (Mitchell and Ankeny, 2001; 

Majetic, 2008).   

H. matronalis populations are polymorphic for floral color, with purple or white morphs, 

although some populations contain a pink intermediate (Dvořák, 1982; Mitchell and Ankeny, 
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2001; Rothfels et al., 2002).  Purple morphs have high levels of anthocyanins in their petals, 

whereas white morphs have little or no floral pigment (Majetic, 2008).  Floral color morphs do 

not differ in size, shape, pollen or ovule production or vegetative characteristics (Appendix A), 

but differ in some aspects of scent composition (Majetic et al., 2007; Chapter 2).  H. matronalis 

flowers emit a complex volatile blend (39 compounds) that varies diurnally (Nielsen et al., 1995; 

Majetic et al., 2007).  Scent emission rates are two-fold higher at dusk than at dawn (0.041 µg vs. 

0.019 µg scent/flower/hour; Majetic et al., 2007), but changes in floral scent composition are 

subtle (i.e., more aromatics emitted at dusk in some populations; Majetic et al., 2007).  The focus 

of the current study is flower scent emission rate variation; thus, in each component study I 

control for flower color. 

 

4.3.2 Experimental augmentation of floral scent and response by pollinators 

Pentane extraction of whole flower scent and floral scent emitters – I used whole flower extracts 

to capture the complex floral scent of H. matronalis for augmentation of floral targets.  I 

harvested purple and white H. matronalis inflorescences during morning (“day”: between 7am 

and 10am) and evening (“night”: between 6pm and 9pm) from wild populations near the 

University of Pittsburgh (Allegheny County, PA) and the Pymatuning Laboratory of Ecology 

(PLE; Crawford County, PA).  I extracted volatiles for 20 minutes from these flowers using 2 

mL pentane per gram fresh weight (Sigma-Aldrich, 99% purity, GC quality).  I stored extracts at 

-20ºC until use.  I prepared separate extracts for each color morph at each time period. 

I constructed floral scent emitters from 4 mL polypropylene culture tubes and wicks 

fashioned from coffee filters.  I filled treatment emitters with ten flower equivalents of a pentane 
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extract (~1-2 mL of liquid) that was diluted to 3 mL with mineral oil, whereas I filled control 

tubes with 1 mL of pentane diluted to 3 mL with mineral oil.  I produced five treatments which 

were used in each trial and are referred to as “control”, “purple day”, “purple night”, “white 

day”, and “white night” hereafter.   

Pentane is commonly used for extraction of scent from floral tissue (e.g., Ashman et al., 

2005) and is an appropriate solvent for a broad range of plant volatiles (Prososki et al., 2007).  

All of the compounds I have found in the headspace of H. matronalis can be extracted with 

pentane (Kerrola et al., 1994; Antonelli et al., 1997; Gibernau et al., 1997; Gancel et al., 2003; 

Ashman et al., 2005; Jerković et al., 2006; Teixeira et al., 2007).  However, it is possible that 

compounds in extracts were represented in different amounts than those detected in situ.  Thus, I 

evaluated the effectiveness of our pentane extracts at capturing and emitting H. matronalis scent 

by conducting dynamic headspace extraction on 8 emitters – 2 purple day, 2 purple night, 1 

white day, 1 white night, and 2 control – following  Majetic et al., 2007.  I identified 17 of the 39 

floral volatile compounds previously recorded for H. matronalis flowers.  Moreover, scent 

emission rate (µg scent per flower equivalent per hour) from emitters with night extracts was 

approximately twice that from emitters with day extracts (night = 0.55 ± 0.22 µg scent/flower 

equivalent/hour; day = 0.32 ± 0.09 µg scent/flower equivalent/hour; see Chapter 3 for scent 

quantitation methods).  Thus, while my headspace and pentane extractions may not have 

captured all of the minor blend components, I did succeed in capturing quantitative differences 

between day and night scent emissions, which was my main goal in this experiment.  Therefore, 

when I added an emitter with morning-produced scent, I effectively doubled the amount of scent, 

and when I added an emitter with night-produced scent, I tripled the amount of scent emitted 

from a target. 
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Experimental arrays – I constructed hexagonal arrays at two sites in an open field at PLE, 

each consisting of six experimental units spaced with least 1 meter between nearest neighbors.  

Each experimental unit was composed of a scent emitter plus a floral target.  Floral targets were 

created by haphazardly selecting a white or purple inflorescence harvested from a wild H. 

matronalis population, trimming each to ten open flowers and placing them into individual 

florist’s pics.  On the morning of observation days, each floral target was then randomly assigned 

to a control, day, or night emitter, taking care to match target and scent color.  Emitters were 

assigned positions in the array at random and targets were arranged such that flower colors 

alternated.  Emitters were given 5 minutes to equilibrate to ambient conditions prior to the onset 

of data collection. 

 All pollinator observations were conducted on eight warm sunny days in late May 

and early June 2007.  Two observers simultaneously recorded visitation on each half of an array.  

Approaches and landings by all pollinator insect taxa by type (bees, syrphid flies, and 

lepidopterans) to each experimental unit were recorded during a 10-minute replicate.  For each 

replicate within a given array, I rotated each emitter such that each target experienced each level 

of color-specific scent (i.e., control, day, and night).  Observers also switched positions, such that 

they observed all possible pairs during a 30 minute observation period.  New targets and emitters 

were used for each period.  I conducted a total of 50 observation periods for a total of 25 hours of 

pollinator observation.  Observations were conducted at both sites and no significant effect of 

site was found (data not shown), so sites were pooled in subsequent analyses. 

Statistical analysis – I determined visitation rate as the sum of approaches and landings to 

each experimental unit.  I performed an ANOVA (PROC GLM, SAS, 2007) to determine the 

effect of target color (purple vs. white), color-specific scent treatment (control vs. day emission 
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rate vs. night emission rate), and their interaction on visitation rates, while controlling for period 

and replicate.  Because initial analysis revealed that replicates within an observation period were 

not significantly different, I calculated the number of visits per emitter type across all replicates 

within a period as total number of visits/30 min/target of 10 flowers and reran our ANOVA 

without replicate. 

 

4.3.3 Floral scent emission rate and seed fitness in arrays with specific pollinator access 

Experimental design – In the early spring of 2006, I collected rosettes from four Pennsylvania 

populations, transplanted them into 1-gallon pots with Farfard™ #4 soil (Conrad Farfard, 

Agawam, Massachusetts, USA) at PLE, and watered them daily.  I constructed eight pollinator 

exclosures (2m x 2m x 2m) from window screen and PVC pipe.  I placed four exclosures at each 

of two locations at PLE. At each location two exclosures were designated as “day-access” where 

only diurnal pollinators had access to the flowers, and two as “night-access” where crepuscular 

and/or nocturnal pollinators had access to the flowers. Pollinator access was controlled by 

opening and closing the sides of exclosures at specific times of day (i.e., day – 7:00am to 

7:00pm; night – 7:00pm to 7:00am).  Upon flowering, a total of 98 potted plants were randomly 

assigned to one of the pollinator-access treatments. 

Data collection – For each plant, I recorded inflorescence height at flowering, floral size 

(as petal length × petal width) of a randomly chosen fully open flower, floral pigmentation and 

floral scent.  Here, I characterized floral pigmentation quantitatively rather than qualitatively 

(i.e., purple or white). Specifically, I determined anthocyanin content using methanol extraction 

and spectrophotometry (modified from Harborne, 1998). I read absorbance at 530nm on a 
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Spectronic 21D spectrophotometer (Model DV #332278, Milton Roy, Rochester, NY); a higher 

absorbance value reflects darker purple flowers.  I sampled floral scent using dynamic headspace 

extraction and gas chromatography-mass spectroscopy as in Majetic et al. (2007) and Chapter 3 

for day-access plants in the morning and night-access plants at night.  I calculated floral emission 

rate (μg /flower/hr) for each of the 39 identified compounds following Majetic (2008). Individual 

compounds were classified based on biosynthetic pathway (after Knudsen and Gershenzon, 

2006) to form two classes (aromatics and terpenoids). Emission rates for each group were 

summed and then were natural-log-transformed to improve normality and conform to the 

assumptions of parametric statistical analyses. 

I observed pollinator visitation during several 15-min periods on clear days in late spring 

2007. I observed plants in the day-access treatment between 6:30am and 9:00am and 12:00pm 

and 3:30pm, and plants in the night-access treatments between 7:00pm and 9:00pm. A total of 13 

to 16 observation periods were made at each of the three times for a total of 11.25 hrs of 

observation.  I observed a total of 56 visits, 53 of which were by bees and syrphid flies (60% and 

40%, respectively) visiting in the afternoon. I calculated visitation rate (visits/flower/hr) for each 

observation period based on the number of available flowers during each period. 

Once plants had been exposed to pollinator access treatments for one month, I counted 

the number of treated flowers on each individual and fruits on these were allowed to mature.  I 

recorded the number of seeds in each fruit.  From these values, I estimated seed fitness as the 

number of seeds produced standardized by the number of treated flowers per plant.   

Statistical analysis – Because my main interest was to determine how variation in floral 

scent emission rate affects seed fitness when different pollinators were allowed access, rather 

than to identify the sources of trait variation in our experiment, I conducted an ANOVA (PROC 
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GLM, SAS, 2007) to remove the effects of replicate and plant source population from all traits.  I 

then regressed residual seed fitness on the residuals of plant traits for each pollinator access 

treatment separately (i.e., Model: residual seed fitness = α + β1(residual ln total day emission 

rate) + β2(residual floral pigmentation ) + β3(residual floral size) + β4(residual plant height) + 

γ1(residual ln total floral emission rate2) +εij).  I included the squared term for floral scent 

emission rate to assess the potential for a quadratic relationship with fitness. When this analysis 

indicated a significant relationship between emission rate and seed fitness, I further investigated 

whether aromatic or terpenoid compounds had a tighter relationship with fitness.  Because the 

emission rates of terpenoids and aromatics are highly correlated (r = 0.73, P = 0.0001), I did this 

by conducting the regression above, but substituting each class of volatiles for total scent 

separately. 

 

4.3.4 Seed fitness and floral scent emission rate in wild populations 

To determine whether day- or night-produced scent affects seed fitness of H. matronalis 

in the wild, I located four populations that span the latitudinal range of this species in eastern 

North America: southern Ontario (N 44º 01’, W 79º 31’), northwestern Pennsylvania (N 41º 36’, 

W 80º 25’; N 41º 36’, W 80º 27’), and northern Virginia (N 39º 05’, W 78º 04’).  In each 

population, ten purple morphs and ten white morphs were selected at random and marked for 

study.  For each, I measured floral scent, plant height, and seed production.  I collected and 

analyzed floral scent from in situ plants at day and night as in Chapter 3 and I calculated 

emission rate for aromatics, terpenoids, and total scent as described above (Floral scent emission 

rate and seed fitness in arrays…).  When flowering was complete, I enumerated the total number 
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of flowers and fruits per plant and collected three fruits per plant.  To estimate seeds/plant, I 

multiplied total flowers/plant, proportion fruits/flower, and mean seeds/fruit.  Plant height at 

peak flowering was recorded as an estimate of plant size (as in Majetic 2008).  As I were unable 

to locate some marked individuals, final sample size was 69 plants across four populations. 

 Statistical analysis – I used ANCOVA (PROC GLM, SAS, 2007) to test for the 

effects of population, floral color, height, and floral scent emission rate on female fitness.  While 

I found a significant effect of population, there was no significant effect of floral color on fitness, 

nor were there any significant interactions between population, color, and emission rate.  Given 

this outcome, and the fact that within population replication was low, I sought to look at 

emission rate-fitness patterns across all populations. Therefore, I removed the effects of 

population and floral color on seed fitness, scent emission rate, and plant height using individual 

ANOVAs (PROC GLM, SAS, 2007) and used the resulting residuals to determine if there was a 

relationship between scent emission rate and seed fitness across populations (PROC REG, SAS, 

2007; Model: residual seed fitness = α + β1(residual ln total day emission rate) + β2(residual ln 

total night emission rate) + β3(residual plant height) + γ1(residual ln total day emission rate2) + 

γ2(residual ln total night emission rate2) +εij)).  As above, when I found a significant effect of 

total emission rate on seed fitness, I investigated whether aromatic or terpenoid components were 

contributing to the relationship by replacing total emission rate terms in the regression model 

with aromatics or terpenoids individually. 
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4.4 RESULTS 

4.4.1 Pollinator response to scent augmentation 

Approximately 95% of floral visitors were syrphid flies, with the remaining 5% of visits by small 

bees and lepidopterans.  Flower visitors did not discriminate between purple and white target 

inflorescences (F1, 240 = 0.72, P = 0.40) but did discriminate between scent augmentation 

treatments (F2, 240 = 4.74, P = 0.01; Figure 1); this occurred regardless of observation period in 

our experiment (F48, 240 = 3.10, P <0.0001).  Syrphid flies visited targets augmented with night 

scent emission rate significantly more often (59%) than the control (Figure 1).  In contrast, 

targets augmented with day scent emission rate received slightly but not significantly more 

(16%) visits than control targets (Figure 1) and this was similar across color morphs (scent-by-

color interaction: F2, 240 = 0.75, P = 0.48). 

4.4.2 Floral scent emission rate and seed fitness in arrays with specific pollinator access 

Plants exposed only to day-flying pollinators experienced little visitation during the morning 

(0.006 ± 0.006 visits/flower/hour), but greater visitation during the afternoon (0.312 ± 0.167 

visits/flower/hour).  In this access treatment, seed fitness increased significantly and linearly 

(βtotalscent = 1.63; P = 0.009) with day floral emission rate (Figure 2).  In contrast, none of the 

other plant traits (floral size, pigmentation and plant height) significantly affected seed fitness 

(Figure 2 legend).  Day emission rates of aromatics and terpenoids had similar positive linear 

relationships with seed fitness (βaromatic  = 1.26; βterpenoid = 1.53; P = 0.01 for both).  At night I 

witnessed a very low level of flower visitation (0.007 ± 0.007 visits/flower/hour), and when 
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plants were exposed to visitors only at night, the regression model explained little variation (R2 = 

0.16) and was not statistically significant (Figure 2 legend). 

4.4.3 Seed fitness and floral scent in wild populations 

Across wild populations of H. matronalis, I found a significant negative quadratic relationship 

between daytime scent emission rate and seed fitness (βdayscent
2 = -193.2, P = 0.01), but no 

significant linear effects of day emission rate nor any significant effects of night emission rate on 

seed fitness, although plant height had a significant positive effect on seed fitness (Figure 3). 

Further analysis suggested that daytime aromatic scent emission rate may drive this pattern, as 

the quadratic term was statistically significant for aromatics (βaromatic
2 = -134.02, P = 0.01), but 

not for terpenoids (βterpenoid
2 = -100.47, P = 0.07). 

4.5 DISCUSSION 

Increased floral scent emission in Hesperis matronalis leads to increased day-time pollinator 

visitation. When day-flying visitors were the only pollinators allowed access to plants there was 

a positive linear relationship between emission rate and seed fitness. In contrast, I found little 

evidence for night visitation, and no relationship between scent emission rate at night and seed 

fitness when only night visitors were allowed access to plants. In wild populations, I found a 

negative quadratic relationship between rate of scent emitted at day and seed fitness, but no 

significant relationship between night scent emission rate and seed fitness.  Below I explore the 

significance of syrphid fly responses to scent, examine potential explanations for the disparity 
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between the results from my arrays and wild populations and discuss possible causal factors for 

the negative quadratic relationship between scent emission rate and fitness.   

4.5.1 Floral scent and pollinator identity 

Syrphid flies responded positively to my scent augmentation treatments, visiting targets 

augmented with night or day scent more than controls (Figure 1).  While this result is consistent 

with widespread evidence for insect preferences for more strongly scented flowers (i.e., Knudsen 

et al, 1999; Ashman et al., 2005; Theis and Raguso, 2005), it is particularly novel for syrphid 

flies, because we have limited knowledge of their preferences and use of scent, especially in the 

context of generalized pollination systems (e.g., Pombal and Morellato, 2000; Dobson, 2006).  

Syrphid flies are common pollinators of Hesperis matronalis in its introduced range (Conner and 

Sterling, 1995; Weeks and Frey, 2007; this study) and of several other members of the 

Brassicaceae (e.g., Conner and Sterling, 1995; Stanton, 1987). Although visual attraction of 

syrphids has been studied extensively (i.e., Stanton, 1987; Goulson and Wright, 1998), my 

results indicate that floral scent is an important attractant for these flies.  Previous studies have 

shown that syrphids prefer flowers with high pollen production, and pink rather than yellow or 

white colored flowers in Raphanus sativus (Stanton, 1987; Stanton et al., 1991). It is now known 

that both pollen (Dobson and Bergström, 2000; Ashman et al., 2005) and anthocyanin-based 

petal color (Majetic et al., 2007) contribute directly and indirectly to floral scent composition and 

emission rate. Thus, it is likely that syrphid floral preference is mediated by correlated visual-

olfactory floral signals and pollen odors, rather than by visual display. In fact, in my day-access 

arrays, floral scent emission rate had a significant influence on fitness whereas visual cues, floral 
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pigmentation or floral size, did not (Figure 2); indeed, floral color was a non-significant factor in 

all of the experiments described here.   

4.5.2 Reconciling disparate scent-fitness relationships 

I found strikingly different relationships between floral emission rates and seed fitness in my two 

experiments. In my restricted pollinator access experiment, increased scent emission rates during 

the day resulted in a linear increase in seed fitness when plants were visited only by day-

pollinators (Figure 2), but no significant relationship between night emission rate and seed 

fitness when visits were restricted to night-flying pollinators.  In contrast, across wild 

populations there was a negative quadratic relationship between day floral scent emission rate 

and seed fitness, but no significant effect of night emission rate (Figure 3).  While both results 

suggest that night emitted scent is a not a potential target of selection in the introduced range of 

Hesperis matronalis, they offer potentially different views of the type of selection that might act 

on day-emitted scent.  The two experiments differed in both abiotic and biotic features: one 

involved potted plants in small, sparse arrays with restricted pollinator and herbivore access, 

whereas the other involved plants in large, dense in-situ populations where all pollinators and 

herbivores had access.  Thus, I cannot disentangle potential causes of the different outcomes.  

However, I can evaluate the likelihood of possible mechanisms of the different scent-seed fitness 

relationships.     

First, the cost of producing floral scent may change with growth conditions. If high 

emission rates exact a greater energetic cost in dense plant populations, where resource 

competition is more likely, then the negative quadratic relationship between day-emission rate 

and seed fitness seen in the wild populations could be the result of greater costs of high emission 
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rate. However, it is quite difficult to assess the costs of reproduction in plants in general  (Obeso, 

2002), and estimates of the cost of floral scent are limited to one study in fig trees, which found 

scent to be a trivial component of total carbon allocation to reproduction (Grison-Pigé et al., 

2001). While energetic costs of floral scent may be a larger portion of the reproductive budget 

for an herbaceous biennial plant, it is still unlikely that these costs are responsible for the large 

differences between experiments, or for the negative quadratic relationship observed in the wild.  

Second, the likelihood of pollen limitation of seed production may have differed between 

my experiments due to differences in pollinator abundance or density of pollen donors. While 

diurnal insect visitation rates to my day-pollinator access arrays were equivalent or slightly 

higher (1.1×) than those of wild populations (0.290 ± 0.048 visits/flower/hour; Appendix B), 

fewer pollen donor parents were available due to low within-array plant density and isolation of 

arrays from wild populations.  Moreover, wild populations were potentially visited by night 

pollinators whereas the day-access array excluded these. Thus, seed production of plants in the 

wild populations was less likely to be pollen limited than those in arrays.  Because the intensity 

of pollen limitation is known to mediate the relationships between attractive traits and seed 

fitness (Ashman and Morgan, 2004), it is likely that differences in pollen limitation contribute to 

the differences in the relationship between day emission rate and seed fitness seen here. Further 

research on the relationship between pollen limitation and the magnitude and direction of 

selection on floral scent emission rate is needed to determine if this is the case for H. matronalis 

and for scent in general. 

Third, the likelihood of herbivore effects on seed production may have differed between 

my experiments due to differences in herbivore access to the plants. The potential exists for 

herbivore-mediated effects on seed fitness to oppose pollinator-mediated ones (e.g., Raguso, 
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2004) and generate the negative quadratic relationship between fitness and floral scent emission 

rate that I observed in the wild. While I did not record herbivory rates in the present experiments, 

nor do I have evidence that floral scent attracts herbivores in H. matronalis, plants in wild 

populations are often subject to herbivory (C. Majetic, pers. obs.) whereas the array plants were 

protected from herbivores to a degree.  Thus, the possibility of an herbivore-mediated 

mechanism cannot be ruled out.  

 Finally, because plant density differed between my experiments, scent context also 

differed and this could contribute to the different scent-fitness relationships.  My experimental 

studies, like most behavioral and field studies aimed at evaluating pollinator preferences, took 

the logical first step of separating floral scent targets spatially and examining insect response to 

precise scent units.  In wild populations, however, insect pollinators are exposed to patches in 

which many plants emit scent in close proximity.  This may make it difficult for insects to 

distinguish between emission rates of individual plants once they have entered a population (e.g. 

Valdivia and Niemeyer 2006).  Such a situation seems likely for a fragrant species like H. 

matronalis, which can grow in dense patches. Pollinators in my system may initially be attracted 

to the species-specific scent of the entire population, but may not distinguish between adjacent 

individuals within the odor plume.  Alternatively, plants emitting large quantities of scent may 

deter floral visitors (e.g., Osmanthus; Ômura et. al., 2000) even in a dense scent context.  In 

either case, plants emitting large quantities of scent may be ignored or discriminated against, 

unless populations are small and/or fragmented, such as those in the colonization phase of a site, 

not unlike our array experiment.  While my study points to a role for scent context in 

determining floral emission rate-seed fitness relationships, a controlled experiment in which 

similar plants are subjected to different density treatments would further address this possibility.   
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4.5.3 Potential for selection in a novel environment 

I found no relationship between night-emitted floral scent and seed fitness in either my pollinator 

access experiment or my wild populations, despite previous evidence for the most floral scent 

being emitted at dusk (Nielsen et al., 1995; Majetic et al., 2007; Majetic, 2008).  Additionally, 

my work here and elsewhere (Appendices B, D) suggests that crepuscular visitation is rare, 

whereas day visitation is common.  Together, this evidence illustrates a significant mismatch 

between timing of peak scent production and peak pollinator visitation in North American 

populations of H. matronalis.  Thus, it is possible that the relationships between day scent and 

fitness found here represent the effects of novel pollinator-mediated selective pressures on day 

floral scent emission.  Changes in selective environments often lead to changes in plant 

phenotypes over time; for example, Silene latifolia from its introduced North American range 

displays weedy life history characteristics and increased native pathogen susceptibility as 

compared to individuals from native European populations (Wolfe et al., 2004).  Little is known 

about the pollination environment of H. matronalis in its native range, but given the timing of 

scent production, it seems reasonable to suspect previous selection on floral scent emission at 

dusk or night by a crepuscular or nocturnal pollinator.  In North America, it is likely that H. 

matronalis experiences a novel pollination environment, where day-flying pollinators are strong 

selective agents that target a different aspect of floral scent than native pollinator fauna – day 

scent emission rates.  Comparative studies examining floral scent, pollinator identity and 

behavior, and reproductive fitness in both introduced and native ranges of H. matronalis will be 

necessary to assess this possibility.   
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4.5.4 Conclusions 

The results presented here suggest that pollinators do respond to increased scent production, but 

that increased floral emission rates do not always lead to linear increases in seed fitness.  My 

results add to evidence for opposing selection on visual floral traits (e.g., Strauss and Whittall, 

2006) and stress the importance of evaluating the putative relationship between pollinator 

attractants and plant fitness in a variety of selective environments (i.e., Herrera, 1995).  Rather 

than assuming that selection by pollinators has led to the floral scent phenotypes we observe, 

future studies of floral scent should directly measure seed and pollen fitness in the context of 

additional hypotheses, including potential energetic costs of scent production, attraction of 

herbivores and density-dependent effects on pollinator attraction. 

 

 

 

 

  82



 

Figure 4.1 Pollinator visits to color-specific scent augmented floral targets (pentane control, day emission rate, and 

night emission rate).  Emission rate is measured in µg scent/flower/hour.  Evening emission rate in this experiment 

was determined to be approximately twofold greater than day emission rate.  Letters above bars represent 

differences between overall treatment means as determined by Tukey’s test. 
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Figure 4.2 Relationship between H. matronalis seed fitness and floral scent emission for plants in exclosures that 

allowed pollinators access only during the day (A) or night (B).  Complete models are as follows: Day-access (R2 = 

0.25 ; P = 0.02):  seeds per treated flower = 1.63(total day scent) + 0.25(total day scent2) + 0.03(floral size) + 

2.23(floral pigmentation) + 0.08(plant height) – 0.08; Night-access (R2 = 0.16 ; P = 0.16):  seeds per treated flower = 

-0.96(total night scent) + 0.25(total night scent2) – 0.02(floral size) – 0.29(floral pigmentation) + 0.12(plant height) 

– 0.10. Parameters in bold are significant at P ≤ 0.01. 
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Figure 4.3 Relationship between seed fitness and A) day floral scent emission rate and B) night floral scent 

emission rate across four wild populations of H. matronalis.  Complete regression model (R2 = 0.38 ; P < 0.0001): 

seeds per plant = 12.65(day total scent) – 193.15(day total scent2) + 92.49(night total scent) – 30.92(night total 

scent2) + 24.27(plant height) + 116.61. Parameters in bold are significant at P ≤ 0.01. 
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5.0  CONCLUSIONS AND FUTURE DIRECTIONS 

In this dissertation, I find that floral scent in Hesperis matronalis co-varies with floral color.  It is 

in this context that floral scent meets at least one of Endler’s (1986) conditions for natural 

selection: trait variation, both within and among populations.  I also uncover discrimination 

between floral scent variants by a potential selective agent, syrphid flies.  Under conditions 

limiting access to day-flying pollinators only, I find a positive linear relationship between floral 

scent and female fitness, as predicted by insect visitor preferences.  In contrast, wild populations 

display a quadratic relationship between daytime floral scent and female fitness.  In total, this 

work contributes significantly to the study of floral scent evolution by stepping beyond the 

“pollination syndrome” viewpoint and actively assessing the potential for pollinator-mediated 

natural selection in H. matronalis.  Few studies specifically promote this type of approach for 

floral scent (see Galen and Newport, 1988; Ackerman et al., 1997; Salzmann et al, 2007b), 

despite its use in studying a number of other floral traits thought to be under natural selection by 

pollinators.  The research steps advocated here reveal that trait-fitness relationships may be more 

complex than what is predicted by simply assuming that trait variation and pollinator 

discrimination lead to natural selection.  Below, I review the major results from each empirical 

chapter in more detail and present several possible directions for future research. 

 In Chapter 2, I investigated the potential for an association between floral color 

and floral scent in two populations of H. matronalis at two times of day.  While scent emission 
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increased at dusk regardless of pigmentation or source population, floral color and population 

identity had a significant effect on chemical composition.  Purple morphs across both 

populations tended to have a very similar scent composition, while white morphs had population-

specific scent; white flowered individuals in one population had a strong association with 

terpenoid compounds, while plants in the other population had an association with aromatics.  

These results uniquely suggested that some variation in scent composition can be explained by 

floral color, possibly through conserved biochemistry for pigment and scent production.   

 I extended this research into floral scent variation by conducting a large scale 

geographical survey of five wild populations of H. matronalis, where I examined the potential 

contribution of within- and among-population variation to overall variation in floral scent 

profiles (Chapter 3).  Floral color contributed significantly to variation within populations, as 

purple morphs had very similar aromatic volatile compositions regardless of population identity, 

while white morphs diverged.  I also found significant composition and emission rate variation 

among populations; these patterns were not associated with the geographic locations of 

populations and so implied some degree of differentiation.  These results suggested that floral 

scent composition and emission rates are highly variable traits across the introduced range of H. 

matronalis and therefore can potentially be targets of natural selection.  Additionally, an 

experiment with common-garden reared plants from two of the surveyed populations suggested 

that environmental factors can alter the expression of floral scent profiles.  Moreover, the degree 

and direction of changes caused by a novel rearing environment were population-specific.  

Although this work was not able to disentangle specific genetic or environmental conditions, the 

results suggested that floral scent has the potential to display phenotypic plasticity.  Few studies 

of this character consider the role that variable response to the environment might have on floral 
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scent production, and what effects this type of response may have on the potential for natural 

selection on floral scent (see below). 

 Finally, I conducted a three-part experiment, assessing potential pollinator 

response to variation in floral scent emission rates and determining whether relationships 

between pollinator behavior and scent dictate female fitness-scent relationships under different 

growing conditions (Chapter 4).  I found that syrphid flies preferred to visit target inflorescences 

augmented to emit more floral scent.  As predicted by this pattern of behavior, in environments 

where pollination was limited to visits by diurnal insects, plants with increased scent emission 

were found to have increased female fitness; no scent-fitness relationship was found for plants 

exposed to night pollinators only.  When plants in wild populations were assessed, I found a 

significant quadratic relationship between daytime floral scent emission and female fitness, but 

no relationship between fitness and night scent.  This study is one of a few studies that explicitly 

assess the relationship between trait variation and fitness differences, a necessary condition for 

natural selection (Galen, 1985; Galen and Newport, 1988; Ackerman et al., 1997; Miyake and 

Yafuso, 2003; Valdivia and Niemeyer, 2006; Salzmann et al., 2007a, 2007b).  This research also 

surprisingly suggested that although H. matronalis produces its largest quantities of scent at 

dusk, the amount of scent emitted during the day may be subject to diurnal pollinator-mediated 

natural selection; night scent had no impact on fitness in these experiments. 

 Together, these findings provide several major unique insights into the study of 

floral scent evolution.  First, floral scent of H. matronalis does provide significant trait variation 

as material for natural selection, particularly when scent is considered in the context of 

associations with floral color.  This relationship between color and scent implies potential 

biochemical connections, particularly for aromatic compounds which could share production 
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pathway elements with anthocyanin pigment.  More research should consider conservatism in 

biochemistry as a plausible hypothesis for floral scent variation.  Results from my studies of 

floral scent variation, visitation, and female fitness suggest that syrphid flies (an often 

overlooked pollinator) are a likely agent of natural selection on floral scent.  While many studies 

make this assumption for other pollinators, few consider the behavior of all possible pollinators 

and direct relationships between fitness and floral scent before claiming the occurrence of 

pollinator-mediated natural selection on this trait.  Moreover, my research suggests that the 

relationship between pollinators, floral scent, and fitness may not be as straightforward as 

assumed.  Incorporating these elements into studies of floral scent evolution will provide explicit 

evidence for the conditions of natural selection and allow researchers to consider increased 

biological complexity in their questions, a previously difficult task under the restrictions of 

pollination syndrome theory.  From the groundwork described here, it will now be possible to 

carry out experimental studies measuring natural selection on floral scent for H. matronalis. 

 This dissertation suggests several new directions for research on floral scent 

evolution, in addition to the two central insights described above.  Although my study of within- 

and among-population variation did not contain the genetic or environmental experimental 

controls necessary to unequivocally assess phenotypic plasticity, the population-specific changes 

in floral scent profile in response to a novel rearing environment suggests the potential for floral 

scent plasticity (Chapter 3).  While the effects of environmental factors like atmospheric 

humidity, light regime, and temperature have been previously explored for the floral or 

vegetative scent of a few species (e.g., Loper and Lapioli, 1971; Hansted et al., 1994; Jakobsen 

and Olsen, 1994; Nielsen et al., 1995; Staudt and Bertin, 1998); only a few studies have 

considered growing condition aspects like soil moisture and nutrient levels (Loper and Berdel, 
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1978; Gouinguené and Turlings, 2002).  If floral scent is indeed plastic, pollinators will be 

presented with a “moving” selection target, making it difficult to discriminate between individual 

plants in a species like H. matronalis, where flowers are long-lived (C. Majetic, University of 

Pittsburgh, pers. obs.).  Future studies explicitly designed to examine the nature of floral scent 

phenotypic plasticity and its potential impacts on pollinator fauna will help to present a more 

realistic picture in this and other plant systems. 

 In Chapter 4, I present several hypotheses that may explain why I find different 

relationships between floral scent and female fitness under different conditions.  These include 

differential pollen limitation, a cost of floral scent production, and opposing selective pressures.  

These possibilities have been well-explored in other systems, but more research focusing on 

floral scent is needed for all three.  Perhaps most intriguing is the final possibility put forth in 

this chapter: the potential for density effects on floral scent cues to pollinators.  We know much 

about the synergy of olfactory (long-distance attraction) and visual cues (foraging behavior) for 

attracting pollinators in individual flowers or floral units (e.g., Lunau, 1992; Ômura et al., 1999; 

Kunze and Gumbert, 2001; Raguso and Willis, 2002).  However, individual plants often occur in 

dense stands where odor plumes overlap, changing the nature of the scent signal provided to 

pollinators and consequently altering the potential for natural selection on scent variants.  Future 

research should therefore move beyond simple experimental conditions and consider the 

potential for pollinator-mediated natural selection in a variety of scent environments. 

 Finally, the work described here uncovers substantial population differentiation 

for floral scent composition and emission rates across part of H. matronalis’s introduced range.  

There are many possible causes for population differentiation, including differential natural 

selection in populations and genetic drift (Conner and Hartl, 2004).  To truly understand the 
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evolutionary dynamics of floral scent in this species, future work must include studies that 

explore the causes of population differentiation, including differential selection pressures across 

populations and the potential for genetic drift. 

 

 

 

 

 

 

 

 

 

 

 

 

  91



APPENDIX A 

THE RELATIONSHIP BETWEEN FLORAL COLOR, PIGMENTATION, FLORAL 

TRAITS, AND VEGETATIVE TRAITS IN WILD POPULATIONS OF HESPERIS 

MATRONALIS 

I conducted two field surveys in the summer of 2003 to explore several characteristics associated 

with H. matronalis vegetative growth and floral form.  In my first survey, I sought to determine 

whether anthocyanin content in petal tissue can effectively define floral color (are purple morphs 

truly purple, i.e, contain more anthocyanins than white morphs); I also tested the anthocyanin 

content in leaf tissue to determine whether leaves from purple morphs contain more anthocyanin 

than leaves from white morphs.  In each of four populations, I marked 5 purple and 5 white 

individuals with flagging tape.  Tissue was removed from one open flower and one fully 

developed leaf on each plant for acidified methanol pigment extraction (modified from 

Harborne, 1998) and spectrophotometry using a Spectronic 21D (Model DV #332278, Milton 

Roy, Rochester, NY).  I then conducted ANOVAs (PROC GLM, SAS, 2007) assessing the 

effects of floral color, population identity, and their interaction on the light absorbance of leaf 

and floral tissue extracts. 
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On the same set of 40 plants, I also measured plant height, number of leaves, stem width, 

and the length and width of a randomly selected leaf.  To determine if these vegetative traits 

were associated with floral color or population, I conducted individual ANOVAs (PROC GLM, 

SAS, 2007).  I also estimated Pearson correlation coefficients (PROC CORR, SAS, 2007) 

between the vegetative traits to determine their associations. 

I conducted a concurrent survey on a separate set of four H. matronalis populations to 

determine whether floral color was associated with other attractive floral morphological 

characters.  I collected multiple flowers from each of 20 purple and 20 white plants in each of 

three populations and 20 purple and 16 white in a fourth population for a total of 156 plants 

sampled.  I then measured petal length, petal width, tube length, pistil length, short anther length, 

and long anther length (as in Conner and Sterling, 1995) on all flowers using digital calipers.  

Individual flower traits did not differ within a plant (data not shown), so I pooled all 

measurements to generate means for each plant for each trait.  These means were used in 

individual ANOVAs (PROC GLM, SAS, 2007) to test for effects of floral color, population 

identity, and their interaction. 

Color morphs differed significantly in their petal anthocyanin content; purple morphs 

displayed higher absorbance than white morphs across all populations examined (Table A.1, 

Figure A.1), suggesting that this method effectively evaluates pigment content in flowers.  Color 

morphs did not differ in their leaf anthocyanin content (Table A.1, Figure A.1), although we see 

significant variation in this trait between populations. 

Floral color morphs did not differ significantly in any vegetative trait (Table A.2), nor did 

they differ in terms of any floral morphological trait measured (Table A.3).  However, 

populations tended to differ in terms of leaf size (length and width), as well as stem diameter 
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(Table A.2).  Additionally, I found significant among-population variation in five of the six floral 

traits (Table A.3).  I also found significant correlations between most vegetative traits (Table 

A.4), suggesting that any one of these traits can be used to as a proxy of vegetative size for H. 

matronalis plants. 
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Table A.1 Individual ANOVA results assessing the effects of floral color (purple vs. white) and population identity 

on light absorbance by floral and leaf tissue samples in four populations of wild H. matronalis (N=40 plants). 

Variable DF Petal 
Absorbance 

Leaf Absorbance 

  F P F P 
Model 7 27.61 0.0001 2.62 0.03 
Color 1 187.83 0.0001 0.45 0.51 
Population 3 1.67 0.19 4.61 0.009 
Color*Population 3 0.15 0.93 1.35 0.28 

 
 

  95



Table A.2 Individual ANOVA results assessing the effects of floral color (purple vs. white) and population identity on vegetative traits in four wild populations 

of H. matronalis (N=40). 

Variable DF Plant Height 
(cm) 

Number of 
Leaves 

Leaf Length 
(mm) 

Leaf Width 
(mm) 

Stem Width 
(mm) 

  F P F P F P F P F P 
Model 7 1.26    0.30 0.67    0.69 3.77    0.004 4.92    0.0007 4.86    0.0008 
Color 1 0.78    0.38 0.46    0.50 0.14    0.71 0.00    0.99 0.57    0.46 
Population 3 1.73    0.18 0.88    0.46 6.86    0.001 10.70   0.0001 8.32    0.0003 
Color*Population 3 0.95    0.43 0.53    0.66 1.90    0.15 0.79    0.51 2.82    0.05 
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Table A.3 Individual ANOVA results assessing the effects of floral color (purple vs. white) and population identity on floral morphological traits in four wild 

populations of H. matronalis (all measurements in mm; N=156 plants)

Variable DF Petal Length Petal Width Tube Length Pistil Length Short Anther 
Length 

Long Anther 
Length 

  F P F P F P F P F P F P 
Model 7 5.92     0.0001 6.71    0.0001 3.68    0.001 1.66    0.12 2.13    0.04 3.74     0.0009 
Color 1 2.75     0.10 1.20    0.27 1.68    0.20 0.51    0.48 0.63    0.43 0.62     0.43 
Population 3 11.65    0.0001 13.44    0.0001 7.23    0.0001 1.30    0.28 3.85    0.01 7.89     0.0001 
Color*Population 3 1.33     0.27 2.00    0.12 0.92    0.44 2.39    0.07 0.93    0.43 0.78     0.51 
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Table A.4 Pearson correlation coefficients between vegetative traits in four populations of wild H. matronalis 

(N=40 plants).  Plant height is measured in centimeters, while leaf length and width, as well as stem width, are 

measured in millimeters.  Significant correlations are in bold. 

 Plant Height Leaf Number Leaf Length Leaf Width Stem Width 
 r P r P r P r P r P 
Plant 
Height 

-- -- 0.25      0.13     0.58      0.0001  0.37      0.02      0.32 0.04 

Leaf 
Number 

0.25      0.13      -- -- 0.38      0.02      0.23      0.15      0.47 0.002 

Leaf 
Length 

0.58      0.0001  0.38      0.02     -- -- 0.72      0.0001  0.34 0.03 

Leaf 
Width 

0.37      0.02      0.23      0.15     0.72      
 

0.0001  -- -- 0.15 0.35 

Stem 
Width 

0.32 0.04 0.47 0.002 0.34 0.03 0.15 0.35 -- -- 
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Figure A.1 Light absorbance (nm) of tissue from wild H. matronalis color morphs, measured by methanol 

extraction and spectrophotometry.  Pink bars represent petal tissue and green bars represent leaf tissue.  Bars with 

letters above them are significantly different by ANOVA.  Error bars indicate standard errors.

  99



APPENDIX B 

FLORAL COLOR, FLORAL VISITORS, AND SEED SET IN HESPERIS MATRONALIS 

To determine the major floral visitors to H. matronalis, I observed natural pollination in two wild 

populations in Crawford County, PA.  Observations were conducted on five warm and sunny 

days in the early summer of 2003, between the hours of 9:00am and 4:30.  On each day of 

observation, I selected a patch of plants within a population, making sure to select an area where 

visitation to both purple and white color morphs could be observed.  I then observed the patch 

for one hour, recording the number of flowers of each color observed, as well as the identity and 

number of all visitors to flowers.  Visitors were classified in one of four categories: bumblebees, 

small bees, butterflies/moths, and syrphid and other flies.  A new patch of flowers was observed 

each hour, for a total of 19 hours of observation.  From this data, I determined the relative 

percent of each type of floral visitor.  I also summed the number of visits to each flower color 

during each hour and divided by the number of flowers observed to calculate visitation rate for 

each color morph (visits per flower per hour).  I used this data in an ANOVA analysis (PROC 

GLM, SAS, 2007) to determine the effects of floral color and population on visitation rate. 

 Syrphids and other flies made up almost 44% of all floral visits during my 

observation periods, while 35% of visits were made by small bees.  Lepidopterans made 18% of 

  100



visits and bumblebees made the remaining 3%.  Purple morphs received an average of 0.26 ± 

0.07 visits/flower/hour and white morphs received 0.32 ± 0.07 visits/flower/hour; I found no 

difference between color morphs in terms of visitation rate (P = 0.4), nor any significant 

interaction between floral color and population (P = 0.94).  However, there was a significant 

difference in visitation rates between populations (P < 0.0001). 

 I conducted an experiment in the summer of 2005 to determine (1) the nature of 

self-compatibility in H. matronalis, (2) the contribution of day and dusk/night pollinators to seed 

set, and (3) the effects of floral color on self-compatibility and outcross pollination.  Twenty-four 

H. matronalis rosettes were harvested in early spring from a natural population located at the 

Housing Site of the Pymatuning Laboratory of Ecology (PLE).  These rosettes were transplanted 

into 1-gallon pots with Farfard™ #4 soil (Conrad Farfard, Agawam, Massachusetts, USA), 

watered daily, and housed in enclosures until flowering.  Upon flowering, the plants were moved 

back to their native population and four plants of each color were assigned to one of three 

treatments: no pollinators (autonomous pollen only), access by night pollinators, and access by 

day pollinators.  Treatments were imposed by surrounding inflorescences with bags made of 

small mesh bridal veil; plants in the no pollinator treatment were always bagged, those in the 

night access treatment were bagged during the day (7am-7pm), and those in the day access 

treatment were bagged during the night (7pm-7am).  Bags on the no pollinator plants were 

moved periodically to allow space for elongating inflorescences and to simulate manipulations in 

the other two treatments.  Treatments were imposed for 2 weeks, after which the pedicels of all 

treated flowers on all plants were marked with acrylic paint.  Plants were moved to enclosures to 

protect them from herbivores until fruits had reached maturity.  At fruit maturity, all fruits were 

collected, dissected, and the number of seeds counted to calculate number of seeds per fruit.  
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This was averaged across all fruits for each plant.  I then conducted an ANOVA (PROC GLM, 

SAS, 2007) to determine the effects of floral color, bagging treatment, and their interaction on 

seed set. 

 I found a significant effect of bagging treatment on seed set in H. matronalis (Table B.1): 

plants exposed to daytime pollinators made the most seeds, while plants exposed to no 

pollinators or dusk/night pollinators made comparatively few seeds (Figure B.1).  Additionally, I 

found a significant interaction between floral color and bagging treatment (Table B.1), where 

white morphs produce a similar amount of seeds regardless of treatment while purple morphs 

require exposure to daytime pollinators to set seed (Figure B.1).  Such a result suggests 

differences between color morphs in terms of self-compatibility and contribution of pollinators. 
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Table B.1  ANOVA results assessing the effects of floral color (purple vs. white) and bagging treatment (always 

bagged, open at night, or open at day) on seed set in potted H. matronalis (N=24 plants, 4 of each color in each of 3 

bagging treatments). 

Variable DF Seeds per Fruit 
  F P 
Model 5 5.12 0.004 
Color 1 0.61 0.45 
Bagging Treatment 2 8.16 0.003 
Color*Bagging 
Treatment 

2 4.34 0.03 
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Figure B.1 Seed set (number of seeds per fruit) of H. matronalis color morphs by bagging treatment.  Purple bars 

represent purple morphs and white bars represent white morphs.  Error bars indicate standard errors.  Letters over 

bars represent differences in means determined by post-hoc Tukey’s tests. 
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APPENDIX C 

THE GENETICS OF FLORAL COLOR IN HESPERIS MATRONALIS 

To determine the genetics of floral color inheritance in Hesperis matronalis, I harvested bolting 

plants from two wild populations in the spring of 2003.  These plants were potted into 1-gallon 

pots with Farfard™ #4 soil (Conrad Farfard, Agawam, Massachusetts, USA) and housed in the 

University of Pittsburgh greenhouse until flowering.  Upon flowering, color was noted on each 

plant.  I randomly selected several fully open flowers on each individual to receive pollen.  These 

flowers were marked with acrylic paint and emasculated to eliminate any opportunity for 

autonomous autogamy.  Half of the marked flowers were assigned to an outcross pollination 

treatment: using a paintbrush, I applied pollen from a randomly selected plant of opposite color 

from the same source population.  Pollen was obtained from actively dehiscing donor flowers on 

the day of pollination. The remaining marked flowers were assigned to a self-pollination 

treatment: pollen was transferred by paintbrush from a pollen donor on the same plant to the 

emasculated treatment flower.  Treated plants were maintained in the greenhouse until fruits had 

matured.  I harvested mature fruit from treated flowers and collected all fully developed seeds.  

These seeds were then planted in 98-well trays in Farfard™ #4 soil.  Crosses making less than 20 

seeds had all seeds planted; crosses making more than 20 seeds had only 20 seeds planted.  
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Plants were reared to rosette stage and transplanted into 3” pots, then reared in the greenhouse 

for approximately 1 year.  Following this growth period, all surviving plants were moved to the 

Pymatuning Laboratory of Ecology to overwinter.  Upon flowering, offspring were scored for 

floral color.  Mortality in the rosette stage due to forced bolting attempts, under-watering, and 

disease limited the number of flowering individuals to offspring from 8 purple-white crosses, 4 

purple self crosses, and 3 white self crosses.  The number of purple and white offspring resulting 

from these crosses is reported in Table D.1.   

 

The number and distribution of these crosses made it quite difficult to determine any 

genetic patterns for floral color inheritance statistically; all analyses fail to eliminate common 

patterns of inheritance (data not shown).  However, the prevalence of offspring of both colors in 

most crosses suggested that either many heterozygotes are found in the population or that at least 

two genes are involved in the inheritance of floral color for H. matronalis.  Future research 

focusing on fewer crosses with greater numbers of offspring will provide further insight into the 

mode of inheritance for floral color of this species 
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Table C.1  Floral color of offspring from genetic crosses in Hesperis matronalis. 

Cross ID Mother Color # Purple Offspring # White Offspring 
Purple-White Crosses    
EC2 Purple 0 2 
HS13 Purple 11 10 
RM16 White 1 4 
RM17 Purple 8 6 
RM1 White 5 2 
RM22 Purple 7 4 
RM2 Purple 4 3 
RM30 Purple 1 3 
Sum  37 34 
Purple Self Crosses    
RM10 Purple 13 0 
RM22 Purple 32 0 
RM2 Purple 1 2 
RM30 Purple 0 1 
Sum  46 3 
White Self Crosses    
HS14 White 0 1 
RM14 White 2 5 
RM3 White 0 2 
Sum  2 8 
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APPENDIX D 

CHAPTER 3 SUPPLEMENTAL DATA 

To augment the population survey described in Chapter 3, I collected descriptive data on all five 

populations included in my geographic gradient.  This included information on population 

positions (latitude/longitude), floral color polymorphism distribution, and population density and 

size estimates (Table D.1), as well the presence or absence of 6 major groups of pollinator fauna 

in each (Table D.2).  Populations across the geographical range of the survey encompassed a 

wide array of estimated sizes and densities, but all had a larger percentage of purple morphs 

(Table D.1) and a similar pollinator fauna present (Table D.2). 

 As part of the work in this chapter, I identified floral scent components, 

categorized them into six subcategories based on their biochemical origin, and quantified floral 

scent components using external (or occasionally internal) standards (see sections 3.3.4 and 3.3.5 

for details).  This information is provided in Table D.3.  Additionally, I calculated individual 

compound means means for each color in each population, as well as for the two garden-reared 

populations.  This information (Table D.4) is presented to supplement Figure 3.2, as some 

components contributed only a small amount to total scent and do not show up clearly in the pie 

graphs.   
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 Finally, to further verify whether floral scent emissions differ between color and 

populations for wild plants or between source populations for garden-reared plants, I conducted 

two sets of MANOVAs (PROC GLM, SAS, 2007), one on the three subcategories of aromatics 

(Table D.5, Table D.7) and another on the three subcategories of terpenoids (Table D.6, Table 

D.8); see section 3.3.7 for statistical details.  These tests allowed me to determine which 

subcategories contributed to within- or among-population variation for wild populations and 

which subcategories drive differentiation between source populations (see section 3.4 for 

detailed interpretation).  
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Population  Latitude/Longitutde % Purple % White Average Density  
(# flowering stems/m²) 

Size Estimate  
(# flowering stems)

ONT1 N 44º 01’, W 79º 31’ 57.8 42.2 24.33 500 
ONT2 N 43º 32’, W 79º 31’ 53.4 46.6 28.33 10,000 
PA1 N 41º 36’, W 80º 25’ 63.8 36.2 29.67 900 
PA2 N 41º 36’, W 80º 27’ 69.44 30.56 34.67 1200 
VA N 39º 05’, W 78º 04’ 71.67 28.33 46.33 1000 

 

Table D.1  Descriptive data from five populations of H. matronalis across part of its geographic range in North America 

 

 

 

 

 

 

 

 

 

 

 



Table D.2  Presence/absence summary of insect visitors to H. matronalis across populations in North America.   

Population Large 
Bees 

Small 
Bees 

Syrphid Flies Day-Flying 
Lepidopterans 

Night-Flying 
Lepidopterans

Other 

ONT1 Yes Yes Yes Yes No Beetles, Hummingbird (Rare) 
ONT2 Yes Yes Yes Yes No No 
PA1 Yes Yes Yes Yes Yes (Rare) Beetles 
PA2 Yes Yes Yes Yes Yes (Rare) Beetles, Hummingbird (Rare) 
VA Yes Yes Yes Yes Yes (Rare) No 
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Table D.3  Categorization of volatile compounds identified in Hesperis matronalis floral scent and standards used 

for quantification.  

Compound Retention 
Time 

External/Internal 
Standard? 

Name of Standard 

Aromatics    
 Benzenoid Compounds   
     Benzaldehyde 12.8 External Benzaldehyde 
     Phenylacetaldehyde 14.38 External 2-phenylethanol 
     Benzyl acetate 15.4 External Benzyl acetate 
     Methyl salicylate 16 External Benzyl acetate 
     Benzyl propionate 16.17 External Benzyl acetate 
     Phenylethyl actetate 16.41 External Benzyl acetate 
     Benzyl alcohol 17 External 2-phenylethanol 
     2-phenylethanol 17.43 External 2-phenylethanol 
     Benzyl benzoate 24.46 External Eugenol 
    
Phenyl Propanoid Compounds    
     Methyl Eugenol 18.48 External Eugenol 
     Eugenol 20.06 External Eugenol 

  
Nitrogen-Containing Benzenoid Compounds    
     Phenylacetonitrile 17.67 External 2-phenylethanol 
     Benzothiazole 18 Internal Toluene 
     Methyl anthranilate 21.1 External Eugenol 
    
Terpenoids    
Monoterpenoids    
     α-pinene 4.84 External E-β-ocimene 
     Β-pinene 6.3 External E-β-ocimene 
     Sabinene 6.58 External E-β-ocimene 
     β-myrcene 7.36 External E-β-ocimene 
     Limonene 7.91 External E-β-ocimene 
     Z-β-ocimene 8.55 External -β-ocimene
     E-β-ocimene 8.82 External -β-ocimene
    
Oxygenated Monoterpenoids    
     1,8 cineole 8.03 External  cineole
     Z-furanoid  linalool oxide 11.66 External Linalool 
     E-furanoid linalool oxide 12.05 External Linalool 
     E-β-ocimene epoxide 12.2 External 1,8 cineole 
     Linalool 13 External Linalool 
     Linalool epoxide 13.54 External Linalool 
     α-terpineol 14.93 External 1,8 cineole 
     Z-pyranoid linalool oxide 15.35 External Linalool 
     E-pyranoid linalool oxide 15.59 External Linalool 
    
Irregular and Sesquiterpenoids    
     E-4 dimethyl 1,3,7 nonatriene 9.7 External E-β-ocimene 
     6-methyl 5-hepten-2-one 10.16 External E-β-ocimene 
     α-farnesene 15.6 Internal Toluene 
     E,E-4,8,12-trimethyl- 1,3,7,11- tridecatetrane   16.81 Internal Toluene 

 

  

 E  
 E  

 1,8  
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Table D.3 Continued 

Compound Retention 
Time 

External/Internal 
Standard? 

Name of Standard 

Unknown Compounds    
     Unidentified terpenoid 1 
(m/z=41, 43, 55, 67, 69, 83, 95, 119, 123, 137) 

11.02 Internal Toluene 

     Unidentified terpenoid 2 
(m/z=43, 57, 69, 85, 109, 151) 

19.18 External Linalool 

     Unidentified terpenoid 3 
(m/z=43, 57, 69, 85, 109, 151) 

19.23 External Linalool 

     Unidentified terpenoid 4 
(m/z=43, 57, 69, 85, 109, 151) 

21.64 External Linalool 

     Unidentified aromatic  
(m/z=43, 77, 115, 133) 

19.75 Internal Toluene 
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PA1 PA2 VA 
Purple 
N=10 

White 
N=10 

Common 
Garden 
Purple 
N=13 

Purple 
N=10 

White 
N=10 

Common 
Garden 
Purple 
N=15 

Purple 
N=9 

White 
N=10 

Compound         
Aromatics         
Benzenoid Compounds         
    Benzaldehyde 1011.7 

(470.9) 
388.4 
(98.8) 

151.8  
(16.7) 

173.2  
(53.0) 

160.8 
(47.2) 

290.7  
(53.0) 

580.5 
(181.6) 

2779.9 
(1287.7) 

    Phenylacetaldehyde 0.1  
(0.0) 

0.08 
(0.01) 

0.04  
(0.01) 

0.06  
(0.02) 

0.07 
(0.02) 

0.06  
(0.01) 

0.09  
(0.01) 

0.1  
(0.0) 

    Benzyl acetate 1205.3 
(243.1) 

654.1 
(202.9) 

98.3  
(29.8) 

435.1 
(332.6) 

82.6 
(23.9) 

134.9  
(56.2) 

214.4  
(98.6) 

72.7 
(19.5) 

    Methyl salicylate 25.8  
(8.0) 

20.3  
(7.3) 

4.9  
(3.4) 

0.0  
(0.0) 

2.5  
(2.5) 

24.0  
(12.8) 

18.5  
(6.6) 

27.7  
(8.6) 

    Benzyl propionate 20.3  
(7.0) 

14.1  
(7.5) 

0.0  
(0.0) 

4.2  
(4.2) 

0.0  
(0.0) 

2.9  
(2.9) 

4.1  
(4.1) 

0.0  
(0.0) 

    Phenylethyl actetate 19.9  
(8.5) 

19.2  
(8.5) 

0.0 
(0.0) 

4.6  
(4.6) 

4.0  
(4.0) 

5.5  
(3.9) 

17.9  
(10.9) 

2.9  
(2.9) 

    Benzyl alcohol 0.1  
(0.0) 

8.5  
(8.4) 

0.07  
(0.01) 

0.07  
(0.02) 

0.06  
(0.02) 

0.09  
(0.09) 

0.1  
(0.0) 

0.1  
(0.0) 

    2-phenylethanol 0.06  
(0.02) 

0.04  
(0.02) 

0.02  
(0.01) 

0.05  
(0.02) 

0.02  
(0.01) 

0.03  
(0.01) 

0.08  
(0.01) 

0.08  
(0.01) 

    Benzyl benzoate 11.1  
(6.8) 

0.07  
(0.02) 

0.06  
(0.01) 

16.2  
(16.1) 

0.09  
(0.01) 

13.7  
(13.7) 

0.09  
(0.01) 

0.09  
(0.01) 

        
Phenyl Propanoid Compounds         
    Methyl Eugenol 0.01  

(0.01) 
0.02  
(0.01) 

0.0  
(0.0) 

0.02  
(0.01) 

0.03  
(0.02) 

0.0  
(0.0) 

0.07  
(0.02) 

0.08  
(0.01) 

    Eugenol 0.08  
(0.01) 

0.05  
(0.02) 

0.0  
(0.0) 

0.02  
(0.01) 

0.05  
(0.02) 

0.006  
(0.006) 

3.9  
(3.9) 

0.07  
(0.02) 

  

Table D.4 Mean floral scent volatile emission rates for wild populations (collected in situ) and common garden reared purple morphs of Hesperis matronalis.  

Values are given in ng per flower per hour. Sample sizes are listed for each population and standard errors are given in parentheses. 
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Table D.4 Continued 

PA1 PA2 VA 
Purple 
N=10 

White 
N=10 

Common 
Garden 
Purple 
N=13 

Purple 
N=10 

White 
N=10 

Common 
Garden 
Purple 
N=15 

Purple 
N=9 

White 
N=10 

Compound         
Aromatics         
Nitrogen-Containing Benzenoid 
Compounds 

        

    Phenylacetonitrile 0.05  
(0.02) 

0.04  
(0.02) 

0.0  
(0.0) 

0.02  
(0.01) 

0.02  
(0.01) 

0.006  
(0.006) 

0.08  
(0.01) 

0.08  
(0.01) 

    Benzothiazole 4.9  
(3.8) 

13.9  
(9.0) 

10.5  
(7.1) 

0.0  
(0.0) 

0.0  
(0.0) 

15.6  
(9.6) 

0.0  
(0.0) 

0.2  
(0.2) 

    Methyl anthranilate 0.04  
(0.02) 

0.05  
(0.02) 

0.04  
(0.01) 

0.0  
(0.0) 

0.0  
(0.0) 

0.07  
(0.01) 

0.01  
(0.01) 

0.01  
(0.01) 

        
Terpenoids         
Monoterpenoids         
    α-pinene 175.2  

(17.6) 
107.7  
(31.9) 

163.6  
(50.6) 

80.9  
(26.1) 

71.0  
(11.7) 

233.4  
(50.5) 

103.9  
(27.0) 

256.3  
(101.4) 

    β-pinene 96.9  
(14.9) 

78.5  
(15.8) 

110.9  
(34.5) 

53.0  
(4.6) 

46.2  
(6.6) 

128.3  
(30.7) 

79.6  
(18.7) 

111.6  
(20.9) 

    Sabinene 217.5  
(36.7) 

155.2  
(31.1) 

28.0  
(8.9) 

82.1  
(14.0) 

66.1  
(14.6) 

111.1  
(20.2) 

231.4  
(57.7) 

314.5  
(70.1) 

    β-myrcene 197.1  
(33.5) 

154.9  
(32.0) 

49.5  
(13.7) 

81.0  
(12.5) 

69.7  
(12.5) 

151.9  
(31.9) 

237.9  
(53.7) 

365.0  
(79.1) 

    Limonene 223.7  
(109.2) 

208.8  
(90.1) 

272.6  
(53.6) 

45.2  
(6.2) 

45.0  
(6.3) 

425.1  
(122.7) 

81.3  
(14.8) 

106.4  
(19.2) 

    Z-β-ocimene 119.8  
(24.6) ) ) ) ) ) 

 
5  

 
3  

 
3  

 
2  

 
2  

144.6  
(34.0

138.5  
(58.8) 

57.7  
(11.0

44.0  
(12.7

110.2  
(18.6) 

244.1  
(63.7

358.0  
(97.5

    E-β-ocimene 2597.0  
(728.1)

3334.
(940.6)

1406.4  
(342.0) 

1236.
(401.7)

1158.
(356.0)

984.2  
(293.1) 

4422.
(1764.3)

6917.
(1728.9) 
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Table D.4 Continued 

PA1 PA2 VA 
Purple 
N=10 

White 
N=10 

Common 
Garden 
Purple 
N=13 

Purple 
N=10 

White 
N=10 

Common 
Garden 
Purple 
N=15 

Purple 
N=9 

White 
N=10 

Compound         
Terpenoids         
Oxygenated Monoterpenoids         
    1,8 cineole 39.2  

(22.6) ) ) ) )  
19.9  
(10.9

0.06  
(0.01) 

25.3  
(21.8

0.1  
(0.01

0.08  
(0.01) 

210.2  
(90.2

320.4  
(100.4)

    Z-furanoid  linalool oxide 0.08  
(0.01) 

0.03  
(0.02) 

0.007  
(0.007) 

0.02  
(0.01) 

0.01  
(0.01) 

0.01  
(0.009) 

0.08  
(0.01) 

0.08  
(0.01) 

    E-furanoid linalool oxide 0.1  
(0.0) 

0.09  
(0.01) 

0.02  
(0.01) 

0.03  
(0.02) 

0.03  
(0.02) 

0.03  
(0.01) 

0.08  
(0.01) 

0.08  
(0.01) 

    E-β-ocimene epoxide 0.01  
(0.01) 

0.02  
(0.01) 

0.007  
(0.007) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.03  
(0.02) 

0.05  
(0.02) 

    Linalool 226.0  
(70.5) 

229.5  
(110.1) 

28.9  
(20.0) 

35.6  
(28.0) 

44.0  
(17.1) 

4.8  
(4.8) 

166.1  
(77.1) 

687.5  
(293.6) 

    Linalool epoxide 0.08  
(0.01) 

0.07  
(0.02) 

0.0  
(0.0) 

0.07  
(0.02) 

0.09  
(0.01) 

0.006  
(0.006) 

0.04  
(0.02) 

0.07  
(0.02) 

    α-terpineol 0.1  
(0.0) 

0.07  
(0.02) 

0.04  
(0.01) 

0.07  
(0.02) 

0.08  
(0.01) 

0.08  
(0.01) 

0.08  
(0.01) 

0.7  
(0.6) 

    Z-pyranoid linalool oxide 0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.01  
(0.01) 

    E-pyranoid linalool oxide 0.0  
(0.0) 

0.0  
(0.0) 

0.007  
(0.007) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.01  
(0.01) 

        
Irregular and Sesquiterpenoids         
    E-4 dimethyl 1,3,7 nonatriene 66.1  

(5.9) 
49.8  
(11.1) 

98.8  
(32.5) 

27.0  
(6.8) 

16.2  
(5.8) 

94.5  
(18.7) 

81.3  
(16.6) 

72.9  
(15.0) 

    6-methyl 5-hepten-2-one 140.7  
(23.4) 

130.3  
(17.1) 

236.9  
(48.0) 

99.9  
(24.2) 

51.5  
(10.0) 

359.8  
(61.8) 

76.8  
(9.9) 

103.2  
(31.8) 

    α-farnesene 2.1  
(1.2) 

14.7  
(10.9) 

18.1  
(13.8) 

0.001  
(0.001) 

0.0  
(0.0) 

12.5  
(4.1) 

19.0  
(7.3) 

35.3  
(13.0) 

    E,E-4,8,12-trimethyl- 
1,3,7,11- tridecatetrane   

6.5  
(2.2) 

7.6  
(3.1) 

31.7  
(8.8) 

5.1  
(3.0) 

1.3  
(0.6) 

77.3  
(21.2) 

4.6  
(1.4) 

13.4  
(4.8) 
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Table D.4 Continued 

PA1 PA2 VA 
Purple 
N=10 

White 
N=10 

Common 
Garden 
Purple 
N=13 

Purple 
N=10 

White 
N=10 

Common 
Garden 
Purple 
N=15 

Purple 
N=9 

White 
N=10 

Compound         
Unknown Compounds         
    Unidentified terpenoid 1 

(m/z=41, 43, 55, 67, 69, 83, 95, 
119, 123, 137) 

150.0  
(63.3) 

134.0  
(48.1) 

343.1  
(196.6) 

36.3  
(8.8) 

30.0  
(6.1) 

253.1  
(62.6) 

55.4  
(17.5) 

47.9  
(16.0) 

    Unidentified terpenoid 2 
(m/z=43, 57, 69, 85, 109, 151) 

0.09  
(0.01) 

0.07  
(0.02) 

0.04  
(0.01) 

0.07  
(0.02) 

0.1  
(0.0) 

0.06  
(0.01) 

0.08  
(0.01) 

0.1  
(0.0) 

    Unidentified terpenoid 3 
(m/z=43, 57, 69, 85, 109, 151) 

0.09  
(0.01) 

0.08  
(0.01) 

0.03  
(0.01) 

0.09  
(0.01) 

0.1  
(0.0) 

0.05  
(0.01) 

0.08  
(0.01) 

0.1  
(0.0) 

    Unidentified terpenoid 4 
(m/z=43, 57, 69, 85, 109, 151) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.02  
(0.01) 

0.04  
(0.02) 

0.0  
(0.0) 

0.03  
(0.02) 

0.04  
(0.02) 

    Unidentified aromatic  
(m/z=43, 77, 115, 133) 

0.3  
(0.3) 

0.8  
(0.8) 

0.0  
(0.0) 

0.3  
(0.3) 

0.0  
(0.0) 

0.0  
(0.0) 

0.08  
(0.08) 

0.0  
(0.0) 
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Table D.4 Continued 

ONT1 ONT2 
Purple 
N=10 

White 
N=10 

Purple 
N=10 

White 
N=10 

Compound     
Aromatics     
Benzenoid Compounds    
    Benzaldehyde 64.8  

(16.3) 
314.3  
(0.194.3) 

94.9  
(46.4) 

88.4  
(17.4) 

    Phenylacetaldehyde 0.09  
(0.01) 

0.1  
(0.0) 

12.1  
(12.1) 

0.8  
(0.8) 

    Benzyl acetate 56.3  
(20.3) 

181.6  
(71.4) 

158.6  
(72.8) 

197.1  
(100.5) 

    Methyl salicylate 0.0  
(0.0) 

1.8  
(1.8) 

13.5  
(7.4) 

16.6  
(7.7) 

    Benzyl propionate 0.0  
(0.0) 

0.0  
(0.0) 

6.4  
(6.4) 

9.0  
(6.3) 

    Phenylethyl actetate 0.0  
(0.0) 

7.6  
(4.2) 

8.8  
(6.8) 

11.7  
(7.9) 

    Benzyl alcohol 0.08  
(0.01) 

0.09  
(0.01) 

0.09  
(0.01) 

0.09  
(0.01) 

    2-phenylethanol 0.02  
(0.01) 

0.07  
(0.02) 

0.05  
(0.02) 

0.05  
(0.02) 

    Benzyl benzoate 0.07  
(0.02) 

0.09  
(0.01) 

12.8  
(12.8) 

51.5  
(51.4) 

    

 

Phenyl Propanoid Compounds     
    Methyl Eugenol 0.03  

(0.02) 
0.04  
(0.02) 

0.01  
(0.01) 

0.02  
(0.01) 

    Eugenol 0.07  
(0.02) 

4.9  
(4.9) 

0.03  
(0.02) 

4.4  
(4.3) 
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Table D.4 Continued 

ONT1 ONT2 
Purple 
N=10 

White 
N=10 

Purple 
N=10 

White 
N=10 

Compound     
Aromatics     
Nitrogen-Containing Benzenoid 
Compounds 

    

    Phenylacetonitrile 0.02  
(0.01) 

0.02  
(0.01) 

0.03  
(0.02) 

0.01  
(0.01) 

    Benzothiazole 0.0  
(0.0) 

0.6  
(0.4) 

0.0  
(0.0) 

0.5  
(0.3) 

    Methyl anthranilate 0.08  
(0.01) 

0.04  
(0.02) 

0.1  
(0.0) 

0.09  
(0.01) 

    
Terpenoids     
Monoterpenoids     
    α-pinene 134.8  

(53.7) 
89.1  
(17.4) 

35.5  
(10.5) 

72.9  
(23.6) 

    β-pinene 39.7  
(6.1) 

38.9  
(6.6) 

24.5  
(6.1) 

26.9  
(8.0) 

    Sabinene 68.6  
(13.9) 

52.8  
(10.0) 

40.1  
(10.0) 

72.5  
(15.1) 

    β-myrcene 78.3  
(14.7) 

75.8  
(14.9) 

61.1  
(10.0) 

98.5  
(16.4) 

    Limonene 43.8  
(6.6) 

55.1  
(13.6) 

43.0  
(4.1) 

56.2  
(3.7) 

    Z-β-ocimene 73.3  
(16.9) 

110.7  
(26.2) 

83.3  
(11.6

106.3  
(16.5

    E-β-ocimene 1483.8  
(358.4) 

2693.8  
(696.8) 

1529.   
(422.4

2025.5  
(360.9)

) ) 
7
)  
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Table D.4 Continued 

ONT1 ONT2 
Purple 
N=10 

White 
N=10 

Purple 
N=10 

White 
N=10 

Compound     
Terpenoids     
Oxygenated Monoterpenoids     
    1,8 cineole 5.0  

(3.3) 
0.1  
(0.0) 

0.5  
(0.4) ) 

26.7  
(19.3

    Z-furanoid  linalool oxide 0.04  
(0.02) 

0.03  
(0.02) 

0.1  
(0.0) 

0.09  
(0.01) 

    E-furanoid linalool oxide 0.08  
(0.01) 

0.06  
(0.02) 

0.1  
(0.0) 

0.09  
(0.01) 

    E-β-ocimene epoxide 0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.01  
(0.01) 

    Linalool 16.8  
(8.3) 

65.5  
(33.9) 

52.9  
(29.0) 

0.0  
(0.0) 

    Linalool epoxide 0.02  
(0.01) 

0.02  
(0.01) 

0.01  
(0.01) 

0.0  
(0.0) 

    α-terpineol 0.1  
(0.0) 

0.09  
(0.01) 

0.07  
(0.02) 

0.1  
(0.0) 

    Z-pyranoid linalool oxide 0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

    E-pyranoid linalool oxide 0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

0.0  
(0.0) 

    
Irregular and Sesquiterpenoids     
    E-4 dimethyl 1,3,7 nonatriene 23.7  

(6.0) 
34.9  
(5.3) 

48.6  
(6.1) 

50.9  
(8.9) 

    6-methyl 5-hepten-2-one 53.8  
(6.9) 

77.6  
(15.7) 

71.9  
(9.5) 

109.2  
(28.7) 

    α-farnesene 7.2  
(3.0) 

22.3  
(9.8) 

6.0  
(3.8) 

4.4  
(2.4) 

    E,E-4,8,12-trimethyl- 
1,3,7,11- tridecatetrane   

9.6  
(2.4) 

17.6  
(4.6) 

27.6  
(5.9) 

28.2  
(7.7) 
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Table D.4 Continued 

ONT1 ONT2 
Purple 
N=10 

White 
N=10 

Purple 
N=10 

White 
N=10 

Compound     
Unknown Compounds     
    Unidentified terpenoid 1 

(m/z=41, 43, 55, 67, 69, 83, 95, 
119, 123, 137) 

31.0  
(6.0) 

64.2  
(15.7) 

16.2  
(2.9) 

25.4  
(7.7) 

    Unidentified terpenoid 2 
(m/z=43, 57, 69, 85, 109, 151) 

0.09  
(0.01) 

0.1  
(0.0) 

0.09  
(0.01) 

0.1  
(0.0) 

    Unidentified terpenoid 3 
(m/z=43, 57, 69, 85, 109, 151) 

0.08  
(0.01) 

0.09  
(0.01) 

0.09  
(0.01) 

0.09  
(0.01) 

    Unidentified terpenoid 4 
(m/z=43, 57, 69, 85, 109, 151) 

0.01  
(0.01) 

0.05  
(0.02) 

0.03  
(0.02) 

0.02  
(0.01) 

    Unidentified aromatic  
(m/z=43, 77, 115, 133) 

0.0  
(0.0) 

0.2  
(0.2) 

0.001  
(0.001) 

0.0  
(0.0) 
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Table D.5  Individual ANOVA and MANOVA results assessing the effects of floral color and population on 3 

aromatic subcategories of in situ floral scent emission rates in H. matronalis.  Type III sums of squares and Wilk’s 

Lambda statistic results presented. 

  Individual ANOVA results MANOVA Results 
Variable DF Benzenoids Phenyl-

Propanoids 
Nitrogen-

Containing 
Benzenoids 

Wilk’s Lambda  

  F P F P F P DF F P 
Model 9 8.76    0.0001 0.80   0.61 2.48    0.01 - - - 
Color 1 0.40    0.53 0.40   0.53 1.25    0.27 3 0.68 0.57 
Population 4 17.34   0.0001 0.55   0.70 4.75    0.002 12 7.13 0.0001 
Color x Population 4 2.13    0.08 1.16 0.33 0.51    0.73 12 1.23 0.26 
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Table D.6  Individual ANOVA and MANOVA results assessing the effects of floral color and population on 3 

terpenoid subcategories of in situ floral scent emission rates in H. matronalis.  Type III sums of squares and Wilk’s 

Lambda statistic results presented. 

  Individual ANOVA results MANOVA Results 
Variable DF Monoterpenoids Oxygenated 

Monoterpenoids 
Irregular and 

Sequiterpenoids 
Wilk’s Lambda  

  F P F P F P DF F P 
Model 9 3.70    0.0006 5.27    0.0001 4.20    0.0002 - - - 
Color 1 2.24    0.14 1.47    0.23 0.11    0.74 3 1.91 0.13 
Population 4 6.69    0.0001 10.23   0.0001 7.36    0.0001 12 5.37 0.0001 
Color x 
Population 

4 0.96    0.43 1.04    0.39 2.05    0.09 12 1.22 0.27 
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Table D.7  Individual ANCOVA and MANCOVA results assessing the effects of source population (controlling for 

plant size) on 3 aromatic subcategories of floral scent emission rates in common garden reared purple H. matronalis.  

Type III sums of squares and Wilk’s Lambda statistic results presented. 

  Individual ANCOVA results MANCOVA Results 
Variable DF Benzenoids Phenyl-

Propanoids 
Nitrogen-

Containing 
Benzenoids 

Wilk’s Lambda  

  F P F P F P DF F P 
Model 2 2.13    0.14 0.42   0.66 0.18    0.83 - - - 
Source Population 1 4.22    0.05 0.83   0.37 0.25    0.62 3 2.41 0.09 
Plant Height 1 0.00    0.99 0.00   0.97 0.15    0.70 - - - 
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Table D.8  Individual ANCOVA and MANCOVA results assessing the effects of source population (controlling for 

plant size) on 3 terpenoid subcategories of floral scent emission rates in common garden reared purple H. 

matronalis.  Type III sums of squares and Wilk’s Lambda statistic results presented. 

  Individual ANCOVA results MANCOVA Results 
Variable DF Monoterpenoids Oxygenated 

Monoterpenoids 
Irregular and 

Sesquiterpenoids 
Wilk’s Lambda  

  F P F P F P DF F P 
Model 2 0.28     0.76 1.02    0.37 3.81 0.04 - - - 
Source Population 1 0.05     0.83 1.10    0.30 3.37    0.08 3 0.96 0.43 
Plant Height 1 0.48     0.50 1.16    0.29 5.02    0.03 - - - 
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