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DISSERTATION ABSTRACT 

 
 
 

THE DIRECT AND INDIRECT EFFECTS OF HERBAL PRODUCTS ON COMMON DRUG 
METABOLIZING ENZYMES AND DRUG TRANSPORTERS 

 
 

Bernard J. Komoroski, Pharm.D. 
 
 

University of Pittsburgh, 2005 
 
 
 

 The increase in the use of herbal products, particularly in patients taking conventional 

medicine, has increased the likelihood of drug-herb interactions.  Herbal products sold to the 

public are often not a single chemical compound, but rather a complex mixture of hundreds of 

different constituents.  Human microsomal systems have been employed as a cost and time 

efficient approach to prospectively evaluate individual constituents for the potential for 

interactions with drug metabolizing enzymes.  In fact, it has been shown that certain herbal 

constituents are capable of direct inhibition of drug metabolizing enzymes in this system.  

However, extrapolation of the drug interaction potential to cellular systems or whole organisms 

is often difficult because the preparation of microsomes necessitates the destruction of the 

integrity of the living cell and the physiologically relevant processes within.  The primary goal of 

this dissertation research was to investigate the effect of herbal products on human hepatic drug 

metabolizing enzymes and transporters using primary cultures of human hepatocytes. 

 Cultured hepatocytes were exposed to the various herbal constituents acutely, to evaluate 

the direct effect on enzyme activity, or chronically, to evaluate the indirect effect on enzyme 

expression and subsequent activity.  Additionally, in order to assess to scalability of our in vitro 

 iv



UGT1A results to humans, healthy human subjects were administered acetaminophen, a general 

UGT1A probe, before and after a 7-day course of milk thistle.  

 These data demonstrate that herbal constituents can directly inhibit enzyme activity but 

also influence activity by indirectly modulating gene expression.  In the case of St. John’s wort, 

human hepatocytes showed that while constituents were capable of enzyme induction, inhibition 

also occurred.  However, in vivo, it is the former that predominates over the latter.  Furthermore, 

our predictions of interactions in vivo for St. John’s wort have been validated through a number 

of clinical studies.  The case of milk thistle, however, proved more complex.  While our in vitro 

data showed the possibility of drug interactions with several drug metabolizing enzymes, little 

effect was found in vivo.  The latter demonstrates the value of consideration of the entire 

pharmacologic profile of an herb before conclusions about clinical relevance are made. 

 v



 
 
 
 

TABLE OF CONTENTS 
 
 
ACKNOWLEDGEMENTS ........................................................................................................ iii 
DISSERTATION ABSTRACT................................................................................................... iv 
LIST OF TABLES ....................................................................................................................... ix 
LIST OF FIGURES ...................................................................................................................... x 
1. INTRODUCTION................................................................................................................. 1 

1.1. Herbal supplement use in the United States ................................................................... 2 
1.2. Drug metabolism pathways............................................................................................. 4 
1.3. Hepatic transport systems ............................................................................................... 7 
1.4. Regulation of Hepatic Drug Metabolizing Enzymes and Transporters .......................... 9 
1.5. Use of human hepatocytes to study drug metabolism and drug transport .................... 13 
1.6. Herbal product research ................................................................................................ 16 
1.7. St. John’s wort .............................................................................................................. 17 
1.8. Milk Thistle................................................................................................................... 19 
1.9. Summary and Introduction to Dissertation ................................................................... 22 

2. MATERIALS AND METHODS ....................................................................................... 25 
2.1. Chemicals...................................................................................................................... 26 
2.2. Hepatocyte isolation...................................................................................................... 27 
2.3. General hepatocyte treatment ....................................................................................... 28 
2.4. Analytical Methods....................................................................................................... 28 

2.4.1. Luminescent spectrophotometric measurement of CYP1A2 activity................... 28 
2.4.2. HPLC measurement of CYP3A4 activity ............................................................. 30 
2.4.3. HPLC measurement of UGT1A1 activity............................................................. 30 
2.4.4. HPLC measurement of acetaminophen metabolism............................................. 30 
2.4.5. Determination of total protein............................................................................... 31 
2.4.6. Measurement of immunodetectable protein.......................................................... 31 
2.4.7. Measurement of DME mRNA expression............................................................ 32 
2.4.8. Real-Time PCR..................................................................................................... 32 

3. OPTIMIZATION OF CULTURE CONDITIONS TO STUDY DRUG 
METABOLIZING ENZYMES AND DRUG TRANSPORTER ACTIVITY AND 
EXPRESSION ............................................................................................................................. 35 

Abbreviations........................................................................................................................ 36 
3.1. Abstract ......................................................................................................................... 37 
3.2. Introduction................................................................................................................... 38 
3.3. Methods......................................................................................................................... 40 

3.3.1. Hepatocyte treatment protocol.............................................................................. 40 
3.3.2. Evaluation of BSEP activity ................................................................................. 42 
3.3.3. Evaluation of BSEP expression ............................................................................ 43 
3.3.4. Data analysis ......................................................................................................... 43 

3.4. Results........................................................................................................................... 44 

 vi



3.5. Discussion..................................................................................................................... 54 
4. DIRECT EFFECT OF THE MILK THISTLE CONSTITUENT SILYBIN ON 
HEPATIC PHASE I AND PHASE II DRUG METABOLIZING ENZYMES AND 
CANALICULAR TRANSPORT IN HUMAN HEPATOCYTES.......................................... 60 

4.1. Abbreviations................................................................................................................ 61 
4.2. Abstact .......................................................................................................................... 62 
4.3. Introduction................................................................................................................... 64 
4.4. Methods......................................................................................................................... 66 

4.4.1. Evaluation of the cytotoxicity of silybin to human hepatocytes........................... 66 
4.4.2. Hepatocyte treatment protocol for the effect of silybin on CYP3A, UGT1A, 
UGT1A1 66 
4.4.3. Evaluation of BSEP activity ................................................................................. 67 
4.4.4. Data analysis ......................................................................................................... 68 

4.5. Results........................................................................................................................... 69 
4.5.1. Effect of silybin on CYP3A4 expression and activity .......................................... 70 
4.5.2. Effect of silybin on UGT1A1 expression and activity.......................................... 73 
4.5.3. Effect of silybin exposure on BSEP activity......................................................... 77 

4.6. Discussion..................................................................................................................... 79 
5. EFFECT OF MILK THISTLE ON UGT1A METABOLISM IN HUMANS............... 86 

5.1. Abbreviations................................................................................................................ 87 
5.2. Abstract ......................................................................................................................... 88 
5.3. Introduction................................................................................................................... 89 
5.4. Methods......................................................................................................................... 90 

5.4.1. Human Subjects .................................................................................................... 90 
5.4.2. Study Design......................................................................................................... 90 
5.4.3. APAP and APAP-G Analysis ............................................................................... 91 
5.4.4. Data Analysis ........................................................................................................ 92 

5.5. Results........................................................................................................................... 93 
5.6. Discussion..................................................................................................................... 95 

6. INDIRECT AND DIRECT EFFECT OF ST. JOHN’S WORT CONSTITUENTS ON 
COMMON DRUG METABOLIZING ENZYMES .............................................................. 100 

6.1. Abbreviations.............................................................................................................. 101 
6.2. Abstact ........................................................................................................................ 102 
6.3. Introduction................................................................................................................. 103 
6.4. Methods....................................................................................................................... 104 

6.4.1. Hepatocyte Donors.............................................................................................. 104 
6.4.2. Evaluation of the cytotoxicity of hyperforin/hypericin to human hepatocytes... 104 
6.4.3. Hepatocyte treatment protocol............................................................................ 106 
6.4.4. Analytical procedures ......................................................................................... 106 
6.4.5. Data Analysis ...................................................................................................... 107 

6.5. Results......................................................................................................................... 107 
6.5.1. Assessment of hyperforin and hypericin mediated cytotoxicity......................... 107 
6.5.2. Effect of hypericin and hyperforin on enzyme activity ...................................... 108 
6.5.3. Effect of hypericin and hyperforin on protein content........................................ 110 
6.5.4. Effect of hypericin and hyperforin on mRNA expression .................................. 116 

6.6. Discussion................................................................................................................... 116 

 vii



7. INDIRECT EFFECT OF THE ST. JOHN’S WORT CONSTITUENT HYPERFORIN 
ON DOCETAXEL METABOLISM ....................................................................................... 121 

7.1. Abbreviations.............................................................................................................. 122 
7.2. Abstact ........................................................................................................................ 123 
7.3. Introduction................................................................................................................. 124 
7.4. Methods....................................................................................................................... 126 

7.4.1. Hepatocyte treatment protocol............................................................................ 126 
7.4.2. LC/MS/MS measurements of docetaxel metabolism. ........................................ 126 

7.5. Results......................................................................................................................... 127 
7.5.1. Performance of LC/MS/MS System ................................................................... 127 
7.5.2. Effect of hyperforin on docetaxel metabolism.................................................... 128 

7.6. Discussion................................................................................................................... 131 
8. CONCLUSIONS AND FUTURE DIRECTIONS.......................................................... 134 
APPENDIX A............................................................................................................................. 139 

Effect of milk thistle on the pharmacokinetics of midazolam:  A progress report ................. 139 
Introduction............................................................................................................................. 140 
Methods................................................................................................................................... 141 
Results and Discussion ........................................................................................................... 143 

APPENDIX B ............................................................................................................................. 148 
Milk Thistle-Acetaminophen Drug Interaction Study Protocol and Informed Consent......... 148 

APPENDIX C ............................................................................................................................. 162 
Milk Thistle-Midazolam Drug Interaction Study Protocol, Informed Consent, and 
Advertisement ......................................................................................................................... 162 

BIBLIOGRAPHY....................................................................................................................... 185 
 
 
 

 viii



 
 
 
 

LIST OF TABLES 

 
 

Table 1.  Selected substrates, inducers and inhibitors for common drug metabolizing enzymes 
and drug transporters............................................................................................................... 6 

Table 2.  Classification of common hepatic nuclear receptors. .................................................... 11 

Table 3.  Systems to study hepatic drug metabolism.................................................................... 14 

Table 4.  Culture conditions and analysis of enzyme activity in human hepatocyte cultures ...... 29 

Table 5.  Real-Time PCR primers for genes detected by SYBR Green. ...................................... 34 

Table 6.  Donor information for human hepaotycte preparations used in Chapter 3.................... 41 

Table 7.  Summary of optimized culture conditions to study drug metabolism and drug transport
............................................................................................................................................... 56 

Table 8.  Donor information for human hepaotycte preparations used in Chapter 4.................... 68 

Table 9.  Mean pharmacokinetic parameters of APAP and APAP-G before and after a 7-day 
administration of milk thistle 100 mg b.i.d. in 8 healthy subjects ........................................ 93 

Table 10.  Donor information for human hepaotycte preparations used in Chapter 6................ 105 

Table 11.  Effect of hypericin and hyperforin on CYP2C9 and CYP3A4/5 activity.................. 111 

Table 12.    Donor information for human hepaotycte preparations used in Chapter 7.............. 126 

Table 13.  Effects of hyperforin on docetaxel metabolism in human hepatocytes. .................... 130 

Table 14.  Midazolam pharmacokinetic parameters before and after milk thistle administration
............................................................................................................................................. 147 

 

 
 

 ix



 
 
 
 

LIST OF FIGURES 

 
 
 

Figure 1. Uptake and efflux transportes in human liver ................................................................. 8 

Figure 2.  Hepatic drug metabolizing enzymes and transporters that are regulated by nuclear 
receptors................................................................................................................................ 12 

Figure 3.  Chemical Structure of hyperforin................................................................................. 18 

Figure 4.  Chemical structure of silybin, silydianin and silychristin ............................................ 20 

Figure 5.  Effect of time and DMSO treatment on CYP3A activity (A) and expression (B). ...... 45 

Figure 6.  Effect of rifampicin  exposure time on CYP3A activity. ............................................. 46 

Figure 7.  Difference in CYP1A2 induction between 2 day and 6 day exposure to βNF 25 µM. 47 

Figure 8.  Difference in UGT1A1 induction between 2 day and 6 day exposure to PB 1 mM in 
PCHH coated with Matrigel™.............................................................................................. 48 

Figure 9.  UGT1A1 protein content in hepatocytes in monolayer and coated with matrigel before 
and after exposure to PB (1 mM).......................................................................................... 49 

Figure 10.  Effect of matrigel on CYP1A2 (A), CYP3A4 (B), UGT1A1 (C) inducible activity. 50 

Figure 11.  Effect of matrigel on [3H]taurocholate efflux............................................................ 51 

Figure 12.  mRNA expression in monolayered and Matrigel treated human hepatocytes. .......... 52 

Figure 13.  Changes in cellular morphology and BSEP protein expression in MG overlayed 
hepatocytes............................................................................................................................ 53 

Figure 14.  Effect of silybin on MTT reduction............................................................................ 69 

Figure 15.  Effect of silybin on testosterone metabolism in human hepatocytes. ........................ 70 

Figure 16.  Effect of chronic silybin exposure on CYP3A4 mRNA expression, protein content 
and activity............................................................................................................................ 71 

Figure 17.  Effect of chronic silybin exposure on UGT1A1 mRNA expression, protein content 
and activity............................................................................................................................ 72 

Figure 18.  Inhibition of SN-38 and APAP metabolism by silybin in human hepatocytes. ......... 74 

Figure 19.  Lack of effect of UDPGA on silybin inhibition of SN-38 metabolism...................... 74 

Figure 20.  Effect of acute silybin BSEP efflux of [3H]taurocholate........................................... 75 

Figure 21.  Effect of acute silybin on BSEP uptake of [3H] taurocholate.................................... 76 

Figure 22.  Effect of chronic silybin exposure on BSEP mRNA expression and activity............ 78 

 x



Figure 23.  Effect of glyburide on BSEP activity. ........................................................................ 79 

Figure 24.  Effect of milk thistle therapy on acetaminophen AUC and t1/2. ................................. 94 

Figure 25.  Reduced metabolism of SN-38 in donors heterozygous and homozygous for UGT1A1 
(TA)7 repeat. ......................................................................................................................... 98 

Figure 26.  Effect of hypericin and hyperforin on MTT reduction............................................. 109 

Figure 27.  Effect of hypericin and hyperforin on CYP3A activity............................................ 112 

Figure 28.  Effect of 48 hour chronic (c), 1 hour pretreatment (p), and acute (a) hyperforin 
exposure on CYP3A activity. ............................................................................................. 113 

Figure 29.  Effect of hypericin and hyperforin on hepatic CYP450 protein content.................. 114 

Figure 30.  Effect of hypericin and hyperforin on CYP450 mRNA levels................................. 115 

Figure 31.  Chromatogram of docetaxel containing media following incubation in  human 
hepatocytes.......................................................................................................................... 129 

Figure 32.  Effect of hyperforin on docetaxel metabolism in human hepatocyes. ..................... 131 

Figure 33.  Silymarin and silybin content in various milk thistle products. ............................... 145 

Figure 34.  Midazolam concentration-time profile before and after milk thistle administration.
............................................................................................................................................. 146 

 

 
 
 

 xi



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. INTRODUCTION 

 

 1



 

1.1. Herbal supplement use in the United States 

The use of herbs in the treatment and prevention of disease has been widely practiced in 

various cultures for thousands of years.  Mandrake (Mandragora officinarum) was used as an 

analgesic and narcotic, foxglove (Digitalis purpurea) was used in patients suffering from 

‘dropsy’, or congestive heart failure, and first used clinically by Dr. William Withering in the 

late 18th century, and hemlock (Conium maculatum), known for its potent depression of the 

nervous system and for its most famous victim, Socrates in 399 B.C.  The use of botanically 

derived therapies covered a variety of ailments and was not endemic to any one civilization, 

culture or historical era. 

 Exactly how long humans have been using herbal medicine is unknown.  Archeological 

evidence and pollen analysis from a Neanderthal burial site in modern day Iraq indicates the use 

of medicinal plants dating to 50,000 B.C. (Solecki, 1975).  More recently, in the 20th century, the 

U.S. has witnessed an increasing yet relatively slow growth in the use of herbal products, 

reaching 2.5% of the adult population in 1990 (Eisenberg et al., 1998; Kessler et al., 2001).  

However, the 1990’s witnessed an explosion in the use of complementary and alternative 

medicine (CAM), a blanket term used to describe a number of healthcare practices that are not 

presently considered part of traditional medical practices.  In a comprehensive review on trends 

in the usage of CAM, the use of herbal supplements was reported to have increased from 2.5% in 

patients in 1990, and only the sixth most common form of CAM, to 12.1%, and the second most 

common form of CAM used, in 1997 (Eisenberg et al., 1998).  This occurred despite reduced 

levels of reimbursement by the insurance industry in 1990 (Eisenberg et al., 1998).  While recent 

economic data, in the form of units sold, indicates that the growth in the herbal market has 

plateaued relative to the 1990s,(Blumenthal, 2003) other reports indicate increased use of herbal 
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supplements to between 20% and 30% of the U.S. population over the age of 18 years (Nelson 

and Perrone, 2000; Kessler et al., 2001; Kaufman et al., 2002; Rafferty et al., 2002).  

Demographic information showed that those more likely to take herbal supplements include 

females, Caucasians, those with more education and patients with a compromised health status 

(Rafferty et al., 2002). 

 Excluding herbal supplements and vitamins, approximately 81% of adults over the age of 

18 have used some over-the-counter or prescription drug in the past week, with 25% taking 

greater than 5 drugs and 5% taking greater than 10 drugs (Kaufman et al., 2002).  When the high 

number of adults taking conventional drugs is combined with an increasing population taking 

herbal supplements, the theoretical possibility of overlap between the two exists.  Unfortunately, 

in terms of a drug-herb interaction potential, recent data suggests that the theory has proven 

correct.  One study showed that the concomitant use of herbal supplements over the past week 

was 7% in paroxetine (Paxil®) users, but higher in patients taking simvastatin (20%), conjugated 

estrogens (21%) or fluoxetine (22%) (Kaufman et al., 2002).   

 The general public, when asked why they take herbal supplements, often reply that they 

are “good for you” or they are “all natural” (Kaufman et al., 2002).  These marketing tactics 

mask the fact that these “all natural” extracts are actually a hodge-podge of potentially 

biologically active compounds that exist in the capsule in unknown quantities.  Because herbal 

products are officially defined as “dietary supplements” as stated in the Dietary Supplement 

Health and Education Act of 1994, their manufacture and composition is largely unregulated by 

the Food and Drug Administration (http://www.fda.gov/opacom/laws/dshea.html).  Dietary 

supplements also contain several chemicals that are eliminated by various metabolic enzymes in 

the body. 
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 Dating back to 1985, drug-drug interactions have played a role in half of U.S. market 

withdrawals of approved drugs (Huang and Lesko, 2004).  A number of these interactions 

involved the inhibition of drug metabolizing enzymes and/or drug transporters resulting in 

increased levels of one or both drugs leading to adverse drug reactions.  Conversely, the 

induction of these same enzyme systems caused a decrease in the overall body exposure to the 

drug creating a situation where the patient was underdosed.  It is of importance that potential 

drug-herb interactions be identified in order to prevent adverse outcomes in patients taking 

combinations of drugs and herbal supplements.  Also, the identification of the mechanism behind 

the interaction offers insight into the evaluation of other herbal products as well as in the design 

of more complicated and costly studies in humans. 

1.2. Drug metabolism pathways 

Conventionally, drug metabolism is broadly divided into phase I and phase II processes 

(Woolf, 1999).  Phase I processes include oxidation, reduction, hydrolysis and hydration 

resulting in the formation of functional groups (OH, SH, NH2 or CO2H) that impart the 

metabolite with increased polarity compared to the parent compound (Gibson and Skett, 2001).  

Of the phase I processes, the cytochrome P450 (CYP) superfamily is responsible for the 

metabolism of a variety of xenobiotics and endobiotics (Woolf, 1999).  More than 300 CYP 

enzymes have been sequenced in a variety of species (Nelson et al., 1996).  Human CYP 

isoforms that are involved in the biotransformation of xenobiotics include CYP1A1/2, CYP2B6, 

CYP2C8/9/19, CYP2D6, CYP2E1, CYP3A4/5 and CYP4A (Shimada et al., 1994; Woolf, 1999).  

 shows selected drug metabolizing enzymes and transporters and examples of  their 

respective substrates, inducers and inhibitors. 

Table 1
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 Phase II processes include sulfation, methylation, acetylation, glutathione conjugation, 

fatty acid conjugation and glucuronidation (Woolf, 1999).  The latter is catalyzed by uridine 

diphosphoglucuronosyltransferases (UGTs) and involves the transfer of the glucuronic acid 

residue from uridine diphosphoglucuronic acid to a hydroxy, either phenolic or alcoholic, or a 

carboxylic acid group on the compound (Meech and Mackenzie, 1997).  The end result is the 

formation of a hydrophilic glucuronide metabolite that is generally devoid of pharmacological 

activity and is excreted in the bile or urine.  In humans, 16 different UGT isoforms have been 

classified into either 1A or 2B subfamilies (Tukey and Strassburg, 2000).  They metabolize a 

broad range of endogenous and exogenous substances with significant overlap in substrate 

specificity between isozymes (Radominska-Pandya et al., 1999).  Among the UGT1A family, 

UGT1A1 is most notably involved in the glucuronidation of bilirubin but also metabolizes 

estradiol, acetaminophen and the active metabolite of irinotecan, SN-38 (Cheng et al., 1998; 

Court et al., 2001; Tukey et al., 2002).  UGT1A6 and UGT1A9 metabolize short planar phenols 

including catechols, acetaminophen, and 4-methylumbelliferone (Fournel-Gigleux et al., 1991; 

Court et al., 2001).   
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Table 1.  Selected substrates, inducers and inhibitors for common drug metabolizing enzymes and drug transporters 

CYP1A2      CYP2C9 CYP3A4/5 UGT1A1 MRP2 BSEP

Substrates 
ethoxyresorufin     flurbiprofen testosterone SN-38 glutathione taurocholate

caffeine    

    

      
    

      
      

tolbutamide midazolam estradiol bilirubin 
conjugates  

R-warfarin phenytoin erythromycin bilirubin estradiol-17β-
glucuronide  

phenacetin diclofenac FK506 acetaminophen
  

 leukotriene C4
verapamil S-warfarin cyclosporine glyburide

tolbutamide amlodipine etoposide
glyburide cisapride SN-38

Inducers 
β-naphthaflavone      rifampicin rifampin phenobarbital rifampicin CDCA

nafcillin      
     

    
      

hyperforin hyperforin rifampin phenobarbital
 omeprazole dexamethasone

  
phenobarbital chrysin

3-methylcholanthrene Carbamazepine
troglitazone

Inhibitors 
amiodarone     sulfaphenazole ketoconazole cyclosporine cyclosporin
cimetidine      

      
      

probenicid ritonavir rifampin troglitazone
furafylline fluconazole itraconazole glyburide rifampin

amiodarone verapamil glyburide
Adapted from:  http://medicine.iupui.edu/flockhart/table.htm, (Kostrubsky et al., 1999; Bowen et al., 2000; Runge et al., 2000; Fisher 
et al., 2001; Gerbal-Chaloin et al., 2001c; Sueyoshi and Negishi, 2001; Asghar et al., 2002; Cresteil et al., 2002; Kostrubsky et al., 
2003)
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1.3. Hepatic transport systems 

Hepatobiliary transport processes and subsequent bile flow serve vital roles in the 

maintenance of cholesterol and lipid homeostasis, the removal of endogenous and exogenous 

substances from the body, and adequate bile salt flow and recycling (Ruetz and Gros, 1994; 

Smith et al., 1994)(reviewed in (Faber et al., 2003). Transport proteins located in the sinusoidal 

(basolateral) membrane of the hepatocyte enable compounds to gain access to intracellular drug 

metabolizing enzymes.  Following translocation across the cell or biotransformation, bile acids, 

drugs and/or their metabolites are actively secreted into canalicular spaces that exist between 

adjoining hepatocytes.  Alterations in these transporters, through inhibition or induction, can 

therefore effect the intracellular concentrations of drugs, resulting in altered pharmacokinetic and 

pharmacodynamic profiles, or of endogenous substances, altering normal physiological 

processes in the liver. 

 Two classes of hepatic transporters are largely involved in the uptake and efflux of drugs, 

drug conjugates and endogenous substrates.  They are broadly broken down into the solute 

carrier family (SLC) and the ATP binding cassette family (ABC).  Uptake transporters, located 

on the sinusoidal (basolateral) membrane of the hepatocyte, are undoubtedly intimately involved 

in the liver’s exceptional ability to extract even highly protein-bound drugs.  The organic anion 

transporters (OATP, SLC21 subfamily) are uptake carrier proteins that are involved in the Na-

independent transport of a variety of structurally diverse compounds such as 

bromosulphophthalein, glycocholate, prostaglandin E2 and estradiol-17β-glucuronide, with new 

substrates still being discovered (Kullak-Ublick et al., 2001).  OATP-8 (SLC21A6) and OATP-C 

(SLC21A8) are the predominant members of this family located in the liver (Konig et al., 2000).    

The hepatic uptake of bile salts is mediated by the liver specific sodium-dependent taurocholate 
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cotransporting protein (NTCP)(SLC10A1) (Karpen et al., 1996; Kouzuki et al., 2000).  While the 

substrate specificity of NTCP is narrow, including mainly bile salts, its activity is integral in 

ensuring the homeostatic vectoral movement of bile salts.   

Drugs and/or their metabolites often exit the liver through secretion into the bile.  

Because compounds must traverse a steep concentration gradient, efflux is mediated through the 

ATP utilizing ABC transporters.  The transporters located in the canalicular membrane that have 

been described to date are multidrug resistance associated protein 2 (MRP2, ABCC2), bile salt 

export pump (BSEP, ABCB11), multidrug resistant protein 3 (MDR3, ABCB4), multidrug 

resistance protein 1 (MDR1, ABCB1) and breast cancer resistance protein (BCRP, 

ABCG2)(reviewed in (Faber et al., 2003).  

 

Figure 1. Uptake and efflux transportes in human liver 

Adapted from:  (Trauner et al., 1998; Faber et al., 2003; Chandra and Brouwer, 2004) 
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BSEP, as with NTCP, is integral in the cellular handling of conjugated and unconjugated 

bile salts, such as taurocholate, via active secretion into the canalicular space (Gerloff et al., 

1998).  MDR1 is the most extensively studied ABC transporter and is responsible for 

transporting a wide variety of compounds usually containing planar aromatic motifs and a 

molecular weight greater than 400 (Oude Elferink et al., 1995).  However, in contrast to rodents, 

human hepatic expression of MDR1 is low compared to the intestine (Schuetz et al., 1995).  

MRP2 is responsible for the biliary secretion of organic anions such as acetaminophen 

glucuronide, camptothecin, SN-38, bile salts, glutathione, glucuronide and sulfate conjugates 

(Koike et al., 1997; Konig et al., 1999; Ma and McLeod, 2003).  MDR3 secretes phospholipds 

and the role of BCRP in the disposition of drugs in the liver is still being investigated (Smith et 

al., 2000). 

1.4. Regulation of Hepatic Drug Metabolizing Enzymes and Transporters 

The regulation of drug metabolizing enzymes and transporters within the liver is complex and 

may involve multiple nuclear receptors that are able to converge on the same response element 

governing the expression of a single gene.  Nuclear and steroid receptors are ligand activated 

transcription factors containing a conserved DNA-binding domain, a hinge region and a carboxy-

terminal domain responsible for ligand binding and dimerization (Kumar and Thompson, 1999).  

These transcription regulators serve to protect the liver against exogenous and endogenous toxic 

compounds.  Hepatic transcription regulating receptors relevant to the induction of drug 

metabolizing enzymes and drug transporters can roughly be divided into four classes (Table 2).  

The relevance of the aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), 

pregnane X receptor (PXR) and the farnesoid X receptor (FXR) in the induction of common drug 

metabolizing enzymes and transporters is discussed in further detail below. 
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The aryl hydrocarbon receptor (AhR), a member of the PAS superfamily of transcription 

factors and therefore not technically a nuclear receptor, can be activated by a diverse assortment 

of chemicals including the aryl hydrocarbons benzo(a)pyrene and 3-methylcholanthrene and the 

dietary plant constituents β-naphthoflavone and chrysin (Nebert and Gonzalez, 1987; Sogawa 

and Fujii-Kuriyama, 1997; Galijatovic et al., 2000).  Following heterodimerization with the AhR 

nuclear translocator (ARNT), the AhR-ARNT complex translocates to the nucleus where it binds 

to specific dioxin response elements (DREs) with a defined core nucleotide sequence 

TNGCGTG (Dolwick et al., 1993; Lusska et al., 1993; McLane and Whitlock, 1994; Swanson et 

al., 1995).  While the mechanism for enzyme induction was first characterized for CYP1A, 

DREs have been identified in the promoter regions for human UGT1A1 and UGT1A6 (Munzel et 

al., 1998; Yueh et al., 2001). 

 Because of their detergent properties, bile acid concentrations must be closely regulated 

within the hepatocyte.  Farnesoid X receptor (FXR), when heterodimerized with retinoid X 

receptor (RXR), has largely been implicated in the induction of transporters responsible for the 

efflux of bile salts, i.e. situations in which the hepatocyte encounters and/or accumulates elevated 

concentrations of potentially hepatotoxic bile acid and bile acid conjugates.  The FXR-RXR 

heterodimer preferentially binds to the IR-1 element consisting of an inverted repeat of 

AGGTCA hexamers, separated by one base pair, but has been shown to also bind to DR-3 and 

DR-4 motifs (Laffitte et al., 2000).  FXR can induce BSEP (ABCB11), MRP2 (ABCC2) and 

OATP8 (SLC21A8)  (Ananthanarayanan et al., 2001; Schuetz et al., 2001; Kast et al., 2002; Jung 

et al., 2004).  Ligands for FXR are primarily bile acids and some plant sterols (Wang et al., 1999; 

Urizar et al., 2002).   
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Table 2.  Classification of common hepatic nuclear receptors. 
 

Hydrocarbon 
Receptors 

Orphan Nuclear 
Receptors 

Bile Acid 
Synthesis 
Receptors 

Steroid Hormone 
Receptors 

Aryl hydrocarbon 
receptor 
(AhR) 

Constitutive androgen 
receptor 
(CAR) 

Farnesoid X receptor 
(FXR) 

Glucocorticoid 
receptor 

(GR) 

 

Peroxisome 
proliferator-activated 

receptor 
(PPAR) 

Liver X receptor 
(LXR) 

Mineralcorticoid 
receptor 

(MR) 

 Pregnane X receptor 
(PXR) 

 Estrogen receptor 
(ER) 

  
 Androgen receptor 

(AR) 

  
 Progesterone receptor 

(PR) 

 

 

 The constitutive androgen receptor (CAR), as with other orphan nuclear receptors, binds 

as a heterodimer with RXR to AGGTCA-based DNA response element (Sueyoshi and Negishi, 

2001).  It is predominantly expressed in the intestine and liver (Baes et al., 1994).  Profound 

species differences exist in ligands between human and rodent CAR as evidenced by the 

selective binding of CITCO to the former and TCPOBOP to the latter (Poland et al., 1980; 

Maglich et al., 2003).  Human CAR modulates PB mediated induction of CYP2C9, CYP3A4, 

UGT1A1, MRP2 and OATP-C ( ) (Sueyoshi et al., 1999; Gerbal-Chaloin et al., 2001c; 

Goodwin et al., 2002; Guo et al., 2002; Kast et al., 2002; Sugatani et al., 2004).   

Figure 2
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Figure 2.  Hepatic drug metabolizing enzymes and transporters that are regulated by 

nuclear receptors. 
 
 
 
Adapted from:  (Tirona et al., 2003), (Xie et al., 2003), (Gardner-Stephen et al., 2004), (Munzel 
et al., 1998), (Yueh et al., 2001), (Huang et al., 2003), (Kast et al., 2002), (Jung et al., 2004), 
(Schuetz et al., 2001), (Ananthanarayanan et al., 2001), (Zollner et al., 2003). 
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 PXR is the most extensively studied of the nuclear receptors and has been cloned in a 

number of species including rabbit, pig, monkey and human (Kliewer et al., 1998; Zhang et al., 

1999; Jones et al., 2000; Savas et al., 2000).  As with CAR, PXR demonstrates profound species 

differences in the ligand binding between rodents and humans, it is promiscuous in that it binds 

with a structurally diverse set of compounds, shares many similar ligands with CAR (e.g. 

phenobarbital, rifampin and dexamethasone), and modulates gene induction through similar 

response elements (Sueyoshi et al., 1999; Moore et al., 2000b; Xie et al., 2000; Goodwin et al., 

2001).  Human PXR regulates the induction of CYP2C9, CYP3A4, UGT1A1, UGT1A6, MDR1, 

MRP2, and OATP-C (Kliewer et al., 1998; Gerbal-Chaloin et al., 2001c; Schuetz et al., 2001; 

Kast et al., 2002; Tirona et al., 2003; Gardner-Stephen et al., 2004).  

1.5. Use of human hepatocytes to study drug metabolism and drug transport 

Hepatic drug metabolism can be evaluated in in vitro or in vivo in animals or humans.  

Table 3 summarizes some of the commonly used  systems for the study of drug metabolism.  As 

the complexity of the system increases, the similarity to the in vivo situation also increases.  

However, the advantages of in vivo relevance is countered by difficulty in routinely using such 

systems due to ethical issues.  Human, and to a lesser degree animal, studies are understandably 

a more accurate indicator of drug metabolism as they comprise all of the biological process that 

will interact with a compound in one contained system.  Yet, aside from this complexity, these in 

vivo systems are impractical for exploratory studies in that ethical and cost
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Table 3.  Systems to study hepatic drug metabolism 
 

System Complexity Ease of use 

Subcellular fractions 
Supersomes 
Microsomes 
Cytosol 

  

Human hepatocyte cultures 
Suspended cultures 
Tumor derived cell lines 
Cryopreserved 
hepatocytes 
Primary hepatocytes 
3D cultures 

 

 

Liver slices   

Whole Liver perfusion   

In vivo animal model   

Human   

  

Adapted from Brandon et al. (2003). Tox App Pharmacol 199:233-246. 

 

considerations preclude their use when screening large numbers of compounds.  Liver slices and 

whole perfused livers have the advantages of maintaining the in vivo liver architecture, yet, 

similar to suspended hepatocyte cultures, have the disadvantage of viability for only 4-6 hours.  

The latter rules out using these systems to study induction processes (i.e. measuring changes in 

mRNA and protein expression).  Primary cultures of human hepatocytes (PCHH) are viable for 

up to 2 weeks (or one month if placed in a three-dimensional culture) and retain all cofactors and 

cosubstrates necessary for phase I and phase II processes, making them a versatile in vitro 

system to study induction and inhibition of drug metabolism (Gebhardt et al., 2003).  They are 
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also valuable in characterizing the metabolic profile of a drug, studying the interspecies 

differences in drug metabolism, assessing drug-drug, drug-herb or drug-endogenous compound 

interactions and predicting the in vivo behavior of a drug. 

As the use of PCHH has advanced, modified culturing techniques have enabled the 

examination of other processes involved in drug metabolism, namely the uptake and efflux of 

drugs and their metabolites by hepatic drug transporters.  The loss of tight junctions secondary to 

the hepatocyte isolation procedure results in a loss of cellular polarity, or depolarization, and 

results in changes in hepatically expressed genes.  For example, normal monolayered PCHH 

show reduced albumin secretion over time, increased levels of alpha-fetoprotein, a protein that is 

associated with depolarization and dedifferentiation of hepatocytes, dephosphorylation of cell 

surface receptors responsive to growth factors and, in the case of rat hepaoctyes, a rapid loss of 

drug metabolizing activity and MDR1 expression (de Nechaud et al., 1979; Gleiberman and 

Abelev, 1985; Gleiberman et al., 1989; Luttringer et al., 2002; Richert et al., 2002; Boess et al., 

2003; Hoffmaster et al., 2004).  The application of an extracellular 3D matrix prevents the loss in 

albumin synthesis, suppresses AFP expression, leads to the phosphorylation of hepatocyte 

growth factor and epidermal growth factor, results in a cuboidal, polar hepatocyte structure and 

results in a relocalization of MDR1 in the hepatic canalicular membrane (Sidhu et al., 1993; 

Toritsuka et al., 2001; Kudryavtseva and Engelhardt, 2003; Engl et al., 2004; Hoffmaster et al., 

2004).  For example, hepatocytes in 3D culture have been utilized to document the effects of a 

variety of compounds on MDR, NTCP, MRP2 and BSEP expression and activity (Liu et al., 

1999; Luttringer et al., 2002; Kostrubsky et al., 2003; Hoffmaster et al., 2004). 
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1.6. Herbal product research 

 Most research on drug-herb interactions has focused on the in vitro evaluation of herbal 

constituents in microsomes, with particular attention to CYP enzymes.  Only a small number of 

studies have examined the effects of herbs on phase II metabolism or drug transport.  Since both 

phase I and phase II enzymes metabolize a wide range of prescribed medications, endogenous 

molecules and compounds with botanical origin and drug transporters are involved with their 

uptake and efflux, it is important to evaluate the effects of herbs on all of these processes.   

(Fisher et al., 2001; Venkatakrishnan et al., 2001), However, the use of other more 

physiologically relevant  in vitro models, such as primary cultures of human hepatocytes, are 

necessary if better predictions of drug-herb interactions are to be made in humans.  These 

systems will also facilitate determination of whether there is a need to conduct more demanding 

clinical studies. 

 Among the more popular herbal products used worldwide and in the U.S. are St. John’s 

wort, used for its reported antidepressant activity, and milk thistle, used clinically because of its 

hepatoprotective properties (Jacobs et al., 2002; Rodriguez-Landa and Contreras, 2003).  Several 

reports have documented decreased blood/plasma levels of CYP3A4 substrates, such as 

indinavir, cyclosporine A and imatinib, in patients concomitantly taking St. John’s wort 

(Piscitelli et al., 2000; Ahmed et al., 2001; Frye et al., 2004).  Similar reports of CYP3A4 

interactions led the FDA to issue a public health advisory in 2000 informing the public of the 

risk of drug-herb interactions with St. John’s wort (http://www.fda.gov/cder/drug/advisory/ 

stjwort.htm).  While no such action has been taken by the FDA pertaining to milk thistle, in vitro 

studies conducted in human liver microsomes and hepatocytes indicated that constituents of milk 
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thistle are capable of inhibiting CYP enzymes (Beckmann-Knopp et al., 2000; Venkataramanan 

et al., 2000). 

 Although most research has pointed to the ability of St. John’s wort to induce CYP3A4, 

one report documented potent inhibition of CYP3A4, CYP2C9 and CYP2D6 by constituents of 

St. John’s wort, hyperforin and hypericin (Obach, 2000).  Questions pertaining to the 

discrepancy between induction and inhibition, possible involvement of other drug metabolizing 

systems and the mechanism underlying enzyme induction remain unanswered.  Milk thistle’s 

potential for drug-herb interactions remains even less clear.  While preliminary in vitro evidence 

points to the possibility of drug-herb interactions via CYP or UGT inhibition, information 

pertaining to its relevance in whole cell systems or human subjects is limited (Chrungoo et al., 

1997a; Beckmann-Knopp et al., 2000) 

1.7. St. John’s wort 

In 2003, St. John’s wort accounted for 15 million U.S. dollars in sales, making it the 

seventh highest grossing botanical supplement (Blumenthal, 2003).  Several clinical studies have 

demonstrated the effectiveness of St. John’s wort compared with conventional therapy in the 

treatment of mild to moderate depression (Linde et al., 1996; Wheatley, 1997).  Studies 

conducted in vitro and in animals have shown that St. John’s wort constituents inhibit the 

reuptake of the neurotransmitters linked to depression in humans (Nathan, 1999). 

 Marketed St. John’s wort, an extract of the flowering portion of the plant Hypericum 

perforatum L., is a mixture of a number of biologically active, complex compounds.  At 0.3 mg 

per capsule, the napthodianthrone hypericin is used as a means of standardization of the 

marketed product.  The phloroglucinol hyperforin, the most plentiful lipophilic compound in the 

extract, is a potent inhibitor of serotonin, norepinephrine and dopamine reuptake (Muller et al., 
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1998).  Hyperforin content correlates with clinical antidepressant activity, lending further 

support to its role as the therapeutically active constituent of St. John’s wort (Chatterjee et al., 

1998). 

 While hyperforin is now regarded as the therapeutically active constituent, most 

pharmacokinetic studies have focused on hypericin.  Hypericin plasma levels have been shown 

to peak at 6 hrs after oral ingestion and have an elimination half-life of approximately 40 hours 

(Johne et al., 2004)  The four major metabolites of hyperforin that have been detected in vitro 

using rat liver microsomes indicate hydroxyl groups on positions 19, 24, 29 and 34 (Figure 3) 

(Cui et al., 2004).   

 

Figure 3.  Chemical Structure of hyperforin 
 
The clinical reports documenting the role of St. John’s wort’s in interactions with drugs such as 

indinavir and cyclosporine A (Piscitelli et al., 2000; Ahmed et al., 2001) mediated through 

CYP3A4 led the FDA to issue a Health Advisory in 2000.  Additional in vivo evidence has 

demonstrated that St. John’s wort increased CYP3A4 and P-gp protein levels in rats (Durr et al., 

2000) and also increased CYP3A-mediated metabolism in humans (Frye et al., 2004). 

 18



 

 Both CYP3A4 and MDR1 are transcriptionally regulated by the nuclear orphan receptor 

pregnane X receptor (PXR).  In vitro studies have shown that hyperforin, but not hypericin, is a 

potent activator of PXR (Moore et al., 2000a).  In addition, PXR has also been shown to play a 

role in CYP2C9 expression (Gerbal-Chaloin et al., 2001a).   

1.8. Milk Thistle 

Milk thistle [Silybum marianum (L.) Gaertn. (Fam. Asteraceae)] extract is one of the most 

commonly used nontraditional therapies, particularly in Germany.  In accordance with the 

DSHEA legislation, it is marketed in the U.S. as a dietary supplement that “promotes liver 

health.”  The annual sale of this product is about $180 million in Germany alone (Cowley et al., 

1995).  In the U.S., milk thistle is the 11th most popular herbal product in retail sales with an 

annual increase of almost 10% (Blumenthal, 2003).  

Silymarin, the extract of milk thistle, is reported to protect the liver against CCl4, 

acetaminophen-, amanitin-, thioacetamide-, and D-galactosamine-mediated hepatotoxicity in rats 

(Schriewer et al., 1973; Vogel et al., 1984; Mourelle et al., 1989; Muriel et al., 1992; Chrungoo 

et al., 1997a; Chrungoo et al., 1997b).  Clinically, milk thistle is being studied as a therapy in the 

treatment of prostate cancer and has been used in the treatment of a variety of liver disorders 

(Singh and Agarwal, 2004).  A multicenter study in patients taking 420 mg of silymarin a day 

showed a significant reduction in patients suffering from alcoholic liver disease (Ferenci et al., 

1989).  Other evidence indicates that silymarin may improve the morbidity and survival rates in 

patients with acute and chronic hepatitis and drug, toxin or alcohol-induced hepatitis (Pepping, 

1999; Saller et al., 2001). 

Milk thistle is known to contain a number of flavonolignans, compounds that are 

produced in plants by radical coupling of a flavonoid and a phenylpropanoid (Dewick, 1997).  A 
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mixture of these flavonolignans, termed silymarin, is known to be composed of mainly silybin 

(about 50-70%), but also contains silychristin, silydianin, and other closely related 

flavonolignans (Wagner, 1986).  A standardized extract of milk thistle contains at least 70% 

silymarin (Foster and Tyler, 1999; Schulz et al., 2001). 

 

 

1 

20 

Figure 4.  Chemical structure of silybin, silydianin and silychristin 
 

 Silybin concentrations have been shown to peak in plasma 2-3 hours after oral 

administration.  Silybin concentrates mainly in the liver and kidney and has an elimination half-

life of approximately 2-4 hrs (Schandalik et al., 1992; Gatti and Perucca, 1994; Zhao and 

Agarwal, 1999).  Though plasma concentrations are relatively low, ranging from 0.3 to 9 µg/mL 

(0.6 – 18.5 µM), biliary concentrations have been shown to reach 29 – 116 µg/mL (60 – 240 µM) 
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in patients with a T-tube (Schandalik et al., 1992).  Seven metabolites (M1 – M7) have been 

detected in human liver microsomes with M1 – M5 being the major metabolites, all of them 

glucuronides (Han et al., 2004).  Silybin is primarily glucuronidated in the liver at the 7 and 20 

position (Figure 4), with the latter preferred over the former (Han et al., 2004).  The precise UGT 

isoform responsible for the metabolism of silybin is unknown.  The primary route of elimination 

is hepatic with both the parent and conjugate excreted into the bile accounting for 2 – 12 % of 

the ingested dose (Morazzoni et al., 1993; Zhao and Agarwal, 1999). 

The administration of milk thistle is widely considered safe with only a mild laxative 

effect reported in some patients who received daily doses exceeding 1500 mg per day (Luper, 

1999).  However, the interaction of silybin with CYPs and the possibility of drug-herb 

interactions has only recently been shown (Beckmann-Knopp et al., 2000).  Silybin 

noncompetitively inhibited CYP3A4 activity (IC50 = 29 µM; Ki = 9 µM) and CYP2C9 activity 

(IC50 = 44 µM; Ki = 19 µM) in liver microsomes (Beckmann-Knopp et al., 2000; Zuber et al., 

2002).  Interestingly, it has recently been shown that this inhibition may result from irreversible 

binding of a reactive intermediate to the heme moiety of both CYP3A4 and CYP2C9 in human 

liver microsomes (Sridar et al., 2004).  Silymarin also inhibits certain hepatic enzymes such as 

aminopyrine demethylase, benzopyrene hydroxylase, hexobarbital hydroxylase, and ethoxy 

coumarin O-deethylase in rats (Letteron et al., 1990).  Silymarin is known to deplete the pool of 

uridine diphosphoglucuronic acid (UDPGA) in hepatocytes and decrease glucuronidation of 

bilirubin in rats (Chrungoo et al., 1997b).  Using expressed liver microsomes, it was shown that 

silybin inhibited UGT1A1 (IC50 = 1.4 µM), UGT1A6 (IC50 = 28 µM), UGT1A9 (IC50 = 20 µM), 

UGT2B7 (IC50 = 92 µM) and UGT2B15 (IC50 = 75 µM) (Sridar et al., 2004). 
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Increased understanding of how the liver handles compounds, which involve the 

sinusoidal uptake and canalicular efflux along with phase I and phase II metabolic pathways, has 

shown that these processes do not occur independently, but are rather interconnected by similar 

regulatory elements and substrates and through a complex network of feedback mechanisms.  

Administration of milk thistle in rats increased bile salt output, protected against the cholestatic 

effects of ethynylestradiol and taurolithocholate and increased the abundance of the 

hepatoprotective bile acids β-muricholate and ursodeoxycholate (Crocenzi et al., 2000; Crocenzi 

et al., 2001; Crocenzi et al., 2003).  While species differences are always a factor, these data 

indicate that milk thistle may in part mediate its hepatoprotective effect in humans by stimulating 

the efflux of hepatotoxic bile acids by bile salt export pump (BSEP) and by inhibiting the 

metabolic pathways, specifically glucuronidation, that would inactivate beneficial bile acids.  It 

is not known what effect, if any, silybin has on BSEP expression and activity in human 

hepatocytes or on UGT pathways responsible for metabolizing hepatoprotective bile acids.   

1.9. Summary and Introduction to Dissertation 

The use of herbal products in the United States has skyrocketed in the past decade as a 

results of the public’s pursuit of finding an ‘all natural’ alternative to the conventional western 

medicine.  Milk thistle and St. John’s wort are two popular herbal products marketed to treat 

liver disorders and depression, respectively.  Despite their popularity, little information is 

available on the safety of milk thistle as it pertains to interactions with other drugs or the 

mechanisms of interactions between St. John’s wort constituents and other drugs.  It is therefore 

of value to first examine if any interaction potential exists in higher throughput systems such as 

human hepatocytes, and then determine the clinical relevance of these interactions in human 

subjects. 
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 The following research will evaluate the effect of the milk thistle constituent silybin and 

the St. John’s wort constituents hypericin and hyperforin on various aspects of drug metabolism 

and transport systems in PCHH.  We hypothesized that the milk thistle constituent silybin will 

directly inhibit CYP3A, UGT1A1 and BSEP metabolism of selected probe compounds.  We also 

hypothesize that the St. John’s wort constituent hyperforin will modulate drug metabolism 

indirectly by increasing mRNA, protein expression and activity of CYP2C9 and CYP3A4 

enzymes.  Additionally, we will show that even though hyperforin can inhibit CYP3A activity, 

induction will predominate at physiologically relevant concentrations.   

Full descriptions of the methods used in this research project are outline in Chapter 2.  

PCHH are a versatile tool to study hepatic drug metabolism, yet little work has been done to 

verify that culture conditions traditionally employed are optimal for drawing accurate 

conclusions about behavior in higher, more complex systems.  To that end, the purpose of 

Chapter 3  was to establish the optimal culture conditions by which PCHH would be treated with 

the various herbal constituents by examining CYP1A2, CYP3A4, UGT1A1 and BSEP 

expression and activity under various conditions.  The aim of Chapter 4 was to investigate the 

effect of silybin on CYP3A4/5, UGT1A1 and BSEP expression and activity in optimized PCHH.  

The purpose of Chapter 5 was to examine if the inhibition of UGT1A activity in vitro occurred in 

vivo by evaluating the effect of milk thistle on the pharmacokinetics of acetaminophen in healthy 

human subjects.  The goal of Chapter 6 was to examine the effect of the St. John’s wort 

constituents hypericin and hyperforin on the CYP1A2, CYP2C9, CYP2D6 and CYP3A4 

expression and activity and to resolve the discrepancy between hyperforin’s ability to induce and 

inhibit CYP3A activity by using PCHH as a model system.  The purpose of Chapter 7 was to 

assess the potential for a drug-herb interaction between the St. John’s wort constituent hyperforin 
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and the chemotherapeutic drug docetaxel.  Chapter 8 discusses preliminary results from ongoing 

projects related to the standardization of culture conditions in PCHH. 
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2. MATERIALS AND METHODS 
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2.1. Chemicals   

Williams E culture medium (HMM), medium supplements, dexamethasone and insulin, 

were obtained from BioWhittaker (Walkersville, MD). Penicillin G/streptomycin was obtained 

from Gibco Laboratories (Grand Island, NY). Rifampicin (RIF), phenobarbital (PB), 

dexamethasone (DEX), β-naphthaflavone (β-NF), hypericin, ethoxyresorufin (EROD) and 

testosterone (TE) were obtained from Sigma (St. Louis, MO). Hyperforin was isolated from St. 

John’s wort leaf/flower mixtures at the National Center for Toxicological Research.  The purified 

compound was identified by LC/mass spectrometry (LC/MS) and nuclear magnetic resonance 

analysis, and the purity (> 98%) was further determined by LC photo diode array method (Liu et 

al., 2000).  6β-Hydroxytestosterone was obtained from Steraloids (Wilton, NH). Extracts of St. 

John’s wort were a gift from Dr. Stephen Kliewer (Dallas, TX).  Falcon 6-well culture plates 

were obtained from Becton Labware (Franklin Lakes, NJ).  Nitroblue tetrazolium/5-bromo-4-

chloro-3-indolyl phosphate (NBT/BCIP) color developing reagent and alkaline phosphatase-

conjugated anti-rabbit and anti-goat antibodies were purchased from Bio-Rad (Richmond, CA). 

Baculovirus-expressed CYP1A2, CYP2C9, CYP2D6, CYP3A4 and UGT1A1 were obtained 

from BD Gentest (Woburn, MA).  Antibodies used to detect CYP1A2 (#458124), CYP2D6 

(#458366) , CYP3A4 (#458334) and UGT1A1 (#456411) were purchased from BD Genest 

(Woburn, MA).  CYP2C9 (RDI-CYP2C9abr) antibodies were purchased from Research 

Diagnostics (Flanders, NJ).  BSEP (sc-17292) antibodies were purchased from Santa Cruz 

Biotechnology, Inc. (Santa Cruz, CA).  Reagents for reverse transcription were purchased from 

Promega (Madison, WI).  Forward and reverse primers for CYP1A2, CYP2C9, CYP3A4, 

UGT1A1, BSEP and β-actin were synthesized by Applied Biosystems.  CYP2D6 forward and 

reverse primers and Taqman probe were purchased from Applied Biosystems (Assay ID:  
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Hs00164385_m1).  All solvents and other chemicals used were of HPLC grade or the highest 

purity available.  Falcon culture dishes (100 mm and six well plates) were purchased from 

Becton Labware (Franklin Lakes, NJ) 

2.2. Hepatocyte isolation 

Primary cultures of human hepatocytes (PCHH) were prepared by a three-step collagenase 

perfusion technique (Strom et al., 1996).  Viability of cells was determined by the trypan blue 

exclusion method and cells were used only when the viability was at least 70%.  Briefly, equal 

volumes of trypan blue (0.4%) and cell suspension were mixed and a portion of this suspension 

was then placed on a hemocytometer.  The cells were observed under a light microscopy and the 

numbers of live and dead cells, stained blue, were counted in two fields.  Concentration of cells 

(number of cells / mL) was determined using the following formula:  Live cells in two fields x 

10,000 = # of cells/ml.  Cells were diluted to final volume of 1 x 106 cells per mL.   

Hepatocytes were plated on Falcon 6-well culture plates (1.5 x 106 cells) or P100 (10 x 

106 cells) plates, previously coated with rat tail collagen in William’s E medium supplemented 

with  0.1 µM insulin, 0.1 µM dexamethasone, 0.05% streptomycin, 0.05% penicillin, 0.05% 

amphotericin B and 10% bovine calf serum.  After allowing the cells to attach for 4 hours, 

medium was replaced with serum-free medium containing all of the supplements described 

above.  Cells were maintained in culture at 37°C in an atmosphere containing 5% CO2 and 95% 

air.   

After 24 hours in culture, unattached cells were removed by gentle agitation and the 

medium was changed.  For transporter studies, cells were overlayed with Matrigel (0.233 
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mg/mL) at this time.  The medium was changed every 24 hours and the hepatocytes were 

maintained in culture between 5 and 14 days depending on the experimental design. 

2.3. General hepatocyte treatment 

Briefly, hepatocytes were maintained in culture in the presence of an inducer or vehicle 

control (DMSO 0.1%)  On the day of the experiment, cells were washed with HMM devoid of 

insulin, dexamethasone, antibiotics and antifungal drugs.  It is assumed that this one hour period 

is sufficient to remove residual chemical from the enzyme active site.  Following this period, 

media containing the appropriate probe substrate was applied to the cells with media sampled at 

the appropriate time points.  Table 4 summarizes the enzymes studied with the respective probe 

substrates, concentrations used and sampling times.  A variety of variations on the traditional 

methods used to assess drug metabolizing enzyme activity are discussed in the subsequent 

chapters.   

2.4. Analytical Methods 

Only the analytical methods used to assess enzyme activity that are used in multiple 

chapters are described below.   

2.4.1. Luminescent spectrophotometric measurement of CYP1A2 activity 

The activity of CYP1A2 was assessed by measuring the conversion rate of EROD to 

resorufin as described previously. (Pohl and Fouts, 1980)  Briefly, the product resorufin was 

measured in culture medium (250 µL) after a 60-min incubation, using a Perkin Elmer LS 50 B 

fluorescent plate reader (Norwalk, CT) at 530-nm excitation and 580-nm emission.  The 

concentration of the metabolite was quantitated by comparing the fluorescent values in samples 

to a standard curve containing known amount of metabolite. 
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Table 4.  Culture conditions and analysis of enzyme activity in human hepatocyte cultures 

Enzyme    Probe substrate
Probe 
Conc. 
(µM) 

Metabolite Standard inducer Inducer Conc. 
(µM) 

Incubation 
Timea Analysis 

CYP1A2         ethoxyresorufin 20 Resorufin β-napthaflavone 25 60 min Fluorescent

CYP2C9        flurbiprofen 100 4’(OH) 
flurbiprofen Rifampin 10 30 min HPLC

CYP2D6        Dextromethorphan 100 Dextrorphan Dexamethasone 50 30 min LCMS

Testosterone       250 6β(OH) 
testosterone Rifampin 10 30 min HPLC

CYP3A 

docetaxel      

        

100 
(OH)tert-butyl 

docetaxel 
Rifampin 10 60 min LC MS/MS

UGT1A1 SN-38 5 SN38-
glucuronide Phenobarbitol 1000 60 min HPLC

UGT1A        Acetaminophen 5000 APAP-
glucuronide Phenobarbitol 1000 60 min HPLC

BSEP       3[H] taurocholate 1 N/A N/A N/A 20 min
Scintillation 

counter 

 

aIn linear portion of concentration versus incubation time profile. 

 29



 

2.4.2. HPLC measurement of CYP3A4 activity   

The concentration of 6β-hydroxytestosterone in the medium was measured by HPLC as 

previously described, with the following modifications (Kostrubsky et al., 1999).  Fifty 

microliters of medium was diluted with equal volume methanol and centrifuged at 12,000 g.  

One hundred microliters of this solution was injected onto a LiChrospher 100 RP-18 column (4.6 

x 250 mm, 5 µm).  6β-hydroxytestosterone was eluted with a mobile phase of methanol/water 

(60:40, v/v) at a flow rate of 1.2 ml/min and the eluents were monitored at 242 nm.  The 

concentration of the metabolite was quantitated by comparing the peak areas in samples to a 

standard curve containing known amount of the metabolite. 

2.4.3. HPLC measurement of UGT1A1 activity  

The concentration of SN38-glucuronide in the medium was measured by HPLC.  

Medium aliquots were spun at 12,000 g for 5 min to remove large particulate.  A 50 µL aliquote 

of medium was injected directly onto a µBondapak C18 column (3.9 x 300 mm, 10 µm; Waters 

Corp., Milford, MA).  SN38-G was eluted at a flow rate of 0.9 mL/min using a gradient mobile 

phase of A. acetonitrile/THF/0.9 mM 1-heptanesulfonic acid in 50 mM potassium phosphate 

buffer pH=4 (8:4:88) and B. acetonitrile/5 mM 1-heptanesulfonic acid in 50 mM potassium 

phosphate buffer pH=4 (35:65). The gradient was:   

0 -7 min    100% A 
7.1 - 25 min    100% B 
25.1 – 35 min   100% A 

 
The metabolite was measured using a fluorescence detector (Waters 474) with excitation and 

emission wavelengths of 355 and 515 nm, respectively. 

2.4.4. HPLC measurement of acetaminophen metabolism   
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The amount of acetaminophen glucuronide in the medium was determined by HPLC as 

previously described (Fisher et al., 2000).  Washed cells were incubated with APAP (5 mM) for 

45 min and entire cellular contents harvested.  Fifty microliters of medium was injected onto  

Licrosphere C18 column with a mobile phase of NaSO4 142 mM:ACN (930:70) at a flow rate of 

1.5 ml/min.  Metabolite was detected using UV absorbance at 254 nm.  The concentration of the 

metabolite was quantitated by comparing the peak areas in samples to a standard curve 

containing known amount of the metabolite. 

2.4.5. Determination of total protein 

After sampling of the medium for metabolite measurements, the remainder of medium 

(0.5 mL) was aspirated from each well.  Cells were then harvested in 250 µL of phosphate buffer 

and stored at -80°C for protein determination by Lowry’s method (Lowry et al., 1951).  Briefly, 

the proteins were dissolved in SDS/sodium hydroxide, then 1% sodium tartarate and 1% copper 

sulfate were added, followed by the addition of Folin’s reagent.  The tubes were mixed gently 

and the color was allowed to develop for 45 min.  At the end of 45 minutes, 200 µL aliquotes 

were transferred to 96-well plates and the absorbance was measured at 490 nm.  The 

concentration of the protein was calculated using bovine serum albumin as the standard protein.  

2.4.6. Measurement of immunodetectable protein 

Immunochemical detection of all CYP isoforms and UGT1A1 was performed as 

previously described (Kostrubsky et al., 1995).  Briefly, 18 µg of pooled total cellular protein 

was loaded onto a polyacrylamide gel and subjected to SDS-PAGE at 80 volts for 90 minutes.  

Proteins were transferred onto a nitrocellulose membrane for 3 hours and blocked overnight at 

4°C.  Membranes were washed and incubated for 2 hours at room temp on a rocker table with the 

appropriate anti-CYP or anti-UGT1A1 antibody (diluted 1:1000).  The membrane was again 
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washed and then incubated with a horseradish peroxidase labeled secondary antibody diluted 

1:10,000 for 1 hour at room temperature on a rocker table.  Blots were developed using a 

Nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate developing reagent.  Relative 

amounts of proteins were assessed by the intensity of immunoblot staining carried out by 

densitometry (ImageJ, v1.33, http://rsb.info.nih.gov/ij).  All densitometry results were 

normalized to β-actin and then to DMSO control. 

2.4.7. Measurement of DME mRNA expression 

Total RNA was extracted from 1 x 106 cells plated on 6-well plates using 1 mL Trizol 

reagent (Invitrogen, Carlsbad, CA) according to manufacturer’s instructions. RNA was 

quantified spectrophotometrically and subjected to agarose gel electrophoresis to assess the 

integrity or RNA.  Following  treatment with RNase-free DNase (Promega, Madison, WI ), 2 µg 

of RNA was mixed with 0.5 µg of Random Hexamers (Promega) heated to 70°C for 5 minutes 

then cooled to 4°C.  A reaction mixture containing 200 U MMLV-Reverse transcriptase, 1 mM 

dNTPs and 25 U RNasin (Promega ) was added to the previous mixture and incubated at 37°C 

for 60 minutes.  The resulting cDNA was diluted 10-fold and stored at -20°C.   

2.4.8. Real-Time PCR   

Primers for CYP1A2 (Finnstrom et al., 2001) and CYP3A4 (Bowen et al., 2000) were 

described previously.  Sequences of primers for CYP2C9 and UGT1A1 were obtained from 

personal correspondence with Drs. Julio Davilla (St. Louis, MO) and Federico Innocenti 

(University of Chicago, Chicago, IL), respectively.  Primers for beta-actin were designed using 

PrimerExpress 1.0 (Applied Biosystems, Foster City, CA).  Sequences of these primers can be 

found in .  Assays on Demand Gene Expression Product Hs00164385_m1 (Applied 

Biosystems) and Hs00184824_m1 were used to detect CYP2D6 and BSEP, respectively. PCR 

Table 5
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was performed on an ABI Prism 7000 Sequence Detection System (Applied Biosystems ) using 

5 µl of cDNA, 200 pM of forward and reverse primers (SYBR green technology) or 1.25 µl 

Assays on Demand-Mix (TaqMan® technology) and 12.5 µl PCR Master Mix (Applied 

Biosystems) for a total volume of 25 µl.  PCR conditions were 50°C for 2 min, 95°C for 10 min, 

followed by 50 cycles with 15 sec at 95°C and 1 min at 60°C.  The relative cDNA content was 

determined from standard curves constructed from serial by diluted cDNA and normalized to β-

actin in each sample.    
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Table 5.  Real-Time PCR primers for genes detected by SYBR Green. 

Gene Name Forward Primer (5’ to 3’) Detection 

CYP1A2 Forward GTT CCT GCA GAA AAC AGT CCA SYBR Green 
 Reverse CTG TGC TTG AAC AGG GCA C 

 
 

  
 

  

  

  

 
CYP2C9 Forward AAT GGA CAT GAA CAA CCC TCA SYBR Green 
 Reverse CTC AGG GTT GTG CTT GTC GT 

 
 

 
CYP3A4 Forward CTT CAT CCA ATG GAC TGC ATA AAT SYBR Green 
 Reverse TCC CAA GTA TAA CAC TCT ACA CAG ACA A 

 
 

 
UGT1A1 Forward TGT TGG TGG AAT CAA CTG CCT SYBR Green 
 Reverse TGC CCA AAG CAT CAG CAA TT 

 
 

 
β-actin Forward AGG CAT CCT CAC CCT GAA GTA SYBR Green 
 Reverse CAC ACG CAG CTC ATT GTA GA  
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3. OPTIMIZATION OF CULTURE CONDITIONS TO STUDY DRUG 
METABOLIZING ENZYMES AND DRUG TRANSPORTER ACTIVITY AND 

EXPRESSION 
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Abbreviations 
 

3D  three-dimensional     
βNF  β-napthaflavone 

    BSEP  bile salt export pump 
    CAR  constitutive androgen receptor 
    CYP  cytochrome P450 
    C/EBP  CCAAT/enhancer binding protein 
    DMSO  dimethylsulfoxide 
    EROD  ethoxyresorufin 
    HNF  hepatocyte nuclear factor 
    HMM  hepatocyte maintenance medium 
    LETF  liver enriched transcription factor 

MG  Matrigel™ 
ML  monolayer 
PB  phenobarbital 
PCHH  primary cultures of human hepatocytes 
PXR  pregnane X receptor 
RIF  rifampicin 

    SLB  silybin 
    SN-38  7-ethyl-10-hydroxycamptothecin 
    SN-38G 7-ethyl-10-hydroxycamptothecin glucuronide 
    TE  testosterone 
    6β(OH)TE 6β(OH)Testosterone 

UGT  UDP-glucuronosyl transferase 
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3.1. Abstract 

Aims :  Primary cultures of human hepatocytes (PCHH) are versatile in vitro cellular systems 

that can be used to study phase I and phase II drug metabolism pathways and drug transporter 

activity.  However, cellular changes that occur within hepatocytes during isolation and following 

plating in the traditional monolayer configuration, have unknown effects on proteins responsible 

for drug metabolism and transport.  The purpose of this study was to optimize culture conditions 

to allow for the maximal baseline enzyme expression and induction potential of drug 

metabolizing enzymes and transporters.  Furthermore, it is our belief that the reestablishment of 

cellular polarity, to a point comparable to one that exists in vivo, will drastically improve drug 

metabolizing enzyme and drug transporter expression and activity. 

 

Methods:  PCHH were exposed to β-napthaflavone (βNF), rifampicin (RIF) or phenobarbital 

(PB) for 0 – 6 days.  CYP1A2, CYP3A4 and UGT1A1 activities were assessed using EROD, TE 

and SN-38 as respective probe substrates at the appropriate time points in the traditional 

monolayer (ML) configuration or in hepatocytes overlayed with the matrix Matrigel™ (MG) to 

form a three-dimensional architecture. 

 

Results:  These results indicate that optimal conditions for measuring CYP1A2, CYP3A and 

UGT1A1 enzyme expression and activity require a two day equilibration period followed by 48 

hours (2 days), 72 hours (3 days) and 144 hours (6 days) of exposure with the appropriate 

inducer, respectively.  Matrigel overlay is critical for the expression of BSEP and possibly 

UGT1A1 but not CYP1A2 and CYP3A. 

 

Conclusions:   

This study demonstrates that, given the proper conditions, human hepatocytes are versatile, 

reproducible in vitro tools to study drug metabolism and drug transport.  These results further 

show the importance of using optimized culture conditions and incubation times in PCHH in 

order to generate more relevant conclusions concerning drug interactions in vivo.   
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3.2. Introduction 

 The prediction of in vivo drug effects in humans has proven difficult using systems such as 

microsomes, immortalized cell lines and perfused organs.  Reasons for this poor correlation 

include:  A disruption in cellular integrity, a lack of phenotypic gene expression, lack of long-

term viability, and/or because of species differences in drug metabolism.  Primary cultures of 

human hepatocytes (PCHH) have proven a valuable human-relevant in vitro model for the 

elucidation of complex interactions that xenobiotics have with drug metabolizing enzymes, 

transporters, and the regulatory mechanisms that govern their expression (Strom et al., 1996).  As 

outlined in Chapter 1, PCHH have been widely used to study the effects of compounds on phase 

I and phase II drug metabolizing enzymes, and more recently drug transporters (Strom et al., 

1996; LeCluyse et al., 2000; Rodriguez-Antona et al., 2000; Runge et al., 2000).    

 Yet the routine use of PCHH is plagued by three main limitations:  1.  The rapid loss of drug 

metabolizing enzyme activity immediately following isolation and throughout time in culture; 2.  

Complete loss of cellular polarity; and 3.  A lack of optimized culturing techniques and exposure 

times that more closely resemble the physiologically relevant environment from which more 

accurate predictions can be made.  It is therefore of importance to address these issues in order to 

further the goal of standardization in the use of PCHH and to better predict interactions that may 

occur in vivo. 

 Conventional hepatocyte experiments have been designed to expose cells to compounds for 

48 to 72 hours.  Such studies do not establish whether the enzyme was, for instance, maximally 

induced or inhibited, as would be the case in a patient who received chronic medications.  For 

example, rats administered carbamazepine chronically for up to 42 days showed maximal 

CYP2B activity at day 7 while the protein content increased up to 42 days, yet experiments in 
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hepatocytes were conducted after cells had been exposed to the drug for only 3 days (Luo et al., 

2002; Yamashita et al., 2002; Faucette et al., 2004).  Interpretation of results from the latter 

might lead to false conclusions about a compounds ability to induce hepatic enzymes in vivo.  

We therefore hypothesized that the standard method for induction of human hepatocytes 

underestimates that enzyme induction that occurs in vivo when patients are repeatedly exposed to 

a drug.  In this study, human hepatocytes were exposed to prototypical inducers for various times 

in culture to determine the induction profile of several major hepatic drug metabolizing enzymes. 

 In addition to a lack of understanding of the behavior of enzyme expression in vitro, little is 

know about how the loss of cellular polarity affects the expression of drug metabolizing enzymes 

and transporters.  This division of membrane domains within a cell is vital for the vectoral 

transport of exogenous and endogenous substances from the blood into the bile.  The 

consequences of the isolation procedure and subsequent loss of polarity are demonstrated in the 

rapid loss of drug metabolizing enzyme activity despite maintenance of mRNA levels (Luttringer 

et al., 2002; Richert et al., 2002; Boess et al., 2003).   

 The importance of cellular polarity and the maintenance thereof has perhaps the greatest 

implications in the activity and expression of drug transporters, membrane embedded proteins 

that are expressed in highly specialized localization (e.g. sinusoidal or canalicular).  Bile salt 

export pump (BSEP), a member of the ATP binding cassette (ABC) superfamily of enzymes, is 

one such protein located in the canalicular (apical) membrane of the hepatocyte.   BSEP is 

integral in the cellular handling of conjugated and unconjugated bile salts, such as taurocholate, 

via active secretion into the canalicular space (Gerloff et al., 1998).   

 The application of a matrix to PCHH is thought to restore the polarized morphology (e.g. 

sinusoidal, canalicular domains) characteristic of hepatocytes in vivo.  The matrix consists of 
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constituents that surrounds cells in human liver such as laminin, collagen and proteoglycans.  

While studies with rat hepatocytes have shown that 3D matrices can significantly affect cellular 

architecture and expression patterns of drug metabolizing enzymes and transporters, (Musat et 

al., 1993; Brown et al., 1995; Luttringer et al., 2002; Richert et al., 2002) little is known about 

how such a 3D matrix will affect the expression of the same enzymes in PCHH.  It was our 

hypothesis that the generation of morphological polarity in vitro is a key factor in the 

maintenance of the baseline and inducible nature of drug metabolizing enzymes and transporters 

and that a significant difference exists in the expression and activity of these enzymes when cells 

are treated with the 3D matrix Matrigel™ (MG).   

3.3. Methods 

3.3.1. Hepatocyte treatment protocol 

Hepatocytes were plated at a density of 1.5 x 106 in Falcon 6-well plates as described in 

Chapter 2.  To determine the effect of the organic solvent dimethylsulfoxide (DMSO) on CYP3A 

activity and expression, cells were exposed to 0.1% DMSO or hepatocyte maintenance media 

(HMM) for 0 – 14 days.  Media was replaced every 24 hrs.  CYP3A activity was determined by 

6β(OH) TE formation rate and CYP3A4 expression was determined by Western blotting as 

outlined in Chapter 2.    

To determine the effect of time in culture and exposure to inducer on enzyme expression 

and activity, cells were exposed to DMSO (0.1 %), RIF 10 µM (CYP3A), β-NF 25 µM 

(CYP1A2) or PB 1 mM (UGT1A1) for 0 – 8 days.  Media was replaced every 24 hrs.  CYP1A, 

CYP3A and UGT1A1 activity were determined by the formation rate of resorufin, 6β(OH) TE 
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Table 6.  Donor information for human hepaotycte preparations used in Chapter 3 

Donor 
HH # Age Sexa Raceb Cause of 

deathc Drug History 
Viability 

(%) 
Percoll 

separation 

908 29y F C Anoxia levothyroxine, loratidine, 
rofecoxib, aspirin 72 Yes 

966 22y M C CA None reported 71 No 

968 59y F C ICH None reported 69 Yes 

970 12y M H MVA None reported 83 No 

985 57y F AA ICH Nicotine, phenytoin, 
omeprazole 70 No 

1047 17y  M C HT/MVA None reported 76 Yes 

1065 18y M H GSW/HT Ethanol, cocaine, 
benzodiazepines 84 No 

1069 41y F H HT/MVA Hypertension, diabetes 
medications (not specified) 81 No 

1073 52y M C ICH Aspirin 72 No 

1076 38y M C CA Nicotine, cocaine 82 No 

1095 61y M C GSW/HT None reported 73 No 

1100 69y F C ICH None reported 73 No 

1105 15y F C CA None reported.  Diagnosed 
with multiple sclerosis 80 No 

1122 46y F C HT 

Triamterine, propranolol, 
levothyroxine, capoxone, 
verapamil, alprazolam, 

modafinil 

73 No 

1140 - - - - Resection, no donor chart 86 No 

1142 19y M C HT/MVA nicotine 78 No 
aM, male; F, female; bAA, African American; C, Caucasian; H, Hispanic; c CA, cardiac arrest; 
GSW, gun shot wound; HT, head trauma; ICH, intra cranial hemorrhage; MVA, motor vehicle 
accident 
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and SN-38G, respectively.  Media was sampled at selected days and cells harvested for total 

protein determination and Western blotting as outlined in Chapter 2.   

To determine the effect of three-dimensional (3D) cellular configuration on enzyme 

activity and expression, hepatocytes were either maintained in the traditional monolayer (ML) 

configuration or coated with Matrigel™ (MG) (0.233 mg/ml) 24 hrs after cellular platting.  MG 

(BioWhittaker, Walkersville, MD) was prepared from a 9.7 mg/mL stock and diluted with ice 

cold HMM.  Cells were coated to 1.5 mL of MG containing media for 24 hrs.  Media was 

changed every 24 hrs.  Cells were then exposed to DMSO (0.1%), RIF 10 µM (CYP3A), β-NF 

25 µM (CYP1A2) for 72 hours or PB 1 mM (UGT1A1) for 144 hours.   CYP1A2, CYP3A and 

UGT1A1 activity were determined by the formation rate of resorufin, 6β(OH)TE and SN-38G, 

respectively.  Media was sampled at selected days and cells harvested for total protein 

determination and Western blotting. 

Primers for CYP1A2, CYP3A4, UGT1A1 and BSEP and the Real Time PCR procedure 

were described in Chapter 2.  The relative cDNA content was determined from standard curves 

constructed from serially diluted cDNA and all genes were normalized to β-actin in each sample. 

3.3.2. Evaluation of BSEP activity 

At 6 days (144 hours), HMM on ML and MG cultured cells was replaced with Hank’s 

balanced salt solution (HBSS) containing cations (calcium and magnesium) for 10 minutes.  

After this period, 1 µM [3H]-taurocholate was added in fresh HBSS (with cations) for 20 

minutes.  Uptake was stopped by aspirating the buffer solution and cells were washed three times 

with ice cold HBSS (with cations).  Fresh HBSS, with and without cations, was then added to the 

cells for 20 minutes.  After this time period, media was sampled and cells harvested in 1 mL of 

NaOH/SDS solution.  Each sample (0.5 mL) was then counted using a liquid scintillation 
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counter.  Aliquots of harvested cells were stored at -80°C for protein determination (Lowry et al., 

1951). 

3.3.3. Evaluation of BSEP expression 

In order to detect immunoreactive BSEP protein in culture, hepatocytes were plated at a 

density of 10 x 106 on Falcon 100 mm plates and maintained as described in Chapter 2.  Cells 

were either maintained in the traditional monolayer configuration or overlayed with MG (0.233 

mg/ml) 24 hours after plating and maintained for a total of 6 days (144 hours).  Crude 

membranes were prepared as previously described (Schuetz et al., 1995).  Protein was then 

estimated using the method of Lowry (Lowry et al., 1951).  Crude membrane proteins (50 µg) 

were run for 2 hours a 7.5% polyacrylamide gel, followed by an overnight transfer to a 

nitrocellulose membrane.  The membrane was then exposed to diluted goat anti-hBSEP primary 

antibody (1:250) for another 24 hours at 4°C.  Following incubation with a HRP-conjugated 

rabbit anti-goat secondary antibody, blots were visualized using a Nitroblue tetrazolium/5-

bromo-4-chloro-3-indolyl phosphate-developing reagent. 

3.3.4. Data analysis 

The data were analyzed using a one-way analysis of varience with a post hoc Dunnett’s 

procedure, with the exception of daily CYP3A activity values in  which were analyzed 

using a Kruskal-Wallis test.  A p value of ≤ 0.05 was considered statistically significant and all 

calculations were performed were performed using PRISM software version 4.0 (GraphPad 

Software, Inc., San Diego, CA, USA). 

Figure 5
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3.4. Results 

Hepatocytes from a total of 16 liver donors were used to conduct the experiments 

outlined in this Chapter and their relevant demographics and drug history can be found in Table 

6.  As DMSO is used as a solvent for the majority of compounds in our hepatocyte studies (e.g. 

rifampicin, silybin, etc.), we examined its effect on CYP3A activity and expression.  From day 1 

to day 3, 6β(OH)TE formation rate was decreased 86 and 76% in HMM and DMSO treated cells, 

respectively (Figure 5A).  Cells exposed to HMM maintained this level of activity out to day 14.  

However, in cells treated with DMSO, 6β(OH) TE formation rate increased to levels comparable 

to day 1 activity at 1.29 nmol/mg/min and were maintained to day 14.  CYP3A4 protein content 

followed a similar pattern in that expression of the enzyme was  greater in cells treated with 

DMSO compared to cells treated with HMM at all time points other than the 3 day sample 

(Figure 5B). 

 Rifampicin (RIF) treatment induced CYP3A activity 27.0 fold at 2 days to 1.12 

nmol/min/mg compared to DMSO control ( ).  While CYP3A enzyme activity 

significantly increased after 6 and 8 days of RIF exposure, the fold increase over DMSO control 

decreased to 14.1 and 15.8 fold, respectively.  DMSO treatment increased CYP3A activity 

significantly at 6 and 8 days when compared to both 2 and 4 day DMSO exposure (P < 0.05). 

Figure 6

 CYP1A2 activity, measured by the formation of resorufin,  was significantly increased by 

βNF (25 µM) at both 2 and 6 days, compared to DMSO control, but with no difference between 

induction at those days (Figure 7).  UGT1A1 activity, measured by the formation of SN-38G, 

was increased by an average of 170 ± 29 % after 2 days of PB (1 mM) treatment (Figure 8).  This 

was increased to a 310 ± 87 % increased when cells were exposed to PB (1 mM) for 6 days.  
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A. 

 

B. 

 

 

Figure 5.  Effect of time and DMSO treatment on CYP3A activity (A) and expression (B). 

Hepatocytes were treated with HMM (H, closed squares) or DMSO (D, closed 
triangles) for 0-14 days.  A) Representative CYP3A activity versus time profile.  
B) CYP3A immunoreactive protein content was determined at appropriate time 
points from pooled sonicates.  #, significantly different than Day 1 HMM value, p 
≤ 0.05.  *, significantly different from respective HMM activity , p ≤ 0.05.  **, 
significantly different from Day 1 DMSO value , p ≤ 0.05. 
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Figure 6.  Effect of rifampicin  exposure time on CYP3A activity. 
Hepatocytes were treated with DMSO (black bars) and rifampicin (RIF)(open bars) 
10 µM for 0 – 8 days.  This figure represents data from HH970.  #, significantly 
different from 2 day RIF treated cells, p ≤ 0.05.  *, significantly different from 2 day 
DMSO exposure, p ≤ 0.05.  **, significantly different from 4 day DMSO exposure, p 
≤ 0.05.   
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Figure 7.  Difference in CYP1A2 induction between 2 day and 6 day exposure to βNF 25 
µM. 

Hepatocytes were treated with DMSO for 2 days (open bars) or βNF (25 uM) 
(closed bars) and for 6 days with DMSO (horizontal thatched bars) or βNF (25 
uM) (diagonal thatched bars).  Each value represents the mean of triplicate 
treatments with the S.D. indicated by the vertical bars.  *, statistically different 
from respective DMSO treatment, p ≤ 0.05.   
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Figure 8.  Difference in UGT1A1 induction between 2 day and 6 day exposure to PB 1 mM 
in PCHH coated with Matrigel™. 

Hepatocytes were treated with PB 1 mM for 2 days (closed bars) or 6 days (open 
bars).  Each value represents the mean of triplicate treatments with the S.D. 
indicated by the vertical bars.  *, significantly different from 2 day PB exposure, p 
≤ 0.05.   

 

 Figure 10 shows the effect of MG overlay on baseline and inducible activity for 

CYP1A2, CYP3A and UGT1A1 and for baseline activity of BSEP.  With the exception of 

CYP1A2 activity in HH985, MG overlay did not affect the baseline or inducible activity of 

CYP1A2 or CYP3A activity (Figure 10A and B).  However, CYP1A2, but not CYP3A4, mRNA 

expression was increased in MG overlayed hepatocytes (Figure 12A).  There was no difference 

in mRNA expression of either CYP1A2 or CYP3A4 between ML or MG overlayed cells (Figure 

12B).  UGT1A1 mediated SN-38 metabolism was increased with 6 days of PB (1 mM) treatment 

in both monolayered and MG overlayed hepatocytes when compared to their respectively DMSO 

controls.  However, SN-38G formation rate was greater in MG overlayed cells treated with PB (1 
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mM) compared to cells treated with PB (1 mM) in ML (Figure 10C).  This greater level of 

enzyme activity was accompanied by an increase in the level of PB induced UGT1A1 protein 

content in MG coated cells compared to cells in the traditional ML (Figure 9).  These differences 

were not reflected in mRNA expression as there were no differences in either UGT1A1 baseline 

or PB (1 mM) inducible gene expression (Figure 12A and B). 

 

 

 

Figure 9.  UGT1A1 protein content in hepatocytes in monolayer and coated with matrigel 
before and after exposure to PB (1 mM). 

 
Hepatoyctes were maintained in monolayer (ML) or coated with Matrigel™ (MG) and 
then treated with DMSO (D) or phenobarbital (PB)(1 mM) for 6 days).  Immunodectable 
UGT1A1 isoform levels were analyzed in pooled sonicates of whole cells harvested in 
phosphase buffer.  Relative protein content was normalized to β-actin and then compared 
to DMSO control.  The values below the respective blot show the relative amounts. 
 
   

   [3H] Taurocholate ([3H]TC) efflux was measured in traditional ML hepatocytes and in 

cells overlayed with MG in the absence and presence of the cations magnesium and calcium.  

Only cells exposed to cations retain their tight junctions that allow for the formation of 

canalicular structures (Kostrubsky et al., 2003).  [3H]TC in cells without cations (EDTA 1 mM is 

added to chelate residual cations) accounts for all of the process by which the BSEP substrate 

may enter the media (e.g. passive leakage plus active transport).  Efflux measured in cells
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Figure 10.  Effect of matrigel on CYP1A2 (A), CYP3A4 (B), UGT1A1 (C) inducible 
activity. 

Hepatocytes were maintained in the traditional monolayer (ML) configuration and 
treated with DMSO (open bars) or an enzyme inducer (closed bars)[A) CYP1A2, 
βNF (25 µM); B) CYP3A, RIF (10 µM); C) UGT1A1, PB (1 mM)].  Cells that 
were overlayed with MG were treated with DMSO (horizontal thatch bars) or an 
enzyme inducer (diagonal thatch bars).  *, significantly different ML DMSO 
control, p ≤ 0.05.  **, significantly different from MG DMSO control, p ≤ 0.05.  
#, significantly different from ML inducer, p ≤ 0.05.   
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Figure 11.  Effect of matrigel on [3H]taurocholate efflux. 
Hepatocytes were loaded with [3H]taurocholate for 20 minutes and were washed with 
regular (open bars) or Ca/Mg-free (closed bars) buffers were added.  The difference 
between regular and Ca/Mg-free buffers represents maximal The figure shows the 
mean of duplicate treatments, with the range indicated by the vertical bars. 
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Figure 12.  mRNA expression in monolayered and Matrigel treated human hepatocytes. 
A)  Hepatocytes were maintained in the traditional monolayer configuration (ML, open bars) or coated with Matrigel 
(MG, closed bars) and harvested in mRNA expression after 6 days in culture.  B)  Hepatocytes were maintained in ML 
(open bars) or coated with MG (closed bars) and exposed to an enzyme inducer [CYP1A2, βNF (25 µM); CYP3A, RIF 
(10 µM); UGT1A1, PB (1 mM)]. Each value represents the mean of duplicate treatments with the range indicated by 
the vertical bars.
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Figure 13.  Changes in cellular morphology and BSEP protein expression in MG overlayed hepatocytes. 
A) Left panel:  Hepatocytes in monolayer collagen; Right panel:  Hepatocytes coated with MG.  B)  Immunoreactive BSEP protein 
content in HH1140 and HH1142 in cells in monolayer (ML) and cells overlayed with Matrigel (MG). 
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exposed to cations reflects only the passive leakage of [3H]TC from the cells.  The difference in 

these two values is a reflection of the BSEP mediated transport into the canalicular spaces, a 

value that cannot be calculated directly.  Figure 10D shows that the difference in [3H]TC efflux 

in cells treated with and without cations, a value that represents BSEP mediated canalicular 

efflux, is greater in cells overlayed with MG than in cells in traditional ML.  Specifically, 

[3H]TC efflux increased from 18.5 pmol/mg in ML cells to 38.9 pmol/mg in MG overlayed 

cells.  Real-Time PCR analysis showed a drastic increase in baseline BSEP gene expression in 

MG overlayed cells (Figure 12A). 

 This increase in BSEP activity and mRNA expression in MG overlayed hepatocytes was 

accompanied by a change in the hepatocyte morphology (Figure 13A).  Hepatocytes cultured in 

the traditional ML configuration lost much of their three-dimensionality as they flattened during 

the first 48 hours in culture.  After 6 days in culture, hepatocytes, as seen in Figure 13A (right 

panel), showed clear differences in bile canaliculi formation as evidenced by the development of 

clear intercellular spaces (dark partitions between cells).  Overlayed cells were also more 

spheroid in shape resulting in an increase in the number of cells per viewable field.  Western 

blotting of BSEP, which is less sensitive than Real-Time PCR (Figure 12A), showed increased 

protein levels in MG overlayed cells (Figure 13B). 

3.5. Discussion 

Primary cultures of human hepatocytes offer a number of advantages over other systems 

commonly used in drug metabolism research.  Hepatocytes in culture are intact systems that 

contain all the necessary cofactors for the oxidative, reductive and conjugative metabolism of 

xenobiotics as well as the various regulatory elements needed to maintain and induce enzyme 

expression.  These cells are also capable of synthesizing normal bile acids from their cholesterol 
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precursor, formation of their conjugated metabolites, and the canalicular efflux of both parent 

and conjugated bile acids (Einarsson et al., 2000; Ellis et al., 2003; Kostrubsky et al., 2003).   

 Despite the fact that PCHH in culture have been used to study drug metabolizing 

enzymes for over two decades, our understanding of the behavior of these enzymes under 

various conditions has only recently been studied.  A clear understanding of this behavior is 

important if relevant conclusions are to be made of how compounds will behave in vivo.   

 Dimethylsulfoxide (DMSO) is a common solvent used to dissolve water-insoluble 

chemicals and is widely used in human hepatocyte experiments.  Because concentrations are kept 

at or below 0.1%, the assumption has been that no changes in enzyme expression will occur.  

Earlier work in human hepatocyte cultures showed that DMSO concentration from 0.5 to 2.0 % 

caused increased CYP3A activity after 72 hours (3 days) of treatment with only a marginal 

increase in activity associated with DMSO 0.1% (LeCluyse et al., 2000).  Our data support this 

conclusion in that, after 3 days of DMSO exposure, only marginal increase in CYP3A activity 

occurs.  However, prolonged exposure of cells for a period greater than 5 days returned CYP3A 

activity to its day 1 activity.  This was accompanied by comparable changes in CYP3A4 protein 

expression.  The fact that CYP3A activity dropped drastically from the day of plating has been 

documented (Kern et al., 1997; LeCluyse et al., 2000; Wilkening and Bader, 2003).  While our 

data show that DMSO had little or no effect on CYP1A2 and UGT1A1 activity, interpretation of 

data from future experiments must take into consideration the possibility of a solvent effect for 

other enzymes not described in this study.  The mechanism behind this apparent CYP induction 

is that DMSO has been shown to enhance the expression of the nuclear receptors pregnane X 

receptor (PXR) and constitutive androgen receptor (CAR) and the liver enriched transcription 

 55



 

factors (LETFs) enhancer-binding protein (C/EBP) and hepatocyte nuclear factor (HNF)-4 (Engl 

et al., 2004).  However, these changes were not addressed in our system. 

Table 7.  Summary of optimized culture conditions to study drug metabolism and drug 
transport 

Enzyme Culture 
Configuration Inducer 

Inducer 
Exposure 

(days) 
DMSO Effect 

CYP1A2 ML Β-NF 2 No 

CYP3A4 ML RIF 4 Yes 

UGT1A1 MG PB 6 No 

BSEP MG n.d. n.d. n.d. 

 

 The question of how long hepatocytes should be exposed to a chemical to elicit a 

response may involve properties inherent to that chemical, such as stability, nonspecific protein 

binding and metabolism, or the rate at which cellular processes occur, such as transcription, post-

transcriptional modification and translation.  The latter was addressed by the treatment of cells 

with protypical inducers and measuring enzyme activity and expression and various time points.  

While maximal induction of CYP3A activity occurred after 6 days of exposure to RIF (10 µM), 

the fold induction (when normalized to DMSO control activity), stabilized after 4 days of 

exposure.  This occurs because baseline activity in these donors increased at days 6 and 8.  

CYP1A2 activity is rapidly induced with βNF (25 µM) treatment achieving maximal induction 

after just 48 hours (2 days) of exposure. 

 The reduction in CYP3A activity and protein content over time is a phenomenon 

characteristic of a variety of CYPs in cultured cells and human liver slices and is supported in 

other reports (Renwick et al., 2000; Rodriguez-Antona et al., 2002; Wilkening and Bader, 2003).  

While the mechanisms behind this decrease are largely unknown, evidence points to a link 
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between CYP expression and the expression of  LETFs such as C/EBP, HNF-1, HNF-3 and 

HNF-4 in primary cultures (Gomez-Lechon et al., 1990; Padgham et al., 1993; Rodriguez-

Antona et al., 2002).  More detailed work is needed to characterize the expression of LETFs over 

time in culture and how this correlates to CYP expression of that same time period. 

 In contrast to CYP activities, UGT activity remains relatively stable after plating with 

only a marginal decrease up to 8 days in culture (data not shown)(Kern et al., 1997; Bowen et al., 

2000; LeCluyse, 2001; Wilkening and Bader, 2003).  Only limited data exists on the long-term 

induction of UGTs in cultured hepatocytes as most experiments rely on a 48 or 72 hour 

exposure.  A 1.5 fold increase in UGT activity, using the nonspecific UGT probe p-nitrophenol, 

was seen when human hepatocytes were exposed to RIF for 7 days (Kern et al., 1997).  We were 

able to achieve this level of UGT1A1 induction after only 48 hours (2 days) of exposure to PB (1 

mM).  This level of induction was doubled when hepatocytes were maintained in the presence of 

the inducer for greater than 6 days, a result contrary to previous reports (Kern et al., 1997).  A 

possible reason for the discrepancy is our use of the relatively specific UGT1A1 probe SN-38 

compared to the general UGT probe p-nitrophenol, a result that emphasis the need and use for 

UGT isozyme specific probes.  This also stresses the need for prolonged hepatocyte exposure to 

compounds of interest (i.e. greater than 6 days) for the evaluation of UGT1A1, and possibly 

other UGTs, if more accurate conclusions are to be made of possible affects in humans. 

The loss of tight junctions secondary to the hepatocyte isolation procedure results in a 

loss of cellular polarity that, until recently, had unknown effects on the expression and activity of 

drug metabolizing enzymes and transporters.  In fact, experience in our lab with over 200 livers 

has demonstrated that hepatocytes in monolayer have a finite life span in culture, generally 
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lasting between one or two weeks.  Culturing in a 3D matrix increases culture viability to one 

month or longer (Richert et al., 2002).   

Normal monolayered hepatocytes show reduced albumin secretion over time, increased 

levels of alpha-fetoprotein, a protein that is associated with depolarization and dedifferentiation 

of hepatocytes and dephosphorylation of cell surface receptors responsive to growth factors (de 

Nechaud et al., 1979; Gleiberman and Abelev, 1985; Gleiberman et al., 1989).  Collectively, 

these events, when combined with morphological changes shown in Figure 13, indicate a loss of 

polarity with unknown changes on other intracellular protein expression patterns.  The 

application of an extracellular 3D matrix prevents the loss in albumin synthesis, suppresses AFP 

expression, leads to the phosphorylation of hepatocyte and epidermal growth factors and results 

in a cuboidal, polar hepatocyte structure ( )(Sidhu et al., 1993; Toritsuka et al., 2001; 

Kudryavtseva and Engelhardt, 2003; Engl et al., 2004). 

Figure 13

  The effect of an extracellular matrix has been shown to effect the phenobarbital mediated 

induction of CYP enzymes in cultures of rat hepatocytes (Sidhu et al., 1993; LeCluyse et al., 

1996).  For our experiments, MG, rather than collagen, was chosen as a matrix because its 

constituents are thought to more closely mimic ones found in adult human liver.  Specifically, 

MG is a mixture of laminin, coallagen (IV) heparin sulfate proteoglycans and contains a number 

of growth factors (e.g. TGF-β, TPA) (Kleinman et al., 1982; Rodriguez-Antona et al., 2002).  

Based on results in other species, it was therefore surprising that CYP3A and CYP1A2 activities 

and mRNA expression were not altered following the addition of MG (Figure 10 and Figure 12).  

The reasons for the species differences are not known.   

UGT1A1 inducibility and BSEP expression and activity are enhanced following the 

addition of a 3D matrix.  The reasons for an increase in PB mediated UGT1A1 activity and 
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protein expression and not mRNA expression maybe similar to those of CYP2E1.  Elevation in 

CYP2E1 protein levels following in vivo exposure to a chemical inducer do not result from 

increased levels of mRNA, implicating post-transcriptional modulation (Song et al., 1986).  

Changes in the expression of proteins integral to the translational process, such as Eukaryotic 

initiation factors, should also be considered. 

The significant increase in BSEP mediated efflux in overlayed cells after 6 days in 

culture is supported by evidence showing that, MDR1 and NTCP, both ATP binding cassette 

transporters, require the reestablishment of polarity for proper enzyme expression in either the 

apical or basolateral membrane (Hoffmaster et al., 2004).   The reestablishment of polarity 

requires the collective arrangement of actin and other microfilaments that establish tight 

junctions and the integrity of the canalicular membrane that are vital for protein insertion and the 

normal vectoral transport of bile salts (Phillips et al., 1975; Kawahara et al., 1989).  Our 

observations of cultures over the 6 day period revealed that cells overlayed with MG 

demonstrated distinct differences from their monolayered counterparts.  Among these differences 

were a more cuboidal shape and more defined cell-to-cell partitions as evidenced in the 

subjective increase in the number of canaliculi.   

A summary of recommendations for further hepatocyte studies can be found in Table 7.  

Collectively, this study demonstrates that, given the proper conditions, human hepatocytes are 

versatile, reproducible in vitro tool to study drug metabolism and drug transport.   
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4. DIRECT EFFECT OF THE MILK THISTLE CONSTITUENT SILYBIN ON 
HEPATIC PHASE I AND PHASE II DRUG METABOLIZING ENZYMES AND 

CANALICULAR TRANSPORT IN HUMAN HEPATOCYTES 
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4.1. Abbreviations 

 

    [3H]TC [3H] taurocholate 
    6β(OH)TE 6β(OH)Testosterone 

APAP  acetaminophen 
    APAP-G acetaminophen glucuronide 
    BSEP  bile salt export pump 
    CsA  cyclosporine A 
    CYP  cytochrome P450 

DMSO  dimethylsulfoxide 
HMM  hepatocyte maintenance medium 

    PB  phenobarbital 
    PCHH  primary cultures of human hepatocytes 
    RIF  rifampicin 
    SLB  silybin 
    SN-38  7-ethyl-10-hydroxycamptothecin 
    SN-38G 7-ethyl-10-hydroxycamptothecin glucuronide 
    TE  testosterone 
    UGT  UDP-glucuronosyl transferase 
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4.2. Abstact 

Aims:  The milk thistle constituent silybin (SLB) inhibits a variety of drug metabolizing 

enzymes in human liver microsomes and is metabolized by a yet unknown member of the UGT 

family of enzymes.  Administration of silymarin, the crude extract of milk thistle, results in 

increased bile flow in rats.  An increase in the expression and/or activity of bile salt export pump 

(BSEP), an ATP-dependent transport pump embedded in the canalicular membrane of 

hepatocytes, may be responsible for this effect.  The purpose of this study was to evaluate the 

effect that SLB had on CYP3A, UGT1A1 and BSEP in vitro.  We also wanted to assess the 

potential for a drug-herb interaction with SN-38, the active metabolite of irinotecan, a UGT1A1 

substrate, acetaminophen (APAP), a substrate of several members of the UGT1A family of 

enzymes, and taurocholate, a BSEP substrate. 

 

Methods:  Primary cultures of human hepatocytes (PCHH) were acutely or chronically exposed 

to SLB.  Activity of CYP3A4, UGT1A1 and UGT1A were assessed using testosterone (TE), SN-

38 and acetaminophen, respectively.  BSEP activity was measured by [3H]taurocholate efflux.  

Protein content and mRNA were also measured.   

 

Results:  Silybin (0 – 300 µM), when added simultaneously with SN-38, APAP or TE, inhibited 

the activity of UGT1A1 glucuronidation of SN-38 (IC50 = 12.4 µM), UGT1A glucuronidation of 

APAP (IC50 = 22.3 µM) and CYP3A oxidation of TE (IC50 = 25.4 µM).  Silybin concentrations 

greater than 50 µM inhibited the activity BSEP.  BSEP inhibition occurred at SLB 10 µM in the 

presence of CsA 1 µM.  When applied to PCHH for 3 or 6 days, SLB (0 – 100 µM) did not alter 

enzyme mRNA expression or protein content for UGT1A1, CYP3A or BSEP.  However, 

CYP3A activity was decreased. 

 

Conclusions:  Inhibition of the UGT1A1 mediated metabolism of SN-38 by silybin indicates a 

potential for an interaction of SLB with irinotecan, a topoisomerase inhibitor used to treat a 

variety of solid tumors.  Given the adverse events associated with elevated SN-38 levels, patients 

taking milk thistle should be monitored for increased incidence of neutropenia and diarrhea.  

Inhibition of BSEP activity by SLB indicates possible cholestatic effects in vivo, especially when 
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a drug known to cause cholestasis, such as CsA, is given concomitantly.  Given the relatively 

high SLB concentrations needed for inhibition of UGT1A and CYP3A in PCHH and unknown 

hepatic concentrations of the herbal product in vivo, additional studies in healthy subjects are 

needed to assess the clinical relevance of milk thistle-drug interactions.  
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4.3. Introduction 

Milk thistle [Silybum marianum (L.) Gaertn. (Fam. Asteraceae)] extract is one of the most 

commonly used nontraditional therapies, particularly in Germany.  The extract of milk thistle, is 

reported to protect the liver against CCl4, acetaminophen-, amanitin-, thioacetamide-, and D-

galactosamine-mediated hepatotoxicity in rats (Schriewer et al., 1973; Vogel et al., 1984; 

Mourelle et al., 1989; Muriel et al., 1992; Chrungoo et al., 1997a; Chrungoo et al., 1997b).  

Clinically, milk thistle has been studied as a therapy in the treatment of prostate cancer and has 

been used in the treatment of a variety of liver disorders (Singh and Agarwal, 2004).  In 

accordance with the Dietary Supplement Health and Education Act, milk thistle is marketed in 

the U.S. as a dietary supplement that “promotes liver health.”   

Milk thistle is known to contain a number of flavonolignans, compounds that are 

produced in plants by radical coupling of a flavonoid and a phenylpropanoid (Dewick, 1997).  A 

standardized extract of milk thistle contains at least 70% silymarin (Foster and Tyler, 1999; 

Schulz et al., 2001).  Silymarin, is known to be composed of mainly silybin (about 50-70%), but 

also contains silychristin, silydianin and isosilybin (Wagner, 1986). 

Silymarin is known to deplete the pool of uridine diphosphoglucuronic acid (UDPGA) in 

hepatocytes, decrease glucuronidation of bilirubin in rats and inhibit UGT1A1 activity in human 

liver microsomes (Chrungoo et al., 1997b; Sridar et al., 2004).  We have previously shown that 

the raw extract silymarin inhibits the metabolism of the UGT substrate 4-methylumbelliferone 

and CYP3A mediated 6β(OH)testosterone (6β(OH)TE) formation in PCHH (Venkataramanan et 

al., 2000).  The mechanism behind the latter interaction appears to be at least in part a result of 

covalent binding of SLB to the heme moiety of the cytochrome enzyme (Sridar et al., 2004).  

Interestingly, SLB has been shown to be an inducer of protein synthesis through stimulation of 
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RNA synthesis (Machicao and Sonnenbichler, 1977).  Other flavones and flavonoids have been 

shown to induce UGT1A1 in immortalized cultures (Sugatani et al., 2004).  Since most drug 

interaction studies have been conducted in rat or human liver microsomes, the potential for 

induction of enzymes by SLB has not be evaluated.   

Milk thistle administration in rats increases bile salt output, protects against the 

cholestatic effects of ethynylestradiol and taurolithocholate, and increases the abundance of the 

hepatoprotective bile acids β-muricholate and ursodeoxycholate (Crocenzi et al., 2000; Crocenzi 

et al., 2001; Crocenzi et al., 2003).  These data indicate that milk thistle may in part mediate its 

hepatoprotective effect in humans by stimulating the efflux of hepatotoxic bile acids by bile salt 

export pump (BSEP) and by inhibiting the metabolic pathways, specifically glucuronidation, that 

would inactivate beneficial bile acids.  It is not known what effect, if any, SLB has on BSEP 

expression and activity in PCHH or on UGT pathways responsible for metabolizing 

hepatoprotective bile acids.  We hypothesize that SLB will inhibit UGT mediated 

glucuronidation and possibly CYP3A activity directly but will no effect on the indirect pathways 

responsible for their regulation.  Furthermore, we believe that SLB will increase the flow of the 

bile salt taurocholate in 3D-cultures as a possible mechanism behind its reported 

hepatoprotective effect. 

Irinotecan (CPT-11) is a synthetic water soluble derivative of camptothecin that is active 

against a wide range of solid tumors (Vanhoefer et al., 2001; Sugiyama et al., 2002).  

Neutropenia and diarrhea are the most common toxic effects, occurring at a rate of 44 and 28%, 

respectively.  CPT11 is hydrolysed in vivo by carboxylesterases to its active metabolite, 7-ethyl-

10-hydroxycamptothecin (SN-38), which has up to 1000 times the antitumor activity of its parent 

compound (Kawato et al., 1991; Rivory et al., 1996; Zamboni et al., 1998).  SN-38 in turn 
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undergoes glucuronic acid conjugation to SN-38 glucuronide (SN-38G) by a number of the UDP 

glucuronosyl transferase (UGT) family of enzymes, with UGT1A1 being the primary one 

(Hanioka et al., 2001).  A lower extent of SN-38G formation in humans has been related to 

greater severity of diarrhea (Gupta et al., 1994).  We believe that SLB will inhibit SN-38 

glucuronidation by UGT1A1 through direct competition with the enzyme. 

4.4. Methods 

4.4.1. Evaluation of the cytotoxicity of silybin to human hepatocytes. 

Hepatocytes were exposed to SLB (0 – 500 µM) for 72 h.  Following aspiration of media, 

10% v/v of 5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was 

added to Williams E medium at 96 h of culture and incubated for 30 min. At 30 min, the medium 

was aspirated and cells washed with HMM.  Isopropanol (same volume as the medium) was then 

added and shaken gently for 2 min. Two hundred microliters of this solution was transferred to a 

96-well plate, and the absorbance was measured at 490 nm. 

4.4.2. Hepatocyte treatment protocol for the effect of silybin on CYP3A, UGT1A, 

UGT1A1 

Twenty-four hours after plating, cells used to assess UGT1A1 and BSEP expression and 

activity were coated with Matrigel™ (0.233 mg/ml).  On the day of the study, cells were washed 

with 1.5 ml of fresh medium for 1 h and then incubated in 1.5 ml of medium containing 5 µM 

SN-38 for an additional hour.  At the end of that time, 1 mL of medium was sampled and stored 

at -80°C for SN-38G determination by HPLC.  The remaining media was then removed, and the 

cells were harvested in phosphate buffer (0.1 M, pH 7.4) and stored at -80°C for protein 

determination (Lowry et al., 1951) and detection of immunoreactive CYP protein.  The relative 
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amounts of proteins were assessed by the intensity of immunoblot staining carried out by 

densitometry (ImageJ, v1.33, http://rsb.info.nih.gov/ij).   

Cells were also harvested for mRNA by adding 1 mL of Trizol reagent to each well of a 

6-well plate.  The RNA samples were stored at -20°C for Real Time PCR analysis.  Primers for 

CYP3A4, UGT1A1 and BSEP and the PCR procedure were described in Chapter 2.  The relative 

cDNA content was determined from standard curves constructed from serially diluted cDNA and 

all genes were normalized to β-actin in each sample. 

 To determine the effect of acute SLB exposure on CYP3A, UGT1A, UGT1A1 activity 

and BSEP activity PCHH were exposed to SLB (0 – 300 µM) only on the day of the experiment.  

At 144 h (day 6), cells were washed with 1.5 ml of fresh medium for 1 h and then incubated in 

1.5 ml of medium containing SLB (0 – 300 µM) and TE (250 µM), SN-38 (5 µM) or APAP (5 

mM) and for an additional hour, or [3H]taurocholate.  Cells were also exposed to UDPGA (2 

mM), the co-substrate for UGT enzymes, along with SLB.  At the end of that time, medium and 

cells were sampled and stored as described above. 

4.4.3. Evaluation of BSEP activity 

At 144 h, regular HMM was replaced with Hank’s balanced salt solution (HBSS) 

containing cations (calcium and magnesium) for 10 minutes.  After this period, 1 µM [3H]-

taurocholate, with and without SLB (0 – 200 µM), CsA 1 µM or glyburide 0.01 µM was added in 

fresh HBSS (with cations) for 20 minutes.  Uptake was terminated by aspirating the buffer 

solution and cells were washed three times with ice cold HBSS (with cations).  Fresh HBSS, 

with and without cations, was then added to the cells for 20 minutes.  After this time period, 

media was sampled and cells harvested in 1 mL of NaOH/SDS solution.  Each sample (0.5 mL) 
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was then counted using a liquid scintillation counter.  An aliquots of harvested cells were stored 

at -80°C for protein determination (Lowry et al., 1951). 

Table 8.  Donor information for human hepaotycte preparations used in Chapter 4 

Donor 
HH # Age Sexa Raceb Cause of 

deathc Drug History Viability Percoll 
separation 

1018 12y M C Meningitis None reported 80 No 

1029 65y M C ICH 
Nicotine.doxazosin, 

nifedipine, coumadin, 
lisinopril, venlafaxine 

78 No 

1038 47y M C ICH 
Metoprolol, divalproex, 

cholesterol medications (not 
specified) 

71 No 

1040 57y M C HT None reported 80 No 

1047 17y M C HT/MVA None reported 76 No 

1062 39y M AA ICH Alcohol, cocaine, nicotine  87 No 

1076 38y M C CA Nicotine, cocaine 82 No 

1078 61y M C Anoxia None reported 68 No 

1087 57y M C ICH Atenolol, tamsulosin, aspirin 81 Yes 

1092 41y M C GSW/HT Nicotine, alcohol  74 No 

1095 61y M C GSW/HT None reported 73 No 

1122 46y F C HT 

Triamterine, propranolol, 
levothyroxine, capoxone, 
verapamil, alprazolam, 

modafanil 

73 No 

1123 20y M C HT/MVA nicotine 68 Yes 

1137 65y F C - Liver resection, none reported 81 No 
aM, male; F, female; bC, Caucasian; H, Hispanic; c ICH, intra cranial hemorrhage; CA, cardiac 
arrest; MVA, motor vehicle accident 
 

4.4.4. Data analysis 

The data were analyzed using a one-way analysis of variance with a post hoc Dunnett’s 

procedure.  A p value of ≤ 0.05 was considered statistically significant and all calculations were 
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performed were performed using PRISM software version 4.0 (GraphPad Software, Inc., San 

Diego, CA, USA). 

4.5. Results 

Hepatocytes from a total of 14 liver donors were used to conduct the experiments 

outlined in this Chapter and their relevant demographics, drug history and cell viability can be 

found in .  Because chronic exposure of PCHH to SLB concentrations greater than 200 

µM resulted in cellular toxicity (Figure 14), chronic exposure experiments used concentrations at 

or below 100 µM.   

Table 8

 

 

 

Figure 14.  Effect of silybin on MTT reduction. 
Hepatocytes were treated with SLB (0 – 500 µM).  MTT reduction was then 
measured.  The figure shows the mean of triplicate treatments from both donors and 
are expressed as a percentage of the value in DMSO treated cells, with the S.D. 
indicated by the vertical bars.  *, significantly different from DMSO treated cells, p ≤ 
0.05. 
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4.5.1. Effect of silybin on CYP3A4 expression and activity 

To determine if SLB could directly inhibit CYP3A mediated metabolism, cells were 

simultaneously exposed to SLB (0 – 300 µM) and TE (250 µM).  CYP3A mediated testosterone 

metabolism was inhibited by SLB treatment(IC50 = 25.4 µM)(Figure 15) .  At the highest 

concentrations of SLB (300 µM), 6β(OH)TE formation rate was inhibited to 9% ± 0.8% of 

DMSO control.   

 

 

Figure 15.  Effect of silybin on testosterone metabolism in human hepatocytes. 
Human hepatocytes were exposed to SLB (0 – 300 µM) and testosterone (250 µM) 
for 30 min.  Media was harvested and measured for 6β(OH)TE formation.  Each 
value represents the mean of treatments from the four livers with the S.D. indicated 
by the vertical bars.  *, significantly different from DMSO treated cells, p ≤ 0.05.   
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Figure 16.  Effect of chronic silybin exposure on CYP3A4 mRNA expression, protein 

content and activity. 
Hepatocytes were treated with SLB (0 - 100 µM) and CYP3A4 A) mRNA 
expression, B) protein content and C) activity were determined.  The figure shows the 
mean of triplicate treatments, with the S.D. indicated by the vertical bars.  All mRNA 
and protein values are normalized to β-actin expression.  *, significantly different 
from DMSO treated cells, p ≤ 0.05. 
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Figure 17.  Effect of chronic silybin exposure on UGT1A1 mRNA expression, protein 

content and activity. 
Hepatocytes were treated with SLB (0 - 100 µM) and UGT1A1 A) mRNA 
expression, B) protein content and C) activity were determined.  The figure shows the 
mean of triplicate treatments, with the S.D. indicated by the vertical bars.  All mRNA 
and protein values are normalized to β-actin expression.  *, significantly different 
from DMSO treated cells, p ≤ 0.05. 
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Prolonged exposure of cells to SLB (0 -100 µM) did not result in significant differences 

in CYP3A4 mRNA (Figure 16A).  Treatment with the prototypical inducer RIF (10 µM) 

significantly increased the mRNA expression of CYP3A4 by an average of 23.1 fold.  This 

increase in mRNA expression was accompanied by a 13 fold increase in CYP3A4 protein 

content in cells treated with RIF (10 µM).  At concentrations ≥ 25 µM, SLB did not increase 

CYP3A protein content (Figure 16B).  However, cells exposed to SLB 10 µM showed a modest 

2.4 fold increase in CYP3A protein content.  The formation rate of 6β(OH)TE was significantly 

increased with RIF treatment by 7.5 fold and significantly decreased with SLB 50 and 100 µM 

by 23 and 53%, respectively (Figure 16C). 

4.5.2. Effect of silybin on UGT1A1 expression and activity 

Acute inhibition of UGT1A1 and UGT1A mediated metabolism was determined by 

exposing PCHH simultaneously to SLB (0 – 300 µM) and SN-38 (5 µM) or APAP (5 mM), 

respectively.   shows that increasing concentrations of SLB significantly inhibited SN-

38G (IC50 = 12.4 µM) and APAP-G (IC50 = 22.3 µM) formation rates.  At the highest 

concentration of SLB (300 µM), SN-38G and APAP-G formation rates were inhibited to 11% ± 

1.5 % and 31% ± 3.1% of DMSO control, respectively. 

Figure 18

Chronic SLB treatment (72 hours) did not alter the mRNA expression of UGT1A1, but 

cells exposed to PB 1 mM over the same time period had a 2 fold increase in mRNA levels of the 

enzyme (Figure 17A).  Similarly, PB 1 mM and SLB (10 and 25 µM) increased UGT1A1 protein 

content less than 2 fold and SLB (50 and 100 µM) did not alter UGT1A1 protein content (

B).  The SN-38G formation rate in hepatocytes chronically exposed to SLB remained 

unchanged when compared to DMSO control.  Phenobarbital 1 mM increased the SN-38G 

formation rate 2.3 fold (Figure 17C). 

Figure 

17
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Figure 18.  Inhibition of SN-38 and APAP metabolism by silybin in human hepatocytes. 
A)  Human hepatocytes were exposed to SLB (0 – 300 µM) and SN-38 (5 µM) or  B)  
APAP (5 mM) for one hour and media analyzed for SN-38G and APAP-G formation, 
respectively.  Each value represents the mean of treatments with the S.D. indicated by 
the vertical bars.  *, significantly different from DMSO treated cells, p ≤ 0.05.   

 
 

 

Figure 19.  Lack of effect of UDPGA on silybin inhibition of SN-38 metabolism. 
Hepatocytes were exposed to SLB (0 – 300 µM) and SN-38 (5 µM) without (open 
bars) and with UDPGA (closed bars) (2 mM for one hour and media harvested for 
SN-38G formation, respectively.  Each value represents the mean of duplicate 
treatments with the range indicated by the vertical bars.  
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Figure 20.  Effect of acute silybin BSEP efflux of [3H]taurocholate 
A)  Human hepatocytes were exposed to SLB (0 – 200) along with [3H]TC and efflux measured.  B) Human hepatocytes 
were exposed to a variety of treatments and [3H]TC measured.  Each value represents the mean of duplicate treatments 
with the range indicated by the vertical bars.  
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Figure 21.  Effect of acute silybin on BSEP uptake of [3H] taurocholate 
Human hepatocytes were exposed to a variety of treatments and the uptake of [3H]TC 
measured.  Each value represents the mean of duplicate treatments with the range 
indicated by the vertical bars.  

 
 
 

When cells were exposed to SLB and UDPGA simultaneously, no change in the 

inhibition profile of SN-38G formation occurred at any SLB concentration (Figure 19). 
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4.5.3. Effect of silybin exposure on BSEP activity 

Figure 20 shows the effect of acute SLB exposure on BSEP mediated [3H]taurocholate 

([3H]TC) efflux in 3D hepatocyte cultures.  The potent nonspecific ATP Binding Cassette 

transporter inhibitor cyclosporine (CsA), at 10 µM, reduced [3H]TC efflux to 4 % of control 

value (Figure 20A).  SLB reduced [3H]TC efflux by 53 and 79% at concentrations of 50 and 200 

µM, respectively.  Interestingly, SLB 3 µM increased [3H]TC taurocholate efflux by 23%.   

  To determine if the inhibitory effect of CsA and SLB were additive, cells were treated 

with CsA 1 µM alone, SLB 10 or 50 µM alone, or CsA 1 µM along with either SLB 10 µM or 

SLB 50 µM.  CsA at a concentration of 1 µM reduced [3H]TC canalicular efflux by 36% (

).    Bosentan (50 µM), another general ABC transporter inhibitor, inhibited BSEP mediated 

efflux by 84 %.  While SLB 10 µM alone did not affect [3H]TC efflux, when cells were exposed 

to both SLB 10 µM and CsA 1 µM, transport was reduced by 58% compared to control and 45% 

with SLB 10 µM alone.  SLB 50 µM alone significantly reduced BSEP activity compared to both 

control and SLB 10 µM, but the addition of CsA 1 µM did not further that inhibition. 

Figure 

21

 Uptake of [3H]TC was also inhibited by CsA 1 µM and bosentan 50 µM Figure 21.  

Similar to the efflux study, SLB 10 µM did not affect bile salt uptake but when combined with 

CsA 1 uM, uptake was decreased 58 %.  SLB 50 µM alone and when combined with CsA 1 µM 

reduced [3H]TC uptake by 57 and 67 %, respectively. 

In the presence of chronic SLB exposure, neither BSEP mRNA expression (C) or activity 

(Figure 22) were changed with respect DMSO control. 
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Figure 22.  Effect of chronic silybin exposure on BSEP mRNA expression and activity. 
Hepatocytes were treated with SLB (0 - 100 µM) and BSEP A) mRNA expression, B) 
activity were determined.  The figure shows the mean of triplicate treatments, with 
the S.D. indicated by the vertical bars.  All mRNA are normalized to β-actin 
expression.  *, significantly different from DMSO treated cells, p ≤ 0.05. 
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Figure 23.  Effect of glyburide on BSEP activity. 

Human hepatocytes were exposed DMSO, CsA (1 µM) or glyburide (Glb)(0.01 µM) 
and [3H]TC efflux was measured.  Each value represents the mean of duplicate 
treatments with the range indicated by the vertical bars. 

 

4.6. Discussion 

 Dating back to 1985, drug-drug interactions have played a role in half of U.S. market 

withdrawals of approved drugs (Huang and Lesko, 2004).  A number of these interactions 

involved in the inhibition of drug metabolizing enzymes and/or drug transporters resulting in 

increased drug levels of one or both drugs leading to adverse drug reactions.  Conversely, the 

induction of these same enzyme systems caused a decrease in overall body exposure to the drug 

creating a situation where the patient was underdosed.  It is of importance that potential drug-

herb interactions be identified in order to prevent adverse outcomes in patients taking 

combinations of drugs and herbal supplements.  Also, the identification of the mechanism behind 
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the interaction offers insight into the evaluation of other herbal products as well as the design of 

more complicated and costly studies in humans.   

PCHH offer a number of advantages over other systems commonly used in drug 

metabolism research.  Hepatocytes in culture are intact systems that contain all the necessary 

cofactors for the oxidative, reductive and conjugative metabolism of xenobiotics as well as the 

various regulatory elements needed to maintain and induce enzyme expression.  These cells are 

also capable of synthesizing normal bile acids from their cholesterol precursor, of forming 

conjugated metabolites, and canalicular efflux of both parent and conjugated bile acids 

(Einarsson et al., 2000; Ellis et al., 2003; Kostrubsky et al., 2003).  Yet, the simplicity of cultured 

hepatocytes compared to liver slices, whole-perfused organs, or entire animal systems allows for 

the elimination of confounding factors such as blood flow and blood protein binding.  

The first part of this study demonstrated that when hepatocytes were exposed to SLB for 

a prolonged period of time in culture, there were no significant changes in the expression of 

CYP3A4, UGT1A1 or BSEP resulted.  This was observed despite the fact that SLB has been 

shown to stimulate RNA synthesis via RNA polymerase activation (Machicao and 

Sonnenbichler, 1977).  SLB is classified as a flavanolignan, and therefore structurally related to 

flavonoids and flavones.  The flavonoids chrysin and baicalein have been shown to induce 

UGT1A1 expression through the aryl hydrocarbon and pregnane X receptors (PXR)(Sugatani et 

al., 2004).  Though not definitive, these data suggest that SLB is not a ligand of any of the 

nuclear transcription factors (e.g. PXR, CAR, FXR, LXR etc) that regulate the induction of 

various drug metabolizing enzymes and drug transporters.   

Interestingly, chronic SLB exposure reduced CYP3A activity but did not reduce the 

metabolism of SN38 or efflux of [3H]TC.  It is possible that the 1 hr wash was not adequate to 
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remove a significant amount of the intracellular SLB, allowing it to interact with the enzyme.  

However, supporting our observations, microsomes derived from rats given SLB (100 mg/kg) for 

5 days, showed decreased CYP3A activity when nifedipine was used as a substrate (Crocenzi et 

al., 2001).  The lack of correlation between CYP3A expression and activity may lie in the fact 

that SLB, and perhaps one its metabolites, in expressed human liver microsomes, appears to 

irreversibly bind to the heme group of the enzyme (Sridar et al., 2004).  If this mechanism has 

occurred in our study, the binding to the heme did not affect the overall protein stability (i.e. 

increased degradation).   

 The same study that showed a decrease in CYP3A activity in rats administered SLB (100 

mg/kg) showed no change in UGT1A1 mediated 3-O-glucuronidation of ethynylestradiol 

(Crocenzi et al., 2001).  Once again, these results are in accordance with our findings that 

showed that chronic SLB exposure (0 – 100 µM) did not alter the expression or activity of SN-38 

metabolism in human hepatocytes.  However, when cells were exposed simultaneously with SLB 

and SN-38, a substrate for UGT1A1, significant reductions in the formation of the glucuronide 

conjugate (SN-38G) were observed for concentrations greater than 10 µM.  SLB also inhibited 

the metabolism of APAP albeit less potently, having an IC50 of 22.3 µM compared to that of 12.4 

µM for SN-38.  Interesting, the UGT co-substrate UDPGA did not alter the activity of UGT1A1 

when administered simultaneously with SN-38.  The indicates that direct inhibition, and not co-

substrate depletion, is the mechanism behind this interaction. 

 SN-38 has been shown to be metabolized by UGT1A1, UGT1A6 and UGT1A9 (Hanioka 

et al., 2001).  This same study showed that SN-38 metabolism by UGT1A1 far outweighs the 

contribution of the other isoforms in substrate affinity (Km) and reaction velocity (Vmax).  

Similarly, APAP is metabolized by a number of enzymes in the UGT1A family with UGT1A1, 
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UGT1A6 and UGT1A9 playing the largest roles (Court et al., 2001).  However, in contrast to 

SN-38 metabolism, UGT1A9 is the predominant isoform involved in the metabolism of APAP, 

contributing to > 55% of its metabolism in human liver microsomes (Court et al., 2001).  Also, 

the secondary enzymes, UGT1A1 and UGT1A6, still contribute to a significant portion of the 

total APAP-G formed (Court et al., 2001).  This understanding of the differences in the 

metabolic profiles of SN-38 and APAP metabolism, along with our observed differences in IC50 

values and the extent of inhibition, indicates a more selective inhibition of UGT1A1 enzyme 

activity by SLB compared to UGT1A6 and UGT1A9.  In the case of APAP, UGT1A6, 

UGT1A9, or an alterternate pathway such as sulfation, might be compensating for the inhibition 

of UGT1A1 at lower SLB concentrations.  In fact, UGT1A6 has a higher affinity (Km) for 

APAP compared to UGT1A1 (Court et al., 2001).  These data are supported by expressed human 

liver microsomal inhibition studies that demonstrated that SLB was a more potent inhibitor of 

UGT1A1 (IC50 = 1.4 µM) compared to UGT1A6 (IC50 =  28 µM) or UGT1A9 (IC50 = 20 µM) 

(Sridar et al., 2004).  Interestingly, while the IC50 values for UGT1A6 and UGT1A9 agreed with 

those from microsomes, our IC50 value for UGT1A1 (12.4 µM) was almost 10 fold greater than 

seen in human liver microsomes (1.4 µM).  These data, along with experiments using 

conventional liver microsome preparations, indicates that available SLB concentrations might be 

reduced secondary to its own conversion to inactive metabolites or as a substrate for an efflux 

transporter, thus accounting for the difference compared to expressed microsomes (Williams et 

al., 2002). 

 While the inhibition of glucuronidation by SLB indicates possible pharmacokinetic 

interactions in the liver, this effect may in fact be responsible for the reported hepatoprotective 

qualities of milk thistle by shielding the liver against cytotoxic bile acids.  Increased hepatic 
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concentrations of bile acids due to improper canalicular efflux results in the clinical onset of 

cholestasis and is linked to liver injury (Vitale et al., 1992).  Experiments in a cholestatic animal 

model have shown the formation of hepatoprotective bile acids, notably muricholate (MC) and 

ursodeoxycholate (UDCA), as possible feedback mechanisms to combat the detergent qualities 

of a number of other bile acids (Kitani et al., 1994).  These beneficial bile acids are in turn 

metabolized, in part through glucuronidation, and renally eliminated (Arias and Boyer, 2001).  

Therefore, the inhibition of UGT enzymes that remove hepatoprotective bile acids from the 

hepatocyte may serve to ameliorate the cytotoxic effects of other bile acids. 

 Another extension of milk thistle’s hepatoprotective qualities has been postulated to be 

enhanced biliary flow secondary to enhanced canalicular efflux by BSEP (Crocenzi et al., 2001; 

Hagymasi et al., 2002; Crocenzi et al., 2003).  To test this hypothesis, hepatocytes were exposed 

to SLB chronically (144 hours or 6 days), to assess for enzyme induction or degradation, and 

acutely, to assess for potentiation or inhibition.  Prolonged exposure of hepatocytes to SLB did 

not result in an increase in BSEP expression or activity.  In line with our hypothesis, when 

[3H]TC was added simultaneously with SLB 3 µM increased BSEP mediated efflux by 20%.  

While this result occurred in cells from two donors, we wanted to verify that this increase in 

BSEP activity was real by reproducing this effect with a structurally different compound known 

to increase efflux in human hepatocyte cultures.  Glyburide, a sulfonylurea used to stimulate 

insulin secretion in patients with non-insulin dependent Type II diabetes, has been documented 

to increase BSEP activity at low concentrations (0.01 µM) (Unpublished data presented by Dr. 

Jasminder Sahi at the 2004 Gordon Research Conference on Drug Metabolism and through 

personal correspondence, Pfizer Global Research, Ann Arbor, MI).  We were able to document a 
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42% increase in activity using glyburide 0.01 µM.  Notably, glyburide at concentrations greater 

than 10 µM, inhibited BSEP efflux in human hepatocyte cultures (Kostrubsky et al., 2003). 

In humans, CsA therapy causes an increase in serum bile acids secondary to a decrease in 

biliary secretion (Cadranel et al., 1992).  This inhibition occurs through inhibition of sodium 

dependent uptake and canalicular efflux, mediated by an interaction with BSEP (Byrne et al., 

2002).  Acute CsA treatment (10 µM) almost completely inhibited BSEP activity.  At 

concentrations of SLB greater than 50 µM, a decrease rather than an increase in BSEP activity 

resulted was observed.  It cannot be determined from these data if the nature of this inhibition is 

due to competition for the active site or allosteric inhibition.  Furthermore, the latter could 

theoretically be occurring from either inside the cell (cis-inhibition) or from inside the canaliculi 

(trans-inhibition), as is the case with CsA (Stieger et al., 2000). 

When added simultaneously with [3H]TC, inhibition of BSEP occurred at lower 

concentrations for both CsA and SLB, 1 and 10 µM respectively.  The decrease in BSEP activity 

with the combination of CsA 1µM and SLB 10 µM was not different from the decrease seen with 

SLB 50 µM alone.  It is possible that therapy with milk thistle alone may not generate hepatic 

concentrations of SLB adequate to inhibit BSEP activity.  However, when taken concomitantly 

with one or more agents known to inhibit the same protein or increase its activity, such as CsA or 

glyburide, the possibility of developing cholestasis exists.   

 The vectoral transport of substances within the hepatocyte relies on both uptake and 

efflux transporters.  Sodium dependent uptake of bile salts, including [3H]TC, at the basolateral 

(sinusoidal) membrane is almost exclusively mediated by the sodium-dependent taurocholate 

transport protein (NTCP).  The uptake of [3H]TC by NTCP, as with efflux by BSEP, is inhibited 

by SLB, CsA and bosentan at varying potencies.  Despite this inhibition of uptake, the rate 
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limiting step in the vectoral secretion of [3H]TC into the canaliculi in 3D cultures of hepatocytes 

and in vivo is the activity of BSEP (Byrne et al., 2002; Kostrubsky et al., 2003).  

Flavonoids, as a general class of compounds, mainly exist in nature as glycosides and are 

therefore not absorbed well in the gastrointestinal tract (Walle, 2004).  In fact, plasma 

concentrations of SLB are relatively low, ranging from 0.3 to 9 µg/mL (0.6 – 18.5 µM).  While 

there is no documentation of intrahepatic concentrations, SLB biliary levels have been shown to 

reach 29 – 116 µg/mL (60 – 240 µM) in humans, up to approximately 250 times greater than 

those seen in plasma (Schandalik et al., 1992).   

Our experiments document significant inhibition by the milk thistle constituent SLB at 

concentrations equal to or less than 10 µM for UGT1A1, 30 µM for CYP3A and 50 µM for 

BSEP.  These concentrations fall below those found in human bile and, for CYP3A and BSEP, 

but are greater than those measured in plasma.  Collectively, CYP3A and UGT1A1 are 

responsible for the metabolism of a wide variety of commonly prescribed medications and 

endogenous substances.  Increased blood plasma concentrations of drugs that may result from 

inhibition of these enzymes have the potential to alter drug therapy outcomes in patients taking 

milk thistle.  Inhibition of BSEP efflux, specifically in the presence of other drugs known to 

inhibits its activity, has the potential to affect normal bile acid homeostasis.  The results of these 

studies warrant consideration of further studies in healthy human subjects to assess the clinical 

relevance of these findings. 
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5. EFFECT OF MILK THISTLE ON UGT1A METABOLISM IN HUMANS 
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5.1. Abbreviations 

 

APAP  acetaminophen 
    APAP-G acetaminophen glucuronide 
    CYP  cytochrome P450 

GS  Gilbert syndrome 
HMM  hepatocyte maintenance medium 

    PCHH  primary cultures of human hepatocytes 
    SLB  silybin 
    SN-38  7-ethyl-10-hydroxycamptothecin 
    SN-38G 7-ethyl-10-hydroxycamptothecin glucuronide 
    UGT  UDP-glucuronosyl transferase 
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5.2. Abstract 

Introduction:  Milk thistle, an herbal product, is reported to protect the liver against various 

hepatotoxic chemicals.  The milk thistle constituent silybin (SLB) inhibits a variety of drug 

metabolizing enzymes in human liver microsomes and is metabolized itself by a yet unknown 

member of the UGT family of enzymes.  Furthermore, we have demonstrated that this inhibition 

of glucuronidation occurs at physiologically relevant concentrations in more complex systems 

such as primary cultures of human hepatocytes.  The purpose of this study was to determine if 

milk thistle therapy alters the pharmacokinetics of acetaminophen (APAP), a UGT1A substrate. 

 

Methods:  Eight healthy subjects (4 men and 4 women) were administered 500 mg of APAP 

before and after a 7 day course of milk thistle 100 mg b.i.d.  Relevant plasma and urine 

pharmacokinetic parameters were calculated for both APAP and its glucuronide (APAP-G) using 

a compartment independent approach. 

 

Results:  Milk thistle administration at 100 mg b.i.d. did not significantly alter the 

pharmacokinetics of APAP.  The metabolic ratio of APAP-G to APAP in both the plasma and 

urine was also not affected by milk thistle. 

 

Discussion:  Co-administration of milk thistle and acetaminophen at the doses given will not 

affect the pharmacokinetic profile of APAP.  Further studies are needed to assess the potential 

for drug-herb interaction in patients with the UGT1A1*28 polymorphism. 
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5.3. Introduction 

Milk thistle [Silybum marianum (L.) Gaertn. (Fam. Asteraceae)] extract is one of the 

most commonly used nontraditional therapies, particularly in Germany.  In accordance with the 

DSHEA legislation, it is marketed in the U.S. as a dietary supplement that “promotes liver 

health.”  The annual sale of this product is approximately $180 million in Germany (Cowley et 

al., 1995).  In the U.S., milk thistle is the 11th most popular herbal product in retail sales with an 

annual increase of almost 10% (Blumenthal, 2003).   

Milk thistle is known to contain a number of flavonolignans, compounds that are 

produced in plants by radical coupling of a flavonoid and a phenylpropanoid (Dewick, 1997).  A 

mixture of these flavonolignans, termed silymarin, is known to be composed of mainly silybin 

(SLB)(about 50-70%), but also contains silychristin, silydianin, and other closely related 

flavonolignans (Wagner, 1986).  A standardized extract of milk thistle contains at least 70% 

silymarin (Foster and Tyler, 1999; Schulz et al., 2001). 

Silymarin, the extract of milk thistle, is reported to protect the liver against CCl4, 

acetaminophen-, amanitin-, thioacetamide-, and D-galactosamine-mediated hepatotoxicity in rats 

(Schriewer et al., 1973; Vogel et al., 1984; Mourelle et al., 1989; Muriel et al., 1992; Chrungoo 

et al., 1997a; Chrungoo et al., 1997b).  Clinically, milk thistle is being studied as a therapy in the 

treatment of prostate cancer and has been used in the treatment of a variety of liver disorders 

(Singh and Agarwal, 2004).  A multicenter study in patients taking 420 mg of silymarin a day 

showed a significant reduction in patients suffering from alcoholic liver disease (Ferenci et al., 

1989).  Other evidence indicates that silymarin may improve the morbidity and survival rates 

from acute and chronic hepatitis and drug, toxin or alcohol-induced hepatitis (Pepping, 1999; 

Saller et al., 2001).  The exact mechanisms responsible for these observations are not clear. 
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Acetaminophen (APAP) is a widely used analgesic and antipyretic drug.  When given at 

therapeutic doses, APAP is eliminated primarily as the glucuronide (APAP-G)(50-60% of dose), 

with sulfation (30-45%) and oxidation (< 5%) contributing to a lesser extent (Prescott, 1983; 

Zapater et al., 2004).  APAP is metabolized mainly by UGT1A6, with UGT1A1 and UGT1A9 

contributing to a lesser extent (Court et al., 2001).  In Chapter 4, we showed that SLB inhibited 

the UGT1A1 metabolism of SN38 (IC50 = 12.4 µM) and the UGT1A metabolism of APAP (IC50 

= 22.3 µM).  Silymarin is known to deplete the pool of uridine diphosphoglucuronic acid 

(UDPGA) in hepatocytes, decrease glucuronidation of bilirubin in rats and inhibit UGT1A1 

activity in human liver microsomes (Chrungoo et al., 1997b; Sridar et al., 2004).  These 

observations suggest that there will be competition between the milk thistle constituent SLB and 

other drugs that are conjugated in the liver.  The aim of this pilot study was to determine if milk 

thistle administration in healthy subjects influences the pharmacokinetics of APAP.   

5.4. Methods 

5.4.1. Human Subjects 

Normal healthy volunteers between the ages of 18 and 65 years of age were recruited in this 

pilot study (n=8).  Prior to admission into the study, subjects were required to sign a consent 

form, approved by the Institutional Review Board of the University of Pittsburgh.  Subjects were 

also required to undergo a routine physical examination with an evaluation clinical laboratory 

tests.  Subjects were excluded from the study if they were pregnant or lactating, had evidence of 

hepatic or renal dysfunction, or had taken any over-the-counter or prescription medications in the 

past 48 hours.   

5.4.2. Study Design 
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The study was performed at the Digestive Disease Center in the University of Pittsburgh 

Medical Center, Pittsburgh, Pennsylvania.  Subjects were studied twice, once before and once 

after a one week course of milk thistle (100 mg of milk thistle fruit extract containing 80% 

silymarin, b.i.d., taken at 8 a.m. and  8 p.m.).  Subjects were required to abstain from alcohol and 

caffeine for 24 hours and from grapefruit juice and over-the-counter medications for 48 hours prior 

to each visit.  At each study visit, and after an overnight fast, subjects were administered APAP 

500 mg with 8 oz (240 ml) of water at approximately 8 a.m.  Blood samples (10 mL) were 

obtained from an indwelling catheter in a brachial vein immediately prior to and 2, 4, 6, 8, 12 

and 24 hours after APAP administration.  Subjects were required to stay for 12 hours in the 

Digestive Disease Center and return for the 24 hour blood sample and to drop off 12-24 hour 

urine collection.  Blank urine was collected prior to drug administration and all voided urine 

were pooled from 0 - 12 hours and 12 – 24 hours in receptacles that contained 1 gram ascorbic 

acid as a preservative.  Water was allowed ad libitum throughout the study. Blood samples were 

collected in EDTA tubes, kept on ice, and centrifuged within two hours of collection at 2800 

rpm, 4oC, for 15 minutes.  Plasma was separated from blood and frozen along with aliquots of 

urine at -80oC until analysis for APAP and APAP-G as described below.  

5.4.3. APAP and APAP-G Analysis 

Concentrations of APAP and APAP-G were determined by HPLC as previously described 

(Venkataramanan et al., 1989).  Briefly, 100 µl of a 20 µg/ml theophylline (internal standard) 

solution in 6% perchloric acid was added to 50 µl of plasma.  The mixture was vortexed for 5 

seconds and then spun at 13,000 g for 2 minutes.  Urine samples were diluted 10 times with 

distilled water.  Twenty microliters of a 200 mg/l theophylline solution were added to 50 µl of 

diluted urine and treated in the same manner as the plasma.  A 5 µl aliquot of the supernatant was 
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injected onto a LiChrospher 100 RP-18 column (4.6 x 250 mm, 5 µm).  APAP and APAP-G 

were eluted in a mobile phase of 7% acetonitrile – 0.05 M sodium sulfate buffer (pH 2.2) at a 

flow rate of 1.5 ml/min and the eluents were monitored at 254 nm.  The concentration of parent 

and metabolite was quantitated by comparing the peak areas in samples to a standard curve 

containing known amount of glucuronide.. 

5.4.4. Data Analysis 

Pharmacokinetic parameters of acetaminophen were calculated using a model-independent 

approach using WinNonLin 4.1 (Pharsight Corp., Mountain View, CA).  Area under the 

concentration time curve (AUC) was calculated using the linear trapezoidal rule with 

extrapolation to infinity.  Peak concentration (Cmax) was determined by direct inspection of data.  

The terminal elimination rate constant (λz) was estimated by linear least squares regression 

analysis of the terminal disposition phase of the log concentration-time profile.  Apparent 

volume of distribution (Vd/F) was determined by the equation Dose / (λz x AUC).  APAP-G 

AUC was calculated by the linear trapezoidal rule from 0 to 12 hours, as there was no detectable 

APAP-G present at 24 hours.  The ratio of APAP-G to APAP in the plasma was also determined.  

The fraction of APAP dose recovered in the urine as APAP-G was calculated as the product of 

APAP-G in the urine  and the urine volume divided by the 500 mg dose ingested. 

 Pharmacokinetic parameters of APAP and APAP-G were log-transformed where 

appropriate and compared by paired t-test.  Continuous quantitative data were reported as mean 

± SD.  Mean differences and their 95% confidence intervals were also calculated.  All 

calculations were performed with PRISM software 4.0 (GraphPad Software Inc., San Diego, CA) 

with a two-sided p ≤ 0.05 was considered significant. 
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5.5. Results 

A total of 8 normal healthy volunteers (4 men and 4 women) participated in the study.  

Subjects were between the ages of 21 and 38 years of age (mean of 31.3).  Seven subjects were 

Caucasian and one was African-American.  Both APAP and milk thistle were well tolerated and 

 

 

Table 9.  Mean pharmacokinetic parameters of APAP and APAP-G before and after a 7-
day administration of milk thistle 100 mg b.i.d. in 8 healthy subjects 
 

 Control Milk thistle 
Mean difference 

between treatments 
(95% CI) 

p value 

APAP     

AUC (hr·µg·ml-1) 84.9 ± 32.1 88.7 ± 38.7 -3.77 (-15.61, 8.07) 0.465 

Cmax (µg·ml-1) 15.9 ± 4.5 15.5 ± 5.2 0.4 (-2.3, 3.1) 0.759 

t1/2 (hr) 4.31 ± 0.65 4.15 ± 0.86 0.25 (-0.11, 1.13) 0.130 

Vd/F (L) 43.2 ± 20.0 47.3 ± 26.2 -4.1 (-15.6, 7.4) 0.427 

APAP-G     

AUC (hr·µg·ml-1) 146.0 ± 40.2 149.2 ± 32.4 -3.2 (-23.8, 17.4) 0.723 

APAP-GAUC:APAPAUC 1.78 ± 0.69 1.99 ± 0.75 -0.20 (-0.36, -0.06) 0.078 

Urine APAP-G (%) 46.9 ± 9.6 48.0 ± 12.8 -1.1 (-11.6, 9.4) 0.802 
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Figure 24.  Effect of milk thistle therapy on acetaminophen AUC and t1/2. 
Acetaminophen A) AUC and B) t1/2 were determined before (squares) and after (triangles) milk thistle 100 mg b.i.d. for 7 
days in 8 healthy subjects. 
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no adverse events were noted when drugs were administered alone or in combination. 

 Individual pharmacokinetic parameters are shown in Table 9 and Figure 24.  Milk thistle 

administration did not significantly affect any of the parameters calculated for APAP nor did 

alter the APAP-G, expressed as a percentage of the dose of parent, found in the urine.   The ratio 

of APAP-G to parent in the plasma trended toward significance with a p = 0.078.   

5.6. Discussion 

 UDP-glucuronosyltransferases (UGTs) are a superfamily of drug metabolizing enzymes 

located in the endoplasmic reticuli of various cell types in the body.  They catalyze the transfer 

of the glucuronic acid residue from uridine diphosphoglucuronic acid (UDPGA) to a hydroxy, 

either phenolic or alcoholic, or a carboxylic acid group on the compound (Meech and 

Mackenzie, 1997).  The end result is a hydrophilic glucuronide metabolite that is generally 

devoid of pharmacological activity and is excreted in the bile or urine.  In humans, 16 different 

UGT isoforms have been classified into either 1A or 2B subfamilies (Tukey and Strassburg, 

2000).  They metabolize a broad range of endogenous and exogenous substances with significant 

overlap in substrate specificity between isozymes (Radominska-Pandya et al., 1999).  Among the 

UGT1A family, UGT1A1 is most notably involved in the glucuronidation of bilirubin but also 

metabolizes estradiol, APAP and active metabolite of irinotecan, SN-38 (Cheng et al., 1998; 

Court et al., 2001; Tukey et al., 2002).  UGT1A6 and UGT1A9 metabolize short planar phenols 

including catechols, acetaminophen, and 4-methylumbelliferone (Fournel-Gigleux et al., 1991; 

Court et al., 2001). 

 Milk thistle extract is a common herbal supplement used in the U.S.  The administration 

of milk thistle is widely considered safe with only a mild laxative effect reported in some 

patients when administered at daily doses exceeding 1500 mg per day (Luper, 1999).  However, 
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the interaction of SLB with CYPs and the possibility of drug-herb interactions has recently been 

shown (Beckmann-Knopp et al., 2000).  SLB, the most abundant constituent found in milk 

thistle,  inhibited UGT1A1 (IC50 = 1.4 µM), UGT1A6 (IC50 = 28 µM), UGT1A9 (IC50 = 20 µM), 

UGT2B7 (IC50 = 92 µM) and UGT2B15 (IC50 = 75 µM) in human liver microsomes (Sridar et 

al., 2004).  In a more complex environment, present in primary cultures of human hepaoctyes, 

we showed that SLB inhibited the UGT1A1 metabolism of SN38 (IC50 = 12.4 µM) and the 

UGT1A metabolism of APAP (IC50 = 22.3 µM) (Chapter 4).   

 The issue of SLB bioavailability is one that must be addressed as a possible explanation 

for the lack of an effect of milk thistle in this study.  SLB, a flavanolignan, and other related 

classes of compounds such as flavonoids, exist naturally as a glycosides with the associated 

sugar moiety usually being either glucose or rhamnose (Manach et al., 2004).  Only aglycones 

can be absorbed in the small intestine, but the microflora that catalyzed the cleavage of the 

glycoside from the flavonoid are found in the large intestine, the portion of the intestine with a 

small exchange area and lower density of transport systems (Manach et al., 1995; Hollman and 

Katan, 1997).  With the possibility of intestinal and hepatic metabolism, hepatic concentrations 

of the SLB aglycone maybe lower than the concentrations required for inhibition of the UGT1A 

metabolism of APAP as shown in PCHH (Chapter 4).   

 Our study design did not incorporate plasma sampling from 0 to 2 hours after APAP 

administration.  Considering the tmax of APAP is between 0.7 and 1.5 hours (Gandia et al., 2003; 

Zapater et al., 2004), it is likely that the 2 hour sample missed the true tmax and Cmax.  

Accordingly, our AUC0→∞ is likely lower than the true AUC0→∞ value.  However, the 

AUC0→1hour only contributed 12.7% to the total AUC value in a study that looked at APAP 

AUC0→6 hour .  Our pharmacokinetic analysis looked at AUC over larger range of time points with 
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extrapolation to infinity.  Therefore, because of the latter, and along with the fact that a portion 

of the AUC0→∞ value missed by our study design is accounted for in the area calculated from 0 

to 2 hours, any difference in the AUC0→2 is likely to only contribute a minor percentage of the 

total AUC. 

 Gilbert syndrome (GS) is a homozygous recessive disorder in which patients demonstrate 

mild increases in serum bilirubin levels secondary to decreased UGT1A1 activity (Arias and 

London, 1957).  The genetic basis of this disease lies in the presence of an additional TA repeat 

[(TA)7] in the TATAA box in the promoter region of UGT1A1 and has been named UGT1A1*28 

(Bosma et al., 1995).  Interesting, while 5 – 10 % of patients with GS have moderately increased 

serum levels of bilirubin, the prevalence of the (TA)7 repeat is between 35 and 40% in 

Caucasians (Monaghan et al., 1996).   

 Patients with GS have demonstrated reduced clearance of APAP and SN-38, the active 

metabolite of the topoisomerase I inhibitor irinotecan (de Morais et al., 1992; Ando et al., 2000).  

This change in the elimination of SN-38 resulted in increased neutropenia and diarrhea.  In 

primary cultures of human hepatocytes, both the 6/7 and 7/7 genotypes resulted in reduced SN-

38 glucuronidation (Figure 25).   
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Figure 25.  Reduced metabolism of SN-38 in donors heterozygous and homozygous for 
UGT1A1 (TA)7 repeat. 

Primary cultures of human hepatocytes from 26 donors were exposed to SN-38 5 µM 
for 60 minutes and the SN-38G measured by HPLC.  Tissue from donors was then 
genotyped for the UGT1A1 (TA)7 repeat by Dr. Federico Innocenti, University of 
Chicago, Chicago, IL. 

 

 

 

The average serum bilirubin concentration prior to study enrollment was 0.45 mg/dl 

(normal range 0.3 – 1.5 mg/dl).  But given the poor correlation between UGT1A1 genotype and 

serum bilirubin, this in itself does not rule out the possibility of one patient containing one or 

more alleles with the (TA)7 repeat.  In fact, three patients had increased APAP AUC values 

following milk thistle administration.  However, following milk thistle administration, only one 

patient had a 29% increase in APAP AUC associated with a 20% decrease in APAP-G AUC and 

a 14% decrease in the amount of APAP-G excreted in the urine.  Given the high incidence of the 

(TA)7 repeat in Caucasians and the high number of patients with that particular ethnicity in our 

study, it is possible that the alterations in the pharmacokinetic parameters in this patient are 
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linked to the UGT1A1*28 polymorphism.  Future studies examining the pharmacokinetics of 

UGT1A1 substrates must prospectively genotype patients in order to explain aberrant 

pharmacokinetic results. 

 Patients taking milk thistle, at the doses used in this study, would not be expected to have 

clinically significant alterations in the AUC of APAP.  Further investigation is warranted to 

establish if such an interaction occurs in patients genetically predisposed to lower APAP 

clearance (i.e. having the UGT1A1*28 mutation). 
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6. INDIRECT AND DIRECT EFFECT OF ST. JOHN’S WORT CONSTITUENTS 
ON COMMON DRUG METABOLIZING ENZYMES 
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CY, Cui YY, Venkataramanan R.  Induction and inhibition of cytochromes P450 by the St. 
John’s wort constituent hyperforin in human hepatocyte cultures. Drug Metab and Disp (2004) 
32;512-518.] 
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6.1. Abbreviations 

 
6β(OH)TE 6β(OH)Testosterone 
βNF  β-napthaflavone 

    CAR  constitutive androgen receptor 
    CYP  cytochrome P450 
    DMSO  dimethylsulfoxide 
    EROD  ethoxyresorufin 
    HMM  hepatocyte maintenance medium 
    HPC  hypericin 
    HPF  hyperforin 

PB  phenobarbital 
PCHH  primary cultures of human hepatocytes 
PXR  pregnane X receptor 
RIF  rifampicin 
SJW  St. John’s wort 

    SN-38  7-ethyl-10-hydroxycamptothecin 
    SN-38G 7-ethyl-10-hydroxycamptothecin glucuronide 
    TE  testosterone 
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6.2. Abstact 

Aims:  St. John’s wort extract (SJW)(Hypericum perforatum L.) is among the most commonly 

used herbal medications in the U.S.  The predominance of clinical reports indicate that SJW 

increases the activity of cytochrome P450 3A4 (CYP3A4) enzyme and reduces plasma 

concentrations of certain drugs.  While the inductive effect of SJW on CYP3A4 is clear, other 

reports indicate that SJW constituents may have, to a small degree, some enzyme inhibitory 

effects.  Accordingly, we sought to study the induction and inhibition effects of the constituents 

of SJW on CYP3A4 in primary cultures of human hepatocytes (PCHH).  Moreover, most 

research has focused on the induction of CYP3A4 by SJW with little attention paid to other 

prominent drug metabolizing enzymes such as CYP1A2, CYP2C9 and CYP2D6.   

 

Methods:  To examine the effects of SJW on CYP1A2, CYP2C9, CYP2D6 as well as CYP3A4, 

PCHH were exposed to hyperforin and hypericin, the primary constituents of SJW extract.  

Hepatocytes treated with hypericin or hyperforin were incubated with EROD (CYP1A2), 

flurbiprofen (CYP2C9), dextromethorphan (CYP2D6) and testosterone (CYP3A4) to determine 

enzyme activity.  Additionally, PCHH were exposed to hyperforin and TE simultaneously to 

assess for inhibition of CYP3A activity.  Protein content and mRNA were also measured.   

 

Results: Hyperforin treatment resulted in significant increases in mRNA, protein and activity of 

CYP3A4 and CYP2C9, but had no effect on CYP1A2 or CYP2D6.  Acute administration of 

hyperforin at 5 and 10 µM 1 hr prior to, and along with probe substrate, inhibited CYP3A4 

activity.  Hypericin had no effect on any of the enzymes tested.   

 

Conclusions:  These results demonstrate that with chronic exposure, the inductive effect of SJW 

on drug metabolizing enzymes predominates over inhibition.  Furthermore, while human liver 

microsomes are a valuable tool to evaluate large numbers of herbal constituents in a cost and 

time efficient manner, such results must be interpreted with caution.   PCHH are a versatile and 

more physiologically relevant in vitro tool for screening the effect of herbal products on CYP 

enzymes. 
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6.3. Introduction 

In 2002, sales of botanical supplements in the United States reached nearly $293 million 

dollars.  St. John’s wort accounted for 15 million U.S. dollars in sales, making it the fourth 

highest grossing botanical supplement (Blumenthal, 2003).  Several clinical studies have 

demonstrated the effectiveness of St. John’s wort compared to conventional therapy in the 

treatment of mild to moderate depression (Wheatley, 1997) (Linde et al., 1996) . 

      Marketed St. John’s wort, an extract of the flowering portion of the plant Hypericum 

perforatum L., is a mixture of a number of biologically active, complex compounds.  At 0.3 mg 

per capsule, the naphthodianthrone hypericin is used as a means of standardization of the 

marketed product.  The phloroglucinol hyperforin, the most plentiful lipophilic compound in the 

extract, is a potent inhibitor of serotonin, norepinephrine and dopamine reuptake (Muller et al., 

1998). 

      Several recent reports have documented decreased blood/plasma levels of cytochrome 

P450 3A4 (CYP3A4) substrates, such as indinavir, cyclosporin A and imatinib, in patients 

concomitantly on St. John’s wort (Piscitelli et al., 2000; Ahmed et al., 2001; Frye et al., 2004). 

Similar observations have been documented for digoxin, a substrate of the intestinal transporter 

P-glycoprotein (P-gp). Additional in vivo evidence has demonstrated that St. John’s wort 

increased CYP3A4 and P-gp protein levels in rats (Durr et al., 2000). 

Both CYP3A4 and P-gp are transcriptionally regulated by the nuclear orphan receptor 

pregnane X receptor (PXR).  After ligand binding in the cytosol, PXR translocates to the nucleus 

where it heterodimerizes with retinoid X receptor, and then binds to the CYP3A4 promoter, 

resulting in increased CYP3A4 and P-gp mRNA expression.  In vitro studies have shown that 

hyperforin, but not hypericin, is a potent activator of PXR (Moore et al., 2000a). In addition to 
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increasing expression of CYP3A4 and P-gp, PXR has also been shown to play a role in the 

expression of cytochrome P450 2C9 (CYP2C9) expression (Gerbal-Chaloin et al., 2001b).   

While most research has pointed to the ability of St. John’s wort to induce CYP3A4, one 

report documented the potent inhibition of CYP3A4, CYP2C9 and CYP2D6 by hyperforin and 

hypericin (Obach, 2000).  The objective of our experiments was to use primary cultures of 

human hepatocytes to characterize the effect of hypericin and hyperforin on CYP1A2, CYP2C9, 

CYP2D6 and CYP3A4 mRNA expression, protein content and enzyme activity.  We also 

evaluated the potential of hyperforin to inhibit CYP3A4 enzymes using human hepatocyte 

cultures.  We hypothesize that, based on the known in vivo decrease in CYP3A substrate AUC, 

hyperforin mediated induction will predominate over enzyme inhibition.  Furthermore, because 

hyperforin is a PXR ligand, we hypothesize that CYP2C9 will under go enzyme induction 

similar to CYP3A. 

6.4. Methods 

6.4.1. Hepatocyte Donors 

Hepatocytes were isolated and plated as described in Chapter 2.  Table 10 shows the donor 

information for hepatocytes used in the studies outlined in this chapter. 

6.4.2. Evaluation of the cytotoxicity of hyperforin/hypericin to human hepatocytes. 

Hepatocytes were exposed to 0, 0.5, 1.0, 2.5 and 5 µM of hypericin and 0, 0.2, 1.0, 2.5 and 

5 µM of hyperforin for 48 h.  Following media aspiration, 10% v/v of 5 mg/ml 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) was added to Williams E medium at 96 h 

of culture and incubated for 30 min.  Medium was then aspirated and cells washed with HMM.  

Isopropanol was then added and shaken gently for 2 min. Two hundred microliters of solution 

was transferred to a 96-well plate, and the absorbance was measured at 490 nm. 
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Table 10.  Donor information for human hepaotycte preparations used in Chapter 6 

 
Donor 
HH # Age Sexa Raceb Cause of 

deathc Drug History Viability Percoll 
separation 

889 28 y M C Anoxia Nicotine, THC,  78% No 

906 64 y M C ICH None reported 78 % Yes 

913 49 y F C ICH 

trazodone, carbamazepine, 
buspirone, nefazodone, 

methylphenidate, haloperidol, 
clonazepam, omeprazole 

88 % Yes 

919 7 d F C CA None reported 84 % No 

921 6 y F C HT/MVA enalapril 75 % No 

926 35 y F C ICH None reported 89 % No 

943 3y M C HT dopamine, propranolol, 
solumedrol,  77 % No 

944 70 M H ICH nifedipine, amitriptyline 70% No 

1002 5y M C HT/MVA None reported  70% Yes 

1112 69y F C CA None reported 80% No 

1117 68y F C ICH 
Labetalol, verapamil, 

clonidine, metoclopramide, 
simvastatin, clopidogrel 

82 No 

1119 29y F C - None reported   

1121 65y F C ICH No medications reported 78 No 

1122 46y F C Head 
Trauma 

Tiamterene, propranolol, 
levothyroid, verapamil, 
alprazolam, modafinil 

76 No 

aM, male; F, female;  bC, Caucasian; H, Hispanic;  c CA, cardiac arrest; HT, head trauma; ICH, 
intra cranial hemorrhage; MVA, motor vehicle accident 
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6.4.3. Hepatocyte treatment protocol 

To examine the indirect effect of St. John’s wort constituents, hepatocytes were isolated, 

plated, and exposed to rifampicin (RIF, 10 µM), dexamethasone (DEX, 50 µM), β-napthaflavone 

(β-NF, 25 µM), hypericin (0 – 2.5 µM) or hyperforin (0 – 1 µM), all dissolved in dimethyl 

sulfoxide (DMSO).  The final concentration of DMSO in medium was 0.1%. 

 To determine whether hyperforin or one of its metabolites can inhibit CYP3A4 activity, 

human hepatocytes treated with hyperforin (1 µM) for 48 hours, referred to as chronic (c), were 

then exposed to the same concentration of hyperforin 1 hour before the addition of the probe 

substrate, referred to as acute (a) treatment.  In addition, untreated hepatocytes were 

preincubated (p) with hyperforin (1, 5, or 10 µM) for 1 hour before addition of substrate and then 

treated acutely (a) with the same concentration of hyperforin along with the probe substrate.   

6.4.4. Analytical procedures 

HPLC measurement of flurbiprofen metabolism  

The concentration of 4’-hydroxyflurbiprofen in the medium was measured by HPLC as 

previously described,(Tracy et al., 1995) with the following modifications.  Samples were 

acidified with 20 µL of H3PO4 and quenched with 200 µL of acetonitrile containing 36 ng of 2-

fluoro-4-biphenyl acetic acid (internal standard).  Following centrifugation at 10,000 rpm for 4 

min, 50 µL of sample was injected onto the HPLC system (Waters Alliance 2690XE HPLC 

system, Milford, MA).  Mobile phase, at a rate of 1 mL/min, consisted of acetonitrile/10 mM 

K2HPO4 , pH 3.0 (40:60) and was pumped through a Brownlee Spheri-5 C18, 4.6 x 100-mm 

column (Perkin Elmer Instruments, Norwalk, CT).  The metabolite was detected with a 

fluorescence detector (Waters 474) with an excitation and emission wavelengths of 260 and 320 

nm, respectively. 
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HPLC-MS measurement of CYP2D6 activity   

The concentration of dextrorphan in the medium was measured by HPLC-MS.  An aliquot 

of medium (200 µL) was combined with glycine buffer (1M, pH 11.3) and extracted with 

hexane/tert-butyl methyl ether (75:25). The organic layer was transferred to a clean tube and the 

sample was back extracted into 0.2 N hydrochloric acid (200 µl).  The samples were injected (20 

ml) onto the HPLC system and the eluent was monitored by selected ion monitoring of m/z 258 

(dextrorphan) and m/z 284 (levallorphan, internal standard) with the single-quadrupole mass 

spectrometer operated in electrospray positive ion mode.  Chromatography was performed using 

a Phenomenex Max-RP C12 column (2.0 × 150 mm) and a mobile phase consisting of 

methanol-water (55:45, v/v) containing 0.1% formic acid, which was delivered isocratically at a 

flow rate of 0.2 ml/min.  

6.4.5. Data Analysis 

The data were analyzed using a one-way analysis of varience with a post hoc Dunnett’s 

procedure.  A p value of ≤ 0.05 was considered statistically significant and all calculations were 

performed were performed using PRISM software version 4.0 (GraphPad Software, Inc., San 

Diego, CA, USA). 

6.5. Results 

6.5.1. Assessment of hyperforin and hypericin mediated cytotoxicity   

Hepatocytes prepared from two donors were exposed to hypericin at 0.5, 1.0, 2.5 and 5.0 

µM and hyperforin at 0.2, 1.0, 2.5 and 5.0 for 48 h to assess the effect on the hepatocyte 

mitochondrial activity by an MTT assay.  Concentrations of hypericin at 5.0 µM and hyperforin 
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at 2.5 µM exhibited decreased mitochondrial activity as assessed by MTT reduction as shown in 

. Figure 26

6.5.2. Effect of hypericin and hyperforin on enzyme activity   

Because of the toxicity seen at concentrations of 5.0 µM and 2.5 µM for hypericin and 

hyperforin, respectively, we examined the effect of hypericin and hyperforin on CYP3A4 

activity as measured by 6β-hydroxytestosterone formation rate at 1.0 and 2.5 µM, and 0.2 and 

1.0 µM, respectively.  Results for treatment of three cultures are shown in Table 11 and one 

culture (HH921) displayed in Figure 27.  In HH906 (Table 11), the rate of formation of 6β-

hydroxytestosterone in the DMSO treated cells was 0.10 ± 0.01 nmol/min/mg protein.  

Treatment with hyperforin at 0.2 and 1.0 µM resulted in a 3.3- and 7.9-fold increase in the 

formation rate of 6β-hydroxytestosterone as compared to DMSO treated cells, respectively.  

Rifampicin (10 µM), in the same culture, caused a 9.6-fold increase in 6β-hydroxytestosterone 

formation rate compared to DMSO treated cells.  Treatment of cells with hyperforin at 0.2 and 

1.0 µM resulted in a 2- and 3.2-fold increase in 6β-hydroxytestosterone formation rate in HH913 

and a 1- and 4.8-fold increase in HH921, respectively.  In all cultures, no significant difference in 

6β-hydroxytestosterone formation rate was observed in cells treated with hypericin 1.0 or 2.5 

µM. 

  In HH913 (Table 11), 4’-hydroxyflurbiprofen formation rate was 0.12 nmol/min/mg 

protein.  Treatment with hyperforin at 0.2 and 1.0 µM resulted in a 1.5- and 1.6-fold increase in 

the formation rate of 4’-hydroxyflurbiprofen formation compared to DMSO treated cells.  

Treatment of hepatocytes with hyperforin at 0.2 and 1.0 µM resulted in a 1.9- and 1.5-fold 

increase in 4’-hydroxyflurbiprofen formation rate in HH919 and a 2- and 1.7-fold increase in 

HH926.  Rifampicin (10 µM) in HH913, HH919 and HH926 caused a 2.3-, 2.2- and 2.9-fold 
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increase in CYP2C9 enzyme activity, respectively.  Hypericin treatment at 1.0 and 2.5 µM did 

not alter CYP2C9 activity in any of the cultures. 

CYP2D6 enzyme activity was measured by dextromethorphan to dextrorphan formation 

rate and CYP1A2 was measured by ethoxyresorufin to resorufin formation rate.  In hepatocytes 

from two donors (HH921, HH926), hyperforin 0.2 and 1.0 µM or hypericin 1.0 and 2.5µM 

treatment did not significantly change CYP1A2 or CYP2D6 activity when compared to DMSO 

only (p < 0.05) (data not shown).      

 

Figure 26.  Effect of hypericin and hyperforin on MTT reduction. 
Hepatocytes were treated with hypericin (HPC) (0 - 5.0 µM) or hyperforin (HPF) (0 - 
5.0 µM).  MTT reduction was then measured.  The figure shows the mean of 
triplicate treatments and are expressed as a percentage of the value in DMSO treated 
cells, with the S.D. indicated by the vertical bars.  *, significantly different from 
DMSO treated cells, p ≤ 0.05.   
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To determine if hyperforin could inhibit CYP3A activity and whether induction or 

inhibition would predominate following chronic hyperforin exposure, we examined the effect of 

chronic (c), pre-incubatory (p) and/or acute (a) hyperforin exposure on TE metabolism.  Chronic 

exposure alone of hepatocytes to hyperforin 1.0 µM resulted in a significant increase in 6�-

hydroxytestosterone formation rate from 0.21 ± 0.00 to 0.50 ± 0.11 nmol/min/mg as seen in 

Figure 4 (p < 0.05).  There was no difference in activity when the latter was compared to cells 

treated with (c)-(p)-(a) hyperforin 1.0 µM.  With (p)-(a) hyperforin 1.0 µM and (a) hyperforin 

1.0 µM there was no change in CYP3A4 activity compared to DMSO.  However, 6β-

hydroxytestosterone formation rate was significantly decreased with (p)-(a) hyperforin 5.0 µM 

and (p)-(a) hyperforin 10.0 µM from a control value of 0.21 ± 0.01 nmol/min/mg to 0.13 ± 0.03 

and  0.11  ± 0.04 nmol/min/mg, respectively (p < 0.05).  Ketoconazole was used as a positive 

control and significantly reduced CYP3A4 activity (p < 0.05). 

6.5.3. Effect of hypericin and hyperforin on protein content   

To determine if the increase in CYP3A4/5 and CYP2C9 enzymatic activity resulted from 

increased immunoreactive protein, Western blot analysis was performed.  In Figure 29, Western 

blot analysis showed an increase in immunoreactive CYP3A4/5 in hepatocytes treated with 

hyperforin 0.2 µM and 1.0 µM when compared to DMSO treated controls.  Similarly, hyperforin 

(0.2 and 1.0 µM) resulted in an increase in CYP2C9 immunoreactive protein.  Rifampicin (10 

µM) treatment resulted in increases in both CYP3A4 and CYP2C9 protein content.  CYP2D6 

and CYP1A2 protein levels were not increased by hyperforin (0.2 and 1.0 µM).  Hypericin (1.0 

and 2.5 µM) did not increase immunoreactive protein of any of the enzymes. 
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Table 11.  Effect of hypericin and hyperforin on CYP2C9 and CYP3A4/5 activity 

 CYP3A4 - TE (250 µM)  CYP2C9 – FLU (100 µM) 

 HH906       HH913 HH921 HH913 HH919 HH926

DMSO 0.10 ± 0.01 0.26 ± 0.01 0.19 ± 0.01  0.12 ± 0.03 0.16 ± 0.03 0.07 ± 0.01 

RIF 10 µM 0.96 ± 0.09* 1.67 ± 0.01* 1.43 ± 0.23*  0.27 ± 0.04* 0.35 ± 0.03* 0.20 ± 0.03* 

HPC 1.0 µM 0.16 ± 0.02 0.24 ± 0.03 0.25 ± 0.06  0.13 ± 0.03 0.17 ± 0.01 0.08 ± 0.00 

HPC 2.5 µM 0.16 ± 0.02 0.33 ± 0.05 0.16 ± 0.04  0.13 ± 0.02 0.18 ± 0.02 0.10 ± 0.02 

HPF 0.2 µM 0.33 ± 0.03* 0.52 ± 0.11* 0.18 ± 0.05  0.18 ± 0.01* 0.30 ± 0.08* 0.14 ± 0.02* 

HPF 1.0 µM 0.79 ± 0.07* 0.84 ± 0.06* 0.92 ± 0.15*  0.19 ± 0.01* 0.24 ± 0.03* 0.12 ± 0.01* 
HPC, hypericin; HPF, hyperforin; TE, testosterone; FLU, flurbiprofen 
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Figure 27.  Effect of hypericin and hyperforin on CYP3A activity 

Human hepatocytes were treated with hypericin (HPC)(0 - 2.5 µM) and hyperforin 
(HPF)(0- 1.5 µM).  After 30 min of TE incubation, aliquots of medium were analyzed 
for 6β(OH)TE by HPLC.  Each value represents the mean of triplicate treatments with 
the S.D. indicated by the vertical bars.  *, significantly different from DMSO treated 
cells, p ≤ 0.05.   
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Figure 28.  Effect of 48 hour chronic (c), 1 hour pretreatment (p), and acute (a) hyperforin 
exposure on CYP3A activity. 

Hepatocytes were treated with hyperforin (HPF)(0 – 10 µM).  (c), 48 hour treatment with HPF; 
(p), HPF added for 1 hour before the addition of TE; (a), HPF added along with TE; (p-a), HPF 
added for 1 hour before the addition of TE followed by HPF added along with TE.  *, 
significantly different from DMSO-treated cells, p ≤ 0.05.  KTZ, ketoconazole. 
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Figure 29.  Effect of hypericin and hyperforin on hepatic CYP450 protein content 
Hepatocytes were treated with hypericin (HPC)(0 – 2.5 µM) or hyperforin (HPF)(0 – 1.0 µM).  
Immunodetectable CYP3A4 (A), CYP2C9 (B), CYP1A2 (C), and CYP2D6 (D) isoform levels 
were analyzed in pooled sonicates of whole cells harvested in phosphate buffer.  Sonicated 
proteins (18 µg) was applied per well. 

 114



 

 

Figure 30.  Effect of hypericin and hyperforin on CYP450 mRNA levels. 
Hepatocytes were treated with  hypericin (HPC)(0-2.5 µM) and hyperforin (HPF)(0-1.0 µM).  Real-time PCR was performed on 
CYP3A4 (A), CYP2C9 (B), CYP1A2 (C), and CYPD6 (D) generated cDNA and data pooled for statistical analysis.  *, significantly 
different from DMSO-treated cells, p ≤ 0.05.   
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6.5.4. Effect of hypericin and hyperforin on mRNA expression   

To determine if the increase in CYP3A and CYP2C9 activity resulted from increased 

mRNA expression, Real Time PCR analysis was performed.  Hepatocytes treated with 

hyperforin 0.2 and 1.0 µM resulted in a significant increase in mRNA expression of CYP3A4 

and CYP2C9 ( ).  A small increase (2 fold) in CYP1A2 expression occurred with 

hyperforin treatment.  Cells treated with hypericin showed a small decrease in the expression of 

CYP1A2 and CYP2C9 expression. 

Figure 30

6.6. Discussion 

Primary cultures of human hepatocytes offer a number of advantages over other systems 

commonly employed in drug metabolism research.  Hepatocytes are intact systems containing all 

of the necessary cofactors for the oxidative, reductive and conjugative metabolism of 

xenobiotics.  Yet their simplicity compared to liver slices, whole perfused organs or entire 

animal systems allows for the elimination of confounding factors such as blood flow and blood 

protein binding. 

In this study we have shown that human hepatocytes exposed chronically to the St. 

John’s wort constituent hyperforin (up to 1.0 µM) had increased CYP3A4 mRNA expression, 

protein content and enzyme activity.  The capacity of hyperforin to induce CYP3A4, EC50 = 0.5 

µM, was comparable to that of rifampicin, EC50 = 0.5 µM (Sahi et al., 2000) albeit to a lower 

magnitude (lower Emax).  However, cells treated chronically with another prominent St. John’s 

wort constituent, hypericin, did not show any change in the mRNA expression or activity of this 

enzyme.  These data are consistent with reports that St. John’s wort administration along with 

other CYP3A4 substrates, such as cyclosporin and indinavir, result in decreased plasma or blood 

levels of these drugs (Piscitelli et al., 2000; Ahmed et al., 2001) but inconsistent with other 

 116



 

studies that showed CYP3A4 inhibition by St. John’s wort constituents in expressed human 

enzymes,(Obach, 2000) or no effect on these enzymes (Noldner and Chatterjee, 2001). 

 When administered to humans as a single 900 mg dose, St. John’s wort increased the 

bioavailability of fexofenadine, a P-glycoprotein substrate, indicating inhibition of the intestinal 

transporter. (Wang et al., 2002)  However, when administered 300 mg three times a day for 14 

days, St. John’s wort caused a significant increase in fexofenadine clearance compared to single 

dose therapy, consistant with induction of P-glycoprotein.  The latter is in line with the ability of 

hyperforin to activate the nuclear factor PXR with subsequent transcriptional activation of P-

glycoprotein expression (Moore et al., 2000a).  The similarity of transcriptional regulation of P-

gp and CYP3A4, along with an overlapping substrate/inhibitor profile, lends further credence to 

the hypothesis that CYP3A4 and P-gp are capable of being inhibited by a constituent of St. 

John’s wort prior to onset of the inductive effect on CYP3A4 and P-gp that occurs with chronic 

exposure. 

      Chronic (48 hour) exposure of human hepatocytes to hyperforin is limited to 

concentrations below 1.5 µM due to cytotoxicity.  However, it is possible to expose human 

hepatocytes to higher concentrations of hyperforin (5 and 10 µM) for short durations such as 1 

hour prior to the addition of the probe compound.  Because exposure is limited to one hour, any 

increase in CYP protein expression is negligible and the direct effect of hyperforin on the 

enzyme can be documented.  Indeed, the presence of hyperforin levels 5 and 10 times greater 

than that capable of inducing the enzyme resulted in an inhibition of CYP3A4 activity (

).  The study conducted by Obach using expressed human CYP enzymes found the Ki of 

hyperforin for CYP3A4, CYP2D6 and CYP2C9 to be 0.49, 1.5 and 1.8 µM respectively (Obach, 

2000).  It should be noted that the significant inhibition of CYP3A4 by hyperforin occurred at 3 

Figure 

28
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µM, a concentration that is greater than that required for induction in primary cultures of human 

hepatocytes.  Furthermore, it has been shown in a PXR binding assay, hyperforin is actually a 

more potent PXR ligand than rifampicin, yet rifampicin results in greater expression of CYP3A4 

mRNA human hepatocytes (Moore et al., 2000a).  The latter indicates that in an intact cellular 

system, seen either in cell culture or in vivo, hyperforin is in some way handled by the cell, 

perhaps as a substrate for a membrane transporter, metabolized to an inactive metabolite or 

partitions into hepatocytes to a lesser degree.   Because the former inhibition studies were 

conducted in a microsomal system, passage across the outer cellular membrane does not occur.  

These factors may explain why in our studies it required hyperforin concentrations of 5 to 10 

times inducing concentrations to document enzyme inhibition.   

     Interestingly, the potent PXR ligand rifampicin has also been shown to induce CYP2C9 

mRNA in primary cultures of human hepatocytes, albeit to a lower extent than its induction of 

CYP3A4 (Gerbal-Chaloin et al., 2001a).  Logically, hepatocytes exposed to hyperforin, a potent 

PXR ligand, should demonstrate increased CYP2C9 enzyme expression and activity.  

Accordingly, our data show that rifampicin (10 µM) treatment resulted in an increase in CYP2C9 

mRNA expression, protein content and enzyme activity.  More importantly, for the first time, we 

have documented an increase in CYP2C9 mRNA expression, protein content and activity in 

human hepatocytes exposed to hyperforin at concentrations identical to those that cause an 

increase in CYP3A4 activity. 

      While documentation of St. John’s wort’s role in CYP2C9 mediated drug metabolism is 

limited, one case report has documented a reduced anticoagulant effect of warfarin, a substrate of 

CYP2C9, in patients taking St. John’s wort,(Yue et al., 2000) and another study showed a 

reduction in phenprocoumon AUC, also a substrate of CYP2C9, following St. John’s wort 
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administration (Maurer et al., 1999).  However, a study that used tolbutamide as a probe for 

CYP2C9 failed to show any change in AUC compared to placebo in patients administered St. 

John’s wort extract for 14 days (Wang et al., 2001).  The reason(s) for this apparent 

incongruency are as yet unknown, however, in human hepatocyte cultures, the hyperforin clear 

results in an inductive effect of CYP2C9.   

      Hyperforin’s effect on drug metabolizing enzymes may not be confined to CYP3A4 and 

CYP2C9 isoforms.  Some case reports have indicated a modulation of metabolism of 

theophylline, metabolized by CYP1A2, and amitriptyline, metabolized by CYP2D6 and 

CYP1A2, in patients taking St. John’s wort.  We observed no significant change in CYP1A2 or 

CYP2D6 activity or protein content in human hepatocytes exposed to hyperforin or hypericin.  

Based on these data, it is unlikely that the St. John’s wort constituents studied will result in any 

clinically significant drug interactions in vivo with substrates of CYP1A2 and CYP2D6. 

      Our studies clearly document the potential for the St. John’s wort constituent hyperforin, 

upon chronic exposure, to induce CYP3A4 and CYP2C9.  Combined, both enzymes are 

responsible for the metabolism of a wide variety of commonly prescribed medications 

worldwide.  Decreased blood plasma concentrations of drugs that may result from induction of 

these enzymes has the potential to seriously alter desired drug therapy outcomes in patient’s 

concurrently taking St. John’s wort.  While we have shown that hyperforin has the potential to 

inhibit CYP3A4, particularly after single exposure at high concentrations, the inductive effect 

predominates with chronic exposure.  Furthermore, our studies have demonstrated the utility of 

human hepatocyte cultures in clarifying induction/inhibition discrepancies that are related to how 

a compound affects a drug metabolizing enzyme(s). 
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7. INDIRECT EFFECT OF THE ST. JOHN’S WORT CONSTITUENT 
HYPERFORIN ON DOCETAXEL METABOLISM 
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7.1. Abbreviations 

 
6β(OH)TE 6β(OH)Testosterone 
βNF  β-napthaflavone 

    CAR  constitutive androgen receptor 
    CYP  cytochrome P450 
    DMSO  dimethylsulfoxide 
    EROD  ethoxyresorufin 
    HMM  hepatocyte maintenance medium 
    HPC  hypericin 
    HPF  hyperforin 

PB  phenobarbital 
PCHH  primary cultures of human hepatocytes 
PXR  pregnane X receptor 
RIF  rifampicin 
SJW  St. John’s wort 

    SN-38  7-ethyl-10-hydroxycamptothecin 
    SN-38G 7-ethyl-10-hydroxycamptothecin glucuronide 
    TE  testosterone 
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7.2. Abstact 

Aims:  St. John’s wort extract (Hypericum perforatum L.) is among the most commonly used 

herbal medications in the U.S.  The predominance of clinical reports indicate that St. John’s wort 

increases the activity of cytochrome P4503A4 (CYP3A4) and reduces plasma concentrations of a 

number of drugs that are CYP3A4 substrates.  Since docetaxel is a CYP3A4 substrate, we 

hypothesized that hyperforin will increase its metabolism in a human hepatocyte model.  

 

Methods:  Hepatocytes were isolated from 3 donor livers by a collagenase perfusion technique.  

Following treatment with rifampicin (10 µM) or hyperforin (0 – 1.5 µM) for 72 hours, cells were 

incubated with docetaxel (100 µM) and, after an incubation period of 60 minutes, media was 

sampled.  Docetaxel metabolites were determined using LC/MS/MS. 

 

Results: As expected, the positive control rifampicin induced docetaxel metabolism and did so 

6.8 to 32-fold over docetaxel metabolism in DMSO-treated control cultures.  Hyperforin 

treatment also resulted in significant increases in docetaxel metabolism.  Hyperforin induction of 

docetaxel metabolism was dose-dependent and was  2.6 to 7-fold greater than that observed in 

DMSO-treated controls.  Docetaxel metabolites identified included the previously described 

hydroxylated tert-butyl metabolite and a previously unidentified metabolite involving 

hydroxylation on the baccatin ring. 

 

Conclusions:  These results demonstrate exposure to the St. John’s wort constituent hyperforin 

increases the metabolism of docetaxel in vitro, which implies that subtherapeutic docetaxel 

concentrations may result when docetaxel is administered to patients using St. John’s wort on a 

chronic basis.  They also imply induction of a previously undescribed metabolic pathway for 

docetaxel that is analogous to the 6-α-hydroxylation resulting from CYP2C8 metabolism of 

paclitaxel. 
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7.3. Introduction 

In 2002, sales of botanical supplements in the United States reached nearly $293 million.  

St. John’s wort accounted for $15 million in sales, making it the seventh highest grossing 

botanical supplement (Blumenthal, 2003).  Several clinical studies have claimed St. John’s wort 

to be as effective as conventional therapy in the treatment of mild-to-moderate depression (Linde 

et al., 1996; Volz, 1997; Wheatley, 1997).  

Marketed St. John’s wort, an extract of the flowering portion of the plant Hypericum 

perforatum L., is a mixture of a number of biologically active compounds.  At 0.3 mg per 

capsule, the naphthodianthrone hypericin is used as a means of standardizing the marketed 

product.  The phloroglucinol hyperforin, the most plentiful lipophilic compound in the extract, is 

a potent inhibitor of serotonin, norepinephrine and dopamine reuptake (Muller et al., 1998).  

Several recent reports have documented decreased blood and plasma concentrations of 

cytochrome P450 3A4 (CYP3A4) substrates, such as indinavir, cyclosporine A and imatinib, in 

patients concomitantly taking St. John’s wort (Piscitelli et al., 2000; Ahmed et al., 2001; Frye et 

al., 2004; Smith et al., 2004).  Similar observations have been documented for digoxin, a 

substrate of the intestinal transporter P-glycoprotein (P-gp). Additional in vivo evidence has 

demonstrated that St. John’s wort increased CYP3A4 and P-gp levels in rats [11].  In the 

previous chapter, we demonstrated that in primary cultures of human hepatocytes (PCHH), 

hyperforin, but not hypericin, induces CYP3A and CYP2C9 expression and increases activity 

with no effect on other common drug-metabolizing enzymes (Durr et al., 2000). 

 Both CYP3A4 and P-gp are transcriptionally regulated by the nuclear orphan receptor 

pregnane X receptor (PXR) (Bertilsson et al., 1998; Blumberg et al., 1998; Lehmann et al., 1998; 

Jones et al., 2000).  After ligand binding in the cytosol, PXR translocates to the nucleus where it 
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heterodimerizes with the retinoid X receptor and then binds to the CYP3A4 promoter, resulting in 

increased expression of CYP3A4 and P-gp mRNA.  In vitro studies have shown that hyperforin, 

but not hypericin, is a potent activator of PXR (Moore et al., 2000a).  In addition to increasing 

expression of CYP3A4 and P-gp, PXR has also been shown to play a role in cytochrome P450 

2C9 (CYP2C9) expression (Gerbal-Chaloin et al., 2001c).  

 Docetaxel is a taxane antineoplastic agent with a broad spectrum of antitumor activity 

(Cortes and Pazdur, 1995; Trudeau, 1996; Hong, 2002) and a mechanism of action that involves 

abnormal polymerization of tubulin with resultant mitotic arrest (Garcia et al., 1994; Lavelle et 

al., 1995).  Unlike paclitaxel, which is known to be metabolized primarily by CYP2C8 (Marre et 

al., 1996; Crespi et al., 1998; Dai et al., 2001; Soyama et al., 2001; Bahadur et al., 2002; 

Vaclavikova et al., 2004), docetaxel is known to be metabolized primarily by CYP3A4 (Marre et 

al., 1996; Vaclavikova et al., 2004).  Moreover, clinical studies have demonstrated a correlation 

between docetaxel clearance and the dose-limiting neutropenia resulting from its use (Hirth et 

al., 2000; Bruno et al., 2001).  Specifically, patients with impaired hepatic function and 

decreased CYP3A4 activity experience greater myelosuppression than do patients with normal 

hepatic function and CYP3A4 activity (Hirth et al., 2000; Bruno et al., 2001). To date, studies 

examining the effect of induction of CYP3A4 activity on docetaxel metabolism and its clinical 

pharmacodynamic effects have not been reported.   

 The aim of this study was to use PCHH to characterize the effect of hyperforin on the 

metabolism of docetaxel. 
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7.4. Methods 

7.4.1. Hepatocyte treatment protocol 

Hepatocytes from three donors were isolated, plated, and exposed to rifampicin (RIF, 10 

µM) or hyperforin (0 – 1.5 µM), all dissolved in dimethyl sulfoxide (DMSO).  The final 

concentration of DMSO in medium was 0.1%.  After 72 hours of hyperforin exposure, 

hepatocytes were incubated with media containing docetaxel (100 µM) for 60 minutes. 

Table 12.    Donor information for human hepaotycte preparations used in Chapter 7 

Donor 
HH Age Sex Race Cause of 

Deatha Drug History Viability 
(%) 

1117 68y F Caucasian ICB/Stroke Labetalol, verapamil, clonidine, 
metoclopramide, simvastatin, 

clopidogrel 

82 

1121 65y F Caucasian CVA/ICB No medications reported 78 

1122 46y F Caucasian Head 
trauma 

Tiamterene, propranolol, 
levothyroid, verapamil, 

alprazolam, modafinil, glatiramer 
acetate 

76 

a ICB, intracranial bleed; CVA, cerebral vascular accident; 

 

7.4.2. LC/MS/MS measurements of docetaxel metabolism. 

Medium samples were centrifuged at 12,000 x g for 6 min.  Two hundred µl of each 

resulting supernatant were added to a microcentrifuge tube and mixed with 10 µl of 10 µg/ml 

paclitaxel internal standard in methanol and 1 ml of acetonitrile.  The sample was vortexed for 1 

min, centrigued at 12,000g for 6 min.  The resulting supernatant was pipetted into a 12 x 75 mm 

glass tube and evaporated to dryness under a gentle stream of nitrogen.  The dried residue was 
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reconstituted in 200 µl of methanol:water:formic acid (50:50:0.1, v/v/v) and 100 µl were injected 

into the HPLC/MS/MS system. 

 The HPLC system consisted of a Waters 2695 Alliance system (Waters Corporation, 

Milford, MA) with a Phenomenex Luna C18(2)(4.6 x 100 mm, 5 µM) column (Phenomenex, 

Torrance, CA).  The isocratic mobile phase (acetonitrile:water:formic acid, 50:50:0.1, v/v/v) had 

a flow rate of 0.5 ml/min.  The mass spectrometer was a Micromass Quattro-micro bench-top, 

triple-stage mass spectrometer (Waters Corporation).  The mass spectrometer operated under the 

following parameters:  capillary 4.0 kV; cone 25.0 V; source and desolvation temperatures 

120°C and 400°C, respectively.  The cone and desolvation gas flows were 110 and 550 l/h, 

respectively.  The systems was operated in ESI positive mode with MRM detection.  The 

precursor>product ions monitored were the following; from 0 to 6 min m/z 846>549 (metabolite 

A), from 6 to 9 min m/z 846>248 and m/z 846/565 (metabolite B), from 9 to 12 min m/z 

830>248 and m/z 830>549.5 (docetaxel), from 12 to 15 min m/z 876>308 and m/z 876/591 

(paclitaxel internal standard).  The internal standard ratio for each sample was calculated as the 

ratio of the total ion current of the two product ions monitored for docetaxel divided by the total 

ion current of the two product ions monitored for paclitaxel. 

7.5. Results 

7.5.1. Performance of LC/MS/MS System 

Under the LC/MS/MS conditions described for hepatocyte incubations, docetaxel eluted at 

approximately 10.7 min (Fig. 1A), and paclitaxel internal standard eluted at approximately 13 

min (Figure 31B).  The assay had a lower limit of quantitation (Bruno et al., 2001) of 1 nM and 

was linear over the range of 1 to 1,000 nM.  No materials in incubation medium from hepatocyte 

cultures interfered with the quantitation of docetaxel or internal standard.  Because authentic 
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standards of docetaxel metabolites were not available, absolute quantitation of docetaxel 

metabolites was not possible and therefore relative amounts of these materials present in 

incubation medium were expressed as the ratio of the area under the proposed metabolite peak to 

the area under the respective internal standard in that incubation medium.  Under the LC/MS/MS 

conditions described for CYP incubations, docetaxel eluted at approximately 28 min. 

7.5.2. Effect of hyperforin on docetaxel metabolism 

As indicated in Table 13, rifampicin increased the metabolism of docetaxel between 6.8 

and 32-fold over that observed in control hepatocyte cultures treated with DMSO alone.  

Hyperforin also produced a dose-dependent induction of metabolism of docetaxel (Table 13).  Of 

note, two metabolites of docetaxel were characterized by the LC/MS/MS assay employed.  The 

first of these metabolites eluted at approximately 4.8 minutes (Figure 31C) and was the 

previously described tert-butyl hydroxylated metabolite resulting from CYP3A4 metabolism of 

docetaxel (Royer et al., 1996; Shou et al., 1998; Cresteil et al., 2002).  Induction of this 

metabolism ranged between 1.3- and 2-fold for 0.1 µM hyperforin to 2.6 to 7-fold for 1.5 µM 

hyperforin (Table 13).  Maximal induction of metabolite A formation occurred at hyperforin 1.5 

µM and was an average of 32 ± 8.7 % that of RIF treated cells.   

Of note, an apparent metabolite of docetaxel, characterized by hydroxylation of the 

baccatin ring (metabolite B), was also observed in the hepatocyte incubations ( D). 

Under the LC conditions used for analyzing hepatocyte incubations, this proposed metabolite 

eluted at approximately 7.7 min (Figure 31D).  The formation of this metabolite was increased 

by hyperforin, with induction ranging from 1.5 to 1.8-fold for 0.1 µM hyperforin to 3 to 5-fold 

for 1.5 µM hyperforin.  Maximal induction of metabolite B formation occurred at hyperforin 1.5 

µM and was an average of 27 ± 6.7 % that of RIF treated cells. 

Figure 31
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Figure 31.  Chromatogram of docetaxel containing media following incubation in  human hepatocytes 

LC/MS/MS chromatogram of total ion current of product ions monitored for: A) docetaxel; B) paclitaxel internal standard; 
C) the tert-butyl hydroxylated metabolite of docetaxel; and D) baccatin ring-hydroxylated metabolites of docetaxel.
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Table 13.  Effects of hyperforin on docetaxel metabolism in human hepatocytes. 
 

 Fold increase over DMSO control 

 HH1117   

   

HH1121 HH1122

Metabolite A 

DMSO 1.00   1.00 1.00

RIF 10 µM 6.81   

   

   

   

   

   

   

   

   

   

17.50 32.0

HPF 0.1 µM 1.33 2.25 2.00

HPF 0.5 µM 2.52 6.00 6.00

HPF 1.5 µM 2.63 - 7.00

Metabolite B 

DMSO 1.00 1.00 1.00

RIF 10 µM 9.00 18.5 23.25

HPF 0.1 µM 1.54 1.83 1.75

HPF 0.5 µM 3.31 4.50 4.00

HPF 1.5 µM 3.08 - 5.00
HPC, hypericin; HPF, hyperforin; TE, testosterone; FLU, flurbiprofen 
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Figure 32.  Effect of hyperforin on docetaxel metabolism in human hepatocyes. 

Human hepatocytes were treated with hyperforin (HPF)(0- 1.5 µM).  After 60 min of 
docetaxel incubation, aliquots of medium were analyzed for by LC/MS/MS.  
Formation of the tert-butyl hydroxylated metabolite (open bars)(Metabolite A) and  
the hydroxylated baccatin ring metabolite (closed bars)(metabolite B) were detected 
using LC/MS/MS.  Each value represents the mean of duplicate treatments with the 
range. indicated by the vertical bars.  

 
 
 

7.6. Discussion 

Primary cultures of human hepatocytes offer a number of advantages over other systems 

commonly employed in drug metabolism research.  Hepatocytes are intact systems containing all 

of the necessary cofactors for the oxidative, reductive and conjugative metabolism of 

xenobiotics.  Yet their simplicity compared to liver slices, whole perfused organs or entire 
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animal systems allows for the elimination of confounding factors such as blood flow and blood 

protein binding. 

 In this study we have shown that PCHH exposed chronically to the St. John’s wort 

constituent hyperforin (up to 1.5 µM) had increased CYP3A4 activity as evidenced by induction 

of docetaxel metabolism.  The limit of 1.5 µM hyperforin is due to the fact that chronic (72 

hours) exposure of human hepatocytes to hyperforin concentrations greater than 1.5 µM is 

cytotoxic ( ).  Our data are consistent with reports that St. John’s wort administration 

induces metabolism of other CYP3A4 substrates, such as cyclosporine, indinavir, and imatinib, 

resulting in decreased plasma or blood concentrations of these drugs (Piscitelli et al., 2000; 

Ahmed et al., 2001; Frye et al., 2004).  It should be noted that a ring hydroxylated metabolite of 

docetaxel, analogous to the 6-α-hydroxy metabolite of paclitaxel produced by CYP2C8, has not 

been reported previously. 

Figure 31

 The induction of docetaxel metabolism by hyperforin in human hepatocytes may result in 

clinically significant reductions in the plasma levels of the antineoplastic.  Of interest is the 

formation of the second metabolite, metabolite B, also inducible by hyperforin.  It has been 

shown that the clearance of rosiglitazone, a CYP2C8 substrate, is increased in patients 

administered St. Johns wort (Hruska et al., 2005).  Additional studies in humans are needed to 

assess if a similar interaction exists in patients taking docetaxel or paclitaxel. 

While our data presented in this study clearly document the ability of hyperforin to 

induce the in vitro metabolism of docetaxel by human hepatocytes, in vivo studies in human 

subjects will be required to document the overall impact of hyperforin on docetaxel clearance. 
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8. CONCLUSIONS AND FUTURE DIRECTIONS 
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 The purpose of this research was to investigate the effect that constituents of herbal 

products have on the activity and expression of a variety of common drug metabolizing enzymes 

and transporters.  As is the case with conventional FDA approved drugs, the mechanisms by 

which these interactions can occur include the direct interaction of the constituent with the 

enzyme, through interactions with the active site, or through an indirect mechanism, which 

involves the modulation of the expression of the gene responsible for the enzyme.  

Unfortunately, while herbal product use is at an all time high in the United States, the number of 

published reports documenting the mechanism of action of individual constituents and the 

possible interactions with prescribed medications are few.  The research into potential drug-herb 

interactions that has been done is often conducted using non-human models, conducted in less-

predictive in vitro models such as liver microsomes, or conflicts with other published reports. 

 We have utilized primary cultures of human hepatocytes (PCHH) as a species relevant, 

cellular model to better assess the possibility of drug-herb interactions in vivo and to settle 

discrepancies that exist in literature.  Yet before such studies could commence, a variety of 

questions remained unanswered pertaining to the culturing techniques and treatments strategies 

used in experiments involving PCHH.  The modifications to the traditional methodology of 

culturing human hepatocytes, as outlined in Chapter 3, served as the basis for the examination of 

drug-herb interactions.   

Yet this work is not the final word in the establishment of standards for the use of PCHH 

for the study of drug metabolism.  Future work in our laboratory is focusing on the effects that 

individual ingredients in the hepatocyte maintenance media, such as dexamethasone, insulin and 

antibiotics, have on the expression and activity of various enzymes.  Other factors that may alter 

gene expression are the maintenance of PCHH in a lower oxygen atmosphere, one that more 
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closely resembles the hypoxemic environment that exists secondary to the large volume of blood 

supplied to the liver through portal venous system, and plating density, measured by the number 

of cell-to-cell contacts.  The results of Chapter 3 did not address these questions. 

 Our research on drug transport activity in human derived cells is limited to BSEP.  While 

other investigators have had success measuring the activity of MRP2 and MDR1 in rat 

hepatocytes (Hoffmaster et al., 2004), the lower expression of these transporters has precluded us 

from characterizing their activity in PCHH.  To date, we have only been able to characterize their 

mRNA expression and protein content.  Although rhodamine 123 and 5,6-dicarboxy-2',7'-

dichlorofluorescein diacetate are selective substrates for MDR1 and MRP respectively, we have 

not optimized a cellular based assay to reliably measure their transport in PCHH. 

 Before we proceeded to more complex and costly studies in humans, we first evaluated 

the effect, if any, the milk thistle constituent silybin had on several drug metabolizing enzymes.  

Silybin is a more potent inhibitor of UGT1A1 compared to other members of the UGT1A family 

or CYP3A.  The mechanism behind this interaction appears to be a direct one in that chronic 

exposure to the constituent did not alter mRNA expression.  We also examined the possibility 

that SLB exerted its reported hepatoprotective qualities by increasing biliary secretion at the 

canalicular membrane.  Though the increase in BSEP activity was minimal, SLB at higher 

concentrations inhibited the transporter and that inhibition was increased when another known 

inhibitor was added at the same time.   

 Based on our data related to UGT1A inhibition (Chapter 4), we hypothesized that when 

SLB was given to healthy human subjects, an increase in the total body exposure of 

acetaminophen (APAP), a UGT1A substrate, would result.  However, milk thistle administration 

did not significantly alter any of the APAP pharmacokinetic parameters studied in healthy 
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human subjects ( ).  Possible explanations maybe low SLB content in the milk thistle 

formulation, APAP is a low-affinity substrate for UGT1A family or that intrahepatic 

concentrations of SLB were not equivalent to those used in vitro.   

Chapter 5

 As with SLB, flavones and similar compounds exist naturally as glycosylated products.  

These compounds are typically not absorbed from the gastrointestinal tract to any great extent, 

possibly accounting for SLB’s low bioavailability.  Despite achieving biliary concentrations well 

above those found in plasma, it is likely the hepatocellular concentrations exist below those 

necessary for an interaction to occur.  However, it is possible that a local interaction may be 

occurring in the gastrointestinal tract, an organ potentially exposed to extremely high levels of 

SLB.  One of the limitations of PCHH is that it does not account for processes outside of the 

liver, such as dissolution, absorption, protein binding, etc.  To address this possibility, we have 

designed a study that administers midazolam, a non-MDR1 CYP3A4 substrate, orally and 

intravenously.  A progress report on this study can be found in Appendix A. 

 In contrast to milk thistle administration, clinically relevant drug interactions have been 

documented with St. John’ wort (Piscitelli et al., 2000; Ahmed et al., 2001; Frye et al., 2004).  

Yet other studies in animals and in vitro showed either a lack of an interaction or drug 

metabolizing inhibition.  To resolve these conflicting reports, we incubated PCHH with two 

constituents of St. John’s wort, hypericin and hyperforin.  In Chapter 6, we showed that PCHH 

exposed to hyperforin and not hypericin showed elevated expression and activity of CYP3A4/5 

and CYP2C9.  By using concentrations of hyperforin greater than those that caused induction, 

we documented inhibition of CYP3A activity in PCHH.  Furthermore, hyperforin also induced 

the metabolism of docetaxel, a CYP3A4 substrate, to its known tert-butyl hydroxylated 
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metabolite but also to a previously undescribed baccatin ring hydroxylated metabolite, possibly 

indicating induction of CYP2C8 (Chapter 7).  

Further research is needed to determine whether other herbal products and their 

constituents demonstrate the potential for drug-herb interactions.  The experimental design 

outlined in the previous chapters can serve as a model for the design cost-effective, medium-

through-put experiments to screen for the direct and indirect effects of a large number of 

compounds.  Ongoing and future studies entail the examination of extracts and/or constituents  

from hops (Humulus lupulus), green tea, and gugulipid (Commiphora mukul) on a variety of drug 

metabolizing enzymes and drug transporters. 

Collectively, PCHH are an intact cellular system that is valuable in charactering the 

regulation and activity of a variety of drug metabolizing enzymes and transporters.  Though 

much has been done to standardize this model, further work is needed to optimize variables that 

enable for the better prediction of in vivo drug interactions.  Specific to herb-drug interactions, 

prudent interpretation of in vitro interactions is necessary as data may not be clinically relevant 

when all the variables contributing to the pharmacologic profile of an herbal product are 

considered.    
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APPENDIX A 
 
 
 

Effect of milk thistle on the pharmacokinetics of midazolam:  A progress report 
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Introduction 

Milk thistle [Silybum marianum (L.) Gaertn. (Fam. Asteraceae)] extract is one of the 

most commonly used nontraditional therapies, particularly in Germany.  In accordance with the 

DSHEA legislation, it is marketed in the U.S. as a dietary supplement that “promotes liver 

health.”  The annual sale of this product is approximately $180 million in Germany (Cowley et 

al., 1995).  In the U.S., milk thistle is the 11th most popular herbal product in retail sales with an 

annual increase of almost 10% (Blumenthal, 2003).   

Clinically, milk thistle is being studied as a therapy in the treatment of prostate cancer 

and has been used in the treatment of a variety of liver disorders (Singh and Agarwal, 2004).  We 

have previously shown that the raw extract silymarin inhibits the metabolism of CYP3A 

mediated 6β(OH)testosterone (6β(OH)TE) formation in PCHH (Venkataramanan et al., 2000).  

The mechanism behind this interaction appears to be, at least in part, a result of covalent binding 

of SLB to the heme moiety of the cytochrome enzyme (Sridar et al., 2004).   

 Drug-drug interactions have been implicated in one-half of all of the removals from the 

world pharmaceutical market over the past 20 years (Huang and Lesko, 2004).  CYP3A has been 

estimated to contribute to the metabolism of more than 50 % of drugs currently on the market 

(Huang and Lesko, 2004).  Drug interactions are frequent with CYP3A due in part to its high 

level of expression in the liver, accounting for 30% of all CYP content, and in the 

gastrointestinal tract, accounting for 70% of CYP content (Watkins et al., 1987; Shimada et al., 

1994).  Despite this high expression, there is no correlation between hepatic and intestinal 

CYP3A activity (Thummel et al., 1996).  Therefore, if the effects of oral administered milk 

thistle are local (i.e. in the gastrointestinal tract), the examination of the differential effect on 

intestinal and hepatic extraction of a CYP3A substrate, such as midazolam, is warranted in order 
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to predict pharmacokinetic and/or pharmacodynamic changes for orally administered CYP3A 

drugs.   

 Midazolam is a short-acting benzodiazepine that is commonly used in surgical and 

intensive care situations as a sedative or to induce anesthesia (Dundee et al., 1984).  Midazolam 

is primarily metabolized (>90%) by CYP3A4/5 to 1’-hydroxymidazolam metabolite and, unlike 

many other CYP3A substrates, is not a substrate for MDR1 (Schmiedlin-Ren et al., 1993; Gorski 

et al., 1994).  Additional beneficial properties as a CYP3A probe include the availability of 

intravenous and oral formulations, rapid and complete absorption from the gastrointestinal tract, 

and that hepatic and intestinal extraction ratios are excellent indicators of hepatic and intestinal 

CYP3A activity, respectively (Thummel et al., 1996; Gorski et al., 1998).   Midazolam oral 

bioavailability, intestinal and hepatic extraction ratios and other relevant pharmacokinetic 

parameters can be determined easily over a relatively short period of time using the semi-

simultaneous administration method.  This validated method, shown to be comparable to the 

traditional bioavailability approach of administering the oral and intravenous doses on separate 

occasions, involves the administration of an intravenous dose of midazolam six hours after an 

oral dose, thereby reducing the intraindividual variability and  increasing the overall efficiency of 

the protocol  (Lee et al., 2002). 

Methods 

Normal healthy volunteers between the ages of 18 and 65 years of age were recruited in 

this pilot study.  Prior to admission into the study, subjects were required to sign a consent form, 

approved by the Institutional Review Board of the University of Pittsburgh.  Subjects were also 

required to undergo a routine physical examination with an evaluation clinical laboratory tests.  

Subjects were excluded from the study if they were pregnant or lactating, had evidence of 
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hepatic or renal dysfunction, were anemic or had taken any over-the-counter, prescription 

medications, or herbal products in the past 48 hours.   

Study Design 

The study was performed at the Digestive Disease Center in the University of Pittsburgh 

Medical Center, Pittsburgh, Pennsylvania.  The study and protocol were approved by University 

of Pittsburgh Institutional Review Board (IRB#0301026).  Subjects were studied twice, once 

before and once after a one week course of milk thistle (175 mg of milk thistle fruit extract 

containing 80% silymarin, b.i.d., taken at 8 a.m. and  8 p.m.).  Subjects were required to abstain 

from alcohol and caffeine for 24 hours and from grapefruit juice, over-the-counter medications, 

and herbal products for 48 hours prior to each visit.  At each study visit, and after an overnight 

fast, subjects were administered APAP 500 mg with 8 oz (240 ml) of water at approximately 8 

a.m.  Blood samples (N=22, 7 ml, total = 154 ml) were collected immediately prior to and at 15, 

30, 60, 90, 120, 180, 240, 355 minutes after oral midazolam administration (5 mg), and at 35, 50, 

70, 90, 120, 180, 240, 360, 480, 600, 720, 900 and 1080 minutes after start of midazolam 

infusion (2mg).  Urine was collected by spontaneous complete voiding in intervals from 0 to 

1440 minutes (24 hrs) after oral midazolam administration.  The subjects then completed a seven 

day course of milk thistle (Thisilyn® – Nature’s Way, Inc.) 175 mg TID up through the last 

plasma sample of the second visit.  The study was then repeated using the same approach as the 

first visit with patient taking a milk thistle capsule simultaneously with oral midazolam tablet. 

Data analysis 

Pharmacokinetic parameters of midazolam were calculated using a model-independent 

approach using WinNonLin 4.1 (Pharsight Corp., Mountain View, CA).  Area under the 

concentration time curve (AUC) was calculated using the linear trapezoidal rule with 
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extrapolation to infinity.  Peak concentration (Cmax) was determined by direct inspection of data.  

The terminal elimination rate constant (λz) was estimated by linear least squares regression 

analysis of the terminal disposition phase of the log concentration-time profile.  Apparent 

volume of distribution (Vd/F) was determined by the equation Dose / (λz x AUC).  Midazolam 

AUC was calculated by the linear trapezoidal rule until the last detectable concentration was 

obtained and extrapolated to infinity by dividing the last measurable concentration by the 

terminal rate constant.  Oral bioavailability was calculated as dose normalized AUCoral / AUCi.v.  

Hepatic clearance (CLH) was assumed to be the same as systemic clearance and calculated as the 

intravenous dose divided by intravenous AUC.  Hepatic extraction ratio (ERH) was calculated by 

dividing CLH by estimated blood flow (QH; estimated as 25.4 ml · min-1 · kg-1 x body weight in 

kilograms).  The intestinal extraction ratio (ERG) was calculated as [1-F / (1-ERG)]. 

 Pharmacokinetic parameters of APAP and APAP-G were log-transformed where 

appropriate and compared by paired t-test.  Continuous quantitative data were reported as mean 

± SD.  Mean differences and their 95% confidence intervals were also calculated.  All 

calculations were performed with PRISM software 4.0 (GraphPad Software Inc., San Diego, CA) 

with a two-sided p ≤ 0.05 was considered significant. 

Results and Discussion 

 One of the limitations of the work outlined in Chapter 5 was that we failed to analyze 

different milk thistle products for their silybin composition.  In this study, attention was paid to 

the type of milk thistle product used.  A critical problem plaguing the herbal product industry is 

one of product standardization.  Label claims of extract content are not regulated by any agency 

and can often vary between manufacturers and between lot numbers.  The potential use of a 

product with substandard SLB concentrations is one possible explanation that a significant effect 
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on the pharmacokinetics of APAP in the previous study was not observed.  Therefore, we 

analyzed 11 different milk thistle products for the extract and constituent label claims (

).  All products claimed silymarin content greater than 70% yet 5 of the 11 had lower content 

than stated.  Thisilyn® by Nature’s Way, Inc (Springville, Utah)(NT) had the highest silybin 

content out of the products selected and was chosen as the product for the midazolam study. 

Figure 

33

To date, 5 out the desired 8 patients have been enrolled, with samples of 2 patients processed.  

Both midazolam and milk thistle were well-tolerated with patients experiencing sedation 

following the administration of both oral and intravenous midazolam.  The dose-normalized 

midazolam concentration-time profile is shown in Figure 34 and the individual pharmacokinetic 

parameters for both patients are shown in .  Milk thistle administration notably 

increased Cmax of midazolam following oral administration in patient 2 and marked increases in 

Cmax in both patients following intravenous midazolam.  Although milk thistle administration 

resulted in increased oral and intravenous AUC values, increased F and decreased CLH, 

differences in these parameters remained less than 20%.   

Table 14

 Results from six additional patients are pending and are needed before final conclusions 

can be made.  However, should the remaining patients yield similar results, these data, combined 

with the lack of an interaction with APAP pharmacokinetics in Chapter 5, indicates that milk 

thistle administration is safe when administered with drugs metabolized by either CYP3A or the 

UGT1A family of enzymes.  As discussed in Chapter 5, the low bioavailability of herbal product 

constituents, many of which are of flavonoid glycosides, maybe a major reason behind the lack 

of correlation between an apparent in vitro interaction and a lack of clinically significant 

interactions in vivo.   
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Figure 33.  Silymarin and silybin content in various milk thistle products. 

Silymarin (closed bars) and silybin (open bars) content in various milk thistle 
products.  Capsule contents were triturated using a mortar and pestle and extracted 
using methanol.  Extracts were spun three time at 3,000 g and the supernatant retained 
after each spin.  Silymarin was quantified spectophotometrically.  Silybin was 
determined by HPLC as previously described (Zhao and Agarwal, 1999).  Each value 
represents the mean of 3 capsules with the S.D. indicated by the vertical bars.   
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Figure 34.  Midazolam concentration-time profile before and after milk thistle 
administration. 

Plasma samples (n = 2) containing midazolam before (solid line) and after (solid line) 
milk thistle therapy were extracted and  analyzed using GCMS as previously 
described (Lee et al., 2002). Each value represents the mean of two samples at every 
time point. 
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Table 14.  Midazolam pharmacokinetic parameters before and after milk thistle 
administration 

Parameter without milk 
thistle 

with milk 
thistle 

 without milk 
thistle 

with milk 
thistle 

 Patient 1  Patient 2 

Oral Midazolam      

AUC (ng ⋅ min ⋅ mL-1) 8005 9676  6311 7538 

Cmax/D (ng ⋅ mL-1 ⋅ mg-1) 12.2 12.1  8.89 15.8 

F 0.32 0.33  0.23 0.27 

ERG 0.62 0.62  0.73 0.68 

Intravenous midazolam      

AUC (ng⋅min-1⋅ml-1) 8751 10753  9737 10177 

Cmax/D (ng⋅ml-1) 24.8 32.55  23.3 41.1 

CLH (ml ⋅ min-1⋅ kg-1) 4.16 3.38  3.87 3.70 

t 1/2 (min) 233 208  305 291 

Vd (L)  64.5 47.1  65.3 52.8 

ERH 0.16 0.13  0.15 0.15 

 
Pharmacokinetic parameters were obtained using compartment independent analysis.  Area 
under the concentration-time curve (AUC) was determined using  linear trapezoidal rule with 
extrapolation to infinity; oral bioavailability (F = dose normalized AUCoral / AUCi.v.); Hepatic 
Clearance (CLH = Dosei.v. / AUCi.v.); Hepatic extraction (ERH = CLH / QH ); Intestinal extraction 
(ERG = [1 – F / (1 – ERH)]) 
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APPENDIX B 
 
 
 

Milk Thistle-Acetaminophen Drug Interaction Study Protocol and Informed Consent 
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A. Names of Principal Investigator and Co-Investigators 
Principal Investigator: Raman Venkataramanan, Ph.D. 
Co-Investigators: Stephen C. Strom, Ph.D., Mordechai Rabinovitz, M.D., Gilbert Burkart, 
Pharm.D., Reginald Frye, Ph.D., Robert Branch M.D. 
 
B. Protocol Title: Drug Interaction with Herbal Product 
 
C. Specific aim  
To evaluate the effect of milk thistle on the in vivo pharmacokinetics of probe drugs, caffeine 
(CYP1A2), flurbiprofen (CYP2C9), dextromethorphan (CYP2D6 and CYP3A4/5), mephenytoin 
(CYP2C19), chlorzoxazone (CYP2E1) and acetaminophen (glucuronosyltransferase) 
 
Each of the selected model drugs has rapid and complete gastrointestinal absorption, relatively 
rapid metabolism and urinary excretion of the metabolite formed.  Therefore, each drug can be 
administered orally followed by measurements of plasma concentrations and urinary excretion of 
the metabolites.  From this information, the index of fractional metabolic clearance to that 
metabolite can be estimated as a measure of overall in vivo enzyme activity. 
 
D. Background Information and Significance 
 
Safety is of major concern in the use of chemicals / biologicals as therapeutic agents in patients.  
Safety of novel chemical entities is initially evaluated in animal models and then in normal 
healthy adult volunteers during phase 1 studies.  Subsequently, safety is monitored throughout 
the drug development process.  These studies have confirmed that safety of a drug can be 
modified by a) underlying pathological condition in a patient population, b) co-administered 
drugs or c) certain dietary components / nutritional supplements.  Of recent interest is the 
potential effect of the indiscriminate use of herbal medicine by the public at large, especially in 
combination with prescription and non-prescription drugs.  There is very little systematic 
evaluation f the safety and efficacy of herbal products used alone or in combination with 
prescription or non-prescription drugs. 
 
Herbal products contain chemicals that are also metabolized in the liver (Pan, 1999).  Herbal 
products are known to alter hepatic drug metabolizing enzymes directly in animals (Benson AM 
1978; Piper JT 1998; Chrungoo VJ 1997; Letteron P 1990; Valenzuela A 1989) and also interact 
with several pharmaceuticals (Miller LG 1998; Janetsky K 1997; McRae S 1996).  Identification 
of herb-drug interactions has been difficult due to the fact that nearly 70% of the patients do no 
reveal their herbal use to physicians and pharmacists (Johnston BA 1997). 
 
Milk thistle is a widely used hepatoprotectant but has a great potential to alter hepatotoxicity of 
other ehcmicals and affect hepatic metabolism of certain drugs.  Milk thistle extract is one of the 
most commonly used non-traditional therapies, particularly in Germany.  Previous studies have 
used milk thistle extract or silymarin or silybin.  Silymarin inhibits nitric oxide production 
(Dehmloy C 1996); is a potent free radical scavenger that prevents lipid peroxidation (Muriel P 
1990); and enhances the activity of hepatocyte RNA polymerase (Sonnenbichler J et al. 1986).  
Silymarin/silybin protects the liver against CCL4, acetaminophen, amantin, thioacetamide and 
D-galactosamine induced hepatotoxicity in rats (Mourell M 1989; Muriel P 1992; Chrungoo VJ 
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1997b).  Inhibitions of CYP1A, CYP2E1 and CYP3A enzymes have been suggested to be 
responsible for the hepatoprotective effect of silymarin CCL4 and acetaminophen induced 
hepatotoxicity in rats. 
 
In randomized clinical trials for actue viral hepatitis, silymarin either exerted no benefit (Bode C 
1977) or accelerated clinical recovery (Magliulo E 1978).  In a recent randomized placebo 
controlled trial in alcoholic cirrhosis, the earlier observation of increased survival with silymarin 
could not be confirmed (Pares A 1998). 
 
We have observed a 50% reduction in CYP3A activity as measured by 6β-hydroxy testosterone 
formation in human hepatocytes treated with silymarin (unpublished observations).  This would 
suggest that CYP3A activity may be reduced in subjects who consume milk thistle extract.  The 
effect of silymarin on other CYP pathways has not been characterized. 
 
Silybin is primarily conjugated and excreted in the bile and urine.  Silymarin is known to deplete 
the pool of UDPGA in hepatocytes and decreases glucuronidation of bilirubin in rats (Chrungoo 
VJ 1997a).  The availability of UDPGA is the rate-limiting factor in glucuronide conjugation in 
rat liver.  Recently, we have observed a 35 to 40% reduction in the formation of 
methylumbelliferone glucuronide in human hepaoctyes in the presence of silymarin.  The above 
observations would suggest that there will be competition between silymarin and other drugs that 
are conjugated in the liver. 
 
Liver plays an important role in the eliminationm of endogenous and exogenous agents such as 
drugs, hormones and other chemicals.  Metabolism of drugs can be broadly classified into tow 
phases; phase I metabolism is usually an oxidation process, frequently hydroxylation or 
demethylation and phase II metabolism involves conjugation to form glucuronide, sulfate or 
glutathione conjugates that are more water soluble and readily excreted from the body.  
CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A enzymes are responsible for the 
majority of phase I pathways, while glucuronyl transferase and sulfonyl transferase account for 
most of the phase II pathways.  Even though several drug-metabolizing enzymes have been 
identified, the above-mentioned enzymes are responsible for the metabolism of most of the drugs 
used.  Previous work in our laboratory has used a combination of several drugs to evaluated the 
activity of various drug-metabolizing enzymes in the liver of normal subjects and transplant 
patients.  In this pilot project, specifically we will evaluate the effect of milk thistle on the 
activity of certain drug metabolizing enzyme in vivo, by evaluating the pharmacokinetics of 
certain probe drugs in subjects who routinely use milk thistle extract. 
 
E.  Research Design and Methods 
 
1.  Subjects: 
Adult male or female healthy volunteers who are currently on routine milk thistle or plan to 
initiate the use of milk thistle will be recruited for the study.  Milk thistle (Super Milk Thistle – 
patented phytosome process – Enzymatic Therapy) will be provided to all participants for the 
study period by the investigator. 
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Inclusion Criteria:  
Non-smokers (self-reported) between the ages of 18 and 65 years. 
Signed Informed Consent. 
Normal liver and kidney function tests  

1.  Male:  AST < 80 IU/L; ALT < 80 IU/L; Alk. Phos < 250 IU/L 
2.  Female:  AST < 80 IU/L; ALT < 80 IU/L; Alk. Phos < 250 IU/L 
3.  Creatinine clearance as estimated by the Cockroft-Gault equation < 80 ml/min for both  

male and female. 
Normal hematocrit; hemoglobin (Hct; Hgb) 
 1.  Male:  Hct 38.0 – 48.8 %; Hgb 12.9 – 16.9 g/dL 
 2.  Female:  Hct  34.1 – 43.3 %; Hgb 11.6 – 14.6 g/dL 
 
Exclusion Criteria 
a. Evidence of renal dysfunction (estimated creatinine clearance < 80ml/min). 
b. Impaired hepatic function (ALT > 80.0 IU/L, AST > 80.0 IU/L and Alk Phos > 250 

IU/L). 
c. Taking any medications other than oral contraceptives (for women) 
d. Women who are pregnant or are currently breastfeeding. 
 
2.  Recruitment: 
Subjects will be recruited at UPMC, the local GNC stores nd other nutritional supplement stores 
in Pittsburgh through use of a flyer.  A copy of the proposed flyer is attached to this document. 
 
3.  Protocol: 
In vivo Studies:  The study will be performed at the Digestive Disease Center.  Informed consent 
will be obtained from all the participants.  A baseline liver and kidney function tests will be 
carried out.  Subjects who are not on milk thistle will be studied once before and again while on 
at least one week of use of milk thistle (100 mg of milk thistle fruit extract containing 80% 
silymarin, bid).  If we are not successful in identifying subjects prior to initiation of the use of 
milk thistle, we will enroll subjects who are already on milk thistle.  Subjects who are on milk 
thistle will be asked to participate in the study once while on milk thistle and again after stopping 
the use of milk thistle for at least one month.  At each study period, the following drugs will be 
administered orally – caffeine (100 mg), flubiprofen (50 mg), mephenytoin (100 mg), 
dextromethorphan (30 mg), chlorzoxazone (250 mg) and acetaminophen (500 mg).  All of these 
drugs are FDA approved. 

Blood samples (10 mL) will be obtained from an indwelling catheter in a brachial vein 
prior to drug administration and at 2, 4, 6, 8, 12 and 24 hours following drug administration.  
Subjects are required to stay for 12 hours in the Digestive Disease Center and return for the 24 hr 
blood sample and to drop off 12-24 hr urine collection.  Blank urine will be collected prior to 
drug administration, and additional collections of all voided urine will be pooled from 0 -12 
hours and 12 – 24 hours in receptacles containing 1 gram ascorbic acid as preservative.  Plasma 
will be separated from blood, and will be frozen along with aliquots of urine at -70°C until 
analysis for parent drug and metabolite as described below.  An eight-hour sampling scheme for 
the determination of drug metabolizing ability has been utilized in our laboratory with success in 
a variety of protocols.  Plasma concentrations of silybin (component of milk thistle) will also be 
measured. 
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4.  Statistical section: 
This is a pilot study to evaluate the interaction between milk thistle and certain drugs.  We 
propose to enroll a maximum of 12 subjects initially.  Based on the initial observations further 
enrollment may be necessary. 

We will collect information on the various pharmacokinetic parameters such as half-life, 
apparent oral clearance, metabolic ratio (metabolite to parent drug concentration in the plasma), 
total urinary excretion of metabolites and fractional metabolic clearance.  Paired t test will be 
used to evaluate the significance of the differences in the parameters measured at a p ≤ 0.05. 
 
F.  SIGNIFICANCE 
 
There is a good probability that the use of milk thistle will affect the hepatic metabolism of other 
co-administered drugs.  Since milk thistle is a widely used herbal product, it is critical to evaluate 
its effect on hepatic metabolism and therefore the safety of other drugs used in combination with 
milk thistle. 
 
G.  RISK/BENEFIT RATIO 
 
All drugs have the potential to induce side effects.  The drugs used in this research have been 
selected on the basis that when used in the doses indicated, they cause minimal responses in 
large numbers of tested subjects. With the use of this cocktail, dizziness has been observed in 
about one in every six subjects lasting between 15 minutes and, in a few individuals, about 2 
hours.  This usually resolves with a meal that is allowed two hours after administering the drugs.  
However, these drugs may cause all, some, or none of the other side effects listed below.  In 
addition, there is always the risk of very uncommon or previously unknown side effects 
occurring. Side effects are listed below for each of the drugs used in this study.  Side effects that 
are considered likely, occur in more than 10 out of every 100 (10%) people who take the drug, 
common side effects occur in approximately 1 to 10% of people, and rare side effects occur in 
less than 1% of people. 
Caffeine (100 mg) is a FDA approved drug, which is present in coffee, tea, chocolate and many 
soft drink beverages.  The amount of caffeine used in this study is equivalent to approximately 3 
cups of coffee.  Likely: None.  Common: Headache, restlessness, excitement, nervousness, fast 
heart rate, and may also cause a small increase in your blood pressure.  Rare: Caffeine may also 
cause spontaneous abortion in women, which is another reason why we will be performing 
pregnancy tests in women who participate in this study. Side effects other than those listed here 
may also occur. 

Chlorzoxazone (250 mg) is a FDA approved drug that has been in use since 1958 to treat muscle 
spasms and pain.  It is generally well tolerated and rarely produces undesirable side effects.   
Likely: None.  Common: Drowsiness and dizziness or lightheadedness.  Rare: Chlorzoxazone 
may cause your urine to turn orange or reddish-purple.  Following repeated dosing (250 - 750 mg 
every 6 hours), other rare side effects including nausea, vomiting, rash, itching, heartburn, and 
diarrhea may occur.  Chlorzoxazone has also been shown to cause liver damage in a small 
number of patients on chronic therapy. 

Flurbiprofen (50 mg) is a FDA approved drug used to treat inflammation and pain. In the low 
single dose being used in this study, it not expected to cause any significant effect. 
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Likely: None.  Common: In some people who are taking it continuously for a long time, it has 
been shown to cause indigestion, diarrhea, abdominal pain, nausea, constipation, gastrointestinal 
bleeding, flatulence (bloated from stomach gas), liver damage and vomiting.  Rare: In larger 
doses rare side effects such as headache, nervousness with the potential for anxiety, insomnia 
(difficulty sleeping), tremor (shaking), amnesia (loss of memory), somnolence (sleepiness) and 
malaise (a feeling of illness). 

Mephenytoin (100 mg) is a FDA approved drug, which has been used in the control of epileptic 
seizures.  A relatively low dose will be given to minimize the side effect of drowsiness. 
Likely: Mild drowsiness lasting 30 to 90 minutes.  Common:  Double vision, unsteadiness, 
fatigue, nausea, dizziness.  Rare: A small number of patients taking this drug for the treatment of 
seizures have had an irreversible reduced ability to make blood cells (called “aplastic anemia”), 
which could be fatal.  However, this has occurred after prolonged, sustained use at high doses.  
Fever and rash have also occurred with prolonged use.  Because of the relatively small dose and 
low frequency of the use of mephenytoin in this study, it is not expected that serious side effects.  

Mephenytoin causes abnormalities in the offspring of pregnant rodents and in epileptic women 
taking this therapy during early pregnancy; for this reason mephenytoin should not be given to 
pregnant women.  A urine pregnancy test will be performed within 24 hours of receiving 
mephenytoin in all women of childbearing potential.  However, although these and other rare 
side effects are always possible, they are considered unlikely. 

 
Dextromethorphan (30 mg) is a drug commonly used to treat caugh. It is generally well tolerated. 
Likely:none. Common: mild dizziness; mild drowsiness; nausea/vomiting. Chronic use may lead 
to abuse and dependence. Rare: At very high doses, toxic psychosis, and respiratory depression. 
 
Acetaminophen (500 mg) is a drug commonly used as a pain killer.   
Likely:  :none.  
Common: Following over dose, stomach upset; increased sweating.  
Rare: anemia; skin rash 
 
No personal benefit will result from this study, but all subjects who use milk thistle may benefit 
from the increased knowledge about its effect on drug metabolism. There is the inconvenience of 
participating in the study, collecting urine and having blood withdrawn. There is a minor risk of   
developing bruises associated with blood sampling. 
 
The research coordinator will monitor any adverse events in the subjects participating in this study 
and report occurrence of any events to the principal investigator immediately. The data and safety 
information obtained in each study subject will be reviewed at weekly meetings held by the 
principal investigator and the research coordinator. We will comply with the IRB’s policies for 
the reporting of serious and unexpected adverse events as detailed in Chapter 3.0, sections 3.4 
and 3.5 of the IRB Reference Manual. If a serious life-threatening event occurs, the event will be 
reported immediately to both the FDA and the IRB. Minor events will be reported to both 
organizations at the time of annual review. 
   
H. COSTS AND PAYMENTS 
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The subjects and/or the subject’s agent will not be charged for any studies related to this protocol.  
Subjects who participate will receive $150 for each part as reimbursement for expenses involved in 
participating in this study. The total compensation will be $ 300. 
 
I. QUALIFICATIONS OF THE INVESTIGATORS 
 
Drs. Venkataramanan and Burckart are Co-directors of the Clinical Pharmacokinetics Laboratory, 
and have conducted drug disposition studies in normal subjects, liver, heart, kidney and bone 
marrow transplant patients since 1982.  
 
Dr. Steve Strom is an expert in hepatocyte isolation and characterization and has extensive non-
clinical and clinical research experience. 
 
Dr. Rabinovitz, is a gastroenterologist with extensive research experience. 
 
Dr. Branch is an internationally known investigator in drug metabolism and the cytochrome P450 
system. 
 
Dr. Reginald Frye is a member of the Clinical Pharmacokinetics Laboratory and the Clinical 
Pharmacology Center Drug Metabolism Group.  Dr. Frye’s research has centered on the 
validation of the cocktail approach for assessment of drug metabolizing ability in patients as well 
as the use of the drug cocktail approach to determine the metabolic pathway of drug substrates. 
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CONSENT TO ACT AS A SUBJECT IN AN EXPERIMENTAL STUDY 
 

TITLE: Drug Interactions with Herbal Products 
 
INVESTIGATORS:  
Raman Venkataramanan, Ph.D.   
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718 Salk Hall, School of Pharmacy 412-648-8547 
 
Mordechi Rabinovitz, M.D. 
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3rd Floor Falk Clinic School of Medicine 412-383-8687 
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5407 BSTWR, School of Medicine412-624-7715 
 
Reginald Frye, Pharm.D., Ph.D.   
Assistant Professor, 
Co-Investigator804 Salk hall, School of Pharmacy 412-624-4683 
 
Robert Branch, M.D.     
Professor, co-investigator 
128 Lothrop, School of Medicine 412-648-7053  
 
SOURCE OF SUPPORT:  Clinical Pharmacokinetics laboratory funds  
 
DESCRIPTION:  The study is being conducted to evaluate if the use of milk thistle alters the way 
the body handles certain drugs. You are being asked to participate in this clinical research project 
because you are taking or plan to take milk thistle as a herbal supplement. You will be one of 
twelve subjects recruited for this study. The information obtained from this study will help us to 
understand the interaction between milk thistle and other drugs. This study will be conducted at the 
Center for Liver Disease at the University of Pittsburgh in Falk Clinic. You are required to spend 
approximately 12 hrs and then come back to the clinic one more time for a blood sample and 
delivering the urine sample collected from 12-24 hrs, on two separate occasions.    
             
            
 
           Participant’s Initials_________ 
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If you agree to participate in this study, you will receive one dose of caffeine 100 mg (same as 
about three cups of coffee), flurbiprofen 50 mg (a drug normally used to relieve pain and 
inflammation), mephenytoin 100 mg (a drug normally used to prevent seizure), chlorzoxazone 250 
mg (a drug normally used as a muscle relaxant), dextromethorphan 30 mg (a drug used as a cough 
suppressant) and acetaminophen 500 mg (a drug used as a pain reliever) all at the same time. Each 
of these drugs is taken by mouth as either a tablet or syrup. Each of these drugs has been approved 
for use by the Food and Drug administration. You will have a small tube inserted into a vein in 
your arm or hand to facilitate collection of blood samples. Just prior to, and then after taking the 
medicine, two teaspoonfuls of blood will be taken from a tube in your vein seven times (total of 5 
tablespoons of blood). Your urine will also be collected from 0-12 hrs and 12-24 hrs. This study 
will be performed twice, once while you are using milk thistle and again while you are off of it for 
at least a month; or once before you start using milk thistle and again at least one week while using 
milk thistle. 
 
RISKS AND BENEFITS:  
As with any research study, there may be adverse events or side effects that are currently 
unknown and it is possible that certain of these unknown risks could be permanent, serious or 
life-threatening. 
Placing a small tube to collect blood samples may cause some minor discomfort and bruising. In 
addition, there is a potential for formation of small blood clots. This will be minimized by using 
heparin, a drug that helps to thin the blood and reduce the formation of clot in the tube in your arm. 
The six test drugs have been safely given to a large number of normal adults to test the activity of 
certain liver enzymes, but have not been given to subjects taking milk thistle. The side effects 
listed for these drugs are known primarily from the chronic (long time) use at high doses rather 
than the single small dose that you will be taking. The side effects and their frequencies are listed 
below: 
 
Side effects are listed below for each of the drugs used in this study.  Side effects that are 
considered likely (Occur in more than 25%), Common (occur in 10-25 out of every 100 (10-
25%), Infrequent (occur in approximately 1 to 10 out of every 100 (1-10%), and rare occur in 
less than 1 out of 100 (< 1%).  
CAFFEINE is a common drug found in coffee, tea and soft drinks.  
Likely (>25%): None. 
Common (10-25%) None. 
Infrequent (1-10%): Restlessness, excitement, nervousness, and a fast heart rate. 
Rare (< 1%): nausea, stomach irritation. Side effects other than those listed here may also 
occur.  
                  
            Participant’s Initials________  
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Chlorzoxazone is used to treat muscle spasms and pain.  It is generally well tolerated and 
rarely produces undesirable side effects.   
Likely (>25%): None. 
Common (10-25%): None. 
Infrequent (1-10%): Drowsiness and dizziness or lightheadedness. 
Rare (<1%): Chlorzoxazone may cause your urine to turn orange or reddish-purple. Following 
repeated dosing (250 - 750 mg every 6 hours), other rare side effects including nausea, vomiting, 
rash, itching, heartburn, and diarrhea may occur. 
 
Mephenytoin is a drug used to control epileptic seizures.  A relatively low dose will be given to 
minimize the side effect of drowsiness. 
Likely (>25%): None. 
Common (10-25%): Mild drowsiness lasting 30 to 90 minutes. 
Infrequent (1-10%): Double vision, unsteadiness, fatigue, nausea, dizziness. 
Rare: (<1%)A small number of patients taking this drug for the treatment of seizures have had an 
irreversible reduced ability to make blood cells (called “aplastic anemia”), which could be fatal.  
However, this has occurred after prolonged, sustained use at high doses.  Fever and rash have 
also occurred with prolonged use.  Because of the relatively small dose and low frequency of the 
use of mephenytoin in this study, it is not expected that serious side effects will occur. 
 
Flurbiprofen (50 mg) is a FDA approved drug used to treat inflammation and pain. In the low 
single dose being used in this study, it not expected to cause any significant effect. 
Likely (>25%): None.   
Common (10-25%): None. 
Infrequent (1-10%): In some people who are taking it continuously for a long time, it has been 
shown to cause indigestion, diarrhea, abdominal pain, nausea, constipation, gastrointestinal 
bleeding, flatulence (bloated from stomach gas), liver damage and vomiting.  Rare (<1%): In 
larger doses rare side effects such as headache, nervousness with the potential for anxiety, 
insomnia (difficulty sleeping), tremor (shaking), amnesia (loss of memory), somnolence 
(sleepiness) and malaise (a feeling of illness). 
 
Dextromethorphan is a drug commonly used to treat cough. It is generally well tolerated. 
Likely (>25%): None. 
Common (10-25%): None. 
Infrequent (1-10%): mild dizziness; mild drowsiness; nausea/vomiting. Chronic use may lead to 
abuse and dependence. 
Rare (<1%): At very high doses, toxic psychosis, and respiratory depression.      
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Acetaminophen is a drug commonly used as a pain killer.  
Likely (>25%): None. 
Common (10-25%): None 
Infrequent (1-10%): Following overdose, stomach upset; increased sweating. 
Rare: (<1%) anemia; skin rash; liver damage at very high doses. 
 
Milk Thistle: 

Infrequent adverse effects associated with oral ingestion of milk thistle include: Gastrointestinal 
problems (nausea, diarrhea, imperfect or painful digestion, excessive gas in the 
stomach/intestine, abdominal bloating, abdominal fullness or pain, anorexia, and changes in 
bowel habits); headache, skin reactions (pruritus, rash, urticaria, and eczema); 
neuropsychological events (lack of strength, discomfort, sleeplessness); joint pain; nasal 
blockage; impotence and allergic reaction. However, causality is rarely addressed in available 
reports. For randomized trials reporting adverse effects, incidence was approximately equal in 
milk thistle and control groups. 

When these study medications are administered simultaneously, it is possible that nausea and/or 
vomiting may occur.  In most cases this nausea is mild and does not persist. 
 
While you will not directly benefit from these studies, all people who take milk thistle in the future 
may benefit from this study by our increased understanding of how handling of the drugs change 
with use of milk thistle.  This should help us to predict how to dose drugs that are important for 
their care. 
 
Animal studies to determine the effect of milk thistle on the fetus have not been done. To avoid 
risk to the fetus, it is important that you (for female participants) or your sexual partner (for male 
participants) does not become pregnant during the research study. Avoiding sexual activity is the 
only certain method to prevent pregnancy. However, if you choose to be sexually active, you 
must agree to use an appropriate double barrier method of birth control (such as female use of a 
diaphragm, intrauterine device, sponge and  

spermicide), in addition to the male use of condom or involve the female use of prescribed “birth 
control pills” or a prescribed birth control implant. If you choose to be sexually active during the 
study you must accept the risk that pregnancy could still result, exposing you or your partner to 
potential loss of pregnancy as well as other unknown effects on the developing fetus.  

          
Women who are capable of getting pregnant will have a negative pregnancy test prior to start of 
the study. If you become aware that you are pregnant during the course of this research study, 
you understand that you must stop taking milk thistle at once. You agree to do so and to contact 
the principal investigator listed on the first page and your physician immediately. 

             
            Participant’s Initials_________ 
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If you are a man, it is recommended that you use an effective method of birth control while you are 
participating in the study and for six months following your termination from the study. If you 
choose to be sexually active during this study you must accept the risk that pregnancy could still 
result, exposing you or your sexual partner to potential loss of pregnancy as well as other unknown 
effects on developing fetus. 
 
NEW INFORMATION: You will be promptly notified if any new information,  
either good or bad, about this study that develops during the course of this study and which may 
cause you to change your mind about continuing to participate. 
 
COSTS AND PAYMENTS: For the study, milk thistle will be provided to you by the investigators 
free of charge. There will not be any charge associated with participating in this study. You will 
receive $150 payment for each part of the study to help cover the cost for travel, meals, or lodging 
associated with participating in this study. The total payment for entire participation in the study 
will be $ 300. 
 
COMPENSATION FOR ILLNESS OR INJURY: University of Pittsburgh investigators and their 
associates who provide services at the UPMC Health system (UPMC HS) recognize the 
importance of your voluntary participation to their research studies. These individuals and their 
staffs will make reasonable efforts to minimize, control, and treat any injuries that may arise as a 
result of this research. 
 
If you believe that you are injured as the result of the research procedures being performed, 
please contact immediately the Principal Investigator or one of the co-investigators listed on the 
first page  
of this form. Emergency medical treatment for injuries solely and directly relating to your 
participation in this research will be provided to you by the hospitals of UPMC HS. It is possible 
that the UPMC HS may bill your insurance provider for the costs of this emergency treatment, 
but none of these costs will be charged directly  
to you. If your research related injury requires medical care beyond this emergency treatment, 
you will be responsible for the costs of this follow-up care unless otherwise specifically stated 
below. You will not receive monetary payment for, or associated with, any injury that you suffer 
in relation to this research. 

 
CONFIDENTIALITY: Any information about you obtained from this research including history, 
laboratory data, or findings on physical exam will be kept strictly confidential.  All reports of these 
studies which have to go to the National Institutes of Health or that are published in journals will 
not list your name or provide any manner in which you can be identified. Research records, like 
hospital records, may be subpoenaed by a court order or may be inspected by federal regulatory 
authorities.  Therefore, you do consent to the publication of the study so long as the information is 
anonymous and/or is disguised so that your identification cannot be made. It is now University 
policy that all research records be kept for a period of 5 years post termination of the study.     
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RIGHT TO WITHDRAW: You do not have to take part in this research study and, should you 
change your mind, you can withdraw from the study at any time. Other care and benefits will be 
the same for you whether you participate in this research study or not. You may be removed from 
the research study by the investigators in the event of any physical condition, which would make 
you unsuitable for the study. 
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********************************************************************** 
VOLUNTARY CONSENT:   Dr. Venkataramanan and Rabinovitz have explained all of this to me 
and have answered all questions I have.  I also understand that any future questions I have about 
this research will be answered by Dr. Venkataramanan or Dr. Rabinovitz who I may call at (412) 
648-8547 or 383-8687. Any questions I have about my rights as a research subject will be 
answered by the Human Subject Protection Advocate at the Institutional Review Board, University 
of Pittsburgh (412-578-8570).  By signing this form, I agree to participate in this study. 
______________________________________       
Subject's signature       Date 

     
********************************************************************** 
 
CERTIFICATION of Informed Consent: 
 
I certify that I have explained the nature and purpose of this research study to the above mentioned 
individual(s), and I have discussed the potential benefits and possible risks of study participation. 
Any questions the individual (s) have about this study have been answered, and we will always be 
available to address future questions as they arise. 
 
_______________________________    ______________________ 
Printed name of the Person Obtaining Consent   Role in Research Study 
 
 
_______________________________     ____________ 
Signature of Person Obtaining Consent   Date 
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APPENDIX C 
 
 
 

Milk Thistle-Midazolam Drug Interaction Study Protocol, Informed Consent, and 
Advertisement 
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A. Names of Principal Investigator and Co-Investigators 
Principal Investigator: Raman Venkataramanan, Ph.D. 
Co-Investigators: Mordechi Rabinovitz, M.D., Reginald F. Frye, Ph.D., Bernard J. 
Komoroski Pharm.D., Stephen C. Strom, Ph.D. 
 Jeffrey A. Rihn, M.D., Shahid Husain, M.D. 
 
B. Protocol Title: Effect of milk thistle on the pharmacokinetics of midazolam. 
 
C. Specific aim  
To evaluate the effect of milk thistle on the in vivo pharmacokinetics of midazolam, a substrate 
of CYP3A4/5, by using the semisimultaneous bioavailability (SSB) approach.  The hypothesis is 
that CYP3A activity will be decreased in subjects taking milk thistle with the predominate effect 
being on intestinal as compared to hepatic CYP3A-mediated metabolism. 
 
D. Background Information and Significance 
Safety is of major concern in the use of chemicals / biologicals as therapeutic agents in patients. 
In case of novel chemical entities, safety is initially evaluated in animal models, and then in 
healthy adult volunteers during phase I studies. Safety is subsequently monitored throughout the 
drug development process. These studies have confirmed that safety of a drug can be modified 
by a) underlying pathological condition in a patient population, b) co-administered drugs or c) 
certain dietary components/nutritional supplements. Of recent interest is the potential effect of 
the indiscriminate use of herbal medicine by the public at large, especially in combination with 
prescription and non-prescription drugs. There is very little systematic evaluation of the safety 
and efficacy of herbal products used alone or in combination with prescription or non-
prescription drugs.  
 
Herbal products contain chemicals that are also metabolized in the liver (Pan M 1999). Herbal 
products are known to alter hepatic drug metabolizing enzymes directly in animals (Benson AM 
1978; Piper JT 1998; Chrungoo VJ 1997; Letteron P 1990; Valenzuela A 1989) and also interact 
with several pharmaceuticals (Miller LG 1998; Janetsky K 1997). Identification of herb-drug 
interactions in patients has been difficult due to the fact that nearly 70% of the patients do not 
reveal their herbal use to physicians and pharmacists (Johnston BA 1997).    
 
Milk thistle is a widely used hepatoprotectant that has the potential to alter hepatotoxicity of 
other chemicals and affect hepatic metabolism of certain drugs. Milk thistle extract, referred to as 
silymarin or silibin, is one of the most commonly used non-traditional therapies, particularly in 
Germany.  Silymarin inhibits nitric oxide production (Dehmlow C 1996); is a potent free radical 
scavenger that prevents lipid peroxidation (Muriel P 1990); and enhances the activity of 
hepatocyte RNA polymerase (Sonnenbichler J et al. 1986).  Silymarin/silybin protects the liver 
against carbon tetrachloride (CCl4), acetaminophen, amanitin, thioacetamide and D-
galactosamine induced hepatotoxicity in rats (Mourelle M 1989; Muriel P 1992; Chrungoo VJ 
1997b). Inhibition of CYP1A, CYP2E1 and CYP3A enzymes has been suggested to be 
responsible for the hepatoprotective effect of silymarin in CCl4 and acetaminophen induced 
hepatotoxicity in rats. 
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The liver plays an important role in the elimination of endogenous and exogenous agents such as 
drugs, hormones and other chemicals.  The CYP3A subfamily of enzymes are the most important 
enzymes with respect to contribution to drug metabolism, metabolizing approximately 50% of all 
drugs.  While the liver is classically thought of as the primary organ for drug removal, epithelial 
cells lining the gastrointestinal tract which contain the same enzymes but at lower amounts, will 
also metabolize orally administered drugs prior to systemic exposure.  The cytochrome P450 
(CYP450) superfamily of enzymes is involved in the metabolism of a great number of 
structurally diverse pharmaceutical compounds.  We have observed a 50% reduction in CYP3A 
activity as measured by 6β-hydroxytestosterone formation in human hepatocytes treated with 
silymarin (Venkataramanan et al. 2000). This would suggest that CYP3A activity may be 
reduced in subjects who consume milk thistle extract (silymarin).   This effect may be augmented 
by inhibition of CYP3A enzymes in the gastrointestinal tract, where concentrations of milk 
thistle constituents are higher than what is expected in the liver resulting in potentially greater 
inhibition.   In this study, we will evaluate the effect of milk thistle administration on the in vivo 
activity of CYP3A4/5 in the liver and the gastrointestinal tract by evaluating pharmacokinetic 
parameters of midazolam using the semisimultaneous (SSB) approach. 
 
E. Progress Report and Preliminary Studies 
Midazolam has emerged as the “gold-standard” probe for measuring CYP3A activity since it can 
be given by both the oral and intravenous routes, thereby facilitating evaluation of intestinal and 
hepatic CYP3A activity.  We have validated a unique method for midazolam phenotyping that is 
based on the semisimultaneous bioavailability (SSB) approach in eight subjects, whereby oral 
and intravenous drug administration are separated by a short period of time (6 hours) (Protocol # 
010423).  So far 48 subjects have participated in the SSB study. In a previous validation study, 
midazolam was well tolerated and subjects experienced only mild sedation lasting 1 – 2 hours 
after each low-dose of midazolam (Lee, et al, in press).  Our data support the feasibility of the 
SSB approach and demonstrate that indices of hepatic and intestinal extraction of the CYP3A 
probe drug midazolam are the same when determined using the semisimultaneous bioavailability 
approach as compared to the traditional approach.  The SSB approach provides an attractive 
means to evaluate the effects of drugs, herbs, or disease on CYP3A intestinal and hepatic 
metabolism in a short time period.  Thus, in this application, we will utilize the SSB approach to 
evaluate the effect of milk thistle administration on intestinal and hepatic CYP3A activity.  The 
hypothesis is that CYP3A activity will be decreased in subjects taking milk thistle with the 
predominate effect being on intestinal as compared to hepatic CYP3A-mediated metabolism. 
 
F. Research Design and Methods  
1.    Screening Visit: 
Subjects will be asked to read and sign the informed consent at the screening visit prior to the 
performance of any study-related procedures.  The screening visit will last approximately one (1) 
hour and 10 ml of blood will be drawn for biochemical measures to assess liver and kidney 
status. Spot urine sample will be obtained for testing drugs of abuse and for test for pregnancy.  
Age, height, and weight will be recorded in a demographic record.  To participate, the subjects 
must not have any evidence of abnormal renal (i.e., creatinine clearance as estimated by the 
Cockroft-Gault equation > 80 ml/min) or hepatic function (ALT > 80.0 IU/L, AST > 80.0 IU/L 
and Alk Phos > 250 IU/L).  Once subjects are determined eligible they will return to the GCRC 
for study visit 1 within one month of the screening visit. 
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2.   Protocol: 
In vivo studies: The study will be performed at the GCRC.  Subjects will be studied twice – once 
before and again after one week of milk thistle use (175 mg of milk thistle fruit extract containing 
80% silymarin, tid, taken at 8 a.m., 2 p.m. and  8 p.m.).  Subjects will be asked to abstain from 
alcohol and caffeine containing foods and beverages for 24 hours and from grapefruit or grapefruit 
juice for 48 hours prior to each study visit.  Subjects will also be asked to abstain from any over-the-
counter medications, including non-steroidal anti-inflammatory drugs (e.g., naproxen and similar 
drugs), for 48 hours prior to each study visit.  Subjects will report to the GCRC by 6 PM the evening 
prior to each midazolam dosing day.  They will fast from midnight the night before dosing until 2 
hours (approximately 10:00 AM) after oral midazolam administration.  Prior to dosing, an intravenous 
catheter will be inserted into an arm vein for the purpose of obtaining blood samples.  The intravenous 
catheter will be used to administer a 30-min infusion of midazolam.  At approximately 12:00 PM, 
subjects may eat a standardized lunch, and after approximately 4:00 PM subjects may eat per normal 
schedule. Standardized lunch and dinner meals will be provided while at the GCRC. The subjects may 
drink water as needed. 
 
Study Visits 
Semi-simultaneous Midazolam Administration: Subjects must refrain from eating anything after 
12 midnight on the night before the study. Subjects will come to the General Clinical Research 
Center (GCRC) and will be given, at approximately 8 A.M., oral midazolam 5.0 mg and then at 2 
P.M. (at 6 hours), intravenous midazolam 2.0 mg infused over 30 minutes.  Blood samples 
(N=22, 7 ml, total = 154 ml) will be collected immediately prior to and at 15, 30, 60, 90, 120, 
180, 240, 355 minutes after oral midazolam administration, and at 35, 50, 70, 90, 120, 180, 240, 
360, 480, 600, 720, 900 and 1080 minutes after start of midazolam infusion.  Urine will be 
collected by spontaneous complete voiding in intervals from 0 to 1440 minutes (24 hrs) after oral 
midazolam administration.  Subjects may eat 2 hours after the oral midazolam dose 
(approximately 10 AM) until 1 hour prior to the intravenous midazolam dose (approximately 1 
PM). This is to minimize any effect of food induced changes in hepatic blood flow on the 
pharmacokinetics of midazolam. Subjects will receive regular meals 2 hours after the 
intravenous midazolam dose.  Water will be allowed ad libitum through out the study. Blood 
samples will be collected in EDTA tubes, kept on ice, and centrifuged within two hours of 
collection at 2800 rpm, 4oC, for 15 minutes. Patients will remain in the GCRC overnight and will 
be discharged after the collection of 24 hour blood and urine samples.  Plasma will be separated 
from blood, and will be frozen along with aliquots of urine at -80oC until analysis for midazolam 
and 1-hydroxymidazolam as described below. Plasma concentrations of silibinin (component of 
milk thistle) will also be measured.  A total of seventeen (17) blood samples (170 ml) will be 
obtained during this study period. 
 
Midazolam (Semi-simultaneous administration) and milk thistle: Subjects will be given 21 milk 
thistle 175 mg tablets to self-administer three times daily at approximately 8:00 a.m., 2 p.m. and 
8:00 p.m. for seven days.  Compliance will be assessed by a diary kept by the subject.  On the 
seventh day, subjects will report to the GCRC by 6:00 PM, give a blood sample (7 ml) at 
approximately 7:00 p.m., and will then be given milk thistle 175 mg at approximately 8 p.m.  
Subjects will be administered 3 more doses of milk thistle 175 mg at the times stated above for a 
total of 21 doses (Table 1).  Subjects will undergo the same procedure as in midazolam alone.  
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Subjects will be discharged after voiding urine at 24 hours after the first oral midazolam dose.  
The total time required for subjects to remain in the GCRC is approximately 38 hours.   
Table 1 

Day 1 2 3 4 5 6 7 8 
midazolam (SS) X       X 
Milk thistle 175 mg 
TID 

 X X X X X X X 

 
Monitoring/Follow-up Procedures: 
For this research study, the monitoring/follow-up procedures are measurement of blood pressure, 
temperature, and heart rate 1, 4 and 18 hours after the intravenous dose of midazolam is given.  
 
Analytical Techniques:  The concentrations of midazolam in plasma will be determined by high-
performance liquid chromatography selected ion monitoring mass spectrometry (LC-SIM-MS) 
method developed and validated in our laboratory.  Plasma concentrations of silibinin will be 
measured by high performance liquid chromatography (HPLC). The amount of silibinin 
glucuronide excreted in the urine will also be measured by HPLC method developed and 
validated in our laboratory.  
 
Data Analysis:  Midazolam concentration-time data will be fitted to an integrated intravenous 
infusion model using the non-linear regression program WinNonlin (version 2.1, PharSight, Palo 
Alto, CA).  Bioavailability (F) and area under the midazolam concentration-time curve (AUC) 
will be obtained by semi-simultaneous model fitting.  This model can simultaneously fit the oral 
and I.V. data and obtain various pharmacokinetic parameters of interest.  Hepatic midazolam 
clearance (CLH) will be calculated as the intravenous dose (DIV) divided by AUC derived from 
intravenous dosing (AUCIV).  AUC IV will also be evaluated using reverse superposition 
principle and non-compartmental analysis of the pharmacokinetic data will also be performed. 
Hepatic extraction ratio (ERH) calculated from CLH divided by an estimated hepatic blood flow 
(QH=1.5 liters/min) will serve as an index of hepatic CYP3A activity.  The intestinal extraction 
ratio (ERG) will be calculated from [1 - F/(1- ERH)], and will serve as an index of intestinal 
CYP3A activity; this assumes that intestinal absorption of midazolam approaches 1.  Area under 
the plasma concentration versus time curve for silibin will be calculated by the trapezoidal rule. 
G. Biostatistical Design and Analysis  
This is a pilot study to evaluate the interaction between milk thistle and midazolam. We propose to 
enroll a maximum of 8 subjects initially. Based on the initial observations further enrollment may 
be necessary. In order to have 8 subjects participate in this study we propose to screen a maximum 
of 16 subjects. 
 
We will collect information on the various pharmacokinetic parameters such as half-life, apparent 
oral clearance, metabolic ratio (metabolite to parent drug concentration in the plasma), total urinary 
excretion of metabolites and fractional metabolic clearance. Paired t test will be used to evaluate 
the significance of the differences in the parameters measured at a p < 0.05. Correlation analysis 
will also be performed between AUC of silybin and changes in various pharmacokinetic 
parameters of midazolam. 
 
H. Recruitment Methods and Consent Procedures:   
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Subjects: 
The study will be conducted in 8 healthy subjects (4 men/4 women), who are older than 18 years, 
and will involve the evaluation of the pharmacokinetics of midazolam after intravenous and oral 
administration before and during one week of milk thistle administration.  Because of the number 
of blood draws required for this study, it is necessary to enroll subjects greater than or equal to 18 
years of age.  Therefore, no children will be included in this study.  Midazolam is FDA approved 
for preoperative sedation and amnesia, induction of general anesthesia.  Milk thistle (Thisilyn® – 
Nature’s Way, Inc.) will be provided at no cost to all participants for the study period by the 
investigator.  Because milk thistle is classified as a dietary supplement, its use is not approved by 
the FDA. 
 
Inclusion Criteria:  
Non-smokers (self-reported) over the age of 18 years. 
Signed Informed Consent. 
Normal liver and kidney function tests  
1.  Male:  AST < 80 IU/L; ALT < 80 IU/L; Alk. Phos < 250 IU/L 
2.  Female:  AST < 80 IU/L; ALT < 80 IU/L; Alk. Phos < 250 IU/L 
3.  Creatinine clearance as estimated by the Cockroft-Gault equation < 80 ml/min for both male 
and female. 
Normal hematocrit; hemoglobin (Hct; Hgb) 
 1.  Male:  Hct 38.0 – 48.8 %; Hgb 12.9 – 16.9 g/dL 
 2.  Female:  Hct  34.1 – 43.3 %; Hgb 11.6 – 14.6 g/dL 
 
 Exclusion Criteria 
a. Evidence of renal dysfunction (estimated creatinine clearance < 80ml/min). 
b. Impaired hepatic function (ALT > 80.0 IU/L, AST > 80.0 IU/L and Alk Phos > 250 
IU/L). 
Taking any medications other than oral contraceptives (for women) 
Women who are pregnant or are currently breastfeeding. 
Known hypersensitivity/allergy to benzodiazepines. 
f. Existing pulmonary disease. 
 
2.   Minority Inclusion Statement:   
Women or men of all races will be eligible and recruited for this study.  Women and men will be 
balanced.  The racial and age mix of the study will be representative of the population of 
Western Pennsylvania. There will be no exclusion based on race, sex, or ethnicity. 
 

Total Planned Enrollment: 8 
TARGETED/PLANNED ENROLLMENT: Number of Subjects 

Sex/Gender Ethnic Category 
Females Males Total 

 Hispanic or Latino       
 Not Hispanic or Latino 4 4 8 
 Ethnic Category Total of All Subjects* 4 4 8 
Racial Categories  
 American Indian/Alaska Native       
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 Asian 0 0 0 
 Native Hawaiian or Other Pacific Islander                    
 Black or African American  1 1 2 
 White 3 3 6 
 Racial Categories: Total of All Subjects * 4 4 8 
 
3.  Sources of Research Material 
Subjects who participate in this study will provide medical information and blood sample for 
laboratory tests and drug level measurements. 
 
4.    Recruitment Methods and Consent Procedures:  
We have requested and obtained a waiver of the requirement to obtain signed informed consent 
for the pre-screen interview, which will take place over the phone.  We believe we meet the 
following criteria:  The telephone interview presents no more than minimal risk of harm to the 
involved subjects and involve no procedures for which written consent is normally required 
outside of the research context.  We believe the information being obtained during the screening 
phone call is the same type of information that would be collected on patients setting up an 
appointment for their condition.  Furthermore, we believe the pre-screening interview will help 
reduce the number of screening failures. Verbal informed Consent will be obtained prior to any 
screening procedures.  Please refer to Appendix B for the screening script and screening tool that 
will be utilized.  Subjects considering enrollment in the study will first undergo a pre-screen 
telephone interview to determine whether they meet the eligibility requirements as stated above.  
Those subjects that qualify will be provided with an IRB approved consent form to read and the 
study protocol will be explained to them.  If the subject does not meet inclusion criteria all the 
information collected during the screening process will be destroyed.  In addition written 
informed consent will be obtained at the actual screening visit prior to any research activities.  
Subjects who have previously consented to the study will be required to sign the updated, IRB 
approved consent form at their next clinical visit.  The study consent form will be presented by 
Dr. Mordechi Rabinovitz, M.D., and subjects will be asked to provide informed consent to 
participate in the pharmacokinetic study prior to any research procedures.  Eligible subjects will 
then undergo a screening assessment based on history, physical examination and laboratory tests 
to assess their suitability for the study.  Any questions that potential subjects have will be 
answered by a physician co-investigator.  A copy will be maintained in the subject’s GCRC chart 
and a copy retained by the investigator.     
 
Subjects for this study will be recruited via advertisement that will be posted in the Pitt News 
and can be found in Appendix A. 
 
I. Risk/Benefit Ratio 
Midazolam is a drug usually used before surgery or certain medical procedures, such as a 
colonoscopy, to make the patient sleepy, drowsy, or relaxed.  The dose used in this study is much 
lower than the dose used before medical procedures.  Subjects will probably feel drowsy or 
sleepy for a few hours after midazolam is administered. 
 
Likely - occurs in more than 25% of people (more than 25 out of 100 people): Drowsiness lasting 
1 to 2 hours. 
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Common - occurs in approximately 10% to 25% of people (10 to 25 out of 100 people): None  
Infrequent - occurs in 1% to 10% of people (1 to 10 out of 100 people): Hiccups, dizziness, 
confusion, headache, pain at the site of injection, inability to remember events that occur within 
8 hours after midazolam administration, slowing of response time and interference when 
operating automobiles or other machinery, dry mouth, light-headedness, nausea, vomiting, 
double vision, loss of coordination, and slurred speech.  These usually occur after prolonged, 
sustained use of midazolam at high doses. 
Rare - occurs in less than 1% of people (less than 1 out of 100 people): There is a risk of hives, 
rash, and rare itching at the injection site.  There is also the risk of apnea (stopping breathing 
temporarily) and death with midazolam. This is extremely rare and usually occurs with high 
doses given rapidly.  This study will use low doses given slowly. 
 
Midazolam may cause drowsiness or dizziness for up to 2 days after its administration. Subjects 
should wait 24 hours or until the effects of the medicine have worn off (whichever is longer) 
before driving or using machinery. Subjects should also not drink any alcohol or take any other 
sedative medications until two days after receiving midazolam.  It has been shown that at a dose 
of 7.5 mg po (equivalent to 3 mg IV), midazolam has no effect on ventilation at rest and the 
ventilatory responses to hypoxia and hypercapnia. (Mak et al. 1993)  It has also been shown that 
an oral midazolam dose between 5 and 8 mg is equivalent to triazolam 0.25 mg PO based on 
flicker sensitivity, reaction time, and digit symbol substitution tests (Sostmann HJ et al. 1989). 
 
Because milk thistle is not subject to the same approval process as midazolam, reliable adverse 
event incidence rates are not available.  However, some documented side effects include allergic 
reactions involving pruritus, rash, urticaria and, in a very small number of cases, anaphylaxis. 
Most reports include mild gastrointestinal tract symptoms and include a laxative effect; some 
nausea, diarrhea, dyspepsia, flatulence, and/or anorexia. 
 
The risks involved with this study include the discomfort and inconvenience of having an 
intravenous catheter placed and blood samples collected with potential for pain, bruising, bleeding 
and infection.   
 
No personal benefit will result from this study. Information obtained from this study, however, will 
provide increased knowledge about the potential effect of milk thistle on metabolism of drugs 
through CYP3A enzyme system. There is the inconvenience of participating in the study, 
collecting urine and having blood withdrawn. There is a minor risk of developing bruises 
associated with blood sampling. 
 
The research coordinator will monitor any adverse events in the subjects participating in this study 
and report occurrence of any events to the principal investigator immediately. 
   
Risk Management Procedures: The risk of adverse experiences in this study will be minimized 
by utilizing only qualified individuals to conduct the study, the staff in GCRC in UPMC-MUH.  
Appropriate attention to detail in the experimental setting will be emphasized.  Moreover, this 
study will use small doses of midazolam administered slowly and thus, the likelihood of dose-
related adverse events should be minimized.  Immediate medical treatment will be provided for 
any illness or injury resulting from this study.  Trained nursing staff are present in the GCRC at 
all times and the physician co-investigator will also be available to evaluate the subject.  In the 
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event that a subject experiences an intolerable side effect, the subject will be withdrawn from the 
study and followed for resolution of the effect(s).  A subject may also be removed from the study 
if in the opinion of the physician investigator, it is in the subject’s best interest. 
 
Data Safety Monitoring Plan.   
This study involves a small number of subjects who will be closely monitored by the 
investigators and research personnel on the General Clinical Research Unit.  The data and safety 
information obtained in each study subject is reviewed at a weekly or biweekly meeting held by 
the investigators.  As a part of these meetings, the research team will monitor data, 
confidentiality, and recruitment in addition to adverse events. A summary report from the 
meetings will be submitted to the IRB at the time of annual renewal.  We will comply with the 
IRB’s policies for the reporting of serious and unexpected adverse events as detailed in Chapter 
3.0, sections 3.4 and 3.5 of the IRB Reference Manual.  If a serious life-threatening event occurs, 
the event will be reported immediately (i.e., within 24 hours) to both the FDA and the IRB.  
Unexpected reactions of moderate or greater severity will be reported to the IRB within 10 
calendar days of the reaction.  Minor events will be reported to the IRB at the time of annual 
review. 
 
J. Costs and Payments 
The subjects will not be charged for any studies related to this protocol.  Subjects who participate 
will receive $ 100 for each part as reimbursement for expenses involved in participating in this 
study. The total compensation will be $ 200 for the two study periods. 
 
K.   Justification for Utilization of GCRC Resources 
The GCRC use is being requested to utilize the facilities and expertise available to ensure proper 
execution of the study.  It will ensure that drugs are given under medical supervision and samples 
are collected by qualified professionals with experience in the conduct of research studies.  These 
factors are important to obtain results that are valid and interpretable. 
 
L.   Study Size and GCRC Resources 
1.   Number of subjects     16 (8 to complete) 
2. Annual number of research patient days  32 
3.  Annual number of outpatient visits   26 (10 screening, 16 outpatient blood 
draws) 
 
M. Research needs to be provided by Investigator’s laboratory 
Analytical assays required for the determination of concentrations of midazolam, silibinin and its 
glucuronide will be conducted by Dr. Frye and Dr. Venkataramanan.  Labeled storage containers 
for plasma/urine samples will be provided to GCRC. 
 
N. Funding Support 
No funding requested from GCRC. Funds in the Clinical Pharmacokinetics Laboratory and 
Center for Pharmacodynamics will be utilized. 
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P. Qualifications of the Investigators 
Dr. Venkataramanan is the director of the Clinical Pharmacokinetics Laboratory, and has 
conducted drug disposition studies in normal subjects, liver, heart, kidney and bone marrow 
transplant patients since 1982.  
 
Dr. Reginald Frye is an associate professor in the department of Pharmacy Practice at the 
University of Florida College of Pharmacy and serves as the Associate Director for the Center for 
Pharmacogenomics.  Dr. Frye’s research has centered on the validation of the cocktail approach 
for assessment of drug metabolizing ability in patients as well as the use of the drug cocktail 
approach to determine the metabolic pathway of drug substrates. 
 
Dr. Rabinovitz, is a gastroenterologist with extensive research experience. 
 
Dr. Steve Strom is an expert in hepatocyte isolation and characterization and has extensive non-
clinical and clinical research experience. 
 
Dr. Bernard Komoroski is a Ph.D. student in the Department of Pharmaceutical Sciences in the 
School of Pharmacy.  He will serve as the study coordinator.  
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PROTOCOL APPENDIX A:  Pitt News Advertisement 
 

Healthy non smoking men and women, not currently on any drug therapy and over 18 years of 
age are needed for a research study evaluating how an herbal product affects the break down of a 

drug. A brief telephone interview will be conducted to assess eligibility prior to the screening 
procedure. After signing an informed consent, a screening procedure will assess that the potential 

subjects have normal liver and kidney function. The study requires two 2-nights stays (1 or 2 
weeks apart) in UPMC-Montefiore. Participants will be paid $200 upon study completion. For 
more information contact Bernard Komoroski, School of Pharmacy.  bjkst12@pitt.edu or 412-

624-1309.
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PROTOCOL APPENDIX B: Telephone Script 
 
Thank you for calling to find out more about our research study.  My name is Bernie Komorsoki 
and I am a researcher at the University of Pittsburgh School of Pharmacy and Medicine.  
Purpose:  The purpose of this study is to determine whether milk thistle, an herbal product, 
affects how the body handles another drug, midazolam.   
 
We provide two meals throughout the day and several blood samples will be drawn. The risks of participating 
in this portion of the study include the discomfort and inconvenience of having a small tube 
placed in your vein to get multiple blood samples and light-headedness from having blood 
samples drawn. Arm pain, swelling, bleeding, bruising and/or infection and fainting may result 
from having the tube placed and blood withdrawn. 
 
Do you think you might be interested in participating in that study? 
 
[If No]:  Thank you very much for calling. 
 
[If Yes]:  Before enrolling people in this study, we need to determine if you are eligible.  And so 
what I would now like to do is to ask you a series of questions regarding your current health 
status and demographic information.  There is a possibility that some of these questions may 
make you uncomfortable or distressed; if so, please let me know.  You don’t have to answer 
these questions if you don’t want to.  You also need to understand that all information that I 
receive from you by phone, including your name and any other identifying information, will be 
strictly confidential and will be kept under lock and key.  If you do not meet inclusion criteria or 
change your mind about this study, all the information collected during the screening process 
will be destroyed.  The purpose of these questions is only to determine whether you are eligible 
for our larger study.  Remember, your participation is voluntary; you do not have to answer these 
questions. 
 
Do I have your permission to ask you these questions? 
[If No]:  Thank you very much for calling. 
 
[If Yes]:  Continue asking the following questions. 
 
How did you hear about this study? 
 
What is your gender? 
 
How would you best describe your racial background: 
 
Are you greater than 18 years old? 
 
Do you have any medical issues for which you are currently take any prescribed or over the 
counter medications?  
Are you currently taking any blood thinning medications? 
 
Are you able to fast for 12 hours? 
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Are you pregnant? 
Do you have any bleeding disorders or anemia? 
Check one of the following: 
You do NOT qualify for inclusion in this study because you have met one of our exclusion 
criteria (state what it is). However, thank you for your interest in this study. 
You qualify for this study, would you like to schedule an appointment for a screening visit? 
[If Yes]:  Fill out GCRC Registration Form  
[If No]:  Thank you for calling and expressing an interest in this study. 
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SUBJECT INFORMATION AND CONSENT FORM FOR PHARMACOKINETIC STUDY 
 
TITLE: Effect of milk thistle on the pharmacokinetics of midazolam  
 
PRINCIPLE INVESTIGATOR: Raman Venkataramanan, Ph.D.   
     Professor, Principle Investigator 
     718 Salk Hall, School of Pharmacy    
     Tel:  412-648-8547 
 
CO-INVESTIGATORS:       
 
Mordechi Rabinovitz, M.D.          
Assoc. Professor of Gastroenterology 
3rd Floor Falk Clinic, School of Medicine   
Tel: 412-383-8687 
 
Reginald F. Frye, Ph.D. 
Professor, Co-investigator 
POB 100486, College of Pharmacy 
University of Florida     
Tel:  352-273-6238 
 
Steve Strom, Ph.D.       Jeffrey A. Rihn, M.D.  
Assoc. Professor, Co-investigator     Kaufmann Medical Building 
BSTWR, School of Medicine      Suite 1010, 3471 Fifth Avenue 
Tel:  412-624-7715       Tel:  412-687-3900 
 
Bernard J. Komoroski, Pharm.D.     Shahid Husain, M.D 
Graduate Student, Co-investigator     Falk Medical Building 
731 Salk Hall, School of Pharmacy      Suite 3-A, 3601 Fifth Avenue 
Tel:  412-624-1309       Tel:  412-648-6401 
       
SOURCE OF SUPPORT:  Clinical Pharmacokinetics laboratory funds  
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Why is this research being done? 
 
   You are being asked to participate in this study because you are a healthy man or woman over 
18 years old.  The purpose of this study is to determine if the herbal product milk thistle changes 
how the body breaks down the drug midazolam.  Milk thistle is an herbal product sold over-the-
counter that is used as a natural remedy for liver problems.  Milk thistle is not approved by the 
Food and Drug Administration (FDA) as a drug, although it is sold in Health Food and Drug 
stores without a prescription.  Midazolam (Versed®) has been approved by the FDA and is a 
drug normally used to make someone sleepy or relaxed before a medical test. 
 
Who is being asked to take part in this research study? 
 
You are being asked to participate in this clinical research project because you are taking or plan 
to take milk thistle as an herbal supplement. You will be one of eight subjects recruited for this 
study. The information obtained from this study will help us to understand the interaction 
between milk thistle and other drugs. This study will be conducted at the General Clinical 
Research Center at the University of Pittsburgh.   
 
What procedures will be performed for research purposes? 
Screening Procedure: 
If you decide to take part in this research study, you will first sign an informed consent. You will 
be required to spend approximately 1 hr initially to give your medical history and to give a blood 
sample (about 5 ml – one teaspoonful) to assess your kidney, liver function and to make sure you 
have enough red blood cells.  If you are female, a urine pregnancy test will also be conducted.  
You will take part in the experimental procedure if you meet the criteria for entry in to this study.  
You will have 30 days to schedule your first study visit.  If you are unable to schedule a meeting 
within this time frame, you will be required to undergo another screening procedure. 
 
Experimental Procedure: 
You will have to come back to the General Clinical Research Center (GCRC) two more times if 
you are eligible to participate in this study.  You will be required to abstain from alcohol, 
caffeine, grapefruit juice and medications for 48 hours prior to your study visits. Also, prior to 
both visits, you will arrive the night before the study.  Once you are admitted to the GCRC, you 
will be provided with meals free of charge.  You will also be required to abstain from food after 
midnight prior to the beginning of the study.  You will then be required to spend the following 
night in order for us to make sure that the effects of the drug have worn off completely.  You will 
be allowed to leave the GCRC 18 hours after the drug has been given through the vein in your 
arm (around 8:00 a.m. the next day).  The total length of your stay will be 38 hours per visit. 
 
Visit 1 
If you agree to participate, you will arrive in the GCRC the night before the study at 6:00 p.m.  
You will receive two doses of midazolam, one by mouth and one through a vein in your arm. 
You will have a small tube inserted into a vein in your arm or hand to help with the collection of 
blood samples. Before you receive any medication, two teaspoonfuls of blood will be taken from 
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a tube in your vein.  This is done to obtain baseline information of your blood in the absence of 
any drugs.  Then, at various time points after taking the midazolam, two teaspoonfuls of blood 
will be taken from a tube in your vein seventeen times during the next day (a total of 5 
tablespoons of blood).  Your urine will also be collected for from 0-24 hrs.  You will then be 
given 21 milk thistle 175 mg capsules to take three times a day until your next visit.  You will 
take one milk thistle 175 mg capsule at 8:00 a.m., one at 2:00 p.m. and one 8:00 p.m. beginning 
on the day you are discharged.  You will be required to record the time you took each dose in a 
medication diary prepared by the study coordinator. 
 
Visit 2 
One week after the first visit, you will arrive in the GCRC the night before the study at 6:00 p.m.  
The rest of your stay is the same as visit 1, except you will continue to take your final three doses 
of milk thistle 175 mg capsules at 8:00 a.m., 2 p.m. and 8 p.m. 
 
Monitoring/Follow-up Procedures: 
 
Procedures performed to evaluate the effectiveness and safety of the experimental procedures are 
called “monitoring” or “follow-up” procedures.  For this research study, the monitoring/follow-
up procedures included measure your blood pressure, temperature, and heart rate 1, 4 and 18 
hours after the intravenous dose is given.  
 
What are the possible risks, side effects, and discomforts of this research study? 
 
As with any research study, there may be adverse events or side effects that are currently 
unknown and it is possible that certain of these unknown risks could be permanent, serious or 
life-threatening. 
 
Risks of the Study Drugs: 
 
Midazolam has been safely given to large numbers of healthy adults prior to different surgical 
procedures but has not been given to subjects taking milk thistle. The side effects listed for this 
drug are known primarily from the use of high doses rather than the two small doses that you 
will be taking and are not considered toxic to the liver.  The side effects and their frequencies are 
listed below: 
 
Side effects are listed below for each of the drugs used in this study.  Side effects that are 
considered likely occur in more than 10 out of every 100 (10%) people who take the drug, 
common side effects occur in approximately 1 to 10% of people, and rare side effects occur in 
less than 1% of people. 
MIDAZOLAM is used to produce sleepiness or drowsiness and to relieve anxiety before surgery 
or certain procedures.  
Likely (> 10 %):  Drowsiness lasting 1 to 2 hours. 
Common (1 to 10 %):  Hiccups, dizziness, confusion, headache, pain at the site of injection, 
inability to remember events that occur within 8 hours after midazolam administration, slowing 
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of response time and interference when operating automobiles or other machinery, dry mouth, 
light headedness, nausea, vomiting, double vision, loss of coordination, and slurred speech.  
These usually occur after prolonged, sustained use of midazolam at high doses. 
Rare (< 1 %): Hives, rash, and rare itching at the injection site There is also a risk of apnea 
(stopping breathing temporarily) and death with midazolam.  This is extremely rare and only 
occurs with high doses given rapidly.  This study will use low doses given slowly. 
 
Midazolam may cause drowsiness or dizziness for up to 2 days after its administration. Subjects 
should wait 24 hours or until the effects of the medicine have worn off (whichever is longer) 
before driving or using machinery. Subjects should also not drink any alcohol or take any other 
sedative medications until two days after receiving midazolam.  It has been shown that at a dose 
of 7.5 mg po (equivalent to 3 mg IV), midazolam has no effect on breathing at rest and the 
breathing responses to lack of oxygen. 
 
MILK THISTLE is classified as a dietary supplement by the Food and Drug Administration and 
therefore side effects are not monitored like approved drugs.  However, some reported side 
effects in a small number of patients, are a laxative effect, stomach effects like nausea, diarrhea, 
gas, and a potential for allergic reactions (itching, rash and anaphylaxis). 
 
Insertion of the small tube for blood sampling and administration of the study drug may cause 
pain, bleeding, bruising, soreness, spasm with loss of blood flow and rarely infection or nerve 
damage at the insertion site. 
 
Animal studies to determine the effect of milk thistle on the fetus have not been done. To avoid 
risk to the fetus, it is important that you (for female participants) or your sexual partner (for male 
participants) does not become pregnant during the research study. Avoiding sexual activity is the 
only certain method to prevent pregnancy. However, if you choose to be sexually active, you 
must agree to use an appropriate double barrier method of birth control (such as female use of a 
diaphragm, intrauterine device, sponge and spermicide), in addition to the male use of condom or 
involve the female use of prescribed ”birth control pills” or a prescribed birth control implant. If 
you choose to be sexually active during the study you must accept the risk that pregnancy could 
still result, exposing you or your partner to potential loss of pregnancy as well as other unknown 
effects on the developing fetus.  
 
Women who are capable of getting pregnant will have a negative pregnancy test prior to start of 
the study. If you become aware that you are pregnant during the course of this research study, 
you understand that you must stop taking milk thistle at once. You agree to do so and to contact 
the principal investigator listed on the first page and your physician immediately. 
 
If you are a man, it is recommended that you use an effective method of birth control while you 
are participating in the study and for 2 weeks following your termination from the study. If you 
choose to be sexually active during this study you must accept the risk that pregnancy could still 
result, exposing you or your sexual partner to potential loss of pregnancy as well as other 
unknown effects on developing fetus. 
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The risk of adverse experiences in this study will be minimized by using only qualified 
individuals to conduct the study, the staff in GCRC in UPMC.  Appropriate attention to detail in 
the experimental setting will be emphasized.  Moreover, this study will use small doses of 
midazolam administered slowly and thus, the likelihood of dose-related adverse events should be 
minimized.  Immediate medical treatment will be provided for any illness or injury resulting 
from this study.  Trained nursing staff are present in the GCRC at all times and the physician co-
investigator will also be available to evaluate the subject.  In the event that you experience an 
intolerable side effect, you will be withdrawn from the study and followed for resolution of the 
effect(s).  You may also be removed from the study if in the opinion of the physician 
investigator, it is in your best interest. 
 
What are the possible benefits from taking part in this study? 
 
While you will not directly benefit from these studies, all subjects who take milk thistle in the 
future may benefit from this study by our increased understanding of how handling of the drugs 
change with use of milk thistle.  This should help us to predict how to dose drugs that are 
important for their care. 
 
If I agree to take part in this research study, will I be told of any new risks that may be found 
during the course of the study? 
 
You will be promptly notified if, during the conduct of this research study, any new information 
develops which may cause you to change your mind about continuing to participate. 
 
Will my insurance provider or I be charged for the costs of any procedures performed as part 
of this research study? 
 
Neither you, nor your insurance provider, will be charged for the costs of any of the procedures 
performed for the purpose of this research study (i.e., the Screening Procedures, Experimental 
Procedures, or Monitoring/Follow-up Procedures described above) 
 
 
Will I be paid if I take part in this research study? 
 
For the study, milk thistle and midazolam will be provided to you by the investigators at no cost.  
Your parking will be provided to you at no cost at your screening visit.  You will receive $100 
payment for each part of the study to help cover the cost for travel, meals, or lodging associated 
with participating in this study.   While you are admitted in the GCRC, lodging and meals will be 
provided by the GCRC at no cost to you.  The total payment for entire participation in the study 
will be $ 200.   
 
Who will pay if I am injured as a result of taking part in this study? 
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University of Pittsburgh investigators and their associates who provide services at the UPMC 
recognize the importance of your voluntary participation to their research studies. These 
individuals and their staffs will make reasonable efforts to minimize, control, and treat any 
injuries that may arise as a result of this research. 
 
If you believe that you are injured as the result of the research procedures being performed, 
please contact immediately the Principal Investigator or one of the co-investigators listed on the 
first page of this form. Emergency medical treatment for injuries solely and directly relating to 
your participation in this research will be provided to you by the hospitals of UPMC. It is 
possible that the UPMC may bill your insurance provider for the costs of this emergency 
treatment, but none of these costs will be charged directly to you. If your research related injury 
requires medical care beyond this emergency treatment, you will be responsible for the costs of 
this follow-up care unless otherwise specifically stated below. You will not receive monetary 
payment for, or associated with, any injury that you suffer in relation to this research. 
 
Who will know about my participation in this research study? 
 
Any information about you obtained from or for this research study will be kept as confidential 
(private) as possible.  All records related to your involvement in this research study will be 
stored in a locked file cabinet.  Your identity on these records will be indicated by a case number 
rather than by your name, and the information linking these case numbers with your identity will 
be kept separate from the research records.  Access to your research records will be limited to the 
researchers listed on the first page of this form.  You will not be identified by name in any 
publication of the research results unless you sign a separate form giving your permission 
(release). 
 
Will this research study involve the use or disclosure of my identifiable medical information? 
 
This research study will involve the recording of current and/or future identifiable medical 
information from your hospital and/or other (e.g., physician office) records. The information that 
will be recorded will be limited to information concerning your screening visit blood analysis 
and the levels of the two medications in your blood.  This information will be used for the 
purpose identifying if a drug-interaction exists between in the two study medications.  
 
Who will have access to my identifiable medical record information related to my participation 
in this research study?  
 
In addition to the investigators listed on the first page of this authorization (consent) form and 
their research staff, the following individuals will or may have access to your identifiable 
medical record information related to your participation in this research study:  
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Authorized representatives of the University of Pittsburgh Research Conduct and Compliance 
Office may review your identifiable medical record information for the purpose of monitoring 
the appropriate conduct of this research study.  
 
Authorized representatives of the UPMC hospitals or other affiliated health care providers may 
have access to your identifiable medical record information for the purpose of (1) fulfilling 
orders, made by the investigators, for hospital and health care services (e.g., laboratory tests, 
diagnostic procedures) associated with research study participation; (2) addressing correct 
payment for tests and procedures ordered by the investigators; and (3) for internal hospital 
operations (i.e. quality assurance). 
 
In unusual cases, the investigators may be required to release your identifiable research 
information (which may include your identifiable medical record information) in response to an 
order from a court of law.  If the investigators learn that you or someone with whom you are 
involved is in serious danger or potential harm, they will need to inform, as required by 
Pennsylvania law, the appropriate agencies. 
 
For how long will the investigators be permitted to use and disclose identifiable information 
related to my participation in this research study. 
 
The investigators may continue to use and disclose, for the purposes described above, 
identifiable information (which may include your identifiable medical information) related to 
your participation in this research study for a period of five years.  
 
Is my participation in this research study voluntary? 
 
Your participation in this research study, to include the use and disclosure of your identifiable 
information for the purposes described above, is completely voluntary. (Note, however, that if 
you do not provide your consent for the use and disclosure of your identifiable information for 
the purposes described above, you will not be allowed, in general, to participate in the research 
study.) Whether or not you provide your consent for participation in this research study will have 
no effect on your current or future relationship with the University of Pittsburgh. Whether or not 
you provide your consent for participation in this research study will have no effect on your 
current or future medical care at a UPMC Health System hospital or affiliated health care 
provider or your current or future relationship with a health care insurance provider. 
 
If I agree to take part in this research study, can I be removed from the study without my 
consent? 
 
It is possible that you may be removed from the research study by the researchers if, for 
example, your pregnancy test proves to be positive or you do not follow the instructions of the 
researchers. 
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What uses of my identifiable medical record information will this research study involve? 
 
This research study will result in identifiable information that will be placed into your medical 
records held at the University Of Pittsburgh Medical Center.  The nature of the identifiable 
information resulting from your participation in this research study that will be recorded in your 
medical record will be limited to information concerning your screening visit blood analysis and 
the levels of the two medications in your blood. 
 
May I have access to my medical record information resulting from participation in this 
research study? 
 
In accordance with the UPMC Notices of Privacy Practices document that you have been 
provided, you are permitted access to information (including information resulting from your 
participation in this research study) contained within your medical records filed with your health 
care provider unless otherwise specifically stated below.   
 
May I refuse to provide my authorization (consent) for the use of my identifiable medical 
record information for the purpose of this research study? 
 
Your authorization (consent) to use and disclose your identifiable medical record information for 
the purpose of this research study is completely voluntary.   However, if you do not provide your 
written authorization (consent) for the use and disclosure of your identifiable medical record 
information, you will not be allowed to participate or continue to participate in the research 
study.    
 
Whether or not you provide your authorization (consent) for the research use and disclosure of 
your medical record information will have no effect on your current or future medical care at a 
UPMC hospital or affiliated health care provider or your current or future relationship with a 
health care insurance provider.  Whether or not you provide this written authorization (consent) 
will have no affect on your current or future relationship with the University of Pittsburgh.  
 
May I withdraw, at a future date, my authorization (consent) for the use of my identifiable 
medical record information for the purpose of this research study? 
 
You may withdraw, at any time, your authorization (consent) for the use and disclosure of your 
identifiable medical record information for the purpose of this research study.  However, if you 
withdraw your authorization (consent) for the use and disclosure of your identifiable medical 
record information, you will also be withdrawn from further participation in this research study.  
Any identifiable medical record information recorded for, or resulting from, your participation in 
this research study prior to the date that you formally withdrew your authorization may continue 
to be used and disclosed by the investigators for the purposes described above. 
 

 182



 Approval Date:  December 13, 2003  
 Renewal Date:  December 12, 2004 
          University of Pittsburgh 
          Institutional Review Board 
 IRB #:  0412076 

To formally withdraw your authorization (consent) you should provide a written and dated notice 
of this decision to the principal investigator of this research study at the address listed on the first 
page of this form. 
 
Your decision to withdraw your authorization (consent) for the research use and disclosure of 
your medical record information will have no effect on your current or future medical care at a 
UPMC hospital or affiliated health care provider or your current or future relationship with a 
health care insurance provider.  Your decision to withdraw this authorization will have no affect 
on your current or future relationship with the University of Pittsburgh. 
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********************************************************************** 
VOLUNTARY CONSENT    
 
The above information has been explained to me and all of my questions have been answered.  
Any future questions I have about this research study will be answered by a qualified individual 
or by the investigator(s) listed on the first page of this consent document at the telephone 
number(s) given.  I understand that I may always request that my questions be answered by a 
listed investigator.  Any questions I have about my rights as a research subject will be answered 
by the Human Subject Protection Advocate of the IRB Office, University of Pittsburgh (1-866-
212-2668).  By signing this form I agree to participate in this research study. 
 
By signing this form, I agree to participate in this research study.  A copy of this consent form 
will be given to me 
 
______________________________________       
Participant's signature      Date and time 
 
 
********************************************************************** 
CERTIFICATION of INFORMED CONSENT 
 
I certify that I have explained the nature and purpose of this research study to the above-named 
individual(s), and I have discussed the potential benefits and possible risks of study participation.  
Any questions the individual(s) have about this study have been answered, and we will always be 
available to address future questions as they arise. 
 
______________________________________  _________________________  
Printed Name of Person Obtaining Consent   Role in Research Study 
 
 ______________________________________  _________________________ 
Signature of Person Obtaining Consent   Date and time  
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