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Genetic association studies have an important role in public health because they help us 

understand the biological basis of conditions (e.g. diabetes, obesity) that have important public 

health implications. They can help us develop and direct both treatments and prevention 

activities. As both Type II diabetes and obesity tend to run in families, it is reasonable to want to 

ascertain whether a genetic association or linkage exists between a particular allele or alleles and 

these conditions. Genetic association studies are, generally, the preferred method for detecting 

genes that are causal variants of complex diseases like diabetes because they have greater power 

to detect alleles that are susceptible to disease. However, the Case control genetic association 

studies are known to be prone to false positive associations in the presence of population 

stratification. We hypothesize that assortative mating in a given population can lead to a form of 

population stratification and subsequently false positives. We also investigate the role of gene-

gene interactions in the presence of assortative mating in producing spurious results.  These 

hypotheses are tested via studies on 10,000 simulated individuals. Our results show that 

assortative mating does lead to a greater than expected number of false positives as compared to 

a situation where there is no assortative mating. Our tests on the role of gene-gene interactions 

also suggest that they contribute to false positives in the presence of assortative mating. 
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1.0  INTRODUCTION 

 

Genetic association studies have an important role in public health because they help us 

understand the biological basis of conditions (e.g. diabetes, obesity) that have important public 

health implications. They can help us develop and direct both treatments and prevention 

activities. As both Type II diabetes and obesity tend to run in families, it is reasonable to want to 

ascertain whether a genetic association or linkage exists between a particular allele or alleles and 

these conditions. 

Whenever one wishes to evaluate the genetic basis for a disease, it is important to know 

how the disease is transmitted in families and whether there is a single gene or multiple genes 

responsible for the disease. The classical form of disease or trait transmission in families is called 

Mendelian inheritance. A brief summary of Mendelian laws is as follows: traits controlled by a 

single gene are uniformly distributed if transmitted from the heterozygous parental generation to 

the offspring in a specific ratio: 1:2:1. This means that 25% of the offspring will have only the 

dominant or major form of the trait. The dominant trait is the trait that is more likely to be 

expressed from generation to generation and the minor or recessive form of the trait is likely to 

skip generations. The recessive trait shows up 25% of the time in the offspring while 50% of 

offspring have both the dominant and recessive forms of the trait. Additionally, according to 

Mendelian laws, unlinked traits are transmitted independent of each other. However, for complex 

diseases these rules do not necessarily apply. Complex diseases are typically controlled by 

multiple genes and the probability of transmitting the disease is often conditional on several 
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factors which make identifying genes responsible for such complex diseases like diabetes not as 

straightforward.     

The task of identifying susceptible genes, responsible for complex diseases, involves the 

utilization of a number of statistical approaches. Among them are linkage and association 

studies. Genetic linkage studies attempt to determine whether a gene and a disease are co-

inherited within families. The term linkage here refers to the concept that genes and other genetic 

markers that are close together tend to be inherited together. It has been argued, however, that 

linkage studies have low power to detect common alleles that confer disease susceptibility (Risch 

and Merikangas 1996). As a result, association approaches are currently more popularly used to 

detect genes which are causal variants of complex diseases.  

Association studies seek to detect whether nonrandom associations exist between trait 

values and particular alleles in a population. Association studies can be based on any standard 

epidemiological study type, such as a case-control or population study, and can also be 

performed using family data. Association studies, however, have limitations of their own. These 

studies are known to be prone to spurious associations or false positives. Spurious associations 

erroneously suggest that certain alleles or genes are associated with some trait(s). Hence the need 

arises for the determination of the cause of these false positives and the subsequent development 

of methods to account for these spurious results in association studies.  

One of the most important causes of false positives in association studies is population 

admixture and/or stratification. Some association tests that have been developed to address the 

problem of confounding in genetic association studies include the Transmission Disequilibrium 

Test (TDT) and the affected family based control method. (AFBAC).  The TDT tests whether the 

ratio of alleles passed on from heterozygous parents to an affected child would differ from 
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expected Mendelian levels (Ziegler and Konig, 2006). This test does not consider homozygous 

parents because it is difficult to track which allele came from which parent in the homozygous 

case. The AFBAC looks at the ratio of the frequency of alleles transmitted from parent to 

offspring and compares it to the untransmitted alleles. These methods are meant to minimize 

population stratification. However, the degree to which this is reduced depends on the mating 

pattern and genetic model (Risch and Teng, 1998).In addition, the TDT and other family based 

association tests require the collecting of parental information. This process is difficult and 

expensive and probably impossible for a late-onset disease like diabetes.   

Another method that attempts to address the stratification problem is genomic control. 

Genomic control methods correct the false positive rate in a case-control study by creating a test 

statistic that takes into account both loci that are associated with the disease and those that are 

not. This method incorporates a variance inflation factor that mirrors deviation from the null 

hypothesis of no stratification. The drawback of this method is that it assumes that the inflation 

factor is constant. ( Ziegler and Koenig 2006;Devlin and  Roeder 1999).   

This study focuses on the role of assortative mating in creating population stratification 

and thus false positives. Almost all previous literature on the topic has assumed that stratification 

means ethnic stratification, but in fact assortative mating also creates population substructure that 

can have similar effects. This effect of assortative mating was considered by Redden and Allison 

(2006) at the same time that we were conducting our study, so we briefly discuss their study 

below and then contrast theirs with ours in the discussion.   

Redden and Allison (2006) looked at the effect of assortative mating in genetic 

association studies in the absence of ethnic stratification. They examined the effect of non-

random mating on three traits, adiposity (A), beauty (B) and intelligence (I), via simulation 
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studies with a large sample size of 1,000,000. Each trait was influenced by 10 separate loci. 

Their genotypes were randomly assigned from a multinomial distribution. The probability of 

each genotype was assigned based on Mendelian laws with probability of MM =0.25, Mm = 

0.50, and mm = 0.25. They selected mates based on the following model: 

Desirability D = B + I – A + ε, where ε is an error term. The rate of assortative mating 

was determined by the degree of desirability. Their assortative mating rates ranged from 10%-

50%. They did not report results for an assortative mating level of zero. The simulations were 

carried out over 10 generations with the 10th generation being assessed for false positives. They 

concluded that even in ethnically homogenous populations, spurious associations occur. Like the 

present study they looked at complex traits, but they did not account for the fact that, in complex 

traits, the interaction between the genes might contribute to the development of spurious 

associations between a trait and a disease.    

. 

1.1 POPULATION STRATIFICATION 

 

Population stratification refers to the situation in which the population under study is 

actually a composite of two or more distinct subpopulations, usually thought of as different 

ethnic groups. Hence the differences in allele frequencies between cases and controls, instead of 

being an indicator of an association between allele and trait, are more than likely a reflection of 

different ethnic or racial origins (Redden and Allison, 2006). The fictitious example tabulated 

below is a simple numerical illustration of how population stratification can cause Type I errors 
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in results. Suppose one wants to investigate the genetic basis for procrastination. Data of cases 

that exhibit the allele that has the mutation for the disease and controls that do not are collected 

from two separate populations. The odds ratio is obtained as a measure of association between 

cases and controls.  

 

 

Table 1. Numerical Example of Population Stratification 

            Population 1             Population 2  

mutation no 

mutation 

mutation no 

mutation 

Cases 40              10 10 20 

Controls 120 30 900 1800 

                         

The odds ratio (OR) in each population is as follows: 

 

OR1 = (40x 30)/120x10)  

                            = 1.0  

   OR2 = (10x1800)/(20x900) 

             = 1.0 

When the results are pooled,  

 

OR12 = (40+10) x (30+1800)/ (10+20) x (900+120)  

          = 2.99 
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The combined result suggests that there is in fact an association between the mutated 

allele and procrastination, although if fact there is not. The difference in results can be attributed 

to the frequency of the mutations responsible for the disease in each population. In population 1 

the frequency, 

F1 = 40 + 10/40+10 +120 + 30 = 0.25. In population 2 F2 = 10 + 20/ 10+20+900+1800 = 0.01. 

The discrepancy in the frequency of the procrastination in the two populations explains the 

difference in odds ratios.  

 

1.2 ADMIXTURE 

Admixture is similar to stratification, but more complex. It refers to the situation in which 

two or more ethnic groups have intermarried for a few generations. An example of a population 

that is a product of admixture is the contemporary Mexican population which resulted from the 

mating of Native Americans with Europeans (Bonilla et. al, 2005). Admixture can cause spurious 

associations for the same reasons as stratification.  
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1.3 ASSORTATIVE MATING 

 

Assortative mating is the term used to describe the choice of mating preference based on 

phenotypic characteristics. There are two kinds of assortative mating; positive assortative mating 

(PAM) and negative assortative mating (NAM). An example of PAM would be tall people 

marrying tall people. This form of mating is nonrandom and does not change overall allele 

frequencies in a population. However, assortative mating creates semi-separate subpopulations 

(e.g. tall and short people), which can affect association studies in the same way as ethnic 

stratification. The goals of this study are to demonstrate that stratification caused by assortative 

mating contributes to, on average, a greater than expected frequency of Type I errors.  
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2.0  METHODS 

We demonstrated the effect of assortative mating on association studies via a simulation 

study. The simulation was performed using code written in the R language. Our code is given in 

Appendix A. Genotypes at 3 independent biallelic loci, 3 loci (A, B, and C) with 2 (Aa, Bb, Cc) 

alleles each, were created for 10,000 simulated individuals. Each locus was assigned the minor 

alleles, A, B, and C with the probability 0.2 making the major alleles, a, b, and c, have the 

frequency 0.8. The frequencies of the genotypes, which were randomly drawn from a 

multinomial distribution, were calculated assuming Hardy-Weinberg Equilibrium (HWE): P 

(AA) = p2 P (Aa) = 2pq and P (aa) = q2. For each individual we generated two binary traits 

according to the penetrances given in tables 2 and 3. Trait 1 was defined as being influenced by 

loci A and B while Trait 2 was influenced by loci B and C. 

We did not distinguish male and female individuals. To create the next generation, we 

considered our entire population of 10,000 individuals and chose each person a mate from the 

entire population with replacement. The mates were chosen to have positive assortative mating 

for trait 1. An individual with trait 1 had probability PT1 = (1/10,000 + a/R1) of choosing a mate 

with trait 1, where R1 is the number of people with trait 1 and ‘a’ is an arbitrary constant which 

we varied between 0.0 (no assortative mating) and 0.2. An individual with trait 1 had probability 

NPT1 = (1/10,000 - a/(10,000 -R1) of choosing a mate without trait 1.                                                                    
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Each couple was then given one offspring with genotypes determined according to 

Mendelian rules and phenotypes according to the penetrances given in tables 2 and 3. There were 

10 generations simulated with a total of 10 replications per generation. 

We were trying to demonstrate that after a few generations of such mating, we would be 

able to detect associations between both traits and all three loci. That is, we wanted to 

demonstrate that the assortative mating on trait 1 created non-random association among the 

three loci and thus false positive associations for both traits. A false positive or Type I error in 

our study is defined as getting a significant association between trait 1 and locus C and/or trait 2 

and locus A. 

  

Table 2: Penetrances for Trait 1  

 

Locus A 

Locus B AA Aa aa 

BB 0.8 0.8 0.3 

Bb 0.8 0.8 0.3 

bb 0.4 0.4 0.1 
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Table 3: Penetrances for Trait 2 

Locus B 

Locus C BB Bb bb 

CC 0.8 0.8 0.4 

Cc 0.8 0.8 0.4 

cc 0.3 0.3 0.1 

 

  

We tested genetic associations between each trait and each locus using logistic 

regression. A linear trend test was performed to regress each trait on each locus. We used a very 

large sample size (the entire population of 10,000) because we were trying to demonstrate the 

existence of false positives, not to measure their frequency.                    
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3.0  RESULTS 

3.1 FREQUENCY OF PHENOTYPES 

The frequencies of Trait 1 and Trait 2 in the parental generation, as well as the 9 generations that 

followed appear fairly constant in each generation. From the results, which are summarized in 

Tables 4 -7 below, it appears each trait has a 25-30% frequency in each generation. The expected 

frequencies for Trait 1 and Trait 2 were approximately 30%. As the degree of assortative mating 

was increased from 0 to 0.2, the frequency of each trait did not exhibit any appreciable 

differences across generations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  11



Table 4. Frequency of Trait 1 in every generation (a = 0.1) 

 
Trial 

Generation 1 2 3 4 5 6 7 8 9 10 

1 0.30 0.30 0.29 0.28 0.29 0.27 0.27 0.27 0.27 0.26 

2 0.30 0.29 0.29 0.28 0.28 0.28 0.26 0.28 0.26 0.26 

3 0.30 0.30 0.29 0.29 0.29 0.29 0.29 0.28 0.28 0.28 

4 0.31 0.30 0.29 0.29 0.28 0.27 0.27 0.27 0.26 0.26 

5 0.31 0.30 0.30 0.30 0.29 0.29 0.28 0.27 0.27 0.27 

6 0.29 0.29 0.28 0.28 0.27 0.26 0.26 0.25 0.25 0.25 

7 0.29 0.29 0.28 0.29 0.29 0.28 0.28 0.28 0.27 0.26 

8 0.29 0.29 0.29 0.29 0.28 0.28 0.27 0.27 0.27 0.25 

9 0.30 0.29 0.29 0.29 0.28 0.28 0.28 0.27 0.27 0.27 

10 0.29 0.29 0.27 0.26 0.25 0.25 0.23 0.22 0.21 0.21 

 

 

 

 

 

 

 

 

 

 

  12



 

Table 5.  Frequency of Trait 2 in every generation (a = 0.1) 

Trial 

Generation 1 2 3 4 5 6 7 8 9 10 

1 0.31 0.30 0.30 0.28 0.29 0.29 0.30 0.28 0.28 0.29 

2 0.30 0.30 0.30 0.30 0.30 0.30 0.31 0.29 0.29 0.29 

3 0.30 0.31 0.30 0.30 0.30 0.30 0.29 0.29 0.31 0.29 

4 0.32 0.29 0.30 0.29 0.29 0.29 0.29 0.30 0.29 0.30 

5 0.29 0.29 0.29 0.30 0.30 0.29 0.29 0.29 0.28 0.28 

6 0.30 0.29 0.28 0.29 0.29 0.29 0.28 0.27 0.28 0.27 

7 0.30 0.30 0.30 0.31 0.30 0.30 0.30 0.30 0.29 0.28 

8 0.30 0.31 0.29 0.30 0.29 0.30 0.29 0.30 0.29 0.28 

9 0.30 0.30 0.31 0.30 0.29 0.30 0.29 0.29 0.29 0.27 

10 0.30 0.30 0.30 0.29 0.30 0.29 0.29 0.28 0.27 0.28 
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Table 6. Frequency of Trait 1 in every generation (a = 0.2) 

Trial 

Generation 1 2 3 4 5 6 7 8 9 10 

1 0.29 0.28 0.29 0.26 0.25 0.24 0.24 0.24 0.23 0.21 

2 0.29 0.29 0.27 0.28 0.26 0.25 0.25 0.23 0.23 0.22 

3 0.29 0.28 0.28 0.27 0.26 0.25 0.24 0.24 0.23 0.21 

4 0.30 0.29 0.28 0.27 0.26 0.26 0.25 0.23 0.23 0.21 

5 0.29 0.28 0.28 0.27 0.25 0.25 0.25 0.24 0.23 0.22 

6 0.29 0.28 0.27 0.27 0.26 0.25 0.24 0.23 0.23 0.21 

7 0.28 0.28 0.27 0.26 0.25 0.23 0.23 0.21 0.20 0.20 

8 0.30 0.29 0.28 0.28 0.27 0.25 0.24 0.24 0.23 0.21 

9 0.29 0.29 0.28 0.27 0.26 0.25 0.24 0.24 0.23 0.22 

10 0.29 0.29 0.27 0.27 0.26 0.25 0.24 0.23 0.22 0.22 
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Table 7. Frequency of Trait 2 in each generation (a = 0.2) 

Trial 

Generation 1 2 3 4 5 6 7 8 9 10 

1 0.30 0.30 0.29 0.29 0.28 0.27 0.28 0.26 0.26 0.26 

2 0.30 0.30 0.29 0.30 0.30 0.29 0.29 0.27 0.28 0.27 

3 0.30 0.30 0.28 0.28 0.29 0.28 0.27 0.27 0.26 0.25 

4 0.31 0.30 0.30 0.31 0.29 0.28 0.29 0.28 0.28 0.27 

5 0.29 0.30 0.30 0.29 0.30 0.29 0.29 0.29 0.28 0.28 

6 0.30 0.30 0.29 0.30 0.28 0.28 0.28 0.27 0.26 0.26 

7 0.30 0.29 0.29 0.29 0.29 0.29 0.28 0.28 0.27 0.27 

8 0.31 0.29 0.29 0.30 0.29 0.29 0.29 0.30 0.30 0.28 

9 0.29 0.29 0.29 0.29 0.29 0.28 0.27 0.27 0.28 0.26 

10 0.30 0.30 0.30 0.29 0.30 0.29 0.29 0.28 0.28 0.28 
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3.2 FREQUENCY OF TYPE 1 ERRORS 

The number of false positives for each level of assortative mating, was observed in the 

main effects model which regressed a child’s trait on a particular genotype in the main effects 

model. The results, in Table 8, indicate that, as the level of assortative mating was increased, 

there was a corresponding rise in the number of false positives after 10 generations. When the 

level of assortative mating was increased twofold, from 0.1 to 0.2, there was a fourfold jump in 

the total number of false positives. Also there were no false positives recorded when the 

correction factor for assortative mating was set to zero. 

 Investigating the possible interaction between genes was done by including an interaction 

term in each regression model. Since the value of a=0.2 produced the greatest number of false 

positives in the main effects models, the test for gene-gene interaction was done using this value. 

The interaction terms were the product of the two genes that are not expected to influence a 

particular trait. For example, the interaction between alleles A and C should have no significant 

effect on trait 1. When the interaction terms were placed in the regression models, there were a 

total of 5 false positives found.  For example, there was a significant interaction found between a 

child expressing the trait 2 phenotype, which is influenced by alleles B and C but not allele A, 

and alleles A and C in generation 1. This suggests that this was a false interaction between alleles 

A and C in the first generation. However, in all but one case, there were no false positives in the 

main effects when the interaction terms were included. Results for the tests for gene-gene 

interactions are given in Table 12. 
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Table 8. False Positives for each level of Assortative Mating 

Amount of Assortative Mating Total Number of False Positives 

at the End of 10 Generations 

a = 0 0/20 

a = 0.1 1/20 

a = 0.2 4/20 

 

3.3 TEST FOR LINKAGE DISEQUILIBRIUM 

As an indication of the amount of association among the genes caused by the presence of 

assortative mating, we also measured the correlations between genotypes in each generation. 

These results are given in tables 9-11. The correlations increase as the level of assortative mating 

is increased. Correlations are low but they are enough to create false positives because of our 

large sample size.   
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Table 9.  Correlation between Locus A and B (a = 0.2) 

Trial 

Generation 1 2 3 4 5 6 7 8 9 10 

1 0.01 0.04 0.02 0.03 0.02 0.04 0.03 0.03 0.02 0.00 

2 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.00 0.02 

3 0.01 0.01 0.02 0.03 0.03 0.04 0.03 0.04 0.02 0.02 

4 0.00 0.02 0.01 0.01 -0.00 0.01 0.01 0.03 0.02 0.02 

5 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.01 

6 0.02 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.02 0.04 

7 0.02 0.03 0.04 0.02 0.02 0.02 0.02 0.02    0.03 0.03 

8 0.02 0.01 0.03 0.04 0.05 0.04 0.02 0.02 0.02 0.02 

9 0.01 0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.02 

10 0.00 0.02 0.03 0.04 0.02 0.04 0.02 0.04 0.03 0.03 
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Table 10. Correlation between Locus B and C (a = 0.2) 

Trial 

Generation 1 2 3 4 5 6 7 8 9 10 

1 -0.01 -0.00 -0.01 -0.01 -0.00 -0.01 -0.01 -0.00 -0.00  0.00 

2 -0.00  0.00  0.00 -0.01 -0.00 -0.01 -0.03 -0.01 -0.00  0.00 

3  0.00 -0.01 -0.01 -0.01  0.00 -0.00 -0.01  0.00 -0.01 -0.00 

4 -0.01 -0.01 -0.00  0.00 -0.00 -0.01 -0.01 -0.00 -0.00 -0.00 

5  0.00  0.00 -0.01 -0.01  0.02 0.02  0.01  0.02  0.02  0.00 

6  0.00 -0.00  0.01  0.00  0.01 0.00  0.00 -0.00  0.02  0.00 

7 -0.00 -0.01 -0.01 -0.02  0.00 0.00 -0.01 -0.00  0.00  0.01 

8  0.01  0.01  0.01 -0.01 -0.01 -0.01 -0.01 -0.01  0.00  0.01 

9  0.00 -0.00  0.00 -0.01 -0.01 -0.01 -0.00 -0.02  0.00 -0.01 

10 -0.01  0.00  0.01  0.00  0.01 0.01  0.01 -0.00  0.01  0.01 
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Table 11. Correlation between Locus A and C. 

Generation 1 2 3 4 5 6 7 8 9 10 

1 -0.00  0.00 -0.00 -0.01 -0.00  0.01  0.01  0.00  0.00  0.02 

2 -0.01 -0.01 -0.00  0.01  0.00 -0.00 -0.01 -0.01 -0.01 -0.01 

3 -0.01 -0.01 -0.01  0.00  0.00  0.00  0.01  0.01  0.01  0.00 

4  0.00 -0.02 -0.02 -0.01 -0.01 -0.00  0.00  0.01  0.01  0.01 

5  0.01  0.01  0.01 -0.01  0.00  0.00  0.00 -0.01 -0.00 -0.01 

6  0.00 -0.01 -0.00 -0.01  0.00 -0.00 0.00  0.00  0.00  0.02 

7 -0.00 -0.00  0.01  0.00  0.00  0.01 -0.01 -0.01  0.01  0.00 

8 -0.00 -0.00  0.01  0.00  0.00 -0.00 -0.02 -0.00 -0.01 -0.01 

9 -0.01 -0.00  0.00 -0.00 -0.03 -0.03 -0.01 -0.00 -0.01  0.00 

10 -0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.00 -0.00  0.00 -0.00 
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Table 12. Gene-Gene Interaction 

Replication Interaction Trait 

1 + 2 

2 -  

3 + 1 

4 + 2 

5 + 1 

6 + 2 

7 -  

8 -  

9 -  

10 -  
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4.0  DISCUSSION 

This study has evaluated the effect of assortative mating on confounding due to 

population stratification in genetic association studies. In theory, one would expect a population 

that exclusively chose mates based on their mate having that certain trait, would eventually have 

that is equally stratified based on the number of traits. The degree of stratification was not equal 

in this simulated population because the probability of choosing a mate with either Trait 1 or 

Trait 2 was conditional on the probability of expressing the trait given a particular genotype. 

(P(Trait|G)).Thus the frequency of each trait was approximately between 25%-30%. When each 

trait was regressed onto the genotype at each locus, in a main effects generalized linear model 

excluding interactions, there was a total number of false positives of 4 out of 20 over the 10 

generations with the level of assortative mating set at 0.2. At the 0.1 level of assortative mating, 

there was a 5% (1 /20) Type I error rate which, according to the literature (Redden and Allison, 

2006) was the expected error rate if there was no assortative mating at all. However, these results 

contradict the Redden findings because when the rate of assortative mating was set to zero, there 

were no false positives. 

When interaction terms were included in the analysis to access the effects of gene-gene 

interaction, the false positive rate was approximately 12%. However, the main effects no longer 

showed any false positives (except in one case). It appears that this is due to colinearity between 

main effects and interactions. There are a number of possible reasons for this: the genes 
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responsible for the traits in question only express the trait when working together and one allele 

may have a dominant effect over the other. Alternatively, or perhaps in addition to this, some 

genes may have an epistatic effect. An epistatic gene is one that masks the effect of another gene. 

Mathematically, it is represented by an interaction between different loci. Some authors represent 

this effect as interaction between a causative allele and a non-causative one. (Ziegler and Konig, 

2006). However, as multiple genes are required for the expression of the traits under study, it is 

unlikely that one gene is non-causative. It is probable that as the penetrances of the alleles play a 

significant role in the expression of the trait, they determine the level of interaction as well. Prior 

literature that examines the function of gene-gene interactions in population stratification looked 

at populations stratified by ethnicity (Wang et. al 2006). Wang et al. found that gene-gene 

interactions were a significant cause of ethnic stratification. One might infer, given the results in 

the literature, that assortative mating is the significant contributor to the bias caused by 

population stratification. This conclusion is reinforced by the fact that in the absence of 

assortative mating, the rate of false positives found in the interaction terms is approximately 5% 

which is what one expects when the p-value is set at 0.05.  

Our results agree with Redden and Allison’s study with respect to the fact that both 

studies discovered that assortative mating contributes to false positives in association studies. 

This study also shows an increased correlation between genotypes for each generation. The prior 

study took a similar approach but in addition looked at correlations between mating pairs for 

each of their three traits: adiposity, beauty and intelligence. They also reported values for 

correlations between loci responsible for two of their traits: adiposity and intelligence. Their 

correlation results obtained here were similar to those in our study with most of their results 

around 0.02.  
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 The discussion above implies that, without any further information being provided, that 

the observed trait from one generation to the next in the absence of assortative mating is a more 

reliable indicator of the association of the trait with a given genotype. However, as the extent of 

assortative mating increases, so too does the unreliability of the trait as an indicator of a 

particular genotype. Therefore caution must be taken in extending the traditional case control to 

all cases of genetic association studies. In other words, going back to the diabetes and obesity 

example, if one sees a patient who is clinically considered obese, one cannot assume that the 

patient will necessarily develop diabetes if they mate with another individual who is obese on the 

basis of the results of a case control study that predicts that they are likely to develop diabetes.      
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5.0  CONCLUSION 

One might be tempted to conclude from the analysis above that only in the presence of 

assortative mating is one likely to have false positives in stratified populations. However, the 

results obtained here indicate that even in populations with no assortative mating there is some 

amount of spurious associations. It appears that the false associations are due to both the main 

effects as well as the interactions. It is however not clear how the interactions play a  

role in the number of false positives attained. 

One of the limitations of this study is the inability to model the effect of the interaction: it 

is clear from the results that there is a marked effect of the interactions on spurious associations 

but if one were to model the type of interaction, i.e. epistatic, codominant, etc., in a future study, 

it might shed more light on the effect on the frequency of false positives.  It might also be 

important to replicate the study to determine whether spurious interactions show up in almost 

every generation as they do here. A future study could also look at solutions for the assortative 

mating issue and assess whether alternatives to the TDT and genomic control tests, which 

presently are quite expensive and time consuming, could be found. 
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APPENDIX A 

ASSORTATIVE MATING SIMULATION 

###Allele Frequencies### 
p<-0.8 #p=P (a) 
q<-0.2 #q=P (A) 
n.reps<-10 #Number of replications 
n.ind<-10000 ###Number of individuals### 
n.gen <- 10 ###Number of generations### 
#######Arrays#### 
num.a<-array()###Number of A alleles in parents 
num.b<-array()###Number of B alleles in parents 
num.c<-array()###Number of C alleles in parents 
child.a<-array() #Child's Genotype at locus A 
child.b <-array() #child's genotype at locus B 
child.c<-array() #child's genotype at locus C 
child.r <-array() # temporary variable 
child.1<-array() #Child's Phenotype for trait 1 
child.2 <-array() #child's phenotype for trait 2 
trait1<-array() #parent phenotype Influenced by allele A and B 
trait2<-array() #parent phenotype Influenced by allele B and C 
freq1<-array() # frequency of trait 1 in each generation 
freq2 <-array() #frequency of trait2 in each generation 
corAB <- array() #correlation between A and B genotypes in each generation 
corBC <- array() #correlation between B and C genotypes in each generation 
corAC <- array() #correlation between A and C genotypes in each generation 
s<-1:10000 ###Vector to sample from 
#####Loop over replicates##### 
for (jj in 1:n.reps) { 
#####Simulation of parental genotypes##### 
for (j in 1:n.ind){ 
ind.r<-rmultinom(1,size=1, prob=c(p^2,2*p*q,q^2)) 
    if (ind.r[1,1]==1){num.a[j]<-0} 
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else if (ind.r[2,1]==1){num.a[j]<-1} 
else if (ind.r[3,1]==1) {num.a[j]<-2} 
ind.r2<-rmultinom(1,size=1, prob=c(p^2,2*p*q,q^2)) 
    if (ind.r2[1,1]==1){num.b[j]<-0} 
else if (ind.r2[2,1]==1){num.b[j]<-1} 
else if (ind.r2[3,1]==1) {num.b[j]<-2} 
ind.r3<-rmultinom(1,size=1, prob=c(p^2,2*p*q,q^2)) 
    if (ind.r3[1,1]==1){num.c[j]<-0} 
else if (ind.r3[2,1]==1){num.c[j]<-1} 
else if (ind.r3[3,1]==1){num.c[j]<-2} 
###simulation of parental Traits### 
##For Trait 1## 
if(num.a[j]==0 & num.b[j]==0){trait1[j]<-rbinom(1,size=1, prob=c(0.1))} 
else if(num.a[j]==0 & num.b[j]==1){trait1[j]<-rbinom(1,size=1, prob=c(0.3))} 
else if(num.a[j]==0 & num.b[j]==2){trait1[j]<-rbinom(1,size=1, prob=c(0.3))} 
else if(num.a[j]==1 & num.b[j]==0){trait1[j]<-rbinom(1,size=1, prob=c(0.4))} 
else if(num.a[j]==1 & num.b[j]==1){trait1[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(num.a[j]==1 & num.b[j]==2){trait1[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(num.a[j]==2 & num.b[j]==0){trait1[j]<-rbinom(1,size=1, prob=c(0.4))} 
else if(num.a[j]==2 & num.b[j]==1){trait1[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(num.a[j]==2 & num.b[j]==2){trait1[j]<-rbinom(1,size=1, prob=c(0.8))} 
##For Trait2## 
if(num.b[j]==0 & num.c[j]==0){trait2[j]<-rbinom(1,size=1, prob=c(0.1))} 
else if(num.b[j]==0 & num.c[j]==1){trait2[j]<-rbinom(1,size=1, prob=c(0.4))} 
else if(num.b[j]==0 & num.c[j]==2){trait2[j]<-rbinom(1,size=1, prob=c(0.4))} 
else if(num.b[j]==1 & num.c[j]==0){trait2[j]<-rbinom(1,size=1, prob=c(0.3))} 
else if(num.b[j]==1 & num.c[j]==1){trait2[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(num.b[j]==1 & num.c[j]==2){trait2[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(num.b[j]==2 & num.c[j]==0){trait2[j]<-rbinom(1,size=1, prob=c(0.3))} 
else if(num.b[j]==2 & num.c[j]==1){trait2[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(num.b[j]==2 & num.c[j]==2){trait2[j]<-rbinom(1,size=1, prob=c(0.8))} 
} 
for (i in 1:n.gen) { 
#####Create Vectors of Probabilities for choosing mates 
R1<-sum(trait1) #number of people with trait1 
a<-0.2 ##Correction factor for formula 
PT1<-(1/n.ind + a/R1)# Probability for those with trait 1 
NPT1<-(1/n.ind - a/(n.ind -R1))# Probability for those without trait 1 
PT1B<-(1/n.ind + a/(n.ind -R1)) # Probability for those without trait 1 
NPT1B<-(1/n.ind - a/R1)# Probability for those having trait 1 
prob1<-array() #Vector of probabilities for PT1, NPT1 
probN1<-array() #Vector of probabilities from PT1B, NPT1B 
for (j in 1:n.ind){ 
 if (trait1[j]==1) {prob1[j]=PT1} 
   else if (trait1[j]==0) {prob1[j]=NPT1} 
} 

  27



 
for (j in 1:n.ind){ 
 if (trait1[j]==0) {probN1[j]=PT1B} 
   else if (trait1[j]==1) {probN1[j]=NPT1B} 
} 
 
#####Loop through people, choose a mate for each, and give each couple a child 
 
s <- c(1:n.ind) 
for (j in 1:n.ind) { 
 
 if (trait1[j]==1) {mate<- sample(s, 1, replace = FALSE, prob = prob1)} 
 else if (trait1[j]==0) {mate<-sample(s, 1, replace = FALSE, prob = probN1)} 
 
 
##### child's genotype at locus A by Mendelian Rules  ##### 
       if (num.a[j]==0 & num.a[mate]==0) {child.a[j] <- 0}  
  else if ((num.a[j]==0 & num.a[mate]==1)|( num.a[j]==1 & 

num.a[mate]==0))    {child.a[j] <- rbinom(1, size=1, prob=c(0.5))} 
  else if ((num.a[j]==0 & num.a[mate]==2)|( num.a[j]==2 & 

num.a[mate]==0))    {child.a[j] <- 1} 
  else if (num.a[j]==2 & num.a[mate]==2) {child.a[j] <- 2} 
  else if ((num.a[j]==2 & num.a[mate]==1)|( num.a[j]==1 & 

num.a[mate]==2))    {child.a[j] <- rbinom(1, size=1, prob=c(0.5))+1} 
  else if (num.a[j]==1 & num.a[mate]==1)  
   {child.r <- rmultinom(1, size=1, prob=c(.25, .5, .25))  
                if (child.r[1,1]==1) {child.a[j]<-0}  
                else if (child.r[2,1]==1) {child.a[j]<-1}  
                else if (child.r[3,1]==1) {child.a[j]<-2} 
   } 
 
##### child's genotype at locus B by Mendelian Rules  #####  
       if (num.b[j]==0 & num.b[mate]==0) {child.b[j] <- 0}  
  else if ((num.b[j]==0 & num.b[mate]==1)|( num.b[j]==1 & 

num.b[mate]==0))    {child.b[j] <- rbinom(1, size=1, prob=c(0.5))} 
  else if ((num.b[j]==0 & num.b[mate]==2)|( num.b[j]==2 & 

num.b[mate]==0))    {child.b[j] <- 1} 
  else if (num.b[j]==2 & num.b[mate]==2) {child.b[j] <- 2} 
  else if ((num.b[j]==2 & num.b[mate]==1)|( num.b[j]==1 & 

num.b[mate]==2))    {child.b[j] <- rbinom(1, size=1, prob=c(0.5))+1} 
  else if (num.b[j]==1 & num.b[mate]==1)  
   {child.r <- rmultinom(1, size=1, prob=c(.25, .5, .25)) 
                if (child.r[1,1]==1) {child.b[j]<-0}  
                else if (child.r[2,1]==1) {child.b[j]<-1}  
                else if (child.r[3,1]==1) {child.b[j]<-2} 
   } 
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##### child's genotype at locus C by Mendelian Rules  #####  
       if (num.c[j]==0 & num.c[mate]==0) {child.c[j] <- 0}  
  else if ((num.c[j]==0 & num.c[mate]==1)|( num.c[j]==1 & 

num.c[mate]==0))    {child.c[j] <- rbinom(1, size=1, prob=c(0.5))} 
  else if ((num.c[j]==0 & num.c[mate]==2)|( num.c[j]==2 & 

num.c[mate]==0))    {child.c[j] <- 1} 
  else if (num.c[j]==2 & num.c[mate]==2) {child.c[j] <- 2} 
  else if ((num.c[j]==2 & num.c[mate]==1)|( num.c[j]==1 & 

num.c[mate]==2))    {child.c[j] <- rbinom(1, size=1, prob=c(0.5))+1} 
  else if (num.c[j]==1 & num.c[mate]==1)  
   {child.r <- rmultinom(1, size=1, prob=c(.25, .5, .25))  
                if (child.r[1,1]==1) {child.c[j]<-0}  
                else if (child.r[2,1]==1) {child.c[j]<-1}  
                else if (child.r[3,1]==1) {child.c[j]<-2} 
   } 
###simulation of child's Traits### 
##For Trait 1## 
 
if(child.a[j]==0 & child.b[j]==0){child.1[j]<-rbinom(1,size=1, prob=c(0.1))} 
else if(child.a[j]==0 & child.b[j]==1){child.1[j]<-rbinom(1,size=1, prob=c(0.3))} 
else if(child.a[j]==0 & child.b[j]==2){child.1[j]<-rbinom(1,size=1, prob=c(0.3))} 
else if(child.a[j]==1 & child.b[j]==0){child.1[j]<-rbinom(1,size=1, prob=c(0.4))} 
else if(child.a[j]==1 & child.b[j]==1){ child.1[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(child.a[j]==1 & child.b[j]==2){ child.1[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(child.a[j]==2 & child.b[j]==0){ child.1[j]<-rbinom(1,size=1, prob=c(0.4))} 
else if(child.a[j]==2 & child.b[j]==1){ child.1[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(child.a[j]==2 & child.b[j]==2){ child.1[j]<-rbinom(1,size=1, prob=c(0.8))} 
 
##For Trait2## 
if(child.b[j]==0 & child.c[j]==0){child.2[j]<-rbinom(1,size=1, prob=c(0.1))} 
else if(child.b[j]==0 & child.c[j]==1){child.2[j]<-rbinom(1,size=1, prob=c(0.4))} 
else if(child.b[j]==0 & child.c[j]==2){ child.2[j]<-rbinom(1,size=1, prob=c(0.4))} 
else if(child.b[j]==1 & child.c[j]==0){ child.2[j]<-rbinom(1,size=1, prob=c(0.3))} 
else if(child.b[j]==1 & child.c[j]==1){ child.2[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(child.b[j]==1 & child.c[j]==2){ child.2[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(child.b[j]==2 & child.c[j]==0){ child.2[j]<-rbinom(1,size=1, prob=c(0.3))} 
else if(child.b[j]==2 & child.c[j]==1){ child.2[j]<-rbinom(1,size=1, prob=c(0.8))} 
else if(child.b[j]==2 & child.c[j]==2){ child.2[j]<-rbinom(1,size=1, prob=c(0.8))} 
 
 } ## end of loop through individuals 
 
 
 
 
### Make children into new parental generation### 
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num.a <- child.a 
num.b <- child.b 
num.c <- child.c 
trait1 <- child.1 
trait2 <- child.2 
### store results for this generation ### 
 
freq1[i] <- sum(trait1) 
freq2[i] <- sum(trait2) 
corAB[i] <- cor(num.a, num.b) 
corBC[i] <- cor(num.b, num.c) 
corAC[i] <- cor(num.a, num.c) 
 
}  ### end of loop through generations 
 
 
### logistic regression to do trend test of each trait on each locus in kids## 
 
#####print(summary (glm(child.1~child.a,family=binomial))) 
#####print(summary (glm(child.1~child.b,family=binomial))) 
print(summary (glm(child.1~child.c,family=binomial))) 
print(summary (glm(child.2~child.a,family=binomial))) 
#####print(summary (glm(child.2~child.b,family=binomial))) 
#####print(summary (glm(child.2~child.c,family=binomial))) 
print(summary (glm(child.1~child.a*child.c,family=binomial))) 
print(summary (glm(child.1~child.b*child.c,family=binomial))) 
print(summary (glm(child.2~child.a*child.c,family=binomial))) 
print(summary (glm(child.2~child.a*child.b,family=binomial))) 
 
print(freq1/n.ind)  # freqency of trait 1 in each generation 
print(freq2/n.ind)  # frequency of trait 2 in each generation 
print(corAB) # genetic locus correlations in each generation 
print(corBC) 
print(corAC) 
 
 
 
 
## End loop over replicates ## 
} 
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