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Abstract 

The multilevel logistic model is used to analyze hierarchical data with binary outcomes, to detect 

variation both between and within clusters. I extended explicit variance formulae for a fixed 

effect in two level model for balanced binary data to account for imbalance both between and 

within clusters. The derivation of the variance is based on a linearization of the two level logistic 

model using first order marginal quasilikelihood (MQL1) estimation. In a simulation study, I 

used second order propensity quasilikelihood (PQL2) estimation to collaborate the accuracy of 

the analytic variance formula based on the observed racial distribution in a multi-center study of 

racial disparities. Using the site specific racial distributions, I simulated the log odds ratio for 

black race that could be detected with 80% power. 

  These methods are illustrated in the context of a multi-center study of racial disparities in 

30-day mortality in the Veterans Affairs (VA) Healthcare System, where the racial distributions 

are dramatically unbalanced across the 149 sites. We also consider a subset of 42 sites that 

include a majority of the black hospitalizations. The same analytic variance is obtained when one 

has either equal numbers of observations per site and/or a constant proportion of black veterans 

across sites. The observed racial imbalance both within and across sites increases the variance of 

the race coefficient more in the Random Coefficient (RC) model than in the random intercept 

(RI) model. Compared to PQL2, the analytic variances using MQL1 are, severely downwardly 

 iv 



biased with smaller variance components. The simulation variances are virtually identical to the 

analytic variances for these data. For a given power, somewhat smaller log odds ratios can be 

detected in the RI model than in the RC model.  

The derived formulas provide a basis for planning multi-center studies when a predictor 

of primary importance is highly imbalanced both between and within sites. In studies of racial 

disparities in health care, the site-specific population distributions are often known from 

administrative data. These methods for unbalanced data may facilitate more effective planning of 

public health relevant multi-center studies of racial disparities. 
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I. INTRODUCTION

A multilevel model(ML) is used to analyze the data with a hierarchical structure. Different

statistics literature refers to the model with a variety of names: hierarchical model, mixed

effect model, random effect model, random coefficient regression model, and covariate com-

ponents model. As compared to a classic regression model, a multilevel model can take

care of both heterogeneity and heteroscedasticity. Once multilevel models were developed,

researchers applied this model more and more to the health service studies. The multilevel

model with a binary outcome is one of the important models applied in medicine and health

services research. An emerging issue is how to develop an appropriate experimental design

for an unbalanced study using the multilevel logistic model. Unlike the estimation methods

in the multilevel models, the experimental design in the multilevel logistic model causes only

a few concerns. Under a balanced design, Moerbeek et al.[45] [50] have derived sample size

formulae based on the variance formulae of the intervention as a fixed effect in the multilevel

logistic model with or without a binary covariate. Simulation studies using different estima-

tion methods verified their analytic results. I will extend these formulae to an unbalanced

design in the context of a 2-level logistic model. This dissertation addresses variance and

power in experimental design involving a two level logistic model and unbalanced data.

A. STATEMENT OF PROBLEM

Because of the logit link in the multi-level logistic model and the existence of a random effect,

it is difficult to derive the variance of fixed effect using the likelihood function. Currently,

only the first order marginal quasi-likelihood (MQL1) can be used to derive the variance of
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the fixed effect, as in Moerbeek et al.[45] [50].

My primary aim is to derive the variance of the fixed effect of race in a two level random

intercept (RI) or random coefficient (RC) logistic model for an observational study with

dramatically unbalanced racial distributions both between and within sites. First, I derive

the variance formulae of race, as a fixed effect in either a RI or a RC logistic model. The

variance formulae are derived under the following six assumed design scenarios: 1) balanced

within and across sites; 2) balanced across sites with the same sample weight (proportion

black) within each site; 3) balanced across sites with site-specific sample weights; 4) unbal-

anced across sites and balanced within sites; 5) unbalanced across sites with the same sample

weight within each site; and 6) unbalanced across and within sites with site-specific sample

weights. Based on the analytic results, I will illustrate my methods using the site-specific

racial distributions in the Volpp [34][76] study. To assess the impact of extreme imbalance,

I will compare results based on (i) all site (complete data) to those based on (ii) a relatively

small subset of sites that include 75% of the black veterans. The lowest quartile includes 108

sites (71.8%) that each hospitalize on average 31 black patients annually, while the largest

quartile includes 9 sites (6.0%) that hospitalize on average of 377 black patients annually. I

will compare analytic variance estimates under the six assumed design scenarios to empirical

results. In a simulation study, the analytic results of variance formulae for both the RI and

RC models will be compared to empirical results under alternative estimation methods.

My second aim is to estimate the target fixed effect parameter estimate that can be

detected within power 0.8 through a simulation study. The target fixed effect estimates are

compared for the RI model and RC models for the complete data as well as the higher black

presence sites.

B. MOTIVATING EXAMPLE

I have participated in the Volpp study [34][76] since it started in 2003. This study examines

racial disparities in 30-day mortality within the VA for black and white veterans hospitalized

from fiscal year(FY) 1996 to 2002 with one of six conditions: acute myocardial infarction
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(AMI), congestive heart failure (CHF), gastro-intestinal bleeding (GI Bleed), hip fracture,

stroke, or pneumonia. The Agency for Healthcare Research and Quality (AHRQ) considers

these six conditions as important indicators of the quality of healthcare. Hospitalization is

considered to be no-discretionary for AMI, hip fracture, and stroke, and discretionary for

CHF, GI bleeding, and pneumonia. The primary data source is the hospital discharge data

from the Veterans Affairs (VA) Patient Treatment File (PTF) for FY1996-2002 provide . The

PTF contains information about primary and secondary diagnoses, age, gender, discharge

disposition, transfer status, length of stay, patient zip codes, race and means test eligibility

for every hospital discharge within the Veterans Health Administration. Date of death,

available from the VA Beneficiary Identification Record Locator System File and verified by

National Death Index, was linked to the PTF using encrypted social security numbers to

ascertain mortality within 30 days of admission.

A number of studies within the VA Healthcare System (VAHS) has shown either better

healthcare outcomes[11][33]or no racial disparities[28][31][19][60] in outcomes for black com-

pared to white patients. This is inconsistent with extensive literature documenting racial

disparities for civilian populations.

Although the reasons for the racial differences in the hospital care are not well understood,

the following possible explanations, summarized in Volpp et al.[76] may offer some insight

as to why black patients have better outcomes than white patients. First, black patients

would rather be hospitalized than treated as outpatients; white patients have better access

to outpatient treatment; Second, black patients are more likely to be admitted to the VAHS

that have better average survival rates. Thus, blacks under age 65 will get a differential lower

rate for private coverage in the VAHS, which increases the probability of a higher admission

rate for blacks and a more positive outcome.

Several factors may explain the lack of disparities in outcomes within the VAHS[76]. First

of all, black and white patients using the VAHS have relatively homogeneous socioeconomic

status; this plays an important role in healthcare and leads to smaller racial disparities.

Second, low income veterans, both black and white patients, access the same facilities and

providers with essentially zero cost sharing. Meanwhile, the insurance status is highly corre-

lated with race for non-VA hospitals. Most important, the military has played an important
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role within American society in bringing about desegregation. The more equal treatment of

racial minorities within the VA may reflect this improved integration of minorities within

the military.

This project enriched my doctoral training and motivated my dissertation work. First

of all, the racial distributions across sites have a dramatic imbalance. Table I.1 shows

the quartiles of the site-specific average annual black patient volume. The lowest quartile

includes 108 sites (71.8%) that each hospitalize on average 31 black patients annually, while

the largest quartile includes 9 sites (6.0%) that hospitalize on average of 377 black patients

annually. Second, Table I.2 shows five sites have zero mortality and 48 sites with no black

deaths. These data provide a realistic example of imbalance between and within sites. Such

racial distributional data are readily available to plan studies within the VAHS.

Table I.1: Distribution of VA Sites by Quartiles of Black Hospitalizations for Any of Six

Conditions

Quartile of Number of Percentage of Mean Annual

Black Hospitalizations Sites Sites Black Hospitalizations

Q1 108 71.8 31.4

Q2 21 14.1 161.5

Q3 12 8.1 282.7

Q4 9 6.0 376.9

Total 150 100 90.5

Note: Quartile is defined by sorting the cumulative average annual

number black visits from low to high

In my dissertation, I focus my example on pneumonia patients younger than 65, since

hospitalization for pneumonia is considered discretionary following the AHRQ definition

and represents veterans without Medicare. After excluding patients from the site without

pneumonia hospitalizations, 149 sites were left. To compare the dramatically unbalanced

design to a less unbalanced design, I use two data sets: 1)the complete data and 2) the data

from the 42 sites (quartiles 2-4) that take care of 75% of black veterans. Table I.2 lists the
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site- and race-specific numbers of deaths and corresponding death status by quartile of black

patient volume.

Table I.2: Site and Race Specific Mortality for Veterans

Aged <65 Years and Hospitalized with Pneumonia

Volume Site Black Deaths Total Blacks White Deaths Total Whites

1 1 0 2 6 100

1 2 0 0 10 122

1 3 0 1 3 104

1 4 0 5 14 130

1 5 0 3 21 198

1 6 0 2 1 73

1 7 2 15 10 113

1 8 2 63 16 123

1 9 1 23 11 151

1 10 1 14 13 181

1 11 6 69 19 166

1 12 0 1 6 93

1 13 4 21 20 243

1 14 2 36 15 236

1 18 0 5 0 7

1 19 0 3 3 47

1 20 3 35 35 406

1 21 2 20 20 237

1 22 1 4 4 68

1 23 1 39 10 156

1 25 3 66 22 293

Continued on next page
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Table I.2 – Continued from previous page

Volume Site Black Deaths Total Blacks White Deaths Total Whites

1 26 0 14 6 86

1 29 3 63 20 199

1 30 1 8 2 33

1 31 1 13 8 91

1 32 1 6 6 74

1 33 0 0 3 44

1 34 0 1 14 220

1 40 0 3 11 182

1 42 0 7 18 215

1 45 3 57 21 233

1 47 1 19 13 160

1 48 2 72 9 198

1 50 5 71 9 283

1 51 1 5 8 118

1 52 2 45 4 91

1 53 9 77 8 177

1 56 1 8 2 20

1 57 1 5 2 81

1 58 0 2 12 240

1 60 0 0 2 70

1 61 0 2 0 27

1 62 0 15 13 140

1 63 7 75 29 321

1 64 2 26 6 137

1 65 0 2 5 70

1 67 0 0 0 6

Continued on next page
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Table I.2 – Continued from previous page

Volume Site Black Deaths Total Blacks White Deaths Total Whites

1 69 0 12 20 237

1 71 1 7 13 172

1 72 0 0 4 78

1 75 0 3 3 40

1 76 0 1 3 21

1 77 0 4 0 16

1 78 0 3 1 19

1 79 9 114 4 96

1 81 1 22 6 165

1 82 6 30 7 92

1 83 2 30 8 86

1 84 0 2 1 27

1 88 0 1 0 5

1 89 1 58 37 333

1 90 1 10 11 204

1 91 0 0 7 88

1 92 0 15 9 141

1 93 0 6 6 34

1 94 3 36 10 195

1 96 0 14 22 314

1 98 3 41 3 30

1 99 0 11 16 240

1 100 2 27 10 119

1 101 2 24 12 185

1 103 2 12 4 60

1 107 1 47 10 244

Continued on next page
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Table I.2 – Continued from previous page

Volume Site Black Deaths Total Blacks White Deaths Total Whites

1 108 8 68 32 422

1 109 1 34 12 214

1 110 0 2 6 76

1 111 0 2 9 74

1 112 0 9 18 169

1 113 3 42 25 267

1 115 3 94 34 597

1 117 1 2 8 112

1 118 1 18 22 428

1 119 0 1 11 141

1 120 1 17 13 189

1 122 0 1 12 121

1 123 0 6 6 136

1 124 1 14 11 115

1 126 0 2 4 44

1 127 3 48 16 228

1 128 0 10 35 331

1 130 2 37 25 357

1 131 0 20 4 165

1 132 3 98 27 355

1 134 0 6 10 117

1 135 1 17 4 102

1 136 6 64 22 288

1 137 0 0 6 87

1 138 8 109 38 498

1 140 1 8 8 84

Continued on next page
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Table I.2 – Continued from previous page

Volume Site Black Deaths Total Blacks White Deaths Total Whites

1 141 0 12 4 38

1 142 0 22 24 290

1 143 1 13 0 7

1 144 1 3 2 38

1 145 0 0 7 60

1 147 8 79 20 179

1 149 0 12 5 100

1 150 6 82 14 216

2 16 9 124 24 225

2 35 18 172 14 223

2 39 4 106 34 319

2 43 13 188 18 207

2 44 11 267 14 209

2 54 18 139 19 196

2 59 5 117 6 110

2 66 12 161 27 317

2 70 4 116 33 353

2 74 7 118 29 291

2 85 9 116 26 388

2 86 5 105 34 306

2 87 4 84 24 361

2 97 13 95 9 84

2 102 5 159 24 386

2 105 7 205 5 157

2 106 6 65 3 55

2 116 5 77 17 237

Continued on next page
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Table I.2 – Continued from previous page

Volume Site Black Deaths Total Blacks White Deaths Total Whites

2 129 5 136 24 269

2 133 10 91 13 192

2 139 12 103 17 284

3 15 19 310 21 273

3 24 28 171 25 286

3 27 12 231 6 96

3 28 4 134 4 76

3 36 2 39 4 34

3 38 9 141 6 91

3 41 20 226 20 317

3 49 18 275 5 114

3 55 15 279 6 89

3 73 25 138 26 178

3 114 19 245 7 101

3 148 22 320 64 537

4 17 21 493 11 176

4 37 31 541 2 61

4 46 21 233 46 490

4 68 34 347 51 574

4 95 27 245 20 228

4 104 18 225 14 141

4 121 33 282 31 298

4 125 7 205 29 236

4 146 22 488 5 80

Total 149 750 10,817 2,028 26,294
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I have organized my dissertation as follows. After introducing the problem and moti-

vating example in the first chapter, I give a literature review of experimental design on the

multilevel linear model and the multilevel generalized linear model in Chapter Two. My

analytic methods and simulation algorithm are describe in Chapter three. These methods

focus on detecting the racial disparities in an unbalanced multilevel logistic model, where

race could be estimated as a fixed effect or a random effect in the model. The analytic and

simulation results are summarized in Chapter Four, while the final chapter presents the con-

clusions and discussion. In the Appendices A to C, I attach the lists of acronyms, glossary

and mathematical notation, respectively. The derivation is reported in Appendix D, step by

step. I show the screen images of model fitting results using MLwiN in Appendix E, which

is followed by the bibliography.
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II. LITERATURE REVIEW

After I review the Volpp study, which is using the two-level logistic model to detect racial

disparities across sites, I will review the literature of experimental design for MLM. I will

explain the multilevel logistic model (MLLM) using different notation, present estimation

methods, review hypothesis test algorithms for random and fixed effects, and compare esti-

mation methods and hypothesis test algorithms in MLLMs. The literature on experimental

design in MLLMs with balanced data will be reviewed. Then, sample size issues in a two-

level logistic model with balanced or unbalanced design using MCMC simulation will be

outlined. Feiveson’s simulation algorithm on post hoc power, which calculates the cumula-

tive proportion of rejections from multiple replications of the experiment, will be reviewed

in the last section.

A. THE VOLPP STUDY

I have participated in the VA HSR&D funded Volpp study since it started in 2003. This

project has several phases. I will summarize the phases that are relevant to this dissertation.

The first phase focused on the relationship between racial disparities and patient character-

istics. Another phase focused on the relationship between the racial disparities and hospital

characteristics. Both phases are using the same observational dataset, which has known

unbalanced sample sizes and racial distributions across sites.

The first phase phase of Volpp study[76] examined racial disparities in 30-day mortality

within the VA for white and black veterans hospitalized from fiscal year(FY) 1996 to 2002

with one of six conditions. For each of the six study conditions, unadjusted 30-day mortality
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rates were significantly lower for blacks than for whites (p<0.01). These results did not vary

after adjusting for hospital site where treated or more complete ascertainment of deaths.

There were no significant changes in the degree of difference in mortality by race following

quality improvement efforts within VA during the study period. The finding that black

veterans have significantly lower 30-day mortality than white veterans for the six common

conditions generally is limited to veterans over age 65. This differential by age suggests that

it is unlikely that lower 30-day mortality rates among blacks within the VA are driven by

treatment differences by race. For veterans with pneumonia younger than 65 years old, the

variance component of race has the largest value (0.094).

Another phase of Volpp project, as reported by Jha et al.[34], focuses on racial disparities

on 30-day mortality by quartile of the relative number of black patients hospitalized at each

site. This is quantified in term of the average annual number of black patients hospitalized

at each site over the study period. These site-specific number are sorted, in increasing

order, and the first quartile is defined as the sites that hospitalized 25% of black patients.

The forth quartile includes a much smaller number of sites with relatively large numbers of

black patients. The racial distributions across sites are dramatically unbalanced, as shown in

Table I.1. By adjusting for quartile of black patient volume, we compare the racial disparities

across sites with different race distributions. The hospitals that care for most black patients

are more likely to be urban teaching hospitals and to have more technologically advanced

equipment. The lack of variation in 30-day mortality and in racial disparities across these

hospitals is surprising, and suggests more uniformity in care within VA than in the private

sector.
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B. MULTILEVEL MODELS

Hierarchical, nested, or clustered structure is a common phenomenon in social or healthcare

research[25][57][63]. For example, a cluster could be children coming from the same family

or in the same classroom, patient in the same hospital and/or treated by the same physician.

These examples share a pattern that a lower level is nested within a higher one, for instance,

children nested within a family or classroom, or patients nested within a physician and/or

hospital. The hierarchical data could have 2 or more levels. Two-level or three-level data

structures are commonly used in statistical analysis, to avoid even more complicated variance

covariance structures. Different authors refer to level one as the highest level or the lowest

level of the clustering. I will follow Goldstein’s definition[25], and call the individual level

level one, which may be referred to as ith level (i=1, . . . , nj). Similarly, the jth level is

refered to as the jth cluster (or group), where j=1, . . . , N. Thus, yij is the outcome for the

ith individual in the jth cluster.

Based on the type of outcome variable, multilevel models are be categorized as either

MLMs (in continuous outcomes) or multilevel generalized linear models (MGLM) (for dis-

crete outcomes). For MLMs, the response variable and the residuals in each level follow

normal distributions. For MGLMs, the residuals and response variable might follow nor-

mal distribution if we standardize the model using the link function. Otherwise, they will

follow different exponential distribution. Based on different link functions for the outcome

variable, MGLMs includes a MLLMs, multilevel possion models, multilevel multinominal

models, and multilevel ordinal models. Based on the specified variance-covariance structure

of the MLM, each of the specified MLMs includes RIs and possibly RCs. More complex

multilevel models include multivariate multilevel models (with multiple outcome variables)

and multiple membership models (where membership varies by levels). Other latent variable

models, multilevel factor analysis, structure equation model, and cross-classified model also

can be formulated as multilevel models.

The multilevel model is used to analyze data with a hierarchical structure to account for

the relationships within and between levels. As a generalization of classic linear regression,

the multilevel model can: estimate the main effects and interaction effects within or across
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levels; reduce the bias in parameter estimates from clustering; provide appropriate standard

errors to correct confidence intervals and hypothesis tests for clustering; and decompose the

total variance into portions within each level of the model.

C. EXPERIMENTAL DESIGN IN LINEAR MODELS

Experimental design, as one of the important steps in designing a study, has been the focus

of a lot of research. The rule of thumb for a study design is to increase precision and

eliminate bias. Therefore, sample size estimation will assures a maximum degree of precision

for parameters being estimated (min type I error, α) and assures a minimum type II error

for a specified type I error and a specified point in the alternative hypothesis (max power).

The statistics power is 1-type II error (1-β). Researchers present more and more research

for experimental design with correlated observational studies.

1. Two-Group Comparison for Single Level

Fleiss[18] summarizes the experimental design under different situation. The sample size

formula for an observation study, using the general form of two-group t-test sample size,

under the hypothesis test H0 : µ1 = µ2 vs. H1 : µ1 6= µ2, can be written as below

N =
(Error Terms)(V ariance)

(Difference to be Detected)2
. (II.1)

Assuming we have two group x and y, the group mean for group x and group y are µ1 and

µ2 with variance σ2
1 and σ2

2, respectively. The type one error is denoted as α. The type two

error is β. In Equation (II.1), N is total sample size; Error terms is the square to the sum of

inverse cumulative normal distribution for type I and type II error ((Zα
2

+ Zβ)2); Variance

is the sum of group variances. When groups share the same variance (σ2), the Variance in

the equation is 2σ2. When the two group are correlated, the variance for these group have a

correlation coefficient (ρ =
σ2
1

σ2
2
). The difference to be detected is the different for two group
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mean (δ = µ1 − µ2). For normal distributed data with common variance, we can write the

sample size with common variance as

N = (Zα
2

+ Zβ)22σ2

δ2
. (II.2)

For normal distributed correlated data with common variance, the sample size formula is

N = (Zα
2

+ Zβ)22σ2(1 − ρ)

δ2
. (II.3)

For normal distributed uncorrelated data with different variance, we can write the sample

size with common variance as

N = (Zα
2

+ Zβ)2 σ2
1 + σ2

2

δ2
. (II.4)

For normal distributed correlated data with different variance, the sample size formula is

N = (Zα
2

+ Zβ)2 (σ2
1 + σ2

2 − 2σ1σ2)

δ2
. (II.5)

By changing the location of N, we can get the generalized powe formula

Power = 1 −Φ−1[
N * difference to be detected

variance
− Zα

2
]. (II.6)

The Φ−1 is the probability under a specific value using normal distribution.

The above equations involve four elements 1) sample size, 2) standard deviation, 3) Type

one and two errors, and 4) sample size mean in each group. By knowing three of the four

elements, the other element can be calculated. A balance is needed between minimized

standard error and maximum power.
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2. Experimental Design in Multilevel Linear Models

In experiment design for MLMs, optimal allocation of experimental units, optimal sample

size, and power have been investigated for balanced data. Tan and Bosker[75] and Hedeker et

al.[30] presented optimal experimental design in the repeated measures. Setting the optimal

randomization level as the individual level in the intervention study had been reported by

Donner et al.[12], Gail[20], and Moerbeek[46][48]. The optimal sample size for each level,

given randomization level, measurement method, and budget, has been derived by several

authors. Specifically, in the 2-level linear model, sample size formulae for an intervention

randomized at the group level have been discussed [1][14][12][16][32][37][39][61]. Raudenbush

and Liu[55]derived sample size calculations for cluster randomization with or without a

covariate, based on Raudenbush’s work[54] for cluster randomization trials . Appropriate

software, Optimal Design[65], was developed at the same time. Snijders and Bosker[62] did

an approximate study of standard errors of the fixed terms with or without covariates and/or

budget constrains for the 2-level variance component linear model. They recommended that

the sample size for the group level should be as large as possible. Based on this, Snijders

developed a comprehensive package PINT[3] to calculate the sample size for the fixed term

in the 2-level linear model with balanced data with or without covariates. For both levels,

the number of independent variables can vary. Raudenbush[54], Raudenbush and Liu’s[55]

case are a special case of Snijders and Bosker. Mok[51] did a simulation study for a 2-level

linear model to compare designs when the number of individuals is larger than, equal to,

and smaller than the number of clusters. Hsieh[32] and Donner et al.[12] give the formula

for the power to detect an intervention effect in a of 2-level cluster randomized study with a

given sample size under balanced design.

Moerbeek et al.[46] address 1) optimal level of randomization, 2) optimal allocation of

units, and 3) optimal sample size for a given budget and level of randomization of intervention

in balanced 2-level and 3-level linear models with or without a covariate. Covariates have

an effect on the intervention through their effect on unexplained variance. Therefore, we

should take covariates into account at the design stage. Moerbeek et al.[48] discuss optimal

experimental design for 2- or 3- level MLM with a covariate, when the intervention was
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randomized at the cluster or individual level. In this paper, she reports that pre-stratification

on the covariate leads to a more efficient design, and that the optimal level of randomization

is the lowest level.
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D. MULTILEVEL MODELS WITH DISCRETE OUTCOMES

More and more applications of multilevel models are appearing in healthcare research.

MLLMs are used for data with binary outcomes. For example, healthcare satisfaction or

30 day mortality could be treated as binary outcomes. In this dissertation, I limited my

study to 2-level logistic models without covariates.

1. 2-level Logistic Models

We can write multilevel model[24] in several ways as a, 1) generalized model, 2) combined

model, and 3) standard model. Another omit style, level-specific model exist and won’t be

discussed in this dissertation. Here, I will introduce the two level logistic model in the above

three styles, which are related to my variance derivation. These models can be applied to a

study with a population of M =
∑

j nj samples. Within the population, the ith individual

(i = 1, . . . , nj) is nested in jth group (j = 1, . . . , N) . The binary outcome variable is denoted

as Yij , which is assumed to follow binomial distribution, where πij is the probability that

the response for the ith individual in the jth group is equal to one (so πij = pr(yij = 1)). For

the logistic model, the link function, logit(πij), is equal to log(πij/(1 − πij)). E is the error

term in the model, and nij is the denominator for the empirical proportion.

A generalized combined 2-level logistic model can be written as (II.7)

logit(πij) = (Xβ)ij + (Zµ)j + Eij

where yij ∼ BIN(πij, nij) and var(yij|πij) = πij(1 − πij)/nij ,

X = [Xij], Xij = {x0ij, x1ij, . . . , xpij},
E = {eij} = E1 + E2 = {e1

ij + e2
ij}, e1

ij = eij, and e2
ij = µj

(II.7)

The standard representation for a 2−level generalized logistic model including the level 1

variation is (II.8)

yij = πij + eijzij = f(H) + eijzij,

where zij =
√

πij(1 − πij)/nij ,

σ2
e = 1,

and πij = [1 + exp(−(Xβ))]−1.

(II.8)
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After calculation, the variance of β1 are summarized in below table.

Instead of presenting the model in a generalized representation, I will present the RI and

RC logistic model in the combined representation. These models are shown in terms of the

variables for the Volpp study in (II.9) and (II.10), respectively, for the RI and RC models.

logit(πij) = β0 + β1xij + µoj + εij (II.9)

logit(πij) = β0 + β1xij + µoj + µ1jxij + εij (II.10)

In these models, πij is the mortality from any source; β0 is the average intercept across the

sites; β1 is the average regression slope across the sites; xij is a dummy variable for black

race, the only independent variabel, coded as 1 for black veterans and 0 for white; µoj is

the unique increment to the intercept associated with the jth site; and µ1j is the unique

increment to the slope associated with jth sites. Both µoj and µ1j are called level 2 residuals;

εij is the level one residuals. Brown and Prescott[4] and Snijder [63] called the slope term

(µ1jxij) in (II.9), which represents heterogeneity between sites in the effect of race, as the

site-by-race interaction term(site • race). Following Goldstein’s[24] definition, I will call this

term ”race as random effect”. To do quasi-likelihood estimation, we need to write models

(II.11 ) and (II.12) in a standard way as, respectively, for the 2-level RI and RC model.

yij = f(H) + εij = f(β0 + β1xij + µoj) + εij (II.11)

yij = f(H) + εij = f(β0 + β1jxij + µoj + µ1jxij) + εij (II.12)
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2. Estimation Methods and Hypothesis Tests for 2-level Logistic Models

When I denote the 2-level logistic model as model (II.7), the response variable (yij) does not

follow a normal distribution. Instead, the response estimations follow logistic distribution

and are dependent on the the random term in the model. Therefore, we cannot directly use

the maximum likelihood estimate method, which was used for the MLM. To estimate the

parameter, researchers developed estimation methods using a modified maximum likelihood

estimate (MLE), a sampling method, and a Bayesian method. Based on extended MLE

method, Fisher Score[57], the Expection-maximization (EM) Algorithm[57], Fisher scoring

combined with EM algorithm[57], and Quasi-likelihood[25], were developed. Numerical in-

tegration methods can be applied as in Laplace[57] and Gauss-Hermite quadrature [43].

Goldstein et al.[27] developed a bootstrap sampling method. Markov Chain Monte Carlo

(MCMC) method[5] is a Bayesian method.

Extensions of the quasi-likelihood estimation have been implemented in the software

MlwiN[70]. The marginal quasi-likelihood estimate method (MQL) has also been imple-

mented in S+[74], while the propensity quasi-likelihood estimate (PQL) method has been

incorporated in software SAS(proc GLIMMIX)[67], R(glmmPQL)[73], S-Plus, Mplus[71],

and HLM[57]. Goldstein[27] also developed the non-parametric and semi-parametric iter-

ation bootstrap method in MLwiN. Browne[5] implemented the MCMC method by using

Gibbs sampling; MetropolisCHastings (MH) sampling for MGLM in MLwiN. Raudenbush,

Yang, and Yosef [56] developed the Laplace method, Fisher scoring, and the EM algorithm

for the multileve logistic model and implemented them in HLM; McCulloch and Searle[43]

developed the Gauss-Hermite quadrature approxach for MGLM. This method has been im-

plemented in SAS (proc nlmix), AML[66], MIXOR [69], and Stata (xtlogit or gllamm)[68].

Next subsection describe the quasi-likelihood methods, particularly MQL1. These methods

will be compared later.

a. Propensity Quasi-likelihood and Marginal Quasi-likelihood Estimation

The quasi-likelihood method applies the Talyor expansion of a standardized logistic model

to estimate π on the (t +1)th iteration, using tth estimates. PQL and MQL, commonly used
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estimation methods for MGLM, take different approaches using quasi-likelihood methods.

Depending on the order of the Taylor extension on f(H) in the standardized MLLMs, MQL1

or PQL1 are obtained using the first order in MQL or PQL, respectively; similarly, MQL2

and PQL2 use the second order of the Taylor extension. Estimating the fixed effect using

full maximum likelihood method (FML)gives the corresponding iterative generalized least

squares (IGLS) PQL or MQL estimates. Estimating the fixed effect using the restricted

maximum likelihood method (REML)gives the corresponding restricted iterative generalized

least squares (RIGLS) PQL or MQL estimates. Therefore, the quasi-likelihood method can

be split to IGLS MQL or RIGLS MQL, and IGLS PQL and RIGLS PQL. Including the

adequate of the Talyor series expansion, there are eight quasi-likelihood methods: RIGLS

MQL1, RIGLS MQL2, IGLS MQL1, IGLS MQL2, RIGLS PQL1, RIGLS PQL2, IGLS PQL1,

and IGLS PQL2. The main steps for the quasi-likelihood estimation are shown below, stating

with model.

First of all, the πij in model (II.8) is expressed as

πij = f(Xβ + Zµ) = f(H) = [1 + exp(−(Xβ + Zµ))]−1 (II.13)

the (t + 1)th iteration estimates of random and fixed parts are obtained using the estimates

in the tth iteration through the 2nd order Taylor series of πij as

fij(Ht) − Xijβtf
′
ij(Ht) + (Zijµj)f

′
ij(Ht) + Xijβt+1f

′
ij(Ht)

+(Zijµj)
2f ′′

ij(Ht)/2 + (Zijµj)
2fij′′(Ht)/2

(II.14)

When we choose Ht = Xijβt+Zijµ̂j , and plug in the estimate of βt, β(t+1) , and µ̂j from IGLS

or RIGLS, this method is called PQL2. If we take the first order Taylor series instead of the

second order, it is PQL1. Using Ht = Xijβt (assuming µj = 0 at tth iteration)gives MQL.

MQL or MQL2, respectively, use the first or second order Talyor series of πij. I summarize

these four methods in Table (II.1).

Within the MQL and PQL methods, the first order Taylor series is not as accurate as

the second order. The MQL method will give severe underestimates and is not good at

convergence, especially when nij is small. The PQL1 method is better in terms of point

estimation, but is not good for testing. PQL2 estimates approach the true values based on
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Table II.1: Definition of Ht for the MQL and PQL methods

ML Method Ht in (II.14) Taylor Series order Quasi-likelihood method

FML Ht = Xijβt 1 IGLS MQL1

FML Ht = Xijβt 2 IGLS MQL2

FML Ht = Xijβt + Zijµ̂j 1 IGLS PQL1

FML Ht = Xijβt + Zijµ̂j 2 IGLS PQL2

REML Ht = Xijβt 1 RIGLS MQL1

REML Ht = Xijβt 2 RIGLS MQL2

REML Ht = Xijβt + Zijµ̂j 1 RIGLS PQL1

REML Ht = Xijβt + Zijµ̂j 2 RIGLS PQL2

a simulation study[26] and seems be perform best in the quasi-likelihood estimation. When

PQL2 does not converge, Goldstein [24] suggests using MQL2. Moerbeek et al.[45] give

similar recommendation as Goldstein[24]. RIGLS is required when there is a small sample

size. The deviance estimates from these methods are very crude. We cannot apply the

deviance to perform hypothesis test from any of these methods. Mlwin user Manual [53]

has point out quasi-likelihood method is good at exploring model and computation intensive

algorithm, MCMC, will give an accurate estimations.

b. Hypothesis Tests for Multilevel Generalized Linear Models

Because of existence of link function and random effect, it’s difficult to get estimate of

variance of fixed effect. The optimal hypothesis test (HO : K ′B = 0) in MGLMs is an open

research area[25]. So far, we can split the test into a main effect or a pairwise test according

to the definition of K’B. Using test terms, we can perform non-predictor involved hypothesis

tests (heterogeneity of proportions) and predictor related hypothesis test. Specifically, ran-

dom intercepts and random coefficients in MGLMs. First, I will summarize the hypothesis

test on heterogeneous proportions.
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Test of Heterogeneous Proportions

In the absence of predictors, we can summarize response proportion by cluser in the

contingency tables. The Chi-square test can be applied to these variables whose contingency

table cells are all greater than 1 and 80% larger than 5. Thus, a Chi-squared test, with an

N-1 degree of freedom, will be used to test the differences between groups.

Commenges and Jacqumin[8] reported another test statistics to test the heterogeneous

across the clusters.

T =

∑N
j=1{n2

j (Ȳ.j − P̂.)
2} − MP̂.(1 − P̂.)

P̂.(1 − P̂.)
√

2
∑N

j=1 nj(nj − 1)
(II.15)

In (II.15), T follows normal distribution. Commenges’ method has higher power than chi-

square test, when it is used to test heterogeneity of site-specific proportions without any

model fitting. We can apply this method to a sample when the group size is larger than 10

and when there is no dominator group, ie. nj/M <= .1 and njmax/njmin <= 10.

Tests of Fixed Effects and Random Effects

For MLM, a test for the fixed effect can be completed using a t- test, Wald test, deviance

test[56] [63], or score test[38]. The deviance test can not be applied to quasi-likelihood

method, since their results are crude.

a. Hypothesis Test for Fixed Effect

By obtaining the parameter estimates and variance, a A t-test II.16 can be used to test a

single fixed effect parameter equal to 0m (Ho : βi = 0) as shown below.

tni−ri−1 = β̂ij/SEβ̂ij
(II.16)

By assuming there are ni units and ri explanatory variables in the level i, the degree freedom

for level i is ni − ri − 1. This t-test will follow a t-tes withni − ri − 1 degree freedom.

The quantile estimates test can be applied when we using bootstrap or MCMC estimation[53].

The accuracy of (1−α) confidence interval of this quantile estimates test depend upon iter-

ation number. Davison and Hinkley[10] suggested repeat number should be, at least, 1000.
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Both Wald test and likelihood ratio test can perform the multi-parameter hypothesis

test as a special case of linear function of fixed effect (Ho : f = Cβ = k). C is a r*p contrast

matrix, which defined the linear function of the p parameters. Wald tests [25] can be used

for the following situation:

I. Omnibus tests of the relationship between a categorical higher level predictor and

higher level specific parameter.

II. Contrast between categories of a higher level predictor.

III. Examining cross level interation.

IV. Examining whether some subset of cluster level predictors is needed in a particular

lower level model.

Based on the hypothesis test, we will obtain an approximately χ2 distribution(II.17) with r

degree freedom in the Wald test.

R = (f̂ − k)T [C(XT V̂ −1X)−1CT ](f̂ − k) (II.17)

Wheref̂ = cβ̂ and (XT V̂ −1X)−1 is estimated covariance covariance matrix of fixed effect.

When we set R̂ equal to α, the tail region of the χ2
r distribution in (II.17), we can get a

simultaneous (100-α)% confidence interval for the ith row of C as (Ciβ̂ − di, Ciβ̂ + di). The

di is Ci(X
T V̂ −1X)−1CT

i χ2
q,(α).

Likelihood ratio test(also called deviance test) is another options for fixed effect and will

obtain similar result as Wald test. This method is applicate on multiple parameters test

and random effect test when K is zero. Comparing Wald test to deviance test, there are

three advantages for Wald test: 1)can perform any linear test within the the alternative

model of likelihood ratio test, 2)perform any linear contrast to fixed effect, and 3)can be

used for REML method, which has applicable limitation for likelihood ratio test. When λ0

is denoted for the likelihood of the null hypothesis, λ1 is denoted as likelihood of alternative

hypotheses, and q as the different number of parameter between the null hypothesis and

alternative hypothesis, we can write the deviance statistics or log likelihood ratio D01 as

(II.18)

D01 = −2logλ0/λ1 (II.18)
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. The hypothesis test follows a chi square distribution with q degrees freedom.

For multiparameter test, we can also use Bayesian deviance information criterion(BDIC)

method to perform the test in MCMC method. Within each chain of MCMC, we computer

-2log-likelihood of the model being fitted using current chain value, Di, and the mean -2log-

likelihood as D̄. Upon convergence, we can get deviance as D. The DIC will be D+2∗(D̄−D),

where (D̄ − D) is called effective number of parameters.

b. Hypothesis Test for Random Effect

Goldstein[25] mentioned Wald test can be used for the random effect when sample size is

large enough. Likelihood ratio test is preferred for the random effect. We need caution that

we can and only can compare the models with same fixed effect for REML. Emphatically,

the deviance test is exceeding the nominal values, very liberal, unless the cluster size is large

enough. Therefore, we need use IGLS method when we need do hypothesis test on random

effect. We can perform score test [38] in MLLMs’. The hypothesis test on the random effect

in the MLLMs is an open research area[25]. We assumed normality of residual, we can apply

t test to the residual we are going to exam. Based on this, we also can draw the caterpillar

plot to check the normality and find outliers of cluster. Quantile estimates test and BDIC

test can be applied to the random effect hypothesis test.

3. Estimating method and hypothesis test comparisons in MGLMs

Within the estimate methods, MLM, IGLS, RIGLS, EM, Fisher Scoring, EM & Fisher

scoring are iterated maximum likelihood methods. Because of the complicated structure

of multilevel model, it is difficult to find an estimation method to get accurate parameter

estimates. The iterative maximum likelihood method will get biased estimate. Part of them

will get the estimate of variance out of parmeter space. If we want to explore the model, the

best choice to get the estimate will be IGLS, RIGLS, or EM plus Fisher scoring method. If

we want get accurate estimates for MLM, MCMC method and bootstrap will be our choice.

On one side, MCMC method is the most computationally intensive, which requires several

hours to fit a model. On the other side, it will give us an approximate unbiased estimate, no

matter where prior distribution and initial values are assumed. This has the advantage in
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small samples, that MCMC takes account of the uncertainty associated with the estimates

of the random parameters and can provide exact measures of uncertainty. The maximum

likelihood methods tend to overestimate precision because they ignore this uncertainty. In

small samples this will be important especially when obtaining ’posterior’ estimates for

residuals. Bootstrap procedure is an alternative to take account of this uncertainty and will

get approximate unbiased estimate. comparing to MCMC, bootstrap need less time and still

much more than MLE methods. With bootstrap, we need define the repeat number and

loop length based on the raw bootstrap results.

a. Comparison of Estimation Methods and Hypothesis Tests for MGLMs

Each method has it own properties (as I summarized in Table II.2). MQL methods

might result in severe underestimates, especially with small datasets[42]. Meanwhile, MQL1

is the most stable algorithm within quasi-likelihood methods. PQL methods are feasible and

approach the true value based on some reports. PQL2 is more accurate than PQL1. The

PQL methods have the shortcome of being unstable with poor convergence[49].

The Gaussian-Hermite numerical quadrature method is feasible in specific situations: it

is feasible for a clustered model with one random effect; and can provide an approximate

result with two random effect. We cannot apply numerical quadrature for a data random-

ized at the individual level or a model with more than two levels, or a random effect that

does not follow a normal distribution. The Laplace method and numerical integration can

provide better estimates than the MQL and PQL approxmiates. The Laplace, numerical

integration, MCMC and Bootstrap methods perform well for all kinds of MGLMs, but they

are computational intensive.

RIGLS PQL2 method, which provide a quick estimates, is ideal to explore the model.

Otherwise, we need to choose Bootstrap, MCMC or the Laplace method to get accurate

estimates and test the parameter. The choice of method depends on the convergence speed,

availability of software, statistical efficiency, and obvious to obtain hypothesis test.

27



Table II.2: Comparison of Estimation Methods and Hypothesis Tests for MGLMs

Method Bias Time Convergence Hypothesis test Software

Fixed effect Random effect

MQL Downward Fast Yes T-test MLwiN, R,

bias Wald test Wald Test Splus

PQL Downward Fast Not T-test MLwiN, SAS

bias Necessarily Wald test Wald Test HLM, R, S

EM with Bias Fast Not T-test HLM

Fisher Necessarily Wald test S

Scoring Deviance test Deviance test

Gaussian Unbiased Yes T-test, Wald Wald test SAS, aML

Quadrature Intensive Deviance test Deviance test Stata, MIXOR

Bootstrap Approx. Intensive Not T-test MLwiN

Unbiased Necessarily Quantile test MLwiN

MCMC Unbiased Intensive Yes Quantile test MLwiN

BDIC WINBUGS

Approx: Approximate

MQL: Marginal quasi-likelihood estimate

PQL: Perpensity quasi-likelihood estimate

BDIC: Baysian deviance information criterion

EM: Expectation-Maximization

MCMC: Markov Chain Monte Carlo
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E. EXPERIMENTAL DESIGN IN MULTILEVEL LOGISTIC MODELS

Less attention has been given to experimental design in the MLLMs than in the MLM.

The main reason is the limitations of variables estimation methods for MLLMs. In these

models, we must use iterative methods and cannot obtain analytical estimates except for

the MQL1 method. Goldstein[25] reported that MQL1 method are downwardly biased and

that simulation methods would be preferred to analytically biased estimation for comparing

experimental designs in this setting.To date, only Zou[77] and Normand[52], and Moerbeek

et al.[45][50] have reported simulation results on optimal experiment design for multilevel

logistic models.

1. Zou and Normand’s Sample Size Estimation in 2-level Logistic Models

In Bayesian theory, the multilevel logistic model can be written as a level-specific model:

level 1 : Yi|n, θi
independent∼ Binomial(ni, θi) (II.19)

At level 2, we can specify a prior distribution for θi:

At level 2 : θi|n, α, β
i.i.d∼ Beta(α, β) (II.20)

At level 3, we can specify hyper-parameter distributions for α and β:

level 3 : α∼Gamma(pα, qα) independent of β∼Gamma(pβ , qβ) (II.21)

The sample of clusters and right assumption of distribution of θ in (II.20) will affect the

accuracy of the inference.

In 2001, Zou and Normand[52] used MCMC and MC simulation to get the central pos-

terior interval when focusing on the level two parameter θ. At a 95% posterior confidence

interval, we can decide the sample size of a cluster based on the balanced sample sizes for a

2-level logistic model. In 2002, Normand and Zou[52] expanded their 2001 research with a

combined method of MCMC simulation and parametric approximation to get 95% posterior
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confidence interval for a 2\3 level balanced\unbalanced structure. Based on this, we can

detect the sample size at the group level and individual level. Increasing the total sample

size resulted in decreased width of the posterior confidence interval, whether the number of

groups or the number or individuals was increased.

Their research is implemented in WINBUGS, the best known MCMC based Bayesian

analysis package. Although WINBUGS is flexible enough to handle a very wide range of

models, it is not as computationally efficient as other packages that can fit MCMC models,

such as MlwiN[29]. A comparisan table[44] list the WINBUGS’ computation time, 40-45

mins, for a two-level MLLM RI model. Therefore, the MCMC method is computationally

intensive and not good for a large simulation study.

2. Moerbeek’s Experimental Design in Multilevel Logistic Models without co-

variates

After comparing and applying numerical integration and quasi-Likelihood used(MQL1) for

MLLMs, Moerbeek et al.[45] gives allocations of experimental units for optimal experimental

design; specifically, the optimal level of randomization for the intervention with or without

a fixed budget. She focuses on two kinds of two-level logistic models: the RI and RC logistic

model without covariates. Optimality was defined in terms of the standard error of the

intervention effect. In their method, the binary variable is coded as 1 and -1 for treatment

and control group, which is called as ”zero sum” coding.

a. Linearization and of the Two Level Logistic Model

As we discussed in Section II.D.1, the generalized 2-level model can be written in matrix

style as shown below.

yij = πij + (Zεε)ij = f(H) + (Zεε)ij = f((Xβ)ij + (Zµµ)j) + (Zεε)ij ,

where Zij =
√

πij(1 − πij)nij , σ2
ε = 1, µj ∼ N(0, σ2

νj
),

and πij = f(H) = [1 + exp(−(Xβ + Zµµ))]−1.

(II.22)
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By applying the MQL1 method for πij at (t + 1)th iteration in model II.22, we will get

πij = f(Ht+1) ≈ f(H̃t) + (Xijβ + Zµµ)f ′(H̃t) − Xijβ̃tf
′(H̃t)

πijf
′(−1)(H̃t) = f(H̃t)f

′(−1)(H̃t) + Xijβ + Zµµ − Xij β̃t. (II.23)

The next step is to write the standard 2-level logistic model (II.22) as

yijf
′(−1)(H̃t) = πijf

′(−1)(H̃t) + (Zεε)ijf
′(−1)(H̃t)

and plug in (II.23) with some modification (detailed in Appendix D.A) to get a linearized

2-level logistic model( II.24).

Y ∗
ij = Xijβ + Zµµ + ε∗ij (II.24)

where

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + Xij β̃t (II.25)

ε∗ij = (Zεε)ijf
′(−1)(H̃t) = (Zεε)ij ∗ [π̃ij(1 − π̃ij)]

−1. (II.26)

and

var(ε∗ij) = var(Zεεij ∗ [π̃ij(1 − π̃ij)]
−1)

= [π̃ij(1 − π̃ij)]
−1

= [
1

1 + e−Xβ
(1 − 1

1 + e−Xβ
)]−1

= 2 + e−Xβ + eXβ, (II.27)

E(ε∗ij) = 0, (II.28)

var(Y ∗
ij) = Z ′

µVµZµ + [π̃ij(1 − π̃ij)]
−1, (II.29)

E(Y ∗
ij) = Xijβ, (II.30)
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E(Yij) ≈ (1 + e

−Xijβ√
1+σ2

µ/1.72 )−1 (II.31)

(II.32)

The generalized least squares estimator (GLS) of β1 in the generalized linear mixed

model[57] is

β̂ = (X ′V −1X)−1X ′V −1Y (II.33)

Therefore, the GLS for the 2-level logistic model (detail in D) is shown as

β̂1 =
ȳ∗

..t − ȳ∗
..c

2
(II.34)

By denoted δ2 as

β̂1 =
ȳ∗

t − ȳ∗
c

2
(II.35)

b. Two Level RI Logistic Model

By using the MQL1 method, Moerbeek et al[45] derive the formula of β̂1, E(β̂1), and

var(β̂1), when randomizing at the individual and cluster levels. She derives the formulas

for optimal allocation of units at each level with or without the budget and cost at each

level. She also presents the formula for the var(β̂1), when the optimal sample size at each

level and randomized level are given; the optimal randomization level is the individual level,

which is consistent with her report on continuous outcomes. The optimal cluster size is 2

when the intervention is randomized at the individual level. When the randomization level

is a cluster level, the optimal experimental design depends on the parameters. Moerbeek et

al. summarized the variance formula in below table

For quasi-likelihood and numerical integration simulation methods, she simulates re-

sponse variable through different combinations of assumed values of the allocation number

at the two levels, β0, β1 and σ2
µ0. The data set is simulated from one of 96 simulation com-

bination of 1) sample size with and across sites(n=40, N=10; n=20, N=20; n=10, N=40),

2)assumed parameter estimates for β0 (0), β1 (1.5, 1, 0.5, 0), and σµ0 (1, 0.5, 0.25, 0). For

each combination, 200 data sets were generated.

There are five steps in her simulation algorithm:
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Table II.3: Estimated var(β̂1) in 2-Level Logistic Model, Moerbeek et al[45]

Level of var(β̂1)

Randomization RI Model RC Model

Individual δ2

nN

δ2+nσ2
µ1

nN

Cluster
δ2+nσ2

µ0

nN

δ2+n(σ2
µ0

+σ2
µ1

)

nN

note: XIJ is in zero sum coding

note: n is assumed common cluster size

note: N is the number of cluster

note: δ2 is level one residual (var(e) = σ2
e)

where δ2 = 1
2
(4 + eβ0+β1 + e−β0−β1 + eβ0−β1 + e−β0+β1)

I. Select one of the above 96 combinations to simulate initial data.

II. Fit corresponded model using PQL to collect initial parameter estimates

III. Calculate the sample mean of β1 (β̂1).

IV. Calculate the sample variance (var(β̂1)) by using sample mean variance in the 200

iterations.

V. Calculate correction factor= sample variance var(bβ1)

MQL1 analytic var(bβ1)

VI. Calculate the mean value of the correction factor.

VII. Calculate the mean value of the sample variance of β̂1.

By comparing the correlation factor to 1, the optimal allocation in each design combi-

nation is obtained. They found that when the sample size is defined and β1 is 0, var(β̂1) has

a directly related to β1, σ2
µ0 and the sample size for individual level. For randomized at the

group level, var(β̂1) is directly related only with β1. Given the same data set combination,

randomization at the group level has larger values of var(β̂1) than randomization at the

individual level. When the sample size in the individual level and σ2
µ0 are large, var(β̂1) will

be large. The correction ratio for PQL1, PQL2, and numerical integration are the constants

1.1, 1.2 and 1.2, respectively. Then the design combination which obtain 1.1 will be the
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best fit. Because the correction ratios are constant for PQL and numerical integration, they

obtains the same conclusion of optimal design as the MQL1 method.

She reports that the MQL1 is downward biased for β1, PQL1 is downward biased at most

10%, and PQL2 and numerical integration overestimate β1 by about 5%. Comparing the

var(σ2
µ0), the PQL methods are unbiased and numerical integration is 2 times biased, and .5

to 1.5 times biased, when σ2
µ0 is equal to 0 and larger than 0, respectively.

c. Two level RC Logistic Models Moerbeek et al.[45] also give formulae of sample size

and var(β̂1) (in Tabel II.3) varying by the randomization level. She reports the individual

level is the optimal level of randomization. The optimal allocation for randomization on

both the individual and group levels is parameter dependent. They found that the varβ̂1 in

the RC logistic model was larger than that in the RI logistic model.

The numerical integration methods is easy to get a significantly higher estimate of vari-

ance when var(β̂1) is a small variance component. For both PQL methods and numerical

integration, the var(β̂1) is directly related to σ2
µ1, β1, and sample size in the individual level.

MQL1 with a known variance component has the same results as PQL methods and numer-

ical integration. The correct ratios, the ratio of true variance to sample mean simulation

variance, are 1, 1,2, 1.4 for PQL1, PQL2, and numerical integration, respectively. Compared

to the true value of β1, PQL1 underestimates by at most 10%, and PQL2 and numerical

integration overestimate at most 5% .

3. Moerbeek’s Experimental Design in Multilevel Logistic Models with Binary

Covariate

Moerbeek et al.[50] discussed the sample size and optimal level of randomization for 2-

level logistic models with binary covariate and with/out binary covariate interaction with

intervention. She gives the formula of variance for intervention by MQL1 derivation and

confirmed by PQL2 simulation. Based on the formula of variance for intervention, the

optimal randomization level is the individual level.
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1). Without Treatment and Covariate Interaction

In the 2-level linearized logistic model, the fixed effect is denoted in the matrix term, Xijβ.

The 2-level linearized logistic model without the covariate are denoted the same as 2-level

linearized logistic model with the covariate in the matrix form with different matrix elements.

The variance formulae for the intervention (β̂1) and binary covariate (β̂2) in a 2-level logistic

model without intervention and covariate interaction are summarized in Table II.4

Table II.4: Estimated var(β̂1) and var(β̂2) in 2-Level Logistic Model, Moerbeek et al[50]

Level of Level of
var(β̂1) var(β̂2)

treatment covariate

Individual Individual
((σ2

−−
+σ2

+−
)−1+(σ2

−++σ2
++)−1)−1

nN

((σ2
−−

+σ2
−+)−1+(σ2

+−
+σ2

++)−1)−1

nN

Individual Cluster
((σ2

−−
+σ2

+−
)−1+(σ2

−++σ2
++)−1)−1

nN

(nτ2+(σ2
−−

+σ2
−+)−1+(σ2

+−
+σ2

++)−1)−1

nN

Cluster Individual
(nτ2

µ0
+(σ2

−−
+σ2

+−
)−1+(σ2

−++σ2
++)−1)−1

nN

((σ2
−−

+σ2
−+)−1+(σ2

+−
+σ2

++)−1)−1

nN

Cluster Cluster
((σ2

−−
+σ2

+−
+2nτ2)−1+(σ2

−++σ2
+++2nτ2)−1)−1

nN

((σ2
−−

+σ2
−++2nτ2)−1+(σ2

+−
+σ2

+++2nτ2)−1)−1

nN

note: β1 and β2 denote intervention and covariate

note: τ is variance in the cluster level

note: n is the same size in the cluster

note: N is the cluster number

{π̂ij(1 − π̂ij)}−1 = σ2
ic,

In table II.3, σ2
ic, the level one residual, refer to {π̂ij(1− π̂ij)}−1. The i and c in σ2

ic refer

to intervention and covariate and take the sign of the value of intervention and covariate.

For example, σ2
ic will be σ2

++, if both intervention and covariate are coded as 1.

Assuming randomization at the individual level and or cluster, Moerbeek derives the

variance of Y ∗
ij using the MQL1 method and gives a table of variance for treatment and

covariates. She claims that the optimal level is the individual level, no matter the location

of the covariate and it is especially preferable when n and µ2
j are large. She confirms this

analytic result using a PQL2 simulation. Within the simulation, there are five design factors:

1) allocation of units is defined as (n,N), which equals (20,80), (40,40), or (80,20); 2)σ2
µj

as

.25, .5 or 1; 3) value of intercept as 0, 1, or 2; 4) estimate of intervention 0, .5, or 1; and
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5) estimate of covariate as 0, .5, or 1. The author performs simulations of 1000 datasets

for every combination(35 = 243) of the above five design factors and fits models to these

datasets using PQL2. She uses the sampling variance of parameters obtained from PQL2

divided by the variance derived from the MQL1 to get a correction factor. Comparing the

variance among the parameters, she confirms her analytic results from the MQL1 that the

optimal randomization level is the individual level.

2). With Treatment and Covariate Interaction

Similarly, she used MQl1 to derive the formula for the variance of interaction term, consider-

ing the intervention randomized at both the individual and cluster levels. She confirms her

conclusion that the optimal randomization level is the individual level by simulation results,

using PQL2.

In all of Moerbeek et al.’s work for balanced data , optimality was defined in terms of the

standard error of the intervention effect. They discussed optimal allocation that minimized

this standard error but did not specifically estimate power.
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F. FEIVESON’S METHOD TO SIMULATE POWER

Power is the probability that the null hypothesis will be rejected when it is false, given a

specified alternative and type one error. A simulation method using a classic hypothesis test

to estimate the power of complex models was outlined by Feiveson[15].

When the model is complex, the p value is an asymptotic approximation. Based on

a specific experimental design, one can specify the overall sample size, and sample size at

each level if a nested structure is applicable. The component of independent variables,

distribution of the dependent variable, the α value and the statistical method are defined for

a experiment. We will estimate the power with simulated data from the corresponding model

using multiple replications of the experimental scenario and simply calculate the proportion

of rejections as an estimate of the power.

The outline of Feiveson’s algorithm is:

I. Use the designated model to generate random outcome with

• A specified experimental design and sample size

• A value of X

• A parameter value that defines as the distribution of Y .

II. Run the designated model to generate random data.

III. Retrieve the p-value from the corresponding test statistics

IV. Repeat above steps a large number of times and save the p values for each iteration.

V. Estimate the power as the proportion of observed p-values ≤ α in across the iterations

Feiveson gives examples for t-tests, Possion regression, Cox regression, and rank sum

tests. The author indicated that this approach could be used for multilevel data but he

considered only single level data.
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III. METHODS

In an observational study, the sample size is known. In the Volpp study, the sample size and

racial distribution have been defined at each level. In this chapter, I extend the derivation

of Moerbeek et al. [45] to allow for unbalance both between and within sites. I derive the

analytic variance formulae for a fixed coefficient under unbalanced design in the two level RI

and RC logistic models. I will outline the analysis of the Volpp data[34][76] and evaluate the

analytic results by simulating outcome data based on the racial distributions in the Volpp

data. I will then simulate the post-hoc power to detect the fixed effect of black race on the

magnitude observed in this study. The variance of the race coefficient will be derived using

alternative parameterization of race, under several selected balanced and unbalanced design

scenarios (detailed in Appendix D.B).

A. DESIGN AND PARAMETERIZATION

1. Design Scenarios Considered

In this dissertation, I restricted my attention to a two-level logistic model. Because of

hierarchical data structure, the unbalanced design is complicated. Unbalanced design might

occur within and/or across sites. For instance, when we have the same sample size for each

site(n), we might see the same proportion of black patients (w) or a site-specific proportion

(wj). Alternatively, we might have site specific sample sizes (nj) with either the same or

a site-specific proportion of black patients within each site. In Table III.1, I describe the

notation for all the possible balanced and unbalanced design scenarios for the 2-level logistic
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model. Within this table, wj refers to the proportion of black patients at the jth site; w refers

to an assumed common race proportion across sites; nj refers to the total sample size for

the jth site; n refers to an assumed common sample size across sites; B∗ refers to the design

scenarios with the same sample size per site; U∗ refers to the design scenarios with a site

specific sample size; * indicates 1
2

for a balanced design within sites, w denotes an assumed

common site proportion, and wj denotes a for site-specific proportion of black patients.

Table III.1: Unbalanced Design Scenarios in a 2-level Model

Across Sites

Balance Imbalance

Within Sites

Balance wj = 1
2

B 1
2

U 1
2

Imbalance
wj = w 6= 1

2
Bw Uw

wj Bj Uj

2. Parameterization of Race

As we shown in Chapter 2, the generalized 2-level model can be written in matrix style as

model II.7

The Volpp study focuses on comparing 30 day mortality between white and black patients

within sites. Race, as a binary variable in the model, can be coded either as 1 and -1 (”Sum to

Zero” constraints), or as 1 and 0 (”Reference level” constraints), for black and white patients,

respectively. In Moerbeek’s work, 1 and -1 coding was used, which follows MIXOR’s coding.

I will use 1 and 0 coding in this dissertation, because MLwiN uses 1 and 0 coding and

I will use MLwiN to implement the simulation. Different codings of race yields different

parameter estimates with different interpretations. The parameter estimate of the black

race coefficient obtained using 0 and 1 coding will be twice that value of the corresponding

parameter obtained using the 1 and -1 coding. For interpretation, the main difference for

the race-specific mortality is that the reference level coding gives the black odds ratio(OR)

directly (relative to white patients). The sum to zero coding gives parameters that require

a linear transformation of to provide comparable ORs.
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a. Sum to Zero Constraints

We can write the 2-level RI models (III.1). β0 is the intercept term, which represents the

mean mortality in the population. β1 is the parameter estimate of black race. eβ1, the OR

of a black patient, represents the odds of black mortality to average mortality of pneumonia

patients at that site. xij is coded as 1 for black patients and -1 for white patients. εij is the

level 1 residual.

logitπij = β0 + β1xij + µ0j + εij (III.1)

The race-specific models will be (III.2) and (III.3) for blacks and whites.

Black only logitπij = β0 + β1 + µ0j + εij (III.2)

White only logitπij = β0 − β1 + µ0j + εij (III.3)

Comparing (III.2) and (III.3), the odds of mortality for a black patient relative to a white

patient at same site is e2β, for the sum to zero parameterization.

We can write the random coefficient model as III.4. In this equation, µ0j is the level 2

residual, which represents the variation within the jth site. µ1j is the level 2 variance of black

race(xij), which represent the black race and site interaction.

logitπij = β0 + β1xij + µ0j + µ1jxij + εij (III.4)

The race specific models for the RC model will be (III.32) and (III.33) for blacks and

whites, respectively.

Black only logitπij = β0 + β1 + µ0j + µ1j + εij (III.5)

White only logitπij = β0 − β1 + µ0j − µ1j + εij (III.6)
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b. Reference level Constraints

When we code black patients as xij = 1 and white patients as xij = 0 for β1, the model

will the same as III.1, except that the intepretation of β1 is different. The race specific models

can be written as in equation (III.7) and (III.8) for black and white patients, respectively.

Black only logitπij = β0 + β1 + µ0j + εij (III.7)

White only logitπij = β0 + µ0j + εij (III.8)

The race specific RC models will be (III.9) and (III.10) for black and white patients,

respectively.

Black only logitπij = β0 + β1 + µ0j + µ1j + εij (III.9)

White only logitπij = β0 + µ0j + εij (III.10)

In the above four models, β0 is the intercept term, which represents the average mortality

for white veterans; β1 is the parameter estimate of race; eβ1 is the OR of 30 day mortality

for black patients relative to white patients at the same site. Both εij and µ0j have the same

interpretation as in the sum to zero parameterization.
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B. VARIANCE DERIVATION

We usually write RI and RC logistic models as in (III.1) and (III.4). If the outcome variable

is not normal and the error term is assumed to be normal, linearization is required for

the 2-level logistic model to transform these two components into approximately normal

distributed variable. Quasi-likelihood estimation can be applied to the linearized model to

obtain the variance of fixed effects. As shown in Chapter (in Section II.D.2.a), MQL1 assumes

that estimate of the random effect from previous iteration is 0. This avoids complicated

calculations related to the random parts, which simplifies the derivation of the variance of

fixed effects.

1. Variance of the Black Coefficient Under Sum to Zero Constraints

a. RI Model

By applying the linearized 2-level logistic model from (II.24) to the RI model (III.1), the

linearized 2-level RI model can be written as

y∗
ij = β0 + β1xij + µ0j + ε∗ij (III.11)

Therefore, the race specific models will be (III.12) and (III.13) for black patients and white

patients, respectively.

y∗
ij = β0 + β1 + µ0j + ε∗ij Black (III.12)

y∗
ij = β0 − β1 + µ0j + ε∗ij White (III.13)

From now on, any subscripts in the mathematics notation will follow below notation. ”.”

is refers to any number in ith individual or (jth cluster); B refers to black patients; and W

refers to white patients. .

The average mortality for black patients (Ŷ ∗
..B) in the RI model will be

ȳ∗
..B = β0 + β1 + ε̄∗..B (III.14)
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The average mortality for white patients in the RI model will be

ȳ∗
..W = β0 − β1 + ε̄∗..W . (III.15)

Consequently, I get a GLS estimates of β̂1 (detailed in Appendix D.C) as

β̂1 =
ȳ∗

..B − ȳ∗
..W

2

=

∑N
j=1

PnjB
i=1 ε∗ijB

njB
− ∑N

j=1

Pnjw
i=1 ε∗ijW

njW

2N

=
ε̄∗..B − ε̄∗..W

2
(III.16)

By following Moerbeek’s notation, I denoted the estimated variance as var(β̂1). The

estimated variance of β̂1 is

var(β̂1) = var(
ε̄∗..B − ε̄∗..W )

2
)

=

(
PN

j=1 njB)σ2∗
εijB

(
PN

j=1 njB)2
+

(
PN

j=1 njW )σ2∗
εijW

(
PN

j=1 njW )2

4

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4
(III.17)

By applying (II.27), the race specific variance of residuals are (III.19) and (III.18) for

black and white patients, respectively.

var(ε∗ijB) = 2 + e−(β0+β1) + e(β0+β1) Black (III.18)

var(ε∗ijW) = 2 + e−(β0−β1) + e(β0−β1) White (III.19)

For condition B 1
2
: When the experimental design is balanced both across sites and within

sites, the sample size for each site is
∑N

j=1 nijB =
∑N

j=1 nijW = M
2
. As a result, the variance

of the fixed coefficient of black race is

var(β̂1) =

σ2∗
εijB
M
2

+
σ2∗

εijB
M
2

4

var(β̂1) =
1
2
(σ2∗

εijB
+ σ2∗

εijW
)

M

(III.20)
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Following Moerbeek’s notation on δ2 (as shown in Table II.3), the variance can be written

as var(β1) = δ2

M
.

For condition Bw̄: The sample size is the same across the sites, i.e. n1 = n2 = · · · = nj = n

and the site specific black proportion(as site-specific weight, wj) is the same across site, ie.

wj = w̄ 6= 1
2
. The race specific total population number is

N∑

j=1

njB =

N∑

j=1

wjnj =

N∑

j=1

w̄n = w̄nN = w̄M

N∑

j=1

njW =
N∑

j=1

(1 −wj)nj =
N∑

j=1

(1 − w̄)n = (1 − w̄)nN = (1 − w̄)M. (III.21)

Therefore, the variance of the fixed coefficient for black race is

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=

σ2∗
εijB

w̄M
+

σ2∗
εijW

(1−w̄)M

4

=
(1 − w̄)σ2∗

εijB
+ w̄σ2∗

εijW

4w̄(1 − w̄)M
(III.22)

For condition Bwj : In this scenario, I assume the same sample size across sites ( n1 =

n2 = · · · = nj = n), but a site specific weight is wj = wj for jth site. The race specific total

population number is

N∑

j=1

njB =
N∑

j=1

wjnj = n
N∑

j=1

wj and

N∑

j=1

njW =
N∑

j=1

(1 −wj)nj = n
N∑

j=1

(1 − wj). (III.23)
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for black and white patients, respectively. The variance of the fixed coefficient for black race

is

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=

σ2∗
εijB

n
PN

j=1 wj
+

σ2∗
εijW

n
PN

j=1(1−wj )

4

=

σ2∗
εijB

n
PN

j=1 wj
+

σ2∗
εijW

n(N−PN
j=1 wj )

4

=
(N −

∑N
j=1 wj)σ

2∗
εijB

+
∑N

j=1 wjσ
2∗
εijW

4n(N − ∑N
j=1 wj)

∑N
j=1 wj

(III.24)

When the sample sizes are the same across sites, the variance of the fixed coefficient for

black race in the RI model are summarized in Table III.2.

Table III.2: Var(Black) in the RI model with Equal Sample Size Across N Sites, and Different

Sample Sizes within Sites and Sum to Zero Coding for Race

Weight(wj) Var(Black)

1
2

1
2
(σ2∗

εijB
+σ2∗

εijW
)

M

w̄ 6= 1
2

(1−w̄)σ2∗
εijB

+w̄σ2∗
εijW

4w̄(1−w̄)M

wj

(N−
PN

j=1 wj )σ2∗
εijB

+
PN

j=1 wjσ2∗
εijW

4n(N−
PN

j=1 wj )
PN

j=1 wj

Note: σ2∗
εijB

= 2 + e−(β0+β1) + e(β0+β1)

and σ2∗
εijW

= 2 + e−(β0−β1) + e(β0−β1)

M is total sample size

For condition U 1
2
: In this scenario, I assume unequal site specific sample sizes (n1 6= n2 6=

· · · 6= nj, not necessarily all unequal) with the same proportions of black and white patients
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at each site. The jth site sample size is njB = njW =
nj

2
, nd the race specific sample sizes are

N∑

j=1

njB =

N∑

j=1

1

2
nj =

1

2

N∑

j=1

nj =
M

2
black, and

N∑

j=1

njW =
N∑

j=1

1

2
nj =

1

2

N∑

j=1

nj =
M

2
white.

(III.25)

As a result, the formula in (III.17) can be written as

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

var(β̂1) =

σ2∗
εijB
M
2

+
σ2∗

εijB
M
2

4

(III.26)

For condition Uw̄: In this scenario, sample size vary by site (n1 6= n2 6= · · · 6= nj, not

necessarily all unequal) with the same proportion of black patients at each site (wj = w̄).

The race specific populations are

N∑

j=1

njB =
N∑

j=1

w̄nj = w̄
N∑

j=1

nj = w̄M and

N∑

j=1

njW =
N∑

j=1

(1 − w̄)nj = (1 − w̄)
N∑

j=1

nj = (1 − w̄)M

(III.27)

for black and white patients, respectively. As a result, the variance of the fixed coefficient of

black race is

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=
(1 − w̄)σ2∗

εijB
+ w̄σ2∗

εijW

4w̄(1 − w̄)M
(III.28)
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For condition Uj : The site specific sample size is n1 6= n2 6= · · · 6= nj (not necessarily all

unequal) and the site specific weights vary (wj). The site-specific populations are

N∑

j=1

njB =
N∑

j=1

wjnj and

N∑

j=1

njW =

N∑

j=1

(1 − wj)nj , (III.29)

for black and white patient, respectively. Variance will be derived as

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=

σ2∗
εijBPN

j=1 wjnj
+

σ2∗
εijWPN

j=1(1−wj )nj

4

=

σ2∗
εijBPN

j=1 wjnj
+

σ2∗
εijW

(
PN

j=1 nj−
PN

j=1 wjnj)

4

=

σ2∗
εijBPN

j=1 wjnj
+

σ2∗
εijW

M−
PN

j=1 wjnj

4

=
(M −∑N

j=1 wjnj)σ
2∗
εijB

+ (
∑N

j=1 wjnj)σ
2∗
εijW

4(M −
∑N

j=1 wjnj)
∑N

j=1 wjnj

. (III.30)

Consequently, I have a site specific sample size under different weight scenarios, I can

calculate the variance of race in the RI model as shown in Table III.3.

b. RC Model In the RC model, the linearized model can be written as (III.31)

Y∗
ij = β0 + β1xij + µ0j + µ1jxij + ε∗ij. (III.31)

The race specific RC models will be (III.32) and (III.33) for black and white patients, re-

spectively.

Y∗
ij = β0 + β1 + µ0j + µ1j + ε∗ij (III.32)

Y∗
ij = β0 − β1 + µ0j − µ1j + ε∗ij (III.33)
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Table III.3: Var(Black) in the RI model with Unequal Sample Sizes Across Sites, and Sum

to Zero Coding for Race

Weight(wj) Var(Black)

1
2

1
2
(σ2∗

εijB
+σ2∗

εijW
)

M

w̄ 6= 1
2

(1−w̄)σ2∗
εijB

+w̄σ2∗
εijW

4w̄(1−w̄)M

wj

(M−
PN

j=1 wjnj )σ2∗
εijB

+(
PN

j=1 wjnj)σ2∗
εijW

4(M−
PN

j=1 wjnj )
PN

j=1 wjnj

Note: σ2∗
εijB

= 2 + e−(β0+β1) + e(β0+β1)

and σ2∗
εijW

= 2 + e−(β0−β1) + e(β0−β1)

M is total sample size

Consequently,

Y∗
..B = β0 + β1 + ε∗..B black (III.34)

Y∗
..W = β0 − β1 + ε∗..W white (III.35)

The GLS estimate of β̂1 is

β̂1 =
ȳ∗

..B − ȳ∗
..W

2

=

∑N
j=1

PnjB
i=1 y∗ijB

njB
− ∑N

j=1

PnjB
i=1 y∗ijW

njW

2N

=
ε̄∗..B − ε̄∗..W

2
+ µ̄1j

=

∑N
j=1

PnjB
i=1 ε∗..B
njB

− ∑N
j=1

PnjB
i=1 ε∗..W
njW

2N
+ µ̄1j

(III.36)
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The variance of β̂1 is

var(β̂1) = = var(
β0 + β1 + ε̄∗..B − (β0 − β1 + ε̄∗..W )

2
) + var(µ̄1j)

=

(
PN

j=1 njB)σ2∗
εijB

(
PN

j=1 njB)2
+

(
PN

j=1 njW )σ2∗
εijW

(
PN

j=1 njW )2

4
+

σ2
µ1

N

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4
+

σ2
µ1

N

(III.37)

By comparing the variance formula in the RI model (III.17) to the RC model (III.37), the

only difference is the additional term
σ2

µ1

N
, the level two residual term. As a result, when I

have the same sample size across sites, the variance of the fixed coefficient of black race in

the RC model is summarized in Table III.4 under different weight scenarios.

Table III.4: Var(Black) in the RC model with Equal Sample Sizes Across N Sites, and

Different Sample Sizes within Sites and Sum to Zero Coding for Race

Weight(wj) Var(Black)

1
2

1
2
(σ2∗

εijB
+σ2∗

εijW
)

M
+

σ2
µ1

N

w̄ 6= 1
2

(1−w̄)σ2∗
εijB

+w̄σ2∗
εijW

4w̄(1−w̄)M
+

σ2
µ1

N

wj

(N−PN
j=1 wj)σ2∗

εijB
+

PN
j=1 wjσ2∗

εijW

4n(N−
PN

j=1 wj)
PN

j=1 wj
+

σ2
µ1

N

Note: σ2∗
εijB

= 2 + e−(β0+β1) + e(β0+β1)

and σ2∗
εijW

= 2 + e−(β0−β1) + e(β0−β1)

M is total sample size

The corresponding variance for the RC logistic model are shown in Table III.5in, when

the sample sizes vary by site.
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Table III.5: Var(Black) in the RC model with Unequal Sample Sizes Across Sites and Sum

to Zero Coding for Race

Weight(wj) Var(Black)

1
2

1
2
(σ2∗

εijB
+σ2∗

εijW
)

M
+

σ2
µ1

N

w̄ 6= 1
2

(1−w̄)σ2∗
εijB

+w̄σ2∗
εijW

4w̄(1−w̄)M
+

σ2
µ1

N

wj

(M−
PN

j=1 wjnj )σ2∗
εijB

+(
PN

j=1 wjnj)σ
2∗
εijW

4(M−
PN

j=1 wjnj )
PN

j=1 wjnj
+

σ2
µ1

N

Note: σ2∗
εijB

= 2 + e−(β0+β1) + e(β0+β1)

and σ2∗
εijW

= 2 + e−(β0−β1) + e(β0−β1)

M is total sample size
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2. Variance of the Fixed Efficient of Black Race Under Reference Level Coding

a. RI Model

The linearized RI models are shown to be the same under both sum to zero and reference

level parameterizations of race with different statistics interpretations. The linearized RI

model for black is the same as (III.12), because blacks are coded as 1 in both. The linearized

RI model for whites can be written as

y∗
ij = β0 + µ0j + ε∗ij (III.38)

The average mortality for blacks in the RI model is

y∗
..B = β0 + β1 + ε∗..B (III.39)

and the average mortality for whites in the RI model is

y∗
..W = β0 + ε∗..W (III.40)

Therefore, the GLS estimate of β̂1 is

β̂1 = ȳ∗
..B − ȳ∗

..W

=

∑N
j=1

PnjB
i=1 ε∗ijB

njB
− ∑N

j=1

PnjW
i=1 ε∗ijW

njW

N
(III.41)

The β̂1 in reference level coding is double the value of β̂1 in the sum to zero coding. For

the reference level coding, the variance in each design scenario is four times the value of the

corresponding variance in the sum to zero coding. When I have same sample size across sites

under different weight scenarios, we can calculate the variance of race in the RI model as

shown in Table III.6.
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Table III.6: Var(Black) in the RI model with Equal Sample Sizes Across N Sites and Different

Patterns of Sample Sizes within Site, Under Reference Level Coding for Race

Weight (wj) Var(Black)

1
2

2(σ2∗
εijB

+σ2∗
εijW

)

M

w̄ 6= 1
2

(1−w̄)σ2∗
εijB

+w̄σ2∗
εijW

w̄(1−w̄)M

wj

(N−PN
j=1 wj )σ2∗

εijB
+

PN
j=1 wjσ2∗

εijW

n(N−
PN

j=1 wj )
PN

j=1 wj

Note: σ2∗
εijB

= 2 + e−(β0+β1) + e(β0+β1)

and σ2∗
εijW

= 2 + e−(β0−β1) + e(β0−β1)

M is total sample size

b. RC Model

The linearized RC models are the same under both race codings. The black linearized RC

model is the same as (III.32), because blacks are coded as 1 in both codings. The linearized

RC model for whites can be written as (III.34)

Y∗
ij = β0 + µ0j + ε∗ij. (III.42)

The average mortality for blacks in the RI model will be

Y∗
..B = β0 + β1 + ε∗..B. (III.43)

Similarly, the average mortality for white patients in the RI model will be

Y∗
..W = β0 + ε∗..W . (III.44)

Therefore, the GLS estimate of β̂1 is

β̂1 = ȳ∗
..B − ȳ∗

..W

=

∑N
j=1

PnjB
i=1 ε∗ijB

njB
−

∑N
j=1

PnjB
i=1 ε∗ijW

njW

N
+ µ̄1j (III.45)
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Table III.7: Var(Black) In the RI model with Unequal Sample Sizes Across Sites, Under

Reference Level Coding for Race

Weight (wj) Var(Black)

1
2

2(σ2∗
εijB

+σ2∗
εijW

)

M

w̄ 6= 1
2

(1−w̄)σ2∗
εijB

+w̄σ2∗
εijW

w̄(1−w̄)M

wj

(M−PN
j=1 wjnj )σ2∗

εijB
+(

PN
j=1 wjnj )σ2∗

εijW

(M−
PN

j=1 wjnj)
PN

j=1 wjnj

Note: σ2∗
εijB

= 2 + e−(β0+β1) + e(β0+β1)

and σ2∗
εijW

= 2 + e−(β0−β1) + e(β0−β1)

M is total sample size

The β̂1 in reference level coding is double the value of the sum to zero coding. The variance

in each design scenario will be four times the value of the related variance in sum to zero

coding. The design scenario specific variances of the race coefficient are summarized as fol-

lows. When I have the same sample size across sites under different weight scenarios, I can

calculate the variance of race in the RC model as shown in Table III.8. When I have a site

specific sample size under different weight scenarios, I can calculate the variance of race in

the RC model as shown in Table III.9.

The variance under reference level constraints is illustrated to the Volpp study to obtain

the analytic variance. A ratio of analytic variance to the empirical variance is used to

evaluate the analytic formulae.
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Table III.8: Var(Black) in the RC model with Equal Sample Sizes Across N Sites and

Different Patterns of Sample Sizes within Site , Under Reference Level Coding for Race

Weight (wj) Var(Black)

1
2

2(σ2∗
εijB

+σ2∗
εijW

)

M
+

σ2
µ1

N

w̄ 6= 1
2

(1−w̄)σ2∗
εijB

+w̄σ2∗
εijW

w̄(1−w̄)M
+

σ2
µ1

N

wj

(N−
PN

j=1 wj )σ2∗
εijB

+
PN

j=1 wjσ2∗
εijW

n(N−
PN

j=1 wj )
PN

j=1 wj
+

σ2
µ1

N

Note: σ2∗
εijB

= 2 + e−(β0+β1) + e(β0+β1)

and σ2∗
εijW

= 2 + e−(β0−β1) + e(β0−β1)

M is total sample size

Table III.9: Var(Black) In the RC model with Unequal Sample Sizes Across Sites, Under

Reference Level Coding for Black

Weight (wj) Var(Black)

1
2

2(σ2∗
εijB

+σ2∗
εijW

)

M
+

σ2
µ1

N

w̄ 6= 1
2

(1−w̄)σ2∗
εijB

+w̄σ2∗
εijW

w̄(1−w̄)M
+

σ2
µ1

N

wj

(M−
PN

j=1 wjnj )σ2∗
εijB

+(
PN

j=1 wjnj )σ2∗
εijW

(M−
PN

j=1 wjnj)
PN

j=1 wjnj
+

σ2
µ1

N

Note: σ2∗
εijB

= 2 + e−(β0+β1) + e(β0+β1)

and σ2∗
εijW

= 2 + e−(β0−β1) + e(β0−β1)

M is total sample size
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C. SUBSAMPLE SELECTION

The causes of racial disparities are not well understood. It may be that black and white

veterans may receive care at different VA sites; those sites that care disproportionately for

blacks may differ in terms of quality of care or clinical outcomes from other sites. The

objective in Jha’s study [34] was to determine the concentration of hospital care for black

veterans, the variability of outcomes overall and in terms of black/white differences, and

the degrees to which observed differences in mortality rates of blacks and whites vary in

accordance with the proportion of blacks treated.

To assess the impact of excluding states with relatively few black patients, I will define a

subsample of sites as in Jha et al.[34]. First, I calculate the total number of blacks discharged

from each hospital from FY1996 to 2002 in the entire data set. I count the length of time

each site was in existence, to account for mergers and closures within the study period.

For example, if a site only existed for 3 years and 3 months, I count the length as 3.25

years. After dividing the total number of black patients per site by the corresponding length

of time, I obtain the average annual number of black patient for each site over the study

period. Then, I rank VA sites from the lowest to the highest by the average annual number

of black patient hospitalizations. As in Jha et al.[34], sites are classified into quartiles of the

cumulative distribution of site-specific average annual volume of black patients.

All analyses will be limited to the sub-group of veterans younger than 65 years old and

hospitalized with pneumonia. This subgroup was chosen for two reasons: 1) pneumonia had

largest sample size across the six diagnostic conditions considered; and 2)the younger pneu-

monia patient data set had the maximum variance component of black race effect across all

six diagnostic conditions and both age groups. For the pneumonia veterans younger than

65 years old, the first quartile (Q1) includes 108 sites with no more than 24 average annual

black visits (Table I.1). There were 21 sites in Q2, 12 in Q3, and 9 in Q4. Kerft[36] has

reported a 30/30 rule of thumb for experimental design in a multilevel model. The recom-

mendation is that at least 30 sites and 30 individuals per site are needed to use multilevel

models. Therefore, I choose the 42 sites in Q2-Q4 (Q24), where 75% of black patients are

hospitalized, as a concentrated sample in this dissertation.
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D. HYPOTHESIS TESTING AND MODEL FITTING STRATEGIES

The same model fitting strategies will be used for the full sample and Q24 subsample.

Before explaining the model fitting strategies, I will clarify the definition of random effect

and the hypothesis test in the MLLM. Some authors[4][63] discuss the random slope as the

race interaction with site. To keep the terminology simple, I split the random slope into

two parts: the fixed effect and random effect of black race. The fixed effect of black race

represents the average difference in log odds between black and white veterans within sites.

The random effect of black race refers to the variation in the log odds associated with black

race across sites.

Goldstein [25] discussed the approximate Wald test for both fixed and random effects

(details in Section II.D.2) and has implement this method in MLwiN. I used this approximate

Wald test to perform the hypothesis test in this software. In the MLwiN, we can fit a model

and make hypothesis test in two ways 1) manually 2) by macro. Although both produce

exactly the same result, in the 2-level logistic model, the parameter estimates from one way

won’t be recognized by the other way. To fit the model and do hypothesis tests manually,

the MLwiN user Manual has step by step introduction[53]. To fit the model and perform the

hypothesis test, I give a sample macro in the Appendix F.C and F.D. Before performing the

hypothesis test, a contrast matrix needs to be defined in a free column for the corresponding

hypothesis test, using joint, ie joint c1 1 0 0 c1. The hypothesis test on the fix effect

and random effect is implement by function ftest and rtest. In the MLwiN, the parameter

estimates are stored in the specific box and cell. For example, in a 2-level unadjusted RI

model, ftest c1 will perform a hypothesis on the fixed effect of intercept term. Instead rtest

c1, will perform a hypothesis test on the level 2 residual of site.

A standard Chi square with 1 degree freedom test is used to test the fixed effect of black

race, using a cut point of 3.84 for a two side 0.05 level test. A mixture Chi-2 test with 1

and 2 degrees of freedom is used for the test for a variance component, using a one-sided

0.05 level test. Because the variance components are always larger than 0, a one sided

0.05 level test is applied to Ho : σ2
µi

>= 0, a mixture Chi-2 distribution is suggested.[21]

using a cut off value 5.14. Because of mixture Chi-2 distribution applied to random effect
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hypothesis test estimates, only a range of P-value can be given. Estimation methods for

variance components is very limited, and is an active research area, I will accept Goldstein’s

Wald test to test variance components and will not perform any simulation on the variance

components.

The RIGLS PQL2 method will be used to implement the simulation study, because

this method can fit a model in several second and is the most accurate method within quasi-

likelihood estimation. However, the analytic variance formulae were derived using the MQL1

method. To compare the accuracy between the PQL2 and MQL1 methods in both study

populations, I will fit the same RI model using IGLS MQL1 and perform the same hypothesis

tests.

Model diagnostics are applied to test the normality of residual and identify outliers. A

caterpillar plot [25] for the site level will be applied to explore the site outliers and check the

normality simultaneously.

For the RI model, I will fit the model and do the hypothesis test using both the RIGLS

PQL2 and IGLS MQL1. Three hypothesis tests will be performed: 1) fixed effect of site, 2)

random effect of site, and 3) fixed effect of black race as well as model diagnostics.

For the RC model, I will fit the model and do the hypothesis test using both the RIGLS

PQL2 and IGLS MQL1 methods. Four hypothesis tests will be performed: 1) fixed effect of

site, 2) random effect of site, 3) fixed effect of black race, and 4) random effect of black race

as well as model diagnostics.

The outline of model fitting strategies for either the full data or Q24 data are shown as

below:

I. Fit the RI model using the RIGLS PQL2 method

A. Hypothesis test on fixed effects: site and black

B. Hypothesis test on random effect: site

C. Model diagnostics

II. Fit the RI model using the IGLS MQL1 method

A. Hypothesis test on fixed effects: site and black

B. Hypothesis test on random effects: site

C. Model diagnostics
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III. Fit the RC model using the RIGLS PQL2 method

A. Hypothesis test on fixed effects: site and black

B. Hypothesis test on random effects: site and black

C. Model diagnostics

IV. Fit the RC model using the IGLS MQL1 method

A. Hypothesis test on fixed effects: site and black

B. Hypothesis test on random effects: site and black

C. Model diagnostics

Another concern for the RC logistic model is whether the random slope term is sig-

nificantly different than zero. Conditional logistic regression is useful in investigating the

relationship between an outcome and a set of prognostic factors in matched case-control

studies, the outcome being whether the subject is a case or a control. The interaction

(group*intervention) can be used to check whether the site and race interaction exists across

the matched groups. From this conditional logistic model, we can assess whether the race

effect varies across sites, without assuming normality. Stata clogit function is applied to

fit this conditional logistic model with race and site interaction. Further more, the main

effect conditional logistic model and 2-level RI model will be fitted by Stata using Gaussian

Quadrature method. The estimate from Stata will be compared to PQL2 estimates from

MLwiN to check the accuracy of PQL2.
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E. SIMULATION METHODS

1. Simulation To Validate Analytic Results

In the section, I will apply Feiveson’s [15] power simulation method to estimate post-hoc

power in the simulation studies. Power is estimated by counting the proportion of rejection

in the hypothesis test in the 2000 iterations. The hypothesis tests for both the random and

fixed effects are Goldstein’s asymptotic Wald tests[25]. The simulation studies are based on

the observed site-specific racial distributions and parameter estimates obtained by fitting an

unadjusted MLLM including only a fixed effect for black race.

The objectives of simulation are to 1) obtain the sample mean variance and compare it to

the analytic results. 2) estimate the post-hoc power of black as a fixed coefficient in the RI

and RC models in the full data set and the Q24 data; 3) based on the observed site-specific

racial distributions in the pneumonia data, identify the effect size that can be detected with

80% power, with type one error 0.05 in a two-sided test.

2. Fit Unadjusted Model to the Volpp Data in Table IV.2 and Table IV.4

I need to fit the RI or RC model to one of the study populations to get the true parameter

estimates for these model. The outline to fit the unadjusted model is shown below. In the

Appendix F.C, the MLwiN macro syntax is attached for the following steps with detail

comments

I. Fit the RI (or RC) model using RIGLS PQL2

A. Read in the Pneumonia data

B. Set up the RI or RC model

C. Run the model

D. Copy empirical parameter estimate from c1096-c1099 to column c106-c109 (C1096

to C1099 store the parameter estimates in each model fitting. To avoid overlay of

the unadjusted parameter estimates of Volpp data, I reserve them in other location)

E. Erase column c1096-c1099, to clear the variance covariance structure to be ready for

simulation
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F. Save this worksheet containing the parameter estimates for the Volpp study

This provide the ”True” parameter values for the subsequent simulation. To make the

program efficient, I also defined the hypotheses contrast columns in this file. In the simulation

studies, the hypothesis test can be performed immediately.

3. Simulated on Outcome Data

From the parameter estimates(Xβ̂, Zµ̂) in Appendix III.E.2, I used the simulation function

(Simu) in MLwiN to simulate the random effect (Zµ) and prediction fixed effect function

(predict) to simulate the fixed effect(Xβ). Then, I apply an anti-logistic transformation

(1 + exp(−x)) to the simulated linearized probability (π̂∗ = Xβ̂ +Zµ̂). The simulated binary

outcome will follow the binomial distribution of bin(M, π̂). Lastly, I fit the model with a

dummy variable for black race using the new simulated outcome and conduct the hypothesis

tests. After completing 2000 iterations, I calculate the post-hoc power and sample mean

variance using SAS macro program. The simulation outline is show below and the detailed

MLwiN and SAS macro codes are shown in Appendix F.D and Appendix F.E, respectively.

I. Do below loops T=2000 times

A. Assign inital parameter estimates in column c1096- c1099 from c106-c109

B. Simulate estimates of fixed effect

C. Simulate estimates of random effect

D. Computer the linear predictor from the parameter estimates

E. Calculate the probability of response by using anti-log(Xβ + Zµ) transformation

F. Simulate the new binary response variable follow bin(n, π)

G. Fit the RI or RC model using this simulated response variable

H. Conduct the hypothesis test for the fixed and/or random effect of black race

I. Store the parameter estimates and hypothesis test result needed for variance and

power calculations.

II. Calculate the simulated power =
total number reject Ho

T

III. Calculate the mean simulated variance of the fixed effect of black race =
P

var(black)
T

IV. Calculate variance ratio= mean simulated variance
empircal variance
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Using the simulated variance ratio, a comparison between simulated variance and empir-

ical variance to assess how accurate my simulation algorithms are. The simulated variance

is collect all the variance from each replication to obtain the simulated mean variance. An-

other option is using simulated estimate variance, the variance of the parameter estimate.

In my dissertation, I use the simulated mean variance (as did Moerbeek). At the same, the

accuracy on the variance estimate is an important criteria in experimental design.

4. Detect Race Parameter Estimate as Fixed Effect to Obtain Power 0.8

The objective of this subsection is to find an appropriate range of fixed coefficients for race

in the 2-level logistic model that can be detected with approximating 80% power using the

racial distribution in a defined study population. In the above simulation algorithm, I will

replace the race parameter in Appendix 3.1.A. A from +/-0.1 to +/-0.9 using a grid 0.1.

For each designated parameter estimate, I will estimate the power. I will end the simulation

when the power approaches 80%. If the power reaches 80% between β1,Ho1 and β1,Ho2, I will

do further simulation between these values using grid 0.01. A plot of power vs. the log odds

ration can be drawn.

The modification to the above are shown below

1.A’ Replace the parameter estimate of black to the designated value β1,Ho, using grid 0.1

V. Restrict the range of [β1,Ho1, β1,Ho2] to values that bracket 80% power.

VI Do above step in the restricted range using grid 0.01
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IV. RESULTS

A. DESCRIPTIVE ANALYSIS OF PNEUMONIA PATIENTS YOUNGER

THAN 65 IN THE VOLPP STUDY

The Volpp study includes 37,111 hospitalizations for pneumonia patients younger than 65

years old from FY1996 to 2002 in 149 VA sites, nationally. This number excludes females,

Hispanics or other races, as well as non-veteran patients treated at those facilities or who

lived outside the 50 states, admissions to non-acute facilities, re-admissions within 30 days

with the same condition, and admissions after a hospital transfer. In the multilevel structure,

the cluster is the site and the individual level is the hospitalization. My study compares the

mortality within 30 day admissions for black patients with that of white patients. Black

race, coded as 1 for black and 0 for white, is the independent variable of primary interest.

Black race is considered as a fixed effect in the RI model and both fixed and random effects

in the RC model.

The racial distributions are dramatically unbalanced across sites, as shown in Table

IV.1. More than half (51.61%) of the patients overall were hospitalized in the 109 sites in

the lowest quartile of average annual black patient volume, i.e the sites where only 25% of

black patients were hospitalized. In the highest quartile, 25% of blacks were hospitalized at

only 9 sites. The geographic location for these sites are shown in Figure IV.1. The relative

proportion of black patients within sites increases by quartile with black comprising 13.08%

of hospitalizations in Q1 and 57.25% of hospitalizations in Q4. The quartile specific white

mortality is higher than the corresponding black mortality. Except for blacks in the highest

quartile, race specific and overall mortality increase with quartile.

By scanning the site and race specific mortality in all black and white pneumonia patients
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Table IV.1: Distribution of VA Sites by Quartiles of Black Volume for Black and White

Veterans Younger than 65 Years Old Hospitalized with Pneumonia, and corresponding 30-

day Mortality

Black Site Hospitalizations Black 30-Day Mortality

Quartile ∗ (N) (M) (%) Black White Overall

Q1 107 19,154 13.08 6.43 7.27 7.16

Q2 21 7,913 34.68 6.63 8.01 7.53

Q3 12 4,701 53.37 7.69 8.85 8.23

Q4 9 5,343 57.25 7.00 9.15 7.92

Total 149 37,111 29.15 6.93 7.71 7.49

* Ranked by site specific average annual black volume

younger than 65 years old, black mortality is zero at 49 sites (4989 hospitalizations), including

four sites (sites 18, 67, 77, and 88; total 44 hospitalizations in these four sites) with no black

or white mortality. Site 143 has no white deaths and one black death (13 hospitalizations)

and eight sites (2, 33, 60, 67, 72, 91, 137, and 145) with no black hospitalizations. All these

sites belong to the first quartile of average annual black patient volume. The remaining

44 sites have white mortality but no black mortality. These sites with no black and white

deaths (”Uniform cases” [4]) can lead to unreliable parameter estimates for the RI model or

conditional logistic model.

Figure IV.2 shows scatter plots of the site-specific total number of black patients vs.

the proportion of black patients at (a) overall 149 sites , (b) for the 42 sites in Q2-Q4, and

(c) by quartiles of black patient volume. These scatter plots show that sites with a greater

number of blacks tend to have a higher proportion of black patients, particularly in quartile

Q24. Some sites have a large proportion of black patients but few black patients, which

may be explained by site mergers or closures. Using pairwise correlation coefficient tests, all

the correlation coefficient are large than 0.99 (P < 0.001). Therefore, the site specific black

proportions are highly correlated to the corresponding numbers of black patients.
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Figure IV.1: Geographic Location for VA Sites by Quartiles of Average Annual Black Patient

Volume
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Figure shows average annual number of black patients vs. the proportion black in the

same format as in Figure IV.2. These plots shows the similar pattern to Figure IV.2. The

few discrepancies between total number of average annual volume are due to sites that were

not in existence in the entire study period. Using pairwise correlation coefficient tests, all

the correlation coefficient are large than 0.99 (P ¡0.001). Therefore, the site specific black

proportions are highly correlated to average annual black patient number in all above three

conditions.

The cumulative distributions of the site and race-specific patient numbers are shown

in Figure 4(a) for over all 149 sites and Figure IV.4(a) for the 42 sites in Q2-Q4. Figure

IV.IV.4 illustrates that 80% of black patients had been hospitalized in sites with no more

than 117 black patients. Only six sites have more than 300 hospitalizations of black patients

for pneumonia annually (on average), three sites have more than 400, and one site has more

than 500. In contrast, 80% of white patients had been hospitalized at sites with fewer

than 283 annually (on average) hospitalizations; twenty-one sites had more than 300 white

hospitalizations, eight sites had more than 400, and three had more than 500. Figure IV.4(b)

shows the corresponding cumulative distributions for 42 sites in Q2-Q4. The cumulative

distributions are much less disparate when the sites with relatively few blacks are excluded.

The above results demonstrate the dramatic racial imbalance at these sites. To examine

how imbalance will affect the experimental design. I will do the analysis on both the entire

population and patients hospitalized at the most concentrated sites (Q2 to Q4). I will

compare the observed unbalanced design with the relativing more balanced design.
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Figure IV.2: Scatter Plot of Site-Specific Total Black Patient Number vs. Proportion Black

(a) Over All 149 Sites, (b) For the 42 Sites in Q24, and (c) by Quartile of Black Patient

Volume
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Figure IV.3: Scatter Plot of Site-Specific Average Annual Black Patient Number vs. Pro-

portion Black (a) Over All 149 Sites, (b) For the 42 Sites in Q24, and (c) by Quartile of

Black Patient Volume
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Figure IV.4: Race Specific Cumulative Distributions vs. Race and Site-Specific Total Num-

bers of Patients Aged Less Than 65 Years Old with Pneumonia (a) Over All 149 Sites and

(b) for Quartile 2-4
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B. PARAMETER ESTIMATION

1. Model Fitting, Entire Population

Without any adjustment, the estimated race specific 30 day mortality is 6.9% for blacks

and 7.7% for whites, with a 0.89 odds ratio for black relative to white veterans. I fit the

RI and RC models using the RIGLS PQL2, which is optimal within the quasi-likelihood

approximation methods.

Table IV.2 and Table IV.3 summarize the estimate log odds of 30-day mortality for black

relative to white veterans in a two-level logistic model using PQL2 and MQl1, respectively.

Appendix E includes the images of the corresponding MLwiN results.

Table IV.2: Estimated Log Odds of 30-day Mortality for Black Veterans Relative to White

Veterans in 2-Level Logistic Models Fit Using PQL2, for Pneumonia Patients Younger Than

65

Model Parameter Fixed Effect Random Effect

Est. SE Chi-2 Est. SE Chi-2

RI
cons -2.52 0.03 0.05 0.01 13.67
black -0.11 0.05 5.67

RC
cons -2.51 0.03 0.04 0.01 7.28
black -0.16 0.06 6.65 0.09 0.05 4.08

Note: The cut point for the fixed effect is 3.84 as chi
2

1,0.05
and for random effect is 5.14

by using a mixture of Chi-Square distributions of chi
2

1,0.05
and chi

2

2,0.05

In Table IV.2, the Chi2 statistic for the random effect of the hospitals is 7.28, which is

larger than the cut off value of the mixture Chi21,0.05 and Chi22,0.05, 5.14. Therefore, both the

RI and RC logistic models indicate significant site to site variation in mortality (P < 0.001)

for the random intercept term. For the fixed effect of black race, the ORs of blacks are

0.89 (e−0.11) and 0.86 (e−0.16) relative to whites for the RI and RC models, respectively.

The corresponding Chi2 statistics are 5.67 and 6.65. Both Chi2 statistics are larger than

the cut off value chi21,0.05, 3.84. Black veterans have lower mortality than white veterans

hospitalized in the same site(P=0.017). The random effect of black race does not show

significant variation in the OR of blacks across sites (Chi2=4.08<5.14).

Corresponding MQL1 results are shown in Table IV.3. The MQL1 method assumed that
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Table IV.3: Estimated Log Odds of 30-day Mortality for Black Veterans Relative to White

Veterans in 2-Level Logistic Models Fit Using MQL1, for Pneumonia Patients Younger Than

65

Model Parameter Fixed Effect Random Effect

Est. SE Chi-2 Est. SE Chi-2

RI
cons -2.48 0.02 0.00 0.00 #
black -0.12 0.04 6.72

RC
cons -2.49 0.03 0.04 0.014 7.45
black -0.12 0.06 3.50 0.11 0.05 5.01

# no estimate exists for this term
Note: The cut point for the fixed effect is 3.84 as chi

2

1,0.05
and for random effect is 5.14

by using a mixture of Chi-Square distributions of chi
2

1,0.05
and chi

2

2,0.05

the variance components are 0 in the previous iteration step. The parameter estimates in

the Volpp study indicate that the MQL1 may not be a good estimation method for these

data. The MQL1 parameter estimates for other terms are similar to the PQL2 results,

yielding the same conclusions as for PQL2. There exist variation in mortality both within

and across sites. Black patients have significantly lower mortality than white patients within

sites. There is no significant variation in the OR for black race across sites.

2. Model Fitting, Site Q2-Q4

The Q2-Q4 sub-sample focuses on the sites where the majority of black patients are hospi-

talized. Results for the subsample, which includes in 42 sites with 17,957 hospitalizations,

are shown in Table IV.4 and Table IV.5 for the RI and RC logistic models using PQL2 and

MQL2, respectively.

From PQL2 estimation, the race specific mortality varies significantly across sites in the

RI model (Chi2=5.11> 3.84). Similarly, the race specific mortality varies significantly across

sites in the RI model fit using MQL2 (Chi2=4.94> 3.84). Blacks show significantly lower

mortality than whites within the same site (log odds=-0.13 with OR=0.88 for both PQL2

and MQL1 estimates).

In the RC model, the race specific mortality varies significantly across sites for both the
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PQL2(Chi2=9.01> 5.14) and MQL1(Chi2=9.21> 5.14) methods. The log OR for black race

is more extreme using PQL2 (log OR=-0.19, OR=0.83) than the log OR= -0.14 (OR=0.87)

using MQL1. The log OR for the fixed effect black race is non-significant in the MQL1

method (OR=-0.14, Chi2=2.87 < 5.14), but is significant(OR=-0.19, Chi2=5.59 > 5.14)

using PQL2. Corresponding standard error estimate using PQL2 (Table IV.4) and MQL1

(Table IV.5) are equal to at least two decimal places.

Table IV.4: Estimated Log Odds of 30-day Mortality for Black Veterans Relative to White

Veterans in 2-Level Logistic Models Fit Using PQL2, for Pneumonia Patients Younger Than

65 in Q2−Q4

Model Parameter Fixed Effect Random Effect

Est. SE Chi-2 Est. SE Chi-2

RI
cons -2.44 0.06 0.07 0.02 9.01
black -0.13 0.06 5.11

RC
cons -2.42 0.05 0.04 0.02 3.17
black -0.19 0.08 5.59 0.12 0.06 4.00

Note: The cut point for the fixed effect is 3.84 as chi
2

1,0.05
and for random

effect is 5.14 by using a mixture of Chi-Square distributions (chi
2

1,0.05
and chi

2

2,0.05
)

Table IV.5: Estimated Log Odds of 30-day Mortality for Black Veterans Relative to White

Veterans in 2-Level Logistic Models Fit Using MQL1, for Pneumonia Patients Younger Than

65, sites in Q2−Q4

Model Parameter Fixed Effect Random Effect

Est. SE Chi-2 Est. SE Chi-2

RI
cons -2.41 0.06 0.07 0.02 9.21
black -0.13 0.06 4.94

RC
cons -2.40 0.05 0.04 0.02 3.09
black -0.14 0.08 2.87 0.12 0.06 4.36

Note: The cut point for the fixed effect is 3.84 as chi
2

1,0.05
and for random

effect is 5.14 by using a mixture of Chi-Square distributions (chi
2

1,0.05
and chi

2

2,0.05
)

3. Test Race and Site Interaction in Conditional Logistic Regression

For the conditional logistic model using the full pneumonia data, the uniformity[4] that exists

for 49 sites with no variation in race-specific outcome leads to infinite parameter estimates.
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The estimates from the conditional logistic model with site by race interaction term are

unreliable with many infinite parameters. The output consumes more than 100 pages, I

selected partial results (in Appendix F.G). The Chi2 test for the interaction term between

sites and race is 110.49 (P=0.95 df=136). There is no significant interaction between race

and site. In the Q2-Q4 data the uniform sites have been excluded, which leads to reasonable

parameter estimates with a reliable Chi2 test of the interaction terms. The Chi2 test for

the interaction term between sites and race is 60.71 (P=0.02, df=41) indicating a significant

interaction in this subset of sites.

4. Model Diagnostics for MLwiN Models

A caterpillar plot[25] displays the residuals in ascending order with their 95% confidence

limits. The site specific 95% CI plot will not overlay the central line (y=0), when there are

poorly fitted sites. In the RI model for the full data set(Figure IV.5), the outliers from the

left side to the right sites are 105(purple), 148 (yellow) , 127 (green), 24(blue), 73 (red).

These data are described in Table I.2. When the RC model is fit to the same data with

the same highlighted colors for the outliers as in RI model, the poorly fitted sites from the

left side to the right sites are 127 (green), 24(blue), 73 (red) (Figure IV.6). For the Q2-Q4

subsample in the RI model, there are no poorly fitted sites. In the RC model for the Q2-Q5

subsample, two poorly fitted sites (42 and 23) exist. All the above plots have a linear trend,

which supports the normality of these residuals.

The main effect conditional logistic model and the RI parameter estimates of race, using

both Stata and MLwiN PQL2, are shown in Table IV.6. The parameter estimates in the

RI model using Stata via numerical integration are virtually identical to those obtained in

MLwiN using PQL2. The parameter estimates from the conditional logistic model and RI

model are similar for the full data but somewhat less so in Q2-Q4.
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(a) RI (b) RC

Figure IV.5: Caterpillar Plot for the Full Data

(a) RI (b) RC

Figure IV.6: Caterpillar Plot for the Q2-Q4 Data
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Table IV.6: Estimated Log Odds of 30-day Mortality for Black Veterans Relative to White

Veterans in Logistic Models for Pneumonia Patients Younger Than 65 Years

Model Data β̂1 SE P Value log likelihood

Conditional logistic model (Stata)
full -0.12 0.05 0.02 -9418.40

Q24 -0.10 0.06 0.09 -4755.76

RI (Stata)
full -0.11 0.05 0.02 -9846.72

Q24 -0.14 0.06 0.02 -4906.90

RI (MLwiN)
full -0.11 0.05 0.02 #

Q24 -0.13 0.06 0.01 #

# the log likelihood estimates are crude in PQL2 and not available in MLwiN
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C. ANALYTIC VARIANCE OF THE FIXED EFFECT OF BLACK RACE

In this section, I evaluate the derived variance formulae (in Table III.6, III.7, III.9, III.8)

under different design scenarios based on the observed site specific race distribution as in

the Volpp data and the parameter estimates obtained using PQL2 (Table IV.2 and Table

IV.4) for over all data and subsample, respectively. For scenarios with balanced sample size

across sites in the entire population, the average sample size is n̄ = 37111/149 = 249.07

for each site. The average number of black patients per site is 72.60 and the average black

proportion is 22.22%. The sub-sample of 42 sites includes 17,957 patients with an average

of 197.91 blacks (46.96%) per site.

I calculated hypothetical site-specific sample sizes for all scenarios except the total unbal-

anced observed scenario (Uwj), based on features of the Volpp data. This was done separately

for the entire sample and subsample. For scenarios Bw̄ and Uw̄, which are balanced and un-

balanced scenarios with a common proportion of black veterans, I multiplied the assumed

average proportion black by the average sample size per site for Bw̄, and by the observed

site-specific sample size for Uw̄. Scenario Bwj has an assumed common sample size across

sites and site specific sample weights; scenario uwj has the observed site-specific distribu-

tion. For the scenarios with variable proportion black (Bwj and Uwj), I multiplied the site

specific proportions black by the approximate race specific denominator. These quantities

are summarized in Table IV.7.

Imbalance in the design increased variance of the fixed effect for both the RI and RC

model as shown in Table IV.8. It shows the analytic variance on assumed balanced scenarios

are 0.0016 and 0.0022 for RI and RC models, respectively, using full data and 0.0032 and

0.0060 for RI and RC model using subsample of 42 sites. Compared to the variance estimate

obtained by fitting th PQL2 model to these hypothetical data, the corresponding analytic

variances are 0.0022 and 0.0036 for RI and RC using all data, and 0.0035 and 0.0066 for RI

and RC in the subsample of 42 sites.

Using the derived analytic formula for fixed effect of black race (Table III.6, III.7, III.9,

III.8), I find the variance formulae for the fixed effect are the same for scenario B 1
2

as U 1
2
,

and Bw̄ as Uw̄. I then apply a site sample weight (black proportion) varying from 0.1 to
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0.9 with 0.1 grid. Table IV.9 shows the variance of the fixed effect black race in the entire

study for designs with the same proportions blacks, Table IV.10 shows comparable results

in the sub-sample of sites that hospitalized the majorities of black veterans. Moerbeek

compares the accuracy of her analytic variance formula by the ratio factor, defined as the

ratio of simulation sample mean variance divided by analytic variance. Instead, I compare

analytic ratio of the analytic variance to the true empirical variance. Using analytic ratio,

the simulation study is not required. In both Table IV.9 and Table IV.10, the minimum

variance is observed at 0.5, and increased in both directions away from 0.5. Relative to

the variance estimate obtained by fitting the PQL2 method to these hypothetical data, the

corresponding analytic variance is an underestimate for proportions black in the range of

0.3 to 0.7 in the RI model with ratios < 1, and is an overestimate for the more extreme

proportions for the full data set (Table IV.9). In the RC model, the analytic variance is

an overestimate only for the most extreme probabilities considered (0.1 and 0.9). For the

subsample, the analytic variance is an overestimate except balanced case (0.47, or 0.5). In

contrast, the analytic variance is an underestimate in the range of 0.4 to 0.7. For the more

extreme proportions, the more overestimate.

Scenario Bwj has an assumed common sample size across sites and site specific sample

weights (Table IV.11) and scenario Uwj has the observed site-specific distributions (Table

IV.12). The variance ratio furthest from unity in the RC models with site specific weights

for the entire data. As in the other scenarios considered, variances are smaller in the RI

model than the corresponding quantities in the RC model.

The variance estimates in Table IV.9 and Table IV.10 are summarized graphically in

Figure 7(a) for the full data and Figure 7(b) in the 42-site subsample. Extreme imbalance

has much more effect on the variance estimate in the subsample, which includes 28.2% of

sites.

Table IV.13 and Table IV.14 compare the analytic results (unbalanced everywhere and

unbalanced sample size with site specific proportions) to the MQL1 and PQL2 estimates for

the full data and subsample. Using the analytic variance with the same site-specific weight

or the imbalance ratio of the analytic variance and empirical variance using the true race

distribution can be used to quantify the effect of imbalance. In the full data, the RI model
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has a lower imbalance ratio than the RC model (1.10 vs. 1.33)for PQL2 (Table IV.13). In

contrast, the imbalance ratio are higher in the RC model for the Q2-Q4 subsample(>1.6 vs

1.1) for PQL2 (Table IV.14). Using the true race distribution, the imbalance ratios are 1 for

the full data in both RI and RC models. In the subsample, the imbalance ratios are 1.6 and

1.0 for RI and RC models, respectively. In the full data, we have a lot sites with extreme

race proportion. In the subsample, we have exclude the uniform sites to fit the multilevel

model better.

77



Table IV.7: Summary Information from the Volpp Data for the Var(Black) Calculation

Demographic Data Entire Sample Subsample

Number of patients (M) 37,111 17,957

Number of sites (N) 149 42

Average sample size per site (n) 249.07 427.55

Average black number (n̄jB =
∑

njB/N) 72.597 197.91

Average % Black (W̄ =
∑

pblack/N) 22.22 46.96

Parameter Estimates from PQL2

RI RC RI RC

β̂0 -2.517 -2.509 -2.439

β̂1 -0.113 -0.155 -0.134 -0.191

σ2
µ0

0.048 0.036 0.069 0.036

σ2
µ1

0.094 0.116
σ2

µ1

N
0.0063 0.0028

var(ε∗..B) 15.95 16.42 15.18 15.6186

var(ε∗..W ) 14.47 14.37 13.55 13.2791

Table IV.8: Empirical Variance and Assumed Balanced Analytic Variance

Var(Black) Entire Sample Subsample

RI RC RI RC

Analytic (balanced) 0.0016 0.0022 0.0032 0.0060

Empirical 0.0022 0.0036 0.0035 0.0066
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Table IV.9: Analytic Variance of the Fixed Effect of Black Race Assuming a Common

Percent Black Across Site (B 1
2
, Bw̄, U 1

2
, and Uw̄) in the Full Sample

Weight Var in RI Ratio Var in RC Ratio

0.1 0.00473 2.14 0.00549 1.52

0.2 0.00264 1.19 0.00333 0.92

0.22 # 0.00244 1.10 0.00312 0.86

0.3 0.00199 0.90 0.00266 0.73

0.4 0.00172 0.78 0.00238 0.66

0.5∗ 0.00164 0.74 0.00229 0.63

0.6 0.00169 0.76 0.00234 0.64

0.7 0.00191 0.86 0.00255 0.70

0.8 0.00249 1.12 0.00312 0.86

0.9 0.00438 1.18 0.00500 1.38

ratio= analytic variance
empirical variance

#: for Bwj and Uwj for scenario with common sample size

across site or observed Site Specific Weights

*: Empirical variance is 0.0022 and 0.0036 for RI and RC model

*: scenario B 1
2

or U 1
2
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Table IV.10: Analytic Variance of the Fixed Effect of Black Race Assuming a Common

Percent Black Across Site (B 1
2
, Bw̄, U 1

2
, and Uw̄) in the Sub-Sample

Weight Var in RI Ratio Var in RC Ratio

0.1 0.0093 2.85 0.0123 1.87

0.2 0.0052 1.59 0.0080 1.22

0.3 0.0039 1.20 0.0067 1.02

0.4 0.0034 1.03 0.0062 0.94

0.47 # 0.0032 0.99 0.0060 0.92

0.5∗ 0.0032 0.98 0.0060 0.91

0.6 0.0033 1.01 0.0061 0.93

0.7 0.0037 1.14 0.0065 0.99

0.8 0.0048 1.48 0.0075 1.14

0.9 0.0085 2.61 0.0111 1.69

ratio= analytic variance
empirical variance

#: for Bwj and Uwj for scenario with common sample size

across site or observed Site Specific Weights

*: Empirical variance is 0.0033 and 0.0066 for RI and RC model

*: scenario B 1
2

or U 1
2

Table IV.11: Variance with a Common Sample Size Across Sites and Observed Site-Specific

Weight(Wwj)

Data RI Ratio(%) RC Ratio

Full 0.0024 1.10 0.0031 0.86

Q2-Q4 0.0032 0.99 0.0060 0.91

ratio= analytic variance
empirical variance
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Table IV.12: Variance with an Observed Site-Specific Sample Sizes and Weights(Uwj)

Data RI Ratio RC Ratio

Full 0.0022 0.91 0.00266 0.73

Q2-Q4 0.0032 0.99 0.0060 0.91

ratio= analytic variance
empirical variance

RI model

RC model
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Figure IV.7: Analytic Variance of Fixed Effect of Black Race for the RI and RC Models

Under Different Scenarios for the a) Full Data and (b) 42-Site Subsample
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Table IV.13: Variance of Fixed Effect Black Race in Analytic (Uwj and Uw̄ and Quasi-

Likelihood Estimates, Full Data

Method var(black) Ratio to w̄

RI RC RI RC

PQL2 0.0022 0.0036 1.10 1.33

MQL1 0.0023 0.0036 1.15 1.33

Analytic(w̄j)** 0.0020 0.0027 1.00 1.00

Analytic(w̄)* 0.0020 0.0027 1.00 1.00

* use site specific weight

** use true race distribution

Table IV.14: Variance of Fixed Effect Black Race in Analytic (Uwj and Uw̄) and Quasi-

Likelihood Estimates, Q2-Q4 Subset

Method var(black) Ratio to w̄

RI RC RI RC

PQL2 0.0035 0.0066 1.75 1.10

MQL1 0.0035 0.0066 1.75 1.10

Analytic** 0.0032 0.0060 1.60 1.00

Analytic(w̄)* 0.0020 0.0060 1.00 1.00

* use site specific weight

** use true race distribution
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D. SIMULATION RESULTS

The results of the simulation study using the simulation methods in Chapter III.E will be

reported in this section. These results are based on the site-specific racial distribution in

Table I.2 for both the entire sample and the subsample of Q2-Q4. Both the 2-level RI and

RC logistic models were considered.

1. Comparison of Mean Simulated Variance to Empirical Variance

To evaluate the simulation algorithm, I compare the mean simulated variance in the RI

and RC logistic models for the full data set and 42 sites sub-sample to the corresponding

empirical estimates (Table IV.15). The simulated variance of the fixed effect black race is

close to the empirical variance in the RI logistic model for both populations, and in the RC

for the entire data set. For the RC logistic model using the 42 site subsample, the PQL2

estimates were reported in Table IV.4. During the simulation, an unknown convergence

problem occurred every 1-2 loops, which maybe due to the relatively small number of sites.

Another possible reason is the PQL2’s limitation. Convergence concerns have been reported

[45]. Except in this convergence problem, my simulation algorithm appears to be accurate.

Table IV.15: Mean Simulated Variance and Empirical Variance of Fixed Effect of Black Race

Estimates in Full Data and 42-Site Subsample

Data Set

Var(Black)

RI RC

Simulated Analytic Empirical Simulated Analytic Empirical

Full data 0.0023 0.0020 0.0022 0.0036 0.0027 0.0036

Q24 0.0035 0.0032 0.0035 N.E∗ 0.0060 0.0066

N.E. not estimable

Figure IV.8 and Figure IV.9 show histogram plots of simulated variances with a kernel

density estimate for the full data using the RI and RC models, respectively. Figure IV.9
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shows a histogram plot of simulation variance with a kernel density estimate for the Q2-Q4

subsample using the RI models. As mentioned above, the RC model has convergence prob-

lems and is not estimable. The kernel density estimate using the Epanechnikov Kernal is

implemented in Stata 9.2 SE. In the full data set, the histogram plots shows that the simu-

lated variances of the fixed effect of black race are centered around the empirical estimates

and are approximate normal(Figure IV.8 ). The RC model has a large variance compared

to the RI model (Figure IV.9). In the Q24 data, the simulated variances appear to have

a bimodal distribution (Figure IV.D.1). Comparing the analytic results to simulated mean

and empirical variance, the analytic results are downwardly biased. The center vertical line

in the above three histograms are the empirical variances in the corresponding scenarios.
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Figure IV.8: Simulated Variances of Fixed Effect of Black Race for Full Data Using the RI

Logistic Model (2000 iterations)

2. Power Issues

The post-hoc power to detect the empirical log odds of 0.0022 and 0.0036 for the RI model

is 65.5% for both the full data set and Q24, and 74.4% for the RC model with log odds of

0.0036 in the Q2-Q4 subsample.
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Figure IV.9: Simulated Variances of Fixed Effect of Black Race for Full Data Using the RC

Logistic Model (2000 iterations)

The following is the variance of race in three scenarios: 1) the RI model in full data; 2)

the RC model in full data; and 3) the RI model in the Q24, restricting the range of +/-0.1

to +/-0.2. To identify the black log ORs of mortality that can be detected with 80% power,

I run the simulation between this range with grid 0.01.

Figure 11(a) and Figure 11(b) summarizes the power plot for the full data when we

assume that blacks have better (Figure 11(a)) or worse (Figure 11(b)) mortality than whites

for both the RI and RC models. Figure 12(a) and Figure 12(b) summarize the power plot

of Q24 data when we assume the black have better (Figure 12(a)) or worse (Figure 12(b))

mortality than whites for the RI model. In the Figure 11(a) and Figure 12(a), I also plot

the vertical line of the true log Odds (B0) for RI and RC models, respectively.

Assuming blacks have a higher mortality than whites, 80% power will be obtained for a

log OR larger than: 1) 0.13 (OR=1.139) in the RI model for the full data; 2) 0.16 (OD=1.174)

in the RC model for the full data; 3) 0.16 (OR=1.174) in the RI model for the Q24 data.

Similarly, assuming blacks have a lower mortality than whites, 80% power will be obtained
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Figure IV.10: Simulated Variances of Fixed Effect for Black Race in 42 site subsample Using

the RI Logistic Models (2000 iteration)

for a log OR larger than: 1) -0.14 (OR=0.869) in the RI model for the full data; 2) -0.17

(OR=0.844) in the RC model for full data; 3)-0.17 (OR=0.844) in the RI model for the

Q24 data. For the same data set, the RI model has higher power to detect a specific OR.

When the distribution of black patients is concentrated in the Q2-Q4 subsample, the power

is somewhat lower to detect agiven OR than in the full sample. However, the sample size

also is considerably smaller.
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Figure IV.11: Log Odds Ratios that Can Be Detected with 80% Power in the RI and RC

models for Veterans Younger than 65 and Hospitalized with Pneumonia, All sites
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Figure IV.12: Log Odds Ratios that Can Be Detected with 80% Power in the RI and RC

models for Veterans Younger than 65 and Hospitalized with Pneumonia for Q2Q4
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V. DISCUSSION AND CONCLUSION

This dissertation focused on aspects of experimental design involving unbalanced data and

two level RI and RC logistic model. I extended explicit variance formulae for a fixed effect

in two level model for balanced binary data [45] to account for imbalance both between and

within clusters. The same analytic variance is obtained when one has either equal numbers

of observations per site and/or a constant proportion of black veterans across sites. The

observed racial imbalance both within and across sites increases the variance of the race

coefficient more in the RC model than in the RI model. Under a more balanced design, the

analytic variances are close to the mean variance from the simulation study. Compared to

PQL2, the analytic and simulated variances using MQL1 are severely downwardly biased with

smaller variance components. Extending from Feiverson’s algorithm[15] to estimate post-hoc

power, a simulation study using the site-specific racial distributions is used to ascertain the

log odds ratio for black race that can be detected with 0.80 power. The simulation variances

are virtually identical to the analytic variances for these data. For a given power, somewhat

smaller log odds ratios can be detected in the RI model than in the RC model.

The analytic formulae can be extended to any study using a two level logistic model

without covariates and the simulation algorithm can be extended to any multilevel model.

This simulation approach can be applied to design intervention studies by estimating the

power of a fixed effect under different of assumed parameters and variance components.

The MCMC or MC posterior 95% CIs for a two level RI model under both balanced[77]

and unbalanced[52] design can provide accurate parameter estimates, they are computation-

ally intensive. These Bayesian approaches offer only a rough range of parameter estimates

rather than specific parameter values in the two level RI model.

The RIGLS PQL2 method, although optimal within the quasi-likelihood approaches, is
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biased and has convergence problems. Compared to PQL2, the analytic variances using

MQL1 are severely downwardly biased with smaller variance components. In general, vari-

ance formulae derived from MQL1 are still good enough to plan an experimental design. I

limited my dissertation to a two level logistic model without a covariate. Covariates have

an effect on intervention through their effect on the unexplained variance. Therefore, we

should take covariates into account at the design stage. MLwiN uses Goldstein’s asymptotic

Wald test [25] to test fixed effect and variance component. Both parameter estimation and

hypothesis testing on variance components is an active research area [25][63]. Although to

analytic formulae and the simulation approach are general, some of the results are specific

to the imbalance structure observed in the Volpp study. In addition, very similar variance

components were observed in these data, so that the analytic formulae were not that affected

by differential weighting. Assessment of imbalance in other population of interest would be

worthwhile.

My future work can be 1) the unbalanced design in 2-level logistic model with covariates,

as an extension to the result of Moerbeek et al.[50] for balanced data with a binary covariate,

2) balanced and unbalanced design in MLLMs with more than two levels; and 3) parameter

estimation and hypothesis testing on the variance components in MLLMs.

My analytic formulae demonstrates that the imbalance structure has an impact on the

variance only when population are imbalance both within and across sites. These methods

provide a basics for planning multilevel studies when the site-specific population structure

is known. Methods that account for imbalance are particularly useful in studies of racial

disparities when populations typically are highly imbalance both within and across sites.

The derived formulas provide a basis for planning multi-center studies when a predictor

of primary importance is highly unbalanced both between and within sites. In studies of

racial disparities in health care, the site-specific population distributions are often known

from administrative data. These methods for unbalanced data may facilitate more effective

planning of public health relevant multi-center studies of racial disparities.
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APPENDIX A

DEFINITION OF ACRONYM

AHRQ The Agency for Healthcare Research and Quality

AMI Acute myocardial infarction

BDIC Bayesian deviance information criterion

BIRLS Beneficiary Identification Record Locator System File

CDSS Complete-data sufficient statistics

CHERP The Center for Health Equity Research and Promotion

CHF Congestive heart failure

DIC Deviance information criterion

EM Expectation-Maximization

FML Full maximum likelihood

GI Bleed Gastro-intestinal bleeding

GLS Generalized least squares

IGLS Iterative generalized least squares

MCMC Markov Chain Monte Carlo

MGLM Multilevel generalized linear model

MLE Maximum likelihood estimate

MLLM Multilevel logistic model

MLM Multilevel linear model

MQL Marginal quasi-likelihood estimate
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MQL1 First order of marginal quasi-likelihood estimate

MQL2 Second order of marginal quasi-likelihood estimate

NDI National Death Index

PQL Propensity quasi-likelihood estimate

PQL1 First order of propensity quasi-likelihood estimate

PQL2 Second order of propensity quasi-likelihood estimate

Q1 Lowest quartile of average annual black patient volume

Q2-Q4 Second to forth quartiles of average annual black patient volume

PTF Patient Treatment File

RC Random coefficient model

REML Residual(or Restricted) maximum likelihood

RI Random intercept model

RIGLS Restricted iterative generalized least squares

VA Veterans Affairs
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APPENDIX B

GLOSSARY

Cluster A grouping containing ’lower level’ elements

Design matrix The matrix of independent variables X and Z in the fixed or random part

Explanatory variable In the fixed part of the model, usually denoted by x

(independent variable) In the random part denoted by z

Fixed part Denoted by Xβ, it is the average relationship

Level A component of a data hierarchy. Level 1 is the lowest level

Level n variation The variation of level n unit measurements about the fixed part of a model

Nesting The clustering of units into a hierarchy

Random part Represented by Zµ as the contribution of the random variables

Unit An entity defined at a level of a data hierarchy
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APPENDIX C

MATHEMATICAL NOTATION

Definition Symbol

Y Response variable vector

X Explanatory variable design matrix

Xij Fixed part explanatory variable design matrix for a single unit in level 1

Xj Fixed part explanatory variable design matrix for a single unit in level 2

eij =
∑q1

h=0 ehijZ
(1)
hij Total residuals at level 1 in a 2-level model

µj =
∑q2

h=0 µhjZ
(2)
hj Total residuals at level 2 in a 2-level model

Z(1) Explanatory variable design matrix for level 1 random coefficients

Z(2) Explanatory variable design matrix for level 2 random coefficients

ŷij = Xijβ̂ = (Xβ̂)ij Predicted value from fixed part of model

ỹij = yij − ŷij Raw or total residual for level 1 unit

ỹj = 1
nj

∑nj

i=1 ŷij Mean raw residual for level 2 unit

ν̂j, êij Estimated residual or posterior residual estimate

Ωi, Ω = {Ωi} Covariance matrix of random coefficients at level i

() Group denoting vector or matrix of elements

Vk or V Covariance matrix of response vector for kth level model

Vk(i) or V(i) Contribution to covariance matrix of response vector from level i

vec(A) Vec operator on matrix

y
iid∼g Observation(y) independently and identically
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distributed with specified density function(g)

M Total sample size. Might written as
∑N

j=1

∑n
ji=1

nij or
∑N

j=1

∑njB

i=1 nijB +
∑N

j=1

∑njW

i=1 nijW

W White patients

t At tth iteration

t+1 At (t + 1)th iteration

j Site level, j = 1, . . . , N

i Individual level, i = 1, . . . , nj

njB Sample size for jth hospital, black patients only

njW Sample size for jth hospital, white patients only

nj Sample size for jth hospital

wj Site specific sample size weight

w 1
2

Assumed balanced weight within sites

w̄ Assumed common weight across sites
P

njBP
nj
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APPENDIX D

DERIVATION OF VARIANCE OF A FIXED EFFECT FOR RACE

In this appendix, I present step by step derivations on how to extend explicit variance

formulae of var(β1) for fixed effects in two-level balanced binary data[45][50]. This will

account for the imbalance both between and within sites. I restrict the derivation of variance

to a 2-level random intercept (RI) logistic model and a random coefficient (RC) logistic model

without any covariate. To make the matter concrete, I will then apply this method to Volpp

et al. pneumonia data[76]from a study designed to detect racical disparities in 30-day in-

hospital mortality across 149 VA hospitals. The variance formulae of race [var (black)] will

be presented under different design scenarios.

This data contain M =
∑N

j=1

∑nj

i=1 nij samples, which are distributed in j (j = 1, . . . , N)

hospitals, and i (i = 1, . . . , nj) patients nested in each hospital. The binary outcome variable

is Yij (30 days in hospital mortality), which is assumed to follow binomial distribution. πij

is the probability of response proportion for the ith patient in level one and jth patient in

level two equal to one as πij = pr(yij = 1). The link function is logit (πij) and equal to

logit(πij/(1 − πij)). ε is the error term in the model, and nij is the denominate for the

mortality. This model includes only one predictor, patient racial status (Xij). Therefore,

YijB represents the death status for the ith black patient at jth hospital, while YijtW refers to

the death status for the ithwhite patient at jth hospital. The jth hospital has njB black and

njW white patients. After explaining the 2-level logistic model and linearizing the generalized

multilevel linear models, I then discuss the design scenarios for unbalanced design. D.B

detailed the derivation of var (black) in RI and RC models by different race coding. As
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a binary variable, race can be coded as 1 and -1, or 1 and 0, for black and white veteran

patients, respectively.

A. LINEARIZATION OF A GENERALIZED LINEAR MODEL

A 2-level logistic model can usually be written as shown below (D.1).

logitπij = (Xβ)ij + (Zµµ)j + (Zεε)ij

where yij ∼ BIN(πij,nij), var(yij|πij) = πij(1 − πij)/nij ,

X = [Xij ], Xij = {x0ij, x1ij, . . . , xpij}, Zε = 1

µj ∼ N(0, σ2
νj

), and εij ∼ N(0, σ2
ε)

(D.1)

This model can be written in a standard way, as a special case of a 2−level logistic model,

which includes the level 1 variation (D.2).

yij = πij + (Zεε)ij = f(H) + (Zεε)ij = f((Xβ)ij + (Zµµ)j) + (Zεε)ij,

where Zεij =
√

πij(1 − πij)/nij , σ2
ε = 1, µj ∼ N(0, σ2

νj
),

and πij = f(H) = [1 + exp(−(Xβ + Zµµ))]−1.

(D.2)

H = logit πij, I will get

ln
πij

1 − πij
= H

πij

1 − πij
= eH

1 +
πij

1 − πij
= 1 + eH (add 1 on both sides)

1 − πij + πij

1 − πij
= 1 + eH

1

1 − πij
= 1 + eH

1 − πij = (1 + eH)−1 (D.3)
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πij = 1 − (1 + eH)−1

=
1 + eH − 1

(1 + eH)
(D.4)

=
eH

(1 + eH)
(D.5)

By following (D.2) and making a derivative of πij = f(H), I will get

f ′(H) = π′
ij (D.6)

= (1 − (1 + eH)−1)′ plugin (A.4)

= −(1 + eH)−1′

= −(−1)(1 + eH)
′

(1 + eH)2

= − (−1)eH

(1 + eH)2

=
eH

1 + eH

1

1 + eH
using (A.4)

= πij(1 + eH)
−1

plug in (A.3)

= πij(1 − πij) (D.7)

Therefore

f ′−1(H) = [f(H)(1 + eH)
−1

]−1 = f−1(H)(1 + eH)

= [πij(1 − πij)]
−1 (D.8)

Because of the existence of link function and random effect in the multilevel logistic models,

1st order marginal quasilikelihood estimate (MQL1) is the only method that derives the

variance for the fix coefficients. Before the derivation, I need to linearize the 2-level logistic

model as I presented in (D.2). MQL1, as one of the quasi-likelihood estimation method , use

the first order of the Taylor series expansion. The Taylor series expansion can be written as

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)(x − a)2

2
+ . . . +

fn(a)(x− a)n

n!
+ . . .

If I represent f(H̃t+1) as the estimates in the (t + 1)th iteration, and f(a) = f(H̃t) as the

estimates in the tth iteration, I can get f(H̃t+1) estimates by f(a) = f(H̃t) through the

MQL1 method. In MQL1, µ̃t is assumed to be 0, which ignores the random effect estimates.
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Therefore, H̃t is (Xβ̃)ij. To get the estimates at the (t + 1)th iteration, πij can be written as

below

πij = f(Ht+1) ≈ f(H̃t) + [f(H̃t+1) − f(H̃t)]f
′(H̃t)

= f(H̃t) + [Xijβ + Zµµ − (Xij β̃t + Zµµ̃t)]f
′(H̃t)

= f(H̃t) + (Xijβ + Zµµ − Xijβ̃t)f
′(H̃t)

= f(H̃t) + (Xijβ + Zµµ)f ′(H̃t) − Xijβ̃tf
′(H̃t) (D.9)

Times f ′(−1)(H̃t) to both side,

πijf
′(−1)(H̃t) = f(H̃t)f

′(−1)(H̃t) + (Xijβ + Zµµ)f ′(H̃t)f
′(−1)(H̃t) −Xij β̃tf

′(H̃t)f
′(−1)(H̃t)

= f(H̃t)f
′(−1)(H̃t) + Xijβ + Zµµ − Xijβ̃t

Plug in (D.8) for f ′(−1)(H̃t)

πijf
−1(H̃t)(1 + eH̃) = f(H̃t)f

−1(H̃t)(1 + eH̃t) + Xijβ + Zµµ −Xij β̃t

= 1 + eH̃t + Xijβ + Zµµ − Xij β̃t plugin (A.3)

= (1 − π̃ij)
−1 + Xijβ + Zµµ −Xij β̃t

= (1 − π̃ij)
−1 −Xij β̃t + Xijβ + Zµµ (D.10)

If I multiply f ′(−1)(H̃t) with the equation yij = πij + (Zεε)ij, I get

yijf
′(−1)(H̃t) = πijf

′(−1)(H̃t) + (Zεε)ijf
′(−1)(H̃t)

If I denote

ε∗ij = (Zεε)ijf
′(−1)(H̃t)

= (Zεε)ij ∗ [π̃ij(1 − π̃ij)]
−1 (D.11)

Then the results in (D.8), (D.10), (D.11) yield

yij[π̃ij(1 − π̃ij)]
−1 = (1 − π̃ij)

−1 − Xij β̃t + Xijβ + Zµµ + ε∗ij
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By moving the 1st and 2nd terms on the right side to the left, I will get

yij[π̃ij(1 − π̃ij)]
−1 − (1 − π̃ij)

−1 + Xijβ̃t = Xijβ + Zµµ + ε∗ij

(yij − π̃ij)[π̃ij(1 − π̃ij)]
−1 + Xijβ̃t = Xijβ + Zµµ + ε∗ij

If I denote

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + Xij β̃t (D.12)

I will then get a linearized model

y∗
ij = Xijβ + Zµµ + ε∗ij (D.13)

a). var(ε∗ij)

From the definition of the linearized logistic model, σ2
ε is 1. By applying this value to the

linearized model, I get

var(ε∗ij) = var(Zεεij ∗ [π̃ij(1 − π̃ij)]
−1)

= z2
ε [π̃ij(1 − π̃ij)]

−2var(εij)

= z2
ε [π̃ij(1 − π̃ij)]

−2σ2
ε

= z2
ε [π̃ij(1 − π̃ij)]

−2 use zε definition in model (A.2)

= (
√

π̃ij(1 − π̃ij)/nij)
2[π̃ij(1 − π̃ij)]

−2

=
π̃ij(1 − π̃ij)

nij

1

[π̃ij(1 − π̃ij)]2

= [nijπ̃ij(1 − π̃ij)]
−1 nij is 1 in logistic model

= [π̃ij(1 − π̃ij)]
−1 (D.14)
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Apply (D.4) to get

var(ε∗ij) = [
eXβ

1 + eXβ
(1 − eXβ

1 + eXβ
)]−1

= [
eXβ

1 + eXβ

1 + eXβ − eXβ

1 + eXβ
]−1

= [
eXβ

(1 + eXβ)2
]−1

= [
eXβ

1 + e2Xβ + 2eXβ
]−1

= [
1

e−Xβ + eXβ + 2
]−1

= 2 + e−Xβ + eXβ (D.15)

b). E(ε∗ij)

E(ε∗ij) = E(Zεεij ∗ [π̃ij(1 − π̃ij)]
−1)

= E(Zεεij) ∗ [π̃ij(1 − π̃ij)]
−1

= 0 (D.16)

c). var(Y∗
ij)

For the generalized 2-level linearized logistic model, I will get the var(Y∗
ij) as

var(Y∗
ij) = var(Xijβ + Zµµ + ε∗ij)

= var(µj) + var(ε∗ij)

= Z′
µVµZµ + [π̃ij(1 − π̃ij)]

−1 (D.17)

d). E(Y∗
ij)
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E(Y∗
ij) = E(Xijβ + Zµµ + ε∗ij)

= E(Xijβ) + E(Zµµ) + E(ε∗ij)

= Xijβ (D.18)

E). E(Yij)

Obviously, Yij will follow a logistic distribution in the standard 2-level logistic model

representation in model D.2. With a known mean and variance of Yij, the standard multilevel

logistic distribution [45] can be normalized:

E(Yij) = (1 + e
−Xijβ√

1+var(Y∗)/1.72 )−1

≈ (1 + e

−Xijβ√
1+σ2

µ/1.72 )−1 (D.19)
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B. UNBALANCED EXPERIMENTAL DESIGN SCENARIOS

In Table III.1, I give a full list of the notation that I will used for this dissertation. The

total sample size, M , is related to site-specific sample size and sample size weight. Figure

D1 presents the hierarchical data structure. Because of the hierarchical structure, imbalance

can occur both across and within sites.

hospital

Total sample size M︷ ︸︸ ︷
1, 2, 3 . . . j . . . N

At jth hospital

j︷ ︸︸ ︷
1, 2, . . . , nj

for black njB for white njW

Figure D1: The Hierarchical Structure in 2-level Data

a. Balanced across sites (n1 = n2 = · · · = nj)

B 1
2
(wj =

1

2
): Balanced among sites and within sites

Bw̄(wj = w̄): Balanced among sites and unbalanced within sites with same sample

size weight

Bwj (wj = wj): Balanced among sites and unbalanced within sites with different

sample size weight

b. Unbalanced across sites (n1 6= n2 6= · · · 6= nj)

U 1
2
(wj =

1

2
): Unbalanced among sites and balanced within sites

Uw̄(wj = w̄): Unbalanced among and within sites with same sample size weight

Uwj (wj = wj): Unbalanced among and within sites with different sample size weight

As I mentioned, wj = njB/nj . Therefore, for general cases as scenarios Bwj and Uwj

njB = wjnj and njW = (1 − wj)nj (D.20)
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In special cases, B 1
2
, Bw̄, U 1

2
, and Uw̄, race-specific sample size can be simplified as

B 1
2

: njB = n/2, njW = n/2;

Bw̄ : njB = w̄n, njW = (1 − w̄)n;

U 1
2

: njB = nj/2, njW = nj/2;

Uw̄ : njB = w̄nj , njW = (1 − w̄)nj. (D.21)
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C. VERIFICATION OF MOERBEEK’S RESULT

Moerbeek et al. 2001[45] gives the formulae of var(β1) for a 2-level logistic model under a

balanced experimental design within and across sites. Intervention is the only independent

variable in the model, using 1 and -1 coding. I verify the formulae of var(β1) for 2-level RI

and RC logistic models with one independent variable using the data from Volpp study. The

formulae for var(β1) in a 2-level RI logistic model will be shown in D.C.1. In the following

section ( D.C.2), formulae for 2-level RC model will be verified.

1. Two-Level RI Logistic Model with One Independent Variable

In D.A, I showed the linearization of a generalized 2-level logistic model. Here, I will

simplify the linearization to a 2-level random intercept logistic model with one independent

variable(black race). As I mentioned in Section D.B, xij will denote a dichotomous variable

black, which is 1 and -1 for patients who are black and white, respectively.

The random intercept model can be written as

yij = β0 + xijβ1 + µ0j + εij (D.22)

If I apply a general linearized 2-level logistic model to a 2 level random intercept model, the

equation(D.13) will be modified to

y∗
ij = β0 + xijβ1 + µ0j + ε∗ij (D.23)

where, y∗
ij and ε∗ij are

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 + xijβ1

ε∗ij = εij[π̃ij(1 − π̃ij)]
−1 (D.24)

Therefore, var(Y∗
ij) for the random intercept model can be written as

var(Y∗
ij) = σ2

µ0
+ [π̃ij(1 − π̃ij)]

−1 (D.25)
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To identify the fixed effect of black race, I can rewrite the model (10) as

y∗
ijB = β0 + β1 + µ0j + ε∗ij if xij is 1 as black

y∗
ijW = β0 − β1 + µ0j + ε∗ij if xij is -1 as white (D.26)

After applying a balanced randomization within and across hospitals, I will have 1 to J

hospitals. Each hospital has n patients and half of the patients at each hospital are assumed

to be black.

For black patients:

ȳ∗
..B =

∑N
j=1

∑n/2
i=1(β0 + β1 + µ0j + ε∗ijB)
∑N

j=1

∑n/2
i=1 nij

=

∑N
j=1

∑n/2
i=1 β0 +

∑N
j=1

∑n/2
i=1 β1 +

∑N
j=1

∑n/2
i=1 µ0j +

∑N
j=1

∑n/2
i=1 ε∗ijB∑N

j=1

∑n/2
i=1 nij

=
Nn
2

β0 + Nn
2

β1 + n
2

∑N
j=1 µ0j +

∑N
j=1

∑n/2
i=1 ε∗ijB

Nn
2

= β0 + β1 +

∑N
j=1 µ0j

N
+ ε̄∗..B

= β0 + β1 + E(µ0j) + ε̄∗..B

= β0 + β1 + ε̄∗..B (D.27)

ȳ∗
.jB =

∑n/2
i=1(β0 + β1 + µ0j + ε∗ijB)

∑n/2
i=1 nij

=

∑n/2
i=1 β0 +

∑n/2
i=1 β1 +

∑n
2
i=1 µ0j +

∑n/2
i=1 ε∗ijB∑n/2

i=1 nij

=
n
2
β0 + n

2
β1 + n

2
µ0j +

∑n/2
i=1 ε∗ijB

n
2

= β0 + β1 + µ0j + ε̄∗.jB (D.28)
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For white patients:

ȳ∗
..W =

∑N
j=1

∑n/2
i=1(β0 − β1 + µ0j + ε∗ijW )
∑N

j=1

∑n/2
i=1 nij

=

∑N
j=1

∑n/2
i=1 β0 −

∑N
j=1

∑n/2
i=1 β1 +

∑N
j=1

∑n/2
i=1 µ0j +

∑N
j=1

∑n/2
i=1 ε∗ijW∑N

j=1

∑n/2
i=1 nij

=
Nn
2

β0 − Nn
2

β1 + n
2

∑N
j=1 µ0j +

∑N
j=1

∑n/2
i=1 ε∗ijW

Nn
2

= β0 − β1 +

∑N
j=1 µ0j

N
+ ε̄∗..W

= β0 − β1 + ε̄∗..W (D.29)

ȳ∗
.jW =

∑n/2
i=1(β0 − β1 + µ0j + ε∗ijW )

∑n/2
i=1 nij

=

∑n/2
i=1 β0 −

∑n/2
i=1 β1 +

∑n/2
i=1 µ0j +

∑n/2
i=1 ε∗ijW∑n/2

i=1 nij

=
n
2
β0 − n

2
β1 + n

2
µ0j +

∑n/2
i=1 ε∗ijW

n
2

= β0 − β1 + µ0j + ε̄∗.jc (D.30)

By applying (D.27)−(D.29)
2

and E(µ0j) = 0 to (D.29), I also noticed that E(ε∗ij) = 0 , which

lead to ε̄∗ijB = ε̄∗ijW = 0, so

ȳ∗
..B − ȳ∗

..W

2
=

β0 + β1 + ε̄∗..B − (β0 − β1 + ε̄∗..W )

2

= β1 (D.31)

Using the definition of Y ∗ in (D.24) yields

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β̃0 + xijβ̃1

y∗
ijB = (yijB − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 + β1 for black

y∗
ijW = (yijW − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 − β1 for white (D.32)
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I can write E(y∗
ijB) and E(y∗

ijW) as

E(y∗
ijB) = E{(yijB − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 + β1

= (E(yijB) − π̃ij)[π̃ij(1 − π̃ij)]
−1 + β0 + β1

E(ȳ∗
..B) =

∑N
j=1

∑n/2
i=1 E(yijB)

∑N
j=1

∑n/2
i=1 nij

=

∑N
j=1

∑n/2
i=1 E(yijB − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 + β0 + β1

∑N
j=1

∑n/2
i=1 nij

=

∑N
j=1

∑n/2
i=1 E(yijB − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 +

∑N
j=1

∑n/2
i=1(β0 + β1)

∑N
j=1

∑n/2
i=1 nij

=
E(

∑N
j=1

∑n/2
i=1 yijB − ∑N

j=1

∑n/2
i=1 π̃ijB)[π̃ijB(1 − π̃ij)]

−1 +
∑N

j=1

∑n/2
i=1(β0 + β1)

∑N
j=1

∑n/2
i=1 nij

= (Eȳ..B − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 + β0 + β1

E(ȳ∗
..W ) =

∑N
j=1

∑n/2
i=1 E(yijW )

∑N
j=1

∑n/2
i=1 nij

=

∑N
j=1

∑n/2
i=1 E(yijW − π̃ijW )[π̃ijW (1 − π̃ijW )]−1 + β0 + β1

∑N
j=1

∑n/2
i=1 nij

=

∑N
j=1

∑n/2
i=1 E(yijW − π̃ijW )[π̃ijW (1 − π̃ijW )]−1 +

∑N
j=1

∑n/2
i=1(β0 + β1)

∑N
j=1

∑n/2
i=1 nij

=
E(

∑N
j=1

∑n/2
i=1 yijW −

∑N
j=1

∑n/2
i=1 π̃ijW )[π̃ijW (1 − π̃ij)]

−1 +
∑N

j=1

∑n/2
i=1(β0 + β1)

∑N
j=1

∑n/2
i=1 nij

= (Eȳ..W − π̃ijW )[π̃ijW (1 − π̃ijW )]−1 + β0 − β1 (D.33)

By applying (D.33) to (D.31), I will get E(β1) as

E(β1) = E
(ȳ∗

..B − ȳ∗
..W )

2

=
Eȳ∗

..B − Eȳ∗
..W

2

=
(Eȳ..B − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 + β0 + β1 − {(Eȳ..W − π̃ijW )[π̃ijW (1 − π̃ijW )]−1 + β0 − β1}

2

=
2β1 + (Eȳ..B − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 − (Eȳ..W − π̃ijW )[π̃ijW (1 − π̃ijW )]−1

2

=
2β1 + (EyijB − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 − (EyijW − π̃ijW )[π̃ijW (1 − π̃ijW )]−1

2
(D.34)
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By following the approximate normalization of y in the logistic distribution as I showed in

(D.19) and adapting it to the random intercept model, I get E(YijB) and E(YijW ) as

E(YijB) = (1 + e

−Xijβ√
1+σ2

µ/1.72 )−1

= (1 + e

−(β0+β1)√
1+σ2

µ0
/1.72 )−1 denote

√
1 + σ2

µ0
/1.72 = c

= [1 + e
−(β0+β1)

c ]−1

E(YijW) = (1 + e

−Xijβ√
1+σ2

µ/1.72 )−1

= (1 + e

−(β0−β1)√
1+σ2

µ0
/1.72 )−1 denote

√
1 + σ2

µ0
/1.72 = c

= [1 + e
−(β0−β1)

c ]−1 (D.35)

Modifying (D.15) to black and white effect yields

var(ε∗ij) = 2 + e−xβ + exβ

So var(ε∗ijB) = 2 + e−(β0+β1) + eβ0+β1 for Black

var(ε∗ijW) = 2 + e−(β0−β1) + eβ0−β1 for White (D.36)

Adapting (D.4) results in πijB and πijW as

πij = 1 − (1 + eH)−1

πijB = 1 − (1 + eβ0+β1)−1 for Black

πijW = 1 − (1 + eβ0−β1)−1 for White (D.37)

By following (D.34), I can write E(β1) as

E(β1) = β1 +
1

2
(2 + e−(β0+β1) + eβ0+β1){[1 + e

−(β0+β1)
c ]−1 − (1 + eβ0+β1)−1}

− 1

2
(2 + e−(β0−β1) + eβ0−β1){[1 + e

−(β0−β1)
c ]−1 − (1 + eβ0−β1)−1} (D.38)
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var(β1) = var(
ȳ∗

..B − ȳ∗
..W

2
)

= var(

PN
j ȳ∗.jB

N
−

PN
j ȳ∗ .jW

N

2
)

= var{ 1

2N
(

N∑

j=1

(β0 + β1 + µ0j + ε̄∗.jB) −
N∑

j=1

(β0 − β1 + µ0j + ε̄∗.jc)}

= var{ 1

2N
[(Nβ0 + Nβ1 +

N∑

j=1

µ0j) +
N∑

j=1

ε̄∗.jB − (Nβ0 − Nβ1 +
N∑

j=1

µ0j +
N∑

j=1

ε̄∗.jc)]}

= var{ 1

2N
(2Nβ1 +

N∑

j=1

ε̄∗.jB −
N∑

j=1

ε̄∗.jc)}

= var{β1 +
1

2N n
2

(

N∑

j=1

n
2∑

i=1

ε∗ijB −
N∑

j=1

n
2∑

i=1

ε∗ijW )}

=
1

(Nn)2
var(

N∑

j=1

n
2∑

i=1

ε∗ijB −
N∑

j=1

n
2∑

i=1

ε∗ijW ))

=
1

(Nn)2
(

N∑

j=1

n
2∑

i=1

varε∗ijB +
N∑

j=1

n
2∑

i=1

varε∗ijW ))

=
1

(Nn)2
[
Nn

2
(2 + e−(β0+β1) + eβ0+β1) +

Nn

2
(2 + e−(β0−β1) + eβ0−β1)]

=
1

(Nn)2

nN

2
[(2 + e−(β0+β1) + eβ0+β1) + (2 + e−(β0−β1) + eβ0−β1)]

=
1

2Nn
(4 + e−(β0+β1) + eβ0+β1 + e−(β0−β1) + eβ0−β1)

let
1

2
(4 + e−(β0+β1) + eβ0+β1 + e−(β0−β1) + eβ0−β1) = δ2 I will get

var(β1) =
δ2

Nn
(D.39)
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2. Two-Level RC Logistic Model with One Independent Variable

The 2-level RC model can be written as

yij = β0 + xijβ1 + µ0 + xijµ1j + εij (D.40)

If I apply a general linearized 2-level logistic model to 2 level random slope model, the

equation(D.13) will be modified to

y∗
ij = β0 + xijβ1 + µ0 + xijµ1j + ε∗ij (D.41)

By applying (D.12) and (D.11) to this model, y∗
ij and ε∗ij will be

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β̃0 + xijβ̃1

ε∗ij = εij[π̃ij(1 − π̃ij)]
−1 (D.42)

After applying (D.17) to random slope model, var(Y∗
ij) can be written as

var(Y∗
ij) = σ2

µ0
+ σ2

µ1
+ [π̃ij(1 − π̃ij)]

−1 (D.43)

To identify the fixed effect of black race, I can rewrite the model () as

y∗
ijB = β0 + β1 + µ0j + µ1j + ε∗ij if xij is 1 as black

y∗
ijW = β0 − β1 + µ0j − µ1j + ε∗ij if xij is -1 as white (D.44)

I then apply a balanced randomization within and across 1 to J hospitals, which have n

patients in each hospital of whom half are black.

For black patients:
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ȳ∗
.jB =

∑n/2
i=1(β0 + β1 + µ0j + µ1j + ε∗ijB)

njB

=

∑n/2
i=1 β0 +

∑n/2
i=1 β1 +

∑n/2
i=1 µ0j +

∑n/2
i=1 µ1j +

∑n/2
i=1 ε∗ijB

n
2

=
n
2
β0 + n

2
β1 + n

2
µ0j + n

2
µ1j +

∑n/2
i=1 ε∗ijB

n
2

= β0 + β1 + µ0j + µ1j + ε̄∗.jB

ȳ∗
..B =

∑N
j=1{β0 − β1 + µ0j − µ1j + ε̄∗.jB}

N

= β0 − β1 +

∑N
j=1 µ0j

N
−

∑N
j=1 µ1j

N
+ ε̄∗.jB

= β0 − β1 + E(µ0j) − E(µ1j) + ε̄∗.jB where E(µ0j) = E(µ0j) = 0

= β0 − β1 + ε̄∗.jB (D.45)

For white patients:

ȳ∗
.jW =

∑n/2
i=1(β0 + β1 + µ0j − µ1j + ε∗ijW )

njW

=

∑n/2
i=1 β0 −

∑n/2
i=1 β1 +

∑n/2
i=1 µ0j −

∑n/2
i=1 µ1j +

∑n/2
i=1 ε∗ijW

n
2

=
n
2
β0 − n

2
β1 + n

2
µ0j − n

2
µ1j +

∑n/2
i=1 ε∗ijW

n
2

= β0 − β1 + µ0j − µ1j + ε̄∗.jW

ȳ∗
..W =

∑N
j=1{β0 − β1 + µ0j − µ1j + ε̄∗.jW}

N

= β0 − β1 +

∑N
j=1 µ0j

N
−

∑N
j=1 µ1j

N
+ ε̄∗.jW

= β0 − β1 + E(µ0j) − E(µ1j) + ε̄∗.jW where E(µ0j) = E(µ0j) = 0

= β0 − β1 + ε̄∗.jW (D.46)

Apply (D.45)−(D.46)
2

and E(ε∗ij) = 0 (or ε̄∗ijB = ε̄∗ijW = 0), I will get

ȳ∗
..B − ȳ∗

..W

2
=

β0 + β1 + ε̄∗ijB − (β0 − β1 + ε̄∗ijW )

2

= β1 (D.47)
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Following the definition of Y ∗ in (D.12)

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β̃0 + xijβ̃1

y∗
ijB = (yijB − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 + β1 for black

y∗
ijW = (yijW − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 − β1 for white (D.48)

Therefore, I can write E(y∗
ijB) and E(y∗

ijW) as

E(y∗
ijB) = E{(yijB − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 + β1

= (E(yijB) − π̃ij)[π̃ij(1 − π̃ij)]
−1 + β0 + β1

E(ȳ
∗
..B) =

∑N
j=1

∑n/2
i=1 E(yijB)

∑N
j=1

∑n/2
i=1 nijB

=

∑N
j=1

∑n/2
i=1 E(yijB − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 + β0 + β1

∑N
j=1

∑n/2
i=1 nijB

=

∑N
j=1

∑n/2
i=1 E{(yijB − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 +

∑N
j=1

∑n/2
i=1(β0 + β1)}

∑N
j=1

∑n/2
i=1 nijB

=
(E

∑N
j=1

∑n/2
i=1 yijB −

∑N
j=1

∑n/2
i=1 π̃ijB)[π̃ijB(1 − π̃ij)]

−1 +
∑N

j=1

∑n/2
i=1(β0 + β1)

∑N
j=1

∑n/2
i=1 nijB

= (Eȳ..B − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 + β0 + β1

E(ȳ∗
..W ) = (Eȳ..W − π̃ijW )[π̃ijW (1 − π̃ijW )]−1 + β0 − β1 (D.49)

Applying (D.49) to (D.42) produces E(β1) as

E(β1) = E
(ȳ∗

..B − ȳ∗
..W )

2

=
Eȳ∗

..B − Eȳ∗
..W

2

=
(Eȳ..B − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 + β0 + β1 − {Eȳ..W − π̃ijW )[π̃ijW (1 − π̃ijW )]−1 + β0 − β1}

2

=
2β1 + (Eȳ..B − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 − (Eȳ..W − π̃ijW )[π̃ijW (1 − π̃ijW )]−1

2

=
2β1 + (EyijB − π̃ijB)[π̃ijB(1 − π̃ijB)]−1 − (EyijW − π̃ijW )[π̃ijW (1 − π̃ijW )]−1

2
(D.50)
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Following an approximate normalization of y in the logistic distribution, E(yij) as shown in

(D.19), I will get modified E(YijB) and E(YijW ) in the random slope model as

E(YijB) = (1 + e

−Xijβ√
1+(σ2

µ+σ2
µ1

)/1.72 )−1

= (1 + e

−(β0+β1)√
1+(σ2

µ0
+σ2

µ1
)/1.72 )−1

= [1 + e
−(β0+β1)

c ]−1

E(YijW) = (1 + e

−(β0−β1)√
1+(σ2

µ0
+σ2

µ1
)/1.72 )−1

= [1 + e
−(β0−β1)

c ]−1 (D.51)

Applying (D.13) to black and white effect, I will get

[π̃ijB(1 − π̃ijB)]−1 = 2 + e−(β0+β1) + eβ0+β1 Black

{π̃ijW (1 − π̃ijW )}−1 = 2 + e−(β0−β1) + eβ0−β1 White (D.52)

Modifying (D.4) results in πijB and πijW as

πij = 1 − (1 + eH)−1

πijB = 1 − (1 + eβ0+β1)−1 Black

πijW = 1 − (1 + eβ0−β1)−1 White (D.53)

Using a GLS of β̂1 = y..B−y..W

2
as (D.47), I can write E(β1) as

E(β1) = β1 +
1

2
(2 + e−(β0+β1) + eβ0+β1){[1 + e

−(β0+β1)
c ]−1 − (1 + eβ0+β1)−1}

− 1

2
(2 + e−(β0−β1) + eβ0−β1){[1 + e

−(β0−β1)
c ]−1 − (1 + eβ0−β1)−1} (D.54)
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var(β1) = var(
ȳ∗

..B − ȳ∗
..W

2
)

= var(

PN
j ȳ∗.jB

N
−

PN
j ȳ∗.jW

N

2
) apply (D.45), (D.46)

= var{ 1

2N
(

N∑

j=1

(β0 + β1 + µ0j + µ1j + ε̄∗.jB)

−
N∑

j=1

(β0 − β1 + µ0j − µ1j + ε̄∗.jW )}

= var{ 1

2N
(Nβ0 + Nβ1 +

N∑

j=1

µ0j −
N∑

j=1

µ1j)

+

N∑

j=1

ε̄∗.jB − (Nβ0 − Nβ1 +

N∑

j=1

µ0j −
N∑

j=1

µ1j +

N∑

j=1

ε̄∗.jW )}

= var{ 1

2N
(2Nβ1 + 2

N∑

j=1

µ1j +
N∑

j=1

ε̄∗.jB −
N∑

j=1

ε̄∗.jW )}

= var{β1 +

∑N
j=1 µ1j

N
+

1

2N n
2

(
N∑

j=1

n
2∑

i=1

ε∗ijB −
N∑

j=1

n
2∑

i=1

ε∗ijW )}

=
Nσ2

µ1

N2
+

1

(Nn)2
var(

N∑

j=1

n
2∑

i=1

ε∗ijB −
N∑

j=1

n
2∑

i=1

ε∗ijW ))

=
σ2

µ1

N
+

1

(Nn)2
(

N∑

j=1

n
2∑

i=1

varε∗ijB +

N∑

j=1

n
2∑

i=1

varε∗ijW ))

=
σ2

µ1

N
+

1

(Nn)2
[
nN

2
(2 + e−(β0+β1) + eβ0+β1) +

nN

2
(2 + e−(β0−β1) + eβ0−β1)]

=
σ2

µ1

N
+

1

(Nn)2

nN

2
[(2 + e−(β0+β1) + eβ0+β1) + (2 + e−(β0−β1) + eβ0−β1)]

=
σ2

µ1

N
+

1

2Nn
(4 + e−(β0+β1) + eβ0+β1 + e−(β0−β1) + eβ0−β1)

let
1

2
(4 + e−(β0+β1) + eβ0+β1 + e−(β0−β1) + eβ0−β1) = δ2 I will get

var(β1) =
σ2

µ1

N
+

δ2

Nn

=
nσ2

µ1
+ δ2

Nn
(D.55)
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D. V AR(β1) UNDER AN UNBALANCED DESIGN

As I mentioned at the beginning of this appendix, the binary variable of race can be described

by two types of coding: 1 and -1, and 1 and 0. Under these codings, the models have different

interpretations and different results for var(β1). The next subsection, Appendix D.D.1, will

introduce the derivation for 1 and -1 coding. While the follow subsection D.D.2will present

the derivation on 1 and 0 coding. Both codings first show the derivation as the RI model

and then the RC model derivation.

1. var(β1) For Zero Sum Coding

Here, I present the derivation of var(β1) under six design scenarios for the RI model and

RC model when I code race as 1 for black and -1 for white. I will apply the formulae as

shown in D.C to D.D.1. No matter how the independent variables are coded, the multilevel

generalized linear model’s linearization is the same as (D.13). In this section, I will derive

variance of race which is coded as 1 for black and -1 for white veterans. The same unbalance

design scenarios as discussed in D.D.2 will be considered here.

a. In RI Model

Adapting the general linearized to the 2-level logistic model (D.13) to the 2-level RI

model adjusted by one binary variable and coded as 1 and -1 for black and white, yields the

following results

y∗
ij = β0 + xijβ1 + µ0j + ε∗ij (D.56)

To identify the black effect, I can rewrite the model (D.14) as the race specific models

y∗
ijB = β0 + β1 + µ0j + ε∗ij for black

y∗
ijW = β0 − β1 + µ0j + ε∗ij for white (D.57)
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Therefore, the age linearized race specific responses at jth site are shown as (D.58) and (D.59)

for black and white respectively.

ȳ∗
.jB =

∑njB

i=1 (β0 + β1 + µ0j + ε∗ijB)

njB
for black

=

∑njB

i=1 (β0) +
∑njB

i=1 (β1) +
∑njB

i=1 (µ0j) +
∑njB

i=1 (ε∗ijB)

njB

=
njBβ0 + njBβ1 + njBµ0j +

∑njB

i=1 (ε∗ijB)

njB

= β0 + β1 + µ0j + ε̄∗.jB (Eε∗.jB = 0)

= β0 + β1 + µ0j (D.58)

ȳ∗
.jw =

∑njW

i=1 (β0 − β1 + µ0j + ε∗ijW )
∑njW

i=1 1
for white

=

∑njW

i=1 (β0) −
∑njW

i=1 (β1) +
∑njW

i=1 (µ0j) +
∑njW

i=1 (ε∗ijW )

njW

=
njWβ0 − njW β1 + njW µ0j +

∑njW

i=1 (ε∗ijW )

njW

= β0 − β1 + µ0j + ε̄∗.jW (Eε∗.jW = 0)

= β0 − β1 + µ0j (D.59)

Similarly, we can get average outcome as shown below.

ȳ∗
..B =

∑N
j=1

∑njB

i=1 (β0 + β1 + µ0j + ε∗ijB)
∑N

j=1 njB

for black

=

∑N
j=1

∑njB

i=1 (β0) +
∑N

j=1

∑njB

i=1 (β1) +
∑N

j=1

∑njB

i=1 (µ0j) +
∑N

j=1

∑njB

i=1 (ε∗ijB)

nB

=
nBβ0 + nBβ1 +

∑N
j=1 njBµ0j +

∑njB

i=1

∑N
j=1(ε

∗
ijB)

nB

= β0 + β1 +

∑N
j=1 njBµ0j

nB
+ ε̄∗..B

= β0 + β1 + µ̄0B + ε̄∗..B (Eµ0 = 0)

= β0 + β1 (D.60)
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ȳ∗
..W =

∑N
j=1

∑njW

i=1 (β0 − β1 + µ0j + ε∗ijW )
∑N

j=1 njW

for white

=

∑N
j=1

∑njW

i=1 (β0) −
∑N

j=1

∑njW

i=1 (β1) +
∑N

j=1

∑njW

i=1 (µ0j) +
∑N

j=1

∑njW

i=1 (ε∗ijW )

nW

=
nWβ0 − nW β1 +

∑N
j=1 njW µ0j +

∑njW

i=1

∑N
j=1(ε

∗
ijW )

nW

= β0 − β1 +

∑N
j=1 njW µ0j

nW
+ ε̄∗..W

= β0 − β1 + µ̄0W + ε̄∗..W (Eµ0 = 0)

= β0 − β1 (D.61)

Therefore, the generalized least squares(GLS) estimate of race can be obtained by

ȳ∗
..B − ȳ∗

..W = β0 + β1 − β0 − β1 = 2β1

so β̂1 =
ȳ∗

..B − ȳ∗
..W

2
(D.62)

Applying corresponded f(H) to (D.12) and (D.11), the modified y∗
ij and ε∗ij result in

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 + xijβ1

ε∗ij = εij[π̃ij(1 − π̃ij)]
−1 (D.63)

Then, applying Vj=σ2
µ0

to var(Y∗
ij) as (D.17) for RI model yields

var(Y∗
ij) = σ2

µ0
+ [π̃ij(1 − π̃ij)]

−1 (D.64)

Based on the linearized 2-level logistic model (D.13) and the applied GLS estimate of β1 as

(D.62), I get

β̂1 =
ȳ∗

..B − ȳ∗
..W

2

=

∑N
j=1

∑njB

i=1 y∗
ijB −∑N

j=1

∑njB

i=1 y∗
ijW

2

=

∑N
j=1

PnjB
i=1 {β0+β1+µ0j+ε∗ij}

njB
−

∑N
j=1

PnjW
i=1 {β0−β1+µ0j+ε∗ij}

njW

2N
(D.65)
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β0 and β1 will be constant everywhere. µ0j will be constant at jth hospital.

β̂1 =

PN
j=1(

njB
njB

β0+
njB
njB

β1)

N
+

PN
j=1

njb
njb

µ0j

N
+

PN
j=1

PnjB
i=1 ε∗ijWPN

j=1 njB

2

−

PN
j=1(

njW
njW

β0−
njW
njW

β1)

N
+

PN
j=1 µ0j

N
+

PN
j=1

PnjW
i=1 ε∗ijWPN

j=1 njW

2

=
β0 + β1 +

PN
j=1 µ0j

N
+

PN
j=1

PnjB
i=1 ε∗ijBPN

j=1 njB
− (β0 − β1 +

PN
j=1 µ0j

N
+

PN
j=1

PnjW
i=1 ε∗ijWPN

j=1 njW
)

2

= β1 +

PN
j=1

PnjB
i=1 ε∗ijBPN

j=1 njB
−

PN
j=1

PnjW
i=1 ε∗ijWPN

j=1 njW

2
(D.66)

By applying the variance to both sides of (D.66) and the known variance of constant as 0, I

will get

var(β̂1) =
var

PN
j=1

PnjB
i=1 ε∗ijBPN

j=1 njB
+ var

PN
j=1

PnjW
i=1 ε∗ijWPN

j=1 njW

4

var(ε∗ijB) or var(ε∗ijW ) are the same as σ2∗
εijB

and σ2∗
εijW

for different sites and individual

combinations, respectively. I can write the above equation as

var(β̂1) =

(
PN

j=1 njB)σ2∗
εijB

(
PN

j=1 njB)2
+

(
PN

j=1 njW )σ2∗
εijW

(
PN

j=1 njW )2

4

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4
(D.67)

For condition B 1
2
: From (D.20), I known that

∑N
j=1 nijB =

∑N
j=1 nijW = M

2

var(β̂1) =

σ2∗
εijB
M
2

+
σ2∗

εijB
M
2

4

var(β̂1) =
1
2
(σ2∗

εijB
+ σ2∗

εijW
)

M

var(β1) =
δ2

M
(D.68)
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For condition Bw̄: n1 = n2 = · · · = nj = n and wj = w̄ 6= 1
2
, and using equation (D.21), I

get

N∑

j=1

njB = w̄M

N∑

j=1

njW = (1 − w̄)M, (D.69)

I can write (D.67) as

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=

σ2∗
εijB

w̄M
+

σ2∗
εijW

(1−w̄)M

4

=
(1 − w̄)σ2∗

εijB
+ w̄σ2∗

εijW

4w̄(1 − w̄)M
(D.70)

For condition Bwj : n1 = n2 = · · · = nj = n and wj = wj and by using equation (D.21), I

get

N∑

j=1

njB =
N∑

j=1

wjnj = n
N∑

j=1

wj

N∑

j=1

njW =
N∑

j=1

(1 −wj)nj = n
N∑

j=1

(1 − wj), (D.71)

I can write (D.67) as

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=

σ2∗
εijB

n
PN

j=1 wj
+

σ2∗
εijW

n
PN

j=1(1−wj )

4

=

σ2∗
εijB

n
PN

j=1 wj
+

σ2∗
εijW

n(N−
PN

j=1 wj )

4

=
(N −∑N

j=1 wj)σ
2∗
εijB

+
∑N

j=1 wjσ
2∗
εijW

4n(N − ∑N
j=1 wj)

∑N
j=1 wj

(D.72)
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For condition U 1
2
: n1 6= n2 6= · · · 6= nj , wj = 1/2, and njB = njW =

nj

2
. Therefore,

N∑

j=1

njB =
N∑

j=1

1

2
nj =

1

2

N∑

j=1

nj =
M

2

N∑

j=1

njW =

N∑

j=1

1

2
nj =

1

2

N∑

j=1

nj =
M

2

(D.73)

I can write (D.67) as

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

var(β̂1) =

σ2∗
εijB
M
2

+
σ2∗

εijB
M
2

4

var(β̂1) =
1
2
(σ2∗

εijB
+ σ2∗

εijW
)

M

var(β1) =
δ2

M
(D.74)

For condition Uw̄: n1 6= n2 6= · · · 6= nj , wj = w̄ 6= 1
2
.

Using the following equation (D.21), I can get

N∑

j=1

njB =

N∑

j=1

w̄nj = w̄

N∑

j=1

nj = w̄M

N∑

j=1

njW =
N∑

j=1

(1 − w̄)nj = (1 − w̄)
N∑

j=1

nj = (1 − w̄)M (D.75)

This equation (D.67) can be written as

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=

σ2∗
εijB

w̄M
+

σ2∗
εijW

(1−w̄)M

4

=
(1 − w̄)σ2∗

εijB
+ w̄σ2∗

εijW

4w̄(1 − w̄)M
(D.76)
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For condition Uwj : n1 6= n2 6= · · · 6= nj, wj = wj.

The following equation (D.21)produces

N∑

j=1

njB =
N∑

j=1

wjnj

N∑

j=1

njW =
N∑

j=1

(1 − wj)nj, (D.77)

I can write (D.67) as

var(β̂1) =

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=

σ2∗
εijBPN

j=1 wjnj
+

σ2∗
εijWPN

j=1(1−wj )nj

4

=

σ2∗
εijBPN

j=1 wjnj
+

σ2∗
εijW

(
PN

j=1 nj−
PN

j=1 wjnj )

4

=

σ2∗
εijBPN

j=1 wjnj
+

σ2∗
εijW

M−
PN

j=1 wjnj

4

=
(M −

∑N
j=1 wjnj)σ

2∗
εijB

+ (
∑N

j=1 wjnj)σ
2∗
εijW

4(M − ∑N
j=1 wjnj)

∑N
j=1 wjnj

(D.78)
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b. In RC Model

Adapting the general linearized 2-level logistic model (D.13) to the 2-level RC model,

adjusted by race and coded as 1 and -1 for black and white, yields the following result

y∗
ij = β0 + xijβ1 + µ0j + µ1j + ε∗ij (D.79)

To identify the black effect, I can rewrite the model (D.14) as the race specific models

y∗
ijA = β0 + β1 + µ0j + µ1j + ε∗ij for black

y∗
ijW = β0 − β1 + µ0j − µ1j + ε∗ij for white (D.80)

Therefore, the average linearized race specific response at jth site are shown as (D.81) and

(D.82) for black and white, respectively.

ȳ∗
.jB =

∑njB

i=1 (β0 + β1 + µ0j + µ1j + ε∗ijB)

njB
for black

=

=

∑njB

i=1 (β0) +
∑njB

i=1 (β1) +
∑njB

i=1 (µ0j) +
∑njB

i=1 (µ1j) +
∑njB

i=1 (ε∗ijB)

njB

=
njBβ0 + njBβ1 + njBµ0j + njBµ1j +

∑njB

i=1 (ε∗ijB)

njB

= β0 + β1 + µ0j + µ1j + ε̄∗.jB (Eε∗.jB = 0)

= β0 + β1 + µ0j + µ1j (D.81)

ȳ∗
.jw =

∑njW

i=1 (β0 − β1 + µ0j + ε∗ijW )
∑njW

i=1 1
for white

=

∑njW

i=1 (β0) −
∑njW

i=1 (β1) +
∑njW

i=1 (µ0j) +
∑njW

i=1 (ε∗ijW )

njW

=
njW β0 − njWβ1 + njWµ0j +

∑njW

i=1 (ε∗ijW )

njW

= β0 − β1 + µ0j + ε̄∗.jW (Eε∗.jW = 0)

= β0 − β1 + µ0j (D.82)
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Similarly, the following showns the average outcome:

ȳ∗
..B =

∑N
j=1

∑njB

i=1 (β0 + β1 + µ0j + µ1j + ε∗ijB)
∑N

j=1 njB

for black

=

∑N
j=1

∑njB

i=1 (β0) +
∑N

j=1

∑njB

i=1 (β1) +
∑N

j=1

∑njB

i=1 (µ0j) +
∑N

j=1

∑njB

i=1 (µ1j) +
∑N

j=1

∑njB

i=1 (ε∗ijB)

nB

=
nBβ0 + nBβ1 +

∑N
j=1 njBµ0j +

∑N
j=1 njBµ1j +

∑njB

i=1

∑N
j=1(ε

∗
ijB)

nB

= β0 + β1 +

∑N
j=1 njBµ0j

nB
+

∑N
j=1 njBµ1j

nB
+ ε̄∗..B

= β0 + β1 + µ̄0B + µ̄1B + ε̄∗..B (Eµ0 = 0 & Eµ1 = 0)

= β0 + β1 (D.83)

ȳ∗
..W =

∑N
j=1

∑njW

i=1 (β0 − β1 + µ0j + ε∗ijW )
∑N

j=1 njW

for white

=

∑N
j=1

∑njW

i=1 (β0) −
∑N

j=1

∑njW

i=1 (β1) +
∑N

j=1

∑njW

i=1 (µ0j) +
∑N

j=1

∑njW

i=1 (ε∗ijW )

nW

=
nWβ0 − nWβ1 +

∑N
j=1 njWµ0j +

∑njW

i=1

∑N
j=1(ε

∗
ijW )

nW

= β0 − β1 +

∑N
j=1 njWµ0j

nW
+ ε̄∗..W

= β0 − β1 + µ̄0W + ε̄∗..W (Eµ0 = 0 & Eµ1 = 0)

= β0 − β1 (D.84)

Therefore, the GLS estimate of race can be obtained by

ȳ∗
..B − ȳ∗

..W = β0 + β1 − β0 − β1 = 2β1

So β1 =
ȳ∗

..B − ȳ∗
..W

2
(D.85)

Applying corresponded f(H) to (D.12) and (D.11), the modified y∗
ij and ε∗ij result as

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 + xijβ1

ε∗ij = εij[π̃ij(1 − π̃ij)]
−1 (D.86)
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Then, applying Vj=σ2
µ0

to var(Y∗
ij) as (D.17) for RI model yields

var(Y∗
ij) = σ2

µ0
+ σ2

µ1
+ [π̃ij(1 − π̃ij)]

−1 (D.87)

Based on the linearized 2-level logistic model (D.13) and applied GLS estimate of β1 as

(D.85), I get

β̂1 =
ȳ∗

..B − ȳ∗
..W

2

=

∑N
j=1

∑njA

i=1 y∗
ijB − ∑N

j=1

∑njA

i=1 y∗
ijW

2

=

∑N
j=1

PnjB
i=1 {β0+β1+µ0j +µ1j+ε∗ij}

njB
−

∑N
j=1

PnjW
i=1 {β0−β1+µ0j−µ1j +ε∗ij}

njW

2N
(D.88)

As known, β0 and β1 will be constant as parameter estimates within the RC model. µ0j and

µ1j will be constant in the same jth hospital.

β̂1 =

PN
j=1(

njB

nj B
β0+

nj B

njB
β1)

N
+

PN
j=1

njb
njb

µ0j

N
+

PN
j=1

njb
njb

µ1j

N
+

PN
j=1

PnjB
i=1 ε∗ijWPN

j=1 njB

2

−

PN
j=1(

nj B

nj B
β0−

nj B

nj B
β1)

N
+

PN
j=1

njb
njb

µ0j

N
−

PN
j=1

njb
njb

µ1j

N
+

PN
j=1

PnjW
i=1 ε∗ijWPN

j=1 njW

2

=
β0 + β1 +

PN
j=1 µ0j

N
+

PN
j=1 µ1j

N
+

PN
j=1

PnjB
i=1 ε∗ijBPN

j=1 njB

2

−
(β0 − β1 +

PN
j=1 µ0j

N
−

PN
j=1 µ1j

N
+

PN
j=1

PnjW
i=1 ε∗ijWPN

j=1 njW
)

2

=
β0 + β1 + µ0j + µ1j +

PN
j=1

PnjB
i=1 ε∗ijBPN

j=1 njB

2

−
(β0 − β1 + µ0j − µ1j +

PN
j=1

PnjW
i=1 ε∗ijWPN

j=1 njW
)

2

= β1 + µ1j +

PN
j=1

PnjB
i=1 ε∗ijBPN

j=1 njB
−

PN
j=1

PnjW
i=1 ε∗ijWPN

j=1 njW

2
(D.89)
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Because the variance of constant terms are o and µ1j in the same across sites, the above

formula results in

var(β̂1) = var(

∑N
j=1 µ1j

N
) +

var
PN

j=1

PnjA
i=1 ε∗ijAPN

j=1 njA
+ var

PN
j=1

PnjW
i=1 ε∗ijWPN

j=1 njW

4

var(ε∗ijA) or var(ε∗ijW ) are the same as σ2∗
εijA

and σ2∗
εijW

in different cells, respectively. At the

same time, var(µ1j) = σ2
µ1

in any site. I can write the above equation as

var(β̂1) =
Nσ2

µ1

N2
+

(
PN

j=1 njB)σ2∗
εijB

(
PN

j=1 njB)2
+

(
PN

j=1 njW )σ2∗
εijW

(
PN

j=1 njW )2

4

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4
(D.90)

For condition B 1
2
: n1 = n2 = · · · = nj = n, and

∑N
j=1 nijB =

∑N
j=1 nijW = M

2
Applying

(D.85), this results in

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijB
M
2

+
σ2∗

εijB
M
2

4

var(β̂1) =
σ2

µ1

N
+

1
2
(σ2∗

εijB
+ σ2∗

εijW
)

M

var(β1) =
σ2

µ1
n + δ2

M
(D.91)

For condition Bw̄: n1 = n2 = · · · = nj = n and wj = w̄ 6= 1
2
, applying (D.20), I can obtain

N∑

j=1

njB = w̄M

N∑

j=1

njW = (1 − w̄)nN = (1 − w̄)M (D.92)
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I can write (D.85) as

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=
σ2

µ1

N
+

σ2∗
εijB

w̄M
+

σ2∗
εijW

(1−w̄)M

4

=
σ2

µ1

N
+

(1 − w̄)σ2∗
εijB

+ w̄σ2∗
εijW

4w̄(1 − w̄)M
(D.93)

For condition Bwj : n1 = n2 = · · · = nj = n and wj = wj, using equation (D.20), results in

N∑

j=1

njB = n
N∑

j=1

wj

N∑

j=1

njW = n

N∑

j=1

(1 −wj), (D.94)

I can write (D.85) as

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=
σ2

µ1

N
+

σ2∗
εijB

n
PN

j=1 wj
+

σ2∗
εijW

n
PN

j=1(1−wj)

4

=
σ2

µ1

N
+

σ2∗
εijB

n
PN

j=1 wj
+

σ2∗
εijW

n(N−
PN

j=1 wj )

4

=
σ2

µ1

N
+

(N − ∑N
j=1 wj)σ

2∗
εijB

+
∑N

j=1 wjσ
2∗
εijW

4n(N − ∑N
j=1 wj)

∑N
j=1 wj

(D.95)

For condition U 1
2
: n1 6= n2 6= · · · 6= nj , wj = 1, and njB = njW =

nj

2
Using (D.20), the

race specific sample size yields to

N∑

j=1

njB =
M

2

N∑

j=1

njW =
M

2

(D.96)
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I can write (D.85) as

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijB
M
2

+
σ2∗

εijB
M
2

4

var(β̂1) =
σ2

µ1

N
+

1
2
(σ2∗

εijB
+ σ2∗

εijW
)

M

var(β̂1) =
σ2

µ1

N
+

δ2

M
(D.97)

For condition Uw̄: n1 6= n2 6= · · · 6= nj , wj = w̄

Using the results in equation (D.21) yields

N∑

j=1

njB = w̄M

N∑

j=1

njW = (1 − w̄)M (D.98)

The equation (D.85) can be written as

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=
σ2

µ1

N
+

σ2∗
εijB

w̄M
+

σ2∗
εijW

(1−w̄)M

4

=
σ2

µ1

N
+

(1 − w̄)σ2∗
εijB

+ w̄σ2∗
εijW

4w̄(1 − w̄)M
(D.99)

For condition Uwj : n1 6= n2 6= · · · 6= nj, wj = wj. Using equation (D.21) achieves

N∑

j=1

njB =
N∑

j=1

wjnj

N∑

j=1

njW =
N∑

j=1

(1 − wj)nj, (D.100)
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I can write (D.85) as

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijBPN

j=1 njB
+

σ2∗
εijWPN

j=1 njW

4

=
σ2

µ1

N
+

σ2∗
εijBPN

j=1 wjnj
+

σ2∗
εijWPN

j=1(1−wj )nj

4

=
σ2

µ1

N
+

σ2∗
εijBPN

j=1 wjnj
+

σ2∗
εijW

(
PN

j=1 nj−
PN

j=1 wjnj)

4

=
σ2

µ1

N
+

σ2∗
εijBPN

j=1 wjnj
+

σ2∗
εijW

M−PN
j=1 wjnj

4

=
σ2

µ1

N
+

(M −
∑N

j=1 wjnj)σ
2∗
εijB

+ (
∑N

j=1 wjnj)σ
2∗
εijW

4(M −∑N
j=1 wjnj)

∑N
j=1 wjnj

(D.101)
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2. var(β1) For ”Reference Level” Coding

No matter how the independent variables are coded, the multilevel generalized linear model’s

linearization is the same as (D.13). In this section, I will derive the variance of race which

is coded as 1 for black and 0 for white veterans.The same unbalance design scenarios as

discussed in Appendix D.D.2 will be considered, here.

a. In RI Model

Adapting the general linearized 2-level logistic model (D.13) to the 2 level RI model,

adjusted by one binary variable and coded as 1 in black and 0 for white race, yields the

following results:

y∗
ij = β0 + xijβ1 + µ0j + ε∗ij (D.102)

To identify the black effect, I can rewrite the model (D.14) as the race specific models

y∗
ijA = β0 + β1 + µ0j + ε∗ij for black

y∗
ijW = β0 + µ0j + ε∗ij for white (D.103)

Therefore, the average linearized race specific response at jth site are shown as (D.104) and

(D.105) for black and white, respectively.

ȳ∗
.jB =

∑njB

i=1 (β0 + β1 + µ0j + ε∗ijB)

njB
for black

=

∑njB

i=1 (β0) +
∑njB

i=1 (β1) +
∑njB

i=1 (µ0j) +
∑njB

i=1 (ε∗ijB)

njB

=
njBβ0 + njBβ1 + njBµ0j +

∑njB

i=1 (ε∗ijB)

njB

= β0 + β1 + µ0j + ε̄∗.jB (Eε∗.jB = 0)

= β0 + β1 + µ0j

(D.104)
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ȳ∗
.jw =

∑njW

i=1 (β0 + µ0j + ε∗ijW )
∑njW

i=1 1
for white

=

∑njW

i=1 (β0) +
∑njW

i=1 (µ0j) +
∑njW

i=1 (ε∗ijW )

njW

=
njW β0 + njW µ0j +

∑njW

i=1 (ε∗ijW )

njW

= β0 + µ0j + ε̄∗.jW (Eε∗.jW = 0)

= β0 + µ0j (D.105)

Similarly, we can get an average outcome as shown below.

ȳ∗
..B =

∑N
j=1

∑njB

i=1 (β0 + β1 + µ0j + ε∗ijB)
∑N

j=1 njB

for black

=

∑N
j=1

∑njB

i=1 (β0) +
∑N

j=1

∑njB

i=1 (β1) +
∑N

j=1

∑njB

i=1 (µ0j) +
∑N

j=1

∑njB

i=1 (ε∗ijB)

nB

=
nBβ0 + nBβ1 +

∑N
j=1 njBµ0j +

∑njB

i=1

∑N
j=1(ε

∗
ijB)

nB

= β0 + β1 +

∑N
j=1 njBµ0j

nB
+ ε̄∗..B

= β0 + β1 + µ̄0B + ε̄∗..B (Eµ0 = 0)

= β0 + β1 (D.106)

ȳ∗
..W =

∑N
j=1

∑njW

i=1 (β0 + µ0j + ε∗ijW )
∑N

j=1 njW

for white

=

∑N
j=1

∑njW

i=1 (β0) +
∑N

j=1

∑njW

i=1 (µ0j) +
∑N

j=1

∑njW

i=1 (ε∗ijW )

nW

=
nWβ0 +

∑N
j=1 njWµ0j +

∑njW

i=1

∑N
j=1(ε

∗
ijW )

nW

= β0 +

∑N
j=1 njW µ0j

nW
+ ε̄∗..W

= β0 + µ̄0W + ε̄∗..W (Eµ0 = 0)

= β0 (D.107)

Therefore, the GLS estimate of race can be obtained by

ȳ∗
..B − ȳ∗

..W = β0 + β1 − β0 = β1 (D.108)
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By applying the corresponding f(H) to (D.12) and (D.11), the modified y∗
ij and ε∗ij results in

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 + xijβ1

ε∗ij = εij[π̃ij(1 − π̃ij)]
−1 (D.109)

Then, applying Vj=σ2
µ0

to var(Y∗
ij) as (D.17) for RI model yields

var(Y∗
ij) = σ2

µ0
+ [π̃ij(1 − π̃ij)]

−1 (D.110)

Based on the linearized 2-level logistic model (D.13) and by applying the GLS estimate

of β1 as (D.108), I get

β̂1 = ȳ∗
..B − ȳ∗

..W

β̂1 =

∑N
j=1 ȳ∗

.jB − ∑N
j=1 ȳ∗

.jW

N

β̂1 =

∑N
j=1

PnjB
i=1 y∗ijB

njB
−

∑N
j=1

PnjW
i=1 y∗ijW

njW

N
(D.111)

I have presented yijB and yijW as (D.103). Plugging in (D.111), I will get

β̂1 =

∑N
j=1

PnjB
i=1 {β0+β1+µ0j+ε∗ij}

njB
−

∑N
j=1

PnjB
i=1 {β0+µ0j+ε∗ij}

njW

N

β0 and β1 will be constant everywhere.

β̂1 = β0 + β1 + µ0 +

∑N
j=1

∑njB

i=1 ε∗ijB∑N
j=1 njB

− (β0 + µ0 +

∑N
j=1

∑njW

i=1 ε∗ijW∑N
j=1 njW

)

= β1 +

∑N
j=1

∑njW

i=1 ε∗ijW∑N
j=1 njB

−
∑N

j=1

∑njW

i=1 ε∗ijB∑N
j=1 njW

(D.112)

var(β̂1) = var

∑N
j=1

∑njB

i=1 ε∗ijW∑N
j=1 njB

+ var

∑N
j=1

∑njB

i=1 ε∗ijB∑N
j=1 njW
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As known, var(ε∗ijB) or var(ε∗ijW ) are the same as σ2∗
εijB

and σ2∗
εijW

in different cells. I can

write the above equation as

var(β̂1) =
(
∑N

j=1 njB)σ2∗
εijB

(
∑N

j=1 njB)2
+

(
∑N

j=1 njW )σ2∗
εijW

(
∑N

j=1 njW )2

var(β̂1) =
σ2∗

εijB∑N
j=1 njB

+
σ2∗

εijW∑N
j=1 njW

(D.113)

For condition B 1
2
: The related sample size from (D.21) shows as

n1 = n2 = · · · = nj = n, and
∑N

j=1 nijB =
∑N

j=1 nijW = M
2

Thus, (D.113) yields

var(β̂1) =
σ2∗

εijB

M
2

+
σ2∗

εijB

M
2

var(β̂1) =
2(σ2∗

εijB
+ σ2∗

εijW
)

M

var(β1) =
4δ2

M
(D.114)

For condition Bw̄: The related sample size from (D.21) shows as

N∑

j=1

njB = w̄M

N∑

j=1

njW = (1 − w̄)M, (D.115)

I can write (D.113) as

var(β̂1) =
σ2∗

εijB∑N
j=1 njB

+
σ2∗

εijW∑N
j=1 njW

=
σ2∗

εijB

w̄M
+

σ2∗
εijW

(1 − w̄)M

=
(1 − w̄)σ2∗

εijB
+ w̄σ2∗

εijW

w̄(1 − w̄)M
(D.116)
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For condition Bwj : The related sample size from (D.20) shows as

N∑

j=1

njB = n
N∑

j=1

wj

N∑

j=1

njW = = n

N∑

j=1

(1 − wj), (D.117)

I can write (D.114) as

var(β̂1) =
σ2∗

εijB∑N
j=1 njB

+
σ2∗

εijW∑N
j=1 njW

=
σ2∗

εijB

n
∑N

j=1 wj

+
σ2∗

εijW

n
∑N

j=1(1 − wj)

=
σ2∗

εijB

n
∑N

j=1 wj

+
σ2∗

εijW

n(N −
∑N

j=1 wj)

=
(N −∑N

j=1 wj)σ
2∗
εijB

+
∑N

j=1 wjσ
2∗
εijW

n(N −
∑N

j=1 wj)
∑N

j=1 wj

(D.118)

For condition U 1
2
: The related sample size from (D.20) shows as

n1 = n2 = · · · = nj = n, and
∑N

j=1 nijB =
∑N

j=1 nijW = M
2

Thus, (D.113) achieves

var(β̂1) =
σ2∗

εijB∑N
j=1 njB

+
σ2∗

εijW∑N
j=1 njW

var(β̂1) =
σ2∗

εijB

M
2

+
σ2∗

εijB

M
2

var(β̂1) =
4 ∗ 1

2
(σ2∗

εijB
+ σ2∗

εijW
)

4M

var(β1) =
4δ2

M
(D.119)

For condition Uw̄:

The related sample size from (D.20) shows as

N∑

j=1

njB = = w̄M

N∑

j=1

njW = (1 − w̄)M (D.120)
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Equation (D.113) can be written as

var(β̂1) =
σ2∗

εijB∑N
j=1 njB

+
σ2∗

εijW∑N
j=1 njW

=
σ2∗

εijB

w̄M
+

σ2∗
εijW

(1 − w̄)M

=
(1 − w̄)σ2∗

εijB
+ w̄σ2∗

εijW

w̄(1 − w̄)M
(D.121)

For condition Uwj :

The related sample size from (D.20) shows as

N∑

j=1

njB =
N∑

j=1

wjnj

N∑

j=1

njW =
N∑

j=1

(1 − wj)nj, (D.122)

Equation (D.113) yields

var(β̂1) =
σ2∗

εijB∑N
j=1 njB

+
σ2∗

εijW∑N
j=1 njW

=
σ2∗

εijB∑N
j=1 wjnj

+
σ2∗

εijW∑N
j=1(1 − wj)nj

=
σ2∗

εijB∑N
j=1 wjnj

+
σ2∗

εijW

(
∑N

j=1 nj −
∑N

j=1 wjnj)

=
σ2∗

εijB∑N
j=1 wjnj

+
σ2∗

εijW

M −
∑N

j=1 wjnj

=
(M − ∑N

j=1 wjnj)σ
2∗
εijB

+ (
∑N

j=1 wjnj)σ
2∗
εijW

(M −
∑N

j=1 wjnj)
∑N

j=1 wjnj

(D.123)
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b. In RC Model

Adapting the general linearized 2-level logistic model (D.13) to the 2 level RC model,

yields the following rsults: adjusted by race, and coded as 1 for black and 0 fir white race.

y∗
ij = β0 + xijβ1 + µ0j + µ1j + ε∗ij (D.124)

To identify the fixed effect of black race, I can rewrite the model (D.14) as the race specific

models

y∗
ijA = β0 + β1 + µ0j + µ1j + ε∗ij for black

y∗
ijW = β0 + µ0j + ε∗ij for white (D.125)

Therefore, the average linearized race specific responses at jth site are shown as (D.126) and

(D.127) for black and white, respectively.

ȳ∗
.jB =

∑njB

i=1 (β0 + β1 + µ0j + µ1j + ε∗ijB)

njB
for black

=

=

∑njB

i=1 (β0) +
∑njB

i=1 (β1) +
∑njB

i=1 (µ0j) +
∑njB

i=1 (µ1j) +
∑njB

i=1 (ε∗ijB)

njB

=
njBβ0 + njBβ1 + njBµ0j + njBµ1j +

∑njB

i=1 (ε∗ijB)

njB

= β0 + β1 + µ0j + µ1j + ε̄∗.jB (Eε∗.jB = 0)

= β0 + β1 + µ0j + µ1j (D.126)

ȳ∗
.jw =

∑njW

i=1 (β0 + µ0j + ε∗ijW )
∑njW

i=1 1
for white

=

∑njW

i=1 (β0) +
∑njW

i=1 (µ0j) +
∑njW

i=1 (ε∗ijW )

njW

=
njW β0 + njW µ0j +

∑njW

i=1 (ε∗ijW )

njW

= β0 + µ0j + ε̄∗.jW (Eε∗.jW = 0)

= β0 + µ0j (D.127)
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Similarly, the average outcome yields

ȳ∗
..B =

∑N
j=1

∑njB

i=1 (β0 + β1 + µ0j + µ1j + ε∗ijB)
∑N

j=1 njB

for black

=

∑N
j=1

∑njB

i=1 (β0) +
∑N

j=1

∑njB

i=1 (β1) +
∑N

j=1

∑njB

i=1 (µ0j) +
∑N

j=1

∑njB

i=1 (µ1j) +
∑N

j=1

∑njB

i=1 (ε∗ijB)

nB

=
nBβ0 + nBβ1 +

∑N
j=1 njBµ0j +

∑N
j=1 njBµ1j +

∑njB

i=1

∑N
j=1(ε

∗
ijB)

nB

= β0 + β1 +

∑N
j=1 njBµ0j

nB
+

∑N
j=1 njBµ1j

nB
+ ε̄∗..B

= β0 + β1 + µ̄0B + µ̄1B + ε̄∗..B (Eµ0 = 0 & Eµ1 = 0)

= β0 + β1 (D.128)

ȳ∗
..W =

∑N
j=1

∑njW

i=1 (β0 + µ0j + ε∗ijW )
∑N

j=1 njW

for white

=

∑N
j=1

∑njW

i=1 (β0) +
∑N

j=1

∑njW

i=1 (µ0j) +
∑N

j=1

∑njW

i=1 (ε∗ijW )

nW

=
nWβ0 +

∑N
j=1 njWµ0j +

∑njW

i=1

∑N
j=1(ε

∗
ijW )

nW

= β0 +

∑N
j=1 njW µ0j

nW

+ ε̄∗..W

= β0 + µ̄0W + ε̄∗..W (Eµ0 = 0 & Eµ1 = 0)

= β0 (D.129)

Therefore, the GLS estimate of race can be obtained by

ȳ∗
..B − ȳ∗

..W = β0 + β1 − β0 = β1 (D.130)

By applying corresponding f(H) to (D.12) and (D.11), the modified y∗
ij and ε∗ij result in

y∗
ij = (yij − π̃ij)[π̃ij(1 − π̃ij)]

−1 + β0 + xijβ1

ε∗ij = εij[π̃ij(1 − π̃ij)]
−1 (D.131)

Then, applying Vj=σ2
µ0

to var(Y∗
ij) as (D.17) for the RI model yields

var(Y∗
ij) = σ2

µ0
+ σ2

µ1
+ [π̃ij(1 − π̃ij)]

−1 (D.132)
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Based on the linearized 2-level logistic model (D.13) and by applying the GLS estimate of

β1 as (D.130), I get

β̂1 = ȳ∗
..B − ȳ∗

..W

β̂1 =

∑N
j=1 ȳ∗

.jB − ∑N
j=1 ȳ∗

.jW

N

β̂1 =

∑N
j=1

PnjB
i=1 y∗ijB

njB
− ∑N

j=1

PnjW
i=1 y∗ijW

njW

N
(D.133)

I have presented yijB and yijW as (D.125). Plugging in (D.133), I will get

β̂1 =

∑N
j=1

PnjB
i=1 {β0+β1+µ0j+µ1j+ε∗ij}

njB
−

∑N
j=1

PnjB
i=1 {β0+µ0j+ε∗ij}

njW

N

β0 and β1 will be constant everywhere. µ0j will be constant at jth hospital.

β̂1 = β0 + β1 +

∑N
j=1 µ0j

N
+

∑N
j=1 µ1j

N
+

∑N
j=1

∑njB

i=1 ε∗ijB∑N
j=1 njB

− (β0 +

∑N
j=1 µ0j

N
+

∑N
j=1

∑njB

i=1 ε∗ijW∑N
j=1 njW

)

= β1 +

∑N
j=1 µ1j

N
+

∑N
j=1

∑njB

i=1 ε∗ijB∑N
j=1 njB

−
∑N

j=1

∑njW

i=1 ε∗ijW∑N
j=1 njW

(D.134)

var(β̂1) = var(β1) + var(

∑N
j=1 µ1j

N
) + var

∑N
j=1

∑njB

i=1 ε∗ijW∑N
j=1 njW

+ var

∑N
j=1

∑njB

i=1 ε∗ijB∑N
j=1 njB

As known, var(ε∗ijB) or var(ε∗ijW ) are the same as σ2∗
εijB

and σ2∗
εijW

in different cell. At the

same time, var(µ1j) = σ2
µ1

at any hospital. I can write the above equation as

var(β̂1) = var(β1) +

∑N
j=1 var(µ1j)

N2
) +

∑N
j=1

∑njB

i=1 varε∗ijW
n2

W

+

∑N
j=1

∑njB

i=1 varε∗ijB
n2

W

=
Nσ2

µ1

N2
+

(
∑N

j=1 njB)σ2∗
εijB

(
∑N

j=1 njB)2
+

(
∑N

j=1 njW )σ2∗
εijW

(
∑N

j=1 njW )2

=
σ2

µ1

N
+

nBσ2∗
εijB

n2
B

+
nWσ2∗

εijW

n2
W

=
σ2

µ1

N
+

σ2∗
εijB

nB
+

σ2∗
εijW

nW
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For condition B 1
2
: The related sample size from (D.21) shows as

n1 = n2 = · · · = nj = n, and
∑N

j=1 nijB =
∑N

j=1 nijW = M
2

Thus, (D.135) yields

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijB

M
2

+
σ2∗

εijB

M
2

var(β̂1) =
σ2

µ1

N
+

2(σ2∗
εijB

+ σ2∗
εijW

)

M

var(β1) =
σ2

µ1
n + 4δ2

M
(D.136)

For condition Bw̄: The related sample size from (D.20) shows as

N∑

j=1

njB = w̄M

N∑

j=1

njW = (1 − w̄)M, (D.137)

I can write (D.136) as

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijB∑N

j=1 njB

+
σ2∗

εijW∑N
j=1 njW

=
σ2

µ1

N
+

σ2∗
εijB

w̄M
+

σ2∗
εijW

(1 − w̄)M

=
σ2

µ1

N
+

(1 − w̄)σ2∗
εijB

+ w̄σ2∗
εijW

w̄(1 − w̄)M
(D.138)

For condition Bwj : The related sample size from (D.20) shows as

N∑

j=1

njB = n
N∑

j=1

wj

N∑

j=1

njW = = n
N∑

j=1

(1 − wj), (D.139)
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I can write (D.136) as

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijB∑N

j=1 njB

+
σ2∗

εijW∑N
j=1 njW

=
σ2

µ1

N
+

σ2∗
εijB

n
∑N

j=1 wj

+
σ2∗

εijW

n
∑N

j=1(1 − wj)

=
σ2

µ1

N
+

σ2∗
εijB

n
∑N

j=1 wj

+
σ2∗

εijW

n(N − ∑N
j=1 wj)

=
σ2

µ1

N
+

(N −
∑N

j=1 wj)σ
2∗
εijB

+
∑N

j=1 wjσ
2∗
εijW

n(N − ∑N
j=1 wj)

∑N
j=1 wj

(D.140)

For condition U 1
2
: The related sample size from (D.20) shows as

n1 = n2 = · · · = nj = n, and
∑N

j=1 nijB =
∑N

j=1 nijW = M
2

Thus, (D.136) achieves

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijB∑N

j=1 njB

+
σ2∗

εijW∑N
j=1 njW

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijB

M
2

+
σ2∗

εijB

M
2

var(β̂1) =
σ2

µ1

N
+

2(σ2∗
εijB

+ σ2∗
εijW

)

M

var(β1) =
4δ2

M
(D.141)

For condition Uw̄:

The related sample size from (D.20) shows as

N∑

j=1

njB = = w̄M

N∑

j=1

njW = (1 − w̄)M (D.142)
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Equation (D.136) can be written as

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijB∑N

j=1 njB

+
σ2∗

εijW∑N
j=1 njW

=
σ2

µ1

N
+

σ2∗
εijB

w̄M
+

σ2∗
εijW

(1 − w̄)M

=
σ2

µ1

N
+

(1 − w̄)σ2∗
εijB

+ w̄σ2∗
εijW

w̄(1 − w̄)M
(D.143)

For condition Uwj :

The related sample size from (D.20) shows as

N∑

j=1

njB =
N∑

j=1

wjnj

N∑

j=1

njW =
N∑

j=1

(1 − wj)nj, (D.144)

Equation (D.136) yields

var(β̂1) =
σ2

µ1

N
+

σ2∗
εijB∑N

j=1 njB

+
σ2∗

εijW∑N
j=1 njW

=
σ2

µ1

N
+

σ2∗
εijB∑N

j=1 wjnj

+
σ2∗

εijW∑N
j=1(1 − wj)nj

=
σ2

µ1

N
+

σ2∗
εijB∑N

j=1 wjnj

+
σ2∗

εijW

(
∑N

j=1 nj −
∑N

j=1 wjnj)

=
σ2

µ1

N
+

σ2∗
εijB∑N

j=1 wjnj

+
σ2∗

εijW

M −
∑N

j=1 wjnj

=
σ2

µ1

N
+

(M −∑N
j=1 wjnj)σ

2∗
εijB

+ (
∑N

j=1 wjnj)σ
2∗
εijW

(M −
∑N

j=1 wjnj)
∑N

j=1 wjnj

(D.145)
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APPENDIX E

IMAGE OF MLWIN RESULTS USING MLWIN VERSION 2.02
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Figure E1: RI Model for Pneumonia Patient Younger than 65, Using RIGLS PQL2

(a) Fixed Effect (b) Random Effect

Figure E2: Hypothesis Test for Intercept Term in the RI Model, Using RIGLS PQL2
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Figure E3: Hypothesis Test for Black as Fixed Effect in the RI Model, Using RIGLS PQL2

Figure E4: RC Model for Pneumonia Patients Younger Than 65, Using RIGLS PQL2

143



(a) Fixed Effect (b) Random Effect

Figure E5: Hypothesis Test for Intercept Term in the RC Model, Using RIGLS PQL2

(a) Fixed Effect (b) Random Effect

Figure E6: Hypothesis Test for Black in the RC Model, Using RIGLS PQL2
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Figure E7: RI Model for Pneumonia Patient Younger Than 65 in Q2Q4, Using RIGLS PQL2

(a) Fixed Effect (b) Random Effect

Figure E8: Hypothesis Test for Intercept Term in the RI Model in Q2Q4, Using RIGLS

PQL2

145



Figure E9: Hypothesis Test for Black as Fixed Effect in the RI Model in Q2Q4, Using RIGLS

PQL2

Figure E10: RC Model for Pneumonia patients younger than 65 in Q2Q4, Using RIGLS

PQL2

146



(a) Fixed Effect (b) Random Effect

Figure E11: Hypothesis Test for Intercept Term in RC Model in Q2Q4, Using RIGLS PQL2

(a) Fixed Effect (b) Random Effect

Figure E12: Hypothesis Test for Black in RC Model in Q2Q4, Using RIGLS PQL2
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Figure E13: RI Model for Pneumonia Patients Younger Than 65, Using IGLS MQL1

(a) Fixed Effect (b) Random Effect

Figure E14: Hypothesis Test for Intercept Term in the RI Model, Using IGLS MQL1
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Figure E15: Hypothesis Test for Black as Fixed Effect in the RI Model, Using IGLS MQL1

Figure E16: RC Model for Pneumonia Patient Younger than 65, Using IGLS MQL1
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(a) Fixed Effect (b) Random Effect

Figure E17: Hypothesis Test for Intercept Term in the RC Model, Using IGLS MQL1

(a) Fixed Effect (b) Random Effect

Figure E18: Hypothesis Test for Black in the RC Model, Using IGLS MQL1
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Figure E19: RI Model for Pneumonia Patients Younger Than 65 in Q2 to Q4, Using IGLS

MQL1

(a) Fixed Effect (b) Random Effect

Figure E20: Hypothesis Test for Intercept Term in RI Model in Q2 to Q4, using IGLS MQL1
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Figure E21: Hypothesis Test for Black as Fixed Effect in the RI Model in Q2 to Q4, Using

IGLS MQL1

Figure E22: RC Model for Pneumonia Patient Younger than 65 in Q2 to Q4, Using IGLS

MQL1
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(a) Fixed Effect (b) Random Effect

Figure E23: Hypothesis Test for Intercept Term in RC Model in Q2 to Q4, Using IGLS

MQL1
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(a) Fixed Effect (b) Random Effect

Figure E24: Hypothesis Test for Black in RC Model in Q2 to Q4, Using IGLS MQL1
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APPENDIX F

PROGRAM FOR SIMULATION STUDY

A. MACRO FUNCTION TO TRANSFER STATA TO MLWIN

Stata macro Stata2Mlwin can be downloaded from below web site:

http://www.ats.ucla.edu/stat/mlwin/faq/stata2mlwin.htm.

This function is written for a continuous outcome. An optimized macro in the same name is

developed for binary outcome data. This ado file is stored in ”C:\ado\plus\s”. I attached

this program in the next few pages. I modified this macro for fitting 2-level logistic model

fitting.

After I submit the following codes in Stata stata2mlwin ”C:\data\pnaless65”, a MLwiN

obey file is created and stored as ”C:\data\pnaless65.obe”.

In MLwin’s macro window, we can submit below macro to transfer and save pnaless.ws.

obey ”C:\data\pnaless65.obe”

save ”C:\data\pnaless65.ws”
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 Macro function to transfer Stata to MLwin 

*! Version 1.0 

*! Version 1.1, converts string vars to numeric via "encode" 

*! Version 1.2, adds missing() option, with -12345 as default missing code 

*!              Handles version 8 missing codes .a etc. 

*! Version 1.2.1 Added message about sorting data 

*! Add need variable for 2-level logistic model 

capture program drop stata2mlwin 

program define stata2mlwin 

  version 7 

  syntax using/ , [ replace clear nocons missing(integer -12345 ) ] 

   

  use "`using'" , `clear' 

  if "`nobcons'" == "" { 

    capture local hascons : type bcons 

    if _rc != 0 { 

      gen bcons = 1 

      order bcons 

    } 

    else { 

      display as error "Variable bcons already exists, no binary constant created" 

      display "Conversion continues" 

    } 

  } 

 

  if "`nodenom'" == "" { 

    capture local hascons : type denom 

    if _rc != 0 { 

      gen denom= 1 

      order denom 

    } 

    else { 

      display as error "Variable denom already exists, no denom created" 

      display "Conversion continues" 

    } 

  } 

  

 

 if "`nocons'" == "" { 

    capture local hascons : type cons 

    if _rc != 0 { 

      gen cons = 1 

      order cons 

    } 
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    else { 

      display as error "Variable cons already exists, no constant created" 

      display "Conversion continues" 

    } 

  } 

 

  tempvar out 

  capture file close `out' 

 

  quietly file open `out' using "`using'.obe", write text `replace' 

 

  unab varlist : * 

  local varcnt: word count `varlist' 

  * display " varlist is `varlist' has `varcnt'" 

 

  foreach var of local varlist { 

    local vartype : type `var'  

    if (substr("`vartype'",1,3)=="str") { 

      display "encoding `var'" 

      tempvar tempenc 

      encode `var', generate(`tempenc') 

      drop `var' 

      rename `tempenc' `var' 

    } 

  } 

 

  display "Missing values stored as `missing'  

  display "(You can change this with the missing() option.)" 

  display "In MLwiN, choose Options Worksheet then Numbers" 

  display "to tell it that values that are `missing' are missing." 

 

  quietly count 

  local ncases = `r(N)' 

 

  * file write `out' "wipe" _newline 

  file write `out' "echo 0" _newline 

  file write `out' "assign c1-c`varcnt'" _newline 

   

  local i = 1 

  while (`i' <= `ncases') { 

    if mod(`i' , 100 ) == 0 { 

      display _column(1) "." _continue 

    } 

    foreach var of local varlist { 
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      local vartype : type `var'  

      if (("`vartype'"=="byte") | ("`vartype'"=="int")  | ("`vartype'"== "long")  | 

("`vartype'"== "float") | ("`vartype'"== "double")) { 

        if (`var'[`i'] >= .) { 

          file write `out' "`missing'" " " 

        } 

        else { 

          file write `out' (`var'[`i']) " " 

        } 

      } 

      else { 

        file write `out' (`var'[`i']) " " 

      } 

    } 

    file write `out' _newline 

    local i = `i' + 1 

  }  

  display 

 

  file write `out' "finish" _newline 

  file write `out' "echo 1" _newline 

 

  file write `out' _newline 

  local i = 0 

  foreach var of local varlist { 

    local i = `i' + 1 

    file write `out' "name c`i' '`var''" _newline 

  } 

 

  file write `out' _newline 

  local i = 0 

  foreach var of local varlist { 

    local i = `i' + 1 

    makelab `var' `i' `ncases' `out' 

  } 

 

  local pwd : pwd 

  * if index("`using'","\") == 0 { 

  *   file write `out'  _newline "save `pwd'" "\" "`using'.ws" _newline 

  * } 

  * else { 

  *   file write `out'  _newline "save `using'.ws" _newline 

  * } 
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  file close `out' 

 

  display as text "Looks like this was a success." 

  display as text "To convert the file to MLwiN, start MLwiN and then" 

  display as text "Choose 'Data Manipulation -> Command Interface"  

  display as text "then at the command prompt type" 

  display as input "  wipe" 

  display as text "which clears out any data (if any), then type" 

  if index("`using'","\") == 0 { 

    display as input "  obey `pwd'" "\" "`using'.obe" 

  } 

  else { 

    display as input "  obey `using'.obe" 

  } 

  display as text "which runs the program to make the MLwiN data file." 

  display as text "You can then choose 'File' -> 'Save as' to save the file." 

 

  display 

  display "NOTE: Please be sure your data is sorted based on the levels" 

  display "of your model.  For example, for a 2 level model, based on the 

  display "level 2 ID, then the level 1 ID.  You can do this in Stata before" 

  display "running this program, or in MLwiN afterwards." 

 

  clear 

 

end 

 

capture program drop makelab 

program define makelab 

  * variable name, variable number, n of cases, file handle 

  args var i n out 

  * display "args `var' `i' `n'" 

 

  * CATN 0 c1 

  * CATN 1 c1 0 '\male' 1 '\female' 

 

  local vl : value label `var' 

  if "`vl'" == "" { 

    exit 0 

  } 

 

  tempvar lvar 

  tempvar first 

  decode `var', gen(`lvar') 
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  sort `lvar' 

  by `lvar' : gen `first' = (_n == 1) & `lvar' != "" 

  

  file write `out' "CATN 0 C`i'" _newline 

 

  local casenum = 1 

  while (`casenum' <= `n') { 

    if `first'[`casenum'] { 

      local v1 = `var'[`casenum'] 

      local v2 = `lvar'[`casenum'] 

      file write `out' "CATN 1 C`i' `v1' '\" "`v2'" "'" _newline 

    } 

    local casenum = `casenum' + 1 

  }  

  file write `out' _newline 

end 

   

 

 

  

 160 



Stata Program for Analytic Variance  
1. Calculate analytic variance using empirical model results 
global dat "h:\PNAless65\data" 

global dta "h:\PNAless65\data" 

global pgm "h:\PNAless65\program" 

global rlt "h:\PNAless65\result" 

global plt "h:\PNAless65\plot" 

 

log using "$rlt\varaa in formula in most AA 3quartile 01222007 final.log", replace 

use "$dta\pnaless65.dta",clear 

keep if quartile~=1 

set type double 

g n=1 

collapse (count) n, by (site race2) 

/*fillin the unexist combination, and define the number of that cell as 0*/ 

fillin site race2 

replace n=0 if n==. 

sort  site race2 

bysort site:g nwhite= n[1] 

bysort site:g naa= n[2] 

keep  site naa nwhite 

bysort site: keep if _n==1 

sort site 

save "$dta\3qpnaless65racenumber.dta",replace 

 

use "$dta\pnaless65.dta",clear 

keep if quartile~=1 

 

sort site 

codebook site 

 

sort site visit 

 

bysort site: g n=_N 

bysort site: keep if _n==_N 

keep site n 

sort site 

codebook n 

egen M=sum(n) 

g  N=_N 

g nbar=M/N 

 

g beta_0RI=-2.439 
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g beta_AARI=-0.134 

g vare_con_RI=0.069 

 

g beta_0RC=-2.415 

g beta_AARC=-0.191 

g vare_con_RC=0.036 

g vare_AA_RC=0.116 

 

g var_RIewhite=2+exp(-(beta_0RI))+exp(beta_0RI) 

g var_RIeAA=2+exp(-(beta_0RI+beta_AARI))+exp(beta_0RI+beta_AARI) 

 

g var_RCewhite=2+exp(-(beta_0RC))+exp(beta_0RC) 

g var_RCeAA=2+exp(-(beta_0RC+beta_AARC))+exp(beta_0RC+beta_AARC) 

 

g var_u1=vare_AA_RC/N 

 

/*for balanced design of var varAA*/ 

/*if w is .5*/ 

g varAA_RIw5=2*(var_RIeAA+var_RIewhite)/M     /*for a*/ 

g varAA_RCw5=2*(var_RCeAA+var_RCewhite)/M + var_u1 /*for e*/ 

di "Condition a and d, balance or unbalanced among site with equal sample size of 

race" 

list varAA_RIw5 varAA_RCw5 in 1/1 

 

sort site  

merge site using "$dta\3qpnaless65racenumber.dta" 

drop _merge 

g wsite=naa/n 

save "$dat\3qraw_est.dta", replace 

 

 

/*if w is the same for each site*/ 

/*for balanced design of var varAA*/ 

/*if w is .5 is balanced within and across site case in the col 1*/ 

forv r=1/9 { 

 use "$dat\3qraw_est.dta", clear 

 local w=`r'/10 

 /*calculate variance of AA in the fixed effect*/ 

 qui g double varAA_RI`r'=((1-`w')*var_RIeAA+`w'*var_RIewhite)/(`w'*(1-`w')*M)   

 /*for b, d*/ 

 qui g double varAA_RC`r'=((1-`w')*var_RCeAA+`w'*var_RCewhite)/(`w'*(1-`w')*M) 

+ var_u1   /*for be*/ 

 

 format varAA_RI`r' varAA_RC`r' %5.3f 
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 qui  g double w=`w' 

 

 di "Condition b and e, balance or unbalanced among site and unbalance acroos site 

with same weight as " w 

 di "var(AA) in fixed effect will be " varAA_RI`r' " in RI and " varAA_RC`r' " 

in RC , respecitively." 

 di "" 

 save "$dat\var_w`i'.dta",replace 

 } 

 

/*for balance among site and unbalanced within site design of var varAA, using site 

specific weight*/ 

egen sumw=sum(wsite) 

di sumw 

 g double  

varAA_RIwsite=((N-sumw)*var_RIeAA+sumw*var_RIewhite)/(nbar*(N-sumw)*sumw)   

 /*for b2*/ 

 g double  

varAA_RCwsite=((N-sumw)*var_RCeAA+sumw*var_RCewhite)/(nbar*(N-sumw)*sumw) + 

var_u1   /*for b2*/ 

*for unbalance among and within site design of var varAA, using site specific weight*/ 

g nw=naa 

egen sumwn=sum(naa) 

di sumwn 

g double  varAA_RIwsiten=[(M-sumwn)*var_RIeAA+sumwn*var_RIewhite]/ 

[(M-sumwn)*sumwn]    /*for b2*/ 

g double  varAA_RCwsiten=[(M-sumwn)*var_RIeAA+sumwn*var_RIewhite]/ 

[(M-sumwn)*sumwn] + var_u1   /*for b2*/ 

 /*calculate power for unbalanced scenario*/ 

 /*for condition c*/ 

 di "Condition C, balance among site and unbalance across site with site specific 

weight" 

 di " var(AA) in fixed effect will be " varAA_RIwsite " in RI, and " varAA_RCwsite 

" in RC , respecitively." 

/*For conditin f*/ 

 di "Condition f, unbalance among and across site with site specific weight" 

 di "var(AA) in fixed effect will be " varAA_RIwsiten " in RI, and " varAA_RCwsiten 

" in RC , respecitively." 

ave "$dat\var and power 01182007.dta",replace 

 

log close 

print "$rlt\varaa in formula in most AA 3quartile 01222007 final.log" 
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2. Plot analytic variance using the results from above code 
 
use "F:\PNAless65\data\analytic variance 01232007.dta", clear 
label var w "Black%" 
label define lw 1 "10%" 2 "20%" 3 "30%" 4 "40%" 5 "50%" 6 "60%" 7 "70%" 8 "80%" 9 "90%" /// 
  10 "eqaul cluster site with site specif Balck%" /// 
  11 "eqaul cluster site with site specif Balck%" /// 
  12 "Use observation" 
labe value w lw 
 
label var var "VAR(black)" 
 
label define ldata 1 "Full data" 2 "Q2-Q4" 
label data ldata 
 
scatter var w  if  model=="RI" & data==1,  text(0.00473 1 "RI,full data") || /// 
 scatter var w  if model=="RC" & data==1, text( 0.00549 1 "RC,full data") || /// 
 scatter var w  if model=="RI" & data==2,  text(0.0093  1 "RI,Q2-Q4 data") || /// 
  scatter var w  if model=="RC" & data==2,  text(0.0123  1 "RC,Q2-Q4 data") /// 
, note("W=10:blanced cluser size with site-spcific weight"  /// 
  "W=11:using site-specific Black%" "W=12: using site-specofc information") || ///  
line var w  if w <10 & model=="RI" & data==1 ||  line var w  if w <10 & model=="RC" & data==1 || /// 
line var w  if w <10 & model=="RI" & data==2 ||  line var w  if w <10 & model=="RC" & data==2, 
xlabel( 0 (1) 12) /// 
 scheme(s2mono) legend(off) saving("F:\PNAless65\plot\analytic var 01232007.gph", replace) 
graph export "F:\PNAless65\plot\analytic var 01232007.emf", replace 
graph export "F:\PNAless65\plot\analytic var 01232007.eps", replace
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Note: this program use MLwiN2.0(r) 

Note: Macros to fit a 2-level logistic random coefficent model for AA by method RIGLS 

PQL2  

Note: This is used for Volpp project July 2005 data 

Note: I use Stata transfer the String variable and Use do file stata2mlwinlogit 

transfer stata data to mlwin obey file 

note: I used index to sepcify the order of the observation. 

 

note [A. read in the Volpp pneumonia  younger than 65 years old data] 

RETR F:\dec simulation\ws\pnaless65.ws 

FPATH C:\Program Files\MLwiN2(r)\discrete 

pref pre 

post post 

 

note [B. Set Up the Ri or RC model] 

note define repsonse variable and level variable 

 

resp    'anysoc30' 

iden 2  'site' 

iden 1  'visit' 

addt   'bcons' 

addt    'cons' 

addt    'race2' 

 

note: define the contrast matrix to be ready for hypothesis test 

joint 0 1 0  c100 

name c100 "AAF" 

 

joint 1 0 0   c102 

name c102 "INTF" 

 

joint 1 0 0 0 0 c103 

name c103 "INTR" 

 

 

joint 0 0 1 0 0 c101 

name c10` "AAR" 

 

 

note: delcair level-1 variance defining columns linked to G9 

link 'bcons'  g9 
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NOTE: Set variance structure at each level 

setv 1 'bcons' 

setv 2 'cons'   'BLACK' 

note [for RI delet 'BLACK' in the level 2 varaince structure] 

 

NOTE: BCONS exists only to specify level 1 variation, so need to remove from fixed 

part 

fpar 0 'bcons' 

 

note************************ 

note: method is RIGLS with pQL2 

note************************ 

 

method is RIGLS 

note: b10 0 for multinomia and 1 for ordered multinomial 

note: b11 0 for 1st order and 0 for 2en order 

note: b12 1 for mql and 1 for pql for fixed part 

note: b13 0 for logit and 1 for loglog 

note: b14 0 for distributional and 1 for unconstrained 

note: b16 0 for no mixed model and 1 for yes mixed model 

set b10 0 

set b11 2 

set b12 1 

set b13 0 

set b14 0 

set b15 1 

set b16 0 

 

NOTE: Run model to convergence 

batc 1 

note [C. Run the model] 

start 

 

note [D. Copy emprical parameter estimate from specific column to a new columm to 

aviod the raw parameter estimate] 

calc c106=c1096      

calc c107=c1097 

calc c108=c1098       

calc c109=c1099 

 

note [E. Erase Column C1096-c1099] 

erase c1096-c1099 
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note [save this worksheet containn the parameter estimates for the Volpp data] 

save F:\dec simulation\rawresult\pnaless65rc_raw.ws 

 

echo 1  

 

note: [store the corresponding parameter estimates and hypothesis test in a txt file] 

 

logon F:\dec simulation\rawresult\pnaless65rc_raw.txt 

fixed  note [save the fixed effect estimates] 

random note [save the random effect estimates] 

RTEST C101 note [do a hypothesis on defined contrast matrix, here for random effect 

for Blakc] 

rtest c103 note [random effect test on intercept residual] 

ftest c100 note [fixed effect test on Black as fixed effect] 

ftest c102 note [fixed effect test on intercept term] 

logo 
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note [get the Volpp worksheet] 

retr D:\Dec simulation\raw_ws\pnaless65_RI_raw_SIMU.ws 

 note this simulate response variable should refer to multilevel archieve 1025 

pause 2 

Note[when simulate power, we can modify the beta 1 by add edit 2 c108 -0.1 in the 

next line] 

erase c500-c517      

 note [clear columns that will hold simulation results]    

BATCh  1              

 note [run each simulation rep until convergence]            

MAXIterations 50     

 note [but do not  run more than 50 iterations per simulation replicate] 

loop  b50 1 2000  

 note [Do below loops (T=2000) times ] 

note [A. Assign initial parameter estimates in column C1096-c1099 from C106-c109]  

  calc c1096=c106      

  calc c1097=c107 

  calc c1098=c108       

  calc c1099=c109 

note  [B. Simulate estimate of random effects] 

  simu 2  C500   

note  [C. Simulate estimate of fixed effect]  

  pred  C501          

note [D & E. Calculate the probability of response ,pi= anti-log(XB+ZU)] 

  calc  C502 = alog (C500+C501)      

Note [F. Simulate the new binary response variable from bin(n, pi)] 

  bran 37111 C503  C502  'denom'     

Note [G. Fit the RI or RC model with this simulated response variable] 

note [Modify response variable to the new simulated response variable]  

resp c503                          

note [run the simulation replicate]  

star                               

join c511 c1096 c511   

note [stack variances of random effects in c511]                

join c512 c1098 c512                 

note [stack beta's in c512] 

joint c513 b50 c513 

echo 1  

 

note [H. Conduct the hypothesis test for the fixed and or random effect of black 

race and save the statistics results] 

note D:\Dec simulation\simu\ri\betahat\simuresults\PNALESS65_TESTSITEF_ri_lap.txt 

logo D:\Dec simulation\simu\ri\betahat\simuresults\PNALESS65_TESTSITEF_ri_lap.txt 
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note beta is beta hat 

FTEST 'SITE_F' 

logo 

 

note loga D:\Dec simulation\simu\ri\betahat\simuresults\PNALESS65_TESTAAF_ri_ 

lap.txt 

logo D:\Dec simulation\simu\ri\betahat\simuresults\PNALESS65_TESTAAF_ri_lap.txt 

note beta is beta hat 

FTEST 'AA_F' 

logo 

 

note loga D:\Dec simulation\simu\ri\betahat\simuresults\PNALESS65_TESTSITER_ri_ 

lap.txt 

logo D:\Dec simulation\simu\ri\betahat\simuresults\PNALESS65_TESTSITER_ri_lap.txt 

RTEST 'SITE_R' 

logo 

 

note [I. Store Parameter estimate ] 

NOTE: BEFORE RUN THE SIMULATION, I NEED CREATE BELOW FILE BY MYSELF or using logo 

note [the first loop will use logo and the other use loga] 

note loga D:\Dec simulation\simu\ri\betahat\simuresults\par_est_ri_lap.txt 

logo D:\Dec simulation\simu\ri\betahat\simuresults\par_est_ri_lap.txt 

note beta is beta hat 

fixed 

random  

logo 

 

note finished one loop 

echo 0 

endloop 

 

NOTE SAVE RELATED SIMULATION RESULTS FOR FURTHER ANALYSIS  

SAVE D:\Dec simulation\simu\ri\betahat\SIMUWS\PNALESS65ri_SIMU.WS 
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Sample SAS and Stata Program to Analyze Simulation Results 

1. SAS Macro to Read and analysis Simulation Results 

PROC PRINTTO LOG="D:\Dec simulation\simu\CALCULATE VAR OF BLACK AS FIXED EFFECT 

LOG.TXT" 

      PRINT="D:\Dec simulation\simu\CALCULATE  VAR OF BLACK AS 

FIXED EFFECT OUTCOME.TXT"; 

************READ IN VARIANCE FOR BETA HAT*********************; 

%MACRO VARAABETAHAT(TYPE= ); 

LIBNAME  &TYPE.HAT  "D:\Dec simulation\simu\&TYPE.\betaHAT\simuanalysis"; 

DATA  &TYPE.HAT.VARAAF&TYPE.BETAHAT; 

 INFILE "D:\Dec 

simulation\simu\&TYPE.\betaHAT\simuresults\par_est_&TYPE._LAP.TXT"; 

  INPUT  RACE  $  1-5 @ ; 

  IF RACE='Black';  

    INPUT EST 25-34  SE 35-45; 

VARAA=SE**2; 

TYPE="&TYPE"; 

BETA="BHAT"; 

TITLE "SAMPLE VARIANCE OF VAR(BLACK) FOR &TYPE MODEL AND SIMULATED ON BETA HAT "; 

PROC MEANS; VAR VARAA;RUN; 

%MEND; 

 

***************WHEN BETA LARGE THAN THAN 0***************************; 

%MACRO VARAABETA(TYPE=, BETAH0= ); 

%DO i=1 %TO &BETAH0; 

LIBNAME CHEN&TYPE.&I "D:\Dec simulation\simu\&TYPE.\beta&I.\simuanalysis"; 

 

DATA CHEN&TYPE.&I..VARAAF&TYPE.&I; 

 INFILE "D:\Dec 

simulation\simu\&TYPE.\beta&I.\simuresults\par_est_&TYPE._HOME.TXT"; 

  INPUT  RACE  $  1-5 @ ; 

  IF RACE='Black';  

    INPUT EST 25-34  SE 35-45; 

VARAA=SE**2; 

TYPE="&TYPE"; 

BETA="&I"; 

TITLE "SAMPLE VARIANCE OF VAR(BLACK) FOR &TYPE MODEL AND SIMULATED ON BETA=&I "; 

PROC MEANS; VAR VARAA;RUN; 

%END; 

%MEND; 

 

***************WHEN BETA LESS THAN 0***************************; 

%MACRO VARAABETA_(TYPE=, BETAH0=); 

%DO i=1 %TO &BETAH0; 
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LIBNAME CHEN&TYPE._&I "D:\Dec simulation\simu\&TYPE.\beta_&I.\simuanalysis"; 

 

DATA CHEN&TYPE._&I..VARAAF&TYPE._&I; 

 INFILE "D:\Dec 

simulation\simu\&TYPE.\beta_&I.\simuresults\par_est_&TYPE._HOME.TXT"; 

  INPUT  RACE  $  1-5 @ ; 

  IF RACE='Black';  

    INPUT EST 25-34  SE 35-45; 

VARAA=SE**2; 

TYPE="&TYPE"; 

BETA="-&I"; 

TITLE "SAMPLE VARIANCE OF VAR(BLACK) FOR &TYPE MODEL AND SIMULATED ON BETA=-&I "; 

PROC MEANS; VAR VARAA;RUN; 

%END; 

%MEND; 

 

%VARAABETAHAT(TYPE=RI); 

%VARAABETA(TYPE=RI, BETAH0=9); 

%VARAABETA_(TYPE=RI, BETAH0=9); 

 

%VARAABETAHAT(TYPE=RC); 

%VARAABETA(TYPE=RC, BETAH0=5); 

%VARAABETA_(TYPE=RC, BETAH0=5); 

 

PROC PRINTTO;RUN; 

 

 

/*SET ALL THE VARIANCE TOGETHER*/ 

%MACRO ALLVAR_(TYPE=, BETAH0=); 

%DO i=1 %TO &BETAH0; 

LIBNAME CHEN&TYPE._&I "D:\Dec simulation\simu\&TYPE.\beta_&I.\simuanalysis"; 

DATA VARALL; SET VARALL CHEN&TYPE._&I..VARAAF&TYPE._&I ; 

RUN; 

%END; 

%MEND; 

 

%MACRO ALLVAR(TYPE=, BETAH0=); 

%DO i=1 %TO &BETAH0; 

LIBNAME CHEN&TYPE.&I "D:\Dec simulation\simu\&TYPE.\beta&I.\simuanalysis"; 

DATA VARALL; SET VARALL CHEN&TYPE.&I..VARAAF&TYPE.&I ; 

RUN; 

%END; 

%MEND; 
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DATA VARALL; SET _NULL_; 

%ALLVAR(TYPE=RI, BETAH0=9);RUN; 

%ALLVAR_(TYPE=RI, BETAH0=9);  

%ALLVAR(TYPE=RC, BETAH0=5); 

%ALLVAR_(TYPE=RC, BETAH0=5);RUN; 

DATA ALLVAR; SET VARALL RIHAT.VARAAFRIBETAHAT RCHAT.VARAAFRCBETAHAT ; 

RUN; 

LIBNAME SIMU "D:\Dec simulation\simu\"; 

DATA SIMU.ALLVAR; SET ALLVAR; 

TITLE "COMBO DATA SET FOR VAR UNDER DIFFERENT MODEL AND BETAH0"; 

PROC CONTENTS; RUN; 
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2. Sample Stata Program to get Histogram plot of simulated variance for the fixed 

effect of black race. 

 

use "D:\Dec simulation\simu\SAS to analysis power and variance for black\allvar. 

dta",clear 

histogram varaa if type=="RI" & beta=="BH",  xline(0.0023) /// 

  text(5000 0.0024 "0.0023") kdensity note("variance(black), RI model") 

saving("c:\ri_1.gph", replace)  

graph export "c:\ri_1.eps",replace 

 

3. Sample Stata program to plot cumulative distribution 

 

use  "D:\Dissertation\09282006\PNAless65\data\PNA with Quatile in PNA and ALL site 

level.dta", clear 

sort site 

cumul naa, gen(cumnaa) 

cumul nwhite , gen(cumnwhite) 

summ cumnaa cumnwhite 

stack cumnaa naa cumnwhite nwhite , into(cumu npat) wide clear 

label var cumnaa  "Black" 

label var cumnwhite "White"  

label var naa  "Black" 

label var nwhite "White"  

line cumnaa cumnwhite npat, sort scheme(s2mono) xtitle("Site and Race Specific 

Patient Number")  /// 

 xlabel(0 (100) 600)  ytitle("Proportion")  

*graph export "I:\stataPNAless65\plot\Acumuaa.eps",replace 

graph export "D:\Dissertation\Pctex draft\2007\Apr2007\Acumuaa.eps",replace 

graph export "D:\Dissertation\Pctex draft\2007\Apr2007\cumufull.eps",replace 

graph export "G:\Acumuaa.eps",replace 

graph export "G:\cumufull.eps",replace 

 

 

use  "D:\Dissertation\09282006\PNAless65\data\PNA with Quatile in PNA and ALL site 

level.dta", clear 

keep if quartile>1 

sort site 

cumul naa, gen(cumnaa) 

cumul nwhite , gen(cumnwhite) 

summ cumnaa cumnwhite 

stack cumnaa naa cumnwhite nwhite , into(cumu npat) wide clear 

label var cumnaa  "Black" 

label var cumnwhite "White"  

line cumnaa cumnwhite npat, sort scheme(s2mono)  xtitle("Site and Race Specific 
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Patient Number")  /// 

 xlabel(0 (100) 600)   ytitle("Proportion")  

*graph export "I:\stataPNAless65\plot\Acumuaa.eps",replace 

graph export "D:\Dissertation\Pctex draft\2007\Apr2007\Q24Acumuaa.eps",replace 

graph export "D:\Dissertation\Pctex draft\2007\Apr2007\cumuq24.eps",replace 

graph export "G:\Q24Acumuaa.eps",replace 

graph export "G:\cumuq24.eps",replace
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Main Effect 2-level RI Model in Stata 

Full Population 

. xtlogit  anysoc30 race2, fe i(site) 

note: multiple positive outcomes within groups encountered. 

note: 5 groups (73 obs) dropped due to all positive or 

      all negative outcomes. 

Iteration 0:   log likelihood = -9418.3992   

Iteration 1:   log likelihood = -9418.3985   

Conditional fixed-effects logistic regression   Number of obs      =     37038 

Group variable (i): site                        Number of groups   =       144 

                                                Obs per group: min =        20 

                                                               avg =     257.2 

                                                               max =       921 

                                                LR chi2(1)         =      5.66 

Log likelihood  = -9418.3985                    Prob > chi2        =    0.0173 

 

------------------------------------------------------------------------------ 

    anysoc30 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

       race2 |   -.118133   .0498915    -2.37   0.018    -.2159186   -.0203475 

------------------------------------------------------------------------------ 

For Q2-Q4 sum-sample 

. xtlogit  anysoc30 race2 if  quartile!=1, fe i(site) 

note: multiple positive outcomes within groups encountered. 

Iteration 0:   log likelihood = -4756.9018   

Iteration 1:   log likelihood = -4755.7606   

Iteration 2:   log likelihood = -4755.7606   

 

Conditional fixed-effects logistic regression   Number of obs      =     17957 

Group variable (i): site                        Number of groups   =        42 

 

                                                Obs per group: min =        73 

                                                               avg =     427.5 

                                                               max =       921 

                                                LR chi2(1)         =      2.95 

Log likelihood  = -4755.7606                    Prob > chi2        =    0.0860 

------------------------------------------------------------------------------ 

    anysoc30 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

       race2 |  -.1027182   .0599554    -1.71   0.087    -.2202286    .0147922 

------------------------------------------------------------------------------ 
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Conditional Logistic Model with Race*Site Interaction 

(Partial Result with Notations) 

********************************************************************** 

For Over all 149 site race*site interaction Conditional logistic model 

*********************************************************************** 

. xi: xtlogit  anysoc30 i.site*race2 , i(site) fe 

i.site            _Isite_1-150        (naturally coded; _Isite_1 omitted) 

i.site*race2      _IsitXrac_#         (coded as above) 

note: _IsitXrac_2 dropped due to collinearity 

…(8 interaction dropped due to collinearity ) 

note: multiple positive outcomes within groups encountered. 

note: 5 groups (73 obs) dropped due to all positive or 

      all negative outcomes. 

note: _Isite_2 omitted due to no within-group variance. 

… omit 

note: _Isite_150 omitted due to no within-group variance. 

(All 148 site, except reference site omitted due to no within group variance) 

note: _IsitXrac_18 omitted due to no within-group variance. 

.. 

note: _IsitXrac_88 omitted due to no within-group variance. 

(4 interaction omitted due to within group variance) 

 

Iteration 0:   log likelihood = -9421.2307   

… 

Iteration 14:  log likelihood = -9342.7467   

 

Conditional fixed-effects logistic regression   Number of obs      =     37038 

Group variable (i): site                        Number of groups   =       144 

 

                                                Obs per group: min =        20 

                                                               avg =     257.2 

                                                               max =       921 

 

                                                LR chi2(136)       =    156.97 

Log likelihood  = -9342.7467                    Prob > chi2        =    0.1054 

 

------------------------------------------------------------------------------ 

    anysoc30 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       race2 |  -15.12217   5407.648    -0.00   0.998    -10613.92    10583.67 

.. 

 _IsitXrac_7 |   15.57837   5407.648     0.00   0.998    -10583.22    10614.37 

 _IsitXrac_8 |   13.61087   5407.648     0.00   0.998    -10585.18    10612.41 

 _IsitXrac_9 |    14.5775   5407.648     0.00   0.998    -10584.22    10613.37 
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…omitted… due to uniform cases the parameter estimate are not reliable with infinite OD and SE 

------------------------------------------------------------------------------ 

 

. testparm _IsitXrac_* 

( 1)  [anysoc30]_IsitXrac_3 = 0 

…omit 

 (136)  [anysoc30]_IsitXrac_150 = 0 

           chi2(136) =  110.49 

         Prob > chi2 =    0.9468 
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*********************************************************** 

For Q2-Q4 race*site interaction Conditional logistic model 

*********************************************************** 

. xi: xtlogit  anysoc30 i.site*race2 if quartile!=1, i(site) fe 

i.site            _Isite_1-150        (naturally coded; _Isite_1 omitted) 

i.site*race2      _IsitXrac_#         (coded as above) 

note: _Isite_2 dropped due to collinearity 

… 

note: _Isite_150 dropped due to collinearity (107 dropped due to collinearity by if quartile!=1) 

… omit  

note: _IsitXrac_150 dropped due to collinearity(107 dropped due to collinearity by if quartile!=1) 

note: multiple positive outcomes within groups encountered. 

note: _Isite_15 omitted due to no within-group variance. 

… 

note: _Isite_148 omitted due to no within-group variance. (41 site main effect omitted due to no within-group 

variance) 

Iteration 0:   log likelihood = -4735.8498   

… omit 

Iteration 4:   log likelihood = -4722.7491   

Conditional fixed-effects logistic regression   Number of obs      =     17957 

Group variable (i): site                        Number of groups   =        42 

                                                Obs per group: min =        73 

                                                               avg =     427.5 

                                                               max =       921 

                                                LR chi2(42)        =     68.97 

Log likelihood  = -4722.7491                    Prob > chi2        =    0.0054 

 

------------------------------------------------------------------------------ 

    anysoc30 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       race2 |   .5622971   .7294469     0.77   0.441    -.8673926    1.991987 

_IsitXrac_15 |  -.8058547   .7997266    -1.01   0.314     -2.37329    .7615807 

_IsitXrac_16 |  -.9836094   .8355352    -1.18   0.239    -2.621228    .6540094 

_IsitXrac_17 |   -.966049   .8237389    -1.17   0.241    -2.580548    .6484496 

_IsitXrac_24 |   .1510563   .7863994     0.19   0.848    -1.390258    1.692371 

_IsitXrac_27 |  -.7577912   .8926936    -0.85   0.396    -2.507439    .9918561 

_IsitXrac_28 |  -1.150195   1.025168    -1.12   0.262    -3.159487    .8590965 

_IsitXrac_35 |   -.007033   .8185346    -0.01   0.993    -1.611331    1.597265 

_IsitXrac_36 |  -1.452956   1.154151    -1.26   0.208     -3.71505    .8091389 

_IsitXrac_37 |   .0208832   1.040516     0.02   0.984    -2.018492    2.060258 

_IsitXrac_38 |  -.5968326   .9099023    -0.66   0.512    -2.380208    1.186543 

_IsitXrac_39 |  -1.672837   .9079882    -1.84   0.065    -3.452461    .1067875 

_IsitXrac_41 |  -.1971283   .8000676    -0.25   0.805    -1.765232    1.370975 

_IsitXrac_43 |  -.8101344   .8217179    -0.99   0.324    -2.420672    .8004031 
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_IsitXrac_44 |  -1.074545   .8385114    -1.28   0.200    -2.717997    .5689073 

_IsitXrac_46 |  -.6071161   .7799462    -0.78   0.436    -2.135783    .9215504 

_IsitXrac_49 |  -.1400908   .8945042    -0.16   0.876    -1.893287    1.613105 

_IsitXrac_54 |  -.2369969   .8085899    -0.29   0.769    -1.821804     1.34781 

_IsitXrac_55 |  -.8024249    .883466    -0.91   0.364    -2.533986    .9291367 

_IsitXrac_59 |  -.8175974   .9568776    -0.85   0.393    -2.693043    1.057848 

_IsitXrac_66 |  -.7069955   .8138557    -0.87   0.385    -2.302123    .8881324 

_IsitXrac_68 |  -.4545023   .7656105    -0.59   0.553    -1.955071    1.046067 

_IsitXrac_70 |  -1.620942   .9078022    -1.79   0.074    -3.400202    .1583171 

_IsitXrac_73 |  -.3058474   .7909994    -0.39   0.699    -1.856178    1.244483 

_IsitXrac_74 |  -1.123635    .849642    -1.32   0.186    -2.788903    .5416324 

_IsitXrac_85 |  -.4046785   .8327242    -0.49   0.627    -2.036788    1.227431 

_IsitXrac_86 |  -1.476774   .8802326    -1.68   0.093    -3.201998    .2484501 

_IsitXrac_87 |  -.9152808   .9157872    -1.00   0.318    -2.710191    .8796292 

_IsitXrac_95 |  -.3096814   .7926688    -0.39   0.696    -1.863284    1.243921 

_IsitXrac_97 |  -.2853455   .8628361    -0.33   0.741    -1.976473    1.405782 

_IsitXra~102 |  -1.275098   .8846968    -1.44   0.150    -3.009072    .4588757 

_IsitXra~104 |   -.798853   .8193812    -0.97   0.330    -2.404811    .8071046 

_IsitXra~105 |  -.4904095   .9410685    -0.52   0.602     -2.33487    1.354051 

_IsitXra~114 |  -.4413513   .8614307    -0.51   0.608    -2.129724    1.247022 

_IsitXra~116 |  -.6687789   .8991715    -0.74   0.457    -2.431123    1.093565 

_IsitXra~121 |  -.4302093    .776076    -0.55   0.579     -1.95129    1.090872 

_IsitXra~125 |  -1.936477   .8479484    -2.28   0.022    -3.598425   -.2745287 

_IsitXra~129 |  -1.502887   .8860319    -1.70   0.090    -3.239477    .2337039 

_IsitXra~133 |  -.0337316   .8521558    -0.04   0.968    -1.703926    1.636463 

_IsitXra~139 |   .1636542   .8297453     0.20   0.844    -1.462617    1.789925 

_IsitXra~146 |  -.9067121   .8902018    -1.02   0.308    -2.651476    .8380515 

_IsitXra~148 |   -1.16748   .7736773    -1.51   0.131    -2.683859    .3488998 

------------------------------------------------------------------------------ 

. testparm _IsitXrac_* 

 ( 1)  [anysoc30]_IsitXrac_15 = 0 

… omit other terms… 

(41)  [anysoc30]_IsitXrac_148 = 0 

 

           chi2( 41) =   60.71 

         Prob > chi2 =    0.0243   there exist site and race interaction 
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