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ABSTRACT

ORIENTATION OF RIGID BODIES FREEFALLING IN NEWTONIAN AND
NON-NEWTONIAN LIQUIDS

Ashwin Vaidya, Ph.D.

University of Pittsburgh, 2004

This thesis deals with the subject of terminal orientations of rigid bodies, sedimenting in
Newtonian and non-Newtonian liquids. It is a well established fact that homogeneous bodies
of revolution around an axis (a) with fore-aft symmetry will orient themselves with respect
to the direction of gravity (g) depending upon their shape and upon the nature of the fluid
in which they are immersed. If, for instance, we are considering an ellipsoidal object falling
in a Newtonian fluid such as water, then the body falls with a eventually becoming perpen-
dicular to the direction of g. However, if the same body falls in a viscoelastic fluid where the
inertial effects can be disregarded, then a will eventually become parallel to g. It has also
been noted that long bodies falling in fluids with certain polymeric concentrations can take
on angles between the horizontal and vertical orientations. These intermediate angles are
referred to as tilt angles. The objective of this thesis is the explanation of this orientation

phenomenon in different liquids.

Our approach to the problem has been three-fold, experimental, mathematical and also
numerical. We perform several experiments on sedimentation of particles in a variety of

viscoelastic and Newtonian liquids to verify and fill gaps in the previous observations. A
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second set of experiments that we perform involves a modified flow chamber setup where
the particle is fixed at the center of the chamber while water flows past it. We are able to

replicate previous experiments at low and intermediate Re, with both these experiments.

The equations to describe the problem of freefall of a rigid body of arbitrary shape, in a
liquid, are obtained from a frame attached to the body and is formulated for any general fluid
model. In addition, we also obtain the equations for the body, since the problem we are deal-
ing with is one of fluid-structure interaction. We establish well-posedness of the equations by
showing the exitence and uniqueness of steady solutions to the problem of sedimentation in

a Second order fluid, with Re = 0 and arbitrary o +as using the Banach fixed point theorem.

In order to explain the terminal orientation assumed by the body, we consider the effect
of torques imposed by different components of the liquid such as inertia, viscoelasticity
and shear-thinning. The equilibrium resulting from the competition of the different torques
should reveal the terminal angle. Guided by the fact that the orientation phenomenon
is observed at very small Re and We, we formulate the torque equations at first order in
these material parameters. The calculation is performed for four different liquid models,
Newtownian, Power-law, Second order fluid and a modified Second order model which we
introduce here for the first time. The different orientation observations seen in experiments
is well explained by these models. Finally, a simple quasi-steady stability argument is used to
establish stability of the equilibrium states. For this final argument, we numerically evaluate
the torque imposed by the individual components of the liquid upon a sedimenting prolate

ellipsoid in an unbounded three dimensional fluid domain surrounding the body.
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1.0 MOTIVATION

The motion of bodies in fluids constitutes one of the oldest problems in fluid dynamics.
This thesis falls under the general subject of sedimentation theory, which involves the me-
chanics and combined transport of solids and liquids. In studying sedimentation of a body
into a fluid, one tends to look at the behavior of suspensions in a liquid, the rheology of
the suspension and also the shape, size and interaction of the suspended particles. Also of
interest is the behavior of individual particles such as their terminal speeds and orientation.
In fact, the central theme of this thesis is the analysis of orientation of rigid bodies in fluids,
in their steady state.

1.1 Historical Preview

A detailed account of the history of fluid mechanics and fluid-structure interaction is
outside the scope of this thesis. In fact, one could perhaps devote several volumes to this
subject. However, we must acknowledge the contributions of those whose shoulder we stand
upon; at least the ones we are aware of. This section is also not meant to recount the details
of any contributions but simply mention achievements which are in some way relevant to this
thesis. We especially wish to bring to attention some of the important results in the subject
which date back to at least a couple of centuries ago. The more modern contributions, espe-
cially from the past century, though innumerable are well recorded and will be discussed in
the following introductory chapter. But it fascinates us to learn that the subject dates back

to thousands of years ago, which to a scientist is sufficient motivation to pursue any problem.

Though it would be impossible to identify the earliest work done on the subject, we
know from the records of ancient Egyptians(® that they were familiar with the physics of
sedimentation from their experience in digging and washing gold. In this respect it is well
documented that several ancient civilizations were well versed with the practical aspects of

sedimentation.®8%% Perhaps the greatest acknowledged scientist in the history of mankind,



Aristotle (384 B.C.-324 B.C.), has contributed directly to the subject of fluid mechanics upon
which are based several fundamental principles. In his book, On the Heavens®), he claims
that the every body seeks to find its natural place in the universe based on its "heaviness’.("%
From this statement he inferred that bodies moving in water or the atmosphere would seek
the bottom layers which are denser or heavier than the upper layers. This observation is
definitely recognized to be true today and of fundamental importance to fluid mechanics.
Also of much interest are the contributions of Leonardo da Vinci (1425-1519), whose study
of fluids can alone can cover several books. Leanordo is acknowledged to have formalized the
concept of continuity of a liquid, upon which is based our entire subject of Continuum me-
chanics. Leonardo’s observations in fluid mechanics ranged from the study of eddies, motion
of water in rivers and canals for irrigation purposes, the motion of waves in oceans to the flow
of blood in the human body. His work in the subject of fluid particle interaction pertained
to problems of navigation and the efficient design of boats for reducing drag. Leonardo also
wrote proficiently on the theory of flight and made significant contributions to the subject
of aerodynamics. Unlike Aristotle, most of Leonardo’s scientific claims are acknowledged as
being correct. His countryman Michel Angelo (1475-1564) is attributed with the discovery
of the concept of friction in fluids. As a hydraulic engineer involved in several flow related
projects, he recognized that the speed of flow at the center of the channel is higher than at
the edges.("®™) Isaac Newton (1642-1727) also made several interesting contributions to the
subject of motion of rigid bodies in liquids in his more general attempt to understand the
resistance of any medium to motion which takes up several pages of the second volume of
the Principia Mathematica.®® His formulation of the laws of motion are the foundation of

any mathematical analysis of fluid flow.

After Newton formulated his laws of motion and Leibniz formulated his version of the
calculus, the subject of mechanics found a natural language of expression. This gave rise to

several significant contributions to mathematics and physics which were to have a significant



impact upon the subject at hand. These advancements were made to different aspects of vis-
cous fluid mechanics. Among the modern stalwarts was Claude L.M.H. Navier (1785-1836)
who formulated the now famous Navier-Stokes equations. Simeon Denis Poisson (1781-1840)
and Pierre Simon Laplace (1749-1827) discovered the second order partial differential equa-
tions that bear their name and can be used to describe the very slow motion of extremely
viscous liquids. George G. Stokes (1819-1903) contributed to several aspects of hydrody-
namics his most famous being the work on the linearization of the equations of a viscous
incompressible fluid.(®*® This gave rise to the equations that describe the creeping flow mo-
tion of a viscous liquid, also known as the Stokes equations. The work of H.A. Oberbeck on
the creeping flow solutions of for steady translational motion of an ellipsoid in a viscous lig-
uid, is particularly pertinent to certain parts of our research. Osborne Reynolds (1842-1912)
must be credited with the discovery of the role of viscosity on the stability of a flow based
on a series of famous experiments resulting in the recognition of the significant parameter,
Re, which is now universally used to classify flows. We refer the readers to*® for an account
of the more recent contributions to the specific subject of particle motion in fluids from the
past century and to(™® for a thorough account of the history of fluid mechanics, both ancient

and modern.

The work of Thomson and Tait(™ and Kirchoff*”) deserves special mention since much
of this work can be thought of as an afterthought to their theories. In his voluminous book
Hydrodynamics,®™® Lamb, discusses the motion of solid bodies through a liquid, in detail,
based upon the previous work of Thomson, Tait and Kirchoff. In particular, in Chapter
6 of this book, which is devoted to the motion of solids through a liquid, he provides the
solution to the problem of steady motion of a prolate spheroid thorugh an unbounded ideal
fluid. Lamb argues analytically and heuristically that the stable orientation for a long body
such as a cylinder or ellipsoid in an ideal fluid is with its broadside along the direction of

motion. The attached Figure 1.1 [50, Page 86] outlines his argument based on the turning



‘ If we trace the course of the stream-line y»=0 from ¢=+w to p= -, we find that
1t consists in the first place of the hyperbolic arc 5=}, meeting the lamina at right angles;
1t then divides into two portions, following the faces of the lamina, which finally re-unité
and are continued as the hyperbolic arc n=¢n. The points where the hyperbolic arcs
abut on the lamina are points of zero velocity, and therefore of maximum pressure*. It is
plain that the fluid pressures on the lamina are equivalent to a couple tending to set
1t broadside on to the stream ; and it is easily found that the moment of this couple, per

unit length, is $7pgy2c?t. Compare Art. 124.

Figure 1.1. Lambs argument for the steady stable orientation of a cylinder in an Ideal fluid®%
(Reprinted with permission).

couples on a cylindrical body, due to the fluid. In the absence of friction, he identifies iner-
tial torques acting through the stagnation points on a submerged body as the cause for the
steady orientation. Our thesis continues where Lamb left the subject to discuss the steady

state orientation of particles in a variety of other liquids based on a very similar physical idea.

The subject of fluid-particle interaction has taken a more interesting turn with the dis-
covery and characterization of viscoelastic fluids which unlike Newtonian fluids, like water,
also possess elastic properties. Of particular interest, in several disciplines, is the difference

in the interaction of solid bodies with these two kinds of fluids. In this thesis, we shall focus



our attention upon one such phenomenon which is described in detail below. Recent exper-
iments made on elongated bodies falling in different fluids have indicated that the terminal
behaviors of bodies in fluids can change with the kind of fluid medium. Using the ideas of
Lamb and the modern theory of viscoelastic liquids, we investigate the problem of terminal
motion in general, of a rigid body of arbitrary shape, in Newtonian and viscoelastic fluids,

mathematically, numerically and experimentally.

1.2 Applications

In this section, we refer to a few applications of our subject. A preliminary task in the
process of oil-drilling is the removal of debris from pipelines. It is observed that when one
uses a Newtonian liquid such as water for the debris removal the waste particles and sedi-
ments in the pipelines have a tendency to align across the flow, thus leading to a potential
clogging problem (see Figure 1.2). However if the water is infused with a certain amount
of polymeric content, then the alignment behavior of the debris changes and the sediments

align along the direction of the flow which is a desirable state (see Figure 1.3).

A second example comes from the field of human biology and physiology. An interesting
question in these areas is the issue of orientation of cells in shear flows. The Figure 1.4
shows a numerical simulation of lipid membrane in the presence of a shear-flow.*® Also
of tremendous interest is the orientation of blood cells undergoing shear in plasma. The
cartoon at the bottom of Figure 1.5 shows the aggregation and orientation behavior of cells

at different shear-rate regimes.

However, the immediate motivation for this problem comes from the experimental work

of D.D. Joseph(®®40-42.54) op flow-induced microstructures. Joseph and is coworkers have
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Figure 1.2. Motion of debris across the flow in a Newtonian liquid.

°  e————e——
- —
o —+*
B — &
]
o TR | .... .l.'.
0
0 —
R
L —

Figure 1.3. Motion of debris along the flow in a polymeric liquid.

reported that mutiple speheres falling simultaneously in a liquid are seen to settle with cu-
rious steady, stable configurations (see Figure 1.6). In the case of two falling spheres in a
Newtonian liquid, it is seen that the one dropped second catches up with the first (draft-
ing), the two spheres touch (kissing) and since the contact configuration is not stable, they
separate and fall side by side (tumbling). In a viscoelastic liquid, we see drafting and kiss-
ing but the in-contact configuration is now stable. Therefore, the spheres fall together, one
on top of the other. The key to understanding the phenomenon of drafting, kissing, and
tumbling and the symmetries adopted by the interaction of spheres in non-Newtonian fluids
lies in the orientations of long bodies in different liquids, which is our central pursuit. Since,

temporarily upon contact, the spheres replicate the behavior of a single long body, we take



Figure 1.4. Orientation of lipid cells in shear low(*® (Reprinted with permission).
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up the study of the motion of a single long body, such as a cylinder or a prolate ellipsoid
in Newtonian and Non-Newtonian liquids. As we shall see in the upcoming chapters, the

problem of sedimentation of a single body can be extremely complex in itself.

Newtonian non-Newtonian

Figure 1.6. Flow induced micro-structures in Newtonian and Viscoelastic liquids (Courtesy
of D.D. Joseph).

There is tremendous interest in the motion and behavior of particles in (i) quiescent liq-
uids, (ii) laminar flow, (iii) shear flow, (iv) Poiseulle flow and even (v) turbulent flow. In this
thesis, we restrict ourselves to case (i). Firstly, this is the appropriate physical setting for
the phenomenon we wish to describe and also, a thorough analytical study of the behavior

of rigid bodies in any other kind of flow would be highly complex, if at all possible.

Happel and Brenner, in their book, Low Reynolds Number Flow,®®) provide an impressive
list of applications in science and technology, for their subject. We may stake claim to a large
subset of their applications. In our thesis, we have studied the motion of a single particle in
different liquids. However, this is a preliminary step to understanding the motion of multi-

particle systems. Therefore, we believe that our work has impact in Chemical Engineering



where the motion of particles in liquids and gases is commonly seen. Our analysis and its
extensions can find use in separation of dust particles and suspensions from liquids and gases
(see®9 for detailed example). Mining industries need processes to separate minerals or to
remove extraneous sediments. Hence the knowledge of behavior of suspended particles in
liquids can be extremely useful. This work also has applications in fields such as biomechanics
where the process of separation of biomolecules via electrophoresis involves sedimentation of
particles through organic media®®) and in Material Science, where orientation of short fiber
like particles in a polymer network is important for enhancing the mechanical properties of

composite materials (see(®?).



2.0 INTRODUCTION

Experimental observations show that bodies freely falling in fluids eventually acquire a
constant translational and angular velocity of descent, referred to as the terminal velocity of
the body.(13:14,17,38,40,41,51) \We yse the term terminal state to collectively signify properties
such as velocity and orientation of the sedimenting body as time, ¢ — oo, i.e. in its steady
state. Our specific objective, in this thesis, is to study the rather interesting phenomenon
regarding the terminal orientation of symmetric rigid bodies falling in Newtonian and Non-
Newtonian (viscoelastic) fluids.

2.1 Experimental Work

It is a well established fact that homogeneous bodies of revolution around an axis (call it
a) with fore-aft symmetry will orient themselves with respect to the direction of gravity (g)
depending upon their shape and upon the nature of the fluid in which they are immersed.
If, for instance, we are considering an ellipsoidal object falling in a Newtonian fluid such as
water, then the body falls with a eventually becoming perpendicular to the direction of g
(see Figures 2.1,2.2). However if the same body falls in a viscoelastic fluid where the inertial

effects can be disregarded then a will eventually become parallel to g.

It is to be noted that in these observations the Reynolds number, Re, is very small *.
Qualitatively, Re can be said to be the ratio of inertia of the fluid to its viscosity. Therefore,
for a fluid of given viscosity, a small Re would imply a small inertia for the fluid under
consideration. However if the same body falls in a viscoelastic fluid where the inertial effects
can be disregarded then a will eventually become parallel to g. Similar to the Reynolds

number, the parameter which characterizes the viscoelastic nature of the fluid is called the

!The Reynolds number is defined by Re = pUd/v where U is the velocity of the object, d is its charac-
teristic length and v is the viscosity of the fluid. Hence a small Re corresponds to either small objects or
very small velocities compared to the viscosity. In these experiments Re is varied by varying the material of
the particle used and the viscosity of the fluid and We is varied by changing the polymeric concentration of
the solution.
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Figure 2.2. Terminal orientation of the body in a viscoelastic liquid (Courtesy of D.D.
Joseph) .

Figure 2.3. The tilt-angle phenomenon (Courtesy of D.D. Joseph).
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Weissenberg number, denoted We, and qualitatively represents the ratio of elasticity of the
fluid to its viscosity. Furthermore, it has also been observed that elongated bodies falling
in fluids with certain polymeric concentrations can take on angles between the horizontal
and vertical orientations. These intermediate angles are referred to in the literature as tilt
angles®. Numerous experiments to this end have been performed in the last two decades by
Prof. D.D. Joseph and his collaborators,®35% Chiba, Song & Horikawa,"® Cho & Cho?
and Leal®V) where the tilt angle is observed (see Figure 2.3). Furthermore, it is seen that

this tilt angle changes continuously with the polymeric concentration.(!3)

0@
POLYACRYLAMIDE SQOLUTION

L]
~J®

Tilt angle (degree)

0 50 104 150 200

Concentration (wppm)

Figure 2.4. Variation of tilt angle with concentration™®.

Additionally, it has also been noticed®®8Y in the particular case of cubes or rectangular
parallelopides, that when falling in a viscoelastic body, they tend to fall with their longest
axis parallel to gravity. This usually means that the cube or the parallelepiped will fall with
two of its diagonal vertices aligned (see Figure 2.5). This phenomenon has been referred to as

shape tilting and may be indicative of some more expansive behavior in non-Newtonian fluids.

?mathematically, the tilt angle, 8, can be defined as the angle made by the axis of revolution, a of the
body, with the horizontal.

12
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Figure 2.5. Shape tilting.

Figure 2.6. The first figure shows the nature of the inertial torque acting on the particle.
S1 and S; are the two stagnation points on the particle where the pressure is maximum and
acts towards rotating the particle. The second figure shows the nature of viscoelastic torque
on the particle. Strong shear forces give rise to normal forces at the points A and B.

Our work derives its primary motivation from the experiments of D.D. Joseph and his
collaborators since they provide overwhelming evidence and sufficiently large data for this
phenomenon. Their experiments®®° have been performed by dropping small cylindrical
bodies of different materials (such as teflon, plastic, aluminum, tin, brass and steel) with
lengths ranging from 30mm-1.7 cm in polymeric solutions (Non-Newtonian) of concentra-

tions varying between 0.5% — 2%. In these experiments Liu & Joseph have observed that

13



the tilt angle, 6 varies continuously between 0° and 90° depending upon the weight, length

and shape of the particle and upon the viscosity and polymeric concentration of the fluid.

The only explanation for this phenomenon is a heuristic one and outlined in the paper
by Joseph & Feng.(®?) The orientations of particles are described to be a direct result of the
competition of the inertial versus viscoelastic torques on the particle. Figure 2.6 provides
the qualitative explanation given for the competing effects of inertia and viscoelasticity as
explained in.®? Inertial torques acting at the stagnation points on the body, where the pres-
sure is a maximum, is counteracted by the normal stresses generated by the viscoelasticity.
Note that in the above experiments relatively heavy particles were used. So inertial effects
become significant and cannot be ignored. Therefore, the victor in the competition between

inertia and normal stress will determine the appropriate terminal orientation.

2.2 Mathematical Work

In the true spirit of scientific pursuit and for sake of mathematical rigor, it behooves
us to first establish the mathematical setting of the problem in firm footing by showing
existence of terminal motions for the different fluid models considered. Mathematically, the
problem amounts to verifying that the set of steady state solutions to the freefall equations
is non-empty. Existence and uniqueness of terminal states in the Stokes approximation of
the Navier-Stokes equations has been solved almost in its entirety by Brenner.(®®) The case
of the unsteady Stokes problem has also been studied by Galdi,®® for homogeneous bodies
with fore-aft symmetry. Weinberger®83) and Serre(®® have treated the case of freefall in
the Navier-Stokes fluid and the latter has proved existence of terminal states for bodies of
arbitrary shape. We note that the mathematical literature on sedimentation of rigid bodies

in Newtonian and viscoelastic liquids, to a large extent, is restricted to bodies of specific
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geometries such as spheres or those with fore-aft symmetry like prolate or oblate spheroids.
Also, the existing literature on existence of steady motions in Second order fluids is either re-

(16)3

stricted to motion in bounded domains'*®’°, or with the assumption that the body undergoes

5.(30,59,60) Eyrthermore, most previous work on Second

no motion®” or simply translation
order fluid models proceed under the thermodynamically implied restriction a; + ay = 0,
where a1 and as are material parameters which depend upon the normal stress coefficients,
even though experiments show that the sum of the two parameters is not zero for several
real viscoelastic liquids. It must be stated however that showing existence and uniqueness
for the simplest of fluid models is still a very complicated task. Therefore, with this in mind
we have attempted to fill certain gaps in the previous literature, to the extent possible. Our
contribution to the mathematical study of steady freefalling bodies in Second order fluids
accounts for three significant factors, (i) bodies are of arbitrary shape, (ii) the body under-

goes translation and rotation and (iii) the sum of the material parameters for the Second

order fluid model, a; 4+ as, can be arbitrary.

Previous mathematical explanations of the terminal orientation phenomenon are either

o(39,51)

qualitativ or numerical.®”)  There has been very little done in terms of a rigor-

ous mathematical analysis of the subject other than those by Galdi and his collaborators

(see(23:24,26-28))

2.3 Numerical Work

There is not very much in the literature in terms of numerical work done in this area.

(42) for more

Among the few papers in this field are those by Huang, Hu and Joseph®7 (also see
information on this subject). The work by Huang et.al. uses Direct Numerical Simulation

to study the orientation of elliptical particles in a non-Newtonian liquid modeled by an

3The problem begin proposed for this thesis requires an unbounded, exterior domain, denoted Q = R3B.
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Oldroyd-B fluid in two dimensions. They correctly predict the terminal orientations in case
of dominating inertial and normal stress effects and also observe that the tilt angle can
be effectively predicted if a shear-thinning fluid model is considered(i.e. when the viscosity
decreases with increasing shear rate). More recently, R. Glowinski and his collaborators have
performed a direct numerical simulation of a single ellipsoid sedimenting in a Newtonian fluid

s.(4:61) The method employs a combination of the Domain embedding

in three dimension
method and Operator Splitting methods to mimic the motion of an ellipsoid. The results
of the code correctly show that in its steady state, the ellipsoids settles with its major axis
perpendicular to the direction of gravity (see figure below). Other than these two results,

the field remains open for exploration and there remain several unanswered questions that

need to be resolved.

16



. . . . (61)
Figure 2.7. DNS simulation of ellipsoid settling in a Newtonian fluid‘®".
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2.4 QOutline of Thesis

The objective of this thesis is the comprehensive understanding of the orientation phe-
nomenon. As is apparent from our discussion above, the experiments performed in this area
are elaborate, however, they are not systematic. Furthermore, there is no rigorous theory to
explain the phenomenon. Hence, our objective is to fill the gaps in the literature. Specifi-

cally, we have the following aims:

1. A rigorous mathematical formulation of the problem. The governing equations of the
problem must be carefully formulated in order to keep the problem tractable. This work
comes under the general area of fluid-structure interaction. Therefore the governing equa-
tions must contain relevant equations for the fluid as well as for the sedimenting rigid body

in a coupled system. We formulate the coupled system of equations in Chapter 7.

2. A study of the well-posedness of the governing equations. Our central task is a
mathematical analysis of the orientation of bodies in Newtonian and non-Newtonian liquids.
However, in the spirit of true scientific rigor, we must verify if the model of the fluid-structure
problem that we are investigating is mathematically correct. Therefore, we will discuss the
existence and uniqueness of solutions to our equations. We use tools from nonlinear func-
tional analysis and partial differential equations to study the problem. Chapter 8 focuses on
the existence and uniqueness of solutions to the steady freefall problem, for arbitrary values

of the parameters a; + as.

3. A third aspect of the thesis is the analysis of the orientation phenomenon in different
fluid models, Newtonian and non-Newtonian. We wish to replicate the results of experiments
using different fluid models. For this purpose, we have chosen to work with models which

characterize different effects that are significant to the terminal orientation phenomenon. We
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have isolated three important relevant features that must be considered in our analysis. In
Newtonian liquids, we see the effect of inertia, in generalized Newtonian fluid models such as
the Power-law model, we have pure shear-thinning effects i.e. viscosity as a function of the
shear-rate, in viscoelastic models such as the Second-order liquid, the significant effects are
those of inertia and viscoelasticity and finally in the modified Second order fluid, we have the
interplay of inertia, viscoelasticity and shear-thinning. With these different models we are
able to analyze the independent and coupled effects of the three factors upon the orientation
of the rigid body. Our argument in Chapter 9 is therefore systematic and complete in this

regard.

4. To genuinely understand the problem under investigation, it is important that we fill
the gaps in previous experiments by making our study systematic. For this reason, we have
also pursued the problem via experiments, which are discussed in detail in Chapter 6. Two
sets of experiments have been designed and conducted, the first is a sedimentation experi-
ment where the particle is dropped in a quiescent liquid, like in previous studies, whereas
the second experiment is a flow chamber study, where the particle is held fixed at the center
of a flow chamber wile the liquid moves past it. We have managed to replicate the results of
the previous experiments while at the same time make some significant changes which can
provide more information. The experiments have been conducted with three different types
of liquids, (a) Newtonian and (b) Shear-thinning viscoelastic polymers. Previous studies
have been conducted upon the first two kinds of liquids. Once again, the objective behind
our choice of these liquids is in order to understand the effect that inertia, viscoelasticity and
shear-thinning play on our phenomenon. The liquids that we choose possess these effects in

different combinations allowing for a comparison with our analytical studies.

5. In addition to an analytic and experimental approach, we also perform a numerical

investigation of the torques imposed upon rigid bodies with fore-aft symmetry in exterior
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domains. In fact, we make this calculation for the Navier-Stokes, Second order and Oldroyd-
B fluid models. Besides, we have also conducted a preliminary investigation of the torque
on a prolate spheroid due to the modified Second order fluid. In addition to the physical
significance of the torque, this calculation, also has implications upon the stability of the

terminal orientation of the sedimenting body.
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3.0 MATHEMATICAL PRELIMINARIES
3.1 Notation and Definitions

By R?, we denoted the three dimensional Euclidean space and Q C R? represents an
exterior domain, i.e. an open and connected set, exterior to the body B, which is a compact,
connected subset of R3. By ¥ we refer to the boundary of € and n is the outer unit normal
to 3. The term Bp is defined by the set {y € R : |xr —y| < R} and 0Bpg denotes the

boundary of this set.

For v; > 0 (i = 1,2,3), with |y| = >, i, we define

grad Fu = 0i,0iy...0;, U,

and also
Ol

D'y =
Ox, " 0xy 2 0x3"?

Throughout the thesis, we employ the Einstein summation convention and the standard
convention for the saturation of second order tensors. Therefore, if A and B represent

two second order tensors, their saturation is represented by the Gibbs notation, namely

Definition 3.1.1 The symbol, C* with integer k > 0, represents the Banach space of con-
tinuously differentiable functions upto the boundary in 2 with norm

lulleny = mago<py<ksup| D7 ul.

Definition 3.1.2 (Sobolev Space) By W4 m > 0, 1 < g < oo, we denote the usual
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Sobolev space with norm

b = <§j/uﬁmﬁ

|[ulfim,00 = maxogwgmesssup]Dku].

and

When m = 0, [|ul|wo.a = [[ull,-

Definition 3.1.3 (Homogeneous Sobolev Space) The space D"™9(2) denotes a homo-

geneous Sobolev Space, defined as
D™4(Q) = {u € LL,(9) : D'u € LYQ), |I] = m}.

with the seminorm
1/q

falloms = lubng = | 3 [ 1D

li|=m
Definition 3.1.4 We define the Banach space X in which our existence results will be es-
tablished as the space

D*!(Q) N [N, D™ 24(Q)] x DM(Q) N[, D™ ()]

with the norm

lallx + el = lhull s + uly s+ ko + 1]l s, + [l

k+1

+ Z(’u’n-ﬂ,q + |7lnt1,9)
n=0

where 1 <t < 3/2 and g > 3.

Definition 3.1.5 Let K be an operator from Banach spaces, mapping B to B. Then for the
sequence, {Kuy} C B is said to be precompact in B, implies that there exists a {up} € B

such that {Kuy} converges in B.
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Definition 3.1.6 The operator K as defined above is said to be compact if for each bounded

{u,} C B, the sequence {Kuy} is precompact in B.

Definition 3.1.7 If B C B, then we say that B is compactly embedded in B, provided (a)

ul| 5 < c||ul|g for some constant ¢ and (b) every bounded sequence in B is precompact in

~

B.

Definition 3.1.8 (Eigenvalues & Eigenvectors) If an operator A satisfies

fori = 1,2,...n and where u is a vector field and X\ is a scalar, then we refer to the pair
(ui, \i) as the eigenvector and eigenvalue corresponding to u of the operator A, respectively.
If A satisfies

A-u; = My,

for allt=1,2,...,n, then we have that A\ has multiplicity n. In the particular case when the

multiplicity of \ is one, we say that X\ is a simple eigenvalue.

Definition 3.1.9 (Frechet Derivative) Let F' be a bounded linear operator which maps

Q) C B — B where B, B are Banach spaces, then

for x,a € Q) is called the Frechet derivative of F'.

3.2 Basic Inequalities

In this section, we present some useful, though basic inequalities. The proof of these

results are not presented here since most of the results are well known. For proof, we

23



refer the readers to elementary text books in Partial Differential Equations or Functional

Analysis. (1:19,49,71,85)

Theorem 3.2.1 (Cauchy-Schwarz Inequality) Let a,b € R, then

2

b
ab < ea® + —
€

where € > 0.

Theorem 3.2.2 (Minkowski’s Inequality) Let u,v € LP(Q2) with 1 < p < oco. Then
[u+vllp < [lullp + [[v]]p-

Theorem 3.2.3 (Holder’s Inequality) Let p > 1 and q < oo be such that ]l) + % = 1.

Then for u € LP(Q2) and v € L), the following inequality holds,

/ vl < Ifullylfoll,.
Q

Theorem 3.2.4 (Interpolation Inequality) Let u € L°(Q) U LY(Q) with 1 < s,t < oo.

Also let us assume that u € L™(R2), where 1 < r < 0o. Then the following inequality holds.
el < [l 3]l

The next inequality is extremely useful for our purposes and is termed the Sobolev in-

equality. For a more detailed discussion, refer to.(:2)

Theorem 3.2.5 (Sobolev Inequality) Let 1 < g < n and r = ng/(n — q). Then for all

u € C§°(Q), we have

_gn—=1)

Jull- < 54—

lgrad ully-
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3.3 Essential Theorems

Theorem 3.3.1 (Gauss’ Theorem) Let Q be a volume with boundary denoted ¥. Also,

let n be the unit outward normal to ¥. Then,

/dz’vde—/y~ndZ.
Q )

Theorem 3.3.2 (Banach Fixed Point Theorem) Let A : B — B be a nonlinear map-

ping. Let us also assume that
[|Afua] = Afus]|| < affur — ug|

where uy,us € B and o < 1. Then the mapping A has a unique fixed point.

Proof:

(19,49, 66)

The proof of this theorem see or any other elementary text books in Functional

Analysis. O

Theorem 3.3.3 (Implicit Function Theorem) Let F: R*™ — R™ be a C* map. Take

z € R" and z € R and assume that the pair (xo, z0) satisfies

oF
F(z9,20) =0, a(ﬂfo, z0) # 0.

Then there is an open ball, U C R" containing xo and an internal V- C R containing zy,

such that there is unique function z = g(x) which satisfies F(x, g(z)) = 0.

Proof:

(19,85

See ) for proof. O
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Theorem 3.3.4 (Fredholm Alternative) Let A: H — H be a compact linear operator.

Also, suppose N(A) and R(A) refer to the null space and the range of A, respectively, then
1. N(I —A) is finite dimensional
2. R(I — A) is closed
3. R(I — A) = N(I — A*)*
4. NI-A)={0}if RU—A)=H
5. dimN(I — K) =dimR(I — A*).

Proof:

See(1%:8%) for proof of this theorem. O

Lemma 3.3.1 Let A be a positive-definite and symmetric operator. Then all the eigenvalues

of A, denoted \;, fori=1,2,...,n are positive and real.

Proof:

See(™) for proof. O

3.4 The Stokes Equations

The Stokes equations are obtained from the Navier-Stokes equations in the limit Re — 0.
Physically this amounts to cases when either the characteristic velocity of the flow is very
slow or if the fluid is very viscous. The governing equations for the flow of an incompressible
Newtonian liquid in the Stokes regime of can be written in dimensional form as

—nAu+grad 7= 0
1meTe (3.1)

divu=0
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where 7 represents the viscosity of the fluid and (u,7) represent the velocity and pressure

fields, respectively, corresponding to the flow.

The primary feature of the Stokes equations is its inherent symmetry which helps simplify
several of our calculations. The Figure 3.1 shows the symmetry of the flow past an ellipse
where the lines are indicative of the streamlines of flow. It is easily seen that the equation
is linear, hence allowing for closed form solutions to several problems which are otherwise
not solvable in the case of higher Re. Since the equations are linear, it is easily verified that
(u,p) and (—u, —p) are both solutions to the equation (3.1). This final observation in fact,
informs us that physical quantities such as the drag, stress remain unchanged by the change

of direction of flow.

Figure 3.1. Streamlines for Stokes flow. .

In this section we introduce some fundamental results on the Stokes system concerning the
existence and uniqueness of solutions in exterior domains. Let us consider the equations for
Stokes flow around a body B in an exterior domain i.e. in the unbounded region surrounding
B. In such domains, one typically requires that the velocity field at large distances approaches

some prescribed value v,. Hence,
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—Av+grad 7 = f
div v =
v = 0on 092
limjg|oo[v(z) + 0] = 0. )

(3.2)

Theorem 3.4.1 Let Q) be an exterior domain of class C**2(Q), k > 0. Let us also consider

Y € Whtha o, ¢ Wh+2=1aa(9Q), divp € LHQ) and u, € W2 YEH(0) for 1 < t < 3/2

and 3 < q < co. Then, there exists a unique solution, (u, ) to the Stokes problem (8.53)

such that

u € D (Q) N[N,y D™ 21(Q)]
© € DM(Q) N[Nk _ D).

Also, (u, ) satisfies the estimate

lgrad ul|ck + [[ulls  + [uli,r + |ul2e + (|7l + |71,

k
+ > (ulmtog + [Tlmirg) < ellldiv lle + [[9llkrg + €] + o)

m=0

: _ 3t . _ _3t _ _
withr = 3%, s = 355, v =u+ v, and c = c(q,t, k).

Proof:
See [25, Theorem V.4.3]. O

We introduce a new of fields which we shall term the auziliary fields and denoted (h®, p(?)

and (H®, P®) for i = 1,23 in three dimensions. These auxiliary fields serve as a basis field

for the Stokes velocity and pressure. Hence, they satisfy the Stokes equations. The full set

of equations for these fields are given below.
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AR® = grad p®

div A =0
(3.3)
h(y) = €&, YyeXr |
and
. . \
AH® = grad P
div H® =0
(3.4)

limy oo HO(z) = 0

H(Z)(y) = & XYy, yGE )

The figures 3.2,3.3 and 3.4 should help clarify the physical meaning of these fields. The first
set of the auxiliary fields, A, indicate the flow past the body if the body is translating in the
e; direction and the second set of auxiliary fields, H*, indicates the flow past a body which
is rotating about the respective e; direction. Furthermore, we have the following estimates

for the auxiliary fields.

Theorem 3.4.2 For each i = 1,2,3 the problems (3.3) and (3.4) have unique solutions

(D, p®) and (H®, PD), such that (R®, p®), (HY and PD) € C=(Q),
A H® ¢ L*(Q) M DY (Q) m D>(Q)

p¥, PY ¢ L"(Q) w DM(Q)

for3<s<o00,3/2<r<ooandl <t< oco. Furthermore the auziliary fields also obey the
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Figure 3.2. The field h(") corresponding to translation of body along the z; direction .
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Figure 3.3. The field h(? corresponding to translation of body along the x5 direction .
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Figure 3.4. The field H® corresponding to rotation of body about the x5 direction .
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following estimates,

1L+ [e)Hilloe + lgrad Hilloo + || Filloc + [|Hills (3:5)

’ﬁ[ih,r + ’ﬁ[i’lt + Hif’zHr + ’f’zHlt <C

where C' is a constant depending upon 3 and at most on s, r andt. Also, (f[i, f’z) = (h®, p®)
fori=1,2,3 and (H;, P;) = (HD, PW) fori=4,5,6.

The estimates on the field H® can be further improved. This is presented in the Lemma

below.

Lemma 3.4.1 Let (H® PY) be auziliary fields that satisfy the equations (3.4). Then, for

all s > 3/2 and r > 1, there is a positive constant ¢ = c¢(B,s,r) such that
IHO|, + 1HD|, < ¢

fori=1,2 3.

Proof:

For proof of this Lemma, see.?"31) O

We now introduce certain definitions which helps in classifying the symmetries of the

auxiliary fields.

Definition 3.4.1 (Rotational Symmetry)

We say that a body B has rotational symmetry about an axis, say x, if and only if :
(.’,131, T2, .’,133) €EY = (.’,131, —XT2, .’,133), (.’,131, T2, —.’,133) €.
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Definition 3.4.2 (Symmetry Operators)

We define certain new symmetry classes next. We define the operators P;, ¢+ = 1,2, 3 such

that:

Plf(xbx%x?)) = f(_xl,l'g,l'?,)
PZf(xbe)x?J) = f(xb —.',13'2,.'13'3)
Psf(x1,29,23) = f(z1, 72, —73)

734f(371,372,$3) = f(—371,—372,373)

Definition 3.4.3 (Symmetry Class for Scalar Functions)

Suppose ¢ = ¢(x1, x2,23) is a scalar field. Then, we define the following symmetry classes:

G = {0:P1o=0.Pab =6, Pad = ¢}, C5 = {0 Pro = —6,Paip = 6, Psg = 6}

C; = {6:Pio=—0,Pap=~06,Psd = ¢}, Cj = {0: P1d = ¢, Pagp = 6, P36 = —¢}
C = {0:Pup=0,Ps0 =0}, Cg:={¢:Psd=—0,Ps¢ =0}

C: = {¢:Pup=0,Psp=—0}, C3:={¢:Pi¢ =, Pagp = —0,Psp = —0}

Co = {0:Pio=—0,P20=09,Psp=—0}, Ciy:={0:Pio=—0,Pa¢ = —¢, P3¢ = ¢}
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Definition 3.4.4 (Symmetry Class for Vector Fields)

Suppose w = (wy, wy, ws) is a vector field, then we define the following classes (see®®)):

¢y
w3
Gy
w3
Cs
w3
Cy
w3
Cs

w3

Theorem 3.4.3 Let B be a symmetric body with fore-aft symmetry. Then the auzxiliary
fields, (h(i),p™) and (H'), PY) as defined in equations (3.3) and (3.4) have the following

{w LW = lel = P2w1 = Pgwl,wg = —leg = —PQUJQ = Pgwg,
—Prws = Pows = —Paws}

{w LW = —PﬂUl = P2w1 = Pg,wl,wg = —PﬂUz = —Pzwz = Pgwg,
Prws = —Psws = —Psws}

{w LW = —PﬂUl = —P2w1 = —Pg,wl,wg = PﬂUg = Pz’wz = —Pg,’wg,
Prws = —Pws = Psws}

{w LW = P1w1 = P2w1 = —P3w1,w2 = —waz = —Pzwz = —Pg,’wg,
—Prws = Pows = Psws}

{w LW = P1w1 = —P2w1 = Pg,wl,wg = —waz = PQ'ZUQ = Pg,wg,

—P1UJ3 = —PQUJ:), = —Pgwg}.

symmetry properties:

Proof:

hMece | h®ec

HY cc |, H? ccy, HO® ccy.

For proof of this theorem, refer to(?42%:28) O
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The auxiliary fields also motivate more definitions. We define four tensor fields

Ky = [ (00O.p0)-n), (37)

Cy = /(xxT(h(i),p(i))~n)j (3.8)
Q; = /(xxT(H(i),P(i))-n)j (3.9)
Sy = /(xxT(H(i),P(i))-n)j‘ (3.10)

Remark 3.4.1 K;; represents the force on a body B which is only translating in the e;
direction, Cj; is the force on B due to translation of the body along the e; axis, €;; is the
torque on B due to the rotation of the body about the e; direction and S;; is the torque on B
due to the rotation of the body about the e; axis. Note that the tensors depend only upon the

geometry, shape and size of the body.

We now list some useful properties of the above tensors. The proof of these results will not

be provided below. We refer the readers to®® for a detailed discussion regarding the proof.
Property 3.4.1 The tensors K and ) are positive definite and symmetric.
Property 3.4.2 S = CT.

Property 3.4.3 The matrix
K C

ct Q

is positive definite and symmetric.
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4.0 REVIEW OF CONTINUUM MECHANICS
4.1 Fluid Mechanics

Continuum mechanics deals with the motion and deformation of bodies. A body B is
defined as a set of points that occupy a certain region of the Euclidean space. In particular,
fluid mechanics deals specifically with the motion and deformation of liquids and gases. To
describe the former, we must begin with a choice of a suitable coordinate system, & and
for the latter a reference configuration must be chosen. This reference configuration is the
configuration of B at time ¢ = 0. If X denotes the coordinates of the material points of B
at ¢ = 0 with respect to the coordinate system S and x represents the coordinates of the
same material points at some later time ¢, then the motion of the material points may be

described through the smooth mapping
z = x(X,1).

The Principle of impenetrability of matter requires that the above mapping have an inverse.
Therefore,

X =x"(z,1).

In continuum mechanics we distinguish two different approaches. The first is the Lagrangian
approach where we study the motion of a fluid particle, p between a certain time interval
(t1,t2). The second approach, called the Eulerian approach is one where we study the motion
of particles passing through a fixed point x in space. In fluid mechanics, it is conventional
to take the second approach. The Eulerian velocity and Eulerian acceleration are defined as

follows:

v(z,t) = %(m,t)
- E(Q%t)
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where the time derivative employed is the material derivative which is defined as

d¢
dt

99

_ a(g;,t) +v(z,t) - Voo(z,t).

(z,t)
We define the velocity gradient tensor, L, as
L(z,t) = Vyvu(x,t).

Also, related to the tensor L are its symmetric and skew-symmetric counterparts respectively,

namely

D= %(LJFLT), W = %(L—LT)

where LT indicates the transpose of L.

We will now discuss the important conservation rules in continuum mechanics. However,
prior to that we need to make some important definitions. Let p = p(z,t) be the Eulerian

density of B and m(V') be the mass contained in a material volume, V' (¢) at time ¢. Then,

m(V) = /V(t) p(x,t)dt.

The Principle of conservation of mass states that

d

— plx,t)dt =0, 4.1
i Jy P (1)

that is, the mass contained in any arbitrary material volume is a constant, independent of

time ¢ > 0. The local or differential form of this conservation rule may be stated as

dp | ..
yn + div (pv) = 0.
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The second conservation law is the Principle of conservation of linear momentum, which

states that

plx, t)v(z, t)de = /

V(t)

p(x, t)b(z, t)dx + / t(s,t;n)ds (4.2)

dt Jy e av (1)

for all material volumes V(t), with ¢t > 0. Also, here b(z,t) is the body force per unit mass
and £(s,t) is the tractional force per unit area and 7 is the normal vector to the surface
OV (t). The conservation of linear momentum suggests that the total rate of change of linear
momentum inside an arbitrary material volume V() is equal to the net force acting upon
this volume. In this context, it was shown by Cauchy that there exists a second order tensor,

T'(x,t) which is independent of n such that
t(z,t;n) = T(z,t) - n.

This relation is also referred to as the Cauchy Stress Principle. Consequently, the local form

of equation (4.2) is written as
dv

—r =pbdivT. (4.3)

p

Similarly, the Principle of Conservation of Angular Momentum states that the net rate
of change of angular momentum with respect to some fixed point, x, and the total intrinsic
angular momentum of a material volume is equal to the total torque acting upon this material

volume. In integral form, this is represented by the equations

% v plx, t)[(x —x9) x wv(z,t)+(x,t)]dr = /V(t) plx, t)[(z — x9) X b(z,t) + c(x,t)]|dx

+ / [(z — x0) x t(s,t) + M (s,t)]ds. (4.4)
av (1)
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In case the body B is non-polar, i.e. it a body that cannot sustain local torques, then

l(z,t) = c(z,t) = M(z,t) =0

and consequently, the local form of equation (4.4) becomes

T=T". (4.5)

Hence, in conclusion, the motion of a non-polar body B, under the action of an external

body force, b, must satisfy the following equations:

a )
a_ﬂ +div (pv) = 0
ov :
p aJrv-Vv = div T + pb (4.6)
T=T"T.
Vs

Additional to these three equations, one also needs to specify the constitutive equation,
which is the characteristic equation of the fluid and which accounts for the material proper-
ties of the fluid under consideration. In the next sections, we shall look at a few constitutive

equations corresponding to Newtonian and certain Non-Newtonian liquid models.

4.2 Principle of Material Objectivity

A fundamental requirement for the stress tensor is that it satisfy the principle of material
objectivity or frame invariance which essentially requires that the the dynamic processes
and the stress tensor will remain the same for two different observers. Mathematically,
this is satisfied by showing that the stress tensor remains invariant under an orthogonal

transformation. That is,

T(u,p) = Q" -T(Q-u,p)-Q
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where ( is an orthogonal transformation'. We will try to deal with this theme in some detail

here. This will require some preliminary definitions and results.

Remark 4.2.1 In general, we know that scalars transform according to the rule

vectors according to the rule

and second order tensors according to

S(:j%t) :QS(x,t)QT

where @) is an orthogonal transformation.

Consider a change in reference frames F — F. The related orthogonal transformation is
a function of time and will be denoted Q(t) and are known to preserve distances. We will
now recount some essential properties of such a transformation. These properties will prove

useful in later discussion in this chapter.

Property 4.2.1 Position vectors in the reference frames transform according to the rule

T=Q(t) x4+ c(t)

where ¢(t) is a vector valued function of time.
At time t = 0, we have Q(0) = I and ¢(0) = 0.

Property 4.2.2 Velocity fields transform according to

de(t)
dt

! An orthogonal transformation, Q@ must satisfy QQT = I.

+A-Q-z+Q-u.

U =
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Proof:
The transformation of the velocity vector in the two frames can then be computed from

Property 4.2.1. Hence,

u = d;—(tt) + % T+ Q- Z—f
dz(tt) —i—%m—l—@m.
Let us define the tensor A as
d
A= d_? QT
Then it follows that
dOT
AT =Q- %

Therefore, combining the two relations, we have

A+ AT =0

which implies that A is skew-symmetric. Therefore, in light of this property of A, we can

write,
de(t)
dt

+A4-Q z+Q-u. (4.7)

U =

|

A third relation that we derive regards the transformation of the tensor L = grad u.

Property 4.2.3 The tensor L transforms according to the rule

L=A+Q -L-Q".
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Proof:

We write
. ot 0t Oz
L= %~% &
= (A-Q - I+Q-L)Q"
= (4-Q+Q-L)Q"
= A+Q-L-Q". (4.8)
O

4.3 Dimensionless Numbers

In continuum mechanics, we employ dimensionless numbers for scaling arguments and
in order to identify significant factors which effect the flow of different fluids. In Newtonian

liquids, the relevant parameter is the Reynolds number,®?) denoted Re which is defined as

_ pUd
n

Re

where p is the density of the liquid, U is the characteristic velocity of the flow, d is the

characteristic length scale of the flow and 7 is the viscosity of the liquid. Loosely speaking,

inertial ef fects

viscous of fects i.e. the Reynolds number describes a competi-

one may think of the Re ~
tion between the viscosity and the inertia of the fluid. When the viscosity of the liquid is

very high or U is very small, then the fluid is said to be in the creeping flow or Stokes regime.

For viscoelastic liquids, there are two useful dimensionless parameters, that is relevant
for us, the Weissenberg number (We) or the Deborah number (De). Let A refer to the

characteristic time scale or the liquid, also referred to as a relaxation parameter and k be a
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second charactersitic time scale based upon the strain rate. The Weissenberg number can
then be defined as
We = Ak.

A second way of defining We is directly in terms of the normal stress coefficients of the
viscoelasic liquid. Let a; be a parameter which is related to the first and second normal

stress coefficients. Then,
- U
We = =
dn

The second definition is pertinent in the case of the Second order fluid. The Deborah number
is then similarly defined by %)

De = 22
°T

elasticef fect and De ~ characteristictime of liquid

viscous ef fects ™~ characteristictime of flow * Another useful

So, loosely speaking We =

parameter that we use is the Elasticity number, F, which is defined as

E =We/Re.

So, £ > 1 implies that elastic effects dominate, whereas F < 1 suggests that inertial effects

of the liquid dominate.

4.4 Newtonian Fluids

The consitutive equation for a viscous fluid can in general be written as

T=-pl+o

where p is the inviscid component depending only upon the pressure and o is the extra-strss
tensor depending upon the viscosity of the liquid. In general, o = o(p, L(u)), where p is

the density of the liquid and L(u) is the gradient of the velocity, as defined earlier. The
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principle of material objectivity suggests that the tensor o can depend not upon L(u) but

its symmetric part, D(u) (see Property 4.2.3). Therefore
o =o(D(u)).
Specifically for a Newtonian fluid, the extra-stress tensor is of the form
o =col + c1D(u)
where ¢y = A\div u and ¢; = 27. Hence the constitutive equation becomes
T(u,p) = Tn(u,p) = (—p + Adiv u)I + 2nD(u).

Here, n and \ are the relevant material parameters which are termed the first and second
wiscosity coefficients, respectively. If we further assume that the fluid is incompressible then

div v = 0 and hence

Tn(u,p) = —pI + 2nD(u). (4.9)

Remark 4.4.1 We can easily verify that the Newtonian stress tensor is frame invariant.
We know that the identity, I is frame invariant, therefore it is sufficient that we verify that

the symmetric part of L is invariant. This follows from the observation that

D(u) = —(ﬁJFﬁT)_%(A+Q'L'QT)+%(A+Q~L~QT)T
= 5A+ AN +5(@Q-[L+17]-Q")

= Q-D(u)-Q". (4.10)
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Putting equation (4.9) into the equation (4.3) and taking p to be a constant in the
continuity equation, gives us the Navier-Stokes equations

0
p(a—:Jrv-Vv) = —grad p+ nAu+ pb

div u = 0.

(4.11)

In the Navier-Stokes model, the only material function of importance is the viscosity, 7,

which is a positive quantity.

4.5 Power-Law Fluids

A simple model for a Non-Newtonian fluid is the Generalized Newtonian Fluid Model
(GNF). The primary difference between this model and the Newtonian fluid model is that
in the case of the GNF, the viscosity is not a constant but depends upon the shear-rate, i.e.

n = n(%). Therefore the stress tensor may be written as

T(u,p) = Tn(u,p) + Tg(u)

where Ty refers to the extra stress tensor and is given by

There are several models that specify the form of the viscosity function. The one that we

are interested in, in particular, is the Power-Law model,(®6:>") where

n(y) = Ky

SO

T = —pI + &|D(u)[" " *D(u). (4.12)
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Here, the parameter s is the consistency index and has units Pa - s", while n is a dimension-
less quantity which measures the viscoelastic nature of the liquid. The Power-Law model
can describe three different kinds of liquids depending upon the value of n. If n = 1 then
the model describes a Newtonian fluid, if n > 1 then the model describes a Shear-thickening

fluid and if n < 1, then the model describes a Shear-thinning fluid.

(5]

Figure 4.1. Some examples of viscosity as a function of shear rate for (a)shear thickening
liquids and (b) shear thinning liquids .

Let us calculate the material functions, i.e. the viscosity, n and the first and second

normal stress coefficients, ¥; and ¥, respectively, for the Power-Law fluid under shear flow.

Consider the shear flow, defined by

u = (Yx9,0,0)
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where 7 is a constant. Then it follows that

1
D(u) = i(gradu—i—grad Tu) (4.13)
0 4 0
1 .
= 5| %00 (4.14)
0 00
and hence,
0 k|D(u)|"1D(u) 0
1
Te(w) = 5| w|D()["'D(u) 0 0 |- (4.15)
0 0 0

Consequently, we have the three material functions, for the Power-Law fluid, namely

T21 K _1
n= 5 D),

and

Therefore, the Power-Law fluid, in fact the GNF model does not exhibit any normal stress
and therefore cannot account completely for the behavior of viscoelastic liquids. This is
perhaps the primary disadvantage of the model. Also, the time dependent behavior of the
polymer cannot be predicted from this sample since the relaxation time is not included as
a parameter in this model. The advantage of the model comes primarily from its simplicity
and capacity to make some simple predictions regarding the flow properties of viscoelastic

liquids.
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4.6 Second Order Fluids

The Second order fluid model is the simplest case of a viscoelastic fluid. The constitutive

equation for this model can, in general be written as(™"
1
T = [—p—l— 5)\757’(141)—|-0410t7’(142)+0420t7’(14%) —|-0430(t7’141)2]1—|— [,u—i—autr(Al)]Al —|-041A2+042A%]

where

0A
Al = 2D(u), AQ = 8—t1 +u- grad Al -+ LTA1 -+ AlL,

and u, A\, aqg, 99, 30, a1 and ay are material constants. However, using the incompress-

ibility condition, suggests that the extra-stress tensor must be of the form

TE = 0411424—04214%

= o (AQ + GA%)

@2

where € = 52 and oy and ap are material parameters that depend upon the normal stress

coefficients.

Lemma 4.6.1 Let u be a solenoidal vector field. Then, the following identity holds:
div (u-VA; + A Vu) = u- Au + div A%

Proof:

For proof of this result, see.(*3) O

In light of the above Lemma, we have a tractable form of the expression for div 7', which

may be written as

div T = —grad p + pAu + cyu - VAu + apdiv [grad TuAl] + (a1 + ag)div A2,
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Remark 4.6.1 (Comments on the sign of oy and ay) . There is controversy regarding
the value and sign of these coefficients. The Second order fluid model can be perceived in two
different ways. The first school of thought is that this model is realistic. Therefore suitable
application of thermodynamics and the Clausius-Duheim principle requires that p > 0 and
a1 4+ an = 0.8 Furthermore, if the above conditions are satisfied, then the model can be
shown to be asymptotically stable, if ay > 0. In fact rheological studies of viscoelastic liquids
and polymers indicates that very often, aq + as # 0. Based on this assumption, it has been
shown (% that the Second order fluid model has a rest state which is stable, provided oy > 0.
However, for the steady problem, the sign of oy is of no consequence. The second perception
is that the Second order fluid model is not necessarily realistic but simply possesses all features
of a viscoelastic liquid. Also, since the Second order fluid model is simply an approximation
of the Simple fluid model, it can be argued that thermodynamic and stability conditions and
must apply to the full Simple fluid model and not to each expansion of the full model. In any
case, since we are concerned simply with the steady state equations, we make no assumptions

upon the material functions.

In order to evaluate the material functions 7, a; and as, we analyze the Second order

model in a shear flow u = (4x4,0,0). Then, using the same argument as in the earlier

section, we have the three material functions, of the form(®®

n o= g
\111 = (20&14—0@)

\112 = Q.

Theorem 4.6.1 (Giesekus’ Theorem®:34)) Given a velocity field u and a pressure, Py

that satisfy the equations for stokes flow for an incompressible Newtonian fluid, then the
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same velocity u and a pressure field P given by

aq aPN ay . .
P=Py+—(— . grad P — (%
N+M( 5 +u - grad Py) + 4(7 3)

satisfy the creeping flow of an incompressible Second order fluid with a; + as = 0.

4.7 Rate-Type Models

In this section, we introduce a few nonlinear viscoelastic models. The higher order

complexity in these models comes from the fact that these are designed to operate in the
high strain regime. We shall refer to these models in general as the Maxwell models. The

most general of these models has the extra stress tensor, ¢ = T}, of the form(®%°7)

N
o = Z ol

o+ N0 = 2pD(u) (4.16)

where \; and n; are material constants. Furthermore, the operator, O is defined as

o (.a (v
A—(l—i)A—l—iA

where

v 0A
A:E—l—ugradA+gradu~A+A~gradTu

and
A QA
A:E—i—ugrad/l—gradu'A—A'gradTu.
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When only two terms are given in equation (4.16), then we obtain the Johnson-Segalman

model, namely

oM = m4
(2)
0'(2) + )\1 g’ = ?72A1
(] (]
=0c+MA1 = nNA+X A (4.17)

where, in the final equation (4.17), we have
o = 0(1) + 0(2), AL = >\, n=m-+ne, Ao = ?71>\1-

When ¢ = 0, then the Johnson-Segalman model reduces to the Oldroyd-B model. This in
turn becomes the Upper Convected model as Ay = 0. Similarly, the Johnson-Segalman model
reduces to the Oldroyd-A model as ( = 2 which becomes the Lower Convected model as
A2 = 0. For 0 < ¢ < 2, the Johnson-Segalman model is also referred to as the Jeffreys
model. The material parameters A\; and A\, are referred to as the relaxation and retardation

constants.

The viscometric functions for the Johnson-Segalman model in shear flow can be given

by(56)

. 12
N T (R F e (4.18)

. 2121
b= (1 T </2>f'y2> (4.19)

_ (A1
e = (1 (1 4/2)f'y2> | (420

It is easily seen that the viscosity function is non-constant for the Jeffreys model but

reduces to a constant for the Oldroyd-A and Oldroyd-B models. Similarly, the normal
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stress coefficients for the Johnson-Segalman model scale as 1/42, however, in the case of the
Oldroyd A and B fluids, the coefficients become constants. Hence the Oldroyd-B model in
which we are primarily interested does not exhibit shear thinning (or thickening) not do its
normal stress coefficients display any variation with the shear-rate. The advantage of this
model is that it is empirically derived and hence is used frequently in modeling Boger fluids
(i.e. fluids that exhibit viscoelastic properties but no shear-thinning) and also those that

exhibit non-zero constant normal stresses.

4.8 Equivalence of Models

In this section, we want to justify our choice of the Second order fluid equations as the
primary model for studying viscoelastic liquids. We wish to show that in the creeping flow
approximation as u — wug, the Stokes velocity field and for small viscoelastic effects, the
Maxwell-type models become equivalent to the Second order model. In fact, by a similar
argument to the one provided below, it is possible to verify that under the same conditions,
several other models such as the Giesekus model and the Phan-Thien Tanner model reduce

to the Second order fluid model. We shall provide the argument for the Johnson-Segalman

fluid below.

Theorem 4.8.1 Let u, us denote the velocity field and the Stokes velocity field respectively.
Then, in the creeping flow limit, u — u, and small viscoelastic parameters, i.e. A\; << 1 for

1 =1,2, the extra stress tensor for the Johnson-Segalman model may be written in the form

o = A1 (us) — oAt (ﬁh (us) + CAl(us)2> |
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Proof:

Rewriting the equation (4.17), we have
[m} [m}
o=nA1+X A1 =M A
Then it is easily verified that in the limit v — us; and A\ — 0,
U’u—>us,/\1—>0 = nAl(us)
Therefore for small A\, we may write
[m} [m}
o =nAi(us) + (A2 — A1n) A1 (us) = nAi(us) — A A (us). (4.21)
v oA
Using the fact that A=A +2A2, we have
o A )
A=A +(CA".
Hence, the extra stress tensor in equation(4.21) can be rewritten as
A 2
o =nA1(us) —mAr | A1 (us) + (A (us)

which we recognize to be similar to the Second order fluid model, in the sense that it contains

the same terms. O

Since we have shown this equivalence for the general Johnson-Segalman model, it follows
that this equivalence is valid for the Oldroyd A and B models and for the Jeffreys models
as well. In the creeping flow regime, therefore, the Maxwell models, as well as most other
models it can be shown behave like the Second order fluid, and exhibit constant viscosity and

normal stresses. Since our research work is performed in the creeping flow regime and for
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small viscoelastic parameters, on account of Theorem 4.8.1, it is sufficient that we consider

the Second order fluid model.

4.9 The Modified Second Order Fluid

We note that the viscoelastic models considered so far do not contain any shear-thinning
or thickening properties. For reasons that will be apparent in later chapters, we wish to con-
sider a model which contains inertial effects, normal stresses and shear-thinning properties.
For sake of convenience, we consider a modification of the second order fluid model, where

we force one of the material parameters, as to be a function of the shear-rate.

(a) (b)
Figure 4.2. Some examples of the parameter, G, as a function of shear rate for (a)shear

thickening liquids and (b) shear thinning liquids .

A realistic model such as the Johnson-Segalman model might be perhaps more appro-
priate in the future. As will be seen later, this is done primarily for sake of convenience in
calculations. The chosen model is not realistic, however since it possesses all the relevant

features that we need to make our case, it suffices for our purposes. The modified Second
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order model is define by the stress tensor

T = —pI+pdi(u) + ondo(u) + (| Ai (1)) A (u)? (4.22)
1
Lt kAy(u) : Ay(u)] T

where the constant £ is similar to the consistency index that was introduced in the Power-
Law model. It is easy to see that as k& — 0, the Modified Second order fluid model reduces
to the standard Second order fluid. It can be verified, that under shear stress, the material

functions for this model can be given by

n = p
Qg

14+ (\/i)n—lk,‘yn—l

\111 = (20&1 -+ 022) = 20&1 +

6%)]

14+ (\/i)n—lk,‘yn—l ’

~

Uy = ap=

Therefore, the normal stress coefficients are certainly dependent upon the shear rate and

hence the model is shear-thinning.
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5.0 REVIEW OF RHEOLOGY
5.1 Basics

Rheology pertains to the study of the deformation and flow of matter. In particular,
the subject of rheology is used in the study and characterization of Non-Newtonian liquids.
Properties such as viscosity, viscoelasticity, shear-thinning and thickening can be understood
and quantified using the techniques of rheology. In our study, as is discussed in later chapters
of this thesis, we perform several sedimentation experiments upon polymeric liquids. The
knowledge of specific molecular and rheological properties of these liquids is essential to the
correct interpretation of our experimental observations. Therefore, in this chapter, we shall
outline a few essential rheological tests that we perform upon our test liquids. These include,
(a) Steady Shear Test, (b) Creep and Recovery Test and (b) Small Amplitude Oscillatory

Test (see®6:57:72)),

Since Non-Newtonian liquids typically tend to show variation in their properties with
changing shear-rates, it is essential that we make measurements upon them at varying shear-
rates in order to completely understand their behavior. Perhaps the most convenient way of
making these measurements is with the Cone and Plate Rheometer(see figure below). The
instrument consists of a plane plate and a cone of radius r. The cone makes an angle,
with the plate and rotates at angular velocity w about the tip of the cone which just barely

touches the plate. The gap between the cone and the plate is where the test liquid is placed.

The Cone and Plate Rheometer operates under the assumptions that, (a) the Reynolds
number for the sample is low, (b) the wall temperature and the thermal conductivity are
maintained constant, (c) the pressure is the same everywhere within the liquid, (d) centrifu-
gal forces and gravitation forces can be ignored, (e) the effects at the free surface of the

sample liquid can be ignored and (f) for small enough cone angle, 6, the shear-rate can be
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Figure 5.1. A schematic of the AR1000 rheometer manufactured by TA Instruments.

Figure 5.2. A sketch of the cone and plate rheometer.
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considered to be independent of the radial direction. We will now briefly outline the three
main rheological experiments that have been performed in the course of our experimental

studies.

5.2 Steady Shear

In this experiment, the shear rate 7, is held constant, so that the flow is steady. This is
achieved in a cone and plate rheometer by rotating the cone at a constant angular velocity.
Also, in this experiment, the stress tensor 7 = 7(9) is a constant. Three stress quantities,
Ti1, T11 — To2 and Ty — 733 are measured. Using these we evaluate the following material

functions,

e The viscosity, n = T?y—l

(111—722)

e The first normal stress coefficient, ¥; = e

(T22—733)

e The second normal stress coefficient, ¥y = e

5.3 Creep and Recovery

The shear creep experiment is intended to produce a shear flow at a constant stress 7p. In
a cone and plate rheometer, this is achieved by driving the cone with a constant torque. Such
an experiment is referred to as a Creep experiment. As opposed to the previous experiment,
where the shear rate was specified, in this case, the shear-rate is held constant. The stress
is instantaneously increased from zero to a constant value, i.e.,
0 ,t=0
T12 = (51)
To t > 0.
During the period over which the stress is applied, the nature of deformation of the sample

is observed in terms of the compliance function, J(¢). Polymeric liquids typically tend to
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deform with the shear stress until a steady state of strain is reached. We shall refer to this
steady strain rate as ... If we denote the steady state creep compliance by J?, then we can

write the compliance function in the form

t
J(t) = J° + —
() Tlo

where 7, is the zero shear rate viscosity. The creep experiment is performed in conjunction
with a Recovery test, where the constant stress 7y is removed after a sufficiently long time,
t,, usually after the steady state has been reached. At this time, the deformation process

reverses as

70 ,0<t<t0
T12 — (52)
0 ,t>t.

In the recovery process, the recovery compliance function J,.(¢) is measured,

where 7, (t) is the recoverable shear-strain. Additionally, we define the recoil function, R(¢, 7o)

as

R(t,To) = Jr(t, To).

The eventual recoil function R, is defined as
Roo = lim R(t, To).
t— o0
The compliance function and recoil function related to each other by the relation

J(t) = R(t,70) + ni (5.3)
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Creep I Recovery

J(t)

Figure 5.3. A sample sketch of a typical compliance versus time curve during Creep and
Recovery tests.

The functions J(t) and R(t, 7y) are measured from the creep and recovery experiments re-

spectively. Then using equation (5.3), we may evaluate the viscosity, 7.

5.4 Small Amplitude Oscillatory Shear

In this experiment the sample is exposed a sinusoidal deformation (or strain) . As a

result, the stress also changes sinusoidally, but with a time lag, ¢. Therefore, we write

¥ = 7o sin(wt)

and

T = 1o sin(wt + @). (5:4)

We decompose the stress into parts, one that is in phase with the strain and the other which

is out of phase with the strain. Hence we may write,

T = 7} sin(wt) + 7 cos(wt). (5.5)
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Hence, combining the equations (5.4) and (5.5), we have

1"

-

tan ¢ = 9
70,

We can also calculate the elastic moduli, the in-phase moduli,

, 0
==
Yo
and the out-of-phase moduli,
G// _ T_O
Yo

From the earlier relations it is easy to see that

1"

t pr—
an ¢ &
and also

T = G o sin(wt) + G 7o cos(wt).

When measuring the properties of polymeric liquids, we may also introduce the dynamic
viscosity material functions which are defined as
! G// " G/
n=—-—mn=—
w w

In studying a certain liquid sample, we typically plot the functions G', G”, ' and n" versus
w. In case of a Newtonian liquid, the stress curve is seen to be in phase with the strain curve
(ie. ¢ = 0). Also, G =0 and n' = 7, the viscosity of the liquid. In case of a non-Newtonian

liquid however, the phase lag, ¢ is non-zero and so are the two elastic moduli G and G".

One can use these clues and standard curves to determine the exact nature of the test liquid.
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Figure 5.4. A certain deformation(stress) is applied to the sample and the responding strain
is observed. The phase difference, d, of (a) 0 degrees is a purely elastic response, (b) 90

degrees is a purely viscous response and (c¢) 0 < § < 90 degrees corresponds to a viscoelastic
response.
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6.0 EXPERIMENTAL WORK

We discuss two kinds of experiments that we have performed. The first involves the
sedimentation of particles in a vertical tank. Here, we try to reproduce the results of our
predecessors. Additionally, we also wish to advance our understanding of this phenomenon
by considering the sedimentation experiments in a variety of liquids, Newtonian and vis-
coelastic and with particles of different shapes. Our sedimentation experiments have also
been carried out at higher Reynolds numbers where we make several interesting observations.
In addition to observing the horizontal and vertical orientations and the tilt angle, we also
notice oscillatory and turbulent behavior of particles at very high Re. The second experi-
ment involves observations of particle behavior in the presence of a flow. Here, the particle is
held fixed in the center of a flow chamber while we recycle water through the chamber. Here
again, we make observations on the orientation behavior of the suspended particle at varying
values of the Reynolds number. In this experiment, we observe the across-stream orientation
at low Re and oscillatory motion at higher values of Re. In the following sections, we give a
detailed account of the experiments performed with the results systematically tabulated. A
comparison of these results with our theoretical analysis will be performed in the following
chapter.

6.1 Sedimentation Experiments

6.1.1 Experimental Setup
The setup consists of a sedimentation tank of width 6 inches, breadth 6 inches and height
3 feet (see Figure 6.1) allowing for a volume of approximately 4.0 gallons. The tank is made
of plexiglass which was cut and put together at the School of Engineering Machine shop.
The dimensions of the tank are chosen to be similar to previous experiments. The ex-
periments are recorded using a digital camera (Cannon XL1) which is placed on a traversing
system. The camera can be moved up or down on this system using a motor which is set

at the top of the system, as shown in the Figure. The camera is in turn connected to a
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Figure 6.1. Setup of sedimentation experiment.

computer. A live feed of the experiment is captured on the computer which allows us to
record the experiment and make accurate measurements of the speed of fall and terminal

orientation of the sedimenting body.

6.1.2 Test Particles
The sedimentation experiment involved filling the tank with a liquid and dropping a rigid

body in it. The liquid filled almost the entire tank the particle was dropped from rest.

The shape of the sedimenting body was either a prolate spheroid, a flat ended cylinder
or a round ended cylinder (see Figure 6.2). The dimension and material of the particles
were varied in order to change the rate of fall of the body in the liquids. The Table 6.1 lists
the dimensions and materials of the particles. In case of ellipsoidal bodies, the Table also
displays the eccentricity of the body which is given by the relation e = 4/1 — Z—Z, where b

and a refer to the minor and major axis of the ellipsoid respectively. For future comparison,
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() (b)) (o)

Figure 6.2. Particles of (a) prolate ellipsoidal, (b) flat ended cylindrical and (c) round ended
cylindrical shapes used in the sedimentation experiments.

we also calculate an effective eccentricity for the cylindrical particles where, a refers to the

length of the cylinder and b refers to the diameter of the cylinder.
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Table 6.1. Particles used in sedimentation experiments.

Number | Shape Name | Material Major Minor e | Density | Hydraulicf

axis (in) | axis (in) g/cm® | Diam.(in)
1 E1 | Si40 0.5 0.25 0.87 1.1 0.63
2 E2 | Si40 1.0 0.5 0.87 1.1 0.91
3 Prolate E3 | Aluminum 1.0 0.5 0.87 | 2.70 0.91
4 Spheroid | E4 | Steel 1.0 0.5 087 | 7.83 0.91
5 E5 | Wax 1.0 0.5 0.87| 0.93 0.91
6 E7 | Plexiglass 1.0 0.5 0.87 1.29 0.91
7 CF1 | Aluminum 0.5 0.06 - 2.70 0.16
8 CF2 | Delrin 0.5 0.25 - 1.54 0.50
9 Flat CF3 | Delrin 0.75 0.375 - 1.54 0.75
10 Ended CF4 | PET 0.75 0.375 - 1.37 0.75
11 Cylinder | CF5 | Delrin 1.0 0.5 - 1.54 1.0
12 CF6 | PET 1.0 0.5 - 1.37 1.0
13 Round CR1 | Steel 0.9 0.4 - 7.83 0.83
14 Ended CR2 | Teflon 1.0 0.2 - 2.18 0.50

Cylinder

t-We compute hydraulic diameter using the formula Dy =

65

6 x Volume (36)

Wetted Area




6.1.3 Test Liquids

Several different kinds of test liquids were used for the sedimentation experiments, New-
tonian and Viscoelastic fluids. Table 6.1.3 summarizes the properties of these sample liquids.
Also see Table 6.3 for a characterization of the rheological properties of these liquids. The
primary objective of these experiments is to test the effect of inertia, viscoelasticity and
shear-thinning on the orientation phenomenon. For this purpose, we choose liquids that
possesses each of these properties. Whereas Newtonian liquids show only inertial effects,

viscoelastic liquids exhibit inertial, elastic and shear-thinning effects.

The Newtonian liquids used were water and a 70% Glycerine solution in water. A third
commercial liquid soap (Softsoap) was also employed. However, this is not included in the
thesis since its properties were not ascertained. The three different Newtonian liquids were

used in order to expose our experiment to different viscosities.

Two kinds on viscoelastic liquids of different concentrations (by volume) were used in
our study. The first of these bears the chemical name Carboxymethylcellulose(Hercules
Inc.) while the second polymer was Polyacrylamide(SNF Inc). Three different concentra-
tions (0.5%,0.75% and 1%) of Carboxymethylcellulose(CMC) were prepared while in the case
of Polyacrylamide(PAA), we made 1.0% solution of the PAAFS920SH sample and 0.56% of
the sample PAAAN934SH in distilled water. Refer to Table 6.2 for detailed properties of

the liquids used.

The dispersion technique for this polymer involves adding the polymer to a third of the
total volume of water which is heated to about 90 degrees centigrade in a mixing vessel by
means of a heating coil which is immersed in the vessel(see Figure 6.3). The mixture is
agitated at about 500 rpm, initially. The heating is stopped once the polymer is completely

added to water. The agitation speed in the meanwhile is reduced to about 50rpm. The
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remaining amount of water is then added at a cold temperature. The agitation is continued

for several hours until the polymer is completely dispersed. The sample is then allowed

to sit for a few hours to let the sediments settle. At this stage the polymer is ready for

experimentation. The polymer was finally transferred from the vessel to the sedimentation

tank. The polymer is again allowed to sit in the sedimentation tank for about a couple of

hours to allow the trapped bubbles to clear out.

Table 6.2. Liquids used in sedimentation experiments.

Number Type Liquid Density | Mol. Weight | Viscosity'

(gm/mL) | (gms/mole) (Pa.s)

1 Newtonian Water 1.0 - 0.001

2 Water-Glycerine(30%:70%) 1.13 - 0.5

3 CMC(0.5%) 1.01 700,000

4 Shear-thinning CMC(0.75%) 1.06 700,000

5 Viscoelastic CMC(1.0%) 1.1 700,000

6 PAA-FS920SH (1.0%) 1.1 (7-9)x 10°

7 PAA-AN934SH (0.56%) 11 | (14-17)x 10

1 - Viscosities of the viscoelastic liquids are provided in Table 6.3
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Figure 6.3. A snapshot of the mixer and mixing vessel used to prepare the polymer.
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6.1.4 Rheology of Test Liquids

Our rheological studies included the creep and recovery test, steady flow and oscillatory
shear experiments. The results of these tests are discussed below and summarized in the
Table 6.3. The essential objective of this test was to verify the nature of the liquids used
and additionally to extract certain essential viscoelastic parameters such as the viscosity and

relaxation times.

The tests were performed on the TA Instruments AR1000 Rheometer using a cone and
plate geometry. The diameter and the angle of the steel cone used was 40mm and 2 degrees
respectively. The flow experiment was conducted between 0.5968-59.68 Pa. The results
of the steady flow experiment indicates that viscosity for all of these liquids is certainly a
function of the applied shear. However the effect is particularly strong in the CMC(1%),
PAA(1%) and the highest in the PAA(0.56%) solution. The flow curves are shown in the
Figures 6.4 and 6.5. Following the work of Liu and Joseph(®®) and Chiba et.al.,!¥) we fit the

viscosity curves with the Cross model

where 79 is the limiting viscosity at zero shear rate, 7., is the limiting viscosity at infinite
shear rate and k is the consistency index. The results of the curve fitting are provided in

the Table 6.3 at the end of the subsection.

The second analysis upon our liquids was the oscillatory shear test where the samples
were put to a stress of 0.5968Pa. The oscillation of the cone was varied between 6.283-62.83
radians per second. Results of the experiment are shown in Figure 6.6 and 6.7. The two
Figures compare the values of the storage and loss moduli, G’ and G” respectively, both of

which are a function of the angular velocity. It is well known(®® 7 that when G” dominates
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G', then the sample displays liquid-like characteristics while if G dominates G”, then the
liquid possesses elastic features. When the two quantities are of equal magnitude, then both
viscous and elastic features exist in equal strength. Therefore, upon comparing the two
quantities in our measurements, we see that in the case of CMC(0.5 %), the sample displays
liquid like behavior over the entire frequency range. Hence, we may expect this sample to
behave predominantly like a Newtonian liquid with little elasticity. In the next sample,
CMC(0.75%), the material is liquid like at low frequencies and more solid like at higher
frequencies, therefore, we may expect some viscoelastic behavior. The remaining samples
show a significantly dominating G’ over G” and we may expect these samples, in particular,
PAA(0.56%), to have noticeable viscoelastic properties. The oscillatory experiment allows
us to compute the significant parameter, .., the relaxation time. It can be seen from most
elementary text books in Polymers and Rheology that the relaxation time obeys the empirical

relationship
G/

Ar = wG"”

We use this formula to evaluate A, for the different samples and these values are listed in

Table 6.3. The results of this section will be crucial in obtaining the Re and We in the

g (14,38,54

forthcoming sections. Followin ) we define these two parameters as

U AU

Re
Mo d

where p is the density of the liquid, U the speed of fall of the body and d is the characteristic

length of the sedimenting body, often given as the hydraulic diameter.

It must also be pointed out that there are some likely errors in our rheological measure-
ments. The samples were tested for the material parameters several times over a period of
a couple of weeks. Additionally preparation procedure errors, sediments in containers and

evaporation of liquid samples may also contribute though perhaps minutely to our measured
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Table 6.3. Rheological measurements of the liquid samples .

Liquid Mo Moo k n Ar

(Pa.s) | (Pa.s) (sec)
CMC(0.5%) | 0.693 0 0.21 | 0.563 | 0.044
CMC(0.75%) | 0.814 0 0.1338 | 0.6096 | 0.041
CMC(1.0%) | 18.68 | 0.286 | 0.9224 | 0.6318 | 0.105
PAA(0.56%) | 90.067 | 1.88 | 50.17 | 1.5545 | 0.285
PAA(1.0%) | 0.773 | 0.0114 | 0.4665 | 0.743 | 0.134

quantities. The relaxation time measured for CMC(0.5%) seems to be very slightly larger
in magnitude to the relaxation time of CMC(0.75%). We attribute this to possible film

formation upon evaporation of this dilute sample in the rheometer.

The results of the creep and recovery tests were performed at three different shear stress
values, 0.1Pa, 0.5 Pa and 1.0 Pa and were in qualitative agreement with all the other ex-
periments. The creep curves display a slight concavity at short times indicative of some
viscoelastic behavior. This curvature is almost negligible in CMC(0.5%) and most pro-
nounced in CMC(1.0%) and in the Polyacrylamide samples. The second test shows a low
recovery for CMC(0.5%) sample indicating Newtonian like behavior. For the other samples,
there is noticeable recovery, especially in the case of CMC(1.0%) and for both the PAA
samples. We will refrain from going into the details of this experiment since we draw no

specific parameters from this test.
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Figure 6.4. Viscosity versus shear rate for CMC.
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Figure 6.5. Viscosity versus shear rate for PAA.
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6.1.5 Observations and Discussion

In this section we discuss the results of our sedimentation experiments. The data obtain
from each run is tabulated with detailed measurements. We are able to reproduce the
orientation phenomenon which has been observed in previous experiments. The observations

can be summarized as follows:

e In the soap solution, we observe that the particle maintains its initial orientation for

all future times. Therefore we believe this experiment to be in the Stokes regime!

e In the Newtonian solution, the particles were seen to adopt a terminal orientation with
their broadside eventually aligning perpendicular to gravity. At higher values of Re,

we observed oscillatory behavior and even turbulent motion.

e In the strongly viscoelastic solutions, the particles aligned with their broadside parallel
to the direction of gravity. For certain light cylindrical particles the tilt-angle was also

observed.

In the Tables below we record the fall times, the Reynolds number, Weissenberg number,
initial and final orientation of different particles in the different test liquids. The fall time
recorded is the average of three trials in each case. The orientation of the body is the angle

between the longer axis and the horizontal.

From Table 6.4, we infer the following. The particles used in this experiment give rise to
a very high Reynolds numbers, due to the low viscosity, high fall speeds and high densities
of the particles. Therefore the stable horizontal orientation of the particle is not observed.
Instead, due to the high Re, the particle is seen to oscillate about the horizontal position. In
the case of the particles E3 and E4, the particle speeds were too high to be measured. For
the particles E7, CF1 and CR2, which exhibit Re of 2288.2, 402.3 and 2041.9 respectively,

! As mentioned earlier, details of this experiment are not given since the properties of the liquid are not
known.
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the particles begin to exhibit unsteady oscillations. In our final observation where Re is very

high, 9890, the particle falls in a chaotic manner.

In the second experiment in glycerine-water solution, we are able to see the horizontal
terminal orientation with particles E7 and CF1 (see Table 6.5). The Reynolds numbers for
these two particles lies well below 500. The rest of the particles begin to oscillate in an

unsteady manner in their terminal states.

In the third experiment (see Table 6.6), we employ a 0.5% solution of the Carboxymethyl-
cellulose solution. At these low concentrations, the liquid seems to behave more like a New-
tonian liquid. The particles, are dropped with a initial orientation of both 0 degrees and
90 degrees and in both cases, we see that all of the particles acquire a terminal orientation
of 0 degrees as might be expected in a Newtonian liquid. A likely explanation for this phe-
nomenon is that the elastic effects of this solution being small, the inertial effects dominate

making the particles turn their broadside perpendicular to the direction of gravity.

The fourth experiment was performed using a 0.75% solution of the CMC polymer. The
results are summarized in Table 6.7. The viscoelastic effects seem to emerge more strongly
than in the previous case. Except for the one case of particle E3, all other particles either
exhibit a vertical orientation or the tilt angle. The orientation phenomenon as an interplay

of inertia, viscoelasticity and shear-thinning effects seems more plausible in this case.

The fifth experiment was performed using a 1.0% solution of the Carboxymethylcellulose
solution. The results of this experiment are summarized in Table 6.8. The elastic effects at
this concentration are now noticeable since we see most particles taking on a vertical orien-
tation in their terminal states. In fact, we note that two particles, CF2 and CF3 exhibit the

tilt angle phenomenon. The increased viscous effect of this sample compared to the previous
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one is apparent from the significantly longer fall times that the particles take to cover the

length of the tank.

In the case of the particle CF3, we can see the continuous transition of the orientation
from 0 degrees to the tilt angle to eventually 90 degrees (see Figure 6.8). This transition
is not apparent in other particles due to several reasons. Firstly the density and material
of the particle may not be appropriate to exhibit this change within the available concen-
trations of the test liquids. It would be valuable to repeat our experiments with polymeric,
shear-thinning liquids whose concentrations vary over a wider range of values. Several more
samples would be required for this purpose. However time constraint prevents us from delv-
ing into this project at this point. The Figure 6.8 is similar to that of >4 where they have

managed to obtain several more data points.

100
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Figure 6.8. Variation of orientation angle with concentration of Carboxymethylcellulose
solution.
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Note that the tilt-angle is observed only for flat ended cylinders and for not for any other
particle shape. The round ended bodies do not display this behavior. Furthermore, the tilt
angle is always an edge-edge alignment and hence the angle can be computed directly from
the dimensions of the particles. We attribute our lack of tilt angle observations in round-
ended bodies to the sparse liquid samples. We would need to prepare several samples of the

liquid at varying concentrations, in order to see this phenomenon.

Our final set of experiments were performed with Polyacrylamide samples. The results of
our observations are mentioned in Tables 6.9 and 6.10. In the case of PAA(1.0%), some of the
heavier particles assumed a final horizontal state, while others took on a vertical orientation
in the steady state. In PAA(0.5%), however, all particles assumed the vertical state, due to
the predominant viscoelastic character of the fluid. Time of fall in this liquid ranged from a
few minutes to several hours, putting the experiment at extremely low Reynolds numbers.
Due to the long observation times of sedimenting bodies in the PAA(0.56%) polymer, we
have the benefit of tracking the progress of certain particles which move very slowly and
observe the orientation angle as a function of time. The Figure 6.9 shows the variation of
the tilt angle with time for particles CF3 and CF6.

The typical observation times in these earlier experiments have not been nearly as long
as ours. The cylinders begin at rest at a horizontal orientation to gravity. In the initial stage
the particles move very slowly retaining their initial angle for several minutes. In the second
stage, the particle goes through a change in angle, accompanied by a drift along the tilt,
which lasts for several minutes. The particle finally acquires a vertical state which is the
steady orientation which it retains for the rest of the fall time. In Figure 6.10, we provide

snapshots of the motion of particle CF3 in PAA(0.56%).
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Figure 6.9. Transition of orientation angle with time.

This observation has implications upon the shape-tilting observations in polymeric liquids
which was introduced in Section 2.1. It is claimed that shape-tilting is directly proportional
to the ratio, a/b, of length to the diameter of the particle and varies continuously with this
parameter.(® We have conducted experiments with the particle CF3 (a/b = 2.0) and with
two additional flat cylinders with ratios 0.75 and 1.5 in the PAA(0.56%) solution. The sedi-
mentation process for the particle CF3 is explained earlier. For the remaining two particles,
the sedimentation process takes approximately 4 hours and 2.5 hours respectively, with no
shape-tilting in either case. This observation needs to be confirmed with more elaborate
experiments, however our preliminary tests seem to indicate that shape-tilting is merely a
transient phenomenon. The earlier sedimentation experiments were performed in Polyox
solutions of lower molecular weight and with particles of much higher densities and there-
fore have very short observation times when compared to our experiments. As we can see
from Figure 6.9, it can take several minutes for the particle to turn completely and reach

a stable orientation. In fact, some of our observations take up to two hours or more to fall
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Figure 6.10. Motion of particle CF3 in PAA(0.56%).
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through the sedimentation tank. Therefore, in the span of a few minutes which is typical
in previous studies, it is plausible, that the cylinders are still in the transient state. We
identify three possible ways of getting around this problem. Firstly, we choose to work
with a highly viscoelastic liquid, which allows for very slow fall. Secondly, we use parti-
cles with much lower densities than in previous studies and finally, we design an alternative

setup, a flow experiment whereby it is much easier to extend observations to very long times.

In general, our experimental observations are for the most part compatible with our
rheological analysis of the liquid samples. We expect, qualitatively, for the particles to orient
horizontally when the Re exceeds the We and to orient vertically when We is the higher
number. However, we do observe a few contradictions to this expectation. Observations (2)
from Table 6.6, (1) from Table 6.7 and the tilt angle observations from Table 6.7 do not
behave as expected. We attribute this mismatch of observation and rheological analysis to
measurement errors. As we noted earlier, the relaxation time for CMC(0.75%) is smaller
than that for CMC(0.5%). The error is relaxation time calculation can very likely be reason
for the discrepancies of Table 6.7. A higher value of A, could yield better results. Another
possible reason for the errors is likely to be due to our use of the average speed of fall in the
Reynolds numbers whereas, the terminal speed would perhaps render more accurate results.
However, besides the few bad data that we mention above all other data are in agreement
with previous experiments and with the results of Table 6.3. In a forthcoming chapter, we

make a comparison of the results here with those of our theoretical analysis.
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Table 6.4. Results of sedimentation experiment in water occupying a height of 34 inches in
the sedimentation tank. .

Number | Particle Fall Speed Re Initial Final
Time(sec) | U(cm/sec) Orientation(deg) | Orientation(deg)
1 E31 - - 90 Oscillation
2 E4f - - 90 Oscillation
3 E7 ) 17.72 2288.2 90 Oscillation
4 CF1 5 17.72 402.3 90 Oscillation
) CR1 2 43.18 5085.6 90 Turbulent
6 CR2 3 28.78 2041.9 90 Oscillation

1 Due to the high density of these particles the fall time through the chamber was not possible to record. The high Reynolds

number of fall induces highly unsteady oscillations in these particles

Table 6.5. Results of sedimentation experiment in glycerine-water solution occupying a

height of 34 inches in the sedimentation tank..

Number | Particle Fall Speed Re Initial Final
Time(sec) | U(cm/sec) Orientation(deg) | Orientation(deg)
1 E7 14 6.17 3.16 90 0
2 CF1 ) 17.28 1.56 90 0
3 CR1 1.5 57.6 26.90 90 Oscillation
4 CR2 3 28.8 8.10 90 0
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Table 6.6. Results of sedimentation experiment in 0.5% concentration of Carboxymethylcel-
lulose solution occupying a height of 32 inches in the sedimentation tank.

Number | Particle Fall Speed Re | We Initial Final
Time(sec) | U(cm/sec) Orientation(deg) | Orientation(deg)
1 E7 10.1 8.04 2.71 1 0.15 0,90 0
2 CF1 12.69 6.04 0.36 | 0.65 0,90 0
3 CF2 4.5 18.06 3.34 | 0.62 0,90 0
4 CF3 6.3 12.90 3.58 | 0.30 0,90 0
) CR2 3.87 21.00 3.8810.73 0,90 0

Table 6.7. Results of sedimentation experiment in 0.75% concentration of Carboxymethyl-

cellulose solution occupying a height of 33.5 inches in the sedimentation tank.

Number | Particle Fall Speed Re | We Initial Final
Time(sec) | U(cm/sec) Orientation(deg) | Orientation(deg)
1 B2 19.84 4.28 1.28 | 0.07 0 90
2 E3 2.75 30.94 9.3 10.53 0 0
3 CF1 13.23 6.43 0.34 | 0.63 0 90
4 CF2 13.18 6.45 1.06 | 0.20 0 Tilt
) CF3 14.81 5.74 1.42 | 0.12 0 Tilt
6 CF4 19.26 4.41 1.09 | 0.09 0 Tilt
7 CF6 16.53 5.14 1.70 | 0.08 0 Tilt
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Table 6.8. Results of sedimentation experiment in 1.0% concentration of Carboxymethylcel-
lulose solution occupying a height of 33.5 inches in the sedimentation tank.

Number | Particle Fall Speed Re | We Initial Final
Time(sec) | U(cm/sec) Orientation(deg) | Orientation(deg)
1 E1 128.0 0.66 0.006 | 0.04 0 90
2 E2 32.24 2.63 0.035 | 0.12 0 90
3 E3 3.69 23.05 0.31 | 1.06 0 90
4 CF1 95 1.54 0.003 | 0.39 0 90
) CF2 20.27 4.19 0.03 | 0.35 0 Tilt
6 CF3 37.0 2.29 0.025 ] 0.13 0 Tilt
7 CF4 22.0 3.86 0.04 | 0.19 0 90
8 CR2 9.3 9.14 0.068 | 0.75 0 90

Table 6.9. Results of sedimentation experiment in 0.56% concentration of Polyacrylamide
solution occupying a height of 33.5 inches in the sedimentation tank.

Number | Particle Fall Speed Re We Initial Final
Time(sec) | U(cm/sec) Orient.(deg) | Orient.(deg)
1 E2 12780 0.0066 1.8x107° | 2.1x1073 0 90
3 B3 9 9.454 0.026 1.16 0 90
4 CR1 14 6.077 0.015 0.82 0 90
) CR2 115 0.739 0.001 0.17 0 90
6 CF5 46207 0.016 4.9x107° | 1.78x1073 0 90
7 CF2 4500 0.0189 2.9%x1075 0.004 0 90

t - The time indicated here pertains to a height of 30 inches
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Table 6.10. Results of sedimentation experiment in 1.0% concentration of Polyacrylamide
solution occupying a height of 33.5 inches in the sedimentation tank.

Number | Particle Fall Speed Re | We Initial Final
Time(sec) | U(cm/sec) Orientation(deg) | Orientation(deg)
1 E1 99 1.44 0.32 | 0.12 0 90
2 CF5 2 38.1 13.77 | 2.00 0 0
3 CF6 9 9.45 3.41 | 0.49 0 0
4 CF1 ) 17.02 0.98 | 5.61 0 90
) CR2 7 12.15 2.19 | 1.26 0 90
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6.2 Flow Experiments

As can be seen from the previous sections, the fall times for the particles in the sedi-
mentation tank varies typically between a few seconds to a few minutes at the most, except
in the case of the PAA(0.56%) sample. In fact, there are only two cases where the time
exceeds a minute in our other liquids and this is achieved with the particle E1 whose density
is low (see Table 6.1) and dimensions are very small. The difficulty and cost in machining
these particles prohibits us from acquiring smaller and lighter particles like E1. Furthermore,
even in a sample like PAA(0.56%), the fall time still finite and about a couple of hours at
the most. To achieve longer fall would require using particles with much lower densities or
liquids with much higher molecular weights which will have to be pursued in the future.
Another feasible idea to increase the observation time, which we have done, is to design
a flow chamber where the particle is at rest and instead, the liquid moves past the body.
The details of the design and setup are explained in the following subsection. In such an

experiment, we have managed to extend our observation times to several hours.

The flow chamber experiment is obviously different from the sedimentation experiment
in that whereas in the former, we are dealing with the motion of the body in a quiescent
liquid, the latter, we have a uniform flow past the body. However, we can expect the results

of the two experiments to be similar.

6.2.1 Experimental Setup

The experimental setup consists of a flow chamber with length of 3 feet and a cross-
section 5 inches x 5 inches (see Figures 6.11,6.12). One end of the chamber is attached to
a reservoir while the other end is connected to a tube which leads the liquid back to the
reservoir tank. Therefore the flow is recycled and we are able to carry out the experiment

and extend the observation times to as long as required.
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The liquid enters the chamber from the reservoir through a honeycomb which is placed
in order to maintain a uniform flow at the entrance. The flow is driven by a pump which
is connected to a rheostat by which we may vary the flow rate in the chamber. The liquid
used in the flow experiments is water. We have not used any viscoelastic liquid for fear that

the pump may shear and hence degrade the polymer.

Perhaps the most challenging aspect of the setup was the particle suspension (see Figure
6.13). The only disadvantage of the flow chamber is that the particle needs to be held in the
middle of the chamber at a suitable distance from the entrance and exit by some means. The
particles used in this experiment were prolate spheroidal particles made of wax, plexiglass,
aluminum and steel. For purpose of suspension, a thin copper wire of thickness 0.006 inches
was inserted through tiny holes made in the particles. The ends of the copper wire were
then inserted through the walls of the chamber and made taut and sealed on the outer walls
of the chamber. The copper wire was chosen due to its thickness, which does not affect the
flow past the body and also due to the absence of torsional effects which may contribute to
the orientation phenomenon. As is apparent, the particle is restricted to rotate only about

the suspending wire.

Two different suspension mechanisms were used as shown in the Figure 6.13. In the
first one, the particle is suspended vertically and the particle is held in place by means of
a stopper placed below it. In the second mechanism, the particle is suspended horizontally
thereby eliminating the use of a stopper. We find that the second mechanism is preferable

to the first one since it reduces friction and allows the particle to turn more freely.
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Figure 6.11. A snapshot of the flow chamber.
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Figure 6.12. The experimental setup.
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Figure 6.13. A schematic of the suspension mechanism of the particle.

Table 6.11. Particles used in flow chamber experiments.

Number | Shape Name | Material Major Minor e | Density
axis (in) | axis (in)
1 Ellipsoid El | Wax 1.0 0.5 0.87 ] 0.93
2 Ellipsoid E2 | Plexiglass 1.0 0.5 0.87 | 1.29
3 Ellipsoid E3 | Aluminum 1.0 0.5 0.87 | 2.70
4 Ellipsoid E4 | Steel 1.0 0.5 0.87| 7.83
5 Cylinder(R) | CR2 | Teflon 1.0 0.2 - 2.18
6 Cylinder(R) | CR1 | Steel 0.9 0.4 - 7.83

6.2.2 Observations and Discussion
We first identify two essential parameters in this experiment. The first is Re,, the particle
Reynolds number and the second is Ref, the Reynolds number for the flow chamber. They

are determined by the following equations,
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Table 6.12. Critical Reynolds numbers at which particles turn in the flow chamber.

Number | Name | Flow rate(m?/s) | Re.
1 El 2.7 x107° 27.2
2 E2 5.6 x 1073 55.8
3 E3 8.4 x 1075 83.7
4 E4 1.1 x 10~* 104.6

where () is the flow rate, A is the cross-sectional area of the chamber, d measures the diam-
eter of the body, D is the hydraulic diameter of the flow chamber?, p is the density of the

liquid and p is its viscosity.

The particle is initially fixed so it is oriented with its major axis along the direction of
flow. The chamber is then slowly filled with water while maintaining the orientation of the
particle. Once the chamber is filled with the liquid, the pump is turned on and the liquid is
allowed to flow. The experiment is maintained at each fixed flow rate for several minutes to
observe any possible change in the orientation of the particle. If none is observed, then the
flow rate is incremented by a small amount. This process is continued until, at a particular
flow rate the body is seen to change its orientation such that its major axis is perpendicular
to the direction of flow. We tabulate below (Table 6.12) the results of this experiment giving
the particles and the critical Reynolds numbers of the particles (Re.) at which they turn to

such that their longer axis is perpendicular to the length of the flow chamber.

In Figure 6.14, the data from the above Table 6.12 is plotted. The data points are seen
to lie along an ’almost straight’ line. Additionally, we can see that the line connecting the
data points divides the graph into two regimes. The region below the critical line, we refer

to as the Stokes regime since for Re, < Re, the particle maintains its initial orientation, like

2 - . . o _ 2WH
The hydraulic diameter of a flow chamber of width W and Height H is given by D = {75
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Figure 6.14. Critical Reynolds numbers at which particles turn.

in the sedimentation experiments. As Re, > Re., we note that the stable orientation of the
particle changes to the one that we see in a Newtonian liquid in sedimentation experiments.
For this reason the region above the critical line is referred to as the Navier-Stokes regime. It
is easily seen from Figure 6.14 that the value of Re. increases with the density of the particle
used. If we extrapolate the curve to p — 0, i.e. for a body with zero buoyancy, the particle
should turn for very small, non-zero Reynolds numbers. This points to the possibility of
increasing frictional resistance to the turning of the particle, with increasing density of the

particle.

The second of the flow chamber experiments involved observing the behavior of the
particles at higher flow rates, i.e. at higher Reynolds numbers, than in the previous exper-
iment. Though our primary objective is restricted to the interaction of particles and fluids
at low Reynolds numbers, we come across some very interesting results, upon increasing the

Reynolds numbers to intermediate values. We observe that as the Reynolds number of the
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Table 6.13. Observations of periodic oscillations of particles in the flow chamber.

Number | Name | Re | Amplitude(deg) | Period(sec)

1 El 282.6 ) 2

2 El 470.5 14 1.7
3 E1 754.1 19 1.45
4 E2 | 282.6 7 3.2
) E2 | 470.5 15 1.5
6 E2 754.1 27 1.5
7 E3 | 754.1 6 1.67
8 CR1 | 470.5 6.5 0.7
9 CR1 | 754.1 17.5 0.6
10 CR2 | 470.5 2 0.7
11 CR2 | 754.1 ) 0.7

particle is increased sufficiently above the Re. value, the particle begins to exhibit oscillatory
behavior and for sufficiently large Re,, it begins to move in a chaotic manner. In the Table
below, Table 6.13, we record the oscillatory behavior of different particles as we vary the
Reynolds number over 100. Re, is slowly increased beyond the point where the particle
is oriented with its longer axis perpendicular to the flow. There is a second critical value
of Reynolds number, denoted Re._, where the particle first begins to oscillate periodically
about its previously stable position. The oscillatory behavior continues until a third critical
value Re._;, is reached, beyond which the particle begins to oscillate in a turbulent manner.
Our experiment is merely a first step in unraveling details of this phenomenon. In this the-
sis, we restrict ourselves to some preliminary results on these experiments at intermediate
Reynolds numbers. More elaborate experiment needs to be designed which can help deter-
mine the critical parameters Re., Re._, and Re._; accurately. We are restricted to certain
fixed values of the Reynolds numbers (as in Table 6.13) due to the design of the flow chamber

and the pump used in the experiment.
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6.3 Wall Effects

It is well known that the presence of walls in sedimentation experiments can result in
dramatically different results when compared to those without walls.("-1336) We need to be
certain that the orientation results that we observe in our experiments are not effected by
the presence of walls. The effect of the walls on the terminal orientation of sedimenting
bodies is not available in the literature. Most work in this area is restricted to comparing
the settling velocities of bodies of different shapes, sizes and composition, in the presence

of walls, with those in the absence of walls.(11~13)

Financial and time constraints prevent
us from conducting our own investigation into this subject. However, as justification for
our choice experimental parameters, we compare (see Table 6.14) the typical dimensions of

particles and setup in our experiment with those of D.D. Joseph and his co-workers. (38

Table 6.14. Comparison of experimental parameters.

Group Particle Shapes' Minor axis Major axis Dimension
of Particle(in) | of Particle(in) | of Tank(in)
Joseph et.al. | Cylinders 0.02-0.4 0.4-1.0 0.44x6.5%23
(F,R,C) 0.28%4.0x25
Galdi,Vaidya | Ellipsoids, Cylinders (F,R) 0.06-0.5 0.5-1.0 6.0x6.0x36.0

t F represents a cylinder with flat ends, R with rounded ends and C with conical ends.

Comparing the two columns of the Table 6.14 we see that the dimensions used for the
particles are in fact, very similar. On the other hand, those for the sedimentation tank are
actually much bigger in comparison. Since Joseph and co-workers claim no effect upon their
orientation observations due to the presence of walls, we too make the same assumption. We
use this as sufficient tentative justification that wall effects play no role in our experiments

until further evidence is available.
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It is seen that in case of Newtonian liquids, walls tend to repel sedimenting particles away
from them, while in viscoelastic liquids, the particles are attracted to the walls, provided the
initial distance of the particles from the wall is less than a critical distance at which point
the particles feels the presence of the wall. Besides the lateral drift of particles, walls have
the additional better known ability of reducing the settling speeds of sedimenting particles.
However, as mentioned earlier, no such study is available on the effect of walls on termi-
nal orientations. In our experiments, we observe lateral drifts of particles towards walls,
however, we see no noticeable reason to believe from our observations that the orientation
angle is in any way altered near the walls. Horizontal and vertical alignments of particles
continue to remain so even as the particle approaches the wall. The only case of tilt angles
that are observed are with the flat ended cylindrical particles which tend to align edge to
edge (shape tilt) and maintain such an orientation even if near the wall. Since the fall times
for these observations are not long enough, we cannot claim with any certainty that the tilt
angle will in fact be maintained for all future times. Hence it is not possible to verify based
upon current observations what kind of effect the wall has upon our experiments. The effect
of walls upon the terminal orientations of bodies needs independent study. We therefore

suggest this as part of the future work that must be undertaken in this area.

Though we may temporarily overlook this matter of wall effects on our experimental
observations, we need to justify this assumption in our theory. Our mathematical theory,
which we conduct in the forthcoming chapters works on the assumption of sedimentation in
an unbounded fluid domain in the absence of any walls. This assumption has the advantage
of simplifying the mathematical analysis to a certain extent. However, there is also a strong
physical justification for this which permits us the use of some simple and elegant theoretical
analysis. Studies on the effects of walls"®) indicate that for the aspect ratios (ratio of particle

to tank diameter) less than a certain value, the particle does not recognize the wall and the
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sedimentation occurs as if in an unbounded domain. Several of the previous experimental
studies of %1% and even to some extent®* have been conducted with aspect ratios less than
the critical value with expected results. Therefore, our it is sufficient that we pursue our

theoretical studies in this framework.
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7.0 FORMULATION OF PROBLEM

7.1 Equations in Inertial Frame

In this chapter, we identify the appropriate setting which renders a convenient theoretical
analysis. We consider a rigid body, B, of arbitrary shape falling in a fluid F of density p under
the action of the acceleration due to gravity, g. In general, the body can be inhomogeneous,
that is, of varying density. We assume that the body-fluid system is in a steady state, that
is, the translational velocity, & and angular velocity, w of B are constants in time. We may
consider the problem from two possible frames, the inertial frame Z or the body frame S.
We will formulate the equations in both of these frames and we shall show that the problem
stated in frame S is more desirable. In the frame S, we place the origin at the centroid or
geometric center of the body, which we denote by O. The center of mass of B is denoted by
M. R denotes the vector from O to M see Figure 7.1). Note that for a homogeneous body,
R vanishes since the center of mass now coincides with the geometric center of the body.
The problem of sedimentation of a rigid body in a fluid must be frame mathematically as
a coupled fluid-structure problem. Therefore, the problem contains equations for the fluid

and equations for the rigid body. We consider the problem in an Inertial frame, Z,

\

) o )
p(a—:) = div (T(v,p)ﬂ)f)
div v =0

(7.1)
lim v(z,t) = 0

|x|—00

v(z,t)ly = nt)+ Q1) xz

where v is the velocity field, p the pressure field, n the translatory motion of the body and

Q) the rotation of the rigid body. Additionally, equations for the body, in frame Z. These
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*1

Figure 7.1. Physical setting of a body, B freefalling in a fluid, F.

are given by

m% = —/iT(v,p)JV—l—F (7.2)
L{itQ) — —/E(a: —¢) x T(v,p) - N + M, (7.3)

where F' is the external force, M, is the external torque, c refers to the position of the center
of mass of the rigid body and J is the inertial tensor. The above equations constitute the

full set of equations for our problem.

7.2 Equations in a Body-Frame

In this section, we will reformulate the problem in a frame S, which is attached to the
body. The specific advantage of this transformation is that in the new frame &, the fluid
domain is independent of time, since {2 is unbounded. However, in this frame g becomes

an unknown. Since the frames 7 and S vary by an orthogonal transformation, (), we may
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define the following:

where y(t), £(t), (t), w(y,t), 7(y,t), n and T'(w, 7) are the position vector, translation vector,
rotation vector, velocity field, pressure field, outer unit normal to the surface and stress tensor

respectively in the frame S.

Remark 7.2.1 We will need a few useful properties of orthogonal transformations here to

rewrite the equations for the problem in frame S.
1. QQT-a=Qxa
2. QTQ -a=wxa
3. (Qa)x (Q-) = Q- (axb).
We first note that the term

Dv  D(@Q-w)

Dt Dt
= G wtQ (50 +arad )
= Q~(wxw)+Q~aa—1:+Q~(w—§—wxy)gradw (7.4)
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where we use property 2 of Remark 7.2.1. Also,
div ,T'(v,p) = div ,T(w, ), (7.5)

hence we may write the transformed equation of the fluid in the form

p(aa—zf +(w—E€—wxy) grad w+wx w) =div ,T(w,7) + pQ” f(z,1). (7.6)

Also, we have

div w = 0
Illiin w(y,t) = 0 (7.7)
w(y, )]s = &) +w(t) xy.

Similarly the equations for the body in the frame S can be given in terms of the new

quantities defined above.

and

/iT(v,p%N—Q'/ET(wﬂr)% (7.8)

Therefore, combining the two above equations, we get

m (%w ><5> —/ET(w,7r) . (7.9)

Similarly,

d(J - Q)
dt

= Q- (wxIw)+Q-Iw)
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and also, we note that

/ia:xT(v,p).N = /ZQ'Z/X(Q'T(U’,W)'QT)-TL
= Q'/nyT(w,W).n_

Therefore, combining the last two equations above we have,

wxIw—i—Id)——/yxT(w,W)'n—pQTMC. (7.10)

%

Hence equations (7.9) and (7.10) constitute the two equations for B in the frame §. We find
some important consequences for choosing to work with the frame S which we provide below

in the form of two Lemmas below.

Lemma 7.2.1 Let T(v, p) refer the stress tensor corresponding to a Newtonian liquid. Then

~

T, p)lws = T(w, )

is frame S.

Proof:

Let us write 7'(v, p) = Tws(v,p). Then
Tws(v,p) = (=pI +21D(v)) (7.11)
by definition. However, we also have

QT : T(U7p) : Q = T(w,w)

= —nl+2nD(w)

|
~

(r‘)?p)’(w,w)- (7.12)
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Lemma 7.2.2 Let S (v) = TE, refer to the extra stress tensor corresponding to a Second

order fluid. Then, in the frame, S, attached to the body,

where u = w — (£ +w X y) is the relative velocity.

Proof:

In the inertial frame, the extra stress tensor for the Second order fluid is written as

S(v) = al[%t(v) +Ai(v) - LT (v) + L(v) - Ar (v)] + a2 A (v) - Ay (v).

The equivalent quantity in the frame S attached to the body can be given by the transfor-

mation

Hence, on calculation, we see that S(w) takes the form

Sw) = @ Q- Ai(w) — Ay(w) - QT - Q]
8141(’11))

=
+ 042141 (w) . A1 (w)

+(w— €& —wxy)-grad A (w) + Ay (w) - LT (w) + L(w) - Ay (w)]

and so it follows that the extra stress tensor in the two frames, Z and S are not equivalent. For
this reason we introduce the relative velocity © = w—&—w xy. Then, since A;({+wxy) =0,

we see upon some manipulation that

S(u) = al[%t(u) +u-grad A;(u) + Ay (uw) - LT (w) + L(u) - A (u)] + s Ar(u) - Ai(u).
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7.3 Equations for the Freefall Problem

Since in this thesis we are specifically discussing the problem of freefall of a body in a
liquid, we must provide the appropriate equations for this problem. A body B is said to

execute freefalling motion in a liquid if the following conditions are met()
1. The boundary of B is impermeable.
2. Gravity is the only external force acting on B.
3. B is moving in a quiescent liquid.

One important aspect of the freefall equation is that, in the frame S, the direction of
gravity ¢(t) is an unknown in the problem. Therefore, we must provide appropriate equations

for g. Let G be the gravity vector in the frame Z, then g = QT - G. Hence,

dg AT

at @ -G
= Q"Qqg
= gXw

Since, the problem considered in this thesis pertains to the terminal or steady state orien-
tation behavior of B in the liquid, we may rewrite the steady fluid-body equations in the

non-dimensional form as

\

Re((w—¢ — wxy)-gradw+wxw)=divT(w,m)+g

div w = 0
(7.13)
lim w(y,t) = 0

|x|—o00

w(y,t)ly = E+wxy.
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and

Remw x ¢ +
Rew x Tw +
wXg =

/T(w,w)~n—mg

>

/yxT(w,w)-n—O
s

0.

J

(7.14)

We may write the equations (7.13)-(7.14) in terms of a new variable u = w — (§ +w X y) for

future convenience, as follows:

Re(u-grad u +2w x u+w x (§+wxy)) = divT(u,m)+g

div u = 0
lim (u+€&+wxy) =0
|x]—o0
uls = 0.
Vs
and .
Remw x § + /T(u,ﬁ)~n—mg
2
Rew x [w + /yxT(u,W)~n—0
2
wXg = 0.
Vs

(7.15)

(7.16)

Remark 7.3.1 If we take into account that w x g = 0, then we have that w = A\g where

A is a scalar. Therefore, with this restriction, we have ten scalar unknowns, w, 7, &, w and

. Also, equations (7.18) and (7.14) constitute the set of ten scalar equations. Hence our

problem s well posed.
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8.0 FREEFALL IN A SECOND ORDER FLUID AT RE =0

In this chapter we study the existence and uniqueness of solutions to the freefall problem
in a Second order fluid at Re = 0. We will present two different arguments to establish exis-
tence of solutions. The first is based upon a Lemma due to Rabier and Serre and the second
argument follows independently from the Implicit function theorem, both, with the restric-
tion a; + as = 0. In the final section, we show existence of solutions to the freefall problem
at zero Reynolds number but for arbitrary a; + ay values. The restriction a; + a; = 0 can
also be written in terms of a new parameter ¢ which is defined as € = g—j The case e = —1
is a special case of the more general result that we obtain in the final section. However, we
still deem it necessary to include the former result since the argument used is considerably
simpler. Also, in the case ¢ = —1, we have from Giesekus’ theorem and also independently
shown by us, that the velocity field coincides with the Stokes velocity. This has some im-
mediate consequences which is not very evident in the more general case and requires very
heavy handed tools. In the second section we provide an alternative proof of existence for
the case ¢ = —1 based upon the Implicit Function theorem. Once again, the results of the

section are of course known from earlier arguments, yet the technique manages to elucidate

certain features of the problem which are not apparent otherwise.

8.1 Existence and Uniqueness for a; + a; =0

Following Giesekus,® we assume that ¢ = —1 (i.e. a; + ay = 0) in the constitutive
equation for the Second order fluid. The equation of motion of the fluid in non-dimensional
form is given by (7.13) and (7.14) with T'(v,p) = Ty (v,p) — WeS(u) the stress tensor corre-
sponding to the Second order fluid model, with Ty representing the Newtonian part of the

stress tensor and S, the viscoelastic part. However, if in equation (7.15-7.16) we take ¢ = —1

103



and Re = 0, then upon some manipulation, the governing equations may written as

\

Au — grad IT — WeA(curlu) x u = 0

divu=0
(8.1)

U’ZZO

lim|$|_>oo(u + ’Uoo) =0

where

1
H:p—gw+W%W¢M+ZMNMW

and v, = & +w X y. A significant contribution to approaching this problem is provided
in(®%2831) where the equations of the body are decoupled from those of the fluid by the
introduction of auxiliary fields (b, p) and (H®, P?), corresponding to elementary trans-

lation and rotation respectively. It is now easily verified that the fields @ and p in the

form

= RO — ¢+ w,HY — o (8.2)

>

) ) 1
p = fz‘p(z) + wz‘P(Z) +9-yY— We(zl - At + Z’Al(ﬁ)lz) (8-3)

satisfy the problem (8.1). This problem can be reformulated in a more convenient manner.

If we now multiply equation (7.15); by () and integrate by parts over €, we obtain

/2 (e; - Ty(u,p)-n+e -ng-z)= /2A1(U) c Ay (R + WeF (8.4)
where
f—/ﬁ@dwam (8.5)
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i = 1,2,3. Similarly multiplying the equation (7.15); by H® and integrating by parts over

(2 again, we have the expression
/H@xxyﬂrn+02x@yx}—/Aﬂm:AGWU+WEM (8.6)
b b

where

M= / HO . div S(u) (8.7)

i = 1,2,3. Now multiplying equations (3.3) and (3.4) by (u + v, ) and integrating over €2,

gives us, upon routine manipulation,

/Al(u):Al(h(i)) = /voo~TN(h(i>,p<i>)~n
X by

/Al(u):Al(H(i)) = /UOO'TN(H(i),p(i))'n.
5 5

Substituting these equations into equations (8.4) and (8.6) respectively, and collecting all

the terms, we obtain upon some rearrangement,

K- {4+C-w = meg+ WeF(u) (8.8)
C' 64+Q-w = Rxg+WeM(u) (8.9)
wxg=0 (8.10)

where the tensors K, C' and {2 are defined by

Ky = /(T(h<i>,p<i>)-n)j (8.11)

Cij = /(a: x T(hD, p*)) 'n)j (8.12)
>

Q; = /(xxT(H(i),P(i))-n).
b

J

(8.13)

and depend simply on the shape, size or symmetry of B. We shall elaborate on the terms
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F and M in the following sections. The above equations now represent the central equations
for our problem. In the Lemma below, we show that solving the equations (8.8)-(8.10) is

equivalent to solving the problems (8.1) and (7.16 ).

Lemma 8.1.1 The problem (8.1) has at least one solution if and only if the equations (8.8)-
(8.10) can be solved for £, w and g.

Proof :
If problem (8.1) has a solution {u,p,&, A\,w, g} then it follows that {£, A, g} automatically
solve equations (8.8)-(8.10). For the converse argument, recall that if equations (8.8) and

(8.10) can be solved then, equations (8.2), (8.3) provides a solution to problem (8.1). O

8.1.1 A Uniqueness Property

We define the class A, of the pair (u,p) such that

loc loc

ue CHD) (WD), pe (D) \Wii(D)

where D’ is an bounded subset of D and the asymptotic behavior of the pair (u,p) is given
by

DP(uy) +veo(y)) = O(ly| 7171, 0< 18] <3
p—g-y=po+O(y?

where p, € R. We also require that the body, B, be of class C3.(%%) In this section we
show that for small Weissenberg numbers, the velocity field, u which satisfies problem (8.1)
coincides with the Stokes velocity field, 4, in the class A. This result is crucial to our

following sections where we analyze the problem for specific symmetries of B. Supposing
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(u, p) is another solution to problem (8.1), then it follows that

Av — WelAw X u] + WelAw x 4] = gradm (8.14)

~

where v = (u — @), 7 = (p — p), w = curl v and @ = curl 4. Adding and subtracting term

We[Aw X u| yields after some manipulation
Av + WeAw x u = gradr (8.15)

where 0 = @ — w and Aw = 0 follows from taking @ to be the Stokes velocity field.
Lemma 8.1.2 If u is defined as a solution to problem (8.1), 4 the solution to the Stokes
problem and vy, the terminal velocity, then we have the following estimates
(@) [[AA ()] < er(€] + [w]) (8.16)
and
(1) sup|A;(u)| < ea(l€] + [w]). (8.17)

Proof :
(i) Let us write w = u — vy, then A;(w) = Aj(u) — A1 (veo) = A1(u). We begin with the
fundamental inequality(*®

A4 @W)ls < cluly g

Then, using [25, Theorem 2.8,Ch.5] with m =1 and ¢ = %, we obtain
wly 3 < elllvsll_s, + llvsollz 2).

Therefore it follows that

1AA ()] < en([E] + [wl)-
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(i) Let f = Vuw. Thenforr:%,1<t<%and1<q<oo,f€L’“ande€Lq‘

We then have(®)

IfI < cllfllui + 11V Fllgo)

< afllfllra + 1V Ilgal
Therefore applying [25, Theorem 4.3,Ch.5] once again, with m =0, ¢ > 3 and k = 0 we get
sup [A1(u)] < ca(fwlir +[wlzg) < es([[vaolla-1p + [[voolla-1,4) < ea([€] + [w])-

|

Theorem 8.1.1 The velocity field 4 given by equation (8.2) is unique in the class A if
[Wel (|€] + |w]) < e

Proof :

Multiplying equation (8.15) by v and integrating over a ball of radius r, B,, we have

/U~AU+W6/ v~(A<D><u)—/ v - gradm (8.18)

To simplify equation (8.18) we further integrate by parts. Then the first and third terms of

the above equation become

/’U'A’U = / v-gradv -n — |lgradv|?
T 9B, B

/Br v-gradm = /831" (v-n)m (8.19)
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while second term, upon some manipulation*® becomes

/ v (Ao X u) = / v - A(gradv — grad™v) - u.

Therefore the equation (8.18) simplifies to

/ v - gradv — |gradv|® + We/ v- A(gradv — grad’v) - u = / (v-n)m
8B, B, .

0By

which in the limit » — oo becomes

/ |gradv|? = We/ v+ Agradv — grad™v) - u
Q Q

(8.20)

(8.21)

since v is solenoidal and zero on the boundary. We further simplify this equation by integrat-

ing by parts the right hand side of equation (8.21) several times as shown below in indicial

form. We consider the two terms separately. First,

/8j82kvivjui = —/82k’l)iaj’l)iuj’
Q Q

= 2/ 8jvi8kuj8kvi + / Ujaj’l)iazk’()i.
Q Q
The final step follows after integrating by parts twice. This then suggests that

/ajazkviviuj—/ajviakujakvi_
Q Q

The second term in the right hand side of equation (8.21) can be rewritten as

/8i82kvjviuj = —/’Uiazk’l)jaiuj’
Q Q

= /ak’l)iak’l)jain—/’Ui’l)jazkain+/ai’()jak’()iakUj.
Q Q

Q
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Therefore, upon combining these two results, we have that

w
/]gradv[z = 26[/ grad®v - Ay (u) - gradv+/v~AA1(u)-v
0

0
—2/ gradv - A;(u) - gradv — / grad’v - A;(u) - grad”v] (8.25)
v

2AWel [ leradols(w)] + 17571 [ oA a
Q

2]We]/]gradv[2]z41 ]—l—]—]/] K %/]Afh
Q

where we have used the Holder’s inequality in the final step. Furthermore, by a simple

IN

wlw
(V]

IN

application of the Sobolev Inequality we get
2
[lgrado|f3 < 2[We|M,||gradv]|5 + <[Well|AAs (u)]]3 |leradv]|3
where we define M; = sup|A;(u)| . Therefore
2 2
(1= [Wel My + |Wel[[AA1(u)l]3)l|gradv]]; < 0.
Using Lemma 8.1.2 it then follows that u = u if
(Wel(|¢]+ |w]) < es. (8.26)

Therefore as long as the condition provided by equation (8.26) is satisfied, the velocity field

u corresponding to equation (8.1) coincides with the Stokes velocity field. O

8.1.2 Existence of Steady Fall
In this section we shall prove existence of solutions to the problem (8.8)-(8.10) for small
Weissenberg numbers. From now on, as a consequence of the uniqueness result, we will

take u to be the Stokes velocity field. We have seen in section 2.1 that the problem (8.1)
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and (7.16) can be rewritten as equations (8.8)-(8.10) and we have also established that the
two problems are in fact equivalent. The remarkable feature of this method is that though
we are restricted to the case of small We, yet, we can predict significant departures from
the Stokes problem and as we shall see in the following sections, certain interesting aspects
of the problem can be elucidated. We begin with a simplification of the nonlinear terms
that arise as a result of the Second order fluid model, by exploiting the symmetries of the
Stokes velocity field, which allows for a very convenient analysis of the equations. We have
seen the terms F and M first emerge in section 2.1, which we shall henceforth refer to
as the viscoelastic force and torque coefficients, respectively. In the case of slow motion

approximation, these terms can be written in the form®

1
F= —/ |curl(a) [*n
2 Js

and

1
M = —/ curl(a)]*y x n
2 /s

where y € . It is easy to show that these terms are quadratic functions of ¢ and w with

coefficients that depend only upon the geometry of the body, B. To this end, we write

Zfi) = curlh, Zéi) — curlH®.
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Let us also define the terms

N % /E 20 . 70,

B — 5 [ (2 2) —az)n

CH = /2 (2 2 —22n (8.27)
A = 2 / 29 20y x n

By — 5 [(@)- 20—z xn

Cc = /2 (2" 2 — 22y x n.

Therefore we can write the nonlinear terms in the following convenient indicial form

Fe = &AW 4 wiw;BED 4 g, Ol (8.28)
M = &AW 4 wiw; B 1 ;0D (8.29)

where £ = 1,2,3. Note that the terms F and M are quadratic in ¢ and w while the
coefficients depend merely on the geometric properties of the body. Now, to show existence,

we begin with the result of Property 3.4.3 that the 6 x 6 matrix

K C
ct Q

(36) We next quote a Lemma due to P. Rabier.(?» A less

is positive definite and invertible.
general form of this Lemma is proved by Serre [68, Lemma 4.4] which would suffice for our

purposes.
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Lemma 8.1.3 Let the maps
II : BR X Sz — R"

7:BrxS? = R?

be continuous. Suppose also that
II(c,g) - ¢>0
for all (c,g) € Br x S* and

7(c,9)-g=0

for all (c,g) € Br x S%. Then there is a (c,g) € Br x S% such
II(c,g) =0, and 7(c,g)=0.
Theorem 8.1.2 (Existence Theorem 1) Let B be a body of class C3. Then, the steady

fall problem (8.8)-(8.10) has at least one solution, provided

)\2

We <
4313,

where \, 81 and By are parameters depending only upon the geometry of the body.

Proof :

Set ¢ := (£, w) and the maps 7 and II as follows:

T(c,9) i=wXxyg

K- £+C-w—meg—WeF
(e, g) := (8.30)

CT-é+Q-w—Rxg—WeM
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then the condition w x g = 0 gives us 7(c, g) - g = 0 for all (c,g) € Br x S?. Furthermore,

we have
O(c,g) c=¢ K-é4+w-Q w+2-C-w—ml-g—We(l- F+w- M) (8.31)
where

¢ F = &GEGADD 4 0w & B + w6, O (8.32)

w-M = fzfjkag}g) -+ wiijkBg;f) -+ fiijkC’g;f), (833)

Denoting by 2 = (32(B), an upper bound for the entries of the matrices in equation (8.27),
we have

€ F|+|w- M| < B

for ¢ € 0Bg. Notice that §5 depends only upon the geometric properties of B. Also, since

the matrix

K C
ct Q

is positive definite and symmetric, its eigenvalues are real and positive.®2:33) Then

T
3 K C 3
5.K.£+w.Q.w+2£.C.w: . .
w ct Q w
T
> A : . : = A€ +w?)
w w

where A > 0 is the least eigenvalue of the above 6x6 matrix. Hence, we have

l(c,g) - ¢ > AR? = iR — B, R’
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where ; = m.. We also make use of the fact that |g| = 1 here. Therefore a solution to the

problem under investigation exists if there is a R > 0 such that

Now, equation (8.34) is satisfied for

A /A2 — 4WeB, B R VA — AWeBi .

8.35
2W€ﬁg 2W652 ( )
Therefore the requirement that R must be real and positive yields the condition We < 4ﬁ’\12ﬁQ.

|

8.2 Alternative Proof of Existence for a; + as =0

In this section, we provide an alternative proof for the freefall of a rigid body in a Second
order liquid with the restrictions ¢ = —1 and Re = 0. The proof is based upon the Implicit
Function theorem and has some interesting consequences which are not apparent from our
previous argument. Before delving into the proof, we shall rewrite the governing equations
for the rigid body in a more appropriate form. We see from the formulation of the problem

that the governing equations (8.8)-(8.10) depend upon the positive definite, 6 x 6 matrix

K C
ct Q

Since K, 2 and C' are in general invertible we may use the governing equations to solve for
¢. Hence,
£ =K (m.g— \C g+ WeF) (8.36)
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and replacing this in equation (8.10) we obtain

mCTK™ g —rxg—ANC'KT'C=Q)-g = We(C'"K™'F + M)

= (C'K'C - Q) ' (m.CTK™ —R)- g = \g—We(C'K™'C — Q)" (CTK'F + M)

which we rewrite in the form

A-g=Ag—WeG(E A, g) (8.37)

where we define

A= (CTK'C - Q) Y (m.CTK~' = R), G =We(C'K~'C — Q)" (C'K~'F + M).

We define here R = r x I as in®®* where |R| represents the inhomogeneity of B. For a
homogeneous body R = 0. In terms of these new variables then, the governing equation may

be represented as

K-£+XC-g — meg—€F(E N 9)=0 (8.38)

A-g — Mg=¢G(E N g) (8-39)

This defines a map ¥(¢,w) : [0,1] x Rx R x S? — R3x R3 and w = (£, )\, g) where the non-
linear term appears as the coefficient of €. Existence can now be shown by a straightforward
application of the Implicit Function Theorem (see Theorem 3.3.3). At é = 0 and w = wy,

the central equations become a linear eigenvalue problem and can be written as

K- fo + AC - go — MeGgo — 0 (840)
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Since A is a well defined, real, 3 x 3 matrix, it has at least one real solution. Therefore the
linearized version of the governing equations have a solution (&g, A9, go). We now show that

the nonlinear problem also has a solution.

Lemma 8.2.1 The problem (8.39) has at least one solution if and only if the equation (8.1)

has a solution.

Proof :
If problem (8.39) has a solution {&, A\,w, g} then it follows that substituting them in equa-
tions (8.2) and (8.3) provides a solution to problem (8.1). Conversely, if problem (8.1) can
be solved for (u,p,&, A, g) then it follows that {&, A\, g} automatically satisfies the equation
(8.39). O

First we need to rewrite the governing equations obtained above. We define the map
d(é,w) : R" — R" by
K&+ MC-g—meg
O(é,w) = Ag—\g
<g,g>-1
At the point (0,wo) we then have the linear equation ®(0,wp) = 0. Then the Frechet

derivative at the point (0,wy) is given by

£+ K XCg + ACgo — mey] f;
qu(O?wO) = Ag - >\Og - Ago f>
2< g0, 9 > f3

say. To show existence of solutions to the nonlinear problem the Implicit Function Theorem
suggests that the mapping ®,(0,wp) be bijective. For the proof we shall adopt the tech-
nique used by Lusternik and Sobolev.®®® We now consider a useful Lemma concerning the

multiplicity of the eigenvalue of the matrix A defined earlier.
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Lemma 8.2.2 Let A be a 3 X 3 matriz with a simple eigenvalue Ao and corresponding vector

go- Furthermore, if there exist vectors g and g which satisfy

Ag—2og = Ago (8.42)
<g,90> = 0 (8.43)
then < g, go ># 0.

Proof :
The Fredholm alternative tells us that the equation (8.44) has at least one solution iff <
J,90 >= 0. Therefore if we assume this orthogonality condition to be true and apply

(A — XoI) on both sides of (8.44), we obtain
(A= Xol)’g = AMA = XoI)go =0
Therefore since )\ is a simple eigenvalue, we must necessarily have g = agg which is not

possible from (8.43). Therefore the hypothesis is false and < g, go ># 0. O

Lemma 8.2.3 The mapping ®(é,wy) is a bijection :RT — R".

Proof :

To show injection it suffices to show that if

then A = 0 and g = 0. Taking the inner product of the above equation with g which is

defined as in the Lemma 8.2.2 above we have,

<(A=XoD)g—Ago,§ >=0, <(A—=XI)g,§>= )< go,7 >
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=< g, (AT = XN)j>=<g,0>=0= X< go,§ > .

From Lemma 8.2.2, since < gy, g >7# 0, therefore A = 0. Putting this back in the equation
(8.44) gives us
(A=Xl)g=0=g¢g=0.

This follows from the fact that g cannot be an eigenvector of A since it is orthogonal to gq.

Finally, setting A =0 and g =0 in

f—i—K‘l[)\oC’g—i-)\C’go —meg] =0=¢&=0.

Therefore we have injection for the map ¥, (0,w). To show surjection we need that for
every y € R", there exists an x € R” such that ®,,(0,w;z) = y. To this end we define

g =G+ < g,g0 > go from which it follows that < G, go >= 0. Then we can write

Ag— g — Ago = f2

as

Ag — Xog + Mol[< 9,90 > g0l — A[< 9,90 > ] = fatAgo=F

= (A-X)G = F (8.45)

If we now define
< [»g>
< 907.6 >

A= (8.46)

then < F, g >= 0. Therefore again applying the Fredholm alternative we have that equation

(8.45) is solvable with G given by

G= (A= ])['F (8.47)
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where the | symbol indicates that G is defined in the space perpendicular to gy. Therefore
substituting for G, we have
g=Lot(A-2nTF (8.4
where ) is defined by equation (8.46). The final step in the argument follows trivially. We
then have that

= fi — K '[XCg+ ACgo — meg]

where g and A are given by equations (8.48) and (8.46). Hence in conclusion, we have for
each y = {f1, f2, f3} € R" there exists a vector z = {\, g, £} € R such that ®,,(0,wy; ) = y.

The above two cases suggest therefore that ®,,(0,wp) is a bijection. O

Theorem 8.2.1 (Existence Theorem 2) Let B be a body of class C3. Also let (go, \o) be

the eigenvectors and corresponding eigenvalue solving
A go = Aogo-

Then, the steady fall problem (8.8)-(8.10) has at least one solution {£, A, g}, provided X\ is
a simple eigenvalue. Furthermore, this suggests that the equation (8.39) is solvable and the

solution s analytic in €.

Proof:
For the proof of the theorem we invoke the Lemmas 8.2.2 and 8.2.3 and the Implicit Function

theorem. O

The above proof has been furnished with the restriction that A\q be simple. For instance
if we assume that the multiplicity of the eigenvalue is 1 with the corresponding eigenvector
g1 with |g;| = 1, then this means the sedimenting body in the Second order fluid will rotate

about the direction g; with magnitude |\g| (while also translating). The assumption of
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multiplicity 1, says here that there is only one direction about which rotation of the falling

body will occur.

8.3 Existence Theorem for Arbitrary a; + as

In this section, we prove the existence of solutions to the full problem of freefall of a
rigid body in a Second order fluid with no restrictions on oy + ay (i.e. €), but with Re = 0.
Therefore the governing equations for our problem, as in the earlier Section 8.1, can be given
in two parts, the first will involve the equations for the liquid which is modeled by the Second
order fluid. Based on the work of Novotny et. al.®*%") we may write the Second order fluid

equations as

—Av + Wew - grad Av + grad p = —Wediv N(v) (8.49)
diveo =0
v =0 on 09 (8.50)

im 4|00 [V(7) + Voo ()] = 0.

where p=p-+x-¢g and

N(v) = (grad v)TA(v) + (1 + €) A(v)?.

Recall that v, here represents the rigid body motion given by £ + w x x. We rewrite,
for convenience, the additional equations for the body which can be given in terms of the

net force and torque imposed on B due to the liquid, namely

/T(w,ﬁ)~n—meg
>
/yXT(w,W)~n—Rxg (8.51)
>
wxg=0
Vs

where m, = (m — |B|g) is the effective mass. The objective is to establish the existence of
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solutions, (v, p), to the coupled system of equations (8.49), (8.50) and (8.51). The complex
nature of the problem requires us to treat the existence problem in two stages. In the first,

we prescribe £ and w and establish the existence of (v, p).

8.3.1 Existence and Uniqueness with Prescribed ({,w).

The specific objective of this section is to show the existence of solutions to the equations
(8.49)and (8.50) for arbitrary e and sufficiently small We. The motion of the body, i.e. £
and w are now prescribed. This is an important intermediate step that will find use in our
final existence arguments. The strategy that we employ involves splitting this problem into

a Stokes Problem and a Transport problem by a map A, such that (see(30’59’60))

A= (v,m) = 2 (8.52)

Here, (v, m) solve the Stokes problem

—Av + grad 7 = div ¢

diveo =0
(8.53)

v =0 on 0f)

lim 4|00 [V(7) + Voo (2)] = 0

J

where the modified pressure 7 is related to the original pressure by p = 7 — Wev - grad 7.
Furthermore, z solves the equation

z—We(v-grad z — z -grad "v) = —WeN(v, ) (8.54)

N(v,m) = N(v) — wgrad v.

Therefore, if we replace ¥ by z in the above problem we get back the equations for the
second order fluid (see®®69). Existence of solutions for the equations (8.49) is then proved

by showing that 4 is a contraction in space X (defined in Chapter 3), for small We.
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Another way of writing the equations for the body is based upon the argument outlined
in Section 8.1. Using the auxiliary fields introduced in equations (3.3) and (3.4) and upon

performing a similar calculation, we obtain

K-&4+C-w = meg+ WeF(v) (8.55)
CT-é¢+Q-w = Rxg+WeM(v) (8.56)
wxg = 0. (8.57)

where the tensors K, C' and 2 are defined in equations (3.7-3.9).

We subdivide the following subsection into two parts. In the first part we shall obtain
preliminary estimates for the Stokes and Transport equations in appropriate Sobolev spaces.
In the second part, we establish the existence of solutions to the steady freefall problem with

prescribed ¢ and w.

8.3.1.1 Preliminary Results .

Lemma 8.3.1 Let Q C C**4(Q) be an exterior domain in R™ with k > 0 and f € W"4(Q),

then there exists a solution F € W*t14(Q) to the problem

div FF = f

in 2 satisfying the estimate

1 E k1.0 < €llfllrg

where ¢ s a constant depending only upon k and q.

123



Proof:

Gee, (59,60,70)

Lemma 8.3.2 Let ) be an exterior domain of class C**%(Q), k > 0. Let us also consider

Y € Whtha o, ¢ Wh+2=1aa(9Q), div € LHQ) and u, € W2 VEH(0) for 1 < t < 3/2

and 3 < q < co. Then, there exists a unique solution, (u, ) to the Stokes problem (8.53)

such that

w € D2(Q) N[k, D™ 24()
m € DM(Q) N[Nk _ D).

Also, (u, ) satisfies the estimate

lgrad ullox + |[ulls +  |ulir + |ul2e + [[7]]; + |7r]se

k
+ ) (ulmtog + [Tlmirg) < ellldiv lle + [[9llkrq + €] + o))

m=0

: _ 3t . _ 3t _ _
withr = 3, 8 = 356, V= U+ Vs and ¢ = ¢(q,t,k).

Proof:
See [25, Theorem V.4.3]. O

(8.58)

Lemma 8.3.3 Let Q) be an exterior domain of class C**°, k > 0. Moreover, let v be such

that grad v € C* with v-n =0 and F € W*14(Q), 1 < ¢ < co. Then there exists a 6 > 0

such that if We||grad v|[ckq) < 6, then the transport problem

z— We(v-grad z — z - grad Tv) = F
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has a unique solution z € W*T14(Q), such that

[|2llk41a < ellller1q

where ¢ is a constant depending only upon k,q,t and 2.

Proof:
It is sufficient to find suitable a priori estimates for the transport equation (8.54). Firstly,

multiplying equation (8.54); by z|z|?"% and integrating over 2, we obtain

|2]]2 < Wellgrad vl|cowl|2]1Z+ [|]]q]]2]127
< : 1|
~ (1 — Wel|grad v||co)) T

= [[2llq (8.59)

Next, we take the gradient of transport equation, multiply through by grad z|grad z|?~2 and
integrate over €2 to get

1
(1 — Wel|grad v||c1(q))

|lgrad z[[; < |lgrad [[5- (8.60)

To show this estimate in general for arbitrary n, we take the (n + 1) derivative of the

transport equation. Therefore, we get

n+1
n+1
grad "'z 4+ We Z (grad "t "v)(grad "grad 2)

r=0 T

n+1 n 4 1
— We Z (grad "*'7"2)(grad "grad v) = grad "™,  (8.61)

r=0 T

As earlier, multiply by grad "*'z|grad "*'2|9-2 and integrate over § to get

1

d n+1
1 — Wel|grad v||gn+1(0))

grad "+ (8.62)

[lgrad " 2|, < (
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We obtain the desired estimate by an induction argument. To this end, we consider the case

of k=0 and k£ = 1, which upon addition yields

(1 — ey Wellgrad vf|cy@)l|2]l1q < [[l1q- (8.63)

Also assume that the result holds for £k = n. Hence

(1 — caWellgrad vllcn@)l[2llng < [lllng. (8.64)

Then adding the two estimates above corresponding to cases £ = 1 and k = n, we obtain

the estimate

(1 = cnsaWellgrad vl|ons1(a))[|2]ln+1.a < [lllnt1a: (8.65)

Once we have obtained the a prior: estimates, the existence of such a z can be shown by an

argument similar to Galdi and Rajagopal®®) (also see(®®). O

Additionally, we also have similar estimates for div z. It is easily verified from the
transport equation that

div z — Wev - grad div z = div (8.66)

Lemma 8.3.4 Let Q be an exterior domain of class C**3, k > 1 and let v satisfy grad v €
CH 1 andv-n = 0. Also, let ¢ > 3 and 1 < r < co. Then there exists a 6 > 0 such
that if Wel||grad v||crk-1 < & then there ezists a solution to the equation (8.66) satisfying the

following estimates:

\|div z||kqy < alldiv||kg for E>1 (8.67)

and

|| div z||, < esf|div ||, (8.68)
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where ¢y, co depend on k,q,t and c; additionally depends also on We.

Proof:

Proof of this Lemma is similar to that of Lemma 3. Also see.(3%63) O

The next Lemma concerns the property of the extra stress tensor, S(v) for the Second

order fluid model which is written as

S(v) = v -grad A(v) + €A(v) - A(v) + (grad v)* - A(v) + A(v) - grad v

We make the following observation.

Lemma 8.3.5 If we write u = v + v, then

S(v) = vao - grad A(u) + S(u)

where

S(u) = u - grad A(u) + eA(u) - A(u) + (grad u)* - A(u) + A(u) - grad u.

Proof:
It is easy to see that A(v) = A(u). Therefore the only thing that remains to be shown is
that the final two terms of S(v) are invariant under the transformation of v — u. We have

that

(grad u)” - A(u) + A(u)-grad u = (grad u)” - A(v) + A(v) - grad u
= (grad v)" - A(v) + A(v) - grad v + (grad ve)” - A(v) + A(v) - grad ve

= (grad v)" - A(v) + A(v) - grad v + (grad w x )" - A(v) + A(v) - (grad w x z)
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However

(grad w x )T - A(v) + A(v) - (grad w x z)
= (€ikm + €imk)WiOkV; + (€ikm + €impk)wiOjVk

= 0

Therefore it follows that S(v) = v - grad A(u) + S(u) O

8.3.1.2 Existence Results.
In this section, we establish the existence of solutions to the equation (8.49) using the
Banach fixed point theorem. We define the Banach space B = {4 : |[¢)||x4+1,,+]|div ¥||; < oo}

and also the subspace Gp of B, such that

Gp = {9 [[Yllkr1q + ||div @[ < D}

Lemma 8.3.6 Let Q) be an esterior domain of class C*°, k > 0 and q,t be as defined in
Lemma 8.3.2. Also, let the map A be as defined in equation (8.52). Then, A maps Gp to
Gp.

Proof:

We define Gp as above and recall that v = u + vo,. Then it follows from Lemma 8.3.2 that

lulls 4 el + Julee 4 (7]l + 7]

k
+ 3 (tlmiog + Tlmirg) < e(D+ €]+ [w]) (8.69)
m=0
with r = %, s = % and ¢ = c(q,t,k,Q). We can also show without difficulty and using
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the estimate (8.69), that
ldiv N (v, T[] < ex(|[Dv|co + [|7]lso) (| D*0]|: + [grad =],)

< (D + [€] + |w])*.

where we use the fact that ||Dv||co < ||Du||co + |w]|. Similarly, using the Sobolev inequality

25, Equation (2.7), p.32] and equation (8.69),

IN(v,m)llg < esllgrad vffeo([[Av)]lg + [lmllo)

< allgrad vfjeo (|| D], + llgrad 7|],), (8.70)

where % <p= ;’qu < 3. Furthermore, it is easily verified that
lgrad N (v, m)[[kq < es(|Dv]lco) + 1|7 loo) (|1 D*0]|ig + llgrad 7li.q)- (8.71)

Hence, combining equations (8.70), (8.71) and (8.69), we have

IN@ mllk1a < co(lIDvlleo) + [lloo)([1D%0]] s + |lerad ] se
+ |[D*]lkq + [lgrad mx,q)

< oD+ Je] + o) (8.72)
In order to fulfill the assumptions of Lemmas 8.3.3 and 8.3.4, we require that
We||grad v||cr < §

and also that

We([[div z[[¢ + ||2[[k+14) < D
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which follow from the observations that

We||grad v||cr < We(||grad u|cr + |w|) (8.73)

< We(D + [¢] + |w]) <0,

and

We(||div z||; + ||2||ss14) < EWe(D + |€] + |w])* < D, (8.74)

respectively. Hence, for the choice, D = B(|{| + |w|), for B > 0, the two conditions are
satisfied if We(|¢] + |w]) < % and We(|¢| + |w|) < ﬁ, respectively. Consequently, for

We(|¢] + |w|) < min(%, ﬁ), we have that z € Gp and hence A maps Gp to Gp. O

Lemma 8.3.7 The mapping A is a contraction in Gp.

Proof:
Let z; and z; be two different solutions to the transport equation (8.54) and let the pairs
(vi,m) and (vq, ) be two different solutions to the Stokes problem with corresponding

translational and rotation components (§,w). Let us also define

Y=Y —Pg, Vi=0] — Vg, TI=T — M, ZIi= 2] — 2.

Then subtracting the equations (8.53) corresponding to the pairs (v, 7;) and (vy,ms), we

have
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—Av+grad m = div ¢ (8.75)

dive = 0
v = 0 on 9
lim|$|_>oov(a:) = 0,

with corresponding estimate,

k
[olls + Jolue + [0l + [l + e + ) (10lmsag + 1Tlnsrg)

m=0

< c(l[div fle + [[¢]k+1,0) (8.76)

where r = %, s = % and ¢ = ¢(q,t,k). Similarly, subtracting the transport equation

(8.54) and its divergence, equation (8.66), corresponding to z; and z», we get upon simplifi-

cation,

z— We(vigrad z — z(grad v;)") + We(zs(grad v)* — vgrad 2,)

= We(N(vy,m) — N(vg,m3)) (8.77)
and

div z — We v - grad (div z;) + We vy - grad (div z)

= —Wediv (N (v, m) — N(va,7m2)) (8.78)
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respectively, where

N(vi,m1) — N(va,m) = (grad v)T A(vy) + (grad vo)T A(v) + (1 + €)A(v) A(vy)

+ (14 ¢€)A(ve)A(v) — mgrad vy — magrad v. (8.79)

Then we have the estimates

ldiv [N(vi,m1) = N(va, m)]lls < e(|lgrad vallco + [|m] o + |lgrad valco + [|D*vy]e + [|D?v2]]s

+ llgrad mo|l)(Jlgrad vllco + 7] + [D?0]] + [|grad ]¢)

and

IN

[V (v1, 1) — N(v2, 72)]| 41,4 c(|lgrad vy ||co + [|grad vallco + [|m2]|o + || D*01 ]|k,

H[D*vs g + [lgrad moley + [[D*01]| se + [|D*va| se + [lgrad ma] se )(|lgrad v]|co

Hmlloo +11D%0]lkg + [ID?0]] 5o + [lgrad 7lxq + [lgrad 7] s ) (8.80)

upon suitable application of the Sobolev inequality.(?%

The estimates for the transport equation (8.77), employing also equation (8.80) is then
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given by

||div 2],

A+ A+

+

IN

[12]lk+1.4 < cWe(|lgrad vi|co + [lgrad vallco + [|T2lloe + [|D*01] kg + || D*vllig
lgrad vallkq + [[malloc + [[D*vall + [[D*va s + [llgrad malle + || D*vr] 20
D0 22 + |lgrad ms|| 20 )(||grad vl|co + ||7[loc + [D?0]le + [lgrad =l;

lgrad vllco + [7lloo + |D*llx.q + [lgrad [l + [[D*0]| 52+ [lgrad 7| s )
cWe(||grad v1[|co + |lgrad vaf[co + ||m2lloo + [[D*01[kq + [|D*v2]l1g

lgrad ma[1g + [|72leo + [[D*v1]ls + [|D*vall; + [llgrad msl + [[D*va] sa
[1D%0s]| 50+ |lerad ma|| o )(IIdiv lle + [[¢]]+14)

cWe([|div Pufe + [|91][e41q + [1div ol + [|92] k14 + 2(E]

2lw)([|div 9 [e + [[$]r+1.4)

cWe(D + [¢] + [w]) ([[div [l + [[]]k+1.0)- (8.81)

Therefore, combining the results of equations (8.82) and (8.81), and recognizing that ¢We(D+

€] 4 |w|) < 1, from the results of Lemma 8.3.6, we have that A is a contraction. O

We are now in a position to prove the main result of this section.

Theorem 8.3.1 Let Q) be an exterior domain of class C**°, k > 0 and &, w € R3. Also,

let g >3 and 1 <t < 3. Then, there is a ¢ > 0, such that if We(|¢| + |w|) < ¢, the problem

(8.49) has a unique solution (v, ) where

we D*(Q) N[Nk, D™ ()

7 € DY(Q) N[, D™ ()]
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satisfying the estimate,

k
lulls 4 Juli + [alog + [l + 7l + Y (ulmerzg + 1Tl

m=0

< C(E] + |wl) (8.82)

wherer:%, s:%,C:C(q,t,k) andv=u+€+w X .

Proof:
The proof of this theorem follows from the above Lemmas 8.3.2, 8.3.3 and 8.3.7 and the

Banach Fixed Point theorem. 0O

8.4 Application to Particle Sedimentation

8.4.1 Formulation of Problem to First Order in We.

In the previous parts of this paper, we have established the existence of solutions (u, 7, &, w, g)
to the problem (8.49) corresponding to the freefall of a rigid body of arbitrary shape in a
Second order liquid. In this section, we shall specialize the relevant equations (8.55)-(8.57)
to study the terminal orientation of rigid bodies in the Second order fluid. We shall follow

(31,79 and consider, for our rigid body, several different symmetries.

the argument outlined in
We employ the heuristic idea proposed by Joseph & Feng®? that the terminal orientation of
elongated bodies in liquids are a result of competing inertial and viscoelastic torques acting

on the body. Since our analysis assumes a zero Reynolds number flow, we need to obtain

our equations upto first order in We. We therefore write
V=040, T =Ts+T

where (vg, 7s) are the solutions to the Stokes problem and which asymptotically approaches

a rigid body motion. Additionally we also define u = us + 4 where vy = us + vo. Hence
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substituting this formulation in equation (8.49) we have that (0, 7) satisfies

\

—AD + grad 7 = Wediv S(v,¢€)

ils =0,
= (8.83)
div 5 = 0,

hm|$|_>ooz~) =0.

So, in order to obtain the relevant equation at first order in We, we evaluate the freefall
equations at v, and establish that there are several remnant terms which are of O(We?)
and hence can be ignored in our analysis. More specifically, we must show the following

properties:

Lemma 8.4.1 Let B be a body of class C3. Then there exist positive numbers We, =
Weo(B,e), C; = C;y(B,D, k,q,t) (i =1,2,3), such that for any 0 < We < Wey, % < qp < 00,

k>0,1<t<3/2andq> 3, we have

1 v —vsl|x < C1We,

2. 118() — Sl < CaWVe,

8. N1+ Ny < CsWe.
where N1 = F(v) — F(vs) and No = M(v) — M(vy).
Proof of Property 1:

From the Stokes estimates that we had earlier, we have

16]ls + |[7[lm + llgrad |l + [lgrad 7|, + || D*3],

+ |[D%0]|q + |lgrad 7[[,q < cWe(|ldiv S(v)lle + [|div S(v)llkg)  (8.84)

The final estimates on S(v) follows from our arguments earlier in this paper regarding esti-

mates of the transport equation. Based on the results of Lemma 8.3.4 and Theorem 8.3.1,
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it is therefore easily verified that

ldiv S@)[l; + [|div S(v)[[k+1,4 < er(llgrad vf|co + |7l + || D*0]|kq + || D0,
+ [[D%0]] 22 )(llgrad vllco + ||l]oc + [ D]l + ||grad =]
+ |7l + [|D?0] [k + |lgrad 7|kq + [[D*]] 5o + ||grad 7| 5o )
3+q 3+q

< c(llullx +ll7llx + w)? < es(I€] + w])?* < Co(B, D, k,q,t).  (8.85)

Proof of Property 1 of Lemma 8.4.1 follows. O

Proof of Property 2:
Let us write S(u) = So(u) + S1(u) where Sy(u) = u - grad A(u) and Sy (u) is the remaining

term. Similarly, we may write S(u;) = So(us) + Sy (u,). Then,

So(u) — So(us) = u-grad A(u) + u, - grad A(a)

= [[S0(u) = So(us)lly < [la-grad A(u)llg + [[us - grad A(a)[],

IN

[1D%ullq 1] oo + (1Dl o] 115 |oo-

Similarly, we can obtain estimates for the remaining terms. Hence,

181(u) = Si(us)lly < |leA(w)A(@) + eA(@)A(u) + (grad @)" A(u)

+ (grad u)TA(@) + grad u A(@) + grad @ A(u)|],

IN

es(|[Dullco + 1| D*ul] s )(|Dl|co + || D*a| s0).
+q 3+q
Finally combining the above estimates, we have

15(u) = S(us)lly < edllallx < Co(B, D,k g, t)We
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with ¢ > 3/2, upon using the results of Property 1. O

Proof of Property 3:

For proof of the final property, we need to make some preliminary definitions. We define

N = F(v) - Flv,) = — / S(0) — S(vy)] - D()

and

70 _
HD =456
It then follows that
NN < [ 180) = S()lIDUEY)
< [ 1800) = S)IDE) + | fon - grad Av(@I|DE)

< (L [EDIS(u) = S(uy)ll2 HD(H(Z)!Iz+cllw!||—!|3!|D2ﬁH3

< allallx < Cy(B, D, k,q,t)We

(8.86)

(8.87)

where we use the fact that ||grad H?||, < oo for s > 2 from the Stokes estimates and also

Property 2. Therefore, we have our desired result. O
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In light of these above results, we note that the equations for force and torque are given

by

K-£+C-w = meg+ WeF(v,) + O(We?) (8.88)

CT 64+ Q-w = Rxg+WeM(vs)] + O(We?). (8.89)
where the higher order terms in We can be ignored. Also, note that we can write

Flvs) = /Q{vs - grad Aw, + div [(grad v,)T A(vs)] + (1 4 €)div [A(vs)A(vs)]} - BO
= Fu(vs) + (14 €) Fo(vy) (8.90)
M(vs) = /Q{vs -grad Av, + div [(grad v,)T A(v,)] + (1 + €)div [A(vs) A(vs)]} - H®

= Ml(’l)s) + (1 + G)MQ(’US). (891)

We have managed to separate out the two cases dealt in Sections 8.1 and 8.3. Therefore,
when € = —1, we obtain F(vs) = Fi(vs) and M(vs) = M;j(vs) which have the explicit
forms given in equations (8.28) and (8.29), respectively. However, when € is arbitrary, then
F(vs) and M(v,) assume the form given above. In the latter case, it may not be possible to

simplify these terms any further.

Writing v, = &h® + w; H® | we can express the viscoelastic terms in the simple form

Flos) = &&AT + 1+ UE) +wiw(BE + (1 + Vi)
+ &wi (O3 (14 Wi (8.92)
M(vy) = E&AW + 1+ UE) +wiw(BY) + 1+ e Vi)

+ &wi(CE) (14 Wi (8.93)
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so when € = —1, we revert back to the case studied in Section 8.1. Here, Ag’kj), Agf;f), Bg,’f),

Béf,’cj ), C’g;f ) and C’%’cj ) are as defined in equations (8.27). Additionally, we also define

Ul = /Q h®) . div [A(hD)A(hD)]
Vi) = /Q h®) . div [A(HD)A(HY)]
Wi /Qh(’“%div (AR AHY) + A(HD)A(hV))] (8.94)
Ul = /Q H® - div [A(hD)A(hD)]
Vi = /Q H® . div [A(HD)A(HY)]

ngj) _ /QH(k) . div [A(h(i))A(H(j)) +A(H(i))A(h(j))].

8.4.2 Viscoelastic Contribution to Torque under Different Symmetries

In this section we shall follow the argument in®%® to study the possible steady falls of
B under different symmetry conditions. The motion of bodies of arbitrary shape has been
well studied in the Stokes approximation. A thorough account of this phenomenon is given
in.(%) Experiments on fall of isometric bodies, such as tetrahedra, cubes, octahedra etc., in
the Stokes case, have also been performed by Pettyjohn and Christiansen.(? They observe

that the bodies freefalling in the Stokes regime keep their initial orientation.

In this section we shall focus on how the viscoelastic force and torque coefficients simplify
under different geometric symmetry conditions. We note that the terms F and M as defined
in equations (8.92) and (8.93) can be treated as third order tensors in the indices 4, j and k.

Let us now define two classes of tensors

U ={Ap”, By, Gy Up?) Vi Wiy
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and

v = (A, BYY, O, UG, Vi, Wi}

We shall show that elements of U transform like tensors while elements of V transform like

pseudo-tensors.

Lemma 8.4.2 Let Q) be a third order tensor. Then Q) € U transforms as a tensor according

to the rule

Qijk = ailajmaanlmn

whereas Q) € V transform as a pseudo-tensor which is given by
Qijk = ’a’ailajmaanlmn

Proof:
We must begin with the observation that the translational and rotational fields (&, h(Y) and
(w, H®) behave as vectors and pseudo-vectors respectively. It then follows from equations

(8.92) and (8.93) that in order for the energy defined by(%6)
K- {+w-Q w+2-C-w—meg-&—We - F(v) — Wew - M(v) (8.95)

to be a scalar, elements of &/ must transform as tensors while those of V must transform as

pseudo-tensors. O
Note that, in addition to the symmetries mentioned above, the terms Agf;f) and Ag’kj) are
symmetrical under exchange of indices 7 and 5. We shall now consider the different symmetry

conditions and their effect upon these terms.

8.4.2.1 Reflection Symmetry. Let us consider, for definiteness, reflection symmetry in
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the zox3 plane. The corresponding transformation can be represented by the matrix, [a

given as
-1 0 0
[al={ 0o 10
0 01

Under this transformation I € U and J € V have the following symmetries

I{l’l) _ I{Z’Z) _ I{3’3) _ I{Z’?’) _ I£3,2) _ 151,2) _ 152,1) _ 151,3)
_ 153,1) _ I§1,2) _ I§2,1) _ I§1’3) _ I§3’1) —o.
(8.96)
J(l 2 _ J(z 1) J(l 3) J(3 1) J(l 1) J(z 2) J(3 3) J(z 3)

_ J(3 2) J(1 1) J(z 2) J(3 3) J(z 3) J(3 2 _

Similarly, reflection symmetry about the remaining two planes can be obtained by a
simple permutation of the above results. For an orthotropic body which has three symmetry
planes about each axis such as a rectangular block,®% the symmetries simplify tremendously

to give us the following result

Lemma 8.4.3 For orthotropic bodies the viscoelastic force and torque coefficients must obey

the following conditions

A =B = ol =0

U =V = W =
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for all i, 5,k and

) _ glid) _ i) _
Ang 7BRI<:J 7CTI<:J =0

0 = Vi =i =0
for any two i,j or k equal.
8.4.2.2 Skew Symmetry. Skew-Symmetry refers to invariance under rotation by 6 = 7

without reflection symmetry.®*®) The corresponding transformation about the x; axis may

be represented by the matrix

1 0 0
a=10 -1 0
0 0 -1

giving rise to the same symmetries (since for bodies with skew symmetry, det(a) = 1) as
equation (8.96) for @ € U,V. Symmetries about the other axes can be obtained by a

straightforward permutation of the above results.

8.4.2.3 Rotational Symmetry. By Rotational Symmetry, we refer to invariance under
rotation by any angle 6.3%) For convenience, we choose § = 7/2. The corresponding rotation

matrix for invariance about the x; axis is given by

10 0
aj=10 0 -1
01 0

This transformations yields the same relations as for the case of skew symmetry. In
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addition, it also gives

(23 +Q(32 _— Q(31 +Q(21 0, Q(12 +Q(13 (8.97)
51,2)_ g1,3) _— Q(21 (31 _0, Q(zz 53,3):0

for @ € U,V. Since the terms Agf;f) and Ag’kj) also have additional symmetries in ¢ and 7,

we have in addition to equation (8.97),
2,3 3,2
A( 1)—A( 1)_0,

where M = T, R. We shall employ the above symmetries to find simplifications for geometries
with fore-aft symmetry (that is, orthotropic with rotational symmetry about a single axis%)),
spherical isotropy (orthotropic with rotational symmetry about all three axes®®®)), helicoidal

symmetry and helicoidal isotropy.

Lemma 8.4.4 If B is a body with fore-aft symmetry, then the following conditions hold:

A =B = ol =0

U =V = W =0

for alli,7 and k and

AR B2 g 4B 420 g 40D 408 g
BEY + BEY = 0, BEY+BE) =0, B + By =0

O+ O = 0, oY ot =0, O+ oY = 0 (8.98)
UGY+URY = 0 U+ URY =0, U U =0 |
VED VY~ 0, vEY Ve —0, VP + VS~

WEY L WED = 0, WD+ W =0, W 4 WY =0
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Lemma 8.4.5 If B is a body with spherical isotropy, then in addition to the symmetries of
a fore-aft body, we have
A =0

and
.

2,3 3,2 3,1 2,1 1,2 1,3
2,3 3,2 3,1 2,1 1,2 1,3
U 2,3 U 3,2 U 3,1 U 2,1 U 1,2 U 1,3 99
](-21)7_](-21)7 ;22)7_](-23)7 ](-23)7_]%2) (8 )

(2,3) _ (32) _ 1,81 _ (2,1) _ -2 _ (1,3
VRI )*_VRl )*VRz )*_VR:& )*VR3 )*_VRz :

2,3 3,2 3,1 2,1 1,2 1,3
Wi(“l ):_Wi(“l):WJ(“Z):_WJ(“?;):W](“?;):_W](“Z)

J

8.4.2.4 Helicoidal Symmetry. We define a body with helicoidal symmetry to be one
which is invariant under rotation by # = /2 but without reflection symmetry.®% In this
subsection we shall consider a special object called the Isotropic Helicoid, referring to bodies
which possesses helicoidal symmetry about two mutually perpendicular axes. Specific means
of constructing objects with this geometry are mentioned in [36, p.152]. For such a body,
translational and rotational motions are coupled and it cannot perform one without the

other.

Lemma 8.4.6 Consider a body B with helicoidal isotropic symmetry and with x1 and x5 as

the rotational azes, then the members of U and V must satisfy
Al — 0, Al — ¢
and all other coefficients must satisfy

2,3) _ (1,2 ~B1) (3,2) (2,1) (1,3)
1 - w3 w2 - w1 — _Q?; — T w2
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and

(12) o3 @D oG _ 522 HB3)
2 3 = W2 3 — K 1=
23) oD _ B2 H2) _ HB3) 4L
3 1 = W3 1 T W2 2 =

forQ eU,V.

8.4.3 Spin-Free Terminal States of B

The difficulty in obtaining flows past bodies of different geometries further makes it dif-
ficult, if at all possible, to explicitly calculate the integrals in equations (8.27) and (8.94)
for our problem. The only calculation that we can perform is for a sphere or an ellipsoid.
However, a simpler method to explicit calculation, lies in studying the motion without ro-
tation, which is referred to in®®) as the spin-free state. In this section we shall analyze
the conditions for which bodies, with different symmetries, sedimenting in a Second order
fluid can have only translational motions, that is, for which w = 0. A similar problem, in
the Newtonian case, has been studied in®®® and a sufficient condition is provided for pure
translational motion.
It is shown in®® that every body, intrinsically possesses a point called the center of hydrody-
namic reaction at which C' = CT. For some of the geometries that we consider in this paper
such as the sphere, orthotropic bodies and bodies with fore-aft symmetry, the origin of B
coincides with the center of reaction. The reason for introducing this center of hydrodynamic
reaction point is to make the coupling tensor symmetric while the translation and rotation

tensors are inherently symmetric at all points.

Theorem 8.4.1 A sufficient condition for a body B, of class C3, of arbitrary shape under-
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going slow, steady, spin-free fall in a Second order fluid is given by

mCH K™l g — Rxg+Weg&{C- KA + (1+eUy)

— AR+ + U} =0, (8.100)

Proof:

We employ the fact that the tensor K is invertible to solve equation (8.55) for . Thus,
E=mK 't g-—K'.C-wt+WeK* F (8.101)

Substituting this in equation (8.57), setting w = 0 and upon some rearrangement, we obtain

equation (8.100). O

This theorem can be exploited to study the steady freefalls of B under different symmetry
conditions. In particular, the theorem reveals the orientation of B in its steady state. In the
Stokes case, as discussed earlier, it has been experimentally observed that the body tends to
retain its initial orientation for all times. However, we shall see that this is not always the
case for a Second order liquid. Using the symmetry properties of B, from the earlier section,

we analyze bodies for which this difference from the Stokes problem becomes apparent.

8.4.3.1 Sphere. The equation (8.100) is non-trivially satisfied if Agf}f), Uj(f,;j), Ag’kj) and
U g,;j ) are zero for each i. We observe from Lemma 8.4.5 that this occurs for homogeneous
bodies with spherical symmetry (for which C' = 0). In the inhomogeneous case, the condition
tells us that R x g = 0, which suggests that the body will translate with R either parallel
or anti-parallel to the direction of gravity, as is intuitively expected. The former position is
stable while the latter is unstable. Therefore we see that for these bodies condition (8.100)

for purely translational motion is the same as for the Stokes flow.
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8.4.3.2 Orthotropic Bodies.

T3
T 1 S ¢
£
4} : L Y v

it
¥ I

Figure 8.1. Orientation of Orthotropic bodies.

For an orthotropic body we have that Agf,f = 0 and also C' = 0. Then from [79, Lemma

5], the condition (8.100) reduces to

Rxg + We(&&ARY + (1+eUSY) + &&(AGY + 1+ oUs™))eé
(E&ASY + 1+ UG +a&AGY + 1+ 9Ui))e,

(E&HATY + 1+ US) + 66 (A% + (14 aUSY))es = 0. (8.102)

So when the body is homogeneous, equation (8.102) is satisfied if either (a) Agf’) = Agéz) =
A =URY = U = URY =0, (0) & =& =0,(0) & =& =0, or (d) & = & = 0.
Cases (b), (c¢) and (d) imply that motion must occur only along the x;, xs or x3 directions
respectively

(Figure 8.1). When B is inhomogeneous, the body can sediment with orientations other
than along the three basis directions. The possible cases are more complicated and the

reader is referred to(™ for a detailed discussion.
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8.4.3.3 Bodies with Fore-Aft Symmetry.

&

o]

£
2 l 5 L J

pin]
Figure 8.2. Orienation of bodies with fore-aft symmetry.

Bodies with fore-aft symmetry have three symmetry planes and ones axis of rotational

symmetry. For such bodies, C' = 0, therefore on using [79, Lemma 6], the condition (8.100)

becomes
Rxg + We(&&(AR" + (1 +Ux?Y) + &&(ARY + (1 +UY))é
(&A%Y 1 1+ URY) + £6(A%Y + 1+ oUL?))es = 0. (8.103)

Note that we have chosen the axis of symmetry to lie along x;, without any loss of generality.
When B is homogeneous, equation (8.103) holds if (a) Agf’) = Agf) :Ugf) =U ](%12’3) =0,
(b) & =0 or (c) & = & = 0. Condition (b) suggests that the body is moving along the
xoxs plane and (c) says that the body moves along the x; direction. Once again the case
when the body is inhomogeneous, will not be dealt with here. The reader is referred to(™

for details regarding the inhomogeneous case.

A more powerful tool for analyzing the terminal orientations of sedimenting bodies will
be discussed in the next chapter. The arguments of this chapter reveal the complex nature
of the problem. However, we are still able to obtain some preliminary information regarding

the orientations of rigid bodies, by elegant geomertic arguments alone.
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8.4.4 Stability

This section discusses the stability for bodies with orthotropic symmetries(with R = 0).
This body has been, by far the most interesting case examined in this paper. A simple
argument based on the perturbation of the torque acting on the body due to the purely
viscoelastic part of the fluid is used to obtain some qualitative information about stability

and instability of the terminal motion.

af

® >

g} L2
g

Figure 8.3. Perturbation of an orthotropic body about its equilibrium configuration (6 = 0).

It can be seen easily that the components of the velocity field (with |{| = 1) are given by

&1 = Cosg Sinf, & = Sing Sinfl, &3 = Cosf (8.104)

in the spherical coordinate system. Putting these in the equation (8.102) we get the compo-

nents of the torque on the body due to the viscoelastic part of the fluid F, namely,

M = +,Sin26 Singe; + 15Sin26 Cosge, + ¥3Sinb? Sin2¢pes (8.105)
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where

1 iy
T = 5(145%}5) +(1+ €)U1(:zkj))

with £ = 1,2, 3. Holding ¢ fixed such that Sin¢ and Cos¢ are both positive, we can consider
three different cases of orientations of the body. The first case is when the body is restricted

to move in the 25 and z3 directions only. Therefore £, = 0 (Figure 8.3) and
M = ~,Sin26 Singe;.

Hence the equilibrium position, i.e. where the torque is zero occurs when 6 = 0 or 7. The
only meaningful perturbation here is one of the form 66 e; since we are now restricted to
the xox3 plane. Therefore,

M - 60e; = 7,Sin260 Singdo. (8.106)

If 0 > 0 then we say that the body is in a stable position, if the resulting work done is
negative, i.e. in the opposite direction to the perturbation. Thus in the above equation,
since Sin26 is positive for small enough perturbations, the condition for stability is v; < 0.
If, however v; > 0, then the position of the body is unstable and the torque will force the

body out of this equilibrium state.

Secondly, if the motion is restricted to the z; and z3 directions (§&; = 0), and if the
pertubation is of the form 6 e,, then again for a small positive perturbation, the condition
for stability reduces to 75 < 0. Using a similar argument to the final case when the motion
is along the z;xs plane only (£3 = 0), we obtain the restriction 3 < 0 for stability. Note
that the equilibruim states in the second and third cases also occurs when ¢ = 0 or 7. Since
stability for this problem seems to be linked to the sign of the terms v, it must be noted
that it is not physically viable for all of these terms to be positive, since, then each of the

equilibrium positions will be unstable.

150



The argument made above can also be specialized to bodies with fore-aft symmetry. For
such bodies, the equilibrium configurations at § = 0 and 7 are consistent with the results
of Galdi®® and stability of the configuration, as in the case of orthotropic bodies, depends

upon the sign of the coefficients v, and ~s.
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9.0 FREEFALL IN A SECOND ORDER FLUID AT FIRST ORDER IN RE
AND WE

In this chapter we test the heuristic explanation of Joseph and Feng®? to examine the
orientation phenomenon. Already, in the previous chapter we have seen that even upon
ignoring the inertial effects, we are able to correctly predict the terminal orientation behav-
ior of rigid bodies in viscoelastic liquids. In this chapter, we consider the effects of inertia,
viscoelasticity and shear-thinning in different combinations, by using different liquid models
in order to identify the significant cause of the orientation phenomenon. Four different fluid
models are studied, Newtonian, Power-Law, Second Order and the Modified Second Order
(see Chapter 4 for details). In the previous chapter, we have shown existence and uniques
to the problem of freefall in a Second order fluid for Re = 0. The existence of solutions
(u,p,&,g) for small, non-zero Re is also proved in.®® In this chapter, perform a rigorous
analysis of the terminal orientation behavior of freefalling bodies in different liquids. Also,
we assume for the rest of this chapter that the sedimenting body is homogeneous (R = 0),

possesses fore-aft symmetry and that the motion is purely translational (w = 0).

Since the experiments in literature and our own, in fact, exhibit the orientation phenom-
enon at very small values of Re and We, it is sufficient to consider the theory at first order
in these parameters. Furthermore, to examine the orientation behavior, it is sufficient that
we consider simply the translational motion of the body. Therefore, setting w = 0 in the

equations (7.15), the equation of motion in non-dimensional form are given by

\

Re u- grad(u) =div T'(u,p) + ¢

div (u) =0
(9.1)
u =0 at 9N

lim‘;,;‘_mo (u(a:) + f) =0
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where, we write the stress tensor as
T(u,p) = TN(U,])) + ATE(U)

where T is the Newtonian part of the stress tensor and Tg is the extra stress tensor which
can stand for the viscoelastic contribution to the stress, for instance. Ty is given by the
well known formula, —pI + 2nD(u), while T would vary depending on the chosen fluid
model. Also, A here represents the significant material parameter corresponding to the fluid
model. Multiplying equation (9.1); by H'), integrating by parts over © and after several

rearrangements, we obtain the equation

té@xxyTwyn—%ADW%DGWU+ReAu-gmwa@+A/Tﬁw:DGWU

Q
(9.2)
where
—e; - / x X T(u,p)-n=M, (9.3)
2
the net torque, the first term on the right hand side of equation (9.2)
2/DwyMM%—MS (9.4)
Q
is the torque in the Stokes approximation (i.e. with Re =0 and A = 0,
—/u~gradu~H(i)—MI, (9.5)
2
is the inertial contribution to the torque and
—/%@ymm%—ME (9.6)
Q

is the extra-stress contribution to the torque. Hence, we have now managed to isolate the

153



net torque into independent contributions due to inertia and additional effects. In order to
simplify the argument, motivated by the fact that the motions of the paricle and liquid are in
the creeping flow regime, we write field, u = u, + w(Re, We) where u, is the stokes velocity

field. Hence, the net torque is given as
M(u) = M (u,) + ReM (u,) + AME (u) + N (us, w).

Here N (us, w) depends on higher order terms in Re and We, which we show rigorously for

certain models. Therefore, ignoring the term N (u,, w), at first order in Re and We, we have
M = M> + Re M (u,) + AM®E (uy).
In the final part of this analysis, we write without loss of generality,
us = &RV + AP = |¢] (WY sinf + ) cosd) .
Hence, the net torque is finally given by
M = M*5(0) + ReM® (0) + AMOE(9).

At equilibrium, the net torque must be zero. Therefore setting M = 0 and analyzing the
explicit dependence of the inertial and extra torque terms upon 6 reveals the possible steady
orientations of the body in different liquid media. We analyze these results and more in
following sections for four different fluid models.

9.1 Newtonian Fluid

Recall that the Newtonain stress tensor is given by
T(u,p) = T (u, p) = —pI +2nD(u). (9.7)
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As seen from the above discussion, the net torque, at first order in Re, upon a rigid body
may be given by
M = M3 (u,) + ReM® (u,)

where

MO (uy) = Q/D(flh““rfzh@)):D(H“))
Q

= 2/D(us) : D(HY) (9.8)
and

MO (u,) = — /2 us - grad u, - H
= - / (&M 4+ &RP) - grad (&Y + &pP) - HO, (9.9)
P

The symmetry of the body, allows us to simplify the torque contributions significantly.

We make two important observations which are proved in the form of Lemmas below.

Lemma 9.1.1 Let B be a homogeneous body with fore-aft symmetry and the fields (R®, p®)
and (HD, PO) fori=1,2,3 be as defined in equations (3.3) and (3.4). Then we have the

following results:
1. M?’S(us) =0 fori=1,2,3.
2. M?’I(us) =0 forj=1,2.
9. MY (u,) = /(h(l) - grad h® +h® . grad AV) . H®).
2

Proof:

Proof of this Lemma follows from invoking the symmetries introduced in the Lemma 3.4.3.
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For the first result, we observe that

(&DMY) + &Dm®)): DEWY) e ¢, (9.10)
(DY) + &Dm®)): DEP) e ¢, (9.11)
(&D(MY) + &D(Mh®)): DH?) e ;. (9.12)

Therfore, since the integral of odd functions over a symmetric domain must vanish, we have

that M%9(uy) = 0. Similarly, in order to prove our second result, we note that

(AW . grad A+ W .grad A@). HO + (AY . grad Y + AV . grad B - H® € C;
(A . grad K® + K@ .grad V). HO + (A . grad h® + h® . grad AY) - H® € C;

(AW . grad A+ 1@ .grad h@). H® € 5,

Therefore, integrating in the region exterior to the body, we note that the only surviving

term is

/ (hD) - grad h® + h® . grad hV) . HE).
>

In light of this Lemma, we write the net torque as

M(u) = —Re&i& / (A . grad h® + n® . grad AV) . H®)
2
= —Rel¢|*Grsinfcosd (9.13)
where
gr = /(h(l) -grad h® + 1@ . grad KV) . 7O, (9.14)
b2
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Evaluation of the integral was performed using a numerical integration package in the
Mathematica software (Wolfram Inc.) for different values of the eccentricity e. It was found
that G; is always negative except at 0 and 1, where it becomes zero. Table 9.1 summarizes

the findings.

Table 9.1. Tabulations of computed torque coefficient Gyversus eccentricity e.

€ Or

0 0.000
0.05 | -0.005
0.10 | -0.021
0.20 | -0.085
0.30 | -0.189
0.40 | -0.328
0.50 | -0.493
0.60 | -0.673
0.70 | -0.851
0.80 | -0.995
0.90 | -1.042
0.95 | -0.976
0.98 | -0.007

So, since Gr(e) # 0 in general,
M(u) = —Relé|*Grsinfcosh =0

T
implies that either, 8 = 0 or § = 5 Therefore, the particle can align in two ways only as

expected. Further implications of this analysis are summarized in the following Theorem.

Theorem 9.1.1 Let B be a body of revolution about the major axis, a, with fore-aft symme-
try. Then there is a Rey > 0 depending only upon the geometric properties of the body such
that for all 0 < Re < Rey, the only possible translational steady falls are those with ‘a’ either

parallel or perpendicular to the direction of gravity. Furthermore, in both cases, & is parallel
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Figure 9.1. Numerical evaluation of G; versus eccentricity of the prolate spheroid .

to g with £ -g > 0.

Proof:
The proof of the existence of the two steady falls follows from our earlier arguments and

equation (9.15). For the existence of the critical value Rey and the relation £ - g > 0,

see [27, Theorem 5.1]. O

9.2 Power-Law Fluid
For the Power-law model, T'(u,p) is given by

n—1

T(u,p) = —pl+AD(u): D))" D(u)
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where A\ above represents a non-dimensional parameter, related to 7, that characterizes the
shear-thinning nature of the liquid. Repeating the calculations performed in the earlier

section, we obtain Hence, we have, in short

M = M5 (u) + ReM? (u) + AMPE(u).

where the right hand side contains the Stokes, Inertial and Shear-thinning components of the
net torque. In order to represent the torques at first order in Re, we write u = ug+w(*728:31)
where ug represents the velocity field corresponding to the Stokes problem (i.e. equation for

Re = 0). As a result, the net torque M, upon using the result of Lemma (9.1.1), becomes

M= Re M®Tug + AIM®PE(ug) + N(w) (9.16)
where
MY (ug) = — / (hY) . grad h® 4 n® . grad RV) . HO) (9.17)
Y
MM us) = = [ [Dlus) : Dus)] "7 Dlus) : D(HO). (9.18)
Q

Here N (w) represents higher order terms in Reynolds numbers. Our treatment is restricted

to a first order effect in Re. Therefore we effectively ignore the term A/.

The components of the shear-thinning torque, employing the symmetries above along

with equation (9.18), is

MZPL(US) = —/[D(é‘lh(l) + fzh(z)) . D(flh(l) + fzh(z))]nT_lD(flh(l) + fzh(z)) : D(H(i))
Q

(9.19)
for © = 1,2,3. This expression can be further simplified by using the symmetries of the
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auxiliary fields and an argument similar to Lemma (9.1.1).

Lemma 9.2.1 Let B be a homogeneous body with fore-aft symmetry and the fields (R®, p(®)

and (H®D, PW) for i =1,2,3 be as defined in equations (3.3) and (3.4). Then,

MFPE=0

fori=1,2 3.

Proof:

The components of the shear-thinning or thickening torque, employing the symmetries above

along with equation (9.18), is

M (ug) = —/[ (&b + &h®) : D(ER® + &) *T D(EhY + 6h®) : DHD)
Q

— — [1€Dm®): D) + GDH®) : D)

+ 26&D(MY) : D(M®)]*T {5 D(hY) + &D(W®)} - D(HD)
for ¢ = 1,2, 3. Therefore, using definition 3.4.3, we observe that
DMWY : DMy ec: , DMLP): DMhP)ecs, DMOY): DMP) e
and also,

DY) : DHDV)ec; , DM?): DHWY) e,
DmW): DHE®)cc; , DL®): DH?) e,

DhW): DH®) ec: , DMH®): DH®) e cs.
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It can easily be verified that the integrand in equation (9.20), has the following symmetries:

47 {6 DY) + &DM®P)}: DHD) e ¢

4 {6 DMY) + &DMP)}: DHD) e

where ¢ = 1,2 and

¥ = [D(ERY + &h®) - D(EhY + &)

On account of these symmetries in equation (9.20), it follows that
MPFPE(ug) =0 (9.25)

for each ¢ = 1,2,3. Therefore, the shear-thinning effects contribute nothing towards the
torque, at low Re. Note that the argument stated above is independent of the choice of the

power ”T_l and therefore applies equally to shear-thickening liquids. O

Hence, in conclusion, employing the Lemmas 9.1.1 and 9.2.1, the net non-zero torque

acting on the body B is given by
Mz = -Re€ &G = -Rel€]2Grsin(6) cos(). (9.26)

where we choose, without loss of generality, £ = (&;,£5,0) which we further decompose in
polar coordinates, with 6 measuring the angle between ¢ and the horizontal axis. It is seen
from equation (9.26) that for the net torque to vanish, § = 0 or g degrees, just as in the case
of a Newtonian fluid. Our results seem to indicate that pure shear-thinning or thickening
effects play no role in causing the tilt-angle , at very low Reynolds numbers. In a power-law
fluid, the surviving torque is due to inertial effects alone. Hence an ellipsoid, sedimenting in

a power-law liquid will orient itself as in a Newtonian liquid.
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9.3 Second Order Fluid

In the case of a Second order fluid, the total stress tensor can be given by

T(u,p) = Tn(u,p) — Welg(u)

= —pl+ A;(u) — We (Ay(u) + €A;(u) - Ay (u)). (9.27)

See Section 4.6 for the definitions of the tensors A; and A,. As discussed in the above
section, we want to evaluate the net torque, in non-dimensional form, at first order in Re

and We. The net torque M(u) appears to be of the form

M(u) = M + ReM! + WeM ™V

which is now the sum of the Stokes, inertial and viscoelastic components. If we write u =

us + w, then the net torque, evaluated at u; may be given by

M(uy) = M® + ReM® (uy) + WeMO N (u,) + N (u, w) (9.28)
and
N(u,w) = Re(M(u) — M (uy)) + We(M Y (1) — MV (u,)) (9.29)
= ReN; + WeNs.

Here, M%5(u,) and M%!(u,) are as defined in equations (9.8) and (9.9) and

MV (y) = —/ETE(uS):D(H(i)). (9.30)

(9.31)
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(28,31)

It is shown rigorously that the nonlinear term

N (us, w)| < C(Re*™ + Wel™)

for some positive constants C', # and . Therefore, we may ignore this term at first order in

Re and We. So, invoking the results of Lemma 9.1.1, the net first order torque is given by
M(u) = ReM® (uy) + WeMOPMN (y,). (9.32)

The quantity M%!(u,) is known from the Section 9.1 for a prolate spheroid of varying

eccentricities. Now writing us = & h™ + &h®) we have

M) = — [ To(h® + Gh®) : D(HY)
>
N _/ (&R + &h®) . grad A1(EhY 4+ &h®) + Ay (6hY + &) - grad (&Y
>
+6h?) + grad (60 + &0P) - A (60 + &R DHDY)

—e€ / [A1(6hD 4+ &h®) . A(6hD + &h )] D(H®). (9.33)
P

We now employ the Definitions 3.4.3 and 3.4.4 to simplify the non-Newtonian contribution

to torque in order to make it more tractable. The result is summarized in following Lemma.

Lemma 9.3.1 Let B be a homogeneous body with fore-aft symmetry and the fields (h@, p®))
and (H®D, PY) for i =1,2,3 be as defined in equations (3.3) and (3.4). Then,

1 MONN OV g
2. The only non-zero component of the non-Newtonian torque is given by
MYV = g8 / (hYgrad Ay (h?) 4+ K grad Ay (RY) + A1 (KY) - grad Th®
b

+ A(h?) - grad ThY + grad KV - A, (R + grad B - A; (V)

+ €A (RM) - A (AP + €A (BP) - A (M) D(H®)
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Proof:
The explicit calculations for the above results will not be shown here. It suffices to say that
the technique to be used is similar to the one employed in Lemmas 9.1.1 and 9.2.1. Then

upon suitable application of definitions 3.4.3 and 3.4.4, we have our results. O

In the pages immediately following, we will calculate the non-Newtonian contribution
the torque as seen in Table 9.1. In order to do so we must rewrite the viscoelastic part of
the torque in a more convenient form to permit ease in computation. We therefore digress a

little from the previous arguments to write

1 A |
MOV () = 3 / div Tp(us) - HY — 3 / e~z xXn-Tg-n. (9.34)
0 %

To perform our calculation, it is more convenient to write the extra-stress tensor, Tg(u) in

a different form.?Y Therefore, we obtain the following useful expressions

OAu,
div Tg(us) = (Aws X ug) + a: + (1 +¢€) {A1Au, + 2div (grad (us)grad "(us))},
Tpon = (—p+|w)n+wsxn+(1+e)ws*)n

where w; = curl(us). With these simplified equations, upon some manipulation, we can

express the net viscoelastic contribution to the torque in the form

MONN () = £6GnN
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where the non-Newtonian torque coefficient is of the form

-1
Gun = 7[/ 2 x nfwsf? — (e + 1)[6/(H<3> VAW . ARD 4 HE) TR . ApD)
p) Q

+2 / (H® . vTROAR® + H® . vTRE ARW) — % / z X n|w|?]
Q %

e+1
2

+3H®) . VAAARY 4 7O . vThWAR® 4 F® . vTh@ARW)]}. (9.35)

1
= i1+ )/x x nlwl* — 2(e + 1)[/ (3H® . VRO AR®
2 Q

We may simplify the equation further by implementing the fact that Ah(®) = grad p®, from

the Stokes equations. Hence

1 1
Gy = =((1+ 6; )/x X njws|? — 2(e + 1)[/ (3H® . vV,
% Q

+3H® - VA Vp, + H® -V hOVpy + HO - VTR Vp))).  (9.36)

Graphs of the variation of the torque coefficient with eccentricity are shown in Figures
9.2, 9.3 and 9.4. They depict also the variation of the torque coefficients with the parame-
ter €. In fact, we may divide our observations into two categories, one concerning the case
e > —1 and a second case, where —2 < € < —1. The essential profile of the curve seems
to stay remarkably consistent for each value of the parameter e (see Figure 9.2), changing
slightly when € > —1. The magnitude of the coefficients seems to increase with increasing
e. It is also interesting to note in Figure 9.3 that as € > —1, the torque coefficient changes
sign at larger values of e. Specifically, Figure 9.3 considers e = —0.7, —0.8 since the dramatic
turn to negative values is more prominent in these cases. It is also worth noting that the
curves achieve their peaks at decreasing values of e as € increases. Our calculations seem
to match with the lower bounds for e predicted by experiments since the torque becomes
negative for € > —1 which is physically meaningless since there is no physically valid reason

to believe that the torque should arbitrarily change sign for any specific value of e.
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Figure 9.3. Absolute value of torque coefficient versus eccentricity ¢ > —1.
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Torque Coefficient
g

Figure 9.4. Comparison of torques due to Inertial and Viscoelastic effects.

Figure 9.4 compares the inertial effects to the viscoelastic effects for two different values
of e. We adopt the recommendation of Joseph and coworkers®”) that e = —1.8. It is obvious
that the viscoelastic effects seem to outweigh the inertial ones. This may help explain the

experimental observation which we shall discuss in the following section.

Therefore, since in general, Gy # 0, the net torque in equilibrium is given by

ReM% + WeMONN = ¢

= |€]* (ReG; + WeGny)sinfcosd = 0. (9.37)

As a result, the equilibrium condition is satisfied if (i) 6 = 0, (ii) # = § or (iii) (ReG; +
WeGny) = 0. The last condition necessarily implies that the first order theory is not
sufficient to explain the orientation phenomenon. Therefore, our theory works as long as

the condition (iii) is not true. Once again, our argument sufficiently accounts for the steady

state orientation of particles in a viscoelastic liquid.
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9.4 Stability of Orientation

We have seen from the previous sections, that each of the fluid models allows for more
than one steady orientation, while in experiments only one orientation is observed. This
demands an analysis of stability of each of the allowed states. With this in mind, we perform
a quasi-steady stability analysis. The essential idea is to perturb 6 by a small angle, say
00 in the ez direction. As a result of this perturbation of this perturbation, if the torque
changes sign then we say that the steady orientation is stable. Physically, this change in sign
has the implication of returning the body to its original equilibrium position. If however,
the torque retains the same sign under the perturbation, then the equilibrium position is
unstable and the torque acts away from it to the nearest stable state. Mathematically, we

state these conditions as follows:

d .
%19% <0 = Stability (9.38)
d .
%]9% >0 = Instability (9.39)

We verify the stability of the terminal orientation of bodies in the different fluid models
by means of the Figures 9.5 and 9.6 below. The Figure 9.5 indicates the variation of M%!
with § while the second Figure 9.6 is a plot of M%"¥ versus . The two graphs are shown
for a specific value of the eccentricity for the ellipsoid, however the result is true for any

choice of e. Also, we choose |{| = 1 without loss of generality.
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The stability analysis indicates the following:
I

do

Hence 6 = 0 degrees is the stable orientation. Since we have shown that the resulting

< 0 when 68 = 0.

1. In the case of the Newtonian fluid, the figure 9.5 indicates that

torque in a Power-Law fluid is the same as in a Newtonian fluid, it follows that the

stable orientation for steady fall in a Power-Law fluid is also # = 0 degrees.

I

do
hence the stable steady orientation in the case of a viscoelastic liquid is 90 degrees.

2. In the case of a Second-order fluid, Figure 9.6 indicates that < 0 when 0 = 7,

Therefore, our results match perfectly with experimental observations.
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Figure 9.5. Variation of Newtonian torque with 6 at e = 0.9 and Re = 1.
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Figure 9.6. Variation of viscoelastic torque with 6 at e = 0.75 and We = 1.
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9.5 Comparison with Experiments

We have shown in the previous sections that qualitatively our first order torque argu-
ment is sufficient to explain the stable orientations in the different fluid modes considered.
However, it would be interesting to see how our theory matches quantitatively with exper-
imental observations. The comparison with experiments are made with the Second order
fluid model alone since this is the most interesting case. We recognize that the experimental
liquids possess shear-thinning properties while the Second order liquid model would perhaps
be more appropriate for modeling a Boger fluid, however the lack of any experimental studies
on Boger fluids and numerical calculation of torques with shear-thinning liquids forces us
to make comparisons with existing results. This however can still be fruitful in guiding us
towards more appropriate treatments in the future.

We define the critical ratio,

Re|G;]|

= 9.40
" = WeGun (9.40)

When the ratio exceeds 7., then inertia dominates and the spheroid falls horizontally
(i.e. O = 0), while when the ratio is less than .., Viscoelastic effects dominate and the
spheroid falls vertically (i.e. 6z = 90). Figure 9.7 shows the critical curves for varying
eccentricities. However, when 7., = 1, the first order theory fails and we must resort to a

second order argument.

The critical curves are seen to be lines of varying slopes for the different e’s. Qualitatively,
since Gy is seen to be much larger than G; (Figure 9.4), varying the ratio of Re and We
would determine the final orientation of the body. For the body to acquire the horizontal

state, Re would have to far exceed We.

We shall now make a comparison of our results with experimental observations. This is

done in two stages. Firstly we shall make a comparative study with the observations in the
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Figure 9.7. Critical ratios of Inertial versus Viscoelastic Torques for varying eccentricities.

literature and secondly we shall test the theory with our experimental data from Chapter
6. Joseph and coworkers have observations of the tilt angle for varying materials, Re and
We. It must be mentioned that the experiments were performed using prolate spheroids and
cylinders with flat and rounded edges whereas the theoretical calculations were performed
for ellipsoidal objects. Therefore, the eccentricities of the cylinders used in the experiments
have been approximately evaluated using the formula e = 1/1 — ?—; where D is the diameter

of the cylinder and L, the length.

Figures 9.8, 9.9 and 9.10 show how experimental observations match with our calcula-
tions. Comparisons have been shown for three different values of ¢ indicated on the plot.
The expect to give an idea of how predictions of the experiment get better with increasing
values of €. The observed tilt angles are mentioned besides the plotted points. The dashed
line indicates the critical ratio v.,.. If the observations lie above the line then the predicted

tilt angle is 6y, = 0, otherwise 6;;;; = 90.
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It is seen from the figures above that the predictions progressively seem to get better,
with increasing €. For the case when € = —1 the ratio of the two torques is not quite large
enough. However at ¢ = —1.8 the experimental data all fall in the correct category of the
graph. As mentioned earlier, the model fails to account for the tilt angle. The two observed
cases of tilt angle (namely of 53° and 31°) fall above the critical line for each off the cases.
The calculations here seem to suggest that the e = —1.8 model does better to explain the
model than the ¢ = —1 model. However as is evident a better model is required to verify

and explain the tilt angle phenomenon.

Finally, we make a comparison of the theoretical predictions with our own experiments.
The results of this comparison are shown in the Figures 9.11 and 9.12 in the following page
and are made for ¢ = —1.8 alone. As in the case of the earlier figures, the plots show the
ratio of inertial to viscoelastic torques versus the eccentricity of the body. It must be pointed
out that eccentricities of the particles used in this comparison was between 0.85-0.90, with
the majority of the particles having e = 0.87. Certain particles with e close to 1 were ignored
due to difficulty in obtaining the torque coefficients near e = 1. As in the earlier graphs, we
do not distinguish between the particles with different symbols. Instead we make separate
graphs for the different liquid samples used. The angles mentioned besides the points are
the observed terminal angles. It is easily seen that from the plots that the data points fall
in the correct category, except for a point in the CMC(0.75%) sample whose torque ratio far
exceeds 1 but has a terminal angle of 90 degrees contrary to expectation. Also, the tilt angle
observations in the same sample cannot be explained. Possible reasons for errors have been
discussed in the earlier, experimental chapter and can be attributed to errors in experiments

and not to our theory. Besides this case, the other points are well explained by our theory.
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9.6 The Modified Second Order Fluid

So far, with the Newtonian, Power-law and Second order fluid models, we are successful
in explaining the horizontal and vertical orientations of particles. The tilt angle still eludes
us. Therefore, in this section, we outline the argument used to show the existence of the
intermediate angles. We will consider the modified Second order fluid model explained in

Section 4.9. The stress tensor for this model is written as

T(u,p) = Tn(u, p) + A\Tx(u)

where

a2 Ay (u)2,
1+ kA (u) : A (u)]™

TE(U) = OélAQ(U) +

The form of &y = Gs(%) is chosen in order to ensure convergence. Recall, our reasons
for choosing this model are for theoretical convenience and also because this model contains
all the relevant terms necessary to establish our result. Repeating the same calculation that
we have now performed for the previous models, the torque, at first order in Re and We,

becomes

M = Re M (uy) + AMOVN (w) (9.41)

where we apply Lemma 9.1.1 and ignore any higher order terms in Re and A. The viscoelastic

contibution to the torque is given by

MO,NN(US) _ /QTE : D(H(i))

_ /Q o Ao (1) +

a2 Ay (u)?] s D(HD). (9.42

Finally, writing u, = |¢|(cos @hY) + sin h?)), we see that the net torque, in the case of a

176



prolate spheroid, is of the form
M = ¢ (ReGr(e)sinfcosd + AGnn (e, k, 0)) (9.43)

where Gyy (e, k, 0) is the torque coefficient corresponding to the non-Newtonian part of the

liquid and is given by

Gnn(e,0) = /[alAg(cos OhY + sin 00 ) + ¢(0, hD) A1 (cos OhY 4 sin Oh)?] : D(HD)
0

(0, hD) = ay(1 + k[A1(cos RV + sin hP)) = A1 (cos OhV) + sin Gh(z))]nT_l)_1

The explicit dependence of Gyy upon 6 is very complex and cannot be simplified any

further. Hence, in equilibrium, we have
€]?(ReG;(e) sinfcos @ + \Gyn (e, k,0)) = 0. (9.44)

Therefore, as long as the shear-thinning parameter Gy # 0, which yet needs to be verified,
there is a @ = 6, which satisfies equation (9.44). Symmetry analysis indicates that Gyy # 0
cannot be simply written as x;(e, k,0)sinf cosf. This suggests that the equation (9.44)
can vanish for 6, other than 0 or 7, therefore, resulting in the tilt-angle. Observe that
when k£ = 0, we revert back to the case of the Second order fluid model, where the results
are readily available. Though, we do not have any detailed calculations for this model, we
choose to present this section to establish the theoretical existence of the tilt angle. Also,
our argument, though heuristic, goes to show that the significant effect that contributes
to the terminal orientation of a sedimenting body is the combined competition of inertial,
viscoelastic and shear-thinning contributions to the torque. A detailed analysis with such a

model is still pending and we hope to carry out as part of future work in this subject.
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10.0 CONCLUSION

In this final chapter, we discuss the essential results of the thesis and also suggest possible
future work that needs to be done in this area. Our research has been conducted on two
essential fronts, experimental and mathematical. We begin with pointing out the signifi-
cant contributions of this thesis to the problem of orientation of bodies in Newtonian and

Non-Newtonian liquids, in particular and to the field of fluid-structure interaction, in general.

Our experimental work has been performed with the aim of reproducing and verifying
previous experiments and also to extend the observations to ellipsoidal particles, since most
previous work is with cylindrical bodies. Our experiments performed with five different
polymeric samples are in agreement with previous experiments and with our own math-
ematical predictions. One of the sample liquids used in our sedimentation experiment is
Polyacryamide(SNF Inc.). We use a very high molecular weight (about 17 Million) of the
sample AN934SH to prepare a 0.56% solution of this polymer. This provides us with a
highly viscoelastic sample whose rheological properties are ascertained. In fact this liquid
has perhaps the highest viscosity and relaxation time of all liquids used in such experiments
which provides the advantage of long observation times, upto three hours, in one case while
previous experiments have much shorter fall times of the order of a few minutes. With this
liquid, we are able to track the transient behavior of a sedimenting particle easily. A second
kind of experiment that we perform, namely the flow chamber experiment, is also a novel
way of studying the orientation problem, with the unique advantage that the run time of the
experiment can be extended to as long as one desires, provided the experiment is made free
of leaks. This experiment is completely novel and has not been performed before. Further-
more, we are able to record the orientation behavior of the particles at varying Re where the
particle goes from a steady orientation to oscillatory behavior to a final turbulent motion.
The flow chamber experiments are still in their preliminary stages and need further tests

and verification.
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The main contribution of our mathematical study has been to establish the existence
of terminal steady state motion of rigid bodies of arbitrary shape in a Second order fluid
with arbitrary e. Though the technique of splitting of the equations into the Stokes and
Transport equations is a familiar one it has not been dealt with very much in the literature
to consider rotational motions of a sedimenting body, due to the term w x x, which blows up
as |x| — oo. Furthermore, previous existence arguments are restricted to bodies of certain
restricted shapes such as spheres or prolate and oblate spheroids, whereas our argument

holds true for bodies of any arbitrary shape.

The argument outlined in Chapter 9 completely solves the problem of terminal orienta-
tion of particles at small Re and We. Previous work in this area has been purely experimental
or at most numerical and restricted to either the Newtonian liquid or to two dimensional
calculations in the case of viscoelastic liquids. Our contribution to the problem has been
extensive mathematically where several different fluid models have been dealt with, each
highlighting an essential feature of liquids. Our numerical computations to calculate the
torques imposed on a prolate spheroid due to the liquid is performed in three dimensions
and for Newtonian and viscoelastic cases. This allow us to examine the stability of the equi-

librium states and predict the correct terminal orientation which are observed in experiments.

Though we have made significant contributions to this problem, we cannot claim to have
had the last word on the subject. What needs to be done is very clear and so is the outcome.
However, some essential calculations still need to be done. In the experimental front, we
need to investigate the effect of walls on the orientation behavior. All experiments, previous
and our own proceed under the assumption that walls do not effect the terminal orientation
angles. Though our observations do not indicate any significant changes in orientation in

particle orientation as they drift to the wall, a more systematic set experiments must be de-
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signed to confirm this claim. Another important set of experiments that must be conducted
is to investigate the difference in transition of the orientation angle, with time, for particles
with rounded and flat ends. We notice a marked difference in the way the two particles
fall. Furthermore, our observations indicate the tilt angles for the flat ended particles only.

Perhaps edge effects play some role in the process.

As far as mathematical work is concerned, the primary open question is the confirmation
of the tilt angle. We provide a heuristic argument in Section 9.6 to show the existence of the
tilt angle. The argument rests on the condition that Gyn (e, k,8) # 0. Calculation of this
quantity can help establish (a) the existence of the tilt angle, (b) variation of the tilt angle
with the polymeric concentration of the fluid (i.e. with k) and (c) stability of the equilib-
rium angles. A nonlinear stability argument must also be pursued. Our current argument
for stability is a rather simple one motivated by physical arguments on the direction of the
torque. Nonlinear analysis will place our results on firmer grounds. A final, though the most
essential task that remains is the proof of existence of steady state solutions of a rigid body

sedimenting in a viscoelastic shear-thinning liquid.

Several of the problems mentioned above perhaps constitute a doctoral thesis in them-
selves. However, these are essential to closing the book on the subject of steady state
orientation of particles in liquids. The method for showing several of the open questions is

clear and is outlined in the relevant chapters of this thesis.
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APPENDIX

STOKES FLOW PAST PROLATE SPHEROID

In cartesian coordinates, the fields AV, h® HG) = H, PMO = P, and P® = P, are

given by (1%
h(l) = —U1€1 + 204161B10 -+ ozlrer(i — L
Ry, R
— ()é17’2€1B30 + Qﬁlgrad Bu
h(z) = _U2€2 -+ 04262B10 + 042.’13261(L — L)
Rg Ry
T T +e
+ 0427’.’132€TB30 — ﬁggrad (.’132[ R1 ! R2 + Blo])
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where e, = (269 + x3€3)/r and
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It is next observed that our future calculations can be considerably simpler in prolate-

spheroidal coordinates ((,u,0) with the transformation from cartesian coordinates given

by(36)

Ty = eMC7
To ev/p?2 —14/1 — 2 cos b,
x3 ev/p?2 —14/1 — (?siné,
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and the scale factors

_ el
QM - e\//ﬁ,
Vi

Y

qC = em,
1
@ e ,uz—l\/l—cz'

The components of hY, i = 1,2, and H in these new coordinates are given by

hl(}) = (uy

hél) = Uy

hY = 0

hl(f) = (v cosf
héz) = vycosf
héz) = wssinf
H, = (Hycos0

H. = Hjcos0

Hy, = H3(sinf

184



with

U1

U2

U1

(%)

U3

Hy

P

Py

—(~ 1+ 4B+ 2 — 20 + i) (12 — 1)Intth

Ve =1y = ¢
1 — 2By + pi — (g — Bo) (1 — 1)ln5—i 2 (2
Yo e
)
(12 — 1§ /fz e (262(p* = 2) — p(p® — 1)
pt1

205(4* = 1) + (a2 = Bo)u(p® — 1)in

1 —26p% — (0 — 52)”0%

7)

7[2C7 (1" = D{2(=1 + ) (as — o) + 2¢* (75 — 73) + 20 (73 — 73)
w2 —1(p? = )z

(vs — ) u(p® — ¢*)in

/651 — Q {2u(as — a4)(2+ ¢ = 3p°) + 2u(vs — 73)(¢* — 1°) + (B — 3

1
ZJ—F 1} +4(8s — B5)(2¢% = 1) {4— 61 + 3u(p? — 1)anJ_r 1}

1
7% =)t = )t~ Vit
(8= 124) (B = )+ 200 = 1) (3 =)
1

(66 — 6% + % — ) = i)

—4041
e(u? = ¢?)

—4agp/1 — (2

ey/ (1?2 = 1)(p* — ¢?)

185



BIBLIOGRAPHY



10.

11.

12.

13.

BIBLIOGRAPHY

. Adams, A.R., 1975, Sobolev Spaces, Academic Press, New York.
. Ardaillon, E., Les Mines du Laurion dans I’Antiqueite’, 1897, Thorin, Paris.

. Aristotle, 1936, On the Heavens, Translated by W. Guthrie, William Heineman Inc.,

London.

Borglet,A., and Phipps, J., 2002, The Experimental Study of Orientation of a Particle
in a Flow Chamber, Technical Report, Dept. of Mechanical Engineering, University of
Pittsburgh.

Bird, R., B., and Armstrong R., C., 1987, Dynamics of Polymeric Liquids,Volume I,
Wiley-Interscience Publications.

Bohnenblust, H., F., and Karlin, S., Contributions to the theory of games, Ann. of Math.
Studies, Princeton univ. Press, 24, 155-160.

Brenner, H., 1964, The Stokes Resistance of an Arbitrary Particle II., Chem. Engng.
Sci., 19, 599-624.

Brunn, P., 1980, The motion of rigid particles in viscoelastic fluids, Journal of Non-
Newtonian Fluid Mechanics, 7, 271-288.

Burger, R., and Wendland, W., L., 2001, Sedimentation and suspension flows: Historical
perspectives and some recent developments, Journal of Engineering Mathematics, 41,
101-116.

Carapau, F.L., 2004, Development of 1D Fluid Models Using the Cosserat Theory:
Numerical Simulations and Applications to Haemodynamics, Ph.D. Thesis, Department
of Mathematics, IST, Lisboa, Portugal.

Chabra, R.P., 1995, Wall effects on the free-settling velocity o fnon-spherical particles
in viscous media in cylindrical tubes, Powder Technology, 85,83-90.

Chabra, R.P., 1996, Wall effects on the terminal velocity of non-spherical particles in
non-Newtonian polymer solutions, Powder Technology, 88, 39-44.

Cho, K., Cho, Y.I., and Park, N.A.,} 1992, Hydrodynamics of Vertically falling Thin
Cylinders in non-Newtonian Fluids, J. Non-Newtonan Fluid Mech., 45, 105-145.

187



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Chiba, K., Song, K., and Horikawa, A., 1986, Motion of a Slender body in a Quiescent
Polymer Solution, Rheol. Acta, 25, 380-388.

Chwang, A.T., and Wu, T.Y., 1975, Hydromechanics of Low-Reynolds-Number Flow.
Part 2. Singularity Method for Stokes Flows, J. Fluid Mech., 67, 787-815

Coscia, V., and Galdi, G., P.,; 1994, Existence, Uniqueness and Stability of of regular
steady flow of a second-grade fluid, Int. Journal of Nonlinear Mechanics, 29, 493-512.

Cox, R.G., 1965, The Steady Motion of a Particle of Arbitrary Shape at Small Reynolds
Numbers, J. Fluid Mech., 23, 625-643.

Dunn, J.E. and Fosdick, R.L., 1974, Thermodynamics and Stability of Non-Linear Flu-
ids, Arc. Rat. Mech., 56, 191.

Evans, L.C., 1998, Partial Differential Equations, American Mathematical Society.

Folland G.B., 1995, Introduction to Partial Differential Equations, Princeton University
Press.

Fosdick, R.L. and Rajagopal, K.R., 1979, Anamalous features in the model of a second
order fluids, Arch. Rat. Mech., 70, 145-152.

Galdi, G.P., Sequeira, A. and Videman, J.H., 1997, Steady Motions of a Second-Grade
Fluid in an Exterior Domain, Adv. Math. Sci. Appl., 7, 977-995.

Galdi, G.P.; 1998, Slow Motion of a Body in a Viscous Incompressible Fluid with Appli-
cation to Particle Sedimentation, from Developments in Partial Differential Equations,
Quaderni di Matematica della IT Universita di Napoli, Vol 2, V.A. Solonnikov Ed., 2-50.

Galdi G.P., 2000, Slow Steady Fall of a Rigid Body in a Second-Order Fluid, J. Non-
Newtonian Fluid Mech., 93, 169-177.

Galdi, G. P., 1998, An Introduction to the Mathematical Theory of the Navier-Stokes
Equations, Vol 1, 2nd Corrected Edition, Springer Verlag.

Galdi, G.P., Sequeira, A., and Vaidya A., 2000, Translational Steady Fall of Symmetric
Bodies in an Oldroyd-B Liquid at Nonzero Reynolds Number, in preparation.

Galdi G. P., Vaidya, A., 2001, Translational Steady fall of Symmetric Bodies in Navier-
Stokes Liquid, with Application to Particle Sedimentation, J. Math. Fluid Mech., 3,
183-211.

Galdi G.P., Vaidya A., Pokorny, M., Joseph, D.D. and Feng, J., 2002, Translational
Steady Fall of Symmetric Bodies in a Second-Order Liquid at Nonzero Reynolds number,
Math. Models and Methods in Appl. Sci., Vol.12, 11, 1653-1690.

Galdi G.P. and Vaidya A., 2004, A Note on the Orientation of Symmetric Bodies in
Power-Law Fluids, submitted for publication.

188



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Galdi G.P. and Rajagopal, K., R., 1997, Slow motion of a body in a fluid of second
grade, Int. Journal of Engineering Science, 35, 33-67.

Galdi, G., P., 2002, On the Motion of a Rigid Body in a Viscous Fluid: A Mathemat-
ical Analysis with Applications, Handbook of Mathematical Fluid Mechanics, Elsevier
Science, 105 pp, to be published.

Galdi, G.P., Padula, M. and Rajagopal, K.R., 1990, On the conditional stability of the
rest state of a second grade fluid in unbounded domain, Arch. Rat. Mech. and Anal.,
109, 173-182.

Gibala,G., and O’Brien,K., 2002, Design and Study of a Fixed Particle in a Horizon-
tal Flow Chamber, Technical Report, Dept. of Mechanical Engineering, University of
Pittsburgh.

Giesekus, H., Die Simultane Translations and Rotations Bewegung einer Kugel in einer
Elastovisken Flussigkeit, 1963, Rheol. Acta, 3, 59-71.

Grossman, P.D., and Soane, D.S.; 1990, Orientation Effects on the Electrophoretic Mo-
bility of Rod-Shaped Molecules in Free Solution, Anal. Chem., 62, 1592-1596.

Happel, V., and Brenner, H., 1965, Low Reynolds Number Hydrodynamics, Prentice
Hall.

Huang, P.Y., Hu, H.H., and Joseph, D.D., 1998, Direct Simulation of the Sedimentation
of Elliptic Particles in Oldroyd-B Fluids, J. Fluid Mech., 362, 297-325.

Joseph, D.D., and Liu, Y.J., 1993, Orientation of Long Bodies Falling in a Viscoelastic
Fluid, J. Rheol., 37, 961-983.

Joseph, D.D.; and Feng, J., 1996, A Note on the Forces that Move Particles in a Second-
Order Fluid, J. Non-Newtonian Fluid Mech., , 64, 299-302.

Joseph, D.D., 1993, Finite Size Effect in Fluidized Suspension Experiments, in Partic-
ulate Two-Phase Flow, M.C.Roco, Ed., Butterworth-Heinemann, 300-324.

Joseph, D.D., 1996, Flow Induced Microstructure in Newtonian and Viscoelastic Fluids,
in Proceedings of the Fifth World Congress of Chemical Engineering, Particle Technol-
ogy Track, 6, 3-16.

Joseph D. D., 2000, Interrogations of Direct Numerical Simulations of Solid-Liquid Flow,
Web Site : http://www.aem.umn.edu/people/faculty/joseph/interrogation.html

Juha, V., 1997, Mathematical Analysis of Viscoelastic Non-Newtonian Fluids, PH.D.
Thesis, Instituto Superior Tecnico, Lisbon.

Juarez, L. H., 2001, Numerical Simulation of sedimentation of an elliptic body in an
incompressible viscous fluid, C.R. Acad. Sci, Paris, 329, Series IIb, 221-224.

189



45.

46.

47.

48.

49.
50.

ol.

92.

93.

o4.

95.

96.

o7.
o8.

99.

60.

Kim, S., 1986, The motion of ellipsoids in a second order fluid, Journal of Non-Newtonian
Fluids, 21, 255-269.

Kiger, K.T., Pan, C., 2001, Suspension Mechanism of Solid Particulates in a Horizontal
Turbulent Channel Flow, Second International Symposium on Turbulent Shear Flow
Phenomenon, Sweden.

Kirchoff, G., 1869, Uber die Bewegung enines Rotationskorpers in einer flussigkeit, J.
Reine Ang. Math. Soc., 71, 237-281.

Kraus, M., Wintz, W., Seifert, U. and Lipowsky, R., 1996, Fluid Vescicles in Shear Flow,
Phys. Rev. Lett., 77, 3685-8.

Kreyzig, E., 1978, Introductory Functional Analysis with Applications, Wiley, New York.
Lamb, H., 1932, Hydrodynamics, Cambridge University Press.

Leal, L.G., 1975, The Slow Motion of Slender Rod-Like Particles in a Second-Order
Fluid, J. Fluid Mech., 69, 305-337.

Leal, L.G., 1980, Particle Motion in a Viscous Fluid, Ann. Rev. Fluid Mech., 12,
435-476.

Lee, S.C., Yang, D.Y., Ko, J., and You, J.R.;1997, Effect of compressibility on flow
field and fiber orientation during the filling stage of injection molding, J Mater. Process.
Tech., 70, 83-92.

Liu, Y.J., and Joseph, D.D.; 1993, Sedimentation of Particles in Polymer Solutions, J.
Fluid Mech., 255 565-595.

Lusternik, L.I.A. and Sobolev, V.J., 1962, Elements of Functional Analysis, Taylor and
Francis.

Macosko, C. W., 1994, Rheology, Principles, Measurements and Applications, Wiley-
Vch.

Morrison, F.A., 2001, Understanding Rheology, Oxford University Press.

Newton, I., 1687, Philosophiae Naturalis Principia Mathematica, tanslated by Andrew
Motte in 1729, English translation published by Prometheus Books in 1989.

Novotny, A., Sequeira, A. and Videman, J.H., 1997, Existence of Three Dimensional
Flows of Second-Grade Fluids Past an Obstacle, 30, No.5, 3051-3058.

Novotny, A., Sequeira, A., and Videman, J., 1999, Steady Motions of Viscoelastic Fluid
in 3-D exterior domains- existence, uniqueness and asymptotic behavior, Archive of
Rational Mechaics and Analysis, 149, 49-67.

190



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.
74.

75.

76.

T.W. Pan, R. Glowinski, Galdi G.P., 2002, Direct Simulation of a settling ellipsoid in a
Newtonian fluid, Science and Engineering Computations for the 21st Century, Procced-
ings of the 15th Toyota conference.

Pettyjohn, E. A. and Christiansen E. B., 1948, Effect of Particle Shape on Free-Settling
Rates of Isometric Particles, Chem. Eng. Prog., 44, 526.

Pokorny, M., 1999, Comportement Asymptotique des Solutions de Quelques Equations
aux Derivees Partielles Decrivant L’Ecoulement de Fluides dans les Domaines Non-
Bornes, Doctoral Thesis, University of Toulon and Var. Charles University.

Reddy, B.D., 1991, Introductory Functional Analysis, Springer Texts in Applied Math-
ematics, Vol. 27.

Roco M.C., (Ed.), 1993, Particulate Two-Phase Flow, Butterworth-Heinemann Publ.,
Series in Chemical Engineering.

Rudin, W., 1973, Functional Analysis, Tata-McGRAW-Hill.

Sequeira A. and Baia M., 1999, A finite element approximation for the steady solution
of a second grade fluid model, Journal of computation and applied mathematics, 111,
281-295.

Serre, D., 1987, Chute Libre d’un Solide dans un Fluide Visqueux Incompressible, Exis-
tence, Japan Journal Applied Math, 4, 99-110.

Shapiro, A.H., 1961, Shape and Flow, The Fluid Synamics of Drag, Anchor Books,
Doubleday & Company.

Simader, C.G., and Sohr, H., 1997, The Dirichlet Problem for the Laplacian in Bounded
and Unbounded Domains, Pitman Research Notes in Mathematics Series, Longman
Scientific & Technical, Vol. 360

Smirnov, V.I., 1964, A Course of Higher Mathematics, Volume 5: Integration and Func-
tional Analysis, Pergamon Press.

Steffe, J.F., 1996, Rheological Methods in Food Process Engineering, Second Edition,
Freeman Press.

Strang, G., 1976, Linear Algebra and its Applications, Academic Press.

Taylor, G.I., Low Reynolds Number Flow, Videotape, 33 min, Encyclopaedia Britanicca
Educational Corporation.

Thomson, W. and Tait, P.G., 1879, Natural Philosophy, Vols. 1 and 2, Cambridge Uni-
versity Press.

Tokaty, G.A., 1971, A History and Philosophy of Fluid Mechanics, Dover Publications
Inc.

191



7.

78.
79.

80.

81.

82.

83.

84.
85.
86.

Truesdell, C. and Rajagopal, K.R., 2000, Non-Linear Fluid Dynamics, Birkshauser Ver-
lag.

Truesdell, C., 1968, Essays in the History of Mechanics, Springer-Verlag, New York.

Vaidya, A., 2004, Slow, Steady, Freefall of Bodies of arbitrary shape in a Second Order
Fluid at zero Reynolds number, to appear in Jap. Journal of Ind. and Appl. Math.

Vaidya A. and Galdi G.P., 2004, Observations on the Transient Nature of Shape-tilting
Bodies Falling in Polymeric Liquids, submitted for publication.

Wang, J., Bai, R., Lewandowski, C., Galdi, G.P and Joseph, D.D., 2003, Sedimentation
of Cylindrical Particles in a Viscoelastic Liquid: Shape Tilting, Journal of Particuology,
to appear.

Weinberger, H.F., 1972, Variational Properties of Steady fall in a Stokes Flow, Journal
of Fluid Mechanics, 52, 321-344.

Weinberger, H.F., 1973, On the Steady Fall of a Body in a Navier-Stokes Fluid, Proc.
Symp. Pure Mathematics, 23, 421-440.

Wilson, A.; J., 1994, The Living Rock, Woodland Publishing Ltd.
Zeidler, E., 1991, Applied Functional Analysis, Springer Verlag.

Plasma Viscosity and Blood Viscoelasticity, Retrieved April 2004 from
www.vilastic.com/tech10.html

192



	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	 TABLE OF CONTENTS                
	LIST OF TABLES
	Table 6.1 Particles used in sedimentation experiments
	Table 6.2 Liquids used in sedimentation experiments
	Table 6.3 Rheological measurements of the liquid samples
	Table 6.4 Results of sedimentation experiment in water occupying a height of 34 inches in the sedimentation tank
	Table 6.5 Results of sedimentation experiment in glycerine-water solution occupying a height of 34 inches in the sedimentati
	Table 6.6 Results of sedimentation experiment in 0.5% concentration of Carboxymethylcellulose solution occupying a height o
	Table 6.7 Results of sedimentation experiment in 0.75% concentration of Carboxymethylcellulose solution occupying a height 
	Table 6.8 Results of sedimentation experiment in 1.0% concentration of Carboxymethylcellulose solution occupying a height o
	Table 6.9 Results of sedimentation experiment in 0.56% concentration of Polyacrylamide solution occupying a height of 33.5 
	Table 6.10 Results of sedimentation experiment in 1.0% concentration of Polyacrylamide solution occupying a height of 33.5 
	Table 6.11 Particles used in flow chamber experiments
	Table 6.12 Critical Reynolds numbers at which particles turn in the flow chamber
	Table 6.13 Observations of periodic oscillations of particles in the flow chamber
	Table 6.14 Comparison of experimental parameters
	Table 9.1 Tabulations of computed torque coefficient G_in versus eccentricity

	LIST OF FIGURES
	Figure 1.1  Lambs argument for the steady stable orientation of a cylinder in an Ideal fluid
	Figure 1.2 Motion of debris across the flow in a Newtonian liquid
	Figure 1.3 Motion of debris along the flow in a polymeric liquid
	Figure 1.4 Orientation of lipid cells in shear flow
	Figure 1.5 Alignment and orientation behavior of red blood cells at different shear rates
	Figure 1.6 Flow induced micro-structures in Newtonian and Viscoelastic liquids 
	Figure 2.1 Terminal orientation of the body in a Newtonian Fluid
	Figure 2.2 Terminal orientation of the body in a viscoelastic liquid
	Figure 2.3 The tilt-angle phenomenon
	Figure 2.4 Variation of tilt angle with concentration
	Figure 2.5 Shape tilting
	Figure 2.6 The first figure shows the nature of the inertial torque acting on the particle. S_1 and S_2 are the two stagnatio
	Figure 2.7 DNS simulation of ellipsoid settling in a Newtonian fluid
	Figure 3.1 Streamlines for Stokes flow
	Figure 3.2 The field h(1) corresponding to translation of body along the x_1 direction
	Figure 3.3 The field h(2) corresponding to translation of body along the x_2 direction
	Figure 3.4 The field H(3) corresponding to translation of body along the x_3 direction
	Figure 4.1 Some examples of viscosity as a function of shear rate for (a)shear thickening liquids and (b) shear thinning liqu
	Figure 4.2 Some examples of the parameter, hat{alpha_2}as a function of shear rate for (a)shear thickening liquids and (b) sh
	Figure 5.1 A schematic of the AR1000 rheometer manufactured by TA Instruments
	Figure 5.2 A sketch of the cone and plate rheometer
	Figure 5.3 A sample sketch of a typical compliance versus time curve during Creep and Recovery tests
	Figure 5.4 A certain deformation(stress) is applied to the sample and the responding strain is observed. The phase difference
	Figure 6.1 Setup of sedimentation experiment
	Figure 6.2 Particles of (a) prolate ellipsoidal, (b) flat ended cylindrical and (c) round ended cylindrical shapes used in th
	Figure 6.3 A snapshot of the mixer and mixing vessel used to prepare the polymer
	Figure 6.4 Viscosity versus shear rate for CMC
	Figure 6.5 Viscosity versus shear rate for PAA
	Figure 6.6 Viscosity versus shear rate for CMC
	Figure 6.7 Viscosity versus shear rate for PAA
	Figure 6.8 Variation of orientation angle with concentration of Carboxymethylcellulose solution
	Figure 6.9 Transition of orientation angle with time
	Figure 6.10 Motion of particle CF3 in PAA(0.56%)
	Figure 6.11 A snapshot of the flow chamber
	Figure 6.12 The experimental setup
	Figure 6.13 A schematic of the suspension mechanism of the particle
	Figure 6.14 Critical Reynolds numbers at which particles turn
	Figure 7.1 Physical setting of a body, B  freefalling in a fluid, F
	Figure 8.1 Orientation of Orthotropic bodies
	Figure 8.2 Orienation of bodies with fore-aft symmetry
	Figure 8.3 Perturbation of an orthotropic body about its equilibrium configuration (theta=0)
	Figure 9.1 Numerical evaluation of G_I versus eccentricity of the prolate spheroid 
	Figure 9.2 Absolute value  of torque coefficient versus eccentricity -2 < epsilon  < -1
	Figure 9.3 Absolute value  of torque coefficient versus eccentricity epsilon >  -1
	Figure 9.4 Comparison of  torques due to Inertial and Viscoelastic effects
	Figure 9.5 Variation of Newtonian torque with theta at e=0.9 and Re=1.0
	Figure 9.6 Variation of viscoelastic torque with $\theta$ at e=0.75 and We=1.0
	Figure 9.7 Critical ratios of Inertial versus Viscoelastic Torques for varying eccentricities
	Figure 9.8 Comparison with experimental data for epsilon=-1.0
	Figure 9.9 Comparison with experimental data for epsilon=-1.6
	Figure 9.10 Comparison with experimental data for epsilon=-1.8
	Figure 9.11 Comparison of our experimental data for CMC
	Figure 9.12 Comparison of our experimental data for PAA

	1.0 MOTIVATION
	1.1 Historical Preview
	1.2 Applications

	2.0 INTRODUCTION
	2.1 Experimental Work
	2.2 Mathematical Work
	2.3 Numerical Work
	2.4 Outline of Thesis

	3.0 MATHEMATICAL PRELIMINARIES
	3.1 Notation and Definitions
	3.2 Basic Inequalities
	3.3 Essential Theorems
	3.4 The Stokes Equations

	4.0 REVIEW OF CONTINUUM MECHANICS
	4.1 Fluid Mechanics
	4.2 Principle of Material Objectivity
	4.3 Dimensionless Numbers
	4.4 Newtonian Fluids
	4.5 Power-Law Fluids
	4.6 Second Order Fluids
	4.7 Rate-Type Models
	4.8 Equivalence of Models
	4.9 The Modified Second Order Fluid

	5.0 REVIEW OF RHEOLOGY
	5.1 Basics
	5.2 Steady Shear
	5.3 Creep and Recovery
	5.4 Small Amplitude Oscillatory Shear

	6.0 EXPERIMENTAL WORK
	6.1 Sedimentation Experiments
	6.1.1 Experimental Setup
	6.1.2 Test Particles
	6.1.3 Test Liquids
	6.1.4 Rheology of Test Liquids
	6.1.5 Observations and Discussions

	6.2 Flow Experiments
	6.2.1 Experimental Setup
	6.2.2 Observations and Discussion

	6.3 Wall Effects

	7.0 FORMULATION OF PROBLEM
	7.1 Equations in Inertial Frame
	7.2 Equations in Body-Frame
	7.3 Equations for the Freefall Problem

	8.0 FREEFALL IN A SECOND ORDER FLUID AT RE=0
	8.1 Existence and Uniqueness for a1 + a2=0
	A Uniqueness Property
	Existence of Steady Fall

	8.2 Alternative Proof of Existence for a1 + a2 = 0
	8.3 Existence Theorem for Arbitrary  a1 + a2
	8.3.1 Existence and Uniqueness with Prescribed (xi,omega)
	8.3.1.1 Preliminary Results
	8.3.1.2 Existence Results


	8.4 Application to Particle Sedimentation
	8.4.1 Formulation of Problem to First Order in We
	8.4.2 Viscoelastic Contribution to Torque under Different Symmetries
	8.4.2.1 Reflection Symmetry
	8.4.2.2 Skew Symmetry
	8.4.2.3 Rotational Symmetry
	8.4.2.4 Helicoidal Symmetry

	8.4.3 Spin-Free Terminal States of B
	8.4.3.1 Sphere
	8.4.3.2 Orthotropic Bodies
	8.4.3.3 Bodies with Fore-Aft Symmetry

	8.4.4 Stability


	9.0 FREEFALL IN A SECOND ORDER FLUID AT FIRST ORDER IN RE AND WE
	9.1 Newtonian Fluid
	9.2 Power-Law Fluid
	9.3 Second Order Fluid
	9.4 Stability of Orientation
	9.5 Comparison with Experiments
	9.6 The Modified Second Order Fluid 

	10.0 CONCLUSION
	APPENDIX
	BIBLIOGRAPHY

