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AFFECTED RELATIVE PAIR LINKAGE STATISTICS THAT MODEL

RELATIONSHIP UNCERTAINTY

Amrita Ray, PhD

University of Pittsburgh, 2007

In linkage analysis with affected related pairs (ARP), stated familial relationships are usually

assumed to be correct, thus misspecified relationships can lead to either reduced power or

false-positive evidence for linkage. In practice, studies either discard individuals with erro-

neous relationships or use the best possible alternative pedigree structure. We have developed

several linkage statistics that model the relationship uncertainty by properly weighting over

possible true relationships. We consider ARP data for a genome-wide linkage scan. A sim-

ulation study is performed to assess the proposed statistics, and to compare them to the

maximum likelihood statistic (MLS) and Sall LOD score using true and discarded struc-

tures. We have simulated small and large pedigree datasets with different underlying true

and apparent relationships, and typed for 367 microsatellite markers. The results show that

two of our relationship uncertainty linkage statistics (RULS) have power almost as high as

MLS and Sall using the true structure. Also, these two RULS have greater power to detect

linkage than MLS and Sall using the discarded structure. Thus, our RULS provide a sta-

tistically sound and powerful approach for dealing with the commonly encountered problem

of relationship errors. The RULS are relevant to public health because application of these

RULS to complex human disease will facilitate the mapping and discovery of genes involved

in the etiology of such diseases.

We attempted to apply RULS to Otitis Media with effusion (OME) data from Caucasian

families. OME is an infection causing fluid in the middle ear, and is the most common

cause of hearing loss among young children. We have recruited subjects (with history of
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tympanostomy tube insertion) and their families (parents and affected/unaffected siblings).

Genotyping was done using Affymetrix 10K SNP chips, and out of 1,584 enrolled individuals

(322 families), 1,191 (305 families) are genotyped at this date. We performed nonparametric

multipoint linkage analysis using discarded structures. The preliminary results show sug-

gestive linkage peaks on six chromosomes, the highest being at rs1345938 on chromosome 7

with Sall LOD score of 2.36 (p-value 0.0005).
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1.0 RELATIONSHIP UNCERTAINTY LINKAGE STATISTICS (RULS)

1.1 INTRODUCTION

Linkage analysis programs invariably assume that the relationships identified during pedigree

collection are the true relationships, known without errors. Thus in linkage analysis, mis-

specified relationships can lead to either reduced power or false-positive evidence for linkage

[16]. Reduced power might occur when an affected pair is actually more distantly related

than assumed, for example, when a half sib pair is incorrectly analyzed as a full sib pair.

Also, if an affected pair is actually more closely related than assumed, this might result in a

false positive, for example when monozygotic twins are falsely coded as full sibs. So detection

of such errors is useful prior to linkage analysis. Relationship testing [5] may allow one to

detect and correct erroneous relationships resulting from cases of nonpaternity, unrecorded

adoption or accidental sample swaps in the laboratory. Several studies show that relation-

ship error is frequently present in real data; this motivated us to develop linkage statistics

that properly model relationship uncertainty.

Here we consider the situation where we have collected affected relative pairs (ARPs)

typed for a genome-wide set of markers, where the presumed relationship of the ARP ac-

tually might be different from the true relationship. There are two sources of information

about relationships: the stated apparent relationship and the genome-wide marker data. We

statistically model the relationship uncertainty by properly weighting over the possibilities to

develop our relationship uncertainty linkage statistics (RULS). The relationship uncertainty

is modeled via weights, the weights being the conditional probability of a true relationship

type given the apparent one and the genome-wide marker data. All the computations are

done at the affected pair level, using only data for the two individuals of each affected pair.
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We perform a simulation study to explore the behavior of the RULS and to compare them

to an MLS approach of Cordell et al. [9] and to the multipoint exponential Sall [21] non-

parametric LOD score as implemented in Merlin [1]. Sall and MLS are computed using both

the true pedigree structure and the discarded structure (where problematic individuals with

erroneous relationships are removed from the pedigree). We evaluate genome-wide empirical

significance thresholds and compute the power of our statistics under several genetic models.

1.2 BACKGROUND

Linkage studies assume that the relationships identified during pedigree collection are the

true relationships, known without error. In linkage analysis, misspecified relationships can

lead to either reduced power or false-positive evidence for linkage. So, detection of such

errors is useful prior to linkage analysis. The errors in pedigree structure will often be

uncovered through Mendelian inconsistencies. But these mistakes may go undetected when

parental genotypes are not known. In these cases, the genome-screen data can be informative

for imputation of relationships. This motivated the development of statistical methods for

detecting misspecified relationships based on genotype data.

We now give brief introduction to linkage analysis and affected relative pair approaches

to linkage analysis.

1.2.1 Linkage analysis

The goal of linkage analysis is to identify the location of a gene or set of genes in the genome,

which cause a particular characteristic. Linkage analysis is used to narrow the possible region

of a disease gene, so that molecular approaches or other analyses can be used to more pre-

cisely identify the disease gene. Linkage analysis is carried out several steps: a) defining the

disease phenotype of interest, b) collecting a sample of patients along with their families, c)

genotyping families at markers (either single marker study: specific candidate genes/regions

chosen for genotyping, or whole genome studies, where genotyping is done at approximately

2



Figure 1: Example showing a sib pair sharing 1 allele IBD.

equally spaced marker throughout the genome), d) performing either parametric or non-

parametric linkage analysis. Parametric linkage analysis requires one to specify the disease

inheritance model, which is unknown in many real data scenarios, specially in the case of

complex disease.

Nonparametric linkage analysis does not require disease model specification, and it com-

pares the expected and observed similarity of identical by descent (IBD) allele sharing be-

tween individuals. When two alleles are inherited from a common ancester, then those alleles

are identical by descent (IBD). For example, in Figure 1, individuals 3 and 4 share one allele

IBD (the paternal allele, a). Similary, for a marker not linked to the disease, full sibs share

0, 1 and 2 alleles IBD with probability .25, .50, .25, and this sharing at an unlinked locus is

called null sharing. Now, the underlying principle to mapping methods is that people who

share traits should share genetic material more than expected near the genes that influence

those traits. Nonparametric linkage analysis utilizes this principle, and compares IBD shar-

ing at a marker with the null sharing. Thus, if the sharing at a marker is significantly higher

than the null sharing, one concludes that the marker is linked to the disease.

1.2.2 Affected relative pair approaches

There are several affected relative pair (ARP) or affected sib pair (ASP) approaches in

nonparametric linkage analysis. One is the likelihood ratio test statistic, where the observed

3



IBD sharing of the ARPs at a marker is compared to the null sharing. Risch [36] proposed

a LOD score formulation for ARP linkage analysis, which we will describe in section 1.2.3.

There have been several extensions and modifications of this basic ARP LOD score. The

second approach is an allele sharing statistic that measures IBD sharing among affecteds

within a pedigree. Sall and Spairs [49] are the two score functions for allele sharing. Here

we give a brief description of Spairs and Sall, as discussed by Shih and Whittemore [50].

Briefly, Spairs is the number of allele pairs from ARP that are IBD, and Sall puts extra

weight on more than two affecteds sharing the same allele IBD [21]. At a given location

on the genome, at marker x, the inheritance vector is v(x) = (p1,m1, p2,m2, · · · , pn,mn),

where n is the number of non-founders, pi = 0 or 1 according to whether the grandpaternal

or grandmaternal allele is transmitted from father to child, and mi has the same definition

as pi except that it shows transmission from mother to child. The inheritance vectors can

thus be organized into IBD configurations. The score function Spairs for IBD configuration

ψ is given by

Spairs(ψ) =
2

n(n− 1)

∑
i,j

fij(v),

where fij is one-fourth the number of alleles shared IBD by relatives i, j. The second score

function Sall is defined by

Sall(ψ) =
1

2n

∑
h

[Πibi(h)!],

where h is the collection of alleles taken from each affected individual, and bi(h) is the num-

ber of founder alleles i in collection h. Sall considers all affected relatives at the same time,

unlike the score function Spairs where pairwise comparisons are made. The normalized score

for score function S for a pedigree at locus x is given by S(x)−µ(x)
σ(x)

where µ and σ2 are the

mean and variance under H0 that the marker at x is not linked to disease.

Kong and Cox [24] suggested two models, linear and exponential models to get the final

non-parametric linkage scores. Taking IBD configuration probability for a pedigree to be a

linear combination of the score functions gives the linear model, and taking the configuration

as exponentially related to the score function, gives exponential model.

A third approach for ASPs, is the mean sharing statistic [4]. This compares the mean

4



number of alleles shared IBD with expected sharing number under null hypothesis of no

linkage, and is given by,

Z =

∑
i πi − n/2√
n/8

(1.1)

=
(#pairs with IBD1)(1/2) + (#pairs with IBD2)− n/2√

n/8
.

where n is number of ASPs, πi is mean IBD sharing for ASP i.

1.2.3 Risch’s approach

Risch [36] developed a LOD score formulation for ARP linkage analysis. Here we will give

a brief introduction to his approach. Let fi be the prior probability of sharing i alleles IBD,

and wij be the probability of observed marker data given that the pair shares i alleles IBD

at the marker. Risch [36] showed that for affected relative pairs (ARPs), the likelihood of

the observed marker data for the jth pair is
∑2

i=0 ziwij and the LOD score considering all

independent affected pairs is given by

Λ =
∑

j

log10[

∑
i ziwij∑
i fiwij

] (1.2)

where zi is the probability that an ARP shares i alleles IBD at the marker. The maximum

lod score (Λ) is obtained by maximizing equation (1.2) with respect to the parameters

zi. Considering only affected sib pairs (ASPs), under H0 that the marker is not linked to

the disease, the asymptotic distribution of 2 ln(10)Λ is χ2
2. Holmans [19] and Faraway [15]

showed that the power of Risch’s method can be improved by restricting the parameter space

as discussed below.

To improve the power of ASP linkage analysis, Holmans [19] introduced the “possible

triangle” method by restricting maximization of parameters to the region of the triangle. In

our approach also, for two of our statistics, we restrict maximization of the parameters to

satisfy the “possible triangle” restriction. Holmans showed that for any genetic model, allele

sharing estimates fall within a possible triangle as given in Figure 2. The likelihood ratio

test satisfying the “possible triangle” constraints of z1 ≤ .5, 2z0 ≤ z1, and z0 ≥ 0 has higher

power than an unrestricted likelihood ratio test, where zi is the allele-sharing parameter

among ARPs, i = 0, 1, 2.
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Figure 2: The possible triangle of allele sharing estimates.

1.2.4 Cordell et al.’s approach

Cordell et al. [9] have developed a maximum likelihood score (MLS) statistic for ARPs,

starting from the statistics proposed by Risch [36], but maximizing only two parameters:

additive and dominance variance. They have also considered more than one disease locus

model in their approach. Here we give a brief description of their approach for a one disease

locus model. zi and fi are defined as in the previous section. Let f̂ij be the posterior

probability of pair j sharing i alleles IBD given the observed genotype data of the pair. The

likelihood of pair j with genotype data Gj is given as Lj =
∑2

i=0
zif̂ijP (Gj)

fi
and MLS is given

as

MLS =
∑

j

log10(
2∑

i=0

zif̂ij

fi

).

The zi is written in terms of fi and two variance terms, the additive and dominance variances

caused by the disease-causing locus, as zi = λifi

λT
, and λi, λT are functions of the variance

terms (see discussion below). The likelihood is maximized with respect to the variance

component parameters by restricting the variance components to nonnegative quantities,

so that “possible triangle” [19] restriction holds. Under H0, the asymptotic distribution of
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2 ln(10)MLS is a mixture of χ2 distributions. For only affected sib pairs, MLS has asymptotic

distribution as mixture of χ2
1 and χ2

2. For affected pairs with other relationship types, MLS

has more complex mixture χ2 distribution.

As derived by James [20], we can express λT in terms of the covariance of affection status

of the affected pair and the population prevalence K:

λT = 1 +
Cov(X1, X2)

K2
, (1.3)

where Xi is the phenotype of person i defined to be 0 or 1, according to whether the person is

affected or unaffected, and Cov denotes the covariance. James [20] showed that Cov(X1, X2)

can be expressed in terms of the additive and dominance variance (VA, VD) caused by disease

locus, the kinship coefficient (rA), and the prior probability of sharing 2 alleles IBD (fT
2 ).

The covariance is given by:

Cov = 2rAVA + uRVD (1.4)

where rA = .5fT
2 + .25fT

1 and uR = fT
2 . This expression and equation (1.33) show that both

λT and λi are functions of VA and VD.

1.2.5 Olson’s approach

Olson [33] developed a conditional-logistic representation of the ARP likelihood ratio. We

give a brief description of her method for one disease locus when there is no covariate in her

model. Let A be the event that both members of a relative pair are affected, and let A1 and

A2 be the events that the first and second relative, respectively, are affected. The terms fi

and fij are defined as before. Then the likelihood ratio (LRj) for an ARP of type T is

LRj =
P (Gj|A, T )

P (Gj|T )
=
P (A|Gj, T )

P (A|T )

=
P (A2|Gj, T, A1)/P (A2)

P (A2|T,A1)/P (A2)

=

∑
i[P (A2|i, A1)/P (A2)]P (i|Gj, T )∑

i[P (A2|i, A1)/P (A2)]P (i|T )

=

∑
i λif̂ij∑
i λifi

(1.5)
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where λi is the relative risk to an individual who shares i alleles IBD with an affected relative.

Considering all ARP’s, the LOD score (LR) is given by LR =
∑

j log10 LRj. Under H0, the

asymptotic distribution of 2 ln(10)LR is a mixture of χ2 distributions.

Writing the zi’s (in equation 1.2) in terms of the λi’s one can show that this model is

equivalent to the Risch’s [36] approach. First let’s consider an ASP. Risch’s likelihood ratio

can be written as (see section 1.4 for details),

LR =
∑

i

zif̂ij

fi

. (1.6)

Now, for sib pairs, z0 = 1/(4λs), z1 = λo/(2λs), z2 = λm/(4λs), where λs, λo, λm are risk

ratios to sib, offspring and MZ twin, and f0 = 1/4, f1 = 1/2, f2 = 1/4. So, the LR for pair

j becomes,

LR = f̂0j
1

λs

+ f̂1j
λo

λs

+ f̂2j
λm

λs

, (1.7)

and as the denominator of equation (1.5) can be written as 1/4 + λo/2 + λm/4 = λs, LRj in

equation (1.5) takes the same form as LR in equation (1.7). Thus for ASPs, Olson’s model

is equivalent to Risch’s model. The equivalence holds for a general ARP also. In case of

an ARP of type r, denominator of Olson’s model in equation (1.5) equals λr and numerator

is a linear combination of λo, and λm. Though the models are equivalent, the statistic Λ

by Risch [36] and
∑

j log10 LRj by Olson [33] behave differently, because unlike the Risch’s

statistic, Olson’s statistic has “possible triangle” constraints on the parameter space.

The ARP linkage analysis approaches discussed above assume that the true relationship

of the ARP is known without error. This assumption might get violated in presence of

relationship error, which is quite frequent in real data. This motivated us to develop ARP

linkage statistics that model relationship uncertainty. We will discuss the details behind our

approach after brief discussion of relationship error and its impacts on ARP linkage analysis.

1.3 RELATIONSHIP ERROR

Pedigree error, i.e. relationship error or misclassification of relationship between individuals

is common issue in real data. Possible sources of relationship error include cases of nonpater-
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nity, unrecorded adoption or accidental sample swaps in the laboratory. Using genome-wide

marker data and the stated relationship, it is possible to identify the individuals with er-

roneous relationships in a pedigree. This method of identifying relationship error is called

relationship testing. This plays an important role in checking a real dataset for any misspec-

ified relationship, because not removing relationship errors from the pedigree might have a

serious effect on linkage analysis. We now briefly discuss the frequency of relationship error

in real data studies, and the different methods of relationship testing.

1.3.1 Examples

There are several real data studies that encounter relationship error- this shows relationship

misspecification is quite a frequent problem in real data scenario. In a real study, one

implements relationship testing using genome-wide marker data and the stated apparent

relationship information and then one decides to either discard individuals with erroneous

relationships or use the most likely alternative pedigree structure for linkage analysis. Many

studies have found relationship errors in their data and have discarded individuals with

erroneous relationships. Ehm et al. [13] found in their study of small pedigrees segregating

for Type 2 diabetes in four American populations, that relationship testing revealed “24.4%

of the families contained pedigree errors and 2.8% of the families contained errors in which

an individual appeared to be unrelated to the rest of the members of the pedigree”; and

pedigree errors were removed before performing the linkage analyses. Another linkage study

by Shmulewitz et al. [42] made 55 modifications to a very large pedigree before analysis.

Another study by Daly et al. [10] on chronic and recurrent otitis media found 9 families

out of 133 (i.e., 6.7%) families with “segregation problems that were not consistent with the

reported family structure” and they changed the structures to the alternative structures as

suggested by relationship testing. So, relationship errors are quite frequent in real data; this

motivated us to develop linkage statistics that properly model relationship uncertainty.
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1.3.2 Relationship testing

Here we will discuss on relationship testing, the method used to identify any relationship error

among relative pairs. Relationship testing can be used to correct erroneous relationships,

and thus might increase the power of linkage study. Marker information from a genome-wide

scan can be highly informative for verifying relationships among individuals. The appropriate

data for relationship testing will have relative pairs who have been typed for more than 50

unlinked microsatellite markers spread over at least 10 chromosomes and preferably, relative

pairs who have been typed for markers throughout the genome [12]. There is an extensive

literature addressing the statistical methods for detecting misspecified relationships based on

genotype data. There are two methods for relationship testing, the likelihood-based method

and identity-by-state (IBS) method.

Boehnke and Cox [5] used the likelihood ratio method to infer genetic relationships on

the basis of genetic marker data. It compares the multipoint probability of the marker data,

conditional on different genetic relationships and infers the relationship that makes the data

most likely, i.e. computing the likelihood ratio

LR(R1, R2) =
P (G|R1)

P (G|R2)
,

where R1, R2 are two relationships of a relative pair, G is observed genotype of the pair

over all markers. LR > 1 supports relationship R1 and LR < 1 supports relationship

R2. Likelihoods and posterior probabilities are calculated by assuming a IBD process to be

Markov and no interference between markers.

For more distant relationships like avuncular and first-cousin relationships, the IBD

process might not be Markov even under the non-interference assumption between markers.

In such cases, McPeek and Sun [31] used an augmented IBD Markov process to calculate

the likelihood of the marker data. The likelihood is calculated by applying the Baum [3]

algorithm to the augmented process. Let D denotes the IBD process for an outbred pair.

For cases where D is no longer a Markov process, an augmented process A is constructed. A

is Markov under no interference assumption, and it contains all the information of process

D. For any given relationship R of a relative pair, define α1(j) = P (A1 = j) and at marker
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k, αk(j) = P (G1, G2, · · · , Gk−1, Gk, Ak = j) for k > 1, where Gm is genotype data for the

pair at marker m. α1(j) is the stationary distribution of A for relationship R. Using the

recursion formula similar to Boehnke and Cox [5],

αk+1 =
∑

i

αk(i)P (Ak+1 = j|Ak = i)P (Gk|Ak = i),

where P (Ak+1 = j|Ak = i) is the transition probability of A. Since A contains all information

of IBD process denoted as {D}, P (Gk|Ak = i) = P (Gk|Dk = IBD status associated with

state i of A). So, probabilities P (Gk|Ak = i) are computed as P (Gk|Dk = j) given by

Thompson [46]. For cth chromosome, P (G1, · · · , Gnc) is given by
∑

j αnc(j), and multiplying

these terms over all chromosomes we get the likelihood of genotype data throughout the

genome for the pair.

Göring and Ott [16] developed methods of computing on the basis of genetic marker

data on the pair, the likelihoods of the sib, half-sib and unrelated relationships between

pairs of individuals and calculated the posterior probabilities for alternate relationships by

a Bayesian approach.

For the IBS method, one is interested to know how likely the observed identical by

state sharing is conditional on the assumed relationships. To test the hypothesis that two

individuals are sibs, Ehm and Wagner [12] proposed a test statistic based on the summation,

over a large number of genetic markers, of the number of alleles shared identical by state by

a pair of individuals. Sk(Gk) denotes a score based on proportion of of alleles shared IBS by

genotype Gk of a pair at marker k, and score over all markers is given by S =
∑

k Sk(Gk).

They calculate a test statistic S−E(S|R)
SD(S|R)

, where E(S|R) and SD(S|R) denotes mean and

standard deviation of S, conditional on relationship R. If the relationship R of the relative

pair is correct, then this statistic is approximately distributed as standard normal for large

samples.

1.3.3 Impact on Linkage analysis

The impact of misspecified relationships on linkage analysis is quite serious. Misspecified

relationships can lead to either reduced power or false-positive evidence for linkage [16] (see
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Figure 3: In linkage analysis, misspecified relationships can lead to either reduced power or

increased false positives in two different cases.

Figure 3). Reduced power might occur when an affected pair is actually more distantly

related than assumed, for example, when a half sib pair is incorrectly analyzed as a full sib

pair. If an affected pair is actually more closely related than assumed, this might result

in a false positive, for example when monozygotic twins are falsely coded as full sibs. So

detection of such errors is useful prior to linkage analysis.

1.3.4 Possible solutions

After relationship testing identifies an individual having a wrong relationship with other

relatives, one usually proceeds either by discarding the individual from the pedigree, or by

constructing an alternative pedigree structure. Discarding individuals leads to a conserva-

tive structure where individuals with erroneous relationships are removed. To construct an

alternative structure, one has to first observe the p-value from the relationship testing and

also the estimated IBD sharing probability, and then infer an alternative structure to the

pedigree. These two options are usually followed by studies analyzing real data whenever

they encounter relationship error.

In the first solution to deal with relationship error, i.e. for conservative structure, one
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loses information on the discarded individuals, and this might reduce power. In the second

solution, replacing the stated apparent structure by an alternative structure might not be

the best solution, as the ’most likely’ pedigree structure might not be the ’most certain’

structure. Also, it is hard to incorporate the choice of the ’most certain’ structure in an

automated code. In a situation where one has sparse markers, not enough to infer an alter-

native structure, this solution does not work well.

We thereby propose a third solution: statistically model the uncertainty by properly

weighting over the possibilities. This leads to developing three new linkage statistics that

model relationship uncertainty. In our approach, we have taken five true possible underlying

relationships. Five true relationships are considered because together they give a good cov-

erage of the outbred space of the relationship triangle, as discussed in the next section. Also,

we do not take more than five true relationships as the number of parameters estimated in

one of our statistics increases with the number of true relationships considered.

1.3.5 Relationship triangle

In our method we consider affected relative pair data and a genome-wide scan of the pairs,

where the presumed relationship of the ARP actually might be different from the true rela-

tionship. In order to construct a linkage statistic that models relationship uncertainty via

weights, the weights being the conditional probability of a true relationship type given the

apparent one and the genome-wide marker data, we have to consider several true relation-

ships. We take those relationships so that together they give good coverage of the space of

IBD probabilities in the relationship triangle, which we now define.

The relationship triangle provides a way of diagramming the space of identity state prob-

abilities between two noninbred individuals [47]. The identity by descent (IBD) probabilities

are denoted as k = (k0, k1, k2) where ki is the probability that the individuals share i genes

IBD and k0 + k1 + k2 = 1. Individuals are related if k0 < 1. Each relationship may thus be

represented by a point in an equilateral triangle of unit height, the vertices corresponding

to unrelated pairs (k0 = 1), parent-offspring (k1 = 1), and the identity (monozygous twins)

relationship (k2 = 1) and ki values being the perpendicular distances of the point from the
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three sides. The triangle representation is shown in Figure 4 and the values of k for some

standard relationships are given in Table 1.

The kinship coefficient (ψ) is the probability that homologous genes segregating form

two individuals are identical by descent and thus ψ = (2k2 + k1)/4. While each relationship

determines a point k, the converse is not true. Several relationships give the same probabil-

ities k, as for example, half sibs (HS), grandparent-grandchild (G), and avuncular (AV) all

have k = (0.50, 0.50, 0). We should note that some points in the triangle are not attainable

by any non-inbred relationship, as there is a restriction on the parameters k1 ≥ 4k1k2. Here

we will give the proof for the inequality condition. For non-inbred individuals

ψ =
1

4
(ψMM + ψFF + ψMFψFM)k2 = (ψMMψFF + ψMFψFM)

where the subscripted kinship coefficients are those between a parent (mother (M) or father

(F)) of one individual, and a parent of the other. Now, as given by Thompson [47], the

arithmatic-geometric mean inequality gives

4k2 ≤ (ψMM + ψFF )2 + (ψMF + ψFM)2

≤ (ψMM + ψFF + ψMF + ψFM)2

= (4ψ)2

= (k1 + 2k2)
2 (1.8)

= k2
1 + 4k2(k1 + k2), (1.9)

and this implies that,

4k2k0 = 4k2(1− (k1 + k2)) (1.10)

≤ k2
1

For some relationships, such as full sibs (ψMM = ψFF = 0.25, ψMF = ψFM = 0) and

double first cousins, equality of the above condition holds. In the relationship triangle, these

relationships fall on the boundary parabola. For an inbred relationship, the IBD probabilities

k0, k1, k2 might not satisfy the inequality k2
1 ≥ 4k0k2. Thus an inbred relationship might not

be represented in the possible region of the relationship triangle.

We now give example (Table 1) of k and ψ for several different outbred relationships.

14



  

 
 

 

 Impossible    
    region 

Figure 4: The Relationship triangle. The notations FS, HS, FC, U, P and M denote full

sibs, half sibs, first cousins, unrelated, parent offspring and MZ twins. (This triangle is after

Thompson [1986])
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Table 1: Values of k and kinship coefficient ψ for some standard relationships between two

non-inbred individuals

Pairwise relationship k0 k1 k2 ψ

Unrelated (U) 1.00 0 0 0

Parent-offspring (PO) 0 1.00 0 .25

Monozygous twin (M) 0 0 1.00 .50

Full sibs (FS) .25 .50 .25 .25

Half sib (HS), .50 .50 0 .125

Grandparent-grandchild (G),

Avuncular (AV)

First cousin (FC) .75 .25 0 .0625

1.3.6 Summary

Relationship error is quite frequent in real data, and due to the assumption that true rela-

tionship is known without error, misspecified relationship can have potentially serious con-

sequences on linkage analysis. The common practice to resolve the relationship error issue

is either to discard erroneous individuals or to construct an alternative pedigree structure.

In our approach, we statistically model the relationship uncertainty, and thus develop three

new affected relative pair linkage analysis statistics. In section 1.4 we give the details of

these statistics, and the derivations are given in the section 1.5.

1.4 METHODS

Affected relative pair (ARP) linkage analysis methods, and thus the software packages as-

sume true relationship between the relative pairs is known without error. This assumption

leads to reduced power or false positive evidence of linkage in presence of misspecified rela-
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tionships. Thus, the fact that relationship error is quite frequent in real data motivated us to

develop ARP linkage statistics that model relationship uncertainty. Consider the situation

where we have collected affected relative pair (ARP) data and carried out a genome-wide

scan for linkage. As the stated apparent relationships might be different from the true rela-

tionship, we have developed three linkage statistics that model relationship uncertainty. Our

first relationship uncertainty linkage statistics (z-RULS) is an extension of the maximum lod

score statistics of Risch [36]. Our second RULS (V-RULS), which is derived from our first

one, is similar to the Cordell et al. [9] MLS, and our third RULS (L-RULS)is based on the

conditional-logistic representation of Olson [33].

Extension of Risch’s maximum lod score: Risch [36] showed that for ARPs, the like-

lihood for observed marker data for the jth pair is
∑2

i=0 ziwij, where wij = P (Gj|i). Now

one can proceed as follows,

2∑
i=0

ziwij =
∑

i

ziP (Gj|i)

=
∑

i

zi
P (i|Gj)P (Gj)

P (i)

=
∑

i

zi
f̂ijP (Gj)

fi

Under H0 of no linkage, the likelihood of the observed marker data is P (Gj), and thus the

log likelihood ratio test statistic for testing H0 becomes,

∑
j

log10(
∑

i

f̂ijzi

fi

). (1.11)

If there is relationship error, then the stated apparent relationship might not be the same

as the underlying true relationship. Thus, when one allows for relationship error in this

statistical framework, one has to adjust how one computes fi and f̂ij as one can no longer

use these for the observed relationship. Furthermore, one must also adjust how one computes

the zi.
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1.4.1 z-RULS

Our RULS that estimates z, the identity by descent (IBD) sharing probabilities among

affecteds, z-RULS, is an extension of the maximum likelihood statistic (MLS) developed

by Risch [36] to the situation where true relationships might be different from the stated

relationships. For possible true relationship types, we consider five outbred relationships:

full sibs (FS), half sibs (HS), first cousins (FC), unrelated (U) and parent offspring (PO), as

they cover the outbred relationship space of the relationship triangle [47].

Let Aff denote the event that both individuals in a pair are affected, and for affected pair

j, let Gj be the genome-wide marker data, T the true relation type, and Aj the apparent

relation type. Also, for a pair with apparent relation type Aj, let fA
ij be the probability of

sharing i alleles IBD at the marker given the genotype data, FA
ij is the posterior probability

of sharing i alleles IBD, and zT
i be the probability that an affected pair shares i alleles IBD

at the marker given the true relation type T .

The statistic for testing the null hypothesis that the marker is unlinked to the disease,

H0 : zFS
0 = .25, zFS

1 = .5, zHS
0 = .5, zFC

0 = .75, is given as:

z-RULS =
∑

j

log10[
2∑

i=0

fA
ij

FA
ij

∑
T∈(FS,HS,FC,U,PO)

zT
i P (T |Aff, Aj)] (1.12)

where zU
0 = 1, zP

1 = 1. As we can not estimate P (T |Aff, Aj), it is approximated by P (T |Aj)

(see section 1.5 for details behind the derivation of z-RULS).

We notice that our z-RULS (equation 1.12) is analogous to Risch’s maximum lod score

as given in equation (1.11), as each of the three terms (zi,f̂ij,fi) in equation (1.11) is replaced

in z-RULS by the appropriately weighted average of their respective values for each of true

relationships.

Similar to Risch’s [36] approach for his maximum lod score, we maximize z-RULS over

the parameters zT
i . Under H0, the asymptotic distribution of 2 ln(10)[z-RULS] is χ2

4. This

is because there is no genetic constraints over the parameter space for z-RULS.

The z-RULS ignores the correlations between the different zT
i that are induced by a

genetic model. The number of parameters we estimate (zT
i ) depends on the number of possi-

ble true relationships, thus increasing this number lowers the power of z-RULS. Considering
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these five true relationships (FS, HS, FC, PO, and U), we estimate a total of four parameters:

zFS
0 , zFS

1 , zHS
0 and zFC

0 . One doesn’t need parameters for U and PO, see details in section 1.5

The MLS proposed by Cordell et al. [9] is maximized with respect to the genetic vari-

ances; additive and dominance variances, subject to the constraint that the variance com-

ponents are nonnegative. We adopt this technique to decrease the number of parameters in

z-RULS and develop another RULS, the V-RULS. Our yet another RULS, L-RULS, based

on the conditional-logistic representation of Olson [33], also estimates a smaller number of

parameters. We now show that unlike z-RULS, both V-RULS and L-RULS model the cor-

relations between the zT
i , and thus use a lower number of parameters than is used by z-RULS.

1.4.2 V-RULS

The V-RULS estimates two parameters: PA = VA/K
2, PD = VD/K

2, where VA is additive

variance, VD is dominance variance, and K is population prevalence. The V-RULS is derived

from z-RULS following Cordell et al. [9]’s insight to reduce number of parameters. In their

MLS, the parameter zi is expressed in terms of PA and PD, here we denote it by zi(PA, PD).

Thus, their MLS can be written as

MLS =
∑

j

log10(
2∑

i=0

zi(PA, PD)f̂ij

fij

) (1.13)

We extend z-RULS to V-RULS by writing zT
i ’s in terms of PA, PD as zT

i (PA, PD). Thus

V-RULS is given by:

V -RULS =
∑

j

log10[
2∑

i=0

fA
ij

FA
ij

∑
T∈(FS,HS,FC,U,PO)

zT
i (PA, PD)P (T |Aff, Aj)] (1.14)

Now, comparing Cordell’s MLS and our z-RULS, we note that equation (1.14) is the analog

of equation (1.13) where each of the three terms (zi(PA, PD),f̂ij,fij) in equation (1.13) is

replaced by the appropriately weighted average of their respective values for each of true

relationships (for details, see section 1.5).

In order to express zT
i ’s as function of PA, PD, the parameters zT

i are first written in

terms of fT
i , λi and λT where fT

i is the prior probability of sharing i alleles IBD for true
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relationship T , λi are the relative risks to an individual sharing i alleles IBD with an affected

individual, and λT is the risk ratio of an individual related as T with an affected individual.

Both λi and λT being functions of the additive and dominance variances, equation (1.12)

can be written as function of the PA and PD, and thus we named our statistic as V-RULS.

So, the statistic V-RULS is given as,

V -RULS =
∑

j

log10

∑
i

fA
ijλi(PA, PD)

FA
ij

∑
T∈{FS,HS,FC,U,PO}

fT
i P (T |Aff, Aj)/λT (PA, PD)

(1.15)

The details behind the derivation is given in the section 1.5.

The V-RULS does not require specification of the population prevalence K, and thus is

robust to K. Under H0, the asymptotic distribution of 2 ln(10)[V -RULS] is a mixture of χ2

distributions. Since it is difficult to obtain p-values from mixture of distributions, we will

perform simulation study to calculate genome-wide threshold for V-RULS.

1.4.3 L-RULS

The L-RULS estimates two parameters: the relative risks to an individual who shares 1 or

2 alleles IBD with an affected individual, denoted as λ1 and λ2 respectively. The proposed

likelihood ratio test statistic is derived similarly as conditional-logistic representation of the

affected relative pair (ARP) likelihood ratio of Olson [33].

Let λi denote the relative risk of being affected to an individual who shares i alleles IBD

with an affected relative for i = 0, 1, 2 and λ0 = 1. The statistic L-RULS is given as,

L-RULS =
∑

j

log10[

∑
i λif

A
ij∑

i λiFA
ij

]. (1.16)

Details are given in the section 1.5. Under H0, the asymptotic distribution of

2 ln(10)[L-RULS] is a mixture of χ2 distributions, and similar to V-RULS, genome-wide

threshold for L-RULS is computed from the simulation study.

It can be shown analytically (as in section 1.5) that under certain assumptions, V-RULS

becomes the same as L-RULS.
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1.5 STATISTICAL DERIVATION OF THE RULS

Here we give the details behind the derivations of our three RULS and the details to compute

each RULS (as shown in the flowchart Figure 5). For completeness, we reiterate our variable

definitions here: Let Aff denote the event of both individuals in a pair being affected and for

affected pair j, let Gj be the genome-wide marker data, T the true relationship type, and Aj

the apparent relationship type. Also, let i be 0, 1, 2 alleles identity by descent (IBD) at a

marker, fA
ij be the probability of sharing i alleles IBD at the marker given the genotype data

of the pair with apparent relationship Aj, F
A
ij is the posterior probability of sharing i alleles

IBD, and zT
i be the probability that an affected pair shares i alleles IBD at the marker given

the true relation type T .

1.5.1 z-RULS

To develop z-RULS, the likelihood for the affected pair j with apparent relationship type Aj

is given as:

L(zT
i |Gj,Aff, Aj) ∝ P (Gj|Aff, Aj)P (Aff, Aj)

where

P (Gj|Aff, Aj) =
2∑

i=0

P (Gj|Aff, Aj, i)P (i|Aff, Aj)

≈
∑

i

P (Gj|Aff, Aj, i)
∑

T∈(FS,HS,FC,U,PO)

P (i|Aff, Aj, T )P (T |Aff, Aj) (1.17)

=
∑

i

P (Gj|Aj, i)
∑

T

P (i|Aff, Aj, T )P (T |Aff, Aj) (1.18)

=
∑

i

P (Gj|Aj, i)
∑

T

P (i|T,Aff)P (T |Aff, Aj)

=
∑

i

P (i|Gj, Aj)P (Gj|Aj)

P (i|Aj)

∑
T

P (i|T,Aff)P (T |Aff, Aj)

=
∑

i

fA
ijP (Gj|Aj)

FA
ij

∑
T∈(FS,HS,FC,U,PO)

zT
i P (T |Aff, Aj)

Step 1.17 is an approximation because we are summing over only 5 true relationships,

which is not the full set of possible true relationships. Step 1.18 is true if there is no
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association of the genetic markers with the disease locus.

The likelihood under the null hypothesis of no linkage for pair j is given as

L0 ∝
∑

i

fA
ijP (Gj|Aj)

FA
ij

∑
T∈(FS,HS,FC,U,PO)

P (i|T )P (T |Aj)P (Aff, Aj)

=
∑

i

fA
ijP (Gj|Aj)

FA
ij

FA
ijP (Aff, Aj)

= P (Gj|Aj)
∑

i

fA
ijP (Aff, Aj)

= P (Gj|Aj)P (Aff, Aj)

So, the likelihood ratio for affected pair j is

LRj =
∑

i

fA
ij

FA
ij

∑
T∈(FS,HS,FC,U,PO)

zT
i P (T |Aff, Aj) (1.19)

and we maximize log-likelihood ratio for all affected pairs,
∑

j logLRj over zT
i to get z-RULS

as in equation (1.12).

In order to compute the likelihood ratio, we proceed as follows. In equation (1.30), we

can not actually estimate P (T |Aff, A), but can only estimate P (T |A), as shown below:

P (T |Aff, A) = P (A|T,Aff)
P (T )

P (A)

P (Aff|T )

P (Aff|A)

= P (A|T )
P (T )

P (A)

P (Aff|T )

P (Aff|A)

= P (T |A)
P (Aff|T )

P (Aff|A)
(1.20)

As we do not know the true disease model, the value of P (Aff|T ) and P (Aff|A) are unknown

to us. Hence, we cannot estimate P (T |Aff, A). Next we show that the term P (T |Aff, A) in

equation (1.30) can be approximated by P (T |A). Let us assume P (Tl|A) ≈ 1 and P (Tk|A) ≈

0 for k 6= l. Also we have

P (Aff|A) =
∑

k

P (Aff|Tk, A)P (Tk|A)

=
∑

k

P (Aff|Tk)P (Tk|A) (1.21)
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Under the above assumption, we can write equation (1.21) as

P (Aff|A) ≈ P (Aff|Tl) (1.22)

From equations 1.20 and 1.22 we get,

⇒ P (T |Aff, A) ≈ P (T |A)

under the assumption that P (T |A) consists of one 1 and the rest zeros, so we can approximate

P (T |Aff, A) by an estimate of P (T |A), denoted here as r
T |A
j . In both the SP and LP datasets

we have r
T |A
j satisfying the condition that P (T |A) consists of one 1 and the rest zeros, showing

that approximating P (T |Aff, A) by P (T |A) works well for these two datasets. One has to

though remember that r
T |A
j may consist exactly of one 1 and rest zeros only when there is no

genotyping error. In the presence of genotyping error, r
T |A
j might not consist exactly one 1

and rest 0’s, but might be close to that, and P (T |Aff, A) might still be estimated by P (T |A).

In order to estimate r
T |A
j , we consider the genome-wide marker data of the pair j under

H0:

P (Gj|Aj) =
∑

T

P (Gj|T )P (T |Aj)

=
∑

T

P (Gj|T )r
T |A
j (1.23)

We maximize P (Gj|Aj) over rT |A to get the estimates for pair j. The P (Gj|T ) in equation

(1.23) are obtained (under the assumption of no intereference) by modifying the PREST

program [31]. We consider FS, HS, FC, U and PO as the possible true relationships as they

cover the space for outbred relationships in the relationship triangle (except the MZ twins

corner and the impossible region) [47]. We use quasi-Newton optimization as implemented in

the SEARCH program [26], to optimize equation (1.23) over r
T |A
j , subject to the constraint∑

T r
T |A
j ≤ 1 for each affected pair j. In the flowchart (Figure 5) to compute RULS, these

steps are shown by denoting r
T |A
j as rT |A for an affected pair.

We then calculate the posterior probability of sharing alleles IBD as,

FA
ij ≈

∑
T∈(FS,HS,FC,U,PO)

fT
i r

T |A
j (1.24)
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Figure 5: Flowchart showing the steps to calculate the RULS. See section 1.5 for the notation

used in this flowchart.
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where fT
i is prior probability of sharing i alleles IBD for true relationship T . Once r

T |A
j ’s are

obtained, we calculate FA
ij from equation (1.24) as illustrated in the flowchart Figure 5, and

FA
ij is denoted as FA.

The term fA
ij in equation (1.12) is obtained as

fA
ij = P (i|Aj, Gj)

≈
∑

T∈(FS,HS,FC,U,PO)

P (i|Aj, Gj, T )P (T |Aj, Gj)

=
∑

T

P (i|Gj, T )
P (Gj|T )P (T |Aj)

P (Gj|Aj)

=
∑

T∈(FS,HS,FC,U,PO)

P (i|Gj, T )
P (Gj|T )r

T |A
j∑

T P (Gj|T )r
T |A
j

. (1.25)

where P (i|Gj, T ) is computed at a grid of positions on the genome.

Now, it might at first seem that for T=PO, P (i|Gj, T ) may be undefined if one observes,

as for a genotype configuration not consistent with 1 IBD sharing. For example, we can

discuss about such a scenario at a marker, as assuming non interference between markers,

P (i|Gj, T ) depends on genotype data at the marker. Consider the genotype configuration

Gj at a marker for a PO pair is (1/1, 2/2). In this case, at this marker Gj, T=PO is not

consistent and also, i = 2 is not consistent with either Gj or T=PO. Thus, for this genotype

configuration at the marker, P (i = 2|Gj, T = PO) is undefined.

But, we can show as follows, that, taking genotype error model, P (i|Gj, T ) exists and

becomes 0, 1, 0 for i = 0, 1, 2 if the error is non-zero. To start with, we consider an error

model (see model below) for an individual with observed genotype Go at a marker and true

genotype Gt at the marker, and this error model is similar to that given by Sobel et al. [43].

P (Go|Gt) =

 1− ε if Go = Gt

ε
m−1

otherwise

where ε is the error rate per genotype, both genotypes are unordered, and there are m

genotypes in all common for the pair. We note that P (i|Go, T ) is given by:

P (i|Go, T ) =
P (i, Go, T )

P (Go, T )
(1.26)
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where P (i, Go, T ) can be written in terms of Gt as:

P (i, Go, T ) =
∑
Gt

P (i, Go, Gt, T )

=
∑

G⊂Gt

P (i, Go, G, T ) (1.27)

In step (1.27), G is a subset of the true genotype configurations Gt, those that are consistent

with i and T = PO, and equality at this step holds as P (i, Go, Gt, T ) = 0 for other Gt’s

where i, Gt, Go, T are not consistent with each other. So, in either case of ε > 0 or = 0,

i = 0, 2 is not consistent with T = PO, implying that

P (i, Go, G, T = PO) =

 0 if i=0,2

> 0 if i=1

Now, P (Go, T = PO) of equation (1.26) is given by,

P (Go, T = PO) =
∑

j

P (i, Go, T = PO)

=
∑

j

∑
G

P (i, Go, G, T )

=
∑

G

∑
j

P (i, Go, G, T )

=
∑

G

P (i = 1, Go, G, T = PO) (1.28)

where step (1.28) holds true by the previous argument.

So, to prove that P (i|Go, T ) in equation (1.26) exists for any i, we have to essentially

show that
∑

G P (i = 1, Go, G, T ) > 0.

P (i = 1, Go, G, T ) =
∑

G

P (T |i = 1, Go, G)P (i = 1|Go, G)P (Go|G)P (G)

=
∑

G

P (T |G, i = 1)P (i = 1|G)P (Go|G)P (G), (1.29)

where, G being consistent with i = 1 and T = PO, the probabilities P (T = PO|G, i) and

P (i = 1|G) are positive. Also, as for ε > 0, P (Go|G) is also positive, and thus from equation

(1.29),
∑

G P (i = 1, Go, G, T ) > 0, i.e. P (Go, T ) > 0. Hence, considering error model, we

have showed that for ε > 0, the probability P (i|Go, T ) exists.
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Now, as we have already showed that assuming the genotype error model,

P (i, Go, G, T ) = 0 for i = 0, 2, and P (Go, T ) > 0, the conditional probabilities P (i|Go, T ) = 0

for i = 0, 2, and this implies that P (i = 1|Go, T ) = 1. Hence we can conclude that for

T = PO, if we allow for a small error, P (i|Gj, T = PO) = (0, 1, 0).

The term P (i|Gj, T ) in equation (1.25) for pair j is obtained by Merlin [1] at a grid of po-

sitions (1 cM apart on genome) on the true structure T . See flowchart Figure 5 for steps to

calculate fA = fA
ij at grid of positions. To compute the z-RULS, we use the SEARCH

optimization method [26] on equation (1.12) under equality constraints
∑2

i=0 z
FS
i = 1,∑1

i=0 z
HS
i = 1 with zHS

2 = 0 and
∑1

i=0 z
FC
i = 1 with zFC

2 = 0.

Here we note that the z-RULS as given by∑
j

log10[
∑

i

fA
ij

FA
ij

∑
T∈(FS,HS,FC,U,PO)

zT
i P (T |Aff, Aj)] (1.30)

is analogous to Cordell et al. MLS ( see equation (1.13)) as expressed in Table 2 where each

of the three terms (zi,f̂ij,fij) in equation (1.13) is replaced by the appropriately weighted

average of their respective values for each of true relationships.

Table 2: Comparison between Cordell et al’s MLS and z-RULS.

MLS zi f̂ij fij

z-RULS
∑

i z
T
i r

T |A
j fA

ij ∼
∑

T P (i|Gj, T )
P (Gj |T )r

T |A
jP

T P (Gj |T )r
T |A
j

FA
ij ∼

∑
T f

T
i r

T |A
j

1.5.2 V-RULS

To derive our V-RULS, we begin with the likelihood ratio for affected pair j:

LRj =
∑

i

fA
ij

FA
ij

∑
T∈{FS,HS,FC,U,PO}

zT
i P (T |Aff, Aj)

Now, zT
i can be expressed, as given by Cordell et al. [9], in terms of two parameters λi and

λT and one known term that depends only on T, fT
i :

zT
i =

λif
T
i

λT

. (1.31)
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Here, fT
i is the prior probability of sharing i alleles IBD for relationship T , λi are the relative

risks to an individual who shares i alleles IBD with an affected individual, and λT is the risk

ratio of an individual related as T with an affected individual. The above likelihood for pair

j can then be written as,

LRj =
∑

i

fA
ijλi

FA
ij

∑
T∈{FS,HS,FC,U,PO}

fT
i r

T |A
j /λT . (1.32)

As derived by James [20], we can express λT in terms of the covariance of affection status of

the affected pair and the population prevalence K:

λT = 1 +
Cov(X1, X2)

K2
, (1.33)

where Xi is the phenotype of person i defined to be 0 or 1, according to whether the person is

affected or unaffected, and Cov denotes the covariance. James [20] showed that Cov(X1, X2)

can be expressed in terms of the additive and dominance variance (VA, VD) caused by disease

locus, and kinship coefficient (rA) and prior probability of sharing 2 alleles IBD (fT
2 ). The

covariance is given by:

Cov = 2rAVA + uRVD (1.34)

where rA = .5fT
2 + .25fT

1 and uR = fT
2 . This expression and equation (1.33) show that

both λT and λi are functions of VA and VD, and hence are functions of PA = VA/K
2 and

PD = VD/K
2. Thus V-RULS can be written as:

V -RULS =
∑

j

log10

∑
i

fA
ijλi(PA,PD)

FA
ij

∑
T∈{FS,HS,FC,U,PO}

fT
i P (T |Aff, Aj)/λT (PA,PD) (1.35)

We use SEARCH [26] to optimize equation (1.35) with respect to PA ≥ 0, PD ≥ 0 to compute

the V-RULS. The steps to compute V-RULS are also shown in Figure 5.
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1.5.3 L-RULS

To derive the L-RULS, based on the approach of Olson [33], we write the likelihood ratio for

affected pair j is

LRj =
P (Gj|Aff, Aj)

P (Gj|Aj)
=
P (Aff|Gj, Aj)

P (Aff|Aj)

=
P (Aff1)P (Aff2|Gj, Aj,Aff1)

P (Aff1)P (Aff2|Aj,Aff1)

P (Aff2)

P (Aff2)

=
P (Aff2|Gj, AjAff1)/P (Aff2)

P (Aff2|Aj,Aff1)/P (Aff2)

=

∑
i[P (Aff2|i,Aff1)/P (Aff2)]P (i|Gj, Aj)∑

i[P (Aff2|i,Aff1)/P (Aff2)]P (i|Aj)

=

∑
i λif

A
ij∑

i λiFA
ij

where Aff1 and Aff2 denote individual 1 and 2 is affected respectively, λi are the relative

risk to an individual who shares i alleles IBD with an affected relative, i = 0, 1, 2, λ0 = 1.

The terms fA
ij and FA

ij are obtained as in z-RULS. Thus, the log likelihood ratio taking all

affected pairs can be written as:

L-RULS =
∑

j

log10[

∑
i λif

A
ij∑

i λiFA
ij

]. (1.36)

To compute L-RULS, we use SEARCH [26] to optimize equation (1.38) under the condition

λ0 = 1, λ1 ≥ 1, λ2 ≥ 2λ1 − 1 so that the genetic constraints hold. The steps to compute

L-RULS is also shown in flowchart Figure 5.

Here we will show that V-RULS and L-RULS become equal when rT |A contains one 1

and others zeros. The likelihood ratio for pair j for V-RULS can be written as:

∑
i

fA
ij

FA
ij

∑
T

λif
T
i

λT

r
T |A
j

=
∑

i

λif
A
ij∑

T f
T
i r

T |A
j

∑
T

fT
i r

T |A
j

λT

(1.37)
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and that for L-RULS is,

λif
A
ij∑

i F
A
ij λi

=

∑
i f

A
ijλi∑

T r
T |A
j

∑
i f

T
i λi

=

∑
i f

A
ijλi∑

T r
T |A
j λT

. (1.38)

Now, for r
T |A
j containing one 1 and others zeros, the term fT

i r
T |A
j = fT

i for that T where

r
T |A
j = 1. So, equation (1.37) becomes equal to equation (1.38), implying that V-RULS is

same as L-RULS when r
T |A
j has one 1 and others zeros.

All our RULS computations are done at a pairwise level for an ARP, and changing the

structure to a true structure is also done for the pair, as shown in flowchart Figure 5. For

both MLS and Sall, the probability of genotype data is computed from the entire family data

unlike considering only ARPs in RULS.

We implemented the RULS (as discussed in this section and in flowchart Figure 5) in a

software program. This software will be available at http://watson.hgen.pitt.edu/register/.

Please see Appendix A for software documentation, and Appendix B for code developed to

compute RULS, MLS and Sall on SP and LP dataset.

1.6 SIMULATION

We performed a simulation study to evaluate our new RULS, and to compare them to the

MLS [9] and the exponential Sall nonparametric LOD score from Merlin [1] using true and

discarded structures. We simulated two datasets, one having small pedigrees (SP) and an-

other having large pedigrees (LP). As affected relative pairs in the same pedigree may not

be mutually independent, we have empirically computed the significance thresholds for our

RULS by simulation [9].
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1.6.1 Data structure

The SP dataset consists of 300 pedigrees with 660 affected pairs having several underlying

true relationship types between the affected individuals (see Figure 6A). We first simulate

data using the true pedigree structures and then change the true structures to the apparent

structures, where all affecteds are apparently related to each other as full sibs (FS). So the

number of pairs in SP having relationship errors is 40 (true HS stated as apparent FS, i.e.

HS→ FS), 20 (HS→ FS), 40 (U→ FS) and 80 (FC→ FS). This implies there are 180 out of

660 ARPs, i.e. 27% of ARPs have erroneous relationships. To get the discarded data for SP

dataset, we removed those individuals who are not truly full sibs.

The LP dataset consists of 60 large pedigrees (structures I and II) with several under-

lying true relationships, e.g., full sibs, half sibs, second cousins (see Figure 6B). To create

the apparent structure, we randomly moved an individual to another sibship in the terminal

generation based on an assumed error rate. In structure I (Figure 6B), we randomly moved

an individual from one sibship to become an apparent member of another sibship with prob-

abilities as given in Table 3, and for structure II, we randomly moved an individual from

sibship d to e and vice versa with probability 0.2. Unlike SP, LP dataset contains a more

realistic relationship error proportion ranging between 10% to 16%. To create the discarded

structure, we removed those individuals who are known to be erroneous i.e. those individuals

who are moved.

1.6.2 Marker data and disease models

The simulated marker data consists of 367 autosomal markers with an average 10 cM spac-

ing throughout the genome. We used realistic microsatellite marker allele frequencies and

realistic map distances. Chromosome 10 contains the disease locus (at 52.53 cM) which is

simulated using the underlying genetic models in Table 4. For given values of K and the

penetrances, the rest of the parameters are calculated.

We simulated marker data on the non-disease chromosomes using Simulate [45] and on

the disease chromosome conditional on the assigned disease status using Allegro v1.2c [17].

The marker simulation is done without any genotyping errors and the proportion of linked

31



 
A 
 
 
 
 
 
     
   n = 20: 20 FS, 40 HS           n = 20: 20 HS                n = 100: 100 FS 
 
 
 
 
 
 
 
 
            
       n = 100: 300 FS          n = 20: 20 FS, 40 U              
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    B  
 
 
 
 
 
 
 
 
 
 
 
        a               b                        c                                        d                                  e 
                        
                        n = 30, structure I                                            n = 30, structure II  
 
 
 
 

Figure 6: True structures of the small pedigree (SP) and large pedigree (LP) datasets. FS,

HS, U and FC represent full sib, half sib, unrelated and first cousin, and n is the number of

families with the given structure. Circles and squares denote females and males respectively,

the blackened symbols indicate affected individuals, the clear symbols with a slash denote

deceased individuals (who are neither phenotyped or genotyped).
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Table 3: Probabilities of randomly moving an individual in structure I in LP to create the

apparent structure

To

Sibship a b c

a .7 .2 .1

From b .2 .7 .1

c .1 .1 .8

Table 4: Genetic models used in our simulations, where K: prevalence, q: disease allele

frequency, pen: penetrance, λs: relative risk to sib, and λo: relative risk to offspring

Model q pen1 pen2 pen3 λs λo Description

K=.13:

1 .12 .00 .60 .60 2.75 2.80 Dominant, no phenocopies

2 .13 .01 .50 .50 2.27 2.22 Dominant, phenocopies

3 .46 .00 .00 .60 2.48 2.15 Recessive, no phenocopies

4 .49 .01 .01 .50 2.09 1.87 Recessive, phenocopies

5 .13 .00 .50 1.0 2.67 2.67 Additive, no phenocopies

6 .21 .01 .30 0.6 1.83 1.83 Additive, phenocopies
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families varied between models and pedigree structures (see legend for Figures 7 & 8). In

the SP dataset, 80% of the families are linked for models 1-5 and 100% are linked for model

6. We have taken all families to be linked for all models in LP dataset, so that power of

the statistics is not too small to compare between each other. Though genetic models 1-5

have genetic heterogeneity, the values of relative risks λs and λo (in Table 4) were computed

under the assumption of genetic homogeneity.

1.6.3 Data generation

For each replicate, we computed the RULS at a grid of positions of 1 cM throughout the

genome (see section 1.5 and flowchart Figure 5 for computational details). We also com-

puted the MLS using code from Cordell et al. [9] and Sall using Merlin [1] on both true and

discarded structures.

1.6.4 Computation

We simulated 1,000 replicates using all of the unlinked chromosomes to compute the empirical

genome-wide threshold for each statistic. The threshold τ is taken to be the value for which

P (maximum of RULS over all unlinked chromosomes ≥ τ) = α, where α is the significance

level, 0.01 and 0.05. For the power calculation, we simulated 400 replicates. Power is

calculated at both levels of significance, as the proportion of replicates with a statistic value

greater than the empirical threshold τ anywhere within +/- 10 cM of the true location of

the disease locus.

1.7 RESULTS

Here we discuss the results obtained from applying RULS on both SP and LP datasets. First,

in both SP and LP datasets, estimate of the weights rT |A consist of one 1 and rest zeros,
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implying that P (T |Aff, A) can be approximated by P (T |A). This is due to the fact that

both SP and LP have genome-wide markers simulated without any error in the genotype

data. Also we have checked from the true structure of SP and LP (see Figures 6A and B)

that the T for which rT |A is 1 is the correct one for that specific pair. The relationship types

of true structure of ARPs in SP dataset belong to the five T ’s we have considered. But in

LP dataset, there are ARPs related as second cousins and half second cousins, which does

not belong to the set of five T ’s we considered. For such ARPs, rT=U |A = 1, as both second

cousins and half second cousins have IBD sharing very close to an unrelated affected pair.

Second, as it is a simulated study, the true structure is known, and we verified that the

estimates of FA for a pair from apparent pedigree structure matched with that of the pair’s

true structure.

Thirdly, we have calculated the genome-wide empirical thresholds for all the statistics.

For some statistics we compared the empirical thresholds with the analytical thresholds

obtained from their asymptotic distributions. As L-RULS, V-RULS and MLS have genetic

constraints on their parameter spaces, it is difficult to derive the mixture distributions, and

so analytical thresholds are not obtained for L-RULS and V-RULS. For other statistics,

empirical thresholds are reasonably close to the expected analytical thresholds derived from

their asymptotic distributions (Table 5).

Fourth, for both the SP and LP datasets, the L-RULS and V-RULS perform better

than MLS and Sall on the discarded structure and their powers are reasonably close to MLS

and Sall on the true structure (Figures 7 and 8). In both power graphs, a horizontal line is

drawn along L-RULS, so that it is easier to compare the power of L-RULS with MLS and

Sall on true and discarded structures.

35



Table 5: Genome-wide empirical thresholds and number of parameters estimated for small

pedigree (SP) and large pedigree (LP), based on 1,000 replicates at the 0.05 and 0.01 signif-

icance levels. Analytical thresholds based on the asymptotic distributions of the statistics

also given.

Level:

(Dataset) z-RULS L-RULS V-RULS MLS MLS Sall Sall

true discarded true discarded

Empirical:

0.05 (SP) 5.60 (4) 3.50 3.50 3.04 3.08 3.10 (1) 3.06 (1)

0.05 (LP) 6.31(4) 4.21 4.21 5.81 5.72 2.65 (1) 2.61 (1)

Analytical:

0.05 5.11 (4) 3.29 (1) 3.29 (1)

Empirical:

0.01 (SP) 6.69 (4) 4.30 4.30 3.70 3.95 3.73 (1) 3.70 (1)

0.01 (LP) 6.70 (4) 4.52 4.51 6.10 5.80 3.50 (1) 4.10 (1)

Analytical:

0.01 5.67 (4) 3.78 (1) 3.78 (1)
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Figure 7: Power (95% CI) in +/-10 cM window from disease locus at the significance level

of 0.01, for different disease models and small pedigree (SP), based on 400 replicates. z: z-

RULS, L: L-RULS, V : V-RULS, M T : MLS on true structure, S T : Sall on true structure,

M D: MLS on discarded structure, S D: Sall on discarded structure. Here 80% of the

families are linked for models 1-5 and 100% are linked for model 6.
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Figure 8: Power (95% CI) in +/-10 cM window from disease locus at the significance level

of 0.01, for different disease models and large pedigree (LP), based on 400 replicates. z: z-

RULS, L: L-RULS, V : V-RULS, M T : MLS on true structure, S T : Sall on true structure,

M D: MLS on discarded structure, S D: Sall on discarded structure. Here 100% families

are linked to disease for all models.
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The power calculations for the LP dataset (Figure 8) indicate a similar power pattern as

for the SP dataset (Figure 7), though the power of the RULS is not as close to the power of

the MLS and Sall on the true structure as is the case for the SP dataset. For example, using

dominant Model 1, L-RULS gave 94% power for SP dataset and 74% power for LP dataset,

both being higher than MLS (83% for SP and 35% for LP) and Sall (90% for SP and 65%

for LP) using the discarded structure. The power pattern for both pedigree structures at

both levels of significance is:

MLS and Sall ≤ L-RULS and V-RULS ≤ MLS and Sall

on discarded structure on apparent structure on true structure

The power of the z-RULS is dramatically lower than that of the other RULS because

z-RULS estimates more parameters than the other RULS. The z-RULS does not perform

better than MLS and Sall on discarded structure for both SP and LP datasets and hence

it is not desirable to use the z-RULS. Also, as it is easier to interpret λi’s for i = 0, 1, 2,

L-RULS is preferred over V-RULS. Thus the above results suggest that ideally one should

use L-RULS on the apparent structure in presence of relationship uncertainty in the data.

1.8 DISCUSSION

Here we developed several relationship uncertainty linkage statistics (RULS) that statistically

model relationship uncertainty by properly weighing over the possible true relationships. We

carried out a simulation study to assess the RULS and to compare them to the MLS and Sall

nonparametric LOD score for both the true pedigree structure and discarded structure where

individuals with erroneous relationships are discarded from the pedigree. In our simulation

study we considered both small pedigree (SP) and large pedigree (LP) datasets under several

disease models. The results showed that both L-RULS and V-RULS have power nearly as

high as MLS and Sall on the true pedigree structure. Also, both the RULS have significantly

higher power than MLS and Sall on the discarded structure. So, it is better to compute these

RULS on the apparent pedigree structure than to discard erroneous individuals.
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The weights rT |A estimated in both SP and LP consist of one 1 and other zeros, where

1 appears at the correct place, for example, an ARP truly related as half sib has estimated

weight rT=HS|A=HS = 1 and other rT |A=HS = 0 for every other T ’s. This implies that true

relationship structure of an ARP could be inferred quite precisely for both the datasets. But

it is tougher to infer true structure of the entire family consisting of more than one ARP. In

real data scenario, sometimes it might be difficult to construct the true family structure just

by knowing true structure of individual ARPs. One might use Mendel v7.0 [32] to obtain

true structure of a family, and we will try to apply this approach to construct an alternative

structure for a family, as discussed in next section for future work.

The V-RULS, L-RULS and MLS have mixture chi-square distributions, and thus ana-

lytical thresholds are not given for these statistics in critical threshold table (see Table 5).

The genome-wide empirical thresholds computed for z-RULS and Sall for both datasets and

for the MLS for the SP dataset are reasonably close to the analytical thresholds obtained

using the asymptotic distributions. The MLS for the LP dataset have empirical thresholds

much higher than the analytical thresholds at both levels of significance. It is likely that

the lack of independence of the affected pairs in the LP dataset might explain the higher

empirical threshold for MLS. Also, for both SP and LP datasets, as estimated weights rT |A

consist of only one 1 and rest zeros, V-RULS becomes of the same form as MLS [9]. But we

have to remember that only an affected pair genotype data is used for the V-RULS compu-

tations, whereas genotype data for an entire family is considered for computing MLS. Thus

the thresholds of V-RULS and MLS using true structure differ for both SP and LP datasets.

In this study, we find that proper modeling of relationship errors in linkage analysis gives

substantially better power than the commonly-used approach of discarding erroneous indi-

viduals. Another possible solution for handling relationship errors is to construct the most

likely alternative structure for the erroneous ARPs. This approach is similar to the statis-

tically dubious approach of treating the most likely haplotype as the “certain” haplotype

for an individual in association studies. Thus, this approach of using most likely alternative

structure is less statistically appropriate than our approach, which, instead of arbitrarily

choosing to use only the single most likely alternative structure, essentially considers all

possible alternative structures through use of proper probabilistic weights.
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We can compute the RULS on a real data set by following the steps shown in the flowchart

Figure 5, though significance thresholds cannot be computed through simulation as the true

relationship structures will not be known. Empirical thresholds corresponding to SP or LP

dataset can be used if the data structure is similar to SP or LP respectively.

In this study, we considered as the set of true relationships only outbred relationships

[47]. Many real studies have inbred relationships and failure to consider such inbred rela-

tionships in the RULS might give lower power for such studies. We plan to determine the

performance of an extended RULS, which will include some inbred relationships in the set

of the true relationships.

1.9 L-RULS APPLIED ON A REALISTIC SIMULATED DATA

Our L-RULS has been applied to a realistic simulated dataset that has a realistic proportion

of families with relationship and genotyping errors. This application gave an idea of how

L-RULS performed in comparison to applying Sall on the apparent, discarded and alternative

structures.

A realistic data (it is a simulated dataset with realistic microsatellite marker allele fre-

quencies, and has some relationship and genotyping error) will be now used as our apparent

pedigree structure. In these data, 575 individuals from 218 families were typed for 373

microsatellite markers from autosomal chromosomes. Relationship testing by PREST [31]

identified 5 families with error when testing at a 0.01 level of significance, i.e. 2.3% families

have relationship errors. A conservative structure is constructed, where individuals with

erroneous relationships are removed. We also changed, by hand, the structures of each of

the 5 erroneous families to an alternative structure. This was done by inferring a possible

alternative structure for a pair from the IBD sharing estimated in PREST. Multipoint Sall

LOD scores were computed for all three structures: apparent, conservative and alternative

structures. L-RULS is then computed on the apparent structure. There are 371 affected

relative pairs in these data.

The results on two chromosomes 3 and 21 are shown in Figures 9 and 10. Chromosome 3

41



has significant linkage peaks with Sall ≥ 3.36, marginal p-value≤ 0.00004 for all three struc-

tures (Figure 9, parts A, B, and C). Now this realistic dataset has similar apparent structure

as that of our SP dataset. Thus, we used the empirical threshold we obtained for L-RULS

in SP dataset as the threshold for L-RULS in this realistic dataset. See Table 5, where the

empirical thresholds for L-RULS in the SP dataset at 0.05 and 0.01 level of significance are

3.50 and 4.30. This implies L-RULS=4.38 on chromosome 3 (see Figure 9D), is significant.

Chromosome 21 has suggestive linkage peaks with Sall ≥ 2.15, marginal p-value ≤ 0.0008

for all three structures (Figure 10A, B, and C). We again compare the L-RULS obtained in

this dataset with empirical threshold obtained in SP dataset. This comparison showed that

L-RULS=3.24 is suggestive and not significant at a 0.05 level of significance.

Though using empirical thresholds obtained in SP dataset might not be the most accu-

rate one to use, it gives a close approximation to the threshold, as the apparent structures are

similar between SP and this realistic dataset. This application shows that: first, removing

or correcting relationship errors gave higher LOD scores; second, L-RULS identified linkage

peaks at the same location as Sall; and third, L-RULS gave similar conclusions about linkage

peak as that obtained from Sall.

1.10 FUTURE WORK

Here we discuss the possible future work that we would like to explore in applying RULS. Due

to poor performance of z-RULS in this study, we won’t further explore behavior of z-RULS.

L-RULS and V-RULS are same when rT |A contains one 1 and rest zeros, but one might

encounter situations where these weights differ from this condition. We will compute only

L-RULS for the following future work. Firstly, we will apply RULS on a real data. We have

already tried to implement a part of RULS computations on Otitis Media with Effusion data

from Caucasian families (see chapter 2, section 2.3.7). Secondly, we will consider computing

RULS on the alternative structure. Though it is hard to automate a code that can select

a best possible alternative structure, it would be interesting to compare performance of

MLS, Sall on alternative structure from a simulation study, with those on true and discarded
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Figure 9: Chromosome 3 linkage peaks for A. Sall=3.36 on apparent structure, B. Sall=3.84

on conservative structure, C. Sall=3.75 on alternative structure, and D. L-RULS=4.38 on

apparent structure.
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Figure 10: Chromosome 21 linkage peaks for A. Sall=2.15 on apparent structure, B.

Sall=2.56 on conservative structure, C. Sall=2.39 on alternative structure, and D. L-

RULS=3.24 on apparent structure.
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structures and RULS on apparent structure that have already been done. Also, in a real data

scenario, as we won’t know the true structure, it might be fruitful to use empirical p-values

of RULS on the most likely alternative structure. Thirdly, we want to incorporate inbred

relationships in extended RULS, as it might reflect the real data scenario better. Fourthly,

error in genotype data will be allowed to assess the performance of RULS.

1.10.1 Comparison to Alternative structure

In this study, our RULS using the observed apparent pedigree structures are compared to

MLS [9] and Sall [21] using both true and discarded structures. As a part of our future work,

we will perform similar comparison to MLS and Sall using the most likely alternative struc-

ture for each pedigree. It seemed that replacing an apparent structure with an alternative

structure might not be the best statistically sensible solution to overcome relationship error.

But we found out that for an ARP, estimated weight rT |A is close to one 1 and rest zeros,

with the 1 appearing at the right place. We have checked that for both SP and LP datasets,

the 1 in rT |A appears at the correct place where A matches with the underlying T . Now,

the true relationship for which rT |A is close to 1, can be taken as the alternative structure

for the ARP. One has to note that having an alternative structure for a pair is not the same

as constructing the alternative structure for the whole pedigree. Either we have construct

the alternative structure for the family using alternative structure of each ARP manually, or

we can apply Mendel v7.0 with certain options to get the alternative structure of the entire

family. Now, in reality, sometimes it might be hard to manually reconstruct alternative

structure of the family using that of the pairs. Also, it would be tough to automate the pro-

cess of constructing alternative structure of family by using alternative structure of pairs.

Thus to perform power study for L-RULS and MLS on alternative structure, we will use

Mendel v7.0. Thus, considering an alternative structure might be a solution to relationship

error. Hence, in future, we will compare RULS on apparent structure to MLS and Sall on

alternative structure.

We will consider the same apparent structure A as we have used to compute RULS. As

before, modified PREST code and SEARCH will be applied to obtain the estimated weights
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for an ARP. Now, once rT |A is computed for an ARP, the relationship for which this estimated

weight is close to 1, will be noted. Then the structure of an ARP will be changed to that

specific alternative structure, and this will be coded in R software. Once we get the apparent

pedigree structure for all ARPs uniquely identified for a family, we will manually construct

the alternative structure for the family. MLS and Sall will be computed on the apparent

structure. We can also use ALTERTEST from PREST package [31] to obtain alternative

structure for a relative pair. This process might be tough in certain realistic situations, and

also to automate this method. Mendel v7.0 [32] analysis option 9 with model 2 (that tests

for all relationship types) can be used to obtain alternative structure for an entire family. A

simulation study on SP and LP datasets will be done to evaluate power of MLS and Sall on

apparent structure.

Also, it would be interesting to construct an alternative structure for a real dataset. As

we only have apparent structure, we won’t know the true structure for a real data, and hence,

we will use the best possible alternative structure as a surrogate for the true structure. ARPs

can be part of a very large pedigree, and in that case, using our above mentioned approach of

constructing alternative seeing rT |A, or using ALTERTEST can give the alternative structure

only for the particular ARP, and does not construct the entire alternative pedigree structure.

Hence, we will use Mendel v7.0 analysis option 9, model 2 to construct alternative structure.

One has to give a prior probability to all possible alternative structures, and a reasonable

prior reflecting the relationship types in the population, will be provided to Mendel. We will

then simulate marker data for the alternative structure, change to apparent structure, and

compute RULS on the apparent. A simulation study will be done implementing the above

algorithm to get p-values for RULS on the real data. This way we can use an empirical

p-value for RULS.

1.10.2 Incorporating Inbred relationships

As discussed in section 1.4.1, till now we have considered only outbred relationships as pos-

sible true underlying relationships to weight the relationship uncertainties in RULS. In a

real data scenario, inbreeding is possible, and failure to consider such inbred relationships in
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RULS might lead to a false positive linkage signals. Hence we will incorporate an inbred re-

lationship in the set of true relationships considered for RULS. Performance of this extended

RULS by incorporating inbred relationship will then be assessed by computing genome-wide

threshold and power through a simulation study, and then compared with our L-RULS, and

MLS, Sall, as before.

To incorporate inbred relationships to RULS, we will include inbred full sibs whose par-

ents are first cousins in the set of possible true relationships to derive our extended RULS.

First cousins marriage seems to be the most common consanguinity marriages over various

populations, and so, this inbred relationship might be a realistic one to include in our set.

As discussed in section 1.3.5, an inbred relationship falls in the impossible region of the rela-

tionship triangle [47] given for noninbreds. We will also try to plot this inbred relationship in

the triangle using prest.R code (written by Daniel E. Weeks) in PREST, to inspect coverage

of our new set of relationships to be considered in extended RULS.

First the pedigrees with true structure as given in Figure 11 will be simulated. 40 large

families of which 10 have inbreeding with family (structure II), and rest 30 having non inbred

relationships, will be simulated for true structure. We will take the same marker data, and

the same location to simulate the disease locus with Model 1 (Table 4), as in SP or LP

datasets in our original study. Second, an apparent structure will be obtained by randomly

moving an individual to another sibship in the terminal generation based on an assumed

error rate, and also removing the inbreeding loop in some families. For structure I, we take

the same error rate same as that of structure I in LP dataset, and is given by probabilities as

shown in Table 3. For structure II, in 5 families, we take the same error rate as in structure

II in LP dataset, i.e. an individual will be randomly moved from sibship d to e and vice versa

with probability 0.2. In the remaining 5 families we would remove the inbreeding loop by

adding a dummy parent. To create the discarded structure, we will remove those individuals

who are known to be erroneous, i.e. those individuals who are moved.

Thirdly, to incorporate inbreeding in RULS, we will take inbred full sibs whose parents are

first cousins as the inbred relationship that is to be included in the set of true relationships.

So, for the extended RULS, the set of possible true relationships will now be consist of six

relationships, i.e. T∈(FS, HS, FC, U, PO, InFS), where InFS stands for the inbred full sibs.
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Figure 11: True structure of inbred dataset for extended RULS, where n is the number of

families with the given structure. Circles and squares denote females and males respectively,

the blackened symbols indicate affected individuals, the clear symbols with a slash denote

deceased individuals (who are neither phenotyped or genotyped).

As discussed before, only L-RULS will be extended. Now we will discuss how to obtain the

extended L-RULS by following through the steps of flowchart Figure 5. For each ARP, we

will compute rT |A by calculating P (G|T ) from Merlin [1] software with - -likelihood option,

as Merlin can handle inbreeding within a family. Then we will compute FA, and change

the structure to those six possible true structures. In order to give an ARP the inbred FS

structure, one has to put the same dummy parents for both the parents of the ARP, i.e.

parents of ARP are full sibs. We will then compute P (i|G, T ) from Merlin software with

- -ibd option at each grid of positions over the genome. These steps will help to calculate fA

as given in section 1.5. Finally, as shown in the flowchart, we will compute the extended L-

RULS at each grid of positions. A simulation study will be performed to assess the extended

RULS.

1.10.3 Impact of genotyping error

We will explore the impact of genotyping error on RULS as a part of our future work. In

this study, both the datasets SP and LP are simulated free of any genotyping error, and thus
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these datasets might not reflect a real scenario. Also, Douglas et al. [11] showed that even

small genotyping errors might substantially lower the power to detect linkage using ASPs.

Hence, we will implement a moderate genotype error rate of 1% [14] while simulating the

true pedigree structure, compute our RULS and then compare performance of RULS in both

scenarios, one without genotyping error and another, genotyping error present in data.

We will consider the same true pedigree structure as in SP dataset (Figure 6A). The

unlinked markers will be simulated by Simulate [45]. We will simulate disease locus at the

same position as taken for SP dataset, using Allegro [17], and with disease model as Model 1

(Table 4). Microsatellite marker data will be simulated with 1% genotyping error rate with

uniform error model, using the genotyping error simulation module in Mega2 [29]. Once we

construct the final pedigree file, we will follow the steps given in flowchart Figure 5 to get

the RULS. To explore the impact of genotyping error on RULS, we have to compute RULS

on the same pedigree structure without genotyping error. Another dataset will be simulated

with the same pedigree structure, and same unlinked marker data. This time, we do not

generate any genotyping error, i.e. err option will be kept at 0. RULS will be computed

for this dataset without genotyping error. We will then compare RULS in both scenarios, in

the presence and absence of genotyping error. Similar to the previous two proposed works,

here also, we will perform simulation study for each scenario, and compare RULS to detect

the impact of genotyping error on the performance of RULS.
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2.0 GENOME-WIDE LINKAGE SCAN FOR OTITIS MEDIA WITH

EFFUSION AMONG THE CAUCASIANS

2.1 INTRODUCTION

Otitis Media (OM) is a middle ear infection and is the most common cause of hearing loss

among young children. Children suffering from Otitis Media with effusion (OME) have fluid

in the middle ear that causes mild hearing loss without any other symptoms. OME is caused

when the auditary tube becomes blocked, and as for children, this tube being more horizontal

than that of adults, OME is more common among children. Tympanostomy tube placement

is recommended if fluid is still present after 4-6 months. In this study, subjects with history

of tympanostomy tube insertion, along with their families (affected or unaffected siblings and

parents) are recruited at University of Pittsburgh Medical Center, and 1976 from 500 families

have been enrolled in this study. As this is an ongoing study, 1317 people are genotyped till

date, using Affymetrix 10K SNP chip technology. Though the enrolled families included both

Caucasian and African-American or biracial families, since the number of Caucasian families

recruited is much higher, we perform linkage analysis using only the Caucasian families. We

check for relationship and genotype error prior to linkage analysis, and 1235 samples are

then used for linkage analysis. We perform nonparametric multipoint linkage analysis using

Merlin software [1], and observe exponential Sall LOD score [21].
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2.2 BACKGROUND

Otitis media (OM) is the most common among children under 15 years of age, with almost

25 million affected in 1990 [40]. Otitis Media with effusion (OME) is the most common cause

of mild hearing loss among children, and OME is caused by fluid in middle ear. As OME

is asymptomatic, affection status is determined by history of tympanostomy tube insertion.

This study is conducted using subjects from Pittsburgh, and are enrolled by University of

Pittsburgh Medical Center. In Pittsburgh, 6.5% of African American and 5% Caucasian

infants of two years of age have tympanostomy tube insertion [6]. There is also a study

using nationwide representative sample of US children that showed by 3 years of age, 6.8%

had tympanostomy tubes inserted [22].

There are previous studies regarding some important risk factors related to Otitis Media

with effusion. There are studies showing environmental risk factors that affect the incidence

of the disease. Also several studies have shown that there is association between allergy and

OME. Some literature also suggests that children with a variant of gene producing high level

of gamma interferon might not develop ear infection after getting a cold like other children

(Web resources [C]). Thus the risk factors of OME include characteristics of a subject (age,

sex, race, allergy, cleft palate/craniofacial abnormalities and genetics), and also environment

(day care, school, passive smoking, socio-economic status etc.).

There are also several studies indicating the role of genetics in OME. Firstly, though

several studies showed there is difference of OME incidence between population, two recent

studies [6],[34] found that incidence of OME did not differ among Caucasian and African-

American children. In addition, a positive family history gives an increased risk to OME,

and this shows familial aggregation of OME [38]. Thirdly, there are several studies that

indicate siblings are at higher risk of getting OME. One study by Rasmussen [35] showed

that incidence of OME among children with affected siblings is four times higher than other

children. Fourthly, the most convincing evidence of genetic component in susceptibility to

OME is obtained from twin study results. A preliminary twin study showed an estimated

heritability of .73, indicating that OME has a strong genetic component. The twin and

triplet cohort study by Casselbrant et al. [27] showed that there is strong genetic component
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to the amount of time with middle ear effusion in children. Another longitudinal twin study

by Rovers et al. [38] found that heritability is .71 at the age of 4 years with even higher

heritability at earlier ages. Studies show that heritability estimates of OME are in the range

of common diseases whose susceptibility genes have been mapped using affected sib pair

linkage analysis. All these evidence imply that there is significant genetic role in incidence

of OME, and though there might be individual risk factors, genetics might have a higher

contribution to the susceptibility of OME.

Though there is evidence in literature that OME might be a genetic disease, there has

been only one genome screen with affected relative pairs. Daly et al. [10] studied 133

families recruited by the University of Minnesota Otitis Media center, and 591 samples

were genotyped at 404 microsatellite markers. Their genome-wide linkage analysis showed

evidence of linkage in the chromosomal regions of 10q and 19q with multipoint nonparametric

LOD scores of 2.61 and 2.53 respectively.

2.3 MATERIALS AND METHODS

2.3.1 Family structure and affection status

Subjects with a history of tympanostomy tube insertion, along with their affected and unaf-

fected siblings and one or both parent(s) were recruited. An individual is considered affected

if they had tympanostomy tubes inserted. The total number of individuals enrolled for this

study is 1976 and total number of families is 545, out of which 670 are Caucasian families

and 39 African American or biracial families. As the number of African American or biracial

families is low, we used only Caucasian families for the statistical analyses. There are fam-

ilies with one parent present, Table 6 shows the number of families with number of typed

parents.
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Table 6: Pedigree information. First two rows give the number of families with either one

parent missing or have both parents typed. The next two rows give the number of families

according to the number of siblings in the family.

Number of parent 1 2

Number of families 84 234

Number of siblings 1 2 3 4 5 6

Number of families 26 215 60 11 5 1

2.3.2 Genotyping

Genotyping was done using Affymetrix 10K SNP chip technology. Two versions of the

10K Affymetrix SNP panels were used, the older version had 11,560 SNPs, while the newer

version had 10,204 SNPs without the rs numbers. We combined two versions in order to

use maximum number of common markers available for genotyped individuals. The total

number of SNPs in the combined data is 11,093 with average spacing (over all chromosomes

except 3, 13, 16 and 22) of less than 0.5 cM, and with much higher spacing at the end

of the mentioned four chromosomes. Notice that we should have obtained genotype data

for at least 11,560 SNPs, and not 11,093 SNPs in the combined data. But since we could

not obtain physical positions for more than 467 SNPs, we had to remove those SNPs. Out

of 1,976 enrolled individuals, 1,317 were genotyped. Population specific differences in the

incidence of OM have been reported, and in our study, among the 704 genotyped affected

individuals, 670 are from Caucasian families and 34 are from African American or biracial

families.

2.3.3 New map

We have developed a more accurate SNP genetic map for linkage analysis. To estimate

the genetic position of our SNPs, we used interpolation between the physical position of
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the SNPs from dbSNP (Build 135) and that from the Rutgers Combined Linkage Map [23]

(also Build 135 version). The later map combines genotype data from both the CEPH and

deCODE pedigrees, and provides genetic map with more than 28,000 SNPs. In this new

map, we have 11046 SNPs with average spacing of .5 cM. As we believe this new combined

map is better for linkage analysis as genetic map distances are more accurate, we will perform

linkage analysis using this interpolated map.

2.3.4 Relationship and Genotyping error checking

The first approach towards data analysis was to identify any relationship error present in the

data. We did two rounds of relationship error checking: each time we performed relationship

testing using PREST [31] and then checked the erroneous pairs with the clinical lab. In

both rounds of error checking, we inferred from the relationship testing based on genome-

wide marker data and the apparent relationships that several pairs have significantly different

relationship than their apparent relationship. We checked both the p-values for IBS test and

the estimated identity by descent (IBD) probabilities to detect the pairs with erroneous

relationships. Due to multiple testing issues, we used a stringent p-value of 0.001.

2.3.4.1 Within pedigree relationship error check We started with 2,001 genotyped

relative pairs and relationship testing in the first round detected 28 pairs with erroneous

relationships and we inferred on their true relationships: 6 full sib pairs inferred as MZ

twins, 3 full sibs as half sibs, 1 full sib as unrelated, 16 parent-offspring pairs as unrelated,

and 2 parent-offspring pairs as MZ twins. These erroneous pairs were referred back to the lab,

and after checking these pairs, they gave us the updated information on the pedigree data.

In the second round of relationship testing with 1,976 pairs, we again found 63 pairs from

22 families with significant relationship errors. Second round of error checking showed more

families with errors that first round, because in the first round we checked error in full sibs

and parent-offspring relationships, unlike all relationships in second round. As before, from

the p-values and estimated IBD probabilities, we inferred the possible true relationships for

the erroneous pairs: 20 full sibs inferred as half sibs, 1 full sib as unrelated, 13 parent-offspring
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pairs as unrelated, etc. So, 10 families out of these 22 families suggested changing the full sib

structure to half sib structure, and 9 families showed an apparent paternity problem. This

time also, we informed the lab with the list of families that showed relationship errors. They

confirmed the errors for majority of those families. As we could not confirm the inferred

structure for all the families at this stage, after completing the across family error checks, we

constructed a conservative structure by discarding the minimal number of individuals that

eliminate the majority of problematic relationships.

2.3.4.2 Between pedigree relationship error check As PREST performs relation-

ship testing for pairs within a family, we also checked for across family relationship errors by

using RELPAIR [14] on our data. We have used only 5,007 polymorphic SNPs in RELPAIR

to identify whether there is any relationship error across families, i.e. the families are con-

nected. The results showed that 2 sets of two families are connected and the lab confirmed

that one set has duplicated families and another has sample mix-ups. One of the duplicated

families was removed and another with no relationship error within the family was used

for the analysis. So after we went through all the steps of relationship error checking, we

detected 313 families out of 322 total families, and 295 out of 305 Caucasian families are

free of any relationship errors. Individuals with erroneous relationships with the rest of the

individuals in their family were removed from the pedigree to prepare the conservative struc-

ture. The conservative dataset has 1,307 individuals from 313 families. As the number of

Caucasian families genotyped is much more than African-American families, we henceforth

will analyze only the Caucasian families. We prepared the conservative dataset with the

Caucasian families, and it has 1,235 individuals from 295 families.

2.3.5 Genotype error check

We checked this conservative structure for genotyping error using PedCheck (O’Connell

and Weeks 1998), and an entire family is zeroed out at each marker showing Mendelian

inconsistency for that family. Out of total 11,093 SNPs, 7,426 had to be set missing for

several families, maximum being for SNP rs6509245 in 53 families.
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2.3.6 Nonparametric Linkage analysis

Multipoint nonparametric linkage analysis was performed using Merlin software (Abecasis et

al. 2002). The conservative structure for Caucasian families was used for this analysis. The

Sall LOD score is computed at each marker and also at a position in between two markers.

The SNPs along with the LOD score and marginal p-value were noted for the regions with

a maximum LOD score on a chromosome.

2.3.7 Applying RULS on OME

Our Otitis Media with effusion data for Caucasian families indicate 10 families out of 305

families, i.e. 3.3% of the families have relationship errors. We have removed erroneous

individuals with relationship errors from Caucasian data to perform linkage analysis on

the conservative dataset. As discussed in chapter 1, using RULS on the given structure

might be more powerful than using the conservative structure. Hence, we have already

tried to implement RULS on our OME data from the original 305 Caucasian families with

relationship errors, but only could proceed to get the estimates of the weights of each possible

true underlying relationship. Please refer to the notations given in chapter 1 for the following

explanation. We have encountered some programming problems in RULS while computing

P (G|T ) to estimate P (T |A). Individuals are typed for 10K SNPs in this OME dataset,

and to get P (G|T ) for each affected relative pair, probability terms for each marker are

multiplied, leading to an underflow problem (cumulative probabilities over all markers lower

than 4.940656e−324 are set to 0). This issue of a severe underflow problem was not considered

previously in RULS, because we validated RULS code using microsatellite markers, and they

being much fewer in number, did not cause serious underflow problem like SNP data. We

have implemented a check for underflow, and added a positive number to lnP (G|T ) for

each ARP, to finally obtain P (G|T ). Since this term P (G|T ) occurs both in the numerator

and denominator of fA for each ARP, there is no need to adjust for the added constant to

overcome the underflow problem. Now, we will continue from here to compute RULS on

those 305 Caucasian families.
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2.4 RESULTS

Nonparametric linkage analysis identified several regions in the genome having suggestive

linkage, out of which regions on six chromosomes have LOD scores ≥ 1.5 (marginal p-value

≤ 0.002). The maximum LOD score of 2.36 (p-value 0.0005) is observed at rs1345938 on

chromosome 7. There are other regions on this chromosome that showed LOD scores higher

than 1.5. SNP rs2812415 on chromosome 10 is another region showing LOD>2. This marker

has LOD 2.06, p-value 0.001. The regions on other four chromosomes with the suggestive

evidence of linkage are at rs924266 (LOD=1.67) on chromosome 1, rs725395 (LOD=1.76)

on chromosome 2, rs2133507 (LOD=1.79) on chromosome 4, and rs958653 (LOD=1.65) on

chromosome 8.

2.5 FUTURE WORK

Here we discuss several directions to be explored in future. Firstly, as in this OME study,

we are using SNPs to identify susceptibility loci for linkage, we need to assess the quality of

SNPs to be used in the analysis. Secondly, we will validate the interpolated map we have

developed, and then use it for linkage analysis. Thirdly, we will perform association analysis

to identify risk alleles to OME. The literature of OME suggests that OME is a common

disease and hence doing association analysis might be fruitful.

To assess the quality of SNPs, we have to perform several steps of quality control and fil-

ter out the low quality SNPs from further analysis. Several recent study performing genome

wide association assess quality of SNPs. Also, one study by Hinds et al. [18], examining

common genetic variation pattern between three populations, explained their steps of quality

assessment done to select a better set of SNPs. We will follow the similar screening to obtain

a higher quality of SNPs, and will reject data for SNPs that perform poorly in this quality

control steps. Firstly, we will remove SNPs with high rate of missing genotypes. Percentage

of SNP with amount of missing genotypes, and overall frequency of successful genotype calls

will be recorded, and SNPs with significant missing genotypes will be removed. Secondly,
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Figure 12: Linkage analysis of OME on conservative structure for Caucasian families. Chro-

mosomes 1, 2, 4, 7, 8 and 10 show multipoint Sall LOD score ≥ 1.5.
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SNPs deviating from Hardy-Weinberg equilibrium will be discarded. For linkage purpose,

removing SNPs significantly out of Hardy-Weinberg might give a better set of error free

genotypes that are consistent with the equilibrium. Thirdly, we then want to compare allele

frequency of SNPs, as estimated from our data using only Caucasian families, with that of

the same set of SNPs from the HapMap project and Affymetrix Caucasian data. Similar

to some studies, we can submit the SNP assay details to National Center for Biotechnol-

ogy Information (NCBI)’s SNP database. From these, we might get an idea how our SNPs

frequencies agree with either of the mentioned databases. Once we get the better set of

SNPs with higher percentage of non-missing genotypes, we will then take only Caucasian

family data for the following steps. Our fourth step is to first select SNPs with minor allele

frequency ≥ 0.05 in Caucasian data, and then analyze for linkage disequilibrium between

SNPs. As SNPs are densely located, there might be high linkage disequilibrium between

them, hence, we will also select tag SNPs with a high correlation coefficient with every SNP

in a strong LD block. This approach might give a smaller set of SNPs (tag SNPs) to be

used for association analysis, and at the same time this set should have approximately the

same power for detecting any disease association as the entire set. SNP-SNP linkage dise-

quilibrium between close proximity SNPs also influences linkage signals, tag SNPs will be

used for linkage analysis. We will identify tagging SNPs by Haploview [2]. Genotype data

for founders, and physical location of SNPs are the inputs in Haploview, and we will take

squared correlation coefficient of r2 ≥ 0.8 to identify tag SNPs. Using the Tagger option, we

will obtain the tag SNPs in each haplotype block.

We will validate and use for linkage analysis, the interpolated map that we have devel-

oped as a part of this study. Initial comparisons with several sources like dbSNP, Map-O-Mat

and Devlin et al.’s interpolated map (all Build 135) showed some inconsistencies with our

interpolated map. The interpolated map is constructed using physical location of dbSNP

markers that are common with our SNPs from OME study, and the genetic map positions

from Rutgers Map-O-Mat SNPs (see the interpolated map section). As we have obtained

the interpolated map, we want to cross check it with several other maps of same build, so

that we can be assured of the map quality we use in linkage analysis. Map quality is impor-

tant for multipoint linkage analysis as the LOD scores from multipoint analysis is sensitive

59



to intermarker map distances. We will compare the intermarker genetic map distance, and

overall map sequence for each chromosome. Then the new interpolated map will be used to

perform linkage analysis.

We will perform association analysis to identify risk alleles for OME. There are two ap-

proaches of doing that, either we will test several SNPs in close proximity with SNPs showing

significant linkage signals, or we will perform genome wide association analysis involving all

SNPs, rather ideally the tag SNPs. There are again several approaches of doing associa-

tion analysis using family data. We will perform TDT type association analysis, as this

approach is not influenced by population substructure. In our data, we will check for pop-

ulation substructure within the Caucasian families by STRUCTURE [48]. As in this study

we are not taking trios, i.e. parents and an affected offspring, the simple TDT statistic [44]

won’t be applicable. This OME study involves nuclear families with parents (either typed or

missing) and their offspring (affected and affected siblings). Thus family based association

test [28] (FBAT) or pedigree disequilibrium test [25] (PDT) will be more applicable. Un-

like FBAT which uses only nuclear families, PDT is a more general approach of association

test which can use general pedigrees and is not restricted to only nuclear families. Now,

in this OME study, we consider only nuclear families with typed or missing parents and

affected/unaffected siblings, it would be appropriate to use FBAT itself. We will analyze the

SNPs by FBAT software (see web resources) with analysis option fbat [-m] [marker(s)], and

we will not consider any covariate in our analysis. For the first approach of analyzing SNPs

in the region of significant linkage, we will use an added analysis option [-e] as this tests for

association in presence of linkage.
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2.7 WEB RESOURCES

A. http://www.ncbi.nlm.nih.gov/projects/SNP/

B. http://www.affymetrix.com/index.affx

C. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=hstat6.chapter.23362

D. http://www.sph.umich.edu/csg/abecasis/Merlin/download

E. http://galton.uchicago.edu/ mcpeek/software/prest/download.html

F. http://www.biostat.harvard.edu/ fbat/default.html

G. http://compgen.rutgers.edu/mapomat/

H. http://watson.hgen.pitt.edu/register/
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3.0 APPENDIX A: SOFTWARE DOCUMENTATION FOR RULS

The RULS.tgz file contains code to compute the RULS on affected relative pair (ARP) linkage

data, as proposed in ”Relationship uncertainty linkage statistics (RULS): Affected relative

pair linkage statistics that model relationship uncertainty” by Amrita Ray and Daniel E.

Weeks.

3.1 REQUIREMENTS FOR RULS

1. Unix Operating System

2. cc, C compiler

3. g77, Fortran compiler

4. gpc, Pascal compiler

5. R (http://www.r-project.org/)

6. MEGA2 (http://watson.hgen.pitt.edu/register/)

7. SIMULATE (http://www.genemapping.cn/simulate.htm)

8. Allegro v1.2c (http://www.decode.com/software/allegro)

9. SEARCH (http://www.biomath.ucla.edu/faculty/klange/register.html)

10. threelocfull.tar.gz (http://www.staff.ncl.ac.uk/heather.cordell/threeloc.html)

11. MERLIN (http://www.sph.umich.edu/csg/abecasis/Merlin/download)

12. GENEHUNTER (http://www.broad.mit.edu/ftp/distribution/software/genehunter/)
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3.2 INSTALL INSTRUCTIONS

Download RULS.tgz from http://watson.hgen.pitt.edu/register/ and untar it by typing

tar zxf RULS.tgz, this should create a RULS folder containing a copy of this documentation

(README.txt) and two folders, example/ and real/.

The example/ folder contains sim.sh and code.tgz, and the real/ folder contains ruls.sh

and code1.tgz.

Download and install items 1-8 and 11-12 of the above list (in Requirements for RULS)

to /usr/local/bin. For items 9, and 10, do as follows: After obtaining SEARCH and three-

locfull.tar.gz from their respective websites, then

A. Copy SEARCH.FOR into the RULS folder.

B. Copy threelocfull.tar.gz into the RULS folder, untar it by typing

gunzip threelocfull.tar.gz

tar xvf threelocfull.tar,

and go to folder THREELOCFULL/ and change onelocarp.f by inserting a new line after

line 707: write(10,36) vadd(1), vdom(1)) so that it prints VA and VD.

3.3 INPUT FILES

Three input files required to compute RULS and other statistics, MLS and Sall, are: Pedigree

file containing pedigree information, Locus file with affection status and marker information,

and Map file with marker position information. Details behind each input file is discussed

now.

3.3.1 Pedigree file

The pedigree file (pedfile.dat) should be in the pre-Makeped LINKAGE format. The pre-

Makeped columns are pedigree ID, person ID, father ID, mother ID, gender (1=Male and

2=Female), affection status (0 = unknown, 1 = normal, 2 = affected) and genotypes (To
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code a codominant marker locus phenotype, list the two numbered alleles with at least one

space or tab between the alleles, the unknown genotype is coded as 0 0). Everyone must

have either two parents or no parents in the data file.

As the RULS work well only when one has marker data on all the autosomal chro-

mosomes, pedfile.dat should contain genotype information from genome-wide marker data.

Also, Allegro [17] and Genehunter [24] requires that there should be less than 17 non-founders

in any given pedigree.

Example of pedigree file for a genotyped affected sib pair (showing marker information

for 2 loci):

1 1 0 0 1 0 0 0 0 0 ...

1 2 0 0 2 0 0 0 0 0 ...

1 3 1 2 2 2 6 5 3 3 ...

1 4 1 2 2 2 5 5 3 3 ...

3.3.2 Locus file

The locus data file (datafile.dat) should be in standard LINKAGE format with the addition

of locus names (after the number of alleles in marker locus, one should put a # sign followed

by the locus name), which must be specified. It contains information about the markers

to be used in the analysis, including marker names, and their population frequencies. The

locus file also contains information regarding affection status locus, and the first locus should

be the single affection status locus with single liability class. Also, the locus file has to be

matched to the pedigree file, with the loci in exactly the same order.

Example of locus file with 367 markers and 1 trait locus with single liability class:

368 0 0 4

0 0.0 0.0 0

1 2 3 4 5 · · · 367 368

1 2 #diabetes � AFFECTION, NO. OF ALLELES

0.8850 0.1150 �GENE FREQUENCIES

1 � NO. OF LIABILITY CLASSES
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0.000 0.600 0.600 � PENETRANCES

3 9 # D1S468

0.395890 0.002740 0.093150 0.093150 0.005480 0.012330 0.194520 0.200000 0.002740

3 10 # D1S214

0.085990 0.002770 0.006930 0.027740 0.485440 0.289880 0.090150 0.008320 0.001390 0.001390
...

3 11 # D22S274

0.001400 0.253500 0.015410 0.002800 0.113450 0.249300 0.138660 0.001400 0.135850 0.043420

0.044820

0 0 � SEX DIFFERENCE, INTERFERENCE (IF 1 OR 2)

0.1 0.1 0.1 0.1 0.1· · · 0.1

1 0.10000 0.45000 � REC VARIED, INCREMENT, FINISHING VALUE

3.3.3 Map file

The map file contains the (relative) map position of genome-wide markers in Kosambi cen-

tiMorgans (cM).

Example of mapfile:

CHROMOSOME KOSAMBI NAME

1 0 D1S468

1 9.82 D1S214

1 16.39 D1S450

1 20.46 D1S2667

· · ·

3.4 RULS ON REAL DATA

To analyze your own data with RULS, go to the real/ folder, and follow the instructions

below.
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A. Copy the your 3 input files: pedigree, locus and map files to the real/ folder (the files

should be named as pedfile.dat, datafile.dat and mapfile.dat respectively). The required

format of the input files is given above.

B. To compute RULS on your data, type

./ruls.sh

C. The result file ruls.tgz will be in real/ folder. Untar ruls.tgz by typing

tar zxf ruls.tgz,

to get the output files zruls*.txt, lruls*.txt, vruls*.txt (for RULS), where * denotes the

chromosome number.

As you will see, computation of RULS can be time-consuming, thus, if you wish to get results

on a specific chromosome, change the chromosome loop in ruls.sh, uncomment that specific

chromosome and comment others.

For a real data, you can not create a true structure, so there is no comparison with Sall

or MLS, thus ruls.sh only computes our RULS.

3.5 OUTPUT FILES FROM RULS.SH

From ruls.sh we only get output files containing our RULS. All the RULS compute multi-

point non-parametric LOD scores at a grid of 1cM throughout the genome. The output file

zruls*.txt contains z-RULS, estimates of z’s (zT as in our paper), and analytical p-value at

each grid of position on chromosome (* represents chromosome number). Similarly, lruls*.txt

contains L-RULS, estimates of λ1, λ2, p-values; and vruls*.txt contains V-RULS, estimates

of VA/K
2, VD/K

2, p-values.

3.6 RULS ON EXAMPLE DATA

For example files, go to the example/ folder. See example.pdf for the example pedigree

structure. These data were simulated to have a disease locus at 52.54 cM on chromosome

66



10 segregating under a dominant model with penetrance (0,0.6,0.6).

If you want to see the example pedigree, locus and map file, untar code.tgz by typing

tar zxf code.tgz,

and the respective files (ped*.pre, datafile.dat and newmap.dat) are in code/ folder.

To analyze the example data, continue to next steps in example/ folder, and follow as

given below.

A. To simulate the example data and to compute RULS, MLS and Sall, type

./sim.sh, and to change the random number seed for simulation, see instructions in sim.sh

.

B. Once you run sim.sh, the result file sim.tgz will be in example/ folder. Untar sim.tgz file

by typing

tar zxf sim.tgz

to get the output files. The output files from sim.sh are apparentped (apparent pedigree

structure), trueped (true pedigree structure), discard.txt (discarded pedigree structure),

zruls*txt, lruls*.txt, vruls*.txt (RULS on apparentped), mlstrue*.out, mlsdiscard*.out (MLS

on true and discarded pedigree structures) and lodtrue*.txt, loddiscard*.txt (Sall on true and

discarded pedigree structures), * denotes for all chromosomes. To get results on a specific

chromosome, change the chromosome loop in sim.sh, uncomment that specific chromosome

and comment others. See section Output files for details.

3.7 OUTPUT FILES FROM SIM.SH

Here we give the details behind all the output files from sim.sh. All the statistics (RULS,

MLS and Sall) compute multipoint non-parametric LOD scores at a grid of 1cM through-

out the genome. The output file zruls*.txt contains z-RULS, estimates of z’s (zT as in our

paper), and analytical p-value at each grid of position on chromosome (* represents chro-

mosome number). Similarly, lruls*.txt contains L-RULS, estimates of λ1, λ2, p-values; and

vruls*.txt contains V-RULS, estimates of VA/K
2, VD/K

2, p-values.
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The output files containing MLS (Cordell et al. 2000) on true and discarded pedigree

structure are mlstrue*.out and mlsdiscard*.out respectively, where * represents chromosome

number. The file mlstrue*.out gives MLS on true structure, estimates of z’s (see Cordell

et al. 2000), and analytical p-value at each grid of position on chromosome *. Similarly,

mlsdiscard*.out gives MLS on discarded structure, z’s and p-value.

The output files lodtrue*.txt and loddiscard*.txt contain Sall LOD score using true and

discarded pedigree structure respectively, where * represents chromosome number. The file

lodtrue*.txt contains Sall on true sturcure and p-value at each grid of position on chromosome

*. Similarly, loddiscard*.txt contains Sall on discarded structure.

3.8 JOB SUBMIT

We have performed the simulation on our computer cluster with Sun Grid Engine. To

compute genome-wide empirical thresholds we simulated 1000 replicates, and to compute

power we simulated 400 replicates. These replicates are obtained by submitting the script

(sim.sh modified, see later) to different nodes (one replicate per node).

The sim.sh script is set up to let you run one replicate on a specific node. If you want to

submit jobs, look for instructions (commented sections) in sim.sh for job submit. You have

to uncomment the job submit sections in sim.sh, and provide the node number to run sim.sh

(for example, ./sim.sh 1, where 1 denotes the node number).
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and 5R01DK055406. We thank Dr. Mary S. McPeek and Dr. Lei Sun to give us permission

to distribute our modified version of their PREST.
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3.10 LICENSE

This program is free software; you can redistribute it and/or modify it under the terms of

the GNU General Public License as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY of FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program (see file gpl.txt); if not, write to the Free Software Foundation, Inc., 59 Temple

Place - Suite 330, Boston, MA 02111-1307, USA.

We request that use of this software be cited in publications as Ray A, Weeks DE (2007)

”Relationship uncertainty linkage statistics (RULS): Affected relative pair linkage statistics

that model relationship uncertainty”
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4.0 APPENDIX B: CODE TO COMPUTE RULS

4.1 RULS.SH

This code, ruls.sh computes RULS using apparent structure from a real data (see software

documentation chapter on how to use ruls.sh).

#!/bin/tcsh

# Local job. RULS on apparent pedigree structure. #

########### for job submit ###########

#$ -cwd

#set node=$1

#echo JOB_ID: $JOB_ID JOB_NAME: $JOB_NAME HOSTNAME: $HOSTNAME

#mkdir /tmp/$$/

#unalias cp

#unalias mv

#unalias rm

#cp code1.tgz /tmp/$$/

#set HomeDir=‘pwd‘

#cd /tmp/$$

#tar zxf code1.tgz

#cd code1/

#####################################
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set node=1

date

unalias cp

unalias mv

unalias rm

tar zxf code1.tgz # code1.tgz: codes to compute RULS, MLS and S_all #

cd code1/

# Check for R and C, Fortran, Pascal compiler #

set a = ‘which R‘

if ( "$a" =~ *Command?not?found* ) then

echo ERROR: R not found

exit

endif

set a = ‘which awk‘

if ( "$a" =~ *Command?not?found* ) then

echo ERROR: awk not found

exit

endif

set a = ‘which gcc‘

if ( "$a" =~ *Command?not?found* ) then

echo ERROR: gcc, C compiler not found

exit

endif
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set a = ‘which g77‘

if ( "$a" =~ *Command?not?found* ) then

echo ERROR: g77, Fortran compiler not found

exit

endif

cp ../../SEARCH.FOR ./SEARCH.F

if !(-e SEARCH.F) then

echo ERROR: SEARCH.F not found

exit

endif

make all # compiles .c and .F files #

cp ../pedfile.dat ped

cp ../datafile.dat .

cp ../mapfile.dat newmap.dat

if !(-e ped) then

echo ERROR: pedigree file not found

exit

endif

if !(-e datafile.dat) then

echo ERROR: locus file not found

exit

endif

if !(-e newmap.dat) then
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echo ERROR: map file not found

exit

endif

mega2 -nosave MEGA2.BATCH2>& /dev/null # MEGA2 with PREST option #

rm gprob.dat

echo Computing P(G|T) # T=FS, HS, FC, U, PO #

./hmm1wolog prest_ped.all prest_chrom.all 2 > gprob.dat

# modified PREST to get P(G|T) #

cp prest_out2 prestout2

sed ’/Prest/,/is/d’ gprob.dat > ng1.dat

mv ng1.dat gprob.dat

# to get P(G|T) for 5 T’s #

awk ’$5==1||$5==2||$5==5||$5==6||$5==10 {print $0}’ gprob.dat > gprob1.dat

echo Changing structure from A to T

R CMD BATCH step.R # Computes r^T|A, F^A, and changes A to 5 T’s #

echo F^A computed

awk ’$6==2 {print $1"_"$2}’ trial1.txt >aff.txt

# Compute RULS at grid of positions on chromosome i. #

#Uncomment chromosome loop if results on other chromosomes are required. #

set i=1

while ( $i<= 9 )

echo Computing RULS for chr$i
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set j=1

while ( $j<= 3 )

cp trial$j.txt trial.txt

cp MEGA2.BATCH3 MEGA2.BATCH # Mega2 with merlin option to get P(i|G,T) #

echo Chromosome_Single=$i >> MEGA2.BATCH

mega2 -nosave MEGA2.BATCH << MENU1

--ibd --grid 1

MENU1

merlin -p merlin_ped.0$i -d merlin_data.0$i -m merlin_map.0$i -f

merlin_freq.0$i --ibd --grid 1 >! merlin_out

awk ’{print $1,$1"_"$2,$1"_"$3,$4,$5,$6,$7}’ merlin.ibd >! ibd.txt

awk ’NR==FNR {s[$1]} NR!=FNR && ($2 in s) && ($3 in s)’ aff.txt

ibd.txt >! ibd1.txt

awk ’$2!=$3 {print $0}’ ibd1.txt >! ibd2.txt

sed ’s/_/ /g’ ibd2.txt >! ibd3.txt

awk ’{print $1,$3,$5,$6,$7,$8,$9}’ ibd3.txt >! merlinaff$j.txt

# These steps to get P(i|G,T) for affected pairs #

rm merlin_out

rm merlin.ibd

rm ibd.txt

rm ibd1.txt

rm ibd2.txt

rm ibd3.txt

@ j++

end

R CMD BATCH ruls.R # computes f^A and the RULS #

cp zruls.txt zruls0$i.txt # position, z-RULS, z’s #

cp lruls.txt lruls0$i.txt # position, L-RULS, lambda_1, lambda_2 #

cp vruls.txt vruls0$i.txt # position, V-RULS, V_A, V_D #

echo RULS for chr$i done
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@ i++

end

set i=10

while ( $i<= 22 )

echo Computing RULS for chr$i

set j=1

while ( $j<= 3 )

cp trial$j.txt trial.txt

cp MEGA2.BATCH3 MEGA2.BATCH

echo Chromosome_Single=$i >> MEGA2.BATCH

mega2 -nosave MEGA2.BATCH << MENU1

--ibd --grid 1

MENU1

merlin -p merlin_ped.$i -d merlin_data.$i -m merlin_map.$i -f merlin_freq.$i

--ibd --grid 1 >! merlin_out

awk ’{print $1,$1"_"$2,$1"_"$3,$4,$5,$6,$7}’ merlin.ibd >! ibd.txt

awk ’NR==FNR {s[$1]} NR!=FNR && ($2 in s) && ($3 in s)’ aff.txt

ibd.txt >! ibd1.txt

awk ’$2!=$3 {print $0}’ ibd1.txt >! ibd2.txt

sed ’s/_/ /g’ ibd2.txt >! ibd3.txt

awk ’{print $1,$3,$5,$6,$7,$8,$9}’ ibd3.txt >! merlinaff$j.txt

rm merlin_out

rm merlin.ibd

rm ibd.txt

rm ibd1.txt

rm ibd2.txt

rm ibd3.txt

@ j++

end
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R CMD BATCH ruls.R # computes f^A and the RULS #

cp zruls.txt zruls$i.txt # position, z-RULS, z’s #

cp lruls.txt lruls$i.txt # position, L-RULS, lambda_1, lambda_2 #

cp vruls.txt vruls$i.txt # position, V-RULS, V_A, V_D #

echo RULS for chr$i done

@ i++

end

if !(-e zruls.txt) then

echo ERROR: RULS files not created,

echo check if you have the necessary files given in README.txt

exit(1)

endif

echo RULS done

# Compress the files into a single gzipped tar file

tar zcf ruls.tgz *ruls*.txt

cp ruls.tgz ../

########## for job submit ##########

# Compress the files into a single gzipped tar file

tar zcf ruls.$node.tgz *ruls*.txt

## Copy back the compressed archive file

unalias cp

cp -f ruls.$node.tgz $HomeDir

cd $HomeDir

####################################
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##remove all the files on node

if (-e ruls.tgz) then

echo ruls.tgz copied back, so removing the folder code1/

rm -rf code1/

endif

date

exit

4.1.1 step.R

This code, step.R computes rT |Aj, F
A
ij , and changes structure A to five T’s for each affected

pair (i.e. rT |A, FA and changing structure steps in the flowchart Figure 5).

# calculates r^T|A and F^A #

gprob<-read.table("gprob1.dat") # output from modified PREST,

columns=ped id, per1, per2 (affected pairs),A=FS,T, P(G|T) #

gprob[ ,c(2,3)]<-gprob[ ,c(2,3)]+gprob[ ,1]*1000

ped1<-read.table("ped")

ped2<-ped1[ped1$V10==2,] # for premakeped, it is column 6#

ped2[ ,2]<-ped2[ ,2]+ped2[ ,1]*1000

data<-ped2[ ,c(2,11:ncol(ped2))] # marker data for unique person id #

aff<-data[,1]

m<-match(x=gprob[,2],table=aff)

m1<-gprob[c(which(is.na(m)==FALSE)),]

m2<-match(x=m1[,3],table=aff)

m3<-m1[c(which(is.na(m2)==FALSE)),]

pr1<-m3[ ,5:6]

n1<-nrow(pr1)/5 # n1=number of affected pairs #

f1<-matrix(0,n1,5) # matrix each row will be P(G|T) #
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d<-NULL

d1<-NULL

d2<-NULL

for(i in 1:n1){

tmp<-pr1[((((i-1)*5)+1):(i*5)),2]

m<-max(abs(tmp))

n<--740+m

d1<-rbind(d1,n)

tmp1<-exp(n+tmp)

d2<-rbind(d2,tmp1)

write.table(tmp1,"tmp.txt",quote=FALSE,row.names=FALSE,col.names=FALSE)

system("./clust1.o>OUTS2.DAT") # optimize to get r^T|A

for each affected pair #

system("awk -f findmax.awk -v maxiter=‘awk -f max.awk OUTS2.DAT‘

OUTS2.DAT> r1.txt")

r<-scan("r1.txt")

d<-rbind(d,r[4:8])

}

write.table(d,"r.txt",eol="\n",row.names=FALSE,col.names=FALSE,quote=FALSE)

I<-matrix(nrow=5,ncol=3,c(.25,.5,.25,.5,.5,0,.75,.25,0,1,0,0,0,1,0),byrow=TRUE) #f^T#

F<-t(t(I)%*%t(d))

write.table(F,"F.txt",eol="\n",row.names=FALSE,col.names=FALSE,quote=FALSE)

write.table(d1,"underflow.txt",quote=FALSE,row.names=FALSE,col.names=FALSE)

write.table(d2,"pofg.txt",quote=FALSE,row.names=FALSE,col.names=FALSE)

# Changes apaprent structure of affected relative pairs to T #

g<-m3[m3$V5==1,]

n<-nrow(g) # number of affected pairs #

# takes affected pair and makes it FS #
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d<-NULL

A<-matrix(nrow=2,ncol=5,c(100,0,0,1,0,200,0,0,2,0),byrow=T)

for(i in 1:n){

B<-matrix(nrow=2,ncol=5,c(g[i,2],100,200,2,2,g[i,3],100,200,2,2),byrow=T)

tmp<-rbind(A,B) # pedigree with affecteds as FS #

d<-rbind(d,tmp)

}

a<-seq(1:nrow(d))

d<-cbind(d,a)

m<-merge(x=d,y=data,by.x=c(1),by.y=c(1),all.x=TRUE)

m1<-sort(m[ ,6],index.return=T)

d<-m[m1$ix,c(1:5,7:ncol(m))]

b<-rep(c(1:n),each=4) # ped id, 4 individuals for T=FS #

d<-cbind(b,d)

d[,2]<-round(1000*(d[,2]/1000-floor(d[,2]/1000)))

write.table(d,"trial1.txt",na="0",eol="\n",quote=FALSE,

row.names=FALSE,col.names=FALSE)

# takes affected pair and makes it HS #

d<-NULL

A<-matrix(nrow=3,ncol=5,c(100,0,0,1,0,200,0,0,2,0,300,0,0,2,0),byrow=T)

for(i in 1:n){

B<-matrix(nrow=2,ncol=5,c(g[i,2],100,200,2,2,g[i,3],100,300,2,2),byrow=T)

tmp<-rbind(A,B) # pedigree with affecteds as HS #

d<-rbind(d,tmp)

}

a<-seq(1:nrow(d))

d<-cbind(d,a)

m<-merge(x=d,y=data,by.x=c(1),by.y=c(1),all.x=TRUE)

m1<-sort(m[ ,6],index.return=T)
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d<-m[m1$ix,c(1:5,7:ncol(m))]

b<-rep(c(1:n),each=5) # ped id, 5 individuals for T=HS #

d<-cbind(b,d)

d[,2]<-round(1000*(d[,2]/1000-floor(d[,2]/1000)))

write.table(d,"trial2.txt",na="0",eol="\n",quote=FALSE,

row.names=FALSE,col.names=FALSE)

# takes affected pair and makes it FC #

d<-NULL

A<-matrix(nrow=6,ncol=5,c(100,0,0,1,0,200,0,0,2,0,300,100,200,2,0,

400,0,0,1,0,500,100,200,2,0,600,0,0,1,0),byrow=T)

for(i in 1:n){

B<-matrix(nrow=2,ncol=5,c(g[i,2],400,300,2,2,g[i,3],600,500,2,2),byrow=T)

tmp<-rbind(A,B) # pedigree with affecteds as FC #

d<-rbind(d,tmp)

}

a<-seq(1:nrow(d))

d<-cbind(d,a)

m<-merge(x=d,y=data,by.x=c(1),by.y=c(1),all.x=TRUE)

m1<-sort(m[ ,6],index.return=T)

d<-m[m1$ix,c(1:5,7:ncol(m))]

b<-rep(c(1:n),each=8) # ped id, 8 individuals for T=FC #

d<-cbind(b,d)

d[,2]<-round(1000*(d[,2]/1000-floor(d[,2]/1000)))

write.table(d,"trial3.txt",na="0",eol="\n",quote=FALSE,

row.names=FALSE,col.names=FALSE)

#change to U#

d<-NULL

for(i in 1:n){
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A<-matrix(nrow=1,ncol=5,c(100,g[i,2],g[i,3],1,0),byrow=T)

B<-matrix(nrow=2,ncol=5,c(g[i,2],0,0,1,2,g[i,3],0,0,2,2),byrow=T)

tmp<-rbind(A,B)

d<-rbind(d,tmp)

}

a<-seq(1:nrow(d))

d<-cbind(d,a)

m<-merge(x=d,y=data,by.x=c(1),by.y=c(1),all.x=TRUE)

m1<-sort(m[ ,6],index.return=T)

d<-m[m1$ix,c(1:5,7:ncol(m))]

b<-rep(c(1:n),each=3) # ped id, 3 individuals for T=U #

d<-cbind(b,d)

d[,2]<-round(1000*(d[,2]/1000-floor(d[,2]/1000)))

d[,3]<-round(1000*(d[,3]/1000-floor(d[,3]/1000)))

d[,4]<-round(1000*(d[,4]/1000-floor(d[,4]/1000)))

write.table(d,"trial4.txt",na="0",eol="\n",quote=FALSE,

row.names=FALSE,col.names=FALSE)

# change to PO#

d<-NULL

A<-matrix(nrow=1,ncol=5,c(100,0,0,2,0),byrow=T)

for(i in 1:n){

B<-matrix(nrow=2,ncol=5,c(g[i,2],0,0,1,2,g[i,3],g[i,2],100,2,2),byrow=T)

tmp<-rbind(A,B)

d<-rbind(d,tmp)

}

a<-seq(1:nrow(d))

d<-cbind(d,a)

m<-merge(x=d,y=data,by.x=c(1),by.y=c(1),all.x=TRUE)

m1<-sort(m[ ,6],index.return=T)
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d<-m[m1$ix,c(1:5,7:ncol(m))]

b<-rep(c(1:n),each=3) # ped id, 3 individuals for T=PO #

d<-cbind(b,d)

d[,2]<-round(1000*(d[,2]/1000-floor(d[,2]/1000)))

d[,3]<-round(1000*(d[,3]/1000-floor(d[,3]/1000)))

write.table(d,"trial5.txt",na="0",eol="\n",quote=FALSE,

row.names=FALSE,col.names=FALSE)

q("no")

4.1.2 ruls.R

This code, ruls.R computes fA
ij and the RULS at grid of positions on a chromosomes (i.e.

fA and RULS steps in the flowchart Figure 5).

# computes RULS #

ng<-read.table("pofg.txt")

ng<-as.matrix(ng)

aff1<-read.table("merlinaff1.txt") #ibd of affected pairs, P(i|G,T=FS) #

aff2<-read.table("merlinaff2.txt") #ibd of affected pairs, P(i|G,T=HS)#

aff3<-read.table("merlinaff3.txt") #ibd of affected pairs, P(i|G,T=FC)#

tmp<-unique(aff1[ ,4])

q<-read.table("F.txt") #reads F^A#

r<-read.table("r.txt") #reads r^T|A, here A=FS#

write.table(nrow(r),"pair.txt",eol="\n",quote=FALSE,

row.names=FALSE,col.names=FALSE)

# pair.txt gives number of affected pairs #

d2<-NULL

d3<-NULL

d4<-NULL
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d<-vector("numeric",length=nrow(r))

for(k in 1:length(tmp)){ #loop over positions#

tmp1<-aff1[aff1$V4==tmp[k],5:7] #P(i|G,T) at each position#

tmp2<-aff2[aff2$V4==tmp[k],5:7]

tmp3<-aff3[aff3$V4==tmp[k],5:7]

d<-diag(ng%*%t(r))

tmp10<-(tmp1*ng[,1]*r[,1]+tmp2*ng[,2]*r[,2]+tmp3*ng[,3]*r[,3]+(matrix

(nrow=nrow(r),ncol=3,c(1,0,0),byrow=T))*ng[,4]*r[,4]+(matrix

(nrow=nrow(r),ncol=3,c(0,1,0),byrow=T))*ng[,5]*r[,5])*(1/d)

f3<-cbind(tmp10,q) #puts f^A and F^A together to calculate L-RULS#

write.table(f3,"file3.txt",eol="\n",quote=FALSE,

row.names=FALSE,col.names=FALSE)

tmp10[ ,1]<-tmp10[ ,1]/q[ ,1]

tmp10[ ,2]<-tmp10[ ,2]/q[ ,2]

tmp10[ ,3]<-tmp10[ ,3]/q[ ,3]

f2<-cbind(tmp10,r)

#puts vector f^A/F^A and r together to calculate z-RULS and V-RULS#

write.table(f2,"file.txt",eol="\n",quote=FALSE,

row.names=FALSE,col.names=FALSE)

system("./clust2.o > OUTS3.DAT") #SEARCH to compute z-RULS#

system("./clust3.o") #SEARCH to compute L-RULS#

system("./clust4.o > OUTS6.DAT") #SEARCH to compute V-RULS#

system("awk -f findmax.awk -v maxiter=‘awk -f max.awk OUTS3.DAT‘

OUTS3.DAT>amr.txt")

# tmp.awk and max.awk finds the iteration at which the function attains #

# minimum and pulls out the row of parameter estimates #

system("awk -f findmax.awk -v maxiter=‘awk -f max.awk OUTS4.DAT‘

OUTS4.DAT>amr1.txt")

system("awk -f findmax.awk -v maxiter=‘awk -f max.awk OUTS6.DAT‘

OUTS6.DAT>amr2.txt")
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amr<-scan("amr.txt")

amr1<-scan("amr1.txt")

amr2<-scan("amr2.txt")

d2<-rbind(d2,amr)

d3<-rbind(d3,amr1)

d4<-rbind(d4,amr2)

}

d30<-d2[ ,3:10] # values of function and z #

d30<-abs(d30)

#takes the positive value as minimum obtained for negative of the function #

d40<-cbind(tmp,d30) #adds position vector#

write.table(d40,"zruls.txt",eol="\n",quote=FALSE,row.names=FALSE,

col.names=FALSE)

#file with pos, z-RULS, z’s#

d31<-d3[ ,3:5] # values of function and lambda_1 and lambda_2 #

d31<-abs(d31)

d41<-cbind(tmp,d31)

write.table(d41,"lruls.txt",eol="\n",quote=FALSE,row.names=FALSE,

col.names=FALSE)

#file with pos, L-RULS, lambda_1 and lambda_2#

d32<-d4[ ,3:5] # values of function and V_A and V_D #

d32<-abs(d32)

d42<-cbind(tmp,d32)

write.table(d42,"vruls.txt",eol="\n",quote=FALSE,row.names=FALSE,

col.names=FALSE)

#file with pos, V-RULS, V_A, V_D#

q("no")
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4.2 SIM.SH

This code, sim.sh computes RULS on the example data files (see software documentation on

how to use sim.sh).

#!/bin/tcsh

# Local job. RULS on apparent pedigree structure, as obtained #

# from simulated true structure. #

########### for job submit ###########

#$ -cwd

#set node=$1

#echo JOB_ID: $JOB_ID JOB_NAME: $JOB_NAME HOSTNAME: $HOSTNAME

#mkdir /tmp/$$/

#unalias cp

#unalias mv

#unalias rm

#cp code.tgz /tmp/$$/

#set HomeDir=‘pwd‘

#cd /tmp/$$

#tar zxf code.tgz

#cd code/

#####################################

set node=1

date

unalias cp

unalias mv

unalias rm

85



tar zxf code.tgz # code.tgz has the necessary codes to

compute RULS, MLS and S_all #

cd code/

set a = ‘which R‘

if ( "$a" =~ *Command?not?found* ) then

echo ERROR: R not found

exit

endif

set a = ‘which awk‘

if ( "$a" =~ *Command?not?found* ) then

echo ERROR: awk not found

exit

endif

set a = ‘which gcc‘

if ( "$a" =~ *Command?not?found* ) then

echo ERROR: gcc, C compiler not found

exit

endif

set a = ‘which g77‘

if ( "$a" =~ *Command?not?found* ) then

echo ERROR: g77, Fortran compiler not found

exit

endif

cp ../../SEARCH.FOR ./SEARCH.F
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cp ../../maxfun.f .

cp ../../onelocarp.f .

if !(-e SEARCH.F) then

echo ERROR: SEARCH.F not found

exit

endif

if !(-e onelocarp.f) then

echo ERROR: onelocarp.f not found

exit

endif

if !(-e maxfun.f) then

echo ERROR: maxfun.f not found

exit

endif

make all

touch seed$node.txt

echo $node >! node.txt

echo Beginning simulation replicate 1

### For pedigree simulation ###

R CMD BATCH rand.R # Creates different seed files for each pedigree type #

#To change the random number seed: as rand.R generates one random number #

# seed at a time, to get a new number, you have to run rand.R #

#for more replicates or change the node number. #
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set a = ( 2 2 10 10 2 4 ) # Number of pedigrees for each type #

set i=1

while ( $i<= 6 )

R CMD BATCH ped$i.R # ped*.pre has the true pedigree structure, ped*.R #

#adds to ped*.pre: 1 1 for typed individuals and 0 0 for untyped ones, #

#required for SIMULATE #

@ i++

end

# You have to change ped*.pre files to your input true pedigree structure. #

#ped*.pre has 6 columns: pedigree ID, person ID, parent ID’s, #

# sex and affection status #

set j=1

while ( $j<= 6 )

cp ped$j.pre ped.pre

mega2 MEGA2.BATCH1>& /dev/null << MENU

# MEGA2 with SIMULATE option, to simulate null chromosomes #

1

$a[$j]

0

MENU

set k=1 # Loop over chromosomes #

while ( $k<= 9 )

cp nproblem$j.$node problem.dat # nproblem* is the seed file from rand.R #

echo -n $j 0$k >> seed$node.txt

cat problem.dat >> seed$node.txt

cp simdata.0$k simdata.dat

cp simped.0$k simped.dat

simulate >& /dev/null
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cp problem.dat nproblem$j.$node # seed changed by SIMULATE#

rm simdata.dat

rm simped.dat

mv pedfile.dat pedfile.0$k # Pedigree file simulated for chromosome #

@ k++

end

set k=11 # Disease chromosome is 10, to be simulated by Allegro #

while ( $k<= 22 )

cp nproblem$j.$node problem.dat

echo -n $j $k >> seed$node.txt

cat problem.dat >> seed$node.txt

cp simdata.$k simdata.dat

cp simped.$k simped.dat

simulate >& /dev/null

cp problem.dat nproblem$j.$node

rm simdata.dat

rm simped.dat

mv pedfile.dat pedfile.$k

@ k++

end

R CMD BATCH try.R # Binds the pedfiles over the null chromosomes #

cp ped ped$j

R CMD BATCH trial$j.R

# Changes the pedigree structure from T to A=FS. #

#If you also require A=FS, you need to only change person ID in trial*.R #

@ j++

end
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R CMD BATCH totalped.R

# Gives apparent and true pedigree without chr10 simulated.#

#For your input pedigree, you have to change the pedigree ID in totalped.R #

cp simdata.10 ex1.dat

# ex1.dat: locus data file for disease chr. 10, required for Allegro #

set i=1 # Loop on pedigree type #

while ($i<= 6)

cp ex1.opt$i ex1.opt

cp ex1.pre$i ex1.pre

# ex1.pre* is the true pedigree structure with 8 columns: first 6 same

as ped*.pre and last two, 0 0 for untyped individuals and 1 1 for

typed individuals. This format is reuired for Allegro. #

# For your input files, change ex1.pre* #

allegro ex1.opt >& /dev/null # ALLEGRO to simulate disease chromosome #

R CMD BATCH newped$i.R # True structure changed to apparent, A=FS. #

#If you also require A=FS, you need to only change the person ID

in newped*.R #

@ i++

end

R CMD BATCH ped.R

# Merge T and A structures over disease and null chromosomes. #

#ped.R outputs T (trueped) and A (apparentped) pedigree structures #

### RULS computation ###

mega2 -nosave MEGA2.BATCH2>& /dev/null # MEGA2 with PREST option #

rm gprob.dat
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echo Computing P(G|T) # T= FS, HS, FC, U, PO #

./hmm1wolog prest_ped.all prest_chrom.all 2 > gprob.dat

# modified PREST to get P(G|T) #

cp prest_out2 prestout2

sed ’/Prest/,/is/d’ gprob.dat > ng1.dat

mv ng1.dat gprob.dat

# to get P(G|T) for 5 T’s #

awk ’$5==1||$5==2||$5==5||$5==6||$5==10 {print $0}’ gprob.dat > gprob1.dat

echo Changing structure from A to T

R CMD BATCH step.R # Computes r^T|A, F^A, and changes A to 5 T’s #

echo F^A computed

awk ’$6==2 {print $1"_"$2}’ trial1.txt >aff.txt

# Compute RULS at grid of positions on chromosome i. #

#Uncomment the chromosome loop if results on other

chromosomes are required. #

set i=1

while ( $i<= 9 )

echo Computing RULS for chr$i

set j=1

while ( $j<= 3 )

cp trial$j.txt trial.txt

cp MEGA2.BATCH3 MEGA2.BATCH # Mega2 with merlin option to get P(i|G,T) #

echo Chromosome_Single=$i >> MEGA2.BATCH

mega2 -nosave MEGA2.BATCH << MENU1
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--ibd --grid 1

MENU1

merlin -p merlin_ped.0$i -d merlin_data.0$i -m merlin_map.0$i

-f merlin_freq.0$i

--ibd --grid 1 >! merlin_out

awk ’{print $1,$1"_"$2,$1"_"$3,$4,$5,$6,$7}’ merlin.ibd >! ibd.txt

awk ’NR==FNR {s[$1]} NR!=FNR && ($2 in s) && ($3 in s)’ aff.txt

ibd.txt >! ibd1.txt

awk ’$2!=$3 {print $0}’ ibd1.txt >! ibd2.txt

sed ’s/_/ /g’ ibd2.txt >! ibd3.txt

awk ’{print $1,$3,$5,$6,$7,$8,$9}’ ibd3.txt >! merlinaff$j.txt

# These steps to get P(i|G,T) for affected pairs #

rm merlin_out

rm merlin.ibd

rm ibd.txt

rm ibd1.txt

rm ibd2.txt

rm ibd3.txt

@ j++

end

R CMD BATCH ruls.R # computes f^A and the RULS #

cp zruls.txt zruls0$i.txt # position, z-RULS, z’s #

cp lruls.txt lruls0$i.txt # position, L-RULS, lambda_1, lambda_2 #

cp vruls.txt vruls0$i.txt # position, V-RULS, V_A, V_D #

echo RULS for chr$i done

@ i++

end

set i=10

while ( $i<= 22 )
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echo Computing RULS for chr$i

set j=1

while ( $j<= 3 )

cp trial$j.txt trial.txt

cp MEGA2.BATCH3 MEGA2.BATCH

echo Chromosome_Single=$i >> MEGA2.BATCH

mega2 -nosave MEGA2.BATCH << MENU1

--ibd --grid 1

MENU1

merlin -p merlin_ped.$i -d merlin_data.$i -m merlin_map.$i -f merlin_freq.$i

--ibd --grid 1 >! merlin_out

awk ’{print $1,$1"_"$2,$1"_"$3,$4,$5,$6,$7}’ merlin.ibd >! ibd.txt

awk ’NR==FNR {s[$1]} NR!=FNR && ($2 in s) && ($3 in s)’ aff.txt

ibd.txt >! ibd1.txt

awk ’$2!=$3 {print $0}’ ibd1.txt >! ibd2.txt

sed ’s/_/ /g’ ibd2.txt >! ibd3.txt

awk ’{print $1,$3,$5,$6,$7,$8,$9}’ ibd3.txt >! merlinaff$j.txt

rm merlin_out

rm merlin.ibd

rm ibd.txt

rm ibd1.txt

rm ibd2.txt

rm ibd3.txt

@ j++

end

R CMD BATCH ruls.R # computes f^A and the RULS #

cp zruls.txt zruls$i.txt # position, z-RULS, z’s #

cp lruls.txt lruls$i.txt # position, L-RULS, lambda_1, lambda_2 #

cp vruls.txt vruls$i.txt # position, V-RULS, V_A, V_D #

echo RULS for chr$i done
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@ i++

end

if !(-e zruls.txt) then

echo ERROR: RULS files not created,

echo check if you have the necessary files given in README.txt

exit(1)

endif

echo RULS done

### MLS computation ###

cp trueped ped

# MEGA2 with gh option on trueped #

mega2 MEGA2.BATCH4>& /dev/null<< MENU2

0

0

MENU2

cp gh_ped.10 gh_ped

set i=1

while ( $i<= 9 ) # Loop on chromosome #

printf "load gh_dat.0$i\n scan gh_ped.0$i\n dump ibd\n ibd0$i\n

quit\n" >! input2.txt

gh < input2.txt >& /dev/null

sed ’s/,/ /g’ ibd0$i >! tmp

sed ’1d’ tmp >! tmp1

rm tmp

R CMD BATCH cor.R

94



# Makes the prior and posterior files, required for Cordell’s

code onelocarp to run #

rm tmp1

cat prevalence.txt d.txt a1.txt >! tmp0$i

# prevalence.txt has value of K, d.txt has # of affected pairs, #

# and a1.txt has # of marker positions, #

#these three lines required at the beginning of posterior file #

# for onelocarp to compute MLS #

cat oneposterior.dat >> tmp0$i

mv tmp0$i oneposterior.dat

./onelocarp >! z.out # Computes MLS and also prints V_A,V_D #

R CMD BATCH result.R # Prints position, MLS, z_0, z_1, z_2 #

mv onemls.out mlstrue0$i.out

@ i++

end

set i=10

while ( $i<= 22 )

printf "load gh_dat.$i\n scan gh_ped.$i\n dump ibd\n ibd$i\n

quit\n" >! input2.txt

gh < input2.txt >& /dev/null

sed ’s/,/ /g’ ibd$i >! tmp

sed ’1d’ tmp >! tmp1

rm tmp

R CMD BATCH cor.R

rm tmp1

cat prevalence.txt d.txt a1.txt >! tmp$i

cat oneposterior.dat >> tmp$i

mv tmp$i oneposterior.dat
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./onelocarp >! z.out

R CMD BATCH result.R

mv onemls.out mlstrue$i.out

@ i++

end

rm gh_ped*

rm gh_dat*

rm ibd*

# mega2 with gh option on discard.txt #

cp discard.txt ped

mega2 MEGA2.BATCH4>& /dev/null<< MENU2

0

0

MENU2

cp gh_ped.10 gh_ped

set i=1

while ( $i<= 9 ) # Loop on chromosome #

printf "load gh_dat.0$i\n scan gh_ped.0$i\n dump ibd\n ibd0$i\n

quit\n" >! input4.txt

gh < input4.txt >& /dev/null

sed ’s/,/ /g’ ibd0$i >! tmp

sed ’1d’ tmp >! tmp1

rm tmp

R CMD BATCH cor1.R

# Makes the prior and posterior files, required for Cordell’s

code onelocarp to run #

rm tmp1

cat prevalence.txt d.txt a1.txt >! tmp0$i
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cat oneposterior.dat >> tmp0$i

mv tmp0$i oneposterior.dat

./onelocarp >! z.out

R CMD BATCH result.R

mv onemls.out mlsdiscard0$i.out

@ i++

end

set i=10

while ( $i<= 22 )

printf "load gh_dat.$i\n scan gh_ped.$i\n dump ibd\n ibd$i\n

quit\n" >! input4.txt

gh < input4.txt >& /dev/null

sed ’s/,/ /g’ ibd$i >! tmp

sed ’1d’ tmp >! tmp1

rm tmp

R CMD BATCH cor1.R

rm tmp1

cat prevalence.txt d.txt a1.txt >! tmp$i

cat oneposterior.dat >> tmp$i

mv tmp$i oneposterior.dat

./onelocarp >! z.out

R CMD BATCH result.R

mv onemls.out mlsdiscard$i.out

@ i++

end

if !(-e onemls.out) then

echo ERROR: MLS files not created

exit(1)
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endif

echo MLS done

# Merlin #

# [4] mega2 and merlin on trueped #

cp trueped ped

mega2 MEGA2.BATCH5>& /dev/null<< MENU2

--npl --deviates --grid 1

0

MENU2

set i=1

while ( $i<= 9 ) # Loop on chromosome #

merlin -p merlin_ped.0$i -d merlin_data.0$i -m merlin_map.0$i

-f merlin_freq.0$i --npl --deviates --grid 1 >! merlin_out

./merlinmax.awk merlin_out >! out

sed ’1,2d’ out>!out1

R CMD BATCH sgn.r # multiplies the sign of delta to the LOD scores, S_all #

mv lod.txt lodtrue0$i.txt

@ i++

end

set i=10

while ( $i<= 22 )

merlin -p merlin_ped.$i -d merlin_data.$i -m merlin_map.$i

-f merlin_freq.$i --npl --deviates --grid 1 >! merlin_out

./merlinmax.awk merlin_out >! out

sed ’1,2d’ out>!out1

R CMD BATCH sgn.r # multiplies the sign of delta to the LOD scores, S_all #
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mv lod.txt lodtrue$i.txt

@ i++

end

# [5] mega2 and merlin on discard.txt (ped structure discarding

the individual with erroneous relationship), datafile.dat#

# mega2 and prest on discard.txt, datafile.dat and newmap.dat #

cp discard.txt ped

mega2 MEGA2.BATCH5>& /dev/null<< MENU2

--npl --deviates --grid 1

0

MENU2

set i=1

while ( $i<= 9 )

merlin -p merlin_ped.0$i -d merlin_data.0$i -m merlin_map.0$i

-f merlin_freq.0$i --npl --deviates --grid 1 >! merlin_out

./merlinmax.awk merlin_out >! out

sed ’1,2d’ out>!out1

R CMD BATCH sgn.r # multiplies the sign of delta to the LOD scores #

mv lod.txt loddiscard0$i.txt

@ i++

end

set i=10

while ( $i<= 22 )

merlin -p merlin_ped.$i -d merlin_data.$i -m merlin_map.$i

-f merlin_freq.$i --npl --deviates --grid 1 >! merlin_out

./merlinmax.awk merlin_out >! out
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sed ’1,2d’ out>!out1

R CMD BATCH sgn.r # multiplies the sign of delta to the LOD scores #

while ( $i<= 9 )

merlin -p merlin_ped.0$i -d merlin_data.0$i -m merlin_map.0$i

-f merlin_freq.0$i --npl --deviates --grid 1 >! merlin_out

./merlinmax.awk merlin_out >! out

sed ’1,2d’ out>!out1

R CMD BATCH sgn.r # multiplies the sign of delta to the LOD scores #

mv lod.txt loddiscard0$i.txt

@ i++

end

set i=10

while ( $i<= 22 )

merlin -p merlin_ped.$i -d merlin_data.$i -m merlin_map.$i

-f merlin_freq.$i --npl --deviates --grid 1 >! merlin_out

./merlinmax.awk merlin_out >! out

sed ’1,2d’ out>!out1

R CMD BATCH sgn.r # multiplies the sign of delta to the LOD scores #

mv lod.txt loddiscard$i.txt

@ i++

end

echo MERLINDONE

# Compress the files into a single gzipped tar file

tar zcf sim.tgz apparentped trueped *ruls*.txt mls*.out lod*.txt

cp sim.tgz ../ # comment this for cluster job submission #

## Copy back the compressed archive file
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unalias cp

cp -f sim.$node.tgz $HomeDir

cd $HomeDir

####################################

##remove all the files on node

if (-e sim.tgz) then

echo sim.tgz copied back, so removing the folder code1/

rm -rf code1/

endif

date

exit
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