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NEW TEST STATISTIC FOR COMPARING MEDIANS WITH INCOMPLETE 

PAIRED DATA 

Xinyu Tang, M.S. 

University of Pittsburgh, 2007

 

This paper is concerned with nonparametric methods for comparing medians of paired data with 

unpaired values on both responses. A new nonparametric test statistic is proposed in this paper 

based on a Mann-Whitney U test making comparisons across complete and incomplete pairs. A 

method of finding the null hypothesis distribution for this statistic is presented using a 

permutation approach. A Monte Carlo simulation study is described to make power comparisons 

among four already-existing nonparametric test statistics and this new test statistic. It is 

concluded that this new test statistic is fairly powerful in handling this kind of data compared to 

the other four test statistics. Finally, all five test statistics are applied to a real dataset for 

comparing the proportions of certain T cell receptor gene families in a cancer study. The 

introduction of this new nonparametric test statistic is of public health importance because it is a 

powerful statistical method for dealing with a pattern of missing data that may be encountered in 

clinical and public health research. 
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1.0  INTRODUCTION 

The way to compare population location parameters using complete paired data, as in before-

after, repeated measures, or matched pair studies, has been widely known for a long period of 

time. Differences may be calculated within each pair and the single sample of differences is 

examined. If the sample is normally distributed, normal theory applies and the difference in 

sample means will be within approximately two standard errors of the difference in population 

means 95% of the time. 

However, in real studies, researchers occasionally must compare location parameters in 

the paired case with unpaired data on one or both responses. This problem arises in many 

different applications, e.g. in vivisectional experiments when some animals die before all 

observations are obtained, in public health controls when some people only take part at one time 

and in other cases when observations are lost or do not become available. An important 

assumption made in treating this problem is that missing observations are missing completely at 

random (MCAR). 

This paper covers the topic of comparing location parameters in the paired case with 

unpaired data on both responses. So far, several authors have presented various tests considering 

the problem of estimating the difference of means of a bivariate normal distribution where some 

observations corresponding to both variables are missing. Ekbohm (1976) summarized five 

procedures for testing the equality of two correlated means with incomplete data on both 
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responses and compared them using Monte Carlo studies. The results are that the two tests based 

on a modified maximum likelihood estimator are to be preferred, one due to Lin & Stivers 

(1974) when the number of complete pairs is large and the one proposed in Ekbohm’s paper 

otherwise, provided the variances of the two responses do not differ by much. When the 

correlation between the two responses is small, two other tests may be used; a test proposed in 

Ekbohm’s paper when the homoscedasticity assumption is not strongly violated, and a Welch 

type statistic suggested by Lin & Stivers (1974) otherwise (Ekbohm 1976). 

All five procedures mentioned by Ekbohm are presented under the assumption of 

bivariate normality and MCAR. However, we may need to deal with paired data that are not 

bivariate normally distributed; some data have a small sample size where normality can’t be 

assessed. In those situations, we turn to use nonparametric tests to compare medians for 

incomplete paired data. In this paper, five nonparametric tests that compare medians in paired 

case with unpaired data on both responses are examined. Among them, four tests were proposed 

previously, and one is proposed herein. After introducing the five nonparametric test statistics 

and their respective null hypothesis distributions, a Monte Carlo study of the powers and level of 

significance is conducted. Comparisons among these tests are made for different combinations of 

the correlation coefficient ρ  and differences of means.  For the purpose of this paper, we will 

assume that the variances in the compared populations are equal. 

1.1 INCOMPLETE PAIRED DATA CONFIGURATION AND NULL HYPOTHESIS 

Let  and  be jointly distributed according to a continuous bivariate distribution whose 

marginal distributions have the same shape. We consider the situation in which J  paired 

1Y 2Y
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observations , '
21 ),( αα yy j,...,1=α  are made on , and in addition '

21 ),( YY K  unpaired 

observations are available on  alone and 1Y L  unpaired observations are available on  alone 

(Figure 1 on Page 5). We denote this kind of incomplete paired data configuration as

2Y

LKJ −− , 

where there are  complete pairs, J K  incomplete pairs with missing observations in  only, and 2Y

L  incomplete pairs with missing observations in  only. 1Y

The following one-sided hypotheses are being tested throughout the analyses assuming 

that the probability of missing an observation is independent of the observed responses (i.e., 

MCAR: Little 1988), populations studied are continuous and have the same shape under the null 

hypothesis. 

:0H  21 MM =  

:aH   21 MM >

Where  and  are the medians from each population. 1M 2M
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Pair 1Y 2Y

1   

M  M  M  

J    

1+J    

M  M   

KJ +    

1++ KJ    

M   M  

LKJ ++   

 

kjjj yyyyyY ++ ,11,1,12,11,11 ,,,,: LL  

,,,,: ,22,21,22 jyyyY L            lkjkjkj yyy ++++++ ,22,21,2 ,, L

nmy , = observation from mth group and nth pair 

Figure 1. Incomplete paired data with configuration J-K-L. 
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1.2 PREVIOUS NONPARAMETRIC TEST STATISTIC  )( 41 TT −

Most notations follow those in KyungAh Im’s paper (2002). 

1.2.1 Test statistic:  proposed by J. Wilson 1T

Test statistic  is based on a sign test for the complete pairs and a Wilcoxon rank sum test for 

the unpaired cases. 

1T

For the complete pairs, rank two observed values within each pair and sum the ranks of 

one group. In this paper, ranks of  group are used throughout the analyses. Denote 

     

1Y

jnyyif
jnyyif

R
nn

nn
n ,,1    ,  

,,1   ,  
          

2
1

,2,1

,2,1
1 L

L

=>
=<

⎩
⎨
⎧

=

Then the test statistic for the complete pairs is .     ∑
=

=
j

n
nc RT

1
11

For the unpaired cases, rank among total number of lk +  unpaired observations and sum 

the ranks for the same group,  group here. 1Y

Combined sample with unpaired data in both  and : 1Y 2Y

lkjkjkjj yyyy ++++++ ,21,2,11,1 ,,,, LL  

Denote  be the rank of each observation in  group in the combined sample, then the 

test statistic for the unpaired data is . 

nr 1Y

∑
+

+=

=
kj

jn
ni rT

1
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Hence the test statistic  is defined as 1T ic TTT += 11 . 

1.2.2 Test statistic:  proposed by Brunner & Neumann (1984) 2T

Test statistic  is based on a Wilcoxon rank sum test for complete pairs and unpaired cases 

respectively. 

2T

For the complete pairs, combine all the paired data from  and : 1Y 2Y

jj yyyy ,21,2,11,1 ,,,,, LL  

Denote  be the rank of each observation in  group in the combined paired sample, 

then the test statistic for the paired data is . This rank sum test statistic for the 

complete pairs doesn’t take pairing into consideration. 

2nR 1Y

∑
=

=
j

n
nc RT

1
22

Hence the test statistic  is defined as 2T ic TTT += 22 , where  is defined as for the test 

statistic . 

iT

1T

1.2.3 Test statistic:  proposed by P.K. Sen 3T

Test statistic  is based on an aligned rank sum test (Lehmann 1975) for the complete pairs and 

a Wilcoxon rank sum test for the unpaired cases. 

3T

For the complete pairs, subtract the mean of each pair from the original observed values 

before ranking. Denote nnmnm yy μ−= ,,ˆ , where nμ  is the mean of the two observed values in 

pair n. 
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Combine all the modified paired data from  and  as following: 1Y 2Y

jj yyyy ,21,2,11,1 ˆ,ˆ,ˆ,,ˆ LL  

Denote  be the rank of each observation in  group in the modified combined paired 

sample, then the test statistic for the complete pairs is . 

3nR 1Y

∑
=

=
j

n
nc RT

1
33

Hence the test statistic  is defined as 3T ic TTT += 33 , where  is defined as for the test 

statistic . 

iT

1T

1.2.4 Test statistic:  proposed by KyungAh Im 4T

For this test statistic, in addition to the assumptions mentioned for the previous three tests, the 

two populations being compared are assumed to be symmetrically distributed about their 

respective medians (Im 2002). 

For complete pairs, calculate the difference  within each pair, i.e.  nd nnn yyd ,2,1 −=

Let  
jndif
jndif

ds
n

n
n ,,1   ,0  

,,1   ,0  
        

0
1

)(
L

L

=<
=>

⎩
⎨
⎧

=

Rank the absolute value of the difference, denote | |  (r nd )

Then the test statistic for the complete pairs is 

  })](1[|)(|)(|)(|{
11

4 ∑∑
==

−∗−∗=
j

n
nn

j

n
nnc dsdrdsdrT

Where  are independent Bernoulli random variables with expected value of 0.5 

under the null hypothesis. Then  is a version of the Wilcoxon Signed Rank Test (Gibbons 

)( nds

4cT
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1971). The partial test statistic  has the property of natural symmetry around the value zero in 

its distribution under the null hypothesis (Im 2002). 

4cT

For the unpaired cases, define ,  μ−=∗
ii TT

where  is defined as for the test statistic , iT 1T μ  is the expected sum of ranks for  

group, which can be shown to be 

1Y

2)1( ++ LKK  (Lehmann 1975). 

Hence the test statistic  is defined as . 4T ∗+= ic TTT 44

1.3 NEW TEST STATISTIC:  PROPOSED BY JOHN BRYANT 5T

In addition to the previous 4 tests, there is another option based on the Mann-Whitney U 

Statistic; we call it Test statistic . 5T

For testing the hypothesis 0:0 =ΔH , Mann and Whitney (1947) proposed the statistic  

),(
1 1

j

m

i

n

j
i YXU ∑∑

= =

= φ  

Where 

⎩
⎨
⎧ <

=
.             ,0
,             ,1

),(
otherwise

YXif
YX ji

jiφ  

Namely, U is the number of times a y precedes an x. It can be computed as follows. For 

each pair of values  and , observe which is smaller. If the  value is smaller, score one for 

that pair; if the  value is smaller, score 0 for that pair. Add up the 0s and 1s and call the sum 

. The advantage of this new test statistic over the previous four test statistics is that each value 

iX jY iX

jY

U
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in one group is compared with every value of the other group despite it is paired or unpaired 

observation, hence comparisons are made across the complete pairs and unpaired cases. 

Mann and Whitney have previously showed that the tests based on U  are equivalent to 

tests based on W (the rank sum) in the case of no ties (Hollander and Wolfe 1999). Therefore, 

instead of using Mann-Whitney U Test, I will just use the rank sum test for simplicity of 

computation. Combine the data consisting both complete pairs and unpaired observations as 

following: 

lkjkjjkjjj yyyyyyyy ++++++ ,21,2,21,2,11,1,11,1 ,,,,,,,,,,, LLLL  

Let  be the rank of each observation in  group in the combined sample including 

both observed values from  and observed values from , then the test statistic is defined as 

. 

5nR 1Y

1Y 2Y

∑
+

=

=
kj

n
nRT

1
55

1.4 NULL HYPOTHESIS DISTRIBUTIONS FOR  51 TT −

Permutation algorithms are used to obtain the null hypothesis distribution for 51 TT − . 

Permutation tests are well understood and thoroughly documented in the statistical literature. 

Though not always as powerful as their parametric counterparts, they sometimes have equal or 

even greater power. Often they can be used when asymptotic theory falls short (e.g. small 

samples), and when fully enumerated, they provide exact results (as opposed to approximations 

based on asymptotic theory). Most pertinent to the current discussion is their reliance on few 
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distributional assumptions, giving permutation tests a much broader range of application 

(Opdyke 2002). 

For the complete pairs, permute within each pair. Thus, there are  possible 

arrangements, with each of these distinct arrangements equally likely to occur under the null 

hypothesis. Take the data configuration of 3-2-3 (3 complete pairs, 2 unpaired values for  and 

3 unpaired values for ) as an example. 

J2

1Y

2Y

For test statistic , the arrangements of ranks for the three ranks of paired value from  

group will always occur as one of the following: 

1T 1Y

(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2). 

For test statistic , whatever the original value and order of ranks would be for the three 

paired observations in  group, the permutations will always be performed between 1 and 6, 2 

and 5, 3 and 4. So the possible value of rank sum for paired cases will be one of the following: 

3T

1Y

6, 7, 9, 10, 11, 12, 14, 15. 

For test statistic , despite of the original ranks for the three absolute difference values, 

the rank sum for the complete pairs will always be the sum of ranks with positive differences 

minus the sum of ranks with negative differences; hence the possible value would be one of the 

following: 

4T

-6, -4, -2, 0, 2, 4, 6. 

The possible arrangements for test statistics  and  depend on the original ranks given 

to each observation.  If for  the original ranks for complete pairs are as follows: 

2T 5T

2T

Pair 1Y  2Y  
1 4 3 
2 1 5 
3 6 2 
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Then the possible arrangements for three ranks of  are as followings: 1Y

(4,1,6), (4,1,2), (4,5,6), (4,5,2), (3,1,6), (3,1,2), (3,5,6), (3,5,2).  

This is not always the case for , since the ranks for  could include values up to 11, 

say the original ranks for complete pairs are as follows: 

5T 5T

Pair 1Y  2Y  
1 11 3 
2 1 5 
3 6 8 

 
Then the possible arrangements for three ranks of  are as followings: 1Y

(11,1,6), (11,1,8), (11,5,6), (11,5,8), (3,1,6), (3,1,8), (3,5,6), (3,5,8). 

For unpaired cases, we choose K  ranks from a total of LK +  ranks, that is 

total number of rank sums based on these combinations in the sample space. Still take 

the data configuration of 3-2-3 as an example, any two values of ranks can be chosen for  out 

of five possible values of ranks from combined sample. All the combinations of two ranks are as 

following: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
K

LK

1Y

(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5). 

The combinations for test statistic  are slightly different from the above. Instead of 

only choosing from 1 to 5, the combinations for ranks of unpaired cases in  depend on the 

original ranks given to each unpaired observation. If the original ranks for unpaired cases are as 

follows: 

5T

5T

Pair 1Y  2Y  
4 5  
5 10  
6  1 
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7  4 
8  2 

 
Then the possible combinations for three ranks of  are as follows: 1Y

(5,10), (5,1), (5,4), (5,2), (1,10), (4,10), (2,10), (1,4), (1,2), (4,2). 

Calculate the test statistic for each permutation, and then the probability distribution of 

 under the null hypothesis is 51 TT −

q
q q

J

N(t )
P(T =t )=

K+L
2 *

K
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

where  and  is the number of occurrence of the test statistic  based 

on the data. 

5,4,3,2,1=q )( qtN qt
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2.0  APPLICATION 

All the previous four test statistics and the new test statistic proposed in this paper are applied to 

data comparing the proportions of certain T cell receptor gene families (the βV  gene families) 

on tumor infiltrating lymphocytes (TILs) and peripheral blood lymphocytes (PBLs) in patients 

with hepatocellular carcinoma (Weidmann 1992). We expected that more changes would be 

detected in surface receptors of T lymphocytes in the presence of tumor. The outcome variable 

was the percentage of T cells of each type showing the Vβ22 receptor. For the purpose of this 

analysis, this percentage was treated as a continuous value rather than as a binomial proportion. 

The null hypothesis of equal medians was tested by estimating and comparing the relative 

proportions of βV  gene family usage for several patients’ TILs and PBLs. However, data are 

missing for some patients due to factors unrelated to the measurements themselves. 

The following one-sided test is used: 

:0H  PBLTIL MM =  

:aH   PBLTIL MM >

Where = median proportion of TILM βV  gene in TIL 

     = median proportion of PBLM βV  gene in PBL 
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Table 1. Data and application of test statistic . 1T

Data from 8 patients showing the data configuration of 3-2-3 and respective ranks based 

on test statistic : 1T

 Data (3-2-3) Ranks 
 %βV  1T  

Patient TIL PBL TIL PBL 
1 6.7 2.8 2 1 
2 3.7 3.5 2 1 
3 4.4 4.1 2 1 
4 2.3 · 1 · 
5 4.5 · 4 · 
6 · 4.0 · 3 
7 · 14.7 · 5 
8 · 3.2 · 2 

 

According to Table 1, = (2+2+2) + (1+4) =11. 1T
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Table 2. Null hypothesis distribution of test statistic . 1T

Possible values of   1T Probability under  0H
6 1/80 
7 4/80 
8 8/80 
9 12/80 
10 15/80 
11 15/80 
12 12/80 
13 8/80 
14 4/80 
15 1/80 

 

50.080/40)15()14()13()12()11()11( 111111 ===+=+=+=+==≥ TPTPTPTPTPTP
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Table 3. Data and application of test statistic . 2T

Data from 8 patients showing the data configuration of 3-2-3 and respective ranks based 

on test statistic : 2T

 Data (3-2-3) Ranks 
 %βV  2T  

Patient TIL PBL TIL PBL 
1 6.7 2.8 6 1 
2 3.7 3.5 3 2 
3 4.4 4.1 5 4 
4 2.3 · 1 · 
5 4.5 · 4 · 
6 · 4.0 · 3 
7 · 14.7 · 5 
8 · 3.2 · 2 

 

According to Table 3, = (6+3+5) + (1+4) =19. 2T
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Table 4. Null hypothesis distibution of test statistic . 2T

Possible values of   2T Probability under  0H
10 1/80 
11 3/80 
12 5/80 
13 7/80 
14 8/80 
15 8/80 
16 8/80 
17 8/80 
18 8/80 
19 8/80 
20 7/80 
21 5/80 
22 3/80 
23 1/80 

 

30.080/24)23()22()21()20()19()19( 222222 ===+=+=+=+==≥ TPTPTPTPTPTP
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Table 5. Data and application of test statistic . 3T

Data from 8 patients showing the data configuration of 3-2-3 and respective ranks based 

on test statistic : 3T

 Data (3-2-3) Ranks 
 %βV  3T  

Patient TIL PBL TIL PBL 
1 6.7 2.8 6 1 
2 3.7 3.5 4 3 
3 4.4 4.1 5 2 
4 2.3 · 1 · 
5 4.5 · 4 · 
6 · 4.0 · 3 
7 · 14.7 · 5 
8 · 3.2 · 2 

 

According to Table 5, = (6+4+5) + (1+4) =20. 3T
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Table 6. Null hypothesis distribution of test statistic . 3T

Possible values of   3T Probability under  0H
9 1/80 
10 2/80 
11 3/80 
12 5/80 
13 6/80 
14 7/80 
15 8/80 
16 8/80 
17 8/80 
18 8/80 
19 7/80 
20 6/80 
21 5/80 
22 3/80 
23 2/80 
24 1/80 

 

2125.080/17)24()23()22()21()20()20( 333333 ===+=+=+=+==≥ TPTPTPTPTPTP
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Table 7. Data and application of test statistic . 4T

Data from 8 patients showing the data configuration of 3-2-3 and respective ranks based 

on test statistic : 4T

 Data (3-2-3) Ranks 
 %βV  4T  

Patient TIL PBL TIL PBL 
1 6.7 2.8 3 (+) 
2 3.7 3.5 1 (+) 
3 4.4 4.1 2 (+) 
4 2.3 · 1 · 
5 4.5 · 4 · 
6 · 4.0 · 3 
7 · 14.7 · 5 
8 · 3.2 · 2 

 

Note:  means the sign of the difference within a pair is positive;  means the sign 

of the difference within a pair is negative. 

)(+ )(−

According to Table 7, = [(3+1+2)-0] + [(1+4)-2*(2+3+1)/2] =5. 4T
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Table 8. Null hypothesis distribution of test statistic . 4T

Possible values of   4T Probability under  0H
-9 1/80 
-8 1/80 
-7 3/80 
-6 3/80 
-5 5/80 
-4 4/80 
-3 7/80 
-2 5/80 
-1 8/80 
0 6/80 
1 8/80 
2 5/80 
3 7/80 
4 4/80 
5 5/80 
6 3/80 
7 3/80 
8 1/80 
9 1/80 

 

1625.080/13)9()8()7()6()5()5( 444444 ===+=+=+=+==≥ TPTPTPTPTPTP  

 21 



 

Table 9. Data and application of test statistic . 5T

Data from 8 patients showing the data configuration of 3-2-3 and respective ranks based 

on test statistic : 5T

 Data (3-2-3) Ranks 
 %βV  5T  

Patient TIL PBL TIL PBL 
1 6.7 2.8 10 2 
2 3.7 3.5 5 4 
3 4.4 4.1 8 7 
4 2.3 · 1 · 
5 4.5 · 9 · 
6 · 4.0 · 6 
7 · 14.7 · 11 
8 · 3.2 · 3 

 

According to Table 9, =10+5+8+1+9=33. 5T
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Table 10. Null hypothesis distribution of test statistic . 5T

Possible values of   5T Probability under  0H
17 1/80 
18 2/80 
19 1/80 
20 1/80 
21 2/80 
22 2/80 
23 3/80 
24 3/80 
25 4/80 
26 6/80 
27 4/80 
28 4/80 
29 5/80 
30 4/80 
31 5/80 
32 4/80 
33 4/80 
34 6/80 
35 4/80 
36 3/80 
37 3/80 
38 2/80 
39 2/80 
40 1/80 
41 1/80 
42 2/80 
43 1/80 

 

3625.080/29
)43()42()41()40()39()38(

)37()36()35()34()33()33(

555555

555555

==
=+=+=+=+=+=+

=+=+=+=+==≥
TPTPTPTPTPTP

TPTPTPTPTPTP
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Therefore, based on the above five nonparametric test statistics, , there 

is no evidence that the proportions of the 

54321  and ,,, TTTTT

βV  gene family differ in tumor infiltrating 

lymphocytes (TILs) and peripheral blood lymphocytes (PBLs). 

 24 



3.0  MONTE CARLO SIMULATION STUDY 

A Monte Carlo simulation study was carried out to compare the powers of the five test statistics 

mentioned in this paper including the one newly proposed. Bivariate normally distributed 

datasets were generated with means 1μ and 2μ , correlation coefficient ρ , and common variance 

. Each dataset generated was of the same missing data configuration 3-2-3 (J=3, K=2 and 

L=3 in Figure 1). 5000 simulations were performed for each combination of the parameters for a 

bivariate normal distribution (shown in Table 11); the variances of two groups will be kept equal 

to 1 without loss of generality, while changing the mean difference or the correlation between 

two groups. The situation of mean difference ranging from 0 to 3, as well as the correlation 

varying from 0 (no correlation), 0.2 (a small correlation) to 0.5 (a moderate correlation) is 

analyzed to assess the effect of changing mean difference and correlation on the results of the 

power comparisons for the five test statistics. Programs are written in SAS (Statistical Analysis 

Systems, v9.1, NC) to calculate the five test statistics and their respective null hypothesis 

distributions. One-sided alpha values of 0.05, 0.025, and 0.0125 were used to obtain the critical 

values for rejecting the null hypothesis for each test statistic. Then the program compared each 

test statistic to its unique critical value to get the total number of rejections from 5000 iterations, 

so that the empirical power can be calculated by dividing the total number of rejections by 5000 

for each test. The power for each test under various conditions is presented in Table 12-14. 

2σ
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With Type I error set to be 0.05,  was the most powerful test statistic among the five 

test statistics, followed by  and .  had a slightly higher power than  in most cases, 

except for ones with a moderate correlation of 0.5 and relatively larger mean differences of 2.0 

or 3.0.  

5T

2T 3T 3T 2T

With Type I error set to be 0.025,  and  shared the same power, although both were 

less powerful than the others.  ranked the most powerful test statistics most of the time, except 

being exceeded by  in some cases with relatively bigger mean differences and smaller 

correlations. 

1T 3T

4T

5T

With Type I error set to be 0.0125, all five test statistics have the same power under all 

parameter combinations. The main reason for this happening is because analyses were done on 

the same dataset generated for each test statistic. Therefore, we will get same number of 

rejections for each test statistic according to a quite large critical value for an alpha value of 

0.0125. 

After doing all the simulations, it is easy to find out that the null hypothesis distributions 

for ,  and  are invariant if datasets with the same missing data configuration are being 

analyzed without ties, which means that the null hypothesis distribution remain the same no 

matter what the original order of ranks would be for each dataset generated with the same 

missing data configuration. This fact contributes to the simplicity of SAS program coding and 

improves the efficiency of running the simulation. However, the null hypothesis distributions for 

 and  do change with the dataset generated although all the dataset are of the same missing 

data configuration. 

1T 3T 4T

2T 5T
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Although the Type I error was set before performing each test, the actual significance 

level should still be examined after all the tests were done. From Table 12, true significance 

levels under various conditions are all below 0.05, with  having a relatively higher Type I 

error. From Table 13, it is evident that  has the highest significance level among the five tests. 

Although most Type I errors are still under 0.025, there is one exception for the significance 

level of  under the correlation of 0.2 with a slightly higher significance level of 0.0264. The 

actual significance levels under correlation of 0.0 and 0.2 are also slightly higher than 0.0125 

according to Table 14. These figures greater than alpha must be due to “simulation” variation. So 

generally speaking, all the true significance levels are close or even below the Type I errors 

being set. So the power comparisons among the five test statistics can be relied on. 

5T

4T

4T

Checking was also done to see if 5000 simulations was a reasonable sample size to detect 

the power difference among the five test statistics. Table 15 shows confidence intervals for each 

type I error and various power values of 0.30, 0.50, 0.80, and 0.90. All the confidence intervals 

seem acceptable for a sample size of 5000, lending credibility to the sample size chosen for this 

Monte Carlo study. 
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Table 11. All combinations of parameters for datasets generated from a bivariate normal 

distribution. 

1μ  2μ  2σ  ρ  
1 1 1 0.0 
2 1 1 0.0 
3 1 1 0.0 
4 1 1 0.0 
1 1 1 0.2 
2 1 1 0.2 
3 1 1 0.2 
4 1 1 0.2 
1 1 1 0.5 
2 1 1 0.5 
3 1 1 0.5 
4 1 1 0.5 
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Table 12. Power comparisons for five test statistics under various conditions with =1 and 2σ

α =0.05. 

dμ : mean differences 

ρ : correlation coefficient 

1T : test statistic proposed by J. Wilson 

2T : test statistic proposed by Brunner & Neumann (1984) 

3T : test statistic proposed by P.K. Sen 

4T : test statistic proposed by KyungAh Im 

5T : new test statistic first proposed by John Bryant 

  1T  2T  3T  4T  5T  
ρ  dμ  { }0Pr rejectH  { }0Pr rejectH { }0Pr rejectH { }0Pr rejectH  { }0Pr rejectH

0.0 0.0128 0.0338 0.0362 0.025 0.0434 
1.0 0.1614 0.3122 0.332 0.2458 0.3664 
2.0 0.551 0.7758 0.795 0.6768 0.8344 0.0 

3.0 0.8746 0.9672 0.9736 0.9342 0.9864 
0.0 0.0136 0.0364 0.037 0.0264 0.0438 
1.0 0.1794 0.3412 0.3568 0.2736 0.3858 
2.0 0.5958 0.8152 0.8298 0.7336 0.8626 0.2 

3.0 0.8966 0.9802 0.9802 0.9588 0.9908 
0.0 0.0122 0.0352 0.0376 0.0234 0.0428 
1.0 0.221 0.3992 0.414 0.3366 0.44 
2.0 0.6668 0.8598 0.856 0.8138 0.8968 0.5 

3.0 0.9188 0.9836 0.98 0.9768 0.994 
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Table 13. Power comparisons for five test statistics under various conditions with =1 and 2σ

α =0.025. 

Notations follow those in Table 12. 

  1T  2T  3T  4T  5T  
ρ  dμ  { }0Pr rejectH  { }0Pr rejectH { }0Pr rejectH { }0Pr rejectH  { }0Pr rejectH

0.0 0.0128 0.0182 0.0128 0.025 0.0202 
1.0 0.1614 0.1998 0.1614 0.2458 0.232 
2.0 0.551 0.6192 0.551 0.6768 0.6862 0.0 

3.0 0.8746 0.9132 0.8746 0.9342 0.9478 
0.0 0.0136 0.0168 0.0136 0.0264 0.0198 
1.0 0.1794 0.2164 0.1794 0.2736 0.248 
2.0 0.5958 0.6784 0.5958 0.7336 0.7286 0.2 

3.0 0.8966 0.9388 0.8966 0.9588 0.9618 
0.0 0.0122 0.0144 0.0122 0.0234 0.019 
1.0 0.221 0.2634 0.221 0.3366 0.2936 
2.0 0.6668 0.762 0.6668 0.8138 0.7892 0.5 

3.0 0.9188 0.966 0.9188 0.9768 0.9742 
 

 30 



 

Table 14. Power comparisons for five test statistics under various conditions with =1 and 2σ

α =0.0125. 

Notations follow those in Table 12. 

  1T  2T  3T  4T  5T  
ρ  dμ  { }0Pr rejectH  { }0Pr rejectH { }0Pr rejectH { }0Pr rejectH  { }0Pr rejectH

0.0 0.0128 0.0128 0.0128 0.0128 0.0128 
1.0 0.1614 0.1614 0.1614 0.1614 0.1614 
2.0 0.551 0.551 0.551 0.551 0.551 0.0 

3.0 0.8746 0.8746 0.8746 0.8746 0.8746 
0.0 0.0136 0.0136 0.0136 0.0136 0.0136 
1.0 0.1794 0.1794 0.1794 0.1794 0.1794 
2.0 0.5958 0.5958 0.5958 0.5958 0.5958 0.2 

3.0 0.8966 0.8966 0.8966 0.8966 0.8966 
0.0 0.0122 0.0122 0.0122 0.0122 0.0122 
1.0 0.221 0.221 0.221 0.221 0.221 
2.0 0.6668 0.6668 0.6668 0.6668 0.6668 0.5 

3.0 0.9188 0.9188 0.9188 0.9188 0.9188 
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Table 15. 95% confidence intervals for a sample size of 5000 simulations with regard to varied Type I 

errors and test powers. 

Using the formula 
5000

)1(96.1 ααα −∗
∗±  for calculating 95% confidence intervals for a 

Type I error of 0.05, 0.025 or 0.0125; 

Using the formula 
5000

)1(96.1 βββ −∗
∗±  for calculating 95% confidence intervals for a 

test power of 0.30, 0.50, 0.80 or 0.90; 

Where α  is the Type I error of 0.05, 0.025 or 0.0125; β  is the power of 0.30, 0.50, 0.80, 

or 0.90. 

Type I error 95% Confidence Interval 
0.05 (0.0440, 0.0560) 
0.025 (0.0207, 0.0293) 
0.0125 (0.0094, 0.0156) 
Test Power 95% Confidence Interval 
0.30 (0.2873, 0.3127) 
0.50 (0.4861, 0.5139) 
0.80 (0.7889, 0.8111) 
0.90 (0.8917, 0.9083) 

 

 32 



4.0  CONCLUSIONS AND DISCUSSION 

This paper mainly talked about the nonparametric methods for comparing medians of paired data 

with unpaired values on both responses or, to put it differently, nonparametric test statistics for 

comparing medians with incomplete paired data. First of all, four existing nonparametric test 

statistics were discussed. Then a new test statistic based on a Mann-Whitney U test making 

comparisons across complete and incomplete pairs was being proposed. The dataset being 

analyzed by all five test statistics must satisfy the assumption of missing completely at random 

(MCAR) and without tied values. 

Secondly, the null hypothesis distribution for each test statistic was introduced and 

derived by a permutation approach, since bivariate normality cannot be assessed with the small 

number of pairs in this data set. All the possible values of test statistic were calculated and the 

probability of each value occurring was derived using the statistical package SAS (Statistical 

Analysis System, v9.1, SAS institute, Cary, NC). There followed an analysis of a real dataset 

comparing the proportions of certain T cell receptor gene families, to which all five test statistics 

with their respective null hypothesis distribution applied. 

The main purpose of this paper was to compare the power of those five test statistics 

under different Type I errors, which was done using a Monte Carlo simulation study. Datasets 

with certain missing data configuration (3-2-3 in this paper) were generated from a bivariate 

normal distribution with different sets of parameter combinations in order to find out the effect 
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of different set of parameter combinations on the result of the power comparisons. At the Type I 

error of 0.05 or 0.025, most tests under different conditions showed to be conservative, with 

actual Type I error less than the level of 0.05 or 0.025. Even for an α  value of 0.0125, although 

most actual significance level exceeded 0.0125, it is still quite acceptable since those levels were 

quite close to 0.0125. Besides, the closer the Type I error is to the alpha value being set, the more 

powerful the test is under the same correlation correlation. 

Generally speaking, under different α  levels and various sets of parameter combinations, 

the newly proposed test statistic  is fairly powerful especially under an 5T α  value of 0.05.  

and  also have a favorable power under an 

2T

3T α  of 0.05, while  did its best under an 4T α  value 

of 0.025. When an α  value was decreased to 0.0125, there exits no difference in power for all 

five test statistics. Moreover, at each alpha level, the power for each test statistic increased 

dramatically with the increase in mean differences. For example, the power jumped by 

approximately 0.60 from a mean difference of 1.0 to a mean difference of 3.0 for almost all the 

tests, leading to a high power of above 0.90 for all the tests with a mean difference of 3.0. With 

correlation coefficient increased from 0.0, 0.2 to 0.5, the power for each test also showed slight 

improvement, say increased by approximately 10%.  

So far only a certain missing data configuration (3-2-3) has been concerned in this paper. 

However, further studies could be done to change the missing data configurations, say 3-2-3, 6-

4-6, 12-8-12, 6-1-1, 14-1-1, or even 30-1-1. Especially study done on the 6-1-1 or 14-1-1 might 

mean a lot for clinical trial data analyses, since it may often happen that one observation might 

be missing in a fairly small sample size. People can also discuss the question of whether adding 

unpaired observations help to improve the power under various missing data configurations. 

Another possibility for further studies will be to check the results of this paper to see if they also 
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hold up under different bivariate population distributions. The introduction of this new 

nonparametric test statistic is of public health importance because it is a powerful statistical 

method for dealing with a pattern of missing data that may be encountered in clinical and public 

health research. 

 35 



APPENDIX A 

NULL HYPOTHESIS DISTRIBUTION FOR  1T

Possible values of   1T Probability under  0H
6 1/80 
7 4/80 
8 8/80 
9 12/80 
10 15/80 
11 15/80 
12 12/80 
13 8/80 
14 4/80 
15 1/80 
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APPENDIX B 

NULL HYPOTHESIS DISTRIBUTION FOR  3T

Possible values of   3T Probability under  0H
9 1/80 
10 2/80 
11 3/80 
12 5/80 
13 6/80 
14 7/80 
15 8/80 
16 8/80 
17 8/80 
18 8/80 
19 7/80 
20 6/80 
21 5/80 
22 3/80 
23 2/80 
24 1/80 
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APPENDIX C 

NULL HYPOTHESIS DISTRIBUTION FOR  4T

Possible values of   4T Probability under  0H
-9 1/80 
-8 1/80 
-7 3/80 
-6 3/80 
-5 5/80 
-4 4/80 
-3 7/80 
-2 5/80 
-1 8/80 
0 6/80 
1 8/80 
2 5/80 
3 7/80 
4 4/80 
5 5/80 
6 3/80 
7 3/80 
8 1/80 
9 1/80 
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