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EAVESDROPPING ON THE ENEMY:  THE IMPORTANCE OF CHEMICAL CUES 

FOR INDUCIBLE DEFENSES 

Nancy Marie Schoeppner 

University of Pittsburgh, 2006

Many species rely on phenotypically plastic traits to defend themselves against predators and the 

induction of these phenotypes require reliable environmental cues.  In aquatic systems, defensive 

phenotypes are induced by chemical cues emitted during predation events.  Using larval 

amphibians as a model system, my dissertation focuses on how prey use the different types of 

chemical information available from predators (kairomones) and prey (alarm cues) and how prey 

integrate their defensive decisions in response to chemical cue variation over space and time.   

Predation cues contain information on the identity of the predator (kairomones) and the 

identity of the attacked prey (alarm cues).  I have shown that different alarm cues (from different 

predator diets) induce different magnitudes of prey defense and discovered that the magnitude of 

the response depends on the evolutionary divergence time between the diet and the responding 

prey.  Because chemical cues from consumed prey induce different suites of traits than cues from 

starved predators or damaged prey, I have also performed experiments to determine the role the 

predators themselves play in producing the cue (i.e. releasing a kairomone or digesting alarm 

cues).  I found that digestion of the prey is essential to induce the complete suite of defensive 

traits. 

Because induced defenses have associated costs, prey should balance these costs and 

benefits by fine-tuning their responses to their environment over space and time.  To do this, 

prey must be able to detect and respond to changes in risk when they move into new 

environments (spatially) or when predators come and go (temporally).  I have found that tadpoles 

can detect small differences in risk, but that experiencing pulses of risk, when compared to a 

constant risk, largely does not alter their defensive decisions.  Collectively, this work 

demonstrates the important role of environmental cues in understanding the ecology and 

evolution of inducible defenses. 
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1.0  INTRODUCTION 

Phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes, is an 

important aspect of how organisms respond to environmental variation (Pigliucci 2001).  While 

not all phenotypic plasticity is adaptive, a plethora of research has shown that organisms modify 

their phenotypes in response to environmental change, and that those changes result in the 

induced organism having higher fitness than non-induced organisms (West-Eberhard 2003).  To 

produce a phenotype that is well-suited for its environment, organisms must have  reliable cues 

that indicate either the current (if the phenotype can be changed quickly) or future (if the 

phenotype requires more time to change) state of the environment (Moran 1992). 

In aquatic systems, many organisms possess plastic defenses that are induced by 

chemical cues emitted during predation events (Larsson and Dodson 1993, Chivers and Smith 

1998).  Chemical cues induce phenotypic changes that not only affect prey survival and 

performance (Smith and Van Buskirk 1995, Pijanowska 1997, Van Buskirk et al. 1997, Van 

Buskirk and Relyea 1998, Wisenden et al. 1999, McIntyre et al. 2004), but also affect 

interspecific interactions in ecological communities (i.e. trait-mediated effects, Lima 1998, 

Turner et al. 2000, Werner and Peacor 2003).  While chemical cues are important to both 

individuals and communities, we actually know little about how prey detect and interpret 

chemical cues when making their phenotypic decisions (Pigliucci 2001, Iyengar and Harvell 

2002).  In this dissertation, I present the results of five studies designed to determine how prey 

use different types of chemical information, available from predators (kairomones) and prey 

(alarm cues), and how prey integrate their defensive decisions in response to chemical cue 

variation over space and time. 

Phenotypic variation in nature is determined by both genotypes and the extent of 

environmental variation that organisms encounter.  In nature, predation risk varies in both time 

and space, and the extent that this environmental variation translates into phenotypic variation 
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will depend on how sensitive an organism is to differences in predation risk (i.e. differences in 

the amounts of chemical predation cues).  Given that predator-induced defenses come at a cost of 

reduced growth and development, selection should select for the ability to detect small 

differences in predation risk (Moran 1992, Werner and Anholt 1993).  I address this question in 

chapter 2 by determining how wood frog tadpoles (Rana sylvatica) respond to an increasing 

gradient of predation risk produced by either feeding a constant number of predators increasing 

amounts of prey or feeding increasing numbers of predators a constant mass of prey.  This work 

was done in collaboration with Rick Relyea and is being prepared for submission to Ecology. 

A major tenet for the evolution of inducible defenses is that organisms must experience 

variation in predation risk over space or time.  While most attention has focused on course-

grained (i.e. intergenerational) variation in risk, fine-grained (i.e. intragenerational) differences 

might also be important (Lima and Bednekoff 1999, Miner and Vonesh 2004, Ruehl and DeWitt 

2005).  While the majority of previous work has focused on the effects of chronic exposure to a 

single environment, spatial and temporal variation within an organism’s lifetime may have 

substantial impacts on phenotypic expression.  To date, several studies have examined the impact 

of temporal variation on prey behavior by comparing prey responses in constant environments to 

prey responses when switched between predator and no-predator environments (Hamilton and 

Heithaus 2001, Sih and McCarthy 2002, Van Buskirk et al. 2002, Pecor and Hazlett 2003, 

Laurila et al. 2004, Foam et al. 2005).  However, these manipulations alter both mean risk and 

the variation in risk, so the effects of temporal variation per se cannot be determined.  Therefore, 

we need to ask whether prey can alter their phenotypic decisions in response to variation in risk 

independent of the mean level of risk experienced.  I address this question in chapter 3 by 

exposing wood frog tadpoles (Rana sylvatica) to different types of variation in predation risk 

while holding mean predation risk constant (mg of prey/caged predator/day).  This work was 

done in collaboration with Rick Relyea and is being prepared for submission to Ecology. 

Predation cues are complex mixtures that contain information about both the predator 

(kairomones) and species of prey being consumed (Chivers and Smith 1998).  However, the role 

that kairomones and alarm cues play in shaping prey phenotypes has been largely restricted to 

prey behavior and has focused on either kairomones or alarm cues.  In nature, inducible defenses 

are often predator-specific and involve several behavioral and morphological traits.  Given that 

kairomones and alarm cues provide different information about predation risk, the prey may not 
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commit to a specific defense when only one cue type is present.  In chapter 4, I address this 

question with an experiment in which I quantified behavioral and morphological responses of 

grey tree frog tadpoles (Hyla versicolor) exposed to either no predators, starved predators (a 

source of kairomones), nine crushed diets (sources of alarm cues), or nine consumed diets 

(sources of kairomones plus alarm cues).  This work was done in collaboration with Rick Relyea 

and has been published in Ecology Letters.  

When prey discriminate among predator diets, cues from consumed conspecifics 

typically induce strong responses but cues from consumed heterospecifics can induce either 

weak or strong responses (Wilson and Lefcort 1993, Chivers and Mirza 2001).  Two mechanisms 

have been proposed to explain the variable responses to heterospecific diets:  1) prey respond 

strongly to coexisting heterospecifics and weakly to non-coexisting heterospecifics (the 

ecological mechanism) or 2) prey respond strongly to heterospecifics that are closely-related and 

weakly to heterospecifics that are distantly-related (the phylogenetic mechanism).  However, our 

ability to discriminate between these mechanisms has been limited because the phenotypic 

responses to the diets needed to discriminate between these mechanisms have not been compared 

within a single experiment.  In chapter 5, I present data from an experiment in which I exposed 

grey tree frog tadpoles (Hyla versicolor) to a variety of predator diets including conspecifics, 

heterospecifics that coexist with grey tree frogs (e.g., spring peepers, wood frogs, salamanders, 

insects and snails), and a closely-related heterospecific that does not overlap with grey tree frogs 

(the Pacific tree frog, Hyla regilla) to determine the mechanism underlying the response to 

heterospecific alarm cues.  This work was done in collaboration with Rick Relyea and is being 

prepared for submission to Behavioral Ecology and Sociobiology. 

The work presented in chapter 4 shows that either starved predators or alarm cues alone 

do not induce the full suite or magnitude of traits induced by predators consuming prey.  This 

observation suggests several possible roles for both the predator and the prey in generating 

kairomones and alarm cues.  First, alarm cues and kairomones from starved predators alone may 

not provide enough information to induce a complete anti-predator phenotype and the prey may 

simply need to encounter both cues simultaneously.  Alternatively, the weak responses to each 

component may be because the cues are only produced or are modified during prey digestion.  

To determine the roles of both the predator and the consumed prey in inducing defended 

phenotypes we need to determine if phenotypes differ when: 1) alarm cues from the prey and 
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kairomones from starved predators are encountered simultaneously; 2) the predator digests any 

diet or 3) the predator digests conspecific prey.  In chapter 6, I present the results from an 

experiment using leopard frog tadpoles (Rana pipiens) that addresses this question.  This work 

was done in collaboration with Rick Relyea and is being prepared for submission to Ecology 

Letters. 

Finally, in Chapter 7, I discuss the implications of my work for understanding the 

ecology and evolution of inducible defenses and predator-prey interactions.  I also discuss 

directions for future research into how prey integrate and respond to the information provided by 

chemical cues. 
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2.0  DETECTING SMALL ENVIRONMENTAL DIFFERENCES:  RISK-RESPONSE 

CURVES FOR PREDATOR –INDUCED BEHAVIOR AND MORPHOLOGY 

2.1 ABSTRACT 

Most organisms possess traits that are sensitive to changes in the environment (i.e. plastic traits) 

which results in the expression of environmentally-induced polymorphisms.  While most 

phenotypically plastic traits have been traditionally treated as threshold switches between 

induced and uninduced states, there is growing evidence that many traits can respond in a 

continuous fashion.  Using larval anurans (wood frog tadpoles, Rana sylvatica), I manipulated 

predation risk in two ways: 1) by altering the amount of prey consumed by a constant number of 

predators (Dytiscus sp.) and 2) by altering the number of predators that consume a constant 

amount of prey.  I then quantified the expression of predator-induced behavior, morphology, and 

mass to determine the level of risk that induced each trait, the level of risk that induced the 

maximal phenotypic response for each trait, whether the different traits exhibited graded or 

threshold responses, and whether increasing risk by increasing the numbers of predators or by 

increasing the consumption of prey induced similar phenotypic changes.  I found that all of the 

traits exhibited fine-tuned, graded responses and most of them exhibited a plateauing response 

with increased predation risk, suggesting either a limit to plasticity or the reflection of high costs 

of the defensive phenotype.  For many traits, a large proportion of the maximum induction 

occurred at the very lowest level of risk, suggesting that the chemical cues of predation are 

effective at extremely low concentrations.  Interestingly, the maximum response in all traits was 

not induced at the same level of predation risk and not all traits plateaued at the same level of 

predation risk.  In contrast to earlier work, I found that behavioral and morphological responses 

to increased predator number were simply a response to increased total prey consumption.  These 

results have important implications for models of plasticity evolution, models of optimal 

 5 



phenotypic design, expectations for how organisms respond to fine-grained changes (i.e. within 

generation) in their environment, and impacts on ecological communities via trait-mediated 

indirect effects. 

2.2 INTRODUCTION 

Phenotypic plasticity is a common response to changing environments.  Organisms that possess 

trait plasticity have the ability to alter their traits in response to environment cues to produce 

phenotypes that perform better under the new environmental conditions (Schlichting and 

Pigliucci 1998, West-Eberhard 2003).  The range of phenotypes produced in response to 

environmental changes depends both upon the gradient of the environmental factor that can be 

experienced and the sensitivity of the organism in detecting and responding to environmental 

change.  If sensitivity is low, the organism may only detect a difference once a threshold level is 

encountered, resulting in a discrete polymorphism (Moczek 1998, Lively et al. 2000).  If there is 

genetic variability among individuals in the point of this threshold induction, then different 

points along the environmental gradient will produce different proportions of induced and 

uninduced individuals (Roff 1996, Lively et al. 2000, Hazel et al. 2004).  However, if sensitivity 

is high, the organism may have the ability to detect and respond to an environmental gradient 

with graded phenotypic responses, where increased cue intensity increases the magnitude of the 

induction and not just the proportion of induced individuals (Harvell 1990, 1998).  Hence, 

environmental sensitivity will determine the range of phenotypic variation that can be produced 

and how closely the organism can “match” its phenotype to the environment. 

The classical perception is that adaptive plastic phenotypes are switches between induced 

and uninduced states (Cook and Johnston 1968, Grant and Bayly 1981, Havel 1985, Stemberger 

1988, Greene 1989, Pfennig 1990).  This perception arises from the earliest models of plasticity 

evolution which examined two-environment scenarios for mathematical simplicity (Via and 

Lande 1985, van Tienderen 1991) and from the early empirical investigations of plasticity which 

typically examined how organisms altered their traits in two environments (i.e. long vs. short 

photoperiod, hot vs. cold temperature, high vs. low competition, light vs. shade, predator vs. no-

predator; Lively 1986, Schlichting 1989, Van Tienderen 1990, Blouin 1992, Spitze 1992, 
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Andersson and Shaw 1994, Kingsolver 1995,  Dudley and Schmitt 1996, Pigliucci et al. 1997).  

However, there has been an increasing appreciation that most organisms in nature experience a 

wide range of environments that can be arrayed along gradients and, therefore, there has been a 

move to examine how organisms respond to a range of environments (West-Eberhard 2003, 

Relyea 2004). When experiments have been conducted at a finer-scale than simply high vs. low 

environmental state, researchers have often discovered that many traits display graded responses 

to continuous environmental changes (Gupta and Lewontin 1982, Barry and Bayly 1985, Walls 

and Ketola 1989, Hanazato and Ooi 1992, Tollrian 1993, Sultan and Bazzaz 1993, Horat and 

Semlitsch 1994, Morin et al. 1997, Pigliucci 1997, Harvell 1998, Wiackowski and Staronska 

1999, Kusch et al. 2004, Wolfe and Mazer 2005).  If graded responses to continuous 

environmental variation are common, then previous conclusions about how organisms respond to 

environmental variation based on responses exhibited in two environmental extremes may not 

correctly represent the true ecology and evolution of phenotypic plasticity or the range of 

phenotypes that will be available for selection to act upon in nature (Schlichting 1989).  Thus, to 

determine the extent that organisms can detect and respond to small differences among 

environments , we need to examine how multiple traits are expressed along multiple points of an 

environmental gradient (Horat and Semlitsch 1994, Van Buskirk and Arioli 2002, Relyea 2004). 

It is becoming clear that organisms alter suites of traits in dealing with environmental 

change and that the sensitivity to the environment can differ among traits (Schlichting and 

Pigliucci 1998, Boersma et al. 1998).  One way that sensitivity can differ among traits is the 

point along an environmental gradient at which a trait is induced.  If relatively low-cost traits are 

effective in less extreme environments, but only high-cost traits are effective in more extreme 

environments, the high-cost trait should only be induced once more extreme environments are 

encountered.  For example, Harvell (1998) showed that low levels of predation risk induced 

bryozoans to form small corner spines but higher levels of predation risk were required to induce 

larger membranous spines.  A second way that sensitivity can differ among traits is whether traits 

are induced in a threshold or graded fashion.  Theory predicts that threshold response should 

evolve when the fitness function underlying the traits is discontinuous such that, after the initial 

induction, increases in the trait provide no additional fitness benefit.  In contrast, graded 

responses should evolve when there is a continuous fitness function associated with the trait such 

that increases in the expression of the trait are associated with increases in fitness (Lively 1986, 

 7 



Roff 1996).  For inducible defenses, theory often implicitly assumes that prey can respond to 

variation in predation risk with a graded phenotypic response.  However, traits that change in 

response to predation cues display both types of responses (Anholt et al. 1996, Harvell 1998, 

Laurila et al. 2004, Van Buskirk and Arioli 2002, Relyea 2004).  Therefore, determining if 

graded responses are common for traits involved in inducible defenses is an important step in 

determining how prey balance the costs and benefits of inducible defenses.  

If plastic traits are sensitive to small changes in the environment, then fine-scale (i.e. 

within generation; Levins 1968) environmental variation may drastically effect phenotypic 

expression.  Previous work has shown that plastic traits can be reversible when the environment 

switches from one extreme to the other in an environmental gradient.  For example, predator-

induced defenses (behavioral and morphological) converge on the no-predator phenotype when 

predators leave the environment (Van Buskirk 2002b, Relyea 2003b).  If individuals can detect 

and respond to small environmental changes with different phenotypes, then prey may 

continually alter their phenotypes to produce the phenotype that is optimal for the environment.  

For example, if predator number or foraging efficiency varies during the prey’s ontogeny, and 

the prey detect these changes and interpret them as changes in predation risk, then fine-grained 

variation in risk may affect how defensive traits are expressed over time.  Determining how traits 

respond to fine-scale differences in the environment is a necessary step in understanding how 

temporal variability in the environment may affect phenotypic expression of these traits. 

When examining how organisms respond to an environmental gradient, the conclusions 

we make about environmental sensitivity may depend on what cues we manipulate.  Many 

organisms use more than one cue to predict future environments.  For example, most aquatic 

prey use both alarm cues (from damaged prey) and kairomones (from predators) for inducing 

plastic defensive traits.  Increases in the amount of prey consumed by a constant number of 

predators would increase the alarm cue:kairomone ratio while increases in the number of 

predators that consume a given amount of prey would decrease the alarm cue:kairomone ratio.  

Therefore, prey may use differences in the ratios of these components to determine if the cues 

they encounter are being produced by a single predator consuming a large amount of prey or 

several predators that are consuming fewer prey per predator.  Being able to detect these 

differences may be important if different traits are effective against different size classes of 

predators.  Therefore, if multiple cues are used to assess the environment, the observed 
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sensitivity may be dependent on the ratio at which those cues are encountered. 

I addressed these issues in an experiment in which I exposed larval anurans to a gradient 

of predation risk via either increasing the prey consumption by a fixed number of predators or 

increasing the number of predators that are fed a fixed amount of prey.  In response to these 

gradients, I measured how the tadpoles altered their behavior, growth, and relative morphology.  

I tested the following predictions: 1)  All traits are induced at the same level of predation risk 2)  

All traits respond to increasing predation risk with graded responses, and 3) The magnitude of 

the response to predation risk will differ depending upon the way that the risk is experienced (i.e. 

increased prey consumption versus increased predator number). 

2.3 METHODS 

I used a completely randomized design consisting of 11 treatments replicated four times for a 

total of 44 experiment units to quantify the magnitude of tadpole defensive responses across a 

range of predation risk environments.  The experiment was conducted in pond mesocosms (cattle 

watering tanks) located at the Pymatuning Laboratory of Ecology Aquatic Research Laboratory 

in northwestern Pennsylvania.  The 11 treatments included a no-predator treatment, seven 

treatments in which I fed four caged predators a constant mass of prey each day (50, 100, 200, 

300, 400, 700, or 800 mg), and three additional treatments in which I fed 1, 2, or 6 predators a 

constant amount of prey (200 mg) each day.  This design allowed me to manipulate predation 

risk in two different ways (via increased prey consumption and via increased predator number) 

and make several treatment comparisons in which the total amount of prey consumed was the 

same but the number of predators doing the consuming was varied (e.g., one predator consuming 

200 mg of prey versus four predators each consuming 50 mg of prey).  Such comparisons 

allowed me to determine whether responses to increased predator number were simply responses 

to the higher total consumption of prey. 

To simulate natural pond conditions, I used 800-L mesocosms (cattle tanks) containing 

700 L of aged well water, 200 g leaf litter, 15 g rabbit chow (as an initial nutrient source), and an 

aliquot of pond water containing algae and zooplankton.  All components were added to the 

mesocosms 10 d prior to the start of the experiment to allow algal growth.  Six predator cages, 
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constructed of 10 cm black plastic drainpipe and covered on both ends with fiberglass mesh 

screens, were placed into each tank.  Depending on the treatment, each cage was either empty or 

contained a single larval beetle (Dytiscus sp.) that was fed wood frog tadpoles daily.  The cages 

allowed chemical cues, which are released when the predators consume prey, to diffuse 

throughout the tank while preventing the predator from consuming the tadpoles in the 

experiment.  All tanks were covered with 67% shade cloth lids to prevent colonization by any 

predatory insect or amphibian larvae during the experiment. 

I used wood frog tadpoles (Rana sylvatica) that were collected as hatchlings from a 

nearby pond (Shrub Pond; Crawford County, PA) on 24 March 2005.  The tadpoles were newly 

hatched from a group of more than 50 egg masses and had not yet left the egg masses.  To 

prevent exposure to predation cues prior to the experiment, I reared the hatchling tadpoles in 

pools containing aged well water where they were fed rabbit chow ad libitum.  I haphazardly 

selected groups of 30 tadpoles and added them to each mesocosm on 13 May 2005 (mean mass ± 

SE = 61 ± 4 mg). 

Behavioral observations were conducted on five different days of the experiment (days 7, 

10, 13, 19, and 20) where each tank was observed 12 times over a period of 2 hrs (three 

observations taken by four observers).  Using established observation protocols (Relyea and 

Werner 1999), I counted the number of visible tadpoles in each mesocosm and the number of 

visible tadpoles that were moving.  Thus, my behavioral response variables were the mean 

number of tadpoles observed (the inverse of tadpole hiding) and the mean proportion of active 

tadpoles in each tank.  The data were analyzed with a repeated-measures analysis of variance 

(rmANOVA) to test for an effect of treatment, day, and their interaction.  When a significant 

effect was found, I conducted pairwise comparisons using Fisher’s LSD test. 

After 24 d, all tadpoles were removed from the mesocosms, euthanized, and preserved in 

10% formalin for subsequent morphological measurements (mean survival = 93 + 0.73%).  

Tadpole morphology was measured using an image analysis system (Optimas Bioscan; Bothell, 

Washington, USA).  I weighed each tadpole and then measured eight morphological dimensions: 

body depth, length, and width; tail length and depth; tail muscle depth and width, and mouth 

width (see Fig.1 in Relyea 2000).  Because the tadpole’s body is round I placed a glass plate 

under the tadpole’s tail to bring both structures into the same plane of focus and ensure that I 

obtained an undistorted lateral image. 
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Because I was interested in changes in tadpole shape independent of differences in 

overall tadpole size (i.e. bigger tadpoles have bigger bodies and tails), I calculated size-adjusted 

estimates of all the morphological traits.  The size-adjusted estimates were obtained using a 

multivariate analysis of covariance (MANCOVA, SPSS version 11.0.2 for Mac OS X) with mass 

as the covariate.  To improve the linearity of the mass-trait relationship before the analysis, 

tadpole mass was log-transformed when necessary.  I found no mass-by-treatment interactions 

for any of the traits, indicating that the regression lines among treatments were parallel for each 

trait (a requirement for making the size-adjustment).  To produce the size-adjusted measurements 

of each morphological trait, I added the residuals from the within-group regression to the 

estimated marginal mean for the appropriate treatment and averaged the measurements for all 

tadpoles in each tank for each of the eight traits.  I then used a multivariate analysis of variance 

(MANOVA) to examine the effect of prey consumption and predator number on wood frog mass 

and the eight mass-independent morphological traits using tank means as my response variables.  

For significant univariate effects, I compared treatment means using Fisher’s LSD.  These 

pairwise comparisons were used to assess the evidence for either a threshold or graded responses 

to predator cues.  I concluded that the responses to increased prey consumption or predator 

number was not a threshold response when I found significant differences among any of the 

treatments containing caged predators. 

2.4 RESULTS 

2.4.1 General response to predators 

I found significant effects of the predator treatments on wood frog tadpole behavior, mass, and 

morphology.  In the repeated-measures ANOVA on tadpole activity, I found an effect of 

treatment (F10,33 = 21.0, P < 0.001) and time (F5,29 = 25.5, P < 0.001) but no treatment-by-time 

interaction (F50,136= 1.3, P = 0.125).  The tadpoles in the no-predator treatment were more active 

than any of the caged-predator treatments (P < 0.001; Fig. 2.1).  Similarly, I found an effect of 

predator treatment (F10,33 = 5.7, P < 0.001), time (F5,29 = 139.1, P < 0.001), but no treatment-by-

time interaction (F50,136 = 1.5, P = 0.09) on the number of tadpoles observed (i.e. not hiding).  
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The tadpoles in the no-predator treatments hid less than the tadpoles in any of the predator 

treatments (P < 0.001; Fig 2.1).  In short, predators induced tadpoles to hide and remain less 

active. 

I found a multivariate effect of the treatments on tadpole mass and morphology (Table 

2.1A).  Univariate analysis (Table 2.1B) indicated differences in final mass, body dimensions 

(length, depth, and width), and tail dimensions (length and depth).  Tadpoles exposed to any of 

the predator treatments had lower mass than the no-predator control (P < 0.043, Fig. 2.1).  All of 

the predator treatments also induced relatively shorter and deeper tails (P < 0.001, Fig. 2.2) and 

shorter and deeper bodies (P < 0.001, Fig. 2.3) than the no-predator treatment.  The one trait that 

did not exhibit consistent induction by the 10 treatments containing caged predators was body 

width.  Only tadpoles in the 200-mg, 300-mg, and 6-predator  treatments had narrower bodies 

than the tadpoles in the no-predator treatment (P < 0.003).  The remaining three traits (muscle 

width, muscle depth, and mouth width) were not affected by the treatments. 

2.4.2 Increasing consumption of prey:  Graded or threshold response? 

All of the traits showed a graded response to increases in the amount of prey consumed by the 

predator, but not all of the traits showed responses that plateaued at the highest risk levels.  For 

each trait, I begin by comparing the responses between the no-predator control and the lowest 

amount of consumed prey (50 mg).  I then compare how the trait changed as prey consumption 

increased above 50 mg. 

Compared to the no-predator treatment, tadpole activity decreased by 33% when exposed 

to 50 mg of consumed prey (P < 0.001; Fig. 2.1) and decreased an additional 11% when exposed 

to 300 mg of consumed prey (P <  0.046).  Activity did not decrease further at higher amounts of  

consumed prey (P > 0.214).  Thus, tadpole activity exhibited a plateauing response to increased 

prey consumption by predators. 

The number of tadpoles observed decreased by 11% when exposed to 50 mg of 

consumed prey (P = 0.038; Fig. 2.1) and decreased an additional 12% when exposed to 200 mg 

of consumed prey (P = 0.05). The number observed decreased even further (14%) in response to 

800 mg of consumed prey (P = 0.05; Fig. 2.1).  Thus, tadpole hiding did not exhibit a plateauing 

response to increased prey consumption by predators, although the magnitude of the change per 
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mg consumed prey grew weaker at higher amounts of consumed prey.   

Tadpoles mass was also affected by increases in prey consumption (Fig. 2.1).  Tadpoles 

were 6% less massive when exposed to 50 mg of consumed prey (P = 0.04).  Tadpole mass 

decreased an additional 16% when exposed to 200 mg of consumed prey (P < 0.001) and 

decreased even further (16%) when exposed to 700 mg of consumed prey (P < 0.001).  At 800 

mg of consumed prey, there was no further decline in mass (P = 0.385), confirming a plateauing 

response.   

I next examined relative tail size.  Tadpoles tails were 5% shorter when exposed to 50 mg 

of consumed prey (P < 0.001; Fig. 2.2).  Tail length decreased an additional 2% when exposed to 

100 mg of consumed prey (P = 0.038), and decreased even more (2%) when exposed to 200 mg 

consumed prey (P = 0.033).  In environments with greater than 200 mg consumed prey, tail 

length exhibited small increases compared to 200 mg consumed prey (e.g. 400 or 800 mg 

consumed prey), but tadpole tails in these environments were always shorter than the tails 

observed for 50 mg consumed prey (P < 0.05).  Therefore, tail length was not consistent with a 

simple threshold response across an increasing gradient of predation risk however I did not find 

clear evidence that the response was plateauing.  Tadpole tails were 11% deeper when exposed 

to 50 mg of consumed prey (P < 0.001; Fig. 2.2).  Tail depth increased an additional 3% in 

response to 200 mg of consumed prey (P < 0.001) but did not increase any more at higher 

amounts of consumed prey (P > 0.315); showing a platueating response.   

The amount of prey consumed by predators also affected the relative size of the tadpole 

body.  Tadpole bodies were 5% shorter bodies when exposed to 50 mg consumed prey (P < 

0.001; Fig. 2.3).  The bodies became even shorter in several of the higher consumption 

treatments (200, 300, 700, and 800 mg; P < 0.05).  However, body length in the 100- and 400-

mg treatments was not different than 50-mg treatment (P > 0.457), which does not support a 

plateauing response.  Tadpoles bodies were 5% deeper when exposed to 50 mg of consumed 

prey (P < 0.001; Fig. 2.3).  Body depth increased even more in response to 200 mg of consumed 

prey (P = 0.031).  At greater amounts of prey consumption, body depth exhibited a small gradual 

decline until the 800-mg treatment induced shallower bodies than the 200-mg treatment (P = 

0.022). Tadpoles exposed to 50 mg of consumed prey did not change body width compared to 

the no-predator treatment (P = 0.077; Fig. 2.3).  In fact, it required at least 200 or 300 mg of 

consumed prey to induce an increase in body width (P ≤ 0.003) and these two treatments were 

 13 



not different from each other (P = 0.753).  No other treatments caused a change in body width.  

In summary, the body dimensions exhibited graded responses and two of the responses were 

generally suggestive of plateaued responses.  However, several treatments induced body changes 

that diverged from a clear plateauing response. 

2.4.3 Increasing predator number:  Graded or threshold response? 

I found evidence of a continuous response to increasing predator number for six out of the eight 

tadpole traits.  For all of the traits, I begin by comparing the response between the no-predator 

control and the one-predator treatment.  I then indicate how the trait changed as the number of 

predators increased above one predator. 

I first examined the behavioral traits.  Tadpole activity (Fig. 2.1) decreased by 38% when 

exposed to one predator, but increasing the number of predators did not further decrease tadpole 

activity (P > 0.494).  In contrast, the number of tadpoles observed (Fig. 2.1) decreased by 13% in 

response to one predator (P = 0.008) and decreased an additional 10% in response to four 

predators (P = 0.04).  However, there was no difference between four and six predators (P = 

0.706).  Thus, in response to predator number, activity exhibited a threshold response while 

hiding exhibited a graded response. 

Tadpole mass also was affected by increasing numbers of predators (Fig. 2.1).  Tadpoles 

were 11% less massive in response to one predator (P = 0.001) and an additional 11% less 

massive in response to four predators (P < 0.001).  However, mass did not decrease any further 

from four to six predators (P = 0.563).   

Next I examined relative tail morphology.  Tadpole tails were 6% shorter in response to 

one predator (P < 0.001) and decreased an additional 2% in response to four predators (P = 

0.002; Fig. 2.2).  There was no further decrease when exposed to six predators (P = 0.685).  

Tadpoles tails were 10 % deeper when exposed to one predator (P < 0.001) and increased an 

additional 2% when exposed to two predators (P = 0.039).  Tail depth did not decrease further 

when exposed to four or six predators (P > 0.1).  Thus, both tail dimensions exhibited graded and 

plateauing responses to increased numbers of predators. 

Finally, I examined the relative body dimensions.  Tadpoles bodies were 3% shorter 

when exposed to one predator (P > 0.001; Fig. 2.3) and became even shorter (2%) when exposed 
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to four predators (P = 0.013).  However, bodies did not become any shorter when exposed to six 

predators (P = 0.521).  Tadpole bodies were 6% deeper when exposed to one predator (P < 

0.001) and became an additional 1% deeper when exposed to four predators (P = 0.049).  Body 

depth did not increase further when tadpoles were exposed to six predators (P = 0.586).  Tadpole 

body width did not respond to one or two predators (P > 0.1) but was 3% wider when exposed to 

four predators (P = 0.001).  Body width did not increase further when exposed to six predators (P 

= 0.845).  Thus, two of the three body dimensions exhibited graded and plateauing responses 

when exposed to increased numbers of predators. 

As noted above, there were two traits (activity and body width) that exhibited apparent 

threshold responses to increased predator number but graded responses to increased amounts of 

consumed prey.  These differences can be explained by the fact that the total amount of 

consumed in the prey-consumption treatments (200 to 3200 mg) spanned a much wider range 

than the predator-number treatments (200 to 1200 mg).  This wider range of chemical cue 

allowed the induction of more extreme phenotypic changes that could fully demonstrate the 

trait’s ability to exhibit a graded response. 

2.4.4 Prey consumed versus predator number 

Because I manipulated both the amount of prey consumed and the number of predators, I could 

determine whether the response to increased numbers of predators was simply reflecting the 

greater prey consumption that occurred when there were more predators.  I compared treatments 

that contained different numbers of predators but the same total mass of consumed prey (i.e. four 

predators each consuming 50 mg of prey versus one predator consuming 200 mg of prey, four 

predators each consuming 100 mg of prey versus two predators each consuming 200 mg of prey, 

and four predators each consuming 300 mg of prey versus six predators each consuming 200 mg 

of prey).  I found no differences in the magnitude of the defensive trait for any of the 

comparisons made for the behavioral traits (P > 0.214), mass (P > 0.090) and the morphological 

traits (P > 0.170).  This suggests that the tadpole response to increased predator number was 

simply reflecting the increased amount of prey being consumed. 
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2.5 DISCUSSION 

The results of this study demonstrate that tadpoles alter a suite of traits in response to predation 

risk and that both the initiation and magnitude of the defensive responses depend upon the level 

of predation risk and the trait in question.  The antipredator responses that I observed were 

consistent with past studies and are thought to be adaptive (McCollum and Van Buskirk 1996, 

Van Buskirk et al. 1997, Van Buskirk and Relyea 1998, Anholt et al. 2000, Laurila 2000, Relyea 

and Werner 2000, Relyea 2002b, Van Buskirk 2002a).  The reduction in activity and increase in 

hiding makes prey less noticeable to predators and this can translate into a reduction in predation 

(Sih 1992, Skelly 1994, Relyea 2001b).  However, these behavioral responses come at a cost of 

reduced foraging and, therefore, reduced growth (Skelly and Werner 1990, Skelly 1992, DeWitt 

1998, Relyea 2002a).  The morphological responses also appear to be adaptive because tadpoles 

with deeper tails and shorter bodies escape predation better than tadpoles with the opposite 

morphology (Van Buskirk et al. 1997, Van Buskirk and Relyea 1998).  Larger tails are thought 

to serve as sacrificial targets for predatory strikes that can tear away and be regrown (Blair and 

Wassersug 2000, Van Buskirk et al. 2002, 2003).  However, tadpoles with large tails and short 

bodies experience slower growth because they  have relatively smaller mouthparts for scraping 

periphyton and relatively shorter (and likely less efficient) intestines (Relyea and Auld 2004, 

2005).  Moreover, in wood frog tadpoles, we know that these traits and, in some cases, the 

plasticity of these traits contain substantial additive genetic variation which allows them to be 

subject to selection in predator and no-predator environments (Relyea 2005). 

While most studies of predator-induced defenses have taken a two-environment approach 

(e.g. predators present and absent; Tollrian and Harvell 1999), it is clear that this is rarely the 

reality that most prey species face in nature (reviewed in Relyea 2004).  Indeed, prey can 

experience and respond to a wide range of predation risk that can manifest itself in several ways.  

First, a number of studies have found that prey can respond to different species of predators that 

vary in riskiness (Phillips 1976, Marko and Palmer 1991, Black 1993, Relyea 2001b, Vilhuren 

and Hirvonen 2003; but see Langerhans and DeWitt 2002).  Second, prey appear to assess 

differences in predation risk when a given predator consumes conspecific versus heterospecific 

prey.  Typically, prey respond stronger to the consumption of conspecifics (Wilson and Lefcort 

1993, Laurila et al. 1997, Pettersson et al. 2000, Smith and Belk 2001, Schoeppner and Relyea 
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2005).  Third, a limited number of studies (including the current study) have examined prey 

responses to different predator densities and found that prey are able to detect and respond 

appropriately to increased predator numbers (Barry and Bayly 1985, Harvell 1998, Van Buskirk 

and Arioli 2002, Relyea 2004).  Fourth, prey might also be able to detect and respond to 

differences in risk when a predator consumes more prey (Barry and Bayly 1985, Walls and 

Ketola 1989, Anholt et al. 1996, Van Buskirk and Arioli 2002, see also Petranka 1989 for similar 

response to increased amounts of crushed prey).  Consistent with previous work using tadpoles 

(Van Buskirk and Arioli 2002), I found that wood frog tadpoles were quite sensitive to 

differences in prey consumption and they were capable of exhibiting more extreme defenses 

when predators consumed more prey.  Thus, the collective evidence is that aquatic prey are 

generally capable of assessing different levels of predation risk including detecting different 

species of predators, different predator diets, different densities of predators, and different 

amounts of prey consumption.  The fact that all of this occurs via water-borne chemical cues 

suggests that aquatic prey are attuned to an impressive diversity of cues and cue concentrations. 

The results of my study shed light onto how tadpole prey use these chemical cues in 

making their defensive phenotypes.  I recently demonstrated that the kairomones from starved 

predators alone or the alarm cues from damaged prey alone fail to induce the full suite and 

magnitude of anti-predator defenses (Schoeppner and Relyea 2005).  Inducing the complete 

magnitude of behavioral defense and any morphological defense requires both cue components 

in combination.  In the current study, I found that increased prey consumption by a fixed number 

of predators and increased predator number (consuming a fixed per-capita prey ration) both 

induced more extreme defenses.  This suggests that the increased prey defenses could be either 

due to greater concentrations of kairomones or greater concentrations of alarm cues.  By making 

several comparisons of different numbers of predators consuming the same total amount of prey, 

I found that the response to increased predator density was apparently not due to predator 

number per se, but rather to the greater consumption of prey that was occurring with more 

predators.  This conclusion is in agreement with Van Buskirk and Arioli’s (2002) conclusions on 

tadpole behavioral defenses but is in contrast with their conclusions concerning tadpole 

morphological defenses.  Van Buskirk and Arioli (2002) found that morphological traits were 

more sensitive to the number of predators that were present because starved predators induced 

morphological defenses.  We need many more studies addressing this question before we can 
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arrive at any general conclusions. 

The tadpole responses to increasing predation risk were never simple “on-off switches” 

that exhibited threshold responses, but were instead fine-tuned, graded responses to prey 

consumption.  This is precisely what one would predict when organisms experience a continuous 

range of spatial environmental heterogeneity and when more extreme responses are associated 

with greater costs (Houston et al. 1993, Werner and Anholt 1993).  Moreover, the result is in 

general agreement with most anti-predator traits examined in previous studies (Van Buskirk and 

Arioli 2002, Laurila et al. 2004, Relyea 2004) although threshold responses were observed for 

tail length by Van Buskirk and Arioli (2002) and for body length by Relyea (2004).  The 

differences between these two previous studies and the current study may lie in the fact that the 

current study examined a wider range of prey consumption and predator numbers (200 to 3200 

mg of total consumed prey and 0 to 6 predators) than the earlier studies (Van Buskirk and Arioli 

2002, 200 to 800 mg of total consumed prey and 0 to 3 predators; Relyea 2004, 0 to 1200 mg of 

total consumed prey and 0 to 4 predators).  This wider range of treatments would be more likely 

to detect graded responses where they truly exist.  

Because behavioral traits are easily altered and do not require morphological remodeling, 

it has been proposed that behavioral traits should be more sensitive to changes in predation risk 

(West-Eberhard 1989, Padilla and Adolph 1996, Gabriel 1999, VanBuskirk 2002b).  My study 

did not support this proposition; behavioral and morphological traits showed strikingly similar 

sensitivities to increased predation risk and exhibited graded responses.  Although all of the traits 

exhibited graded responses, the point at which a particular trait was induced was not identical.  

For example, most of the traits exhibited a large amount of induction when exposed to the lowest 

level of predation risk (four predators each consuming 50 mg of prey or one predator consuming 

200 mg of prey), suggesting that the chemical cues emitted by aquatic predators are effective at 

very low concentrations (i.e. one predator in 700 L of water).  In contrast, body width did not 

exhibit any significant induction until the tadpoles were exposed to four predators consuming 

200 mg of prey.  This indicates that different plastic traits might have unique sensitivities to an 

environmental gradient.  To better assess this situation, we need to more intensively explore the 

sensitivity of prey at even lower levels of predation risk than we have explored in the current 

experiment.  Only by examining extremely low levels of predation risk could we determine if the 

other behavioral and morphological traits are induced at different levels of the predation risk 
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gradient. 

The graded responses mostly exhibited plateaus at high levels of predation risk.  Such a 

relationship is common in studies of plasticity (Schlichting and Pigliucci 1998, West-Eberhard 

2003) and is thought to be due to either physical or physiological limits of plasticity or due to the 

continually increased costs that typically accompany more extreme phenotypes (Werner and 

Anholt 1993, DeWitt et al. 1998, Kats and Dill 1998).  Interestingly, there were a few traits that 

did not respond in this way.  For example, body width showed generally weak responses to the 

predator environments by exhibiting an initial increase and then a decrease with greater prey 

consumption.  While this pattern of response confirms the continuous nature of the response, it 

does not suggest a plateauing response.  The reasons underlying such response patterns remain 

unclear, but one possible explanation is that only the traits that are under the strongest direct 

selection (e.g., activity, tail depth) show a clear plateauing pattern of increased induction. 

For those responses that did plateau, the environmental state that induced maximal trait 

expression was similar for most of the traits including activity, tail length and depth, and body 

length and depth (i.e. 200 to 300 mg of prey consumption).  There were two other traits that 

exhibited distinctively different responses.  In the first case, tadpole hiding continued to increase 

across the entire range of predation risk, although it did exhibit a pattern of change that 

suggested a plateau would exist somewhere just beyond the maximum level of predation risk.  In 

the second case, tadpole mass continued to decline until the second-highest level of predation 

risk (700 mg).  As noted earlier, reduced mass is commonly associated with predator-induced 

behavior and morphology.  However, all of the morphological variables and one of the two 

behavioral traits plateaued at a much lower level of predation risk.  This suggests either that the 

one non-plateauing response (tadpole hiding) was responsible for the continual mass loss with 

increased predation risk or that there were additional (i.e. unmeasured) traits that were also 

changing at the higher levels of predation risk that caused a loss of mass. 

2.5.1 Implications of understanding how prey respond to gradients in predation risk 

The ability of prey to sense small differences in predation risk has a number of interesting 

implications for the ecology of predator-prey interactions and for the larger ecological 

community.  Sensitivity to differences in predator number and predator consumption means that 
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prey can attempt to balance the costs and benefits of their defenses and potentially arrive at an 

optimal solution.  While I have shown the phenomenon using a single predator species (beetle 

larvae), the phenomenon likely exists with many other species of predators as well.  This ability 

means that prey can detect small changes in predation risk even at the microhabitat level 

providing that predators and their cues are not well mixed throughout the aquatic habitat and that 

the cues do not persist for long periods (i.e. < 1 d).  Under these conditions, prey could tailor an 

appropriate defensive phenotype to the riskiness of their particular microhabitat. 

Possessing the ability to detect and respond to small differences among different constant  

predation risk environments also means that prey should be able to detect temporal changes in 

predation risk within a given environment.  If prey experience pulses of risk instead of a chronic 

level of risk and can reverse the induction of their defensive traits, prey may be able to exploit 

periods of low risk by adjusting their phenotype (Lima and Bednekoff 1999).  By quantifying 

how prey alter their traits at each level of predation risk, we can then make quantitative 

predictions about how prey should respond to temporal variation in predation risk using a variety 

of potential decision rules.  I use this approach in a companion study in which I examine how 

temporal variation in predation risk impacts the anti-predator traits of wood frog tadpoles when 

mean risk is held constant (see Chapter 3). 

Graded responses across a range of predation risk also have potential effects on the larger 

ecological community.  For example, ecologists are growing to appreciate the importance of 

trait-mediated indirect effects in aquatic systems in which there is a change in interaction 

strength between two species because the traits of one species are altered (without altering its 

density; reviewed in Werner and Peacor 2003).  Given that prey can adjust their traits in a very 

fine-tuned fashion with changes in predator number and the amount of consumed prey, this 

suggests that the strength of these trait-mediated indirect effects should also vary with predator 

number and the amount of consumed prey.  This prediction appears to have not yet been tested, 

but it should be a profitable topic of future investigations. 

2.5.2 Conclusions 

The results of this study indicate that prey can be highly sensitive to the number of predators in 

their environment and the amount of prey being consumed.  The most sensitive range appears to 

 20 



be within a very narrow window of low predation risk, consistent with the expectation that 

aquatic prey detect the chemical cues of their predators at very low concentrations.  While both 

kairomones and alarm cues are important for inducing prey defenses, my results suggest that 

more extreme behavioral and morphological defenses are a function of the total amount of prey 

consumed and not a function of predator number per se.  Future studies should examine how this 

sensitivity affects prey at the microhabitat scale, how risk-response curves can be used to predict 

responses to temporal variation in predation risk, and how different magnitudes of risk translate 

into different magnitude of trait-mediated effects in the community. 
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Table  2.1  Results of a multivariate analysis of variance (A) and subsequent univariate tests (B) that 

examined the effects of cue concentration and predator number on the mass and seven morphological traits 

of wood frog tadpoles.  PVE = percent of variance explained by treatment effects 

 

 

 A.   Multivariate test    df     F      P 

        Treatment 90,180   4.0 <0.001 

    

B.   Univariate test           Predation risk (P)  PVE (%) 

        Mass               <0.001  85 

        Body length               <0.001  69 

        Body width                 0.021  23 

        Body depth               <0.001  58 

        Tail length               <0.001  84 

        Tail depth               <0.001  91 

        Mouth width                 0.259   7 

        Muscle width                 0.352   3 

        Muscle depth                 0.078  17 
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Figure  2.1  The behavior and mass of wood frog tadpoles when exposed to treatments that varied in the amount of 

prey consumed by each of four predators (left panels) or the number of predators fed a constant (200 mg) amount of 

prey (right panels).  The three open symbols in the left and right panels indicate the three treatments which 

contained the same total mass of prey consumed, but different numbers of predators doing the consuming. To 

visually assist the reader in making the comparisons, one of the treatments is presented twice (left panel, 200 mg of 

prey consumed; right panel, 4 predators).  Data are means + 1 SE. 
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Figure  2.2  The relative tail morphology of wood frog tadpoles when exposed to treatments that varied in the 

amount of prey consumed by each of four predators (left panels) or the number of predators fed a constant (200 mg) 

amount of prey (right panels).  The three open symbols in the left and right panels indicate the three treatments 

which contained the same total mass of prey consumed, but different numbers of predators doing the consuming. To 

visually assist the reader in making the comparisons, one of the treatments is presented twice (left panel, 200 mg of 

prey consumed; right panel, 4 predators).  Data are means + 1 SE. 
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Figure  2.3  The relative body morphology of wood frog tadpoles when exposed to treatments that varied in the 

amount of prey consumed by each of four predators (left panels) or the number of predators fed a constant (200 mg) 

amount of prey (right panels).  The three open symbols in the left and right panels indicate the three treatments 

which contained the same total mass of prey consumed, but different numbers of predators doing the consuming. To 

visually assist the reader in making the comparisons, one of the treatments is presented twice (left panel, 200 mg of 

prey consumed; right panel, 4 predators).  Data are means + 1 SE. 
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3.0  PHENOTYPIC PLASTICITY AND FINE-GRAINED ENVIRONMENTAL 

VARIATION:  PREY RESPONSES TO TEMPORAL VARIATION IN PREDATION 

RISK 

3.1 ABSTRACT 

In nature, organisms experience environmental variability at both coarse-grained (inter-

generational) and fine-grained (intra-generational) scales, and a common response to 

environmental variation is phenotypic plasticity.  The emphasis of most empirical work to date 

has been on examining coarse-grained variation with the goal of understanding the costs and 

benefits of plastic responses.  However, fine-grained variation can also have fitness 

consequences.  Few studies have examined the importance of fine-grained variation for 

phenotypically plastic responses and none have made quantitative predictions as to how 

organisms should alter their phenotype.  In this study, I investigated the effects of fine-grained 

variation in predation risk on the inducible defenses of larval wood frogs (Rana sylvatica).  I 

produced temporal variation in risk by altering the density and feeding schedule of caged 

predators (Dytiscus spp.) while holding the average risk constant.  Using dose-response 

relationships for plastic defensive traits from a companion study, I was able to make quantitative 

predictions about how the tadpoles should respond to temporal variation in risk and then test 

these predictions against the observed responses.  I found that temporal variation in risk did not 

affect behavioral traits but it did affect at least one of the morphological traits.  Therefore, both 

the average environment experienced and the variation around that average are important in 

determining the induction of plastic traits.  Therefore, fine-grained variation must be considered 

when interpreting phenotypes observed in nature. 
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3.2 INTRODUCTION 

Few organisms live in static environments but instead experience fluctuations in both biotic and 

abiotic factors.  These fluctuations can affect their fitness and limit their distribution.  When 

there are reliable environmental cues, many organisms exhibit phenotypic plasticity in response 

to changes in their environment and improve their performance (Pigliucci 2001, DeWitt and 

Scheiner 2004, West-Eberhard 2003).  Most empirical work on phenotypic plasticity has focused 

on how organisms respond to a constant exposure to different environments.  This approach has 

produced a wealth of knowledge about the costs and benefits of phenotypic plasticity when 

organisms experience variable environments across generations (i.e. coarse-grained 

environmental variation; Schlichting and Levin 1984, Lively 1986, van Tienderen 1990, Sultan 

and Bazzaz 1993, Tollrian 1993, Dudley and Schmitt 1996, Pigliucci et al. 1997, Relyea 2004).  

In nature, however, organisms often encounter substantial environmental variation within their 

lifetimes over both space and time (i.e. fine-grained environmental variation).  If fine-grained 

variation encompasses the same environmental range as coarse-grained variation, then organisms 

that express the “wrong” phenotype will suffer the same range of fitness costs that favor 

plasticity in coarse-grained environments, but for shorter periods of time (i.e. some fraction of 

the lifetime).  Therefore, fine-grained variation may have substantial effects on individual 

fitness.  As a result, selection should favor individuals that can adjust their phenotypes in 

response to fine-grained environmental variation.  If organisms can detect and respond to fine-

grained variation, then understanding these effects will be particularly important for 

extrapolating experimental results to the interpretation of phenotypic patterns observed in nature. 

Surprisingly few studies of phenotypic plasticity have directly manipulated fine-grained 

variation.  The majority of empirical work has addressed the effects of temporal variation in 

resource levels (Kacelnik and Bateson 1996, Wayne and Bazzaz 1993, Winn 1996, Siems and 

Sikes 1998, Ali and Wootton 1999, Novoplansky and Goldberg 2001, Englemann and 

Schlichting 2005, Miner and Vonesh 2004, Ruehl and DeWitt 2005) or predation risk (Hamilton 

and Heithaus 2001, Sih and McCarthy 2002, Van Buskirk et al. 2002, Pecor and Hazlett 2003, 

Foam et al. 2005).  However, because most of the above studies were not designed to examine 

temporal variation per se, most studies that have manipulated temporal variation in the 

environment have simultaneously altered the average environment that the organism experiences 
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(but see Wayne and Bazzaz 1993, Siems and Sikes 1998, Novoplansky and Goldberg 2001, 

Englemann and Schlichting 2005, Miner and Vonesh 2004).  For example, several tests of the 

risk allocation hypothesis (Lima and Bednekoff 1999) have been conducted to determine how 

prey behavioral defenses are affected by fluctuating periods of high and low predation risk 

compared to a constant high-risk predator environment (Hamilton and Heithaus 2001, Sih and 

McCarthy 2002, Van Buskirk et al. 2002, Pecor and Hazlett 2003, Laurila et al. 2004, Foam et al. 

2005).  Thus, individuals in the fluctuating-risk treatment not only experience greater fine-

grained variation, but also a lower average risk compared to individuals in the constant high-risk 

environment.  To address the effects of temporal variation per se, we need to manipulate fine-

grained variation while holding the average experience constant among treatments (e.g., Wayne 

and Bazazz 1993, Siems and Sieks 1998, Novoplansky and Goldberg 2001, Englemann and 

Schlichting 2005, Miner and Vonesh 2004).  

The effects of fine-grained variation on traits will depend on whether the induced 

responses are reversible or irreversible.  If induced traits are irreversible, then organisms with 

induced traits obviously cannot respond to future environmental changes.  When traits are 

reversible, the pattern of response to temporal variation will depend on whether responses are 

threshold or graded.  For threshold responses, organisms would be limited to switching between 

alternative trait states and the observed response to temporal variation will depend on the last 

environment encountered.  For graded responses, organisms can produce a wide range of 

possible phenotypes, and the final phenotype exhibited will depend on the frequency of the 

variation, the intensity of the variation, how individuals average variation over time, and how 

frequently the environment changes (i.e. whether it is longer than the time required to change the 

trait, Padilla and Adolph 1996).  Thus, behavioral traits, which can be rapidly induced, should be 

able to be modified quickly and track fine-grained variation to produce a phenotype that is 

continuously suited to the environment.  In contrast, morphological traits, which require longer 

times for induction and reversal (Van Buskirk 2001, Relyea 2003b), may favor a strategy that 

integrates fine-grained variation over time according to some decision rule. 

When organisms cannot rapidly track fine-grained variation, there are a number of 

potential decision rules.  First, when there are high costs of incorrectly assessing a particular 

environmental state or the environment changes frequently, organisms might respond to just one 

of the environmental extremes experienced.  Alternatively, when organisms try to achieve an 
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optimal response in the face of trade-offs (i.e. balancing resource acquisition and defense 

allocation) a decision rule that averages the risk may be the best solution.  When considering 

how an averaging of fine-grained variation would effect the phenotype, it is important to 

recognize that most environmentally induced responses are curvilinear responses that exhibit 

saturating effects as the environment gradient becomes more extreme (either because organisms 

reach a biological limit or because the costs of a more extreme response outweigh the benefits; 

Dewitt et al. 1998).  If the individual 1) cannot detect the fine-grained changes in risk (i.e. they 

do not sample environmental conditions often enough) or 2) cannot respond because of the costs 

of changing their phenotype, the best strategy may be to respond to the average environment and 

ignore the fine-grained variation.  Alternatively, an individual could average fine-grained 

variation over time by producing an average of the phenotypes induced by each environmental 

state.  In this scenario, individuals experiencing fine-grained variation would exhibit a less 

extreme phenotype than individuals experiencing a constant environment (because the average of 

each environment’s induced phenotype is not equivalent to the phenotype in the average 

environment; i.e. Jensen’s inequality, Ruel and Ayres 1999, Miner and Vonesh 2004).  While 

one can easily test these predictions in a qualitative fashion, one would need to first quantify how 

species alter their traits across an environmental gradient (i.e. risk-response curves) to test these 

predictions in a quantitative fashion.  A few studies have assessed the qualitative effect of fine-

grained variation on plastic phenotypes (Wayne and Bazzaz 1993, Novoplansky and Goldberg 

2001, Englemann and Schlichting 2005, Miner and Vonesh 2004); none have made a priori, 

quantitative predictions about how strongly fine-grained temporal variation should affect 

phenotypic induction. 

In this study, I examined the effect of fine-grained variation on larval anurans (i.e. 

tadpoles), a system that has become well documented for its plasticity in response to predators 

(Smith and Van Buskirk 1995, Relyea 2001a, 2002a,b; Laurila and Kujasalo 1999, Lardner 2000, 

Van Buskirk 2002a,b; Laurila et al. 2002).  Inducible defenses are well-studied and often show 

continuous responses to increases in predation risk (Van Buskirk and Arioli 2002, Relyea 2004).  

Predator-induced defenses in tadpoles are continuous and reversible, making tadpoles a prime 

candidate for studying the effects of temporal variation on plasticity (Van Buskirk 2002b, Relyea 

2003b).  By observing how behavior, morphology, and mass were affected by temporal variation 

in predation risk (while holding average risk constant) and comparing these responses to 
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predictions generated from a companion study in which I quantified dose-response relationships 

for predation risk (see Chapter 2), I asked whether tadpole phenotypes were affected by fine-

grained variation in risk and, if so, if the responses were consistent with the mechanisms of 

highest risk, the lowest risk, average risk, or average phenotype. 

3.3 METHODS 

I conducted the experiment at the Pymatuning Laboratory of Ecology’s Aquatic Research 

Facility located in northwestern Pennsylvania in the spring of 2003.  I used a completely 

randomized design with eight treatments replicated five times for a total of 40 experimental 

units.  My goal was to expose tadpoles to predation risk (i.e. chemical cues from caged 

predators) that varied in intensity over time but had the same average level of risk overall.  

Therefore, my eight treatments included a no-predator control, a constant predation risk 

treatment in which four predators were each fed 100 mg prey/predator/tank/d, and six treatments 

in which I created fine-grained variation in predation risk while keeping the average amount 

consumed (100 mg prey/predator/tank/d).  I produced temporal variation in predation risk in 

three different ways.  First, I varied the frequency that four predators were fed: 1) 200 mg every 

2 d, 2) 400 mg every 4 d, or 3) 800 mg every 8 d.  Second, I varied the amount that four 

predators were fed on a set time schedule.  Using a 2-d feeding schedule, I rotated four predators 

through cycles of 100 mg, 200 mg, and 300 mg of prey (100-200-300 2 d); using a 4-d feeding 

schedule, I rotated four predators through cycles of 100 mg, 400 mg, and 700 mg (100-400-700 4 

d).  Third, I varied the number of predators.  For this treatment, I rotated through cycles of two, 

four, and six caged predators (feeding the predators 200 mg of prey every 2 d).  Collectively, 

these treatments allowed us to manipulate fine-grained variation in predation risk in a variety of 

ways (see Table 3.1 for a summary of the treatments and the feeding schedule). 

The experimental units were 800-L pond mesocosms (cattle watering tanks) designed to 

simulate the types of ponds where these amphibians are typically found.  Each mesocosm 

contained 700 L of aged well water, 200 g leaf litter, 15 g rabbit chow (as an initial food source), 

and an aliquot of pond water containing algae and zooplankton.   Because up to six predators 

were added to some tanks, I placed six predator cages into each tank.  The cages were 
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constructed of 10-cm black plastic drainpipe covered on both ends with a fiberglass mesh screen 

which allowed the predator cues to diffuse into the tank.  Depending on the treatment, each cage 

was either empty or contained a single larval beetle (Dytiscus sp.).  All mesocosms were covered 

with shade cloth lids to prevent colonization by other organisms.  The wood frog tadpoles were 

collected from two populations (Shrub pond and Staub pond; 10 egg masses/population) as 

newly laid egg masses on 28 March 2003.  The eggs were hatched and the tadpoles were reared 

in pools containing aged well water.  The wood frogs were fed rabbit chow ad libitum prior to 

the experiment.  Using a mixture of tadpoles from the two populations, I added 30 tadpoles to 

each mesocosm on 9 May 2003 (initial mean mass ± SE = 139 ± 5 mg). 

Behavioral observations were conducted using established observation protocols (Relyea 

and Werner 1999).  I counted the number of visible tadpoles in each mesocosm and the number 

of visible tadpoles that were moving.  From these data, I calculated the proportion of active 

tadpoles.  I began observations the day after all of the predators were fed (i.e. day 9) and 

continued to conduct observations until the day before all the predators were scheduled to be fed 

again (i.e. day 15).  The number of observations per tank were as follows:  seven observations on 

day 9, seven observations on day 11, six observations on day 12, and six observations on day 15.  

On each day, I used the mean number observed and the mean proportion of active tadpoles from 

each tank as my response variables.  The data for each behavioral trait were analyzed with a 

repeated-measures analysis of variance (rmANOVA).  When a significant effect was found, I 

conducted pair-wise comparisons using Fisher’s LSD test. 

After 24 d, all tadpoles were removed from the mesocosms and preserved in 10% 

formalin for subsequent morphological measurements (mean survival = 93 + 0.2%).  Tadpole 

morphology was measured using an image analysis system (Optimas Bioscan; Bothell, 

Washington, USA).  I weighed each tadpole and then measured five morphological dimensions:  

body depth, length, and width; and tail length and depth (see Fig.1 in Relyea 2000).  Because the 

tadpole’s body is round I placed a glass plate under the tadpole’s tail to bring both structures into 

the same plane of focus and ensure that I obtained an undistorted lateral image. 

Because I was interested in the effects of the treatments on tadpole shape independent of 

tadpole mass, I first performed a multivariate analysis of covariance (MANCOVA) and saved the 

residuals.  Prior to performing the MANCOVA I transformed the data when necessary to 

improve the linearity of the relationship between each trait and mass.  I found no mass-by-

 31 



treatment interactions for any of the traits, indicating that the regression lines among treatments 

were parallel for each trait (a requirement for making the size-adjustment).  To produced mass-

independent estimates of each tadpole trait for every tadpole measured, I added the residuals 

saved from the MANCOVA to the estimated marginal mean for each treatment.  For each trait, I 

averaged the size-adjusted data for all of the tadpoles in each tank, and then used these tank 

means, along with mean tadpole mass, as my response variables in a multivariate analysis of 

variance (MANOVA) to examine the effects of the treatments.  When significant multivariate 

effects were found, I then conducted univariate tests and used Fisher’s LSD to make pair-wise 

comparisons among the treatment means.  I excluded one tank from the analysis (treatment = 

100-400-700 4 d) because the tank contained a large amount of mold, the water was cloudy, and 

the tadpoles had hardly grown over the course of the experiment. 

3.3.1 A few assumptions 

While manipulating predator number is a direct manipulation of predation risk, manipulating 

predator feeding schedules is a more indirect manipulation of predation risk that relies on a 

number of important assumptions.  First, it assumes that caged predators consume their prey 

shortly after prey are added to the cage.  Based on the risk-response experiment (see Chapter 2), 

this assumption is well-supported; Dytiscus larvae consistently consumed up to 800 mg of 

tadpoles within 1d.  Second, it assumes that predators produce chemical cues in a relatively short 

pulse after consuming the prey and then stop producing the cues.  While there are no data 

available for wood frog tadpoles and Dytiscus predators, there is some support for this 

assumption for other species of tadpoles and predators.  While the time required for a cessation 

of cue production is currently unknown, larval dragonfly nymphs (Anax junius) that have not fed 

for more than 4 or 5 d induce no defensive responses in larval tree frogs (Hyla versicolor; 

Schoeppner and Relyea 2005) and only weak morphological defenses in larval pool frogs (Rana 

temporaria; Van Buskirk and Arioli 2002).  Finally, it assumes that chemical cues break down 

rapidly.  There is good support for this assumption; chemical cues from dragonfly nymphs 

induce no behavioral responses in larval leopard frogs (R. pipiens) after being aged for 24 h (R. 

A. Relyea, unpublished data).  Additionally, chemical cues from sunfish induce weak behavioral 

defenses in snails (Physa acuta) after being aged for 24 h and have no effect after being aged for 
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41 h (Turner and Montgomery 2003).  In short, the assumptions I made are moderately to 

strongly supported by existing data. 

3.3.2 Making quantitative predictions 

For those traits that were affected by temporal variation in predation risk, I made a priori, 

quantitative predictions about how the tadpoles should respond using data from a companion 

study in which I quantified how each level of predation risk affected the traits of wood frog 

tadpoles (termed “the risk-response experiment;” see Chapter 2).  In the risk-response 

experiment, I raised tadpoles under a wide range of predator densities (from zero to six 

predators) and predator rations (from 0 to 800 mg of tadpole prey per day) and quantified how 

tadpoles altered their behavior, morphology, and mass.  Importantly, the companion study and 

the current study were conducted using the same mesocosm set-up, the same duration of time, 

and the same wood frog populations.  Because the experiments were conducted in different 

years, there were small differences in tadpole mass and the magnitude of trait plasticity between 

the two experiments.  For example, at the end of the current experiment, tadpoles were 12% 

larger than in the risk-response experiment.  These size differences can be attributed to 

differences in initial tadpole mass (139 mg for the current experiment vs. 61 mg for the response-

curve experiment) and ambient temperature between the two years.  Additionally, the tadpoles in 

the current experiment responded a bit more strongly to the predator cue than the tadpoles in the 

response-curve experiment.  The small differences in plasticity between years was not 

unexpected and likely stems from small differences in resource availability and the specific 

genotypes of the tadpoles present in the experiment.  To permit the risk-response data to predict 

how tadpoles should respond to fine-grained variation in predation risk, I made scalar 

adjustments such that the two experiments were equivalent in the no-predator environment and 

had similar magnitudes of plasticity. I corrected for differences in tadpole size and trait plasticity 

by making adjustments to all of the tank means in the risk-response experiment using the two 

treatments that both experiments had in common, the no predator and the 100 mg prey/predator/d 

treatments.  First, to correct for the difference in overall tadpole size, I subtracted the mean no-

predator trait value of the current experiment from the mean no-predator trait value observed in 

risk-response experiment. I then added that difference to each tank mean in the risk-response 
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experiment for each of the morphological traits and mass.  This size adjustment had to be 

performed for all the morphological traits and not just for mass because even though the 

morphological traits were size-adjusted measurements within an experiment the size-adjusted 

estimates were calculated for a larger mass in the current experiment; therefore, the traits are not 

size-independent between experiments.  Next, to correct for differences in trait plasticity, I 

calculated a correction factor that scaled the magnitude of trait plasticity in the risk-response 

experiment to the magnitude of plasticity observed between the 100 mg prey/predator/d 

treatment and no-predator treatment in the current experiment.  I corrected for plasticity 

differences for the morphological traits and mass by first subtracting the tank mean from the no-

predator treatment mean.  I then multiplied that difference by the proportional difference in 

plasticity between the two experiments (i.e. the no-predator treatment – the 100 mg prey 

treatment for the current experiment/the no-predator treatment – the 100 mg prey treatment in the 

risk-response experiment) and then I subtracted this adjusted plasticity from the tank mean. 

Once the data adjustments were completed, I used the response-curve data to make 

predictions about how tadpoles should respond to temporal variation in predation risk.  I first 

used a nonlinear regression to quantify the curvilinear relationship in the response-curve 

experiment between:  1) predator number and tadpole phenotypes; and 2) predator consumption 

of prey and tadpole phenotypes.  If the response-curve relationship was negative and plateauing, 

I used an one-phase exponential decay regression equation: 

Y = (min - max) * exp((-k * X) + min) 

If the response-curve relationship was positive and plateauing, I used a one-phase exponential 

association equation (GraphPad Prism 4). 

Y = min + (max- min) * (1 - exp(-k*X))) 

Using these equations, I calculated predictions for the three hypotheses posed earlier concerning 

how prey should respond to temporal variation in predation risk:  1) exhibit the phenotype that is 

used at the highest level of predation risk experienced; 2) exhibit the phenotype that is used at 

the lowest level of predation risk experienced; or 3) exhibit the average of the high and low risk 

phenotypes, weighted by the frequency of each environment’s occurrence.  I did not calculate 

predictions for exhibiting the phenotype appropriate for the average environment because 

support for that decision rule was evaluated by comparing the response in the variable-risk 

treatments to the constant-risk treatment. 
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For clarity, the following example illustrates how I developed the three quantitative 

predictions for tadpoles exposed to a temporal-variation treatment in which predators were fed 

400 mg of prey once every 4 d.  For the highest risk prediction, I determined how tadpoles 

responded to predators consuming 400 mg of prey every day in the response-curve experiment.  

For the lowest risk prediction, I determined how tadpoles responded to a no-predator 

environment in the response-curve experiment.  For the average phenotype prediction, I used 

data from the response-curve experiment to average the phenotype exhibited when prey were 

exposed to predators consuming 400 mg of prey and the phenotype exhibited when prey were 

exposed to a no-predator treatment (the latter was weighted three times the former).  I also 

examined calculations using geometric averages, but I do not present those predictions because 

they did not differ substantially from the predictions made by using arithmetic averages.  Using 

the predicted values from the response-curve experiment, I determined whether the predicted 

values fell outside of the 95% C.I. of the data observed in current experiment.  If so, I concluded 

that the predictions were significantly different from the observations. 

3.4 RESULTS 

I found significant effects of the predator treatments on tadpole behavior.  In the repeated-

measures ANOVA on tadpole activity, I found a significant effect of predator treatment (F7,31 = 

54.7, P < 0.001) and time (F3,29 = 39.2, P < 0.001) but no treatment-by-time interaction (F21,84 = 

1.2, P = 0.272).  Mean comparisons indicated that tadpoles in the no-predator treatment were 

more active than the tadpoles in all treatments containing predators (for all observation days, P < 

0.001; Fig. 3.1).  However, compared to the constant-risk treatment (100 mg 

prey/predator/tank/d), variation in predation risk had no effect on tadpole activity (P > 0.348). 

In the repeated-measures ANOVA on the number of tadpoles observed (i.e. the number 

not hiding), I found a significant effect of predator treatment (F7,31 = 5.0, P = 0.001), time (F3,29 = 

41.6, P < 0.001), and a treatment-by-time interaction (F21,84 = 2.4, P = 0.002).  The interaction 

occurred because the tadpoles hid more early in the experiment compared to later in the 

experiment.  Comparisons among the first three observation days showed no differences in 

tadpole hiding over time (P > 0.149) and, within each day, tadpoles in all of the predator 
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treatments hid more than the tadpoles in the no-predator treatment (P < 0.05; Fig. 3.2).  Among 

the predator treatments, I found that the amount of hiding exhibited in the constant-risk treatment 

(100 mg/predator /tank/d) was never different from the variable-risk treatments (P > 0.129).  On 

the fourth observation day, there was no treatment effect on hiding (P = 0.402). 

There was a significant multivariate effect of the treatments on wood frog mass and 

morphology (F42,125 = 4.6, P < 0.001).  The multivariate effect was caused by univariate effects 

of mass, body length, tail length, tail depth (P < 0.001 for all tests); there were no univariate 

effects of body width (P = 0.111) or body depth (P = 0.756).   

Based on mean comparisons of tadpole mass, tadpoles were smaller in all treatments 

containing predators compared to the no-predator treatment (P < 0.001; Fig. 3.3A).  However, 

compared to the constant-risk treatment (100 mg prey/predator/tank/d), variation in predation 

risk had no effect on tadpole mass (P > 0.171). When the data were compared to the three 

predictions, none of the three predictions consistently fell within the C.I. of the observed data.  

Rather, the observed predictions typically fell between the highest-risk and average-phenotype 

predictions. 

Based on mean comparisons of tail length, tadpoles had relatively shorter tails in all 

treatments containing predators compared to the no-predator treatment (P < 0.001; Fig. 3.3B). 

However, compared to the constant-risk treatment (100 mg prey/predator/tank/d), variation in 

predation risk generally had no effect on tail length (P > 0.315) except that tadpoles exposed to 

predators consuming 400 mg every 4d and 100-400-700 mg every 4d induced tails that were 

nearly significantly longer (P = 0.057 and 0.078, respectively). When the data were compared to 

the three predictions, the observed data overlapped the CI of the highest-risk prediction while 

others were intermediate to the highest-risk and average-phenotype predictions. 

Based on mean comparisons of tail depth, tadpoles had relatively deeper tails in all 

treatments containing predators compared to the no-predator treatment (P < 0.001; Fig. 3.3C).  

Compared to the constant-risk treatment (100 mg prey/predator/tank/d), tadpoles in the 200 2d 

were not different (100 1d; P = 0.909) but tadpoles in the 400 4d and 800 8d treatments had 

shallower tails (P < 0.012).  Hence, tail depth responded to temporal variation in predation risk.  

Tadpole tail depth was not affected by variation in the amount fed to predators or variation in 

predator number (P > 0.389).  When the data were compared to the three predictions, many of 
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the observed data were similar to the highest-risk prediction while others were intermediate to 

the highest-risk and average-phenotype predictions. 

Based on mean comparisons of body length, tadpoles had relatively shorter bodies in all 

treatments containing predators compared to the no-predator treatment (P < 0.001; Fig. 3.3D). 

However, compared to the constant-risk treatment (100 mg prey/predator/tank/d), variation in 

predation risk had no effect on body length (P > 0.129). When the data were compared to the 

three predictions, the most common observation was intermediate to the highest-risk and 

average-phenotype predictions. 

3.5 DISCUSSION 

Tadpoles responded to the presence of chemical cues from predators with changes in behavior 

and morphology.  In some cases, fine-grained variation in predation risk affected the traits.  The 

predator-induced phenotypic changes were consistent with past experiments and are thought to 

be adaptive in tadpoles.  A combination of reduced activity and the development of deeper tails 

and shorter bodies lowers the risk of predation but at the cost of slower growth due to reduced 

time spent foraging, the induction of relatively smaller mouthparts, and the induction of 

relatively shorter, less efficient intestines (Skelly 1992, 1994, Relyea 2001a, 2002c,d; Van 

Buskirk 2002b, Relyea and Auld 2004, 2005).  Moreover, these traits are under selection (Van 

Buskirk et al. 1997, Van Buskirk and Relyea 1998, Relyea 2002a) and, in wood frogs, have a 

heritable basis (Relyea 2005). 

I predicted that tadpole behavior would track fine-grained variation in risk such that 

periods of high predation risk would induce low activity and increased refuge use, while periods 

of low predation risk would induce high activity and decreased refuge use.  I observed tadpole 

behavior at several periods during the course of the experiment and found no differences among 

the treatments on any of the observation days regardless of the type or magnitude of temporal 

variation in predation risk.  It was particularly striking that even when predators were only fed 

once every 8 d, tadpole activity did not increase 7 d after the feeding (i.e. day 15; Fig. 3.1D).  

This result contradicts the predictions made by the risk allocation hypothesis (Lima and 

Bednekoff 1999) which predicts that prey experiencing variable risk should forage more during 
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periods of low risk and less during periods of high risk compared to prey reared in constant low 

or high risk environments, respectively.  In my experiment, I found no differences in tadpole 

behavior among the treatments that differed in the proportion of time they spent in high risk 

environments.  In another test of the risk allocation hypothesis using tadpoles, Van Buskirk et al. 

(2002) found that tadpoles also did not respond to increased proportion of time at risk.  They 

proposed that the lack of response was due to the tadpole’s ability to maintain high growth rates 

under high predation risk, and that the risk allocation hypothesis may only apply in situations 

where some minimum growth requirement cannot be met in the high-risk environment.  It is also 

possible that one would not observe responses consistent with the risk allocation hypothesis 

when prey are already maximizing their foraging in the constant-low-risk environment.  While 

variation in predation risk did not affect behavior, the tadpoles did change their behavioral 

decisions over ontogeny such that the tadpoles used refuges less later in the experiment (Fig. 2).  

This is consistent with previous work showing that defensive behavior decreases as the tadpoles 

grow and develop morphological defenses (Anholt and Werner 1998, Van Buskirk 2002b, 

Relyea 2003b). 

I predicted that morphological defenses would be affected by fine-grained variation when 

the periods between changes in the risk were longer than the time needed to alter the 

morphology.  Given that uninduced individuals require 4d to develop morphological defenses 

that are equivalent to an individual that has experienced continuous predation risk (Van Buskirk 

2001, Relyea 2003), I predicted that the tadpoles exposed to longer periods between predator 

feedings would respond by producing a phenotype that was consistent with either 1) the highest-

risk environment, 2) the lowest-risk environment, 3) the average-risk environment, or 4) the 

average phenotype.  For mass and body length, I not only found support for the hypothesis that 

the tadpoles were responding to the average-risk environment, but I could also reject the 

hypotheses that the tadpoles were responding to the highest-risk environment, the lowest-risk 

environment, or that they were responding by exhibiting the average phenotype.   

The support for the decision rule hypotheses differed for the two tail dimensions.  Tail 

length did respond to one of the variation treatments (400 mg 4d) with a marginally non-

significant response (P = 0.059), suggesting that this trait does not necessarily follow the 

average-risk environment.  However, the other three hypotheses were also frequently rejected; 

the pattern of tail length responses was typically intermediate to the average-risk/highest-risk 
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prediction and the average-phenotype prediction (one cannot discriminate between the highest-

risk and the average-risk predictions for tail length because the maximum change in tail length is 

induced at < 100 mg/prey/predator, making the two predictions nearly identical; see Chapter 2).  

Tail depth was the one trait measured that did respond to temporal variability in predation risk.  

When I compared the magnitude of the change to my quantitative prediction, I found that the 

observed response was intermediate to the highest-risk and average-phenotype predictions, 

suggesting that tail depth follows an as yet unidentified decision rule.  Interestingly, while 

tadpole tail depth was affected by variation in predator feeding frequency, it was not affected by 

variation in predator consumption or predator number.  This suggests that tadpoles can 

discriminate among different types of temporal variation and respond to each type in unique 

ways.  Overall, these results indicate that tadpoles can detect and respond to temporal variation 

in predation risk but that different traits appear to have different decision rules. 

Because I did not switch prey between predator and no-predator environments, but 

instead produced variation in predation risk by feeding the predators at different times, I had to 

make some assumptions about the production and breakdown of the chemical predation cues in 

my mesocosms.  The identities of the chemicals used to detect predators are not known; 

therefore, I could not directly track the changes in cue concentration over time and the possibility 

exists that some of my assumptions were incorrect.  As noted above (see Methods) the 

assumption that predators consumed their prey within 1 d was met and the evidence of rapid 

breakdown times of chemical cues is well supported.  However, the duration that predators 

continue to produce chemical cues is still an open question.  In deriving my predictions, I 

assumed that predators release a pulse of chemicals (alarm cues and kairomones) for 1 d.  If 

predators actually release chemical cues over a longer period of time, then prey in the shorter 

periods of variability (e.g., predators feeding every 2 d) may not have experienced fluctuations in 

cues that were different from the constant-risk treatment.  Data concerning the amount of time 

that chemical cues are produced following prey consumption are sparse and equivocal.  Starved 

predators (dragonfly naiads) sometimes induce behavioral and morphological responses in 

tadpoles, but whether a response is observed appears to depend on the length of time that the 

predator has been starved and the size of the experimental venue (Anholt et al. 1996, Anholt and 

Werner 1998, Van Buskirk and Arioli 2002, Schoeppner and Relyea 2005).  I am unaware of any 

studies that document the amount of time needed for prey to stop responding to a predator once it 
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has been fed.  Further experiments are needed to determine if the lack of response observed for 

morphological traits is due to the scale of the fine-grained variation or due to the cue release 

dynamics.   

Prey also may not respond to very short-term changes in predator cues because such 

short-term changes are a poor indicator of actual predation risk.  If predators produce chemical 

cues for a short period while they digest their prey, and then do not produce cues while they are 

hunting, tadpoles that immediately increase activity when they detect decreases in cue 

concentrations would be more likely to encounter the predator when it resumes hunting.  If this 

were the case, tadpoles that increase their activity immediately following a decrease in cue 

concentration would have lower survival than tadpoles that behaved more cautiously.  Therefore, 

the lack of a behavioral response to fine-grained temporal variation may be adaptive, because 

over evolutionary time the prey that have ignored short-term fluctuations in risk would have 

survived better.  However, this is less likely to be the case when fluctuation in risk occurs over 

longer time scales (4 to 8 d) because the lost growth opportunities of being overly cautious 

would be more substantial.  Indeed, the tail depth response to 4- and 8-d temporal variation 

suggests that prey do not ignore temporal variation on these longer time scales. 

The effects of fine-grained variation in predation risk on prey morphology has important 

implications for interpreting the phenotypic patterns observed in nature.  In this experiment, I 

found that tadpoles exposed to some types of fine-grained variation in risk produced shallower 

tails than tadpoles in the constant-risk environment.  In nature, tadpoles likely experience fine-

grained variation in the chemical cues that indicate risk.  Therefore, the magnitude of the 

defenses observed in constant-risk experiments likely over-estimate what is ever achieved in 

nature.  Given that phenotypes are often viewed as the product of balancing conflicting demands 

(i.e. growth and defense) less intense defenses are often interpreted as indicative of increased 

competition.  This experiment has shown that the magnitude of the defense can also be decreased 

by fine-grained variation in predation risk and care must be taken when interpreting phenotypic 

differences observed in nature. 

This study supports the findings of previous work examining the effects of temporal 

variation in resources on an individual’s phenotype.  In all studies to date that have manipulated 

fine-scaled variation while holding the average environment constant, at least one trait was 

affected by environmental variability.  In animals, sea urchin larvae had longer feeding arms and 
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fathead minnows had longer guts when food availability varied (Miner and Vonesh 2004, Siems 

and Sieks 1998).  In plants, both Wayne and Bazzaz (1993) and Novoplansky and Goldberg 

(2001) found that total biomass was lower when resources were more variable (light and water 

respectively).  In addition, Novoplansky and Goldberg (2001) found that variable water 

conditions altered competitive hierarchies among species particularly at low overall resource 

levels.  Additionally, Englemann and Schlichting (2005) found that fine-grained variation in 

water availability affected bolting date, plant height, and survival; however, the effects of 

variability were only observed when overall water availability was low.  Overall, these results 

indicate that fine-grained environmental variability is important to the expression of 

phenotypically plastic traits. 

3.5.1 Conclusions 

Previous work has shown that when prey experience temporal variability in predation risk they 

often respond by altering their defensive decisions (Hamilton and Heithaus 2001, Sih and 

McCarthy 2002, Van Buskirk et al. 2002, Pecor and Hazlett 2003, Laurila et al. 2004, Foam et al. 

2005).  However, these studies have simultaneously varied both variation in risk and average 

risk.  In this experiment, I demonstrated that prey behavior is not affected by the fine-grained 

variation in predation risk.  Conversely, the temporal pattern of risk variation is important to the 

expression of one of the most prevalent morphological defenses in tadpoles.  These results 

contradict the conventional wisdom that traits which can be altered quickly should track 

temporal environmental change while traits which cannot be altered quickly should not be 

affected by fine-grained temporal variation.  The results also highlight the need to understand 

how prey integrate temporal variation in the chemical cues that they use to estimate risk, and also 

determine the extent of temporal variation in risk that the prey actually encounter in nature.  In 

addition, my study further supports the results of work on fine-scaled variation in resource 

availability which has shown that fine-scaled temporal variation decreases the magnitude of the 

induction of plastic traits. 

 41 



 

Table  3.1  Feeding schedule where the mean level of predation risk was held constant across treatments while 

amount fed, frequency fed, or the number of predators were varied over 24 d.  The treatment labels at the top of the 

table give the number of predators (P) in the first row (4 or switching among 2,4, and 6 predators), the amount fed to 

each predator in grams of prey in the second row, and the time between feedings in the third row. 

 

 

Day 

4P 

100 

1d 

4P 

200 

2d 

4P 

400 

4d 

4P 

800 

8d 

4P 

100,200,300 

2d 

4P 

100,400,700 

2d 

2,4,6P 

200 

2d 

2,4,6P 

400 

4d 

1 400 800 1600 3200 400 400 400 800 

2 400 0 0 0 0 0 0 0 

3 400 800 0 0 800 0 800 0 

4 400 0 0 0 0 0 0 0 

5 400 800 1600 0 1200 1600 1200 1600 

6 400 0 0 0 0 0 0 0 

7 400 800 0 0 400 0 400 0 

8 400 0 0 0 0 0 0 0 

9 400 800 1600 3200 800 2800 800 2400 

10 400 0 0 0 0 0 0 0 

11 400 800 0 0 1200 0 1200 0 

12 400 0 0 0 0 0 0 0 

13 400 800 1600 0 400 400 400 800 

14 400 0 0 0 0 0 0 0 

15 400 800 0 0 800 0 800 0 

16 400 0 0 0 0 0 0 0 

17 400 800 1600 3200 1200 1600 1200 1600 

18 400 0 0 0 0 0 0 0 

19 400 800 0 0 400 0 400 0 

20 400 0 0 0 0 0 0 0 

21 400 800 1600 0 800 2800 800 2400 

22 400 0 0 0 0 0 0 0 

23 400 800 0 0 1200 0 1200 0 

24 400 0 0 0 0 0 0 0 

Total (mg) 9600 9600 9600 9600 9600 9600 9600 9600 
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Figure  3.1  Wood frog tadpole activity in response to variable predation risk on four different days.  In all predator 

treatments, tadpoles experienced an average risk of 100 mg prey/predator/tank/d but varied in the amount and 

frequency that predators were fed (right panel).  Data are means + 1 S.E.  For ease of comparisons, the middle and 

left panel repeat the data from the 100 1d and 200 2d treatments respectively. 
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Figure  3.2  Wood frog tadpole refuge use in response to variable predation risk on four different days.  In all 

predator treatments, tadpoles experienced an average risk of 100 mg prey/predator/tank/d but varied in the amount 

and frequency that predators were fed (left and middle panel) or the number of predators that were fed (right panel).  

Data are means + 1 S.E.  For ease of comparisons, the middle and left panel repeat the data from the 100 1d and 200 

2d treatments respectively. 
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Figure  3.3  Wood frog tadpole mass and relative morphology in response to variable predation risk at the end of the 

experiment.  In all predator treatments, tadpoles experienced an average risk of 100 mg prey/predator/tank/d but 

varied in the amount and frequency that predators were fed (left and middle panel) or the number of predators that 

were fed (right panel).  The observed data are means with 95% C.I. and are represented by the closed circles.  For 

ease of comparisons, the middle and left panel repeat the data from the 100 1d and 200 2d treatments respectively.  

Open symbols are the three decision rule predictions: highest risk = triangle, lowest risk = diamond, and average 

phenotype = square 
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4.0  DAMAGE, DIGESTION, AND DEFENSE:  THE ROLES OF ALARM CUES AND 

KAIROMONES FOR INDUCING PREY DEFENSES 

4.1 ABSTRACT 

Inducible defenses are widely used for studying phenotypic plasticity, yet frequently we know 

little about the cues that induce these defenses.  For aquatic prey, defenses are induced by 

chemical cues from predators (kairomones) and injured prey (alarm cues).  Rarely has anyone 

determined the separate and combined effects of these cues, particularly across phylogenetically 

diverse prey types.  I examined how tadpoles (Hyla versicolor) altered their defenses when ten 

different prey were either crushed by hand or consumed by predators.  Across all prey types, 

crushing induced only a subset of the defenses induced by consumption.  Consuming versus 

crushing produced additive responses for behavior but synergistic responses for morphology and 

growth.  Moreover, I discovered the first extensive evidence that prey responses to different 

alarm cues depends on prey phylogeny.  These results suggest that the amount of information 

available to the prey affects both the quantitative and qualitative nature of the defended 

phenotype. 

4.2 INTRODUCTION 

From simple single-celled organisms to plants and animals, most individuals can alter their 

phenotype in response to changes in biotic and abiotic factors (i.e. phenotypic plasticity; 

Pigliucci 2001).  Many phenotypic changes appear to be adaptive, resulting in higher fitness in 

the inducing environment than alternative phenotypes (e.g., Dudley and Schmitt 1996, Van 

Buskirk and Relyea 1998).  However, for organisms to properly adjust their phenotype, there 
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must be reliable environmental cues that indicate the current or future environmental conditions 

(Moran 1992).  In many systems, identifying the source and function of these cues poses a 

tremendous challenge (Burks and Lodge 2002). 

Numerous plants and animals exhibit plastic defenses against herbivores and predators 

(Karban and Baldwin 1997, Tollrian and Harvell 1999) and in many animals the defensive traits 

are induced by chemical cues that are produced during predation events (Petranka et al. 1987, 

Chivers and Smith 1998).  These chemicals contain components from predators (termed 

“kairomones”) and components from injured prey (termed “alarm cues”).  As a result, the 

environmental information available to prey is potentially quite complex, including information 

about the species and density of predator present and the species of prey being consumed 

(Larsson and Dodson 1993).  A major question in the field of inducible defenses asks how prey 

interpret this information when making their phenotypic decisions (Chivers and Smith 1998, 

Kats and Dill 1998, Chivers and Mirza 2001). 

Because the chemical cues produced during predation contain both kairomones and alarm 

cues, prey may require both types of information when making their defensive decisions (the 

identity of the predator and the identity of the killed prey).  Alarm cues (from damaged or 

crushed prey) have frequently been used as surrogates of predation, with the implicit assumption 

that the cues from damaged prey induce the complete suite of predator-induced defenses.  

However, prey that do respond to predation cues often do not respond to damaged conspecifics 

alone (Alexander and Covich 1991, Brönmark and Pettersson 1994, Summey and Mathis 1998, 

Slusarczk 1999; but see Stabell and Lwin 1997, Pijanowska 1997).  The lack of consistent 

responses to alarm cues may occur because prey responses to alarm cues alone are small (and 

thus difficult to detect) or because some prey only alter their traits when they obtain information 

from both alarm cues and kairomones.  To discriminate between these two possibilities and 

determine how prey use alarm cues, we must directly compare prey responses to damaged versus 

consumed prey. 

Prey should use the information contained in alarm cues to estimate their predation risk 

and develop their defenses.  Previous investigators have hypothesized that prey responses to 

alarm cues from heterospecifics should be related to either the frequency of coexistence between 

species that share a common predator (i.e. alarm cues from prey that frequently coexist should 

induce stronger responses than non-coexisting prey) or the phylogenetic relatedness between the 
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responding prey and the prey that released the alarm cues (i.e. closely related prey should 

produce similar alarm cues and, thus, induce stronger responses than distantly related prey; 

Chivers and Smith 1998).  While a number of behavioral experiments have examined the 

impacts of different alarm cues, support for either hypothesis has been equivocal because the 

majority of these studies have not been specifically designed to distinguish between the 

hypotheses.  Given that these studies have primarily used only two diets or three diets, the results 

often support both hypotheses.  More definitive tests require a large number of prey types that 

span across a wide range of prey phylogeny while controlling for coexistence. 

When testing the impact of alarm cues and kairomones on prey defenses, we also need to 

take an integrated approach that recognizes the full suite of defenses that prey employ because 

damaged and consumed prey may not induce all traits in the same way (i.e. behavior vs. 

morphology; Van Buskirk and Arioli 2002).  To date, the focus has been on behavioral traits, yet 

biologists are becoming increasingly aware that many prey also defend themselves with 

inducible morphology and life history (Crowl and Covich 1990, Brönmark and Pettersson 1994, 

Relyea 2001a, Laurila et al. 2002).  To understand how alarm cues and kairomones affect prey 

defenses, we need to simultaneously examine behavior, morphology, and life history. 

I addressed these challenges using larval anurans (tadpoles), which are well known for 

their ability to alter their behavior, morphology, and life history in response to predators (Van 

Buskirk 2002a,b; Relyea 2001a, 2002b).  I exposed grey tree frog tadpoles (Hyla versicolor) to a 

wide range of coexisting prey types that were either crushed by hand or consumed by a caged 

dragonfly predator (Anax junius) and then observed how the tadpoles altered their behavior, 

morphology, and growth.  I used prey types that all commonly coexist so that any differences 

among prey types could not be explained by the coexistence hypothesis.  Further, by using 

predator-naïve tadpoles, I prevented any potentially confounding affects of learning.  I tested the 

following hypotheses:  1) different alarm cues should induce different phenotypes; 2) crushed 

and consumed prey induce different suites and magnitudes of defenses; and 3) alarm cues from 

closely related prey should induce stronger defenses than alarm cues from distantly related prey. 
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4.3 METHODS 

I exposed grey tree frog tadpoles to chemical cues emitted from a factorial combination of 10 

prey types experiencing two modes of prey death (crushed by hand or consumed by Anax) in a 

randomized block design.  The 20 treatments were replicated five times (five spatial blocks) for a 

total of 100 experimental units.  The 10 prey types spanned a wide range of phylogeny: no prey, 

grey tree frog tadpoles, spring peeper tadpoles (Pseudacris crucifer), wood frog tadpoles (Rana 

sylvatica), leopard frog tadpoles (R. pipiens), spotted salamander larvae (Ambystoma 

maculatum), damselfly nymphs (Lestes spp.), dragonfly nymphs (Sympetrum spp.; a small 

dragonfly species that is quite small and induces few changes as a predator (Relyea 2003a)), and 

two snail species (Physa acuta and Stagnicola elodes).  Crossing these 10 prey types with the 

two modes of prey death (crushed or consumed) produced two types of controls.  The first 

control was an empty predator cage to quantify tadpole phenotypes when no predation cues were 

present.  The second control was a starved dragonfly nymph to quantify tadpole phenotypes 

when only predator kairomones were present.  Although this experiment did not include a 

treatment of starved predators plus crushed conspecifics, subsequent experiments have 

confirmed that this treatment induces changes similar to starved predators alone (Schoeppner and 

Relyea, unpublished data). 

I conducted the experiment in outdoor pond mesocosms (wading pools).  Each mesocosm 

contained 80 L of well water, 100g of leaf litter (Quercus spp.), 5g of rabbit chow, and an aliquot 

of pond water containing algae and zooplankton.  These mesocosms have been used in previous 

studies with great success (Relyea 2001a, 2002c).  Each pool contained one predator cage (a 500 

ml plastic cup covered with 1 x 2 mm mesh screen that prevented predators and prey types from 

escaping) that was either empty or held a single larval dragonfly. All pools were covered with 

60% shade cloth lids to prevent colonization by amphibians and invertebrates during the 

experiment.  On 30 June 2002, I added 20 predator-naïve hatchlings to each pool (haphazardly 

selected from a mixture of hatchlings from 32 clutches of eggs).  These 32 clutches of eggs were 

laid in the lab by amplecting pairs of tree frogs that were collected on 16 May 2002, and then 

reared as tadpole in wading pools prior to the experiment.  In short, the tadpoles had not been 

exposed to predator cues as either eggs or hatchling tadpoles.  
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I added the crushed or consumed prey to the pools three times per week.  Equal masses of 

each prey type (350 mg) were either crushed by hand or fed to the larval dragonflies.  Because 

the diets differed in individual size, the number of prey could not be held constant, but 

differences in prey number do not affect anti-predator responses (Schoeppner and Relyea, 

unpublished data).  At each feeding, the consumed prey were added to the predator cages and I 

checked that each predator had consumed its diet.  If the predator had not eaten, the uneaten prey 

were left in the cage and the predator was replaced.  At the end of the experiment, only a few of 

the treatments had any uneaten prey.  Because this was a small fraction of the total amount of 

prey fed to the predator during the experiment, these pools were not excluded.  The prey used for 

the crushed cue treatments were first euthanized and then macerated in a blender for 30 sec.  The 

crushed prey were then distributed evenly to the appropriate pools.  To equalize disturbance 

during feeding, I lifted all empty cages and then returned them to the pools.   

After 17d, I observed tadpole behavior (24 hrs after cue addition).  For each pool, the 

number of tadpoles visible and the number of visible tadpoles that were active (moving) was 

recorded, permitting us to quantify the proportion of tadpoles observed (i.e. not hiding) and the 

proportion of tadpoles active.  Each pool was observed ten times and I used the mean behaviors 

of each pool as my behavioral response variables.   

After 20d, all tadpoles were removed and preserved in 10% formalin for subsequent 

morphological measurement.  Survival was excellent across all treatments (98.23 ± 0.03%) and 

there was no pattern among the treatments.  Tadpole morphology was measured using an image 

analysis system (Optimas Bioscan; Bothell, Washington, USA).  I weighed each tadpole and then 

measured seven morphological dimensions: tail length and depth; tail muscle depth and width; 

and body depth, length, and width (see Fig. 1 in Relyea 2000).  Because the tadpole’s body is 

round, I placed a glass plate under the tadpole’s tail in the lateral view.  For simplicity, I only 

report on the two tadpole dimensions that most consistently respond to predators (tail depth and 

body length). 

Because I was interested in differences in tadpole shape, I had to first correct for 

differences in overall size.  To make the morphological dimensions size-independent, I regressed 

the two morphological measurements (log-transformed to improve the linearity of the 

relationship) against the log-transformed mass of each individual and then saved the residuals.  I 

calculated the mean residuals from each pool and used these mean residuals as my 
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morphological response variables.  This approach has been widely applied in past studies of 

morphological plasticity (Relyea 2000, 2001a, 2002c).   

I analyzed all of the data in a single multivariate analysis of variance (MANOVA) that 

examined the effects of block, cue type (crushed or consumed), prey type, and their interactions 

on grey tree frog behavior, mass, and the two size-independent morphological dimensions.  

Block interactions were never significant; thus, I pooled the block interaction degrees of freedom 

with the error term.  For significant univariate effects, I conducted mean comparisons using 

Fisher’s LSD test. 

To test the relationship between the grey tree frog’s phenotypic responses and the 

phylogenetic relatedness of the different crushed and consumed prey, I used phylogenetic 

divergence times.  For example, invertebrates diverged from chordates 990 million years ago 

(mya) and salamanders diverged from anurans 250 mya (Feller and Hedges 1998, Kumar and 

Hedges 1998).  Within the anurans, ranids (wood frogs and leopard frogs) and hylids (grey tree 

frogs and spring peepers) diverged 100 mya (Wallace et al. 1971).  Within the hylids, Pseudacris 

and Hyla diverged approximately 50 mya (Hedges 1986).  Because some of the taxa are not 

phylogenetically independent (e.g., the four invertebrates, the two ranids), I averaged the values 

for each taxonomic group (within a block) to represent invertebrates and ranids, respectively.  In 

short, the nine taxa were reduced to five independent taxa:  grey tree frogs, peepers, ranids, 

salamanders, and invertebrates.  Using these dates, I conducted a multivariate analysis of 

covariance (MANCOVA) using blocks, cue type (crushed versus consumed), and divergence 

date as a covariate (using log (divergence date + 10 mya)) and the tadpole activity, hiding, mass, 

and mean residuals for the two morphological traits as the response variables. 

4.4 RESULTS 

There were significant multivariate effects of block (Wilks’ F20,236 = 5.3, P < 0.001), prey type 

(Wilks’ F45,321 = 2.9, P < 0.001), cue type (Wilks’ F5,71 = 65.1, P < 0.001), and the prey type-by-

cue type interaction (Wilks’ F45,321 = 1.8, P = 0.003).  Block effects occurred for all traits 

(univariate tests, P < 0.02), likely due to block position in the field.  Blocks closer to the forest 

edge experienced more shade, likely producing differences in periphyton which can affect the 
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magnitude of predator-induced phenotypes (Relyea 2002c).  Importantly, the lack of a prey type-

by-cue type interaction confirms that the pattern of response to the different treatments was 

consistent across all blocks. 

The percentage of tadpoles observed in the pools was affected by prey species (F9,75 = 

5.2, P < 0.001) and cue type (F1,75 = 48.4, P < 0.001) but not their interaction (F9,75 = 0.9, P = 

0.527; Fig. 4.1).  Across all prey treatments, consumed prey caused 8% more hiding than crushed 

prey.  Across both cue types, there was strong hiding when the treatments used grey tree frogs or 

spring peepers (P < 0.001), moderate hiding with the other amphibian species (P < 0.01), and 

little hiding with the invertebrate prey (0.15 > P > 0.01).  Compared to grey tree frogs reared 

with no cues, there was a 12% increase in hiding with crushed conspecifics (P = 0.001), a 12% 

increase in hiding with starved predators (P = 0.004), and a 21% increase in hiding with 

consumed conspecifics (P < 0.001), 

Tadpole activity was affected by prey species (F9,75 = 3.1, P = 0.003) and cue type (F1,75 = 

26.8, P < 0.001) but not their interaction (F9,75 = 0.9, P = 0.495; Fig. 4.1).  Across all prey 

species, consumed prey induced 17% lower activity than crushed prey.  Compared to the control 

treatment, consumed amphibians induced the largest activity reductions (P < 0.008) while 

invertebrate prey induced the smallest activity reductions (P > 0.03).  Compared to grey tree 

frogs reared with no cues, I found a 10% reduction in activity with crushed conspecifics (P = 

0.027), a nonsignificant 3% reduction in activity with starved predators (P = 0.460), and a 20% 

reduction in activity when conspecifics were fed to predators (P < 0.001). 

Tail depth was affected by prey species (F9,75 = 11.2, P < 0.001), cue type (F1,75 = 328.3, 

P < 0.001) and their interaction (F9,75 = 6.0, P < 0.001; Fig. 4.1).  The interaction occurred 

because there were no differences among the crushed prey (univariate P = 0.109), but there were 

substantial differences among the consumed prey (univariate P < 0.0001).  Compared to 

dragonflies consuming no prey, increases in tail depth were large when dragonflies consumed 

grey tree frogs and peepers (P < 0.001), moderate when dragonflies consumed wood frogs, 

leopard frogs, and salamanders (P < 0.001), and small when dragonflies consumed invertebrates 

(damselfly larvae, P = 0.002; dragonfly larvae, P = 0.022; Stagnicola snails, P = 0.034; Physa 

snails, P = 0.153).  Compared to grey tree frogs reared with no cues, crushed conspecifics and 

starved predators each caused small effects on tail depth (P = 0.055 and P = 0.022, respectively) 

 52 



while predators consuming conspecifics caused a five-fold larger increase in tail depth (P < 

0.001). 

Body length was affected by prey species (F9,75 = 4.3, P < 0.001), cue type (F1,75 = 83.6, P 

< 0.001) and their interaction (F9,75 = 3.1, P = 0.003; Fig. 4.1).  The interaction occurred because 

crushed prey had no effect on body length (univariate P = 0.789) while consumed prey had 

significant effects (univariate P < 0.001).  Compared to starved dragonflies, all consumed prey 

induced relatively shorter bodies (P < 0.05) except the invertebrate prey (P ≥ 0.05).  Compared to 

grey tree frogs reared with no cues, I found no effect of crushed conspecifics (P = 0.867) or 

starved predators (P = 0.481) but a large decrease in body length when predators consumed 

conspecifics (P < 0.001). 

Tadpole mass was affected by prey species (F9,75 = 4.5, P < 0.001) and cue type (F1,75 = 

2.5, P = 0.116) with a nearly significant interaction (F9,75 = 1.8, P = 0.080; Fig. 4.1).  The 

marginal interaction occurred because the crushed prey had no impact on tadpole mass 

(univariate P = 0.086) whereas consumed prey had a significant impact (univariate P = 0.002).  

Compared to starved dragonflies, consumed grey tree frogs and peepers caused reductions in 

mass (P < 0.04) while the remaining consumed prey had no effect (P > 0.2). Compared to grey 

tree frogs reared with no cues, I found no effect of crushed conspecifics or starved predators (P > 

0.35), but predators consuming conspecifics caused a 15% reduction in mass (P < 0.001). 

When I examined the relationships between the phylogenetic distance of each prey and 

the grey tree frog’s response, I found significant multivariate effects of block (Wilks’ F20,127 = 

3.6, P < 0.001), cue type (Wilks’ F5,38 = 13.9, P < 0.001), divergence date (Wilks’ F5,38 = 9.1, P < 

0.001), and the cue type-by-divergence date interaction (Wilks’ F5,38 = 3.8, P = 0.007).   For the 

two behavioral traits (percent observed and percent activity; Fig. 4.2), the traits were affected by 

cue type (P ≤ 0.014) and divergence time (P ≤ 0.01), but not by their interaction (P > 0.22).  For 

mass and the two morphological traits (tail depth and body length; Fig. 4.3), the traits were 

affected by cue type (P ≤ 0.003), divergence time (P < 0.02), and their interaction (P < 0.01).  

For these latter three traits, I found significant effects of divergence date when the prey were 

consumed (P ≤ 0.002) but not when they were crushed (P > 0.3). 
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4.5 DISCUSSION 

The results of this study indicate that prey make use of the diverse information available from 

alarm cues and kairomones when making their defensive decisions.  The phenotypic changes 

induced by the caged dragonfly larvae are likely adaptive.  For example, increased hiding and 

decreased activity in response to predators are consistent with a plethora of previous studies 

(Kats and Dill 1998).  In general, less apparent prey have increased survival due to decreased 

detection by predators (Skelly 1994), but this behavior comes at the cost of slower growth in 

predator-free environments (Harvell 1992, Skelly 1992).  The increase in tail depth and decrease 

in body length is consistent with past studies of morphological defenses in tadpoles (Relyea 

2003a, Van Buskirk 2002b).  Tadpoles with relatively deeper tails and smaller bodies survive 

better in the presence of predators (Van Buskirk and Relyea 1998), but this phenotype 

experiences slower growth (Van Buskirk 2000).  I observed reduced growth in my experiment, 

with the largest growth reductions occurring in the treatments that induced the strongest 

defenses.  For amphibians, reduced growth is important to fitness because it results in delayed 

metamorphosis (which can be deadly in a drying pond), decreased size at maturity, and 

decreased future egg production (Berven and Gill 1983, Semlitsch et al. 1988). 

Cues from crushed prey alone did not induce the same suite of defenses as cues from 

consumed prey.  Crushed and consumed prey both induced increased hiding and decreased 

activity, but only the consumed prey consistently induced deep tails and short bodies.  This result 

supports the hypothesis that the additional information provided by the simultaneous exposure to 

both kairomones and alarm cues allow prey to mount more complete and effective anti-predator 

defenses.  This difference may exist because behavioral defenses are typically more easily 

reversed than morphological defenses (see Relyea 2003b).  Thus, if alarm cues provide 

incomplete information about predation risk, perhaps prey use easily reversible behavioral 

defenses so that their defensive decision can be quickly reversed if the information turns out to 

be incorrect.  Similarly, prey may require more complete information (alarm cues plus 

kairomones) before investing in defenses that are more difficult (or impossible) to reverse. 

Within the subset of traits induced by both crushed and consumed prey (the two 

behavioral traits), crushed prey induced weaker defenses.  There has been equivocal support for 

the importance of alarm cues alone for inducing behavioral defenses.  For example, across 20 
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species of larval anuran, nearly half of the species did not respond behaviorally to crushed 

conspecifics (Wilson and Lefcort 1993, Summey and Mathis 1998).  The species that did 

respond were distributed across three families, suggesting that the lack of response is not limited 

to the loss of alarm cues in one family.  Moreover, the equivocal impact of crushed prey on prey 

behavior is also found in other taxa including Daphnia (Stirling 1995, Pijanowska 1997), snails 

(Alexander and Covich 1991, Turner 1996), and sea urchins (Parker and Shulman 1986, Hagen 

et al. 2002).  Collectively, these data suggest that while crushed prey can induce some 

phenotypic changes, the changes are often restricted to behavioral traits and the magnitude of the 

change is frequently small compared to the magnitude induced by consumed prey. 

If prey simply detect and respond to kairomones and alarm cues, the response to the 

consumed cues should be equivalent to the additive combination of the responses to the crushed 

cues alone and the predator kairomones alone.  My data indicated that responses to consumed 

conspecifics are more than additive for morphology and growth.  From these data, one cannot 

determine if the synergism is simply the result of encountering both cues simultaneously, or if 

there is something about consuming the prey in and of itself that causes the synergy.  For 

example, the latter scenario could occur if actual predation produces compounds that are not 

produced by starved predators (i.e. digestive enzymes or digested prey tissues; Stabell et al. 

2003).  Further studies are needed to identify the mechanism responsible for the synergistic 

responses.   

The fundamental difference between cues from crushed and consumed prey also can be 

found in my analysis of alarm cue phylogeny.  The phylogenetic-relatedness hypothesis predicts 

that an organism’s defensive responses will be strong when closely related prey are killed but 

weak when distantly related prey are killed (Chivers and Smith 1998, Chivers and Mirza 2001).  

The decrease in the magnitude of response with phylogenetic relatedness could arise from one of 

two mechanisms:  1) more distantly related prey do not release the same chemicals; or 2) 

predation on more distantly related prey communicates a decreased risk of predation (due to 

predator search images; Persons et al. 2001).  This hypothesis appears to have never been tested 

across a wide range of prey relatedness.  For the two behavioral traits, I found support for the 

hypothesis when the prey were either crushed or consumed.  While a number of behavioral 

experiments have examined the impacts of different alarm cues, past experiments have not used 

both closely related (within the same order) and distantly related prey.  In my study, all 
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consumed amphibians induced strong responses while the insect and snail prey induced weak (or 

no) response.  For mass and the two morphological traits, I also found support for the 

phylogenetic relatedness hypothesis, but only when prey were consumed (crushed prey never 

induced any morphological changes).  There have been very few studies of predator diet on 

morphology and mass (Brönmark and Pettersson 1994, Stabell et al. 2003) and no previous tests 

of the phylogenetic hypothesis.  My results provide the first extensive evidence that prey 

responses to different alarm cues (from a group of coexisting prey) can follow a strong 

phylogenetic pattern.  More studies are needed to determine the generality of this pattern in other 

species.  While several authors have stated that fish respond more strongly to alarm cues from 

closely related fish than from distantly related fish (Smith 1982, Mathis and Smith 1993, Stabell 

and Lwin 1997), no study to date has tested the hypothesis using a large number of coexisting 

diets that span a range of phylogenetic relatedness. 

4.5.1 Conclusions 

The use of environmental cues is critical for organisms to exhibit adaptive plasticity, yet for 

organisms with predator-induced defenses we know relatively little about the complexity of the 

chemical cues that are used.  My results suggest that the chemical cues associated with predation 

are complex, but not without pattern.  Despite the fact that many researchers use crushed prey as 

surrogates of predation (reviewed in Chivers and Smith 1998), it appears that the cues emitted by 

damaged or crushed prey can be fundamentally different from the cues emitted by consumed 

prey; crushed prey frequently do not induce the full suite or magnitude of traits that are induced 

by consumed prey.  In such cases, prey have apparently evolved a reliance on both alarm cues 

and kairomones. However, this is not to say that alarm cues are unimportant.  When alarm cues 

are combined with the kairomones, they can have large impacts on the induced defense.  This 

reliance may have evolved because alarm cues alone provide no information about which 

predator is present and kairomones alone (i.e. from starved predators) provide no information 

about which prey species are being killed by the predator (which may be critical information 

when predators preference changes over time).  This research underscores the importance of 

simultaneously examining the impacts of crushed and consumed prey across a wide range of 

phylogeny and a diversity of traits.  With this approach, we can better arrive at generalizable 
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patterns as to how prey obtain information from their environment and make their phenotypically 

plastic decisions. 
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Figure  4.1  Behavior, relative morphology, and mass of larval grey tree frogs (mean residuals + 1 SE) 

exposed to chemical cues from crushed (open symbols) or consumed (filled symbols) diets from a wide 

range of phylogeny.  For crushed diets, the treatment termed “nothing” indicates a cue-free environment.  

For consumed diets, the treatment termed “nothing” indicates a starved-predator environment.  Relative 

morphology was calculated by regressing the log-transformed dimensions of all individuals against their 

log-transformed mass and then saving the mean residuals from each pool. 
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Figure  4.2  The relationship between phenotypic responses of grey tree frog tadpoles and the phylogenetic 

distance of either crushed prey (open symbols, dashed lines) or consumed prey (closed symbols, solid lines) 

for the behavioral traits.  The analysis was based upon 50 experimental units but only the 10 treatment 

means are plotted to provide graphical clarity. 
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Figure  4.3  The relationship between phenotypic responses of grey tree frog tadpoles and the phylogenetic 

distance of either crushed prey (open symbols, dashed lines) or consumed prey (closed symbols, solid 

lines).  The analysis was based upon 50 experimental units but only the 10 treatment means are plotted to 

provide graphical clarity. 

 60 



5.0  WHEN SHOULD PREY RESPOND TO HETEROSPECIFIC ALARM CUES? 

TESTING THE MECHANISMS OF PERCEIVED RISK 

5.1 ABSTRACT 

Inducible defenses have been studied from a diverse array of perspectives with a major focus on 

how prey use environmental cues in making their phenotypic decisions.  In aquatic systems a 

long-standing question is why chemical cues from different diets consumed by the same type of 

predator induce strong responses while others induce weak responses or no response at all.  In a 

previous study I showed that the magnitude of the response was related to the phylogenetic 

relatedness of the predator’s diet to the unconsumed prey; where cues from closely related 

species induced strong responses and distantly related species induced weaker responses.  In this 

study I performed a behavioral assay to determine if the strong responses to the closely related 

diets was due to 1) similarity of alarm cues among closely related species or 2) shared risk 

among coexisting organisms that share a common predator.  I compared the behavioral defenses 

of grey tree frog tadpoles (Hyla versicolor) to cues from a dragonfly nymph (Anax junius) that 

consumed one of seven diets that span a wide range of phylogenetic relatedness and coexist with 

grey tree frogs to one diet that is closely related to grey tree frogs but has an allopatric range. 

Consistent with previous results, I found that the tadpoles could discriminate among the predator 

diets and that the magnitude of behavioral response was strongly related to phylogenetic 

relatedness but not to coexistence.  In addition, differences in the responses to different predator 

diets were not due to differences in prey size when diet mass was held constant. Collectively, 

these data suggest that prey are quite proficient at discriminating among predator diets and that 

different predator diets induce different magnitudes of defense not due to differences in prey size 

or prey coexistence, but due to the changes in the chemical composition of prey alarm cues as the 

diets increase in phylogenetic distance from the target. 
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5.2 INTRODUCTION 

Prey use a wide range of behaviors to decrease their encounter rates with predators and hence 

increase their survival (Lima and Dill 1990).  Because the use of anti-predator behavior often 

comes at the cost of reduced growth and reproduction compared to individuals that do not 

display the behavior (Sih 1980, Anholt and Werner 1995), theory predicts that organisms should 

exhibit responses that are commensurate with the magnitude of predation risk faced (Helfmann 

1989).  To accomplish this, prey must be able to perceive their current predation risk and balance 

the cost of defense with other requirements (e.g., foraging or finding a mate).  While many 

organisms use environmental cues (chemical, mechanical, visual) to detect their predators and 

make decisions about allocation to defensive behaviors (Tollrian and Harvell 1999, Venzon et al.  

2000), we still lack an understanding of what aspects of the cues are important in communicating 

information about predation risk. 

In aquatic systems, prey generally assess predation risk via chemical cues released by 

both the predator and the consumed prey (Larson and Dodson 1993).  Predators produce 

chemicals, termed kairomones that the prey use to determine the species of predator against 

which they must defend themselves.  The specificity of kairomones has been confirmed by 

showing that different predator species induce different behavioral responses, either in the 

magnitude or type of traits induced (Turner et al.  1999, Dewitt et al.  2000, Relyea 2001a,b).  

Prey also respond to chemicals from other injured prey, termed alarm cues, which are released 

when predators capture and consume prey.  Prey typically exhibit the strongest behavioral 

defenses when the predator consumes a diet of conspecific prey (Wilson and Lefcort 1993).  

However, when predators consume heterospecific prey, researchers have observed that the prey’s 

behavioral defenses vary in strength (Smith 1992, Chivers and Mirza 2001).  To explain the wide 

range of responses to different predator diets, two hypotheses have been proposed: ecological 

coexistence and phylogenetic relatedness. 

The ecological coexistence hypothesis posits that prey should respond strongly to alarm 

cues from coexisting heterospecifics and weakly to alarm cues from non-coexisting 

heterospecifics (Chivers and Mirza 2001).  This hypothesis assumes that responses to 

heterospecific cues are a result of natural selection favoring the ability to detect and respond to 

alarm cues that communicate information about a shared predator (i.e.  if you are being eaten, I 
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am in danger too).  Under this scenario, the predator consumes the two prey species with similar 

probabilities and, therefore, alarm cues from the consumed heterospecifics are interpreted as 

representing a level of risk that is similar to cues from consumed conspecifics.  A number of 

studies have supported this hypothesis by demonstrating that coexisting prey (that are relatively 

closely related) induce similarly strong defenses (Chivers and Smith 1998, Mirza and Chivers 

2003, Mirza et al.  2003).  However, few studies have examined whether closely related, non-

coexisting prey also induce strong defenses.  Such a result would allow us to reject the 

ecological-coexistence hypothesis. 

The phylogenetic-relatedness hypothesis posits that prey should respond strongly to 

alarm cues from closely related heterospecifics while alarm cues from distantly related 

heterospecifics should induce weaker responses regardless of coexistence (Parker and Shulman 

1986, Mathis and Smith 1993, Sullivan et al.  2003, Schoeppner and Relyea 2005).  This 

hypothesis is based upon the premise that closely related prey produce similar chemical alarm 

cues and, therefore, induce similar behavioral defenses.  Therefore, alarm cues from two species 

that are allopatric but of similar phylogenetic-relatedness to a target species should induce 

similar behavioral defenses in the target.  In one of the most extensive tests of the phylogenetic-

relatedness hypothesis to date, I exposed grey tree frog tadpoles (Hyla versicolor) to chemical 

cues from a wide range of predator diets including conspecifics, several anuran diets, one 

caudate, two insect nymphs, and two snails.   I found that as predicted by the phylogenetic-

relatedness hypothesis, chemical cues from consumed conspecifics induced the strongest 

responses in tadpole behavior and morphology, and that the magnitude of the response decreased 

as phylogenetic-relatedness of the diet to the tree frog tadpoles decreased (Schoeppner and 

Relyea 2005).   However, because all of the diets used in that study commonly coexist with the 

grey tree frog, cues from the closely related diets (i.e.  amphibians) may be inducing strong 

responses either because 1) closely-related heterospecifics emit similar alarm cues or 2) 

heterospecifics emit different alarm cues but the prey have evolved the ability to detect those 

cues because organisms that present a similar search image to a common predator share a similar 

level of risk.   Therefore, to definitively distinguish among the ecological coexistence hypothesis 

and the phylogenetic relatedness hypothesis we need to expose prey to diets that both do and do 

not coexist with the responding species. 
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When we examine different predator diets, it is critical that we feed the same mass of 

prey to the predators because the amount of chemical cues being released likely depends on the 

mass of prey consumed (Van Buskirk and Arioli 2002).  However, even when prey mass is 

controlled, there can be differences in the number of individuals that compose each diet due to 

differences in the size of different prey species (e.g., Smith and Belk 2001).  If alarm cues are 

contained in the skin as in many fish species (Hara 1993, Smith 1992) and toads (Hews 1988), 

then differences in prey number could be important because a larger number of small individuals 

would contain a greater surface:mass ratio, producing more chemical cue per unit mass and a 

stronger anti-predator response.  The impact of prey number (while holding diet mass constant) 

appears to have never been tested.  Without knowing if differences in the number of prey 

consumed affects the magnitude of the observed behavioral responses we cannot rule out the 

possibility that any difference among diets is due to differences in the amount of cue detected.  

Therefore, we need to know how differences in the number of items consumed affect prey 

behavior. 

I addressed these issues in a series of laboratory experiments in which I exposed grey tree 

frog tadpoles (Hyla versicolor) to a variety of treatments where I fed larval dragonflies several 

different diets.  I quantified grey tree frog activity in each environment and tested the following 

hypotheses: 1) prey can discriminate among a wide range of predator diets; 2) behavioral 

defenses will be strong when predators consume closely related prey and weak when predators 

consume distantly related prey; 3) behavioral defenses will be strong when predators consume 

coexisting prey and weak when predators consume non-coexisting prey; and 4) prey responses to 

predator diets are affected by the number of items in the diet (while controlling for total diet 

mass). 

5.3 METHODS 

I performed two experiments that addressed how prey respond to different predator diets.  The 

first experiment tested how grey tree frog tadpoles responded to predator diets that varied in 

phylogeny and coexistence (the “mechanism experiment”).  The second experiment tested how 
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grey tree frog tadpoles were affected by the number of prey items that the predator consumed 

(the “prey-number experiment”). 

5.3.1 The mechanism experiment 

I exposed grey tree frog tadpoles to chemical cues from caged dragonfly naiads that consumed 

different species of prey.  I employed a randomized block design in which I exposed tadpoles to 

nine different treatments replicated 10 times for a total of 90 experimental units across two 

spatial blocks (5 reps/ experimental shelf in the laboratory).  The nine treatments consisted of 1) 

no predator, 2) a caged starved predator, 3) caged dragonflies fed one of six diets that coexist 

with grey tree frog larvae (conspecifics; spring peeper larvae, Pseudacris crucifer; wood frog 

larvae, Rana sylvatica; spotted salamander larvae, Ambystoma maculatum; libellulid dragonfly 

naiads, Sympetrum internum; and freshwater snails, Physa acuta), and 4) caged dragonflies fed a 

diet that does not coexist with grey tree frog larvae (Pacific tree frog larvae; Pseudacris regilla).  

The starved predator treatment was included to control for the effect of the predator alone on tree 

frog behavior.  Pacific tree frogs were chosen as a diet in this experiment because they are 

closely related (confamilial) to grey tree frogs but the two species have allopatric ranges.  Pacific 

tree frogs are restricted to the west coast from British Columbia south through California 

extending east into Montana, Idaho, and Nevada while grey tree frogs are found on the east coast 

from south Ontario through north Florida and extending west into Manitoba, Oklahoma, and 

central Texas (Behler and King 1991).  Based on these current distributions, it is unlikely that 

these species have coexisted during the last 20,000 years (i.e.  since the beginning of the last ice 

age). 

I conducted the experiment in the laboratory using 90 10-L plastic tubs filled with 7 L of 

filtered well water.  I obtained grey tree frog tadpoles by collecting 18 pairs of amplected frogs 

from Mallard Pond (Crawford County, PA) on 11 May 2004 and allowing them to oviposit in 

laboratory tubs containing aged well water.  To ensure that the hatchling tadpoles were kept 

predator-naïve, I reared them outdoors in covered wading pools and fed them rabbit chow ad 

libitum.  From these hatchlings, I haphazardly selected 10 tadpoles for each tub (initial mean 

mass ± 1 SE = 105 + 6 mg).  Each tub also contained a 250-mL opaque plastic cup covered with 

a mesh screen, which served as the predator cage.  For tubs assigned a predator treatment, I 
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added a single late-instar dragonfly naiad (Anax junius) and fed each predator 300 + 10 mg of the 

assigned diet; for the no-predator control treatment, I added an empty cup.  To protect against 

problems of predators emitting chemical cues from different diets consumed prior to the 

experiment, I fed the assigned diets to the dragonflies for at least two weeks prior to the start of 

the experiment.  Dragonflies assigned the “starved” treatment were not fed for one week prior to 

the experiment.   

I added the tadpoles and caged predators to the tubs on 11 July 2004.  I observed tadpole 

activity the next morning between 1000 and 1200 hrs.  I used scan sampling where I counted the 

number of tadpoles moving in each tub to determine tadpole activity (Altmann 1974).  I 

performed 10 observations on each tub and used the mean proportion of active tadpoles as my 

response variable.  I analyzed tadpole activity using an analysis of variance (ANOVA) in which I 

looked for the effect of predator treatment and block on tadpole activity.  Differences among 

treatment means were compared using Fisher’s LSD test. 

I performed two linear regressions using the treatment means for each experimental unit 

to test the hypothesis that the mean activity induced by each diet was positively correlated with 

the time since divergence of each diet species with grey tree frogs.  I included all of the 

coexisting diet species in the first regression but replaced the spring peeper diet with the Pacific 

tree frog diet (both in the genus Pseudacris) in the second regression to determine if diet 

coexistence affected the phylogenetic correlation.   My data would support the phylogenetic 

relatedness hypothesis if replacing the coexisting diet with a non-coexisting diet of similar 

phylogenetic relatedness produced a similar correlation.   The divergence dates were taken from 

the literature: invertebrates diverged from chordates 990 million years ago (mya, Kumar and 

Hedges 1998) and salamanders diverged from anurans 250 mya (Feller and Hedges 1998).  

Among the anuran diets, I assumed that hylids diverged from ranids 100 mya (Wallace et al.  

1971) and that Pseudacris and Hyla diverged 50 mya (Hedges 1986).   Prior to the analysis, I 

log-transformed the divergence dates (log (divergence date + 10 mya)) to improve the linearity 

of the relationship between time since divergence and tree frog tadpole activity. 
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5.3.2 The prey-number experiment 

The prey-number experiment tested how a target species (grey tree frog tadpoles) responded 

when a predator consumed a diet of small, medium, or large prey of a given taxa (while 

controlling for total diet mass).   These experiments followed a protocol similar to the 

mechanism experiment.   Predators were fed similar masses (within each diet species) of either 1 

large, 3 medium, or, 5 small tadpoles of three species: wood frogs (total diet mass ± 1 SE; 656 ± 

5, 703 ± 7, and 694 ± 30 mg, respectively), leopard frogs (975 ± 7, 917 ± 7, and 955 ± 38 mg, 

respectively), and grey tree frogs (677 ± 5, 687 ± 9, and 708 ± 25, respectively).  The initial 

mean mass (+ 1 SE) of the target tadpoles was 94 + 11 mg.  There were a total of 10 treatments 

(nine diets plus a no-predator control) replicated eight times for a total of 80 experimental units.  

Behavioral observations were taken between 1000 and 1200 hrs.  on 25 July 2001.  I analyzed 

tadpole activity using an analysis of variance (ANOVA) in which I looked for the effect of 

predator treatment and block on tadpole activity.  Differences among treatment means were 

compared using Fisher’s LSD test. 

5.4 RESULTS 

5.4.1 The mechanism experiment 

The ANOVA found a significant effect of the treatments (F8, 71 = 19.8, P < 0.0001) but no 

significant block effect (F1, 71 = 1.1, P = 0.269) or block-by-treatment interaction (F8, 71 = 1.4.  P 

= 0.227), therefore the block and block-by-treatment degrees of freedom were pooled into the 

error term.  The strongest reduction in activity occurred when predators consumed any of the 

amphibian diets (Fig. 5.1).  There were no differences among these amphibian diet treatments (P 

> 0.125), but the treatments had significantly lower activity than the no-predator treatment, the 

starved-predator treatment, and both the insect and snail diets (P ≤ 0.006).  The libellulid diet 

induced an intermediate tadpole activity that was weaker than the response to the amphibian 

diets (P ≤ 0.006) but stronger than the response to the snail or starved dragonfly diets (P ≤ 
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0.031).  Both the freshwater snail diet and starved-predator treatment were not different from the 

no-predator control (P > 0.368). 

Both regressions showed a significant positive correlation between time since divergence 

and tadpole activity (Fig. 5.2).  The two analyses, using either the Pacific tree frog diet (which 

does not coexist; P < 0.001, r2 = 0.39, N = 60) and the spring peeper diet (which does coexist; P 

< 0.001, r2 = 0.39, N = 60), both showed that the tadpoles responded with weaker behavioral 

changes as phylogenetic relatedness increased regardless of congeneric species coexistence. 

5.4.2 The prey-number experiment 

In the prey-number experiment, there were significant block (F9, 58 = 7.0, P < 0.001; due to 

temperature differences among shelf heights) and treatment effects (F9, 58 = 19.7, P < 0.001) but 

no significant block-by-treatment interaction (P = 0.254).  All predator diets induced lower 

activity than the no-predator control (P < 0.0001; Fig. 5.3).  However, there were no differences 

among predators consuming one large, three medium, or five small size tadpoles either between 

or within any of the species treatments (P > 0.05). 

5.5 DISCUSSION 

My results provide evidence that the magnitude of a prey’s response to alarm cues can be 

predicted by the phylogenetic relatedness of the prey to the responding species regardless of 

coexistence.  In this experiment, chemical cues from consumed Pacific tree frog tadpoles (which 

are allopatric to grey tree frogs) induced activity reductions that were equivalent to those induced 

by the alarm cues from all of the coexisting amphibian species.  These results are consistent with 

a previous experiment that supported the predictions of the phylogenetic-relatedness hypothesis 

but only included diets that coexisted with the target tadpole species (Schoeppner and Relyea 

2005).  In both studies, the experiments were performed on predator-naïve targets, indicating that 

the tadpole responses are innate.  Because the Pacific tree frog diet induced strong defenses that 

were similar to the congeneric spring peeper diet, my results suggest that the cues detected by the 
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tadpoles were similar among all amphibians and therefore induced similar responses (a 

prediction of the phylogenetic-relatedness hypothesis) while the cues from the insect and snail 

diets must have been different from the amphibian diets and therefore induced weaker responses.  

Because I was able to include only one diet that did not coexist with the target species, further 

studies that include multiple diets that do not coexist should be conducted to ensure that this 

result is a general phenomenon and not unique to the taxa I used. 

While I found strong support for the phylogenetic-relatedness hypothesis, using tadpoles 

as my model system, other studies have found results that do not support this hypothesis.  For 

example, Parker and Shulman (1986) found that the induction of hiding behavior in seven 

species of sea urchins in response to damage-released alarm cues was not consistent with either 

the phylogenetic-relatedness or ecological-coexistence hypotheses.  Cues from more closely 

related sea urchins and sea urchins that share similar habitats did not always induce hiding.  

Similarly, in an experiment using fish, damage-released cues from closely related heterospecifics 

did not induce behavioral responses while damage-released cues from more distantly related 

species did induce behavioral responses (Commens and Mathis 1999, Chivers et al.  2000).  

While these results could indicate that phylogenetic relatedness is not a consistent predictor of 

prey responses to heterospecific cues, there are several methodological differences between my 

experiment and previous work addressing the role of phylogenetic relatedness that may account 

for the differences among the findings (including diet identity, cue type, target experience, and 

degree of relatedness among the diets). 

The equivocal nature of the support for either hypothesis may be explained in part by the 

identity of the diets chosen.  Some alarm cues may provide “mixed information” if the diet used 

is also a predator or potential prey of the target (Petranka 1989, Wildy et al.1999, Mirza et al 

2003, Sullivan et al 2003).  If the diet is a predator of the focal species, the focal species may 

detect and respond to both alarm cues and kairomones from the diet and, as a result, respond 

strongly regardless of phylogenetic relatedness (Mirza et al 2003, Sullivan et al.  2003).  If the 

diet is a potential prey item for the focal species, the focal species may respond to the cues by 

increasing its foraging rather than exhibiting anti-predator behavior (Petranka 1989, Wildy et al.  

1999).  In the current study, one of the distantly related diets, the Sympetrum dragonfly naiad, is 

a small predator that can only consume small tadpoles and induce very weak tadpole defenses 

(Relyea 2003a).  I found that tadpoles responded to the Sympetrum diet with an activity level that 
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was lower than the no-predator, starved-predator, and snail treatments but higher than any of the 

amphibian diets.  Because this dragonfly naiad is also sometimes a tadpole predator, I cannot 

rule out that a small part of the activity reduction could have been caused by kairomones from 

Sympetrum in addition to the alarm cues from Sympetrum.  This illustrates the importance of 

only using diets that do not also emit cues that can serve as kairomones or food cues to the target 

prey when we evaluate the evidence supporting either the phylogenetic-relatedness or ecological-

coexistence hypothesis. 

When considering the evidence for the phylogenetic-relatedness hypothesis, we must 

consider whether experiments were performed using damaged prey or consumed prey.  For 

example, the phylogenetic-relatedness hypothesis is well-supported in tadpole studies (Wilson 

and Lefcort 1993, Laurila et al 1997, Schoeppner and Relyea 2005) but not well-supported in 

fish studies.  However, most amphibian studies use cues from consumed diets whereas most fish 

studies use cues from crushed fish skin (Chivers and Mirza 2001).  This difference in protocol 

may be critically important because crushed prey can induce much weaker anti-predator 

behaviors, making responses to crushed prey much more difficult to detect (Schoeppner and 

Relyea 2005).  To determine whether the lack of consistency across taxa is due to taxonomic 

group or experimental protocol, we need to conduct experiments in other taxonomic groups, 

which examine the effects of cues from crushed and consumed diets concurrently. 

The tadpoles used in my study were predator naïve; however, many experiments that 

document prey defensive behaviors in response to chemical cues have used wild-caught target 

species.  Numerous studies have shown that prey can learn to respond strongly to heterospecific 

cues once the target has simultaneously encountered the heterospecific and conspecific alarm 

cues (Chivers and Smith 1994, Chivers et al. 1996,Wisenden and Millard 2001, Mirza and 

Chivers 2001a, Chivers et al.  2002).  When animals can learn to associate alarm cues from 

heterospecifics with predation risk, the behaviors of experienced prey no longer reflect previous 

selection for responses to cues that reliably predict risk.  It is likely that many organisms respond 

innately to some cues (i.e.  cues from conspecifics and heterospecifics that have cues that are 

structurally similar) while they learn to respond to other cues (cues from heterospecifics that are 

also consumed by a common predator), and both types of responses are important in producing 

effective anti-predator defenses.  Therefore, in evaluating the phylogenetic-relatedness or the 

ecological coexistence hypotheses we must recognize that these two types of responses (innate 
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and learned) generate different predictions about the expected patterns of responses.  The 

phylogenetic-relatedness hypothesis predicts that prey should respond innately to cues from 

heterospecifics and any cue that is structurally similar to the conspecific alarm cue.  If prey learn 

that other cues communicate information about predation risk, then the innate pattern of 

responses may be obscured when experienced organisms are tested.  Another concern when 

using experienced targets is that prey that have been in contact with predation cues prior to the 

experiment may have formed morphological defenses and because they are already defended no 

longer use behavioral defenses (Relyea 2003b).  Therefore, it is crucial that we understand how 

experience affects prey responses to chemical cues and consider the effect of such experience on 

the predicted behavioral responses. 

When testing the phylogenetic-relatedness hypothesis, we must also consider our 

subjective definitions of “closely related” versus “distantly related.” For example, in studies of 

fish responses to predators eating a variety of heterospecifics (different species of fish), diets that 

diverged approximately 250 mya relative to the focal species have been classified as distantly 

related (Commens and Mathis 1999, Mirza and Chivers 2001b, Mirza et al.  2001).  However, in 

studies of amphibian responses to predators eating a variety of heterospecifics (from amphibians 

to invertebrates), diets that diverged 250 mya relative to the focal species have been classified as 

closely related (i.e. the amphibian diets) whereas diets that diverged 900 mya have been 

classified as distantly related (i.e. the invertebrate diets; Schoeppner and Relyea 2005).  A strong 

response to the heterospecific diet would be interpreted as rejecting the phylogenetic-relatedness 

hypothesis under the first scenario, but supporting the phylogenetic-relatedness hypothesis under 

the second scenario.  This highlights the fact that if a study focuses on a narrow range of 

relatedness it can miss the point at which the alarm cues become dissimilar and the prey 

responses weaken.  For example, if I had only considered the amphibian diets in this study I 

would have concluded that predator diet had no effect on prey behavior.  Therefore, a rigorous 

evaluation of the phylogenetic-relatedness hypothesis requires that diets span a wide range of 

relatedness based on a standardized measure (such as divergence time) making comparisons 

among studies more meaningful. 

Finally, when we conduct experiments in which we examine prey responses to different 

predator diets, we make an implicit assumption about the amount of cue produced by each diet.  

For example, in this study, I assumed that providing the predator with an approximately 
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equivalent mass of each diet resulted in approximately the same amount of alarm cue being 

released in each treatment.  The chemical nature of alarm cues is known or has been proposed for 

only a few species (Smith 1992, Pfeiffer et al.  1985, Brown et al.  2000, Brown et al.  2001) and 

it is often thought that the alarm cues are located in prey skin (at least in fishes; Hara 1993, 

Mirza et al.  2001).  If this were generally true in other species, one would predict that a diet of 

smaller individuals would produce more cues than a diet of larger individuals of the same species 

(due to a higher surface area:mass ratio).  I found no evidence that the number of individuals in a 

diet matters (when total diet mass is controlled).   My results suggests that either the alarm cues 

of tadpoles are not contained in the skin, that the smaller tadpoles produce less cue per unit 

surface area compared to larger tadpoles (thus equalizing the total amount of cue produced), or 

that the tubs were saturated with cues in all treatments (thus, preventing any behavioral 

differences from being expressed).  While additional tests are needed to verify that my results are 

not due to cue saturation, they do support the hypothesis that the differences observed in the 

mechanism experiments are due to differences in the cues released by different diets and are not 

confounded by differences in the number of prey fed to the predator. 

5.5.1 Conclusions 

While many studies have shown that chemical cues from heterospecific prey can alter prey 

behavior and morphology, we still do not understand why some heterospecific cues induce 

strong behavioral defenses while others do not.  This ambiguity likely results from both 

differences in methodology among experiments and in differences among species in their 

perception and response to chemical cues.  Future experiments that strive to determine the role of 

phylogenetic relatedness and ecological coexistence in prey responses to heterospecific alarm 

cues should be conducted using predator-naïve animals and cues from consumed prey.  

Ultimately, we need to understand more about the chemical nature of alarm cues and predator 

kairomones before we can understand how chemical cues communicate information about 

predation risk to prey. 
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Figure  5.1  Activity of grey tree frog tadpoles in response to no predator cues, cues from a starved predator, or cues 

from caged dragonflies that had consumed one of seven different diets.  Data are means + 1 SE and different letters 

indicate significantly different means based on Fisher’s LSD. 
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Figure  5.2  A regression of divergence time of the different predator diets and the corresponding activity of grey 

tree frog tadpoles.  Divergence dates of the prey type from grey tree frogs were taken from the literature.  The solid 

line shows the results of a regression including only the coexisting species whereas the dashed line shows the 

regression when the spring peeper (Pseudacris crucifer, closed circle) is replaced with a non-coexisting diet of 

similar phylogenetic divergence (Pacific tree frogs, Pseudacris regilla, open circle). 
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Figure  5.3  Activity of grey tree frog tadpoles exposed to larval dragonflies fed different numbers of each of three 

diets (trees, woods, leopards) while holding total mass of the diet constant within each species.  Different letters 

indicate significantly different means based on Fisher’s LSD.  Data are means + 1 SE. 
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6.0  DISSECTING THE CHEMICAL CUES OF PREDATION 

6.1 ABSTRACT 

Phenotypic plasticity is thought to evolve when organisms have reliable cues about changing 

environments.  In aquatic systems, prey often use chemical cues that are produced when 

predators consume prey.  The cues that the prey use to detect predators could potentially be 

coming from two sources 1) the predator could be emitting a chemical that the prey can detect 

(i.e. a kairomone) and 2) the prey could be releasing chemicals when tissue is damaged (i.e. 

alarm cues).  Previous work has shown that alarm cues and kairomones from starved predators 

alone often induce weaker responses in fewer traits when compared to the phenotypes expressed 

in response to cues from consumed prey.  However, a mechanistic understanding of why the cues 

have synergistic effects is lacking.  For example, alarm cues from damaged prey and kairomones 

from starved predators may induce weaker defenses because the prey simply lacks the 

information provided by the missing cue when either is encountered alone.  Alternatively, the 

increased response to cues from consumed prey may be due to some aspect of predator digestion.  

To address this question I exposed leopard frog tadpoles (Rana pipiens) to nine treatments 

consisting of either alarm cues from crushed prey, kairomones from starved predators, 

kairomones from predators digesting conspecific or heterospecific diets, and combinations of 

these cues.  My results indicate that the cues that prey use to detect their predators are specific to 

the digestion of the prey and that kairomones are not constitutively released by the predator.  

Additionally, I found that cues released during prey consumption and digestion both contribute 

to the induction of the defended phenotypes that are exhibited in response to cues from 

consumed prey.  Future work should focus on determining how the dynamics of predator 

digestion and predator behavioral decisions affect the combinations of cues that the prey 

encounter and the defensive phenotypes that are produced. 
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6.2 INTRODUCTION 

A well-established paradigm in ecology and evolution is that the combination of traits that an 

organism possesses will determine the outcomes of interspecific interactions (Werner 1992, 

Wootton 1994, Abrams 1995).  However, few organisms experience a single environment 

throughout their lifetime, which means that individuals that display a single fixed phenotype will 

be “mismatched” to their environment during part of their life.  A common response to 

environmental variation is phenotypic plasticity, where an organism can alter its phenotype in 

response to environmental cues and thereby improve its performance in the prevailing 

environment (West-Eberhard 2003).  Whether organisms employ fixed or plastic phenotypes is 

thought to depend upon the balance of the costs, benefits, and limits of plasticity and the 

proportion of time that the organism spends in a particular environment (Scheiner 1993, DeWitt 

et al. 1998, Pigluicci 2001).  For individuals that do employ plastic strategies, the magnitude and 

specificity of the response depends upon how quickly traits can change relative to the speed of 

the environmental change (Padilla and Adolph 1996), resource availability (Relyea 2004), and 

the amount of information that the organism can collect about the environment (Sih 1992, Moran 

1992, Burks and Lodge 2002).  When the environment doesn’t change too frequently and 

resources are not limiting, the magnitude of the induction and the specificity of the plastic 

response (i.e. the number and combination of traits induced) should increase with amount of 

information available about the environment. 

Inducible defenses are a well-studied area of phenotypic plasticity, where environments 

containing predators induce changes in the behavior, morphology, and life-history traits of the 

prey.  In aquatic systems, chemical cues have been identified as an important source of 

information about predation risk for a wide range of taxa including algae (Hessen and Van Donk 

1993, Lampert et al 1994), ciliates (Kuhlmann and Hackmann 1985, Kusch 1993), rotifers 

(Gilbert and Stemberger 1984, Stemberger and Gilbert 1987), bryozoans (Harvell 1986), 

cladocerans (Krueger and Dodson 1981, Dodson 1989, Tollrian 1993), gastropods (Crowl and 

Covich 1990), amphibians (Petranka et al. 1987, Hews 1988, ), and fish (Keefe 1992, Brönmark 

and Petterson 1994).  When predators capture and consume prey, a miasma of chemicals are 

released that have the potential to provide detailed information about predation risk.  Previous 

work has demonstrated that prey can distinguish among different species of predators and 
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produce predator-specific defenses that are often linked to the riskiness of the predator and the 

predator’s hunting strategy (Barry and Bayly 1985, Turner et al. 1999, McCarthy and Fisher 

2000, Relyea 2001a, Iyengar and Harvell 2002).  This suggests that different predator species 

release unique cues (i.e. kairomones; Turner et al. 1999, Grostal and Dicke 2000, McCarthy and 

Fisher 2000, Relyea 2001a, 2004, Iyengar and Harvell 2002).  In addition, prey can distinguish 

among different predator diets and produce diet-specific defenses (Wilson and Lefcort 1993, 

Chivers et al. 1996, Laurila et al. 1997, Pettersson et al 2000, Schoeppner and Relyea 2005).  

The magnitudes of diet-specific defenses can be correlated to the phylogenetic relatedness of the 

predator’s diet, with closely-related diets inducing stronger responses than distantly-related diets 

(Smith 1982, Mathis and Smith 1993, Mirza and Chivers 2001b, Schoeppner and Relyea 2005).  

This suggests that different prey species release unique cues (i.e. alarm cues).  Collectively, these 

studies indicate that kairomones and alarm cues both provide essential information for prey when 

inducing their anti-predator defenses. 

While alarm cues from different predator diets are important to prey defensive decisions, 

it is interesting that alarm cues by themselves are often insufficient for inducing prey defenses.  

For example, alarm cues alone can induce behavioral responses in a range of taxa, but the 

response is not consistent among species within a taxonomic group or even among populations 

within a species (Walls and Ketola 1989, Summey and Mathis 1998, Hazlett 1994, Turner 1996, 

1997, Pijanowska 1997, Petranka and Hayes 1998, Huryn and Chivers 1999, Stabell et al. 2003, 

Jacobsen and Stabell 2004).  Moreover, when researchers have compared the traits induced by 

predators eating prey to the traits induced by alarm cues alone, they find that alarm cues alone do 

not induce the full suite and magnitude of traits (Turner et al. 1999, Hagen et al. 2002, 

Schoeppner and Relyea 2005).  This suggests that alarm cues are necessary, but not sufficient, to 

induce anti-predator defenses in most prey.  To induce the full suite and magnitude of prey 

defenses, alarm cues must either be combined with kairomones from the predator or be modified 

during digestion by the predator.  

A multitude of studies have demonstrated the existence of kairomones, but the source and 

composition of kairomones have not been well-characterized.  One possibility is that predators 

always produce kairomones (because the kairomones are tied to an ongoing metabolic function 

of the predator) and therefore prey would always be aware of the predator’s presence.  A second 

possibility is that kairomones are chemicals related to a predator’s consumption and digestion of 
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prey (e.g., digestive enzymes or by-products) and prey have evolved the ability to “eavesdrop” 

on these chemicals in assessing their risk of predation (Crowl and Covich 1990, Covich et al. 

1994, Pettersson et al. 2000).  Supporting this scenario is the fact that starved predators often do 

not induce prey defenses (Crowl and Covich 1990, Stirling 1995, McCollum and Leimberger 

1997, Slusarczk 1999, Schoeppner and Relyea 2005).  If kairomones are digestive enzymes, 

one would predict that the digestion of any diet would induce prey defenses (although the 

digestive enzymes might have to be combined with prey-specific alarm cues to induce the full 

suite and magnitude of defenses).  In contrast, if kairomones are digestive by-products, one 

would predict that the complete anti-predator response would only be observed when the 

predator consumed the prey and not when undigested cues are encountered in any combination.  

Such cues could either be modified prey tissues or the chemicals emitted by the bacterial flora of 

the predator’s digestive system when digesting a particular species of prey (termed “predator 

labeling”; Crowl and Covich 1990, Mathis and Smith 1993, Petterson et al. 2000, Jacobsen and 

Stabell 1999, Stabell et al. 2003, Jacobsen and Stabell 2004).  To understand the source and role 

chemical cues play in inducing prey defenses, we need to evaluate all of these alternative 

scenarios.  While a number of studies have examined pieces of this question, there have been few 

complete tests.  

The goal of my study was to determine the source and effectiveness of alarm cues and 

kairomones for inducing behavioral and morphological defenses in prey.  Using larval anurans, a 

model system well known for its plasticity (Relyea 2001a, Van Buskirk 2002a,b, Miner et al. 

2005), I examined the separate and combined effects of alarm cues from crushed conspecifics 

and kairomones from either starved predators, predators fed heterospecific prey, predators fed 

conspecific prey, predators that chew but do not digest conspecific prey, and predators that digest 

but do no chew conspecific prey.  Using these treatments, I tested the following predictions:  1) 

If alarm cues are sufficient to induce prey defenses, then crushed prey should induce the same 

traits as predators fed conspecific prey; 2) If kairomones are always produced by the predator, 

then starved predators should induce the same traits as predators fed conspecific prey; 3) If 

kairomones are always produced but must be detected in combination with alarm cues, then 

starved predators plus crushed prey should induce the same traits as predators fed conspecific 

prey; 4) If kairomones are only produced once prey are eaten and the kairomones are digestive 

enzymes, then predators fed heterospecific prey should induce the same traits as predators fed 
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conspecific prey; 5) If kairomones are digestive enzymes, but must be detected in combination 

with alarm cues, then predators fed heterospecific prey plus crushed prey should induce the same 

traits as predators fed conspecific prey; 6) If kairomones are not digestive enzymes but are 

digestive by-products, then predators fed heterospecific prey plus crushed prey should induce 

weaker defenses than predators fed conspecific prey; and 7) if kairomones are digestive by-

products, then predators that only chew conspecific prey should induce weaker defenses than 

predators that only digest conspecific prey. 

6.3 METHODS 

I used a completely randomized design consisting of nine treatments replicated five times for a 

total of 45 experimental units.  The nine treatments were as follows:  1) a no-predator control; 2) 

crushed tadpoles (i.e. alarm cues alone); 3) a caged predator that was starved; 4) crushed 

tadpoles plus a caged predator that was starved; 5) a caged predator that consumed and digested 

snails (Physa integra); 6) crushed tadpoles plus a caged predator that consumed and digested 

snails; 7) a caged predator that only consumed tadpoles; 8) a caged predator only digested 

tadpoles; and 9) a caged predator that consumed and digested tadpoles.  Collectively, these nine 

treatments allowed us to identify the sources of the chemical cues that induce anti-predator 

defenses in tadpoles. 

I performed the experiment in 100-L wading pool mesocosms that contained well water, 

5 g rabbit chow, 100 g leaf litter (primarily Quercus spp.), and zooplankton and algae collected 

from three nearby ponds.  These mesocosms were set up in an old field at the Aquatic Research 

Laboratory of the Pymatuning Laboratory of Ecology in northwestern Pennsylvania on an array 

of benches that raised the pools 50 cm off the ground.  The wading pools were filled with well 

water on 27 and 28 April 2004 and covered with 60% shade cloth lids to prevent colonization by 

insects and other amphibians during the experiment.  I added one predator cage to each pool that 

was either empty or contained a single late-instar dragonfly nymph (Anax junius) as dictated by 

the treatment.  I used  450-ml plastic cups covered with fiberglass mesh screen as my predator 

cages, which allowed the cues from the predator and consumed prey to diffuse through the pools 
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while preventing the predator from preying on the tadpoles in the experiment (Petranka et al. 

1987, Relyea and Werner 2000, Relyea 2000, 2001a,2003a; Schoeppner and Relyea 2005). 

I used leopard frog tadpoles (Rana pipiens) that were collected as newly laid egg masses 

on 17 April 2004 and hatched and reared in wading pool mesocosms to prevent their exposure to 

predator cues prior to the experiment.  The tadpoles were fed rabbit chow ad libitum prior to the 

experiment.  On 10 May 2004, I added 20 tadpoles to each pool.  The tadpoles were selected 

haphazardly from a mixture of tadpoles from ten egg masses.  The initial mass of the tadpoles 

was 25.1 + 1.4 mg (mean + S.E.).  Twenty tadpoles were placed in a 7-L plastic tub to assess 

mortality caused by handling (24-hr survival was 100%). 

I added the chemical cue treatment to the pools three times per week.  The first cue 

addition took place on 12 May, 2 d after the tadpoles were added to the mesocosms.  All of the 

treatments employing prey consumption by predators received 300 mg of prey (snails or 

tadpoles).  All of the treatments employing prey crushing received 300 mg of tadpoles (in 100 ml 

of water) that had been euthanized and then macerated in a blender for 1 min.  The starved 

predators were not fed for five days prior to being used in the experiment and were kept in the 

pools for no more than 5 d before being replaced with a new starved predator.  To create the 

treatments that employed only predator consumption or only predator digestion, predators from 

the digestion-only pools were removed, placed into the consumption-only pools, and fed 300 mg 

of tadpoles.  Once the predators had consumed the tadpoles, they were returned to digestion-only 

pools.  To equalize disturbance among pools, all empty predator cages were lifted each time the 

chemical cue treatments were applied and 100 ml of water was added to all treatments that did 

not receive crushed tadpoles.  Any predators that died were replaced with either a starved 

predator or a predator that had previously been fed leopard frog tadpoles in the lab (depending 

upon treatment).  All of the prey fed to the predators were consumed by the end of the 

experiment.  

I observed tadpole behavior on six different days over the course of the experiment.  I 

recorded the number of tadpoles visible (i.e. not hiding in the leaf litter) and the number of 

observed tadpoles that were moving.  By dividing the latter by the former, I could quantify the 

proportion of  tadpoles that were active (Peacor and Werner 1997, Relyea 2000, 2001a, 2003a; 

Schoeppner 2005)  On three of the observation days, the predators had been fed the previous 

day: 13 May (6 observations 2-4 pm); 27 May (6 observations); 1 June (10 observations).  On the 
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other three observation days, the predators had been fed earlier in the day: 17 May (12 

observations); 19 May (9 observations); 21 May (10 observations).  The observations were taken 

by multiple observers and all observations were completed within a 2-hr period.  I ended the 

experiment on 2 June 2004, 24 d after tadpoles were added to the mesocosms.  All tadpoles in 

the experiment were counted, euthanized, and preserved in 10% formalin for subsequent 

morphological analysis.  Preserved tadpoles were measured using an image analysis system 

(BioScan Optimas; Bothell, WA) in which I measured tail depth and length, tail muscle depth 

and width, mouth width, and body depth, length, and width.  All tadpoles were positioned with a 

glass plate under their tail during measuring to provide an undistorted lateral image. 

Because observations were taken on multiple days, the behavioral data were analyzed 

using a repeated-measures analysis of variance to test for the effect of the chemical cue 

treatments, observation day, and their interaction.  The data analyzed were pool means averaged 

across observations on each observation day.  When I found a significant treatment affect, I 

performed subsequent  pairwise comparisons using Fisher’s LSD. 

To determine how the different chemical cue treatments affected tadpole shape 

independent of differences in size, I first conducted a multivariate analysis of covariance 

(MANCOVA) using tadpole mass as the covariate and the eight morphological traits measured 

for all of the tadpole as the response variables.  Prior to the analysis, tadpole mass was cube-root 

transformed to improve the linearity of the relationship between mass and each of the 

morphological traits.  Within-group regression lines were parallel.  I saved the residuals from this 

analysis and then added the residuals for each tadpole to the estimated marginal means for the 

appropriate treatment to produce size-independent estimates of the traits for all of the tadpoles. 

Using tank means for all traits as the response variables, I then used a multivariate analysis of 

variance to determine how the chemical cue treatments affected mass and the size-adjusted 

morphological traits.  I used Fisher’s LSD tests to make pairwise comparisons for all traits that 

showed a significant univariate effect. 
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6.4 RESULTS 

The repeated-measures analyses indicated that tadpole activity (Fig. 6.1) was affected by 

treatment (F8,36 = 5.0, P < 0.001) and time (F5,32 = 16.6, P < 0.001) but showed no time-by-

treatment interaction (F40,142 = 1.4, P = 0.074).  Chemical cues from starved predators, crushed 

tadpoles, consumed and digested snails, or any combinations of these cues produced activity 

levels that were not different from the no-predator treatment (P > 0.096).  Tadpoles exposed to 

cues from consumed and digested tadpoles were less active than all other treatments (P < 0.014) 

except for the digested-(but not chewed) treatment (P = 0.237).  Compared to tadpoles in the no-

predator treatment, tadpoles exposed to chewed-(but not digested) conspecifics exhibited 7% 

lower activity (P = 0.030), tadpoles exposed to digested-(but not chewed) conspecifics exhibited 

11% lower activity (P = 0.001), and tadpoles exposed to chewed-and-digested conspecifics 

exhibited 15% lower activity (P < 0.001).  Tadpoles in the digested-(but not chewed) 

conspecifics exhibited activity that was intermediate to that observed in the chewed-(but not 

digested) conspecifics treatment (P = 0.173) and the chewed-and-digested conspecifics treatment 

(P = 0.237). 

I found a multivariate effect of the treatments on tadpole morphology (Wilks’ F72,128 = 

2.4, P = < 0.001).  Univariate tests indicated significant effects on tail depth and body length 

(univariate tests, P < 0.001) but no effects on mass (univariate test, P = 0.114) or the other six 

morphological dimensions (univariate tests, P > 0.28).  When I examined tail depth (Fig. 6.2A), I 

found that tadpoles exposed to starved predators, crushed tadpoles, chewed-and-digested snails, 

chewed-and-digested snails plus crushed tadpoles, and chewed-(but not digested) tadpoles had 

no effect compared to the no-predator control (P > 0.178).  However, compared to the no-

predator control, tadpoles exposed to digested-(but not chewed) tadpoles had 4% deeper tails and 

tadpoles exposed to digested and chewed tadpoles had 6% deeper tails (P < 0.001).  Interestingly, 

tails were deeper when tadpoles were digested and chewed than when tadpoles were only 

digested (P = 0.021). 

The treatments also affected body length (Fig. 6.2B).  Tadpoles exposed to cues from 

starved predators, crushed tadpoles, starved predators plus crushed tadpoles, and chewed-and-

digested snails plus crushed tadpoles had relatively longer bodies than tadpoles in the no-

predator treatment (P < 0.02).  Tadpoles exposed to the chewed-and-digested snails had bodies 
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that did not differ from the no-predator treatment (P = 0.101).  Compared to the no-predator 

treatment, tadpole body length was not affected by the treatments in which tadpoles were 

chewed-(but not digested), digested-(but not chewed), or chewed and digested (P > 0.101). 

6.5 DISCUSSION 

The defended phenotype expressed by the leopard frog tadpoles depended on the combination of 

cues that the tadpoles encountered.  I found that tadpoles responded to chemical cues from 

consumed and digested tadpoles by becoming less active and forming deeper tails.  Previous 

work on inducible defenses in tadpoles has consistently shown that chemical cues from 

consumed conspecifics induce reductions in activity and that reduced activity increases prey 

survival by making the prey less conspicuous to the predator (Skelly 1994, Anholt et al. 1996).  

Cues from consumed prey also induce tadpoles to form relatively deeper tail fins and shorter 

bodies when compared to tadpoles not exposed to predator cues (McCollum and Van Buskirk 

1996, Lardner 2000, Relyea 2000, 2001a, 2002b, Laurila et al. 2004).  These morphological 

responses allow tadpoles to survive predation better than non-induced tadpoles (Van Buskirk et 

al. 1997, Van Buskirk and Relyea 1998) but predator-induced tadpoles grow more slowly than 

non-induced tadpoles (Skelly 1992, Van Buskirk 2000).  In this study, I did not find a significant 

effect of exposure to predation cues on leopard frog mass but this may be because tadpole mass 

was measured late in ontogeny.  Previous studies have shown that mass differences often only 

occur early in ontogeny (Relyea and Werner 2000, Van Buskirk 2001). 

In contrast to past work using larval leopard frogs and other tadpole species, the tadpoles 

in this study did not develop shorter bodies when predators ate conspecific tadpoles.  Because 

my analysis used mass-adjusted morphology, when the relative size of one morphological trait 

increases we expect to see a concurrent decrease in another morphological trait.  Given that I 

found no significant effect of consumed cues on any other morphological traits, I must conclude 

that the leopard frog tadpole from the population used in this study were altering their body 

dimensions in a way that was not captured by the measurements that I made in this study (i.e. 

making small changes in several body dimensions).  Further, I found that tadpole body length 

increased when the tadpoles were exposed to cues from crushed prey or starved predators.  While 
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this response is in the opposite direction of the expected response to cues from consumed 

conspecifics, there are very few comparative data to evaluate this result.  In what appears to be 

the only other tadpole study examining the effects of alarm cues and starved predators on body 

length, Schoeppner and Relyea (2005) found that these treatments had no effect on the body 

length of grey tree frog tadpoles (Hyla versicolor).  Hence, I cannot say whether this response is 

a generalized response to only alarm cues or starved predators.  Because a change in body length 

is not known to be an adaptive response to predators, for the remainder of the discussion I focus 

on the two significantly affected traits (activity and tail depth) that did exhibit typical responses 

to predators and are known to serve as effective anti-predator defenses. 

I found that cues from crushed leopard frog tadpoles were ineffective at inducing changes 

in both tadpole activity and tail depth.  A multitude of studies spanning a wide range of aquatic 

species has shown that alarm cues from crushed conspecifics can induce behavioral responses 

(flat worms, Wisenden and Millard 2001, amphipods, Wisenden et al. 2001, echinoderms, Parker 

and Schulman 1986, crustaceans, Pijanowska 1997, snails, Turner 1996, McCarthy and Fisher 

2000, insects, Chivers et al. 1996, Huryn and Chivers 1999, tadpoles, Hews 1988, Petranka 1989, 

Summey and Mathis 1998, fish, Smith 1982, Mathis and Smith 1993; for a review see Chivers 

and Smith 1998).  However, many studies have shown that alarm cues alone do not induce 

behavioral responses (Crowl and Covich 1990, Alexander and Covich 1991, Wilson and Lefcort 

1993, Stirling 1995, Magurran et al 1996, Turner 1997, Lefcort 1998, Summey and Mathis 

1998); that alarm cues induce weaker responses than those induced when predators consume 

prey (Hazlett and Schoolmaster 1998, McCarthy and Fisher 2000, Hagen et al. 2002); or that 

alarm cues induce responses in fewer traits than those induced when predators consume prey 

(Hazlett and Schoolmaster 1998, Turner et al. 1999, McCarthy and Fisher 2000, Hagen et al. 

2002).  For morphological defenses, the majority of previous work has shown that alarm cues 

alone do not induce morphological changes in prey (Walls and Ketola 1989, Brönmark and 

Pettersson 1994, Schoeppner and Relyea 2005; but see Stabell and Lwin 1997, Stabell et al. 

2003).  Thus, while alarm cues alone can induce behavioral changes in some taxa, alarm cues are 

frequently insufficient for inducing the full suite and magnitude of behavioral and morphological 

defenses.  This indicates either that the alarm cues must be encountered simultaneously with the 

kairomones or that the alarm cues become modified during digestion. 
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I found that cues from starved predators alone were not sufficient to induce changes in 

leopard frog activity or tail depth.  This indicates that dragonfly naiads do not produce a 

constitutive kairomone.  Several previous experiments using starved predators have reported no 

induction of defenses in a wide range of species (Crowl and Covich 1990, Stirling 1995, 

McCollum and Leimberger 1997).  However, a few studies have reported that starved predators 

can induce defensive behavior (Hazlett and Schoolmaster 1998, McCarthy and Fisher 2000, 

Pettersson et al. 2000) and morphology (Walls and Ketola 1989, Iyengar and Harvell 2002).  In 

those cases in which investigators compared induction by starved predators and predators fed 

conspecific prey, the responses induced by starved predators were relatively weak (Walls and 

Ketola 1989, Vilhunen and Hirvonen 2003; but see Pettersson et al. 2000).  Previous studies in 

tadpoles have reported that behavioral and morphological responses to starved predators are 

either weak or non-existent (Anholt et al. 1996, McCollum and Leimberger 1997, Van Buskirk 

and Arioli 2002).  A common thread in all of these studies is that starved predators induce little 

or no defensive response in their prey.  This indicates that the starved predators emit little or no 

kairomone.   

A possible explanation for the observation that cues from crushed prey alone and cues 

from starved predators alone are not sufficient to induce a complete anti-predator response is that 

the prey may simply need to encounter the two cues simultaneously.  Because not all defenses 

are effective against all types of predators, not all species of predators pose the same degree of 

threat, and some predators only pose a threat at specific times in ontogeny (Turner et al. 1999, 

Puttlitz et al. 1999, Lardner 2000, Relyea 2001a,b; Mirza and Chivers 2001c, Van Buskirk 2001, 

Mirza et al. 2003), prey may require information about both predator species and predator diet 

before committing to a complete anti-predator response.  In this experiment, I found that cues 

from starved predators plus cues from crushed conspecifics did not induce changes in either 

tadpole activity or tail depth.  Few studies have examined this combination of cues and no study 

has examined this cue combination in tadpoles.  In a study using predatory crabs (Callinectes 

bellicosus), Jacobsen and Stabell (2004) found that crabs that had consumed marine snails 

(Tegula funebralis) induced a crawl out response in the snails while cues from a starved crab 

combined with cues from crushed snails did not induce a response.  These two studies indicate 

that the lack of response to alarm cues alone or starved predators alone is not simply because the 

two cues have to be detected simultaneously.  Furthermore, I can conclude, at least for my 
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system, and probably for many other systems, that the kairomones detected by prey are only 

released when the predator is consuming and digesting prey. 

If predators have to be eating prey to produce the cues that induce the full suite and 

magnitude of anti-predator defenses in prey, then one might hypothesize that the kairomone 

could be either a digestive enzyme (or mixture of enzymes) or that the kairomone is a digestive 

by-product including potentially modified alarm cues (Crowl and Covich 1990, Hagen et al. 

2002, Stabell et al. 2003).  In the current study I showed that, in agreement with previous work 

(Schoeppner and Relyea 2005), cues from a predator consuming snails did not induce changes in 

tadpole activity or tail depth.  These results indicate that the chemicals that induce defensive 

responses cannot be simply digestive enzymes (or at least not enzymes that are used to digest a 

variety of prey species).  In addition, numerous studies have reported diet-specific responses in a 

range of species (Wilson and Lefcort 1993, Chivers et al. 1996, Laurila et al. 1997, Pettersson et 

al. 2000, Schoeppner and Relyea 2005); such responses cannot be explained by the production of 

digestive enzymes alone.  However, such responses might be inducible by the combination of 

digestive enzymes plus alarm cues that would be emitted during the attack on the prey.  I 

addressed this possibility by combining the cues of a predator consuming snails plus cues from 

crushed tadpoles and found no change in tadpole activity or tail depth.  Therefore, from my 

experiment I can conclude that the cues that induce the complete anti-predator response in 

tadpoles are either 1) prey-specific alarm cues that are uniquely modified by each predator 

during digestion (i.e. a digestive by-product) or 2) a combination of prey-specific alarm cues and 

predator-specific digestive enzymes.  Distinguishing among these possibilities will require future 

studies into the signature of enzymes that are produced for specific predator diets or 

identification of the chemical components of the alarm cue to determine how the alarm cues are 

modified during digestion. 

When prey are consumed, the cues that induce anti-predator defenses may be released 

when the predator chews the prey, digests the prey, or both.  For activity, I found that the cues 

from chewed-(but not digested) tadpoles induced a small activity reduction, while cues from 

digested-(but not chewed) tadpoles induced a moderate activity reduction, and cues from 

chewed-and-digested tadpoles induced a large activity reduction. For tail depth, I also found that 

the cues from chewed-(but not digested) tadpoles induced no increase in tail depth, cues from 

digested-(but not chewed) tadpoles induced a moderate increase in tail depth, and cues from 
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chewed-and-digested tadpoles induced a large increase in tail depth.  These results suggest that 

while the cues emitted by chewing alone induce little or no response on their own, when 

combined with the cues of digestion, the cues of chewing cause a stronger induction of defensive 

traits.  This result suggests either that some alarm cues are lost during consumption (making the 

cues emitted by digestion more dilute) or that the predator may produce some cues while 

chewing (i.e. salivary enzymes or compounds that immobilize the prey) that can induce weak 

activity reductions.  Two previous studies have also addressed the effects of metabolites alone 

(digested but not chewed) on tadpole morphology.  Richardson (2006) found that cues from 

digested prey induced a weaker change in tail shape when compared to cues from consumed prey 

using tree frog tadpoles (Hyla chrysoscelis), which supports my conclusions that the cues from 

digestion do not induce the complete anti-predator response.  However, LaFiandra and Babbitt 

(2004) found no difference in the induction of tadpole tail depth between cues from prey that 

were digested-(but not chewed) and cues from prey that were chewed and digested; but they did 

find that tadpole tail color was differentially effected by the digested-(but not chewed) and 

chewed-and-digested treatments.  Therefore, while more studies are needed to arrive at 

generalities about the relative importance of cues released when prey are chewed-(but not 

digested) and digested-(but not chewed), it is clear that both types of cues are involved in 

inducing the complete antipredator phenotype.  Nevertheless, my results indicate that prey can 

discriminate between predators chewing conspecific prey and predators digesting conspecific 

prey.  Therefore, if predators only consume but do not digest prey where they hunt then the non-

consumed prey would only encounter a fraction of the chemical cues released. This has 

important implications regarding the optimal behavior of a foraging predator that might try to 

emit digestive cues in an area away from where it attacks prey to limit the information available 

for the induction of defenses in other potential prey. 

6.5.1 Conclusions 

I have shown that the kairomone used by anuran larvae to identify dragonfly naiads is not a 

chemical that is constitutively produced by the predator and that both the act of prey 

consumption and digestion play a role in the induction.  This result is consistent with previous 

assertions that kairomones should not be constitutively produced because selection should act to 
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eliminate the production of any constitutive chemical that allowed prey to detect their predators.  

However, while kairomones are not constitutive, these results also highlight the fact that the prey 

still can detect their predators and that the predators themselves play a role in producing the cues 

that induce the most intense anti-predator responses.  This implies that the predator can be 

“chemically invisible” to the prey when they consume diets that do not contain alarm cues that 

the prey recognize (Stabell et al. 2003).  These results also emphasize that predator behavior may 

play an important role in determining what defensive phenotype the prey exhibits (Lima 2002).  

If the predator does not consume and digest the prey in the same area or if the predator switches 

diets often, the prey may not encounter the chemical environment that induces the most extreme 

defenses.  Understanding the dynamics of inducible defenses in nature will require studies to 

determine 1) how long the predators remain chemically “visible” due to prey digestion and 2) 

how predator behavior  alters the cues that prey are able to detect. 
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Figure  6.1  The effects of different combinations of chemical cues on tadpole activity.  Activity data was taken on 

six separate days.  However, because I found no treatment-by-time interaction, the data are presented as means + 1 

SE for all observations. 
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Figure  6.2  The effects of different combinations of chemical cues on the relative tail depth and body length of 

tadpoles.  The data are treatment means + 1 S.E. 
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7.0  CONCLUSIONS AND FUTURE DIRECTIONS 

This dissertation highlights the fact that inducible defenses are not a simple phenotypic 

dimorphism, but that prey have an amazing ability to modify their phenotypes in response to 

differences in the intensity of predation risk, fine-scale variation in risk, and the combinations of 

kairomones and alarm cues that they encounter.  Plasticity theory predicts that selection should 

favor the detection of environmental cues that provide increasingly specific and accurate 

information about the environment (Moran 1992).  When one considers the vast number of 

combinations of environmental conditions that organisms may encounter through their lifetime, 

and the conflicting demands of allocating resources to growth, reproduction, and defenses, it is 

not surprising that organisms can detect small changes in the environment and modify their 

phenotypes in directions consistent with decisions that maximize growth while minimizing 

mortality (Sih 1980, Horat and Semlitsch 1994, Relyea 2004).  Further research is needed to 

understand how closely organisms can track environmental changes with phenotypic changes 

and to quantify the associated fitness benefits of these changes. 

The risk-response curves found for wood frog tadpole behavior, morphology, and mass 

highlight some important points about how prey respond to risk that will be valuable in 

predicting and evaluating prey defended phenotypes.  I found that a large fraction of the changes 

in inducible traits were induced at very low levels of predation and that the traits were changing 

at different rates (i.e. some increased and plateaued more quickly than others).  However, 

determining if different traits display different induction thresholds will require a 

characterization of the risk-response curve for lower levels of predation risk.  These data also 

highlight the need for future studies that look at the effects of predation risk on prey physiology.  

While all of the morphological and behavioral traits had plateaued or were clearly pleatueaing, 

tadpole mass continued to decline with increasing levels of risk.  While the decreases in mass 

could be the product of the accumulated effects of several small trait changes at the highest risk, 
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it is also possible that the decrease in mass is due to underlying physiological responses to 

predation risk (McPeek et al. 2001).  Determining the mechanism underlying the continued 

decreases in mass at the highest levels of predation risk will be an important advance in our 

understanding of the costs involved in responding to predation risk and possibly to stressful 

environments in general. 

For amphibians, I also showed that alarm cues from damaged conspecifics induce weak 

behavioral responses and no changes in morphology.  Studies using other species also have 

shown that alarm cues often induce weaker phenotypic responses when compared to the 

phenotypes induced by cues from consumed prey (Petranka and Hayes 1998, Jacobsen and 

Stabell 1999, Hagen et al. 2002).  I have also showed that the magnitude of the prey’s response 

to predation cues is concentration dependant.  Therefore, depending upon the shape of the dose-

response curve for alarm cues alone and prey defensive traits, alarm cues at very high 

concentrations may induce a similar magnitude of response as cues from consumed prey.  This 

could be important for the interpretation of data from lab experiments.  Many lab experiments 

are performed in small venues containing a few liters of water.  When cues from a caged 

predator or damaged prey are added to these venues, the final amount of consumed prey/ volume 

of water is often much higher than any concentration used in larger mesocosm experiments.  

While these results would appear to show that alarm cues are equivalent to cues from consumed 

prey, the result would not be meaningful to ecological communities because they are outside the 

scope of what is ever encountered in nature.  Determining the extent of this problem will require 

that dose-response relationships are determined in response to increasing concentrations of alarm 

cues alone and that these dose-response curves be compare to the responses to cues from 

consumed prey.  To date, I am aware of only one study that compares the dose-response 

relationships for cues from damaged prey and consumed prey but the range of concentrations 

tested was limited (Hagen et al. 2002).  We will also need to determine the chemical identity of 

the compounds involved in inducing the defenses to be able to determine the ecologically 

realistic concentrations of the compounds, so that future experiments are not performed under 

ecologically irrelevant conditions. 

I demonstrated that defended phenotypes are induced by chemical cues from closely-

related species.  While it is clear that amphibians detect chemical cues from conspecifics and 

other species that emit similar chemicals, work using other species has shown different patterns.  
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Several studies have found that some species can respond strongly to alarm cues from distantly-

related heterospecifics (Chivers et al. 1996, Wisenden et al 1999,Chivers and Mirza 2001).  

However, such responses are often found when the responding prey have been taken from the 

wild and, therefore, are not predator-naïve.  This may be important because learning through a 

process of template updating can modify how prey use the information they obtain from 

chemical sues.  If prey commonly learn to associate cues from heterospecifics (that do not induce 

responses in predator naïve individuals) with predation risk over time, then the pattern of 

responses observed in predator naïve individuals will only be predictive of prey responses during 

a short window in prey ontogeny.  In preliminary work on chemical cue learning in amphibians, I 

have shown that the response to chemical cues is innate and that pairing heterospecific cues with 

alarm cues and kairomones does not alter their response.  However, these experiments have all 

been short-term behavioral observations in the laboratory.  Therefore, future work needs to 

address the importance of the duration and frequency of pairing heterospecific and conspecific 

cues association learning. 

An important goal of future work should be to incorporate more ecological reality into 

our experiments and determine if the predictions from the lab and mesocosm experiments are 

predictive of phenotypic variation in more complex environments (Irving and Magurran 1997, 

Petranka and Hayes 1998).  Communication theory predicts that the prey will respond to less 

informative cues if there is a potentially high cost not responding to the cues (i.e. not responding 

when there is a true risk of predation; Greenfield 2002).  For example, if prey live in an exposed 

habitat without refuges (where they are much more vulnerable to predation), they should be more 

likely to respond to less informative cues.  Interestingly, while prey refuges are common in 

nature, most studies of alarm cues have been conducted under lab conditions that lack refuges.  

These studies have found that alarm cues often induce strong behavioral defenses, but it is 

precisely under these conditions that we might expect to observe strong responses to alarm cues.  

In one of the few case studies of this phenomenon, Magurran et al. (1996) found that fathead 

minnows (Pimephales promelas), a species that commonly exhibits strong behavioral responses 

to alarm cues in the laboratory, showed no response to cues under natural conditions.  If 

responses to predation cues are exaggerated under laboratory conditions, then we may be over-

estimating the strength of responses to predatory cues.  To understand how environmental 

context affects our understanding of predator-induced defenses, we need to quantify responses to 
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alarm cues and kairomones across a range of refuge availability.  When we do this, we also need 

to expand beyond our focus on behavioral defenses by also incorporating morphological 

defenses to determine if both types of defenses decrease as refuge availability increases. 

The chemical complexity of the environment is another important aspect that should be 

considered in future work.  To detect an accurate signal of predation risk, an organism must be 

able to distinguish the informative cue from uninformative background noise.  Aquatic prey live 

in complex environments that contain chemicals that are both intentionally released (e.g., sex 

pheromones), and chemicals that are simple by-products of metabolism.  Most of these 

chemicals are not informative about predation risk and, in fact, may interfere with the prey’s 

ability to detect predation cues.  Communication theory terms this the signal:noise ratio 

(Greenfield 2002).  As the amount of noise increases, the ability of the prey to distinguish the 

information about predation risk from the mélange of other chemicals is expected to diminish.  

However, when we evaluate the effects of chemical cues on prey phenotype in experiments, it is 

typically done in a simple chemical landscape consisting of cues from only the predator and the 

prey.  Under these conditions, there is little potential for chemical noise.  Indeed, many studies 

have found that extremely low concentrations of alarm cues are sufficient to induce behavioral 

responses in prey (Pettersson et al. 2000, Brown et al. 2001, Mirza and Chivers 2003).  However, 

these studies were performed in the absence of natural chemical background noise.  Without 

including background noise, we will likely overestimate the prey’s ability to detect and respond 

to predation cues under natural conditions.  To understand the effects of  “chemical noise,” we 

need to conduct experiments that compare the prey’s behavioral and morphological defenses 

across a range of simple to complex chemical landscapes. 

Empirical studies of prey responses to chemical cues have provided us with an incredible 

amount of information about the nature and source of predation cues.  The experiments presented 

in this dissertation along with studies employing a diversity of organisms have shown that the 

cues that prey use to detect predation are specific to the digestion of prey.  A crucial but very 

difficult step in understanding the role of chemical cues in predator prey interactions will be in 

determining the chemical identity of  the compounds that different species of prey detect.  Once 

we know what chemicals a given species uses we can look for differences in sensitivities to those 

chemicals among populations, and among species to address questions about how differences in 

the detection and response to predation cues may be related to local differences in predation risk 
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and if differences in the relative importance of alarm cues and kairomones can be associated with 

large taxonomic groups (e.g. amphibians detect products of digestion but fish rely more on alarm 

cues alone).  While it is no doubt a daunting challenge, a critical step in understanding the 

ecology of predation cues will be to determine the chemical identity of the cues. 

As more and more studies document the importance of trait-mediated effects on the 

outcomes of species interactions and community structure, it is clear that predicting trait 

expression for organisms that employ inducible defenses will require a good deal of information 

about the predation regime to which they are exposed (Beckerman et al. 1997, Lima 1998, 

Turner et al. 2000, Werner and Peacor 2003).  Trait changes induced by the addition of a 

predator can alter the outcome of competition.  Given that predator diet also determines the 

induction of defenses, predator diet may be able to change the nature of species interactions. 

Being able to form generalities about the degree of induction and the types of traits that 

organisms should use in environments containing predators is very valuable to studies concerned 

with trait-mediated effects, but we need to understand more about how prey integrate 

information from their cues, how the decisions may vary among populations, and how the 

different decisions may vary depending on the types of traits that are being considered. 

In summary, while we have an excellent understanding of predator-induced plasticity, 

investigating the chemical identity of the cues and incorporating more ecological complexity into 

our experiments are the next critical steps toward understanding the ecology and evolution of 

predator-induced plasticity (Dodson et al. 1994, Chivers and Smith 1998, Kats and Dill 1998, 

Burks and Lodge 2002).  Hundreds of studies have used chemical cues from caged predators to 

study the impacts of predation cues on prey behavior, morphology, and life history.  While we 

have long known that these cues induce phenotypic changes, we are just beginning to understand 

the extent of the information conveyed by the cues and the specificity of the responses (Burks 

and Lodge 2002).  By understanding how predator diet and environmental context affect prey 

traits, we will be better able to correctly predict if and how these trait changes should affect the 

community as a whole. 
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