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Most new human immunodeficiency virus (HIV) infections are acquired through vaginal 

or rectal mucosa, and gut mucosal tissue is a primary target of HIV infection.  To generate 

mucosal immunity against HIV or its simian counterpart simian immunodeficiency virus (SIV), 

the Gram positive bacterium Clostridium perfringens was used to develop a vaccine that delivers 

SIV p27 to the gut and induces local T cell immunity.   

Under in vitro conditions, Clostridium perfringens expressing SIV p27 (Cp-p27) was 

found to induce dendrite cell (DC) maturation and stimulate p27-specific T cell responses.  To 

improve intracellular delivery of p27 to DCs and thereby enhance immune priming, Cp-p27 

variants expressing p27 conjugated with protein transduction domains (PTDs) at the 5’ end were 

constructed.  While internalization of p27 by DCs and gut epithelial cells was improved 

following exposure to the PTD-Cp-p27 variants, cellular p27-specific immune stimulation was 

not significantly improved compared with wild-type Cp-p27.  

The Cp-p27 vaccine was then tested in vivo in mice for its ability to prime gut mucosal T 

cell responses.  First, an adjuvant optimization study with three mucosal adjuvants,  cholera toxin 

(CT), mutant E. coli heat-labile enterotoxin (LT(R192G)), and unmethylated cytosine-phosphate-

guanine oligodinucleotides (CpG ODNs) was performed to determine the best T cell immune 

response in the gut. While the combination of CpG ODNs and (LT(R192G)) induced the highest 
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T cell immune response, (LT(R192G)) alone provided the best multifunctional CD8+ T cell 

response in the gut. 

Oral Cp-p27 vaccination was then tested for induction of T cell immunity in vivo in a 

prime-boost model by combining Cp-p27 with systemic immunization with an adenovirus 

expressing p27 (Ad-p27).  Cp-p27 vaccination primed a strong multifunctional T cell immune 

response in gut lamina propria, although it could not stimulate a systemic immune response.  In 

contrast, Ad-p27 vaccination stimulated strong systemic immunity but limited gut mucosal 

immunity.  By sequentially delivering Cp-p27 and Ad-p27, immunity in both the gut and 

systemic tissues was achieved.   

Altogether, this study demonstrates that Cp-p27 can deliver p27 to gut T cells through 

dendritic cells to prime a strong, multifunctional immune response in the gut effector tissue. 
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1.0  INTRODUCTION 

1.1 INFECTION AND CONTROL OF HIV 

1.1.1 Global HIV Infection 

Since its description in 1981 [1-4], the acquired immune deficiency syndrome (AIDS) 

has been responsible for the death of 20 million people around the world [5].  In December 2007, 

33.2 million people were estimated to be infected with the causative agent of AIDS, human 

immunodeficiency virus (HIV), with 2.5 million new infections of HIV estimated to have 

occurred in 2007 alone [5].  Highly active antiretroviral therapy drugs can extend the lives of 

many infected individuals.  However, much of the HIV epidemic is due to infections in countries 

where access to health care and medicines is limited [5].  In some rural areas of Zimbabwe, life 

expectancy has been reduced by 19 to 22 years since the onset of the HIV epidemic [6]. 

The HIV epidemic has severe public health and economic consequences.  In South 

Africa, an estimated $1342 is spent per person per year by the public sector for HIV 

antiretroviral therapy and health-care treatment, resulting in an economic burden of the 

equivalent of several billion US dollars each year [7].  Infection with HIV enhances 

susceptibility to other infectious diseases such as tuberculosis, Kaposi’s sarcoma, 

cryptosporidiosis, and Pneumocystis carinii pneumonia, further enhancing the cost of health care 

per capita [8].  The morbidity and mortality associated with HIV infection also lowers the 

economic productivity of regions affected by HIV.  This scenario is most severe in areas where 
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HIV is widely prevalent, which are usually areas where access to treatment is limited.  The 

World Bank estimates that the annual national income in a country with an HIV infection 

prevalence of 10% would decrease by up to one-third [9].  In 2005, 8 of 26 sub-Saharan African 

countries reported prevalence rates of at least 10% [5]. 

Controlling the HIV virus through vaccination is thus a major goal of international 

organizations; however, it has proven to be an incredibly difficult goal to achieve.  To aid in the 

development of such a vaccine and the construction of novel vaccine vectors, the monkey 

counterpart of the virus, simian immunodeficiency virus (SIV), is used as a model.  Studies of 

SIV infection in susceptible animal species such as rhesus macaques have helped to guide human 

studies, drive vaccine development, and shed light on the tissues and immune responses 

important in HIV infection. 

1.1.2 HIV Life Cycle 

HIV infection of a susceptible cell begins with binding of the virus’s envelope protein 

gp120 to CD4, a surface protein predominantly expressed on immune cells such as macrophages 

and the CD4+ subset of T cells [10, 11].  This initial binding to CD4 is followed by a 

conformational change of gp120 and its associated transmembrane glycoprotein gp41, enabling 

binding of the envelope protein to a co-receptor protein [12-14].  The two major co-receptors for 

gp120 are CCR5 and CXCR4 [15-17].  Following entry of the viral core through fusion of the 

viral membrane with the host cell membrane, the HIV RNA genome is reverse transcribed into 

DNA through the action of the reverse transcriptase enzyme carried in the virion [18].  This 

DNA is then integrated into the host cell genome [19, 20].  New viruses can be produced from 

infected cells by induction of the HIV long terminal repeat promoter, which drives transcription 

of the HIV genes and genome, resulting in production of HIV proteins and new full-length 
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copies of the HIV RNA genome [21, 22].  Generally, the structural polyproteins gag-pol and env 

accumulate at the host cell plasma membrane and interact with the viral genetic information to 

package the genome into virions [23, 24].  Complete virions then bud from the plasma 

membrane [25, 26].  Final maturation of the virion occurs after budding from the cell and 

involves cleavage of the remaining gag polyprotein into a proline-rich protein (p6), a nucleic 

acid binding protein (p7), matrix (p17), and capsid (HIV p24, SIV p27) [23]. 

1.1.3 Natural History of HIV Infection 

The natural history of HIV disease can be divided into three major phases:  i) acute 

infection (3 to 6 weeks in humans); ii) chronic, asymptomatic infection (1 to 10 years); and iii) 

symptomatic infection and the onset of AIDS (12 to 18 months).  Immediately following 

infection of cells with the virus, a rapid decline in CD4+ T cells is observed in multiple tissues as 

infected cells are eliminated from the host by a number of mechanisms including super-antigen-

induced death and direct effects of the virus on the cell membrane and genetic material [27-29].  

HIV or SIV DNA/RNA becomes detectable in the blood within the first month after viral 

exposure, and viremia peaks around 4 to 8 weeks [30-34].  Individuals are often unaware of their 

infection status at this stage since the typical manifestations of acute HIV infection include only 

mild symptoms such as fever, rash, and swollen lymph nodes.  However, the results of this initial 

phase of infection likely determine the remainder of HIV/SIV disease progression [35].  It is 

during the acute stage that viral reservoirs are established, ensuring chronic infection of the host 

[35, 36]. 

Viremia in the acute phase is limited by the action of viral-specific CD8+ T cells which 

control viral replication through cytolytic and non-cytolytic actions [37-49].  However, by this 

time the infecting strain(s) of virus has completed several replication cycles and accrued 
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mutations that allow some viruses to escape immune control and persist.  The controlled but not 

ablated infection establishes a viral load setpoint that is maintained throughout the chronic phase 

of infection with only a gradual increase.  Virus replication is limited by the continued action of 

CD8+ T cells as well as HIV-specific neutralizing antibodies that arise around the time of chronic 

infection establishment [50-52].  The severity of the setpoint viral burden is inversely associated 

with development of disease and the duration of the chronic phase [53-56]. 

The CD4+ T cell level in the blood progressively declines during the chronic phase.  It is 

the loss of CD4+ T cells that ultimately drives the collapse of the host’s immune system, for they 

are required for the formation and maintenance of CD8+ T cell and antibody immune responses 

[57, 58].  When CD4+ T cell levels fall below a critical level (approximately 200 cells/mL 

blood), the host loses the ability to control HIV viral replication and AIDS disease is imminent.  

Since CD4+ T cells are necessary for formation of immunity against new threats to the body, as 

CD4+ T cell levels decline the ability to fight other infections is also weakened.  Therefore, 

AIDS patients are susceptible to and often succumb to opportunistic infections.  Because HIV 

infection immediately diminishes the capacity for immune response formation, a vaccine that 

provides immunity before HIV exposure and infection is desirable.   

1.2 HIV AND THE MUCOSA 

Much of the research on immunity regarding HIV and SIV has been examined by 

analyzing the systemic immune response in lymphatics, organs such as the spleen and liver, and 

the easily-monitored blood.   However, it appears that immunodeficiency virus infection is 

primarily a disease of mucosal immune tissue [59, 60].  The mucosal immune system protects 
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the tissues lining environment-exposed body cavities, including nasal, bronchial, gastrointestinal, 

rectal, and urogenital tracts.  The major routes of HIV transmission are rectal and urogenital 

tissue (i.e. vaginal, cervical, and potentially foreskin tissues) [61].  Mucosal tissue is well-suited 

for infection by HIV because it contains a large population of activated CD4+ T cells that express 

high levels of CCR5, the major co-receptor for viral entry [62, 63].  Infection and replication of 

virus has been observed in both urogenital and intestinal mucosa in humans and macaques [64-

67].  Thus, to control the virus infection and replication, protective immune responses must be 

induced at mucosal sites. 

The intestine is a primary target for HIV and SIV infection.  The reason for this is not 

fully defined, but likely the nature of gut resident cells and the ability for virus or virally-infected 

cells to enter the gut mucosa contribute to infection of gut tissue.  Intestinal gut lamina propria 

tissue contains a majority of the body’s CD4+ T cells, and about 70% of these express CCR5 [68-

70].  Arthos et al. recently demonstrated that lymphocytes, including natural killer (NK) cells 

and CD4+ and CD8+ T cells, can bind to HIV gp120 via the α4β7 gut homing molecule, 

suggesting a method by which virus is preferentially delivered to the gut following transmission 

[71].  Since envelope proteins remain associated with the host cell membrane following fusion 

[72], infected cells as well as free virus may bind to α4β7 and thus be transported to the gut. 

In both monkeys and humans, SIV or HIV infection leads to a profound loss of lymphoid 

tissue in the gut, primarily through the depletion of CD4+ T cells via direct effects of the virus on 

infected cells and activation-induced cell death of bystander cells [29, 36, 37, 73].  Lymphocyte 

repopulation of the gut is decidedly absent throughout infection [29, 74-77].  The long-term 

effects of such a disruption to the major mucosal surface of the body include malabsorption of 

nutrients, increased gut inflammation, weight loss, diarrhea, increased permeability of the 
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epithelium, and enhanced susceptibility to enteric pathogens [73].  In addition, infected cells that 

are not eliminated are maintained as viral reservoirs throughout infection [39, 78, 79]. 

Destruction of gut CD4+ T cells occurs within days of infection, before an adaptive 

immune response can form [36].  HIV patients known as long-term non-progressors (LTNPs) 

who exhibit low levels of HIV RNA and sustain healthy levels of CD4+ T cells in the blood also 

maintain gut CD4+ T cells and show low levels of HIV replication in the gut [80].  These 

observations suggest that CD4+ T cell depletion is due to the direct effects of replicating virus on 

cells, killing them either through lysis or bystander effects.  If CD8+ T cells able to selectively 

destroy infected CD4+ T cells through cytolytic and non-cytolytic mechanisms were to exist in 

the gut mucosa, ablation of this uncontrolled gut viral replication may be achieved.  Therefore, 

because of its significance in HIV and SIV infection, the formation of such an immune response 

in the intestine should be a major function of an HIV vaccine. 

1.3 PROTECTIVE IMMUNITY AND CORRELATES OF PROTECTION AGAINST 
HIV/SIV 

Knowing the characteristics of an immune response that is effective against a given 

pathogen creates a framework for rational vaccine design against the pathogen and guides the 

evaluation of vaccine trials during vaccine development.  Despite years of research and many 

advances in the field, the type of immunity required for protection against and/or control HIV or 

SIV infection has not been fully defined.  Undoubtedly the correlates of immune protection are 

multiple and complex.  A majority of the current understanding about the type of immunity that 

is most effective against HIV or SIV has come from LTNP HIV patients, individual animals who 
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control SIV infection, and animals or humans who have been exposed to virus but remain 

uninfected. 

Both antibody-producing B cells and antiviral CD8+ T cells have been implemented in 

control of HIV or SIV.  While these two types of immune responses are not mutually exclusive, 

there is often a tendency to form one or the other type.  The direction in which the immune 

response is swayed depends upon the cytokine environment in which it is formed.  A Th1-type 

environment, dominated by interferon gamma (IFN-γ) and interleukin (IL)-12, promotes the 

generation of mature CD8+ T cell responses.  A Th2-type environment, dominated by IL-4, 

promotes B cell response maturation.  Much of the cytokine production driving Th1- or Th-2 

responses occurs in activated CD4+ T cells, although other cells also play vital roles. 

1.3.1 Neutralizing Antibodies:  Immune Correlate of Protection from Infection 

B cells are referred to as plasma cells when they are activated to produce antigen-specific 

antibody.  Antibodies are able to bind to free virus to prevent viral attachment and infection of 

target cells.  Virus opsonized by antibody can be internalized by phagocytes and destroyed 

intracellularly.  Unfortunately, such internalization of virus has also been implemented in viral 

spread to new target cells [81, 82].  Opsonization can also target virus for direct lysis through the 

complement cascade, which has also been correlated with viral dissemination [82, 83].  The most 

effective antibody function against HIV is neutralization of free virus.  Antibodies that bind to 

virus and block the interaction of gp120 with the CD4 receptor or a coreceptor are able to 

prevent infection of host cells [52].  Antibodies against gp41 can also be neutralizing by 

inhibiting fusion of the viral and host membranes [84].  Since these actions prevent entry of virus 

into cells, effective neutralizing antibodies form the immune correlate of protection from SIV or 
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HIV infection.  Neutralizing antibodies have been found in LTNP but have proven to be 

extraordinarily difficult to induce in humans or animals [85-88]. 

The specificity and quality of antibody responses against HIV and SIV change 

throughout the course of infection.  During the first 6 to 8 months after infection, both SIV 

infected macaques and HIV infected patients demonstrate a gradual maturation of the antibody 

response that includes changes in the antibody titer, antibody avidity, and dependence upon the 

natural conformation of envelope glycoprotein for antibody recognition of envelope [89].  

Regardless of whether individuals show control of viral infection or rapid progression to AIDS, 

antibodies change during this maturation phase from being of low titer to being of high titer, 

having low avidity to having high avidity, and being dependent upon natural envelope 

conformation to possessing conformational independence [89-91].  When mature, these qualities 

of antibody responses are maintained throughout infection, and mature antibody responses 

appear to help control SIV and HIV viral titers during chronic infection [92-98]. 

The extent to which antibodies can continue to control virus and thus promote long-term 

nonprogression to AIDS is dependent upon the specificity of antibody to the viral envelope 

glycoprotein.  Structural properties of HIV envelope glycoproteins ensure that a large portion of 

gp120 and gp41 can evade antibody responses.  Antibodies that are specific to the many variable 

loops, buried residues, and glycan-shielded regions of the envelope proteins are much less 

effective at neutralizing than are antibodies specific for the few vulnerable regions that tend to be 

conserved among diverse viral isolates [99-102].  Envelope proteins that cannot successfully 

bind and fuse with CD4 serve as decoy antigens against which antibodies are formed [103, 104].  

These antibodies can bind to the non-functional protein but fail to prevent viral entry into cells.  

Indeed, one of the requirements of an effective neutralizing antibody is its ability to recognize 
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the functional trimeric form of envelope protein [105, 106].  Despite these challenges to the 

immune system, when an effective neutralizing antibody response is formed, antibodies alone 

can prevent infection of cells and thus block HIV infection at the site of transmission [107-109]. 

1.3.2 Cytotoxic T Lymphocytes:  Immune Correlate of Protection from Disease 

SIV- or HIV-specific cytotoxic T lymphocytes (CTLs) recognize cells displaying viral 

antigen on MHC class I, which generally denotes viral infection of that cell.  Upon recognition, 

CTLs induce apoptosis of the infected cell by one of two mechanisms.  First, signal transduction 

initiated by the binding of FasL on CTLs to Fas on target cells engages the caspase cascade, 

leading to apoptosis [110, 111].  Second, and most commonly, CTLs degranulate, releasing 

perforin and granzyme proteins from intracellular lytic granules into the space between the CTL 

and its target [112].  Monomeric perforin inserts into the target cell plasma membrane and can 

polymerize to form pores through which granzymes can enter.  Granzymes are serine proteases 

which can cleave cellular proteins to initiate the caspase cascade.  Most CTLs are CD8+ T cells, 

although CD4+ CTLs have also been described [111, 113]. 

The CD8+ CTL response to HIV or SIV appears to play a major role in controlling viral 

infection.  Since CTLs are effective only after virus has infected cells, this cellular response is 

the immune correlate of protection from disease.  However, recent evidence suggests that CTLs 

directed against capsid protein could feasibly also serve to prevent productive infection of CD4+ 

T cells.  This was demonstrated by Sacha et al. using an in vitro infection system.  Gag-specific 

CTLs were able to detect and eliminate SIV-infected cells within 2 hours after infection, before 

viral integration and de novo viral protein expression [114].  While the full implications of this 

remain to be defined, a large body of other research makes it clear that CTLs directed against 

HIV/SIV are important in controlling infection. 
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Evidence for a CTL correlation of protection from disease comes from both monkeys and 

humans.  Primary SIV infection is controlled by CTLs in rhesus macaques [43], and depletion of 

CD8+ T cells eliminates the ability of these monkeys to control viral load [44, 45].  Macaques 

with strong vaccine-induced CTL responses can control viral load and maintain CD4+ T cells 

following challenge with SIV [47].  Resistance to HIV infection has been correlated with 

enhanced levels of HIV-specific CD8+ T cells in mucosal tissue of exposed, seronegative 

individuals [46].  Protection from establishment of a productive infection has been also been 

correlated with local mucosal CTLs [48, 49].  Clearly, CTLs are important in systemic and 

mucosal immune responses to HIV/SIV. 

A mucosal CTL response may be effective at limiting early infection and thus preventing 

a sustained infection [36].  In the first 3 to 4 days after exposure to SIV, the number of virally 

infected cells in vaginal and rectal mucosa is low [115-118].  This is the first site at which CTLs 

may be able to prevent the establishment of infection.  If not checked and given a large enough 

and sufficiently concentrated target population, this small level of infection can seed a larger 

infection in draining lymph nodes and other lymphoid tissue, including the gut [115, 116, 118].  

An effective CTL immune response in such lymphoid tissue may be able to effectively limit the 

infection [119].  Such an effect has been observed in monkey models of infection.  Monkeys who 

demonstrated the presence of antigen-specific CD8+ T cells in the colon displayed lower levels 

of virus in the blood [120].  A separate study observed a delay in detectable serum SIV when 

immunization of monkeys generated colonic high avidity SIV-specific CD8+ T cells, which was 

interpreted to mean that the mucosal SIV-specific CTL response controlled dissemination and 

establishment of viral infection [121].  When vaccine-induced anti-SIV CTLs were present in the 
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small intestine of monkeys, establishment of a productive mucosally transmitted infection was 

abrogated or was significantly less severe [79, 122]. 

 

1.3.3 Role of Multifunctional T cells in Immune Control of HIV Infection 

The quantitation of T cell responses is usually evaluated using an IFN-γ ELISpot assay, 

with the assumption that IFN-γ production signifies an effective T cell capable of having positive 

effects on HIV control [123].  Indeed, IFN-γ has been shown to interfere with viral replication of 

other viruses, promotes an antiviral environment in the infected cell, and promotes Th-1 type 

immune response formation [124-127].  However, the correlation between IFN-γ production and 

health of HIV-infected individuals is weak and in many cases inverse, and IFN-γ levels in 

vaccinated individuals do not correlate with protection [128-130].  The production of IFN-γ is 

only one of several features of activated, effective antigen-specific anti-viral T cells.  IL-2 and 

tumor necrosis factor alpha (TNF-α) production are also key determinants of T cell survival and 

anti-viral effectiveness, respectively.  IL-2 drives T cell proliferation and differentiation [131, 

132].  TNF-α enhances the production of IFN-γ, supports Th1-type response formation, and can 

trigger apoptosis of virally infected cells through death domain signaling [133, 134].  As 

mentioned above, the cytotoxic capacity of CD8+ T cells is imperative in HIV virus control.  

Cytotoxicity can be assayed by the detection of CD107a and b on the surface of T cells after they 

have released the granzyme and perforin molecules from their lytic granules [130, 135].  

Growing evidence supports the concept that evaluation of the multifunctionality of T cells more 

accurately reflects effective anti-viral immunity in HIV or SIV infection than IFN-γ production 

alone.  In other words, cells that display more than one of the “functions” of IFN-γ production, 

TNF-α production, IL-2 production, and degranulation via CD107a/b surface expression are 
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more often detectable in individuals with low viral loads and healthy levels of CD4+ T cells [40, 

42, 136-141]. 

The reasons for the superiority of multifunctional CD8+ T cells in HIV infection are 

being delineated.  Investigation of the functionality of human CD8+ T cells at various stages of 

infection with viruses that persist for varying lengths of time indicate that the initial CD8+ T cell 

response to viral infection is dominated by IFN-γ production, with most CD8+ T cells 

exclusively producing IFN-γ but not IL-2 [132, 142].  These cells are unable to proliferate in the 

absence of antigen-specific CD4+ T cells [138, 143].  The same type of response persists in 

infections with uncontrolled viral replication [142].  However, chronic infection in which virus is 

maintained at a low level is associated with CD8+ T cells that produce both IL-2 and IFN-γ 

[142].  These dual-producing CD8+ T cells show proliferative capacity after antigen-specific 

stimulation independent of CD4+ T cells [131, 144-146].  CD8+ cells producing IL-2 and IFN-γ 

simultaneously have been observed in HIV LTNPs and 30-40% of patients who maintain low 

HIV viral loads while receiving anti-retroviral therapy [40, 142].  In addition to IL-2 and IFN-γ 

co-production, the CD8+ T cells from these patients also display populations of CD8+ T cells 

with additional functions such as cytotoxicity and TNF-α production, which are at lower levels 

or absent in uncontrollers [40, 138].  Such a multifunctional response is thought to be desirable 

to achieve through vaccination.   

The quality of response is important not only in CD8+ T cells but also in CD4+ T cells.  In 

these cells, the co-production of IL-2 and IFN-γ is also correlated with control of viral infection, 

whereas IFN-γ-only producing cells are associated with high viral loads [137, 144, 147-149].  

The importance of multi-function CD4+ cells is highlighted by the fact that only when HIV-

infected patients have detectable levels of IFN-γ+IL-2+ CD4+ T cells do they also have IFN-γ+IL-
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2+ CD8+ T cells [142].  Like CD8+ T cells, the capacity to secrete TNF-α in addition to IL-2 and 

IFN-γ has been associated with control of HIV infection [136].  Notwithstanding, the 

significance of vaccine-induced multifunctional CD4+ T cells is less defined than for CD8+ T 

cells.  It is not clear whether vaccine-induced activation of CD4+ T cells would aid in limiting 

infection or would aid in establishment of infection by supplying ideal targets (i.e. activated 

CD4+ T cells) for HIV infection. 

1.3.4 Other Functions of the Immune System Controlling HIV Infection 

1.3.4.1 Physical Barriers 
An important aspect of the immune system often neglected is the fact that many 

infections are fended off simply because infectious agents cannot overcome the body’s anatomic 

barriers (skin, keratinous layers, sebum, cilia, mucus) and physiologic barriers (temperature, 

enzymes, pH).  Letvin et al. observed that a cohort of mucosally exposed, uninfected rhesus 

macaques displayed no detectable systemic or mucosal anti-SIV immunity using the most 

sensitive standard techniques to assess cellular immunity [150].  Furthermore, the presence of 

local mucosal IgA did not correlate with protection.  Despite their resistance to repeated mucosal 

infection, these animals were readily infected intravenously.  These findings, along with others 

[151-153], suggest that factors other than the adaptive immune response provide resistance to 

primate lentivirus infection.  Intact tissue that is impenetrable by virus at the site of exposure 

may be sufficient to prevent infection.  How to maintain intact mucosal tissue in the face of 

human physical interactions that spread HIV and inherently disrupt the mucosa is the challenge 

of this approach to preventing HIV infection. 
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1.3.4.2 Innate Immunity 
HIV and SIV can counteract the efforts of cellular and humoral adaptive immune 

responses by mutating.  The error-prone nature of reverse transcriptase allows for inaccurate 

insertion of nucleotide base-pairs at a rate of 3 x 10-5 per cycle of replication, errors are 

maintained because reverse transcriptase lacks proof-reading ability, and recombination between 

different viral quasispecies is promoted by reverse transcriptase at a rate of over two 

recombination events per replication cycle [154-160].  Given the fact that HIV can produce on 

the order of 109 to 1010 new virions every day [161, 162], the mutation rate of virus in an 

infected individual is extremely high.  These activities, as well as direct effects of HIV/SIV 

accessory proteins, contribute to immune escape from both humoral and CTL viral-specific 

immune responses [163-165].  However, other types of immune responses are not dependent 

upon antigen specificity and can provide immune control of HIV/SIV either before adaptive 

immunity forms or after virus has escaped established adaptive immune responses.  

Inflammatory responses that occur immediately after viral exposure encourage the action of cells 

comprising the innate immune system, including phagocytes and natural killer cells.  

Innate immune responses have been suggested to inhibit HIV/SIV infection and disease 

upon initial exposure to virus, and yet they remain largely uncharacterized.  Of particular interest 

to HIV/SIV infection is the natural killer (NK) cell.  NK cells cytotoxically eliminate non-self 

cells similar to CD8+ T cells and express activating and inhibitory killer immunoglobulin-like 

receptors (KIRs) on their surface, which recognize specific MHC class I molecules.  Recognition 

of non-self cells occurs through activating KIRs, with ensuing signal transduction leading to the 

release of cytolytic granules.  Inhibitory KIRs counteract this action by preventing the cytotoxic 

activity of NK cells and ensure that cytotoxicity is directed only against cells with abnormal 

expression of MHC class I molecules.  However, many virally infected cells display 
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downregulation of MHC class I, and thus these cells become targets for NK cells.  Mounting 

evidence suggests a role for NK cells in control of HIV viral load and disease progression.  This 

includes the observation that certain HIV-control-associated genotypes encode Bw4-80I, the 

ligand of a particularly strong inhibitory KIR [166-170].  Lack of inhibitory KIR binding by 

downregulation of Bw4-80I upon HIV infection may escalate NK cell killing of infected cells.  

The activating KIR KIR3DS1 is also able to bind Bw4-80I [166, 170-172], possibly promoting 

NK cell activation against these cells in the absence of an effective inhibitory KIR signal.  A 

broader understanding of the function and regulation of NK cell killing in the face of HIV 

infection may provide new avenues for HIV prophylaxis research. 

In addition to cytolytic activity, CD8+ cells exhibit non-cytolytic control of HIV 

replication.  This phenomenon does not require MHC antigen presentation or even expression of 

HIV protein by target cells and is active against cells infected with diverse viral isolates [173-

178].  Indeed, CD8+ T cells demonstrating HIV suppressive activity but lacking T cell receptors 

specific for HIV have been identified [179, 180].  Non-cytolytic control occurs through the 

repression of HIV replication by inhibiting transcription from the long terminal repeat promoter 

through action at a location immediately downstream of the transcription initiation site [175, 

177, 181].  The identity of this CD8+ cell antiviral factor (CAF) remains unknown, but it is has 

been observed to exist in both a secreted form and a cell membrane-associated form.  CAF 

activity is a correlate of protection from disease progression insomuch as CAF activity in 

untreated HIV-positive patients inversely correlates with viral load, and CAF activity in 

lymphoid tissue positively correlates with control of viral replication [182, 183].  Whether CAF 

activity can be primed through prophylactic intervention will also be a question that future 
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research should address.  Some studies have suggested that this may be the case, but how this 

occurs has not been delineated [184-188]. 

1.4 HIV VACCINE DEVELOPMENT 

Thus far, the understanding of CAF activity and innate immunity suggests that these 

types of responses cannot be achieved through traditional vaccination since antigen-specificity 

and lasting memory for these activities do not appear to be inducible.  However, vaccines that 

generate antibody and CTL adaptive immune responses against HIV/SIV are both being pursued. 

1.4.1 Challenges of a Neutralizing Antibody-Inducing Vaccine 

Effective prevention of SIV infection via a vaccine-induced antibody response has been 

demonstrated in the rhesus macaque model [189-194].  Since antibodies can limit viral infection 

before SIV or HIV enters host cells, this sort of sterilizing immunity is a primary goal for HIV 

vaccine development [189, 195].  However, protective antibody responses have been difficult to 

achieve through vaccination, with killed or attenuated strains of SIV being the most consistently 

successful strategies [194]. 

There are many concerns about employing killed or attenuated HIV for vaccination 

purposes.  The potential for recombination of the attenuated strain with circulating strains has 

limited the development of this approach [196, 197].  In addition, long-term studies of monkeys 

and patients infected with attenuated strains have displayed eventual progression to disease, 

possibly via mutations acquired through the natural error-prone replication of the viruses [194, 

196, 198].  Using killed HIV as a vaccine strategy has also been met with both safety and 

technical concerns.  Currently there exist no approved culture methods for generating HIV 
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virions for vaccine use.  There are also technical challenges in the ability to achieve purified 

virus with intact envelope glycoprotein, and traditional chemical and heat-based methods of viral 

inactivation tend to denature the trimeric conformation of HIV envelope proteins that is 

imperative for successful protective antibody response formation [196].  Novel strategies for 

virus inactivation are helping to overcome this problem [192, 199, 200].  However, to date the 

killed SIV vaccinations that elicit protective immunity in animal models have required the use of 

strong adjuvants not appropriate for human use [190-193, 201]. 

Alternative vaccination strategies for producing the envelope trimer and inducing 

neutralizing antibodies include DNA vaccines and non-replicating virus-like particles [196, 202-

205].  These approaches show much promise and are safe for use in humans but thus far cannot 

fully protect against viral infection in animal models [196].  Thus, while a vaccine-induced 

neutralizing antibody response would undoubtedly provide the ideal situation of sterilizing 

immunity against HIV, current technical and knowledge limitations have prevented the 

successful formation of this type of response.  The potential for an antibody vaccine certainly 

exists, and as technology and further understanding of the structure of the HIV envelope protein 

advance a neutralizing antibody-inducing vaccine is likely to be developed. 

1.4.2 Rationale for a Cellular Immunity-Inducing Vaccine 

Since an effective CD8+ CTL response can control HIV and SIV infection and possibly 

prevent productive infection, a vaccine that induces appropriate T cell responses against 

HIV/SIV may be adequate to control infection at both the individual and population levels.  

Based on experiments in the monkey model and the observation that control of HIV replication 

in acute infection occurs through CTL immune responses, a vaccine-induced T cell immune 

response should be able to control early infection and prevent the establishment of a productive, 
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persistent infection [36, 73, 206].  However, even if this sterilizing immunity does not result, a 

cellular response that can limit the infection, similar to the level of infection observed in LTNPs, 

may significantly alter the course of the HIV epidemic [206-212].  Presumably, the resultant 

lower viral load in a T cell-limited infection would not only provide longer, healthier lives for 

those who contracted HIV, but also less virus would be transmitted to new individuals [207, 213, 

214]. 

1.4.3 Systemic Vaccine Development 

The overwhelming majority of currently licensed vaccines against infectious diseases are 

delivered systemically, generally intramuscularly or subcutaneously.  It thus comes as no 

surprise that most of the HIV vaccines in completed or current human trials are also systemic 

vaccines.  Early HIV vaccines focused on eliciting antibody responses against the HIV envelope 

proteins included vaccination strategies such as recombinant whole protein administered with 

adjuvant and recombinant vaccinia virus expressing HIV protein.  By 1993, new strategies began 

to be tested as novel vectors and antigens (e.g. gag, pol) showed more promise than conventional 

vaccination approaches.  Vectors derived from pox viruses (i.e. canary pox, modified vaccinia 

Ankara), plasmid DNA, and non-replicative HIV virus-like particles were introduced into 

clinical trials, and cellular immunity in addition to humoral responses grew to be standard in 

vaccine evaluation.  The possibility of utilizing two separate vaccines in a prime-boost regimen 

to create better immune responses than a single vaccine began to be explored in clinical trials in 

the late 1990s, with encouraging results.  To date, over 60 clinical trials have been completed 

worldwide.  As of January 2008, the AIDS Vaccine Advocacy Coalition reports 29 ongoing 

human trials, which include vaccines using pox-based vectors, adeno-associated virus, DNA, 

adenovirus, lipoprotein, protein, and peptide. 
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Adenovirus (Ad) has been employed by many researchers as a vaccine vector for 

efficient delivery of HIV or SIV proteins through intramuscular inoculation.  The resultant 

systemic cellular and humoral immunity tends to be quite strong and multifunctional, even with 

only a single dose [215, 216].  This is due partly to the broad tropism of adenovirus, which is 

able to enter a number of cell types from a multitude of lineages [217].  Naturally, more than 50 

serotypes of these DNA viruses cause generally mild disease in respiratory, gastrointestinal, 

urogenital, and ocular tissues.  Of these serotypes, Ad serotypes 5 and 35 have been widely 

explored for their use as vaccine vectors.  By deleting genes essential for Ad replication (e.g. E1 

and/or E3) and replacing them with a vaccine antigen gene, Ad can be manipulated to carry 

vaccine antigen genes, which are expressed in the cells which Ad infects. 

Many reports argue for the notion that pre-existing immunity to Ad lowers the 

effectiveness of Ad-vectored vaccination [218-222].  Preliminary results from a recent proof-of-

concept clinical trial also suggest that pre-existing immunity may be a factor in Ad-vectored 

vaccine-inducible immunity [207]; however, the overarching result of this trial was that systemic 

immunization using the Ad-vectored vaccine did not afford protection from HIV or lower the 

viral setpoint after infection.  Nevertheless, Ad remains one of the most well-defined vector 

strategies currently being used for HIV vaccine development, and future improvements may 

overcome the limitations of current Ad vectors.  In addition, priming the immune system using a 

rare Ad serotype vector, a separate vector, or an alternative route of administration before 

boosting with a systemic Ad-based vaccine have been noted to aid in overcoming the limitation 

of pre-existing immunity that would otherwise compromise immune response formation 

stimulated by Ad-vectored vaccination [222-228]. 



 20 

1.4.4 Mucosal Vaccine Development 

Mucosal vaccines have the potential advantages of being painless, easy to administer on a 

large scale and also generally less expensive to produce, store, and deliver than current systemic 

vaccine technologies [229].  In light of the fact that most HIV infections are transmitted through 

rectal and vaginal mucosal contact, it is imperative for a vaccine to provide mucosal immunity.  

Vaccination at a mucosal tissue stimulates local immunity in that tissue and usually also induces 

systemic immune responses detectable in the blood, spleen, and peripheral lymph nodes.  This is 

in contrast to systemically delivered vaccines, which are generally incapable of or limited in the 

ability to stimulate an immune response in mucosal tissues.  Thus, mucosal immunity is thought 

to best be induced by antigen delivery directly to the mucosa [229]. 

Some systemically delivered viral vectors appear to enable mucosal immune response 

formation against HIV or SIV, most notably in the gut, rectal, and genital mucosa [216, 230].  

However, the strength of these responses is generally poor.  For example, some level of mucosal 

immunity can be detected after systemic inoculation with Ad-vectored vaccines, but at levels 

approximately 10-times less than in systemic samples [216, 230].  Individuals inoculated 

intramuscularly with a pox-based vector have also demonstrated some mucosal immune 

responses [231, 232].  It is generally accepted that direct mucosal stimulation achieves more 

effective mucosal immunity [229], although again this is dependent upon the vaccine strategy 

utilized.  Ad-vectored vaccines delivered mucosally have been explored; however, although Ad 

typically causes mucosal disease, mucosal immunity has not been detected following oral 

inoculation [227].  Alternative vectors that are more adept at antigen delivery to mucosal tissues 

are necessary for successful mucosal vaccination. 
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The development of a mucosal SIV or HIV vaccine has been pursued for many years.  

Vaccines targeted to the nasal, oral, rectal, and urogenital mucosa and to mucosal draining lymph 

nodes are under investigation [233, 234].  Antigen delivery has been tested using attenuated live 

virus, killed virus, recombinant virus, DNA, dendritic cells and peptides.  Recently the potential 

for recombinant microorganisms to be used as vectors has been investigated.  HIV vaccine 

vectors have been designed using organisms such as Salmonella enterica, the Bacillus of 

Calmette and Guerin, Shigella flexneri, and Listeria monocytogenes [235-238].  Many of these 

novel vaccine strategies have been shown to induce strong humoral or cellular immunity in 

mucosal compartments, including the gut, more effectively than systemically delivered vaccines. 

Most mucosally administered HIV vaccines are in pre-clinical stages of development.  In 

the vaccine pipeline are vaccines vectored by Venezuelan equine encephalitis, attenuated 

vesicular stomatitis, herpes simplex, and Sindbis viruses, which may be effective when 

administered mucosally [229, 239, 240].  One ongoing clinical trial (C86P1 through St. George’s 

University of London, Richmond Pharmacology, and Novartis Vaccines) uses a protein-plus-

adjuvant vaccine administered intranasally as a prime to an intramuscular boost.  This mucosal-

systemic prime-boost strategy is a popular strategy being characterized in pre-clinical trials 

utilizing a multitude of vaccine vectors [228, 241-246].  The only other mucosa-targeted vaccine 

to have reached clinical trials utilizes Salmonella enterica serovars typhimurium and typhi that 

include a Type-III secretion system to deliver gag proteins to the cytoplasm following invasion 

of gut macrophages upon oral ingestion.  Phase I clinical trials have shown a single dose of the S. 

typhimurium vaccine to induce mild gastrointestinal symptoms and nearly no systemic immunity 

to HIV gag [247].  In the SIV model, monkeys primed with S. typhimurium and boosted with a 

systemic vaccine demonstrated SIV-specific CD8+ T cells in the colon and blood, as well as 
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somewhat lower severity of infection than a systemic-only vaccinated animal following 

intrarectal SIV challenge [248]. 

Mucosal vaccines against any infectious disease have historically been difficult to 

generate.  Of the over 55 licensed vaccines in the United States, only 7 are delivered mucosally, 

6 through the oral route and one intranasally.  By and large, the effectiveness of these mucosal 

vaccines is wholly dependent upon the production of humoral, not cellular, responses.  This 

underscores the difficulty the scientific community has experienced in developing mucosally 

delivered vaccines that induce antigen-specific CD8+ T cell responses.  Ongoing studies of novel 

vaccine vectors may prove to overcome this challenge. 

1.5 MUCOSAL IMMUNOLOGY 

The major obstacle in mucosal vaccine development is the challenge of induction of 

immunity in the mucosa.  Whereas the systemic immune system readily responds to most foreign 

molecules with responses that eliminate the foreign particle, the mucosal immune system is more 

selective in the molecules to which it produces responses that destroy foreign particles.  The 

necessity of the mucosa to co-exist with environmentally acquired non-pathogenic molecules 

(i.e. food) and organisms (i.e. beneficial commensal bacteria) indicates that an intricate system 

exists to discern between safe and toxic antigens acquired at mucosal surfaces. 

1.5.1 Anatomy of Mucosal Immune Tissue 

The various immune inductive sites of the mucosal immune system show similarity in 

overall structure.  A single layer of epithelial cells separates interstitial tissue from the external 

environment.  As shown in Figure 1, the underlying tissue just beneath the barrier consists of  



 23 

M

SED

M

BB BB44
88 44

88 88
8844

88
GCIFR

IFR

FAE

?

lamina propria

Peyer’s patch

systemic

distal mucosa

trafficking of activated B & T cellstrafficking of activated B & T cells
migration of LPDCsmigration of LPDCs
migration of PPDCsmigration of PPDCsafferent MLN lymphatic

efferent MLN lymphatic

MM microfold cellMMMM microfold cell

PPDCPPDC

LPDCLPDC

antigenantigen

88 CD8+ T cell8888 CD8+ T cell

44 CD4+ T cell4444 CD4+ T cell

8B B cell8B8B B cell

epithelial cellepithelial cell

intestinal lumen

MLN
44

8B

88
MLN

44

8B

88

portal
vein

portal
vein

circulation  

Figure 1.  Gut associated lymphoid tissue (GALT) anatomy and immune priming 
The primary inductive tissue structure of the GALT in the terminal ileum of the small intestine is the Peyer’s patch 
(PP).  Antigen is transcytosed by microfold (M) cells of the follicle associated epithelia (FAE) and is delivered to 
dendritic cells (DCs) in the sub-epithelial dome (SED).  DCs can migrate to intrafollicular regions (IFRs) or 
germinal centers (GCs) to prime cells in the PP; some evidence also suggests that PPDCs can migrate via afferent 
lymphatics to prime cells in the mesenteric lymph node (MLN).  DCs from the lamina propria also acquire antigen 
(see text for details) and can migrate to PPs or MLN to prime immunity.  Primed B and T cells travel via lymphatics 
to enter circulation via the portal vein and are then delivered to the gut effector tissue (lamina propria), distal 
mucosal sites or systemic sites. 
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large numbers of antigen presenting cells (APCs), particularly dendritic cells (DCs).  As 

mentioned above, generation of a protective immune response in one mucosal area is able to 

afford protection at other mucosal sites [249-251].  For example, an oral vaccine against typhoid 

has been shown to induce mucosal immune responses in saliva and vaginal secretions in human 

volunteers [250].   Mucosal tissue therefore does not rely on systemic immune responses to 

populate its effector sites with B and T cells.  Interactions between the two immune systems do 

occur, however.  This is believed to be mediated by lymph nodes of the mucosal immune system 

serving as crossover points and may also involve lymphocytes trafficking through the liver [252, 

253]. 

The gut associated lymphoid tissue (GALT) comprises inductive immune tissue that 

collect antigen from the mucosal surface and lack afferent lymphatics.  Peyer’s patches (PPs), 

isolated lymphoid follicles, and the appendix make up the GALT, and it is in these tissues that 

most gut mucosal B and T cell immune responses are primed.  PPs are the major GALT structure 

in the small intestine, where they are concentrated in the terminal ileum in humans. 

1.5.2 Generation of Mucosal Immune Response in GALT 

Generation of a protective immune response in the GALT is able to afford protection at 

other mucosal sites (see Figure 1).  Microfold (M) cells in the follicle-associated epithelium 

(FAE) transport antigen from the lumen to the sub-epithelial dome (SED) where DCs serve as 

the major antigen presenting cell [254].  Peyer’s patch DCs (PPDCs) have also been observed to 

acquire antigen from apoptotic epithelial cells [255].  Following antigen uptake, DCs mature and 

can migrate to present antigen to naïve B and T cells in the intrafollicular region (IFR) and B-cell 

rich germinal center (GC) areas of the PP.  Activated B and T cells primed in the PP can be 

imprinted with the α4β7 mucosal homing marker, and thus the cells localize to effector sites such 
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as the lamina propria.  Also, DCs from the PP may travel to the mesenteric lymph node (MLN), 

the regional lymph node draining the gut.  Intra- and subepithelial DCs in the small intestinal 

lamina propria can also acquire antigen from the lumen directly by extending dendrites across 

the FAE barrier, and then migrate to PPs or MLN to prime B and T cells [256].  T cells primed in 

the MLN can travel to local mucosal effector sites, e.g. lamina propria.  In addition, efferent 

lymphatics may serve as conduits for activated T cells to travel from the gut to distal mucosal 

effector sites as well as the systemic immune system after entering the bloodstream through the 

thoracic duct.  Lymphocytes from the gut can also drain via portal blood to the liver, where 

regulation of immunity may occur [253]. 

The normal reaction to oral antigen presented by gut DCs is tolerance via the generation 

of secretory IgA and either Th3 or T-regulatory cells.  The major cytokines present during 

tolerance induction include IL-10 and transforming growth factor beta (TGF-β), and low levels 

of co-stimulation occur between DCs and CD4+ T cells [252].  An immune response is generated 

only under inflammatory conditions, such as those generated by pathogenic organisms.  Under 

these circumstances, completely mature DCs provide high levels of co-stimulation and produce 

IL-12 [257].  Both Th1 and Th2 responses can result.  The natural tendency for oral antigen to 

produce tolerance complicates the formation of mucosal immune responses with vaccines. 

1.5.3 Mucosal Adjuvants 

Adjuvants are used in mucosal vaccines to overcome tolerance and direct the immune 

response towards either Th1 or Th2 immune responses.  To date, no mucosal adjuvants have 

been licensed for use in prophylactic vaccines in the United States.  The major mucosal 

adjuvants in various development stages fall into two categories, bacterial toxin-based and Toll-

like receptor (TLR)-stimulating. 
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The heat-labile enterotoxin (LT) produced by certain species of enterotoxigenic E. coli 

has been known for years to be a potent mucosal adjuvant.  The A subunit of LT is the catalytic 

subunit responsible for LT toxicity as well as immune enhancement.  Dickinson and Clements 

created a mutant form of LT by substituting alanine at residue 192 of the A subunit with glycine 

[258].  The resultant LT(R192G) is capable of inducing both Th1 and Th2 responses and in SIV 

vaccines enhances SIV-specific CTL levels [259, 260].  Furthermore, the safety of LT(R192G) 

has been demonstrated in mice, non-human primates, and humans [259-261].  Incorporating 

LT(R192G) into an oral vaccine is expected to prevent tolerance and encourage a Th1 response. 

Cholera toxin (CT) is a related bacterial toxin that serves as a mucosal adjuvant.  It is 

produced by Vibrio cholerae and, like LT(R192G), is known to help overcome mucosal 

tolerance when administered orally with protein [262-264].  Although the CT B subunit (CTB) is 

not approved for use as an adjuvant, CTB is delivered with inactivated whole cell V. cholera in a 

safe and widely-used oral vaccine against cholera [265].  Safety mutation versions of CT and 

recombinant CTB have been created and tested for decreased toxicity and sustained 

immunogenicity with somewhat less success than LT(R192G) [266, 267].  Nevertheless, this 

potent mucosal adjuvant may be applicable for human use in the near future, and it serves as the 

classical oral adjuvant.  Orally delivered CT is known to be transcytosed by M cells and is 

thought to promote maturation of DCs in the SED, driving their migration to T and B cell 

priming areas in PPs [266, 268].  Both CT and LT have also been shown to induce the rapid 

migration of murine DCs to the PP FAE and subepithelial connective tissue of villi where they 

are thus situated to acquire antigen from the lumen [266, 269]. 

A leading TLR-stimulating mucosal vaccine is a mimic of bacterial DNA.  TLR9 helps 

the mucosa to differentiate between the presence of safe host DNA and pathogenic bacterial 
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DNA by recognizing differences in the methylation patterns of cytosine-phosphate-guanine 

(CpG) dinucleotides.  Accurate identification of foreign DNA depends upon the fact that 

bacterial DNA contains far fewer methylated CpG motifs than host DNA and that host DNA is 

not normally found in endosomes, the location of TLR9 molecules [270, 271].  Three different 

classes of CpG oligodinucleotides (ODNs) have been described based on their different primary 

sequence motifs, secondary and tertiary structures, backbone, and stimulatory effects on B cells 

and DCs [272].  All three classes result in the induction of Th1-promoting cytokines by DCs and 

promote Th1 cellular responses [273].  In the gut, TLR9 expression has been observed in villus 

enterocytes and Paneth cells typically found in villus crypts, as well as PPDCs, which can mature 

in response to CpG ODNs [274, 275].  The administration of CpG ODNs with a systemic 

vaccine has been tested in human clinical trials [272, 276, 277].  In mice, CpG ODNs delivered 

with oral vaccines have helped stimulate Th1-type mucosal immune responses against a variety 

of antigens using numerous vector systems [278-283]. 

1.5.4 Encouraging Mucosal Immune Response Formation 

Many factors influence the immunostimulatory nature of antigen that interacts with the 

GALT.  Proteins tend to be poorly immunogenic, but the nature, dose, and frequency of their 

delivery can dramatically influence the propensity for immune activation to result following their 

ingestion.  Particulate or denatured protein is less likely to induce tolerance than soluble or intact 

protein, probably because particulates and unfolded proteins are more readily engulfed by M 

cells and better delivered to DCs [229, 284-287].  Low levels of antigen administered repeatedly 

do not encourage immune responses, whereas low doses can prime immunity if not administered 

frequently [229].  A single high dose of antigen encourages tolerance, whereas medium to high 

doses of antigen administered repeatedly can result in immunity [229].  Of course, the 
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administration of adjuvant with the antigen also drives immune response formation and 

overcomes tolerance.  In summary, mid- to high-level doses of particulate or denatured protein 

that can be delivered to DCs repeatedly are most likely to induce strong mucosal immunity. 

Protein transduction domains (PTDs) are cationic peptides that enable the proteins on 

which they are located to efficiently enter target cells through a receptor-independent mechanism 

[288-290].  It is hypothesized that PTDs function by preferentially adhering to negatively 

charged molecules on the outer membrane of cell, thus enhancing the number of PTD-containing 

proteins in position for internalization.  PTDs have been designed that specifically target proteins 

to certain cell types.  The PTD peptide known as PTD-5 enhances protein uptake by many cell 

types, including epithelial cells and DCs [291].  Another PTD, 8K, is especially proficient at 

directing proteins into DCs (P.D. Robbins, personal communication).  Incorporating either of 

these PTD peptides as a fusion to orally administered antigen should increase delivery of the 

antigen to PPDCs either directly or indirectly via enhanced uptake by M cells.  In addition, PTD-

fused antigen may be better internalized by the lamina propria epithelial cells or DCs that are 

important for immune response formation in the MLN. 

Activation of CD8+ CTL responses requires presentation of antigen on MHC class I 

molecules.  DCs possess the unique ability to present exogenously acquired antigen, which 

normally is loaded onto MHC class II molecules, in the context of MHC class I.  While the 

details of this cross-presentation are not fully understood, it is known that some phagocytosed 

antigen interacts with the proteasome and is thus directed for MHC class I loading [292-295].  In 

this way, increased internalization of protein by DCs through PTD-fusion can encourage 

presentation of epitopes on MHC class I.  PTD sequences may also promote the delivery of 

protein directly to the cytoplasm of cells, which engages the MHC class I pathway, thus 
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enhancing DC cross-presentation and increasing induction of CTLs [296, 297].  Therefore, 

presentation of protein epitope of MHC class I via either pathway can be enhanced through the 

fusion of PTD to the protein. 

1.6 CLOSTRIDIUM PERFRINGENS EXPRESSING SIV P27 AS A VACCINE 
VECTOR 

1.6.1 Exploiting Clostridium perfringens as a Vaccine Vector 

In addition to the microorganisms mentioned above, Clostridium perfringens has also 

been considered as a vehicle for antigen delivery to the GALT.  C. perfringens is a Gram-

positive spore-forming rod-shaped anaerobic bacterium [298].  In adult humans, ingested 

vegetative C. perfringens that survive the upper gastrointestinal (GI) tract conditions enter the 

small intestine where bile salts help to induce sporulation of the bacteria.  Spores and 

cytoplasmic inclusion bodies are protected in the mother cell as sporulation ensues and the 

bacteria travel through the small intestine.  The spore and inclusion bodies are released from the 

mother cell when C. perfringens cells lyse at the terminal ileum of the small intestine, which is 

where PPs are found in high frequency in humans.  The ability for C. perfringens to naturally 

travel through the intestine, deliver protein to the vicinity of PPs, and exit the host without 

colonizing or causing infection makes it an attractive vector for further exploration. 

Rare isolates of C. perfringens cause food poisoning and nonfoodborne GI disease 

because they carry C. perfringens enterotoxin (CPE) encoded by the cpe gene [299].  Knocking 

out the cpe gene renders such isolates non-pathogenic for GI disease and thus provides a 

bacterial vehicle safe for human consumption [300].  The cpe gene can be carried 

chromosomally or episomally and is under control of the unique cpe promoter.  The cpe 
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promoter is activated only during sporulation [301, 302].  The strength of the cpe promoter is 

demonstrated in the fact that CPE production in the human intestine accounts for up to 15% of 

total bacterial protein, which accumulates in cytoplasmic inclusion bodies inside the mother cell.  

This ensures that the protein expressed from the cpe promoter remains untouched by proteases 

and bile salts of the intestinal lumen which would degrade extracellular or secreted protein.  

These properties make the cpe promoter and its natural regulation in C. perfringens an exquisite 

tool for expressing large amounts of protein that can be delivered intact in particulate form to the 

site of many PPs in the small intestine terminal ileum.  Both the large dose and particulate nature 

of protein delivered in this manner are believed to be associated with the induction of an antigen-

specific mucosal immune response and resistance to mucosal tolerance. 

Oral ingestion of C. perfringens not carrying the cpe gene may be considered safe for 

humans [300].  Nevertheless, C. perfringens encodes several other toxins that may damage the 

host if orally ingested bacteria surpass the mucosal barrier and enter the underlying tissue.  For 

example, gas gangrene can result if type A C. perfringens carrying the perfringolysin O (pfoA) 

and phospholipase C (plc) genes enters an open wound [303].  The actions of these two 

exotoxins collectively lead to the creation of pores in cell membranes and necrotization of tissue.  

Phospholipase C, also known as α-toxin, has never been shown to cause gangrene following oral 

delivery of type A C. perfringens, and inoculation of rabbit ileal loops with the toxin does not 

result in cytopathic effects [300].  Perfringolysin O, also known as θ-toxin, is also unlikely to 

cause disease when acquired orally.  Of the hundreds of thousands of cases of C. perfringens 

type A-related gastrointestinal disease, none have included gangrene.  The only possible 

examples of α- and/or θ-toxin-induced disease resulting from gut C. perfringens infecting 

extraintestinal tissue might occur following surgery that involves opening of the intestine or via 
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metastasized cancerous cells.  While literature indicates that there is a very low potential for 

orally acquired type A C. perfringens to exert harmful effects through the actions of α- and/or θ-

toxin, to ensure the safety of C. perfringens for its use as an oral vaccine vector, C. perfringens 

strains with inactivation of both of these toxins have been created [304, 305].  The triple toxin-

depleted C. perfringens is now being developed as a vaccine vector against HIV and SIV. 

In addition to the natural ability to deliver intact protein to the locale of GALT, C. 

perfringens has the benefits of being an inexpensive vaccine vector that can be delivered without 

the requirement of needles.  Both of these qualities are important to possess when a vaccine is 

most needed in resource-poor areas; indeed, the bulk of the burden of HIV is in countries defined 

as low- or middle-income [5].  In summary, the use of C. perfringens as an inexpensive, non-

toxic vaccine vector is appealing because of the inherent ability of C. perfringens to express viral 

protein from cpe promoter in a sporulation-regulated manner that allows for production of a large 

quantity of protein which is naturally delivered intact to a region of concentrated inductive 

GALT.  Non-toxic, cpe-negative C. perfringens has been reengineered to produce HIV and SIV 

proteins under control of the cpe promoter for use in development of vaccines against HIV and 

SIV [306]. 

1.6.2 Initial Characterization of C. perfringens Expressing SIV p27 as a Vaccine 
Delivery System 

Generation of C. perfringens expressing SIV p27 (Cp-p27) has been achieved using the 

pJRC200 plasmid, which contains the C. perfringens cpe gene including its promoter [307].  

Restriction enzyme digestion of the plasmid with BstB I and Bsu36 I removes all cytotoxic 

portions of the cpe gene and retains the initial 36 nucleotides necessary for efficient transcription 

from the cpe promoter and a small number of C-terminal nucleotides required for stabilization of 
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trascribed mRNA.  The SIV p27 gene from the molecular clone SIV-17e [308] was inserted into 

the digested vector to achieve a plasmid that, upon electroporation into cpe-negative type A C. 

perfringens, allows for expression of SIV p27 explicitly as a result of sporulation.  p27 can be 

detected in inclusion bodies of sporulating recombinant Cp-p27 using immunogold stain electron 

microscopy.  Additionally, expression of p27 by sporulating Cp-p27 has been quantitated to be 

20-30μg/mL sporulated culture (108 cfu) or approximately 70μg p27/mg C. perfringens protein 

using semi-quantitative Western blot.  In comparison, reports of other bacteria-based expression 

systems include protein production of 2.5μg Helicobacteri pylori urease/108 cfu Salmonella typhi 

[309].  The expression rate of p27 accounting for about 7% of the total C. perfringens protein is 

one of the highest known to be reported in a bacterial vaccine construct.  Indeed, the expression 

rate is also respectable when compared with bacteria commonly used for protein expression.  In 

one example of an efficient expression system, E. coli expressed human metallothionein 2A as 

10-15% of total protein [310]. 

Murine bone marrow-derived DCs (BMDCs) accumulated p27 when incubated with 

lysates of sporulating C. perfringens expressing p27 [306].  Furthermore, incubation of ligated 

murine intestine with the same C. perfringens preparation enabled DC in PPs to take up p27, and 

oral delivery of this Cp-p27 vaccine resulted in the presence of p27 in the lumen of the terminal 

ileum within 90 minutes of administration [306].  These results suggest that the Cp-p27 vaccine 

can deliver p27 to PPDCs in the terminal ileum of mice.  The resulting gut and systemic immune 

response remained to be fully characterized and is the object of the study described herein. 
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1.7 STATEMENT OF THE PROBLEM AND AIMS OF THE STUDY 

Since most HIV infection is transmitted through vaginal or rectal mucosal tissue and the 

gut mucosa is an immediate target following HIV/SIV infection, vaccine-induced mucosal 

immunity against the virus is important to control HIV infection.  The Cp-p27 oral vaccine is 

designed to stimulate immunity in the gut, and the resulting immunity may be transferred to 

other mucosal sites such as vaginal and rectal tissue.  Previous studies have demonstrated that 

oral inoculation of Cp-p27 can deliver a large quantity of SIV p27 to the terminal ileum, which 

contains a concentration of PPs patches that are rich with antigen presenting cells such as DCs.  

The central hypothesis formed from these previous findings is that Cp-p27 can deliver p27 to 

gut DCs and thereby prime mucosal and systemic humoral and cellular immunity against 

SIV.  To address this hypothesis the present study was undertaken to generate and characterize 

an anti-p27 cellular response upon oral administration of the Cp-p27 vaccine in mice.  The 

Specific Aims and research plans were as follows: 

 

Specific Aim 1:  Characterize the ability of Cp-p27 vaccine to induce DCs to 

stimulate p27-specific T cells in vitro 

Hypothesis:  DCs exposed to Cp-p27 will mature and gain capacity to present 

p27 epitopes on MHC to T cells 

Approach:  Murine bone marrow-derived and purified Peyer’s patch DCs 

were exposed to Cp-p27 and examined for maturation characteristics including co-

stimulatory molecule expression and cytokine production.  The function of DCs was 

assessed through ELISpot to detect IFN-γ produced by p27-specific T cells following 

restimulation by vaccine-exposed DCs. 
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Specific Aim 2:  Improve Cp-p27 vaccine to stimulate stronger DC and T cell 

responses in vitro by using PTDs conjugated to p27 

Hypothesis:  Vaccines containing p27 conjugated to PTD sequences will increase 

internalization of p27 and thus drive production of stronger immune response 

Approach:  C. perfringens strains expressing p27 conjugated to PTD-5 and 

8K PTD sequences were constructed and evaluated for their effects on cellular 

internalization.  Efficiency of uptake of conjugated or unconjugated p27 by DCs and 

intestinal epithelial cells were tested using quantitative protein immunoblotting.  

These PTD-conjugated C. perfringens strains were then compared with wild-type Cp-

p27 for effects on DCs and resulting T cell-stimulating capacity. 

 

Specific Aim 3:  Evaluate Cp-p27 as an oral vaccine in vivo in mice 

A.  Optimize mucosal adjuvants for use with Cp-p27 

Hypothesis:  Combinations of strong mucosal adjuvants will improve immune 

response to Cp-p27 vaccination 

Approach:  The mucosal adjuvants CT, LT(R192G), and CpG ODNs were 

administered to mice orally with Cp-p27.  The resulting cellular immunity in gut 

tissues was assayed with IFN-γ ELISpot.  The functionality of p27-specific T cells 

generated through use of leading adjuvants/adjuvant combinations was also assayed 

using intracellular cytokine staining and surface staining followed by flow cytometry. 

 



 35 

B.  Determine the priming and/or boosting capacity of Cp-p27 when 

combined with a systemically delivered adenovirus expressing p27 

Hypothesis:  Cp-p27 priming can enhance mucosal and/or systemic immunity 

induced by boosting with adenovirus expressing SIV p27 

Approach:  Cp-p27 was administered to mice orally as a prime or boost to an 

intramuscular adenovirus vaccine expressing SIV p27.  SIV p27-specific cellular 

immune responses in systemic and gut tissues were assayed through IFN-γ production 

via ELISpot, and p27-specific humoral responses were assayed with ELISA.  In 

addition, the functionality of gut T cell responses in inductive and effector tissues was 

characterized with multi-color flow cytometry. 
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2.0  IN VITRO DENDRITIC CELL RESPONSE TO CP-P27 

2.1 PREFACE 

The study described in this chapter is a collaborative effort between Dr. Phalguni Gupta 

and Dr. Jay K. Kolls and constitutes a manuscript currently being revised following peer review.  

Dendritic cell cultures and experiments were performed by Ruth Helmus in Dr. Gupta’s 

laboratory, Bio-Plex assays were performed by Amy Magill in Dr. Kolls’ laboratory, and animals 

were cared for by the University of Pittsburgh Division of Laboratory Animal Resources.  These 

results were presented as poster abstracts at AIDS Vaccine 2003 (Development of a novel 

Clostridium perfringens-based oral vaccine against SIV.  Chen, Y., R. Helmus, B. McClane, J. 

Clemens, R. Hoffman, and P. Gupta.) and the 2005 Conference on Retrovirology and 

Opportunistic Infections (A novel C. perfringens-based SIV vaccine induces maturation of 

dendritic cells and enables dendritic cell priming of T cells.  R. Helmus, Y. Chen, T. Wehrli, and 

P. Gupta.) 
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2.2 ABSTRACT  

The induction of both systemic and mucosal immunity is a high priority in the 

development of an anti-HIV vaccine.  Dendritic cells (DCs) at inductive mucosal sites such as 

gut Peyer’s patches are important mediators of mucosal immune priming.  In this study, the 

interaction of a vaccine using Clostridium perfringens expressing SIV capsid p27 (Cp-p27) with 

murine DCs was investigated.  Both bone marrow-derived DC (BMDCs) and freshly isolated 

Peyer’s patches DCs (PPDCs) responded to exposure to Cp-p27 by upregulating maturation 

markers and producing pro-inflammatory cytokines. Furthermore, the mature dendritic cells 

stimulated p27-specific IFN-γ production by T cells, demonstrating that the p27 antigen was 

efficiently delivered to, processed by, and presented on MHC by BMDCs and PPDCs.  These 

findings suggest that Cp-p27 vaccine-mediated delivery of p27 to DCs could induce immunity 

against SIV. 
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2.3 INTRODUCTION 

The major sites of exposure to and transmission of human immunodeficiency virus (HIV) 

are mucosal surfaces.  An immune response induced by delivery of antigen to one mucosal site 

can stimulate immune responses at other mucosal sites as well as systemic immune responses 

[48, 49, 238, 249, 311]. Thus, an effective vaccine against HIV or its non-human primate 

counterpart simian immunodeficiency virus (SIV) should target a mucosal site.  One important 

mucosal tissue that can be targeted by oral vaccination is the gut.  In addition to its role in 

mucosal immunity, the gut has been shown to be a major site of viral replication and cell 

destruction early in SIV/HIV infection in both non-human primates [64, 312, 313] and humans 

[74, 75, 314] and likely serves as a reservoir for virus throughout infection [78, 79].  It is, 

therefore, important for an HIV or SIV vaccine to provide immunity in the gut by inducing 

immune responses through the gut associated lymphoid tissue (GALT). 

The main inductive immune tissues of the GALT are Peyer’s patches (PPs). Dendritic 

cells (DCs) in terminal ileum PPs are adept at capturing and processing antigens for presentation 

to naïve T cells.  DCs possess the unique ability to present exogenously acquired antigens that 

are normally loaded onto MHC class II molecules in the context of MHC class I, which is 

necessary for inducing a CD8+ cytotoxic T lymphocyte (CTL) response (reviewed in [315, 316]).  

The CD8+ CTL response to HIV or SIV appears essential for limiting viral infection, as 

displayed by numerous studies of both systemic and mucosal immune responses to HIV/SIV [43-

49, 79].  Thus, to generate an effective anti-SIV CD8+ CTL response, a vaccine must cause DCs 

to present SIV antigen to CD8+ T cells and induce priming of anti-SIV CD8+ CTLs. 
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It has previously been shown that Clostridium perfringens expressing SIV p27 (Cp-p27) 

can deliver a large amount of viral antigen to the terminal ileum where PPs are concentrated 

[306].  The bioengineered C. perfringens has the natural ability to generate high levels of 

antigenic protein using the strong CPE gene (cpe) promoter during sporulation and then shield 

this protein in the mother cell until reaching the PPs. To study the effectiveness of the Cp-p27 

vaccine to induce a DC-mediated immune response, the phenotype, cytokine profile, and T-cell 

stimulatory capacity of DCs exposed to the vaccine were investigated.  The effects of the vaccine 

were examined using both systemic (bone marrow-derived DCs) and gut mucosal (freshly 

isolated Peyer’s patch DCs) DCs.  The results demonstrate that the Cp-p27 vaccine can 

efficiently stimulate a DC-mediated p27-specific immune response in vitro, which suggests that 

in vivo immunization would result in p27-specific CD8+ CTL responses.  This is the first analysis 

of the immune response of an extracellular bacteria-based oral vaccine via its target mucosal 

DCs. 
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2.4 MATERIALS AND METHODS 

Animals 

Female Balb/c mice were purchased from Charles Rivers Laboratories, Inc. and housed in 

a pathogen-free facility in accordance with the University of Pittsburgh Institutional Animal Care 

and Use Committee and federal regulations.  Animals were used between 6 and 8 weeks of age. 

 

Antibodies 

FITC-α-CD40 (clone L3T4), FITC-α-CD40 (HM40-3), FITC-α-CD80 (16-10A1), FITC-

α-CD86 (GL1), FITC-α-I-Ad (39-10-8), R-PE-α-CD8a (53-6.7), R-PE-α-CD11c (HL3), 

unconjugated α-I-Ad (AMS-32.1), and unconjugated α-H-2Dd (34-5-8S) antibodies against 

mouse antigens and α-human CD3 (UCHT1) were purchased from BD Pharmingen.   PE/Cy5-α-

CD3ε (145-2C11), PE/Cy5-α-CD40 (1C10), PE/Cy5-α-CD80 (16-10A1), and PE/Cy7-α-CD86 

(GL1) antibodies against mouse antigens were purchased from BioLegend.  Isotype control 

antibodies were purchased from the same manufacturers according to the fluorescent conjugate 

used. 

 

Vaccine 

Construction of the Clostridium perfringens vaccine expressing SIV p27 has been 

described previously [306].  Sporulating cultures were achieved by overnight culture of modified 

Duncan-Strong medium [299] inoculated with a fresh 8h culture grown in fluid thioglycolate 

broth (Difco), with all growth performed at 37°C and in the presence of 10μg/mL 
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chloramphenicol.  Sporulation of at least 90% of all bacteria in cultures was confirmed by phase-

contrast light microscopy.  Sporulated bacteria were isolated and washed twice with PBS by 

centrifugation at 9700xg at 4°C for 10 minutes per centrifugation.  Isolated sporulating bacteria 

were sonicated, and expression of p27 was confirmed in sporulating cultures of the transformed 

bacteria by Western blot. 

 

BMDCs 

Mouse bone marrow-derived dendritic cells (BMDCs) were prepared as described 

previously [306].  Briefly, bone marrow cells flushed from the femurs and tibias of mice were 

seeded and cultured at 8x106 cells in 6-well plate wells in 4mL RPMI 1640 containing 10% heat-

inactivated fetal bovine serum, 1% L-glutamine, 1% sodium pyruvate, 1% nonessential amino 

acids, 1% penicillin-streptomycin, 0.025M 2-mercaptoethanol, and 4ng/mL of both GM-CSF and 

IL-4.  At day 2, nonadherent cells were removed and 50% of the supernatant was replaced with 

fresh cytokine-containing medium.  Cells (40-60% CD11c-positive) were used on culture day 5 

or 6. 

 

Isolation of PPDCs 

Peyer’s patch dendritic cells (PPDCs) were isolated as described by Iwasaki et al. [317] 

with modifications.  Aside from enzymatic incubations, isolation of cells was performed on ice.  

Peyer’s patches (PPs) were aseptically removed from small intestines and incubated at 37°C with 

stirring for 15-30 minutes in Hank’s balanced salt solution with 10% heat-inactivated FBS, 

145μg/mL 1,4-dithioerythritol, 25mM HEPES, and 5mM EDTA.  After washing with PBS, PPs 

were incubated for 15-30 minutes with stirring at 37°C in RPMI 1640 containing 10% heat 
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inactivated fetal bovine serum, 1% penicillin-streptomycin, and 1mg/mL collagenase D (Roche).  

The medium was passed through a 70μm-pore nylon mesh strainer and a 5mL syringe pestle was 

used to crush PPs through the same strainer.  The cell mixture was then passed through a 40μm-

pore nylon mesh strainer and recovered by centrifugation at 4°C.  Cells were blocked with anti-

CD16/CD32 antibody at 1:100 dilution, washed, and then incubated at 4°C for 15 minutes with 

MACS CD11c MicroBeads (Miltenyi Biotec) using 10μL beads per 107 cells.  Cells were then 

enriched for CD11c+ cells by passing through MS Columns (Miltenyi Biotec) following the 

manufacturer’s protocol.  Cells were then cultured at 1x106 cells/mL in 96-well plate wells in 

RPMI 1640 containing 10% heat-inactivated FBS, 1% penicillin-streptomycin, 3mM L-

glutamine, 1mM sodium pyruvate, and 50μM 2-mercaptoethanol.  Isolated cells were routinely 

65-75% CD11c-positive as detected by flow cytometry. 

 

Treatment of cells with vaccine 

BMDCs that had been grown for 5-6 days (1-2x106 cells per 4mL) or freshly isolated 

PPDCs (2x105 cells per 200µL) were incubated with ~2x105/mL sporulated, sonicated C. 

perfringens expressing p27, empty vector C. perfringens control, purified p27 protein at a 

concentration equivalent to that expressed by the vaccine bacteria.  As a positive control 

0.5μg/mL LPS were added to BMDC, and 10μM unmethylated CpG oligodinucleotides were 

added to PPDCs.  Treatments were removed after 2h via washing and centrifugation, and the 

cells were returned to culture for 22 (BMDCs) or 4 (PPDCs) additional hours.  Supernatant of 

cultures was then collected and stored at -20°C, and cells were harvested and utilized for further 

assays. 
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Flow cytometry 

DCs were surface stained for CD11c, CD40, CD80, CD86, and MHC class II (I-Ad).  

BMDCs were also assayed for phagocytosis by incubating cells for 30 minutes in media 

containing 1mg/mL FITC-dextran (40,000 kDa molecular weight; Sigma).  Cells were then 

surface stained at 4°C.  After staining, all cells were fixed, and data were collected on using a 

Coulter Epics XL-MCL flow cytometer.  Cytometry data were analyzed using FlowJo version 

7.2.2. 

 

Bio-Plex 

DC supernatants were analyzed for cytokines using the Bio-Plex Mouse Cytokine 

Th1/Th2 Bio-Plex Panel kit from Bio-Rad.  50μL samples were assayed following the 

manufacturer’s instructions, and beads were analyzed using a Bio-Plex Luminex system. 

  

Western blot 

Cells were lysed and separated on a 15% SDS-PAGE gel.  Protein was transferred to 

nitrocellulose and blotted with monkey anti-SIV serum (a gift from Michael Murphey-Corb), 

washed, and blotted with horseradish peroxidase-conjugated goat anti-monkey antibody (Nordic 

Immunological Laboratories).  Protein bands were detected with SuperSignal West Pico 

Chemiluminescent Solution (Pierce).  Blots were analyzed via densitometry using Quantity One 

software (Bio-Rad). 
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ELISpot assay 

Detection of interferon-gamma (IFN-γ) was performed using mouse IFN-γ ELISpot Kits 

from Mabtech.  Precoated anti-IFN-γ ELISpot plates were activated with 5 washes with PBS and 

blocked at room temperature for ≥30 minutes with RPMI containing 10% FCS.  2x105 SIV p27-

specific splenocytes derived from mice inoculated subcutaneously with SIV p27 in Freund’s 

adjuvant were plated in wells.  These cells were placed at 37°C for 1h, and then BMDCs or 

PPDCs exposed to SIV p27-expressing C. perfringens or vector control C. perfringens were 

added to ELISpot plate wells at a 1:5 or 1:25 DC:splenocyte ratio, respectively, in a final volume 

of 200μL ELISpot media (RPMI-1640 with 10% heat-inactivated FBS, 1% 

penicillin/streptomycin, 0.1mM non-essential amino acids, 2mM L-glutamine, 10mM HEPES, 

and 1mM sodium pyruvate) per well.  Control wells included splenocyte or DCs only, and 

media-only control wells were also included for each plate.  In the case of MHC-blocking 

experiments, DCs at a concentration of 4x105 cells/mL were pre-incubated for 2h 1:50 (v/v) with 

the appropriate antibody (α-I-Ad for MHC class I blocking, α-H-2Dd for MHC class II blocking, 

and α-human CD3 as a control) before being added to splenocytes.  The cells were then 

incubated at 37°C for 24 to 36h.  Detection of IFN-γ spot-forming cells (sfc) was performed 

according to the manufacturer’s protocol.  Briefly, cells were removed and plates were washed 5 

times with PBS.  100μL of 1μg/mL R4-6A2-biotin detection antibody in PBS with 0.5% FCS 

was added to each well, and plates were incubated at room temperature for 2h.  Antibody was 

discarded and plates were washed 5 times with PBS, then 100μL of 1:1000 streptavidin-ALP in 

PBS with 0.5% FCS was added to each well, and plates were incubated at room temperature for 

1h.  Plates were washed as before, and 100μL of 0.45μm-filtered BCIP/NBT-plus substrate 

solution was added to each well.  Spots were allowed to develop for about 20 minutes at room 
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temperature, and then plates were washed extensively with tap water.  The underdrain was 

removed and the back of well membranes was also washed.  Excess water was blotted away 

using paper towel, and plates were left to dry in the dark at room temperature.  When dry, sfc 

were counted on an automated ELISpot reader.  Background sfc values from media- and cell-

only control wells were removed as appropriate, and sfc were normalized to 106 cells. 

 

Statistics 

Except where noted, p values were determined using 1-tailed two-sample Student’s t-test 

with unequal variance. 
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2.5 RESULTS 

2.5.1 Maturation of BMDCs Exposed to C. perfringens Expressing SIV p27 

In order to prime an effective immune response against an antigen, a DC exposed to the 

antigen must mature. To test the ability of the C. perfringens SIV vaccine to stimulate maturation 

of DCs, murine bone marrow-derived DCs (BMDCs) were exposed to C. perfringens expressing 

SIV p27 or empty vector C. perfringens or other stimuli.  Following exposure to Cp-p27, 

BMDCs showed an increased surface expression of CD80, CD86, CD40, and MHC class II, 

similar to stimulation with LPS as a positive control (Figure 2).  BMDCs exposed to control  
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Figure 2.  Maturation of bone marrow-derived dendritic cells (BMDCs) in response to C. perfringens SIV p27 
vaccine (Cp-p27) 
BMDCs were cultured without stimulus (filled grey curve/bar), with LPS (dotted curve/bar) as a positive control, 
with empty vector (black filled bar) control C. perfringens, or with Cp-p27 (unfilled solid dark curve/bar).  Unfilled 
solid light curve represents isotype control.  A, Representative flow cytometric histograms from 3 or 6 independent 
experiments showing the level of expression of maturation markers CD80, CD86, CD40, and MHC class II (I-Ad).  
All histograms are pregated on CD11c+ cells.  B, Average mean fluorescence intensity + standard error of the mean 
of maturation marker expression in response to stimuli as determined by flow cytometry.  Values of p were 
determined by Student’s t-test against untreated cells.  *p<0.05; **p<0.10. 
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Figure 3.  Internalization of dextran in BMDCs following exposure to Cp-p27 
BMDCs were cultured without stimulus, with LPS as a positive control, or with Cp-p27.  Following culture, cells 
were assayed for phagocytic ability by culture with FITC-conjugated dextran at 4°C (grey filled curve) or 37°C 
(unfilled curve).  Flow cytometric histograms show FITC-dextran internalization in the CD11c+ cell gate 
representative of 3 independent experiments.  Average difference in mean fluorescence intensity (ΔMFI) ± standard 
error of the mean is shown, with ΔMFI calculated by subtracting the 4°C MFI from the 37°C MFI. 
 

bacteria carrying an empty expression vector also displayed increased expression of the 

maturation markers, as is expected due to the presence of peptidoglycan in the C. perfringens 

cell wall. To confirm maturation, BMDCs exposed to stimuli were incubated with FITC-labeled 

dextran, and phagocytosed FITC signal was detected via flow cytometry.  BMDCs exposed to 

LPS, Cp-p27, or empty-vector C. perfringens displayed lower dextran internalization than 

untreated BMDCs, indicating a loss of phagocytic capacity (Figure 3). 

The matured BMDCs in all treatment groups produced high levels of a number of 

cytokines.  Specifically, proinflammatory cytokines known to play important roles in developing 

Th1 responses (IFN-γ, TNF-α, IL-12 p70) were all produced in quantities at least 3.5-fold higher 

than untreated cells (Table 1).  IL-4 was reduced in vaccine-treated cells compared with 

untreated cells; however, the Th2 and T-regulatory mediator IL-10 was increased, albeit to a 

much lesser degree than in positive-control LPS-treated cells.  BMDCs exposed to empty-vector 

C. perfringens produced less IL-5, IL-10, IL-12 (p70), and TNF-α than Cp-p27-exposed 

BMDCs.  IFN-γ and IL-4 levels were similar. 
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Table 1.  Cytokine profile of culture supernatants from BMDCs exposed to no stimuli, Cp-p27 vaccine, 
empty-vector control Cp vaccine or LPS 

 

 IL-2 IL-4 IL-5 IL-10 
 (pg/mL) fold 

increase (pg/mL) fold 
increase (pg/mL) fold 

increase (pg/mL) fold 
increase 

none 1.53±0.40  1.85±0.90 0.21±0.06 3.19±1.34 

Cp-p27 20.78±1.80 7.05 0.47±0.10 0.25 2.02±1.59 9.49 137.21±58.94 43.01 

control Cp 35.81±14.32 23.40 0.47±0.06 0.26 0.41±0.11 1.95 69.09±27.02 21.66 

LPS 2.80±0.53 1.83 1.67±0.31 0.90 5.73±1.55 26.98 570.70±168.2 178.90 

         

 

 

 

 

 

 

Changes observed in BMDCs following exposure to the Cp-p27 vaccine are in 

accordance with a mature DC phenotype activity [318].   These results suggest that the BMDCs 

exposed to the vaccine should be able to prime T cells to form a productive immune response. 

2.5.2 Functional Capacity of Cp-p27 Vaccine-Exposed BMDCs 

It has been demonstrated previously that p27 protein is internalized by BMDCs when 

they are exposed to the Cp-p27 vaccine [306].  To track the fate of the internalized p27, a 

polyclonal anti-SIV serum was used in Western blots to probe cell lysates of BMDCs over a time 

course following exposure to the vaccine.  Within 8 hours after exposure, these p27 levels were 

markedly decreased or undetectable in the BMDCs (Figure 4 A). 

 IL-12 (p70) TNF-α IFN-γ 
 (pg/mL) fold 

increase (pg/mL) fold 
increase (pg/mL) fold 

increase 

None 0.80±0.27 2.28±0.31 0.08±0.05  

Cp-p27 14.34±5.48 17.89 135.25±83.53 59.19 0.31±0.13 3.73 

control Cp 4.82±1.96 6.02 10.54±3.87 4.61 0.40±0.16 4.75 

LPS 100.50±67.14 125.43 2366.91±964.14 1035.85 0.42±0.18 5.03 
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Figure 4.  SIV p27 delivered by Cp-p27 processing and presentation by BMDCs 
A, Western blot of lysates from Cp-p27 bacteria and BMDCs at multiple times following exposure to Cp-p27.  B, 
IFN-γ ELISpot results representative of 5 independent experiments with vaccine-treated BMDCs cultured with p27-
specific murine splenocytes.  Error bars indicate standard error of the mean of samples assayed in triplicate.  p-value 
determined by Student’s t-test.  C, IFN-γ ELISpot results representative of 3 independent experiments with vaccine-
treated BMDCs cultured with p27-specific murine splenocytes in the presence of antibody against MHC class I or 
MHC class II.  The inset shows the percentage of CD4+ or CD8+ T cells in murine splenocytes (white bars; n=6) 
compared to the percentage of MHC class II- or class I-mediated IFN-γ production in the ELISpot assays (black 
bars). Error bars indicate standard error of the mean.  p-value determined by 2-tail heteroscedastic Student’s t-test. 
 
 

Next the fate of p27 was investigated by using vaccine-exposed BMDCs as antigen 

presenting cells in an ELISpot assay to determine if degraded p27 epitopes could be displayed on 

BMDC MHC molecules.  For this purpose, the vaccine-exposed and matured BMDCs were used 

to restimulate p27-specific mouse splenocytes in an IFN-γ ELISpot assay.  Splenocytes cultured 

with the vaccine-exposed BMDCs displayed p27-specific IFN-γ production, indicating that the 

BMDCs were indeed displaying p27 epitopes on MHC molecules and were capable of 

stimulating an immune response against p27 (Figure 4 B).  The IFN-γ ELISpot response 

stimulated by Cp-p27-exposed BMDCs was about 12.8 times that stimulated by BMDCs 
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exposed to empty vector C. perfringens.  It should be noted that the low background IFN-γ 

response detected by ELISpot in BMDC-only wells was similar regardless of whether BMDCs 

were treated with Cp-p27 or the empty vector control C. perfringens. 

By blocking MHC class I- or II-mediated epitope presentation with antibodies against 

these molecules, p27 epitopes were detected to be presented in the context of both MHC class I 

and class II (Figure 4 C).  More IFN-γ response was detected in assays with MHC class I 

blocking, indicating that the BMDCs presented more antigen in the context of MHC class II.  

However, the percentage of CD4+ or CD8+ T cells used in the assay were similar to the 

percentage of ELISpot sfcs resulting from MHC class II- or MHC class I-mediated expression, 

respectively (Figure 4 C inset).  These findings indicate that presentation of p27 peptides on 

BMDCs after exposure to the vaccine is biased neither towards MHC class I nor towards class II. 

2.5.3 Immune Response to Cp-p27 Vaccine in PPDCs 

BMDCs, representative of systemic myeloid DCs, have many differences from the 

Peyer’s patch DCs (PPDCs) that are the target for the development of mucosal immunity via oral 

vaccination.  The DC subpopulations resident in PPs occur at different frequencies than in 

systemic compartments, including higher proportions of lymphoid and CD4- DCs [319-322].  

DCs native to the PPs differ from other DCs in their reaction to antigen and subsequent cell-

stimulatory ability.  For example, PPDCs produce significantly more IL-10 following antigen-

induced maturation and are more inclined to stimulate a Th2-type T cell response [317, 323, 

324].  In order to better assess the vaccine’s potential to prime a gut immune response and to 

determine if these cells behave differently in response to the vaccine than BMDCs, the BMDC  
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Figure 5.  Maturation of Peyer’s patch dendritic cells (PPDCs) in response to Cp-p27 
PPDCs were cultured without stimulus (filled grey curve/bar), with CpG ODNs (dotted curve/bar) as a positive 
control, or with Cp-p27 (unfilled solid dark curve/bar).  Unfilled solid light curve represents isotype control.  A, 
Representative flow cytometric histograms from 2-5 independent experiments showing the level of expression of 
maturation markers CD80, CD86, CD40, and MHC class II (I-Ad).  All histograms are pregated on CD11c+ cells.  B, 
Average mean fluorescence intensity + standard error of the mean of maturation marker expression in response to 
stimuli as determined by flow cytometry. 
 
 
 
Table 2.  Cytokine profile of culture supernatants from PPDC exposed to no stimuli, Cp-p27 vaccine, empty-
vector control Cp vaccine or CpG ODN 

 

 IL-2 IL-4 IL-5 IL-10 
 (pg/mL) fold 

increase (pg/mL) fold 
increase (pg/mL) fold 

increase (pg/mL) fold 
increase 

None 0.95±0.04  0.51±0.14  0.10±0.02  1.29±0.16  

Cp-p27 1.61±0.28 1.69 1.79±0.61 3.54 26.48±2.46 268.10 163.82±18.74 126.99 

control Cp 1.05±0.09 1.11 1.23±0.38 2.44 0.20±0.09 2.00 5.74±4.45 4.45 

CpG ODN 2.25±0.60 2.37 0.85±0.43 1.68 0.13±0.03 1.30 11.79±5.01 9.14 

 
 IL-12 (p70) TNF-α IFN-γ 
 (pg/mL) fold 

increase (pg/mL) fold increase (pg/mL) fold 
increase 

none 0.64±0.08  1.89±0.21  0.70±0.13  

Cp-p27 308.57±23.31 485.93 1806.96±150.94 956.69 39.69±13.53 56.80 

control Cp 3.59±2.09 5.66 18.34±12.05 9.71 0.84±0.34 1.20 

CpG ODN 12.93±4.43 20.36 3.41±0.97 1.80 1.61±0.35 2.30 
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experiments were repeated using DCs isolated from the PPs of mice.  Vaccine-treated PPDCs 

showed enhanced surface expression of maturation markers and production of pro-inflammatory 

cytokines, similar to BMDCs (Figure 5 and Table 2).  Interestingly, the percentage of PPDCs 

expressing CD40 in response to the positive control unmethylated cytosine-phosphate-guanine 

oligodinucleotides (CpG ODN) was similar to that of unstimulated cells; however, the mean 

fluorescence intensity of the small percentage of CD40-expressing cells was distinctly higher in 

CpG ODN-stimulated PPDCs than unstimulated PPDCs.  In contrast to BMDC cytokine 

responses, PPDCs treated with Cp-p27 displayed much higher levels of expression of IL-5, IL-

10, IL-12(p70), TNF-α, and IFN-γ in comparison to untreated PPDCs as well as CpG ODN- and 

empty vector C. perfringens-treated PPDCs.  In an ELISpot assay, the Cp-p27-exposed PPDCs 

also displayed the ability to stimulate p27-specific IFN-γ (Figure 6).  In this assay, background  

control wells of just PPDCs showed identical numbers of IFN-γ spot-forming cells (sfc) (which 

was at or near zero) regardless of whether they were treated with Cp-p27 or empty vector C. 

perfringens.  Thus, although PPDCs respond to antigen differently than other DCs, these data 

suggest that the C. perfringens-p27 vaccine would be able to generate an anti-SIV-p27 immune 

response in the gut if successfully delivered to PPDCs. 
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Figure 6.  SIV p27 delivered by Cp-p27 vaccine is presented as epitopes by PPDCs 
Shown are IFN-γ ELISpot results representative of 5 independent experiments with vaccine-treated PPDCs cultured 
with p27-specific murine splenocytes.  Error bars indicate standard error of the mean of samples assayed in 
duplicate.  p-value determined by Student’s t-test. 
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2.6 DISCUSSION 

The present study investigated the phenotype and functionality of murine DCs following 

exposure to C. perfringens-SIV p27 vaccine.  Both bone marrow-derived and freshly isolated PP 

DCs demonstrated characteristics of maturation following exposure to vaccine including 

upregulation of costimulatory and MHC molecules and loss of phagocytic capacity (Figures 1 

and 4).  Once internalized into BMDCs, p27 was degraded, and the antigen became undetectable 

within 8 hours (Figure 3a).  The matured dendritic cells expressed high levels of pro-

inflammatory and Th1- and memory-promoting cytokines (Tables 1 and 2) and stimulated an 

IFN-γ response in p27-specific cells (Figures 3b and 5).  IFN-γ was produced in the presence of 

antibodies against either MHC class I or MHC class II (Figure 3c), indicating that p27 epitopes 

are effectively presented in both contexts, and the DCs can thus stimulate both CD4+ and CD8+ T 

cells.  This study demonstrates the ability of p27 in the context of the Cp-p27 vaccine to induce 

murine DCs to stimulate a p27-specific T cell response. 

The goal of the C. perfringens-p27 vaccine examined in this study is to successfully 

deliver SIV p27 antigen to DCs of the PPs and induce an immune response against the antigen.  

Since the p27 antigen is present in inclusion bodies of the bacterial cell, the p27 is protected from 

destruction by stomach acid and by degrading enzymes of the small intestine as the bacterial 

vector travels through the duodenum and jejunum until it reaches the terminal ileum.  This would 

allow for delivery of high amounts of intact viral antigen to the site of the gut that has been 

shown in humans and monkeys to be rapidly infected and depleted of lymphocytes following 

infection of the individual by HIV or SIV, respectively [64, 74, 75, 312-314].  A vaccine-induced 
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immune response in these tissues is likely to be important in controlling the virus soon after 

infection, and the Cp-p27 is an attractive possible tool for inducing such a response.  DC 

maturation and antigen presentation is the first requirement for the formation of a DC-mediated 

immune response. 

The evaluation of HIV and SIV vaccines by characterizing their interactions with and 

effects upon DCs has been undertaken with leading vaccine vectors.  For example, a study of the 

mechanism of the ALVAC canary-pox vector’s induction of innate immune activation included 

investigation of its effects upon murine BMDCs [325].  ALVAC is used as a vector for many 

HIV vaccines previously and currently in clinical trials.  BMDCs exposed to ALVAC displayed 

enhanced expression of costimulatory molecules CD40, CD80, and CD86.  In the current study, 

BMDCs exposed to Cp-p27 demonstrated upregulation of these same markers as well as MHC 

class I.  Whereas ALVAC treatment was reported to induce less costimulatory molecule 

upregulation as compared to a positive control TLR4 agonist, Cp-p27 treatment in the current 

study displayed equal or enhanced levels of most maturation indicators compared with the TLR4 

agonist LPS.  This may be due in part to the presence of peptidoglycan in C. perfringens, which 

might interact with DCs via TLR2 as has been suggested for another Gram positive organism, 

Staphylococcus aureus [326-329].  Both ALVAC- and Cp-p27-treated BMDCs secreted 

cytokines including TNF-α and IL-12.  Additionally, Cp-p27-treated BMDCs and PPDCs 

secreted IFN-γ, which has been suggested to be essential for PPDCs to mediate optimal 

resistance against oral pathogens [330]. 

The most promising bacteria-based anti-immunodeficiency virus vaccines to date utilize 

Salmonella enterica serovar Typhimurium [247, 331] and Listeria monocytogenes [332, 333].  

Like these vaccines, Cp-p27 is designed to deliver intact protein to gut cells.  However Cp-p27 
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does not involve infection or colonization of the gut mucosa since the protein is delivered in the 

context of a non-replicative bacterial spore.  Human monocyte-derived DCs exposed to HIV gag-

expressing L. monocytogenes stimulated cytotoxicity against target cells [334].  Although the 

evaluation of this Listeria vaccine in mucosal DCs was not reported, the vaccine has been shown 

to stimulate gut mucosal as well as systemic immunity in animal models when delivered orally, 

indicating that the in vitro response to the vaccine in systemic-type DCs (e.g. monocyte-derived 

DCs) corresponded to mucosal in vivo immunostimulatory capacity of the vaccine[332].  In the 

current study, murine systemic DCs exposed to C. perfringens expressing SIV p27 caused IFN-γ 

production by p27-specific cells via both MHC class II and class I, indicating that stimulation of 

CTLs was likely resulting from vaccine-exposed DCs.  Murine gut mucosal DCs exposed to the 

vaccine also stimulated p27-specific IFN-γ production.  In light of the findings with the L. 

monocytogenes vaccine, the current results encourage further exploration into the in vivo 

capacity of the orally-delivered Cp-p27 vaccine to stimulate systemic and mucosal immunity via 

DCs. 

Dendritic cells exposed in vitro to free antigen or vaccine-delivered antigen have also 

been used themselves as vaccines in many non-human primate and human studies (reviewed in 

[335]).  When treated in vitro, these DCs demonstrate upregulation of costimulatory molecules 

and MHC class II, pro-inflammatory cytokine production, and capacity to trigger antigen-

specific IFN-γ production.  These characteristics correspond to immunostimulatory capacity of 

the DC-vaccines when administered in vivo.  The enhancement of DC-mediated IFN-γ observed 

in these types of studies is of the same magnitude as that detected in this study with Cp-p27-

exposed DCs (i.e. approximately 10-fold enhancement of IFN-γ sfc when comparing vaccine-

exposed DCs with DCs exposed to vector control vaccine) [336, 337]. 
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The results of the current study demonstrate that in vitro exposure of both systemic and 

gut mucosal DCs to the Cp-p27 vaccine leads to effective stimulation of a p27-specific immune 

response.  Previously it was shown that oral delivery of the vaccine to mice resulted in high 

levels of p27 in the terminal ileum [306].  Together, these findings suggest that the vaccine 

should be effective at priming an immune response in Peyer’s patches in vivo when orally 

delivered.  Given the importance of the gut in HIV and SIV infection, it is vital to pursue 

development of vaccine vectors such as ours that may induce effective anti-viral immunity in the 

gut.  Experiments are underway to investigate the immune response generated against SIV p27 

when animals are fed the Cp-p27 vaccine. 
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3.0  USE OF PROTEIN TRANSDUCTION DOMAIN CONJUGATION TO SIV P27 

TO ENHANCE IMMUNE RESPONSE AGAINST VIRAL ANTIGEN 

3.1 PREFACE 

The study described in this chapter was performed by Ruth Helmus in Dr. Phalguni 

Gupta’s laboratory.  Dr. Bruce McClane graciously provided the pJRC200 plasmid.  Bio-Plex 

assays were performed by Amy Magill in Dr. Kolls’ laboratory, and animals were cared for by 

the University of Pittsburgh Division of Laboratory Animal Resources.  Dr. Paul D. Robbins 

provided guidance for PTD sequence selection.  These results were presented as a poster abstract 

at the 2005 Keystone Symposia on HIV Vaccines (Protein transduction domain fusion enhances 

dendritic cell SIV p27 internalization and stimulatory function in response to a C. perfringens-

based SIV vaccine.  R. Helmus, Y. Chen, T. Wehrli, and P. Gupta.) 
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3.2 ABSTRACT 

Protein transduction domains (PTDs) are cationic peptides that improve the delivery of 

their attached cargo into the cytoplasm of mammalian cells.  The Cp-p27 vaccine consists of a 

Clostridium perfringens bacterium expressing SIV p27 and is designed to deliver p27 to 

dendritic cells (DCs) of the small intestine.  By conjugating PTD peptide sequences 8K and 

PTD-5 to the N-terminus of p27 in Cp-p27, it was hypothesized that enhanced p27 delivery 

would result, leading to more p27 epitope display on MHC class I, and thereby improving the 

induction of CD8+ T cell immune responses that have been associated with control of SIV.  

Although C. perfringens expressing p27 conjugated to PTD sequences resulted in higher protein 

internalization, no difference was observed between PTD-conjugated and unconjugated strains in 

the ability to induce DCs to stimulate p27-specific IFN-γ by splenocytes.  In addition, no 

improvement in systemic immunity was observed following vaccination with the 8K-conjugated 

strain when compared with the unconjugated Cp-p27 vaccine.  In summary, a higher immune 

response by the PTD-conjugated Cp-p27 strains was not induced despite an increase in protein 

internalization by DCs. 
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3.3 INTRODUCTION 

In order to stimulate an immune response in the gastrointestinal tract, antigen must be 

delivered in sufficient quantity to antigen presenting cells (APCs).  The major APCs of the 

intestine are dendritic cells (DCs), which are found in the subepithelial dome (SED) of Peyer’s 

patches (PPs) and interspersed in lamina propria tissue.  PPDCs acquire antigen when it is 

transcytosed to the SED through specialized epithelial cells known as M cells [254].  Lamina 

propria DCs extend their dendrites across the epithelial layer to directly capture luminal contents 

[256, 338] and can also acquire antigen from intestinal epithelial cells [339, 340].  DCs are 

generally required for the formation of productive mucosal immune responses [341, 342], 

although intestinal epithelial cells may also function as APCs [343]. 

DCs possess the unique ability to present exogenously acquired antigens, which normally 

are loaded onto MHC class II molecules, in the context of MHC class I.  Antigen presentation on 

MHC class I is required for the formation of CD8+ T cell responses, including CD8+ CTL 

responses, which are important in control of HIV and SIV infection [40, 42, 136-140].  

Enhancing the delivery of vaccine antigen to DCs is expected to increase the number of DCs 

presenting antigen and thus the number of resulting antigen-specific effector cells. 

Protein transduction domains (PTDs) are peptides that enable the proteins to which they 

are bound to efficiently enter target cells through a receptor-independent mechanism [288-290].  

PTD-mediated uptake delivers antigen to the cytoplasm, which engages the MHC class I 

pathway, thus enhancing DC cross-presentation and increasing induction of CTLs [296, 297].  

Unique PTDs have been designed with the ability to specifically target proteins to certain cell 
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types.  Among these are the arginine-rich PTD-5 peptide (RRQRRTSKLMKR) and the lysine-

rich 8K peptide (KKKKKKKK).  Both of these positively charged cationic peptides show strong 

binding to glycosaminoglycans such as heparan sulphate [288].  Thus, through electrostatic 

interaction with the plasma membrane, the PTDs with their attached protein cargo are more 

efficiently transduced into cells than unattached protein [288].  PTD-5 and 8K have been 

successfully used to deliver fluorescent proteins and active enzymes to cells and tissues [288, 

291, 344].  PTD-5 enhances protein uptake by many cell types, including epithelial cells and 

DCs [291].  8K also transduces protein into epithelial cells [288] and is especially proficient at 

directing proteins into DCs (Dr. Paul.D. Robbins, personal communication).  Incorporating either 

of these PTD peptides as an N-terminal conjugation to orally administered antigen should 

increase delivery of the antigen directly to gut DCs or to DCs indirectly via enhanced uptake by 

M cells or epithelial cells. 

To evaluate the potential for PTD conjugation to enhance immunity against SIV p27 

through vaccination with Clostridium perfringens expressing SIV p27, PTD-p27 conjugate 

strains of C. perfringens were examined for immune stimulatory capacity under in vitro and in 

vivo conditions.  The responsiveness of DCs to the various C. perfringens vaccine strains 

expressing PTD-conjugated SIV p27 and the resultant ability of DCs to stimulate p27-specific 

cellular responses were determined. 
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3.4 MATERIALS AND METHODS 

Construction and growth of C. perfringens expressing SIV p27 and PTD conjugates 

Construction of C. perfringens expressing SIV p27 (Cp-p27) using the pJRC200 plasmid 

has been described in Chapter 2 and published elsewhere [306].  For PTD conjugate strains in 

which p27 was expressed with the N-terminal fusion of either PTD-5 (RRQRRTSKLMKR) or 

8K (KKKKKKKK), primers encoding the appropriate PTD sequence, BstB I and Bsu36 I 

enzyme cut sites, and a di-glycine (GG) linker were used in the initial p27 amplification step (see 

Table 3) and the resulting PCR product was cloned.  The empty vector C. perfringens used in 

these experiments contained the pJIR418 plasmid, the parent of pJRC200.  Recombinant 

plasmids and C. perfringens strains were confirmed by sequencing to contain the desired genetic 

information.  Sporulating cultures were achieved, isolated, and quantitated for p27 expression as 

described in Chapter 2. 

 

Table 3.  5' primers used for cloning of SIV p27 into C. perfringens 

peptide for 
conjugation to p27 5’ to 3’ primer sequence 

  

PTD-5 TTCGAAATGAGACGCCAGCGTCGCACGAGCAAACTGATGAAACGAGGCG
GCCCAGTACAACAAATAGGTGGTAAC 

8K ACTGTACTACTCTTCGAAATGAAGAAGAAGAAGAAGAAGAAGAAGGGCG
GCCCAGTACAACAAATAGGTGGTAAC 

none TTCGAACCAGTACAACAAATAGGTGG 

3' primer for all constructs was 5’--CCTAAGGACATTAATCTA GCCTTCTG--3’ 
Italics:  BstB I recognition site 
Underline:  PTD overhang 
Bold:  diglycine linker 
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Animals 

Female Balb/c mice were purchased from Charles Rivers Laboratories, Inc. and housed in 

a pathogen-free facility in accordance with the University of Pittsburgh Institutional Animal Care 

and Use Committee and federal regulations.  Animals were used at 6 to 8 weeks of age. 

 

Cell culture 

Bone marrow-derived DCs (BMDCs) were generated and grown as described in Chapter 

2.  The DC2.4 cell line was cultured in DMEM containing 10% FBS, 1% penicillin-

streptomycin, and 2mM L-glutamine.  Adherent cells grown in 75cm2 flasks were trypsinized 

and reseeded (1-2x106 cells per flask) every 3-4 days.  For uptake experiments, cells were seeded 

at day 0 at 1x106 cells per 100mm diameter round culture dish and grown in a volume of 10mL 

for use on culture day 4.  CaCo2 cells were cultured in DMEM containing 10% FBS, 1% 

penicillin-streptomycin, 0.76% sodium bicarbonate, 0.1mM non-essential amino acids, and 2mM 

L-glutamine.  Cultures were fed on day 3 or 4 of culture by removing ¾ media and replacing 

with fresh media.  Adherent cells grown in 75cm2 culture flasks were trypsinized and reseeded 

(1.5x106 cells per flask) on day 6-8 of culture.  For uptake experiments, cells were seeded on day 

0 at 1x106 cells per 100mm diameter round culture dish and grown in a volume of 10mL for use 

on culture day 7, with feeding at day 3.  All cells were grown at 37°C in the presence of 5% CO2. 

 

BMDC treatment and assays 

BMDCs were treated with bacteria and surface stained as described in Chapter 2.  

Dextran uptake experiments were also performed as described in Chapter 2.  Cells were 
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examined using a Coulter Epics XL-MCL flow cytometer or FACS Canto flow cytometer.  

Cytometry data were analyzed using FlowJo version 7.2.2.  DC supernatants were analyzed in 

the laboratory of Dr. Jay K. Kolls for cytokines using the Bio-Plex Mouse Cytokine Th1/Th2 

Bio-Plex Panel kit from Bio-Rad.  50μL samples were assayed following the manufacturer’s 

instructions, and beads were analyzed using a Bio-Plex Luminex system. 

 

p27 uptake experiments 

Optimal exposure time and treatment concentration was determined for both DC2.4 and 

CaCo2 cells grown in culture dishes to be 2 hours with 100mg p27 expressed by sonicated C. 

perfringens strains all grown to similar concentrations and with similar sporulation percentages.  

After this incubation period, cells were extensively washed with Hanks’ buffered salt solution 

and trypsinized (1mL per dish) for 1-5 minutes at 37°C.  Trypsin was neutralized by the addition 

of RPMI containing 10% FBS, and all cells were removed from the dish and pelleted at 700rpm.  

Cell samples from each pellet were counted and assessed for viability using trypan blue 

exclusion.  For CaCo2 cells, viability was confirmed with propidium iodide staining and analysis 

via flow cytometry.  Pellets were washed with HBSS and stored at -20°C until Western blot 

analysis.  For Western blots, a minimal volume of loading buffer containing SDS was added to 

each cell pellet, and this mixture was boiled for 10 minutes.  Samples were separated on a 15% 

SDS-PAGE gel which contained low mass p27 standards ranging from 25ng to 250 ng).  Protein 

was transferred to nitrocellulose and blotted with monkey anti-SIV serum (a gift from Michael 

Murphey-Corb), washed, and blotted with horseradish peroxidase-conjugated goat anti-monkey 

antibody (Nordic Immunological Laboratories).  Protein bands were detected with SuperSignal 

West Pico Chemiluminescent Solution (Pierce).  Blots were analyzed via densitometry using 
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Quantity One software (Bio-Rad), with valid measurements falling within the linear portion of a 

standard curve. 

Each uptake experiment contained 5 or 6 culture dishes per C. perfringens strain tested, 

and cells from each dish were loaded into separate lanes on the same SDS-PAGE gel.  The 

average mass of p27 internalized was calculated for each C. perfringens strain in each 

experiment.  For both cell lines used, the experiment was performed at least 3 times with similar 

internalization trends observed each time. 

 

 

Dendritic cells ELISpot assay 

Detection of interferon-gamma (IFN-γ) was performed using mouse IFN-γ ELISpot Kits 

from Mabtech as described in Chapter 2.  To determine the percent of response due to MHC 

class I epitope presentation, MHC-blocking experiments were conducted as described in Chapter 

2.  The number of sfc from α-H-2Dd-treated samples was divided by the sum of sfc from α-H-

2Dd-treated samples and α-I-Ad-treated samples and then multiplied by 100 to determine the 

percentage of response due to MHC class I. 

 

Vaccination 

Mice were inoculated using an infant enteral feeding tube inserted down the esophagus 

into the stomach, where a total volume of 500μL was delivered.  Two mice per group received 

either Cp-8K-p27 or Cp-p27, each expressing similar levels of p27 and each delivered with 25μg 

LT(R192G) adjuvant (provided by J. D. Clements), or PBS as a control.  Vaccine was 

administered 3 times at 2 week intervals.  19 days after the final inoculation mice were sacrificed 
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and spleens were collected.  Spleens were gently crushed with glass stoppers to release 

splenocytes, which were passed through nylon mesh, pelleted with centrifugation at 4°C at 1200 

rpm for 5 minutes, treated with 3-5mL red blood cell lysis buffer (Sigma) for 5 minutes with a 

gentle shake after 3 minutes, and washed with RPMI containing serum.  2x105 splenocytes were 

assayed using mouse IFN-γ ELISpot Kits from Mabtech in a volume of 200μL ELISpot media 

(RPMI-1640 with 10% heat-inactivated FBS, 1% penicillin/streptomycin, 0.1mM non-essential 

amino acids, 2mM L-glutamine, 10mM HEPES, and 1mM sodium pyruvate).  Samples were 

stimulated with two separate pools of SIV mac239 15-mer peptides (NIH AIDS Research and 

Reference Reagent Program) covering the majority of SIV p27 with peptides 5265 through 5298 

of SIV gag with each peptide at a concentration of 5μg/mL.  Each sample also included a 

background control in which a concentration of DMSO equivalent to that in the peptide pools 

was added to the well.  As a positive control, each sample was stimulated with 1mg/mL 

concanavalin A.  All treatments for all samples were plated in triplicate.  Cells were incubated at 

37°C for 24h.  Detection and quantitation of IFN-γ sfc was performed as described in Chapter 2.  

These results were compared with IFN-γ sfc values determined from mice who received 109 pfu 

of Ad-p27 delivered in 50μL into the quadriceps muscle using a 26G needle and were sacrificed 

2 weeks later. 

 

Statistics 

Values of p were determined using 1-tail two-sample Student’s t-test with unequal 

variance. 



 66 

3.5 RESULTS 

3.5.1 Construction of C. perfringens Expressing PTD-conjugated SIV p27 

C. perfringens expressing p27 conjugated to either PTD-5 or 8K were constructed as 

described in Materials and Methods (section 3.4) using the standardized pJRC200 expression 

plasmid cloning method established during the engineering of Cp-p27 [306].  Expression of p27 

with each PTD conjugate was confirmed by Western blotting in sporulated cultures of each 

conjugate strain (Figure 7).  The level of p27 expression was not significantly affected by 

inclusion of either PTD conjugate (Figure 7). 

3.5.2 Maturation of BMDCs Exposed to PTD-Conjugated C. perfringens Strains 

C. perfringens strains expressing each PTD conjugate were then evaluated for their 

abilities to stimulate dendritic cell (DC) maturation.  Like Cp-p27, Cp-PTD-5-p27 and Cp-8K-

p27 conjugate strains enhanced expression of CD80, CD86 and CD40 costimulatory molecules, 

as well as MHC class II (Figure 8 A&B).  Phagocytosis of dextran was decreased in DCs after 

exposure to conjugate strains, similar to wild type Cp-p27 (Figure 8 C). 
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Figure 7.  Expression of PTD-conjugated p27 from C. perfringens 
Samples of sporulated C. perfringens expressing unconjugated p27 (Cp-p27), p27 conjugated to PTD-5 (Cp-PTD-5-
p27), or p27 conjugated to 8K (Cp-8K-p27) were probed via Western blot using SIV-specific antisera.  Control lanes 
contained 12.5ng purified p27 or C. perfringens carrying an empty expression plasmid (empty vector Cp). 
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Figure 8.  Dendritic cell maturation following exposure to C. perfringens expressing PTD-conjugated SIV p27 
Bone marrow-derived dendritic cells were exposed to C. perfringens expressing unconjugated SIV p27 (Cp-p27, 
blue), PTD-5-conjugated p27 (Cp-PTD-5-p27, red), 8K-conjugated p27 (Cp-8K-p27, green), or empty-vector C. 
perfringens (light gray).  As negative controls, cells were left untreated (black) or exposed to purified p27 protein 
(dark gray).  As a positive control, LPS was added to cells (dashed).  Unfilled solid light curve represents isotype 
control.  All histograms are pregated on CD11c+ cells.  A, Representative flow cytometric histograms from 2 to 5 
independent experiments showing the level of expression of maturation markers.  B, Average mean fluorescence 
intensity + standard error of the mean of maturation marker expression.  Values of p were determined by Student’s t-
test against untreated cells.  *p<0.05; #p<0.10.  C, Flow cytometric histograms show FITC-dextran internalization 
at 4°C (grey filled curve) or 37°C (unfilled curve).  Average difference in mean fluorescence intensity (ΔMFI) is 
shown in the upper right hand corner of each histogram, with ΔMFI calculated by subtracting the 4°C MFI from the 
37°C MFI. 
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3.5.3 Uptake of PTD-Conjugated p27 Delivered by C. perfringens 

To determine whether conjugation to either PTD sequence enhanced uptake of p27, two 

cell lines were exposed to bacteria expressing equivalent levels of p27, and internalized protein 

per cell was quantified by Western blot.  To examine the effect of PTD conjugation on 

internalization of p27 by both DCs and epithelial cells, the murine dendritic cell line DC2.4 and 

human colon epithelial cell line CaCo2 were exposed to C. perfringens expressing wild-type or 

PTD-conjugated p27.  In both cell types, more p27 was detected in cells treated with PTD 

conjugate strains than wild type, with p<0.10 (Figure 9).  In 6 of 10 experiments, there was 

consistently more p27 internalization by DC2.4 and CaCo2 cells following exposure to the 8K-

p27 conjugate as compared to the PTD-5-p27 conjugate. 
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Figure 9.  Internalization of C. perfringens-expressed SIV p27 conjugated to PTD sequences 
DC2.4 (A) or CaCo2 (B) cell line cells were exposed to C. perfringens expressing unconjugated SIV p27 (wt-p27), 
PTD-5-conjugated p27 (PTD-5-p27), or 8K-conjugated p27 (8K-p27).  Internalized protein was detected by 
quantitative Western blot and normalized to 106 cells.  Graphs are representative of at least 3 independent 
experiments per cell line.  Bars represent average internalized protein from 6 samples + standard error of the mean.  
Values of p were determined by Student’s t-test against wt-p27-treated cells.  *p<0.1. 
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Table 4.  Viable cells (in millions) remaining after treatment with vaccine constructs in wells seeded with 
equal numbers of CaCo2 cells 

 

vaccine construct used for treatment 

Cp-p27 Cp-PTD-5-p27 Cp-8K-p27 

trial 1 19.12 3.89 6.05 

trial 2 20.49 3.44 3.34 

trial 3 7.45 1.83 0.73 

 

 

It is important to note that the viability of cells was also assessed after treatment with 

bacteria.  Viability of DC2.4 cells was not altered.  However, massive killing of CaCo2 cells was 

observed following treatment with PTD conjugates, while cells treated with the unconjugated 

construct in the same experiment maintained high viability (Table 4). 

3.5.4 Functional Capacity of  BMDCs Exposed to C. perfringens Expressing PTD-
Conjugated p27 

It was next determined whether the p27-specific immune stimulatory capacity of DCs 

was enhanced following exposure to PTD conjugates using a p27-specific IFN-γ ELISpot assay.  

Similar to C. perfringens expressing wild-type p27, a strong p27-specific response was 

stimulated by both PTD conjugate vaccines (p<0.01 compared with empty vector vaccine) 

(Figure 10 A).  No significant difference in immune stimulation between wild-type and PTD-

conjugated vaccine strains was observed.  In addition, the percentage of p27 epitope presentation 

via MHC class I was not improved using C. perfringens expressing either PTD conjugate 

compared to C. perfringens expressing unconjugated p27 (Figure 10 B). 
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Figure 10.  Effect of PTD-conjugation to p27 on BMDC-mediated IFN-γ stimulation 
IFN-γ ELISpot assays were performed on p27-specific splenocytes with BMDCs exposed to C. perfringens carrying 
an empty expression plasmid (empty vector) or expressing unconjugated p27 (wt-p27), PTD-5-conjugated p27 
(PTD-5-p27), or 8K-conjugated p27 (8K-p27).  A, Averages of triplicate samples are shown with error bars 
indicating standard error of the mean.  *p<0.01 via Student’s t-test against empty vector.  B, The percentage of total 
IFN-γ due to MHC class I epitope presentation as determined by ELISpot with antibodies directed against MHC 
class I or II molecules.  +p<0.05 against both wt-p27 and PTD-5-p27 via Student’s t-test. 

 

3.5.5 Immunogenicity of C. perfringens Expressing PTD-Conjugated p27 

In vivo immunogenicity of the oral C. perfringens vaccine expressing 8K-conjugated p27 

was tested in small groups of mice.  Spleen cells were assayed for p27-specific IFN-γ T cell 

immune response in via ELISpot.  As a control, other groups of mice were fed with PBS or C. 

perfringens expressing unconjugated p27.  As shown in Figure 11, conjugation of p27 to 8K did 

not improve the splenic response to p27 induced by Cp-p27.  Both C. perfringens-based vaccines 

produced splenic p27-specific responses lower than the PBS control group and over 100 times 

lower than adenovirus carrying p27, a systemically delivered vaccine well-known to stimulate 

immunity in the spleen. 
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Figure 11.  Effect of PTD conjugation to p27 on systemic immunogenicity in vivo 
p27-specific IFN-γ ELISpots from spleen cells of mice inoculated intramuscularly with adenovirus expressing p27 
(Ad-p27) or orally gavaged with PBS, C. perfringens expressing p27 (Cp-p27), or C. perfringens expressing 8K-
conjugated p27 (Cp-8K-p27).  Averages of at least 2 mice per group are shown with error bars representing standard 
error of the mean. 
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3.6 DISCUSSION 

Since the dose of antigen delivered to intestinal immune tissue and the intracellular 

processing of antigen internalized by DCs have effects on the resultant immune response to the 

antigen, engineering antigen for ideal delivery and processing is important to achieve a maximal 

immune response.  It was hypothesized that including a PTD sequence conjugated to vaccine-

delivered p27 would both increase antigen delivery into DCs and enhance DC presentation of 

p27 antigens on MHC class I.  These improvements were anticipated to prime stronger cellular 

immune responses in vivo than using p27 without PTD peptide. 

The results presented here demonstrate that, when compared with C. perfringens 

expressing unconjugated p27, conjugation of PTD to p27 in the C. perfringens vaccine enhanced 

in vitro internalization of p27 by epithelial cells and DCs without enhancing or inhibiting the 

ability to induce maturation of DCs.  DCs exposed to vaccine containing PTD-p27 conjugate 

protein stimulated similar levels of p27-specific IFN-γ as the unconjugated vaccine strain.  This 

response appeared to be mediated by both MHC class I and MHC class II in the case of the PTD-

5 conjugate but primarily by MHC class II in the case of the 8K conjugate.  A pilot study of 

immunization using the 8K conjugate strain displayed no improved splenic cellular immunity 

when compared with the wild type Cp-p27 strain. 

Despite the trend towards higher levels of DC maturation and p27-specific IFN-γ 

production in samples exposed to PTD-conjugated vaccines, further evaluation of the in vivo 

response to PTD-conjugated Cp-p27 vaccine strains is not being pursued in light of several 

important implications from the literature and critical evaluation of the data.  
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First, in vivo responses that were improved by including PTD-conjugation in other 

reported systems have only been observed when in vitro studies showed a minimum of 4-fold 

enhanced internalization into cells [345, 346]. The current study shows significantly improved 

internalization, but the increase is only 1- to 2-fold in DCs, the major APC in the gut.   

Second, the overall percentage of response mediated by MHC class I antigen presentation 

was not enhanced by PTD-5-conjugation to p27.  While MHC class I- and MHC class II-

mediated IFN-γ ELISpot assays demonstrated a slightly stronger MHC-class I-restricted 

response with the PTD-5-conjugated vaccine construct, the increase was not statistically 

significant and was less than 2-fold higher when compared with the unconjugated construct (data 

not shown).  The differences observed in these experiments are not expected to overtly alter 

biological function in vivo.  Finally, the overall IFN-γ production in these assays was not 

enhanced in PTD-conjugated vaccine-treated cells when compared with the unconjugated 

vaccine. 

Third, in vivo testing of the 8K-p27 fusion construct against the unconjugated Cp-p27 

vaccine showed very low responses to p27 in the spleen of mice.  While other experiments in the 

Gupta lab have demonstrated that mice immunized with the vaccine construct maintained low 

IFN-γ p27-specific responses in spleen but showed a robust response in the Peyer’s patches, in 

light of the previous points the lack of enhanced splenic response may simply be due to the fact 

that the PTD-conjugate is not effective enough in vivo. 

Fourth, recent literature indicates that delivery of certain PTD-conjugated proteins may 

be cytotoxic to cells, particularly when used at high concentrations [347, 348].  In in vitro 

experiments in the current study, massive killing of CaCo2 cells treated with PTD-conjugated 

vaccine constructs was observed, while cells treated with the unconjugated construct in the same 
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experiment maintained viability.  Conjugation of β-galactosidase, antimicrobial peptides, and 

NEMO (NF-κB essential modulator)-binding domain to PTD-5 and 8K have not been reported to 

cause cytotoxic effects on other cell types, including epithelial cells from cervical (HeLa cells) 

and airway (A549 and HBE144 cells) mucosal sites [288, 291, 344, 349].  Several other PTD 

peptides attached to various cargoes have been observed to be safely delivered to CaCo2 cells 

without disrupting the integrity of the cells [350-352].  Therefore, it was unexpected that PTD 

conjugation to p27 would damage CaCo2 cells.  However, Szeto et al. have demonstrated that 

related protein cargoes delivered to CaCo2 cells via identical PTD sequences differentially target 

the mitochondria [353].  In their study, protein targeted to the mitochondrial matrix induced 

mitochondrial swelling which leads to apoptosis, whereas protein targeted to the inner 

mitochondrial membrane did not cause cytotoxicity.  Targeting of cationic peptides to the 

mitochondria may be mediated by their positive charge, but the reason why certain proteins 

delivered via PTD sequences enter the mitochondrial matrix is unclear. 

Furthermore, few studies have successfully demonstrated enhanced immunity using PTD 

conjugates, and conflicting results about immune response induction via PTD-conjugated 

vaccination have been reported [354-357].  The most effective in vivo uses of PTD conjugates 

are those that aim to selectively destroy cells in the context of diseases like cancer and 

autoimmunity [349, 358, 359].  This suggests that the toxic side effects of many PTDs, including 

PTD-5 and 8K, may be best used in applications other than vaccination. 

These findings raise concern that including a PTD sequence in the Cp-p27 vaccine would 

compromise the epithelial barrier of the mucosa, thus putting a vaccinee at risk for 

complications.  Indeed, it has recently been reported that the very breakdown of the gut mucosa 

contributes to HIV pathogensis [360].  Furthermore, since the in vitro findings have not 
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demonstrated sufficiently higher internalization or p27-specific IFN-γ stimulation rates with 

PTD-conjugated p27 expressed by C. perfringens compared with wild-type Cp-p27, it is unlikely 

that a significant enhancement of immunity would be achieved through vaccination with these 

PTD-conjugated constructs.  The observed benefits of slightly enhanced antigen internalization 

and maintenance of processing through the MHC class I pathway with the use of PTD 

conjugation to p27 in the C. perfringens vaccine are far outweighed by the harmful effects likely 

to be exerted upon gut epithelial cells upon oral inoculation.  Thus, further use of PTD-

conjugated C. perfringens expressing SIV p27 as an oral vaccine is not warranted. 
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4.0  MUCOSAL ADJUVANT OPTIMIZATION FOR USE WITH CP-P27 

4.1 PREFACE 

The study described in this chapter was performed in Dr. Phalguni Gupta’s laboratory.  

Ruth Helmus and Poonam Poonam conducted the first two animal experiments together with the 

assistance of Lori Caruso and Dr. Yue Chen in vaccine administration and sample collection and 

processing.  The final three experiments were conducted by Ruth Helmus with technical 

assistance by Poonam Poonam, Lori Caruso, Dr. Yue Chen, and Dr. Cheng-Li Shen.  Flow 

cytometry was performed with the assistance of Luann Borowski, Kim Stojka, and Edwin 

Molina from the laboratory of Dr. Charles R. Rinaldo, Jr.  LT(R192G) was graciously provided 

by Dr. John D. Clemens, and Dr. Ted M. Ross provided guidance for CpG ODN sequence 

selection.  Statistical advising was provided by Dr. Patrick Tarwater, and Dr. Marsha P. Cole 

provided instruction and the use of GraphPad.  Animals were cared for by the University of 

Pittsburgh Division of Laboratory Animal Resources.  Portions of this work were presented as a 

poster abstract at the 2007 Keystone Symposia on HIV Vaccines (Optimization of anti-SIV gut 

mucosal vaccine response using Clostridium perfringens, adenovirus, and synergistic mucosal 

adjuvants.  R. Helmus, P. Poonam, L. Caruso, Y. Chen, and P. Gupta.) 
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4.2 ABSTRACT 

The use of mucosal adjuvants can improve immunogenicity of a mucosally-delivered 

vaccine as well as direct immunity towards a Th1/cellular response or Th2/humoral response.  

Cp-p27 is a Clostridium perfringens-based vaccine designed to deliver intact simian 

immunodeficiency virus (SIV) p27 to the inductive immune tissue of the gut.  In this study, the 

three mucosal adjuvants (cholera toxin (CT), mutant E. coli heat-labile enterotoxin 

(LT(R192G)), and unmethylated cytosine-phosphate-guanine oligodinucleotides (CpG ODNs)) 

were evaluated for use with orally delivered Cp-p27 in mice to optimize gut cellular immunity.  

At optimal doses, all adjuvants improved IFN-γ ELISpot responses in small intestine Peyer’s 

patches (PPs) as compared to unadjuvanted Cp-p27.  The use of LT(R192G) or CpG ODNs 

generated better responses than CT.  A combination of LT(R192G) and CpG ODNs provided 

higher immunity than either used alone in both PPs and the lamina propria gut effector tissue.  

However, the functionality of CD8+ T cells was better when 25μg LT(R192G) was utilized 

alone.  Overall, the use of 25μg LT(R192G) provided the best quality of cellular immunity 

without significantly compromising the strength of immunity. 
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4.3 INTRODUCTION 

Two of the largest challenges in generating an effective vaccine against human 

immunodeficiency virus (HIV) are the development of mucosal immunity and inducing effective 

CD8+ and CD4+ T cell responses.  Since HIV is largely transmitted via mucosal tissue and 

immune tissue in the gut is a primary viral target in early infection and remains a reservoir in 

chronic infection [39, 64, 74, 75, 78, 79, 312-314], induction of mucosal immunity is important 

for effective prevention of HIV infection and propagation.  Stopping infection at the mucosa may 

ablate infection or lower the severity of resulting infection; indeed, once virus has established 

infection outside of mucosal tissue, it cannot be eliminated from the host [36].  Using the 

monkey model of mucosal exposure to simian immunodeficiency virus (SIV), Murphey-Corb et 

al. observed that monkeys who were SIV-negative following viral challenge displayed SIV-

specific CD8+ T cells in the small intestine [79].  Additional studies have shown that the 

presence of vaccine-induced SIV-specific gut CD8+ T cells can slow the appearance of SIV in 

the blood [120, 121].  This demonstrates the capacity for gut mucosal immunity to slow the 

establishment of productive SIV infection.  In addition, stimulation of immunity at one mucosal 

site can impart immunity in distal mucosal tissues [249-251].  Therefore, further improvements 

to vaccine strategies that induce gut immunity against SIV may be able to prevent persistent SIV 

infection. 

Since mucosal tissue possesses a natural propensity for immune tolerance via the 

generation of Th3 or T-regulatory cells [252], an effective mucosal vaccine must overcome this 

tolerance to induce a Th1 response that includes CD8+ T cells that produce multiple antiviral 
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cytokines and display cytotoxic capacity [40, 42, 136, 138-140].  An effective immune response 

would also include multifunctional CD4+ T cells that concurrently express interleukin-2 (IL-2), 

tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) [136, 137, 142, 212].  These 

types of CD8+ and CD4+ T cell responses have been associated with viral control following 

infection [40, 42, 136-141]. 

In mucosal tissue, an immune response is generated only under inflammatory conditions, 

such as those generated by pathogenic organisms that damage cells of the gut wall.  Adjuvants 

are molecules which exert inflammatory effects by mimicking the presence of pathogenic 

threats.  When used in mucosal vaccination, adjuvants can both overcome tolerance and direct 

the immune response towards either Th1 or Th2.  The strength and type of immune response 

generated in response to mucosal vaccines is determined by the form and amount of adjuvant 

delivered with the vaccine antigen.  To date, few adjuvants have effectively displayed safety in 

humans while retaining adjuvanticity 

One classical mucosal adjuvant is cholera toxin (CT), which is derived from Vibrio 

cholerae and helps drive Th2 and possibly Th1 responses [265, 361].  This adjuvant is very adept 

at overcoming mucosal tolerance, leading to the generation of antigen-specific antibodies against 

numerous proteins when delivered orally.  Whole CT causes diarrhea in humans, but safe 

mutants are being developed [263, 265, 362-364].  LT(R192G), an inactive, nontoxic mutant of 

the Escherichia coli heat labile toxin, stimulates Th1 and Th2 responses when delivered orally 

with protein [365].  This adjuvant has been found to be safe for use in humans while still 

retaining adjuvant activity [263, 366]. Cytosine-phosphate-guanine oligodinucleotides (CpG 

ODNs) are synthetic oligonucleotides containing unmethylated CpG motifs reminiscent of 

bacterial DNA; they are recognized by toll-like receptor 9, and ensuing signal transduction leads 
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to Th1 responses [278, 367].  Whereas CT and LT(R192G) likely stimulate the immune system 

through downstream effects of cAMP, CpG ODNs trigger immune responses by activating signal 

transduction through Ras and MyD88 pathways.  Many studies have demonstrated that 

combining CpG ODNs with one of the bacterially-derived adjuvants can enhance resulting 

immune responses by stimulating immunity through both pathways [368-371]. 

Clostridium perfringens expressing SIV p27 (Cp-p27) can effectively deliver p27 to gut 

mucosal immune tissue when delivered orally.  Inclusion of adjuvants in the Cp-p27 vaccine 

formulation is expected to enhance the immune response induced following inoculation.  

Therefore, it is important to determine the optimal dose of mucosal adjuvants for use with the 

Cp-p27 vaccine.  It is hypothesized that combinations of optimal doses of strong mucosal 

adjuvants delivered with Cp-p27 would improve the strength of cellular immunity as determined 

by IFN-γ production via ELISpot and the quality of immune response by monitoring intracellular 

cytokine production and cytotoxicity via flow cytometric analysis. 
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4.4 MATERIALS AND METHODS 

Animals 

Female Balb/c mice were purchased from Charles Rivers Laboratories, Inc. and housed in 

a pathogen-free facility in accordance with the University of Pittsburgh Institutional Animal Care 

and Use Committee and federal regulations.  Animals were used at 6 to 8 weeks of age. 

 

Clostridium perfringens vaccine strain Cp-p27 

Construction of the Clostridium perfringens vaccine expressing SIV p27 (Cp-p27) has 

been described previously [306].  Culture and isolation of sporulated Cp-p27 was performed as 

described in Chapter 2.  Isolated sporulating bacteria were sonicated, and the concentration of 

p27 was enumerated by desitometry of quantitative Western blots.  Vaccine was then stored at -

140°C until use. 

 

Oral adjuvants 

Whole, active cholera toxin was purchased from Sigma and stored at 4°C until use. 

HPLC-purified S-thiolated CpG oligodinucleotides (ODN) were purchased from Sigma-Genosys 

and stored at -20°C until use.  CpG ODN sequences were:  CpG-

A=TCCATGACGTTCCTGACGTT; CpG-B=TGACTGTGAACGTTCGAGATGA [372, 373]. 

The isolation of LT(R192G) has been described previously [258].  LT(R192G) was provided by 

Dr. John D. Clements and was reconstituted to 1mg/mL in sterile water and stored at 4°C until 

use.   
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Vaccination 

Animals were inoculated via gavage using an infant enteral feeding tube inserted down 

the esophagus into the stomach, where a total volume of 500μL containing Cp-p27 ± adjuvant(s) 

was delivered.  Each Cp-p27 dose contained approximately 250μg p27 as determined by 

quantitative Western blot.  Three inoculations per trial were conducted, with inoculations at 2 

week intervals. 

 

Serum sample collection and processing 

Pre-immune serum samples were acquired through venopuncture of the lateral saphenous 

vein, and blood was collected into heparinized capillary tubes.  At sacrifice, blood samples were 

collected via heart puncture, and blood was allowed to coagulate on ice for several hours before 

separation.  For all samples, serum was separated from blood by centrifugation at room 

temperature at 750xg for 20 minutes.  Serum samples were stored at -70°C. 

 

Fecal sample collection and processing 

Four to seven days before sacrifice, fecal matter was collected from each mouse and 

processed on ice.  Approximately 50-150mg of fecal material was obtained from each mouse.  

Samples were weighed and fully resuspended in Complete Mini protease inhibitor cocktail (1 

tablet/mL PBS containing 0.1% sodium azide; Roche) by adding 1mL per 100 or 200mg of fecal 

matter.  Resuspended samples were vortexed and then centrifuged at 13000rpm for 10 minutes in 

a tabletop centrifuge.  Supernatant was assayed immediately. 
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Tissue collection and cell isolation 

Mice were sacrificed about 10 to 15 days after the final inoculation.  The small intestine 

was aseptically removed and processed.  Before cell isolation, the intestine was rinsed with 1mL 

sterile PBS.  This intestinal wash was pelleted to remove solid matter using a tabletop centrifuge 

at 13000 rpm for 10 minutes, and the supernatant was stored at -70°C. 

Dissection of intestinal tissue was performed on ice, and when tissues and cells were not 

being treated enzymatically, they were kept on ice.  Fatty tissue was removed from small 

intestine tissue, and the lumen was thoroughly flushed with PBS.  Peyer’s patches (PPs) were 

carefully removed with fine scissors and then washed with agitation at 37°C for 20 minutes in 

30mL pre-warmed EDTA-DTE solution (PBS containing 10% bovine growth serum (HyClone), 

1mM EDTA, and 1mM dithioerythritol) in a 50mL conical tube placed lengthwise on an orbital 

shaker.  PPs were next rinsed repeatedly with Hank’s buffered saline solution and incubated at 

37°C in 6-well plate wells in 5mL pre-warmed collagenase solution (RPMI 1640 containing 10% 

fetal calf serum and 1mg/mL collagenase D (Roche)) without agitation.  PP tissues were then 

gently crushed, and released cells were passed through nylon mesh, pelleted for 5 minutes with 

centrifugation at 4°C at 1200 rpm, and washed. 

To isolate lamina propria (LP) cells, following PPs removal the remaining intestinal 

tissue was cut open longitudinally and cut into 0.5-1cm pieces, working on ice.  Pieces were 

placed in pre-warmed EDTA-DTE solution in a 125mL Erlenmeyer flask and stirred at 37°C for 

30 minutes.  The medium was poured off, and pieces were vortexed in fresh warm EDTA-DTE 

solution four times at room temperature to remove residual epithelial cells.  Pieces were then 

placed in fresh warm EDTA-DTE solution in the flask and stirred at 37°C for an additional 15 

minutes.  Typically the medium was clear after this step.  However, if medium was cloudy after 
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this step, the vortexing step was repeated and tissue was again placed in fresh warm EDTA-DTE 

solution and stirred at 37°C for an additional 15 minutes.  This was repeated until medium was 

clear after the 15 minutes of stirring.  Tissue pieces were then rinsed repeatedly with RPMI 

containing 2% bovine growth serum to remove EDTA.  Pieces were then stirred at 37°C in 

prewarmed collagenase solution in the flask for 30 minutes, after which time samples were 

observed for cloudiness in the medium, indicating LP cell release.  If medium was not cloudy, 

sample was returned to 37°C for an additional 15 minutes of stirring.  If medium was cloudy, 

collagenase-treated tissue pieces were gently crushed, and released cells were passed through 

nylon mesh, pelleted with centrifugation at 4°C at 1200rpm for 5 minutes, and kept on ice in 

serum-containing medium.  Remaining tissue pieces were returned to fresh collagenase solution 

for additional treatment, repeating the stirring at 37°C and cell isolation steps just described.  

When all tissue was digested (typically after a total of 2 or 3 collagenase treatments), cells were 

washed, the cell pellet was resuspended in 12mL ice-cold 40% isotonic Percoll in 1xPBS, and 

the cell suspension was distributed equally into 3 15mL conical tubes (i.e. 4mL per tube).  Each 

4mL cell suspension was then underlayed with 2mL ice-cold isotonic Percoll (9 parts Percoll to 1 

part 10x HBSS (v/v)).  Tubes were then centrifuged at 1700rpm with no brake at 4°C for 20 

minutes.  The resulting interface was harvested and diluted ≥10-times into fresh RPMI 

containing serum, and these LP lymphocytes were pelleted for 10 minutes with centrifugation at 

4°C at 1500 rpm. 

 

IFN-γ ELISpot 

Detection of interferon-gamma (IFN-γ) from freshly isolated cells was performed using 

mouse IFN-γ ELISpot Kits from Mabtech activated and blocked as described in Chapter 2.  PPs 
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cells were plated with 2x105 cells per well in a volume of 200μL ELISpot media (RPMI-1640 

with 10% heat-inactivated FBS, 1% penicillin/streptomycin, 0.1mM non-essential amino acids, 

2mM L-glutamine, 10mM HEPES, and 1mM sodium pyruvate) in ELISpot plates.  Because of 

lower yields, LP cells were generally plated at 5x104 or 1x105 cells per well in 200μL.  Samples 

were stimulated with two separate pools of SIVmac 239 gag 15-mer peptides overlapping by 11 

amino acids (NIH AIDS Research and Reference Reagent Program) covering the majority of 

SIV p27 with peptides 5265 through 5298 of SIV gag with each peptide at a concentration of 

5μg/mL.  Each sample also contained a background control where a concentration of DMSO 

equivalent to that in the peptide pools was added to the well.  As a positive control, each sample 

was also stimulated with 1mg/mL concanavalin A.  All treatments for all samples were plated in 

triplicate, except when low LP yields made this impossible, in which case at least two wells per 

treatment per sample were plated.  Cells were incubated at 37°C for 24h.  Detection of IFN-γ 

spot-forming cells (sfc) was performed as described in Chapter 2.  When dry, sfc on plates were 

counted on an automated ELISpot reader.  Background sfc values from background control wells 

were removed as appropriate, and sfc were normalized to 106 cells. 

 

SIV p27-specific ELISA 

EIA/RIA Plates were coated overnight at room temperature with recombinant SIV p27 

isolated from E. coli.  After blocking plates, serial dilutions of serum or undiluted samples of 

fecal extracts or intestinal washes were placed in wells and incubated at room temperature for 2h 

(serum) or at 4°C overnight (fecal extracts and intestinal washes).  Plates were washed, and 

AKP-conjugated α-mouse IgG1 or IgG2a antibody or biotin-conjugated α-mouse IgA (BD 

Biosciences) was incubated in appropriate wells for 1h at room temperature.  For IgA detection, 
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plates were washed and a secondary AKP-conjugated streptavidin (Sigma) was then incubated in 

appropriate wells for 30 minutes at room temperature.  Finally, 4-nitrophenyl phosphate 

disodium salt hexahydrate (Sigma) was used to detect p27-specific antibody, and optical density 

was read on a plate reader at 405nm.  Background values from negative control wells on each 

plate were subtracted. 

 

Surface, intracellular cytokine, and CD107a staining 

FITC-α-CD107a (clone 1D4B), R-PE-α-CD8 (53-6.7), APC-α-IL-2 (JES6-5H4), PE-

Cy7-α-IFN-γ (XMG1.2), Biotin-α-TNF-α (MP6-XT3), and APC-Cy7-streptavidin were 

purchased from BD Pharmingen.  PE-Cy5-α-CD3 (clone 145-2C11) was purchased from 

BioLegend.  Isotype control antibodies were purchased from the same manufacturers according 

to the fluorescent conjugate used. 

Freshly isolated cells (maximum 106 cells) were cultured for 5 hours at 37°C in 96-well 

plates in 200μL growth media (DMEM with 10% fetal calf serum,  1mM sodium pyruvate, 2mM 

L-glutamine, 0.025M 2-mercaptoethanol, and 1.25mM HEPES) containing 5μg/mL α-CD107a 

antibody, 3μM monensin, 5μg/mL brefeldin A, and 5μg/mL peptides spanning the entire p27 

protein.  As a background control, one well of cells of each sample was cultured without peptide.  

As a positive control, samples were cultured with 50ng/mL phorbol myristate acetate and 

1μg/mL ionomycin instead of peptide. 

After the culture period, plates were cooled to 4°C overnight.  Cells were surface stained 

for CD3 and CD8, washed with FACS buffer (PBS with 0.1% bovine serum albumin and 0.1% 

sodium azide), fixed in 4% paraformaldehyde, and permeabilized with FACS buffer containing 

0.2% saponin.  Following permeabilization, cells were intracellularly stained for IL-2, IFN-γ, 
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and TNF-α, washed, fixed, and stored in the dark at 4°C in FACS buffer.  All samples were fully 

analyzed by flow cytometry within 12 hours of staining. 

 

Flow cytometry and analysis 

Stained cells were analyzed using a BD Canto flow cytometer.  FCS files were analyzed 

using FlowJo version 7.2.2 (Tree Star, Inc.).  Cells in the lymphocyte gate were gated on 

CD3+CD8+ or CD3+CD8- cells, and gates for individual cytokines and CD107a were established 

with control cells stained only for CD3 and CD8.  Cells in the cytokine and CD107a gates were 

analyzed with Boolean gating to generate the percentage of cells expressing each combination of 

functional markers.  Background expression values were subtracted from peptide-stimulated 

values for each sample.  Graphical representation of functionality was achieved using SPICE 

software kindly provided by Dr. Mario Roederer of the NIH VRC.  For SPICE analysis, 

individuals with no p27-specific response were excluded.  A threshold value of the 75% 

confidence values of negative percentages for each T cell subset was used. 

 

Statistics 

Statistical analyses were performed using GraphPad Prism version 4.  Unless otherwise 

noted, values of p were determined assuming a nonparametric distribution and employing a 

Kruskal-Wallis test followed by the Dunn procedure to compare groups.  Antibody titer values 

were first transformed to log10 before analysis.  Results were considered significant if p<0.05. 
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4.5 RESULTS 

4.5.1 Single Adjuvant Screening 

Since adjuvants have been observed to stimulate immunity differently depending upon 

the vaccine with which they are delivered, the optimal adjuvant(s) and their doses needed to be 

established for their use with the Cp-p27 vaccine.  To screen a variety of adjuvants at different 

doses for their ability to aid in priming gut cellular immunity, small groups of mice (3 per group) 

were orally inoculated with equivalent doses of Cp-p27 and varying doses of cholera toxin (CT), 

mutant heat-labile toxin (LT(R192G)), or unmethylated cytosine-phosphate-guanine 

oligodinucleotides (CpG ODN).  Control groups consisted of mice vaccinated orally with Cp-

p27 without adjuvants or with PBS.  Cells from small intestinal PPs were assayed for p27-

specific IFN-γ production using an ELISpot assay.  As shown in Figure 12, the highest immune 

responses were observed in groups of mice that received 5μg CT, 1μg LT(R192G), or 50μg of 

each CpG ODN.  In contrast, the mice that received 1, 5, or 10μg CpG ODNs or 10 or 50μg CT 

did not induce any significant cellular responses compared to the PBS-only or Cp-p27-only 

control groups.  LT(R192G) at 1, 5, 25, or 50μg produced cellular responses higher than the 

control groups, although this was not statistically significant.  Serum (IgG1 and IgG2a) and fecal 

extract and intestinal wash IgA levels were low in all groups, with no difference observed 

between vaccinated mice and the PBS control group (data not shown). 
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Figure 12.  Adjuvant effects on p27-specific IFN-γ immune induction in Peyer’s patches via oral Cp-p27 
vaccination 
Mice were immunized orally with Cp-p27 and various doses of adjuvants.  Control animals received PBS or Cp-p27 
without adjuvant.  p27-specific IFN-γ ELISpot results from small intestinal PPs are shown.  Results from individuals 
animals are represented by diamonds (control), triangles (CpG ODNs), circles (LT(R192G)), or squares (CT), and 
horizontal bars indicate the average response for each group. 

 

4.5.2 Adjuvant Combinations 

Since both CpG ODN and LT(R192G) primed greater cellular responses than CT when 

used with Cp-p27, efforts were concentrated on further study on CpG ODNs and LT(R192G) as 

adjuvants with Cp-p27.  CpG ODNs and LT(R192G) in combination have been shown to 

stimulate stronger cellular immunity than when used alone [280, 368, 369].   In some of these 

studies, lower doses of adjuvants in combination were found to produce stronger cellular 

immune responses than higher doses of either adjuvant alone.  In other studies, higher doses of 

one or both adjuvants were required in combination to induce strong immune responses.  Thus, 

an experiment was initiated to determine the optimal dose of CpG ODNs for use with 1μg 

LT(R192G) to induce a cellular immune response following Cp-p27 vaccination. 
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Groups of mice were inoculated orally with Cp-p27 with various combinations of doses 

CpG ODNs with 1μg LT(R192G), and their cellular immune responses were compared with 

groups of mice that received each adjuvant dose alone or Cp-p27 alone.  IFN-γ ELISpot assays 

of cells from PPs showed that 25μg CpG ODN provided better average cellular responses than 

50 or 100μg CpG ODN (Figure 13).  However, 50μg CpG ODN combined with LT(R192G) 

generated a better but statistically insignificant response than 25 or 100μg CpG ODN combined 

with LT(R192G).  The highest response was in the group that received 1μg LT(R192G) and 

50μg CpG ODNs.  This was the only group that displayed a significantly higher cellular response 

compared with the group that received Cp-p27 without adjuvants.  SIV p27-specific serum (IgG1 

and IgG2a) and gut mucosal (IgA) antibody levels were also assessed, but antibody levels were 

low and no differences were observed between any of the groups (data not shown). 
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Figure 13.  Effects of combinations of LT(R192G) and CpG ODNs on p27-specific cellular immunity to Cp-
p27 in Peyer’s patches 
Mice were immunized orally with Cp-p27 with varying doses of CpG ODNs and/or 1μg LT(R192G) adjuvants.  
Control animals received Cp-p27 without adjuvant.  Average p27-specific IFN-γ ELISpot results from small 
intestinal PPs of 4 mice per group are shown with error bars representing standard error of the mean. 
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4.5.3 Optimal LT(R192G) Dose 

One unexpected result from the single adjuvant screening experiment was that the lowest 

dose of LT(R192G) produced stronger average responses than higher doses.  LT(R192G) has 

been extensively characterized and is recommended to be used at 25μg per dose (J. D. Clements, 

personal communication).  The single adjuvant screening experiment trial described currently 

(Figure 12) used a small number of mice in each group, and there was much variability within 

each group.  For example, in the 1μg LT(R192G) group, one mouse displayed a cellular response 

7-times that of the other two mice.  To more clearly define which dose was optimal for use with 

Cp-p27, larger groups of mice (10 per group) were vaccinated with either 1μg or 25μg 

LT(R192G) and equivalent doses of Cp-p27.  This experiment also included an assessment of 

both PPs and intestinal lamina propria (LP) cellular responses.  As the effector tissue of the gut 

associated lymphoid tissue, the LP is the site where cells primed in the PPs and other inductive 

sites migrate and exert their effects.  The response in the LP thus provides a more accurate 

representation of the level p27-specific cells that can act against an infection.  After vaccination 

with Cp-p27, more cellular response was detected in the 25μg dose group than the 1μg group in 

both PPs and LP (Figure 14).  This neared significance in PPs (p=0.0716 via Mann Whitney test) 

(Figure 14 A).  As in the previous experiment, p27-specific serum IgG1 and IgG2a and intestinal 

wash IgA levels were very low in all groups and no differences were observed between groups 

(data not shown). 
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Figure 14.  Optimal dose of LT(R192G) with Cp-p27 inducing p27-specific responses in gut inductive and 
effector tissues 
Mice were immunized orally with Cp-p27 and 1μg or 25μg LT(R192G).  Average p27-specific IFN-γ ELISpot 
results from small intestinal PPs of 10 animals (A) and lamina propria of 6 animals (B) are shown with error bars 
representing standard error of the mean.  Value of p determined by the 1-tailed Mann Whitney test. 
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4.5.4 Inductive and Effector Responses of Optimal Adjuvant Combinations 

An experiment was next conducted to confirm the enhanced response resulting from the 

use of both LT(R192G) and CpG ODNs using the 25μg dose of LT(R192G).  The combination 

of 25μg LT(R192G) and CpG ODNs did not show a significantly higher level of IFN-γ ELISpot 

response in PPs than either adjuvant alone (Figure 15 A).  In the LP, the average p27-specific 

IFN-γ ELISpot response was higher, although not significantly, in the LT(R192G) group than in 

the CpG ODN group, and the group that received both adjuvants displayed the strongest 

response (Figure 15 B). 
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Figure 15.  Effects of LT(R192G) and CpG ODNs on p27-specific cellular immunity to Cp-p27 in gut 
inductive and effector tissues 
Mice were immunized orally with Cp-p27 with CpG ODNs and/or 25μg LT(R192G) adjuvants.  Average p27-
specific IFN-γ ELISpot results from small intestinal PPs of 10 animals (A) and lamina propria of 6 animals (B) are 
shown with error bars representing standard error of the mean. 
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A final vaccination trial was conducted to confirm these results and to determine the 

quality of the cellular response induced by each vaccine/adjuvant combination.  The ability for 

CD4+ and CD8+ T cells to produce interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α) in 

addition to IFN-γ has been associated with better ability of these T cells to combat viral 

infections [40, 42, 136, 138-140].  The production of these cytokines was examined through 

intracellular staining followed by single-cell analysis in a flow cytometer.  Therefore, PPs and 

LP cells from vaccinated mice were assayed with cell staining and flow cytometry in addition to 

IFN-γ ELISpot. 
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Figure 16.  Effects of adjuvant type and dose on p27-specific cellular immunity to Cp-p27 in gut inductive and 
effector tissues 
Mice were immunized orally with Cp-p27 with 1μg or 25μg LT(R192G) with our without CpG ODNs.  Control 
animals received Cp-p27 without adjuvant.  Average p27-specific IFN-γ ELISpot results from small intestinal PPs 
of 10 animals (A) and lamina propria of 6 animals (B) are shown with error bars representing standard error of the 
mean. 
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Like the data shown in Figure 15, the 25μg dose of LT(R192G) generated more p27-

specific IFN-γ ELISpot response than the 1μg dose in both PPs and LP (Figure 16).  The 

combination of CpG ODNs and 1μg LT(R192G) produced a greater average level of response in 

PPs than the LT(R192G) alone (Figure 16 A).  The same result held true in the LP with the 25μg 

LT(R192G) dose (Figure 16 B).  However, in PPs, CpG ODNs delivered with 25μg LT(R192G) 

resulted in a somewhat lower level of response than with just the LT(R192G) alone (Figure 16 

A). 

4.5.5 T Cell-Mediated Cytotoxicity Induced by Vaccination 

As determined by CD107a surface staining, in CD8+ T cells there was a trend towards 

recipients of LT(R192G) to have a larger percentage of cells displaying p27-specific cytotoxicity 

as compared with recipients of both LT(R192G) and CpG ODNs (Figure 17), though these 

differences were not statistically significant.  Both PPs and LP CD8+ T cells from the 25μg 

LT(R192G) group contained a much higher percentage of p27-specific CD107a-positive cells 

than all other vaccine groups (Figure 17). 
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Figure 17.  p27-specific degranulation in gut mucosal CD8+ T cells following immunization with Cp-p27 and 
combinations of adjuvants 
Cells from small intestinal Peyer’s patches (A) and lamina propria (B) were surface stained for CD3 and CD8.  SIV 
p27-specific surface expression of CD107a was detected on CD8+CD3+ cells via via flow cytometry.  Bars represent 
the average values from 5-10 animals per group plus standard error of the mean.  Light grey bars, no adjuvant; black 
bars, 1μg LT(R192G); black striped bars, 1μg LT(R192G) + CpG ODNs; dark grey bars, 25μg LT(R192G); dark 
grey striped bars, 25μg LT(R192G) + CpG ODNs. 
 

4.5.6 Multi-Cytokine Analysis:  Strength and Quality of Immune Responses 

The percentages of CD3+CD8+ and CD3+CD8- cells displaying any p27-specific cytokine 

response (IL-2, TNF-α and/or IFN-γ) were determined to evaluate the quality of response in each 

T cell subset.  The percentage of cells displaying response to any cytokine was calculated.  As 

the dose and number of adjuvants administered with Cp-p27 was increased, the response to any 

cytokine in LP CD8- T cells decreased (Figure 18).  This was also the case in PPs CD8- T cells, 

with the exception that mice immunized using 25μg LT(R192G) and CpG ODNs displayed the 

best response (Figure 18).  In PPs CD8+ T cells, little difference in p27-specific cytokine 

responsiveness was observed between animals who received only LT(R192G) at either dose 
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(Figure 18).  Use of CpG ODNs with either dose of LT(R192G) improved PPs CD8+ T cell 

responsiveness, with recipients of 25μg LT(R192G) and CpG ODNs showing the largest 

percentage of p27-specific cells of all groups (Figure 18).  CD8+ T cells in the LP demonstrated 

greater percentages of p27-specific cytokine responsiveness when mice received 25μg 

LT(R192G) than 1μg or no adjuvant, and use of CpG ODN with LT(R192G) improved cytokine 

responsiveness (Figure 18).  The highest CD8+ T cell response in the LP was observed in the 

group that received 25μg LT(R192G) and 50μg CpG ODNs (Figure 18). 

Percentages of p27-specific cells producing each cytokine varied depending on the dose 

and type of adjuvants administered.  Compared with the no adjuvant control group, CD8- T cells 

from PPs displayed a significantly lower percentage of IFN-γ in mice immunized using 1μg 

LT(R192G), while immunization using 25μg LT(R192G) and CpG ODNs generated a 

significantly higher IFN-γ response, and a similar but statistically insignificant trend was also 

observed in PPs CD8+ T cells (Figure 18).  With either LT(R192G) dose, addition of CpG ODN 

slightly improved IFN-γ response in PPs CD8- T cells, whereas the opposite was true in LP CD8- 

T cells and very little difference was observed in LP CD8+ T cells (Figure 18). 

TNF-α levels were somewhat lower in both T cell subsets in PPs and LP in recipients of 

adjuvant than in mice who only received Cp-p27 (Figure 18).  Use of CpG ODN with 

LT(R192G) improved the percentage of p27-specific TNF-α-producing cells compared with 

LT(R192G) only, although not significantly (Figure 18).  In all cells from both tissues, IL-2-

responsiveness was lower in adjuvant recipients than Cp-p27 only recipients, although slight 

improvements were observed in mice who received 25μg LT(R192G) in some cases (Figure 18).  

The combination of CpG ODN with LT(R192G) produced insignificantly lower percentages of 

IL-2 responsive cells in most cases (Figure 18). 
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Figure 18.  T cell p27-specific cytokine responsiveness in gut mucosal tissues following immunization with Cp-
p27 and combinations of adjuvants 
Cells from small intestinal Peyer’s patches (left) and lamina propria (right) were surface stained for CD3 and CD8.  
SIV p27-specific IL-2, TNF-α, and IFN-γ production from CD8- (A) and CD8+ (B) and CD3+ cells was detected via 
intracellular staining and analysis via flow cytometry.  Percentage of cells with any cytokine response was then 
determined (“any”).  Bars represent the average values from 5-10 animals per group plus standard error of the mean.  
Light grey bars, no adjuvant; black bars, 1μg LT(R192G); black striped bars, 1μg LT(R192G) + CpG ODNs; dark 
grey bars, 25μg LT(R192G); dark grey striped bars, 25μg LT(R192G) + CpG ODNs.  For “any” CD8- Peyer’s 
patches cells, p=0.0597 via the Kruskal-Wallis test.  *p<0.05 compared with 1μg LT(R192G) group. 
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The responses of each group were further evaluated for the percentage of cytokine 

response due to T cells with more than one function, as well as the level of multifunctionality 

(e.g. 2 or 3 functions), referred to as complexity.  Overall, the percentage and complexity of 

multifunctionality in both CD8+ and CD8- T cell subsets in PPs were not significantly affected 

by use of adjuvants with Cp-p27 inoculation.  In the LP, any addition of adjuvant increased the 

percentage and/or complexity of multifunctionality compared with Cp-p27 inoculation (Figure 

19).  The exceptions to these trends occurred in the CD8- subset in the 1μg LT(R192G) group, 

which demonstrated percentages of multifunctional cells that were much higher in PPs and lower 

in LP compared with the Cp-p27-only group (Figure 19).  The percentage of IL-2+TNF-α+ CD8- 

p27-specific PPs T cells in the 1μg LT(R192G) group was significantly higher than in the Cp-

p27-only group (Figure 19).  Although not significant, a similar trend was observed in the LP of 

mice who received 25μg LT(R192G), which displayed higher percentages of CD8- p27-specific 

response due to IL-2+TNF-α+ than mice who only received Cp-p27 (Figure 19).  Recipients of 

25μg LT(R192G) without CpG ODNs were the only group to display IL-2+TNF-α+IFN-γ+ cells 

as part of their LP CD8+ T cell response (Figure 19). 

Immune response comparison between tissues within vaccine groups is also of interest.  

Inoculation with Cp-p27 generated responses that were slightly more multifunctional and 

complex in PPs than LP in both T cell subsets (Figure 19).  In contrast, immunization using 25μg 

LT(R192G) with or without CpG ODNs stimulated higher percentages and complexity of 

multifunctionality in LP as compared to PPs in both T cell subsets (Figure 19). 
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Figure 19.  Multifunctional gut T cell cytokine responses in inductive and effector tissues resulting from 
vaccination 
Data generated from Boolean-gated CD8- and CD8+ CD3+ cells stained for IL-2, TNF-α, and IFN-γ were analyzed 
for concurrent functionality using SPICE software.  A, The average percentage of total response by Peyer’s patch 
and lamina propria cells at each level of multifunctionality is represented by slices in pie charts.  B, Bars 
representing average percent of total CD8- or CD8+ p27-specific CD3+ cell response in each tissue.  *p<0.05 per 
Wilcoxen signed-rank test compared with the no adjuvant group. 
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(Figure 19 continued) 
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4.6 DISCUSSION 

Mucosal vaccination typically requires the use of adjuvant to overcome tolerance and 

drive the induction of an appropriate immune response.  Although Cp-p27 appears to possess 

inherent immunostimulatory capacity, likely due to the presence of its own unmethylated CpG 

DNA moieties and peptidoglycan, the coadministration of mucosal adjuvant with the bacteria 

was expected to alter the type of immunity induced by oral vaccination.  Given the varying 

capacities of CT, LT(R192G), and CpG ODNs to drive the induction of CD8+ and CD4+ T cell 

responses, it was expected that including one or more of these adjuvants in the Cp-p27 vaccine 

milieu would affect the resultant immunity.  Both 1μg and 25μg LT(R192G) was found to 

stimulate gut cellular responses in PPs and LP when delivered with Cp-p27.  Although inclusion 

of CpG ODNs with LT(R192G) improved the strength of the response, the resultant cells 

displayed poorer quality of responses.  The optimal adjuvant regimen to deliver with Cp-p27 to 

generate a strong, quality T cell response in gut effector tissue appears to be 25μg LT(R192G). 

CT and LT and their mutants are related bacterial proteins that share many 

characteristics.  However, their adjuvant capacities are not identical.  Mucosal delivery of CT 

consistently results in the production of Th2-type cells in mouse models, particularly when 

delivered orally [262, 263].  On the other hand, LT generally induces the production of Th1-type 

cells in addition to Th2-type cells [263, 264].  These differences have been suggested to be due 

to the induction of 5-hydroxytryptamine by CT but not LT [263].  Other studies have 

demonstrated further mechanisms such as preferential induction of apoptosis in different T cells 

subsets by CT or LT [374-376].  Undoubtedly the reasons for different adjuvant characteristics 
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between CT and LT are complex and remain to be fully explained.  The current study supports 

the concept that LT more potently stimulates cellular immunity (generally associated with Th1 

responses), since mice who received LT demonstrated better antigen-specific IFN-γ responses 

than those who received CT. 

Several mechanisms have been suggested for the adjuvant activity associated with orally 

administered CT and LT [263].  These include perturbation of the gut epithelial leading to 

increased permeabilization and therefore access of antigen to underlying cells; improved antigen 

presentation by cells such as dendritic cells (DCs); and altering B and T cell proliferation and 

immune maturation.  The A subunit of both toxin proteins naturally possesses ADP-ribosylating 

activity, leading to an increase in cAMP after the B subunit of the toxin binds GM1-ganglioside 

on the host cell membrane and the toxin gains entry into the cytosol.  The toxins prevent GTP 

hydrolysis by the α subunit of the GTP-binding protein family, thereby irreversibly activating 

adenylate cyclase and leading to watery diarrhea by activation of protein kinase A and the 

opening of membrane chloride channels.  Other downstream effects of cAMP include activation 

of Raf/Ras and PI3-kinase, which may collectively result in the activation of transcription factors 

that can help promote T cell growth, including NF-κB [263, 377]. 

Uncoupling of the ADP-ribosylating activity from immunostimulatory activity has been 

demonstrated by mutating the enzyme active site or by preventing the dissociation of the A and 

B subunits of each toxin [258, 263, 364, 378-385].  Of these alterations of LT, the mutation of 

arginine to glycine at position 192 (LT(R192G)) has arguably maintained the highest level of 

adjuvant activity while displaying the lowest level of toxicity [258, 263].  Thus, in addition to the 

improved cellular immunity induced with the use of LT(R192G), on an entirely practical level 
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the use of LT(R192G) with the Cp-p27 vaccine is preferable to CT because it is more likely to 

applicable in humans. 

A completely separate mechanism for immunostimulation is utilized by CpG ODNs [270, 

272].  CpG ODNs interact with DCs by binding to intracellular Toll-like receptor 9, which 

recognizes the unmethylated cytosine-phosphate-guanine pattern in the context of certain 

flanking nucleotides.  Signal transduction through MyD88-dependent and -independent pathways 

leads DC maturation and the production of cytokines that drive the formation of Th1-type 

responses.  This tendency to drive cellular immune response formation helps to explain why the 

use of CpG ODNs as adjuvant to Cp-p27 inoculation generated the greatest PPs cellular 

responses in the current study.  This response was observed with the high doses (≥25μg) of CpG 

ODNs but not low doses (<25μg).  This is likely due to the fact that naked DNA, such as the 

CpG ODNs, is easily destroyed in the gastrointestinal system.  Although the CpG ODNs utilized 

were generated with S-thiolation to ensure the highest level of stability, they remain targets for 

degradation.  This will be important to consider for future development of this and other oral 

vaccines, since larger amounts of adjuvant involves greater overall price for the vaccine. 

Because of the two distinct pathways through which CT/LT and CpG ODNs exert their 

adjuvant effects, it stands to reason that combining the adjuvants for simultaneous delivery could 

increase the strength of the resulting immune responses through additive effects.   However, in 

practice this is not always the case.  The results of the current study also demonstrated that only 

certain combinations of doses of LT(R192G) and CpG ODNs produced stronger responses than 

either adjuvant alone.  It was observed that LT(R192G) can stimulate immunity that can be 

detected in LP, whereas the response formed in the presence of CpG ODNs was mainly 

detectable in PPs and seemed to lower the LP response when 1μg LT(R192G) was used. 
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Characterization of the nature of the immune response induced in mice using LT(R192G) 

with CpG ODNs as adjuvants has been examined using a variety of antigens delivered via many 

routes.  McCluskie et al. observed that oral administration of LT(R192G) provided Th2-biased 

antibody response to antigen whereas administration of LT(R192G) and CpG ODNs displayed a 

more balanced Th1/Th2 response [368].  A similar trend was observed by Gerber et al. after oral 

inoculation of mice with virus-like particles:  immunogen delivered with CpG ODNs led to a 

predominantly Th1-type humoral response, while immunogen delivered with LT(R192G) 

provided more similar levels of Th1- and Th2-type antibodies [283].  Other studies have shown 

that this balanced LT-induced response is dependent upon the site of inoculation.  Delivery of LT 

provided a Th1-bias when inoculation occurred intracolonically but not intragastrically [386].  

Intranasal inoculation using LT or LT derivatives resulted in primarily Th2-type responses [282, 

368, 369].  In addition, the dose of each adjuvant played a role in the type of immunity, with 

lower doses tending to bias responses more towards Th2-type responses and higher doses 

providing more Th1-type response, including more CTL activity.  Furthermore, the Th1/Th2 

response bias differed depending upon the protein antigen delivered with the adjuvant. 

These studies exemplify the importance of determining the appropriate dose and 

adjuvants for use with each unique immunogen or vaccine.  In the current study, the lower dose 

of LT(R192G) produced lower cellular responses than the higher dose in both PPs and LP.  The 

quality of these responses differed as determined by intracellular cytokine staining, with both 

doses of LT(R192G) generating a more multifunctional response in CD8- cells than CD8+ cells 

in PPs.  The low dose (1μg) produced a more multifunctional response in CD8+ cells than CD8- 

cells in LP, and the higher dose (25μg) displayed a more balanced CD8+/CD8- response.  This 
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suggests that LT(R192G) may stimulate both Th1- and Th2-type responses in PPs and LP, 

although further analysis beyond the scope of this project would be required to confirm this. 

When either LT(R192G) dose was utilized with CpG ODNs or if no adjuvant was 

included, multifunctionality was reduced but T cells demonstrated more similar levels of 

multifunctionality in CD8- and CD8+ populations in both gut tissues.  IL-2 production of antigen-

specific cells has been a hallmark of effective T cell activity [132], and it is interesting to note 

that more IL-2 production is observed in the LP CD8+ cells of mice inoculated with only 

LT(R192G) than with both LT(R192G) and CpG ODNs.  That the CD107a expression on CD8+ 

T cells is also decreased in both PPs and LP when CpG ODNs are combined with LT(R192G) 

adds credence to the possibility that CpG ODNs are in fact negatively influencing the effector T 

cell immune response formation with this vaccine.  Clearly, the strength and quality of cellular 

immune responses are affected by the dose and type of adjuvant used with Cp-p27, and overall 

the use of 25μg LT(R192G) provides the best quality T cell response without compromising the 

strength of response. 

In conclusion, use of mucosal adjuvants at optimal doses improved gut cellular immune 

responses to Cp-p27 vaccination.  The use of both LT(R192G) and CpG ODNs produced the 

strongest responses, but the best quality of response was generated by using only LT(R192G).  

For future studies directed at generating effective gut CD8+ T cells using Cp-p27, vaccination 

should include 25μg LT(R192G) as an oral adjuvant. 
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5.0  MUCOSAL IMMUNE RESPONSE OF CP-P27 USING A PRIME-BOOST 

STRATEGY WITH ADENOVIRUS EXPRESSING P27 

5.1 PREFACE 

The study described in this chapter constitutes a manuscript in preparation.  The 

experiments were performed in the laboratory of Dr. Phalguni Gupta by Ruth Helmus with the 

technical assistance of Poonam Poonam, Lori Caruso, Dr. Yue Chen, and Dr. Cheng-Li Shen in 

vaccine administration and sample collection and processing.  Flow cytometry was performed 

with the assistance of Luann Borowski, Kim Stojka, and Edwin Molina from the laboratory of 

Dr. Charles R. Rinaldo, Jr.  The adenovirus vaccine used in these experiments was generated in 

the University of Pittsburgh Vector Core by the laboratory of Dr. Andrea Gambotto in 

collaboration with Dr. Simon Barratt-Boyes [387].  LT(R192G) was graciously provided by Dr. 

John Clemens, and Dr. Ted M. Ross provided guidance for CpG ODN sequence selection.  

Statistical advising was provided by Dr. Patrick Tarwater, and Dr. Marsha P. Cole provided 

instruction and the use of GraphPad.  Animals were cared for by the University of Pittsburgh 

Division of Laboratory Animal Resources.  Portions of this work were presented as poster 

abstracts at AIDS Vaccine 2006 (A novel Clostridium perfringens-based SIV vaccine with 

adenovirus boosting induces strong systemic and gut mucosal immune responses.  R. Helmus, P. 

Poonam, L. Caruso, Y. Chen and P. Gupta.) and the 2007 Keystone Symposia on HIV Vaccines 

(Optimization of anti-SIV gut mucosal vaccine response using Clostridium perfringens, 
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adenovirus, and synergistic mucosal adjuvants.  R. Helmus, P. Poonam, L. Caruso, Y. Chen, and 

P. Gupta.) 
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5.2 ABSTRACT 

Two major goals of HIV/SIV vaccination are to induce multifunctional cellular immunity 

and immunity in mucosal tissues such as the gut.  An oral Clostridium perfringens-based vaccine 

(Cp-p27) that delivers SIV p27 to gut inductive immune tissue was evaluated for its ability to 

prime cellular immunity in the gut.  Priming via oral vaccination with the Cp-p27 vaccine 

followed by boosting with a systemically delivered adenovirus expressing SIV p27 (Ad-p27) was 

performed to create a multifunctional gut immune response in the gut as well as systemic 

immune responses.  Immunization with Cp-p27 alone generated multifunctional p27-specific 

cellular responses in small intestinal lamina propria (LP) but very little systemic response.  In 

contrast, systemic inoculation with Ad-p27 generated systemic responses but a low cellular 

response with little multifunctionality in the LP.  Priming with Cp-p27 and boosting with Ad-p27 

resulted in the highest systemic and gut mucosal responses, as well as the highest degrees of p27-

specific multifunctional CD8+ T cells in the gut.  These results indicate that priming of intestinal 

tissue with Cp-p27 can enhance the otherwise limited gut mucosal cellular response generated 

via systemic inoculation with Ad-p27. 
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5.3 INTRODUCTION 

Growing evidence emphasizes the importance of the gut mucosa in HIV and SIV 

infection:  CD4+ T cells in the gut are rapidly infected and depleted soon after infection [64, 74, 

75, 312-314]; CD4+ T cell repopulation of the gut is prevented throughout infection [75-77]; 

cellular loss in the gut may promote bacterial translocation that contributes to generalized 

systemic immune activation [360]; and gut cells harbor virus throughout infection, thus serving 

as viral reservoirs [39, 78, 79].  In light of these findings, it is imperative to concentrate vaccine 

efforts on stimulating immune responses that prevent or curtail infection of the gut.  Other 

mucosal tissues are important in the early steps of HIV infection, such as the rectum and vagina 

where the majority of HIV transmission occurs.  Immunity induced in the gut-associated 

lymphoid tissue (GALT) may be able to afford immunity at these distal mucosal sites, also [250]. 

While inducing cellular immunity at mucosal sites is important in HIV/SIV vaccinology, 

the functionality of immune responses induced against HIV/SIV also affects the outcome of 

infection [40, 42, 136-140].  Functionality refers to a cell’s ability to proliferate and carry out 

effector functions against a pathogen.  For example, a correlation exists between control of HIV 

or SIV infection and the presence of CD8+ T cells from peripheral blood mononuclear cells 

(PBMC) concurrently expressing surface CD107a as a marker of antigen-specific cytotoxicity 

and producing IFN-γ, TNF-α, IL-2, and/or MIP-1β [40, 42].  HIV-infected patients who slowly 

progress to AIDS disease display significantly higher percentages of HIV-specific PBMC CD8+ 

T cells that demonstrate four or more of these functions than rapidly progressing patients [40].  

PBMC-derived antigen-specific CD8+ T cells concurrently producing IL-2 and IFN-γ are known 
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to be superior in their proliferative capacity and ability to eliminate antigen [132, 142-144, 148, 

149].  While information about the functionality of gut cells during HIV/SIV infection is limited 

[80, 139, 140], it is expected that not just the level of response but also the quality of immunity, 

including multifunctional CD8+ T cells, in this tissue will relate directly to the outcome of 

infection or effectiveness of vaccine-induced immune responses [388].  Thus, examining the 

functional cellular responses in mucosal tissues such as the gut may provide correlations between 

control of HIV/SIV infection and immunity, either natural or vaccine-induced. 

To address the need for gut mucosal priming of multifunctional cellular responses, a 

recombinant Clostridium perfringens bacterial strain expressing SIV p27 (Cp-p27) is used for the 

development of an oral vaccine that induces cellular immunity in the gut.  This orally delivered 

vaccine can deliver large amounts SIV p27 antigen to the terminal ileum of the small intestine, 

where gut inductive immune tissues known as Peyer’s patches (PPs) are concentrated.  Whereas 

strictly systemic administration of leading HIV/SIV vaccine candidates, such as adenovirus-

vectored vaccines, can produce systemic immunity but have failed to produce strong mucosal 

immunity [216, 230], a number of studies have demonstrated that mucosal priming followed by 

systemic boosting is an effective vaccination strategy for producing immunity in both systemic 

and mucosal tissues [228, 241-246].  Thus, it is hypothesized that priming the gut mucosa with 

the oral Cp-p27 vaccine would enable the inductive (PPs) and effector (lamina propria) tissues of 

the gut to better respond to intramuscular immunization using adenovirus (Ad) serotype 5 

carrying SIV p27 (Ad-p27).  This report evaluates the strength and functionality of immune 

responses generated by these two vaccines using a prime-boost strategy in mice. 
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5.4 MATERIALS AND METHODS 

Animals 

Female Balb/c mice were purchased from Charles Rivers Laboratories, Inc. and housed in 

a pathogen-free facility in accordance with the University of Pittsburgh Institutional Animal Care 

and Use Committee and federal regulations.  Animals were used at 6 to 8 weeks of age. 

 

Clostridium perfringens vaccine strain Cp-p27 

Construction of the Clostridium perfringens vaccine expressing SIV p27 (Cp-p27) has 

been described previously [306].  Culturing of Cp-p27 was performed in the presence of 

10μg/mL chloramphenicol at 37°C.  Fresh 8h cultures of Cp-p27 grown in fluid thioglycolate 

broth (Difco) were used to inoculate modified Duncan-Strong medium [299] which was grown 

for 18h to induce sporulation.  Sporulation of at least 90% of all bacteria in cultures was 

confirmed by phase-contrast light microscopy.  Sporulated bacteria were isolated and washed 

with phosphate buffered saline (PBS) using centrifugation.  Isolated sporulating bacteria were 

sonicated, and the concentration of p27 was enumerated by desitometry of quantitative Western 

blots.  Vaccine was then stored at -140°C until use.  

 

Adenovirus vaccine strain Ad-p27 

E1/E3-deleted adenovirus serotype 5 expressing codon-optimized SIV gag p45 was 

constructed by the University of Pittsburgh Vector Core as described in Gao, et al. [387]. 

Determination of adenovirus particle concentration was performed by spectrophotometer 

analysis using a validated assay based on Adenovirus Reference Material obtained from the 

ATCC.  Virus was stored at -70°C until thawing on ice for use. 
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Oral adjuvants 

Whole, active cholera toxin (CT) was purchased from Sigma and stored at 4°C until use.  

5μg CT was used for each vaccine dose. HPLC-purified S-thiolated cytosine-phosphate-guanine 

oligodinucleotides (CpG ODN) were purchased from Sigma-Genosys and stored at -20°C until 

use.  CpG ODN sequences were:  CpG-A=TCCATGACGTTCCTGACGTT; CpG-

B=TGACTGTGAACGTTCGAGATGA [372, 373].  50μg of each CpG ODN was used for each 

vaccine dose. The isolation of LT(R192G) has been described previously [258].  LT(R192G) 

was provided by Dr. John D. Clements and was reconstituted to 1mg/mL in sterile water and 

stored at 4°C until use.  1μg LT(R192G) was used for each vaccine dose. 

 

Vaccination 

Mice were inoculated with Cp-p27 via gavage and/or Ad-p27 intramuscularly.  To 

gavage mice, an infant enteral feeding tube was inserted down the esophagus into the stomach.  

Here the Cp-p27 vaccine dose, consisting of bacteria expressing 250μg p27 plus adjuvants, was 

delivered in a total volume of 500μL in PBS.  Control mice received 500μL PBS via gavage.  109 

pfu of Ad-p27 were delivered in 50μL into the quadriceps muscle using a 26G needle.  As a 

control, mice received 50μL PBS intramuscularly.  Vaccines were administered at 3 week 

intervals. 

 

Fecal sample collection and processing 

Two to four days before sacrifice, fecal matter was collected from each mouse and 

processed on ice.  Approximately 50-150mg of fecal material was obtained from each mouse.  
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Samples were weighed and fully resuspended in Complete Mini protease inhibitor cocktail (1 

tablet/mL PBS containing 0.1% sodium azide; Roche) by adding 1mL per 100 or 200mg of fecal 

matter.  Resuspended samples were vortexed and then centrifuged at 13000rpm for 10 minutes in 

a tabletop centrifuge.  Supernatant was assayed immediately. 

 

Tissue collection and cell isolation 

Mice were sacrificed, and spleen, mesenteric lymph node (MLN), and small intestine 

were aseptically removed and processed.  Spleens were gently crushed with glass stoppers to 

release splenocytes, which were passed through nylon mesh, pelleted with centrifugation at 4°C 

at 1200 rpm for 5 minutes, treated with 3-5mL red blood cell lysis buffer (Sigma) for 5 minutes 

with a gentle shake after 3 minutes, and washed with RPMI containing serum.  Some cells were 

used fresh in subsequent assays, while others were stored in 1mL aliquots in 10% DMSO in FCS 

at -140°C until use.  Fatty tissue on MLNs was carefully removed, and MLN tissues were gently 

crushed using glass stoppers to release cells, which were passed through nylon mesh and pelleted 

with centrifugation at 4°C at 1200 rpm for 5 minutes.  Isolation of spleen and MLN cells was 

performed at room temperature with centrifugation using a centrifuge cooled to 4°C to preserve 

the integrity of isolated cells. 

Dissection of intestinal tissue was performed on ice, and when tissue and cells were not 

being treated enzymatically, they were kept on ice.  Before cell isolation, the intestine was rinsed 

with 1mL sterile PBS.  This intestinal wash was pelleted to remove solid matter using a tabletop 

centrifuge at 13000 rpm for 10 minutes, and the supernatant was stored at -70°C.  Fatty tissue 

was removed from small intestine tissue, and the lumen was thoroughly flushed with PBS.  

Peyer’s patches and lamina propria cells were then isolated as described in Chapter 4. 
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Serum sample collection and processing 

Pre-immune serum samples were acquired through venopuncture of the lateral saphenous 

vein, and blood was collected into heparinized capillary tubes.  At sacrifice, blood samples were 

collected via heart puncture, and blood was allowed to coagulate on ice for several hours before 

separation.  For all samples, serum was separated from blood by centrifugation at room 

temperature at 750xg for 20 minutes.  Serum samples were stored at -70°C. 

 

Thawing of splenocytes 

Vials of cells were removed from -140°C storage, placed in a 37°C water bath for 2 

minutes, and resuspended by dropwise addition of 1mL room temperature RPMI containing 

serum followed by addition of 8mL RPMI containing serum in 1mL aliquots, with mixing of 

cells after addition of each drop or aliquot.  Cells were then pelleted for 5 minutes with 

centrifugation at 4°C at 1200 rpm.   

 

IFN-γ ELISpot 

Detection of interferon-gamma (IFN-γ) was performed using mouse IFN-γ ELISpot Kits 

from Mabtech.  Plates were prepared as described in Chapter 2.  Most cells assayed via ELISpot 

were freshly isolated.  However, frozen-thawed spleen cells were used in the second experiment.  

Spleen, MLN, and PPs cells were plated with 2x105 cells per well of the activated ELISpot plate 

in a volume of 200μL ELISpot media (RPMI-1640 with 10% heat-inactivated FBS, 1% 

penicillin/streptomycin, 0.1mM non-essential amino acids, 2mM L-glutamine, 10mM HEPES, 

and 1mM sodium pyruvate).  Because of lower yields, LP cells were generally plated at 5x104 or 
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1x105 cells per well in 200μL.  Samples were stimulated as with two separate pools of SIVmac 

239 gag 15-mer peptides overlapping by 11 amino acids (NIH AIDS Research and Reference 

Reagent Program) covering the majority of SIV p27 with peptides 5265 through 5298 of SIV gag 

with each peptide at a concentration of 5μg/mL.  Each sample also contained a background 

control where a concentration of DMSO equivalent to that in the peptide pools was added to the 

well.  As a positive control, each sample was also stimulated with 1mg/mL concanavalin A.  All 

treatments for all samples were plated in triplicate, except when low LP yields made this 

impossible, in which case at least two wells per treatment per sample were plated.  Cells were 

incubated at 37°C for 24h.  Detection of IFN-γ spot-forming cells (sfc) was performed as 

described in Chapter 2.  When dry, sfc on plates were counted on an automated ELISpot reader.  

Background sfc values from background control wells were removed as appropriate, and sfc 

were normalized to 106 cells. 

 

SIV p27-specific ELISA 

EIA/RIA Plates were coated overnight at room temperature with recombinant SIV p27 

isolated from E. coli.  After blocking plates, serial dilutions of serum or undiluted samples of 

fecal extracts or intestinal washes were placed in wells and incubated at room temperature for 2h 

(serum) or at 4°C overnight (fecal extracts and intestinal washes).  Plates were washed, and 

AKP-conjugated α-mouse IgG, IgG1 or IgG2a antibody or biotin-conjugated α-mouse IgA 

antibody (BD Biosciences) was incubated in appropriate wells for 1h at room temperature.  For 

IgA detection, plates were washed and a secondary AKP-conjugated streptavidin (Sigma) was 

then incubated in appropriate wells for 30 minutes at room temperature.  Finally, 4-nitrophenyl 

phosphate disodium salt hexahydrate (Sigma) was used to detect p27-specific antibody, and 
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optical density was read on a plate reader at 405nm.  Background values from negative control 

wells on each plate were subtracted. 

 

Surface, intracellular cytokine, and CD107a staining 

FITC-α-CD107a (clone 1D4B), R-PE-α-CD8 (53-6.7), APC-α-IL-2 (JES6-5H4), PE-

Cy7-α-IFN-γ (XMG1.2), Biotin-α-TNF-α (MP6-XT3), and APC-Cy7-streptavidin were 

purchased from BD Pharmingen.  PE-Cy5-α-CD3 (clone 145-2C11) was purchased from 

BioLegend. Isotype control antibodies were purchased from the same manufacturers according to 

the fluorescent conjugate used. 

Freshly isolated cells (maximum 106 cells) were cultured for 5 hours at 37°C in 96-well 

plates in 200μL growth media (DMEM with 10% fetal calf serum,  1mM sodium pyruvate, 2mM 

L-glutamine, 0.025M 2-mercaptoethanol, and 1.25mM HEPES) containing 5μg/mL α-CD107a 

antibody, 3μM monensin, 5μg/mL brefeldin A, and 5μg/mL peptides spanning the entire p27 

protein.  As a background control, one well of cells of each sample was cultured without peptide.  

As a positive control, samples were cultured with 50ng/mL phorbol myristate acetate and 

1μg/mL ionomycin. 

After the culture period, plates were cooled to 4°C overnight.  Cells were surface stained 

for CD3 and CD8, washed with FACS buffer (PBS with 0.1% bovine serum albumin and 0.1% 

sodium azide), fixed in 4% paraformaldehyde, and permeabilized with FACS buffer containing 

0.2% saponin.  Following permeabilization, cells were intracellularly stained for IL-2, IFN-γ, 

and TNF-α, washed, fixed, and stored in the dark at 4°C in FACS buffer.  All samples were fully 

analyzed by flow cytometry within 12 hours of staining. 
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Flow cytometry and analysis 

Stained cells were analyzed using a BD Canto flow cytometer.  FCS files were analyzed 

using FlowJo version 7.2.2 (Tree Star, Inc.).  Cells in the lymphocyte gate were gated on 

CD3+CD8+ or CD3+CD8- cells, and gates for individual cytokines and CD107a were established 

with control cells stained only for CD3 and CD8.  Cells in the cytokine and CD107a gates were 

analyzed with Boolean gating to generate the percentage of cells expressing each combination of 

functional markers.  Background expression values were subtracted from peptide-stimulated 

values for each sample.  Graphical representation of functionality was achieved using SPICE 

software kindly provided by Dr. Mario Roederer of the NIH VRC.  For SPICE analysis, 

individuals with no p27-specific immune response were excluded.  Threshold values were 

determined by calculating confidence values of negative percentages for each T cell subset.  For 

PPs, the 90% value was used; for LP, the 75% value was used. 

 

Statistics 

Statistical analyses were performed using GraphPad Prism version 4.  Values of p were 

determined assuming a nonparametric distribution and employing a Kruskal-Wallis test followed 

by the Dunn procedure to compare groups.  Antibody titer values were first transformed to log10 

before analysis.  Results were considered significant if p<0.05. 
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5.5 RESULTS 

5.5.1 Optimal Order of Mucosal and Systemic Inoculation in a Prime-Boost 
Vaccine Model 

To determine whether the oral C. perfringens vaccine carrying SIV p27 (Cp-p27) 

performed better as a prime or a boost to a systemically delivered adenovirus serotype 5 

encoding SIV gag vaccine (Ad-p27), groups of five mice were vaccinated three times with 

different regimens as described in schedule 1 in Figure 20 A, and resulting systemic and mucosal 

immunity was investigated.  Group A was a control group, and the mice received PBS at each 

inoculation.  Mice in group B received three oral doses of Cp-p27 at days 0, 21, and 42.  Mice in 

groups C and D received one dose of Ad-p27 intramuscularly at day 0, and those in group D also 

received two subsequent oral Cp-p27 inoculations as a boost at days 21 and 42.  Mice in group E 

received two oral inoculations of Cp-p27 at days 0 and 21 followed by an intramuscular boost 

with Ad-p27 at day 42.  All Cp-p27 doses included CT and CpG ODNs as adjuvants.  Eight to 

ten days after the final vaccination, mice were sacrificed.  Peripheral blood serum, intestinal 

washes, and fecal samples were collected and examined for humoral immune responses.  Cells 

isolated isolated from spleen, mesenteric lymph node (MLN), and small intestinal Peyer’s 

patches (PPs) were examined for cellular immune responses. 
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Figure 20.  Vaccination schedules implementing Cp-p27 and Ad-p27 
Female Balb/c mice 6 weeks of age were inoculated with orally delivered Clostridium perfringens carrying SIV p27 
gene (Cp-p27) and/or intramuscularly delivered adenovirus serotype 5 carrying SIV gag gene (Ad-p27) at the 
indicated timepoints.  Control inoculation with oral or intramuscularly delivered phosphate buffered saline was 
delivered as appropriate. 

 

5.5.1.1 Systemic Cellular Responses 
Animals in groups C, D, and E, who received Ad-p27, displayed cellular p27-specific 

IFN-γ production in spleen, while those from group B displayed a low response similar to the 

control group A.  The strongest cellular response was observed in group E, which had received 

Cp-p27 followed by Ad-p27 boosting (Figure 21 A).  The response in group E was statistically 

higher than group B and control group A (p<0.001 and p<0.01, respectively). 
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5.5.1.2 Systemic Humoral Responses 
Serum antibodies specific for p27 were detected by ELISA (Figure 21 B).  Mice from 

groups A and B displayed low antibody titers for both Th1-type (IgG2a) and Th2-type (IgG1) 

antibodies.  The highest titers were observed in groups C and D.  The titers in groups A and B 

were statistically lower than in group C (IgG1) or groups C and D (IgG2a) (p<0.05).  Group E 

also displayed a higher IgG2a titer than groups A or B, although this was not statistically 

significant.   Antibody titers were probably lower in group E than in groups C and D because the 

mice in group E were sacrificed before antibody responses were matured, a process that normally 

takes approximately three weeks. 
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Figure 21.  Immune responses stimulated by Cp-p27 and Ad-p27 
Mice were immunized against SIV p27 with Cp-p27 and Ad-p27 vaccines as described in Figure 1.  A, p27-specific 
IFN-γ ELISpot results from spleen, mesenteric lymph node (MLN), and small intestinal Peyer’s patches (PPs).  Grey 
bar, group A; black bar, group B; white bar, group C; speckled bar, group D; slashed bar, group E.  Kruskal-Wallis 
test p-values:  for spleen, p=0.0003; for MLN, p=0.0005.  *p<0.01, **p<0.001 compared with group 5.  Error bars 
represent standard error of the mean.  B, Serum antibody titers detected by p27-specific ELISA.  White bar, IgG1; 
black bar, IgG2a.  For both isotypes, via the Kruskal-Wallis test of log10 transformed endpoint titer values, p≤0.001.  
#p<0.05 compared with group D, +p<0.05 compared with both groups C and D.  Error bars represent standard error 
of the mean.  C, Intestinal wash OD405 values detected by p27-specific ELISA.  Via Kruskal-Wallis test, p=0.0107.  
#p<0.05. 
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5.5.1.3 Gut Mucosal Cellular Responses 
Mucosal tissues were also assayed for p27-specific IFN-γ production (Figure 21 A).  

Animals in group C group displayed minimal IFN-γ in PPs.  This response was slightly 

heightened in group D.  A p27-specific cellular immune response was observed in PPs from 

group B, and the highest response was in group E.  These data indicate that priming with Cp-p27 

stimulates a gut mucosal immune response that is improved by systemic Ad-p27 boosting. 

Although a p27-specific IFN-γ was expected in the MLN, which drains the GALT 

(reviewed in [252] and [389]), no cellular response was detected in the MLN of mice in group B 

(Figure 21 A).  Animals in group E, which received Cp-p27 followed by an Ad-p27 boost, 

displayed cellular responses in the MLN that were statistically higher than the PBS-only control 

group A as well as group B (p<0.01).  Responses in MLN of group E were also higher than those 

in groups C and D, although not significantly. 

5.5.1.4 Gut Mucosal Humoral Responses 
SIV p27-specific IgA was detected in intestinal washes from groups B and E at higher 

levels than control group A.  As shown in Figure 21 C, the highest response was observed in 

group E, which was statistically higher than group D (p<0.05) but not control group A.  Low 

antibody responses were observed in groups C and D.  Fecal samples did not contain detectable 

IgA in any group (data not shown). 

5.5.2 Investigation of Vaccines’ Contributions to Gut Immunity  

These data suggest that orally delivered Cp-p27 is able to prime a gut mucosal immune 

response but not a systemic response.  Furthermore, priming with Cp-p27 before Ad-p27 

administration provided a stronger immune response than Cp-p27 boosting after Ad-p27 

inoculation.  In order to further explore the potential of Cp-p27 as a mucosal priming vaccine, 
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the strength and functional quality of cellular responses were measured in both the gut effector 

tissue, the lamina propria (LP), and the inductive PPs tissue after vaccination.  In this second 

study, LT(R192G) and CpG ODN adjuvants designed for oral use [258, 372, 373] were 

employed with Cp-p27.  This experiment was performed twice, with similar results. 

In this experiment (see Figure 20 B, schedule 2), group 1 consisted of 5-6 control mice 

who received PBS only.  Groups of ten mice were inoculated with oral Cp-p27 and/or 

intramuscular Ad-p27.  Mice in group 2 received three inoculations of Cp-p27 at days 0, 21, and 

42; mice in group 3 received one inoculation of Ad-p27 at day 42 (group 3); and mice in group 4 

received two inoculations of Cp-p27 at days 0 and 21 followed by a boost of Ad-p27 at day 42.  

Mice were sacrificed 10 to 14 days after the last inoculation, which is the timepoint at which 

peak cellular responses to Ad-based vaccines are detected. 

5.5.2.1 Systemic Cellular Responses 
Spleen cells assayed by ELISpot for p27-specific IFN-γ production displayed no p27-

specific response in mice immunized with Cp-p27 alone (group 2) or with PBS (group 1) (Figure 

22 A).  Mice who received Ad-p27 (group 3) displayed p27-specific splenic IFN-γ responses, 

significantly higher than group 2 (p<0.05).  The cellular response was even was higher in group 

4, with p<0.01 compared with group 2. 

5.5.2.2 Systemic Humoral Responses 

Group 2 displayed low titers of p27-specific IgG1 and IgG2a antibodies in the serum, 

similar to control group 1 (Figure 22 B).  Groups 3 and 4 both had high titers of p27-specific 

IgG1 and IgG2a, which were statistically higher than groups 1 and 2 (p<0.001).  Within each 

group, the titers of Th1-type and Th2-type antibodies were similar, indicating no bias towards 

any one antibody isotype. 
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Figure 22.  Systemic and gut mucosal immune responses generated from Cp-p27 and Ad-p27 vaccination 
Mice were immunized against SIV p27 with Cp-p27 and Ad-p27 vaccines as described in Figure 1.  A, p27-specific 
IFN-γ ELISpot results from spleen, small intestinal Peyer’s patches (PPs) and small intestinal lamina propria (LP).  
Grey bar, group 1; black bar, group 2; white bar, group 3; slashed bar, group 4.  Kruskal-Wallis test p-values:  for 
spleen, p=0.0011; for PPs, p=0.0056; for LP, p<0.0001.  #p<0.05, *p<0.01, **p<0.001.  Error bars represent 
standard error of the mean.  B, Serum antibody titers detected by p27-specific ELISA.  White bar, IgG1; black bar, 
IgG2a.  For both isotypes, via the Kruskal-Wallis test of log10 transformed endpoint titer values, p<0.0001.  
**p<0.001 compared with both group 1 and group 2.  Error bars represent standard error of the mean. 

 

5.5.2.3 Gut Mucosal Cellular Responses 
Unlike the previous experiment using cholera toxin as an adjuvant with Cp-p27 (Figure 

21), responses to Cp-p27 using LT(R192G) and CpG ODNs in animals of group 2 did not 

generate p27-specific IFN-γ ELISpot responses higher than then PBS control group 1 in PPs 
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(Figure 22 A).  Cellular responses were observed in groups 3 and 4, with group 4 again showing 

the strongest p27-specific cellular response.  As in the spleen, the cellular response in PPs was 

not significantly different between groups 3 and 4, but the response in group 4 was statistically 

higher than group 2 (p<0.01). 

The LP showed a different hierarchy of p27-specific cellular response (Figure 22 A).  In 

this effector tissue, all vaccinees displayed stronger responses than the control group 1.  In the 

LP, group 2 demonstrated a slightly higher cellular response than group 3.  The p27-specific 

IFN-γ response in group 4 was higher than any other group and very significantly higher than 

control group 1 (p<0.001).  Whereas the magnitude of p27-specific IFN-γ production by 

splenocytes and LP lymphocytes was similar in group 3, in group 4 the LP response was nearly 

twice that in the spleen (Figure 22 A). 

5.5.2.4 Gut Mucosal Humoral Responses 
Intestinal p27-specific IgA and IgG was evaluated by ELISA, and all groups 

demonstrated low levels of antibody for both isotypes.  There was no difference in OD levels in 

any vaccinated group compared with the PBS control group 1 (data not shown). 

5.5.3 Function of p27-Specific T Cells 

To evaluate other functions of the p27-specific gut mucosal cells, cells were stained for 

the cytotoxic degranulation marker CD107a, and intracellular cytokine staining was performed to 

detect IFN-γ, TNF-α, and IL-2 production.  These four immune functions were then detected by 

flow cytometry.  Cells were surface stained for CD3 and CD8 to differentiate CD8+ and CD8- T 

cells.  In PPs, CD3+CD8- cells are 95-96% CD4+; in LP, they are 88-90% CD4+ (data not 

shown). 
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Figure 23.  T cell p27-specific cytokine responsiveness in gut mucosal tissues following immunization with Cp-
p27 and/or Ad-p27 
Cells from small intestinal Peyer’s patches (left) and lamina propria (right) were surface stained for CD3 and CD8.  
SIV p27-specific IL-2, TNF-α, and IFN-γ production from CD8+ (A) and CD8- (B) CD3+ cells was detected via 
intracellular staining and analysis via flow cytometry.  Percentages of cells with each cytokine and any cytokine 
response were then determined.  Grey bars, group 1; black bars, group 2; white bars, group 3; slashed bars, group 4.  
Error bars represent standard error of the mean.  In all cases of statistical significance between groups, p≤0.03 via 
the Kruskal-Wallis test.  #p<0.05, *p<0.01, **p<0.001. 



 127 

5.5.3.1 Individual Cytokine Levels Vary with Delivered Vaccine 
The percentage of cells producing each cytokine in the two gut tissues was calculated 

from flow cytometry results (Figure 23).  Group 2 displayed slightly more production of each of 

IL-2, TNF-α, and IFN-γ in PPs CD8+ and CD8- T cells compared with group 1.  Group 3 

demonstrated very little production of any cytokine except in PPs CD8+ T cells, which had 

higher but statistically insignificant percentages of TNF-α and of IFN-γ producing cells than 

control group 1.  IL-2 and TNF-α production in PPs CD8- T cells from group 3 were statistically 

lower than in group 2.  The IL-2 production of PPs CD8+ T cell in group 4 was statistically 

higher than in group 3.  Group 4 demonstrated insignificantly higher percentages of IL-2, TNF-α, 

and IFN-γ producing PPs CD8+ T cells compared with control group 1.  In PPs CD8- T cells, 

group 4 had low levels of all cytokines except for IL-2.  There was a slightly higher level of 

production of each cytokine by LP CD8+ and CD8- T cells in group 4 compared with all other 

groups.  Group 2 also showed a higher percentage of IL-2 producing cells than group 1, but this 

was not statistically significant.  

5.5.3.2 Multifunctional T Cells in Peyer’s Patches 
All mice displayed production of at least one of the assayed cytokines in response to p27 

in PPs T cells.  The percentage of CD8+ T cells showing any cytokine responsiveness to p27 was 

highest in groups 2 and 3 (Figure 23).  The percentage of p27-specific cytokine-producing CD8- 

T cells was highest in groups 2 and 4, although no vaccine groups displayed significantly higher 

CD8- PPs T cell responses than the PBS control group.  Group 2 displayed a statistically higher 

CD8- T cell response in PPs than group 3 (p<0.001). 

The cells from each vaccinated group were then evaluated for multifunctionality (at least 

2 different functions in the same cell) of cytokine production and degranulation.  Within the 
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CD8+ PPs T cell response, multifunctionality was observed significantly more often in group 4 

compared with group 2 or group 3 (p=0.026 and p=0.013, respectively) (Figure 24).  CD8- PPs T 

cells were also most multifunctional in group 4; mice from group 2 displayed some 

multifunctionality, and mice in group 3 demonstrated no multifunctionality within the CD8- T 

cell subset in PPs (Figure 24).  The lack of multifunctional PPs CD8- cells in group 3 mice 

created statistically significant differences in complexity (i.e. 2- vs. 3- vs. 4-functions) of 

multifunctionality profiles when comparing group 3 with either group 2 or group 4 (p<0.001).  

These results demonstrate a difference in CD8- (CD4+) and CD8+ T cell responses in PPs 

dependent upon the vaccine vector used to deliver p27 antigen. 

5.5.3.3 Multifunctional T Cells in Gut Lamina Propria 
Most mice in all groups demonstrated a positive p27-specific response to at least one 

cytokine in the LP:  10/10 group 1 (100%); 13/13 group 2 (100%); 11/12 group 3 (92%); and 

11/11 group 4 (100%).  However, the percentage of p27-specific cells producing any cytokine in 

mice from group 3 was lower than that in PBS control group 1 mice in both CD8- and CD8+ LP 

T cells (Figure 23).   Of the p27 responsive mice, higher percentages of CD8- and CD8+ T cells 

demonstrated a p27-specific cytokine response in animals vaccinated with Cp-p27 (groups 2 and 

4) compared with only Ad-p27 (group 3) (Figure 23).  The highest percentages were observed in 

group 4. 

Although not statistically significant, a larger portion of the p27-specific response was 

due to multifunctional cells (cytokines and/or degranulation) in group 4 than in groups 2 and 3, 

particularly in the CD8+ T cell subset (Figure 24).  Of particular interest, the level of 

multifunctionality of LP CD8+ T cells was greater in mice from group 4 (2-, 3-, and 4-function 

responses) than in group 3 mice (2-function responses only). 
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Figure 24.  Multifunctional gut T cell responses in inductive and effector tissues resulting from vaccination 
Data generated from Boolean-gated CD8+ and CD8- cells from Peyer’s patches and lamina propria stained for 
CD107a, IL-2, TNF-α, and IFN-γ were analyzed for concurrent functionality using SPICE software.  A, The average 
percentage of total response at each level of multifunctionality is represented by slices in pie charts.  Values of p 
were determined with SPICE software comparing distribution between pies grouped by slice color using 10000 
permutations.  B, The average percentage of total response for each combination of functions is shown with error 
bars representing standard error of the mean. 
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(Figure 24 continued) 
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5.6 DISCUSSION 

Newly acquired HIV and SIV infections quickly target gut mucosal tissue, and the 

inability to restore the gut mucosal immune system following initial depletion of its CD4+ T cells 

contributes to the pathology and persistence of HIV and SIV [64, 74, 75, 78, 79, 312-314].  

Nevertheless, vaccine-induced gut CD8+ T cell immunity has been shown to impede the 

dissemination of SIV in rhesus macaques following challenge [121], providing evidence in 

support of the hypothesis that containment of infection at mucosal sites can reduce the severity 

of HIV/SIV infection [34, 36].  The systemic and mucosal presence of both CD8+ and CD4+ 

multifunctional cellular responses against lentiviruses has also been associated with protection 

from or control of HIV and SIV infections [40, 42, 136-140]. 

One of the challenges of HIV/SIV vaccine design is the complexity of inducing immune 

responses in the gut.  It is often difficult to deliver sufficient amounts of vaccine antigen to the 

relevant GALT inductive tissues, namely PPs.  Both oral and rectal inoculation strategies are 

under investigation for this purpose, with varying levels of resultant mucosal and systemic 

responses [49, 121, 247, 248, 332, 390-397].  Some systemically delivered vaccines can induce a 

degree of mucosal response.  Intramuscular immunization with recombinant Ad carrying 

HIV/SIV antigens has been shown to induce strong systemic cellular immunity, as well as 

limited cellular immunity in PPs [216, 230].  Under these circumstances, the gut mucosal 

immune response was several degrees of magnitude lower than the systemic immune responses.  

Data from a recent clinical trial using an Ad serotype 5-based vaccine demonstrated a lower than 

anticipated protective ability despite inducing strong systemic immunity against HIV (reviewed 
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in [207]); gut mucosal responses were not defined.  In light of these findings and the importance 

of gut mucosal immunity against HIV and SIV, a strategy to improve the gut mucosal immunity 

generated from leading HIV/SIV vaccine candidates is desirable. 

The current study attempted to generate multifunctional mucosal immune responses in 

the gut through immunization of mice with an oral C. perfringens-based vaccine against SIV 

p27.  Despite low systemic humoral and cellular responses with this vaccine strategy, strong 

cellular responses in the inductive (PPs) and effector (LP) gut tissues were observed.  CD8+ T 

cells from the LP of Cp-p27-vaccinated mice contained cells concurrently displaying two, three, 

and four of the cytokine and cytotoxic immune functions associated with effective cellular 

immunity.  Additionally, this study investigated whether the oral Cp-p27 vaccine used as a prime 

could improve gut mucosal responses to subsequent intramuscular inoculation of Ad-5 carrying 

SIV p27.  These results indicate that mice that were first primed with Cp-p27 and then boosted 

with Ad-p27 generated stronger systemic and gut cellular responses to SIV p27 compared with 

unprimed Ad-p27 recipients.  Multifunctionality of PPs and LP CD8+ and CD8- T cell subsets 

was also increased in Cp-p27-primed mice that were then boosted with Ad-p27.  Compared with 

mice who only received Cp-p27, the multifunctionality of CD8+ T cells in LP was strikingly 

improved in mice boosted with Ad-p27. 

Together, these observations suggest that different functional profiles are stimulated in 

inductive and effector gut lymphoid tissue depending on which vaccines mice receive.  The 

observation that the percentage of responsive LP CD8+ T cells in recipients of Ad-p27 only is 

much lower compared with mice who received Cp-p27 only and Cp-p27 boosted with Ad-p27 

suggests that intramuscular Ad-p27 vaccination provides limited stimulation of LP CD8+ T cell 

responses.  Finally, the current study suggests that immunization with Cp-p27 stimulates 
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multiple cytokine and degranulation events in the lamina propria, enabling a subsequent 

inoculation of Ad-p27 to boost the memory T cell response in this effector tissue while also 

improving the functionality of T cells in inductive PPs tissue. 

The ability of vaccine-induced multifunctional CD8+ T cell immunity to predictably 

prevent HIV or SIV infection is not wholly understood.  In rhesus macaques immunized with 

live-attenuated SHIV, animals who controlled viral replication against SIV challenge were found 

to have more multifunctional responses in PBMC-derived CD8+ T cells than macaques who 

displayed high viral loads [42].  However, study of PBMC T cell immunity in an individual who 

acquired HIV after vaccination against HIV has suggested that infection can occur even in the 

face of multifunctional vaccine-induced responses similar to those seen in long-term non-

progressor HIV patients [398].  Clearly there remains much to be learned regarding the 

relationship between immune responses and protection from and/or control of HIV/SIV 

infection.  In light of the many reports that anti-HIV/SIV immunity in PBMC does not accurately 

reflect that in the gut tissues [74, 77, 399], it will be important to include these mucosal sites in 

future evaluations.  Tasca et al. observed that uninfected SHIV-exposed rhesus macaques 

demonstrating resistance to infection following vaginal challenge displayed more jejunal gut 

lamina propria CD8+ T cells with concurrent expression of IFN-γ and TNF-α than susceptible 

macaques [140].  Further studies into the quality of immune response, i.e. multifunctional CD8+ 

T cells, in various gut tissues will provide insight into an understanding of the true definition of 

protective immunity. 

In conclusion, oral vaccination of mice with Cp-p27 induces multifunctional cellular 

immunity in the LP, and boosting with intramuscular Ad-p27 enhances both LP and systemic 

immunity.  Future studies with Cp-p27 will focus on the memory phenotype of induced T cells, 
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long-term immunity induced by vaccination, and the level of protection against challenge 

infection generated by Cp-p27 immunization.  Cp-p27 should be considered as a mucosal prime 

for other vaccination strategies.  Oral administration of vaccines is often preferable in the field to 

inoculation strategies requiring sterile needles, so including Cp-p27 in a vaccination regimen 

involving Ad or another injected vaccine would have the added benefit of reducing the number 

of needle-based inoculations.  Inclusion of Cp-p27 could also lower the cost since culture of Cp-

p27 does not require expensive techniques and reagents associated with vaccines generated 

through cell culture and other common vaccine production methods. 
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6.0  FINAL DISCUSSION AND CONCLUSIONS 

6.1 EXPERIMENTAL FINDINGS OF CURRENT STUDY WITH CP-P27 

6.1.1 Overview of Results 

The experiments described in the preceding four chapters were aimed at addressing the 

hypothesis that the Cp-p27 vaccine, consisting of Clostridium perfringens expressing SIV p27 

from the sporulation-induced cpe promoter, can deliver p27 to gut DCs and thereby prime 

mucosal and systemic humoral and cellular immunity against SIV.  Since cellular immunity is 

important in control of SIV and HIV infection, the bulk of the experiments addressed the 

induction of T cell immune responses following exposure to Cp-p27 under in vitro and in vivo 

conditions.  DCs of systemic and gut origin were observed to mature and stimulate p27-specific 

T cell responses following exposure to Cp-p27.  Inclusion of PTD sequences conjugated to the 

p27 increased the uptake of antigen by DCs, but such conjugation did not improve p27-specific 

cellular immune responses.  Cp-p27 delivered orally produced gut cellular immunity, which was 

improved by the coadministration of mucosal adjuvants.  This response was greatest in strength 

with 25μg LT(R192G) plus 50μg CpG ODNs and optimal in functional quality with 25μg 

LT(R192G) alone.  Systemic immune responses were not induced by Cp-p27 vaccination alone, 

but oral priming using Cp-p27 followed by an intramuscular Ad-p27 boost improved systemic 

cellular immune responses.  Such a prime-boost strategy also improved cellular immunity in the 

gut effector lamina propria tissue compared with Ad-p27 or Cp-p27 alone.  Altogether, this work 
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demonstrates that Cp-p27 can stimulate cellular immunity in the gut mucosal tissue after delivery 

to gut DCs, and that Cp-p27 can prime systemic immunity for an improved response to 

subsequent booster vaccination with Ad-p27. 

6.1.2 Significance of Results 

This is the first study demonstrating that the use of a non-invasive bacterial-based protein 

delivery system directed at the gut can induce strong, multifunctional cellular immunity in the 

gut.  The safety, ease, and cost-effectiveness of such a delivery system make the Cp-p27 vaccine 

an attractive vector for further evaluation.  This study did not evaluate Cp-p27-induced mucosal 

immunity generated in distal mucosal tissues.  Studies in many mammals indicate that 

stimulation of immunity at gut mucosal can also generate immunity in vaginal and rectal tissue 

[48, 49, 238, 249-251, 311, 400-405].  Some evidence for this phenomenon exists in humans, 

although other findings suggest that primates do not readily display transfer of gut immunity to 

vaginal or rectal tissues [250, 400-404].  Regardless, the presence of cellular immunity at these 

sites of initial HIV transmission may not completely block early HIV infection, and cellular 

immunity at secondary infection sites, such as the gut, may be required to lower the severity of 

infection by controlling viral replication [36, 119].  Studies in the macaque model suggest that a 

vaccine-induced gut cellular response to SIV can slow the establishment of mucosally-acquired 

SIV infection and results in a lower viral set-point [120, 121], which often correlates with a 

longer period before developing AIDS as well as less transmission of virus [55, 56, 213, 214]. 
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6.2 COMPARISON OF CP-P27 WITH OTHER VACCINE VECTORS AGAINST SIV 
AND HIV 

6.2.1 Systemic Immunity 

A number of other approaches to oral vaccination have been described in the literature.  

Oral inoculation using viral vectors including adenovirus, vaccinia virus, papilloma virus, and 

adeno-associated virus have all been studied in mice [228, 392, 406-408].  Orally delivered 

virus-based vaccines have been observed to result in between 80 and 600 antigen-specific 

ELISpot sfc/106 in spleen.  In comparison, systemically delivered viral-based vaccines tend to 

provide IFN-γ ELISpot counts ranging from 500 to 1500 sfc/106 in mouse splenocytes. 

Bacterial vectors such as Lactococcus lactis, Salmonella enterica serovar Typhimurium 

and Listeria monocytogenes are also under investigation as oral vaccine vectors and have been 

shown to induce systemic immunity in mice [236, 248, 331, 332, 334, 393, 395].  Shigella 

flexneri may also be useful as an oral vaccine vector but has thus far only been examined in the 

context of intranasal inoculation [237, 409, 410].  When delivered mucosally, many of the 

bacteria-based vaccines also result in respectable levels of antigen-specific systemic cellular 

immunity, detectable in the spleen at levels around 200-300 IFN-γ ELISpot sfc/106 cells or with 

high levels of T cell proliferation or cytotoxicity rates.  The exception to these common 

observations comes from studies using Listeria monocytogenes engineered to express HIV gag, 

wherein mice immunized orally with a L. monocytogenes-based HIV vaccine demonstrated few 

or no HIV-specific CD8+ T cells in the spleen [228, 332, 411].  Similarly, vaccination with Cp-

p27 in the current study generated a low p27-specific cellular immune response in the spleen. 



 138 

6.2.2 Gut Mucosal Immunity:  Peyer’s Patches and Mesenteric Lymph Nodes 

In other studies [228, 332], cellular immune responses in the PPs were observed but not 

strong after oral inoculation using L. monocytogenes, similar to observations with Cp-p27 alone 

in the current study.  Salmonella-based oral vaccination appears capable of stimulating antigen-

specific PPs cellular immunity on the order of 250-400 sfc/106 cells, although these results are 

not conclusive since one report observed nearly identical antigen-specific response levels 

following inoculation with an empty vector Salmonella and another utilized a 6-day 

restimulation protocol before the assay in order to enhance the detectable response [409, 412].  

Intramuscularly delivered Ad has been observed to generate 50 to 100 antigen-specific sfc/106 

cells detected in an IFN-γ ELISpot assay of PPs cells, similar to the results obtained in the 

current study [216, 230]. 

The response generated by Cp-p27 was confined to gut tissue local to the site of p27 

delivery and was not observed in the draining lymph node (MLN) or systemic tissue.  Two 

possibilities may explain the lack of immunity detected in the MLN.  First, the timepoints used 

for analysis may not represent timepoints when draining lymph nodes contain antigen-specific 

IFN-γ producing cells.  This is supported by findings from Zhu et al. who observed that, 

following intrarectal administration of an adenovirus, the cellular response of the iliac lymph 

node draining the rectal mucosa was detectable at days 4 and 6 following inoculation but not at 

day 14, indicating that detectable response waned in the inductive tissue within two weeks [413].  

Rayevskaya and Frankel [332] observed a similar phenomenon in which cellular PPs responses 

following oral inoculation with a L. monocytogenes-based HIV vaccine were highest at day 7 

after the final inoculation, and the response was much lower by day 14.  It is likely that the 

transient Cp-p27-induced response in the PPs represents the priming of cells in this inductive 
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tissue which then migrate and establish themselves in the LP effector site.  Further 

characterization of the kinetics and memory phenotype of the responses observed following Cp-

p27 immunization will make this clear. 

An alternative explanation for the lack of Cp-p27-induced MLN cellular immune 

response takes into account the difference in trafficking of PPs and LP APCs, specifically DCs.  

LPDCs primarily travel to the MLN to present antigen, whereas PPDCs can relocate from the 

SED to T and B cell areas of the PP and may not frequently migrate to MLN [252, 266, 268].  

Thus, even if the PPDCs exposed to Cp-p27-delivered p27 efficiently acquire antigen, the 

responses they stimulate may not be detectable in the MLN.  Responses in the MLN and 

systemic tissue have been observed following oral vaccination with other bacterial-based vectors, 

and this may be because these other vectors deliver protein to cells in the LP through direct 

infection and subsequent active replication [247, 331-333].  For example, a Salmonella-based 

vaccine delivers vaccine antigen by entering macrophages in the gut LP [247, 331]. 

This explanation would also reconcile the differences in systemic immunity stimulatory 

capacity observed using different oral vectors noted above since the vectors use different 

methods of antigen delivery to gut tissue.  L. monocytogenes infects both monocytes and DCs, 

the latter being most prevalent in the gut in PPs [229, 334, 389].  Likewise, Cp-p27-expressed 

protein is thought to be primarily taken up by DCs in PPs since protein is delivered to the ileum 

in particulate inclusion bodies which are preferentially transcytosed by the M cells that allow 

protein to access PPs.  On the other hand, bacterial vectors such as Shigella and Salmonella can 

infect macrophages, which in the gut reside predominantly in the LP.  Viral-based vectors also 

deliver protein by infecting cells in the LP.  The handling of antigen by PPDCs and by 

macrophages or DCs from LP differs in both the pathways for epitope presentation on MHCs 
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and trafficking of cells to immune inductive sites [229].  The latter difference may play a major 

role in determining the systemic or mucosal homing of immune cells induced by these various 

vaccines.  PPDCs are apt to prime immunity in PPs but do not necessarily travel to the MLN, and 

immune cells primed in PPs home to gut LP [414].  Gut LP macrophages may induce immunity 

when they travel to inductive sites in the MLN; cells primed in the MLN can seed the systemic 

immune system [229, 389]. 

In reports describing mouse cellular immune responses against HIV gag following oral 

inoculation, mice with cellular responses in PPs and MLN displayed protection from challenge 

with HIV gag-expressing vaccinia virus [332, 391-394].  Stronger responses were consistently 

observed in gut compared with spleen in these previously reported oral inoculation studies.  In 

the current study, oral Cp-p27 vaccination followed by a systemic Ad-p27 boost also produced 

stronger immunity in the gut than in the spleen, whereas oral inoculation with the Cp-p27 

vaccine alone induced almost no detectable response in the spleen.  Although the previously 

described L. monocytogenes-based vaccine also did not induce strong systemic cellular 

immunity, upon boosting with an intramuscularly delivered Ad-vectored vaccine, the percentage 

of antigen-specific CD8+ T cells in the spleen increased by at least 20-fold, a level at least 10-

times that induced by the Ad vaccine alone [228, 332].  The strength of this response increased 

incrementally as more primes of the oral L. monocytogenes vaccine was administered before the 

Ad boost.  A similar trend was observed in PPs, where low levels of HIV-specific CD8+ T cells 

were detectable following L. monocytogenes vaccination, but response to an Ad boost was 

improved in a Listeria dose-number dependent manner.  These L. monocytogenes studies and the 

current Cp-p27 study demonstrate that even when immunity induced by an oral vaccine is at 

undetectable levels, immunity exists that can be boosted with a separate vector. 
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Furthermore, the low levels of spleen, PPs, and MLN cellular immunity induced by the L. 

monocytogenes vaccine did not hamper its ability to effectively control a viral challenge [228, 

332].  Although these CTL responses were rather low (approximately 20-25 lytic units/106 cells 

in each tissue) and did not persist at high levels in spleen, MLN, or PPs, the immunized mice 

were protected from challenge with gag-expressing vaccinia virus via either intraperitoneal or 

oral inoculation [332].  This may indicate that low levels of immunity in the gut mucosa are 

sufficient to prevent infection by a mucosally targeted pathogen and/or that stronger gut 

immunity may exist in other compartments, such as effector LP tissue, even when responses in 

inductive tissues (PPs and MLN) are low.  These studies also raise the possibility that the prime-

boost strategy with Cp-p27 and Ad-p27 could provide protection from challenge with p27-

expressing vaccinia virus in mice. 

6.2.3 Gut Mucosal Immunity:  Lamina Propria 

A few studies have reported the antigen-specific IFN-γ ELISpot response of gut LP cells 

following immunization.  In one such study, an intrarectally delivered modified vaccinia Ankara-

based vaccine provided similar levels of antigen-specific IFN-γ sfc (800-900 sfc/106 cells) in the 

small intestine LP as did Cp-p27 vaccine in the current study [396].  Other vaccine strategies 

have induced varying levels of cytolytic cellular responses in the LP.  For example, Belyakov et 

al. generated about 20% specific lysis at a 12.5:1 effector:target ratio in LP lymphocytes via 

intrarectal inoculation of HIV peptides with CT; this response provided control of a subsequent 

intrarectal HIV envelope-expressing vaccinina virus challenge [49]. 
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6.2.4 Functional Quality of Vaccine-Induced Gut Cellular Responses 

Cellular immune responses in gut mucosal tissues of mice have also been assayed via 

intracellular cytokine staining for IFN-γ in a few reports [216, 396].  The data from these reports 

suggest that oral immunization stimulates stronger cellular immunity in the gut than the spleen, 

whereas intramuscular immunization creates the opposite result.  Lin et al. reported that a high 

dose (5x1011) of intramuscularly delivered Ad induced antigen-specific IFN-γ production in 

about 2% of PPs CD8+ T cells [230].  In the current study, a lower dose (1x109) of Ad-p27 

generated IFN-γ production in 0.95% CD8+ T cells from PPs, and Cp-p27 induced an antigen-

specific IFN-γ response in 0.75% of PPs CD8+ T cells.  The antigen-specific IFN-γ response of 

small intestinal LP CD8+ T cell following Cp-p27 and/or Ad-p27 vaccination in the current study 

were also similar to responses observed in gut-associated tissue in other studies, including in the 

jejunal lamina propria of monkeys inoculated through various routes with a vaccine vectored by 

the poxvirus NYVAC [140, 391].  The current finding of about 1% of CD8+ or CD4+ T cells 

expressing IFN-γ in an antigen-specific manner following immunization with Cp-p27 or Ad-p27 

is consistent with many other studies in animals and humans, including individuals who control 

HIV viral replication [138, 141, 147, 215, 415-417].   

The combination of IFN-γ with other functions of CD8+ T cells appears to associate with 

effective CD8+ CTL responses and control of SIV/HIV infection [40, 132].  Higher percentages 

of vaccine-induced antigen-specific cells that express both IFN-γ and TNF-α have been observed 

in gut-associate tissue of monkeys who resisted infection than in susceptible vaccinated animals, 

similar to the current findings [140].  All published studies detailing vaccine-induced expression 

of more than two functions have been performed with systemic and not mucosal cells (examples 

in [215, 398, 415, 418]).  In these studies the vector that was used affected the quality of the 



 143 

cellular response.  For example, heterologous prime-boost immunization of mice using a herpes 

simplex virus amplicon followed by an Ad-vectored vaccine provided more multifunctional 

CD4+ and CD8+ cells than homologous prime-boosting [215].  In the same study, multifunctional 

CD8+ T cells expressing IFN-γ, IL-2 and/or TNF-α made up about 15% of the total antigen-

specific response.  Similar trends were observed in the current study in which multifunctionality 

was greater in mice primed with Cp-p27 and boosted with Ad-p27 than mice who were 

vaccinated with only one vector, with a maximum of about 15% (IFN-γ, TNF-α , IL-2) or 25% 

(CD107a, IFN-γ, TNF-α , IL-2) of the gut mucosal cellular response due to multifunctional cells. 

6.3 CRITICAL EVALUATION OF CP-P27 AND SUGGESTIONS FOR FUTURE 
STUDY 

6.3.1 Benefits and Drawbacks of Cp-p27 

Oral vaccination with Cp-p27 is superior to many other vaccines in its ability to induce 

cellular immunity in the gut LP.  However, one of the benefits many of these other vaccines have 

over Cp-p27 is the ability to induce systemic immunity.  Both systemic and mucosal immunity 

are thought to be necessary for effective protection against HIV disease.  As described above, 

there are different methods of protein delivery by Cp-p27 and systemic-inducing vaccines which 

likely determine the ability of these vaccines to induce systemic or mucosal immunity.  Although 

the delivery mechanism of vectors such as attenuated Salmonella, Shigella and various viruses 

promotes both mucosal and systemic immunity, their ability to infect or colonize the gut may not 

be ideal for use in humans.  Regions with the greatest threat of HIV tend to also have high rates 

of gastrointestinal (GI) disease, such as diarrhea, rendering the gut mucosa less resistant to 

control of attenuated bacteria.  Complications might easily occur if a vaccine vectored by an 
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invasive or colonizing bacteria or virus were delivered to the gut of individuals already fighting 

gastrointestinal disease.  The C. perfringens vectoring the Cp-p27 vaccine enters a non-

replicative, dormant state in the small intestine and delivers vaccine protein to inductive sites 

without infecting or colonizing the mucosa.  Cp-p27 thus has the advantage of not contributing to 

GI disease. 

An additional benefit of the C. perfringens vaccine vector system is the ease with which 

different genes can be inserted into the expression plasmid and placed under control of the strong 

C. perfringens cpe gene.  For example, a C. perfringens vaccine expressing HIV p24 has been 

constructed and is currently under investigation in animal studies.  Also, p27 under control of the 

cpe promoter has  been inserted into the chromosome of C. perfringens, eliminating the need for 

an expression plasmid [305].  The safety and adaptability of the C. perfringens vector would be 

of further value if the vector could also induce systemic immunity.  Therefore, future study of the 

C. perfringens vaccine vector system should concentrate on achieving systemic immune 

responses through oral vaccination, increasing the safety of the C. perfringens vector, and 

broadening immunity by inducing responses against additional viral proteins and stimulating 

antibodies. 

6.3.2 Systemic Immunity Via C. perfringens-Based Oral Vaccination 

The BMDCs used in this study represent systemic DCs that are able to mediate systemic 

immune response formation [419, 420].  In addition, these DCs can stimulate gut immunity 

insomuch as BMDCs delivered intraperitoneally have been observed to travel to MLN where 

they stimulate T cells that home to the gut [420].  Perhaps this is how systemic antigen can gain 

access to the gut.  That systemic Ad-p27 vaccination induced responses in MLN suggests that 

this may be the case in the current study.  Thus, in order for Cp-p27 to generate systemic as well 
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as mucosal immunity, the vaccine vector may need to more efficiently deliver p27 to cells that 

can travel to the MLN, such as LP antigen presenting cells including epithelial cells.  The 

attempt to improve p27 uptake by epithelial cells by incorporation of PTD sequences on the N-

terminal of p27 proved to be an ineffective solution to this challenge, since PTD incorporation 

caused death of epithelial cells in vitro; therefore, alternative strategies should be pursued.  

While PTD-based improvement of the antigen appears to be less than ideal, other methods for 

enhancing and directing immunity can be explored.  Some of these options include directly 

conjugating adjuvant to the antigen expressed by C. perfringens, or fusing an ubiquitination tag 

on the antigen to direct it for ubiquitination and proteasomal cleavage into MHC class I epitopes. 

6.3.3 Safety of Cp-p27 

Despite the fact that most C. perfringens rapidly undergoes sporulation in the intestine, 

rendering it nonreplicative and dormant, one of the safety concerns of utilizing C. perfringens as 

an oral vaccine vector is that C. perfringens carries a variety of toxin-encoding genes which can 

lead to disease.  The C. perfringens type A from whence Cp-p27 was engineered encodes two 

major exotoxins, α-toxin (also known as phospholipase C) and θ-toxin (also known as 

perfringolysin O).  Oral consumption of C. perfringens carrying these two genes is considered 

safe in normal humans, and it is only when such bacteria enter deep wounds that they are 

associated with disease, namely gas gangrene.  However, there is the potential for C. perfringens 

delivered to the gut to enter tissue if the normal GI mucosal tissue is compromised.   Given that 

preexisting GI diseases are often found in the regions in most desperate need of HIV vaccines, it 

is prudent to take as many precautions as possible.  Because of this, C. perfringens strains with 

inactivation of both α-toxin and θ-toxin have been developed and have been shown to express 

SIV p27 and deliver antigen to the terminal ileum [304, 305]. 
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Although there is no evidence for recombination of genetic material between food-

acquired C. perfringens and gut resident C. perfringens or other bacteria in the gut, there is the 

potential for a resistance gene to be transferred if it were included in a vaccine.  In the course of 

the development of the α- and θ-toxin-double knockout mutant, a C. perfringens strain 

expressing SIV p27 from a chromosomally-encoded gene [305].  This expression strategy has 

improved safety for human use in that it circumvents the need for an antibiotic resistance gene as 

is required in the plasmid expression strategy.  To maintain the plasmid in recombinant Cp-p27, 

continuous culture with antibiotic is necessary, which is an added cost and may introduce traces 

of antibiotic into the final vaccine preparation.  Unnecessary use of antibiotics in the absence of 

infection has fueled the emergence of mutli-drug resistance strains of many bacteria over the past 

several decades.  In addition, genetic material encoded on the chromosome is less likely to 

transfer from a vaccine strain to naturally occuring strains of C. perfringens compared with 

plasmid-encoded genetic material.  The plasmid-encoded version of Cp-p27 would be more 

likely to inadvertently introduce further antibiotic resistance genes or vaccine antigen genes into 

the human population.  Thus, future research with C. perfringens expressing SIV p27 can be 

performed utilizing the new generation of C. perfringens with multiple safety mutations and 

lacking antibiotic resistance genes. 

6.3.4 Broadening Immunity Using Additional Viral Protein Genes 

The production of an immune response that is reactive against a variety of viral proteins 

is thought to aid in protection from disease progression.  As virus mutates its proteins in an 

attempt to evade immunity, a broad immune response increases the likelihood of the immune 

system to successfully recognize viral protein epitopes and control virus.  The incorporation of 

various viral proteins into a vaccine would thus be beneficial.  Many different viral proteins 
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could be placed under control of the cpe protmoter in the C. perfringens vector, creating C. 

perfringens strains expressing other viral enzymes such as reverse transcriptase, accessory 

proteins required for replication such as tat, and structural proteins such as envelope.  The 

inclusion of these and other proteins in vaccines have been useful in generating protective 

responses in the SIV macaque model [421-426]. 

The contribution of cellular responses against envelope proteins in providing protection 

against SIV or HIV disease progression is unclear.  Some evidence suggests that envelope-

specific CD8+ T cell responses may not play a large role in protection of SIV-infected macaques 

from disease progression [114, 427].  Thus, vaccination that can also induce antibody responses 

against envelope proteins would likely be more beneficial.  The incorporation of an envelope 

protein would be a special case for expression by C. perfringens as the bacterium lacks the 

capacity to correctly glycosylate this protein in a manner useful for successful antibody response 

formation against most portions of gp120.  However, certain portions of the gp41 molecule do 

not require glycosylation-controlled structural constraints for production of neutralizing 

antibodies and are also quite conserved among all HIV types, thus making them attractive for use 

in C. perfringens.  The membrane proximal region of gp41 contains targets for three broadly 

neutralizing antibodies [428-430].  The ELDKWA sequence comprising amino acids 662 

through 667 of gp41 is the target of the broadly neutralizing antibody 2F5, which has been 

shown to effectively neutralize about 90% of all tested HIV isolates from around the world [428, 

431].  Inoculation of peptides encoding the ELDKWA sequence and derivatives of it have been 

able to induce some HIV-neutralizing antibodies in animal models [432-434], and the expression 

of this sequence from the cpe promoter in C. perfringens would be a feasible approach for 

utilizing the bacterial vector to induce protective antibody production via vaccination. 
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6.3.5 Humoral Immunity Via Cp-p27 Vaccination 

The Cp-p27 vaccine was detected to stimulate only very low levels of intestinal p27-

specific IgA and IgG.  Antibodies against p27 or the HIV capsid protein p24 are not known to 

neutralize SIV or HIV, respectively; however, it would be useful for C. perfringens expressing 

an envelope protein to induce a mucosal neutralizing antibody response to prevent infection.  

The expression from the cpe promoter encourages the expressed protein to accumulate in 

particulate inclusion bodies, which are more likely to be internalized and processed through 

pathways promoting Th1-type immune responses.  If protein were expressed in a soluble form 

instead of in particulate inclusion bodies, a Th2-type immune response promoting antibody 

formation would be more likely to be induced.  It may be possible to produce soluble protein in 

C. perfringens from the cpe promoter if sequences encoding secretion pathway-targeting motifs 

were included in the antigen gene placed under control of the cpe promoter. 

Another way to induce a humoral response creating antibodies is through the use of 

adjuvants that promote Th2-type response formation.  The adjuvants utilized in the majority of 

the current study, CpG ODNs and LT(R192G), are known to promote Th1-type immunity more 

than Th2-type responses.  The use of CT has been recognized as promoting Th2-type immunity, 

particularly when the CT or CTB subunit is conjugated directly to the antigen being delivered.  

The results in Chapter 4 of the current study demonstrated lower cellular gut immunity induction 

through the use of CT versus CpG ODNs or LT(R192G).  Although not tested in this study, the 

literature supports that this may be due to a preferential induction of Th2-type immunity that 

prevents cellular immune response formation and promotes antibody responses.  This is 

consistent with the results of the current study in that cellular immunity decreased as the dose of 

CT increased.  Thus, it seems possible that the inclusion of Th2-promoting adjuvants may aid in 
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the formation of antibody responses as a result of oral vaccination with a C. perfringens-based 

vaccine. 

6.3.6 Additional Studies Suggested for Cp-p27 

In addition to pursuing strategies to spread Cp-p27-induced immunity to tissues other 

than the gut, future studies should include investigations of the vaccine to induce long-term 

immunity and protection from challenge.  The responses described in this study were determined 

about two weeks after the final vaccination.  A vaccine trial not described in this study examined 

the response four weeks after two Cp-p27 vaccinations and determined that cellular immunity 

remained detectable in LP, although to a lower level than at two weeks.  This is somewhat 

expected since IFN-γ production by T cells generally subsides as antigen is cleared.  Future 

studies assessing long-term immunity should include evaluation of memory cell surface 

molecules and IL-2 production of antigen-specific cells [132, 206].  Testing the protective 

capacity of Cp-p27 against virus establishment and disease progression may involve utilizing the 

SIV monkey model of immunization and infection.  In addition, challenge of mice with p27-

encoding vaccinia virus can provide data about the protective effectiveness of Cp-p27 vaccine-

induced immunity. 

6.4 CONCLUDING REMARKS 

Previous to the initiation of the study described in this manuscript, it was known that p27 

could be delivered to the locale of terminal ileum PPs after oral administration of Cp-p27 and 

that Cp-p27-delivered p27 could enter DCs of gut and systemic origin [306].  The current study 

has shown that these DCs can mature and stimulate cellular responses.  This was not 
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significantly improved by the incorporation of N-terminus PTD sequence fusion to p27.  It is 

evident from this study that Cp-p27 can induce multifunctional cellular immunity in the gut at 

levels similar to those observed through other oral vaccination strategies; humoral immunity in 

the gut following Cp-p27 vaccination is evident but limited.  The Cp-p27-induced response 

shows the ability to be improved with inclusion of adjuvants, which could be used to sway the 

quality of cellular immunity.  Although the cellular response was limited to gut tissue and not 

draining LN and systemic tissues, Cp-p27 vaccination did not generate tolerance since 

subsequent systemic antigen delivery via intramuscular Ad-p27 vaccination resulted in cellular 

responses in the spleen.  Additionally, there was a slight increase in systemic response when Cp-

p27 was given before Ad-p27.  Cp-p27 can thus prime gut immunity that can be enhanced by a 

systemic boost.  Vaccination using the oral Cp-p27 and systemic Ad-p27 prime-boost strategy 

holds promise for showing effectiveness against p27-expressing vaccinia virus challenge since 

the level and functional quality of gut cellular immunity observed after this vaccination regimen 

was similar to that induced by other vaccine strategies that have provided protection against viral 

challenge.  This evaluation of Cp-p27 contributes to the fields of HIV/SIV vaccine development 

and mucosal vaccinology by demonstrating an example of a mucosally delivered vaccine 

providing a prime for a systemic vaccine boost and by characterizing Cp-p27 as a novel vector to 

continue exploring for mucosal vaccine use. 

In conclusion, Cp-p27 represents a novel vaccine vector that can stimulate gut mucosal 

cellular immunity displaying characteristics currently thought to correlate with protection from 

SIV disease progression.  More study is required with C. perfringens-vectored vaccines to make 

them viable for use as vaccines that induce systemic and mucosal immunity through the 

production of both antigen-specific cellular responses and neutralizing antibodies.  Many 
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questions still remain regarding basic immunology and the interplay between HIV/SIV and host 

cells.  A continued focus on defining the mechanisms of immune response formation and the role 

of innate and mucosal immunity on protection from disease may provide a more accurate 

understanding of the rational goals for HIV prophylaxis.  As correlates of protection are further 

defined, Cp-p27 may prove to be a basis for an inexpensive, easily administered vaccine for 

priming mucosal tissue and stimulating protective immunity. 
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