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This work analyzes Continuous Automatic Speech Recognition (CSR) and in contrast to prior 

work, it shows that the CSR algorithms can be specified in a highly parallel form.  Through use 

of the MATLAB software package, the parallelism is exploited to create a compact, vectorized 

algorithm that is able to execute the CSR task.  After an in-depth analysis of the SPHINX 3 

Large Vocabulary Continuous Speech Recognition (LVCSR) engine the major functional units 

were redesigned in the MATLAB environment, taking special effort to flatten the algorithms and 

restructure the data to allow for matrix-based computations. Performing this conversion resulted 

in reducing the original 14,000 lines of C++ code into less then 200 lines of highly-vectorized 

operations, substantially increasing the potential Instruction Line Parallelism of the system.   

Using this vector model as a baseline, a custom hardware system was then created that is 

capable of performing the speech recognition task in real-time on a Xilinx Virtex-4 FPGA 

device.  Through the creation independent hardware engines for each stage of the speech 

recognition process, the throughput of each is maximized by customizing the logic to the specific 

task. Further, a unique architecture was designed that allows for the creation of a static data path 

throughout the hardware, effectively removing the need for complex bus arbitration in the 

system.  By making using of shared memory resources and applying a token passing scheme to 

the system, both the data movement within the design as well as the amount of active data are 

continually minimized during run-time.  These results provide a novel method for perform 

speech recognition in both hardware and software, helping to further the development of systems 

capable of recognizing human speech.   
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1.0 INTRODUCTION 
 
 
 
 

As speech recognition technology was being developed in the 80’s and 90’s researchers 

examined numerous techniques for reducing the computational complexity of the process, 

attempting to reach middle-ground between speed and accuracy.   One the one side of the 

argument were isolated word systems that could only operate on a single word at a time but 

accurate on medium to large scale dictionaries.  In the opposing camp were systems focused on 

the recognition of conversational speech, allowing the user to interact with the device as they 

would a person but severely limiting the size of the dictionary as well as the potential accuracy.  

Many of the first systems to attempt speech recognition used discrete models in which isolated 

words were able to be deciphered as opposed to conversational speech.  By removing any cross-

word articulation effects, and limiting the number of recognizable words to those necessary for a 

specific task, the accuracy of a system could be increased substantially without dramatically 

affecting the computational load.  Using discrete models does however require the user to speak 

to the machine in isolated words which sounds very different from conversational speech.  This 

difference can take some time for a person to adjust to and it most situations is highly 

undesirable.   

 In contrast to discrete speech systems, other groups worked with single-user, systems, 

able to handle more conversational speech, but only from one user.  These systems require that 

the user train the system to understand them, leading to the need for numerous systems in a 

single building, each dedicated to one person’s voice.  Using speaker-dependent systems also 

requires the storage of large amounts of data, since each speaker needs their own specific model, 

which can become a very costly process in systems where multiple speakers are using large-scale 

dictionaries.  Additionally, these types of systems have no certainty that they can recognize 

words outside of the set they were trained on.  A simple example of a speaker-dependent system 
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can be seen in current mobile phone technology where by recording a voice command, that 

command can be repeated at a later time to create an action.  Unfortunately, these systems are 

semi-accurate, and can be cumbersome if multiple recognitions are necessary to complete a task.  

With the rise of high performance computing, new techniques have been developed that 

take a more broad approach to the problem, attempting to exploit computational ability for the 

sake of multiple user, continuous speech recognition.  Most of these systems rely on complex 

software- based algorithms to analyze incoming speech requiring state-of-the-art processors and 

large amounts of memory. In these speaker-independent systems, large numbers of probability 

evaluations are performed to determine the most likely sequence of sounds heard, which in turn 

can be correlated to the most likely sequence of words heard by the system.  In order to achieve 

acceptable recognition rates extensive off-line training must occur to ensure that the models 

being used by the system are both general enough to cover a large base of different speakers and 

yet unique enough to accurately represent the different sounds in a given speech corpus.  Even 

with modern computers these methods still suffer serious computational overhead, taking 

between 0.6X real-time on a 1.7GHz Athalon Processor to upwards of 10X real-time when 

running on a 450MHz Pentium III style device, to analyze a full English speech corpus. This 

results in systems that perform transcription oriented tasks quite well but fall short of user 

expectations when continuous real-time recognition is required [1, 7, 8, 9].   

The current generation of ASR technologies can be broken down into three basic 

functional units:  a Feature Extraction unit, an Acoustic Modeler, and a Language Modeler [2, 6, 

18].  Acoustic modeling is consistently the most computationally intensive of the three phases, 

taking up anywhere from 30% to 95% of the computation time [1, 3, 4]. Acoustic modeling can 

be broken down into two major components, the actual Acoustic Modeler and the Phoneme 

Evaluator.  The Acoustic Modeler is responsible for comparing the incoming data to a pre-

defined set of Gaussian Probabilities via the evaluation of multi-dimensional Gaussian PDFs.  

These evaluations are computationally intensive and can require upwards of 4.9 million floating 

point operations per second to completely evaluate the database [5].  To further the problem 

many of the state-of-the-art recognition systems like BBN’s Byblos, CMU’s Sphinx, Cambridge 

University’s HTK Toolkit, IBM’s Via Voice, and SRI’s DECIPHER, perform statistical pattern 

matching using Hidden Markov Models (HMMs) during phoneme evaluation, requiring the 

calculation of hundreds of thousands of state probabilities based on the results obtained by the 
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Acoustic Modeler [6, 7, 8, 9].  In the Language Modeling phase a high-level tree structure is 

created to link the phonemes together into words.  This tree can become cumbersome and can 

cause severe pipe-line stalls, resulting in an overall IPC that ranges between 0.37 and 1.2 [5].  

Additional details on previous work and processing technologies can be found in Chapter 2 of 

this document. 

The first major contribution of this research examines the calculations being performed in 

software and exposes the potential for parallelism.  It has been shown that systems such as the 

SPHINX recognition engine have very poor IPC rates, between 0.5 and 0.6 for a 1.7GHz AMD 

processor, but the equations begin performed imply much larger potentials [5].  This potential 

parallelism is illustrated through the reorganization of the data to allow for large matrix-based 

operations in MATLAB.  These operations while executing sequentially on a Pentium 4 

processor, show the potential for parallelism upwards of 600,000 elements for certain operations.  

Additionally a token passing scheme is employed, resulting in reductions in the computational 

workload of the system.  The derivation of MATLAB code based on point-wise matrix 

operations serves to illuminate the potential for parallelism in the speech recognition process and 

to highlight the portion of the algorithm that stand to benefit most from large parallel operations.  

Combining the potential increase in parallelism with a method for reducing unnecessary data 

accesses, answers are provided for both the performance and memory problems associated with 

ASR leading to the possibility for ASR systems able to perform speaker-independent recognition 

in real-time.   

The second major contribution of this work uses the potential parallelism for the design 

of pipelined hardware on a 90nm FPGA capable of operating at over 100MHz.  Being able to 

operate with a clock frequency over 100MHz ensures real-time operation based on the amount of 

calculations necessary for a 1,000 word dictionary given that the job takes less than 1 million 

cycles.  The specific details correlating the 100MHz clock to the ability to recognize speech in 

real-time are discussed in depth in Chapter 3.  Using the matrix-based MATLAB code as a 

template for the creation of a hardware system the portions of the code that benefited most from 

parallelism could be specially designed to exploit it.  Developing custom hardware blocks for 

each portion of the speech recognition task allowed for the creation of an architecture that is able 

to efficiently manage the data in between the blocks as well as efficiently processing it within a 

given block.  Each block in the design was created to allow for the use of a token passing scheme 
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to manage the active data in the system.  Through the use of shared RAM arrays to store the 

active data and FIFOs to manage the active workload of the system, the designed system is able 

to perform a minimal amount of work at all times while simultaneously maximizing the 

bandwidth in each cell.  Additionally, the Acoustic Modeling hardware block is flexible and its 

computations can be configured through the data stored in RAM; thus, a variety of Gaussian 

calculations can be computing using this block.    

The following chapter of this work presents an array of previous works in both hardware 

and software to help characterize the current state-of-the-art.  Additionally, the major research 

areas in speech recognition are discussed to illuminate the corners of the field that are currently 

of special interest.  The chapter will conclude with a brief analysis of some existing processor 

architectures that while not specifically designed for speech recognition, highlight some unique 

architectures that serve to illustrate the desired architecture in an ideal speech recognition 

system.   

After a summary of the current research field, Chapter 3 will present the high-level 

system details for the designed system.  First, a summary of the major operations for the speech 

recognition process is given to lay the foundation for the remainder of the document.  A 

preliminary analysis of the task to be performed is then given to help quantify the complexity of 

the project and the potential resources required for a functional system.  The next section of this 

chapter describes the system-level hardware needed to interconnect the individual hardware 

cells.  This hardware represents a joint effort between myself and the members of my research 

group to establish an efficient means for moving data throughout the system and while not 

pertinent to the contributions of this thesis, is necessary for sake of complete understanding of 

the final design.  Chapter 3 then concludes with a description of the testing and development 

environments used throughout the project.   

Chapter 4 begins the bulk of the contributions of this thesis by presenting the work done 

on the Acoustic Modeling portion of the speech recognition process.  Acoustic Modeling 

involves the evaluation of thousands of multi-variant Gaussian distributions for each new input 

to the system and is a mathematically complex operation.  After presenting the preliminary 

mathematics for the process, the development of the MATLAB algorithm is discussed.  This 

discussion will cover the complete code used by MATLAB to perform the Acoustic Modeling 

algorithm and show how the use of large-scale matrix operations can help to simplify the 
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operations needed for the process.  Next, the hardware development will be examined, paying 

special attention to derivation of the pipeline used for the core of the Acoustic Modeling 

calculation.  In this section, the specific operation of the pipeline will be discussed, and its ability 

to change functionality based on the input configuration will be examined.  Having detailed the 

hardware necessary for completion of the Acoustic Modeling task, this chapter will conclude 

with an analysis of both the synthesis and the post place-and-route results for the derived 

hardware.  Additionally, this chapter briefly discusses the ability to use state-of-the-art design 

tools to help increase the performance of the design without presenting any additional designer 

effort. 

After summarizing the Acoustic Modeling process this document will go on to describe 

the next major portion of the design, the Phoneme Evaluation block.  Phoneme Evaluation is the 

process of utilizing the data generated by the Acoustic Modeler to evaluate the active set of 

Hidden Markov Models in the system.  Hidden Markov Models, HMMs, are used to represent 

the individual phonetic units of a given language, and their evaluation presents its own unique set 

of computational problems.  Chapter 5 follows a similar format to Chapter 4 beginning first with 

an introduction to Hidden Markov Models, followed by a description of the major mathematics 

needed for the process.  From here, the software development will first be described 

concentrating on the ability to use compact pointer vectors to perform sparse-matrix operations, 

leading to the ability to remove all loops from the phoneme evaluation process.  As in the 

previous chapter the description of the software development will next lead to the derivation of 

the custom hardware created to perform phoneme evaluation.  During the description of the 

hardware development special attention will be paid to the large data allocation problem 

presented by phoneme evaluation and how these conflicts were resolved.  Chapter 5 concludes 

with a summary of the synthesis and place-and-route results for the hardware design and 

examines the effects of different synthesis tools on the end performance of the designed logic. 

In the same style as the previous chapters, Chapter 6 presents the work done for the Word 

Modeling process.  This process involved the evaluation of a large tree structure and the 

propagation of information throughout it.  While the MATLAB code for this block represents a 

unique contribution to this work and helps to quantify MATLABs ability to perform search 

based operations, the hardware development is less critical and presented only for the sake of 

completeness in the document.  While the hardware cell for this portion of the design is based on 
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the derived MATLAB code, it is not unique work nor is it a performance critical portion of the 

design worth focusing significant attention on.  As in Chapters 4 and 5 a summary of the place-

and-route results will be given although with not as much detail as in the preceding chapters. 

Having examined the development of the hardware and software cells for the speech 

recognition system, Chapter 7 will spend some time quantifying the performance of the 

MATLAB code written for this thesis.  While profiling of the MATLAB code does not lead 

directly to a performance profile of the associated C-code, nor does it exemplify the performance 

boundaries of the hardware device, it does provide a unique insight into the capabilities of the 

MATLAB computing engine and helps to show how MATLAB can greatly accelerate some 

operations while impeding others.  This chapter is presented solely to help characterize the 

MATLAB code and the associated programming environment in an effort to show the 

completeness of the work performed on the software algorithms. 

This work concludes with a summary of the major contributions of the research and 

presents the potential future directions for research in this area.  Chapter 8 will discuss the final 

results of the project and help to summarize the specific contributions that make this work 

unique and beneficial to the speech recognition community.  After discussing the benefits of this 

specific work, Chapter 8 will conclude with a contemplation of the potential to develop this work 

into real-world products capable of improving the quality of life of generations to come.      
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2.0 PREVIOUS WORK 
 
 
 

 
Since the first researchers began to look at the speech recognition problem in the early 70’s the 

amount of data required has always been a limiting factor.  The amount of information that 

humans use to process and understand speech is much greater than what a modern computer can 

process in real-time, resulting in the need to trade speed for accuracy or visa versa.  Exploration 

of these trade-offs has resulted in some major advancements in both the signal processing used to 

transform the incoming audio into some useful information, as well as the architectures of the 

software systems used to process this information in an efficient and meaningful way.  

 
 
 
 

2.1 MAJOR RESEARCH TOPICS 
 
 

During the past 40 years of ASR research a number of developments have helped to bring the 

technology to the level that we are currently familiar with.  These advances have occurred in a 

number of different research areas from signal processing to computer system architecture and 

each new development has helped push the industry forward.  The following section will take a 

look at some of the key developments in the ASR field over the past few decades and illustrate 

how each of these events played into the current state-of-the-art technology. 
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2.1.1 Signal Processing 
 
 

Before any actual speech processing can begin, it is first necessary to convert the incoming audio 

into some useful information that uniquely represents the sounds heard in a given sample.  

Modern ASR systems employ a number of standard frequency-domain transforms such as the 

Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), and Cepstral Transform to 

extract information about the features, frequency content, of a sample [10, 12, 14].  As Signal 

Processing evolved along side high-performance computing in the 80’s and early 90’s, it was 

found that using greater numbers of features can noticeably increase word recognition accuracy 

[11, 12]. Early systems generally relied on low-order Liner Prediction Coefficients (LPCs), 

usually only the first 10-13, to extract the information regarding the relative frequency content of 

a speech sample.  Most of these systems also relied on a frequency-warping transform, usually a 

bilinear, to warp the frequency axis and give the frequencies around the human speech band 

more weight.  Eventually it was found that converting LPCs to Cepstral Coefficients and also 

making use of the first and second derivatives enabled a significant improvement in recognition 

accuracy [13, 14].   Also aiding in ability to obtain such high recognition rates was the 

application of a new frequency transform, the Mel-scale transform which is described in detail 

by [19].  This transform breaks the frequency band into as many as 40 separate regions and 

quantizes the information in each of the regions separately to allow for maximum frequency 

resolution in each band.  Based on these high word accuracy rates, the use of a 39-dimensional 

Mel-Frequency Cepstral Coefficient (MFCC) vector to quantize the incoming audio has become 

the methodology of choice for feature extraction, resulting in the “standard” acoustic front-end as 

described by [15].    Despite the increase in computation this standard acoustic front-end is used 

in most state-of-the-art systems including BYBLOS, DECIPHER, and SPHINX 3 due to the 

substantial increase in recognition that can be obtained [9, 16, 17].   
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2.1.2  Discrete Vs. Continuous Models 
 
 
The majority of state-of-the-art speech recognizers rely on the use of Hidden Markov Modeling 

(HMM) techniques to correlate the data provided by the Feature Extractor to a known database 

of phonetic units, phonemes [6, 7, 8, 9, 16].  HMMs can be viewed as either continuous or 

discrete based on the types of data they attempt to model, with the continuous models requiring 

significantly more calculations than their discrete counterparts.  Figure 1 shows the difference 

between the Gaussian Probability data used to score the HMMs in a discrete versus a continuous 

system.   

 

 

 

 

Figure 1. Continuous vs. Discrete Gaussian PDFs 

 

In a system using discrete HMMs, each Gaussian is pre-calculated, quantized, and stored in 

memory such that when the system is in use, no actual calculation is required and the values 

necessary may simply be looked up.  While this does provide a very efficient manner acquiring 

the result of the Gaussian evaluation it introduces a significant amount of error into the system 

through the quantization of the Gaussian PDF, and in systems where multiple similar Gaussians 

are necessary there results quickly become highly confusable.  One way to remedy this problem 

is through reducing the size of the quantization step but this leads to large increases in the 
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amount of memory required, which in most current systems may be an even larger problem than 

the one it attempts to solve.  In semi-continuous models, a manageable set of parent-Gaussians is 

chosen to represent the entire desired set, and when a result is needed from the full set, the parent 

Gaussian is calculated and a weighting factor is applied to make it unique.  Because this method 

actually calculates some Gaussians precisely, it is an inherently more accurate method than using 

a discrete model, but due to the fact that not all the Gaussians are directly calculated there is still 

a noticeable loss in precision versus using a continuous model.  A Continuous HMM system 

actually stores the means and variances for each Gaussian in the knowledgebase and fully 

calculates each probability as it is needed.  It has been shown that Continuous Density HMMs 

can increase the recognition accuracy upwards 6% when compared to Discrete or Semi-

Continuous HMMs and in turn the number of likelihood calculations has increased from a few 

hundred to multiple thousands in most systems today [3, 12, 18, 22]. Coupled with this, it was 

found that greater the number of mixtures, where each additional mixture contains a unique 

cluster of Gaussians, that were used to model each state, the better the recognition accuracy [12].  

Hence, it is not just the increase in dimensionality of the problem but also the increase in the 

number of quantities that need evaluation that has caused the computational requirements to 

drastically increase over the years. Since these calculations take a majority of the computational 

effort, between 58% and 70% of the total run-time, in-depth research has been focused on 

minimizing the number of these calculations without sacrificing accuracy [5].  

Early ASR systems were limited by the performance of the available microprocessors and 

consequently relied on discrete HMMs in an effort to reduce the volume of Gaussian probability 

calculations necessary to evaluate the knowledgebase.  Certain combinations of these limited 

Gaussians make up the states in an HMM and thus by computing the likelihoods over this limited 

set, recognition can be performed with significantly fewer calculations [6, 18].  An example of 

this method can be found in the SPHINX 2 system that used only 256 distributions as compared 

to SPHINX 3’s 50k [1, 6, 16, 28].  Although discrete HMMs do provide a substantial amount of 

computational savings they also introduce large error rates when compared to continuous 

systems and restrict the system to smaller dictionary sizes, making them an undesirable solution 

in situations requiring high word accuracy rates on dictionaries over 5,000 words.   
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2.1.3 Gaussian Selection 
 
 
Noting the need for continuous HMMs to achieve acceptable recognition rates, a significant 

amount of research has been done to expose other possible optimizations for the phoneme 

evaluation problem.  One method, Gaussian Selection, has become one of the more widely 

accepted techniques in ASR.  Originally proposed by Boccheiri [20], this method uses a process 

of Vector Quantization that utilizes, a set of coarse Gaussians to map multiple Gaussians in the 

full model to one of the vector quantized Gaussians [4, 20, 21]. For every input speech frame, the 

best matching coarse Gaussians are found and used as pointers to clusters of high-probability 

Gaussians that need to be evaluated fully.  The remainder of the set can then either be 

approximated or completely ignored [16, 21, 23].  This method has been able to reduce the 

number of Gaussians that need to be calculated by a factor of up to 16 but can increase the word 

error rate by as much as 28% [23, 24].  Though this method does significantly reduce the 

computations necessary, it can also create issues involving branch misprediction and memory 

access bottlenecks, that can lead to pipeline stalls up to 52% on a Pentium III platform [3, 5, 6].  

In the case of the SPHINX 3 system, the sub-vector quantization algorithm is used to reduce the 

number of Gaussians being analyzed during any single frame by a factor of 12 during the first 

pass of the search [20, 25].  In this initial pass a short list of Gaussians is returned, determining 

the candidates from the full model to evaluate on the second pass of the search as potential 

matches for the current input frame.  While this method does provide improvement over a direct 

analysis of the full model, the system still takes ~1.8X real time on a 1.7GHz AMD Athlon 

processor, requiring 800MB/sec main memory bandwidth [5].  
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2.1.4  Feature Selection 
 
 
Another school of thought involves Feature Selection, in which specific features are used based 

on their impact on the likelihood calculations [26]. This method can reduce the amount of 

computation between 33% and 66% depending on how the features are defined [11, 27].  A basic 

method of Feature Selection is to only evaluate the low order Cepstral coefficients (c1~c9) and 

their 1st and 2nd derivatives while simply ignoring any data generated in the higher-order 

coefficients (c10~c13). This reduced or ‘First 24’ evaluation can be very effective for small 

dictionary tasks but as the amount of variability increases in the system, the effects of the high-

order coefficients become more evident.   

To account for this problem, work done at the University of Washington and AT&T’s 

Bell Labs used data driven approaches to try and determine which information is most relevant 

and prune the search accordingly [11, 27].  In the University of Washington’s approach, the D-

dimensions were broken into 3 groups according to their importance in the calculation.  First, a 

summation of the primary group is performed and compared to a preset threshold.  If the 

summation has not crossed the threshold for a particular component, then that component is still 

considered a valid candidate and must be further analyzed using the secondary and tertiary sets, 

checking after each pass to ensure the on-going validity of the component.  This system was able 

to speed up the process by 40% while only increasing the word error rate by 0.2% for the 1400 

word TIMIT database [27].  In contrast, Bell Labs performed a full statistical analysis to find the 

24 most important dimensions, and then removed the others from any calculation ever.  This 

method has shown a 0.3% increase in word error rate, but provides less overall speed up than the 

University of Washington’s system [11].  Both of these systems highlight a very interesting 

model for reduction of computation with minimal reduction in accuracy but suffer limitations 

due to the derivation of a static sub-set for use in the likelihood evaluation.    
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2.1.5 Token Passing 
 
 
The token passing algorithm as described by Young [66], provides a methodology for controlling 

the flow of data within an ASR system in an optimal fashion.  Rather than trying to optimize the 

calculations being performed by merging Gaussians or intelligently selecting features to operate 

on, this algorithm minimizes the total work done by the system by monitoring the active data in 

the system and only performing the operations necessary to update the active data.  By 

considering each HMM in the system as a unique token and then stringing tokens together to 

create words, a tree-style architecture is created.  This tree is then used to determine which 

tokens to calculate in the next turn based on the locations of the active tokens in the present turn.  

In the simple case shown in Figure 2 the un-shaded node (i.e. token) is active indicating that the 

two nodes connected to the active node need to be calculated next while the others do not. 

 

 

  

 
 
 
 
 

 
 
 

Figure 2. A Simple Tree Structure 

 
 

Using the token-passing scheme can result in substantial savings noting that in the simple 

example above only two of the 11 possible nodes are evaluated yielding an 82% reduction in the 

work done by the system.  In systems with large dictionaries where the tree-structure can exceed 

1,000 nodes, the amount of savings can be quite large and allows for a more precise evaluation 

of the active tokens since fewer total tokens need to be evaluated at a given time.  This model has 

been widely accepted and is currently used with great success in systems from Carnegie Mellon 

University, the University of California at Berkley, the Helsinki University of Technology, and 

Tsinghua University in Beijing [6, 17, 29, 30, 31]. 
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2.2 COMERCIAL SOFTWARE SYSTEMS 
 
 

As the personal computer began to evolve in the late 80’s and early 90’s many research 

organizations, both academic and corporate, started pursuing the idea of performing speech 

recognition on these platforms in attempts to make voice the primary means of data entry.  These 

research efforts focused primarily on software-based algorithms that would be able to be run in 

conjunction with the computers operating system without causing severe memory access 

problems or other pipe-line stalls.  The following section highlights a few of these research 

endeavors and provides a summary of their functionality and performance characteristics.   

 
 
2.2.1 IBM’s Via Voice 
 
 
One of the more successful commercial speech recognition products on the market today is the 

Via Voice system from IBM, originally designed for the 1996 DARPA HUB-4 evaluations [8].  

This system is based on a set of 5.7K HMM states comprised of 170K Gaussians, and was 

trained using 35 hours of data from the broadcast news (BN) corpus distributed by the LDC for 

the DARPA evaluations.  The feature extraction unit for Via Voice uses a 60-dimensional input 

vector as opposed to the standard 39-dimensional vector presented in [15] to achieve higher 

recognition rates in languages other than English, specifically Mandarin Chinese [32].  Via 

Voice also uses Speaker Adaptive Training (SAT) and Cluster Adaptive Training (CAT) models 

to increase the speaker variability of the recognition engine.  The SAT and CAT models define 

different classes of speakers in terms of their gender, age, or dialect and when a new speaker 

begins to use the system the are assigned to one of the pre-defined groups and the phoneme 

models are adjusted accordingly.  By adapting the knowledge base dynamically even the earliest 

incantations of the Via Voice system were able to achieve recognition rates over 83% for both 

English and Mandarin Chinese speakers.  
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2.2.2 BBN’s BYBLOS 
 
 
Another popular commercial system BBN’s BYBLOS, was also originally designed for the 1996 

DARPA HUB-4 evaluations.  This system only makes use of 4K three-state HMMs, but uses 64 

Gaussians per state for a total of 768K Gaussians [34].  The earliest versions of BYBLOS had 

word error rates as high as 30% but as of the 1999 DARPA evaluations the error had been 

reduced to 15% [9, 33].  A sub-vector quantization algorithm is used during the first pass of the 

search to help minimize the amount of work done by the system and SAT models are also used 

to help adapt the system to a particular speaker.  The original BYBLOS system ran on the 

standard 39-dimensional Cepstral vector, but later versions have been updated to accept multiple 

different sizes of input vectors allowing the end user to further customize the performance of the 

system.  Recent versions of the system have also gotten away from the discrete densities used in 

the early manifestations and have become more speaker-independent with each new generation.  

In recent years, the BYBLOS recognition engine has been incorporated into a conference 

transcription and archive software suite called Rough’n’Ready with a dictionary of over 45K 

words [35].  This product can not only transcribe speech but can also archive the data it records 

by speaker, topic, or ‘named entity’.  The named entity archive method looks for specific words 

in a conversation, generally the name of a product or business account, and will file the 

transcription with a header attached to it such that it may be queried from the archive at a later 

date.  The ability of this system to perform topic spotting as well as speaker identification sets 

this system apart from most other ASR systems on the market, but these abilities come at the cost 

of a system that runs at 40 times real time.   

 
 
2.2.3 SRI’s DECIPHER 
 
 
The research team from SRI international has also been involved in developing speaker 

independent recognition software since the field first became a popular topic.  The first cut of 

their DECIPHER system came out in 1989 as part of one of the earlier DARPA evaluations.  

This system uses the standard front-end (39 Mel-scaled Cepstra) and the widely accepted 3-state 

HMM models [7], but also incorporates a Gaussian Merging-Splitting Algorithm as described in 

[36].  Use of this algorithm allows for the models to be trained in a very simplistic manner, 



 16

providing both a shorter training cycle and a method by which the models can be adapted while 

the system is in operation.  This allows the system to constantly learn new patterns as opposed to 

being limited to a finite set of speaker-groups as in the SAT and CAT training methodologies.  

During the 1989 DARPA evaluation the DECIPHER system was able to achieve recognition 

rates over 75% on a database of 1300 words and by the time the 1997 evaluations took place, the 

system was able to achieve recognition rates over 80% on a dictionary of 48,000 words.  This 

system also benefits from the use of information from 4 different knowledge sources to derive 

the final probability of a given word.  By combining the results of the evaluation with and 

without cross-word articulation models, as well as the 5-gram language model and the total 

number of hypothesis for a given recognition, DECIPHER is able to consistently recognize 

easily confusable words, and words with strong cross articulation effects [7]. 

 
 

2.2.4 CMU’s SPHINX 
 
 
The SPHINX Large Vocabulary Continuous Speech Recognition (LVCSR) engine, designed by 

CMU, has for the past 15 years been one of the most successful research projects in the speech 

recognition industry.  During the DARPA evaluations in 1989 the SPHINX-I system was able to 

recognize continuous speech from a 997 word vocabulary with between 70% - 95% accuracy 

using discrete HMMs [17].  By the 1992 DARPA, evaluations the SPHINX-II system had been 

developed using semi-continuous HMMs and applying an A* search algorithm, as described by 

[39], to the language model.  A* is leading one-time computation algorithm used in path-finding 

research and has been shown to effectively minimize the portion of the search space that needs 

evaluation at a given time.  By only focusing on area in the search space that are actually 

encountered as opposed to evaluating the entire space and then choosing the ideal path, the 

amount of calculation is reduced.  While the performance of this algorithm does degrade as the 

path length increases is benefits are apparent noting that the SPHINX II system scored higher 

than any other in the evaluation with recognition rates consistently over 95% on a 5,000 word 

dictionary, setting the standard for future generations of software base speech recognition 

systems [28].  The SPHINX-II system was also one of the first systems to switch to the use of 

Mel-Frequency Cepstral Coefficients (MFCC) for the input feature stream as opposed to the 

previously accepted bi-linearly transformed LPC Cepstral coefficients.   
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For the 1996 evaluations, the SPHINX-III system was introduced and by using 

continuous HMMs as well as multi-pass search strategy, was able to achieve greater than 85% 

for a dictionary of over 51,000 words [37, 38].  Another major improvement in the SPHINX-III 

system was the ability to choose different HMM topologies to formulate the phoneme models.  

This ability allows for a system that can be modified according the specific recognition needs of 

the application without having to redesign the entire knowledgebase.  For example, in situations 

where the users are talking very quickly, co-articulation effects can be very severe and using a 

three-state topology may not be ideal.  In a situation like this where the individual phonetic units 

may not have a clear beginning, middle, and end, the topology of the HMM can be altered to 

allow for transitions straight from the beginning to the end states as shown in Figure 3, where the 

solid lines represent the standard transitions and the dotted lines show the alternative transitions.   

 

S0 S1 S2 OUTIN

 
 

Figure 3. Sample HMM Topology 

 

In addition to being one of the most consistently successful projects presented in the DARPA 

evaluations over the past 15 years, the SPHINX recognition engine has also been one of the more 

widely researched speech recognition engines with projects from research facilities such as the 

University of Utah and the University of Texas at Austin dedicated solely to the characterization 

and performance analysis of the SPHINX recognition engine as the golden model for the design 

of future ASR systems [5, 6].  Projects such as these as well as the continued research efforts of 

CMU have resulted multiple revisions and optimizations of the SPHINX-III platform all helping 

to create an industry benchmark system, able to perform large scale recognition tasks at near 

real-time speeds with very high levels of recognition accuracy.   
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The most recent revisions to the SPHINX project have been aimed at moving the code 

from a C++ design over to a JAVA based system.  The SPHINX-4 project is a joint venture 

between Carnegie Mellon University, SUN Microsystems, and the Mitsubishi Electric Research 

Laboratory aimed at developing a speech recognition toolkit from which the end user could build 

their own custom speech recognition system based on the SPHINX recognition engine [40].  

SPHINX-4 also benefits from a redesigned decoder architecture, the inclusion of a stand-alone 

graph construction module, and the application of the Bushderby classification algorithm to the 

language model.  The graph construction module is responsible for creating and managing the 

trellis created as the tree-structure is evaluated over time.  This module controls the transitions 

out of one tree and into another, and also the removal of branches as their probabilities become 

undesirable.  This structure has been static in previous versions of the SPHINX system so by 

creation of the graph construction module, a new method for dynamic creation is introduced to 

the recognition engine, furthering its abilities to adapt to new scenarios and different 

applications.  The Bushderby classification algorithm, described in detail in [41], is a direct 

extension of the Viterbi algorithm and by incorporating it into the langue model, the system 

gains the ability to classify mismatched data and adapt the system accordingly.  The SPHINX-4 

system is not currently finished and resultantly no quantification of the word error rates were 

available at the time of this paper but based on the success of the previous generations of the 

SPHINX recognition engine, SPHINX-4 promises to provide a user-friendly, highly 

customizable speech recognition platform capable of large-vocabulary recognition with 

impressive accuracy.        

 
 
 
 

2.3 CUSTOM HARDWARE ARCHITECTURES 
 
 

In recent years Application Specific Integrated Circuit (ASIC) architectures and embedded 

system design have become increasingly popular. As these systems become larger and more 

widely accepted the possibility to implement speech recognition on such devices has become an 

appealing alternative to the software based solutions currently on the market.  Both the 

governmental and private sectors have spent significant amounts of money over the past decade 
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attempting to determine the feasibility of a single-chip speech recognition engine, all the while 

fighting a battle between the amount of memory required to perform accurate recognition and the 

amount of logic required to fabricate such intelligent systems. The consistently improving 

computational ability of Field Programmable Gate Arrays (FPGAs) has allowed for a number of 

research institutions to experiment with the potential of these devices to be configured for speech 

recognition applications. 

 
 
2.3.1 Sensory Inc. 
 
 
Sensory Inc. offers a single chip speech recognition microcontrollers based on a simple 8-bit 

microcontroller, the RSC-4128 [42, 43].  These systems have both onboard memory for storage 

of speaker-dependent models and off-chip storage for speaker independent models.  In speaker 

independent mode the RSC-4128 is capable of recognizing a set of up to 20 words, while in 

speaker dependent mode the set size can be increased to 100.  The number of possible sets of 

words in either mode is limited only by the size of the off-chip memory, but if no external 

memory is available then it is only possible to recognize a set of 10 speaker dependent words.  

The RSC device is also capable of using either HMM-based model or Neural Network Models 

depending on the desired user configuration.  These devices also have word spotting and 

continuous listening capabilities, wherein the system will listen for one of a set of key-words and 

either enables a device based on that word or begin the recognition process from that word 

forward.  While these devices do provide a good solution for small vocabulary speech 

recognition in real-time, they are limited in terms of their applications since the majority of 

speech recognition tasks require significantly more than 20 words.  Unfortunately, word error 

rates are not widely published for these devices, but it is not expected that an 8-bit 

microcontroller is capable of performing with similar quality to a desktop system.  This intuition 

is confirmed by the observation that Sensory’s primary audience for their chips are the 

manufacturers of children’s toys whose devices would not be hindered by mediocre recognition 

rates. 
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2.3.2 University of Birmingham 
 
 
The research group from the University of Birmingham in the United Kingdom has also 

produced promising results in the field of hardware-based speech recognition engines with a 

system they implemented on a Xilinx Virtex XCV1000 FPGA.  While this system is only 

capable of recognition rates around 56% for the 500-word TIMIT knowledgebase it only 

occupies 45% of the entire device and is capable of performing at over 75X faster than real-time 

[46, 47].  A major reason for the reduced accuracy of this system lies in the use of mono-phones 

as the primary phonetic unit as opposed to bi- or tri-phones as are used in other commercially 

used systems [7, 37, 44, 46].  This choice was made in an attempt to prove the performance of 

the architecture while minimizing the amount of external memory required for basic recognition 

and serves well to highlight the impact that co-articulation effects have on continuous speech 

recognition.  One of the primary goals of this project was to show the effectiveness of using an 

off-the-shelf FPGA as a dedicated speech co-processor, capable of perform the recognition at 

speeds much greater than real-time allowing for multiple input streams to be analyzed at once.  

The second generation of this design took advantage of the less than real time abilities of the 

preliminary system and was effectively able to process three speech file simultaneously.  This 

new version of the architecture was released in both a mono-phone and a bi / tri-phone version, 

capable of speeds of 250X less than real-time and 13X less than real-time respectively [48].  

Although this work provides a compact and efficient architecture for processing data in hardware 

based ASR systems, there are still obvious issues with respect the completeness of the 

knowledgebase and the overall scalability of the design that keep this research from providing a 

complete solution to the hardware speech recognition problem.    

 
 
 2.3.3 University of California at Berkley 

 
 
In 2003 the University of California at Berkley completed work on a custom ASIC design for a 

speaker independent recognition device capable of recognition rates over 80% for dictionaries up 

to 50 words [44, 45].  This project was aimed at creating a system capable of small vocabulary (< 

100 words) focusing on low power considerations for handheld devices.  Because of their small 
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dictionary objective, the design team chose to implement a system based on a large array of 

identical processing elements connected to one another via aggregator units.  The recognition 

system is based off of the traditional 3-state HMM topology for the phoneme models, and also 

uses a vector quantization algorithm to reduce the complexity of the Gaussian probability 

evaluations.  As described in section 2.1 of this paper, it is the large amount of data that needs to 

be processed not the amount of work that needs done on the data that becomes the limiting 

factor.  So by creating a system containing multiple identical blocks in parallel, the throughput 

can be greatly increased and the cycle count lowered.  Using this ideology, the research group 

determined the number of processing elements, memories, and aggregators that could fit on one-

chip and worked backwards to determine the total number of nodes possible in the tree and 

subsequently the number of words allowable in the dictionary.  By intelligently analyzing the 

language model for the given dictionary it was determined that the majority of the HMMs are 

only used in certain branches of the tree, enabling the HMMs in the knowledgebase to be 

clustered together into groups of highly associated nodes.  By allowing each processing element 

to act only on HMMs within a given cluster, the routing of the data from one element to the next 

is greatly simplified and can be directly extracted from the tree-structure derived for a given 

dictionary.  While this does reduce the complexity of the data path, the scheduling of the data on 

the busses, the intercommunication between aggregator nodes and the global control logic 

remain fairly complex alluding to potential problems as the design is scaled upwards.  To help 

with this scheduling / synchronization issue, the computations within in a cycle are divided into 

two phases; first the aggregators and all nodes with no new inputs complete their operation, and 

secondly the nodes receiving data from other nodes or the aggregator are allowed to execute.  To 

help further stream-line the operation of the system the token passing algorithm was employed to 

manage the communication and transfer of information between the aggregator nodes.  Figure 4 

shows the architecture of the designed decoder. 
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Figure 4. Diagram of Decoder Architecture 

 

 

For achieving a low power system the design team utilized gated clocks as well as a single-cycle 

operation flow.  This was possible since the system requires relatively slow clock speeds (< 

5MHz) to run at real-time.  Additionally, voltage scaling was used to further reduce the amount 

of power used by the system but this can only be applied to systems with moderate supply 

voltages, since the delay added by this measure become prohibitive as the supply voltage 

decreases.  The Berkley system was able to achieve word accuracy rates as high as 80% for 

dictionaries under 50 words but was only able to achieve sentence accuracy around 25% [31].  

This system provides a highly effective architecture for low power speaker independent 

recognition, but does not seem to offer the scalability required to adapt the architecture for large 

dictionary tasks.    
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2.4 VECTOR PROCESSING ARCHITECTURES 
 

 
Vector Processors have been a topic of major interest in recent years, with a number of major 

processor manufacturers beginning research on new vector processing architectures.  From the 

new generation of VLIW and SIMD processors to fully-custom architectures such as the Cell 

processor from Sony, Toshiba, and IBM, the potential gains from parallel processing have 

become evident and the number of applications benefiting from this technology is constantly 

rising.  Among the benefactor technologies, speech processing appears to have large potential 

gains from the use of parallel architectures, noting that the crux of the problem lies in the 

inability to exploit the inherent parallelism due to the limitations of the current generation of 

processors.    

 
 
2.4.1 VLIW Processors 
 
 
Very Long Instruction Word (VLIW) processors provide a unique architecture for the 

development of speech recognition systems due to their ability to perform multiple instructions 

in a single cycle.  Observing the latent parallelism in the speech recognition process, the ability 

to perform loop unrolling becomes obvious, allowing for a direct implementation in a VLIW 

architecture.  As described in [49], the higher the number of instructions able to be implemented 

in parallel the greater the advantage of VLIW systems over other parallel architectures such as 

superscalar systems.  Further, VLIW systems benefit from the fact that the scheduling of the 

instructions is performed by the compiler, as opposed to necessitating special hardware to 

perform this scheduling during run-time as in the superscalar architectures, leading to the need 

for less overall hardware in the design [50].  In a speech processing system the number of 

elements that can be operated on in parallel is quite large, hence the advantages of a VLIW 

become very evident, however this paradigm does saturate at some point due to the fact that the 

size of the device necessary to perform extremely large sets of data in parallel becomes 

prohibitively large.  Another limiting factor for VLIW implementation lies in the need to 

perform both floating point and integer operations in large parallel groups.  Due to the fact that 

VLIW systems require separate function units for each issue in the instruction word most 

traditional implementations reserve certain issues for integer operations and others for floating 
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point operations.  For a speech processing system it is desired to have each issue be capable of 

executing both floating point and integer operations at different times, but this would require the 

inclusion of both integer and floating point ALUs, as well as a multiplexor to select between 

them. This leads to an architecture with double the number of ALUs of a traditional VLIW 

processor.  For example if we derived an 8-wide VLIW with 4 memory read issues, 2 floating 

point issues, and 2 integer issues, during run-time half of the issues (2 memory and either both 

floating point or both integer) would be idle resulting in a significant amount of unused 

resources.  This reduction in ability to fully utilize the device would lead to a system that 

functions more like a 4-wide VLIW than an 8-wide, which is an extremely undesirable result 

when the name of the game is massive parallelism.  Even in heterogeneous systems where all 

function units are capable of all instructions, the necessity for a shared register file for the 

processor creates its own limitations.  The shared register file does not scale well, resulting in the 

limitations that while VLIW processor perform well for widths less than 16, as the size of the 

processor increases the potential benefits start to decrease.  In the research presented in [51] by 

R. Hoare, et al. at the University of Pittsburgh, a modified VLIW system is presented that 

incorporates dedicated hardware functions that can be executed along side the VLIW instructions 

to assist in the speed-up of algorithms that are not able to be efficiently implemented in 

sequential code.  This research was able to speed up the GSM speech coding algorithm by 7X 

and shows a very interesting method for accelerating the operations of traditional VLIW 

processors.  While the notion of dedicated hardware functions working in parallel with VLIW 

processors solves some of the problems found when trying to implement speech recognition on a 

VLIW platform. it does not provide a complete solution to the problem. 
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2.4.2 SIMD Processors 
 
 
Another popular parallel architecture, Single Instruction Multiple Data (SIMD), takes a different 

approach to increasing Instruction Level Parallelism (ILP) from the VLIW architecture and gives 

a another perspective on how to implement speech recognition systems.  In SIMD architectures, 

a single instruction is applied to all elements of an input vector, creating a system that can 

perform the same action on large amounts of data in a single cycle [52].  These systems can 

perform intra- as well as inter- element operations and also support saturation arithmetic, which 

is commonly used in video and signal processing algorithms.  Some SIMD processors, such as 

the AltiVec processor are also capable of using a filter vector to rearrange the elements of the 

input vectors.  Figure 5 illustrates the functionality of a SIMD processor with and with out the 

inclusion of the filter vector. 
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Figure 5. SIMD Processing With and Without Filter Vector 

 

 

SIMD architectures fit the speech processing paradigm quite well since the majority of the 

parallelism observed in a speech recognition system occurs in the form of identical processing of 

large numbers of elements.  Since this architecture only requires the construction of a single 

integer and a floating point ALU capable of vector ops, the necessary hardware need not share 
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registers as in the case of the VLIW.  While SIMD processors seem to provide some additional 

benefits over VLIW systems, they are still restricted in the number of parallel elements that can 

be processed before the size of the hardware become a limiting factor.   

A purely SIMD processor would also encounter some difficulties handling the word 

modeling process in an ASR system.  This is largely due to the complexity of the data fetch that 

would need to occur in order to fill the input vectors with the proper amount of data to take full 

advantage of the SIMD processors capabilities.  During the word modeling phase a tree structure, 

described briefly in Section 2.1.5, need to be evaluated resulting in the traversal of a large 

number of link-list style elements.  Assuming that all of these lists are contained in unified 

memory bank, each active token in the system must be read and its corresponding link-list 

starting address decoded.  Then, the addresses must be applied to the memory bank sequentially 

and the elements in the link-lists fed out of the memory and into the SIMD processors input 

vector buffer.  The amount of overhead required to execute this process would render the full 

capabilities of the SIMD processor inactive during the time that the memory fetch was occurring, 

resulting in significant processor stalls.  From this observation, it would seem that while the 

SIMD processor does provide a reasonable platform for the development of speech recognition 

systems, much like the VLIW processor discussed in Section 2.4.1 it only provides a partial 

solution to the entire problem, leading to the pursuit of other more ideal architectures.  

 
 

2.4.3 Sony, Toshiba, IBM Cell Processor 
 
 
During the first quarter of 2005, a joint research venture between Sony, Toshiba, & IBM filed 

the patent documents on a revolutionary processor architecture code-named Cell.  The Cell 

processor takes a multi-core computing approach to System-on-Chip design, resulting in a 

network of eight Attached Processing Units (APUs) connected to a master Processing Unit (PU) 

via the Element Interface Bus (EIB) [53].  Figure 6 illustrates the overall architecture of the Cell 

processor. 
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Figure 6. Block Diagram of Cell Architecture  

 

 

Each Cell processor is capable of 250 GFLOPS and has a 6.4 Gigabit/sec I/O bus to allow for the 

creation of ad-hoc networks of Cell processors to perform massively distributed processing 

operations.  The master PU is based on the 4.6GHz 64-bit Power PC architecture with each of 

the APUs operating as a 4x32 (128 bit) SIMD processor with four integer and four floating point 

units, each capable of 32 billion operations per second.  The eight APUs are set-up in a ring with 

shared memory banks between each APU as well as a common external RAM location attached 

to the EIB for use by all APUs.  One of the truly unique and powerful capabilities of the Cell is 

the ability to run in stream mode.  In stream mode, one of the APUs performs an action on some 

data and then puts it to a specified location in its shared RAM bank.  The data is then 

immediately read out of the RAM bank by the other APU connected to the shared memory, 

processed further, and then written to the next shared memory.  This process creates a constant 

flow of data between each APU allowing for highly pipelined processing to be executed, with a 

level of efficiency order of magnitude larger than any commercially available processor today.  

Additionally, the Cell is capable of accessing the external memory at well over 10 Gigabytes/sec, 
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which it highly advantageous in applications that require both extremely large amounts of 

memory and constant access to the memory, such as speech and other signal processing 

operations.  Use of Cell processors for speech processing applications appears to solve both of 

the major problems encountered when designing ASR systems; the need for highly parallel 

processing and the need for extremely high throughput.  Further this architecture has the benefits 

of both SIMD processors and VLIW processors; in that each of the APUs is in fact a SIMD unit, 

while having eight of them on one chip allows for the multi-functionality of a VLIW processor.  

Unfortunately it may be years before the research community gets access to the Cell chip on a 

level that will allow for the development of custom embedded systems based on this 

revolutionary processor architecture. 

 
 
2.4.4 Stretch Inc. S5000 Chip Family 
 
 
The S5000 family of processors from Stretch Inc. also provide an interesting potential solution 

for speech processing with in a hardware device.  Released in 2004, the S5000 family is the first 

family of processors to embed reprogrammable logic inside the processor core, creating a multi-

purpose RISC style processor capable of being tailored to each user’s specific needs.  At the core 

of the device is a 300 MHz 32-bit Xtensa processor from Tensilica which is capable of 

performing any of the tasks assigned to a traditional microprocessor.  The innovation in this 

technology comes in the form of Stretch Inc.’s Instruction Set Extension Fabric (ISEF), which 

functions as a reconfigurable logic device capable of being programmed to tackle 

computationally difficult tasks in a custom hardware environment [54]. Through use of Stretch’s 

C++ code profiler the “hot-spots” in a C/C++ code are found and given to the compiler such that 

the ISEF can be programmed to perform the most computationally intensive software operations 

in a single hardware instruction.  The potential performance gains from this architecture are quite 

large and this point was made even more obvious during an independent certification by EEMBC 

where the S5000 received a Telemark score of 877, substantially higher than any other device 

available on the market today [55].  A block diagram of the S5000 processor engine can be seen 

in Figure 7. 

 

 



 29

 
 

Figure 7. Stretch Inc. S5000 Processor Engine 

 

 

As discussed in Section 2.3 there are a few calculations that dominate the workload in a speech 

processing system. Existing hardware implementations have shown the benefit of using 

dedicated hardware to solve this problem.  These systems however, all require the inclusion of 

another chip in addition to a microprocessor when attempting to creating speech recognition 

devices. This can be very undesirable in situations where size are power consumption are 

limiting factors.  Use of the S5000 processors solves this problem by having the ISEF and the 

processor on a single chip and allows for the development of more complex software algorithms 

for processing speech.  Complex search algorithms and Language Model constraints are well 

suited for software implementation, while the phonetic modeling and feature extraction 

operations have been shown to be well suited for hardware implementation. Through use of the 

S5000 processor both of these criteria can be met with a single chip.  As this technology 

becomes more established there promises to be significant amounts experimentation with the 

S5000 to expose the true abilities of the processor to tackle speech recognition and other signal 

processing tasks. 
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3.0 SYSTEM ARCHITECUTRE 
 
 
 
 

Based on the SPHINX 3 system described in Section 2.2.4, this research first maps the major 

algorithms of SPHINX into highly vectorized MATLAB code which is then used as the template 

for a custom hardware architecture for performing ASR.  Each of three main components of the 

SPHINX system, the Acoustic Modeler (AM), the Phoneme Evaluator (PE), and the Word 

Modeler (WM) were designed separately so as to be able to tailor each design to meet the 

specific challenges of each portion of the system.  Their development in both MATLAB and 

VHDL is presented in the following chapters along with a performance analysis of the resultant 

hardware implementations.  This chapter begins with an overview of the system level for our 

project as well as some preliminary analysis and then moves on to describe the system-level 

hardware that was created to control the architecture.  This chapter then concludes with a brief 

description of the development and test environments used for this project. 

 
 
 
 

3.1 SYSTEM OVERVIEW 
 
 

This project, known as Speech Silicon [62],  has been working for the past two years to 

characterize and model state-of-the-art speech recognition technology to help forward the 

development of hardware-based solutions to unique challenges facing the speech recognition 

industry.  Preliminary work on this topic has been discussed in [59, 60, 61] and these papers will 

be referenced throughout this document.  Figure 8 shows a block diagram for the interaction 

between the major components of a traditional software system, with inputs from a DSP being 

shown on the left of the diagram as the Feature Extractor block.   
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Figure 8. Block Diagram of Software-Based ASR System 

 

 

Feature Extraction is the process of transforming the incoming speech in to its frequency content 

via the Fast Fourier Transform, and the subsequent generation of Mel-Scaled Cepstral 

Coefficients through Mel-Frequency Warping and the Discrete Cosine Transform.  These 

operations can be performed on most currently available DSP devices with high precision and in 

real-time.  Therefore, FE will not be considered within the scope of this paper.  

 Acoustic Modeling is responsible for evaluating the inputs received from the DSP unit 

with respect to a database of known Gaussian probabilities and for producing a normalized set of 

scores (i.e. senones) that represent the individual sound units in the database.  These sound units 

represent sub-phonetic components of speech and are traditionally used to model the beginning, 

middle, and end, of a particular phonetic unit.  Each of the senones in a database is comprised of 

a mixture of multi-variant Gaussian Probability Density Functions each requiring a large number 

of complex operations.  It has been shown that this phase of the speech recognition process is the 

most computationally intensive taking up to 95% of the execution time [3, 26], and therefore 

requires a pipeline with very high bandwidth to accommodate the calculations. 
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The Phoneme Evaluator (PE) associates groups of senones into to HMMs representing 

the phonetic units, phonemes, allowable in the systems dictionary.  The basic calculations 

necessary to process a single HMM are not extremely complex and can be broken down into a 

simple Add-Compare-Add pipeline, and are described in detail in Chapter 5.  The difficulty in 

this phase is in managing the data effectively, so as to minimize unnecessary calculations.  When 

the system is operational, not all of the phonemes in the dictionary are active all the time. It is the 

PE that is responsible for the management of the active/inactive lists for each frame.  By creating 

a pipeline dedicated to calculating HMMs and combining it with a second piece of logic that acts 

as a pruner for the active list, a two-step approach was conceived for implementing PE allowing 

for the efficiency of the block to be maximized. 

The Word Modeler (WM) uses a tree-based structure to string phonemes together into 

words based on the sequences defined in the system dictionary.  This block serves as the linker 

between the phonemes in a word as well as the words in a phrase. When the transition from one 

word to another is detected, a variable penalty is applied to the exiting words score depending on 

what word it attempts to enter next.  In this way, basic syntax rules can be implemented in 

addition to pruning based on predefined threshold for all words.  WM is also responsible for 

resetting nodes in the tree when they become inactive.  While some nodes in the tree will 

propagate during on a given cycle, other will achieve scores beyond an acceptable threshold and 

need to be removed to avoid unnecessary calculation.  The pruning stage of PE will pass two lists 

to the WM, one for active tokens and the other for newly inactive tokens.  Much like PE, WM 

takes a two stage approach, first resetting the inactive tokens and then processing the active 

tokens.  By doing the operations in this order we ensure that while processing the active tokens, 

all possible successor tokens are available if and when they are needed.  

When considering such systems for implementation on embedded platforms the specific 

constraints imposed by each of these components must be considered.  Additionally, the data-

dependencies between all components must be considered to ensure that each component has the 

data it requires as soon as it needs it.  To make matters worse, the overall size of the design and 

its power consumption must also be factored into the design if the resultant technology is to be 

applicable to small hand-held devices.  The most effective manner for accommodating these 

constraints was determined to be the derivation of three separate cells, one for each of the major 

components considered, with shared access RAMs creating the boundaries between cells.  To 
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minimize the control logic and communication between cells, a token-passing scheme was 

implemented using FIFOs to buffer the active tokens across cell boundaries.  A block diagram of 

the component interaction within the system is shown in Figure 9. 

 

 

 
 

Figure 9. Block Diagram of the Speech Silicon Hardware-Base ASR System 

 

 

By constructing the system in this fashion and keeping the databases necessary for the 

recognition separate from the core components, this system is not bound to a single dictionary 

with a specific set of senones and phonemes.  These databases can, in fact, be reprogrammed 

with multiple dictionaries in multiple languages, and then given to the system for use with no 

changes to the architecture.  This flexibility also allows for the use of more or less complex 

models in any of the components allowing for a wide range of input models to be used, and 

further aiding in the customizability of the system.  

The Active Senone RAM is simply a large dual-ported RAM with the Acoustic Modeler 

tied to the write port of the device and the Phoneme Evaluator tied to the read port.  By creating 

the RAM in this manner there is no need to any multiplexing of the input address to the RAM 

and it can be allowed to operate without supervision from the global controller.  The Active 
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Phone RAM is noticeably more difficult and contains a total of 4 access ports.  Also known as 

the Central Data structure, both the Phoneme Evaluator and the Word Modeler have dedicated 

read and write ports to the device allowing for either device to simultaneously read and write 

from the RAM.  This RAM contains a large number of fields used for storing both information 

about the current state of a specific HMM and information about the location of the HMM in the 

word-tree.  The specific details of the Active Phone RAM are given in Section 3.3.2. 

 
 
 
 

3.2 PRELIMINARY ANALYSIS 
 
 

During the conceptual phase of the project, one major requirement was set: the system is able to 

process all data in real-time. It was observed that Speech Recognition for a 64k word task was 

1.8 times slower than real-time on a 1.7 GHz AMD Athlon processor [5, 63]. Additionally, the 

models for such a task are 3 times larger than the models used for the 1,000 word Command & 

Control task our project was focused on. Therefore, extending this linearly in terms of the 

number of compute cycles required, it can be said that a 1,000 word task would take 0.6 times 

real-time to process at 1.7 GHz.  While this proves the need for custom hardware it also asks the 

question of how many cycles would a full custom architecture require? 

 In modern speech processing incoming speech is sampled every 10ms leading directly to 

the notion that any system able to perform in real-time must be able to execute its entire work-

load within a 10ms window.  For a system running at 100MHz this translates to a 1 million cycle 

budget for completing all operations.  To find our actual budget a series of experiments were 

conducted on open-source Sphinx models [64, 65] to observe the cycle counts for different 

recognition tasks.  Table 1 summarizes the results of these tests for three different sized tasks: 

digit recognition [TI Digits], command & control [RM1], and continuous speech [HUB-4]. 

Table 1 shows the number of cycles required for the computation of all Gaussians for 

different tasks, assuming a fully pipelined design. It can be seen that assuming one-cycle latency 

for memory accesses, the RM1 task would require 620k compute cycles just for the Acoustic 

Modeling calculation while HUB4 would require 2M cycles. Knowing that we need to process 
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all of the data within a 10ms window we observe that the minimum operating speeds for systems 

performing these tasks would be approximately 62 MHz and 200 MHz respectively.   

 

Table 1. Number of Compute Cycles for 3 Different Speech Corpuses 

 

Speech Corpus # of Words # of Gaussians # of Evaluations per Frame 

TI Digits 12 4,816 192,600 

RM1 1,000 15,480 619,200 

HUB-4 64,000 49,152 1,966,080 

 

 

Since the computation of Gaussian probabilities in AM constitutes the majority of the processing 

time, keeping some cushion for computations in the PHN and WRD blocks, it was determined 

that 1 million cycles would be sufficient to process data for every frame for RM1 task. Therefore 

an operating speed of 100 MHz was set for our design.  While a completely pipelined design is 

possible in the case of AM and PHN, computations in the WRD Block don’t share such luxury. 

This is a direct result of the variable branching characteristic of the word tree structure.  Further, 

the number of cycles required by the PHN and WRD Blocks is completely dependent on the 

number of phones/words active at any given instant. Therefore, an analysis of the software was 

performed to obtain the maximum number of phones active at any given time instant. It was 

observed from Sphinx 3.3 for a RM1 dictionary, a maximum of 4000 phones were 

simultaneously active. Based on this analysis a worst case estimate of the number of compute 

cycles necessary for the complete calculation, it was determined that a 1 million cycle budget 

was more than sufficient to complete the workload.  Having determined the timing budget for the 

project the next task was to begin design the custom hardware cells to execute each phase of 

ASR as well as the high-level control logic that connects all of the components.  The remainder 

of this research focuses on design of these components. 
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3.3 SYSTEM LEVEL HARDWARE 
 
 
Aside from the three major components described in this thesis there are two other central 

components needed to complete the development of a complete speech recognition system.  Both 

the central data structure, the PH RAM, mentioned in chapters 4 and 5, as well as the control 

logic needed to combine the three separate components into a cohesive system are critical in 

understanding how the systems functions on its highest levels.  These structures were designed 

over the course of our research and implemented in various forms before coming to a standard 

system interface that would define the top-level structure of our designs.  The design for the top-

level control logic presented in Section 3.3.1 and the data structure presented in Section 3.3.2 

both represent VHDL written for the ECE 2121 course during the spring term of 2005.  As with 

the hardware design for the WM stage, these designs are presented for completeness rather than 

for their unique contributions to this thesis.   

 
 
3.3.1 System Controller 

 
 
The system controller designed to manage the hardware system is largely responsible for 

managing potential error responses from each block and ensuring the system timing through a 

series of handshaking signal associated with each of the primary hardware cells.  During regular 

operations the controller will wait in the idle state until some external stimulus excites the 

system.  Once this has happen the controller will pass a start signal to the AM block which will 

start processing the data bring received from the external DSP source.  Once all of the senones 

have been written to the RAM AM will signal to the control that it has finished and a start signal 

will correspondingly be sent to the PE block. Likewise, when the PE block is done a series of 

hand-shakes occur to turn on the WM block.  This block will run either until all data has been 

processed or until the next new frame of data is ready from the DSP processor.  By forcing the 

WM to exit if too much time is spent searching the tree we ensure both static system timing as 

well as creating a known break point at which the system can be forced back to a known state. 

Aside from managing the handshaking between the different stages of the design, the controller 

is also responsible for monitoring the status of each of the cues in the system to ensure that no 
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overflow situations are created where a token could possible be dropped from system entirely.  In 

the event that a cue does become full and cannot be emptied before a new token is placed on it, 

the cue will send an error flag to the controller that will put the system into an error state 

requiring the user to restart the operation there were in the process of executing.  A diagram of 

the system controller FSM is shown in Figure 10.   

 

 

 

 

Figure 10. FSM for System Controller 
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3.3.2 Central Data Structure 

 
 

The central data structure for architecture is responsible for storing all of the data about the 

active nodes in the word-tree and for managing data accesses from both the PE and the WM 

blocks.  This data structure is shown as the Active Phone RAM in Figure 8 and also commonly 

called the PH_PTR RAM or simply the PH RAM.  In software this translates to a large database 

where each entry contains multiple fields.  For the hardware implementation this means the 

creation of a dual-ported RAM array with very long word length.  Specifically, the PH RAM 

contains one entry for each node in the WM search space and each of these entries contains 

eleven different fields that must be referenced by either the PE, the WM or both.  Of the eleven 

fields in each entry only seven of them are variable fields while the other 4 provide static 

information about the particular nodes location in the search space.  Figure 11 shows the eleven 

fields used for each entry in the database with the number of bits used to represent each field 

shown below its name. 

 

 

 

Figure 11. Organization of Fields in Database 

 

 

The first field in the database (Active) is a single bit that is set every time the WM launches a 

given token and is reset every time that token ends up the token deactivation cue.  The next six 

fields (In_Scr, H0_Scr, H1_Scr, H2_Scr, Out_Scr, Max_Scr) are all 32 bits wide and are used to 

store the information about the current HMM state probabilities calculated by the PE block.  

These fields and their values are discussed in more detail in Chapter 5.  The remaining four fields 

1 32 32 32 32 32 32 13 11 132

Active In_Scr H0_Scr H1_Scr H2_Scr Out_Scr Max_Scr LM_Scr
/Diff SSId WID CS/WEnd

ROMRAM
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(LM_Scr/DIFF, SSId, WID, CS/Wend) represent the static information about the tokens location 

in the search space and are described in more detail in Chapter 6. 

 
 
 
 

3.4 TEST/DEVELOPMENT ENVIRONMENT 
 
 

During the term of the project many different stages of design were performed, requiring the use 

of multiple development and test environments to fully characterize the work performed.  Our 

original model was the SPHINX 3 open-source speech recognition engine from CMU, running 

on a 3.2GHz Pentium 4 processor with 1.5GB of RAM installed.  The original code was 

modified with numerous ‘printf()’ statements to allow for more visibility of the algorithm in 

action.  From this base model vectorized MATLAB code was designed to emulate the process 

and create a stable, compact design for illustrating the latent parallelism of the SPHINX 

algorithms.  This design was performed in MATLAB 7 release 14 making use of SIMULINK as 

well as many of the toolkits included in the MATLAB suite.  Initial hardware development was 

performed using FPGAdvantage 6.1 along with Modelsim 6.1 for simulation and Precision 

Synthesis for logic synthesis.  The work presented in this thesis for the system level hardware, 

Sections 3.3.1 and 3.3.2, and the WM hardware development, Section 6.4, was completed in this 

environment and then put through place-and-route using ISE 7.1.  The more computationally 

intensive portions of the design, the AM and the PE, were developed in a separate environment 

to ensure maximum performance and take advantage of additional tool suites that had become 

available.  Specifically, these components were designed in Xilinx ISE 7.1 through the derivation 

of pure VHDL and were then synthesized using the Synplicity Synplify 8.2 synthesis tool.  The 

final place-and-route for these designs was complete in ISE using hand-generate PACE 

constraint files to guide the PAR tool.   

For verification of our implementations the SPHINX 3 baseline model was modified to 

output text files at the barriers between the individual stages of the algorithm.  Then as the 

corresponding MATLAB blocks were completed they could be fed the same inputs as the 

SPHINX system and have their outputs checked against the baseline text files.  Once the 

MATLAB code had been verified against SPHINX it was then used to generate the test vectors 
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to drive the final hardware design.  While this method of verification provided bit-accurate 

comparisons between the Acoustic Modeling and Phoneme Evaluation blocks, such was not the 

case for the verification of the Word Modeler.  In the full SPHINX system there is an additional 

level of feedback present in the word model that helps to enforce grammar constraints on 

sequences of words.  This level of feedback, while not implemented in any of our proposed 

methods, is integrated very tightly into the rest of the SPHINX system and therefore cannot 

simply be ‘turned-off’ to allow for a direct comparison of the Word Modeler operations.  Given 

this constraint, verification of the Word Modeler operations was limited to supplying the 

SPHINX code, the MATLAB code, and the hardware the same phoneme information and then 

only observing to see if the same word strings were observed, not if the associated probabilities 

were identical.  The hardware and MATLAB results were able to be verified against each other 

to ensure that both version of our method produced identical results but it is important to note the 

indirect comparison of these results to the SPHINX 3 baseline.  
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4.0 ACOUSTIC MODELING 
 
 
 
 

In modern speech recognition systems the first stage of processing after Feature Extraction is 

called the Acoustic Modeling phase.  It is during this phase that the results of the signal 

processing operations performed at the front-end of the system are referenced against a database 

of know Gaussian distributions and relatively scored to find the most likely matches.  These 

comparisons require the computation of thousands of multi-dimensional Gaussian PDFs and 

consume a majority of the run-time of systems operating on even the most modern of desktop 

computers.  This chapter takes a closer look at the operations performed during Acoustic 

Modeling and expands on the work presented in [59, 60, 61]. Through this work, a solution is 

found to reducing the amount of execution time through the use of highly vectorized code and 

the subsequent development of a high throughput hardware device.   

 
 
 
 

4.1 GAUSSIAN PROBABILITY EVALUATIONS 
 
 

In the world of statistical modeling there is a large number of distribution functions used to 

represent the different types of populations observed in the world around us.  Among the most 

popular of these is the Gaussian Probability Density Function (PDF), both because of its ability 

to model a wide variety of populations and because of its ability to be used in single dimensional 

as well as multi-dimensional problems.  Gaussian PDFs can also be used to model other types of 

distributions, such as the Gamma or Poisson, under certain circumstances and so they become a 

very appealing option for all but the most special cases of statistical population analysis 

problems.  The following section will describe in detail the mathematics necessary for both 



 42

single and multi dimensional Gaussian analysis and also prove the correlation of Gaussian 

distributions to the observed input populations seen when performing ASR. 

 
 
4.1.1 One-Dimensional Gaussian Probability Density Functions 
 
 
The Gaussian or Normal Distribution is perhaps one of the most widely used distributions in 

statistical modeling today.  The equation for a basic Gaussian Probability Density Function 

(PDF) is given in Eq. 1, where x represents the input, µ represents the mean of the Gaussian, and 

σ2 represents the variance. 
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A set of sample Gaussian distributions is shown in Figure 12 for the case where µ = 0, and σ2 = 

{0.5, 1, 2}, evaluated over the range -5:5. 

 

 

Figure 12. Sample Set of Gaussian Distributions for Multiple σ2 Values 
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There are a wide range of applications for these distributions as they serve well to model 

a vast array of populations, including speech signals.  In a modern ASR system, the input being 

fed to the system from the front-end signal processing element is a vector of Cepstral coefficients 

usually 39 elements long.  Each element represents one of the 13 Mel-Frequency Cepstral 

Coefficients (MFCCs) as well as their first and second derivatives [15], and can be modeled by 

Gaussian distributions for input sets with large populations.  This is achieved through the 

recording of large amounts of data and then analyzing the results to find the best set of Gaussians 

to represent the entire input set.  During run-time the actual input to the system is evaluated with 

respect to this set of Gaussians to see which ones most accurately represent the observed data.  

The more complete the set and the higher the ability to adapt the set, the better recognition that 

can be achieved.  To verify that the MFCC values obtains during feature extraction are in fact 

normally distributed, a series of experiments were conducted to analyzed the results of feature 

extraction on 2,100 different frames of input speech from the RM1 speech corpus.  The results of 

these experiments are shown in Figure 13 for 4 of the 39 elements of the input vector.  Figure 13 

clearly illustrates that even though some outliers exist for every coefficient, Gaussian 

distributions will accurately approximate the populations found when examining large input 

populations. 
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Figure 13.  Distribution of 2,100 Cepstral Inputs for 4 Different Coefficients 

 

 

Another helpful property of the Gaussian is what is called the empirical rule. This rule states, 

68% of the data represented by a Gaussian distribution lies within ±1σ of the mean, 95% within 

±2σ of the mean, and 99% within ±3σ of the mean [56].  Given that σ is a known value then the 

±Nσ values for N = {1,2,3} can be calculated off-line and used to calculate the quality of the 

input without having to evaluate Eq. 1.  This can be very useful in system where inputs beyond a 

certain threshold do not need to be considered due to their poor quality.  Speech recognition 

systems have been shown to behave in this manner observing that during the later stages of 

processing a beam pruning algorithm is used to remove poor results from the search space.  If 

these results can be pruned out by a simple comparison before calculation, then the amount of 

poor solutions being evaluated by the system can be minimized allowing for more correct 

solutions to be included.  To verify this paradigm experiments were conducted using input data 

from the RM1 speech corpus to find the percentage error introduced into the system for varying 
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levels of database approximation.  To control the amount of the database that was approximated 

the N value in the Eq. 2 was varied across the range 0:6, and the results for the experiment can be 

seen in Figure 14.       

 

σµσµ NxN +≤≤−                                                                                     [Eq. 2] 

 

 
 

Figure 14.  Percentage Error Vs. Percentage of Database Removed for Varying n Values 

 

 

The results shown in Figure 14 appear to be very promising and looking at the 2σ mark it is 

observed that for a 75% reduction in the database, less than 10% potential error is introduced.  

Unfortunately, the implementation of an algorithm capable of achieving this potential savings is 

not straight forward, but the observation does create for an interesting mathematical relationship 

between accuracy and savings within a Gaussian probability evaluation.  This relationship is 

shown in Eq. 3-5 and results in the acquisition of a constant N that is capable of controlling the 
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trade-off between savings and error in the system.  In the following equations T denotes value 

obtained at the threshold distance, and N denotes the specific sigma distance from the Mean (µ) 

at which T lies. 
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It can be seen from the Eq. 5 that for a given threshold T, the value of N is independent of the 

mean and variance of a Gaussian thereby enabling it to be set as a constant for the entire system.    

 
 
4.1.2 D-Dimensional Gaussian Probability Density Functions 
 
 
Like other statistical distributions, Gaussians can be used to model n-dimensional distributions 

allowing for the evaluation of the entire input vector as a single multivariate Gaussian 

distribution.  The equation for a multivariate Gaussian distribution is, 
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where D represents the number of dimensions in the distribution, X represents the Cepstral 

coefficient input vector, *V  defines the covariance matrix, and µ  and 2σ represent the mean 

and variance vectors respectively.  As D increases so does the complexity of the model, allowing 

for increasingly more diverse data to be represented by a single equation and creating a very 

powerful tool for comparing two sets of data.  From analysis of these types of equations not only 
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can a set of elements be compared to one another on many different levels but the amount of 

similarity in any one level can be found leading to the ability to weight the results obtained in the 

different dimensions to produce an optimized model for representing a given population.  When 

evaluating speech signals, each one of the 39 coefficients in the MFCC input stream is assigned 

to a separate dimension of a 39 dimensional multivariate Gaussian PDF.  Experiments were 

conducted based on the RM1 speech corpus to determine the weighting necessary for each of the 

39 dimensions, and the results can be seen in Figure 15.  During the experiment 4,000 MFCC 

input vectors were analyzed to see what percentage of the total summation in Eq. 6 was supplied 

by each coefficient.   

 

 

 

Figure 15. Percentage Contribution of Each Dimension of a Multivariate Gaussian PDF 

 



 48

 

Figure 15 shows the average percentage contribution of each coefficient as well as its 

maximum and minimum contributions and leads to the observation that while some coefficients 

do contribute less to the total summation on average, all components are individually responsible 

for the entire summation for at least one of the inputs.  In mapping each of the coefficients to its 

own dimension of a multivariate Gaussian, the need for extremely large amounts of calculation is 

created, as illustrated in Table 2, and presents a pressing need for optimization of the equations if 

real-time operation on a modern computer system is to be considered.  

 

 

Table 2. Number of Calculations Necessary for Various Dictionaries 

 

Speech 
Corpus 

Dictionary 
Size 

(words) 

Number 
of 

Senones 

Number of 
Components

Number of 
Gaussian 

Evaluations

Number of 
Ops. per 
Frame 

Number of 
Ops. per 

Sec. 

TI Digits 12 602 4.8K 188K ~1.4M ~140M 

RM 1 1,000 1,935 15.5K 604K ~5M ~500M 

HUB-4 64,000 6,144 49.5K 1.2 M ~14M ~1.4G 

 

 

Given the nature of the equation for a normal distribution, the application of a log-domain 

transform leads to significantly easier calculations in modern computer systems.  This reduction 

in complexity arises from the transformation of the exponentiation in Eq. 6 to an addition, a 

substantially easier computational task, as shown in Equations 7-8. 
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The K value in Eq. 8 is now independent of the input and can be calculated off-line and simply 

looked up during computation, while the rest of the mathematics required to find Dist(X), 

commonly called the Mahalanobis distance, may be implemented in a simple three state pipe-

line, wherein the subtraction is done first, followed by the squaring, and then the multiplication 

by Ω.  These results are then buffered into a D-deep buffer and summed when the buffer is full.  

These simplifications of the mathematics can decrease the run-time of a Gaussian calculation 

algorithm by a noticeable amount, and are widely used in applications involving statistical signal 

processing.  In ASR systems using vector or sub-vector quantization algorithms, as described in 

section 2.1.3, it is only the Mahalanobis distance of the parent Gaussians that are calculated to 

find the best candidate clusters for full evaluation [20, 25].  While this may not appear to have 

significant savings over calculating the entirety of Eq. 8 for each parent Gaussian, once these 

equations are put into the equations necessary to solve for the component and senone scores 

during Acoustic Modeling, described in detail in section 3.2, the results of this simplification 

become non-trivial and provide significant savings during the first pass of the quantization 

algorithm.    
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4.2 DESCRIPTION OF CALCULATIONS 
 
 

Having a basic understanding of Gaussian PDFs it next becomes necessary to understand how 

these equations are used to find the scores for the basic phonetic units, senones, used in the 

Acoustic Modeling process.  In modern ASR systems it is not a single multivariate Gaussian 

PDF but groups of them that are used to represent the individual senones, leading to even more 

complex equations than the ones presented in Section 4.1.2.  Different systems have used 

anywhere from 1 to 64 different Gaussians, traditionally called components, to represent senones 

and as would be assumed the greater number of components used, the more successful the 

recognition [8].  This does however create the need for extremely large databases of Gaussians 

and drastically increase the run-time of the system, so most commercially available products 

have chosen to work with 8 components per senone, as the return on investment for component 

counts greater than eight does not warrant the extra computational effort.  Adhering to this 

convention allows the work presented in this paper to be compare directly to systems such as 

SPHINX 3, and for that reason the rest of the discussion involving senones will be understood to 

be referring to an eight component mixture of multivariate Gaussian PDFs.  Noting that an ASR 

system has i total senones, each with c, d-dimensional components, Eq. 6 can be modified to 

include these new dimensions, resulting in Eq. 9. 
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Each of the c components in a given senone has a unique mixture weight Wi,c that helps scale 

each Gaussians contribution to the final senone score.  This mixture weight is a pre-defined 

constant that simply needs to be looked up in a ROM during run-time and when this constant is 

incorporated into Eq. 9, Eq. 10 is obtained which represents the basic equation of a senone, Si(X), 

in an ASR system. 
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As mentioned in section 3.1.2, it is important to convert the mathematics from the natural 

domain to the log domain in order to simplify the operations being performed by the CPU.  In 

order to facilitate this conversion a scalar conversion factor, f, can be derived as per Eq. 11-14, 

that allows for a direct mapping between the natural and log domain values for a given quantity.  

To allow for a direct comparison to the SPHINX 3 system in later sections of this paper the Ψ 

value used to find f in Eq. 11-14 is based off of data extracted directly from the SPHINX 3 

source code. 
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The log-summation ( ∑LOG ) term seen in the right hand side of Eq. 14 represents an 

extension of the log-add function called the log-add, as defined in [10].  Eq. 15 decomposes the 

)(log , XP ciψ  term from Eq. 14 to highlight additional simplifications to the overall senone 

calculation.  
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The right side of Eq. 15 consists a summation term and a constant term defined in section 

3.1.2 as Dist(X) and K respectively, and when the necessary substitutions are made in Eq. 15, Eq. 

14 can then be re-written as Eq. 16. 
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Eq. 16 represents the actual calculation performed the Acoustic Modeling block in order to 

derive the senone score set for use by Phoneme Evaluation block in the next stage of processing.  

This score represents the combination of each of the individual Gaussians in the mixture, 

represented by Equation 8, scaled by the necessary log-domain conversion factor.  Even with the 

log-domain transformation this equation still represents the majority of the work load within an 

ASR system and can account for 30% to 95% of the total computation time [1, 3, 4].   

While Equation 16 represents a large, complicated portion of the speech processing 

algorithm, it also shows the potential for substantial optimization of the process.  Specifically, 

each of the i senones can be calculated independently of each other allowing for a minimum 

parallelism of i for Acoustic Modeling process.  Inside the senones, each of their c components 

may be calculated independently, with each components d dimensions also being independent.  

This means that during the calculation of Disti,c(X) a potential parallelism of i*c*d may be 

achieved equating to over 624K parallel operations for a 1,000 word dictionary.  The potential 

parallelism for each portion of the Acoustic Modeling calculations is summarized in Table 3 

where the second column indicates the total potential parallelism implied by the equation and the 

third column indicates the parallelism achieved in the RM1 speech corpus. 
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Table 3. Parallelism in Acoustic Modeling 

 

Calculation Potential Parallelism RM1 parallelism 
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4.3 MATRIX MATLAB REPRESENTATION 
 
 

In current software implementations, the calculations described in Sections 4.1 and 4.2 are 

performed sequentially using nested for-loops and require large amounts of C code to execute.  

While this is necessary given the architecture of modern desktop computers it is by no means the 

most efficient way to execute this process.  When the calculations are examined in detail it 

becomes quite clear that there is only a small number of operations that actually need to be 

performed, the problem lies in the extremely large number of times that each of these operations 

needs to be executed.  This paradigm provides a perfect fit for a vector processing solution in 

that, if all of the actionable data can be lined-up into a large input vector, then only one operation 

would need to be performed on the entire vector, emulating a large-scale SIMD processor.  

While this is not completely possible on either a SIMD or a VLIW machine since the size of the 

input vectors (>1000 elements) is far too large, it is possible to simulate this type of operation 

using the MATLAB software suite.  MATLAB is capable of executing large scale vector 

operations in ways not possible using other coding languages and enables the creation of 

simulation models of systems that would potentially be capable of executing such operations.  

All of the code written for this project can be found in Appendix A at the end of the document 

with relevant sections shown as figures within the body of the document.  The code for Acoustic 
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Modeling highlights the abilities of MATLAB code to perform large vector operations, noting 

that the entirety of the MATLAB code is only 19 lines long.  The first 3 lines of code, shown in 

Figure 16 are responsible for declaring the constants necessary to execute the AM routine.   

 

 

 
 

Figure 16. Initialization Code for AM 

 

 

Line one creates the f constant described in section 4.2, line two creates a vector to hold the 

address of the first component of each senone score, and line three replicates the input feature 

stream to create a large input matrix for use in the AM calculation.  The creation of the mark 

vector allows for the starting point each senone summation to be found so that once all of the 

components are calculated the result vector can be broken into smaller sub-vectors wherein all 

the elements of the sum-vector are summed together to obtain the senone scores.  The next two 

lines of code, shown in Figure 17, execute Eq. 8 and Eq. 16 respectively.  

 

  

 
 

Figure 17.  Calculation of Component Scores 

 

 

In these two lines of code every Gaussian PDF in the entire system is calculated and their 

resultant component scores are found.  This is done through the subtraction and multiplication of 

two large (i*c) x D matrices on an element per element basis and then summing the result matrix 

along the D dimension.  After the summation the resulting (i*c) x 1 vector is subtracted from the 



 55

K constant and then scaled by the log-conversion factor f.  For clarification purposes this process 

is shown in a block diagram form in Figure 18.  The ability to represent these operations comes 

from use of the ‘.*’ operator in MATLAB as opposed to a traditional ‘*’ for the multiplication of 

the matrices.  This special ‘dot-star’ operator represents an element-wise multiplication of the 

two arrays instead of a true matrix multiplication.  By using this form the potential parallelism of 

the algorithm being performed is translated directly into the size of the matrix being operated on.  

As noted in section 4.2 the potential parallelism for the RM1 speech corpus is approximately 

620K for the partial_calc matrix and 16K for the component_calc vector and this is confirmed 

by looking at the size of the input arrays presented in Figure 18 where i = 2,000, c = 8, and D = 

39. 

 

∑
D

 

 
Figure 18.  Block Diagram of Vectorized Gaussian PDF Calculation 

 
 
Once all of the components have been calculated it is necessary to execute the log-summation of 

Eq. 16 to obtain the set of senone scores to be sent to the Phoneme evaluator.  This log-

summation operation must be executed in a sequential manner for each senone and cannot 

therefore be completely vectorized, but it is possible to reshape the (i*c) x 1 component vector 
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into a i x c matrix and then perform i log-summations in a vectorized form.  The calculation 

necessary to calculate RES, the partial result of the log-summation of inputA and inputB ,  is 

shown in Eq. 17. 

 

let: [ ]BA inputinputMAXVAL ,1 =  & [ ]BA inputinputMINVAL ,2 =  

let: B = 1.0003 & 21 VALVALd −=   

)1log(*5.01
dBfVALRES −+++=                                                                  [Eq. 17] 

 

To help minimize the execution time for the log-summation operation, a look-up table of partial 

results was created such that at each step in the summation the results can simply be looked-up, 

as opposed to having to execute Eq. 17.  Although substituting a look-up table for Eq. 17 does 

reduce the amount of computation done to obtain a partial result of the log-summation there is 

still some additional processing that needs to be done in order to allow for this operation to be 

done in a vectorized fashion.   Figure 19 shows the additional steps needed to calculate d, VAL1, 

and VAL2, for all i senones at once noting that the variable r is used to represent the vector of 

VAL1 entries. 

 

 
 

Figure 19.  Code for Vectorized Calculation of Log-Summation 

 

Once all of the senone scores have been calculated for a given frame the entire set must be 

normalized with respect to the best senone score found during that frame.  The code necessary to 

reshape the component data, calculate the senones, and normalize the results is shown in Figure 

20. 
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Figure 20.  Code Necessary to Calculate Senone Scores 

 

 

This process of normalization finishes the bulk of the computation for the acoustic modeler 

leaving only the calculation of the special case or composite senones to be performed.  In the 

RM1 speech corpus there are two distinctly different types of senones.  The first are what can be 

considered ‘normal’ or ‘base’ senones and are calculated via the processes described in equations 

6-17.  The second type of senone is a sub-set of the normal senones called composite senones.  

Composite senones are used to represent more difficult or easily confusable sounds, as well as 

non-verbal anomalies such as silence or coughing.  Each composite senone is pointer to a group 

of normal senones, and for a given frame the composite senone takes the value of the best 

scoring normal senone in its group.   

In terms of computation this equates to the evaluation of a series of short link-lists, where 

the elements of the list must be compared to find the greatest value.  Once this greatest value is 

found it is written to a unique location in the senone RAM at some address above the address of 

the last normal senone.  By writing this entry into is own location in the senone RAM instead of 

creating a pointer to its original location, the Phoneme Evaluation block is able to treat all 

senones equally, thus simplifying the control for that portion of the design.  When implementing 

the composite senone evaluation in MATLAB we can create a simple loop that executes once for 

each composite senone and is able to find the composite value in a single line of code.  The code 

for this loop is shown in Figure 21. 
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Figure 21.  Code for Composite Senone Calculation 

 

 

The first line of the loop finds the locations of the normal senone addresses in the cstates matrix 

and the second line uses this information to obtain the normal senone scores and find the max of 

all acquired values.  Once all composite senones have been found they are appended to the end 

of the normal senone vector as seen in the last line of code in Figure 20.  After concatenating the 

composite senone vector and the normal senone vector the process of AM is complete and 

phoneme evaluation may begin. 

 
 
 
 

4.4 HARDWARE ARCHITECTURE 
 
 

Once the MATLAB model was completed for AM it was next used as a guide for developing a 

custom hardware co-processor.  Since the parallelism implied by the MATLAB model cannot be 

fully exploited, it was chosen to develop a fully pipelined hardware block small enough to be 

tiled on an FPGA to increase the overall throughput.  Figure 22 shows the block diagram for the 

proposed hardware system with the primary interconnect busses shown for clarity.  

Each of the stages in the pipeline sends a ‘go’ signal to the following stage along with 

any data needing processed, allowing for the system to be stalled anywhere in the pipe without 

breaking.  The first three stages also receive data from a status bus regarding the particular nature 

of the calculation being perform (ie. is this the first, middle, or last element of a summation), 

which removes the need for any local finite state machine to control the pipeline.  In addition to 

removing the need for internal finite state machines the use of a input control bus also helps to 

minimize the number of pipeline stalls in the system and creates a system capable of adapting to 

multiple different configurations without having to perform any hardware re-design. 
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Figure 22.  Block Diagram for Acoustic Modeling Co-Processor 

 
 
 
 
4.4.1 Gaussian Distance Pipelined Processor 

 
 

The Gaussian Distance pipe is the heart of AM block and is responsible for calculating Eq 6-8 

for each senone in the database.  This pipe must execute Eq. 6 over 620,000 times for each new 

frame of data and therefore must have the highest throughput of any component in the system.  

To accommodate this requirement while still trying to minimize the resources consumed by 

pipeline, the inputs to crucial arithmetic operations are muxed, allowing the inputs to the 

operation to be selected based on the bits of the Status Bus.  Figure 23 shows a data flow graph 

for the order of operations inside the Gaussian Distance Pipe.   
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Figure 23.  Data Flow Graph for Gaussian Distance Pipe 
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Figure 23 indicates a 7 cycle for the pipe, however, the next stage of the design the Log-

Add LUT, described in Section 4.4.2, takes 10 cycles to traverse and therefore we have added 3 

extra cycles to the Gaussian distance pipe to keep both stages in sync with one another.  This 

synchronization is necessary since it takes the log-adding of multiple components to calculate a 

single senone, and buffering schemes would have to be implemented to account for the cycle 

mismatch.  Having the next component ready on the same cycle that the current one finishes is 

the most efficient way to execute the calculations therefore the decision to extend the depth of 

the Gaussian distance pipe becomes most appealing.   In order to ensure that the addition cycles 

would not be detrimental to the performance of the system a series of experiments were 

conducted examining the effects of additional pipeline stages on the achieved fmax of the system.  

The results of these experiments as well as the synthesis and post place-and-route results for this 

block are summarized in section 3.5. 

In order to help with low power applications, the Gaussian Distance pipe has a pipeline 

stall feature included which is not shown in the data flow graph.  If the last calc bit is seen at the 

end of the pipe before a new first calc bit has been seen the pipe will completely shut down and 

wait for the presence of a new first calc bit.  Internal to the pipe each stage passes a valid bit to 

the successive stage that serves as a local stall, which will freeze the pipe until the values of the 

predecessor stage have become valid again.   

 

 

4.4.2 Log-Add Look-Up  
 

 

After completing the scoring for one component, that component is sent to the Log-Add look-up 

for evaluation of equations 10-16.  This block is responsible for accumulating the partial senone 

scores and outputting them when the summation is complete.  The primary function of this block 

can be summarized by Equation 17.  Due to the complexity of Equation 17, it has been replaced 

by a look-up table where D serves as the address into the table.  By using this look-up Equation 

17 can be simplified to the result seen in Equation 18. 
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)(DLUTRRES +=                                                                                            [Eq. 18] 

While use of a look-up table to perform the bulk of the computation is a more efficient means of 

obtaining the desired result, it creates the need for a table with greater than 20K entries.  In an 

effort to maximize the speed of the look-up the table was divided into smaller blocks and the 

process was pipe-lined over 2 clock cycles wherein the address is de-muxed on the first cycle 

and the data is fetched and muxed onto the output bus during the second.  The operations 

necessary to find the address to this look-up and the operations can be summarized by stating 

that the absolute difference of the inputs is used to address a look-up table whose data is added to 

the larger of the two inputs.  In order to complete these operations with minimal delay we chose 

to implement them as a three stage pipeline.  The first stage of operation performs a subtraction 

of the two raw inputs and strips the sign bit off of the output.  In the second cycle the sign bit is 

used as a select signal to a series of muxes that assign the larger of the two inputs to the first 

input of the subtraction, and the smaller to the second input of the summation.  The third cycle of 

the pipe registers the larger value for use after the LUT and simultaneously subtracts the two 

values to obtain the address for the LUT.  Figure 24 shows a detailed data-flow graph of the 

operations being performed inside the Log-Add LUT. 
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Figure 24.  Data-Flow Graph for Log-Add LUT 
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Similar to the Gaussian Distance pipe the Log-Add LUT also has a pipe-stall function 

built in.  This function performs exactly as the Gaussian Distance pipe freeze with respect to the 

first and last calc bits, and will also perform a local stall if the partial log-add has been updated 

before a new component value is available.  As mentioned at the end of Section 4.4.1, the entire 

log-add calculation takes a minimum of 10 clock cycles to process a single input and return the 

partial summation for use by the next input.  When this block is combined with the Gaussian 

Distance Pipe to form the main pipeline structure for the AM block the result is a 20-stage 

pipeline capable of operating at over 140MHz, and requiring no local finite state machine for 

managing the traffic through the pipe. 

 

 

4.4.3 Find MAX / Normalizer 
 

 

Once a senone has been calculated it must first pass through the Find Max block before being 

written to the Active Senone RAM.  This block is a 2-cycle pipeline that compares the incoming 

data to the current best score and overwrites the current best when the incoming data is larger.  

Once the larger of the two values has been determined the raw senone is output to the senone 

RAM along with a write signal supplied by a registered version of the valid signal supplied to the 

block by the log-add LUT.  A data-flow graph for the Find Max block is shown in Figure 25. 

As was pointed out in Section 4.4.2, the Find Max unit only needs to operate once every 

10 cycles, or whenever a new senone is available, therefore the values being fed to the compare 

are only updated when the senone valid bit is high.  Aside from this local stall, the Find Max unit 

has a pipe-stall function similar to the one described in the previous sections to minimize the 

amount of power consumed by the device during run-time.  
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Figure 25.  Data-Flow Graph for Find Max Unit 

 

 

When the last raw senone is put into the senone RAM the MAX done signal in Figure 25 is set 

high, signaling to the Normalizer block that it can begin.  During the process of normalization 

the raw senones are read sequentially out of the senone RAM and subtracted from the value seen 

at the Best Score output of the Find Max block.  The Normalizer block consists of a simple 4-

stage pipeline that first reads from the RAM, then registers the input, then performs the 

normalization, and finally writes the value back to the RAM.  As per the blocks discussed in 

previous sections, the Normalizer block also has pipe-stall and local stall capabilities.  
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4.4.4 Composite Senone Calculation 
 
 
In the RM1 speech corpus there are two types of senones.  The first are what can be considered 

normal or base senones and are calculated via the processes described in Sections 4.4.1-4.4.3.  

The second type of senone is a sub-set of the normal senones called composite senones.  

Composite senones are used to represent more difficult or easily confusable sounds, as well as 

non-verbal anomalies such as silence or coughing.  Each composite senone is pointer to a group 

of normal senones, and for a given frame the composite senone takes the value of the best 

scoring normal senone in its group.  In terms of computation, this equates to the evaluation of a 

series of short link-lists, where the elements of the list must be compared to find the greatest 

value.  Once this greatest value is found it is written to a unique location in the senone RAM at 

some address above the address of the last normal senone.  By writing this entry into is own 

location in the senone RAM instead of creating a pointer to its original location, the Phoneme 

Evaluation block is able to treat all senones equally, thus simplifying that portion of the design. 

The composite calculation works through the use of two separate internal ROMs to store 

the information needed for processing the link-lists.  The first ROM (COUNT ROM) contains the 

same number of entries as the number of composite senones in the system, and holds information 

about the number of elements in each composites link-list and each lists start address.  When a 

count is obtained from this ROM it is added to the start address and used to address a second 

ROM (ADDR ROM) that contains the specific address in the senone RAM where the normal 

senone resides.  Once the normal senone has been obtained from the senone RAM it is passed 

through a short pipeline similar to the Find MAX block except that only the best score is output 

to be written back to the senone RAM.  The count is then decremented and the process repeated 

until the count equals zero.  At this point the next element of the count ROM is read and the 

process is repeated for the next composite senone.  Once all elements of the count ROM have 

been read and processed, the block will assert a done signal indicating that all the senone scores 

for a given frame have been calculated. A data flow graph for the Composite Senone calculation 

is shown in Figure 26. 
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Like the other blocks of the AM calculation, the Composite Senone calculation has the 

built-in ability for locally stalling during execution and freezing completely when no new data is 

present at the input.  These features become more significant when considering this block 

however, because the Composite Senone calculation can only be performed once the all of the 

normal senones have been completely processed.  This results in a significant portion of the run-

time where this block can be completely shut down leading to notable savings in terms of power 

consumption for the system.  Specifically, it takes approximately 650,000 clock cycles to 

calculate all of the normal senones, during which the Composite Senone calculation block may 

be totally shut down, then once awoken the block need only run for 2,200 cycles to calculate the 

composite senones and may then be shut off again.  
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Figure 26.  Data Flow Graph for Composite Senone Calculation 
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4.5 HARDWARE PERFORMANCE RESULTS 
 

 

Having completed both software and hardware systems for Acoustic Modeling it was then 

necessary to analyze the performance of the derived hardware.  In Section 4.2 the potential for 

parallelism is shown through the equations and then in Section 4.3 this parallelism is illustrated 

through the use of element-wise matrix operations.  For the hardware this parallelism was 

exploited to created the pipelined system described in 4.4 and while the derive pipe does not take 

advantage of all the parallelism available it does utilize enough to ensure its ability to operate in 

real-time.   

As discussed in Section 4.4.1 the Gaussian distance pipe was extended by three cycles to 

keep it in synch with the log-add LUT operation.  To ensure that this did not adversely affect the 

system an experiment was conducted to observe the effects of pipelining and retiming on the fmax 

of the system.  To do this, extra registers were put into the design and the pipelining and retiming 

options were enabled in the synthesis tool.  When the synthesis was executed the tool was able to 

move these registers to what it determined were the optimal locations in the design, minimizing 

the amount of analysis done by the designer.  Our primary target in these experiments was the 

Xilinx® Virtex-4 SX35 FPGA due to its high performance and large number of embedded DSP 

(DSP48) & RAM (BRAM) cells.  For sake of comparison we also targeted a smaller device, the 

Xilinx® Spartan-3, a 90-nm FPGA with embedded 18x18 multipliers.  The graph in Figure 27 

shows the results of these experiments for a pipeline between 7 and 19 stages deep, with the 

dotted lines representing the projected fmax of the system from the synthesis engine and the solid 

lines representing the post place-and-route fmax.  While the fmax obtained for the Vertix-4 device is 

noticeably higher than the fmax of the Spartan-3 devices, it is also observed that increasing the 

number of pipeline stages improves the speed of the Spartan-3 device more significantly than the 

speed of the Virtex-4 device.  It is also observed that for both devices there are an optimum 

number of stages beyond which the performance of the device actually degrades due to the 

increased amount of area consumed by the design.   
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Figure 27.  Analysis of fmax vs. Pipeline Stages for Virtex-4 SX and Spartan-3 FPGAs 
 

 

Another interesting result of these experiments was that regardless of the number of pipeline 

stages the projected synthesis speed for the Virtex-4 did not change.  This implies that even 

when the pipeline is configured with the minimum number of allowable stages, the results of the 

pipelining and retiming processes are the same.  The post place-and-route timing results for the 

Virtex-4 however; do change with the number of pipeline stages implemented.  Since we know 

we are utilizing the embedded DSP slices on the chip and we can trace the critical path of the 

circuit we can conclude that the physical distance between two individual DSP cells is great 

enough that adding extra registers along the path will in fact increase the speed of the design. 

Figure 10 further shows that when targeting the Virtex-4, a 10-stage pipe will provide an 

acceptable operating frequency for the system with only minor improvements being gained with 

each additional pipe stage.  This is a promising result because we know the depth of the Log-Add 

LUT is 10 cycles as well, allowing us to match the depths of the two pipelines with out having to 

sacrifice a considerable amount of speed. 
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 By setting the final depth of the Gaussian Distance/Log-Add logic at 20 cycles the total 

amount of parallelism utilized was also set.  Given that only a single memory bank is used to 

drive the pipe and that the pipe is 20 stages deep, the total parallelism utilized in the hardware is 

fixed to being able to operate on 20 things at once.  Multiple memory banks and replicated logic 

could easily increase the amount of parallelism, but given that a single memory configuration 

provides enough computational effort to complete the process within our real-time operation 

constraint no additional time was spent investigating this option.  In addition to the experiments 

described above all individual components of the Acoustic Modeling block were synthesized and 

routed on the chip to fully characterize their performance.  Table 4 summarizes the results of 

these tests and makes note of any special ASIC cells used by each stage of the design. 

 

 

Table 4. Summary of Synthesis and Place-and-Route Results for Virtex-4 SX35 

 

Component Synthesis
(MHz) 

Place-and-
Route 
(MHz) 

AREA 

Gaussian 
Dist. Pipe 157 145 6 DSP Tiles, 

411 Slices 
Log-Add 

LUT 164 150 13 BRAMs, 
307 Slices 

Find Max 181 160 90 Slices 
Normalizer 197 172 144 Slices 
Composite 

Senone 
Calc. 

197 140 2 BRAMs, 
147 Slices 

AM Block 
(TOTAL) 164 125 

6 DSP Tiles, 
30 BRAMs, 
1328 Slices 

 

 

Looking at the table it can be seen that all portion of the logic operate above the 100MHz 

restriction placed on the design, allowing the system to operate in real-time.  As mentioned in 

Chapter 3, 100MHz with a 10ms input window leads to a 1 million cycle budget for completion 

of all operations.  The AM unit designed is capable of executing all of its operations in 

approximately 650,000 cycles, leaving the remaining 350,000 cycles for the processing of the 

Phoneme Evaluator and the Word Modeler blocks.  As mentioned in Chapter 3 the hardware was 
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verified against both our SPHINX baseline and the MATLAB code by checking the outputs of 

the software against the waveform output of Modelsim.  These comparisions were made on 

random sample frames out of a set of 300 frames on continuous speech.  By comparing the 

results of the hardware to the results of the software at various points in the progression through 

incoming utterances the flow of data in the system as well as the correctness of the outputs could 

be verified.   

In order to further increase the performance of the SoC we hand coded our own 

placement constraint files for each block of the design.  By putting restrictions on the placement 

of each block we were able to ensure minimal delays between blocks as well as with in the block 

itself, and were also able to confine portions of the design that utilized special ASIC cells to the 

slices of logic adjacent to those cells.  The graph in Figure 28 examines the post PAR speeds 

obtained for Gaussian Distance pipe when constrained to various percentages of the FPGA.  The 

effects of placement constraints are quite evident from Figure 28, noting a 14 MHz in 

performance between an unconstrained and a fully constrained design.  Figure 29 shows the final 

floor-plan for the entire Acoustic Modeling Pipeline. 

 

 

 

Figure 28.  Speed Improvement vs. Percentage of Design Constrained for Gaussian Distance 
Pipe 
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Figure 29.   Post Place-and-Route Layout for AM Pipeline on a Virtex-4 SX35 FPGA  
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5.0  PHONEME EVALUATION 
 

 

 

 

The process of phoneme evaluation (PE) in modern ASR systems refers to the evaluation of a 

predefined set of Hidden Markov Models, with respect to the newly acquired set of senones 

provided by the Acoustic Modeler.  Unlike AM, the amount of work done by the phoneme 

evaluator at any one point in time is dependent on the number of active inputs to the block, and 

the architecture for the block must reflect this dynamic nature.                         

The HMMs being evaluated during PE represent time-varying statistical models for set of 

phonetic units allowable in the system dictionary.  For any one frame, all of the active HMMs 

must be evaluated and pruned based on a basic beam pruning algorithm to ensure that only 

promising data is forwarded in the system for future processing.  This chapter will take a closer 

look at the operations necessary to calculate a single HMM and then take a step backward to 

examine how this single calculation fits into the overall architecture of the block. 

 

 

 

 

5.1 HIDDEN MARKOV MODELS 
 

 

Hidden Markov Models (HMMs) are just one of an array of non-time-dependent (NTD) 

statistical models used by engineers to model many of the phenomena observed in the world 

around us.  Unlike time-dependent models that rely on the regularity of the data as the basis of 

the model, HMMs and other NTD models are adapted to observe and emulate processes that 

evolve over time and posses no core regularity.  The human voice is one such phenomenon and 
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has been shown by numerous research projects to be quite accurately modeled by HMMs [36, 

38, 46, 48].  One of the key concepts that make HMMs so useful is their ability to maintain a 

potentially unlimited number of previous transitions even though the core process only has a 

single cycle memory.  To better understand this concept it is first necessary to understand the 

underlying features of a Markov chain and then to present a formal definition of a HMM and the 

variables associated with it.   

 

 

5.1.1 Mathematics 
 

 

A Markov chain is a special set of random variables where each variable has some knowledge of 

the variable before it [2].  Given that X1, X2, …, Xn is a sequence of random variables all with 

values in the same finite alphabet, then Bayes formula can be used to represent the probability 

associated with the set as shown in Equation 19. 

( ) ( )∏
=

−=
n

i
iin XXXXPXXXP

1
12121 ,...,,|,...,,                                                     [Eq. 19]                                 

If it is found that the input sequence fits the equation given in Equation 20 then the sequence can 

be considered a Markov Chain and Equation 19 can be rewritten as Equation 21. 

( ) ( )1121 |,...,,| −− = iiii XXPXXXXP                                                                  [Eq. 20] 
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121 |,...,,                                                                    [Eq. 21] 

In order to introduce more freedom into the system the actual state sequence can be hidden from 

the observer and only the states themselves allowed to generate observable data.  To apply this 

freedom to Equation 21, the following lemma must be presented to define the new variable 

necessary for the process.  The terms defined in the lemma are taken from the definition of an 

HMM as defined by Jelinek [2]. 
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 Let: y = {0,1,…,b-1}  the output alphabet 

 Let: L = {1,2,…,c}  the state space 

 Let: p(s’|s) be the probability distribution of transitions between states 

Let: q(y|s,s’) be the output probability distribution associated with transitions from state s to 

state s’ 

 

With these four terms it is now possible to define the probability of observing the output string 

y1, y2, …, yk for a given HMM.  This equation is given in Equation 22 as a modified version of 

Equation 21 where we are now observing the output sequence y1, y2, …, yk instead of the actual 

state sequence X1, X2, …, Xn. 
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,... 1
1121

1

,||,...,                                             [Eq. 22] 

From Equation 22 it can be seen that the output sequence is determined by the summation of the 

scores for each state given their predecessor state only.  This means that while only the values 

from the previous time need to be maintained for processing in the current frame, these values 

contain information about the entire preceding chain of inputs, enhancing the memory 

capabilities of the model.   

 
 

5.1.2 HMM Topologies 
 
 
Understanding the basic mathematics at play, the properties of a HMM can begin to be 

visualized and possible state orientations can be surmised.  While by definition any combination 

of states can be used to form a HMM as long as the specified criterion are met, for purposes of 

statistical modeling there are a few common classes of HMMs that are widely used through out 

the world [57].  The simplest configuration is what’s known as a linear topology where each 

state contains only a self-transition and a next state transition, and is shown in Figure 30.   
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Figure 30.  Linear HMM Topology 

 

Two other forms of a linear topology are known as the left-to-right and Bakis topologies, 

differing only in the number of sequential states that can be skipped while traversing the HMM.  

In a Bakis topology each state may either transition to itself, the state immediately next to it, or 

the state located one hop away.  In a left-to-right topology however each state can transition to 

itself or any of the following states in the model [12].  Figure 31 helps to visualize the distinction 

between the two models showing a Bakis topology HMM with the addition left-to-right topology 

transition shown as a dotted line. 

 

 

Figure 31.  Comparison of Bakis and Left-to-Right Topology HMMs 

 

 

Another basic HMM topology is called the Alternative paths topology which utilizes multiple 

distinct sets of states to transition from the beginning of the model to the end.   Within an 

alternative path topology both Bakis and left-to-right transitions can be applied to all but the start 
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and end nodes helping to further extend the complexity of the model.  Figure 32 illustrates the 

basic alternative path topology with the additional transitions shown as dotted lines. 

 

 

 

Figure 32.  Sample Alternative Paths HMM Topology  

 

While all of the topologies shown so far contain only forward transitions this is not a requirement 

of HMM topologies although it may be a requirement of the systems using them.  In statistical 

processes such as speech recognition it is known that speech cannot “go backward” therefore 

having reverse transitions make no real sense.  Other systems do have such constraints and in 

these cases it is highly desirable to use a class of topologies known as Ergodics to represent the 

data.  Ergodic HMM topologies have no restrictions on the allowable transitions as shown in the 

example topology of Figure 33. 
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Figure 33.  Sample Ergodic HMM Topology 

 

 
5.1.3 Viterbi Searching 
 

 

In all of these topologies when the HMM is left unconstrained, all information about all possible 

paths through the HMM must me retained.  This can lead to a very large amount of data needing 

stored the longer one stays in a single HMM.  This can be quite problematic in systems where 

memory is a constraint or where many HMMs all need to be run in a real-time environment.  To 

help mitigate this problem a number of optimization algorithms have been proposed, one of the 

most popular of which is the Viterbi search algorithm [12].  The Viterbi search algorithm simply 

states that at any time while evaluating an HMM, if two paths converge only the best path need 

be maintained.  By only keeping the best possible path through the HMM at any time, the 

amount of data needing to be updated is significantly reduced while the overall impact on the 

accuracy of the model is impacted very little.  Figure 34 shows a sample HMM oriented on the 

y-axis of a trellis to help visualize the number of possible paths through an HMM. 

 



 80

 

Figure 34.  Sample HMM Trellis 

 

Looking at the sample trellis it is observed that even for only five time ticks there are already 6 

possible paths through the HMM.  If the Viterbi algorithm were not used all of these paths would 

need maintained throughout the entire evaluation of the HMM and only upon exiting the HMM 

would the best path be determined.  With the Viterbi algorithm however only the information 

about the best current path need to be retained.  This concept is visualized in Figure 35, with the 

Viterbi path shown as a sold line and all other transitions shown as dotted lines. 
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Figure 35.  HMM Trellis with Viterbi Algorithm 
 

  

With a basic understanding of HMMs and their ability to model random processes the specific 

nature of the calculations being performed in the derived architecture can be investigated and 

understood.  The remaining sections of this chapter will focus on the calculations necessary to 

calculate the HMMs in the systems as well as their implementation as both fully-vectorized 

software and a hardware co-processor. 
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5.2 DESCRIPTION OF CALCULATIONS 
 

 

During each new frame in speech recognition each of the active phonemes must be evaluated and 

pruned based on the best score for the entire active set.  Each HMM requires the retrieval of a 

large amount of static information as well as information relating to the previous state of the 

HMM and the present state of the inputs to the HMM.  This results in a process that is dominated 

largely by memory access with only a few compact calculations being performed to update the 

database.  While this advantageous in that only simple arithmetic units need to be used to 

perform the operations, it has the distinct disadvantage that each simple calculation requires 

complex memory access, leading to sub-optimal conditions for highly pipelined designs.   

Each HMM calculation begins by obtaining the token for the HMM from the active cue.  

The tokens relate to a specific HMM location in the word tree, described in Chapter 5, and are 

important because while it is possible to have multiple copies of an HMM in the word tree, each 

one must be treated uniquely due to different contexts.  Using tokens allows each node in the tree 

to have a unique ID even though many nodes may contain the same HMM and this provides the 

necessary uniqueness to the problem.  In the proposed implementation this token is used to 

address a large shared RAM as well as ROM containing additional pointers needed for the 

HMM.  The RAM provides information about the previous state of the HMM and will be 

updated by the Phoneme Evaluator once the calculation is complete.  The ROM contains pointers 

to the senones needed from Acoustic Modeling and the transition scores needed to evaluate the 

HMM.  The senone pointers are then passed to the senone RAM and the necessary scores are 

retrieved.  At the same time the senone scores are being obtained the transition scores are 

obtained from a set of small local ROMs.  Figure 36 helps to visualize the full scope of the data 

access required for a calculation of a single HMM. 

Once the previous state information, the current senone scores, and the transition scores 

have been acquired the calculation of the HMM may occur.   To keep the calculations in line 

with the SPHINX models being used as the baseline a 3-state Bakis topology HMM was 

implemented using the Viterbi search algorithm.  The equations necessary to calculate an HMM 

are shown as equations 23-27 with a sample HMM shown in Figure 37 with all values labeled 

for clarity. 
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Figure 36.  Data-Flow Diagram for Memory Access for HMM Calculation 
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{ } )()1(,)( 000101 tSTtHHMAXtH ++−=                [Eq. 23] 

{ } )()1(,)1()( 11120112 tSTtHTtHMAXtH ++−+−=                                                 [Eq. 24] 

{ } )()1(,)1()( 22231223 tSTtHTtHMAXtH ++−+−=                                                [Eq. 25] 

{ })(),(),()( 321 tHtHtHMAXtH BEST =                                                                       [Eq. 26] 

EEXIT TtHtH 23 )()( +=                                                                                               [Eq. 27] 

 

 

Figure 37. HMM Topology with Labeled Values 

 

 

Unlike Equations 24 and 25, Equation 23 shows that one of the input terms, H0, is not time 

dependent.  This term is defined as the input probability to the HMM and only has a valid value 

during the single time tick when the HMM is actually entered.  This value is a function of the 

score of the previous node the word tree and will take on a value of negative infinity for all time 

except the time of the transition from one node to another.  For this reason the term is not 

considered strictly time-dependent and is treated differently from the other previous state scores, 

H1, H2, & H3.   

The HBEST & HEXIT scores are calculated along with the other values but are not used until 

during the pruning phase of the phoneme evaluation.  Once all HMM have been calculated the 

best of the HBEST values is found and used to define the beams used during pruning.  This global 

best score is used to calculate both the ‘valid beam’ and the ‘exit beam’ which get compared to 

the HBEST and HEXIT values respectively for each active HMM.  If a given HMMs best score is 

above the valid beam then it will remain in the active cue for the next frame, and if its exit score 

is above the exit beam then it will also be placed in the exit cue for processing by the word 
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model.  In the case that the best score for the HMM is not above the valid beam then the HMM 

will be removed from the active cue and placed into the dead cue for later processing by the 

word model.  After all HMMs have been pruned and their tokens placed in the appropriate cues 

the process of phoneme evaluation has been completed and the word modeler may begin its 

operation.  Having described the steps necessary to complete the phoneme evaluation it is next 

necessary to describe the vector code written to execute the desired operations. 

 
 
 
 

5.3 MATRIX MATLAB REPRESENTATION 
 
 
Unlike the calculations necessary for Acoustic Modeling, Phoneme Evaluation  (PE) requires no 

multi-element summations, allowing for the creation of fully vectorized MATLAB code 

requiring no looping to calculate the HMM dataset.  By organizing the data for the calculations 

into large matrices, all off the HMMs can be calculated in a single set of operations.  Further, the 

data management problem described in section 5.2, can be reduced to a simple set of dynamic 

pointers allowing for rapid random accesses on very large arrays.   

Similar to the Acoustic Modeling block the majority of the parallelism found in this 

portion of the algorithm is in the ability to calculate all HMMs independently of one another.  

While certain operations within a given HMM may also be calculated simulatneaously it is the 

ability to calculate all HMMs at once that provides the most benefit.  Unlike Acoustic Modeling 

however, the workload for Phoneme Evaluation varies from frame to frame meaning that the 

potential parallelism in the task is not constant.  The token passing scheme helps to manage this 

variability by maintaining a series of token vectors indicating the present workload of the 

system.  While this provides an effective means of obtaining numerous data elements in a single 

line of MATLAB code, it also limits any potential hardware to having to operate sequential to 

obtain the data given that only a single memory bank exists.  The impact of this limitation are 

described in more detail in Section  5.4.   

The first step in performing PE is to reset the output token vectors, merge the input token 

vectors into a single large list, and pre-calculate the beam offsets to be used during pruning.  For 

each beam used in the pruning process there is both a static beam and a variable offset.  The 
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static portion of the beam relates to the value needed to achieve maximum recognition accuracy.  

This will apply the strictest thresholds to the active scores creating a system capable of only 

seeing words that are observed with very high probability.  While this can be very beneficial for 

situations where accurate recognition is absolutely critical, it can also cause the performance of 

the system to degrade very quickly if any noise is present in the environment.  To counter this 

effect the user may want to add some variable offset to the static beam that can be tailored to the 

specific application.  These initialization steps can be performed quite simply and the necessary 

code is shown as Figure 38. 

 

 
 

Figure 38.  Code for PE initialization 

 

 

After initialization, the transition matrix scores must be collected into compact vectors for use in 

the calculation.  This process involves using the input token vector to obtain the necessary 

transition matrix pointer IDs and then using those IDs to obtain the actual transition scores for 

each arc of each HMM.  A single vector is created for each transition in the HMM containing as 

many values as there are active HMMs in the system.  At the same time the transition matrix 

scores are being obtained, the senones scores corresponding to each HMM can be obtained from 

the Acoustic Modeler.  As with the transition matrix scores, the input token vector is used to 

obtain a list of senone IDs that is then used to obtain a list of senones scores.   The code for the 

data allocation process is shown in Figure 39.   
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Figure 39.  Code for Data Allocation in PE 

 

 

Once all of the data has been collected for the HMM evaluations Equations 23-27 can be 

executed for all of the active HMMs.  During calculation the scores are stored into temporary 

vectors allowing for the previous times scores to be read from the database and used before being 

overwritten by the current times results.  For each state of the HMM the best score for the 

transition is found first and then the senone score for the state is added to the result.  After 

calculating all the current states for each HMM the HBEST and HEXIT values are found and all the 

data is then written back to the central database.  Additionally the input score for each HMM 

must be reset to prevent it from being seen as new again in the next frame.   Figure 40 shows the 

code used for the calculation and storage of all HMM values. 

 

 
 

Figure 40.  Code for HMM Calculation and Data Storage 
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Having stored the new HMM scores in the database the pruning operation are able to begin.  

These operations can be performed very efficiently with the use of the ‘sort()’ and ‘find()’ 

functions in MATLAB.  Both of these functions are specifically designed to operate on large 

arrays of numbers and can be given a number of different arguments to allow them to function in 

different capacities.  The first step in pruning is to find the global best state score that will be 

used as the origin of the beam.  Once this is found the beam offsets are applied and the database 

is searched to find the list of HMMs passing each beam.  These lists are then assigned to their 

appropriate token vectors based on whether they are to remain active for the next time, be reset 

to inactive for the next time, or be kept active and passed onto the word model for additional 

processing.  While pruning is occurring an additional beam value must be calculated for use by 

the Word Modeler.  Inside the HMM database each token is flagged with a special bit to indicate 

whether it represents the end of a word, or some point inside a word.  All scores corresponding to 

end-of-word HMMs must be compared and the best of the set passed on to the Word Modeler.  

This value will be used to determine if the observed word was seen with a high enough 

probability to be output from the system and is described in more detail in Chapter 6.  Figure 41 

shows the MATLAB code used to prune the HMM database.  

 
  

 
 

Figure 41.  Code for HMM Pruning 

 
The calculation of the word threshold and the creation of the dead, valid, and exit token 

vectors marks the end of the PE.  From here the dead and exit vectors are passed to the Word 

Modeler along with the word threshold and the next stage of the recognition process may begin. 
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5.4 HARDWARE ARCHITECTURE 

 
 

When implementing PE in hardware the majority of the logic necessary resides in the large 

amount of constant data that must be stored and retrieved in order to process an HMM.  As was 

shown in Figure 35 in section 5.2, the process of retrieving the constant data requires the use of 

numerous cascaded RAMs / ROMs.  The TOKEN IN (HMM ID) input spawns the addresses for 

4 separate look-up Tables, one for the transition score ROMs, and one for each of the senones 

needed for the HMM.  Within the POINTER ROM structure of Figure 35 resides the TMAT ID 

ROM which serves as a decoder to map one of a large set of HMM IDs to one of the relatively 

small set of TMAT IDs.  This single TMAT ID is then used to address six TMAT score ROMs in 

parallel in order to decrease the latency of the data access.  The other three LUTs receive the 

same HMM ID, but are used to decode the appropriate senone IDs needed for the HMM.  In an 

effort to decrease latency, these senone IDs are found in parallel and output from the block back 

to the shared senone RAM described in Chapter 4.  Once the TMAT scores have been retrieved 

along with the current senone scores and previous state scores, the actual processing of the HMM 

can begin.  As mentioned previously the remainder of the calculation can be implemented as a 

high throughput pipeline and is described in detail in the following Sections.     

 

 

5.4.1 HMM Control Logic 

 

 
While developing the architecture it was necessary to consider the fact that unlike AM, the 

amount of work that needs done at any one time is variable and therefore some control must be 

included to monitor the amount of active data in the system.  The data needing processed by the 

PE is most efficiently managed by a series of FIFOs containing lists of active HMM IDs.  

Specifically, data entering PE is provided via either the new phoneme active list (nPAL) FIFO, 

and data exiting PE is written to either the exit (VALID) FIFO, the inactive (DEAD) FIFO, or 

the phoneme active list (PAL) FIFO.  Figure 42 illustrates the relationships between these FIFOs. 
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Figure 42.  Control for Phoneme Evaluator 

 

The first observation made when looking at Figure 42 is that the PAL FIFO is actually 

completely internal to the PE block and can be loaded by either the HMM pipeline or the pruner.  

In order for this to work properly a special end of phase (EOP) token was created to serve as a 

place marker in the FIFO.  To create the EOP token the PAL FIFO was designed to be 1-bit 

wider than the other FIFOs so that the extra bit could be used to hold information about the EOP 

token.  All standard tokens in the queue will have logic zero in this extra bit, but the EOP token 

will have logic one, making it very easy to detect the presence of the EOP token.   

At the beginning of each new frame PE will start pulling tokens from the nPAL FIFO 

until the FIFO is completely empty.  When the FIFO is emptied, or in the case there was nothing 

there to start, the PAL FIFO is then read from until and EOP token is detected by the STATUS 

block.  When the EOP token is seen it is then known that all HMMs needing calculated have 



 91

been done and pruning may commence.  At the beginning of pruning the EOP token is written 

back to the PAL FIFO, and pruning is executed until the EOP token is popped back out of the 

FIFO again.  Once this second observation of the EOP token is made it is known that all data has 

been processed for that frame the word modeler may begin processing the tokens in the DEAD 

and EXIT FIFOs.  Since this process is not fully pipelined as was the case for the AM design, 

removing all of the FSMs from the architecture was not entirely possible.  Through inclusion of 

objects like the EOP token as well as basic handshaking signals between PE and the other 

portions of the design however, the control for PE was able to be reduced to a single 5-state 

FSM.  Figure 43 shows the FSM used to control the PE block. 

 

 

Figure 43.  Finite State Machine for PE Control 

 



 92

When the FSM receives the start signal it will first enter the init state to allow for the 

EOP token to be placed onto the PAL FIFO.  At the end of a given frame the last operation to 

occur is the reading of the EOP token from the FIFO signaling the end of the pruning phase.  

While this read does trigger the end of the PE evaluation it does not trigger an event to place the 

EOP token back onto the FIFO again.  Therefore this operation must happen at the beginning of 

each new frame, to ensure the proper operation of the control logic.  After placing the EOP token 

on the PAL FIFO, the status of the nPAL FIFO will be checked and the FSM will transition 

accordingly.  If the nPAL FIFO has new data in it then the FSM will transition to the nPAL state 

and begin to evaluate the active HMMs.  If this FIFO is empty however, the FSM will transition 

directly into the PAL state and begin processing the HMMs that are still active from the previous 

time. The nPAL, PAL, and PRUNE states all function identically in that they will self-loop 

through one arc while the evaluation is being performed and then self-loop through the other arc 

only on the cycle that the HMM processing is finished so that the score may be written to the 

RAM.  This process will continue until the nPAL FIFO is emptied or the EOP token is seen, 

depending on which FIFO is being evaluated, at which point the FSM will transition to the next 

state in the process.  After observing the EOP token while in the PRUNE state, the FSM will 

raise a done signal and return to its idle state until the next receiving the next start signal. 

       
 
5.4.2 HMM Pipeline 

 
 

The execution of Equations 23-27 constitute the majority of the calculations necessary to 

perform PE and therefore a significant amount of time was put into examining the optimal way 

to perform these operations.  After establishing the control for this pipeline the calculations were 

examined and it was found that to find all H values for a given HMM a simple ADD-

COMPARE-ADD-COMPARE pipeline can be constructed as shown in the data flow graph in 

Figure 43.  The data-flow graph in Figure 44 highlights the regularity of the structure for the 

pipeline and leads directly to a high-throughput low-latency design for calculation of the HMM 

scores in the system.  Further, the complexity of the pipeline actually becomes very low and 

requires a noticeably smaller amount of logic than even the ROMs required to drive it.  As each 

of the active HMMs are evaluated, the five output values are written to the HMM database and 

the HMM ID token is written into the pruner queue.   
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Figure 44.  Data-Flow Graph for HMM Pipeline 
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5.4.3 HMM Pruner 
 
 
After having calculated all HMM scores for a given frame the scores are then read back out of 

the RAM and compared to the beams.  As mentioned in section 4.3 two different beams are used 

to prune the HMMs based on both their exiting score and their best score.  If an HMM has a 

valid exit score it will be passed to the word modeler as well as remain in the active queue.  If the 

HMMs score is not above the exit beam however, it will be checked against a second beam to 

see if the HMM should remain in the active queue. This two step approach helps to minimize the 

number of HMMs mistakenly pruned from the system and significantly increases the recognition 

accuracy of the system.  It also helps to maintain a time-varying system, in that a HMM can exit 

and remain active so that in successive frames the HMM could exit again, but with a higher 

probability.   

 To implement the beam pruning algorithm in hardware a simple pipelined approach was 

taken.  Since all of the active tokens must be pruned before moving on and because each HMM 

is pruned in the same manner tokens can be popped from the FIFO each cycle until the EOP 

token is seen.  Additionally, while the data regarding the best and exit score for each HMM is 

needed from the central database, nothing needs written back to the database helping to simplify 

the pipeline.  Figure 45 shows the data-flow graph for the HMM pruner pipeline. 

A third beam is also calculated by the pruner and is passed forward to the word modeler 

for later use.  This beam is calculated based off of the exit score for any active HMM in the cue 

that represents the end of a word in a dictionary.  Just as transitioning from one HMM to another 

incurs a penalty so does transitioning from one word to another, and the word beam helps to 

prune out unlikely sequences of words.  While the HMM pruner does not actual process the data 

in the PH RAM  based on the result of pruning, it does establish the work order for the word 

modeler and helps to greatly simplify that stage of processing. 
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Figure 45.  Data-Flow Graph for HMM Pruner 
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5.5 HARDWARE PERFORMANCE RESULTS 
 

 

After finishing the design of both the hardware and software components for PE the focus was 

then turned to the analysis of the hardware designed to execute the process.  During this analysis 

an experiment was derived to examine the effects of the synthesis engine on final chip 

utilization.  To conduct the experiment the HMM pipeline was synthesized using both the 

Synopsis Synplify tool and the Precision Synthesis tool from Mentor Graphics.  The results of 

the experiment are shown in Figure 46 with a summary of the results given as Table 5. 

 

 

Figure 46. Precision Synthesis Vs. Synopsys Synplify 
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Table 5. Summary of Synthesis Results for HMM Pipeline using both Precision Synthesis and 
Synopsys Synplify 

 
Synthesis Tool fMAX  (MHz) Slices Flip- Flops LUTs 18K RAMs 

Precision 117 1713 2645 861 25 RAMs 

Synplify 127 978 1497 874 60 RAMs 

 

 

From this experiment it is observed that for the exact same functionality the Synplify synthesis 

tool was able to create a design with a slightly higher fMAX and a significantly lower gate count.  

It is also observed however that in the Synplify case 60 BRAMs were used as opposed to the 25 

used in the Precision version.  This is related to the notion that during our custom design some 

small local ROMs were made using purely combinational logic, whereas when Synplify created 

these ROMs for us it chose to use embedded BRAM cells.  Given these observations the rest of 

the components for PE were synthesized using Synplify and put through PAR by Xilinx ISE 

using hand-generated constraint files as described in Section 4.5.  The results of both synthesis 

and place-and-route for all components of PE are summarized in Table 6 with the final layout for 

PE shown in Figure 47.  It is important to note that the results obtained for the number of RAMs 

required by each block is strictly a function of the small database chosen as our test set.  In a 

fully system the number of RAM blocks required would be far greater leading to the necessity to 

extend the system into external RAM usage for very large scale operations. 

As with the Acoustic Modeling block, the functionality of the Phoneme Evaluator was 

verified against both the SPHINX 3 baseline model and the MATLAB hardware.  The three 

implementations of the algorithm were first directly compared to each other on random sample 

frames over the course of three spoken utterances.  Having ensured the correctness of the 

MATLAB code to the SPHINX baseline, random test vectors were fed through both the 

MATLAB and the hardware to compare the output results.  Due to the fact that all calculations 

during Phoneme Evaluation operate only on 32-bit integer values, a bit-accurate comparison was 

able to be made between the hardware and the MATLAB models.  
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Table 6. Summary of Place-and-Route Results for PE 

Component Synth (MHz) PAR (MHz) Slices 18K RAMs 

HMM Pipeline 261 140 775 -- 

MDEF ROM 454 151 141 24 RAMs 

Pruner 277 177 112 -- 

PH PTR RAM 572 118 16 8 RAMs 

Pipe w/ MDEF & Sen. 

RAMs 
164 113 1605 69 RAMs 

PE TOTAL 115 111 1866 84 RAMs 
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Figure 47.  Final Layout for PE 



 100

 

 

 

 

6.0 WORD MODELING 
 

 

 

 

Unlike the definitions for AM and PE, Word Modeling (WM) can refer to multiple levels of 

abstraction, depending on the specific system under consideration.  For some systems WM may 

actually include PE, and effectively divide the system into an Acoustic Modeler and a Word 

Modeler.  Other systems maintain PE as its own unique event but consider WM to include both 

the linking of the phonemes within a word as well as the linking of multiple words.  These 

systems can employ constraints based on the language being recognized to help increase the 

accuracy of the system.  The constraints work by preventing or creating heavy penalties for 

groups of words that are impossible or at least highly unlikely for the given language and provide 

the system with some knowledge of what is being said, while it is being processed.  For our 

purposes however, WM will be defined solely as the linking of phones into words, including the 

linking of the end of one word to the beginning of the next.  This definition allows for the 

separation of the WM process from what is commonly called the Language Modeling (LM) 

process, and creates a concise portion of the design for discussion and development.  In the 

designed system WM is responsible for managing a tree-style data structure and updating nodes 

in the tree based on information provided by the PE portion of the design.  The rest of this 

chapter will focus on describing the functional nature of the data structure, and quantifying the 

software and hardware developed to execute the algorithms. 
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6.1 TREE SEARCHING 
 
 
 
 
The basic search tree is one of the fundamental data structures in computer systems today.  A 

tree in its most general sense refers to any set of connected data points, nodes, without any 

specification as to their priority.  Data structures that fit this loosest definition are often called 

free trees since they allow for numerous entry and exit points to the data set.  Tree structures can 

be used to represent various types of systems, with speech systems being one particularly good 

example.  Most languages including English contain large numbers of words with similar 

beginning sounds but distinctly different endings.  These groups of similar words can be grouped 

together into what are called rooted trees helping to minimize the search space through lumping 

similar paths.  A rooted tree as defined by [58] represents a special kind of free tree wherein one 

of the vertices is distinguished as the root of the search space.  In this type of tree there exists 

only one entry point and subsequently the direction of propagation becomes static unlike in the 

case of the free tree.  Figure 48 illustrates the difference between a free tree and a rooted tree 

data structure. 
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Figure 48. Sample Tree Topologies 

 

In even small sized speech recognition systems there are going to be a number of different trees 

that all need to be maintained while the system is active.  The entire set of trees that comprise the 

search space is often called the forest and while some trees may only contain a single branch 

others may be significantly more complex.  Regardless of this notion however, all trees in a 

given forest must be maintained with the same regularity to ensure the system is not partial to the 

recognition of some words and not others.  When using trees for ASR each of the node in the in 
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the tree represents a particular HMM, described in Chapter 5. As HMMs obtain valid output 

scores, this information is forwarded along the paths defined by the tree and used as input scores 

to all subsequent HMMs.  By propagating the scores of the HMMs through the system the 

probability of word seen at the end of a given branch in the tree, or leaf, becomes a function of 

the probabilities of each of the sounds in the word, helping to provide the user with some sense 

of the quality of the recognition when a word is observed at the output of the system.   

Because most modern ASR systems focus on the recognition of semi-continuous or fully-

continuous speech it is necessary to provide a mechanism that allows for the transitions from the 

leaves of a given tree to the potential roots of all other trees in the forest.  If no priority is given 

to the order in which trees may follow one another then all leaves must connect to all roots and 

the potential for a search space explosion becomes exceedingly large.  To counter this problem 

some systems limit the amount of time that the user can speak to the system before they must 

stop and wait for the system to respond [1, 9].  Another possible solution to this problem is to 

simply limit the number of words in the dictionary effectively forcing the system to stay within a 

stable range, and this is the implementation we have chosen for our baseline system.  The 

following section of this chapter will explain the MATLAB code used to implement the rooted 

tree search and describe how scores are propagated inside of a tree and from tree to tree. 

 

 

 

 

6.2 MATRIX MATLAB REPRESENTATION 
 
 

After the PE block has finished pruning and the token FIFOs have been filled the WM may begin 

the process of updating the forest.  As mentioned in Section 5.3 the WM is responsible for both 

resetting the newly inactive tokens as well as launching new tokens when a given node in the 

tree has exited.  The process of token deactivation is quite simple in the MATLAB code and only 

require that the current contents of a given memory location be reset to some known constant 

values.  The code for performing the token deactivation as well as frame initialization for the 

word modeler is shown in Figure 49.   
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Figure 49. Code for Token Deactivation and Frame Initialization 

 

Figure 48 shows that before the token activation portion of WM can begin a number of vectors 

must be re-initialized to ensure proper operation.  Because the size of these vectors will vary 

throughout the operation of the system depending on how many tokens need processed, they 

must be cleared before every new frame or else erroneous tokens could potentially enter the 

system.   

Once the vectors are cleared and any inactive tokens have been reset the WM will next 

check to make sure there are tokens in the exit cue that need processed.  Since it is possible that 

no HMMs exited during a given frame it is possible to completely skip the rest of the WM 

process, making the inclusion of this check a valuable time saver during run-time.  Assuming 

there are tokens in the cue the next step is to calculate the word beam and to separate the tokens 

representing leaf nodes from the tokens representing inner-tree nodes.  The inner-tree nodes will 

each be treated as a short link-list where each element in the list represents a branch from the 

node.  To process these link-lists a start address and a count needs to be obtained for each node 

from a predefined data structure referred to in the code as START_ADDR.  The code for checking 

the cue, calculating the beam and obtaining the link-list information is shown in Figure 50. 
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Figure 50. Code for Obtaining Link-List Information 

 

Before beginning to process the link-lists for the inner-tree nodes it is necessary to evaluate the 

leaf-nodes to see if they pass the word threshold and obtain the information about which root 

nodes to enter for all leaves above that threshold.  Once the leaves above the threshold have been 

found and the information about which root nodes to transition to has been obtained this 

information can be concatenated to the information about the inner-tree nodes and they can all be 

processed the same way.  The MATLAB code necessary to perform these operations is shown in 

Figure 51 with the next_addr and count vectors representing the final list of work that needs 

performed by the WM. 

 

 

 

Figure 51. Code for Obtaining Leaf-Node Propagation Information 

 

With a complete list of the tasks to be completed the WM must next begin to process the link-

lists to determine which tokens need launched into the system and which tokens are already 

active in the system and should be updated but not launched again.  Due to the fact that each 

branch in the tree must be check to ensure that node is not already active before transitioning into 
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it this portion of the code must be executed as a series of nested for-loops, preventing the ability 

to further vectorize the process.  For each branch the current input score of the potential child 

node must be check against the exit score for the parent node.  If the current input score for the 

child node is better than the exit score for the parent node plus the transition penalty then the 

score will not be updated, but if this is not the case then the current input score for the child node 

will be replaced with the value of the exit score plus the transition penalty.  The status of the 

child node must also be checked to ensure that the token is not re-launched into the system if it is 

already active.  If the status bit is set for the given node then it will not be launched into the 

system, but if the bit is not set then the WM will set it and place the token onto the cue.  This 

process must be repeated for each branch of each node in the next_addr vector and the code 

needed to execute these loops is shown in Figure 52.  Once the last node has been processed and 

all new tokens are in the cue the WM operations are complete for the given frame and the system 

can wait for the next frame of input data. 

 

 

Figure 52. Code for Main WM Loop 
 
 

 

 

 

 

 



 107

6.3 HARDWARE ARCHITECTURE 
 
 
Similar to the software implementation, the hardware version of WM can be broken down into 

two major steps; resetting of newly inactive tokens and updating of currently active tokens.  

Given that the functionality of these two components is distinctly different it was optimal to 

design two separate components, one for each task.  The token deactivator reads data from the 

DEAD FIFO and resets the scores in the PH RAM, while the token activator reads from the 

EXIT FIFO and processes the word tree to determine which new tokens need to be placed in the 

nPAL FIFO.  The creation of two separate blocks also minimizes the amount of logic active at 

any one point in time leading to the potential power savings crucial to ensuring sustainability on 

a mobile platform.  The operations of these blocks are described in Sections 6.3.1 & 6.3.2 

respectively.  The hardware development presented in these sections represents the work 

performed by the ECE 2121 Hardware Design Methodologies II course taught by Prof. Raymond 

Hoare during the spring term of 2005.  These hardware cells are based directly off of the 

MATLAB models described in Section 6.2 and although they do not represent my direct 

contributions to this thesis they are important to comment on for sake of completeness. 
 
 
6.3.1 Token Deactivator 

 
 

After the PE block has pruned the active HMMs and placed the appropriate tokens in the DEAD 

FIFO the word modeler can begin the task of resetting the PH RAM entries corresponding to 

these tokens.  This process is made quite simple by the fact that all PH RAM values need to be 

reset to the exact same value.  This means that to deactivate a token the token must be popped 

from the DEAD FIFO and used to address the PH RAM.  When this address is applied to the 

RAM the reset constant is then written to the RAM and the process is repeated until the FIFO is 

empty.  This process can be performed in a simple-two stage, POP-WRITE pipeline, and is 

limited only by the speed of the RAM it is addressing.  The values used for token deactivation 

are given in section 6.2 of this paper and represent the values of the maximum negative integer 

allowed in the system and the binary zero value used for deactivation of a given token in the 

database. 
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6.3.2 Token Activator 
 

 
The token activator portion of the word modeler is noticeably more complicated than deactivator 

portion and required some amount of research to determine the optimal way to implement the 

logic.  When a HMM is found to have a valid exit score, the word modeler must determine where 

in the word tree that HMM exists and which HMMs are tied to its exit state.  As shown in Figure 

53 a word tree can have a large number of branches stemming from one root and mapping these 

types of topologies into hardware structures is not nearly as simple as implementing them in the 

software described in section 6.2.   
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Figure 53.  Sample Word Tree 
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Another unique problem in token activation is that while a given HMM may be used 

multiple times in multiple different word trees such as the ‘CH’ sound at the end of pouch and 

couch, these two sounds must be represented by completely unique events.  This means that 

while a given dictionary may not need all possible phonemes in a language, it will most likely 

need multiple instances of some of the phones.  Taking this into account we were forced to come 

up with a way of indexing specific nodes in the search space so that their information could 

remain in a unique location in the PH RAM.  To do this the entire word search space was 

mapped and each of the nodes given a unique ID.  An example of this process is shown in Figure 

54. 

 

 
 

Figure 54. Sample Search Space Node Mapping 
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Based on this mapping scheme, even though nodes 12-14 in Figure 53 all relate to the AE 

phoneme, they all have unique IDs and will be treated separately in search algorithm.  The 

mappings determined in the process relate directly to the HMM IDs stored in the tokens passed 

between the PE and WM blocks, and define the core of the token passing algorithm as 

implemented in our system.   

Having established our mapping scheme it was next necessary to determine how to 

approach implementing a tree structure in hardware.  Unlike the previous section of the design 

this portion is less arithmetically intensive and involves searching instead of computational 

overheads.  One of our immediate observations when looking at the data structures was that each 

node in the search space can be thought of as a short link-list.  Evaluating link-lists in hardware 

is not a new topic of research, so to create a system able to process link-lists of link-lists 

appeared a straight forward solution to our problem.   

Based on our idea of link-lists we then derived the architecture that would handle such a 

task in an optimal way.  During each evaluation a token must be read from the EXIT FIFO and 

its link-list retrieved.  Further the HEXIT score from the exiting HMM must be added to a word 

penalty and propagated to the H0 score of the HMMs in the link-list.   Since the word penalty 

will be different for each HMM in the link-list is becomes necessary to process the HMMs one at 

a time until the end of the list is reached.  To keep track of the link-list in an efficient manner two 

ROMs were designed the START ROM and the NEXT ROM.  The START ROM is directly 

addressed by the token in the EXIT FIFO and contains both a starting address in the NEXT 

ROM for the link-list and a count of how many values are in the list.  The NEXT ROM holds all 

of the HMM IDs necessary to process the link-lists.  Figure 55 shows the data-flow for the token 

activator. 
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Figure 55. Data Flow Graph for Token Activator 

 

 

When a token is read from the EXIT FIFO a mux control bit is set to determine which token is in 

control of the PH RAM address.  While the count for the link-list is non-zero the bit will remain 

set but once the final decrement has been completed the bit control bit will switch to allow a new 

exiting HMM to be read from the PH RAM.  This process is repeated for each element in the 

EXIT FIFO until the FIFO is emptied at which time the system goes idle and awaits the next 

frame of input data.  
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6.4 HARDWARE PERFORMANCE RESULTS 
 

 

For the hardware design for WM little time was spent performing thorough analysis due to the 

fact the less than 5% of the overall execution time of the designed device is spent performing 

WM.  Unlike the work presented for the AM and PE blocks the components needed for the WM 

design were created in FPGAdvantage 6.1 by the ECE 2121 course participants as noted in 

section 6.3. Synthesis for this portion of the design was performed in Precision Synthesis and the 

final place and route was performed in ISE 7.1.  Results for synthesis and place-and-route are 

given in Table 7.  As noted at then end of the previous chapter, the RAM allocation for this block 

is strictly a function of the chosen database and will change as new vocabularies are chosen. 

 

Table 7. Summary of Word Model Synthesis Results 

 

Component SYN (MHz) Place-and-Route 
(MHz) Slices 18K RAMs 

Token 
Deactivate 377 170 54 -- 

Token 
Activate 184 120 160 3 BRAMs 

WM Block 
(TOTAL) 166 129 414 3 BRAMs 
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7.0 PERFORMANCE PROFILES 
 
 
 
 

This work has examined a number of current state-of-the-art technologies as well as presented 

work on the creation of new systems in both software and hardware.  Having considered such an 

array of designs, a qualitative summary of the performance of these systems is useful in helping 

to focus in on the pros and cons of each of the aforementioned works.  First, a summary of 

performance results given for the systems in Chapter 2 will be presented to help characterize the 

current industry.  Next, the vectorized MATLAB code will be analyzed, presenting results 

obtained through use of the MATLAB code profiler.  This profile helps to illuminate the 

strengths and weakness of the MATLAB programming environment by providing the execution 

times for each line of code in the derived algorithm. Finally, the hardware created for this work 

will be reviewed to present a concise synopsis of the performance characteristics of the device.    

 
 
 
 

7.1 LITERATURE PERFORMANCE REVIEW 
 
 

The first major class of systems considered was software based systems designed to run on 

desktop PCs.  The four main projects discussed were all presented at DARPA speech recognition 

systems evaluation throughout the late 90’s and stand as strong representatives for the current 

state of speech recognition technology.  All the software systems considered were based on the 

48,000 word HUB-4 speech corpus which represents multiple hours of continuous conversational 

speech.  IBM’s Via Voice system was shown to achieve recognition rates as high as 85% on the 

HUB-4 corpus, but available documentation does not give the total execution time for the code. 

Via Voice used a total 5.7K HMM states grouped into 3-state HMMs and required a total of 

170K Gaussian Distributions to process the Acoustic Model [8, 32].  The BYBLOS system from 
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BBN was able to achieve similar results during the DARPA evaluations and was observed to 

take 10X real-time to complete the recognition task [9, 34, 35].  In order to help with the 

recognition process BYBLOS made use of 12K HMM states again clustered into 3-state HMMs 

and also used a more complex Gaussian database, requiring 768K Gaussian Distributions.  SRI’s 

DECIPHER system was also presented around the same time and showed recognition rates 

between 70% - 80% on the HUB-4 corpus.  This system was fundamentally different from other 

systems at the evaluation in two major ways.  Primarily, DECIPHER is gender-dependent, and 

the user must identify themselves as male or female before using the system.  Secondly, this 

system makes use of the Gaussian Merging-Splitting Algorithm described in [36] to minimize 

the number of Gaussians necessary for the evaluation.  While this architecture is based on 

Hidden Markov Model evaluations, the states are not uniquely stored as the other systems 

described.  For the male-version, 535 genone states were used requiring 68K Gaussian 

distributions.  The female-version was slightly more complex, requiring 569 genones and a total 

of 73K Gaussians.  The last of the software systems discussed was the SPHINX 3 engine from 

Carnegie Mellon University.  SPHINX has been able to produce recognition rates over 90% for 

the HUB-4 corpus running at 10X real-time.  The acoustic model for SPHINX-3 contains 6,000 

HMM states clustered into 5-state HMMs and makes used of 96K Gaussians. Table 8 

summarized the performance results for the software systems presented in Chapter 2. 

After considering the current state-of-the-art software systems, some cutting edge 

hardware systems were discussed to present possible alternative solutions to the real-time 

recognition problem.  The first system considered was developed at the University of 

Birmingham and was prototyped on a Xilinx Virtex XCV1000 FPGA.  Their system operated on 

the 500 word TIMIT database and while it was able to run at 13 times faster than real-time, it 

only produced recognition rates between 50% - 60% [46, 47, 48].  The main reason for the lack 

of accuracy seems to lie in the fact that the hardware only used 1,900 HMM states due to 

constraints on the amount of memory obtainable on the target device.  Unfortunately, while the 

available research remarks on the development of more advanced versions of the system, no 

documents were available on such systems as of the publication of this work. 
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Table 8. Summary of Software Performance Results 

 

SYSTEM ACCURACY SPEED 
COMPLEXITY of ACOUSTIC 

MODEL 

IBM’s Via Voice 70% - 85% N/A 
5.7K HMM states 

170K Gaussians 

BBN’s BYBLOS 70% - 80% 
10X 

real-time 

12K HMM states 

768K Gaussians 

SRI’s DECIPHER 70% - 80% N/A 
535/569 Genones 

68K/73K Gaussians 

CMU’s SPHINX 3 75% - 90% 
10X 

real-time 

6K HMM states 

96K Gaussians 

 

 

The last major work considered was a project initiated at the University of California at Berkely 

in 2002.  This project attempted to restructure the speech recognition problem into a parallel 

processing architecture creating a large number of identical processing units and connecting 

them via aggregator units that manage the traffic on the busses in the system.  While only 

capable of processing a dictionary of approximately 30 words containing just 84 HMM states, it 

was able to run in real-time with low-power consumption and still achieve recognition rates 

between 70% - 80% [44, 45]. According to the designers of the system it does scale well and 

would be able to run efficiently on larger tasks, but even the current implementation requires the 

use of 20 Xilinx Virtex XCV2000E FPGAs.      
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7.2 MATRIX MATLAB PERFORMANCE PROFILE 
 
 

When designing code in the MATLAB environment a different approach must be taken to 

writing efficient algorithms as would be chosen if a similar design were to be done in C/C++.  

MATLAB was designed specifically for running, high-complexity mathematical algorithms 

instead of general purpose processing.  Because of this design choice, MATLAB is capable of 

performing very complex mathematics on large matrices with very little effort but does not 

perform as well in situations requiring searching or large data accesses.  One of the major 

reasons for this behavior lies in the fact that MATLAB is interpreted and not compiled at run-

time.  This allows vector operations and other mathematical tasks to be performed very 

efficiently because they are based on a precompiled library.  Branching and looping however 

must be interpreted and therefore take a significantly larger amount of effort to execute than if 

they were natively run in C/C++.  With this in mind it was determined relevant to use the 

MATLAB code profiler to analyze the code written for the speech recognition system to observe 

the true implications of this paradigm.  The first experiment performed used the MATLAB code 

profiler to examine the code written for AM to see where the bulk of the computational load 

occurred.  The pie chart in Figure 56 shows the results of the code profile in terms of total 

execution time spent in each routine.   
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Figure 56.  Performance analysis of MATLAB Model for Acoustic Modeling 

 

One of the most striking observations in Figure 56 is that 40% of the entire run-time is spent 

aligning the data necessary to calculate the senones.  Before beginning the calculation the 

incoming feature vector must be replicated 16,000 times in order to gain the most parallelism.  

This operation however consumes a large portion of the run-time for MATLAB and cannot be 

reduced.  Experiments were conducted to observe the effects of memory pre-allocation, iterative 

calculation, and dimension manipulation all of which proved inferior to the chosen method.  

While it is concerning that 40% of the calculation time is spent performing non-mathematical 

operations this has been determined to be a property of the MATLAB computing environment 

and something that must be accepted.   Of the remaining 60% of the execution time for the 

MATLAB model, half of this is spent performing the calculation of the Mahalanobis Distance.  

It has already been shown that this calculation is the most heavily used calculation in the entire 

system, so observing that it takes the most time fits well with our expectations.  The rest of the 
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execution time for the MATLAB code is spent performing the composite senone calculation and 

the log-add LUT, neither of which showed themselves to be of any major computational 

significance.  On average, the MATLAB code for AM takes 4X real-time to process a frame of 

data but since this code serves only to exhibit the latent parallelism in the AM calculation and 

not to drive a functional device, this is of little concern.   

After quantifying the AM block the code for PE was profiled to observe where the 

software was spending most of its time.  Using the MATLAB code profiler to examine the work 

load of PE for 10,000 frames the pie chart in Figure 57 was generated to help visualize the 

results.  As was to be expected the majority of the time spent in PE is taken up by the large 

amount of data allocation that must be performed before beginning the HMM pipeline.  

Surprisingly however it is observed that the pruning of the HMMs actually takes more time than 

the calculation of the HMMs themselves.  This relates to the prune block necessitating the use of 

the ‘sort()’ and ‘find()’ as discussed in Section 5.3.  While these commands are quite powerful 

when applying a search criterion to an entire matrix, they do consume a large amount of time 

with respect to the arithmetic operations that MATLAB was originally designed for. 

The other portion of the code that consumes a significant amount of the runtime is the 

storing of the HMM data back into the central database after processing.  During this process the 

H values of Equations 23-27 are stored in the database and the input probability for each HMM 

is reset to –INF.  Since this requires the updating of a large number of fields in the database the 

overall access time to the database is increased resulting in even more time lost to data 

management.  Although it is relevant to note the excessive amount of time spent performing data 

allocation / storage, it is more important to note that the software only required 10 seconds to 

process 100 seconds of speech input, leading us to conclude that even MATLAB code is capable 

performing large scale HMM calculations at approximately 10X faster than real-time. 
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Figure 57.  Results of Code Profile for PE 

 

Next, in order to properly profile the MATLAB code written for WM, a test frame was chosen in 

which the WM block was required to perform an average number of tasks on both the dead and 

exit cues.  This frame was then run 10,000 times to observe where the WM process spent the 

majority of its time.  The entire experiment represents the processing of 10 seconds worth of 

‘average’ speech input and was executed by the MATLAB routine in only 4.11 seconds.  The 

results of the code profile are shown in a pie chart in Figure 58 with the major sections of code 

described in Section 6.2 represented by their own slice of the pie. 
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Figure 58.   Code Profile for WM 

 

As would be expected the main loop of the WM code takes the most significant amount of time 

both because of the two if-conditionals that it must execute by also because the MATLAB 

environment was developed for complex mathematical programming.  Operations like for and if 

statements are not as easily optimized in the MATLAB language as are highly complicated 

mathematics like those described for the AM design and consequently development of search 

routine in MATLAB is not entirely desirable.  The next largest time consuming block in the code 

is the propagation of the leaf node tokens to their potential root token counter-parts.  Processing 

the leaf-node propagation requires obtaining information from special ‘word-identification’ 

source before fetching the link-list data and the additional overhead incurred during this fetch 

easily account for the amount of time spent performing these operations. 
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Having looked at the code for the individual stages of the speech recognition process the 

last observation left was to profile the entire system while it was processing known utterances 

and observe its performance.  Figure 59 shows the results of this profile for 306 frames of speech 

from the RM1 speech corpus consisting of three different utterances. 

 

 

Figure 59.   Code Profile for Entire MATLAB Code 

 

As expected from our initial observations, the AM portion of the design is by far the most time 

consuming portion of the code with the data fetch routines coming in a distant second.  The sheer 

volume of calculation that needs performed by AM for every frame of input data dominates this 

system as well as the original SPHINX model and the derived hardware device.  The observation 

that this portion of the design consumes the lion-share of the execution time for the same 
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algorithm in three different environments confirms the complexity of the calculations and points 

directly to the portion of the design that needs the most attention in order to ensure all 

performance goals are met.  This profile also helps to show that while during some frame of 

speech the PE and WM blocks may be very active, on the whole they do not contribute 

significantly to the total work load of the system over the course of multiple utterances.   

The profiling of the MATLAB code and testing of its ability to recognize a number of 

different utterances as well as sequences of utterances effectively concludes the software 

development portion of the project.  This work illustrated the latent parallelism found in a high-

performance, high-bandwidth application, SPHINX 3, and exploited that parallelism to derive 

compact, vectorized algorithm for performing the same task in the MATLAB environment.  This 

development help to quantify both the specific recognition engine and the MATLAB software 

environment, while also provided the foundation for the design of custom hardware capable of 

performing the speech recognition task at speeds sufficient for real-time operation.   

 
 
 
 

7.3 HARDWARE PERFORMANCE SUMMARY 
 

 

The hardware development presented in this work presents a novel processing architecture 

capable of executing the CSR algorithm at over 100MHz.  As discussed in Chapter 3, 100MHz 

has been determined to be the minimum operating speed for a device to process speech in real-

time.  This requirement comes from the known input frame rate of 10ms and the proposed 

maximum cycle count of one million.  Preliminary results on the entire operational system have 

shown a device running at 105MHz on a Vertix-4 SX35 ff668-10 and requiring less than 800,000 

cycles to complete all necessary operations.  These results clearly show a system able to run at 

sufficient speeds for real-time recognition as well as maintain an average of 20% down-time 

during which the engine is inactive.   

Aside from being able to recognize human speech in real-time, special attention was paid 

to ensure that the throughput of the design was maximized via the creation of custom pipelines 

for each stage of the algorithm.  The first major portion of the algorithm, Acoustic Modeling, has 
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been shown to be the most computational intensive part of the problem and much effort was 

taken to design this block as efficiently as possible.  The result is a custom hardware pipeline 

capable of operating at 125MHz post-place-and-route on a Virtex-4 SX35.  This pipeline is 

completely data-driven and involves no internal state machines to guide the process.  By giving 

the design this flexibility the complexity of the inputs can be varied without needing to 

reconfigure the design.   

During the design of the Phoneme Evaluation stage the large data access problem 

encountered was effectively reduced through the used of multiple small parallel ROMs and 

pointer arrays.  When processing a Hidden Markov Model a large amount of data must first be 

retrieved to perform the calculations.  While the need for moving such large quantities of data 

within the design adversely effects the performance of the pipeline, speeds of 111MHz are post-

place-and-route are still possible, with the core of the processing unit able to operate as fast as 

140MHz post-place-and-route.   

The final portion of the design, the Word Modeler, involves the design of a tree-search 

algorithm in hardware.  This work was complete by the ECE 2121 Hardware Design II course 

taught during the spring term of 2005 by Prof. Raymond Hoare and is presented in this thesis for 

sake of completeness.  The hardware was designed as a large link-list evaluation unit capable of 

propagation information throughout the tree while also deactivating nodes in the tree and 

connecting multiple trees for the creation of word strings.  The deactivation portion of the 

hardware is capable of running at 170MHz post-place-and-route but the activation logic can only 

operate at 120MHz, limiting the overall performance of the Word Modeler but not impacting the 

overall performance of the system.  Table 9 summarized the performance results for the major 

portions of the hardware development. 
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Table 9. Summary of Hardware Performance Results 

Component Synthesis 
(MHz) 

Place-and-
Route (MHz) Area Cycle Count 

Gaussian Distance 
Pipeline 157 145 

6 DSP Tiles, 

 411 Slices 

10 cycle/gauss 

Log-Add Look-up 164 150 
13 BRAMs,  

307 Slices 

10 cycle/comp 

AM Block Total 164 125 

6 DSP Tiles, 

30 BRAMS, 

1328 Slices 

162 cycle/senone 

640K cycle total 

Hidden Markov 
Model Pipeline 261 140 775 Slices 

8 cycle/load 

5 cycle/calc 

Pruner 277 177 112 Slices 4 cycle/HMM 

PE Block Total 115 111 
84 BRAMs,  

1866 Slices 

22 cycle/HMM 

Token Deactivator 377 170 54 Slices 2 cycle/dead HMM 

Token Activator 184 120 
3 BRAMs,  

160 Slices 

10*branch cycle/active 
HMM 

WM Block 
TOTAL 166 129 

3 BRAMs,  

414 Slices 

22 cycle/dead HMM + 
10*branch cycle/active 

HMM 
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8.0 CONCLUSIONS, CONTRIBUTIONS, AND FUTURE DIRECTIONS 
 

 
 
 

8.1 CONCLUSIONS 
 
 

This work has shown the full design of an automatic speech recognition system in to highly-

vectorized MATLAB and custom VHDL.  By studying an array of existing technologies and 

analyzing their strengths and weaknesses as well as their computational algorithms, a 

methodology was derived that would highlight the advantages of many of the systems.  

Specifically, by basing our work on a well-known industry accepted software package, SPHINX 

3 by CMU, it was known that any implementation that could emulate the algorithm accurately 

would be capable of being used for real-world speech applications.  The use of MATLAB and 

SIMULINK allowed for the development of code capable of operating on very large matrices 

which served to show the latent parallelism present in the sequential algorithms of SPHINX.  

Additionally, the MATLAB code provided a compact easy to understand representation of the 

entire speech recognition process that was then able to be transformed into high-performance 

hardware devices.  The development of the hardware portion of the project expanded on the idea 

of large matrix-based operations to create high-throughput hardware blocks capable of 

performing the necessary tasks in real-time.  By determining the potential cycle count for the 

system and then fitting that count to the pre-determined input frame rate, our target operating 

frequency was chosen to drive the design process.  Creating this hard boundary on the clock 

speed ensured that our hardware would be able to process all events in real-time assuming our 

cycle budget is not exceeded.  Certain portions of the design like the AM block also highlighted 

the ability to create a completely data-driven pipeline which allows the functionality of the 

circuit to be re-configured by simply changing the inputs to the pipe.   
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8.2 CONTRIBUTIONS 
 
 
During the course of this research I have worked on numerous portions of the project requiring 

various skills.  My work on this project began as an undergraduate student working to quantify 

the functional blocks of the SPHINX 2 system and subsequently performing in-depth precision 

analysis on the multi-variant Gaussian Distribution calculations performed in the system.  This 

work then led to the functional analysis of the SPHINX 3 algorithm and the observation of any 

parallelism implied in the code.  From this analysis I implemented the major functionality of the 

algorithm in less than 200 of highly efficient matrix-based MATLAB code.  Additionally, I have 

taken my understanding of the speech recognition algorithm and used it to develop a hardware 

architecture capable of performing this algorithm and shown its functionality on a Virtex-4 SX35 

FPGA device. During this hardware development I created a number of highly efficient hardware 

devices, including a Hidden Markov Model processing unit and a Multi-Variant Gaussian 

Distribution based Acoustic Modeling unit both capable of operating at over 100 MHz. 

 The first major contribution to this thesis is the examination and extraction of the 

parallelism from speech processing algorithms.  Current software systems operate sequentially 

and with very poor ILP, but examination of the mathematics reveals a process possessing a large 

amount inherent parallelism.  By first showing the parallelism via the equations and then 

generating MATLAB scripts to illustrate how to take advantage it, a method is presented for 

performing speech recognition as a highly vectorized process.  Basing this work on the 

recognition of the RM1 speech corpus containing approximately 1,000 words, the MATLAB 

code shows the potential to perform upto 620K operations independently of each other at the 

lowest level of the systems, and upto 4K at the higher level of the process.  The results of this 

contribution serve to further the development of systems able to fully exploit the parallelism of 

the speech recognition process and process naturally spoken speech in real-time. 

 The second contribution of this work builds on the results of the first contribution to 

produce a hardware system able to utilize some of the inherent parallelism in order to perform 

speech recognition in real-time.  By focusing on the most computationally intensive portions of 

the speech recognition algorithm and designing pipelined logic to tackle these operations a 

system was created able to operate on a 1,000 word dictionary at over 100MHz.  The Acoustic 

Modeling pipeline built for the system operates with a parallelism of 20, much smaller than the 
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potential 620K but sufficient to produce a real-time system.  Further, the pipeline created can be 

replicated numerous times inorder to increase the parallelism if needed.  To help enhance the 

final functionality of the hardware the Acoustic Modeling unit was designed to be completely 

input driven, possessing no internal finite state machine.  By designing the device in this fashion, 

the complexity of the inputs can be varied as well as the dimensionality of the problem.  This 

variability allows the hardware to be customized to many different environments and languages 

by simply changing the data located in the external RAMs.  These results combined with the use 

of a token passing scheme between the later stages of the design create a system able to operate 

with maximum throughput while simultaneously minimizing the amount of active data in the 

system.  The final design is able to operate at over 100MHz and requires less than 850,000 

cycles to complete providing ample buffer room around the 1 million cycle budget allotted for 

the process.  

 
 
 
 

8.3 FUTURE DIRECTIONS 
 
 
Possible future directions for this research include the development of a fully functioning 

prototype that could be demonstrated in real situational environments.  Aside from the 

fabrication and platform details involved in this task the major complication would be the 

derivation of full-scale speech models for the system to run on and the subsequent porting of 

these values to an external memory as opposed to the current internal memory configuration.  

While marketing the entire system is the most desirable scenario considering the potential for a 

compact hardware-based speech recognition system, the potential also exists for the packaging of 

the individual hardware component for use in third-party development of speech processing 

systems.  The functional units designed for both the AM and the PE portion of the design are 

compact, self-contained units requiring little direction from a global control mechanism, making 

them ideal devices for release as soft-IP cores.   

Completely away from the potential for the hardware designed on this project are the 

potential directions for the MATLAB code written during this research.  The MATLAB code 

represents a highly-efficient algorithm for performing speech recognition and could be used as 
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both a development platform as well as benchmark for the design of future systems.  Having 

proven the ability to execute medium sized tasks such as the RM1 speech corpus it would also 

next be desirable to expand the MATLAB model to work on a large sized dictionary such as the 

HUB-4 corpus.   

While the immediate directions for a project for this nature may be simple enough to 

quantify, the long-term potential for the development of highly-efficient, highly-accurate speech 

recognition devices is hard to speculate on.  As speech recognition begins to permeate our lives 

and we slowly begin to speak to electronics in the same fashion we speak to each other, the 

potential benefit of research like this will only gain momentum helping to reach the end goal of a 

truly interactive electronic world. 
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APPENDIX A 
 
 
 
 

MATLAB CODE 
 
 
 
 
A.1 – RM1_top_level.m 

 

%%9-3-05 -- JWS : changed feature_frame matrix to read in value from DSP 

%4-5-05 -- JWS: added values to apply global beam offsets to attempt 

%%better recognition rates 

%%3-27-05 -- JWS: creation of top level code for RM1 began.  this code will 

%%cover all aspects of the SPHINX 3 system from Acoustic Modeling through 

%%the evaluation of the word model 

%%DEFINE THE BEAM OFFSET 

valid_offset=-200000;%%-100000%%-200000 

exit_offset=-100000;%%-60000%%-100000 

word_offset=-5000;%%-5000 

 

%%fid =fopen('Utterances\our data\utterances.txt'); 

fid =fopen('Utterances\utterances.txt'); 

set_tmp = textscan(fid,'%s'); 

set_tmp = set_tmp{1}; 

fclose(fid); 

 

%%stmp = 1 ==> 'CASUALTY' --> dict_entry 16 ('capabilities' is 8)  

%%stmp = 4 ==> 'CAPACITIES' --> dict_entry 11 ('capacity' is 12) 

%%stmp = 5 ==> 'CALIFORNIA' --> dict_entry 2 ('caledonia' is 1') 
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[RMmeans,constant,RM_mixwt,RMvar_precomp,LUT_logs3_add,mdef,cstates,tmat,START_A

DDR,NEXT_ADDR,LCROOT_PTR,DICT]=data_loader; 

for stmp =1% [1 4 5]%1:length(set_tmp);%%loop through for every available test set 

    utterance = set_tmp{stmp}; 

    utt_class = utterance(1:6); 

    file_path = strcat('new_test_sets\',utt_class,'\',utterance,'.feat'); 

    feature_frame = load(file_path); 

    senones = zeros(length(RM_mixwt)/8,1); 

    PTR_RAM = load('EE2121_test_data\PH_PTR_RAM.mat');%%load the phone pointer RAM 

structure 

    PTR_RAM = int32(PTR_RAM.PTR_RAM); 

    NEW_PAL = [];%%this will be the vector that represents what is in the NEW_PAL and PAL 

FIFOs 

    PAL = []; 

    word_thresh = 0; 

    disp(strcat('begining analysis for utterance -->',utterance)) 

    fi_sscr_rel = load(strcat('EE2121_test_data\',utterance,'.mat')); 

    fi_sscr_rel = fi_sscr_rel.fi_sscr_rel; 

    for frame =1%:length(feature_frame(:,1))%%loop through for every frame of current file 

        senones = 

acoustic_modeler_comp_senones(feature_frame(frame,:),RMmeans,RMvar_precomp,constant,R

M_mixwt,LUT_logs3_add,cstates); 

        if (frame == 1) | ((numel(find(PAL==451))==0) & (numel(find(PAL==451))==0))%%loop 

to check for absence of silence token 

            NEW_PAL = [NEW_PAL; 451]; 

            PTR_RAM(451,4) = PTR_RAM(451,10)+word_thresh; 

        end 

        [valid, dead, exit, word_thresh, PH_PTR_RAM] = HMM_eval_no_comps(PTR_RAM, 

senones, tmat, mdef, PAL, NEW_PAL,valid_offset,exit_offset); 

        PAL = valid; 
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        [PTR_RAM, NEW_PAL, word_out, score]=word_model(PH_PTR_RAM, dead, exit, 

word_thresh, START_ADDR, NEXT_ADDR, LCROOT_PTR,word_offset); 

        NEW_PAL = NEW_PAL'; 

        tmp=find(word_out ~=18);%%find all valid words other than <SIL> 

        if numel(tmp)~=0%%if there is a valid word during the current frame, output it 

            word={DICT{word_out(tmp)} score(tmp)' frame} 

        end 

    end 

end 

 

A.2 – data_loader.m 

 

function 

[means,constant,mixwt,var,LUT,mdef,cstates,tmat,start_addr,next_addr,lcroot,dict]=data_loader; 

     

disp('Loading Acoustic Modeling data...') 

means = load('RM1_data\RM1_mean.txt'); 

constant = load('RM1_data\RM1_LRD.txt'); 

mixwt = load('RM1_data\RM1_mixwt.txt'); 

var=load('RM1_data\RMvar_precomp.txt'); 

LUT=load('LUT_logs3_add.mat'); 

LUT=LUT.LUT_logs3_add; 

 

disp('Loading HMM calculation data...')  

mdef=load('EE2121_test_data\mdef.mat');%%load the mdef file from sphinx. 

mdef=mdef.mdef;%%this is the mdef with the component scores added in 

%cstates = load('EE2121_test_data\cstates.mat');%%load the matrix of possible senones for 

composites 

cstates = load('EE2121_test_data\cstates_old.mat');%%load the matrix of possible senones for 

composites 

cstates = cstates.cstates; 



 132

tmat = load('RM1_data\TMAT_RM1.txt');%%load the transition matrices  

 

disp('Loading Word Model data...') 

START_ADDR =load('EE2121_test_data\word_calc\START_ADDR.mat');      %%stmp = 1 

==> 'CASUALTY' --> dict_entry 16 ('capabilities' is 8)  

start_addr = int32(START_ADDR.START_ADDR);                          %%stmp = 4 ==> 

'CAPACITIES' --> dict_entry 11 ('capacity' is 12) 

NEXT_ADDR =load('EE2121_test_data\word_calc\NEXT_ADDR.mat');        %%stmp = 5 ==> 

'CALIFORNIA' --> dict_entry 2 ('caledonia' is 1') 

next_addr = int32(NEXT_ADDR.NEXT_ADDR); 

LCROOT_PTR =load('EE2121_test_data\word_calc\LCROOT_PTR.mat'); 

lcroot = int32(LCROOT_PTR.data); 

DICT = load('EE2121_test_data\DICT.mat'); 

dict = DICT.dict; 

 

 

 

 

 

 

A.3 – acoustic_modeler_comp_senones.m 

 

function [senones] = 

acoutic_modeler_comp_senones(features,means,variances,constant,mix_wt,LUT,cstates) 

 

f = 1/log(1.0003);                    %% constant for senone calculation  

mark = 1:8:length(mix_wt);%%pointer to first component of each senone 

feat_mat = repmat(features,length(means(:,1)),1);%%replicate input feature stream to allow for 

vector ops 

partial_calc = ((feat_mat-means).^2).*variances;%%calculate all gaussian probabilities 
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component_calc = mix_wt+f.*(constant-sum(partial_calc,2));%% weight all scores and convert 

to the logs3 domain 

senone_calc=component_calc(mark)';%%place first component of each senone into senone 

evaluation matrix 

temp = reshape(component_calc,8,1935);%%reshape component score matrix for senone scoring 

for d=2:8 

    senone_calc = logs3_add_look_up_float(senone_calc(1,:),temp(d,:),LUT);%%log add 2nd 

through 8th components for final senone score 

end 

best = max(senone_calc);%%find best senone for normalization factor 

sen = senone_calc-best; 

for a=1:length(cstates(:,1))%%calulate the scores for all composite senones 

    tmp=find(cstates(a,:)~=0); 

    comp_sen(a)=max(sen(cstates(a,tmp))); 

end 

 

senones=int32([sen comp_sen]); 

     

 

 

 

A.4 – logs3_add_look_up_float.m 

 

function [result] = logs3_add(val1,val2,LUT) 

 

% This function is designed to replicate Sphinx's logs3_add() function 

% implemented in the logs3.c file. 

%%shortened implementation of Kshitij Guptas fn_logs2_add 

c0=val1 > val2; 

c1=~c0; 

d0=val1-val2;   r0=val1; 
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d1=val2-val1;   r1=val2; 

d0=c0.*d0;      r0=c0.*r0; 

d1=c1.*d1;      r1=c1.*r1; 

d=d0+d1;        r=r0+r1; 

d = int32(d);  

d = d+1;    

greater = d > 30001; 

d(greater)= 30001; 

result = r + LUT(d); 

 

 

A.5 – HMM_eval_no_comps.m 

 

function [valid, dead, exit, word_thresh, PH_PTR_RAM] = HMM_eval(PTR_RAM, senones, 

tmat, mdef, PAL, NEW_PAL,valid_offset,exit_offset) 

 

dead=[]; 

exit=[]; 

val_ID = [NEW_PAL; PAL]; 

 

     

%%%%%BEAMS HAVE BEEN CHANGED%%%%% 

hmm_beam = -307006;%%any score above this beam can be seen as a valid hmm score 

phone_beam = -230254;%%any score above this beam can be seen as a valid exit score  

hmm_beam = int32(hmm_beam+valid_offset);%%create valid beam 

phone_beam = int32(phone_beam+exit_offset);%%create exit beam 

tmat_pointer = mdef(PTR_RAM(val_ID,3)+1,2)*3;%%create a vector of starting points for each 

HMMs tmat 

tmat11 = int32(tmat(tmat_pointer+1,1));%%gather all necessary tmat values for each element of 

val_ID 

tmat12 = int32(tmat(tmat_pointer+1,2)); 
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tmat22 = int32(tmat(tmat_pointer+2,2)); 

tmat23 = int32(tmat(tmat_pointer+2,3)); 

tmat33 = int32(tmat(tmat_pointer+3,3)); 

tmat3e = int32(tmat(tmat_pointer+3,4)); 

senone1 = senones(mdef(PTR_RAM(val_ID,3),3)+1)';%%gather all necessary senone scores for 

each element of val_ID 

senone2 = senones(mdef(PTR_RAM(val_ID,3),4)+1)'; 

senone3 = senones(mdef(PTR_RAM(val_ID,3),5)+1)'; 

score0=max([PTR_RAM(val_ID,4) PTR_RAM(val_ID,5)+tmat11],[],2);%%evaluate 1st state of 

HMM & remember where best was 

score0 = score0+senone1; 

score1=max([PTR_RAM(val_ID,5)+tmat12 PTR_RAM(val_ID,6)+tmat22],[],2);%%evaluate 

2nd state of HMM 

score1 = score1+senone2; 

score2=max([PTR_RAM(val_ID,6)+tmat23 PTR_RAM(val_ID,7)+tmat33],[],2);%%evaluate 

3rd state of HMM 

score2=score2+senone3; 

scoreE=score2+tmat3e;%%calulate the exit prob for the HMM 

PTR_RAM(val_ID,4)=repmat(-939524096,length(val_ID),1);%%reset all active HMMs input 

scores to -INF 

PTR_RAM(val_ID,9) = max([score0 score1 score2],[],2);%%find best score for current HMM 

PTR_RAM(val_ID,5:8)= [score0 score1 score2 scoreE];%%update HMM values for current 

HMM  

[B_HMM,ID] = sort(PTR_RAM(val_ID,9),'descend');%%sort HMM scores for current frame   

dd = find(PTR_RAM(val_ID,9) < B_HMM(1)+hmm_beam);%%find HMMs below the valid 

beam 

dead=val_ID(dd); 

vd = find(PTR_RAM(val_ID,9) >= B_HMM(1)+hmm_beam);%%find HMMs above the valid 

beam 

valid=val_ID(vd); 

PTR_RAM(valid,1) = 1;%%make sure that all valid HMMs have their token active bit set 
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et = find(PTR_RAM(val_ID,8) >= B_HMM(1)+phone_beam);%%find HMMs above the exit 

beam 

exit=val_ID(et); 

word_ends = find(PTR_RAM(val_ID,2) == 1); 

word_thresh = max(PTR_RAM(val_ID(word_ends),8));%%find the word threshold value to 

pass to the word model 

PH_PTR_RAM = PTR_RAM; 

 

A.6 – word_model.m 

 

function [PTR_RAM, NEW_PAL, word_out, score]=word_model(PH_PTR_RAM, dead, exit, 

word_thresh, START_ADDR, NEXT_ADDR, LCROOT_PTR,word_offset) 

score=[]; 

NEW_PAL =[]; 

tmp_root = []; 

word_out = []; 

PH_PTR_RAM(dead,1) = 0;%%reset token active bit for all dead tokens 

PH_PTR_RAM(dead,4:9) = -939524096;%%reset the input, output, max, and state scores for all 

dead tokens 

if numel(exit)~=0%%check to make sure file exists (certain frames will not have any exiting 

phones so this loop is not necessary in those cases) 

    word_beam = int32((word_thresh - 153503)+ word_offset);%%create the word beam from the 

word threshold 

    WE = find(PH_PTR_RAM(exit,2) == 1);%%find all word ends in the valid exit tokens 

    NWE = find(PH_PTR_RAM(exit,2) == 0);%%find all non-word ends in the valid exit tokens 

    next_addr0 = START_ADDR(exit(NWE),1);%%create a next address pointer 

    count0 = START_ADDR(exit(NWE),2);%% create a count vector to indicate how many 

jumps are in a given link-list 

    tmp = find(PH_PTR_RAM(exit(WE),8) >= word_beam);%%find word end phones with 

scores above the threshold 

    tmp_root = PH_PTR_RAM(exit(WE(tmp)),11);%%find all LCROOT_PTR start addresses 
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    word_out = PH_PTR_RAM(exit(WE(tmp)),11)+1;%%apply offset to start addresses to obtain 

dict entry  

    score = PH_PTR_RAM(exit(WE(tmp)),9);%%find score for each valid word end token 

    WE1 = WE(tmp); 

    exits = [exit(NWE); exit(WE1)];%%create a shortened list of exit phones given that bad word 

ends have been removed 

    next_addr1 = START_ADDR(LCROOT_PTR(tmp_root,2),1);%%create a next address 

pointer for all entrances into new trees 

    count1 = START_ADDR(LCROOT_PTR(tmp_root,2),2);%%creat a count vector to indicate 

number of trees to enter 

    next_addr = [next_addr0; next_addr1]; 

    count = [count0; count1]; 

    for b=1:length(next_addr) 

        for c=1:count(b) 

            new_tkn = NEXT_ADDR(next_addr(b)+c-1); 

            if PH_PTR_RAM(new_tkn,4) < 

PH_PTR_RAM(exits(b),8)+PH_PTR_RAM(new_tkn,10)%%if out score of current node is 

better than in score of branch node  

                PH_PTR_RAM(new_tkn,4) = 

PH_PTR_RAM(exits(b),8)+PH_PTR_RAM(new_tkn,10);%%update branch node in score 

            end 

            if PH_PTR_RAM(new_tkn,1) == 0%%if token is not already active, activate it and put it 

in the NEW_PAL 

                PH_PTR_RAM(new_tkn,1) = 1; 

                NEW_PAL = [NEW_PAL new_tkn]; 

            end 

        end 

    end 

end 

PTR_RAM = PH_PTR_RAM; 
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APPENDIX B 
 
 
 
 

VHDL CODE 
 
B.1 – AM_calc.vhd 

 

-------------------------------------------------------------------------------- 

-- Company:   University of Pittsburgh 

-- Engineer:  Jeffrey W. Schuster 

-- 

-- Create Date:    11:22:02 11/01/05 

-- Design Name:     

-- Module Name:    AM_top - Behavioral 

-- Project Name:    

-- Target Device:   

-- Tool versions:   

-- Description: 

-- 

-- Dependencies: 

--  

-- Revision: 

-- Revision 0.01 - File Created 

-- Additional Comments: 

--  

-------------------------------------------------------------------------------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 
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---- Uncomment the following library declaration if instantiating 

---- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity AM_calc is 

    Port ( clk            : in std_logic; 

           ce             : in std_logic; 

           sclr           : in std_logic; 

           new_frame      : in std_logic; 

     feat_data      : in std_logic_vector(31 downto 0); 

     feat_addr      : out std_logic_vector(7 downto 0); 

           senone         : out std_logic_vector(31 downto 0); 

     senone_rdy     : out std_logic; 

     senone_wr_addr : out  std_logic_vector(12 downto 0); 

     senone_wr      : out std_logic; 

     max_done       : out std_logic; 

     normalize_done : out std_logic; 

           job_done       : out std_logic 

     ); 

end AM_calc; 

 

architecture Behavioral of AM_calc is 

 

component gaus_top is 

    Port (  

      input_stall_in  : in std_logic; 

      clk             : in std_logic; 

     ce              : in std_logic; 

     sclr            : in std_logic;            

        x               : in std_logic_vector(31 downto 0); 
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     x_valid         : in std_logic; 

           mw              : in std_logic_vector(31 downto 0); 

     mw_valid        : in std_logic; 

           vk              : in std_logic_vector(31 downto 0); 

     vk_valid        : in std_logic; 

     status          : in std_logic_vector(6 downto 0); 

     status_valid    : in std_logic;  

           new_frame       : in std_logic; 

--     senone_rd_addr  : in std_logic_vector(12 downto 0); 

--     senone_addr_rdy : in std_logic; 

--     senone_ram_sel  : in std_logic; 

     SENONE          : out std_logic_vector(31 downto 0); 

     SENONE_WR_ADDR  : out std_logic_vector(12 downto 0); 

     SENONE_WR       : out std_logic; 

     SENONE_ready    : out std_logic; 

           max_done        : out std_logic; 

     normalize_done  : out std_logic; 

     composite_done  : out std_logic; 

     input_stall     : out std_logic 

      

     ); 

end component; 

 

component MW_rom is 

 PORT( 

  clk      : in std_logic; 

  addr     : in std_logic_vector(7 downto 0); 

  dout     : out std_logic_vector(31 downto 0) 

  ); 

end component;     

 



 141

component VK_rom is 

 PORT( 

  clk      : in std_logic; 

  addr     : in std_logic_vector(7 downto 0); 

  dout     : out std_logic_vector(31 downto 0) 

  ); 

end component;  

 

--component X_rom is 

-- PORT( 

--  clk      : in std_logic; 

--  addr     : in std_logic_vector(7 downto 0); 

--  dout     : out std_logic_vector(31 downto 0) 

--  ); 

--end component;  

 

component status_rom is 

 PORT( 

  clk     : in std_logic; 

  addr    : in std_logic_vector(7 downto 0); 

  dout    : out std_logic_vector(6 downto 0) 

  ); 

end component; 

 

SIGNAL senone_rd_addr  : std_logic_vector(12 downto 0); 

SIGNAL senone_addr_rdy : std_logic; 

SIGNAL senone_ram_sel  : std_logic; 

SIGNAL MW_valid     : std_logic; 

SIGNAL VK_valid     : std_logic; 

SIGNAL X_valid      : std_logic; 

SIGNAL status_valid : std_logic; 
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SIGNAL MW_addr      : std_logic_vector(7 downto 0); 

SIGNAL VK_addr      : std_logic_vector(7 downto 0); 

SIGNAL X_addr       : std_logic_vector(7 downto 0); 

SIGNAL status_addr  : std_logic_vector(7 downto 0); 

SIGNAL mw           : std_logic_vector(31 downto 0); 

SIGNAL vk           : std_logic_vector(31 downto 0); 

SIGNAL x            : std_logic_vector(31 downto 0); 

SIGNAL status       : std_logic_vector(6 downto 0); 

SIGNAL done         : std_logic; 

SIGNAL input_stall  : std_logic; 

SIGNAL max_done_tmp : std_logic; 

SIGNAL norm_done    : std_logic; 

SIGNAL freeze       : std_logic; 

SIGNAL new_frame_p1 : std_logic; 

SIGNAL new_frame_p2 : std_logic; 

SIGNAL new_frame_p3 : std_logic; 

SIGNAL new_frame_p4 : std_logic; 

SIGNAL new_frame_p5 : std_logic; 

SIGNAL new_frame_p6 : std_logic; 

SIGNAL new_frame_p7 : std_logic; 

SIGNAL new_frame_p8 : std_logic; 

SIGNAL new_frame_p9 : std_logic; 

SIGNAL new_frame_p10 : std_logic; 

SIGNAL new_frame_p11 : std_logic; 

SIGNAL new_frame_p12 : std_logic; 

SIGNAL new_frame_p13 : std_logic; 

SIGNAL input_stall_internal : std_logic; 

 

begin 

senone_rd_addr<=(OTHERS=>'0'); 

senone_addr_rdy<='0'; 
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senone_ram_sel<='0'; 

--job_done<=done; 

--max_done<=max_done_tmp; 

 

process (clk, ce, new_frame, sclr, input_stall) 

begin 

 if(clk = '1' and clk'event)then 

  if(sclr = '1')then 

   MW_valid<='0'; 

   VK_valid<='0'; 

   X_valid<='0'; 

   status_valid<='0'; 

   MW_addr<=(OTHERS=>'0'); 

   VK_addr<=(OTHERS=>'0'); 

   X_addr<=(OTHERS=>'0'); 

   status_addr<=(OTHERS=>'0'); 

   max_done<='0'; 

   normalize_done<='0'; 

   job_done<='0'; 

   input_stall_internal<='0'; 

   new_frame_p1<='0'; 

   new_frame_p2<='0'; 

   new_frame_p3<='0'; 

   new_frame_p4<='0'; 

   new_frame_p5<='0'; 

   new_frame_p6<='0'; 

   new_frame_p7<='0'; 

   new_frame_p8<='0'; 

   new_frame_p9<='0'; 

   new_frame_p11<='0'; 

   new_frame_p11<='0'; 



 144

   new_frame_p12<='0'; 

   new_frame_p13<='0'; 

  elsif (ce = '1')then 

   x<=feat_data; 

   feat_addr<=X_addr; 

   new_frame_p1<=new_frame; 

   new_frame_p2<=new_frame_p1; 

   new_frame_p3<=new_frame_p2; 

   new_frame_p4<=new_frame_p3; 

   new_frame_p5<=new_frame_p4; 

   new_frame_p6<=new_frame_p5; 

   new_frame_p7<=new_frame_p6; 

   new_frame_p8<=new_frame_p7; 

   new_frame_p9<=new_frame_p8; 

   new_frame_p10<=new_frame_p9; 

   new_frame_p11<=new_frame_p10; 

   new_frame_p12<=new_frame_p11; 

   new_frame_p13<=new_frame_p12; 

   input_stall_internal<=input_stall OR new_frame_p13; 

   if(new_frame = '1')then 

    max_done<='0'; 

    normalize_done<='0'; 

    job_done<='0'; 

   end if; 

   if(max_done_tmp = '1')then 

    max_done<=max_done_tmp; 

   end if; 

   if(norm_done = '1')then 

    normalize_done<=norm_done; 

   end if; 

   if(done = '1')then 



 145

    job_done<=done; 

   end if; 

   if(max_done_tmp = '1')then 

    freeze<='1'; 

    MW_valid<='0'; 

    VK_valid<='0'; 

    X_valid<='0'; 

    status_valid<='0'; 

    MW_addr<=(OTHERS=>'0'); 

    VK_addr<=(OTHERS=>'0'); 

    X_addr<=(OTHERS=>'0'); 

    status_addr<=(OTHERS=>'0'); 

   elsif(new_frame = '1')then 

    freeze <= '0'; 

    MW_valid<=new_frame; 

    VK_valid<=new_frame; 

    X_valid<=new_frame; 

    status_valid<=new_frame; 

    MW_addr<="00000001"; 

    VK_addr<="00000001"; 

    X_addr<="00000001"; 

    status_addr<="00000001"; 

   elsif(freeze = '0')then 

    if(input_stall = '0')then 

     MW_addr<=MW_addr+1; 

     VK_addr<=VK_addr+1;       

     X_addr<=X_addr+1; 

     status_addr<=status_addr+1; 

     MW_valid<='1'; 

     VK_valid<='1'; 

     status_valid<='1'; 
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     X_valid<='1'; 

    else 

     MW_valid<='0'; 

     VK_valid<='0'; 

     status_valid<='0'; 

     X_valid<='0'; 

    end if; 

   else 

    MW_valid<='0'; 

    VK_valid<='0'; 

    X_valid<='0'; 

    status_valid<='0'; 

    MW_addr<=(OTHERS=>'0'); 

    VK_addr<=(OTHERS=>'0'); 

    X_addr<=(OTHERS=>'0'); 

      status_addr<=(OTHERS=>'0'); 

   end if; 

  else 

   MW_valid<='0'; 

   VK_valid<='0'; 

   X_valid<='0'; 

   status_valid<='0'; 

   MW_addr<=(OTHERS=>'0'); 

   VK_addr<=(OTHERS=>'0'); 

   X_addr<=(OTHERS=>'0'); 

     status_addr<=(OTHERS=>'0'); 

   max_done<='0'; 

   normalize_done<='0'; 

   job_done<='0'; 

  end if; 

 end if; 
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end process; 

     

     

gaus_calc : gaus_top 

 PORT MAP( 

    input_stall_in => input_stall_internal, 

    clk          => clk, 

    ce           => ce, 

      sclr         => sclr, 

    x            => x, 

      x_valid      => x_valid, 

            mw           =>mw, 

      mw_valid     =>mw_valid, 

            vk           =>vk, 

      vk_valid     =>vk_valid, 

      status       =>status, 

      status_valid =>status_valid,  

            new_frame    => new_frame, 

--      senone_rd_addr  =>senone_rd_addr, 

--      senone_addr_rdy =>senone_addr_rdy, 

--      senone_ram_sel  =>senone_ram_sel, 

      SENONE          =>senone, 

      SENONE_ready    =>senone_rdy, 

    senone_wr_addr  => senone_wr_addr, 

    senone_wr       =>senone_wr, 

            max_done        => max_done_tmp, 

      normalize_done  => norm_done, 

      composite_done  => done, 

    input_stall     => input_stall 

    ); 

MW_rom_test : MW_rom 
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 PORT MAP( 

    clk => clk, 

    addr => MW_addr, 

    dout => mw 

    ); 

VK_rom_test : VK_rom 

 PORT MAP( 

    clk => clk, 

    addr => VK_addr, 

    dout => vk 

    ); 

--X_rom_test : X_rom 

-- PORT MAP( 

--    clk => clk, 

--    addr => X_addr, 

--    dout => x 

--    ); 

status_rom_test : status_rom 

 PORT MAP( 

    clk => clk, 

    addr => status_addr, 

    dout => status 

    ); 

       

 

 

end Behavioral; 
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B.2 – gaus_core_top_v2.vhd 

 

-------------------------------------------------------------------------------- 

-- Company:  

-- Engineer: Jeffrey W. Schuster 

-- 

-- Create Date:    11:49:39 10/18/05 

-- Design Name:     

-- Module Name:    gaus_core_top - Behavioral 

-- Project Name:    

-- Target Device:   

-- Tool versions:   

-- Description: 

-- 

-- Dependencies: 

--  

-- Revision: 

-- Revision 0.01 - File Created 

-- Additional Comments: 

--  

-------------------------------------------------------------------------------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_SIGNED.ALL; 

 

---- Uncomment the following library declaration if instantiating 

---- any Xilinx primitives in this code. 
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--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity gaus_top is 

    Port (  

      input_stall_in  : in std_logic; 

      clk             : in std_logic; 

     ce              : in std_logic; 

     sclr            : in std_logic;            

        x               : in std_logic_vector(31 downto 0); 

     x_valid         : in std_logic; 

           mw              : in std_logic_vector(31 downto 0); 

     mw_valid        : in std_logic; 

           vk              : in std_logic_vector(31 downto 0); 

     vk_valid        : in std_logic; 

     status          : in std_logic_vector(6 downto 0); 

     status_valid    : in std_logic;  

           new_frame       : in std_logic; 

    -- senone_rd_addr  : in std_logic_vector(12 downto 0); 

     --senone_addr_rdy : in std_logic; 

     --senone_ram_sel  : in std_logic; 

     SENONE          : out std_logic_vector(31 downto 0); 

     SENONE_ready    : out std_logic; 

           SENONE_WR_ADDR  : out std_logic_vector(12 downto 0); 

     SENONE_WR       : out std_logic; 

     max_done        : out std_logic; 

     normalize_done  : out std_logic; 

     composite_done  : out std_logic; 

     input_stall     : out std_logic 

      

     ); 
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end gaus_top; 

 

architecture Behavioral of gaus_top is 

 

component gaus_top_control_logic 

  Port (  

      clk             : in std_logic; 

           sclr            : in std_logic; 

     new_frame       : in std_logic; 

     max_done        : in std_logic; 

     norm_done       : in std_logic; 

     input_stall_in  : in std_logic; 

--     input_stall_1   : in std_logic; 

--     input_stall_2   : in std_logic; 

           ---------ROM PINS-------------- 

     x               : in std_logic_vector(31 downto 0); 

     x_valid         : in std_logic; 

           mw              : in std_logic_vector(31 downto 0); 

     mw_valid        : in std_logic; 

     vk              : in std_logic_vector(31 downto 0); 

     vk_valid        : in std_logic; 

     status          : in std_logic_vector(6 downto 0); 

     status_valid    : in std_logic; 

     ------RAW SENONE RAM PINS------ 

     raw_ram_data    : in std_logic_vector(31 downto 0); 

     raw_data_rdy    : in std_logic; 

           -----NORMAL SENONE RAM PINS---- 

     norm_ram_addr   : in std_logic_vector(12 downto 0);  

     norm_addr_rdy   : in std_logic;    

     norm_ram_data   : in std_logic_vector(31 downto 0); 

     norm_ram_wr     : in std_logic; 
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     norm_mux_sel    : in std_logic; 

     ---COMPOSITE SENONE RAM PINS--- 

     comp_ram_addr   : in std_logic_vector(12 downto 0); 

     comp_addr_rdy   : in std_logic; 

     comp_ram_data   : in std_logic_vector(31 downto 0); 

     comp_ram_wr     : in std_logic;      

     comp_mux_sel    : in std_logic; 

     --------RAM READ PINS---------- 

--     senone_rd_addr  : in std_logic_vector(12 downto 0); 

--     senone_addr_rdy : in std_logic; 

--     senone_ram_sel  : in std_logic; 

     ----------OUTPUT PINS---------- 

     x_out           : out std_logic_vector(31 downto 0); 

     mw_out          : out std_logic_vector(31 downto 0); 

     vk_out          : out std_logic_vector(31 downto 0); 

     first_dist_calc : out std_logic; 

     mid_dist_calc   : out std_logic; 

     last_dist_calc  : out std_logic; 

     valid_dist_calc : out std_logic; 

     first_comp_calc : out std_logic; 

     mid_comp_calc   : out std_logic; 

     last_comp_calc  : out std_logic; 

     valid_comp_calc : out std_logic; 

     last_sen        : out std_logic; 

     ram_data_rdy    : out std_logic; 

     ram_addr      : out std_logic_vector(12 downto 0); 

     ram_data_in     : out std_logic_vector(31 downto 0); 

     ram_wr          : out std_logic 

     ); 

end component; 
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component gaus_core_pipe 

 port( 

    clk        : IN std_logic; 

    ce         : IN std_logic; 

    sclr       : IN std_logic; 

    X          : IN std_logic_vector( 31 downto 0); 

    MW         : IN std_logic_vector(31 downto 0); 

    VK         : IN std_logic_vector(31 downto 0); 

    new_frame  : IN std_logic; 

    first_calc : IN std_logic; 

    mid_calc   : IN std_logic; 

    last_calc  : IN std_logic; 

    valid_calc : IN std_logic; 

    COMP_SCORE : OUT std_logic_vector(31 downto 0); 

    COMP_RDY   : OUT std_logic; 

    input_stall: OUT std_logic 

--    input_stall_1: out std_logic; 

--    input_stall_2: out std_logic 

    ); 

end component; 

 

component log_add_calc  

    Port (  

      clk        : IN std_logic; 

           ce         : IN std_logic; 

           sclr       : IN std_logic; 

     first_comp : IN std_logic; 

     mid_comp  : IN std_logic; 

     last_comp  : IN std_logic; 

     valid_calc : IN std_logic; 
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           COMP_IN    : IN std_logic_vector(31 downto 0); 

           COMP_RDY   : IN std_logic; 

           SEN_OUT    : OUT std_logic_vector(31 downto 0); 

           SEN_RDY    : OUT std_logic 

     ); 

end component; 

 

component find_max 

 PORT( 

   clk            : IN std_logic; 

   ce             : IN std_logic; 

   sclr           : IN std_logic; 

   new_frame      : IN std_logic; 

   last_senone    : IN std_logic; 

   senone_in      : IN std_logic_vector(31 downto 0); 

   new_senone     : IN std_logic; 

   senone_out     : OUT std_logic_vector(31 downto 0); 

   senone_rdy     : OUT std_logic; 

   best_score     : OUT std_logic_vector(31 downto 0); 

   max_done       : OUT std_logic 

   ); 

end component; 

 

component raw_senone_ram 

 PORT( 

   clk     : IN std_logic; 

   we      : IN std_logic; 

   din     : IN std_logic_vector(31 downto 0); 

   addr    : IN std_logic_vector(12 downto 0); 

   dout    : OUT std_logic_vector(31 downto 0) 

   ); 
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end component; 

 

component normalizer 

 PORT (  

    clk             : in std_logic; 

         ce              : in std_logic; 

         sclr            : in std_logic; 

         start_normalize : in std_logic; 

   last_raw_senone : in std_logic; 

   raw_senone      : in std_logic_vector(31 downto 0); 

   raw_sen_rdy     : in std_logic; 

    best_score      : in std_logic_vector(31 downto 0); 

         address         : out std_logic_vector(12 downto 0); 

   address_rdy     : out std_logic; 

         norm_senone     : out std_logic_vector(31 downto 0); 

         senone_rdy      : out std_logic; 

   normalize_done  : out std_logic; 

   ram_addr_sel    : out std_logic; 

   sen_cnt         : out std_logic_vector(12 downto 0) 

   ); 

end component; 

 

component composite_senone_calc 

 Port (  

   clk                : in std_logic; 

         sclr               : in std_logic; 

         ce                 : in std_logic; 

         calc_go            : in std_logic; 

         ram_data_in        : in std_logic_vector(31 downto 0); 

         ram_data_rdy       : in std_logic; 

   senone_addr_offset : in std_logic_vector (12 downto 0); 
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         ram_addr           : out std_logic_vector(12 downto 0); 

         addr_rdy           : out std_logic; 

         ram_wr_en          : out std_logic; 

         comp_sen_out       : out std_logic_vector(31 downto 0); 

         comp_calc_done     : out std_logic; 

   comp_mux_sel       : out std_logic 

   ); 

end component; 

 

SIGNAL COMP_OUT       : std_logic_vector(31 downto 0); 

SIGNAL COMP_RDY       : std_logic; 

SIGNAL SEN_OUT        : std_logic_vector(31 downto 0); 

SIGNAL SEN_RDY        : std_logic; 

SIGNAL COMP_OUT_REG   : std_logic_vector(31 downto 0); 

SIGNAL COMP_RDY_REG   : std_logic; 

SIGNAL SEN_OUT_REG    : std_logic_vector(31 downto 0); 

SIGNAL SEN_RDY_REG    : std_logic; 

SIGNAL SENONE_OUT     : std_logic_vector(31 downto 0); 

SIGNAL SENONE_RDY     : std_logic; 

SIGNAL BEST_SEN       : std_logic_vector(31 downto 0); 

SIGNAL BEST_SEN_REG   : std_logic_vector(31 downto 0); 

SIGNAL X_out          : std_logic_vector(31 downto 0); 

SIGNAL MW_out         : std_logic_vector(31 downto 0); 

SIGNAL VK_out         : std_logic_vector(31 downto 0); 

SIGNAL first_dist_calc: std_logic; 

SIGNAL mid_dist_calc  : std_logic; 

SIGNAL last_dist_calc : std_logic; 

SIGNAL valid_dist_calc: std_logic; 

SIGNAL first_comp_calc: std_logic; 

SIGNAL mid_comp_calc  : std_logic; 

SIGNAL last_comp_calc : std_logic; 
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SIGNAL valid_comp_calc: std_logic; 

SIGNAL max_done_tmp   : std_logic; 

SIGNAL last_senone    : std_logic; 

SIGNAL ram_addr       : std_logic_vector(12 downto 0); 

SIGNAL ram_wr         : std_logic; 

SIGNAL ram_data_in    : std_logic_vector(31 downto 0); 

SIGNAL sen_ram_data   : std_logic_vector(31 downto 0); 

SIGNAL sen_data_out   : std_logic_vector(31 downto 0); 

SIGNAL ram_data_rdy   : std_logic; 

SIGNAL start_normalize: std_logic; 

SIGNAL norm_ram_addr  : std_logic_vector(12 downto 0); 

SIGNAL norm_addr_rdy  : std_logic; 

SIGNAL norm_ram_data  : std_logic_vector(31 downto 0); 

SIGNAL norm_ram_wr    : std_logic; 

SIGNAL norm_done      : std_logic; 

SIGNAL norm_mux_sel   : std_logic; 

SIGNAL norm_sen_cnt   : std_logic_vector(12 downto 0); 

SIGNAL start_composite: std_logic; 

SIGNAL comp_ram_addr  : std_logic_vector(12 downto 0); 

SIGNAL comp_addr_rdy  : std_logic; 

SIGNAL comp_ram_data  : std_logic_vector(31 downto 0); 

SIGNAL comp_ram_wr    : std_logic; 

SIGNAL comp_calc_done : std_logic; 

SIGNAL comp_mux_sel   : std_logic; 

SIGNAL max_done_tmp1  : std_logic; 

SIGNAL input_stall_out : std_logic; 

SIGNAL input_stall_sig : std_logic; 

--SIGNAL input_stall_tmp_1: std_logic; 

--SIGNAL input_stall_tmp_2: std_logic; 

begin 
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process (clk, input_stall_in) 

begin 

 if(clk = '1' and clk'event)then 

  input_stall_sig<=input_stall_in; 

  max_done<=max_done_tmp; 

  normalize_done<=norm_done; 

  composite_done<=comp_calc_done; 

  max_done_tmp1<=max_done_tmp; 

  start_normalize<=max_done_tmp1; 

  start_composite<=norm_done; 

  input_stall<=input_stall_out; 

  sen_data_out<=ram_data_in; 

  senone<=sen_data_out; 

  senone_ready<=ram_data_rdy; 

  COMP_OUT_REG<=COMP_OUT; 

  COMP_RDY_REG<=COMP_RDY; 

  SEN_OUT_REG<=SEN_OUT; 

  SEN_RDY_REG<=SEN_RDY; 

  BEST_SEN_REG<=BEST_SEN; 

  SENONE_WR_ADDR<=ram_addr; 

  SENONE_WR<=ram_wr; 

 

 end if; 

end process; 

 

 

gaus_core: gaus_core_pipe 

 PORT MAP( 

    clk        => clk, 

    ce         => ce, 

    sclr       => sclr, 
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    new_frame  => new_frame, 

    first_calc => first_dist_calc, 

    mid_calc   => mid_dist_calc, 

    last_calc  => last_dist_calc, 

    valid_calc => valid_dist_calc, 

    X          => X_out, 

    MW         => MW_out, 

    VK         => VK_out, 

      COMP_SCORE => COMP_OUT, 

    COMP_RDY   => COMP_RDY, 

    input_stall=> input_stall_out 

--    input_stall_1=> input_stall_tmp_1, 

--    input_stall_2=> input_stall_tmp_2 

    ); 

logadd : log_add_calc 

 PORT MAP( 

    clk        => clk, 

    ce         => ce, 

    sclr       => sclr, 

    first_comp => first_comp_calc, 

    mid_comp   => mid_comp_calc, 

    last_comp  => last_comp_calc, 

    valid_calc => valid_comp_calc, 

    COMP_IN    => COMP_OUT_REG, 

    COMP_RDY   => COMP_RDY_REG, 

    SEN_OUT    => SEN_OUT, 

    SEN_RDY    => SEN_RDY 

    ); 

senone_max : find_max 

 PORT MAP( 

    clk            => clk, 



 160

    ce             => ce, 

    sclr           => sclr, 

    new_frame      => new_frame, 

    last_senone    => last_senone, 

    new_senone     => SEN_RDY_REG, 

    senone_in      => SEN_OUT_REG, 

    senone_out     => SENONE_OUT, 

    senone_rdy     => SENONE_RDY, 

    best_score     => BEST_SEN, 

    max_done       => max_done_tmp 

    ); 

--raw_sen_ram : raw_senone_ram 

-- PORT MAP( 

--    clk        => clk, 

--    we         => ram_wr, 

--    addr       => ram_addr, 

--    din        => ram_data_in, 

--    dout       => sen_ram_data 

--    ); 

normalize : normalizer 

 PORT MAP( 

    clk             => clk, 

    ce              => ce, 

    sclr            => sclr, 

    start_normalize => start_normalize, 

    last_raw_senone => last_senone, 

    raw_senone      => sen_ram_data, 

    raw_sen_rdy     => ram_data_rdy, 

    best_score     => BEST_SEN_REG, 

    address     => norm_ram_addr, 

    address_rdy     => norm_addr_rdy, 



 161

    norm_senone     => norm_ram_data, 

    senone_rdy     => norm_ram_wr, 

    normalize_done  => norm_done, 

    ram_addr_sel  => norm_mux_sel, 

    sen_cnt         => norm_sen_cnt 

    ); 

composite_calc : composite_senone_calc 

 PORT MAP( 

       clk                => clk, 

           sclr               => sclr, 

           ce                 => ce, 

           calc_go            => start_composite, 

           ram_data_in        => sen_ram_data,  

           ram_data_rdy       => ram_data_rdy, 

     senone_addr_offset => norm_sen_cnt, 

           ram_addr           => comp_ram_addr, 

           addr_rdy           => comp_addr_rdy, 

     ram_wr_en          => comp_ram_wr, 

     comp_sen_out       => comp_ram_data, 

           comp_calc_done     => comp_calc_done, 

     comp_mux_sel       => comp_mux_sel           

     ); 

control_logic : gaus_top_control_logic 

 PORT MAP( 

      clk             => clk, 

            sclr            => sclr, 

      new_frame       => new_frame, 

    max_done        => max_done_tmp, 

    norm_done       => norm_done, 

    input_stall_in  => input_stall_sig, 

--    input_stall_1     => input_stall_tmp_1, 
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--    input_stall_2   => input_stall_tmp_2, 

            x               => x, 

      x_valid         => x_valid, 

            mw              => mw, 

      mw_valid        => mw_valid, 

      vk              => vk, 

      vk_valid        => vk_valid, 

      status          => status, 

    status_valid    => status_valid, 

    raw_ram_data    => SENONE_OUT, 

      raw_data_rdy    => SENONE_RDY, 

--    senone_rd_addr  => senone_rd_addr, 

--    senone_addr_rdy => senone_addr_rdy, 

--    senone_ram_sel  => senone_ram_sel, 

            norm_ram_addr   => norm_ram_addr,  

      norm_addr_rdy   => norm_addr_rdy,    

      norm_ram_data   => norm_ram_data, 

      norm_ram_wr     => norm_ram_wr, 

      norm_mux_sel    => norm_mux_sel, 

      comp_ram_addr   => comp_ram_addr, 

      comp_addr_rdy   => comp_addr_rdy, 

      comp_ram_data   => comp_ram_data, 

      comp_ram_wr     => comp_ram_wr,      

      comp_mux_sel    => comp_mux_sel, 

    x_out           => X_out, 

    mw_out          => MW_out, 

    vk_out          => VK_out, 

      first_dist_calc => first_dist_calc, 

      mid_dist_calc   => mid_dist_calc, 

      last_dist_calc  => last_dist_calc, 

      valid_dist_calc => valid_dist_calc, 
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      first_comp_calc => first_comp_calc, 

      mid_comp_calc   => mid_comp_calc, 

      last_comp_calc  => last_comp_calc, 

      valid_comp_calc => valid_comp_calc, 

    last_sen        => last_senone,       

      ram_data_rdy    => ram_data_rdy, 

      ram_addr    => ram_addr, 

      ram_data_in     => ram_data_in, 

      ram_wr          => ram_wr 

      ); 

      

end Behavioral; 

 

B.3 – composite_senone_calc.vhd 

 

-------------------------------------------------------------------------------- 

-- Company:     

-- Engineer:   Jeffrey W. Schuster 

-- 

-- Create Date:    19:47:25 10/12/05 

-- Design Name:     

-- Module Name:    composite_senone_calc - Behavioral 

-- Project Name:    

-- Target Device:   

-- Tool versions:   

-- Description: 

-- 

-- Dependencies: 

--  

-- Revision: 

-- Revision 0.01 - File Created 
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-- Additional Comments: 

--  

-------------------------------------------------------------------------------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

---- Uncomment the following library declaration if instantiating 

---- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity composite_senone_calc is 

    Port ( clk : in std_logic; 

           sclr : in std_logic; 

           ce : in std_logic; 

           calc_go : in std_logic; 

           ram_data_in : in std_logic_vector(31 downto 0); 

           ram_data_rdy : in std_logic; 

     senone_addr_offset : in std_logic_vector (12 downto 0); 

           ram_addr : out std_logic_vector(12 downto 0); 

           addr_rdy : out std_logic; 

           ram_wr_en : out std_logic; 

           comp_sen_out : out std_logic_vector(31 downto 0); 

           comp_calc_done : out std_logic; 

     comp_mux_sel : out std_logic 

     ); 

end composite_senone_calc; 

 

architecture Behavioral of composite_senone_calc is 
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component count_rom 

 PORT( 

   clk : IN std_logic;  

   addr  : IN std_logic_vector(5 downto 0); 

   dout  : OUT std_logic_vector(4 downto 0) 

   ); 

end component; 

 

component state_rom 

 PORT( 

   clk : IN std_logic; 

   addr  : IN std_logic_vector(8 downto 0); 

   dout  : OUT std_logic_vector(11 downto 0) 

   ); 

end component; 

 

SIGNAL count_addr     : std_logic_vector(5 downto 0); 

SIGNAL state_addr     : std_logic_vector(8 downto 0); 

SIGNAL state_count    : std_logic_vector(4 downto 0); 

SIGNAL senone_addr    : std_logic_vector(11 downto 0); 

 

SIGNAL calc_done_p1     : std_logic; 

SIGNAL calc_done_p2     : std_logic; 

SIGNAL calc_done_p3     : std_logic; 

SIGNAL calc_done_p4     : std_logic; 

SIGNAL calc_done_p5     : std_logic; 

SIGNAL calc_done_p6     : std_logic; 

SIGNAL calc_done_p7     : std_logic; 

SIGNAL calc_done_p8     : std_logic; 

SIGNAL calc_done_p9     : std_logic; 
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SIGNAL count          : std_logic_vector(5 downto 0); 

SIGNAL new_offset     : std_logic; 

SIGNAL new_offset_reg : std_logic; 

SIGNAL composite_done : std_logic; 

SIGNAL new_offset_rdy : std_logic; 

SIGNAL offset         : std_logic_vector(4 downto 0); 

SIGNAL state_id_tmp   : std_logic_vector(8 downto 0); 

SIGNAL list_done      : std_logic; 

SIGNAL new_id         : std_logic; 

SIGNAL fetch_done     : std_logic; 

SIGNAL fetch_done_reg : std_logic; 

SIGNAL ram_addr_tmp   : std_logic_vector(12 downto 0); 

SIGNAL comp_done_reg  : std_logic; 

SIGNAL comp_scr_reg   : std_logic_vector(31 downto 0); 

SIGNAL new_senone     : std_logic_vector(31 downto 0); 

SIGNAL last_comp      : std_logic; 

SIGNAL last_comp_reg  : std_logic; 

SIGNAL write_addr     : std_logic_vector(12 downto 0); 

SIGNAL write_addr_tmp : std_logic_vector(12 downto 0); 

SIGNAL freeze         : std_logic; 

SIGNAL comp_mux       : std_logic; 

signal pipe_freeze    : std_logic; 

signal calc_go_reg    : std_logic; 

signal ram_data_rdy_reg : std_logic; 

signal ram_data_rdy_reg1 : std_logic; 

signal first_addr_rdy : std_logic; 

signal new_senone_reg : std_logic_vector(31 downto 0); 

signal fetch_done_reg1 : std_logic; 

signal fetch_done_reg2 : std_logic; 

signal new_offset_rdy_reg : std_logic;  
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attribute syn_ramstyle : string; 

attribute syn_ramstyle of senone_addr : signal is "block_ram"; 

attribute syn_ramstyle of state_count : signal is "block_ram"; 

 

begin 

 

 

 

process(clk,sclr,ce,calc_go) 

begin 

if(clk = '1' and clk'event)then 

 if(sclr = '1')then 

  count<=(OTHERS=>'0'); 

  new_offset<='0'; 

  new_offset_reg<='0'; 

  new_offset_rdy<='0'; 

  list_done<='0'; 

  new_id<='0'; 

  state_id_tmp<=(OTHERS=>'0'); 

  comp_scr_reg<=(OTHERS=>'0'); 

  offset<=(OTHERS=>'0'); 

  composite_done<='0'; 

  comp_done_reg<='0'; 

  fetch_done_reg<='0'; 

  fetch_done<='0'; 

  state_addr<=(OTHERS=>'0'); 

  count_addr<=(OTHERS=>'0'); 

  new_senone<=(OTHERS=>'0'); 

  ram_addr_tmp<=(OTHERS=>'0'); 

  ram_addr<=(OTHERS=>'0'); 

  ram_wr_en<='0'; 
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  addr_rdy<='0'; 

  write_addr<=(OTHERS=>'0'); 

  write_addr_tmp<=(OTHERS=>'0'); 

  last_comp<='0'; 

  last_comp_reg<='0'; 

  calc_done_p1<='0'; 

  calc_done_p2<='0'; 

  calc_done_p3<='0'; 

  calc_done_p4<='0'; 

  calc_done_p5<='0'; 

  calc_done_p6<='0'; 

  calc_done_p7<='0'; 

  calc_done_p8<='0'; 

  calc_done_p9<='0'; 

  freeze<='0'; 

  comp_mux<='0'; 

  pipe_freeze<='1'; 

  calc_go_reg<='0'; 

  ram_data_rdy_reg<='0'; 

  ram_data_rdy_reg1<='0'; 

  first_addr_rdy<='0'; 

  new_senone_reg<=(OTHERS=>'0'); 

    fetch_done_reg1<='0'; 

  fetch_done_reg2<='0'; 

  new_offset_rdy_reg<='0'; 

 elsif(ce = '1')then 

  if(calc_go = '1')then 

   pipe_freeze<='0'; 

  elsif(calc_done_p9 = '1')then 

   pipe_freeze<='1'; 

  end if; 
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  calc_go_reg<=calc_go; 

  if(pipe_freeze = '0')then 

   if(calc_go_reg = '1')then 

    count<="000000"; 

    new_offset_rdy<='1'; 

    new_offset<='0'; 

    new_offset_reg<='0'; 

    write_addr_tmp<=senone_addr_offset; 

    comp_mux<='1'; 

    first_addr_rdy<='1'; 

   elsif(composite_done = '1')then 

    count<=count+1; 

    new_offset<='1'; 

    new_offset_rdy<='0'; 

    new_offset_reg<='0'; 

    write_addr_tmp<=write_addr_tmp+1; 

    first_addr_rdy<='0'; 

   elsif(calc_done_p9 = '1')then 

    count<=(OTHERS=>'0'); 

    new_offset_rdy<='0'; 

    new_offset<='0'; 

    new_offset_reg<='0'; 

    comp_mux<='0'; 

    first_addr_rdy<='0'; 

   else 

    new_offset_reg<=new_offset; 

    new_offset_rdy<=new_offset_reg; 

    new_offset<='0'; 

    first_addr_rdy<='0'; 

   end if; 

   write_addr<=write_addr_tmp; 
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   count_addr<=count; 

   if (new_offset_rdy = '1')then 

    offset<=state_count;---1; CHANGED : JWS : 11-03-05 

   end if; 

   if(calc_done_p9 = '1')then 

    state_id_tmp<=(OTHERS=>'0'); 

   elsif(fetch_done = '1')then 

    if(freeze = '0')then 

     offset<=offset-1; 

     if(offset > "00001")then 

      state_id_tmp<=state_id_tmp+1; 

      list_done<='0'; 

      new_id<='1'; 

     elsif(offset = "00001")then 

      state_id_tmp<=state_id_tmp+1; 

      list_done<='1'; 

      new_id<='1'; 

     else 

      list_done<='0'; 

      new_id<='0'; 

     end if; 

    else 

     list_done<='0'; 

     new_id<='0'; 

    end if; 

   else 

    list_done<='0'; 

    new_id<='0'; 

   end if; 

   if(list_done = '1')then 

    freeze<='1'; 
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   elsif(new_offset_rdy = '1')then 

    freeze<='0'; 

   end if; 

   composite_done<=list_done; 

   last_comp<=list_done; 

   last_comp_reg<=last_comp; 

   ram_data_rdy_reg<=ram_data_rdy; 

   ram_data_rdy_reg1<=ram_data_rdy_reg; 

   fetch_done<=ram_data_rdy_reg1; 

   new_senone<=ram_data_in; 

 

   --new_senone_reg<=new_senone; 

   fetch_done_reg1<=fetch_done; 

   fetch_done_reg2<=fetch_done_reg1; 

   new_offset_rdy_reg<=new_offset_rdy; 

 

   state_addr<=state_id_tmp; 

   ram_addr_tmp<="00" & senone_addr(10 downto 0); 

   addr_rdy<=new_id ;--or first_addr_rdy; CHANGED : JWS : 11-03-05 

   if(new_offset_rdy_reg = '1')then 

    comp_scr_reg<=(OTHERS=>'0'); 

   elsif(fetch_done_reg2= '1')then 

    if(new_senone > comp_scr_reg)then 

     comp_scr_reg<=new_senone; 

    end if; 

   end if; 

   if(last_comp_reg = '1')then 

    ram_wr_en<='1'; 

    comp_sen_out<=comp_scr_reg; 

    ram_addr<=write_addr; 

   else 
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    ram_addr<=ram_addr_tmp; 

    ram_wr_en<='0'; 

    comp_sen_out<=(OTHERS=>'0'); 

   end if; 

   calc_done_p1<=senone_addr(11); 

   calc_done_p2<=calc_done_p1; 

   calc_done_p3<=calc_done_p2; 

   calc_done_p4<=calc_done_p3; 

   calc_done_p5<=calc_done_p4; 

   calc_done_p6<=calc_done_p5; 

   calc_done_p7<=calc_done_p6; 

   calc_done_p8<=calc_done_p7; 

   calc_done_p9<=calc_done_p8; 

   comp_calc_done<=calc_done_p9; 

 

   comp_mux_sel<=comp_mux; 

  else 

   ram_wr_en<='0'; 

   comp_calc_done<='0'; 

   comp_mux_sel<='0'; 

   composite_done<='0'; 

   freeze<='0'; 

   fetch_done<='0'; 

   first_addr_rdy<='0'; 

   comp_sen_out<=(OTHERS=>'0'); 

  end if; 

 end if; 

end if; 

end process; 
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composite_count_rom : count_rom 

 PORT MAP( 

    clk => clk, 

    addr  => count_addr, 

    dout => state_count 

    ); 

composite_state_rom : state_rom 

 PORT MAP( 

    clk => clk, 

    addr => state_addr, 

    dout  => senone_addr 

    ); 

 

 

 

end Behavioral; 

 

B.4 – find_max.vhd 

 

-------------------------------------------------------------------------------- 

-- Company:  

-- Engineer:   Jeffrey W. Schuster 

-- 

-- Create Date:    14:51:30 10/09/05 

-- Design Name:     

-- Module Name:    find_max - Behavioral 

-- Project Name:    

-- Target Device:   

-- Tool versions:   
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-- Description: 

-- 

-- Dependencies: 

--  

-- Revision: 

-- Revision 0.01 - File Created 

-- Additional Comments: 

--  

-------------------------------------------------------------------------------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_SIGNED.ALL; 

 

---- Uncomment the following library declaration if instantiating 

---- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity find_max is 

    Port (  

      senone_in : in std_logic_vector(31 downto 0); 

           new_senone : in std_logic; 

     last_senone : in std_logic; 

           clk : in std_logic; 

           ce : in std_logic; 

           sclr : in std_logic; 

     new_frame : in std_logic; 

           senone_out : out std_logic_vector(31 downto 0); 

           senone_rdy : out std_logic; 

           best_score : out std_logic_vector(31 downto 0); 
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     max_done   : out std_logic 

     ); 

 

end find_max; 

 

architecture Behavioral of find_max is 

 

SIGNAL senone_tmp   : std_logic_vector(31 downto 0); 

SIGNAL sen_rdy_tmp  : std_logic; 

SIGNAL current_best : std_logic_vector(31 downto 0); 

SIGNAL tmp_rdy      : std_logic; 

SIGNAL last_sen_tmp : std_logic; 

SIGNAL last_sen_tmp1: std_logic; 

 

 

begin 

 

 

 

process(clk) 

begin 

if(clk = '1' and clk'event)then 

 if(sclr = '1')then 

  senone_tmp<=(OTHERS=>'0'); 

  sen_rdy_tmp<='0'; 

  current_best<=(OTHERS=>'0'); 

  best_score<=(OTHERS=>'0'); 

  senone_out<=(OTHERS=>'0'); 

  senone_rdy<='0'; 

  tmp_rdy<='0'; 

  last_sen_tmp<='0'; 
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 elsif(ce = '1')then 

  last_sen_tmp<=last_senone; 

  if(new_frame = '1')then 

    current_best<=(OTHERS=>'0');--this will need changed to -INF 

for signed numbers 

  end if; 

  if (new_senone = '1')then 

   senone_tmp<=senone_in; 

   tmp_rdy<='1'; 

  else 

   tmp_rdy<='0'; 

  end if; 

  if(tmp_rdy = '1')then 

   if(senone_tmp > current_best)then 

    current_best<=senone_tmp; 

   end if; 

  end if; 

  sen_rdy_tmp<=tmp_rdy; 

 else 

  current_best<=(OTHERS=>'0'); 

  sen_rdy_tmp<='0'; 

  last_sen_tmp<='0'; 

 end if; 

 last_sen_tmp1<=last_sen_tmp; 

 max_done<=last_sen_tmp1 AND sen_rdy_tmp; 

 best_score<=current_best; 

 senone_out<=senone_tmp; 

 senone_rdy<=sen_rdy_tmp; 

end if; 

end process; 
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end Behavioral; 

 

 

B.5 – gaus_dist_full_pipe_V2_FINAL.vhd 

 

-- 10-05-05 -- JWS : Created pipe-line to perform gaussian probability evaluation and senone 

calculation 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_arith.all; 

USE ieee.std_logic_signed.all; 

 

 

entity gaus_core_pipe is 

 port( 

    clk        : IN  std_logic; 

  ce         : IN  std_logic; 

  sclr       : IN  std_logic; 

  new_frame  : IN  std_logic; 

  first_calc : IN  std_logic; 

  last_calc  : IN  std_logic; 

  mid_calc   : IN  std_logic; 

  valid_calc : IN  std_logic; 

    X          : IN  std_logic_vector(31 downto 0); 

  MW         : IN  std_logic_vector(31 downto 0); 

  VK         : IN  std_logic_vector(31 downto 0); 

  COMP_SCORE : OUT std_logic_vector(31 downto 0); 

  COMP_RDY   : OUT std_logic; 

  input_stall: OUT std_logic 

--  input_stall_2: OUT std_logic 
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  ); 

end gaus_core_pipe; 

 

architecture struct of gaus_core_pipe is 

 

SIGNAL DIFF            : std_logic_vector(31 downto 0); 

SIGNAL DIFF_reg        : std_logic_vector(31 downto 0); 

SIGNAL DIFF_valid      : std_logic; 

SIGNAL DIFF_valid_reg  : std_logic; 

SIGNAL DIFF_valid_reg1 : std_logic; 

SIGNAL SQUARE          : std_logic_vector(63 downto 0); 

SIGNAL SQUARE_valid    : std_logic; 

SIGNAL SQUARE_valid_reg: std_logic; 

SIGNAL SCALE       : std_logic_vector(63 downto 0); 

SIGNAL SCALE_valid     : std_logic; 

SIGNAL SCALE_valid_reg : std_logic; 

SIGNAL SUM_OUT         : std_logic_vector(31 downto 0); 

SIGNAL COMP_OUT        : std_logic_vector(31 downto 0);  

SIGNAL COMP_valid      : std_logic; 

SIGNAL sub_in1         : std_logic_vector(31 downto 0); 

SIGNAL sub_in2         : std_logic_vector(31 downto 0); 

SIGNAL scal_in1        : std_logic_vector(31 downto 0); 

SIGNAL scal_in2        : std_logic_vector(31 downto 0); 

SIGNAL mul_in1         : std_logic_vector(31 downto 0); 

SIGNAL mul_in2         : std_logic_vector(31 downto 0); 

SIGNAL mul_in1_reg     : std_logic_vector(31 downto 0); 

SIGNAL add_in1         : std_logic_vector(31 downto 0); 

SIGNAL add_in2         : std_logic_vector(31 downto 0); 

SIGNAL sum_in1         : std_logic_vector(31 downto 0); 

SIGNAL sum_in2         : std_logic_vector(31 downto 0); 

SIGNAL REG_S1          : std_logic_vector(31 downto 0); 
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SIGNAL REG_S2          : std_logic_vector(31 downto 0); 

SIGNAL REG_S3          : std_logic_vector(31 downto 0); 

SIGNAL REG_S4          : std_logic_vector(31 downto 0); 

SIGNAL REG_S5          : std_logic_vector(31 downto 0); 

SIGNAL MW_p1           : std_logic_vector(31 downto 0); 

SIGNAL MW_p2           : std_logic_vector(31 downto 0); 

SIGNAL MW_p3           : std_logic_vector(31 downto 0); 

SIGNAL MW_p4           : std_logic_vector(31 downto 0); 

SIGNAL MW_p5           : std_logic_vector(31 downto 0); 

SIGNAL MW_p6           : std_logic_vector(31 downto 0); 

SIGNAL MW_p7           : std_logic_vector(31 downto 0); 

SIGNAL MW_p8           : std_logic_vector(31 downto 0); 

SIGNAL VK_p1           : std_logic_vector(31 downto 0); 

SIGNAL VK_p2           : std_logic_vector(31 downto 0); 

SIGNAL VK_p3           : std_logic_vector(31 downto 0); 

SIGNAL VK_p4           : std_logic_vector(31 downto 0); 

SIGNAL VK_p5           : std_logic_vector(31 downto 0); 

SIGNAL VK_p6           : std_logic_vector(31 downto 0); 

SIGNAL VK_p7           : std_logic_vector(31 downto 0); 

SIGNAL VK_p8           : std_logic_vector(31 downto 0); 

SIGNAL first_calc_p1   : std_logic; 

SIGNAL last_calc_p1    : std_logic; 

SIGNAL first_calc_p2   : std_logic; 

SIGNAL last_calc_p2    : std_logic; 

SIGNAL first_calc_p3   : std_logic; 

SIGNAL last_calc_p3    : std_logic; 

SIGNAL first_calc_p4   : std_logic; 

SIGNAL last_calc_p4    : std_logic; 

SIGNAL first_calc_p5   : std_logic; 

SIGNAL last_calc_p5    : std_logic; 

SIGNAL first_calc_p6   : std_logic; 
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SIGNAL last_calc_p6    : std_logic; 

SIGNAL first_calc_p7   : std_logic; 

SIGNAL last_calc_p7    : std_logic; 

SIGNAL first_calc_p8   : std_logic; 

SIGNAL last_calc_p8    : std_logic; 

SIGNAL last_calc_p9    : std_logic; 

SIGNAL last_calc_p10   : std_logic; 

SIGNAL last_calc_p11   : std_logic; 

SIGNAL last_calc_p12   : std_logic; 

SIGNAL last_calc_p13   : std_logic; 

SIGNAL last_calc_p14   : std_logic; 

SIGNAL last_calc_p15   : std_logic; 

SIGNAL valid_calc_reg  : std_logic; 

SIGNAL out_data_reg1   : std_logic_vector(31 downto 0); 

SIGNAL out_rdy_reg1    : std_logic;   

SIGNAL out_data_reg2   : std_logic_vector(31 downto 0); 

SIGNAL out_rdy_reg2    : std_logic;  

SIGNAL out_data_reg3   : std_logic_vector(31 downto 0); 

SIGNAL out_rdy_reg3    : std_logic;   

SIGNAL new_frame_p1    : std_logic; 

SIGNAL new_frame_p2    : std_logic; 

SIGNAL new_frame_p3    : std_logic; 

SIGNAL new_frame_p4    : std_logic; 

SIGNAL new_frame_p5    : std_logic; 

SIGNAL new_frame_p6    : std_logic; 

SIGNAL new_frame_p7    : std_logic; 

SIGNAL new_frame_p8    : std_logic; 

SIGNAL new_frame_p9    : std_logic; 

SIGNAL new_frame_p10   : std_logic; 

SIGNAL new_frame_p11   : std_logic; 

SIGNAL new_frame_p12   : std_logic; 
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SIGNAL new_frame_p13   : std_logic; 

 

 

  

 

 

attribute syn_dspstyle : string; 

attribute syn_dspstyle of DIFF : signal is "dsp48"; 

attribute syn_dspstyle of SQUARE : signal is "dsp48"; 

attribute syn_dspstyle of SCALE : signal is "dsp48"; 

attribute syn_dspstyle of COMP_OUT : signal is "dsp48"; 

attribute syn_dspstyle of SUM_OUT : signal is "dsp48"; 

--constant F : std_logic_vector(31 downto 0) := "00000000000011010000010111010101"; 

  constant F : std_logic_vector(31 downto 0) := "00000000000000000000000000001000"; 

 

begin  

process (clk,last_calc_p7,new_frame_p13) 

begin 

 if (clk'event and clk = '1') then 

  if (sclr = '1') then 

   sub_in1<=(OTHERS=>'0'); 

   sub_in2<=(OTHERS=>'0'); 

   scal_in1<=(OTHERS=>'0'); 

   scal_in2<=(OTHERS=>'0'); 

   add_in1<=(OTHERS=>'0'); 

   add_in2<=(OTHERS=>'0'); 

   sum_in1<=(OTHERS=>'0'); 

   sum_in2<=(OTHERS=>'0'); 

   mul_in1<=(OTHERS=>'0'); 

   mul_in2<=(OTHERS=>'0'); 

   mul_in1_reg<=(OTHERS=>'0'); 
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   REG_S1<=(OTHERS=>'0'); 

   REG_S2<=(OTHERS=>'0'); 

   REG_S3<=(OTHERS=>'0'); 

   REG_S4<=(OTHERS=>'0'); 

   REG_S5<=(OTHERS=>'0'); 

   DIFF<=(OTHERS=>'0'); 

   DIFF_reg<=(OTHERS=>'0'); 

   SQUARE<=(OTHERS=>'0'); 

   SCALE<=(OTHERS=>'0'); 

   SUM_OUT<=(OTHERS=>'0'); 

   COMP_OUT<=(OTHERS=>'0'); 

   MW_p1<=(OTHERS=>'0'); 

   MW_p2<=(OTHERS=>'0'); 

   MW_p3<=(OTHERS=>'0'); 

   MW_p4<=(OTHERS=>'0'); 

   MW_p5<=(OTHERS=>'0'); 

   MW_p6<=(OTHERS=>'0'); 

   MW_p7<=(OTHERS=>'0'); 

   MW_p8<=(OTHERS=>'0'); 

   VK_p1<=(OTHERS=>'0'); 

   VK_p2<=(OTHERS=>'0'); 

   VK_p3<=(OTHERS=>'0'); 

   VK_p4<=(OTHERS=>'0'); 

   VK_p5<=(OTHERS=>'0'); 

   VK_p6<=(OTHERS=>'0'); 

   VK_p7<=(OTHERS=>'0'); 

   VK_p8<=(OTHERS=>'0'); 

   DIFF_valid<='0'; 

   DIFF_valid_reg<='0'; 

   DIFF_valid_reg1<='0'; 

   SQUARE_valid<='0'; 
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   SQUARE_valid_reg<='0'; 

   SCALE_valid<='0'; 

   SCALE_valid_reg<='0'; 

   COMP_valid<='0'; 

   COMP_RDY<='0'; 

   first_calc_p1<='0'; 

   last_calc_p1<='0'; 

   first_calc_p2<='0'; 

   last_calc_p2<='0'; 

   first_calc_p3<='0'; 

   last_calc_p3<='0'; 

   first_calc_p4<='0'; 

   last_calc_p4<='0'; 

   first_calc_p5<='0'; 

   last_calc_p5<='0'; 

   first_calc_p6<='0'; 

   last_calc_p6<='0'; 

   first_calc_p7<='0'; 

   last_calc_p7<='0'; 

   first_calc_p8<='0'; 

   last_calc_p8<='0'; 

   last_calc_p9<='0'; 

   last_calc_p10<='0'; 

   last_calc_p11<='0'; 

   last_calc_p12<='0'; 

   last_calc_p13<='0'; 

   last_calc_p14<='0'; 

   last_calc_p15<='0'; 

   valid_calc_reg<='0'; 

   out_data_reg1<=(OTHERS=>'0'); 

   out_rdy_reg1<='0'; 
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   out_data_reg2<=(OTHERS=>'0'); 

   out_rdy_reg2<='0'; 

   out_data_reg3<=(OTHERS=>'0'); 

   out_rdy_reg3<='0'; 

   input_stall<='1'; 

--   input_stall_2<='1'; 

   new_frame_p1<='0'; 

   new_frame_p2<='0'; 

   new_frame_p3<='0'; 

   new_frame_p4<='0'; 

   new_frame_p5<='0'; 

   new_frame_p6<='0'; 

   new_frame_p7<='0'; 

   new_frame_p8<='0'; 

   new_frame_p9<='0'; 

   new_frame_p10<='0'; 

   new_frame_p11<='0'; 

   new_frame_p12<='0'; 

   new_frame_p13<='0'; 

  elsif (ce = '1') then 

   if (last_calc_p8 = '1')then 

    sub_in1<=VK_p8; 

    sub_in2<=SUM_OUT(31 downto 0); 

    REG_S1<=MW_p8; 

   else 

    sub_in1<=X; 

    sub_in2<=MW; 

    REG_S1<=VK; 

   end if; 

   input_stall<=last_calc_p6;--changed JWS 12-07-05 was _p6 

--   input_stall_2<=new_frame_p13; 
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   valid_calc_reg<=valid_calc; 

   --------STAGE 1---------- 

   DIFF_valid<=valid_calc_reg or last_calc_p9; 

   if (valid_calc_reg = '1' or last_calc_p9 = '1' )then 

    DIFF<=sub_in1-sub_in2; 

   end if; 

   --------STAGE 2---------- 

   DIFF_reg<=DIFF; 

   DIFF_valid_reg<=DIFF_valid; 

   if(last_calc_p10 = '1')then 

    mul_in1_reg<=F; 

   else 

    mul_in1_reg<=DIFF; 

   end if; 

   --------STAGE 3---------- 

   mul_in1<=mul_in1_reg; 

   mul_in2<=DIFF_reg; 

   DIFF_valid_reg1<=DIFF_valid_reg; 

   SQUARE_valid<=DIFF_valid_reg1; 

   if(DIFF_valid_reg1 = '1')then 

    SQUARE<=mul_in1*mul_in2; 

   end if; 

   --------STAGE 4---------- 

   SQUARE_valid_reg<=SQUARE_valid; 

   if(last_calc_p13 = '1')then 

    add_in1<=SQUARE(31 downto 0); 

    add_in2<=REG_S5; 

    scal_in1<=SQUARE(31 downto 0); 

    scal_in2<=REG_S5; 

   else 

    scal_in1<=SQUARE(31 downto 0); 
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    scal_in2<=REG_S5; 

   end if; 

   SCALE_valid<=SQUARE_valid ; 

   if(SQUARE_valid = '1')then 

    SCALE<=scal_in1*scal_in2; 

   end if; 

   --------STAGE 5---------- 

   COMP_valid<=SQUARE_valid_reg; 

   if(SQUARE_valid_reg = '1')then 

    COMP_OUT<=add_in1+add_in2; 

   end if; 

   if(last_calc_p15 = '1')then 

    sum_in1<=MW_p6; 

   else 

    sum_in1<=SCALE(31 downto 0); 

   end if; 

   -------STAGE 6---------- 

   scale_valid_reg<=scale_valid; 

   if (SCALE_valid_reg = '1')then 

    if (first_calc_p8 ='1')then 

     SUM_OUT<=sum_in1; 

    else 

     SUM_OUT<=sum_in1+SUM_OUT; 

    end if; 

   end if; 

   -------REGISTERS-------- 

   out_data_reg1<=COMP_OUT; 

   out_rdy_reg1<=COMP_valid AND last_calc_p15; 

   out_data_reg2<=out_data_reg1; 

   out_rdy_reg2<=out_rdy_reg1; 

   out_data_reg3<=out_data_reg2; 
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   out_rdy_reg3<=out_rdy_reg2; 

   COMP_SCORE<=out_data_reg3; 

   COMP_RDY<=out_rdy_reg3; 

   new_frame_p1<=new_frame; 

   new_frame_p2<=new_frame_p1; 

   new_frame_p3<=new_frame_p2; 

   new_frame_p4<=new_frame_p3; 

   new_frame_p5<=new_frame_p4; 

   new_frame_p6<=new_frame_p5; 

   new_frame_p7<=new_frame_p6; 

   new_frame_p8<=new_frame_p7; 

   new_frame_p9<=new_frame_p8; 

   new_frame_p10<=new_frame_p9; 

   new_frame_p11<=new_frame_p10; 

   new_frame_p12<=new_frame_p11; 

   new_frame_p13<=new_frame_p12; 

   REG_S2<=REG_S1; 

   REG_S3<=REG_S2; 

   REG_S4<=REG_S3; 

   REG_S5<=REG_S4; 

   last_calc_p1<=last_calc; 

   first_calc_p1<=first_calc; 

   last_calc_p2<=last_calc_p1; 

   first_calc_p2<=first_calc_p1; 

   last_calc_p3<=last_calc_p2; 

   first_calc_p3<=first_calc_p2; 

   last_calc_p4<=last_calc_p3; 

   first_calc_p4<=first_calc_p3; 

   last_calc_p5<=last_calc_p4; 

   first_calc_p5<=first_calc_p4; 

   first_calc_p6<=first_calc_p5; 
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   last_calc_p6<=last_calc_p5; 

   first_calc_p7<=first_calc_p6; 

   last_calc_p7<=last_calc_p6; 

   first_calc_p8<=first_calc_p7; 

   last_calc_p8<=last_calc_p7; 

   last_calc_p9<=last_calc_p8; 

   last_calc_p10<=last_calc_p9; 

   last_calc_p11<=last_calc_p10; 

   last_calc_p12<=last_calc_p11; 

   last_calc_p13<=last_calc_p12; 

   last_calc_p14<=last_calc_p13; 

   last_calc_p15<=last_calc_p14; 

   MW_p1<=MW; 

   MW_p2<=MW_p1; 

   MW_p3<=MW_p2; 

   MW_p4<=MW_p3; 

   MW_p5<=MW_p4; 

   MW_p6<=MW_p5; 

   MW_p7<=MW_p6; 

   MW_p8<=MW_p7; 

   VK_p1<=VK; 

   VK_p2<=VK_p1; 

   VK_p3<=VK_p2; 

   VK_p4<=VK_p3; 

   VK_p5<=VK_p4; 

   VK_p6<=VK_p5; 

   VK_p7<=VK_p6; 

   VK_p8<=VK_p7; 

         

  end if; 

 end if; 
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end process; 

 

end struct; 

B.6 – log_add_calc_V1_FINAL.vhd 

 

-------------------------------------------------------------------------------- 

-- Company:  

-- Engineer: Jeff Schuster 

-- 

-- Create Date:    13:31:07 10/06/05 

-- Design Name:     

-- Module Name:    log_add_calc - Behavioral 

-- Project Name:    

-- Target Device:   

-- Tool versions:   

-- Description: 

-- 

-- Dependencies: 

--  

-- Revision: 

-- Revision 0.01 - File Created 

-- Additional Comments: 

--  

-------------------------------------------------------------------------------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_SIGNED.ALL; 

 

---- Uncomment the following library declaration if instantiating 

---- any Xilinx primitives in this code. 
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--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity log_add_calc is 

    Port ( clk        : in std_logic; 

           ce         : in std_logic; 

           sclr       : in std_logic; 

     valid_calc : in std_logic; 

     first_comp : in std_logic; 

     mid_comp   : in std_logic; 

     last_comp  : in std_logic; 

           COMP_IN    : in std_logic_vector(31 downto 0); 

           COMP_RDY   : in std_logic; 

           SEN_OUT    : out std_logic_vector(31 downto 0); 

           SEN_RDY    : out std_logic); 

end log_add_calc; 

 

architecture Behavioral of log_add_calc is 

 

SIGNAL NEW_COMP       : std_logic_vector(31 downto 0); 

SIGNAL SEN_TMP        : std_logic_vector(31 downto 0); 

SIGNAL SEN_TMP1     : std_logic_vector(31 downto 0); 

SIGNAL SEN_TMP_REG    : std_logic_vector(31 downto 0); 

SIGNAL SEN_TMP1_REG   : std_logic_vector(31 downto 0); 

SIGNAL SEN_RDY_TMP    : std_logic; 

SIGNAL SEN_RDY_TMP1   : std_logic; 

SIGNAL SEN_RDY_TMP2   : std_logic; 

SIGNAL SEN_RDY_TMP3   : std_logic; 

SIGNAL SEN_RDY_TMP4   : std_logic; 

SIGNAL SEN_RDY_TMP5   : std_logic; 

SIGNAL SEN_RDY_TMP6   : std_logic; 
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SIGNAL SEN_RDY_TMP7   : std_logic; 

SIGNAL SEN_RDY_TMP8   : std_logic; 

SIGNAL SEN_RDY_TMP9   : std_logic; 

SIGNAL SEN_RDY_TMP10  : std_logic; 

SIGNAL SEN_RDY_TMP11  : std_logic; 

SIGNAL SEN_RDY_TMP12  : std_logic; 

SIGNAL first_comp_reg : std_logic; 

SIGNAL mid_comp_reg  : std_logic; 

SIGNAL last_comp_reg  : std_logic; 

SIGNAL first_comp_reg1: std_logic; 

SIGNAL mid_comp_reg1  : std_logic; 

SIGNAL last_comp_reg1 : std_logic; 

SIGNAL ADDR_SUB       : std_logic_vector(31 downto 0); 

SIGNAL ADDR_SUB_TMP   : std_logic_vector(31 downto 0); 

SIGNAL BIG            : std_logic_vector(31 downto 0); 

SIGNAL LUT_ADDR       : std_logic_vector(14 downto 0); 

SIGNAL LUT_DATA_REG   : std_logic_vector(11 downto 0); 

SIGNAL LUT_DATA_LONG  : std_logic_vector(31 downto 0); 

SIGNAL RES_TMP        : std_logic_vector(31 downto 0); 

SIGNAL RES            : std_logic_vector(31 downto 0); 

SIGNAL tick           : std_logic; 

SIGNAL ADDRESS1       : std_logic_vector(14 downto 0); 

SIGNAL ADDRESS2       : std_logic_vector(14 downto 0); 

SIGNAL ADDRESS3       : std_logic_vector(14 downto 0); 

SIGNAL ADDRESS4       : std_logic_vector(14 downto 0); 

SIGNAL ADDRESS5       : std_logic_vector(14 downto 0); 

SIGNAL LUT_DATA1      : std_logic_vector (11 downto 0); 

SIGNAL LUT_DATA2      : std_logic_vector (11 downto 0); 

SIGNAL LUT_DATA3      : std_logic_vector (11 downto 0); 

SIGNAL LUT_DATA4      : std_logic_vector (11 downto 0); 

SIGNAL LUT_DATA5      : std_logic_vector (11 downto 0); 
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SIGNAL chk            :  std_logic_vector(2 downto 0); 

SIGNAL comp_rdy_reg   : std_logic; 

SIGNAL valid_calc_reg : std_logic; 

signal addr_chk       : std_logic_vector(2 downto 0); 

SIGNAL BIG_REG1       : std_logic_vector(31 downto 0); 

SIGNAL BIG_REG2       : std_logic_vector(31 downto 0); 

SIGNAL BIG_REG3       : std_logic_vector(31 downto 0); 

SIGNAL tick_reg       : std_logic; 

SIGNAL TEST_REG1      : std_logic_vector(31 downto 0); 

SIGNAL TEST_REG2      : std_logic_vector(31 downto 0); 

SIGNAL fcomp_reg      : std_logic; 

SIGNAL lcomp_reg      : std_logic; 

 

attribute syn_ramstyle : string; 

attribute syn_ramstyle of LUT_DATA1 : signal is "block_ram"; 

attribute syn_ramstyle of LUT_DATA2 : signal is "block_ram"; 

attribute syn_ramstyle of LUT_DATA3 : signal is "block_ram"; 

attribute syn_ramstyle of LUT_DATA4 : signal is "block_ram"; 

attribute syn_ramstyle of LUT_DATA5 : signal is "block_ram"; 

 

type s1_array is array (0 to 4095) of bit_vector (11 downto 0); 

type s2_array is array (0 to 4095) of bit_vector (11 downto 0); 

type s3_array is array (0 to 4095) of bit_vector (11 downto 0); 

type s4_array is array (0 to 4095) of bit_vector (11 downto 0); 

type s5_array is array (0 to 4095) of bit_vector (11 downto 0);  

 

   -- Internal signal declarations 

constant sbox1 : s1_array := 

( 

REMOVED FOR SIZE CONSIDERATION 

); 
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constant sbox2 : s2_array := 

( 

REMOVED FOR SIZE CONSIDERATION 

); 

constant sbox3 : s3_array := 

( 

REMOVED FOR SIZE CONSIDERATION 

); 

constant sbox4 : s4_array := 

( 

REMOVED FOR SIZE CONSIDERATION 

); 

constant sbox5 : s5_array := 

( 

REMOVED FOR SIZE CONSIDERATION 

); 

 

begin 

 

process(clk,ce,sclr,comp_rdy) 

 

begin 

 if(clk ='1' and clk'event)then 

  if(sclr = '1')then 

   address1<=(OTHERS=>'0'); 

   address2<=(OTHERS=>'0'); 

   address3<=(OTHERS=>'0'); 

   address4<=(OTHERS=>'0'); 

   address5<=(OTHERS=>'0'); 

   SEN_OUT<=(OTHERS=>'0'); 

   SEN_RDY<='0'; 
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   SEN_TMP<=(OTHERS=>'0'); 

   SEN_TMP1<=(OTHERS=>'0'); 

   SEN_TMP_REG<=(OTHERS=>'0'); 

   SEN_TMP1_REG<=(OTHERS=>'0'); 

   SEN_RDY_TMP<='0'; 

   SEN_RDY_TMP1<='0'; 

   SEN_RDY_TMP2<='0'; 

   SEN_RDY_TMP3<='0'; 

   SEN_RDY_TMP4<='0'; 

   SEN_RDY_TMP5<='0'; 

   SEN_RDY_TMP6<='0'; 

   SEN_RDY_TMP7<='0'; 

   SEN_RDY_TMP8<='0'; 

   SEN_RDY_TMP9<='0'; 

   SEN_RDY_TMP10<='0'; 

   SEN_RDY_TMP11<='0'; 

   SEN_RDY_TMP12<='0'; 

   first_comp_reg<='0'; 

   mid_comp_reg<='0'; 

   last_comp_reg<='0'; 

   first_comp_reg1<='0'; 

   mid_comp_reg1<='0'; 

   last_comp_reg1<='0'; 

   RES_TMP<=(OTHERS=>'0'); 

   LUT_DATA_REG<=(OTHERS=>'0'); 

   LUT_DATA_LONG<=(OTHERS=>'0'); 

   ADDR_SUB<=(OTHERS=>'0'); 

   ADDR_SUB_TMP<=(OTHERS=>'0'); 

   BIG<=(OTHERS=>'0'); 

   NEW_COMP<=(OTHERS=>'0'); 

   tick<='0'; 
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   chk<="000"; 

   comp_rdy_reg<='0'; 

   valid_calc_reg<='0'; 

   addr_chk<="000"; 

   BIG_REG1<=(OTHERS=>'0'); 

   BIG_REG2<=(OTHERS=>'0'); 

   BIG_REG3<=(OTHERS=>'0'); 

   tick_reg<='0'; 

   TEST_REG1<=(OTHERS=>'0'); 

   TEST_REG2<=(OTHERS=>'0'); 

   fcomp_reg<='0'; 

   lcomp_reg<='0';  

 

  elsif (ce = '1')then 

   addr_chk<=LUT_ADDR(14 downto 12); 

   case addr_chk is 

    when "000"=> 

     address1<="000" & LUT_ADDR(11 downto 0); 

     address2<=(OTHERS=>'0'); 

     address3<=(OTHERS=>'0'); 

     address4<=(OTHERS=>'0'); 

     address5<=(OTHERS=>'0'); 

     chk<="000"; 

    when "001"=> 

     address1<=(OTHERS=>'0'); 

     address2<="000" & LUT_ADDR(11 downto 0); 

     address3<=(OTHERS=>'0'); 

     address4<=(OTHERS=>'0'); 

     address5<=(OTHERS=>'0'); 

     chk<="001"; 

    when "010"=> 
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     address1<=(OTHERS=>'0'); 

     address2<=(OTHERS=>'0'); 

     address3<="000" & LUT_ADDR(11 downto 0); 

     address4<=(OTHERS=>'0'); 

     address5<=(OTHERS=>'0'); 

     chk<="010"; 

    when "011"=> 

     address1<=(OTHERS=>'0'); 

     address2<=(OTHERS=>'0'); 

     address3<=(OTHERS=>'0'); 

     address4<="000" & LUT_ADDR(11 downto 0); 

     address5<=(OTHERS=>'0'); 

     chk<="011"; 

    when others=> 

     address1<=(OTHERS=>'0'); 

     address2<=(OTHERS=>'0'); 

     address3<=(OTHERS=>'0'); 

     address4<=(OTHERS=>'0'); 

     address5<="000" & LUT_ADDR(11 downto 0); 

     chk<="100"; 

   end case;  

   LUT_DATA1<=To_StdLogicVector(sbox1(conv_integer(address1))); 

   LUT_DATA2<=To_StdLogicVector(sbox2(conv_integer(address2))); 

   LUT_DATA3<=To_StdLogicVector(sbox3(conv_integer(address3))); 

   LUT_DATA4<=To_StdLogicVector(sbox4(conv_integer(address4))); 

   LUT_DATA5<=To_StdLogicVector(sbox5(conv_integer(address5))); 

   case chk is 

    when "000" => 

      LUT_DATA_REG <=LUT_DATA1; 

    when "001" => 

      LUT_DATA_REG <=LUT_DATA2; 
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    when "010" => 

      LUT_DATA_REG <=LUT_DATA3; 

    when "011" => 

      LUT_DATA_REG <=LUT_DATA4; 

    when "100" => 

      LUT_DATA_REG <=LUT_DATA5; 

    when others => 

      LUT_DATA_REG <=(OTHERS=>'0'); 

   end case; 

   comp_rdy_reg<=comp_rdy; 

   valid_calc_reg<=valid_calc; 

   first_comp_reg1<=first_comp; 

   mid_comp_reg1<=mid_comp; 

   last_comp_reg1<=last_comp; 

   first_comp_reg<=first_comp_reg1; 

   mid_comp_reg<=mid_comp_reg1; 

   last_comp_reg<=last_comp_reg1; 

   if(comp_rdy_reg = '1' or valid_calc_reg = '1')then 

    NEW_COMP<=COMP_IN; 

    tick<='1'; 

   else 

    tick<='0'; 

   end if; 

   if (tick = '1')then 

    if(first_comp_reg = '1')then 

     SEN_TMP<=NEW_COMP; 

     SEN_TMP1<="11001000000000000000000000000000"; 

    else 

     SEN_TMP<=NEW_COMP; 

     SEN_TMP1<=RES_TMP; 

    end if; 
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   end if; 

   if(SEN_TMP >= SEN_TMP1)then 

    ADDR_SUB<=SEN_TMP - SEN_TMP1; 

    BIG<=SEN_TMP; 

   else 

    ADDR_SUB<=SEN_TMP1 - SEN_TMP; 

    BIG<=SEN_TMP1; 

   end if; 

   SEN_RDY_TMP1<=tick AND last_comp_reg; 

   if (ADDR_SUB > "0100111111111111")then 

    LUT_ADDR<="100111111111111"; 

   else 

    LUT_ADDR<=ADDR_SUB(14 downto 0); 

   end if; 

 

   SEN_RDY_TMP2<=SEN_RDY_TMP1; 

   SEN_RDY_TMP3<=SEN_RDY_TMP2; 

   SEN_RDY_TMP4<=SEN_RDY_TMP3; 

   SEN_RDY_TMP5<=SEN_RDY_TMP4; 

   SEN_RDY_TMP6<=SEN_RDY_TMP5; 

   SEN_RDY_TMP7<=SEN_RDY_TMP6; 

   SEN_RDY_TMP8<=SEN_RDY_TMP7; 

   SEN_RDY_TMP9<=SEN_RDY_TMP8; 

   SEN_RDY_TMP10<=SEN_RDY_TMP9; 

   SEN_RDY_TMP11<=SEN_RDY_TMP10; 

   SEN_RDY_TMP12<=SEN_RDY_TMP11; 

   BIG_REG1<=BIG; 

   BIG_REG2<=BIG_REG1; 

   BIG_REG3<=BIG_REG2; 

   LUT_DATA_LONG<="00000000000000000000" & LUT_DATA_REG; 

   RES_TMP<= LUT_DATA_LONG+BIG_REG3; 
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   RES<=RES_TMP; 

   SEN_OUT<=RES; 

   SEN_RDY<=SEN_RDY_TMP11; 

  else 

   address1<=(OTHERS=>'0'); 

   address2<=(OTHERS=>'0'); 

   address3<=(OTHERS=>'0'); 

   address4<=(OTHERS=>'0'); 

   address5<=(OTHERS=>'0'); 

   SEN_OUT<=(OTHERS=>'0'); 

   SEN_RDY<='0'; 

   SEN_TMP<=(OTHERS=>'0'); 

   SEN_TMP1<=(OTHERS=>'0'); 

   SEN_TMP_REG<=(OTHERS=>'0'); 

   SEN_TMP1_REG<=(OTHERS=>'0'); 

   SEN_RDY_TMP<='0'; 

   SEN_RDY_TMP1<='0'; 

   SEN_RDY_TMP2<='0'; 

   SEN_RDY_TMP3<='0'; 

   SEN_RDY_TMP4<='0'; 

   SEN_RDY_TMP5<='0'; 

   SEN_RDY_TMP6<='0'; 

   SEN_RDY_TMP7<='0'; 

   SEN_RDY_TMP8<='0'; 

   SEN_RDY_TMP9<='0'; 

   SEN_RDY_TMP10<='0'; 

   SEN_RDY_TMP11<='0'; 

   first_comp_reg<='0'; 

   mid_comp_reg<='0'; 

   last_comp_reg<='0'; 

   first_comp_reg1<='0'; 
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   mid_comp_reg1<='0'; 

   last_comp_reg1<='0'; 

   comp_rdy_reg<='0'; 

   valid_calc_reg<='0'; 

   LUT_ADDR<=(OTHERS=>'0'); 

   LUT_DATA_LONG<=(OTHERS=>'0'); 

   ADDR_SUB<=(OTHERS=>'0'); 

   ADDR_SUB_TMP<=(OTHERS=>'0'); 

   RES<=(OTHERS=>'0'); 

   RES_TMP<=(OTHERS=>'0'); 

   LUT_DATA_REG<=(OTHERS=>'0'); 

   BIG<=(OTHERS=>'0'); 

   NEW_COMP<=(OTHERS=>'0'); 

   tick<='0'; 

 

  end if; 

 end if; 

end process; 

   

end Behavioral; 

 

B.7 – normalizer.vdh 

 

-------------------------------------------------------------------------------- 

-- Company:  

-- Engineer:    Jeffrey W. Schuster 

-- 

-- Create Date:    13:30:33 10/11/05 

-- Design Name:     

-- Module Name:    normalizer - Behavioral 

-- Project Name:    
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-- Target Device:   

-- Tool versions:   

-- Description: 

-- 

-- Dependencies: 

--  

-- Revision: 

-- Revision 0.01 - File Created 

-- Additional Comments: 

--  

-------------------------------------------------------------------------------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_SIGNED.ALL; 

 

---- Uncomment the following library declaration if instantiating 

---- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity normalizer is 

    Port (  

    clk             : in std_logic; 

         ce              : in std_logic; 

         sclr            : in std_logic; 

         start_normalize : in std_logic; 

   last_raw_senone : in std_logic; 

   raw_senone      : in std_logic_vector(31 downto 0); 

   raw_sen_rdy     : in std_logic; 

    best_score      : in std_logic_vector(31 downto 0); 
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         address         : out std_logic_vector(12 downto 0); 

   address_rdy     : out std_logic; 

     norm_senone     : out std_logic_vector(31 downto 0); 

         senone_rdy      : out std_logic; 

   normalize_done  : out std_logic; 

   ram_addr_sel    : out std_logic; 

   sen_cnt         : out std_logic_vector(12 downto 0) 

   ); 

end normalizer; 

 

architecture Behavioral of normalizer is 

 

SIGNAL RES_TMP        : std_logic_vector(31 downto 0); 

SIGNAL RES_TMP1       : std_logic_vector(31 downto 0); 

SIGNAL RAW_TMP        : std_logic_vector(31 downto 0); 

SIGNAL RES_RDY        : std_logic; 

SIGNAL RES_RDY1       : std_logic; 

SIGNAL RES_RDY2       : std_logic; 

SIGNAL COUNT1         : std_logic_vector(12 downto 0); 

SIGNAL COUNT2         : std_logic_vector(12 downto 0); 

SIGNAL COUNT3         : std_logic_vector(12 downto 0); 

SIGNAL COUNT4         : std_logic_vector(12 downto 0); 

SIGNAL norm_done_reg  : std_logic; 

SIGNAL norm_done_reg1 : std_logic; 

SIGNAL norm_done_reg2 : std_logic; 

SIGNAL norm_done_reg3 : std_logic; 

SIGNAL addr_sel       : std_logic; 

SIGNAL addr_sel1      : std_logic; 

SIGNAL addr_sel2      : std_logic; 

SIGNAL addr_sel3      : std_logic; 

SIGNAL addr_rdy       : std_logic; 
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SIGNAL addr_rdy1      : std_logic; 

SIGNAL addr_rdy2      : std_logic; 

SIGNAL addr_rdy3      : std_logic; 

SIGNAL pipe_freeze    : std_logic; 

signal raw_rdy_reg    : std_logic; 

 

 

 

begin 

 

process(clk,sclr,ce,last_raw_senone,raw_sen_rdy) 

begin 

 

if(clk = '1' and clk'event)then 

 if (sclr = '1')then 

  count1<=(OTHERS=>'0'); 

  count2<=(OTHERS=>'0'); 

  count3<=(OTHERS=>'0'); 

  count4<=(OTHERS=>'0'); 

  RES_TMP<=(OTHERS=>'0'); 

  RES_TMP1<=(OTHERS=>'0'); 

  RAW_TMP<=(OTHERS=>'0'); 

  RES_RDY<='0'; 

  RES_RDY1<='0'; 

  RES_RDY2<='0'; 

    norm_done_reg<='0'; 

  norm_done_reg1<='0'; 

  norm_done_reg2<='0'; 

  norm_done_reg3<='0'; 

  addr_sel<='0'; 

  addr_sel1<='0'; 
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  addr_sel2<='0'; 

  addr_sel3<='0'; 

  ram_addr_sel<='0'; 

  senone_rdy<='0'; 

  norm_senone<=(OTHERS=>'0'); 

  normalize_done<='0'; 

  address_rdy<='0'; 

  addr_rdy<='0'; 

  addr_rdy1<='0'; 

  addr_rdy2<='0'; 

  addr_rdy3<='0'; 

  pipe_freeze<='1'; 

  sen_cnt<=(OTHERS=>'0');   

  raw_rdy_reg<='0'; 

 elsif (start_normalize = '1')then 

  count1<=(OTHERS=>'0'); 

  count2<=(OTHERS=>'0'); 

  count3<=(OTHERS=>'0'); 

  count4<=(OTHERS=>'0'); 

  addr_sel<='1'; 

  addr_sel1<='1'; 

  addr_sel2<='1'; 

  addr_sel3<='1'; 

  address_rdy<='0'; 

  addr_rdy<='1'; 

  addr_rdy1<='0'; 

  addr_rdy2<='0'; 

  addr_rdy3<='0';--changed 10-20-05 JWS : was <='1'; 

  pipe_freeze<='0'; 

 elsif(ce = '1')then 

  raw_rdy_reg<=raw_sen_rdy; 



 205

  if(norm_done_reg3 = '1')then 

   pipe_freeze<='1'; 

  end if; 

    if(pipe_freeze = '0')then 

   if (raw_rdy_reg = '1')then 

    count1<=count1+1; 

    raw_tmp<=raw_senone; 

    res_rdy<=raw_rdy_reg; 

    addr_rdy<='1'; 

    if (last_raw_senone = '1')then 

     norm_done_reg<=last_raw_senone; 

     addr_sel<='0'; 

    else 

     norm_done_reg<='0'; 

    end if; 

   else 

    res_rdy<='0'; 

    addr_rdy<='0'; 

   end if; 

   res_tmp<=best_score-raw_tmp; 

    

   addr_rdy1<=addr_rdy; 

   addr_rdy2<=addr_rdy1; 

   addr_rdy3<=addr_rdy2; 

   address_rdy<=addr_rdy3; 

   count2<=count1; 

   count3<=count2; 

   count4<=count3; 

   norm_done_reg1<=norm_done_reg;  

   norm_done_reg2<=norm_done_reg1; 

   addr_sel1<=addr_sel; 
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   addr_sel2<=addr_sel1; 

   addr_sel3<=addr_sel2; 

   res_tmp1<=res_tmp; 

   res_rdy1<=res_rdy; 

   res_rdy2<=res_rdy1; 

   norm_senone<=res_tmp1; 

   senone_rdy<=res_rdy2; 

   normalize_done<=norm_done_reg3; 

   norm_done_reg3<=norm_done_reg2; 

   ram_addr_sel<=addr_sel3; 

   sen_cnt<=count4; 

   if (res_rdy2 = '1')then 

    address<=count4; 

   else 

    address<=count1; 

   end if; 

  else 

   address_rdy<='0'; 

   address<=(OTHERS=>'0'); 

   RES_TMP<=(OTHERS=>'0'); 

   RAW_TMP<=(OTHERS=>'0'); 

   RES_RDY<='0'; 

   RES_TMP1<=(OTHERS=>'0'); 

   RES_RDY1<='0'; 

   RES_RDY2<='0'; 

   norm_done_reg<='0'; 

   norm_done_reg1<='0'; 

   norm_done_reg2<='0';    

   norm_done_reg3<='0'; 

   normalize_done<='0'; 

  end if; 
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 else 

  RES_TMP<=(OTHERS=>'0'); 

  RAW_TMP<=(OTHERS=>'0'); 

  RES_RDY<='0'; 

  RES_TMP1<=(OTHERS=>'0'); 

  RES_RDY1<='0'; 

  RES_RDY2<='0'; 

  norm_done_reg<='0'; 

  norm_done_reg1<='0'; 

  norm_done_reg2<='0';    

  norm_done_reg3<='0'; 

  normalize_done<='0'; 

 end if; 

end if; 

end process; 

      

end Behavioral; 

 

B.8 – hmm_top_struct.vhd 

 

-- VHDL Entity phoneme_evaluator_lib.hmm_top.symbol 

-- 

-- Created:     Jeffrey W. Schuster 

--          by - Speech Research.UNKNOWN (SPEECH1) 

--          at - 13:51:33 01/19/2006 

-- 

-- Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399) 

-- 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_arith.all; 
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ENTITY hmm_top IS 

   PORT(  

      PH_WRD_SEL     : IN     std_logic; 

      clk            : IN     std_logic; 

      dead_rd        : IN     std_logic; 

      global_en      : IN     std_logic; 

      nPAL_data      : IN     std_logic_VECTOR (9 DOWNTO 0); 

      nPAL_wr        : IN     std_logic; 

      phone_en       : IN     std_logic; 

      phone_start    : IN     std_logic; 

      senone_data_in : IN     std_logic_vector (31 DOWNTO 0); 

      senone_mux_sel : IN     std_logic; 

      senone_wr_addr : IN     std_logic_vector (12 DOWNTO 0); 

      senone_wr_en   : IN     std_logic; 

      sinit          : IN     std_logic; 

      valid_rd       : IN     std_logic; 

      word_addr_rdy  : IN     std_logic; 

      word_data      : IN     std_logic_vector (192 DOWNTO 0); 

      word_rd_addr   : IN     std_logic_vector (8 DOWNTO 0); 

      word_wr        : IN     std_logic; 

      word_wr_addr   : IN     std_logic_vector (8 DOWNTO 0); 

      dead_empty     : OUT    std_logic; 

      dead_full      : OUT    std_logic; 

      dead_out       : OUT    std_logic_VECTOR (9 DOWNTO 0); 

      phone_done     : OUT    std_logic; 

      valid_empty    : OUT    std_logic; 

      valid_full     : OUT    std_logic; 

      valid_out      : OUT    std_logic_VECTOR (9 DOWNTO 0); 

      word_beam      : OUT    std_logic_vector (31 DOWNTO 0) 

--      word_data_out  : OUT    std_logic_vector (252 DOWNTO 0) 
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   ); 

 

-- Declarations 

 

END hmm_top ; 

 

-- 

-- VHDL Architecture phoneme_evaluator_lib.hmm_top.struct 

-- 

-- Created: 

--          by - Speech Research.UNKNOWN (SPEECH1) 

--          at - 13:51:34 01/19/2006 

-- 

-- Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399) 

-- 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_arith.all; 

USE IEEE.STD_LOGIC_SIGNED.all; 

USE ieee.STD_LOGIC_UNSIGNED.all; 

 

 

 

ARCHITECTURE struct OF hmm_top IS 

 

   -- Architecture declarations 

-- Non hierarchical state machine declarations 

TYPE CSM1_STATE_TYPE IS ( 

      idle, 

      npal, 

      pal, 
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      prune, 

      init 

   ); 

 

-- State vector declaration 

ATTRIBUTE state_vector : string; 

ATTRIBUTE state_vector OF struct : ARCHITECTURE IS "csm1_current_state" ; 

 

 

-- Declare current and next state signals 

SIGNAL csm1_current_state : CSM1_STATE_TYPE ; 

SIGNAL csm1_next_state : CSM1_STATE_TYPE ; 

 

 

   -- Internal signal declarations 

   SIGNAL addr_rdy         : std_logic; 

   SIGNAL data_in          : std_logic_vector(9 DOWNTO 0); 

   SIGNAL data_ready       : std_logic; 

   SIGNAL dead             : std_logic; 

   SIGNAL din              : std_logic_VECTOR(9 DOWNTO 0); 

   SIGNAL dout             : std_logic_VECTOR(9 DOWNTO 0); 

   SIGNAL dout1            : std_logic_VECTOR(9 DOWNTO 0); 

   SIGNAL enable           : std_logic; 

   SIGNAL end_of_phase     : std_logic; 

   SIGNAL exit_beam        : std_logic_vector(31 DOWNTO 0); 

   SIGNAL fifo_sel         : std_logic; 

   SIGNAL first_calc       : std_logic; 

   SIGNAL hmm_calc_en      : std_logic; 

   SIGNAL hmm_rdy          : std_logic; 

   SIGNAL new_data         : std_logic; 

   SIGNAL norm_wr          : std_logic; 
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   SIGNAL npal_empty       : std_logic; 

   SIGNAL npal_full        : std_logic; 

   SIGNAL npal_rd          : std_logic; 

   SIGNAL pal_empty        : std_logic; 

   SIGNAL pal_full         : std_logic; 

   SIGNAL pal_rd           : std_logic; 

   SIGNAL pal_val          : std_logic; 

   SIGNAL pal_wr           : std_logic; 

   SIGNAL phone_data_out   : std_logic_vector(252 DOWNTO 0); 

   SIGNAL prune_en         : std_logic; 

   SIGNAL ptr_ram_data_out : std_logic_vector(192 DOWNTO 0); 

   SIGNAL tkn_rdy          : std_logic; 

 SIGNAL tkn_rdy_tmp      : std_logic; 

   SIGNAL token            : std_logic_vector(8 DOWNTO 0); 

   SIGNAL token_out        : std_logic_vector(8 DOWNTO 0); 

   SIGNAL token_pop        : std_logic; 

   SIGNAL token_to_fifo    : std_logic_vector(9 DOWNTO 0); 

   SIGNAL valid_beam       : std_logic_vector(31 DOWNTO 0); 

   SIGNAL wr_en            : std_logic; 

 SIGNAL token_reg        : std_logic_vector(8 downto 0); 

 SIGNAL phn_wr           : std_logic; 

 SIGNAL word_data_out_tmp: std_logic_vector(252 downto 0); 

 SIGNAL end_of_phase_reg : std_logic; 

 

 

   -- ModuleWare signal declarations(v1.0) for instance 'I5' of 'mux' 

   SIGNAL mw_I5din0 : std_logic_vector(9 DOWNTO 0); 

   SIGNAL mw_I5din1 : std_logic_vector(9 DOWNTO 0); 

 

   -- Component Declarations 

   COMPONENT PH_PTR_RAM 
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   PORT ( 

      PH_WRD_SEL     : IN     std_logic; 

      addr_rdy       : IN     std_logic; 

      clk            : IN     std_logic; 

      init           : IN     std_logic; 

      phone_data     : IN     std_logic_vector (192 DOWNTO 0); 

      phone_rd_addr  : IN     std_logic_vector (8 DOWNTO 0); 

      phone_wr       : IN     std_logic; 

      phone_wr_addr  : IN     std_logic_vector (8 DOWNTO 0); 

      word_data      : IN     std_logic_vector (192 DOWNTO 0); 

      word_rd_addr   : IN     std_logic_vector (8 DOWNTO 0); 

      word_wr        : IN     std_logic; 

      word_wr_addr   : IN     std_logic_vector (8 DOWNTO 0); 

      new_data       : OUT    std_logic; 

      phone_data_out : OUT    std_logic_vector (252 DOWNTO 0); 

      word_data_out  : OUT    std_logic_vector (252 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT dp_fifo 

   PORT ( 

      clk   : IN     std_logic; 

      din   : IN     std_logic_VECTOR (9 DOWNTO 0); 

      rd_en : IN     std_logic; 

      sinit : IN     std_logic; 

      wr_en : IN     std_logic; 

      dout  : OUT    std_logic_VECTOR (9 DOWNTO 0); 

      empty : OUT    std_logic; 

      full  : OUT    std_logic 

   ); 

   END COMPONENT; 

   COMPONENT hmm_pipe_w_mdef 
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   PORT ( 

      ce               : IN     std_logic; 

      clk              : IN     std_logic; 

      new_frame        : IN     std_logic; 

      new_input_data   : IN     std_logic; 

      ptr_ram_data_in  : IN     std_logic_vector (252 DOWNTO 0); 

      sclr             : IN     std_logic; 

      senone_data_in   : IN     std_logic_vector (31 DOWNTO 0); 

      senone_mux_sel   : IN     std_logic; 

      senone_wr_addr   : IN     std_logic_vector (12 DOWNTO 0); 

      senone_wr_en     : IN     std_logic; 

      exit_beam        : OUT    std_logic_vector (31 DOWNTO 0); 

      hmm_rdy          : OUT    std_logic; 

      ptr_ram_data_out : OUT    std_logic_vector (192 DOWNTO 0); 

      valid_beam       : OUT    std_logic_vector (31 DOWNTO 0); 

      word_beam        : OUT    std_logic_vector (31 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT prune_block 

   PORT ( 

      clk          : IN     std_logic; 

      e_beam       : IN     std_logic_vector (31 DOWNTO 0); 

      hmm_data     : IN     std_logic_vector (252 DOWNTO 0); 

      prune_enable : IN     std_logic; 

      ram_data_rdy : IN     std_logic; 

      reset        : IN     std_logic; 

      v_beam       : IN     std_logic_vector (31 DOWNTO 0); 

      data_ready   : OUT    std_logic; 

      dead         : OUT    std_logic; 

      pal          : OUT    std_logic; 

      pal_val      : OUT    std_logic 
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   ); 

   END COMPONENT; 

 

   -- Optional embedded configurations 

   -- pragma synthesis_off 

   FOR ALL : PH_PTR_RAM USE ENTITY work.PH_PTR_RAM; 

   FOR ALL : dp_fifo USE ENTITY work.dp_fifo; 

   FOR ALL : hmm_pipe_w_mdef USE ENTITY work.hmm_pipe_w_mdef; 

   FOR ALL : prune_block USE ENTITY work.prune_block; 

   -- pragma synthesis_on 

 

 

BEGIN 

   -- Architecture concurrent statements 

   -- HDL Embedded Block 1 eb1 

   -- Non hierarchical state machine 

   ---------------------------------------------------------------------------- 

   csm1_clocked : PROCESS( 

      clk 

   ) 

   ---------------------------------------------------------------------------- 

   BEGIN 

      IF (clk'EVENT AND clk = '1') THEN 

         IF (enable = '1') THEN 

            IF (sinit = '1') THEN 

               csm1_current_state <= idle; 

               -- Reset Values 

            ELSE 

               csm1_current_state <= csm1_next_state; 

               -- Default Assignment To Internals 
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            END IF; 

         END IF; 

      END IF; 

 

   END PROCESS csm1_clocked; 

 

   ---------------------------------------------------------------------------- 

   csm1_nextstate : PROCESS ( 

      csm1_current_state, 

      data_ready, 

      end_of_phase, 

      hmm_rdy, 

      npal_empty, 

      phone_start 

   ) 

   ---------------------------------------------------------------------------- 

   BEGIN 

      CASE csm1_current_state IS 

      WHEN idle => 

         IF (phone_start = '1') THEN 

            csm1_next_state <= init; 

         ELSE 

            csm1_next_state <= idle; 

         END IF; 

      WHEN npal => 

         IF (hmm_rdy = '0') THEN 

            csm1_next_state <= npal; 

         ELSIF (hmm_rdy = '1' AND npal_empty = '0') THEN 

            csm1_next_state <= npal; 

         ELSIF (hmm_rdy = '1' AND npal_empty = '1') THEN 

            csm1_next_state <= pal; 
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         ELSE 

            csm1_next_state <= npal; 

         END IF; 

      WHEN pal => 

         IF (hmm_rdy = '0') THEN 

            csm1_next_state <= pal; 

         ELSIF (hmm_rdy = '1'  AND end_of_phase = '0') THEN 

            csm1_next_state <= pal; 

         ELSIF (hmm_rdy = '1' AND end_of_phase = '1') THEN 

            csm1_next_state <= prune; 

         ELSE 

            csm1_next_state <= pal; 

         END IF; 

      WHEN prune => 

         IF (data_ready = '0') THEN 

            csm1_next_state <= prune; 

         ELSIF (data_ready = '1' AND end_of_phase = '0') THEN 

            csm1_next_state <= prune; 

         ELSIF (data_ready = '1' AND end_of_phase = '1') THEN 

            csm1_next_state <= idle; 

         ELSE 

            csm1_next_state <= prune; 

         END IF; 

      WHEN init => 

         IF (npal_empty = '0') THEN 

            csm1_next_state <= npal; 

         ELSIF (npal_empty = '1') THEN 

            csm1_next_state <= pal; 

         ELSE 

            csm1_next_state <= init; 

         END IF; 
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      WHEN OTHERS => 

         csm1_next_state <= idle; 

      END CASE; 

 

   END PROCESS csm1_nextstate; 

 

   ---------------------------------------------------------------------------- 

   csm1_output : PROCESS ( 

      csm1_current_state, 

      data_ready, 

      end_of_phase, 

      hmm_rdy, 

      npal_empty, 

      phone_start 

   ) 

   ---------------------------------------------------------------------------- 

   BEGIN 

      -- Default Assignment 

      fifo_sel <= '0'; 

      first_calc <= '0'; 

      hmm_calc_en <= '0'; 

      phone_done <= '0'; 

      prune_en <= '0'; 

      token_pop <= '0'; 

      -- Default Assignment To Internals 

 

      -- Combined Actions 

      CASE csm1_current_state IS 

      WHEN idle => 

         IF (phone_start = '1') THEN 

            first_calc<='1'; 
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            fifo_sel<='0'; 

         ELSE 

            prune_en<='0'; 

            hmm_calc_en<='0'; 

            phone_done<='0'; 

         END IF; 

      WHEN npal => 

         IF (hmm_rdy = '0') THEN 

            token_pop<='0'; 

            hmm_calc_en<='1'; 

            fifo_sel<='1'; 

         ELSIF (hmm_rdy = '1' AND npal_empty = '0') THEN 

            hmm_calc_en<='1'; 

            token_pop<='1'; 

            fifo_sel<='1'; 

         ELSIF (hmm_rdy = '1' AND npal_empty = '1') THEN 

            hmm_calc_en<='1'; 

            token_pop<='1'; 

            fifo_sel<='0'; 

         END IF; 

      WHEN pal => 

         IF (hmm_rdy = '0') THEN 

            hmm_calc_en<='1'; 

            token_pop<='0'; 

            fifo_sel<='0'; 

         ELSIF (hmm_rdy = '1'  AND end_of_phase = '0') THEN 

            hmm_calc_en<='1'; 

            token_pop<='1'; 

            fifo_sel<='0'; 

         ELSIF (hmm_rdy = '1' AND end_of_phase = '1') THEN 

            hmm_calc_en<='0'; 
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            prune_en<='1'; 

            fifo_sel<='0'; 

            token_pop<='1'; 

    first_calc<='1';--added 1-20-06 -- JWS 

 

         END IF; 

      WHEN prune => 

         IF (data_ready = '0') THEN 

            prune_en<='1'; 

            fifo_sel<='0'; 

            token_pop<='0'; 

         ELSIF (data_ready = '1' AND end_of_phase = '0') THEN 

            prune_en<='1'; 

            fifo_sel<='0'; 

            token_pop<='1'; 

         ELSIF (data_ready = '1' AND end_of_phase = '1') THEN 

            prune_en<='0'; 

            fifo_sel<='0'; 

            token_pop<='0'; 

            phone_done<='1'; 

         END IF; 

      WHEN init => 

         IF (npal_empty = '0') THEN 

            hmm_calc_en<='1'; 

            fifo_sel<='1'; 

            token_pop<='1'; 

            first_calc<='0'; 

         ELSIF (npal_empty = '1') THEN 

            hmm_calc_en<='1'; 

            token_pop<='1'; 

            fifo_sel<='0'; 
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            first_calc<='0'; 

         END IF; 

      WHEN OTHERS => 

         NULL; 

      END CASE; 

 

   END PROCESS csm1_output; 

 

   -- Concurrent Statements 

 

 

 

   -- HDL Embedded Text Block 2 eb2 

   -- eb2 2                 

   end_of_phase<=data_in(9); 

   token<=data_in(8 downto 0); 

 process(clk,sinit) 

 begin 

  if(clk = '1' and clk'event)then 

   if(sinit = '1')then 

    token_reg<=(OTHERS=>'0'); 

    token_out<=(OTHERS=>'0'); 

    end_of_phase_reg<='0'; 

   else 

    token_reg<=token; 

    token_out<=token_reg; 

    end_of_phase_reg<=end_of_phase; 

   end if; 

  end if; 

 end process; 
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   -- HDL Embedded Text Block 3 eb3 

   -- eb3 3 

   process(fifo_sel,sinit,clk,token_pop) 

   begin 

 if(clk = '1' and clk'event)then 

  if(sinit = '1')then 

   pal_rd<='0'; 

   npal_rd<='0'; 

  elsif(fifo_sel = '0')then 

   pal_rd<=token_pop; 

   npal_rd<='0'; 

  elsif(fifo_sel = '1')then 

   pal_rd<='0'; 

   npal_rd<=token_pop; 

  else 

   pal_rd<='0'; 

   npal_rd<='0'; 

  end if; 

 end if; 

   end process; 

 

   -- HDL Embedded Text Block 4 eb4 

   -- eb4 4                                         

   process(clk,sinit,token_pop) 

      variable tmp : std_logic; 

       

      begin 

         if(clk = '1' and clk'event)then 

            if(sinit = '1')then 

               tkn_rdy_tmp<='0'; 

     tkn_rdy<='0'; 
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            else 

               tkn_rdy_tmp<=token_pop; 

     tkn_rdy<=tkn_rdy_tmp; 

            end if; 

      end if; 

    

   end process; 

 

   -- HDL Embedded Text Block 5 eb5 

   -- eb5 5      

   process(clk,sinit) 

   begin 

   if(clk = '1' and clk'event)then 

      if(data_ready = '1')then 

            token_to_fifo<='0' & token_out; 

      end if; 

   end if; 

   end process; 

 

   -- HDL Embedded Text Block 6 eb6 

   -- eb6 6                                         

   process(first_calc,clk,norm_wr,sinit) 

      begin 

    if(clk = '1' and clk'event)then 

    if(sinit = '1')then 

     wr_en<='0'; 

     din<=(OTHERS=>'0'); 

    elsif(first_calc = '1')then 

             din<="1111111111"; 

             wr_en<=first_calc; 

          elsif(norm_wr = '1')then 
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             din<='0' & token_out; 

             wr_en<=norm_wr; 

    else 

     din<=(OTHERS=>'0'); 

     wr_en<='0'; 

    end if; 

         end if; 

      end process; 

 

 

   -- ModuleWare code(v1.0) for instance 'I5' of 'mux' 

   I5combo: PROCESS(mw_I5din0, mw_I5din1, fifo_sel) 

   VARIABLE dtemp : std_logic_vector(9 DOWNTO 0); 

   BEGIN 

      CASE fifo_sel IS 

      WHEN '0'|'L' => dtemp := mw_I5din0; 

      WHEN '1'|'H' => dtemp := mw_I5din1; 

      WHEN OTHERS => dtemp := (OTHERS => 'X'); 

      END CASE; 

      data_in <= dtemp; 

   END PROCESS I5combo; 

   mw_I5din0 <= dout; 

   mw_I5din1 <= dout1; 

 

   enable <= global_en AND phone_en; 

   norm_wr <= hmm_rdy OR pal_wr OR pal_val;      

   addr_rdy <= word_addr_rdy OR tkn_rdy; 

 phn_wr<= hmm_rdy AND not(end_of_phase_reg); 

 

   -- Instance port mappings. 

   I3 : PH_PTR_RAM 
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      PORT MAP ( 

         PH_WRD_SEL     => PH_WRD_SEL, 

         addr_rdy       => addr_rdy, 

         clk            => clk, 

         init           => sinit, 

         phone_data     => ptr_ram_data_out, 

         phone_rd_addr  => token, 

         phone_wr_addr  => token, 

         phone_wr       => phn_wr, 

         word_data      => word_data, 

         word_rd_addr   => word_rd_addr, 

         word_wr_addr   => word_wr_addr, 

         word_wr        => word_wr, 

         phone_data_out => phone_data_out, 

         word_data_out  => word_data_out_tmp, 

         new_data       => new_data 

      ); 

   I2 : dp_fifo 

      PORT MAP ( 

         clk   => clk, 

         sinit => sinit, 

         din   => din, 

         wr_en => wr_en, 

         rd_en => pal_rd, 

         dout  => dout, 

         full  => pal_full, 

         empty => pal_empty 

      ); 

   I4 : dp_fifo 

      PORT MAP ( 

         clk   => clk, 
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         sinit => sinit, 

         din   => nPAL_data, 

         wr_en => nPAL_wr, 

         rd_en => npal_rd, 

         dout  => dout1, 

         full  => npal_full, 

         empty => npal_empty 

      ); 

   I7 : dp_fifo 

      PORT MAP ( 

         clk   => clk, 

         sinit => sinit, 

         din   => token_to_fifo, 

         wr_en => pal_val, 

         rd_en => valid_rd, 

         dout  => valid_out, 

         full  => valid_full, 

         empty => valid_empty 

      ); 

   I8 : dp_fifo 

      PORT MAP ( 

         clk   => clk, 

         sinit => sinit, 

         din   => token_to_fifo, 

         wr_en => dead, 

         rd_en => dead_rd, 

         dout  => dead_out, 

         full  => dead_full, 

         empty => dead_empty 

      ); 

   I0 : hmm_pipe_w_mdef 
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      PORT MAP ( 

         clk              => clk, 

         ce               => hmm_calc_en, 

         sclr             => sinit, 

         new_frame        => phone_start, 

         new_input_data   => new_data, 

         senone_data_in   => senone_data_in, 

         senone_wr_addr   => senone_wr_addr, 

         senone_wr_en     => senone_wr_en, 

         senone_mux_sel   => senone_mux_sel, 

         ptr_ram_data_in  => phone_data_out, 

         ptr_ram_data_out => ptr_ram_data_out, 

         hmm_rdy          => hmm_rdy, 

         exit_beam        => exit_beam, 

         valid_beam       => valid_beam, 

         word_beam        => word_beam 

      ); 

   I1 : prune_block 

      PORT MAP ( 

         clk          => clk, 

         reset        => sinit, 

         prune_enable => prune_en, 

         e_beam       => exit_beam, 

         v_beam       => valid_beam, 

         ram_data_rdy => new_data, 

         hmm_data     => phone_data_out, 

         data_ready   => data_ready, 

         dead         => dead, 

         pal          => pal_wr, 

         pal_val      => pal_val 

      ); 
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END struct; 

 

B.9 – hmm_pipe_w_mdef.vhd 

 

-------------------------------------------------------------------------------- 

-- Company:  

-- Engineer:  Jeffrey W. Schuster 

-- 

-- Create Date:    09:46:36 11/14/05 

-- Design Name:     

-- Module Name:    hmm_pipe_w_mdef - Behavioral 

-- Project Name:    

-- Target Device:   

-- Tool versions:   

-- Description: 

-- 

-- Dependencies: 

--  

-- Revision: 

-- Revision 0.01 - File Created 

-- Additional Comments: 

--  

-------------------------------------------------------------------------------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_SIGNED.ALL; 

 

---- Uncomment the following library declaration if instantiating 

---- any Xilinx primitives in this code. 
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--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity hmm_pipe_w_mdef is 

    Port ( clk              : in std_logic; 

           ce               : in std_logic; 

           sclr             : in std_logic; 

           new_frame        : in std_logic; 

           new_input_data   : in std_logic; 

     senone_data_in   : in std_logic_vector(31 downto 0); 

     senone_wr_addr   : in std_logic_vector(12 downto 0); 

     senone_wr_en     : in std_logic; 

     senone_mux_sel   : in std_logic; 

           ptr_ram_data_in  : in std_logic_vector(252 downto 0); 

           ptr_ram_data_out : out std_logic_vector(192 downto 0); 

           hmm_rdy          : out std_logic; 

           exit_beam        : out std_logic_vector(31 downto 0); 

           valid_beam       : out std_logic_vector(31 downto 0); 

           word_beam        : out std_logic_vector(31 downto 0) 

     ); 

end hmm_pipe_w_mdef; 

 

 

architecture Behavioral of hmm_pipe_w_mdef is 

 

component hmm_calc 

 PORT( 

  H0_prev    : IN     std_logic_vector (31 DOWNTO 0); 

      H1_prev    : IN     std_logic_vector (31 DOWNTO 0); 

      H2_prev    : IN     std_logic_vector (31 DOWNTO 0); 

      Input_Prob : IN     std_logic_vector (31 DOWNTO 0); 
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      clk        : IN     std_logic; 

      ce         : IN     std_logic; 

      sclr       : IN     std_logic; 

  word_end   : IN     std_logic; 

  inputs_rdy : IN     std_logic; 

  new_frame  : IN     std_logic; 

      senone_in0 : IN     std_logic_vector (31 DOWNTO 0); 

      senone_in1 : IN     std_logic_vector (31 DOWNTO 0); 

      senone_in2 : IN     std_logic_vector (31 DOWNTO 0); 

      tmat00     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat01     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat11     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat12     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat22     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat2E     : IN     std_logic_vector (31 DOWNTO 0); 

  InProb_out : OUT    std_logic_vector (32 downto 0); 

      H0Out      : OUT    std_logic_vector (31 DOWNTO 0); 

      H1Out      : OUT    std_logic_vector (31 DOWNTO 0); 

      H2Out      : OUT    std_logic_vector (31 DOWNTO 0); 

      HMM_best   : OUT    std_logic_vector (31 DOWNTO 0); 

      HMM_exit   : OUT    std_logic_vector (31 DOWNTO 0); 

  exit_beam  : OUT    std_logic_vector (31 downto 0); 

  valid_beam : OUT    std_logic_vector (31 downto 0); 

  word_beam  : OUT    std_logic_vector (31 downto 0); 

      data_valid : OUT    std_logic 

   ); 

END component ; 

component mdef_rom 

 PORT( 

  PH_ID        : IN     std_logic_VECTOR (12 DOWNTO 0); 

  new_id       : IN     std_logic; 
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      clk          : IN     std_logic; 

      enable       : IN     std_logic; 

      reset        : IN     std_logic; 

      senone_addr1 : OUT    std_logic_vector (10 DOWNTO 0); 

      senone_addr2 : OUT    std_logic_vector (10 DOWNTO 0); 

      senone_addr3 : OUT    std_logic_vector (10 DOWNTO 0); 

  sen_addr_rdy : OUT    std_logic; 

      tmat00       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat01       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat11       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat12       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat22       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat2E       : OUT    std_logic_vector (31 DOWNTO 0); 

  tmat_scr_rdy : OUT    std_logic 

   ); 

END component ; 

component raw_senone_ram 

 PORT( 

  clk     : IN std_logic; 

  we      : IN std_logic; 

  din     : IN std_logic_vector(31 downto 0); 

  addr    : IN std_logic_vector(12 downto 0); 

  dout    : OUT std_logic_vector(31 downto 0) 

   ); 

end component; 

 

FOR ALL : raw_senone_ram USE ENTITY work.raw_senone_ram; 

FOR ALL : mdef_rom USE ENTITY work.mdef_rom; 

FOR ALL : hmm_calc USE ENTITY work.hmm_calc; 

 

SIGNAL ptr_ram_data_tmp   : std_logic_vector(192 downto 0); 
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SIGNAL ptr_ram_data_rdy   : std_logic; 

SIGNAL senone_addr_rdy    : std_logic; 

SIGNAL senone_data_rdy1   : std_logic; 

SIGNAL H0                 : std_logic_vector(31 downto 0); 

SIGNAL H1                 : std_logic_vector(31 downto 0); 

SIGNAL H2                 : std_logic_vector(31 downto 0); 

SIGNAL H0_out             : std_logic_vector(31 downto 0); 

SIGNAL H1_out             : std_logic_vector(31 downto 0); 

SIGNAL H2_out             : std_logic_vector(31 downto 0); 

SIGNAL HMMbest            : std_logic_vector(31 downto 0); 

SIGNAL HMMexit            : std_logic_vector(31 downto 0); 

SIGNAL INPROB             : std_logic_vector(31 downto 0); 

SIGNAL InPrb_out          : std_logic_vector(32 downto 0); 

SIGNAL WRD_END            : std_logic; 

SIGNAL PH_ID              : std_logic_vector(12 downto 0); 

SIGNAL tmat_rdy_reg       : std_logic; 

SIGNAL tmat00_reg         : std_logic_vector(31 downto 0); 

SIGNAL tmat01_reg         : std_logic_vector(31 downto 0); 

SIGNAL tmat11_reg         : std_logic_vector(31 downto 0); 

SIGNAL tmat12_reg         : std_logic_vector(31 downto 0); 

SIGNAL tmat22_reg         : std_logic_vector(31 downto 0); 

SIGNAL tmat2E_reg         : std_logic_vector(31 downto 0); 

SIGNAL tmat_rdy           : std_logic; 

SIGNAL tmat00_out             : std_logic_vector(31 downto 0); 

SIGNAL tmat01_out             : std_logic_vector(31 downto 0); 

SIGNAL tmat11_out             : std_logic_vector(31 downto 0); 

SIGNAL tmat12_out             : std_logic_vector(31 downto 0); 

SIGNAL tmat22_out             : std_logic_vector(31 downto 0); 

SIGNAL tmat2E_out             : std_logic_vector(31 downto 0); 

SIGNAL input_rdy          : std_logic; 

SIGNAL senone_ram_addr1   : std_logic_vector(12 downto 0); 
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SIGNAL senone_ram_addr2   : std_logic_vector(12 downto 0); 

SIGNAL senone_ram_addr3   : std_logic_vector(12 downto 0); 

SIGNAL senone_ram_data1   : std_logic_vector(31 downto 0); 

SIGNAL senone_ram_data2   : std_logic_vector(31 downto 0); 

SIGNAL senone_ram_data3   : std_logic_vector(31 downto 0); 

SIGNAL senone_ram_wr1     : std_logic;  

SIGNAL senone_ram_wr2     : std_logic;  

SIGNAL senone_ram_wr3     : std_logic;  

SIGNAL sen_ram_data_out1  : std_logic_vector(31 downto 0); 

SIGNAL sen_ram_data_out2  : std_logic_vector(31 downto 0); 

SIGNAL sen_ram_data_out3  : std_logic_vector(31 downto 0); 

SIGNAL HMM_done           : std_logic; 

SIGNAL exit_reg           : std_logic_vector(31 downto 0); 

SIGNAL valid_reg          : std_logic_vector(31 downto 0); 

SIGNAL word_reg           : std_logic_vector(31 downto 0); 

SIGNAL new_ph_id          : std_logic; 

SIGNAL sen_addr1          : std_logic_vector(10 downto 0); 

SIGNAL sen_addr2          : std_logic_vector(10 downto 0); 

SIGNAL sen_addr3          : std_logic_vector(10 downto 0); 

SIGNAL sen_addr_rdy       : std_logic; 

 

 

 

begin 

 

process(clk,ce,sclr) 

begin 

 if(clk =  '1' and clk'event)then 

  if(sclr = '1')then 

   ptr_ram_data_tmp<=(others=>'0'); 

   ptr_ram_data_rdy<='0'; 
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   senone_addr_rdy<='0'; 

   senone_data_rdy1<='0'; 

   H0<=(OTHERS=>'0'); 

   H1<=(OTHERS=>'0'); 

   H2<=(OTHERS=>'0'); 

   INPROB<=(OTHERS=>'0'); 

   WRD_END<='0'; 

   PH_ID<=(OTHERS=>'0'); 

   tmat00_reg<=(OTHERS=>'0'); 

   tmat01_reg<=(OTHERS=>'0'); 

   tmat11_reg<=(OTHERS=>'0'); 

   tmat12_reg<=(OTHERS=>'0'); 

   tmat22_reg<=(OTHERS=>'0'); 

   tmat2E_reg<=(OTHERS=>'0'); 

   tmat_rdy_reg<='0'; 

   input_rdy<='0'; 

   hmm_rdy<='0'; 

  elsif(ce = '1')then 

   if(new_input_data = '1')then 

    INPROB<=ptr_ram_data_in(251 downto 220); 

    H0<=ptr_ram_data_in(219 downto 188); 

    H1<=ptr_ram_data_in(187 downto 156); 

    H2<=ptr_ram_data_in(155 downto 124); 

    PH_ID<=ptr_ram_data_in(24 downto 12); 

    WRD_END<=ptr_ram_data_in(0); 

    new_ph_id<=new_input_data; 

   else 

    new_ph_id<='0'; 

   end if; 

   senone_data_rdy1<=sen_addr_rdy; 

   tmat00_reg<=tmat00_out; 
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   tmat01_reg<=tmat01_out; 

   tmat11_reg<=tmat11_out; 

   tmat12_reg<=tmat12_out; 

   tmat22_reg<=tmat22_out; 

   tmat2E_reg<=tmat2E_out; 

   input_rdy<=senone_data_rdy1 AND tmat_rdy; 

   ptr_ram_data_rdy<=hmm_done; 

   ptr_ram_data_tmp(192 downto 160)<=InPrb_out; 

   ptr_ram_data_tmp(159 downto 128)<=H0_out; 

   ptr_ram_data_tmp(127 downto 96)<=H1_out; 

   ptr_ram_data_tmp(95 downto 64)<=H2_out; 

   ptr_ram_data_tmp(63 downto 32)<=HMMexit; 

   ptr_ram_data_tmp(31 downto 0)<=HMMbest; 

   ptr_ram_data_out<=ptr_ram_data_tmp; 

   hmm_rdy<=ptr_ram_data_rdy; 

   word_beam<=word_reg; 

   valid_beam<=valid_reg; 

   exit_beam<=exit_reg; 

  else 

   hmm_rdy<='0'; 

  end if; 

 end if; 

end process; 

 

process(senone_mux_sel,clk,sclr) 

begin 

 if(clk = '1' and clk'event)then 

  if(sclr = '1')then 

   senone_ram_addr1<=(others=>'0'); 

   senone_ram_addr2<=(others=>'0'); 

   senone_ram_addr3<=(others=>'0'); 
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   senone_ram_data1<=(others=>'0'); 

   senone_ram_data2<=(others=>'0'); 

   senone_ram_data3<=(others=>'0'); 

   senone_ram_wr1<='0'; 

   senone_ram_wr2<='0'; 

   senone_ram_wr3<='0'; 

  elsif(senone_mux_sel = '0')then 

   senone_ram_addr1<=senone_wr_addr; 

   senone_ram_wr1<=senone_wr_en; 

   senone_ram_data1<=senone_data_in; 

   senone_ram_addr2<=senone_wr_addr; 

   senone_ram_wr2<=senone_wr_en; 

   senone_ram_data2<=senone_data_in; 

   senone_ram_addr3<=senone_wr_addr; 

   senone_ram_wr3<=senone_wr_en; 

   senone_ram_data3<=senone_data_in; 

  elsif(senone_mux_sel = '1')then 

   senone_ram_addr1<="00" & sen_addr1; 

   senone_ram_addr2<="00" & sen_addr2; 

   senone_ram_addr3<="00" & sen_addr3; 

   senone_ram_data1<=(others=>'0'); 

   senone_ram_data2<=(others=>'0'); 

   senone_ram_data3<=(others=>'0'); 

   senone_ram_wr1<='0'; 

   senone_ram_wr2<='0'; 

   senone_ram_wr3<='0'; 

  else 

   senone_ram_addr1<=(OTHERS=>'0'); 

   senone_ram_addr2<=(OTHERS=>'0'); 

   senone_ram_addr3<=(OTHERS=>'0'); 

   senone_ram_data1<=(OTHERS=>'0'); 
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   senone_ram_data2<=(OTHERS=>'0'); 

   senone_ram_data3<=(OTHERS=>'0');   

   senone_ram_wr1<='0'; 

   senone_ram_wr2<='0'; 

   senone_ram_wr3<='0'; 

  end if; 

 end if; 

end process; 

hmm_pipe : hmm_calc 

 PORT MAP( 

    clk        => clk, 

    ce         => ce, 

    sclr       => sclr, 

    new_frame  => new_frame, 

    H0_prev    => H0, 

        H1_prev    => H1, 

        H2_prev    => H2, 

        Input_Prob => INPROB, 

    word_end   => WRD_END, 

    inputs_rdy => input_rdy, 

        senone_in0 => sen_ram_data_out1, 

        senone_in1 => sen_ram_data_out2, 

        senone_in2 => sen_ram_data_out3, 

        tmat00     => tmat00_reg, 

        tmat01     => tmat01_reg, 

        tmat11     => tmat11_reg, 

        tmat12     => tmat12_reg, 

        tmat22     => tmat22_reg, 

        tmat2E     => tmat2E_reg, 

    InProb_out => InPrb_out, 

        H0Out      => H0_out, 
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        H1Out      => H1_out, 

        H2Out      => H2_out, 

        HMM_best   => HMMbest, 

        HMM_exit   => HMMexit, 

    exit_beam  => exit_reg, 

    valid_beam => valid_reg, 

    word_beam  => word_reg, 

         data_valid => hmm_done 

    ); 

mdef : mdef_rom 

 PORT MAP( 

    clk          => clk, 

    enable       => ce, 

    reset        => sclr, 

    PH_ID        => PH_ID, 

    new_id       => new_ph_id, 

    senone_addr1 => sen_addr1, 

        senone_addr2 => sen_addr2, 

        senone_addr3 => sen_addr3, 

    sen_addr_rdy => sen_addr_rdy, 

        tmat00       => tmat00_out, 

        tmat01       => tmat01_out, 

        tmat11       => tmat11_out, 

        tmat12       => tmat12_out, 

        tmat22       => tmat22_out, 

        tmat2E       => tmat2E_out, 

    tmat_scr_rdy => tmat_rdy 

    ); 

sen_ram1 : raw_senone_ram 

 PORT MAP( 

     clk   => clk, 
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    we  => senone_ram_wr1, 

    din => senone_ram_data1, 

    addr => senone_ram_addr1, 

    dout => sen_ram_data_out1 

    ); 

sen_ram2 : raw_senone_ram 

 PORT MAP( 

     clk   => clk, 

    we  => senone_ram_wr2, 

    din => senone_ram_data2, 

    addr => senone_ram_addr2, 

    dout => sen_ram_data_out2 

    ); 

sen_ram3 : raw_senone_ram 

 PORT MAP( 

     clk   => clk, 

    we  => senone_ram_wr3, 

    din => senone_ram_data3, 

    addr => senone_ram_addr3, 

    dout => sen_ram_data_out3 

    ); 

        

end Behavioral; 

 

B.10 – hmm_calc_vNEW.vhd 

 

-- VHDL Entity Phone_lib.hmm_calc.symbol 

-- 

-- Created: 

--          by - Jeffrey W. Schuster 

--          on - 11-12-05 
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-- 

-- Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399) 

-- 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_arith.all; 

USE ieee.STD_LOGIC_SIGNED.all; 

 

 

ENTITY hmm_calc IS 

   PORT(  

      H0_prev    : IN     std_logic_vector (31 DOWNTO 0); 

      H1_prev    : IN     std_logic_vector (31 DOWNTO 0); 

      H2_prev    : IN     std_logic_vector (31 DOWNTO 0); 

      Input_Prob : IN     std_logic_vector (31 DOWNTO 0); 

      clk        : IN     std_logic; 

      ce         : IN     std_logic; 

      sclr       : IN     std_logic; 

  word_end   : IN     std_logic; 

  inputs_rdy : IN     std_logic; 

  new_frame  : IN     std_logic; 

      senone_in0 : IN     std_logic_vector (31 DOWNTO 0); 

      senone_in1 : IN     std_logic_vector (31 DOWNTO 0); 

      senone_in2 : IN     std_logic_vector (31 DOWNTO 0); 

      tmat00     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat01     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat11     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat12     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat22     : IN     std_logic_vector (31 DOWNTO 0); 

      tmat2E     : IN     std_logic_vector (31 DOWNTO 0); 

  InProb_out : OUT    std_logic_vector (32 downto 0); 
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      H0Out      : OUT    std_logic_vector (31 DOWNTO 0); 

      H1Out      : OUT    std_logic_vector (31 DOWNTO 0); 

      H2Out      : OUT    std_logic_vector (31 DOWNTO 0); 

      HMM_best   : OUT    std_logic_vector (31 DOWNTO 0); 

      HMM_exit   : OUT    std_logic_vector (31 DOWNTO 0); 

  exit_beam  : OUT    std_logic_vector (31 downto 0); 

  valid_beam : OUT    std_logic_vector (31 downto 0); 

  word_beam  : OUT    std_logic_vector (31 downto 0); 

      data_valid : OUT    std_logic 

   ); 

 

-- Declarations 

 

END hmm_calc ; 

 

ARCHITECTURE struct OF hmm_calc IS 

 

   -- Architecture declarations 

 

   -- Internal signal declarations 

 SIGNAL comp1     : std_logic_vector(31 downto 0); 

 SIGNAL comp2     : std_logic_vector(31 downto 0); 

 SIGNAL comp3     : std_logic_vector(31 downto 0); 

 SIGNAL comp4     : std_logic_vector(31 downto 0); 

 SIGNAL comp5     : std_logic_vector(31 downto 0); 

 SIGNAL comp6     : std_logic_vector(31 downto 0); 

 SIGNAL state0    : std_logic_vector(31 downto 0); 

 SIGNAL state1    : std_logic_vector(31 downto 0); 

 SIGNAL state2    : std_logic_vector(31 downto 0); 

 SIGNAL state0_reg    : std_logic_vector(31 downto 0); 

 SIGNAL state1_reg    : std_logic_vector(31 downto 0); 
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 SIGNAL state2_reg    : std_logic_vector(31 downto 0); 

 SIGNAL state0_reg1    : std_logic_vector(31 downto 0); 

 SIGNAL state1_reg1    : std_logic_vector(31 downto 0); 

 SIGNAL state2_reg1    : std_logic_vector(31 downto 0); 

 SIGNAL senone0_reg    : std_logic_vector(31 downto 0); 

 SIGNAL senone1_reg    : std_logic_vector(31 downto 0); 

 SIGNAL senone2_reg    : std_logic_vector(31 downto 0); 

 SIGNAL senone0_reg1   : std_logic_vector(31 downto 0); 

 SIGNAL senone1_reg1   : std_logic_vector(31 downto 0); 

 SIGNAL senone2_reg1   : std_logic_vector(31 downto 0); 

 SIGNAL bcomp1         : std_logic_vector(31 downto 0); 

 SIGNAL bcomp2         : std_logic_vector(31 downto 0); 

 SIGNAL bcomp3         : std_logic_vector(31 downto 0); 

 SIGNAL bstate         : std_logic_vector(31 downto 0); 

 SIGNAL bstate1        : std_logic_vector(31 downto 0); 

 SIGNAL tmat_e_reg     : std_logic_vector(31 downto 0); 

 SIGNAL we_reg         : std_logic; 

 SIGNAL tmat_e_reg1    : std_logic_vector(31 downto 0); 

 SIGNAL we_reg1        : std_logic; 

 SIGNAL tmat_e_reg2    : std_logic_vector(31 downto 0); 

 SIGNAL we_reg2        : std_logic; 

 SIGNAL we_reg3        : std_logic; 

 SIGNAL we_reg4        : std_logic; 

 SIGNAL ebeam          : std_logic_vector(31 downto 0); 

 SIGNAL vbeam          : std_logic_vector(31 downto 0); 

 SIGNAL wbeam          : std_logic_vector(31 downto 0); 

 SIGNAL exit_scr_reg   : std_logic_vector(31 downto 0); 

 SIGNAL exit_scr_reg1  : std_logic_vector(31 downto 0); 

 SIGNAL comp_go        : std_logic; 

 SIGNAL comp_rdy       : std_logic; 

 SIGNAL comp1_rdy      : std_logic; 
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 SIGNAL comp2_rdy      : std_logic; 

 SIGNAL beam_comp_go   : std_logic; 

 SIGNAL H0out_reg      : std_logic_vector(31 downto 0); 

 SIGNAL H1out_reg      : std_logic_vector(31 downto 0); 

 SIGNAL H2out_reg      : std_logic_vector(31 downto 0); 

 SIGNAL HMM_best_reg   : std_logic_vector(31 downto 0); 

 SIGNAL HMM_exit_reg   : std_logic_vector(31 downto 0); 

 SIGNAL HMM_rdy        : std_logic; 

 

 

-- SIGNAL exit_beam : std_logic_vector(31 downto 0); 

-- SIGNAL valid_beam: std_logic_vector(31 downto 0); 

-- SIGNAL word_beam : std_logic_vector(31 downto 0); 

 

 constant input_reset : std_logic_vector(32 downto 0) := (OTHERS =>'1'); 

-- constant valid_offset: std_logic_vector(31 downto 0) := 

"00000000000000000000000000000010"; 

-- constant exit_offset : std_logic_vector(31 downto 0) := 

"00000000000000000000000000000011"; 

-- constant word_offset : std_logic_vector(31 downto 0) := 

"00000000000000000000000000000001"; 

 

 

   -- Component Declarations 

   

 

BEGIN 

   -- Architecture concurrent statements 

   -- HDL Embedded Text Block 1 eb1 

   -- eb1 1                                         

process(clk,sclr,ce,word_end) 
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begin 

 if(clk = '1' and clk'event)then 

  if(sclr = '1')then 

   comp1<=(others=>'0'); 

   comp2<=(others=>'0'); 

   comp3<=(others=>'0'); 

   comp4<=(others=>'0'); 

   comp5<=(others=>'0'); 

   comp6<=(others=>'0'); 

   state0<=(others=>'0'); 

   state1<=(others=>'0'); 

   state2<=(others=>'0'); 

   senone0_reg<=(others=>'0'); 

   senone1_reg<=(others=>'0'); 

   senone2_reg<=(others=>'0'); 

   tmat_e_reg<=(others=>'0'); 

   we_reg<='0'; 

   senone0_reg1<=(others=>'0'); 

   senone1_reg1<=(others=>'0'); 

   senone2_reg1<=(others=>'0'); 

   tmat_e_reg1<=(others=>'0'); 

   we_reg1<='0'; 

   bcomp1<=(others=>'0'); 

   bcomp2<=(others=>'0'); 

   bcomp3<=(others=>'0'); 

   bstate<=(others=>'0'); 

   bstate1<=(others=>'0'); 

   state0_reg<=(others=>'0'); 

   state1_reg<=(others=>'0'); 

   state2_reg<=(others=>'0'); 

   state0_reg1<=(others=>'0'); 
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   state1_reg1<=(others=>'0'); 

   state2_reg1<=(others=>'0'); 

   tmat_e_reg2<=(others=>'0'); 

   we_reg2<='0'; 

   we_reg3<='0'; 

   we_reg4<='0'; 

   ebeam<=(others=>'0'); 

   vbeam<=(others=>'0'); 

   wbeam<=(others=>'0'); 

   exit_scr_reg<=(others=>'0'); 

   exit_scr_reg1<=(others=>'0'); 

   comp_go<='0'; 

   comp_rdy<='0'; 

   comp1_rdy<='0'; 

   comp2_rdy<='0'; 

   beam_comp_go<='0'; 

   H0out_reg<=(others=>'0'); 

   H1out_reg<=(others=>'0'); 

   H2out_reg<=(others=>'0'); 

   HMM_best_reg<=(others=>'0'); 

   HMM_exit_reg<=(others=>'0'); 

   HMM_rdy<='0'; 

   data_valid<='0'; 

  elsif(ce = '1')then 

   if(new_frame = '1')then 

    vbeam<=(others=>'0'); 

    ebeam<=(others=>'0'); 

    wbeam<=(others=>'0'); 

   end if; 

   if(inputs_rdy = '1')then 

    comp1<=Input_prob; 
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    comp2<=H0_prev+tmat00; 

    comp3<=H0_prev+tmat01; 

    comp4<=H1_prev+tmat11; 

    comp5<=H1_prev+tmat12; 

    comp6<=H2_prev+tmat22; 

    tmat_e_reg<=tmat2e; 

    senone0_reg<=senone_in0; 

    senone1_reg<=senone_in1; 

    senone2_reg<=senone_in2; 

    we_reg<=word_end; 

    comp_go<=inputs_rdy; 

   else 

    comp_go<='0'; 

   end if; 

   if(comp_go<='1')then 

    if(comp1 > comp2)then 

     bcomp1<=comp1; 

    else 

     bcomp1<=comp2; 

    end if; 

    if(comp3 > comp4)then 

     bcomp2<=comp3; 

    else 

     bcomp2<=comp4; 

    end if; 

    if(comp5 > comp6)then 

     bcomp3<=comp5; 

    else 

     bcomp3<=comp6; 

    end if; 

    tmat_e_reg1<=tmat_e_reg; 
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    we_reg1<=we_reg; 

    senone0_reg1<=senone0_reg; 

    senone1_reg1<=senone1_reg; 

    senone2_reg1<=senone2_reg; 

    comp_rdy<=comp_go; 

   else 

    comp_rdy<='0'; 

   end if; 

   if(comp_rdy = '1')then 

    state0<=bcomp1+senone0_reg1; 

    state1<=bcomp2+senone1_reg1; 

    state2<=bcomp3+senone2_reg1; 

    tmat_e_reg2<=tmat_e_reg1; 

    we_reg2<=we_reg1; 

    comp1_rdy<=comp_rdy; 

   else 

    comp1_rdy<='0'; 

   end if; 

   if(comp1_rdy = '1')then 

    if(state0 > state1)then 

     bstate1<=state0; 

    else 

     bstate1<=state1; 

    end if; 

    state0_reg<=state0; 

    state1_reg<=state1; 

    state2_reg<=state2; 

    exit_scr_reg<= state2+tmat_e_reg2; 

    we_reg3<=we_reg2; 

    comp2_rdy<=comp1_rdy; 

   else 
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    comp2_rdy<='0'; 

   end if; 

   if (comp2_rdy = '1')then 

    if(bstate1 > state2_reg)then 

     bstate<=bstate1; 

    else 

     bstate<=state2_reg; 

    end if; 

    state0_reg1<=state0_reg; 

    state1_reg1<=state1_reg; 

    state2_reg1<=state2_reg; 

    exit_scr_reg1<=exit_scr_reg; 

    we_reg4<=we_reg3; 

    beam_comp_go<=comp2_rdy; 

   else 

    beam_comp_go<='0'; 

   end if; 

   if(beam_comp_go = '1')then 

    if(bstate > vbeam)then 

     vbeam<=bstate; 

    end if; 

    if(exit_scr_reg > ebeam)then 

     ebeam<=exit_scr_reg; 

    end if; 

    if(we_reg4 = '1')then 

     if(bstate > wbeam)then 

      wbeam<=bstate; 

     end if; 

    end if; 

    H0out_reg<=state0_reg1; 

    H1out_reg<=state1_reg1; 
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    H2out_reg<=state2_reg1; 

    HMM_exit_reg<=exit_scr_reg1; 

    HMM_best_reg<=bstate; 

    HMM_rdy<=beam_comp_go; 

   else 

    HMM_rdy<='0'; 

   end if; 

   InProb_out<=input_reset; 

   H0out<=H0out_reg; 

   H1out<=H1out_reg; 

   H2out<=H2out_reg; 

   HMM_best<=HMM_best_reg; 

   HMM_exit<=HMM_exit_reg; 

   exit_beam<=ebeam-330254; 

   valid_beam<=vbeam-507006; 

   word_beam<=wbeam; 

   data_valid<=HMM_rdy; 

  else 

  end if; 

 end if; 

end process; 

 

-- Instance port mappings. 

END struct; 

 

B.11 – mdef_rom_struct.vhd 

 

-- VHDL Entity Phone_lib.mdef_rom.symbol 

-- 

-- Created: 

--          by - Jeffrey W. Schuster 
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--          on - 11-11-05  

-- 

-- Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399) 

-- 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_arith.all; 

USE ieee.std_logic_unsigned.all; 

 

ENTITY mdef_rom IS 

   PORT(  

      PH_ID        : IN     std_logic_VECTOR (12 DOWNTO 0); 

  new_id       : IN     std_logic; 

      clk          : IN     std_logic; 

      enable       : IN     std_logic; 

      reset        : IN     std_logic; 

      senone_addr1 : OUT    std_logic_vector (10 DOWNTO 0); 

      senone_addr2 : OUT    std_logic_vector (10 DOWNTO 0); 

      senone_addr3 : OUT    std_logic_vector (10 DOWNTO 0); 

  sen_addr_rdy : OUT    std_logic; 

      tmat00       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat01       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat11       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat12       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat22       : OUT    std_logic_vector (31 DOWNTO 0); 

      tmat2E       : OUT    std_logic_vector (31 DOWNTO 0); 

  tmat_scr_rdy : OUT    std_logic 

   ); 

 

-- Declarations 
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END mdef_rom ; 

 

 

ARCHITECTURE struct OF mdef_rom IS 

 

   -- Architecture declarations 

 

   -- Internal signal declarations 

   SIGNAL SPO   : std_logic_VECTOR(31 DOWNTO 0); 

   SIGNAL SPO1  : std_logic_VECTOR(31 DOWNTO 0); 

   SIGNAL SPO2  : std_logic_VECTOR(31 DOWNTO 0); 

   SIGNAL SPO3  : std_logic_VECTOR(31 DOWNTO 0); 

   SIGNAL SPO4  : std_logic_VECTOR(31 DOWNTO 0); 

   SIGNAL SPO5  : std_logic_VECTOR(31 DOWNTO 0); 

   SIGNAL dout0  : std_logic_VECTOR(5 DOWNTO 0); 

   SIGNAL dout1 : std_logic_VECTOR(10 DOWNTO 0); 

   SIGNAL dout2 : std_logic_VECTOR(10 DOWNTO 0); 

   SIGNAL dout3 : std_logic_VECTOR(10 DOWNTO 0); 

 SIGNAL new_sen_addr : std_logic; 

 SIGNAL new_tmat_scr1: std_logic; 

 SIGNAL new_tmat_scr2: std_logic; 

 

 attribute syn_ramstyle : string; 

 attribute syn_ramstyle of dout0 : signal is "block_ram"; 

 attribute syn_ramstyle of dout1 : signal is "block_ram"; 

 attribute syn_ramstyle of dout2 : signal is "block_ram"; 

 attribute syn_ramstyle of dout3 : signal is "block_ram"; 

 attribute syn_ramstyle of SPO  : signal is "block_ram"; 

 attribute syn_ramstyle of SPO1 : signal is "block_ram"; 

 attribute syn_ramstyle of SPO2 : signal is "block_ram"; 

 attribute syn_ramstyle of SPO3 : signal is "block_ram"; 
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 attribute syn_ramstyle of SPO4 : signal is "block_ram"; 

 attribute syn_ramstyle of SPO5 : signal is "block_ram"; 

 

   -- Component Declarations 

 

 

   COMPONENT sen1_addr_rom 

   PORT ( 

      addr : IN     std_logic_VECTOR (12 DOWNTO 0); 

      clk  : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (10 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT sen2_addr_rom 

   PORT ( 

      addr : IN     std_logic_VECTOR (12 DOWNTO 0); 

      clk  : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (10 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT sen3_addr_rom 

   PORT ( 

      addr : IN     std_logic_VECTOR (12 DOWNTO 0); 

      clk  : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (10 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT t0_hmm_1_rom 

   PORT ( 

      addr   : IN     std_logic_VECTOR (5 DOWNTO 0); 

  clk : IN     std_logic; 
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      dout : OUT    std_logic_VECTOR (31 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT t0_hmm_2_rom 

   PORT ( 

      addr   : IN     std_logic_VECTOR (5 DOWNTO 0); 

  clk : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (31 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT t1_hmm_0_rom 

   PORT ( 

      addr   : IN     std_logic_VECTOR (5 DOWNTO 0); 

  clk : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (31 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT t1_hmm_1_rom 

   PORT ( 

      addr   : IN     std_logic_VECTOR (5 DOWNTO 0); 

  clk : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (31 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT t1_hmm_2_rom 

   PORT ( 

      addr   : IN     std_logic_VECTOR (5 DOWNTO 0); 

  clk : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (31 DOWNTO 0) 

   ); 

   END COMPONENT; 
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   COMPONENT t_exit_rom 

   PORT ( 

      addr   : IN     std_logic_VECTOR (5 DOWNTO 0); 

  clk : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (31 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT tmat_id_rom 

   PORT ( 

      addr : IN     std_logic_VECTOR (12 DOWNTO 0); 

      clk  : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (5 DOWNTO 0) 

   ); 

   END COMPONENT; 

 

   -- Optional embedded configurations 

   -- pragma synthesis_off 

 

 

   FOR ALL : sen1_addr_rom USE ENTITY work.sen1_addr_rom; 

   FOR ALL : sen2_addr_rom USE ENTITY work.sen2_addr_rom; 

   FOR ALL : sen3_addr_rom USE ENTITY work.sen3_addr_rom; 

   FOR ALL : t0_hmm_1_rom USE ENTITY work.t0_hmm_1_rom; 

   FOR ALL : t0_hmm_2_rom USE ENTITY work.t0_hmm_2_rom; 

   FOR ALL : t1_hmm_0_rom USE ENTITY work.t1_hmm_0_rom; 

   FOR ALL : t1_hmm_1_rom USE ENTITY work.t1_hmm_1_rom; 

   FOR ALL : t1_hmm_2_rom USE ENTITY work.t1_hmm_2_rom; 

   FOR ALL : t_exit_rom USE ENTITY work.t_exit_rom; 

   FOR ALL : tmat_id_rom USE ENTITY work.tmat_id_rom; 

   -- pragma synthesis_on 
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BEGIN 

   -- Architecture concurrent statements 

                                       

   process(clk,reset,enable) 

      begin 

         if (clk = '1' and clk'event)then 

      if(reset = '1')then 

     tmat00<=(OTHERS=>'0'); 

     tmat01<=(OTHERS=>'0'); 

     tmat11<=(OTHERS=>'0'); 

     tmat12<=(OTHERS=>'0'); 

     tmat22<=(OTHERS=>'0'); 

     tmat2e<=(OTHERS=>'0'); 

     senone_addr1<="00000000000"; 

               senone_addr2<="00000000000"; 

               senone_addr3<="00000000000"; 

     new_sen_addr<='0'; 

     new_tmat_scr1<='0'; 

     new_tmat_scr2<='0'; 

      elsif(enable ='1')then 

     tmat00<=SPO; 

     tmat01<=SPO1; 

     tmat11<=SPO2; 

     tmat12<=SPO3; 

     tmat22<=SPO4; 

     tmat2e<=SPO5; 

               senone_addr1<=dout1; 

               senone_addr2<=dout2; 

               senone_addr3<=dout3; 

         if(new_id = '1')then 
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          new_sen_addr<=new_id; 

      new_tmat_scr1<=new_id; 

     else 

      new_sen_addr<='0'; 

      new_tmat_scr1<='0'; 

     end if; 

     sen_addr_rdy<=new_sen_addr; 

     new_tmat_scr2<=new_tmat_scr1; 

     tmat_scr_rdy<=new_tmat_scr2; 

    else 

     sen_addr_rdy<='0'; 

     tmat_scr_rdy<='0'; 

    end if; 

         end if; 

   end process; 

 

    -- Instance port mappings. 

   I0 : tmat_id_rom 

      PORT MAP ( 

         addr => PH_ID, 

         clk  => clk, 

         dout => dout0 

      );  

   I1 : sen1_addr_rom 

      PORT MAP ( 

         addr => PH_ID, 

         clk  => clk, 

         dout => dout1 

      ); 

   I2 : sen2_addr_rom 

      PORT MAP ( 
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         addr => PH_ID, 

         clk  => clk, 

         dout => dout2 

      ); 

   I3 : sen3_addr_rom 

      PORT MAP ( 

         addr => PH_ID, 

         clk  => clk, 

         dout => dout3 

      ); 

   I4 : t0_hmm_1_rom 

      PORT MAP ( 

         addr   => dout0, 

         dout => SPO1, 

     clk =>clk 

      ); 

   I5 : t0_hmm_2_rom 

      PORT MAP ( 

         addr   => dout0, 

         dout => SPO3, 

     clk => clk 

      ); 

   I6 : t1_hmm_0_rom 

      PORT MAP ( 

         addr   => dout0, 

         dout => SPO, 

     clk => clk 

      ); 

   I7 : t1_hmm_1_rom 

      PORT MAP ( 

         addr   => dout0, 



 257

         dout => SPO2, 

     clk => clk 

      ); 

   I8 : t1_hmm_2_rom 

      PORT MAP ( 

         addr   => dout0, 

         dout => SPO4, 

     clk => clk 

      ); 

   I9 : t_exit_rom 

      PORT MAP ( 

         addr   => dout0, 

         dout => SPO5, 

     clk => clk 

      ); 

 

 

END struct; 

 

 

 

B.12 – ph_ptr_ram_NEW_struct.vhd 

 

-- VHDL Entity PH_PTR_RAM_V2 

-- 

-- Created: 

--          by - Jeffrey W. Schuster 

--          at - 11:05:05 AM 1-16-06 

-- 

-- 

-- 



 258

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_arith.all; 

USE ieee.STD_LOGIC_UNSIGNED.all; 

 

ENTITY PH_PTR_RAM IS 

   PORT(  

    PH_WRD_SEL    : IN     std_logic; 

      addr_rdy      : IN     std_logic; 

      clk           : IN     std_logic; 

      init          : IN     std_logic; 

     phone_data    : IN     std_logic_vector (192 DOWNTO 0); 

      phone_rd_addr : IN     std_logic_vector (8 DOWNTO 0); 

      phone_wr_addr : IN     std_logic_vector (8 DOWNTO 0); 

  phone_wr    : IN    std_logic; 

   word_data     : IN     std_logic_vector (192 DOWNTO 0); 

      word_rd_addr  : IN     std_logic_vector (8 DOWNTO 0); 

      word_wr_addr  : IN     std_logic_vector (8 DOWNTO 0); 

      word_wr       : IN     std_logic; 

      phone_data_out: OUT    std_logic_vector (252 DOWNTO 0); 

  word_data_out : OUT    std_logic_vector (252 DOWNTO 0); 

      new_data      : OUT    std_logic 

   ); 

 

-- Declarations 

 

END PH_PTR_RAM ; 

 

 

ARCHITECTURE struct OF PH_PTR_RAM IS 
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 SIGNAL  data_rdy_tmp  : std_logic;  

 SIGNAL  phone_addr    : std_logic_vector(8 downto 0); 

 SIGNAL  word_addr     : std_logic_vector(8 downto 0); 

 SIGNAL  rd_addr       : std_logic_vector(8 downto 0); 

 SIGNAL  phone_data_tmp: std_logic_vector(192 downto 0); 

 SIGNAL  word_data_tmp : std_logic_vector(192 downto 0); 

 SIGNAL  data          : std_logic_vector(59 downto 0); 

-- SIGNAL  data_rdy_tmp1 : std_logic; 

 

 

   COMPONENT data_ram 

   PORT ( 

      addra : IN     std_logic_VECTOR (8 DOWNTO 0); 

      addrb : IN     std_logic_VECTOR (8 DOWNTO 0); 

--  sinita: IN     std_logic; 

--  sinitb: IN     std_logic; 

      clka  : IN     std_logic; 

      clkb  : IN     std_logic; 

      dina  : IN     std_logic_VECTOR (192 DOWNTO 0); 

  dinb  : IN     std_logic_vector (192 downto 0); 

      wea   : IN     std_logic; 

  web   : IN     std_logic; 

  douta : OUT    std_logic_VECTOR (192 DOWNTO 0); 

      doutb : OUT    std_logic_VECTOR (192 DOWNTO 0) 

   ); 

   END COMPONENT; 

   COMPONENT ptr_rom 

   PORT ( 

      addr : IN     std_logic_VECTOR (8 DOWNTO 0); 

      clk  : IN     std_logic; 

      dout : OUT    std_logic_VECTOR (59 DOWNTO 0) 
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   ); 

   END COMPONENT; 

  

   FOR ALL : data_ram USE ENTITY work.data_ram; 

   FOR ALL : ptr_rom USE ENTITY work.ptr_rom; 

   -- pragma synthesis_on 

 

 

BEGIN 

 

 

 process(init,clk) 

 begin 

 if(clk  = '1' and clk'event)then 

  if(init = '1')then 

   data_rdy_tmp<='0'; 

--   data_rdy_tmp1<='0'; 

  else 

   data_rdy_tmp<=addr_rdy; 

--   data_rdy_tmp<=data_rdy_tmp1; 

  end if; 

 new_data<=data_rdy_tmp; 

 end if; 

 end process; 

 

 process(word_wr,clk,init) 

 begin 

-- CASE word_wr IS 

--  WHEN '0'|'L' => word_addr<=word_rd_addr; 

--  WHEN '1'|'H' => word_addr<=word_wr_addr; 

--  WHEN OTHERS => word_addr <= (OTHERS => 'X'); 
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--   END CASE; 

 if(clk = '1' and clk'event)then 

  if(init = '1' )then 

   word_addr<=(OTHERS=>'0'); 

  elsif(word_wr = '1')then 

   word_addr<=word_wr_addr; 

  elsif(word_wr = '0')then 

   word_addr<=word_rd_addr; 

  else 

   word_addr<=(OTHERS=>'0'); 

  end if; 

 end if; 

 

 end process; 

    

 process(phone_wr,clk,init) 

 begin 

-- CASE phone_wr IS 

--  WHEN '0'|'L' => phone_addr<=phone_rd_addr; 

--  WHEN '1'|'H' => phone_addr<=phone_wr_addr; 

--  WHEN OTHERS => phone_addr <= (OTHERS => 'X'); 

-- END CASE; 

 if(clk = '1' and clk'event)then 

  if(init = '1')then 

   phone_addr<=(OTHERS=>'0'); 

  elsif(phone_wr = '1')then 

   phone_addr<=phone_wr_addr; 

  elsif(phone_wr = '0')then 

   phone_addr<=phone_rd_addr; 

  else 

   phone_addr<=(OTHERS=>'0'); 
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  end if; 

 end if; 

 end process; 

 

 phone_data_out<=phone_data_tmp & data; 

 word_data_out <=word_data_tmp  & data; 

 

 process(PH_WRD_SEL,clk,init) 

 begin 

-- CASE PH_WRD_SEL IS 

--  WHEN '0'|'L' => rd_addr<=phone_rd_addr; 

--  WHEN '1'|'H' => rd_addr<=word_rd_addr; 

--  WHEN OTHERS => rd_addr <= (OTHERS => 'X'); 

--   END CASE; 

 if(clk = '1' and clk'event)then 

  if(init = '1')then 

   rd_addr<=(OTHERS=>'0'); 

  elsif(PH_WRD_SEL = '1')then 

   rd_addr<=word_rd_addr; 

  elsif(PH_WRD_SEL = '0')then 

   rd_addr<=phone_rd_addr; 

  else 

   rd_addr<=(OTHERS=>'0'); 

  end if; 

 end if; 

 end process; 

 

   -- Instance port mappings. 

  I0 : data_ram 

      PORT MAP ( 

         addra => phone_addr, 
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         addrb => word_addr, 

--   sinita=> init, 

--   sinitb=> init, 

         clka  => clk, 

         clkb  => clk, 

         dina  => phone_data, 

   dinb  => word_data, 

   douta => phone_data_tmp, 

         doutb => word_data_tmp, 

         wea   => phone_wr, 

   web   => word_wr 

      ); 

   I1 : ptr_rom 

      PORT MAP ( 

         addr => rd_addr, 

         clk  => clk, 

         dout => data 

      ); 

 

END struct; 

 

B.13 – new_pruner.vhd 

 

-- VHDL Entity prune_block 

-- 

-- Created: 

--          by - Jeffrey W. Schuster  

--          at - 1:08PM 1-6-06 

-- 

--  

-- 
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LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_arith.all; 

USE ieee.STD_LOGIC_UNSIGNED.all; 

 

ENTITY prune_block IS 

   PORT(  

      clk          : IN     std_logic; 

  reset        : IN     std_logic; 

      prune_enable : IN     std_logic; 

--  end_of_phase : IN     std_logic; 

      e_beam       : IN     std_logic_vector (31 DOWNTO 0); 

  v_beam       : IN     std_logic_vector (31 DOWNTO 0); 

      ram_data_rdy : IN     std_logic; 

      hmm_data     : IN     std_logic_vector (252 DOWNTO 0); 

      data_ready   : OUT    std_logic; 

      dead         : OUT    std_logic; 

      pal          : OUT    std_logic; 

      pal_val      : OUT    std_logic 

--      prune_done   : OUT    std_logic 

     ); 

 

-- Declarations 

 

END prune_block ; 

 

 

ARCHITECTURE struct OF prune_block IS 

 

 SIGNAL data_rdy_tmp1   : std_logic; 

 SIGNAL data_rdy_tmp2   : std_logic; 
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 SIGNAL prune_go        : std_logic; 

 SIGNAL hmm_exit_tmp    : std_logic_vector(31 downto 0); 

 SIGNAL hmm_best_tmp    : std_logic_vector(31 downto 0); 

 SIGNAL e_beam_tmp      : std_logic_vector(31 downto 0); 

 SIGNAL v_beam_tmp      : std_logic_vector(31 downto 0); 

 SIGNAL e_chk           : std_logic; 

   SIGNAL v_chk           : std_logic; 

 SIGNAL prune_go_reg    : std_logic; 

 SIGNAL prune_go_reg1   : std_logic; 

 

BEGIN 

 

 process(clk,reset,prune_enable,ram_data_rdy) 

 begin 

 if(clk = '1' and clk'event)then 

  if(reset = '1')then  

   data_ready<='0'; 

   data_rdy_tmp1<='0'; 

   data_rdy_tmp2<='0'; 

   prune_go<='0'; 

   hmm_exit_tmp<=(OTHERS=>'0'); 

   hmm_best_tmp<=(OTHERS=>'0'); 

   e_beam_tmp<=(OTHERS=>'0'); 

   v_beam_tmp<=(OTHERS=>'0'); 

   prune_go_reg<='0'; 

   prune_go_reg1<='0'; 

  elsif(prune_enable = '1')then 

   e_beam_tmp<=e_beam; 

   v_beam_tmp<=v_beam; 

   if(ram_data_rdy = '1')then 

    hmm_best_tmp<=hmm_data(91 downto 60); 
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    hmm_exit_tmp<=hmm_data(123 downto 92); 

    prune_go<=ram_data_rdy; 

   else 

    prune_go<='0'; 

   end if; 

   prune_go_reg<=prune_go; 

   prune_go_reg1<=prune_go_reg; 

   data_rdy_tmp1<=ram_data_rdy; 

   data_rdy_tmp2<=data_rdy_tmp1; 

   data_ready<=data_rdy_tmp2; 

  else 

   prune_go_reg<='0'; 

   prune_go_reg1<='0'; 

  end if; 

 end if; 

 end process; 

 

  process(clk,prune_go_reg) 

      

   begin 

      if (clk = '1' and clk'event)then 

   if(prune_go_reg = '1')then 

          if( hmm_best_tmp >= v_beam_tmp ) then 

            v_chk <= '1'; 

          else 

            v_chk <= '0'; 

          end if; 

    if( hmm_exit_tmp >= e_beam_tmp ) then 

            e_chk <= '1'; 

          else 

            e_chk <= '0'; 
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          end if; 

   else 

    v_chk<='0'; 

    e_chk<='0'; 

   end if; 

      end if; 

   end process; 

 

 

process(clk,reset,prune_go_reg1) 

begin 

  if(clk = '1' and clk'event)then 

   if(reset = '1')then 

   pal<='0'; 

   pal_val<='0'; 

   dead<='0'; 

   elsif(prune_enable = '1')then 

   if(prune_go_reg1 = '1')then 

    dead<=not(e_chk) AND not(v_chk); 

    pal<=v_chk OR e_chk; 

    pal_val<= e_chk; 

   else 

    pal<='0'; 

    pal_val<='0'; 

    dead<='0'; 

   end if; 

  elsif(prune_enable = '0')then 

   pal<='0'; 

   pal_val<='0'; 

   dead<='0'; 

  else 
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   pal<='0'; 

   pal_val<='0'; 

   dead<='0'; 

  end if; 

 end if; 

   end process; 

 

END struct; 
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