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Approximately 250,000 – 400,000 individuals in the United States have spinal cord injuries 

(SCI); urologic complications, including bladder dysfunction, are among the most common 

problems these patients encounter. Although extensive studies have been conducted on the 

effects of spinal cord injury on bladder function, the alterations in mechanical behavior and 

functional properties of the bladder wall tissue and the underlying mechanisms are not well 

understood. Using a rat model of SCI, it has been previously demonstrated that the bladder wall 

significantly remodeled in early stages after injury. The remodeling process included changes in 

mechanical properties, composition and structure of the bladder wall, and occurred as early as 10 

days post-injury.  

Based on the previous findings, it was hypothesized that the altered mechanical 

environment of the urinary bladder following spinal cord injury was the key signal for the 

changes in the tissue functional properties. In order to test this hypothesis and gain a better 

understanding of relationship between function and structure of bladder wall following SCI, the 

present study combined different experimental methods (including mechanical testing, 

biochemical assays and histomorphometry) to investigate changes in mechanical properties, as 

 iii



well as alterations in composition and morphology of the bladder wall tissue at various time 

points up to 10 weeks after injury. 

Changes in mechanical compliance and material class found during the biomechanical 

analyses clearly indicated that the bladder wall continuously remodels after spinal cord injury 

beyond the time point previously tested. The results of histomorphometric study corroborated the 

mechanical data and provided first evidence that directional bladder smooth muscle cell 

hypertrophy was probably a major factor in determining changes in the material class of bladder 

wall, which can be used as the basis for development of structure-based constitutive models for 

urinary bladder wall tissue. Finally, the findings of extracellular matrix protein analyses 

demonstrated that changes in matrix protein contents of bladder tissue played significant role in 

bladder functional behavior, and suggested that elastin/collagen ratio might be the key factor in 

determining the compliance of bladder wall. 
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1.0 INTRODUCTION 

 
 
 
Approximately 250,000 – 400,000 individuals in the United States have spinal cord injuries 

(SCI); urologic complications are among the most common problems these patients encounter 

[1]. Specifically, spinal cord injuries rostral to the lumbar spine can cause severe lower urinary 

tract dysfunctions including overactive bladders and urinary retention [2]. These bladder 

abnormalities are reportedly accompanied not only by changes in the bladder wall tissue 

morphology, including increased thickness [3], fibrosis [4] and trabeculation [5], but also by 

drastic changes in the mechanical properties of the wall [6, 7]. Although extensive studies have 

been conducted on the effects of spinal cord injury on bladder function [8-11], the alterations in 

mechanical behavior and functional properties of the bladder wall tissue and the underlying 

mechanisms are not well understood. In order to gain a better understanding of relationship 

between function and structure of bladder wall following SCI, the present study combined 

different experimental methods (including mechanical testing, biochemical assays and 

histomorphometry) to investigate changes in mechanical properties, as well as alterations in 

composition and morphology of the bladder wall tissue at various time points up to 10 weeks 

after injury. 
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1.1    THE URINARY BLADDER 
 
 

1.1.1 Anatomy of the Urinary Bladder 

The bladder is a hollow organ in the pelvis that stores the urine produced by the kidneys. There 

are two tubular structures called ureters (one from each kidney) that drain the urine into the 

bladder. The urethra is the outflow tract of the bladder and connects the bladder to the exterior 

(Figure 2). 

 Anatomically, bladder is the most anterior organ in the pelvis, located just behind the 

pelvic bone. Organs closest to the bladder include the rectum (the last part of the colon), which is 

the most posterior organ in the pelvis, the prostate gland and seminal vesicles (in males), and the 

uterus, ovaries and fallopian tubes (in females). In males, the prostate gland and seminal vesicles 

(organs that contribute secretions in semen) are situated below the bladder and in front of the 

rectum. In females, the uterus (the womb), ovaries and fallopian tubes are located posterior the 

bladder and anterior to the rectum (Figure 1). 

 

 

 

 

 

 

 

Figure 1: Anatomical relationships between bladder and adjacent organs in female and male. 
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Figure 2: Frontal cross-section schematic of a human urinary bladder as in female (upper left) 
and male (lower right). Reproduced from Netter, Atlas of Human Physiology, 1997. 
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1.1.2 Histomorphology of the Urinary Bladder 

 
The urinary bladder consists of two major layers, each comprised of several sublayers: the 

lamina propria near the lumen and the muscularis propria (i.e. the detrusor) on the exterior of the 

bladder (Figure 3) [12]. A healthy human bladder contains a lamina propria that is approximately 

1.3 mm thick and a detrusor layer about 4.4 mm thick [4]. 
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a. Lamina propria 

The lamina propria is composed of the urothelium, the superficial lamina propria, and the deep 

layers of the lamina propria (Figure 4). 

i. Urothelium 

The epithelium, which lines the bladder and is in contact with the urine, is referred as transitional 

epithelium or urothelium. The urethra, ureters and the pelvis of the kidney are also lined by this 

urothelium. The normal urothelium is several cell layers thick and is composed of umbrella cells. 

These cells provide the barrier that isolates the toxic urine from the bloodstream and the rest of 

the body. 

ii. Superficial lamina propria 

Directly beneath the urothelium is a layer of connective tissue and blood vessels (i.e. the 

capillary network of the bladder) called the superficial portion of the lamina propria [13, 14]. 

This layer is a dense weave of randomly oriented collagen fibers [13]. Within the superficial 

lamina propria, there is a thin and often discontinuous layer of smooth muscle called the 

muscularis mucosae. This superficial layer of smooth muscle is not to be confused with the true 

muscular layer of the bladder called the muscularis propria or detrusor muscle. 

iii. The deeper lamina propria  

A thick layer of collagen (more than 300 µm in the human adult) [13], maintains the shape of the 

bladder wall. 

b. Muscularis propria or detrusor muscle  

The next layer from the lumen is the muscular detrusor of the bladder. This deep muscle layer 

consists of thick smooth muscle bundles that form the wall of the bladder and contract during 

emptying. The major smooth muscle layer of the detrusor is composed of muscle bundles or 
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fascicles (groups of muscle cells) of diameter 50 to 150 µm in various orientations. The detrusor 

layer also contains fibroblast-like cells that, along with the smooth muscle cells, secrete proteins 

that make up the connective tissue matrix that surrounds and lies within the smooth muscle 

fascicles [15].
 
Finally, the outer serosal or adventitial layer covering the external surface of the 

bladder is a dense layer of fine collagen fibrils of diameter 1-3 µm and about ten microns thick 

[4, 13].
 
In addition, a network of nerves including myelinated fibers, is found in all layers of the 

bladder and these nerves are sheathed in connective tissue [16]. 

 

 

Figure 4: Schematic of bladder layers and constituent components. The scale of the components 
is approximately correct for normal bladder wall [17]. 
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1.1.3 Composition of the Detrusor 

The major components of the urinary bladder wall are smooth muscle cells and the extracellular 

matrix (ECM). 

1.1.3.1 Smooth muscle cells 
 
Within the detrusor layer, the smooth muscle fascicles are 20-50 µm apart [13].

 
The majority of 

them are directional in certain areas of the bladder. These fascicles are interconnected with 

collagen bundles of diameter 3 to 8 µm in the rat [13]. Significant amounts of perimysial 

connective tissue connects the muscle fascicles (Figure 5), and minimal endomysial connective 

tissue matrix surrounds individual muscle cells [4].) There are also small elastic fibers between 

muscle cells within fascicles [16]. 

 

1.1.3.2 Extracellular matrix 
 
Extracellular matrix in the bladder wall tissue is mainly composed of two protein components, 

collagen and elastic fibers. 

I. Collagen 

 The human urinary bladder is approximately 30-60% collagen dry weight [18, 19].
 
This 

percentage content depends on the age and health of the bladder; collagen content tends to 

increase with development and may change in the presence of disease. In human fetal bladders, 

the percentage is near 30% [19],
 
while in human adults, it is 53% - 68%, with higher percentages 

in women over fifty years of age [20].
 
In addition, the trigone, or base, has a higher percentage of 

collagen than the body and dome of the bladder [20]. 
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 Types I, III, VI, and V collagen are the major collagen components of the bladder, with 

type I the most plentiful [21].
 
Types I and III together make up 80-99% of total collagen in the 

body [22]
 
and more than 98% of the collagen in the bladder, as heterotypic fibrils [20, 21].

 
In 

children, normal bladders contain 76.3% type I and 23.8% type III collagen [12, 23].
 
 

In a study of human bladder, Kim and colleagues found that thick collagen fibers, 

classified as type I collagen, were predominant in the intermuscular bundle space; thin collagen 

fibers (type III collagen) were abundant between individual muscle cells within the muscle 

fascicles [19].
 
Type III has also been found coating the exterior of fascicles [24]

 
and connecting 

neighboring fascicles in cattle and rats [13, 20].
 
Both types I and III are coiled structures within 

detrusor and associated with perimysial connective tissue around muscle fascicles [25].
 
Type III 

collagen also exists in a coiled configuration in the urinary bladder to allow for large strains [12, 

14, 20].  

The other types of collagens contribute only 1-2 % of the total dry weight collagen in the 

bladder. Type IV forms a cocoon-like sheath that surrounds each individual smooth muscle cell 

in the bladder wall [20].
 

Collagen types XII and XIV connect collagen fibrils to other 

extracellular matrix components associated with the surface of fibrillar collagens, and may 

mediate interaction between collagen fibrils and extracellular matrix proteins or the cell surface 

[26].
 
Type XII collagen has been found in the lamina propria and in the endomysium in the 

detrusor [26].
 
Type XIV collagen has been found in the submucosa and in the serosa as well as in 

the perimysial tissues between the smooth muscle fascicles in small amounts in rats [26]. Other 

collagen types are present in negligible amounts. 
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Figure 5: Collagen bundles (stained in yellow) located between smooth muscle fascicles in 
normal rat bladder wall, stained with Movat Pentachrome technique, 40X. 

 
 

 
II. Elastin 
 
It has been shown that elasticity of the bladder, like other organs subjected to repeated 

deformation, is inherent in elastic fibers [18]. In other words, the ability of the bladder to 

maintain the low filling pressures that prevent permanent upper tract deterioration may depend 

on the elastic component of the bladder wall [27]. Although the structure of elastin is less 

understood than that of collagen, the elastic fibers are thought to be composed of several 

glycoproteins [28]. In the urinary bladder, elastin has been found in the urothelium layer and 

adjoining lamina propria [29], around individual smooth muscle cells [30, 31],  within the 

connective tissue connecting the fascicles [29], in the interfascicular space, and in the outermost 

layer of the serosa [31].  
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1.1.4 Development of the Urinary Bladder 

 
During gestation, the fetal kidneys and bladder remove toxin from the blood. During the earliest 

stage of gestation, fetal urine is not emptied through the urethra but instead through the urachus, 

a soft tissue tube emanating from the dorsal part of the dome of the bladder. Fetal urine leaves 

the developing fetus through the umbilical cord. The urachus contains smooth muscle; 

experiments in fetal sheep have demonstrated muscle tone and contraction within it [30].
 
In the 

bovine and ovine species, the urachus closes off just before birth, while in humans this happens 

at about 4 months into gestation. It is likely that the closing of the urachus, which requires the 

bladder to start functioning as a storage vessel, may trigger the final development [30]. 

In cattle, bladder wall thickness increases throughout the development period into 

adulthood; however, the total dry weight of collagen does not change after the second trimester 

of gestation [32]. Cystometrograms measuring the bovine bladder compliance (pressure to 

volume ratio) demonstrate an increase in the maximum volume during development followed by 

a decrease during early adulthood [32-34].
 
This increase and then decrease in bladder compliance 

indicate concomitant changes in structural makeup. In addition, it has been discovered that the 

removal of the detrusor layer of the bladder results in increased compliance throughout fetal 

developmental, but compliance increases most in the second trimester and least in the third 

trimester [33].  

1.1.4.1 Collagen formation 
 
Throughout the development in the human, the total collagen-to-smooth-muscle ratio decreased 

from 1.1 to 0.65, indicating more smooth muscle cell growth than deposition of collagen [19].
 

The expression of the mRNA of the two chains composing collagen type I, α1(I) and α2(I), was 
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higher during bovine fetal gestation by three to six times compared with the adult state [30].
 
In 

the second trimester, type I collagen was localized to the lamina propria while in the third 

trimester the localization of type I collagen was plentiful within the central region of the lamina 

propria [30].
 
The peak expression of type I during the early third trimester was an indication that 

the bladder was strengthening since this was when the bladder first began to function properly at 

low pressure and empty completely because the urachus has closed [30].
 
 

Type III collagen predominated in newly formed fetal structures, including the bladder 

and in early wound healing, so it is often called fetal or embryonic collagen [30].
 
At the earliest 

stages of bovine gestation, the amount of collagen type III was high in the fetal bladder, 

composing up to 40% of the collagen in the bladder; by birth, it dropped to 19%. It increased 

slightly during growth and development to 25% in the adult animal [32]. 

The levels of α1(III) mRNA in a whole bladder preparation peaked in the youngest 

bovine gestational stages in the detrusor of the bladder and gradually declined throughout 

gestation [21, 25].
 
In the second trimester, type III collagen was localized to the lamina propria 

and around the muscle fascicles [25].
 
Changes in the collagen I: collagen III ratio differed 

between studies. For example, one study showed that the absolute amount of type III collagen 

decreased by greater than half from the beginning of the second trimester to newborn in the calf 

[20, 32],
 
yet human and bovine studies have demonstrated a decrease in the ratio through 

gestation [19, 20].  

1.1.4.2 Elastin formation 

Three known elastic fiber related proteins (elastin, fibrillin-1, and MAGP) found throughout all 

bovine developmental stages [30].
 
Levels of fibrillin-1 and MAGP were higher in the fetal period 

compared to postnatal [30].
 
In the human, the size, thickness, and number of elastic fibers 
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increased during human gestation as the organ developed [19].
 
Elastin mRNA levels were 

highest in the second trimester, the earliest stage measured, and decreased until birth [30].
 
In 

both the second and third trimesters, fibrillin-1 and MAGP localized to the fine fibers in the 

lamina propria and the basal cells of the urothelium, and elastin was found in similar locations 

but in lower concentrations [30].
 
In the third trimester and at term, all three proteins measured 

localized to the lamina propria [30].
 
Elastin levels increased through gestation and higher levels 

were found in the third trimester, but there was decreased expression in the calf at full term [29].
 

The peak of microfibrillar mRNA occurred in the early third trimester, coinciding with peak 

expression of type I collagen [30].
 
After birth there was no change in the detrusor layer elastin 

expression but an increase in the urothelial-lamina propria layer in both young and adult animals, 

similar to type III collagen, which is highest early in development and then decreases as the fetus 

matures [30].
 
It is possible that steady-state mRNA levels of elastin in post-natal bladders are 

related to the requirement for increased bladder volume as the animal grows [30].
 

The 

accumulation of elastin declines rapidly by end of first year followed by little or no new 

production after the first decade. Also, the turnover rates of insoluble elastin are very low, with 

half-life protein measurements ranging in years [35]. 

It has been postulated that the mechanical properties of the bladder wall are primarily 

bestowed by the extracellular matrix components [19, 36]. In particular, collagen is thought to 

provide tensile strength, whereas elastic fibers are thought to enhance tissue elasticity. Kim et al 

[19] demonstrated that a delicate balance in their production is responsible for the development 

of normal urinary bladder function during fetal growth. In addition to playing a role in neonatal 

bladder dysfunction, changes in extracellular matrix may play a role in the bladder dysfunction 
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associated with pathological conditions in the adult. It is, therefore, important in any study of 

alterations in pathological tissues to quantify and/or evaluate the changes in these proteins. 

 

1.1.5 Physiology and Function of the Urinary Bladder 

 
Urinary bladder is a muscular sac that stores urine at low pressure, and voids upon receiving 

neural inputs to contract the smooth muscle. Urine enters the bladder from the kidneys through 

the ureters and is discharged from the body via the urethra. The bladder of the adult human can 

hold over 0.6 liters of urine. When the level of urine reaches about half this amount, pressure of 

the accumulating fluid stimulates nervous impulses that relax the external sphincter, a muscle 

that forms a dense band around the urethra at the base of the bladder. The muscles in the wall of 

the bladder also contract simultaneously, forcing urine out through the urethra. This process can 

be controlled voluntarily in most mammals [2]. 

1.1.5.1 Micturition reflex 
 
The micturition reflex is a two-phase cycle that serves as a protective mechanism for the kidneys. 

It consists of the filling (or storage) phase and the emptying phase. This reflex is uninhibited in 

the newborns, and the toddlers will learn to inhibit (or control) it as they grow up. The ability to 

control the micturition reflex is dependent upon two systems being intact. These systems are (1) 

receptors and chemicals that must maintain a delicate balance for the muscles to operate 

properly, and (2) a neuro/sensory pathway that must be intact between the brain, spinal cord and 

bladder, so that the receptors can elicit an appropriate response. Receptors in the bladder 

communicate with receptors in the brain, via the spinal cord, to control the micturition reflex [2]. 
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1.1.5.2 Neurosensory regulation 
 
There are two electrical pathways that operate as part of the micturition reflex. These are the 

reflex loop and the regulatory/sensory loop (Figure 6).  

 

 

 

 

 

 

 

 

REGULATORY/SENSORY 
LOOP 

REFLEX LOOP 

REGULATORY/SENSORY 
LOOP 

REFLEX LOOP 

A B

Figure 6: Schematic of electrical pathways that operate as part of the micturition reflex, 
demonstrating interaction between regulatory/sensory and reflex loops (A), and possible sites of 
breakdown in the neurosensory pathways and the consequent results (B). (Retrieved from 
www.life-tech.com/uro/urolib/normant.htm, July 2005) 

 

The reflex loop is composed of three sets of peripheral nerves in the bladder and their 

connections to the spinal cord, including sacral parasympathetic (pelvic nerves), thoracolumbar 

sympathetic (hypogastric nerves and sympathetic chain), and sacral somatic nerves (pudendal 

nerves) (Figure 7). The main excitatory input to the bladder is provided by sacral 

parasympathetic outflow. Cholinergic preganglionic neurons located in the sacral spinal cord 

send axons via the pelvic nerves to ganglion cells in the pelvic plexus and in the wall of the 

bladder. Sympathetic preganglionic pathways that arise from the T11 to L2 spinal segments pass 

to the sympathetic chain ganglia and then to prevertebral ganglia in the superior hypogastric and 

pelvic plexuses and also to short adrenergic neurons in the bladder and urethra. Sympathetic 
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postganglionic nerves that release norepinephrine provide an excitatory input to smooth muscle 

of the urethra and bladder base, an inhibitory input to smooth muscle in the body of the bladder, 

and inhibitory (α2) and facilitatory (α1) input to vesical parasympathetic ganglia. Somatic 

efferent pathways to the external urethral sphincter are cholinergic and are carried in the 

pudendal nerve from anterior horn cells in the third and fourth sacral segments. Branches of the 

pudendal nerve and other sacral somatic nerves also carry efferent impulses to muscles of the 

pelvic floor [2]. 

 
Figure 7: Sympathetic, parasympathetic, and somatic innervation of the urogenital tract of the 
male cat. Sympathetic preganglionic pathways emerge from the lumbar spinal cord and pass to 
the sympathetic chain ganglia (SCG) and then via the inferior splanchnic nerves (ISN) to the 
inferior mesenteric ganglia (IMG). Preganglionic and postganglionic sympathetic axons then 
travel in the hypogastric nerve (HGN) to the pelvic plexus and the urogenital organs. 
Parasympathetic preganglionic axons, which originate in the sacral spinal cord, pass in the pelvic 
nerve to ganglion cells in the pelvic plexus and to distal ganglia in the organs. Sacral somatic 
pathways are contained in the pudendal nerve, which provides an innervation to the penis, and 
the ischiocavernosus (IC), bulbocavernosus (BC), and external urethral sphincter (EUS) muscles. 
The pudendal and pelvic nerves also receive postganglionic axons from the caudal sympathetic 
chain ganglia. These three sets of nerves contain afferent axons from the lumbosacral dorsal root 
ganglia. PG = prostate gland; U = ureter; VD = vas deferens (Redrawn from [2]) 
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The regulatory/sensory loop is composed of ascending sensory neurons in the spinal cord 

connected, through the motor cortex in the brain, to motor neurons in the regulatory tract of the 

spinal cord. In particular, this loop controlling micturition consists of four basic components: 

spinal efferent neurons, spinal interneurons, primary afferent neurons, and neurons in the brain 

that modulate spinal reflex pathways [2].  

During bladder filling, the external and internal sphincters are contracted, due to somatic 

and sympathetic nerves activity, respectively. Sympathetic pathways inhibit detrusor activity 

facilitating urine storage. Sacral parasympathetic outflow is also inactive due to ganglionic 

inhibition by sympathetic nerves, which contributes to the maintenance of urinary continence. 

Intravesical pressure measurements during bladder filling in both humans and animals reveal low 

and relatively constant bladder pressures when bladder volume is below the threshold for 

inducing voiding [2]. 

Proprioceptive nerve endings in the bladder are stretched during the filling phase, and as 

approaching the micturition threshold, send information to the cortex that is perceived as 

fullness, discomfort, or pain [37]. The storage phase of the urinary bladder, then, can be switched 

to the voiding phase either involuntarily (e.g. in the human infant) or voluntarily. At this point, 

increased afferent firing from tension receptors in the bladder reverses the pattern of efferent 

outflow, producing firing in the sacral parasympathetic pathways and inhibition of sympathetic 

and somatic pathways. The expulsion phase consists of an initial relaxation of the urethral 

sphincter followed in a few seconds by a contraction of the bladder, an increase in bladder 

pressure, and flow of urine. There are also secondary reflexes elicited by flow of urine through 

the urethra facilitate bladder emptying [37]. All these pathways require the integrative action of 

neuronal populations at various levels of the neural axis [2].  
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1.2  SPINAL CORD INJURY 
 
 
 
1.2.1 Definition, incidence and prevalence  

 
Spinal Cord Injury (SCI) is damage to the spinal cord that results in a loss of function such as 

mobility or feeling. Frequent causes of damage are trauma (car accident, gunshot, falls, etc.) or 

disease (polio, spina bifida, Friedreich's Ataxia, etc.). The spinal cord does not have to be 

severed in order for a loss of functioning to occur. In fact, in most people with SCI, the spinal 

cord is intact, but the damage to it results in loss of functioning. SCI is very different from back 

injuries such as ruptured disks, spinal stenosis or pinched nerves. 

It is estimated that the annual incidence of spinal cord injury (SCI), not including those 

who die at the scene of the accident, is approximately 40 cases per million population in the 

United States or approximately 11,000 new cases each year. Since there have not been any 

overall incidence studies of SCI in the U.S. since the 1970's it is not known if incidence has 

changed in recent years [38]. The number of people in the United States who are alive in July 

2004 who have SCI has been estimated to be approximately 247,000 persons, with a range of 

222,000 to 285,000 persons [38].  

 

1.2.2 Complications associated with SCI    

 
The effects of SCI depend on the type of injury and the level of the injury. SCI can be divided 

into two types of injury - complete and incomplete. A complete injury leads to loss of function, 

sensation and voluntary movement below the level of the injury. An incomplete injury may spare 

some functioning below the primary level of the injury. A person with an incomplete injury may 
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be able to move one limb more than another, may be able to feel parts of the body that cannot be 

moved, or may have more functioning on one side of the body than the other [39]. 

The level of injury dictates what parts of the body might be affected by paralysis and loss 

of function. However, it is very important to remember that in incomplete injuries there will be 

some variation in these prognoses. Cervical (neck) injuries usually result in quadriplegia. Injuries 

above the C-4 level may require a ventilator for the person to breathe. C-5 injuries often result in 

shoulder and biceps control, but no control at the wrist or hand. C-6 injuries generally yield wrist 

control, but no hand function. Individuals with C-7 and T-1 injuries can straighten their arms but 

still may have dexterity problems with the hand and fingers. Injuries at the thoracic level and 

below result in paraplegia, with the hands not affected. At T-1 to T-8 there is most often control 

of the hands, but poor trunk control as the result of lack of abdominal muscle control. Lower T-

injuries (T-9 to T-12) allow good truck control and good abdominal muscle control. Sitting 

balance is very good. Lumbar and sacral injuries yield decreasing control of the hip flexors and 

legs. Aside from a loss of sensation and movement, patients with a spinal cord injury may also 

experience bladder (see section below) and bowel complications [39]. 

 

1.2.3 The effects of Spinal Cord Injury on Urinary Bladder 

 
As described in section 1.1.5, nerves near the end of the spinal cord (the sacral level of the spine) 

control the urinary system. The spinal cord injury does not affect the kidneys function or 

collection of the urine in the bladder. The changes that take place after an SCI, however, 

determine the function of the bladder and sphincter muscles. After a spinal cord injury, messages 

can no longer travel normally between the bladder or sphincter muscles and the brain. Therefore, 

individuals cannot feel when the bladder is full or they do not have the urge to urinate [40].  
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Initially after injury, no voiding occurs due to the presence of detrusor-sphincter 

dyssynergia (DSD) and patients must be catheterized [10].
 
This neurogenic disorder is a 

disruption of the usual coordinated relaxation of the external urinary sphincter with the 

contraction of the detrusor. Instead of relaxing, the external sphincter contracts further in 

response to a detrusor contraction. The detrusor then contracts against a closed sphincter so that 

no urine can exit. As a result, the majority of the SCI patients develop urologic complications. 

These complications include overactive bladders (due to detrusor hyperreflexia) and urinary 

retention (due to incomplete voiding), which can lead to recurrent urinary tract infection and 

vesicoureteral reflux with or without upper urinary tract deterioration [40-43].   It has been also 

reported in literature that muscular hypertrophy and fibrosis in bladder wall occur in these 

neurogenic bladders, which, in turn, result in lower bladder compliance in chronic SCI patients 

[2, 8] (Table 1). 

 

 

 
Table 1: General effects of spinal cord injury on the urinary bladder function [2, 8, 40-43]. 

 
Initial (2-12 weeks) shock phase no voiding; urinary retention  
Increase in bladder weight throughout remainder of life  
Hypertrophy of bladder smooth muscle cells throughout remainder of life  
Resulting clinical conditions, any or all, (12 weeks – end of life)  
 Detrusor hyperreflexia (DH): overactive bladder  
 Detrusor-sphincter dyssynergia (DSD)  
 Decreased bladder compliance  
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Generally, there are 2 types of abnormal voiding through which the bladder regains partial 

functionality after a spinal cord injury. 

1. Spastic or reflex bladder 

In some patients, two to twelve weeks after trauma, a reflex bladder response returns that 

restores at least involuntary bladder emptying. This response may result from collateral sprouting 

of new neural pathways, loss of an inhibitory influence of the injury, or emergence of more 

primitive alternative pathways [10, 44].
 
Spastic or reflex bladder means that when bladder fills 

with urine, a reflex automatically triggers the bladder to empty. The problem with a spastic 

bladder is patient does not know when the bladder will empty. He/she is also at greater risk for 

sphincter dyssynergia. Spastic or Reflex bladder usually occurs when the injury is above the T12 

level [45].  

2. Flaccid or non-reflex bladder 

This means one's reflexes may be sluggish or absent. Patient may not feel when the bladder is 

full. It then becomes over-distended or stretched. This can cause the urine to back up through the 

ureters to the kidneys. Stretching also affects the muscle tone of the bladder. Individuals with 

injuries below T12/L1 usually have a flaccid bladder [45].  

However, return of the reflex response does not mean normal bladder control. Bladder 

dysfunction caused by spinal cord injury does not improve through time. In fact, it usually gets 

worse and requires continuing, vigilant medical supervision and patient compliance with the 

prescribed routine [39].  
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2.0 REVIEW OF PREVIOUS STUDIES 

 
 
 

2.1  FUNCTIONAL AND MECHANICAL PROPERTIES 
 
 
 
 
Since the sole function of the bladder is to store urine under low pressure and expel it, the 

mechanical properties of the urinary bladder wall are clearly important in understanding its 

function (Figure 8). Generally, evaluation of the mechanical behavior of the urinary bladder at 

the tissue- and organ levels has provided useful information in assessment of the functional state 

of the organ [41-43, 46-49].  Since the bladder is a neuro-muscular organ, the mechanical 

evaluation and analyses must be carefully conducted by dissecting out respective neurogenic and 

myogenic influences (e.g. neural excitation, smooth muscle tone and spontaneous contraction) 

while exposing the specimen to controlled loading states that are realistic and quantifiable.  Past 

studies have included quasi-static uniaxial [46, 50-52], in situ [46, 53-55], and uniaxial 

viscoelasticity studies [42, 46, 56, 57].  Although these techniques allow the bladder tissues to be 

isolated from neurogenic inputs and/or exposed to controlled mechanical loads, there are certain 

limitations.  For example, uniaxial testing subjects bladder strips to loading in one direction only 

and leaves one edge stress-free, which is never the case in vivo.  Whole organ testing is more 

physiological, but the complex stress and strain boundary conditions on the bladder wall, due, for 

example, to the external loading by the surrounding organs or its irregular geometry, prevents 
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from investigation of isolated tissue response. Thus, to evaluate the mechanical properties of a 

biological tissue, physiological testing protocols that subject the tissue to realistic in vivo forces 

and deformations should be used.  It has been demonstrated that biaxial mechanical testing can 

be successfully used to investigate mechanical behavior of the urinary bladder wall [58].  

Mechanical data was obtained from biaxial tests were based on a physiologic-like loading state, 

which allowed for a thorough experimental investigation of the physiological stress range. 

Furthermore, the appropriate constitutive models have been developed [59], and biaxial stress 

relaxation studies have been performed [60].  These studies have demonstrated that the urinary 

bladder wall mechanically behaves as an anisotropic, highly time-dependent biological tissue.     

Bladder function:
A multi-scale biomechanics problem

Organ level
1. Organ forces (static and            

dynamic)
2. Distribution of external

loading
2. 3D Bladder geometry

Tissue level
1. Composition/Structure
2. Fiber mechanical behavior
3. Role of GAGs
4. Mechanical interactions
5. Remodeling/pathologies

Cellular level
1. Traction forces generated by individual  

SMC 
2. How SMC-induced forces transfer to the  

ECM
3. Role of SMC in ECM maintenance

 

Figure 8: The overall current concept of bladder biomechanical function 

 

2.1.1 Current Clinical Functional Evaluation: Cystometry and Urodynamics  

Urodynamics studies are routinely performed in clinics to evaluate the health of the patients’ 

bladder. The cystometrogram is an organ-level test in which the functional pressure-volume 

curve is recorded. A double-lumen catheter inserted through the urethra into the bladder is used 
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to fill the bladder and to measure intravesical pressure (Figure 9). This pressure-volume curve is 

compared against a standard and used to diagnose bladders that are noncompliant due to a 

variety of maladies. Variations on cystometry include natural cystometry or controlled slow 

cystometry (CSC), which use a filling rate closer to physiological urine output, one much slower 

than conventional cystometry [61, 62].
 
On the other end of the scale, rapid filling and step filling 

instead of constant rate filling have been used to obtain viscoelastic constants of the bladder wall 

[47, 63-66].
 
In addition, attempts have been made to quantify urinary bladder fiber strength [67]

 

and the amount of work done by the bladder [68]
 
using the pressure-volume relationship 

obtained from cystometry. To isolate the effects of nerve impulses on bladder function, sacral 

nerve roots have been identified and stimulated [69]. 
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Figure 9: An example of combined cystometrograms and sphincter electromyograms (EMGs) 
comparing reflex voiding responses in an infant (A) and in a paraplegic patient (C) with a 
voluntary voiding response in an adult (B). The abscissa in all records represents bladder volume 
in milliliters, and the ordinate represents bladder pressure in cm H2O and electrical activity of the 
EMG recording. On the left side of each tracing, the arrows indicate the start of a slow infusion 
of fluid into the bladder (bladder filling). Vertical dashed lines indicate the start of sphincter 
relaxation, which precedes by a few seconds the bladder contraction in A and B. In B, note that a 
voluntary cessation of voiding (stop) is associated with an initial increase in sphincter EMG 
followed by a reciprocal relaxation of the bladder. A resumption of voiding is again associated 
with sphincter relaxation and a delayed increase in bladder pressure. In the paraplegic patient 
(C), the reciprocal relationship between bladder and sphincter is abolished. During bladder 
filling, transient uninhibited bladder contractions occur in association with sphincter activity. 
Further filling leads to more prolonged and simultaneous contractions of the bladder and 
sphincter (bladder-sphincter dyssynergia). Loss of the reciprocal relationship between bladder 
and sphincter in paraplegic patients interferes with bladder emptying (Redrawn from [2]). 
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Another minimally invasive urologic test is the measure of bladder impedance correlated to 

bladder fullness is used in patients who have lost the ability to sense urinary fullness [70].
 
Echo 

planar imaging and Doppler sonography of the bladder emptying have been used to view the 

velocity of urine exiting the bladder [71, 72].
 
More complete studies include measurements of 

bladder wall thickness to normalize the pressure-volume data [69];
 
however, this cannot be used 

clinically as it involves removal of the bladder after cystometry.  

Cystometrograms cannot directly determine bladder wall tissue properties, because these 

tissues have thickness and regional differences that cannot be reliably measured in vivo. Further, 

in vivo studies may be affected by neural influences and are always affected by intrinsic muscle 

activity, neither of which can be controlled. In general, in vivo evaluation is a function of the 

mechanical properties of the bladder wall, the non-uniform wall stress distribution, and external 

loading by the pelvic organs.  

 

2.1.2 Intact Organ Testing in vitro  

 
In in vitro whole-organ testing, the intact bladder is removed to isolate it from nervous 

stimulation and external loading. As in cystometry, the bladder is filled with a fluid and the 

resulting pressure-volume curve is examined [64, 73].
 
This test allows the researcher to control 

the environment of the bladder by introducing specific electrical impulses that affect muscle 

contraction [74].
 
Since the bladder is maintained as a three-dimensional fluid-containing sac as in 

vivo, the recorded parameters can be directly related to bladder function and its ability of the 

bladder to hold and void urine under specified conditions.  

Although in vitro testing is relatively physiological and not confounded by the interaction 

of the other abdominal contents as are cystometry measurements, it still has the disadvantage of 
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variations and errors due to wall thickness and bladder shape, and the inability to apply a simple 

loading pattern or know with precision the loading pattern applied. Additionally, only a single 

control of either pressure or volume is available to the experimentalist. Rigorous mechanical 

analysis requires better control of the material and the ability to load the material in multiple 

dimensions. 

 

2.1.3 Uniaxial Testing 

 
A complete analysis of the mechanical properties of the bladder wall tissue can be conducted 

only when the tissue is isolated and all forces applied are known. This requires either knowledge 

of the exact shape and regional thickness of the intact bladder, both of which are invariably 

different from animal to animal, or isolation of sections of bladder wall in known and specific 

configurations. Many investigators have carried out controlled-force studies on isolated tissue 

using bladder strips. Alexander has used bladder strips to study the rat bladder in detail, applying 

load to a transverse strip of tissue [41, 46, 52].
 
Van Mastrigt and coworkers have studied human 

and guinea pig bladder in an isolated strip preparation [47, 65].
 
Much useful information has 

been gathered through strip uniaxial testing. Alexander found that when a high pressure is 

rapidly removed, there is a corresponding rapid decrease in length, indicating an elastic element 

in urinary bladder mechanics [46].
 
Macarak and others have found that after the detrusor layers 

were surgically removed, both in bladder strips and in intact bladders, the tissue samples became 

more compliant, indicating that the components of the muscle layers may serve to limit the total 

volume of the bladder, contributing to stiffness [20, 54] (Figure 10).  
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Figure 10: Representative response of isolated strips of fetal and adult calf bladder to field 
stimulation (64 Hz) following bethanechol prestimulation (200 µM) in a uniaxial testing. Arrows 
indicate initiation of field stimulation (Redrawn from [74]). 

 

The numerical results of these tests are maximum tensions and other stress-strain relationship 

quantities. However, uniaxial testing cannot be used to fully describe the properties of the 

bladder, since the muscle bundles are not homogenous nor always of a predictable orientation 

[16].
 
In addition, to allow dissipation of the uneven stress concentrations at the gripped sample 

edges, deformation measurements are done in the center of the tissue and the specimen 

dimensions are typically 1:5 to 1:10 (width: length), resulting in a long, thin specimen. Cutting 

the tissue results in a reorganization of the fibers at the edges, yet due to the small width of the 

sample, measurements often need to be taken near the edge, resulting in large errors. 

Nevertheless, data obtained from uniaxial strip tests have been used to develop predictive models 

of bladder behavior. These models have been largely empirical, constructed to meet the criteria 

that the model fit the given data well. Most have been based on the classic spring (elastic) and 

dashpot (viscous) elements, incorporating three or four elastic and three or four viscous elements 

in each model [41, 43, 46, 47, 65].
 
The models may fit the data well, but the parameters that 
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result can only be compared to those of other tissues tested and fit in the same manner, to the 

same model. As in all phenomenological models, the parameters do not describe the intrinsic 

properties of the tissue and therefore cannot be used to learn anything about the tissue function 

or, more importantly, differences in tissue function due to abnormal states.  

Baskin and coworkers devised a novel two-dimensional test in which a strip of material 

was sandwiched between two plates with a circular hole cut out of them. A pressure gradient was 

then applied across the cutout so the specimen bulged. The maximum pressure applied and the 

resulting deflection were then used to compute the stresses [32].
 
Although this test did remove 

the effects of the specimen geometry from the tissue testing, it still allowed only a single test. To 

obtain a complete description of the mechanical properties, multiple stress states with different 

stresses in both anatomical directions is required.  

Uniaxial testing has revealed that the bladder is similar to other biological tissues. It 

undergoes a reduction in stress when held at constant deformation (stress relaxation). The 

behavior stabilizes after the first few cycles so that the first cycle is different from the subsequent 

stable cycles (preconditioning). There is measurable energy loss during each cycle (hysteresis). 

In addition, it has been shown that the rate of stretch does not affect the magnitude of tension 

developed [75]. 

 

2.1.4 Biaxial Mechanical Testing 

 
Previous evaluations of the mechanical properties of bladder wall tissue have focused on testing 

strips of bladder tissue where a load is applied in one direction only, i.e. uniaxial testing [46, 50-

52]. Uniaxial testing isolates the tissue and subjects it to controlled stress states, but it is non-

physiologic since it leaves the edges completely stress-free, a state that never occurs in vivo. 
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Physiological loading of the bladder wall is both tensile and compressive, and includes 

components in all three dimensions. Tensile tissue loads are in the plane of the tissue while 

compressive loads oriented perpendicular to the bladder surface are induced by urine and 

surrounding pelvic structures. For thin, virtually incompressible membranes like the bladder, a 

planar biaxial state of stress is sufficient to fully describe the three-dimensional tissue 

mechanical properties [76, 77]. In biaxial testing, the thickness must be significantly smaller than 

the lateral dimensions. Biaxial mechanical testing therefore allows for a more realistic 

physiological loading state. Further, by varying the loads in each orthogonal axis the complete 

mechanical behavior of the bladder wall over the entire normal and pathological range of 

function can be determined. 

Gloeckner et al reported the first studies of quasi-static planar biaxial mechanical testing 

applied to the bladder wall.  In these experiments, three different states were utilized to evaluate 

the bladder wall tissue response:  passive-, active-, and inactive-states [58, 78, 79].  The passive-

state and active-state tests were performed in the presence of calcium with either smooth muscle 

tone only (passive) or with chemically induced contraction (active), while the inactive-state tests 

were conducted in the absence of calcium from the solution with no smooth muscle contractile 

activity.  Thus far, it has been demonstrated that the inactive-state tissue compliance of 10-day 

SCI rat bladder wall under biaxial stress was significantly greater compared to normal bladders 

[58]. Furthermore, 10-day SCI rat bladder changed its material class following spinal cord injury 

and behaved as an isotropic material while normal rat bladder was mechanically anisotropic [58].  

In addition to the changes in compliance and material class, Nagatomi et al investigated 

the viscoelastic behaviors of normal and spinal cord injured (SCI) rat bladder wall tissue using 

planar biaxial stress relaxation tests [60].  Bladders from normal and spinalized (3 weeks) rats 
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were subjected to biaxial stress (either 25 kPa or 100 kPa in each loading direction) rapidly (in 

50 ms) and subsequently allowed to relax at the constant stretch levels in modified Kreb’s 

solution (in the absence of calcium; with no smooth muscle tone) for 10,000 seconds.  It was 

observed slower and therefore less stress relaxation in the SCI group compared to the normal 

group, which varied with the stress-level (Figures 11a and 11b). These experimental results were 

successfully fitted (R2 > 0.98) to a reduced relaxation function [80]. Collagen and elastin, in 

general, are considered stiff and compliant extracellular elements, respectively, of soft tissues 

such as bladder wall.  In terms of their viscoelastic responses, however, elastin relaxes very little, 

much less compared to smooth muscles or collagen [80].  In other words, elastin, which is easily 

distended under small forces, does not dissipate stored energy as readily as collagen and smooth 

muscle (Figure 11c).  The SCI rat bladders exhibited similar amount of collagen but increased 

amounts of smooth muscle and of elastin compared to normal bladders. These changes in the 

composition and mechanical properties of bladder wall may be a compensatory mechanism 

triggered by non-physiological mechanical conditions of the bladder following spinal cord 

injury; bladder smooth muscles of SCI populations are subjected to increased work load due to 

overactivity and to chronic over distension due to outlet obstruction. In particular, it is possible 

that the increased amount of elastin in the SCI bladders may be responsible not only for the 

reduced stress relaxation, but also for the increased compliance of the bladder wall, which can 

allow large distension as well as reduce work load of smooth muscle [60].  
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Figure 11: The reduced relaxation function G(t) applied to stress relaxation data of normal and 
SCI bladders for a peak biaxial stress of (a) 25 kPa and (b) 100 kPa. The model fitted the data for 
both groups successfully (R2 >0.98). (c) Schematic representation of the bladder as composite 
structures under stress relaxation. Compared to the normal rat bladders, SCI rat bladders 
contained more smooth muscle and elastin, but similar amounts of collagen. As a result, SCI 
bladders exhibited increased distensibility and decreased rate of stress relaxation. This is due to 
different viscoelastic behaviors of smooth muscle, collagen, and elastin, which exhibits large, 
medium, and virtually no stress relaxation, respectively (Redrawn from [60]). 
 

 

These results demonstrated the capability of planar biaxial testing to examine functional and 

mechanical changes in the urinary bladder, and suggested that SCI and the associated urologic 

functional changes induce profound tissue remodeling, which, in turn, provided the structural 

basis for the alterations in the time-dependent mechanical behavior of the urinary bladder wall.  
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2.2 STRUCTURE AND MORPHOLOGY OF THE BLADDER WALL IN SCI  
 
 
 
 
2.2.1 Bladder enlargement and muscular hypertrophy 

 
One of the most obvious results of acute SCI is increased bladder size. This can be seen as a 

rapid increase in wet weight of the urinary bladder to two to three times as much as the control in 

only 7 days [3].
 
The bladder enlargement is mainly due to muscular hypertrophy (Figure 12). The 

detrusor layer thickness increases from 100-120 µm in normal to 250-300 microns in SCI 

bladders [16]. 

Interestingly, upon microscopic analysis of SCI patient tissue, not all smooth muscle cells 

are found to be hypertrophied, as would be expected if this phenomenon were only an effect of 

pressure [3].
 
One explanation for this phenomenon is that the hypertrophy is caused by an 

alteration or lack of stimuli from peripheral autonomic nerves and that only smooth muscle cells 

with nerve receptors are affected, leaving the cells that receive their nerve signals from adjacent 

cells unaffected. Other investigators, however, have found that all muscle cells are directly 

innervated in the bladder [16]. 
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Figure 12: Photomicrographs of histological slides of the normal (A) and 10-day SCI (B) rat 
bladders, stained with Movat Pentachrome technique, mag. 10X. Both structural layers of 
bladder wall, lamina propria and detrusor, are significantly thicker in SCI sample when compare 
to the normal (Redrawn from [60]).  

 33



 

2.2.2 Area fraction and orientation of smooth muscle bundles in SCI bladders 

 
Using a novel image analysis software, Nagatomi et al were first to quantify structural and 

compositional changes in the urinary bladder after spinal cord injury [81]. It was demonstrated 

that there were significant increases in smooth muscle and decreases in collagen area fractions in 

the 10-day SCI bladders compared to the normal group (Figure 13) [81]. Furthermore, the SCI 

bladders exhibited significantly fewer cell nuclei per muscle area compared to the normal 

bladders (Figure 14) [81].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Area fractions of muscle and collagen in normal and 10-day SCI rat bladders at 
different volume levels. The SCI bladders exhibited significant (* p< 0.05) increases in smooth 
muscle and decreases in collagen area fractions compared to the normal bladders at all the 
volume levels examined. Data are mean ± SD; n= 5; analyzed by Two-way ANOVA followed by 
the Student-Newman-Keuls post-hoc test (Redrawn from [81]). 
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Figure 14: Nuclei counts of smooth muscle cells in normal and 10-day SCI rat bladders at 
different volume levels. The SCI bladders (black columns) exhibited significantly (* p< 0.001) 
fewer cell nuclei per muscle area compared to the normal bladders (white columns). Data are 
mean ± SD; n= 15; analyzed by Two-way ANOVA followed by the Student-Newman-Keuls 
post-hoc test. † The values are normalized by the area fractions of muscle (Redrawn from [81]). 

 
 
 
 

These results corroborated previous reports in the literature that the total collagen content of 

the bladder wall tissue (normalized by the wet tissue weight) decreased significantly following 

spinal cord injury, and suggested that the decreased collagen fraction in 10-day SCI rat bladders 

might contribute to, at least in part, the increased compliance of SCI rat bladders [58]. 

Furthermore, the fewer cell nuclei per normalized smooth muscle area in 10-day SCI rat bladder 

specimens compared to the normal specimens (Figure 14), indicated that the hypertrophy rather 

than hyperplasia is the predominant mechanism that led to the overall increase in the wall tissue 

thickness and mass [81].  
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In addition to the smooth muscle hypertrophy, 10-day SCI rat bladders exhibited a different 

pattern of muscle orientation distribution compared to the normal. Specifically, the orientation of 

smooth muscle bundles was bidirectional (i.e. in longitudinal and circumferential directions) in 

SCI bladders 10 days after injury, while the orientation of smooth muscle bundles in normal 

bladder was predominantly longitudinal (Figure 15) [81]. These results correlated well to the 

previous findings in biaxial mechanical testing of the bladder wall tissues (discussed in Section 

2.1.4) [58]. Particularly, the change in overall muscle bundles orientation from predominantly 

longitudinal in the normal bladder to bidirectional in 10-day SCI bladder [81] corroborated the 

alteration in the material class between normal and 10-day SCI rat bladder wall tissues [58]. The 

smooth muscle bundles of the normal bladders exhibited predominant orientation in the 

longitudinal direction, which resulted in the orthotropic material behavior observed in the biaxial 

mechanical testing. Those of the 10-day SCI bladders, however, exhibited more biaxial 

orientation, which resulted in the isotropic behavior observed in the mechanical testing. 
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Figure 15: The orientation distribution of muscle bundles in normal and SCI rat bladders. In the 
normal bladders (A) the predominant muscle orientation was along the longitudinal axis, while 
the 10-day SCI bladders (B) had predominant muscle orientation along both longitudinal and 
circumferential axes at all volume levels examined (    25%,     50%,  ∇ 100%). Colored triangles 
represent longitudinal (blue) and circumferential (red) biases (Redrawn from [81]). 
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2.2.3 Changes in collagen content  

 
The relative amounts of type III and type I collagen have been found to change after spinal cord 

injury. One study found that while normal rat bladder collagen type III and type I contents are 

25% and 75%, respectively, in the post-injury bladder, progressive fibrotic changes increased the 

percentage of type III to 33% [20, 23].
 
This change is also associated with alterations in 

mechanical compliance in bovine studies [12].
 
Throughout this change, however, the distribution 

of the connective tissue components (collagens I and III and elastin) in the lamina propria did not 

change in noncompliant bladders [24],
 
suggesting that most of the alterations were within the 

detrusor layer.  

It is interesting to note that in most tissues, fibrosis is characterized by overproduction of 

collagen type I, not type III as is seen in the urinary bladder [4]. This holds true even for tissues 

that have a high type III content in their normal state, such as the kidney and liver [82]. The 

fibrotic process within a noncompliant urinary bladder due to obstruction is therefore very 

unusual, at least within the detrusor [24].Results of studies investigating changes in collagen 

content in humans differ. Some studies have found no significant difference in the total collagen 

content between normal and non-neurogenic obstructed bladders in persons from 3 months to 68 

years of age [18]. However, Deveaud and colleagues found a significant increase in collagen 

type III in both neurogenic and non-neurogenic noncompliant bladders but no significant change 

in type I [4].
 
Within the areas of neurogenic bladders classified as relatively normal, there were 

increased collagen levels but not elastin levels, indicating that elastin might be localized to 

damaged regions but collagen deposition is more uniform throughout the bladder wall [17].
 
In 

comparisons of neuropathic and non-neuropathic disorders, both collagen and elastin levels 

increased, but the increases were higher in neuropathic bladders (Figure 16) [17].
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Figure 16: Photomicrographs of human detrusor bladder tissue from control (A), idiopathic (B), 
and neuropathic bladders (C). Normal areas are signified by *, and † indicates a severely affected 
area in B. The scale bar is 200 µm [17].  

 

 

In general, the changes caused by similar pathological mechanism (i.e. bladder outlet 

obstruction) was first evident in the superficial detrusor layer next to the lamina propria, and then 

occurred deeper within the muscle layer, and finally resulted in the fibrotic effect over the full 

transmural thickness in noncompliant bladders [24].
 
This widespread fibrosis may result in an 

outward shift of the compliant layer from the lamina propria to the infiltrated smooth muscle 

layer in an overall noncompliant bladder [24].
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2.2.4 Changes in elastin content 

 
Using gene array analysis, Nagatomi et al demonstrated that there were significant early changes 

in the extracellular matrix protein genes of the rat detrusor following SCI [81, 83]. Briefly, the 

results of their molecular level study provided evidence that as early as 3 days following spinal 

cord injury the rat bladder tissue exhibited significant upregulation of genes encoding for 

tropoelastin, lysyl oxidase, TGF-β and IGF-1, which returned to the baseline level at 3 weeks.  

In addition, biochemical studies of 3-week SCI rat bladders revealed major increase 

(approximately 8- to 10-fold) in the total amount of elastin content when normalized by the 

tissue weight [60]. While the trends were similar to literature reports on the changes in 

mechanically obstructed bladders, which increased elastin contents in rats and humans [84, 85], 

these findings were the first to demonstrate such changes in SCI rat bladders, and suggested that 

the resulting increase in the tissue compliance might be a compensatory mechanism to avoid 

excessive tissue injuries due to over distension of the bladder following SCI (Figure 17) [60]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Digital images of a histology slide of 10-day SCI rat bladder, stained with Movat 
Pentachrome technique, mag. 40X. Increased amount of elastic fibers (stained in black; indicated 
by arrows) is notable (Redrawn from [60]). 
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2.3  SUMMARY OF CHANGES IN BLADDER TISSUE 10 DAYS AFTER SCI 
 

 
In summary, previous biomechanical studies on the spinal cord injured bladders revealed 

significant changes in mechanical properties of rat bladder wall as early as 10 days after SCI, 

including increased tissue compliance, less stress relaxation, and shift in material class from 

anisotropic (in normal bladder) to isotropic (in 10-day SCI bladders) [58]. Furthermore, initial 

examination of histology sections of SCI rat bladders exhibited profound tissue alterations, 

which included smooth muscle hypertrophy and increased number of elastic fibers following 

spinal cord injury [60]. The image analyses of normal and 10-day SCI rat bladders demonstrated 

change in overall muscle bundles orientation from predominantly longitudinal in the normal 

bladder to bidirectional in 10-day SCI bladder [81], which corroborated the alteration in the 

material class between normal and 10-day SCI rat bladder wall tissues [58]. Finally, biochemical 

analyses provided additional evidence of significant changes in the extracellular matrix protein 

contents in SCI rat bladder [60]. These results demonstrated significant bladder wall tissue 

remodeling within 10 days following spinal cord injury and suggested that the mechanical 

behavior of the urinary bladder was strongly influenced by the tissue architecture and the 

amounts of extracellular matrix components. 
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2.4  HYPOTHESIS 
 
 
It has been shown that changes in the mechanical environment of the bladder due to SCI can 

cause alteration in cellular compartment, such as smooth muscle hypertrophy, and in 

extracellular matrix, including ECM protein synthesis, as discussed in previous section. These 

changes in cell fate and matrix metabolism, in turn, could lead to alterations in bladder tissue 

composition and structure, which would, consequently, determine bladder functional properties 

(Figure 18). Based on the previous findings and current literature, it was hypothesized that 

bladder wall mechanical compliance is influenced by changes in ECM protein components, and 

bladder tissue material class is dictated by orientation of smooth muscle bundles. 
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Figure 18: The altered mechanical environment of the urinary bladder following spinal cord 
injury, the key signal for the changes in the tissue functional properties. 
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2.5  OBJECTIVES 
 

 
In order to test this hypothesis, the present study combined different experimental methods 

(including mechanical testing, biochemical assays and histomorphometry) to investigate changes 

in mechanical properties, as well as alterations in composition and morphology of the bladder 

wall tissue in an extended period of time following SCI.  

 

2.5.1 Extension of timeframe to 10 weeks after injury 

 
The reported studies in recent literature have primarily focused on the changes in bladder tissue 

shortly after the injury. These findings, however, were not quite consistent with clinical reports. 

For instance, increased compliance in 10-day SCI rat bladder contrasted typical, non-compliant 

bladder conditions found in chronic SCI patients [1]. Nevertheless, these short-term results only 

represented changes in early stages after injury, which were not necessarily comparable or 

consistent with chronic findings.  In order to gain a deeper understanding of the changes in 

mechanical properties of bladder wall tissue, the investigation should be extended beyond the 

timeframe previously tested. The present study, therefore, was conducted at various time points 

up to 10 weeks after injury to evaluate time-course effects of spinal cord injury on bladder wall 

tissue. 

 

2.5.2  Planar biaxial mechanical testing 

 
As discussed in previous sections, biaxial mechanical testing has been successfully used to 

determine mechanical and functional properties of biological tissues, including urinary bladder. 

Biaxial testing allows for a nearly realistic physiological loading state, and by varying the loads 
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in each orthogonal axis, it provides the opportunity to determine the complete mechanical 

behavior of the bladder wall over the entire normal and pathological range of function.  

 

2.5.3 Histomorphometry 

 
Previously, Nagatomi et al, using a novel image analysis software, quantified structural 

parameters, such as smooth muscle bundles distribution and mass fraction of ECM proteins in 

the bladder wall tissue. This histomorphometric method demonstrated some unique features, and 

was proved useful to explain changes in material class from anisotropic in native bladders to 

isotropic in 10-day SCI bladders [81]. Therefore, this method was used in current study to follow 

up alterations in the distribution of smooth muscle bundles in 10-week SCI bladders, in order to 

correlate them to changes in the material class in those specimens. 

 

2.5.4 Extracellular matrix proteins analyses 

 
It has been extensively reported in literature, as discussed in sections 2.2.3 and 2.2.4, that ECM 

constituents play a major role in determining mechanical response of biological tissues. Collagen 

and elastin are, in particular, two molecular components in majority of soft tissues’ extracellular 

matrix, which are responsible for the functional mechanical properties of the tissue. Specifically, 

changes in the protein contents in the 3-week SCI bladder tissue were reported to be consistent 

with the alteration of mechanical response in those specimens [60]. Therefore, ECM proteins 

analyses were also used in the current study to investigate correlation between changes in protein 

contents and mechanical response of SCI bladders up to 10 weeks after injury. 
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2.5.5 The overall goals 

 
Extending the timeframe and combining various methods to study SCI rat bladders provides the 

opportunity not only to validate previous (i.e. so-called “short-term”) results, but also to 

investigate the structure-function relationship in the long-term SCI specimens to test the 

hypothesis, which was discussed above (see section 2.5.1).  Specifically, the focus of interest 

was two major points. First, we were interested in finding out about bladder remodeling beyond 

the prior time points. In other word, based on previous findings, we expected to observe that 

bladder wall tissue continued to remodel and adjust with changes caused by spinal cord injury; 

meaning further alterations in the functional and structural properties of the bladder wall would 

be detected. Second, it has been suggested by existing literature that changes in matrix protein 

contents significantly affect mechanical response of the bladder tissue, such as its viscoelastic 

behavior [60]. Furthermore, changes in the structural properties can be responsible for alteration 

in mechanical characteristics of the bladder tissue. In particular, Nagatomi suggested that smooth 

muscle bundle orientation could be the determining factor to define the material class of the 

bladder wall tissue in 3-week SCI bladder [81]. The second main goal of this study, therefore, 

was to elucidate any potential correlation between structural/compositional properties, such as 

smooth muscle distribution and/or ECM proteins contents, and mechanical properties of the 

long-term SCI bladders, including material class and compliance. 
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3.0 METHODS 

 
 
 

3.1  MECHANICAL CHARACTERIZATION  
 
 

3.1.1 Specimen preparation 

 
The protocol for creating spinal cord defects was identical to that used in prior studies in the 

urology and pharmacology laboratories [86, 87]. Female Sprague-Dawley rats (250-300g) were 

subjected to complete transection of spinal cord at the T9-T10 level. Under anesthesia, at the T9-

T10 level the dura and spinal cord were cut with scissors and a sterile sponge was placed 

between the severed ends of the spinal cord. The bladders were emptied manually two to three 

times a day and general animal care was given according to our protocol approved by 

Institutional Animal Care and Use Committee (IACUC, University of Pittsburgh, Pittsburgh, 

PA). The whole urinary bladders were harvested at 3-week, 6-week, and 10-week (n=6 in each 

group) post-SCI and were immediately placed in modified Kreb’s solution (containing 113 mM 

NaCl, 4.7 mM KCl, 1.2 mM MgSO4·7H2O, 25 mM NaHCO3, 1.2 mM KH2PO4, 11.5 mM 

Glucose, and 1 mM EGTA, pH 7.4) and refrigerated at 4 °C for up to 48 hours following 

sacrificing of the animals.   

Before mechanical testing, the bladders were cut open longitudinally along the urachus 

and were trimmed down to make square test specimens by removing the dome and trigone 
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sections of the organ (Figure 19A).  Small carbon graphite particles were affixed on the luminal 

surface of the square bladder specimen for strain measurements and four sides of each specimen 

were tethered using suture and stainless steel hooks (Figure 19B). The test specimen was then 

mounted on a custom biaxial testing device (Figure 19C).  
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Figure 19: Rat bladders were cut open longitudinally along the urachus (panel A).  Graphite 
makers were attached on the luminal surface (panel B). The test specimen was mounted on the 
biaxial testing device using stainless steel hooks and nylon suture lines (panel C). 
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3.1.2 Biaxial mechanical testing 

 
Details of biaxial mechanical testing procedures and calculations have been described elsewhere 

[58, 76, 77]. Briefly, each side of the square test specimen was connected to the motor carriages 

via sutures to apply four-point loads (Figure 20).  The load on each axis (circumferential and 

longitudinal) was constantly monitored using force transducers (with a signal conditioner) and 

the applied load was controlled by adjusting the stepper motors using our custom software and a 

data acquisition board installed on a PC. All specimens were tested at room temperature in the 

modified Krebs solution described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Image of sample attached to biaxial testing device through stainless steel hooks and 
nylon suture lines. 
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Stresses along the longitudinal and circumferential axes (TL and TC, respectively) were defined in 

the Lagrangian sense as force/unloaded cross-sectional area. Further, by varying the loads in 

each orthogonal axis the complete mechanical behavior of the bladder wall over the entire 

normal and pathological physiologic functional range could be determined (Figure 21, Table 2).  

 
Table 2: Protocol for all specimens. See Figure 21 for graphical representation.  

 

  Maximum Stresses (kPa) 

Protocol Ratio (TC: TL) Circumferential, TC Longitudinal, TL 

2  0.5:1  50  100  

3  0.75:1  75  100  

4  1:1  100  100  

5  1:0.75  100  75  

6  1:0.5  100  50  
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Figure 21: Stress-controlled biaxial mechanical protocols. 
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3.1.3 Data Analysis 

 
Throughout testing, in-plane axial stretch was determined from the displacements of 4 markers 

affixed to the surface of the specimen (Figure 22). The following homogeneous biaxial 

deformation was considered: 

x1 = λ1 X1 + κ1 X2, x2 = λ2  X2 + κ2  X1, x3 = λ3  X3,  (1) 

where X and x are the locations of material particles in the reference and deformed states, 

respectively, and λi and κi are the components of deformation tensor, F (i.e. λi are the stretch 

ratios and κi measures of in-plane shear), which can be directly obtained at each time point 

during the test. Since soft tissues are composed primarily of water and have negligible 

permeability [80], they can be considered incompressible so that λ3 is calculated from det F = 1. 
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Figure 22: Mapping of the real-time positions of four tissue markers from the reference 
configuration to the deformed configuration, allowing for bi-linear interpolation of the 
displacement field (Redrawn from [76]). 

 
The areal strain, representing the change in area between the reference and deformed states, was 

calculated. Areal strain incorporates stretch effects from the two axes and corresponds to net 

tissue mechanical compliance. 

Areal strain = λ1 λ2 – 1    (2) 
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Differences between groups were compared using an ANOVA analysis followed by a post hoc 

test of either Student-Newman-Keuls’s test (where normality exists) or Dunn’s procedure (when 

sample sizes were not equal). Data were presented as mean ± SEM, and the difference was 

considered significant if p<0.05. 

 

3.1.4 Response Function 

 
In this section, the mechanical data obtained in section 3.1.2 is used to fit in a mathematical 

model. The quasi-static data is analyzed using a response function technique and the results used 

to determine the best phenomenological model for 10-week SCI bladder wall tissue to highlight 

the differences in material classification between these specimens and previously examined (i.e. 

normal and 10-day SCI) bladders [17].  

It was assumed that bladder wall behaved as hyperelastic material based on the concept 

of hyperelasticity [80]. Central to this theory is the existence of materials that conserve any 

mechanical work that is done on them as strain energy. In other words, a hyperelastic material is 

conservative, so the work done on it does not depend on the path; work is stored as strain energy 

in the material [88, 89]. Therefore, the in-plane 2nd Piola-Kirchhoff stresses S could be derived 

from a scalar strain energy function W through:  

E
S

∂
∂

=
W

     (3) 

where E is Green-Lagrangian strain tensor. Since the stress-strain behavior of preconditioned 

specimens undergoing either loading or unloading was assumed pseudoelastic, in the sense that 

there is one stress state for each strain state [80], only loading data were utilized for the fit, 
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although both load and unloading data were recorded. Furthermore, shear strains and stresses 

were neglected as the data demonstrated very low values of shear.  

In order to estimate the stress response to an arbitrary loading path within the 

experimental range, data obtained from all test protocols (i.e. with different loading ratios in two 

axes) were fit to interpolation functions. In all cases the biaxial protocols were fit simultaneously 

so that a wide region of strain states was included in the fit to avoid multiple colinearities [80]. 

Stress components in two main axes were computed using the following interpolation functions: 

( ) 1
3
1117

2
221116

2
221522111422131111

10
11 expPE4cEE2cEcEE2cE2cE2c

2
cS +++++=        (4) 

( ) 2
3
222822

2
1126

2
112411222511232222

20
22 expP E4cEE2cEcEE2cE2cE2c

2
cS +++++=        (5) 

where: 

44222222

44222222

22181117221116112215221114221113221211111 EcEcEEcEEcEEcEE2cEcEcP +++++++=       (6)  

22281127221126112225221124221123222211212 EcEcEEcEEcEEcEE2cEcEcP +++++++=     (7) 

and cij are fitted parameters and Eii are the components of Green strain tensor.  

Each stress component was fit with a different parameter set with an excellent fit. Stress 

component contours over the experimental strain plane were generated to allow direct 

examination of material symmetries and to evaluate the material classification. The results of the 

response function analyses were used to determine which material class (e.g. isotropic, 

orthotropic, transverse orthotropic) was most applicable by examining the intricacies of the 

contour plots.  
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3.2   HYSTOMORPHOMETRY 
 
 
 

Histological sections of the 10-week SCI rat bladders were imaged and analyzed according to the 

published methods [81]. 

 
3.2.1 Specimen preparation 

 
Urinary bladders were harvested as whole from 10-week SCI (n = 3) rats under halothane 

anesthesia, which was immediately followed by euthanization of the animals with carbon 

dioxide. The ureters were ligated with silk sutures and each bladder was fixed by instillation of 

buffered formalin at 50%, volume capacity and by submersing the formalin-filled bladder in 

another container of formalin overnight. A rectangular piece (5mm wide × 8mm long) from the 

posterior part of each bladder was, following paraffin embedding, sectioned en face 

(approximately 5µm thick) throughout the thickness of the bladder wall (Figure 23) and stained 

using the Movat’s Pentachrome technique. The time point and the region of the bladder from 

which these tissue sections were obtained were selected to be identical to those used in our 

previous mechanical studies in order to correlate the tissue morphology and mechanical behavior 

of bladder wall [81]. 

 

 

 

 

 54



 

 

90° (Long) 

 

 

 

 
Figure 23: Schematic representation of
bladders were fixed in formalin under th
100%) overnight and cut open longitudi
a rectangular section was cut from the p
(c) a uniform size (5mm × 8mm) secti
sectioned en face (approximately 5µmt
stained using the Movat’s Pentachrome 

 
 
 
3.2.2 Imaging of Rat Bladder Histolo
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Figure 24: (A) Schematic showing the regions on the tissue section where the images were taken 
from (Redrawn from [81]); (B) Example image of a 10-week SCI bladder section, stained with 
Movat Pentachrome technique, mag. 10X. 

 
 
 
3.2.3 Muscle Orientation 

 
Histological sections of the 10-week SCI rat bladders were analyzed according to the published 

methods [81]. Briefly, the smooth muscle bundle orientation for each bladder was quantified by 

first grouping the muscle edge counts (obtained from 72 images per specimen) into 18 angular 

bins, such that each bin contained the number of edges that lay within an angle span of 10◦ (i.e. 

−5◦–4◦, 5◦–14◦, 15◦–24◦, . . ., 165◦–174◦). The muscle edge counts in each angular bin were then 

normalized by the total number of muscle edges for each bladder, and the data were reported as 

edge count percentages, plotted in the polar coordinate system. In order to provide a visual 

clarity, taking advantage of the rotational symmetry of muscle orientation about horizontal axis 

(e.g. 30◦ is equal to 210◦), the 180◦-rotated image of the plot was added to the original graph to 

construct a 360◦ polar plot (Figure 29). 
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The mean smooth muscle orientations of 10-week SCI bladders (n = 3) were analyzed by 

performing the one-way analysis of variance using a commercial statistics software package 

(SigmaStat; SPSS Inc., Chicago, IL). This was followed by the Student-Newman-Keuls post-hoc 

test to perform pairwise comparisons of all the means. The p-values of less than 0.05 were 

considered statistically significant. Finally, the results were compared with that of the normal 

and 10-day SCI bladders reported by Nagatomi et al [81].  

 
 

3.2.4 Tissue Composition 

 
Using a novel image analysis method [81], the area fractions for tissue components were 

quantified in 10-week SCI bladder samples. The details of this method have previously published 

[81]. Briefly, the numbers of color-segmented pixels in each digital image, representing different 

components (i.e. red for muscle and yellow for collagen), were counted for all samples. The 

individual pixel counts for each component were normalized by the total pixel counts of both 

components (sum of red and yellow pixels, representing the entire tissue section) for each 

specimen and the data were reported as percent tissue fractions. 

The mean tissue component area fractions of 10-week SCI bladders (n = 3) were 

analyzed by performing the one-way analysis of variance using a commercial statistics software 

package (SigmaStat; SPSS Inc., Chicago, IL). This was followed by the Student-Newman-Keuls 

post-hoc test to perform pairwise comparisons of all the means. The p-values of less than 0.05 

were considered statistically significant. These results were also compared with that of the 

normal and 10-day SCI bladders reported by Nagatomi et al [81]. 
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3.3 QUANTIFICATION OF EXTRACELLULAR MATRIX PROTEINS 
 
 
3.3.1 Specimen preparation 

 
Following biaxial mechanical testing the SCI bladder specimens were cut into 12 strips (1X10 

mm each). These strips were weighed, and six of them were digested in 0.5N acetic acid 

supplemented with 1 mg/mL pepsin (Sigma, St. Louis, MO) at 4 °C overnight. Acid-soluble 

collagen in the supernatant solution was quantified using a commercially available assay kit 

(Accurate Chemical, Westbury, NY) and following the manufacturer’s instructions.  In order to 

digest elastin contents, the remainder six strips were treated with 0.25M oxalic acid at 95 °C for 

180 minutes (60 minutes × 3). Elastin concentrations in these supernatants were also quantified 

using a commercially available assay kit (Accurate chemical) and following the manufacturer’s 

instructions. 

 
3.3.2 Data analysis 

 
The data were expressed in terms of mass (in mg or µg) per volume of tissue specimen (in cm3) 

analyzed by performing the two-way analysis of variance, when compared to that of normal and 

3-week SCI bladders from a published study [60]. This was followed by the Student-Newman-

Keuls post-hoc test to perform pairwise comparisons of all the means. The p-values of less than 

0.05 were considered statistically significant. 
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4.0 RESULTS 

 
 

4.1  MECHANICAL TESTING 
 

4.1.1 Stress-stretch response 

 
Response of a representative 10-week SCI bladder to various stress-controlled biaxial 

mechanical protocols is shown in Figure 25.  These stress-stretch curves demonstrate that the 

longitudinal axis shows stretch reversal but the circumferential direction does not.  
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samples compared to that of normal bladders (Figure 26). However, the compliance of 10-week 

SCI specimens was significantly lower (p<0.001) than 3-week and 6-week SCI samples, and was 

similar (p=0.101) to the tissue compliance of normal bladders. 
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Figure 26: Changes in the mechanical compliance of the bladder wall up to 10 weeks after SCI. 
Areal strain, as an index of tissue compliance, was calculated (data are mean ± SEM) in 3-week, 
6-week and 10-week SCI specimens (*p<0.05, n=6-12, analyzed by ANOVA followed by 
Dunn's post-hoc test; † redrawn from [58], § redrawn from [17]).  

4.1.3 Changes in the maximum axial stretches  

Our results also demonstrated a significant difference between maximum axial stretch in 

circumferential and longitudinal directions in SCI samples. In particular, maximum axial stretch 

in circumferential direction was significantly (p<0.05) greater than that in longitudinal direction 

(Figure 27) in 3-, 6- and 10-week SCI bladders. 
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Figure 27: Biaxial mechanical response in the bladder specimens. Maximum axial stretches 
were determined in circumferential and longitudinal directions in normal and 1.5-, 3-, 6-, and 10-
week SCI rat bladders (data are mean ± SEM; *p<0.05; n=6-12; analyzed by ANOVA followed 
by a post hoc test; § redrawn from [17]). 

 
 
4.1.4 Response function analysis 

 
Response functions were viewed as two-dimensional stress component contour plots, which were 

generated over the experimental strain plane to allow direct examination of material symmetries 

to evaluate the material classification (Figure 28). The existence and direction of material axes 

were most apparent in the contour gradients plots of 10-week SCI, where there was marked lack 

of symmetry across the E
11

=E
22 line, with the material axes strongly aligned to the x1 (i.e. 

circumferential) stretch axes (Figures 28). Further, the distance between the contours was 

narrowed near the E
11 axis compared to the E

22 axis, indicating a strong dependence of W on E
11

.  
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4.2 HISTOMORPHOMETRY STUDY 
 
 

4.2.1 Smooth Muscle Orientation 

 
In the 10-week SCI rat bladders, muscle edge count percentages (representing the orientation of 

smooth muscle bundles) were extremely higher along the longitudinal axis of bladder. 

Specifically, the normalized muscle edge counts in 75◦–84◦, 85◦–94◦, 95◦–104◦ and 105◦–114◦ 

angle spans (with the mean ranging from 11.45 ± 2.48% to 17.88 ± 3.34%) were significantly 

greater (p<0.05) compared to those in all the other directions whose average values were less 

than 5% (Figure 29). 

 

 

 

 

 

 

 

 

 

 

Figure 29: The orientation distribution of muscle bundles in 10-week SCI rat bladders, fixed at 
50% volume capacity, n = 3. 
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4.2.2 Tissue Composition 

 
Semi-automated image analyses of histological sections of rat bladder tissues revealed that the 

ollagen area fractions in the 10-week SCI bladders were significantly (p<0.05) higher compared 

to the 10-day SCI group, but were similar to the normal bladders (Figure 30). 

 

Figure 30: Area fractions of muscle and collagen in normal, 10-day and 10-week SCI rat 
ladders, fixed at 50% volume capacity. The 10-week SCI bladders exhibited significant (* p< 

0.05) increases in collagen area fractions compared to the 10-day SCI group, but similar to the 
ormal bladders. Data are mean ± SD; n = 3-5; analyzed by One-way ANOVA followed by the 

Student-Newman-Keuls post-hoc test. † Redrawn from [81]. 
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igher than those of 

ormal bladders. Elastin contents of all SCI groups were also significantly higher than normal 

roup. Collagen content was only statistically different in 10-week SCI bladder specimens 

able 3). 

Collagen concentration (i.e. collagen mass normalized by volume of bladder specimen) 

of the 1.5-, 3-, and 6-week SCI rat bladders, expressed in terms of milligram per volume of tissue 

specimen, were statistically similar to each other, and were not significantly different when 

compared to the normal bladders collagen concentration (Table 4).  The collagen concentration 

of 10-week SCI specimens, however, was significantly (p<0.05) greater than normal, 1.5-week, 

3-week and 6-week SCI samples. Elastin concentration of the 1.5-, 3-, 6-, and 10-week SCI 

bladders, expressed in terms of microgram per volume of tissue specimen, were similar to each 

other, but significantly (p<0.05) higher than those of normal bladders (Table 4).  

Table 3: Specimen weights, and collagen and elastin contents in the normal and SCI rat bladders 

 

 

4.3  ANALYSIS OF MATRIX PROTEIN CONTENTS 
 

The weights of SCI bladder specimens at all timepoints were significantly h

n

g

(T

 

(data are mean ± SEM; *p<0.05; n=6-12; analyzed by one-way ANOVA followed by the 
Student-Newman-Keuls post-hoc test).  † from [60]. 

 
 
 Group

Specimen weight Collagen Elastin 
(wet tissue, g) content (mg) content (µg)

Normal 0.099 ± 0.010 1.555 ± 0.473 0.029 ± 0.017
1.5-week SCI 0.127 ± 0.006 * 1.316 ± 0.220 0.105 ± 0.031 *
3-week SCI 0.162 ± 0.019 * 1.477 ± 0.416 0.152 ± 0.078 *
6-week SCI 0.130 ± 0.016 * 1.088 ± 0.140 0.138 ± 0.024 *
10-week SCI 0.211 ± 0.017 * 2.540 ± 0.314 * 0.218 ± 0.026 *

† 

† 

 
 
 

 

 

 65



 

 
 

Table 4: Collagen and elastin concentrations, and elastin/collagen ratios in the normal and SCI 
rat bladders (data are OVA followed 

y the Student-Newm

24.612 ± 2.623 2.541 ± 0.530 *
eek SCI 18.147 ± 1.045 2.305 ± 0.204 *

1.86

10.33
12.70

 mean ± SEM; *p<0.05; n=6-12; analyzed by one-way AN
an-Keuls post-hoc test).  † from [60]. b

Group

1.5-week SCI 21.927 ± 1.636 1.742 ± 0.229 *
3-week SCI
6-w

Collagen Elastin Elastin/collagen
concent. (mg/cm3) concent. (µg/cm3) ratio (x100)

7.94
Normal 25.913 ± 2.982 0.481 ± 0.092

10-week SCI 42.341 ± 2.621 * 3.634 ± 0.219 * 8.58

† 

† 
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4.4 SUMMARY OF FINDINGS IN 10-WEEK SCI BLADDER  
 

In summary, biomechanical studies on the 10-week spinal cord injured bladders revealed 

significant changes in mechanical properties of rat bladder wall, including decreased tissue 

compliance (when compared to 3-, and 6-week SCI bladders), and shift in material class from 

isotropic (in 10-day SCI bladder) [58] to anisotropic. Furthermore, examination of histology 

sections of 10-week SCI rat bladders exhibited profound tissue alterations, which included 

smooth muscle hypertrophy, increased number of elastic fibers, and increased collagen content 

of the bladder wall tissue. The image analyses of 10-week SCI rat bladders demonstrated change 

in overall muscle bundles orientation from bidirectional in 10-day SCI bladder [81] to 

predominantly longitudinal, in a more pronounced pattern even when compared to the normal 

bladder, which was in agreement with the alteration in the material class between 10-day and 10-

week SCI rat bladder wall tissues [58]. Finally, the biochemical analysis provided additional 

evidence of significant changes in the extracellular matrix proteins in 10-week SCI rat bladder, 

including significant increase in collagen concentration of bladder wall tissue.  
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5.1.1 Changes in biomechanical properties of bladder wall 

 

Furthermore, it was previously reported that the 10-day SCI rat’s bladder tissue behaved as 

a quasi-isotropic material (i.e. exhibiting isotropic mechanical response under equi-biaxial 

loading) while normal rat bladder was mechanically anisotropic [58]. The results of present 

study, however, demonstrated that the maximum axial stretches in two anatomical directions 

were significantly (p<0.05) different in 3-, 6- and 10-week SCI bladders when tested under 

5.0 DISCUSSION 

 

5.1  BIOMECHANICAL ANALYSES 
 

Previously, it was demonstrated that bladder wall compliance in 10-day SCI rats were 

significantly greater when compared to the normal bladders [58]. The results of present 

biomechanical study provided additional evidence that the compliance of the bladder wall tissue 

continued to increase up to 6 weeks following injury. The compliance, however, drastically 

decreased by 10 weeks after SCI and became similar to that of normal bladders (Figure 26). 

These findings suggest that bladder wall compliance may decrease even further for a period 

longer than 10-week post-injury, and bladder wall eventually becomes less compliant when 

compared to the normal bladders. 
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equibiaxial loading (Figure 27), indicating that bladder tissue behaved as an anisotropic material 

 those samples. 

The alterations in the compliance of bladder wall tissue over a 10-week period of time post-

SCI, and changes in material class from al rats) to isotropic (in 1.5-week SCI 

ts) to anisotropic (in 3-, 6-, and 10-week SCI arts) indicate that the mechanical properties of 

ladder tissue continuously change after spinal cord injury. These changes are in agreement with 

lterations in composition and structure of the 

f a close correlation between changes in structure /composition and mechanical properties of 

ination with stress-based biaxial testing data to determine 

chang

11 22 

isotropy, which may be modeled most efficiently with an isotropic function. Asymmetric plots, 

in

 anisotropic (in norm

ra

b

a 10-week SCI bladders, and support the existence 

o

the bladder tissue. 

 

5.1.2 Bladder wall model prediction 

 
Although extensive modeling is not an objective of this study, it is desirable to evaluate biaxial 

mechanical properties independent of any specific constitutive model form. This is particularly 

the case when using stress-based biaxial mechanical protocols, which, although more convenient 

for quantifying the biaxial response within the physiological range, cannot be readily used to 

determine optimal constitutive model forms. In the present study, strain-energy interpolation 

functions were utilized in comb

es in the material class and changes in degree and direction of mechanical anisotropy in the 

rat bladder wall 10 weeks after spinal cord injury [17]. 

The results of the response function analyses can be used to determine which material 

class (e. g. isotropic, orthotropic, transverse orthotropic) is most applicable by examining the 

intricacies of the contour plots. Symmetry across the E =E line in a contour plot indicates 
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requiring an orthotropic function, were examined to determine the larger strain axis, indicated by 

the majority of the strain region lying to one side of the line of symmetry and larger contour 

gradi

bladders wall were isotropic. The response functions proved useful for 

visualizing the stress response over a region of strain and were used for comparisons between the 

values.  

rofound bladder wall tissue remodeling, 

includi

ents. The most appropriate model choice for each group can ultimately be determined by 

examining the contour plots of each specimen and determining the dominant response. 

The 10-week SCI samples demonstrated a complete asymmetry with more dependence of 

W on E
11 

when compared to the normal and 10-day SCI bladders. Conversely, the 10-day SCI 

samples with slight symmetry near the equi-strain line, exhibited a weak dependence on E
22

. It 

was determined that the 10-week SCI group belongs to an anisotropic material classification, 

while 10-day SCI 

groups regardless of the particular strain 

 

5.1.3  Tissue structural information and its relation to mechanical behavior  

 
 It is a very difficult task to directly evaluate the mechanical properties of biological tissues in 

vivo, therefore, defining any correlation between the tissue structure and its mechanical behavior 

becomes an alternative approach. The mechanical studies have demonstrated that the bladder 

wall exhibits complex biomechanical behaviors that are profoundly altered following SCI.  In 

particular, Nagatomi et al have observed that the biomechanical properties (e.g. material 

classification) could be a direct result of rapid and p

ng changes in the bladder wall tissue architecture, such as smooth muscle cell orientation 

[81]. The results of the present study provided more evidence that changes in the orientation of 

smooth muscle bundles significantly contribute to the alteration in material class of bladder 

tissue (Figure 31). Specifically, when 10-week SCI bladder tissues were exposed to varying 
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ratios of non-equibiaxial loads, bladders exhibited strong influence of mechanical cross-coupling 

and behaved like anisotropic materials. This was consistent with the histomorphometric findings, 

which demonstrated dominant orientation of smooth muscle bundles along the longitudinal axis.  

Reviewing the previous results also reveals that dominant distribution of muscle bundles in 

longitu

n

 

 

 

 

 

dinal direction in normal bladders was mirrored by mechanical anisotropy in those 

specime s, and bimodal orientation observed in 10-day SCI bladders resulted in an isotropic 

behavior of bladder wall tissue (Figure 31).  

 

 

 

 

Figure 31: Comparison between results of mechanical testing and histomorphometry study. 
Upper panel: The longitudinal (○) and circumferential (●) stress-stretch curves representing 
equibiaxial data (mean ± SEM) in normal and SCI rat bladders indicated an isotropic response in 
1.5-week SCI samples [17], but an anisotropic behavior in normal and 10-week SCI bladders. 
Lower panel: The orientation distribution of muscle bundles in normal (A), 1.5-week SCI (B) 
(redrawn from [81]), and 10-week SCI (C) bladders corroborated the mechanical anisotropy data. 
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5.2  MATRIX PROTEINS ANALYSIS 

 
 

It has been postulated that the mechanical properties of the bladder wall are largely determined 

by the extracellular matrix components [15, 18, 85, 90]. In particular, collagen and elastin are 

two major connective tissue proteins providing tissues, including urinary bladder, with tensile 

strength and elasticity, respectively. Alterations in content or intrinsic properties of either of 

these proteins may lead to changes in bladder functional properties [15, 91].  

The results of present study provided evidence that the SCI groups at all time points 

xamined had higher elastin concentrations compared to the normal bladders (Table 3, Figure 

2). This finding suggested that bladder tissue’s early response to changes in mechanical 

environment (e.g. over-distension) occurred as early as 10 days after injury, and contributed to 

n increased compliance in 10-day SCI samples compared to the normal bladders. The collagen 

oncentration of 10-week SCI bladders (when normalized by the tissue volume) was higher than 

normal and 1.5-, 3- and 6-week SCI rat bladders (Table 3), indicating a late response, which 

appened between 6 and 10 weeks post-injury. 
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Figure
Pentach

 

Furthermore, the ratio of elastin/collagen concentration (normalized by tissue volume), as an 

index of relative changes in extracellular matrix, was calculated at each time point following 

injury (Table 3, Figure 33). This ratio has been suggested as an important factor in determining 

the compliance of the obstructed bladder [85]. The present results suggest a linear correlation 

(Figure 34), between elastin/collagen ratio and the compliance of the SCI bladders. Further 

biochemical analysis of the rat bladder wall, especially quantification of cross-linking for ECM 

proteins and/or collagen typing, will be, however, required to validate the link between 

alterations of the bladder compliance and changes in its composition following spinal cord 

injury. 

 

 

 

 

 

 

 
 32: Digital image of histology slide 10-week SCI rat bladder, stained with Movat 
rome technique, mag. 40X. Increased amount of elastic fibers (stained in black; indicated 

by arrows) is notable. 
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Figure 33: The changes in areal strain and elastin/collagen concentration ratio in rat bladder 

The similarity of two plots as a function of time suggests a potential correlation between them. 

 

 
 
 

Figure 34: Areal strain at various time-points after injury plotted as a function of corresponding 
elastin/collagen ratio, exhibiting a linear correlation between them. 

tissue over a period of 10 week after injury (those of normal bladder shown at zero time point). 
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6.0 SUMMARY AND CONCLUSIONS 

 
 
 
In this work, various experimental protocols and analysis techniques were combined to provide a 

thorough assessment of the changes in the urinary bladder wall 10 weeks after spinal cord injury. 

 
 

6.1   CHANGES IN THE MECHANICAL PROPERTIES  

significantly greater when compared to the normal bladders [58]. The results of present study 

provided additional evidence that the compliance of the bladder wall tissue continued to increase 

up to 6 weeks following injury. The compliance, however, drastically decreased by 10 weeks 

after SCI and became similar to that of normal bladders. Based on these findings it can be 

speculated that bladder wall compliance may decrease even further for a period longer than 10-

week post-injury, and bladder wall eventually becomes less compliant when compared to the 

normal bladders.  

urthermore, previous published study demonstrated that the 10-day SCI rat’s bladder 

tissue behaved as a quasi-isotropic material (i.e. exhibiting isotropic mechanical response under 

qui-biaxial loading) while normal rat bladder was mechanically anisotropic [58]. The results of 

resent study, however, exhibited that bladder tissue behaved as an anisotropic material in 3-, 6-, 

adder wall tissue over a 10-

 

Previously, Gloeckner et al demonstrated that bladder wall compliance in 10-day SCI rats were 

F

e

p

and 10-week SCI samples. The alterations in the compliance of bl
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week period of time post-SCI, and changes in material class from anisotropic (in normal rats) to 

otropic (in 1.5-week SCI rats) to anisotropic (in 3-, 6-, and 10-week SCI rats) indicates that the 

ladder tissue continuously remodels after spinal cord injury. In addition, biomechanical 

analyses provided us with b velop constitutive models 

r SCI as a function of time, which can be utilized in computer simulations to predict 

 

6.2  CHANGES IN THE BLADDER WALL COMPOSITION AND STRUCTURE  
 

hile the overall pattern of compositional changes demonstrating tissue hypertrophy and 

. As a result, the bladder is continuously subjected to the filled state for 

prolong

is

b

asic information that could be applied to de

fo

mechanical response of the bladder in different time points after spinal cord injury.  

 

 
W

increased elastin concentrations were similar to what have been reported in literature for similar 

pathologic conditions [84, 85], the present results are first to exhibit changes in spinal cord 

injured rat bladders, including increased collagen net contents by 10-week after injury, and 

correlation between tissue compliance and elastin/collagen ratio.  

In the rat model of spinal cord injury, following the loss of voluntary voiding control due 

to the spinal transection, the rats normally gain the reflex voiding ability within the first 2–3 

weeks. During this initial recovery period, however, the rats are unable to void urine without the 

manual expression

ed time periods and exposed to constant volume overload, which can be speculated to 

trigger a set of local responses by smooth muscle cells to change their size and orientation as 

well as gene expression in the early recovery phase of spinal cord injury. The net results, 

therefore, will be muscular hypertrophy, perhaps with preferred orientation, and increased elastin 

synthesis over the first few weeks. Later on, after emergence of automatic, involuntary reflex 
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micturition, the rats will be able to urinate; however, this reflex will be accompanied by bladder-

sphincter dyssynergia and detrusor hyperactivity that is mediated by spinal reflex pathways (as 

described in Section 1) [40]. Thus, when the bladder contracts reflexly, the sphincter also 

contracts, causing a functional outlet obstruction, and producing a large amount of pressure 

inside the bladder. The increased pressure will result in high bladder wall stress. The subsequent 

and constant changes in mechanical environment of the bladder in this phase will, in turn, trigger 

a different mechanism, such as increased collagen synthesis.  

 

6.3  CONCLUSIONS 

demonstrated that the bladder 

wall ex

 

 

Investigating changes in the bladder wall properties through parallel studies such as mechanical 

testing, protein analyses and histomorphometry, up to 10 weeks after spinal cord injury helped us 

gain a better understanding of alterations in functional and structural properties of bladder wall 

and their correlations after SCI. The biomechanical results have 

hibits complex biomechanical behaviors that are profoundly altered following SCI.  In 

particular, it was observed that during the initial areflexic phase of SCI the bladder wall 

undergoes profound remodeling to compensate for increased wall stretch from over-distension.  

This remodeling process includes increased compliance, mainly due to elastin synthesis and 

directional smooth muscle hypertrophy. The latter will, in turn, result in an isotropic behavior in 

short-term (i.e. 10-day) SCI bladder samples. 

This is then followed by a hyperreflexic phase during which the bladder wall tissue 

further alters its structure and mechanical behavior, primarily through increase in ECM collagen 

content and continuous smooth muscle hypertrophy, resulting in an eventual stiffening of the 
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bladder and reduced bladder compliance in long-term (i.e. 10-week) SCI bladders.  The stimuli 

for these profound functional changes in this phase are presumably different compared to the 

mechanical stimuli during areflexic phase; large tissue strain during areflexia in contrast to 

increased tissue stress during hyperreflexia. Therefore, it can be concluded that the functional 

changes (e.g. altered compliance) are direct results of rapid and profound bladder wall tissue 

remodeling, including changes in smooth muscle cell content and orientation, and collagen and 

elastin concentrations.  

Taken together, it can be concluded that structural changes after spinal cord injury might 

be part of compensatory mechanisms to protect the organ from the increased mechanical 

ands on the bladder wall due to prolonged periods of high pressure and/or volume storage in 

SCI bladders during recovery of the voiding ability. In particular, changes in ECM proteins 

tissue. In addition to changes in compliance, alteration in mechanical behavior, such as material 

muscle bundles was shown to be responsible for changes in urinary bladder wall tissue material 

inary tract associated with SCI were distinct. 

dem

contributed to adjustment in bladder compliance; increase in elastic fibers immediately after 

injury resulted in a more compliant bladder wall and increased net collagen content enhanced the 

bladder wall strength in 10-week SCI specimens. Therefore, the suggested elastin to collagen 

ratio can be the determining factor to predict the mechanical compliance of the bladder wall 

class, was also correlated to structural changes in bladder tissue; the orientation of smooth 

classification. Finally, these results provide first evidence that early and late responses of bladder 

tissue to the functional changes of the lower ur

Further investigations, however, are required to elucidate underlying mechanisms 

through which the urinary bladder responds to the changes in its mechanical environment. 

Specifically, the interaction between smooth muscle cells and extracellular matrix proteins need 
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to be characterized. Moreover, the intrinsic properties of these proteins, including the degree of 

cross-linking, can play a major role in determining overall mechanical response of the bladder 

wall tissue, and should be investigated. In addition, active and passive properties of bladder 

tissue are not well understood and required more investigation, since only inactive characteristics 

of this tissue has been studied.  These new studies, however, may demand new imaging and 

laboratories approaches. Finally, three-dimensional characterization of bladder wall can be an 

ultimate task to define structure-function relationship in the urinary bladder wall.  

6.4.1 Extended biochemical studies 

 

diate 

filame

elastin are stabilized through covalent crosslinks. There is much evidence showing that 

 

 

6.4  FUTURE STUDIES 
 

 
Despite recent findings, the mechanism of the changes in the tissue composition seen within the 

bladder after spinal cord injury is unknown, and new approaches are required to address the 

questions. 

6.4.1.1 The role of cross-linking 
 

It has been postulated that the tissue remodeling and changes in mechanical behavior that occurs 

after similar pathologic conditions such as outlet obstruction could be caused not only by altered 

collagen concentration in the bladder [84], but also by increased concentration of interme

nts such as filamin or desmin [92], altered intrinsic properties of collagen and elastin [93-

95], and/or remodeling of cross-bridge elements to reset length-tension relations [96]. Cross-

linking, especially, has been discussed quite often in recent literature, since both collagen and 
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crosslinks of collagen and elastin play an important role in their physiological functions [97-99]. 

Therefore, they may be thought to be major factors in the presence of abnormalities in various 

kinds of connective tissue. 

 

On a molecular level, some of the changes observed between diseased and non-diseased bladder 

wall may be due to active remodeling of the actin protein. There are several t

6.4.1.2 The role of actin and myosin 

 

ypes of actin, 

including, for example, slow and fast actin, which have different properties. As the actin and 

myosin crossbridges are in series with the forces applied to the tissue, even when the tissue is 

not contracting and under the relaxi ange to the actin molecules will 

level. This may also be an important assay to 

develop when examining the changes in protein within the bladder wall during disease states. 

6.4.1.3 Collagen typing 

remodeling could be caused by an altered ratio of collagen subtypes, which has been 

stretch [100], such as what happens in SCI. Kim et al [101] 

ported that bladder outlet obstruction affect on changes of localization and quantity of collagen 

t

r

c

e

o

 ng effects of EGTA, any ch

contribute to the differences observed at the tissue 

 
 
The tissue 

observed to occur after mechanical 

re

ypes as well as collagen content, and these changes lead to bladder remodeling. Moreover, their 

esults suggest that the change in the collagen types rather than the change in the collagen 

ontent may have an impact on the bladder function. Uvelius and colleagues [102] also 

mphasized that collagen concentration could not account entirely for the increased wall stress 

bserved in diseased (e.g. obstructed) bladders. They speculated that altered mechanical 

properties in these bladders could be a result of other changes, for instance, altered conformation 
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of connective tissue, altered ratio of collagen subtypes, or increased concentration of 

ntermediate filaments. i

6.4.2 Diversion Studies  
 

iversion studies have been performed in which the bladder is constantly emptied through a 

u

t

t

s

a

w

t

 

 
D

rine shunt to another organ, preventing pressure and averting volume overload [103]. Even with 

he shunt, the bladder develops many of the same problems. This suggests that overload is not 

he sole cause of the dysfunction after spinal cord injury. Identifying the factors that cause the 

mooth muscle hypertrophy and dyssynergia may, in turn, aid in the development of methods to 

void the dysfunction. Mechanical studies on bladder behavior in diverted rats and other animals 

ith modified neural stimulation may aid in isolating the causes of the changes in structure and 

issue behavior. 

6.4.3 Active Properties  
 
 
The passive studies presented here are simpler to perform than those requiring active tissue 

response. It is known that the mechanical properties of an actively contracting material are not 

the same as those of the passive material with a larger stiffness. The fundamental behavior of the 

material is different and must therefore be studied as a separate material. Stimulation of a large 

piece of tissue such as the 1 cm square samples, either by electrical or chemical means, is much 

more difficult to perform than uniaxial strip experiments. Some preliminary studies have been 

performed in this laboratory, but nothing conclusive has been found [79]. In addition, the 

mechanical properties will be altered in disease states, necessitating further testing. 
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6.4.4 Morphology studies 

 
 

Knowledge of bladder morphology is required to understand the impact of disease on bladder 

rmed here were not exhaustive, and much is left to be learned. To 

nderstand the subtle changes in cross-coupling demonstrated by the quasi-static studies, it is 

necessary to understand how connective tissue and smooth muscle interact, and how the forces in 

the bladder wall are distributed between them. One possible method of determining how the 

tissue-level forces measured in this study relate to the organ-level function may be through the 

use of computerized tomography or magnetic resonance imaging of the rat bladder before and 

after disease such as spinal cord injury.  

 

The phenomenological modeling employed here can quantitatively compare parameter 

n o groups; however, this type of modeling cannot be used to indicate 

hat structural component or components are responsible for the observed changes. A structural 

constitutive model approach, such as that suggested by Horowitz, et al. [104] for myocardium, in 

which the muscle fibers connected by collagen fibers were simulated, may be warranted. In this 

model, both the muscle fibers and collagen fibers have designated direction, distribution, and 

mechanical properties that were experimentally measured or approximated. It has been recently 

demonstrated how inclusion of morphological tissue data can result in accurate prediction for 

planar collagenous tissue using a structural approach [105]. However, detailed and accurate 

quantitative morphological information about the collagen structure between and within muscle 

bundles in normal and diseased bladder wall is required before this approach can be effectively 

plemented.

function. The studies perfo

u

6.4.5 Advanced Modeling 
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