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Abstract 

 Several studies have been conducted investigating the biomechanics of pitching [1-9]. 

These previous studies all report high compressive and distractive forces for shoulder external 

rotation, elbow flexion with a maximum varus torque, shoulder adduction torque, and elbow 

extension. These characteristics may be exacerbated with increased pitch counts.  

 The purpose of this study was to quantify changes in shoulder and elbow mechanics as a 

result of increased pitch count, by evaluating joint angles, accelerations, and velocities. Subjects 

each completed one testing session. Intercollegiate baseball pitchers pitched a simulated game, 

with 17 pitches per inning over the course of 9-innings. Shoulder and elbow kinematic data were 

evaluated for a fastball every tenth pitch of the simulated pitch count for each subject. Our 

overall hypothesis was that as the pitch count increased, abnormal throwing mechanics would 

result. 
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1 Chapter One 

1.1 Introduction 

1.1.1 Background 

 
 Even using the most conservative estimates, baseball accounts for more than 50,000 

injuries per year in participants ranging in skill level from little league to professional [10]. 

Pitchers sustain a large portion of these injuries, with nearly 50% experiencing sufficient 

shoulder and/or elbow pain, preventing participation in throwing at some point in their career 

[10, 11].  Given that most pitching injuries stem from overuse mechanisms [12-14], it is 

important to understand how the pitching motion changes as the pitch count (and subsequent 

fatigue)  increases over the course of a game. 

 The overhead throwing motion can be divided into six phases. These phases include  1) 

windup, 2) stride, 3) arm cocking, 4) acceleration, 5) deceleration, and 6) follow-through, which 

all have extreme amounts of motion and forces [1, 5, 7-9, 15-17]. Several studies have been 

conducted investigating the biomechanics of pitching [1-9]. These previous studies all report 

similar findings when looking at kinematics and kinetics of throwing among pitchers. These 

findings include high compressive and distraction forces for shoulder external and internal 

rotation, elbow flexion with a maximum varus torque, shoulder adduction torque, and elbow 

extension. 

Changes in pitching mechanics may predispose these pitchers to shoulder and elbow 

injuries due to micro-trauma occurring repeatedly throughout skill development and skeletal 

maturity [9, 15]. The most serious injuries occur at the collegiate and professional levels, 

requiring surgical intervention and or rehabilitation [13]. Due to excessive ranges of motion, 
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high movement speeds, and the magnitude of loads that the shoulder and elbow joint experience, 

it is only natural that attention must be drawn to these joints and the injuries sustained [2, 5, 18-

21].  

 At the shoulder, kinematic analyses have been performed, showing values for external 

rotation and internal rotation angular velocities in excess of 180 and 7000 degrees per second, 

respectively [1, 5]. Kinetic variables were also studied, with compression forces occurring at the 

time of ball release equal to body weight [2, 5]. In regard to the elbow, distraction forces are as 

high as 780 N [2, 21]. Over a long period of time, these repetitive motions and improper 

mechanics can contribute to the injury of any number of anatomical [22].  

  Many reasons have been suggested to explain why these shoulder and elbow injuries are 

occurring. They include skeletal immaturity, overuse associated with improper mechanics, and 

fatigue [9, 23, 24]. Skeletal maturity plays a more substantial role in youth pitchers mainly 

because of strength deficits when compared to mature adult pitchers [9]. These strength deficits 

may be a reflection of improper development of bone and soft tissues. While kinematic 

parameters have been found to be similar in youth and adult pitchers, force production has varied 

significantly [9]. The study of little league players tended to support the observations that injury 

occurs secondary to poor pitching mechanics [23]. This study supported ideas of a previous 

study, emphasizing the importance of developing skills and control first, and then focusing on 

velocity later as physical development progresses [24]. Therefore it was found that symptoms of 

the pitchers correlated to pitching mechanics rather than age.  

 Fatigue is suggested to play a major role with respect to injury potential by increasing the 

individual’s risk due to biomechanical changes. Fatigue is thought to negatively influence a 

pitcher’s performance and to possibly increase vulnerability to injury [25, 26]. Furthermore, 
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fatigue may be a strong contributor to increased injury potential among pitchers over the course 

of multiple innings and increasing pitch counts.  

One study was conducted using a simulated game in a laboratory setting [27]. This study 

was one of the first to quantify kinematic changes of the shoulder and elbow over the course of 

an entire game (simulated). The investigators had 10 collegiate pitchers throw for multiple 

innings. Several significant changes in kinematics were noted with extended play including 

increased shoulder abduction, horizontal adduction, and external rotation at the instant of stride 

foot contact. At ball release, less shoulder abduction and a more extended lead leg were 

observed. These two criteria are often observed by pitching coaches and used to indicate fatigue.  

While significant changes were found, only an indirect measurement of fatigue could be 

reported, but the authors did not seek to correlate kinematic changes observed with kinetics or 

injury potential.  

Based on the Barrentine study, a similar study was designed to analyze the changes in 

kinematic and kinetic parameters of the baseball pitcher that occur over the course of actual 

major league baseball game conditions [28].  Significant kinematic variables included maximum 

external rotation angle of the shoulder, knee angle at ball release, and ball velocity. Significant 

kinetic variables included maximum compression forces at the shoulder and elbow joints and 

horizontal abduction torque. Analysis revealed that 7 of the 13 parameters analyzed during the 

pitch changed significantly between the early and late innings. These changes probably resulted 

from fatigue and suggested an increased injury potential as the pitch count increased. 

Unfortunately, this study only analyzed a total of two fastballs per pitcher, one pitch from the 

first inning of play, and one pitch from the last inning of play. Therefore, these authors were able 
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to significantly show that fatigue does occur over the course of a game, but were not able to 

show where in the pitch count fatigue is actually occurring. 

The occurrence of fatigue has a tendency to be overlooked in our youth population. 

Generally, the role of fatigue and its responsibility for overuse injuries is thought to apply to 

collegiate and professional pitchers [14]. The risk of injury is known to increase with age and 

level of competition [13]. However, it is believed that many pitching injuries that receive 

medical treatment at higher competition levels result from cumulative micro-trauma that began at 

the youth level [12]. 

The effect of pitch counts, pitch types, pitching mechanics, and shoulder and elbow pain 

in youth pitches were evaluated over the course of a season [14]. Each team kept a pitch count 

log of the game pitches thrown by each pitcher. They also used videotape to analyze pitching 

mechanics. Interviews after every game including types of pitches thrown, fatigue, and pain 

levels were conducted. The total number of pitches thrown in each appearance varied from 1-

161. This study also discussed that limiting pitch count rather than innings might improve the 

safety of pitchers, reducing injury potential. 

Through quantification and subsequently limitation of the pitch count, pitchers will be 

able to reduce the amount of fatigue that occurs, decreasing the amount of micro-trauma 

occurring to the upper extremity as a result of repeated overuse and changes in segment 

positioning during the throwing process. The importance of this research and the contributions it 

will generate to the field of sports medicine will be useful in aiding the athletic trainers, coaches, 

and players to modify pitching procedures. Knowledge of a pitcher’s pitch count, along with 

visual recognition of fatigue and its occurrence within the pitch count (represented by changes in 

pitching kinematics and kinetics), will allow for proper participation time to be considered by the 
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coach and athletic trainer. By referring to pitch count as the basis for the amount of participation 

in competition, the alleviation of potential injury along with the time frame for rehabilitation and 

return to activity may be decreased. 

 Investigations looking at pitching kinematics and kinetics have been conducted [1-8]. 

However, these studies did not investigate the effect of true extended play exerted during an 

entire game as pitch count increased. Instead, they focused on the number of innings the pitcher 

threw and a limited amount of actual pitches.  In no way did any of the investigators quantify a 

pitch count for any of the pitchers, nor did they capture where in the pitch count these pitchers 

were experiencing changes in their pitching.  

The purpose of this research was to quantify kinematic arm motions as a result of increased 

pitch count, of collegiate baseball pitchers, and to investigate where in the pitch count kinematic 

changes occurred. More specifically, changes in shoulder and elbow kinematics were 

investigated as the pitch count increased. It is imperative to show the importance of the pitch 

count and using its quantification as a guide for better assessment of fatigue and kinematic and 

kinetic changes resulting in improper throwing mechanics. These improper throwing mechanics 

may result in micro-trauma injuries from repeated overuse. If pitch count is used to gauge 

individual pitching time, injury potential, need for surgical interventions, and time spent for 

rehabilitation may all decrease. This will result in a healthier, longer career for not just the elite 

baseball player, but maybe for players of all ages.
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1.2 Specific Aims and Hypotheses 

Specific Aim 1: To determine if as pitch count increases, kinematic changes of the shoulder 

occur. Shoulder kinematics will be assessed as pitch count increases in 12 intercollegiate 

baseball pitchers using motion analysis.  

Hypothesis 1: Pitchers will demonstrate alterations in kinematics of the shoulder, including 

changes in joint angles during the early cocking, late cocking, acceleration, and deceleration 

phases as a function of pitch count. Specific changes will include: 

Hypothesis 1.1: Decreased shoulder external rotation during the early cocking, late cocking, and 

acceleration phases. 

Hypothesis 1.2: Increased shoulder horizontal abduction during the acceleration phase. 

Hypothesis 1.3: Increased shoulder internal rotation during the deceleration phase. 

Hypothesis 1.4: Decreased shoulder abduction during deceleration at instant of ball release. 

   

Specific Aim 2: To determine if as pitch count increases, kinematic changes of the elbow occur. 

Elbow kinematics will be assessed as pitch count increases in 12 intercollegiate baseball pitchers 

using motion analysis.  

Hypothesis 2: Pitchers will demonstrate alterations in kinematics of the elbow, including 

changes in joint angles during the early cocking, late cocking, acceleration, and deceleration 

phases as a function of pitch count.
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2 Chapter 2 

 

2.1 Review of Literature 

 
2.1.1 Introduction 

The shoulder is a very unique joint that acts as the primary center of motion for overhead 

propulsive activities [29]. Shoulder motion is determined by glenohumeral configuration, soft 

tissue flexibility, and freely gliding surfaces. The socket for the humeral head is formed by the 

glenoid cavity. Three-dimensional mobility occurs from the ball and socket configuration of this 

joint [29]. The acromion is large enough to cover the humeral head. The acromion also provides 

a mechanical leverage advantage with aid of the fibrous extension of the coracoid tip[29]. The 

acromion and the coracoacromial ligament form what is known as the acromial arch which 

prevents upward migration of the humeral head. Concurrent shift in muscle structure helps to 

maintain the humeral heads instantaneous center of rotation within the glenoid. This mechanism 

prepares the shoulder for overhead activity [30]. 

 

2.1.2 Anatomy  

 The bony anatomy of the shoulder joint complex  consists of three bones: the scapula, 

clavicle, and humerus; four joints: the glenohumeral, scapulothoracic, acromioclavicular, and 

sternoclavicular joints; and numerous bony landmarks including the acromion process, head of 

the humerus, and the greater and lesser tuberosities and the bicipital groove of the humerus [30-

32]. The four joints coordinate to produce precise and forceful motion through interaction of the 

articulations and the muscles that control the shoulder’s delicate mobility, balance, and stability 

[31-33]. 
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 The humeral head is kept within the glenoid fossa through a vacuum effect. This effect is 

assisted by the glenoid labrum, proper balance of muscular forces, and the joint fluid, which acts 

as a hydraulic fit, to maintain joint congruency [30-32]. The glenohumeral joint has a ball and 

socket configuration component, where the relatively large humeral head articulates with the 

small glenoid fossa with minimal restraints [29]. This joint relies on the surrounding joint 

capsule and ligaments to provide static stability, as well as surrounding muscles, such as the 

rotator cuff group, to provide dynamic stability. The glenoid only articulates with approximately 

30% of the humeral head, whereas this contact surface is increased to approximately 75% by the 

glenoid labrum [29, 34]. Next, the sternoclavicular joint consists of the proximal clavicle, which 

attaches to the sternomanubrial fossa. Stability is almost entirely by ligamentous structures. 

These ligamentous structures consist of the manubrial ligament, anterior and posterior 

sternoclavicular ligaments, and the inferior, anterior, and posterior costoclavicular ligaments. 

Only the inferior portion of the clavicle articulates with the manubrium and first rib. The 

presence of a fibrocartilaginous disk between these two surfaces helps to improve articular 

congruency. The acromioclavicular joint is formed by the lateral end of the clavicle and 

acromion. This joint articulation is relatively incongruent with the exception of an intraarticular 

fibrocartilagenous disk. The acromioclavicular joint is stabilized by the anterior and posterior 

capsular ligaments, and superiorly and inferiorly by the conoid and trapezoid corococlavicular 

ligaments. Lastly, the scapulothoracic joint functions primarily to stabilize the shoulder through 

muscular and ligamentous attachments. Unlike the three diarthroidal joints previously discussed, 

the scapulothoracic joint is a false joint, meaning it has no fibrous, cartilaginous, or synovial 

tissue connections. This joint enables scapular motion as it moves about the shoulder. The 

scapula is a thin concave sheet of bone, which has muscles underneath that allow the bone to 
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move in a gliding fashion slowly on the convex rib cage.  The overall pattern of scapular motions 

include an integration of scapulothoracic and glenohumeral motions [30-32].   

 Many muscles are responsible for the different movements of the shoulder. Their actions 

may be found to be an elevator, depressor, external rotator, internal rotator, adductor, abductor, 

flexor, or extensor of the shoulder, and flexor or extensor of the elbow [30-32]. 

 Elevators of the humerus include the deltoid and supraspinatus [30-32, 35]. The elevators 

of the scapula consist of the trapezius, rhomboids, and the levator scapulae [30-32, 35]. The 

supraspinatus originates in the scapular supraspinatus fossa and inserts at the top of the humeral 

greater tuberosity. The deltoid is made up of three sections of muscle, the anterior, middle, and 

posterior deltoid. The deltoid originates in its anterior head along the lateral third of the clavicle, 

its medial head along the acromion, and its posterior head along the posterior scapular spine. The 

trapezius is necessary for scapular upward rotation and retraction, with the upper fibers pulling 

on the lateral scapular angle for elevation. It originates from the occiput, ligamentum nuchae, 

and the spinous processes of vertebrae C7 and T1. The rhomboid minor originates from T2 

through T5 and inserts on the superomedial angle of the scapulae.  The rhomboid major 

originates from T2 through T5 and inserts into the entire posteromedial edge of the scapula. 

Finally, the levator scapulae originates in the transverse processes and posterior tubercules of 

vertebrae C1 through C4 to insert on the superior angle of the scapula. 

 The infraspinatus is a depressor of the humerus. Depressors of the scapula join include 

the upper fibers of the serratus anterior and the pectoralis minor [30-32, 35]. The infraspinatus 

originates in the scapular infraspinatus fossa and inserts below the supraspinatus on the greater 

tuberosity. The serratus anterior is made up of three sections which originate from the 

anterolateral ribs. The first inserts on the superior angle of the scapula, the second inserts on the 
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anteromedial border of the scapula, and the third inserts on the inferior angle of the scapula. 

Their primary function is to hold the scapula down during upward rotation. Lastly, the pectoralis 

minor originates from the second through the fifth ribs and inserts on the medial coracoid. It 

functions to depress the scapula with upward motions. 

 Major external rotators of the humerus include teres minor and infraspinatus [30, 31]. 

The teres minor originates from the central one third of the lateral border of the scapula below 

the scapular neck to pass behind the long head of the triceps and inserts onto the lower posterior 

aspect of the greater tuberosity under the infraspinatus. The infraspinatus originates from the 

infraspinosus fossa and travels laterally to insert on the posterior aspect of the greater tuberosity.  

 The internal rotators and adductor muscles of the humerus consist of the teres major and 

the latissimus dorsi [30, 31]. The teres major originates on the posterior scapula on the lateral 

border and inserts at the medial edge of the bicipital groove. The latissimus dorsi originates from 

the inferior angle of the scapula, the dorsal spine, and the lower four ribs, and inserts into the 

medial bicipital groove. Another adductor and a flexor of the humerus is the coracobrachialis 

muscle. It originates from the coracoid process and inserts on the anteromedial midhumerus [30, 

31]. 

 The biceps brachii performs elbow flexion and supination along with shoulder 

stabilization. It is made up of two heads. The long head originates from the superoposterior 

glenoid labrum while the short head originates from the coracoid tip. Finally, the triceps function 

as an extensor of the elbow. The long head originates from the infraglenoid tubercule of the 

scapula, the lateral head from the posterior surface of the lateral border of the humerus and 

lateral intermuscular septum, and the medial head from the posterior surface of the humerus and 
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the medial intermuscular septum. Insertion of the triceps occurs on the posterior part of the 

olecranon process of the ulna, and the surface of the fascia of the dorsal forearm  [30, 31]. 

 

2.1.3 Pitching Mechanics 

 The throwing process is a very dynamic skill among overhand throwing athletes.  Tullos 

and King [11] divided the phases of throwing into three distinct groups. These phases were 

identified as cocking, acceleration, and follow-through. Based on these initial identifications, 

Pappas et al. [36] conducted an analysis of baseball pitching mechanics. They studied the three 

phases previously mentioned, examining body parameters (anthropometrics), phase 

characteristics, and various speeds of the body segments and phases of the throwing athlete.  

 Based on these previous pitching biomechanical investigations, the pitching sequence has 

been further divided into more distinct phases. It can be divided into six phases: 1) windup, 2) 

stride, 3) arm cocking, 4) acceleration, 5) deceleration, and 6) follow-through [1]. The 

biomechanical description of the six phases is based on a right handed thrower.  

 

2.1.3.1 Windup 

 Pitching is a downward throwing skill from a mound with a vertical height of ten inches 

[1]. To start the pitching motion, the pitcher positions themselves facing the batter [1]. The 

windup is described as the time between the initiation of motion and the moment at which the 

ball is removed from the glove [36]. The windup begins with the leg contralateral to the pitching 

arm pushing off from behind the pitching rubber. The throw is initiated by stepping backward 

with what will become the stride foot/leg. The body weight is momentarily supported by the 

stride foot, while the supporting foot is placed laterally in front of the rubber. The windup is 
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initiated when the body weight is shifted back from the stride foot to the supporting foot [1]. As 

the contralateral leg pushes off and leaves the ground, three events occur simultaneously. Both 

arms flex forward with the ball in the glove, the ipsilateral leg and the trunk rotate approximately 

90º, and the contralateral hip and knee flex so that the left side of the body is now facing the 

batter. The initiation of the throw begins at the stretch position. The weight is shifted from the 

striding leg to the ipsilateral or pivot leg. Following the weight shift, the striding leg is swung 

across the front of the body [36]. This shift of weight sets the rhythm for delivery of the pitch. 

Good balance is important when the knee of the stride leg has reached its maximum height. 

Concurrently the ball is removed from the glove, and the delivery of the ball to the catcher is 

initiated [1]. 

 

2.1.3.2 Stride 

 Upon completion of the windup, the knee of the pivot leg is slightly flexed, the throwing 

shoulder is brought into a pattern of abduction, extension, and external rotation, the elbow may 

be completely extended or flexed to approximately 90° (depending on the pitcher), and the wrist 

is flexed [36]. The stride is normally directed toward the catcher. The key objective is to keep the 

trunk back as much as possible to retain its potential for contributing to the velocity of the pitch. 

As the striding leg moves downward and toward the catcher, the dominant hand breaks with the 

ball from the glove and moves in a upward/downward motion in rhythm with the body [1]. The 

striding leg continues across the body, the pivot leg vigorously extends with ankle plantar 

flexion, and knee and hip extension, to drive the body forward in the stride. Simultaneously, the 

hips and pelvis begin to rotate forward, followed by the segmental rotation of the trunk 

progressing from the pelvis to the shoulders [36]. If the throwing arm and striding leg are 
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coordinated properly, the arm will be up in a semi-cocked position when the stride foot contacts 

the ground. The stride should be long enough to stretch out the body, but not so long that the 

pitcher cannot rotate his legs and hips properly. The stride length from the rubber should be 

slightly less than the pitcher’s height. The stride foot should land almost directly in front of the 

back foot, with the toes pointed slightly inward [1]. The striding terminates with foot plant as 

trunk rotation continues to rotate forward [36].  

 

2.1.3.3 Arm Cocking 

 The cocking phase was described as the period of time between the cessation of the 

windup and the moment at which the shoulder is in maximal external rotation. This phase 

occurred in approximately 1500 ms (1.5 seconds), ending with the shoulder being brought into 

an extreme position of external rotation [36].  

 At the completion of the stride, the trunk moves laterally toward the catcher and hip 

rotation is initiated. Trunk rotation follows the hip, but in highly skilled pitchers, hyperextension 

of the upper trunk occurs as it is rotated around to face the plate. As the trunk is rotating and 

extending, the upper arm is flexed at the elbow, and the shoulder externally rotates (arm 

cocking). As the trunk faces the batter, maximum external rotation of the shoulder is achieved 

and the arm cocking phase is completed [1].  

 The arm cocking phase can be further broken down into the early cocking phase and the 

late cocking phase.  
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2.1.3.3.1 Early Cocking  

 The early cocking phase starts with the individual separating their dominate hand from 

the glove and ends when the front foot makes contact with the mound. During this time, the  

scapula is retracted [37]. Also, the humerus is positioned in 90º of abduction and horizontal 

abduction, with very little external rotation of about 50º. These motions are accomplished by the 

activation of the anterior, middles, and posterior deltoid. Toward the end of the early cocking 

phase, the external rotators of the cuff are responsible for the placement of the humeral head in 

the glenoid fossa. As for the forearm, the biceps brachii and brachialis are activated to develop 

the necessary angle of the elbow [1]. At this time, it was found that the shoulder had reached a 

position of approximately 90º abduction, 90° of horizontal extension, and 30º to 120º of external 

rotation (Table 1). The elbow is flexed to 90º and the wrist is moved into a neutral position.  

 The humerus is supported by the anterior and middle deltoid as the posterior deltoid pulls 

the arm into approximately 30º of horizontal abduction. The static stability of the humeral head 

becomes dependent on the anterior aspect of the glenoid, specifically the glenohumeral ligament 

and the glenoid labrum [38]. The early cocking phase ends with foot plant. 

Shoulder Motion Pappas et al. 1985 Current Study 
      

Abduction 90° 90° 
Horizontal 
Abduction 30° 90° 

External Rotation 120° 120° 
 

Table 1: Shoulder motion of previous study defined compared to definition of motion of 
current study  
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2.1.3.3.2 Late Cocking 

 The late cocking phase begins when the front foot hits the mound, and ends when the 

humerus begins internal rotation.  Immediately following foot plant, the upper trunk appears to 

reach its fastest angular velocity of forward rotation. This phase is the primary cause of chronic 

shoulder and elbow injuries that are reported each year [39]. At this time, the humerus is moved 

forward in relation to the trunk and begins to come into alignment with the upper body [38]. As 

forward trunk rotation decelerates, the shoulder and elbow are brought to a position of neutral 

horizontal extension, as the shoulder is externally rotated to approximately 160º or greater [36]. 

Deceleration of the external rotation of the humeus is achieved by the contraction of the 

subscapularis, until the completion of the late cocking phase. Also the serratus anterior and the 

pectoralis major have their greatest activity during deceleration. By producing a compressive 

axial load, the biceps brachii help to aid in maintaining the humerus head in the glenoid fossa. 

Once external rotation is achieved, the supraspinatus, infraspinatus, and teres minor become 

inactive. The triceps provide a compressive axial loading at the end of this phase to replace the 

force of the biceps [38]. The time from 90º of shoulder external rotation at foot plant to 

maximum external rotation at the end of the cocking phase averages 60ms in major league 

pitchers with a range of 28 to 88 ms. Forward movement of the ball does not occur during the 

cocking phase [36].  In preparation for the acceleration phase, external rotation must be increased 

to approximately 125º to ensure positioning for the power of the acceleration [38]. 

 

2.1.3.4 Acceleration  

 Acceleration refers to the increased speed in reference to angular velocities and the body. 

It is a ballistic action which lasts only one-tenth of a second [38]. The acceleration phase is 
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described to begin with the throwing shoulder in the position of maximal external rotation and 

terminates with release of the ball. This phase is very explosive, accelerating the ball from an 

essentially stationary position to speeds up to 95 miles per hour in about 50 ms (1/20) of a 

second. 

 Acceleration starts when the humerus begins to internally rotate about the shoulder. To 

ensure a proper pitch, a short delay must occur between the onset of elbow extension and 

shoulder internal rotation. By extending the arm at the elbow, the pitcher can reduce the inertia 

that must be rotated at the shoulder. With less inertia, internal rotational torque generated at the 

shoulder can accelerate the arm to a greater angular velocity [1]. 

  During acceleration, the scapula is protracted, rotated downward, and held to the chest 

wall by the serratus anterior. The arm continues into flexion and maximum internal rotation of 

the humerus is reached. The humerus travels forward in 100º of abduction, but adducts 

approximately 5º just before release. The latissimus dorsi and pectoralis major powerfully move 

the humerus forward. The subscapularis activity is at its maximum as the humerus travels into 

internal rotation. The triceps develop a strong action in accelerating the extension of the elbow. 

In this instant, the forces developed reflect the body’s ability to build an amazing amount of 

power and at the same time protect itself from biomechanical forces. Midway through the 

acceleration phase, control of the ball is lost as the humerus is positioned slightly behind the 

forward flexing trunk and at an angle of about 110º of external rotation [38].  

 Four actions occur sequentially leading to ball release. The shoulder is forcefully de-

rotated from external rotation to internal rotation with ball release occurring at about 48º of 

shoulder external rotation. Peak angular velocities of shoulder internal rotation as high as 9,198 

deg/second, and an average of 6,180 deg/second have been measured (ref). Peak accelerations 
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approaching 600,000 deg/sec/sec have also been found. The position of the arm relative to the 

head and trunk at ball release is determined more by lateral trunk flexion than shoulder joint 

action. The shoulder is in a position of 90º + 10º of abduction at ball release. Pitchers who throw 

“over the top” do so through a greater degree of lateral trunk flexion toward the contralateral 

side. Pitchers who throw sidearm do so without lateral trunk flexion [36].  

 After ball release, the hand follows the ball but is unable to apply further force. When the 

ball is released, the trunk is flexed, the arm is almost in a fully extended position at the elbow, 

the shoulder is undergoing internal rotation, and the lead knee should be extending. The 

acceleration phase ends with the release of the ball [38].  

 

2.1.3.5 Deceleration 

 After ball release, the arm continues to extend at the elbow and internally rotate at the 

shoulder. Excessive forearm pronation observed may be the combined effect of these two actions 

[1]. The humerus travels across the midline of the body and develops a slight external rotation 

before finishing in internal rotation. This occurs within the first tenth of a second. This phase is 

very active for all glenohumeral muscles as the arm is decelerated. The deltoid, upper trapezius 

and the latissimus dorsi have strong activity. Also, as eccentric loads are produced, the 

infraspinatus, teres minor, supraspinatus, and subscapularis are all active. Peak activity is 

developed by the biceps when decelerating the forearm, imposing a traction force within the 

glenohumeral joint [38]. In the arm deceleration phase, shoulder internal rotation angular 

velocity decreases from its maximum value observed to zero near the time of ball release [1].  

 As the shoulder is de-rotated, the elbow first flexes from 90º to almost 120º of flexion. 

The elbow rapidly extends 30 to 40 milliseconds before ball release to an average position of 25º 
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of flexion at ball release. Angular velocities averaging 4,595 deg/sec have been observed. Peak 

accelerations for the elbow were found to be approximately 500,000deg/sec/sec [36, 40]. 

Approximately 20 ms before ball release, wrist flexion begins from a position of extension and 

ends in a neutral position at release. The wrist does not flex beyond neutral. Radioulnar 

pronation begins approximately 10ms before ball release, with the forearm pronated to 90º at 

release [36]. Arm deceleration ends when the arm has reached an internal rotation position of 

approximately 0º [1]. 

 

2.1.3.6 Follow-through 

 The follow-through phase of pitching begins at ball release and continues until the 

motion of throwing has ceased. The purpose of this phase is to comfortably decelerate the 

throwing limb. There are essentially two parts to the follow-through phase.  Deceleration values 

of 500,000 deg/sec/sec are prominent at the shoulder and elbow [36, 40]. During this time, an 

active deceleration force is generated by the posterior shoulder girdle musculature and the 

biceps. The shoulder continues to move into horizontal flexion and internal rotation. The elbow 

undergoes a rebound effect and flexes to approximately 45º. Radioulnar pronation is evident. The 

final phase of deceleration can be described as a passive phase, with the body simply catching up 

with the arm, through a forward progression of the ipsilateral leg to a contact point which allows 

the pitcher to be in a proper fielding position [36]. The importance of a good follow-through is 

critical in minimizing risk of injury. Follow-through is completed with knee extension of the 

stride leg, continued hip extension, shoulder adduction, horizontal adduction, elbow flexion, and 

forearm supination [1]. 
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2.1.4 Pitching Research 

2.1.4.1 Motions and Forces 

 Pitching mechanics consist of extreme motions and forces, especially in the collegiate 

and professional levels [1, 5, 7-9, 16, 17, 41]. These motions and forces, small to extreme, can be 

assessed as kinematics and kinetics. Kinematics is defined as a description of motion in terms of 

position, velocity, and acceleration [42]. Kinematic variables are involved in description of 

movement, independent of the forces that cause the specified movement [43]. These variables 

include linear and angular displacements, velocities, and accelerations. Kinetics is defined as a 

description of motion that includes consideration of force as the cause of motion [42]. Kinetics is 

a general term given to the forces that cause movement, including internal and external forces 

[43]. 

 The pitching movement is a very quick, dynamic action which takes place in less than 

two seconds [1, 5, 36]. The entire pitching sequence has been broken down into percentages. The 

cocking phase accounts for nearly 80% of the time required to complete the entire pitching 

sequence, which is approximately 1500 milliseconds (msec). The acceleration phase accounts for 

2% of the pitching sequence, approximately 50 msec. Finally, the follow-through phase accounts 

for approximately 18% of the pitching sequence in approximately 350 msec [36]. 

 Feltner and Dapena [2] have investigated dynamics of the shoulder of the throwing arm 

during a baseball pitch. Pitches observed during the study consisted of all fastballs. Various 

kinematic parameters of the shoulder were calculated to help describe the motions of the 

shoulder joint throughout the pitch. Also, the resultant joint forces and torques were calculated. 

All values reported are based on the mean values throughout the study. At the instant of 0.075 
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seconds prior to stride foot contact, the upper arm (shoulder) was in a position of 28° adduction, 

of 24º horizontal abduction, and of 8º internal rotation. At stride foot contact, the shoulder was 

still in a position of 14º adduction, 18º horizontal abduction, and 44º of internal rotation. From 

this instant the upper arm continued to abduct, horizontally abduct, and externally rotate until the 

instant of maximum external rotation. At the instant of maximum external rotation, the upper 

arm was positioned in 12º of abduction, 11º of horizontal adduction, and 80º of external rotation. 

The upper arm was subsequently internally rotated and slightly adducted and horizontally 

abducted until the instant of ball release. Peak angular velocity of internal rotation (6100º/s + 

1700º/s) coincided approximately with the instant of ball release. At the instant of ball release, 

the angle of abduction and horizontal adduction of the upper arm were both positive, but very 

small (2º). The upper arm was still in an externally rotated position (23º of external rotation) at 

the instant of ball release while rapid internal rotation occurred. After ball release, the upper arm 

continued to undergo internal rotation, and again began to abduct and horizontally adduct. 

Neutral position of internal/external rotation (0º) was reached just after the instant of ball release.  

 The magnitude of anterior-posterior shoulder joint forces between the instants of stride 

foot contact and ball release increased rapidly between the instants of maximum external rotation 

and ball release in all subjects, reaching its peak value (860N + 120N) near instant of ball release 

[2]. Medial-lateral forces were near 0 just prior to maximum external rotation when they became 

positive. Forces remained positive until an instant between the time of maximum external 

rotation and ball release, when the direction was reversed and became negative.  

 Feltner and Dapena [2] reported joint forces and torques of small magnitudes during the 

early stages of the pitch to bring the upper arm into a position of approximately 15º of abduction, 

10º of horizontal abduction, and 0º of internal/external rotation. Just after the instant of stride 
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foot contact, horizontal adduction torque occurred at the shoulder, moving the elbow forward. 

Jobe et al. [44] reported electromyographic activity of the pectoralis major that coincided with 

this torque for the period of time between the stride foot contact and ball release. Later an 

abduction torque at the shoulder lifts the elbow. Along with the motions of horizontal adduction 

and abduction that the upper arm is subjected to, it also experiences external rotation that 

eventually takes it to an extreme externally rotated position (80º) [2].  

 Fleisig et al. [6], reported kinematic parameter values throughout the baseball pitching 

motion. At the instant of foot contact, mean values of 93º + 12º of shoulder abduction, 17º + 12º 

of shoulder horizontal adduction, and 67º + 24º of shoulder external rotation were reported. 

During the arm cocking phase, mean values of maximum shoulder horizontal adduction of 18º + 

8º and maximum upper torso angular velocity of 1700º/s + 10º were reported. They reported 

mean values of maximum shoulder external rotation of 173º + 10º at the instant of maximum 

shoulder external rotation. Arm acceleration revealed average shoulder abduction mean values of 

93º + 9º. At the instant of ball release, mean values were reported for shoulder horizontal 

adduction of 7º + 7º. 

 Werner et al. [17] quantified joint loads and kinematic parameters of pitching mechanics 

at the major league level, and studied their relationships. The average ball velocity at release for 

the 40 fastballs was 89 + 3 miles per hour. Mean time from stride foot contact to maximum 

shoulder external rotation was 124 + 22 msec. The time interval from maximum external rotation 

to ball release averaged 30 + 12 msec. From stride foot contact to maximum external rotation, 

the shoulder joint continued to abduct, horizontally adduct, and externally rotate. Mean 

maximum shoulder external rotation was 184º + 14º for the pitchers. Maximum horizontal 

adduction of the shoulder averaged 14º + 9º near ball release. Peak magnitudes of angular 
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velocities were higher for the 40 pitchers when compares to those of less elite populations 

described in previous literature [1, 2, 5].  

 At the instant of maximum external rotation, Werner et al. [17] reported shoulder 

distraction to reach a mean value of 63% + 22% of body weight. Just before ball release, the 

force began to increase steadily reaching a mean value of 96% + 19% of body weight at the 

instant of ball release. Peak values were recorded ranging from 677 to 1396 newtons (N). A peak 

internal rotation torque, acting to resist external rotation of the shoulder occurred at maximum 

external rotation and averaged 111 + 17 N*m. Werner et al. [17] also, reported the position of the 

shoulder at maximum external rotation and the peak external rotation and abduction torques to 

strongly affect shoulder distraction. Results of this study supported shoulder distraction forces 

reported by Feltner and Dapena [2] and Fleisig et al. [5].  

 Based on the results of Werner et al. [17], throwers with more limited ranges of shoulder 

external rotation, 184º + 14º, at the end of the cocking phase were described to have less 

distraction at the shoulder joint. Lower magnitudes of external rotation torque, 111 + 17N*m, 

and abduction torque, 117 + 34 N*m, were also associated with a reduction in shoulder 

distraction.  

 Dillman et al. [1] collected kinematic data of the 3 fastest pitches that hit within a strike 

zone on 29 elite pitchers, using a 3-Dimensional modeling technique. The time from foot contact 

to release averaged 0.145 seconds(s) (+ 0.015 seconds).  Atwater [22] illustrated that in most 

throwing and striking skills, the shoulder abduction angle remains fairly constant. Dillman’s 

group [1] described shoulder kinematics of shoulder abduction, horizontal adduction, and 

external/internal rotation. Shoulder abduction positions relative to the trunk remained fairly 

constant, between 90º and 110º during the foot contact release period. Immediately after release, 
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the arm rapidly abducts about the shoulder. This supports Atwater’s report. During the initial 

80% of foot contact during the release phase, the arm rotates relative to the trunk from an 

abducted position of 30º to 14º of adduction. During the final period of this phase, as internal 

rotation about the shoulder occurs, the arm seems to horizontally rotate backward (horizontally 

abduct) to the 0º position. During follow through, the arm continues into horizontal adduction. 

The shoulder externally rotates to about 175º during the initial 80 % of the foot contact release 

period and subsequently underwent rapid internal rotation, continuing through release and arm 

deceleration. At release, the arm reaches an externally rotated position of 100º to 110º [1].   

 

2.1.4.2 Extended Play 

 Murray et al. [28] investigated the effects of extended play on professional baseball 

pitchers. Kinematic and kinetic changes of pitching mechanics were investigated. Kinematic 

variables that were found to have significant changes were maximum external rotation angle of 

the shoulder and ball velocity. Ball velocity in the first inning pitched was 90mph and dropped to 

85mph in the last inning pitched. Maximum external rotation angle at the shoulder was 181º and 

dropped to 172º in the last inning pitched. Kinetic variables that were found to have significant 

changes include maximum distraction force at the shoulder and horizontal abduction torque. The 

maximum shoulder distraction force found was 97% body weight in the first inning pitched and 

dropped to 88% body weight in the last inning pitched. The horizontal abduction torque at ball 

release was 5 % body weight*height in the first inning pitched and dropped to 4 % body 

weight*height in the last inning pitched. Also, the maximum horizontal abduction torque 

reported was 11% body weight*height in the first inning pitched and only 8% body 

weight*height in the last inning pitched.  Although these authors found significant kinematic and 
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kinetic alterations, they failed to show where and when these changes were occurring within the 

pitch count. 

 Barrentine et al. [27] investigated kinematic and electromyographic changes in baseball 

pitching during a simulated game. Kinematic changes observed over the course of the game 

(inning 1-9) were greater shoulder abduction (+5º), shoulder horizontal adduction (+5º), and 

shoulder external rotation (+8º) at the instant of foot contact with the mound. During the arm 

cocking and acceleration phases, shoulder external rotation decreased (-4º) and upper torso 

angular velocity decreased (-90 º/sec). At the instant of ball release, decreased shoulder 

abduction (-4º) and decreased ball velocity (-1 meter/sec) occurred. 

   

2.1.5 Injuries and Baseball 

 Fleisig et al. [5] discussed the results of their study and evaluated the relevance of their 

results to commonly described mechanisms of overuse throwing injuries. McLeod and Andrews 

[45] stated that any force that shifts the humeral head to the rim of the glenoid fossa during 

distraction will cause the humeral head to be reseated off center, placing the labrum in jeopardy 

for injury. Labral tears result from translation and subluxation of the humeral head in the anterior 

or posterior direction and can cause forceful entrapment of labrum between humeral head and the 

glenoid rim [46]. Andrews and Angelo [47] found that most rotator cuff tears in throwers were 

located from the posterior midsupraspinatus to the midinfraspinatus area. They believed that 

these tears were a consequence of tensile failure, as the rotator cuff muscles tried to resist 

distraction, horizontal adduction, and internal rotation at the shoulder during arm deceleration. In 

support of Andrews and Angelo, DiGiovine et al. [48] showed that the posterior shoulder 

muscles (teres minor, infraspinatus, and posterior deltoid) were very active during this phase 
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through EMG analysis. Fleisig’s group [5] reported compression force and horizontal adduction 

torque during arm deceleration which coincides with Andrews and Angelo as well.  

2.1.5.1 Epidemiology 

 Baseball accounts for more than 50,000 injuries per year, in participants ranging from the 

little league to professional level [10]. Pitchers account for nearly 50% of those who experience 

shoulder and or elbow pain, preventing them from throwing at some point in their career [10, 

11]. Although overuse of the shoulder can contribute significantly to injury, many symptoms 

begin with improper mechanics and the repetitive nature of the throw. By understanding the 

pathophysiology of an injury, we can better understand why an isolated injury to the capsule, 

rotator cuff, or labrum, is usually secondary to the breakdown of another structure [49]. Based on 

this idea, Kvite and Jobe [49] established a classification system to determine types of shoulder 

instability at the glenohumeral and acromioclavicular joints. It has been broken down into four 

categories: 1) Primary disease (overuse syndrome), 2) Primary instability, 3) Acute traumatic 

instability, and 4) Chronic instability. 

 

2.1.5.2 Types of Injuries and Pathomechanics 

 Primary disease refers to any injury in the throwing shoulder that can be attributed to the 

normal, but excessive forces and extreme motions observed in all throwers [50, 51]. The stresses 

across the joint during the throwing motion in the stable shoulder are great enough to result in 

damage to the static and dynamic restraints even without underlying glenohumeral instability. In 

some athletes with articular or periarticular injury, assessment of the glenohumeral laxity may 

reveal only minimal to no asymmetric laxity [50-52]. In such instances, the disease may be 
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considered primary and not secondarily related to a breakdown of the static capsular restraints. 

To further clarify overuse syndromes commonly observed in the overhead thrower, it is 

important to understand the rotator cuff/ biceps superolabral complex. Significant firing of the 

supraspinatus, infraspinatus, and teres minor allow the shoulder to be moved to the point of 

maximum external rotation in the late cocking phase. Those same muscles fire violently during 

the deceleration phase as significant posterior shear and compressive loads are recorded across 

the joint [37]. 

 Tendons are maintained by the tenocyte production of collagen. The tenocyte must be 

able to increase collagen and matrix production in response to increased loading. Also, adequate 

blood supply must exist in order to maintain viability of the tenocytes. The insertion area of the 

supraspinatus muscle has been shown to be a watershed area of diminished blood flow that is 

particularly susceptible to repetitive overload stresses [53]. The repetitive stresses of throwing 

may speed up the normal process of degeneration [54, 55]. Therefore, repetitive stressful loading 

of the rotator cuff as well as the cuff muscles attempt to resist distraction, horizontal adduction, 

and internal rotation of the shoulder during arm deceleration can result secondary to fatigue in 

acute inflammatory response in the early stages and in tendon failure in the late stages [52]. 

 During the late cocking phase, the biceps muscle fires only moderately. However, during 

deceleration, the biceps muscle contraction is particularly strong as it contracts to both decelerate 

the elbow extension and act with the rotator cuff to resist glenohumeral distraction [5, 48, 56].  

Rodosky et al. [57] evaluated the role of the biceps muscle and superior labrum in anterior 

instability of the shoulder and suggested that the biceps muscle is essential to limiting torsional 

forces to the shoulder in the abducted, externally rotated position. In the position of extreme 

external rotation, the biceps may have two functions. It is primarily an internal rotator to the 
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humerus. The secondary function is to resist distraction and compress the humeral head against 

the glenoid [57].  

 Biceps muscle load may increase as a result of excessive throwing and poor mechanics. 

When proper pitching mechanics are applied, maximum elbow flexion torque occurs before 

maximum shoulder compressive force [1, 5]. However, improper mechanics may cause these 

two loads to occur closer together in time, requiring greater maximum force by the biceps muscle 

[56]. Loss of the biceps muscle anchor and complete avulsion of the superolabral complex with 

the arm in the cocked position, may reduce the torsional rigidity as much as 38%. As a result, 

strain in the inferior glenohumeral complex may increase as much as 100%. Therefore, initial 

failure of the biceps-superolabral complex may contribute to late failure of the anterior 

glenohumeral ligaments. In a series of 73 baseball pitchers undergoing arthroscopic examination, 

Andrews et al. [58] noted significant tearing of the superolabral complex in all 73 players, with 

most occurring in the anterosuperior portion of the complex. The force of pull of the biceps 

muscle was observed in the area of abnormalities by enervation of the biceps and observation of 

during arthroscopic examination. Injury may therefore manifest as acute or chronic tendonitis 

[47, 58-60]. 

 Andrews et al. [58] also introduced the concept of the “grinding factor” as a potential 

cause of labral damage in the stable throwing shoulder. The grinding factor results from the 

translation of the humeral head during arm acceleration and deceleration. Humeral head 

displacement combined with compression and internal rotation during deceleration can cause the 

humeral head to grind on the labrum [45]. Tears at the base of the biceps as well as at the 

anterosuperior portion of the labrum are commonly seen [58, 61, 62].  
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 Neer [63] has described the stages of progression of the impingment syndrome, 

identifying edema and hemorrhage in stage 1, fibrosis and tendonitis in stage 2, and tendon 

degeneration, bony changes, and tendon ruptures in stage 3. Subacromial impingment may also 

be a contributing factor to primary disease of the rotator cuff and biceps tendon. The shoulder is 

repeatedly positioned at 100º of abduction and, with every throw, moves from horizontal 

abduction and external rotation to a position of horizontal adduction and internal rotation. During 

arm deceleration, a large inferior force and adduction torque are produced [1, 5]. With weakness 

in the rotator cuff muscles, fatigue, or improper mechanics, an inability to generate needed forces 

can lead to superior migration of the humeral head into the subacromial space, resulting in 

subacromial impingement. In addition, loss of internal rotation can occur over the career of the 

athlete, partly from contracture of the posterior capsule,  resulting in anterior and superior 

migration of the humeral head [64]. Superior migration of the humerus causes impingement of 

the greater tuberosity, rotator cuff muscles, or biceps muscle against the inferior surface of the 

acromion or coracoacromial ligament [56].  

 Primary instability was broken into two groups by Jobe et al.: 1) Secondary to 

microtrauma and 2) Secondary to generalized ligamentous laxity [50, 51]. Persons, who exhibit 

instability signs secondary to microtrauma, demonstrate with asymmetric shoulder laxity. The 

late cocking and early acceleration phases of the throwing cycle place significant shear across the 

anterior aspect of the shoulder during normal throwing. Rotation of the torso after foot plant has 

been previously noted to generate an anterior shear estimated at 400 N[1].  Over time, secondary 

to poor mechanics (“opening up” in late cocking), overthrowing, or weakness, the anterior 

capsule sees increasing loads unshielded by equal contributions of the surrounding musculature. 

The anterior capsule then fatigues and fails, resulting in increased laxity of the glenohumeral 
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joint. Failure of the anterior capsule leads to increased anterior translation in the most stressful 

phases of the throwing motion. Manifestations that can result include secondary rotator cuff 

tendonitis or subacromial impingement, anterior labral fraying from increased translation in the 

deceleration phase, SLAP lesions, and posterior glenohumeral impingement [59, 62, 65]. 

Athletes who exhibit instability signs of generalized ligamentous laxity demonstrate symmetric 

shoulder laxity. Arthroscopic examination of the glenohumeral joint of athletes with this type of 

instability reveals a hypoplastic glenoid labrum and an increased joint volume. Abnormalities of 

the labral complex and rotator cuff are often observed [51, 66]. 

 The third category of injury is acute traumatic instability. Although common in athletics, 

this cause of instability is seen least in overhead athletes. However, an athlete who attempts to 

throw after this event and does not develop overt primary instability may often manifest 

difficulties with secondary damage to the rotator cuff and the superior and posterior labral 

complexes [37]. 

 Posterosuperior glenohumeral impingement is the fourth category of injury. The concept 

of impingement occurring in the shoulder at a spot other than in subacromial space is relatively 

new. Previous literature suggests that such a mechanism of injury to the rotator cuff and glenoid 

exists [67-72].  Limits of capsular restraint and contact of the greater tuberosity on the glenoid 

impose constraints on glenohumeral joint motion. Contact of the greater tuberosity on the 

glenoid is most critical in varying positions of elevation and external rotation [73, 74]. Forceful 

contact of the tuberosity against the superior glenoid has been believed to be a mechanism of 

fracture of the greater tuberosity. In overhand throwing sports, repeated extreme movements of 

glenohumeral abduction and external rotation result in contact of the superior and posterior 

glenoid rim with the supraspinatus and infraspinatus muscles and posterior humeral head [73, 
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74]. Increased impingement may result from increased anterior capsular laxity [75].  A loss of 

normal posterior translation in the late cocking and acceleration phases of throwing may result in 

impingement of the undersurface of the rotator cuff rather than the posterior glenoid. Repetition 

of this contact may be responsible for tearing of the undersurface of the rotator cuff and 

posterosuperior glenoid labrum. As the arm horizontally adducts and internally rotates during 

acceleration and deceleration, further grinding and contact of the greater tuberosity may be 

responsible for more significant tears of the superior labral complex. 

 The thrower with posterosuperior glenohumeral impingement will most often complain 

of pain in the posterior aspect of the shoulder in the late cocking and early acceleration phases of 

throwing. An inability to fully rotate the shoulder secondary to posterior pain will cause a loss of 

velocity. An early ball release results in loss of control [37]. 

 In addition, the scapula is responsible in maintaining a foundation for normal physiology 

and biomechanics of the thrower [37]. It has five essential roles in the shoulder function of the 

athlete [76]. These roles include providing a stable base in the glenohumeral articulation, 

retraction and protraction, base for muscle attachment, elevation of the acromion provided by 

muscles, and a link to the transfers of the forces from the trunk to the arm in the normal throwing 

function. Scapula dysfunction occurs from abnormal function and an imbalance in the workings 

of the periscapular musculature. The most common causes of dysfunction are direct trauma to 

the scapular musculature and indirect injury from repetitive microtraumas. Such microtraumas 

can be observed in the throwing shoulder or muscle inhibition from painful conditions of the 

shoulder. The serratus anterior and lower trapezious muscles are the most sensitive to this 

inhibitory effect [60]. Their dysfunction becomes evident early in abnormalities of the 

glenohumeral joint [60, 77]. Loss of glenohumeral motion can also result in scapular 
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dysfunction. In throwing athletes, tightness in the posterior capsule and musculature leads to 

increased protraction of the scapula in the cocking and follow through phases [76]. Lack of full 

scapular retraction causes loss of a stable cocking point, dissipating the flow of energy from the 

torso and trunk to the arm. Loss of coordinated retraction-protraction also results in relative 

glenoid anteversion, which leads to the loss of the normal bony buttress to resist anterior 

translation of the humeral head. With relative loss of this, increased shear is felt across the 

anterior soft tissue structures and leads to injury [76, 78]. Lack of appropriate acromial elevation 

in the coking and follow through phases can result in impingement problems. Inhibition of the 

lower trapezius and serratus anterior muscles can lead to relative closure of the coracoacromial 

arch. Loss of this arch space can result in primary impingement or contribute to the problems of 

secondary impingement in cases of concomitant instability [50, 76].  

 

2.1.5.3 Critical Instances 

 Kinematic comparisons of baseball pitchers among various levels have also been 

investigated. Fleisig et al. [9] compared these variables among youth (Y), high school (HS), 

collegiate (C), and professional (P) levels. Maximum external rotation values during the arm 

cocking phase were reported as follows: (Y) 177º + 12º, (HS) 174º + 9º, (C) 173º + 10º, and (P) 

175º + 11º.  Maximum internal rotation velocity values during the arm acceleration phase were 

also reported as follows:  (Y) 6900º/sec² + 1050º/sec², (HS) 6820º/sec² + 1380º/sec², (C) 

7430º/sec² + 1270º/sec², and (P) 7240º/sec² + 1090º/sec². These differences observed are most 

likely due to the differences in skeletal maturity and strength based on age differences. Whether 

or not these differences observed are due to differences in age, it is important to determine the 
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when changes are occurring so that a pitch count may be used as a guide for participation in all 

levels.    

 Although this study is focusing on shoulder kinematics, it is important to realize the 

emphasis that shoulder kinetics have on injury mechanism. Fleisig et al. [5] described two 

critical instants. The first critical instant occurred shortly before the arm reached maximum 

external rotation when 67 N*m of shoulder internal rotational torque was generated. The second 

occurred shortly after ball release when 1090N of shoulder compressive force was produced. 

Results from this study were similar to others reported by Dillman [1], Feltner and Dapena [2], 

and Pappas [36].  During the first critical instant, near the end of the arm cocking phase, at 64% 

of time from foot contact until ball release had been completed, the following was observed. The 

arm was externally rotated 165º + 11º, abducted 94º + 21º, and horizontally abducted 11º + 11º. 

Large loads produced at the shoulder consisted of a 67 + 11 N*m internal rotational torque, and a 

310 + 100 N anterior force. A 250 + 80N superior shear force, 480 + 130N compressive force, 87 

+ 23 N*m horizontal adduction torque, and a 44 + 17 N*m abduction torque were generated. The 

second critical instant occurred during arm deceleration when 108% of the foot contact to ball 

release time interval had been completed. At this critical instant, a maximum compression force 

of 1090 + 110N were generated at the shoulder. When this maximum compressive force was 

produced, minimal shear forces in the anterior direction of 80 + 188N, and in an inferior 

direction of 100 + 130N were recorded.  A 26 + 44N*m adduction torque, 44 + 51N*m 

horizontal abduction torque, and negligible (7 + 5N*m) external rotational torques were 

produced at the shoulder at this time. These incredibly large forces combined with changes in 

shoulder kinematics, such as scapular and humeral motion changes, can be detrimental to the 

competitive athlete over a long period of time. 
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2.1.5.4 Pitch Count 

 Due to the repetitive nature of overhand throwing, it is important to monitor the number 

of pitches thrown by the individual during game situations. Lyman et al. [14] evaluated the effect 

of pitch counts, pitch types, pitching mechanics, and shoulder and elbow pain in youth baseball 

pitchers. Over the course of a season, each team kept a pitch count log of game pitches thrown 

by each pitcher. They also videotaped them to analyze proper pitching mechanics. Interviews 

after every game to determine the types of pitches thrown, fatigue, and pain levels were 

conducted. The total number of pitches thrown in each appearance varied from 1 to 161. There 

was a significant association between the number of pitches thrown in a game, during the season, 

and the rate of shoulder pain. Lyman et al [14] also discussed that limiting pitch count rather than 

limiting innings might improve the safety of pitchers, reducing injury potential. Therefore, it is 

imperative to establish the role of pitch count as a guide for participation, and to ensure a longer, 

healthier career. 

 Starting pitchers in college pitch between 14.93 and 16.45 pitches per inning and 5 to 6 

innings per game resulting in 76 to 94 pitches per game [79]. While Murray et al. [28] and 

Barrentine et al. [27] have investigated kinematic changes over the course of a game (real or 

simulated), they have failed to establish where in the pitch count these changes are actually 

occurring. Quantification of pitch count to set guidelines for participation is important, especially 

in the elite athlete. Recognition of kinematic changes about the shoulder early on during the pitch 

count may decrease common injuries due to unnecessary repetitive stress placed on the shoulder 

joint complex. Therefore, this study is necessary to build a better foundation of knowledge, 

quantification, and regulation of the pitch count.  
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2.1.6 Methodological Considerations 

 Dillman et al. [1] used an automated high-speed video digitizing system to record three-

dimensional throwing patterns of motion. Each subject was marked with retroreflective markers, 

1-inch diameter balls on all of the body’s major joints since clinical evaluation of throwing 

mechanics required total body analysis. Reflections of markers were tracked individually by four 

electronic cameras at 200 Hz. Data was merged mathematically from each camera to accurately 

reconstruct a three-dimensional motion of pitching. The three fastest pitches thrown that hit 

within the strike-zone ribbon were digitized and averaged for each pitch. The examination of a 

three-dimensional pitching motion is similar to what will be used in the present study. 

 Escamilla et al. [8] and Fleisig et al. [6] also used the three-dimensional automated 

digitizing system  to quantify each athlete’s motion. Subjects threw toward a strike-zone ribbon 

located over a home plate at a distance of 18.4 meters (60.5ft) from the pitching rubber. 

Reflective markers were attached bilaterally at the lateral malleoli, lateral femoral epicondyles, 

greater femoral trochanters, lateral superior tip of acromions, and lateral humeral epicondyles. 

Also, a marker was attached to the ulnar styloid process of the non-pitching wrist and a reflection 

band was placed around the wrist. Subjects were instructed to prepare just as if they were going 

to pitch in a game. Four electronically synchronized, charged couple device cameras transmitted 

pixel images of the reflection markers directly into a video processor without being recorded 

onto video. Each camera was set at 200 Hz. Three-dimensional marker locations were calculated 

with Motion Analysis Expertvision 3-D software utilizing the direct linear transformation 

method [80, 81]. Camera coefficients were calibrated by recording the position of markers 

attached to four vertically suspended wires. Three reflective markers spaced at 61cm intervals 
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were attached to each wire. The wires were positioned so that the markers made a matrix 

approximately 1.5m x 1.2m x 1.2m in size, were suspended approximately 0.3m above the 

ground. This matrix was designed to encompass as much testing area as possible while having 

each marker visible in the field of view of all four cameras. Subject setup, preparation and data 

collection in this study are relevant to the present study. The marker setup and warm-up 

preparation will be mimicked with slight alterations in this study. 

 Feltner and Dapena [2] filmed subjects using Direct Linear Transformation method of 3D 

cinematography [80, 81]. Direct Linear Transformation is defined as the relationship between 3D 

world coordinates (x,y,z) and 2D image coordinates (x,y) using simple equations expressed on 

linear form [43]. Two battery powered LOCAM cameras were used to record the trials on 16mm 

Fujicolor 500 ASA film. The cameras viewed the subjects from the rear and from the throwing 

arm side, and they were set at nominal frame rates of 200fps. Quintic spline functions were used 

to smooth the time-dependent coordinates of each landmark. All subsequent calculations were 

performed with smoothed landmark data. The reference frames and calculations from Feltner and 

Dapena’s previous study will be used with slight modifications in this present study to determine 

changes in shoulder kinematics [2]. 

 Murray et al. [28] used three high-speed (120Hz) cameras for data collection. Two of the 

cameras were positioned along the first and third base lines (typically in the dugouts) to provide 

side views for left and right-handed pitchers. The third camera was located in the press box 

above and behind home plate, provided a frontal view and was used for analysis of all pitches. 

Twenty-four point calibration object (Peak Performance Tech, Inc, Englewood, CO) was 

videotaped simultaneously by all 3 cameras both before and after the game to calibrate the 

pitching area. Horizontal and vertical reference markers were placed on the pitching mound to 
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create a mound-relevant reference frame. Data were collected from the frontal and appropriate 

side-view cameras for each pitcher throughout his time on the mound. For data reduction, Peak 

Performance Motus System was used to manually digitize 20 body landmarks and the ball for 

one fastball from each pitcher’s first and last inning of play. Unlike Murray’s study, this study 

will examine fastball pitches throughout the simulated game and will attempt to determine when 

in the pitch count kinematic changes are occurring, in hopes of a more accurate assessment of 

potential altered mechanics, which may lead to pathology.      

 

2.1.7 Summary 

 Shoulder injuries due to repetitive forces and motions over a long period of time place 

elite athletes as well as developing pitchers under an increased risk for injury. It is important to 

understand what forces and motions are being placed about the shoulder joint. Furthermore, it is 

necessary to understand where in the pitch count these changes are occurring. Although the 

studies previously described show throwing mechanics and changes in the throwing mechanics, 

they are unclear as to when during a game the changes are occurring [1-3, 5-8].     

 Quantification of pitch count to set guidelines for participation is important, especially in 

the elite athlete. Recognition of kinematic changes about the shoulder early on during the pitch 

count may decrease common injuries due to unnecessary repetitive stress placed on the shoulder 

joint complex. Therefore, this study is necessary to continue to build a better foundation of 

knowledge, quantification, and regulation of the pitch count. This knowledge will be beneficial 

to the athletic trainer, coach, and most importantly the athlete, making for a longer, healthier 

career for athletes of all ages.
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3 Chapter 3 

3.1 Experimental Design 

3.1.1 Introduction 

This study consisted of one testing session. A descriptive design was utilized to assess 

kinematic changes in pitching mechanics of intercollegiate baseball pitchers as pitch count 

increased, using a high speed three-dimensional motion analysis system. The independent 

variable was pitch count, specifically fastball pitches 1, 2, 3, 9, 10, 11, 19, 20, 21, 29, 30, 31, 39, 

40, 41, 49, 50, 51, 59, 60, 61, 69, 70, 71, 79, 80, 81, 89, 90, 91, 99,100, 101, 109,110, 111, 119, 

120, 121, 129, 130, 131, 139, 140, 141, 149, 150, and 151. The dependent variables of interest 

included kinematic changes in shoulder and elbow joint angles. More specifically, shoulder 

abduction/adduction, horizontal abduction/horizontal adduction, internal/external rotation, and 

elbow flexion joint angles were investigated.   

 

3.1.2 Subjects  

3.1.2.1 Power Analysis 

 The use of previous studies [6, 28] (pitch one maximum external rotation angle = 181°, 

pitch 150 maximum external rotation = 172°, common SD 20°) indicated that an effect size of f = 

0.90 and an alpha level of α = 0.05 (two-sided hypothesis test) required 12 subjects for a 

statistical power of P = .80. 

 The participants of the experiment consisted of intercollegiate starting baseball pitchers, 

who were currently participating on a collegiate baseball team. Each subject reported for testing 

on one of his regularly scheduled pitching days by adding an extra game to their season. 
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Potential subjects were screened to ensure they met the following criteria for inclusion and 

exclusion of the study. 

 

3.1.2.2 Inclusion Criteria 

• Male between the ages of 18 – 24 years 

• Currently a starting pitcher competing on an intercollegiate baseball team  

• No shoulder or elbow pathologies that prevent the subject from current participation in 

competition 

 

3.1.2.3 Exclusion Criteria 

• Significant limitation of shoulder or elbow rotation 

• History of neurological disorders 

 

3.1.3 Recruitment Procedures 

 Subjects were recruited via paper flyers distributed to coaches, certified athletic trainers, 

and posted throughout local universities. Interested individuals contacted the Neuromuscular 

Research Laboratory to schedule an appointment. No identifiable information was collected 

during phone contact. 
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3.1.4 Instrumentation 

3.1.4.1 Three-Dimensional Motion Analysis 

 The Peak Motus 3D Optical Capture System (Peak Performance Technologies, 

Englewood, CO) was utilized to assess throwing kinematics of the shoulder. The Peak Motus 

system is a high-speed three-dimensional optical capture motion analysis system with eight 

cameras used to capture kinematics of the shoulder during the throwing motion for each subject 

(Figure 1). Infrared lamps from the camera system output light, which is reflected off the 

markers back into the camera lens apparatus. Anthropometrics were used to determine segment 

length and joint centers, which created a 3-D image of the subject throwing. Kinematic data was 

collected with the Peak system to assess changes in joint angles, angular velocities, and angular 

accelerations of the shoulder as pitch count increased.  

 

 

 

 
 
 
 
 

Figure 1: Digital Camera System 
 

Anthropometric measurements of the subject body height (m), body mass (kg), humerus 

length (cm), humeral epicondyle diameter (cm), and forearm length (cm) were recorded 

bilaterally. Linear circumferential measurements of the upper extremity were recorded along 

with the retroreflective markers attached to the designated anatomical landmarks. Passive 
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reflection markers were secured with 3M adhesive double-sided discs tape to the designated 

landmarks. 

3.1.4.2 Kistler Force Plate 

The force plate was secured in a wooden walkway to allow for a level, flat surface and 

integrated with one Kistler force plate (Kistler Coorporation, Worthington, OH) (Surface 0.6 x 

0.4m) (Figure2). A built in amplifier to enhance analog force signals collected at 1200 Hz was 

used. 

 

 

 

 

 

 

Figure 2: Foot Contact on Force Plate 
 

3.1.4.3 Finger Switch 

A prefabricated finger switch was worn by each subject (Figure 3). The finger switch 

consisted of two wires, one secured to the middle finger and the other to the index finger via 

medical tape. The finger switch signaled ball release by creating a circuit between the index and 

middle finger of the throwing arm and ball. The finger switch was powered by a 9-Volt battery. 

Each baseball had a strip of aluminum tape adhered to it. A signal was produced when the finger 

switch made contact with the adhesive aluminum strip on the ball. The signal from the finger 
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switch was recorded in the Peak Motus Analog acquisition module (Figure 4). Each variable of 

interest was measured during each of the designated pitches.  

 

 

 

 

 

Figure 3: Finger Switch 

 

 
 

Figure 4: Typical Ball Release Signal 
 
 
3.1.5 Testing Procedures 

3.1.5.1 Procedure 

All subjects provided informed consent as required by the University of Pittsburgh 

Institutional Review Board. The testing procedure followed previously reported protocols [1, 6, 

8, 28, 82]. Each subject reported for testing on one of his regularly scheduled pitching days by 
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adding an extra game to his season. Following an explanation of the equipment and experiment, 

provision of history information and informed consent approved by the University of Pittsburgh 

Institutional Review Board, the subject changed into athletic shorts. Next, anthropometric 

measurements were taken. The retroreflective markers were then secured using 3M adhesive 

double-sided discs tape to the designated anatomical landmarks. The designated landmarks 

consisted of the acromion, lateral epicondyle, mid wrist, and anterior superior iliac spine (ASIS) 

bilaterally, as well as to T4 and the sacrum (Figure 5 and Figure 6). The anthropometrics were entered 

into Peak to correspond segment length to the retroreflective markers to help create a 3-D image 

of the subject throwing. The prefabricated finger switch was attached to the dominant hand by 

securing a wire to each the index and middle finger via medical tape. Also, the subject’s stride 

length was adjusted by placing a mark on the ground to ensure proper landing. 
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Figure 5: Anterior View of Retroreflective Marker Setup 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Posterior View of Retroreflective Marker Setup 
 

3.1.5.2 Throwing Preparation 

Prior to assessment, each subject was given a warm-up period determined by their typical 

warm-up length which consisted of throwing and stretching. Testing involved each subject 

throwing a rotation of the three most common types of pitches (16). The fastball, curveball, and 

change up were thrown in a designated order for a total of 17 pitches per inning. Each pitch was 

thrown during each inning of the 9 inning simulated baseball game into a retractable net, which 

was distanced approximately 40 feet from the subject. The order the pitches to be thrown were 

 43



 

pre-selected so that a continuous order was followed and that three fastball pitches were 

collected every ten pitches of the pitch count (1-150). Prior to each inning, the subject threw 7 

warm-up pitches. There were 15 seconds of rest between each throw and 12 minutes of rest 

between each inning. Each subject was assessed for kinematic changes of the shoulder over the 

course of the simulated baseball game as pitch count increased. 

 

3.1.6 Trial Procedures 

Prior to the initiation of the simulated game, the subject threw 10 pitches to familiarize 

himself with the surface, surroundings, the retroreflective markers, and the finger switch. 

Kinematics were measured in pitches 1, 2, 3, 9, 10, 11, 19, 20, 21, 29, 30, and 31 to establish a 

baseline. Kinematics were measured in pitches 39, 40, 41, 49, 50, 51, 59, 60, 61, 69, 70, 71, 79, 

80, 81, 89, 90, 91, 99, 100, 101, 109, 110, 111, 119, 120, 121, 129, 130, 131, 139, 140, 141, 149, 

150, and 151 of the pitch count for changes. Each inning consisted of 17 pitches, thrown in a 

counter balanced order of the fastball, curveball, and change up. All analyzed data collected was 

for the fastball pitch.  

 

3.1.7 Data Reduction 

3.1.7.1 Kinematic Data 

Path identification was used to identify each of the four phases of throw. All kinematic 

variables were determined using Peak Motus. Peak uses a fourth order Butterworth filter, zero 

lag, with an optimized cutoff frequency [83]. Processed kinematic data from the pitching study 

underwent custom calculations in Peak Motus software’s KineCalc module according to 

previously published data. All angles were calculated similar to Feltner and Dapena [2], but with 

 44



 

slight modifications. The abduction/adduction angle was calculated as the angle between the 

upper arm and the vector of the vertical line of the trunk in the frontal plane (Figure 7). The 

internal/external rotational angle was defined as the angle between the forearm and the 

horizontal line running through the trunk in the sagittal plane (Figure 8). The horizontal 

abduction/horizontal adduction angle was calculated as the angle between the upper arm and the 

horizontal line running through the trunk in the transverse plane (Figure 9). Sample data from 

one subject can be viewed in Figure 10. 
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Figure 7: Shoulder Abduction/Adduction Angle 
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Figure 9:  Shoulder Horizontal Abduction/Adduction Angle 
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Figure 10: Subject Data for Shoulder Angles 
Events 1-5 (1) Begin External Rotation, (2) Maximum external rotation, (3) Foot Contact, 
(4) Ball Release, (5) Minimum Internal Rotation 
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3.1.7.2 Events 

To determine the kinematics of the throwing motion, the throw was divided into four 

phases including early cocking, late cocking, acceleration, and deceleration.  Events of the four 

phases were defined by kinematics, the force plate, and the finger switch. Early cocking was 

defined from the beginning of external rotation until foot contact. Shoulder internal and external 

rotation calculations were used to identify the beginning of external rotation and foot contact, 

and calculated using 5% body weight foot contact with the force plate (Figure 11). Late cocking 

was defined as the phase from foot contact to maximum external rotation. Maximum external 

rotation was determined with internal/external rotation calculations (Figure 12). The 

acceleration phase began with maximum external rotation and ended at ball release. The ball 

release trigger (finger switch) identified ball release when loss of the 9-volt signal dropped to 

approximately a zero (0) voltage (Figure 13).  The deceleration phase began at ball release until 

the arm completed follow-through and went to minimum internal rotation and was determined 

using internal/external calculations. 
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Follow through 

1-Begin External Rotation 
2-Foot Contact 
3-Max External Rotation 
4-Ball Release 
5-Minimum Internal Rotation 

Figure 11: Events in Relation to Foot Contact 
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Follow through 

1-Begin External Rotation 
2- Foot Contact 
3- External Rotation 
4- Ball Release 
5- Minimum internal rotation 

Figure 12: Events in Relation to Shoulder Rotation Angle 

  
 
 
 

 
 
 
 
 
 
 
 
 
 

Early Cocking 
Late Cocking 

Accel 

Decel 
Follow through 

1-Begin External Rotation 
2-Foot Contact 
3-Max External Rotation 
4-Ball Release 
5-Minimum Internal Rotation 

Figure 13: Events in Relation to Ball Release 

 
Kinematic data and event times were exported and averaged for the three trials for each 

 pitch analyzed via a custom written Matlab (Matlab Version 6.0 R12, The Mathworks, Inc.,  

Natick, MA) program.  

 

3.1.8 Statistical Analysis 

Given the descriptive nature of this study, no interferential statistics were utilized. The 

only statistical analyses were descriptive in nature (i.e. mean and standard deviation). Initially, 

the mean and standard deviation for all dependent variables (during each phase of the pitch) were 

 49



 

calculated for pitches 1, 2, 3, 9, 10, 11, 19, 20, 21, 29, 30, and 31. These pitches (and calculated 

data) represented the data collection from the first two innings when any fatigue effects would be 

minimal and provided a baseline for all comparisons as pitch count increased (i.e. pitches 39-

151). Each dependent variable was then calculated at all pitch count intervals for pitches 39, 40, 

41, ... , 149, 150, 151 and compared to the baseline data established during the first two innings. 

A change as a result of increased pitch count was indicated if the dependent variable differed 

from the baseline variable by more than two standard (2 SD) deviations and continued to differ 

by more than 2SD for the rest of the simulated game. Significant changes were discussed as 

potential recommendations for coaches and athletic trainers when determining a pitchers pitch 

count allowance during practice and competition.  

 50



 

4 Chapter 4 

4.1 Results 

This study consisted of one testing session. A descriptive design was utilized to assess 

kinematic changes in pitching mechanics of intercollegiate baseball pitchers as pitch count 

increased. The independent variable was pitch count, specifically fastball pitches 1, 2, 3, 9, 10, 

11, 19, 20, 21, 29, 30, 31, 39, 40, 41, 49, 50, 51, 59, 60, 61, 69, 70, 71, 79, 80, 81, 89, 90, 91, 

99,100, 101, 109,110, 111, 119, 120, 121, 129, 130, 131, 139, 140, 141, 149, 150, and 151. The 

dependent variables of interest included shoulder rotation, shoulder abduction, shoulder 

horizontal abduction, and elbow flexion.  

 

4.1.1 Subject Characteristics 

Participants of this study consisted of 8 healthy intercollegiate baseball pitchers that were 

currently competing as a starting pitcher on a collegiate baseball team. Subjects were recruited 

from the University of Pittsburg Main campus, University of Pittsburgh Greensburg Campus, 

Geneva College, and CCAC South Campus. No subjects had a history of any neurological 

disorders, shoulder or elbow pathologies, or significant limitation of shoulder or elbow rotation. 

Descriptive statistics for this study appear in Table 2. Seven subjects were right hand dominant, 

while one subject was left hand dominant. 

Table 2: Subject Demographics 

Pitching Group 
(8 subjects, 7 right hand dominant, 1 left hand 

dominant)) 
Mean       + SD 

Age (yrs)                19.50        1.41 
Height (cm)          183.12        3.92 
Weight (kg)            84.77      11.50 
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4.1.2 Shoulder Kinematics 

4.1.2.1 Shoulder Rotation at Early Cocking 

Significant differences existed within subject 4 and subject 5. Shoulder external rotation at early 

cocking increased for subject 4 (Table 3). Shoulder external rotation at early cocking decreased 

for subject 5 (Table 4).  Graphical representation of the descriptive statistics (mean) for each 

pitcher of shoulder rotation at early cocking for pitches 1-150 appear in Figure 14. Graphical 

representation of group descriptive statistics (mean and standard deviation) of shoulder rotation 

at early cocking for pitches 1-150 appear in Figure 15. 

Table 3: Shoulder Rotation at early cocking for subject 4 

Pitch Count          Shoulder Rotation
       130                            64.99 
       140                            71.17 
       150                            65.51 
Mean + 2SD                    62.02 
Mean – 2SD                     6.03   

 

Table 4: Shoulder Rotation at Early Cocking for Subject 5 

Pitch Count          Shoulder Rotation
       140                           9.28 
       150                           5.40 
Mean + 2SD                 30.45 
Mean – 2SD                   9.55 
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Figure 14: Shoulder Rotation at Early Cocking for Each Pitcher 
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Figure 15: Shoulder Rotation at Early Cocking (Group Means + SD) 
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4.1.2.2 Shoulder Rotation at Maximum External Rotation (Late Cocking) 

No significant differences existed within subjects. Graphical representation of the descriptive 

statistics (mean) for each pitcher of shoulder rotation at maximum external rotation for pitches 1-

150 appear in Figure 16. Graphical representation of group descriptive statistics (mean and 

standard deviation) of shoulder rotation at maximum external rotation for pitches 1-150 appear in 

Figure 17. 
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Figure 16: Shoulder Rotation at Late Cocking for Each Pitcher 
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Figure 17: Shoulder Rotation at Late Cocking (Group Means + SD) 
 

4.1.2.3 Shoulder Rotation at Ball Release 

No significant differences existed within subjects. Graphical representation of the 

descriptive statistics (mean) for each pitcher of shoulder rotation at ball release for pitches 1-150 

appear in Figure 18. Graphical representation of group descriptive statistics (mean and standard 

deviation) of shoulder rotation at ball release for pitches 1-150 appear in Figure 19. 

 

 

 

 

 

 

 

 

 55



 

 

Shoulder Rotation at Ball Release

-20

0

20

40

60

80

100

120

140

160

180

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Pitch Count

D
eg

re
es

 

Pitcher 1 Pitcher 2 Pitcher 3 Pitcher 4 Pitcher 5 Pitcher 6 Pitcher 7 Pitcher 8

Figure 18: Shoulder Rotation at Ball Release for Each Subject 
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Figure 19: Shoulder Rotation at Ball Release (Group Means + SD) 
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4.1.2.4 Shoulder Rotation at Deceleration 

Significant differences existed within subject 3 and subject 7. Shoulder external rotation 

at deceleration decreased for both subjects 3 (Table 5) and 7 (Table 6).  Graphical representation 

of the descriptive statistics (mean) for each pitcher of shoulder rotation at deceleration for pitches 

1-150 appear in Figure 20. Graphical representation of group descriptive statistics (mean and 

standard deviation) of shoulder rotation at deceleration for pitches 1-150 appear in Figure 21. 

Table 5: Shoulder Rotation at Deceleration for Subject 3 

Pitch Count                Shoulder Rotation 
        70                                  -16.90 
        80                                  -24.31 
        90                                  -17.34 
       100                                 -22.20 
       110                                 -16.84 
       120                                 -10.48 
       130                                 -11.68 
       140                                 -15.66 
       150                                 -12.59 
Mean + 2SD                           22.32               
Mean – 2SD                            -7.98 

 

Table 6: Shoulder Rotation at Deceleration for Subject 7 

Pitch Count                Shoulder Rotation 
       130                                     9.69 
       140                                   11.36 
       150                                     9.24 
Mean + 2SD                           20.64 
Mean – 2SD                           12.81 
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Figure 20: Shoulder Rotation at Deceleration for Each Pitcher 
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Figure 21: Shoulder Rotation at Deceleration (Group Means + SD) 
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4.1.2.5 Shoulder Abduction at Early Cocking 

Significant differences existed within subject 6. Shoulder abduction at Early Cocking increased 

for subject 6 (Table 7).  Graphical representation of the descriptive statistics (mean) for each 

pitcher of shoulder abduction at early cocking for pitches 1-150 appear in Figure 22. Graphical 

representation of group descriptive statistics (mean and standard deviation) of shoulder 

abduction at early cocking for pitches 1-150 appear in Figure 23. 

Table 7: Shoulder Abduction at Early Cocking for Subject 6 

Pitch Count               Shoulder Abduction 
        70                                101.18 
        80                                103.49 
        90                                100.95 
       100                               105.12 
       110                               102.12 
       120                               108.19 
       130                                 99.28 
       140                                 99.24 
       150                               101.88 
Mean + 2SD                         98.78 
Mean – 2SD                         88.41 
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Figure 22: Shoulder Abduction at Early Cocking for Each Subject 
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Figure 23: Shoulder Abduction at Early Cocking (Group Means + SD) 
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4.1.2.6 Shoulder Abduction at Maximum External Rotation (Late Cocking) 

No significant differences existed within subjects. Graphical representation of the 

descriptive statistics (mean) for each pitcher of shoulder abduction at maximum external rotation 

for pitches 1-150 appear in Figure 24. Graphical representation of group descriptive statistics 

(mean and standard deviation) of shoulder abduction at maximum external rotation for pitches 1-

150 appear in Figure 25. 
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Figure 24: Shoulder Abduction at Late Cocking for Each Subject 
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Figure 25: Shoulder Abduction at Late Cocking (Group Means + SD) 
 
 

4.1.2.7 Shoulder Abduction at Ball Release 

Significant differences existed within subject 6. Shoulder abduction at ball release 

increased for subject 6 (Table 8).  Graphical representation of the descriptive statistics (mean) 

for each pitcher of shoulder abduction at ball release for pitches 1-150 appear in Figure 26. 

Graphical representation of group descriptive statistics (mean and standard deviation) of 

shoulder abduction at ball release for pitches 1-150 appear in Figure 27. 

Table 8: Shoulder Abduction at Ball Release for Subject 6 

Pitch Count            Shoulder Abduction 
       140                               108.32 
       150                               116.38 
Mean + 2SD                       106.63 
Mean – 2SD                         85.25 
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Figure 26: Shoulder Abduction at Ball Release for Each Pitcher 
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Figure 27: Shoulder Abduction at Ball Release (Group Means + SD) 
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4.1.2.8 Shoulder Abduction at Deceleration 

No significant differences existed within subjects. Graphical representation of the 

descriptive statistics (mean) for each pitcher of shoulder abduction at deceleration for pitches 1-

150 appear in Figure28. Graphical representation of group descriptive statistics (mean and 

standard deviation) of shoulder abduction at deceleration for pitches 1-150 appear in Figure 29. 
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Figure 28: Shoulder Abduction at Deceleration for Each Pitcher 
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Figure 29: Shoulder Rotation at Deceleration (Group Means + SD) 
 
 

4.1.2.9 Shoulder Horizontal Abduction at Early Cocking 

Significant differences existed within subjects 2 and 6. Shoulder horizontal abduction at 

early cocking decreased for both subjects 2 (Table 9) and 6 (Table 10). Graphical representation 

of the descriptive statistics (mean) for each pitcher of shoulder horizontal abduction at early 

cocking for pitches 1-150 appear in Figure 30. Graphical representation of group descriptive 

statistics (mean and standard deviation) of shoulder horizontal abduction at early cocking for 

pitches 1-150 appear in Figure 31. 
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Table 9: Shoulder Horizontal Abduction at Early Cocking for Subject 2 

 
Pitch Count            Shoulder Horizontal Abduction 
      110                                       101.78          
      120                                       102.44 
      130                                         99.08 
      140                                         96.32 

 

 

      150                                       102.63  
Mean + 2SD                              119.26      
Mean – 2SD                              106.43             

 

Table 10: Shoulder Horizontal Abduction at Early Cocking for Subject 6 
 Pitch Count            Shoulder Horizontal Abduction 

        90                                       102.96 
       100                                      103.01 
       110                                      103.11 
       120                                      103.99 
       130                                      103.92 
       140                                      102.83 

 
 
 
 

 
       150                                      103.55 

 Mean + 2SD                              110.74      
Mean – 2SD                              104.83            
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Figure 30: Shoulder Horizontal Abduction at Early Cocking for Each Pitcher 
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Figure 31: Shoulder Horizontal Abduction at Early Cocking (Group Means + SD) 
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4.1.2.10 Shoulder Horizontal Abduction at Maximum External Rotation (Late Cocking) 

Significant differences existed within subject 8. Shoulder horizontal abduction at ball 

release decreased for subject 8 (Table 11). Graphical representation of the descriptive statistics 

(mean) for each pitcher of shoulder horizontal abduction at maximum external rotation for 

pitches 1-150 appear in Figure 32. Graphical representation of group descriptive statistics (mean 

and standard deviation) of shoulder horizontal abduction at maximum external rotation for 

pitches 1-150 appear in Figure 33. 

Table 11: Shoulder Horizontal Abduction at Late Cocking for Subject 8 

 
Pitch Count          Shoulder Horizontal Abduction 
       140                                     58.82               
       150                                     59.43 
Mean + 2SD                           110.13 
Mean – 2SD                             62.27 
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Figure 32: Shoulder Horizontal Abduction at Late Cocking for Each Pitcher 
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Figure 33: Shoulder Horizontal Abduction at Late Cocking (Group Means + SD) 
 
 

4.1.2.11 Shoulder Horizontal Abduction at Ball Release 

No significant differences existed within subjects. Graphical representation of the 

descriptive statistics (mean) for each pitcher of shoulder horizontal abduction at ball release for 

pitches 1-150 appear in Figure 34. Graphical representation of group descriptive statistics (mean 

and standard deviation) of shoulder horizontal abduction at ball release for pitches 1-150 appear 

in Figure 35. 
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Figure 34: Shoulder Horizontal Abduction at Ball Release for Each Pitcher 
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Figure 35:  Shoulder Horizontal Abduction at Ball Release (Group Means + SD) 
 
 

 70



 

4.1.2.12 Shoulder Horizontal Abduction at Deceleration 

No significant differences existed within subjects. Graphical representation of the 

descriptive statistics (mean) for each pitcher of shoulder horizontal abduction at deceleration for 

pitches 1-150 appear in Figure 36. Graphical representation of group descriptive statistics (mean 

and standard deviation) of shoulder horizontal abduction at deceleration for pitches 1-150 appear 

in Figure 37. 
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Figure 36: Shoulder Horizontal Abduction at Deceleration for Each Pitcher 
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Figure 37: Shoulder Horizontal Abduction at Deceleration (Group Means + SD) 
 
 
4.1.3 Elbow Kinematics 

4.1.3.1 Elbow Flexion at Early Cocking 

No significant differences existed within subjects. Graphical representation of the descriptive 

statistics (mean) for each pitcher of elbow flexion at early cocking for pitches 1-150 appear in 

Figure 38. Graphical representation of group descriptive statistics (mean and standard deviation) 

of elbow flexion at early cocking for pitches 1-150 appear in Figure 39. 
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Figure 38: Elbow Flexion at Early Cocking for Each Pitcher 
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Figure 39: Elbow Flexion at Early Cocking (Group Means + SD) 
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4.1.3.2 Elbow Flexion at Maximum External Rotation (Late Cocking) 

Significant differences existed within subject 8. Elbow flexion at maximum external rotation 

decreased for subject 8 (Table 12). Graphical representation of the descriptive statistics (mean) 

for each pitcher of elbow flexion at maximum external rotation for pitches 1-150 appear in 

Figure 40. Graphical representation of group descriptive statistics (mean and standard deviation) 

of elbow flexion at maximum external rotation for pitches 1-150 appear in Figure 41. 

Table 12: Elbow Flexion at Late Cocking for Subject 8 

Pitch Count                Elbow Flexion 
       140                               32.41           
       150                               30.72 
Mean + 2SD                     207.75 
Mean – 2SD                       37.98 
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Figure 40: Elbow Flexion at Late Cocking for Each Pitcher 
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Figure 41: Elbow Flexion at Late Cocking (Group Means + SD) 
 

4.1.3.3 Elbow Flexion at Ball Release 

No significant differences existed within subjects. Graphical representation of the 

descriptive statistics (mean) for each pitcher of elbow flexion at ball release for pitches 1-150 

appear in Figure 42. Graphical representation of group descriptive statistics (mean and standard 

deviation) of elbow flexion at ball release for pitches 1-150 appear in Figure 43. 
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Figure 42: Elbow Flexion at Ball Release for Each Pitcher 
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Figure 43: Elbow Flexion at Ball Release (Group Means + SD) 
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4.1.3.4 Elbow Flexion at Deceleration 

No significant differences existed within subjects. Graphical representation of the 

descriptive statistics (mean) for each pitcher of elbow flexion at deceleration for pitches 1-150 

appear in Figure 44. Graphical representation of group descriptive statistics (mean and standard 

deviation) of elbow flexion at deceleration for pitches 1-150 appear in Figure 45. 
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Figure 44: Elbow Flexion at Deceleration for Each Pitcher 
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Figure 45: Elbow Flexion at Deceleration (Group Means + SD) 
 
 
4.1.4 Pitch Count Characteristics 

As the pitch count increased, changes in shoulder and elbow motion were observed. Both 

significant and not significant changes appear in Tables 13, 14, 15, and 16. 
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Table 13: *Significant and Not Significant Changes within the Pitch Count at Early 
Cocking 

  
Shoulder 
Rotation 

Shoulder 
Abduction 

Shoulder 
Horizontal Elbow Flexion 

      Abduction   
Pitch Count         

1         
10         
20         
30         
40   S3   S7 
50 S2   S2   
60     S2   
70 S7 S6     
80 S5 / S7 S6 S2 / S5   
90 S5 / S6 S3 / *S6 / S7 / S8 S5 / *S6 S8 
100 S1 / S5 *S6 / S8 S2 / *S6   
110 S1 *S6 / S8 S2 / S5 / *S6 S7 
120   *S6 S2 / *S6 S7 
130 *S4 *S6 S2 / S5 / *S6 S7 
140 S2 / *S4 / *S5 / S8 *S6 / S7 S1 / S2 / *S6   
150 *S4 / *S5 S3 / *S6 S5 / *S6   
 

Table 14: *Significant and not Significant Changes within the Pitch Count at Late Cocking 

  
Shoulder 
Rotation 

Shoulder 
Abduction 

Shoulder 
Horizontal Elbow Flexion 

      Abduction   
Pitch Count         

1         
10         
20         
30         
40   S6     
50         
60         
70     S7   
80         
90         
100         
110         
120         
130         
140     *S8 *S8 
150     *S8 *S8 
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Table 15: *Significant and Not Significant Changes within the Pitch Count at Ball Release 

  
Shoulder 
Rotation 

Shoulder 
Abduction 

Shoulder 
Horizontal Elbow Flexion 

      Abduction   
Pitch Count         

1         
10         
20         
30         
40         
50     S1   
60     S1   
70         
80         
90   S6   S3 
100       S3 
110     S1   
120         
130         
140   *S6     
150   *S6     
 

Table 16: *Significant and Not Significant Changes within the Pitch Count at Deceleration 

  
Shoulder 
Rotation 

Shoulder 
Abduction 

Shoulder 
Horizontal Elbow Flexion 

      Abduction   
Pitch Count         

1         
10         
20         
30         
40   S6     
50   S6     
60         
70 *S3 / S7       
80 *S3 / S5       
90 *S3 / S7 S6     
100 *S3 / S5 / S7       
110 *S3 / S7       
120 *S3 S6     
130 *S3 / *S7       
140 *S3 / *S7       
150 *S3 / *S7 S6     
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4.1.5 Accuracy Measurements 

4.1.5.1 Pitch Velocity 

Pitch velocity was measured using a radar gun. The descriptive statistics (mean and 

standard deviation) for each pitcher appear in Table 17. Graphical representation of velocity 

within subject for each subject appears in Figure 46. 

Table 17: Pitch Velocity (Mean and SD) 

  
Pitcher 
1 

Pitcher 
2 

Pitcher 
3 

Pitcher 
4 

Pitcher 
5 

Pitcher 
6 

Pitcher 
7 

Pitcher 
8 

                  
Mean 66.68 71.46 66.69 72.75 70.41 68.44 72.69 72.45
SD 1.85 2.39 2.32 1.751 2.58 1.41 1.54 6.18
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Figure 46: Velocity for Each Pitcher (Pitches 1-150) 
 

 81



 

4.1.5.2 Strike Accuracy 

Strike accuracy was measured by consistency of the ball hitting a strike zone on a pocket 

net distanced at 40 feet. Graphical representation of strike percentage for fastball during 

collection appears in Figure 47. Graphical representation of strike percentage for all pitches (i.e. 

fastball, curve ball and change-up) during the simulated game appears in Figure 48. 

Performance of strike accuracy for each pitcher over the course of the game appears in Figures 

49, 50, 51, 52, 53, 54, 55, and 56. 
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Figure 47: Strike Accuracy Percentage for Fastballs 
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Figure 48: Strike Accuracy Percentage for Fastball, Curveball, and Change-up 
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Figure 49: Strike Accuracy for Entire Game for Pitcher 1 
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Figure 50: Strike Accuracy for Entire Game for Pitcher 2 
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Figure 51: Strike Accuracy for Entire Game for Pitcher 3 
 
 

 84



 

Strike Accuracy

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151
Pitch Count

Strike

Ball

 
Figure 52: Strike Accuracy for Entire Game for Pitcher 4 
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Figure 53: Strike Accuracy for Entire Game for Pitcher 5 
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Figure 54: Strike Accuracy for Entire Game for Pitcher 6 
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Figure 55: Strike Accuracy for Entire Game for Pitcher 7 
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Figure 56: Strike Accuracy for Entire Game for Pitcher 8
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5 Chapter 5 

 

5.1 Discussion 

 
 Several studies have been conducted investigating the biomechanics of pitching [1, 5, 7-

9]. These previous studies all reported high compressive and distractive forces for shoulder 

external rotation, elbow flexion with a maximum varus torque, shoulder adduction torque, and 

elbow extension. However, these studies did not investigate the effect of true extended play 

during an entire game as pitch count increased. Instead they focused on the number of innings 

the pitcher threw and a limited amount of actual pitches. In no way did any of these investigators 

quantify a pitch count for any of the pitchers, nor did they capture where in the pitch count these 

pitchers were experiencing changes in their mechanics. The purpose of this research was to 

quantify kinematic arm motions as a result of increased pitch count of collegiate baseball 

pitchers, and to investigate where in the pitch count kinematic changes occurred. More 

specifically, changes in shoulder and elbow kinematics were investigated as the pitch count 

increased. Our overall hypothesis was that as pitch count increased, abnormal throwing 

mechanics would result. 

 The results of this investigation indicated that differences existed for shoulder rotation at 

early cocking, shoulder rotation at deceleration, shoulder abduction at early cocking, shoulder 

abduction at ball release, shoulder horizontal abduction at early cocking, shoulder horizontal 

abduction at maximum external rotation, and elbow flexion at maximum external rotation were 

evident in several of the pitching participants. No differences were observed for shoulder rotation 

at maximum external rotation or ball release; for shoulder abduction at maximum external 

rotation or deceleration; for shoulder horizontal abduction at ball release or deceleration; or for 
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elbow flexion at early cocking, ball release, or deceleration. A detailed discussion of these results 

as they relate to increase in pitch count will follow.  

 

5.1.1 Observed Changes in Shoulder Rotation 

It was hypothesized shoulder external rotation would decrease during early cocking, late 

cocking, and acceleration phases. It was also hypothesized that internal rotation would increase 

during the deceleration phase. Significant differences for shoulder rotation existed for subjects 3, 

4, 5, and 7. Subject 4 experienced an increase in shoulder external rotation for pitches 130-150 at 

foot contact. Subject 5 experienced a decrease in external rotation for pitches 140-150 at foot 

contact. Subject 3 experienced a decrease in external rotation for pitches 70-150 during 

deceleration. Subject 7 experienced a decrease in external rotation for pitches 130-150 during 

deceleration. While subject 2 does not support the hypothesis of this investigation, subject 5 did 

support the hypothesis that a decrease in external rotation during the early cocking phase would 

occur. Subjects 3 and 7 also support the hypothesis of this investigation that shoulder internal 

rotation would increase during deceleration. No significant differences existed for shoulder 

rotation during the late cocking or acceleration phases, which does not support our overall 

hypothesis that alterations in kinematics of the shoulder would be observed. 

The results for subject 4 showed an increase in shoulder external rotation at foot contact. 

These results are supported by Barrentine et al., [27] whose group also observed an increase in 

shoulder external rotation at foot contact. However, the results of subject 5 do not mimic the 

study previously mentioned. None of these studies using a simulated game or live game reported 

results for shoulder external rotation during deceleration. Werner et al. [17] reported that a 

regression analysis revealed maximum external rotation to be statistically significant. It was also 
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determined that throwers with more limited ranges of shoulder external rotation at the end of the 

cocking phase tended to have less distraction at the shoulder. Murray et al. [28] reported a 9° 

decrement for shoulder maximum external rotation between the first inning pitched (181°) and 

the last inning pitched (172°). Unlike Werner and Murray, this study did not find significant 

differences for shoulder rotation at maximum external rotation.  

 

5.1.2 Observed Changes in Shoulder Abduction 

 It was hypothesized that shoulder abduction would decrease during deceleration at the 

instant of ball release. Significant differences existed for subject 6 for shoulder abduction for 

pitches 70-150 at foot contact and for pitches 140-150 at ball release. Shoulder abduction 

increased during the early cocking phase at foot contact and during acceleration at the instant of 

ball release. Although the results of this investigation does not support our hypothesis that 

shoulder abduction would decrease at the instant of ball release, it does support our hypothesis 

that shoulder abduction would alter as pitch count increased.  

 Barrentine et al. [27] reported an increase in shoulder abduction at foot contact (early 

cocking), but a decrease in shoulder abduction at ball release. This published data is similar to 

this study in that the results of this investigation showed an increase in shoulder abduction at 

early cocking. However, the results of this study for shoulder abduction at ball release from the 

previously mentioned study. This difference could suggest a change in mechanics due to fatigue 

because the significant differences occurred toward the end of the simulated game.  
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5.1.3 Observed Changes in Shoulder Horizontal Abduction 

 It was hypothesized that shoulder horizontal abduction would increase during the 

acceleration phase. Significant differences for shoulder horizontal abduction existed for subjects 

2, 6, and 8. Subject 2 experienced a decrease in shoulder horizontal abduction for pitches 110-

150 at early cocking. Subject 6 experienced a decrease in shoulder horizontal abduction for 

pitches 90-150 at early cocking. Subject 8 experienced a decrease in shoulder horizontal 

abduction for pitches 140-150 at maximum external rotation. While the results of this 

investigation do not support our specific hypothesis that shoulder horizontal abduction would 

increase during the acceleration phase, it does support the overall hypothesis that kinematic 

alterations of the shoulder would be observed. 

 The results of this investigation are comparable to Barrentine et al. [27],  who reported a 

decrease in shoulder horizontal abduction at foot contact (early cocking). Subject 2 and subject 6 

both experienced a decrease in shoulder horizontal abduction at early cocking. Subject 8 

experienced a decrease in shoulder horizontal abduction later in the game at maximum external 

rotation.  

 Werner et al. [17] and Murray et al. [28] both reported a decrease in the horizontal 

abduction torque over the course of the game. The significant decrease in shoulder horizontal 

abduction may be due to altered mechanics due to a decrease in horizontal adduction torque. It 

has been suggested by other authors that as the shoulder horizontally adducts and internally 

rotates through the deceleration phase that distraction forces may make the joint susceptible to 

pathologic conditions of both the rotator cuff and glenoid labrum [45, 47, 58, 67, 68, 84, 85]. 

Further research correlating kinematics and kinetics is needed to determine what is happening 

with forces at the shoulder as horizontal abduction is decreasing over the course of the game.  
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5.1.4 Observed Changes for Elbow Flexion 

 It was hypothesized that kinematic alterations of the elbow would be observed. 

Significant differences for elbow flexion existed for subject 8. Subject 8 experienced a decrease 

in elbow flexion at maximum external rotation during the late cocking phase of throwing for 

pitches 140-150. While the results of subject 8 supports our hypothesis, there were no significant 

differences for elbow flexion observed during the early cocking, acceleration, and deceleration 

phases for subject 8 or the other seven subjects. 

 Both Werner et al. [21] and Feltner and Dapena [86] reported elbow flexion to remain 

nearly constant until shortly before maximum external rotation. The elbow then extended from 

85° of flexion to 20° of extension (Werner et al.) and 89° of flexion  to 20°  of extension(Feltner 

and Dapena) near the time of ball release. The results of subject 8 in this investigation are 

comparable to the change in flexion for maximum external rotation. This decrease might account 

for any increased extension in during ball release. Werner et al. [21] also reported that pitchers 

with more flexed elbows at foot contact incurred less shoulder distraction. Pitchers who 

demonstrated increased elbow flexion as the ball was released also appeared to have lesser 

degrees of shoulder distractions. Based on these studies, it is possible to assume that mechanism 

of injury due to less degrees of elbow flexion increases as extension of the elbow increases at 

foot contact and at ball release. 

 

5.1.5 Observed Changes in Pitching Performance 

Ball velocity appeared to follow a similar trend for all pitchers, decreasing in speed as the 

pitch count increased. As reported in Table 16, the velocities for each pitcher appear low in 

speed. Each pitcher was asked what their usual clocked speed for a fastball was during collegiate 
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competition. All reported throwing 10 to 15 miles per hour faster than what they were clocked by 

our radar gun. This may be due to the shortened distance from the pitcher to the net in the 

laboratory setting. Also, the assistant recording the radar gun was unable to stand far enough 

away from the pitcher, allowing human error which may have detected the speed of the moving 

limb. Pitchers 3, 4, 5, 6, 7, and 8 demonstrated a decrease in performance for strike accuracy as 

the pitch count increased (Figures 51, 52, 53, 54, 55, 56).  

 

5.1.6 Limitations of Study 

Limitations of this study include but are not limited to a laboratory setting simulated game, 

length of testing session, low number of subject participation, and kinematic and kinetic analysis 

for other parameters. This simulated game was conducted in a laboratory setting. Although 

measures were taken to best reproduce a game situation, it was still a simulated game indoors, 

without encouragement from coaches, teammates, or fans. Also, this study was conducted on a 

flat surface. Pitching mechanics may have been altered if the subject had thrown from a mound 

and threw regulation distance. The testing session took approximately 2-1/2 hours to complete. 

This is a long period of time to stay focused. Subjects may have been distracted by outside 

factors such as lack of concentration as the pitch count increased. The investigators continued to 

encourage subjects to try to account for the lack of outside encouragement and to keep subjects 

focused on the task. Kinematic and kinetic analysis of other parameters for both upper and lower 

extremity would have add greatly to the knowledge and information that this study had already 

reported. This data was collected but not analyzed for the current document. Finally, the low 

number of subject recruitment is a limitation of this study. Based on the data from this study, a 
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power analysis determined that a p value of .80 yielded 31.65 subjects to be statistically 

significant. 

 

5.1.7 Clinical Significance 

The results of this study indicate that overuse injuries may be lessened if proper 

recommendations are followed by the athletic trainer, coach, and the athlete.  

This study indicated that significant differences in pitching mechanics are occurring around pitch 

70 of the pitch count. It is imperative to use this quantification of the pitch count as a guide for 

better assessment of fatigue and kinematic and kinetic changes that result in alterations in 

pitching mechanics. It is important for athletic trainers, coaches, and athletes to watch for 

changes in mechanics that may result in micro-trauma injuries from repetitive improper 

mechanics. If pitch count is used to gauge individual pitching time, injury potential, need for 

surgical interventions, and time spent for rehabilitation may all decrease. This will result in a 

healthier, longer career for not just the elite baseball player, but for players of all ages. 

 

5.1.8 Conclusion 

 This investigation demonstrated that differences manifested for shoulder rotation at early 

cocking, shoulder rotation at deceleration, shoulder abduction at early cocking, shoulder 

abduction at ball release, shoulder horizontal abduction at early cocking, shoulder horizontal 

abduction at maximum external rotation, and elbow flexion at maximum external rotation, as 

pitch count increased. These results demonstrate the importance of the pitch count as a guide for 

better assessments for fatigue and changes in pitching mechanics. Future research investigating 

kinematics and kinetics parameters of both the upper and lower body would better enforce the 
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results of this study and provide coaches, athletic trainers, and players with more information 

that may prevent injury.
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