
REPEATED MEASURES MIXTURE MODELING

WITH APPLICATIONS TO NEUROSCIENCE

by

Zhuoxin Sun

M.S., Ocean University of Qingdao, 1996

B.S., Shandong Normal University, 1993

Submitted to the Graduate Faculty of

the Faculty of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2005



UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES

This dissertation was presented

by

Zhuoxin Sun

It was defended on

January 31th 2005

and approved by

Ori Rosen, Department of Statistics (co-advisor)

Allan R. Sampson, Department of Statistics (co-advisor)

Henry W. Block, Department of Statistics

Robert E. Kass, Department of Statistics, CMU

Robert A. Sweet, Department of Psychiatry

Dissertation Advisors: Ori Rosen, Department of Statistics (co-advisor),

Allan R. Sampson, Department of Statistics (co-advisor)

ii



Copyright c© by Zhuoxin Sun

2005

iii



REPEATED MEASURES MIXTURE MODELING WITH APPLICATIONS

TO NEUROSCIENCE

Zhuoxin Sun, PhD

University of Pittsburgh, 2005

In some neurological postmortem brain tissue studies, repeated measures are observed. These

observations are taken on the same experimental subject and are therefore correlated within

the subject. Furthermore, each observation can be viewed as coming from one of a pre-

specified number of populations where each population corresponds to a possible type of

neurons.

In this dissertation, we propose several mixture models with two components to model

such repeated data. In the first model, we include subject-specific random effects in the

component distributions to account for the within-subject correlation present in the data.

The mixture components are generalized linear models with random effects, while the mixing

proportions are governed by a logistic regression. In the second proposed model, the mixture

components are generalized linear models, while the component-indicator variables are mod-

eled by a multivariate Bernoulli distribution that depends on covariates. The within-subject

observations are taken to be correlated through the latent component indicator random vari-

ables. As a special case of the second model, we focus on multivariate Bernoulli mixtures of

normals, where the component-indicator variables are modeled by logistic regressions with

random effects, and the mixture components are linear regressions. The third proposed

model combines the first and second models, so that the within-subject correlation is built

into the model not only through the component distributions, but also through the latent

component indicator variables. The focus again is on a special case of the third model,

where the mixture components are linear regressions with random effects while the mixing
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proportions are logistic regressions with another group of random effects. For each model,

model fitting procedures, based on MCMC methods for sampling from the posterior distri-

bution of the parameters, are developed. The second and third model are used to compare

schizophrenic and control subjects with regard to the somal volumes of deep layer 3 pyrami-

dal cells in the auditory association cortex. As a preliminary analysis, we start by employing

classic mixture models and mixtures-of-experts to analyze such data neglecting the within-

subject correlation. We also provide a discussion of the statistical and computational issues

concerning estimation of classic Poisson mixtures.

Keywords: Mixture models; Mixtures-of-experts; MCMC; Repeated measures; Multivari-

ate Bernoulli distribution.
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1.0 INTRODUCTION

As an extremely flexible way of modeling, finite mixture models have received a lot of atten-

tion for a century. In addition to being exploited as a convenient semiparametric framework

to models with unknown distributional shapes, mixture models have obvious application to

modeling heterogeneous data. In biological settings, heterogeneity can result from various

sources, for example, species and geographical region. A mixture model is a natural choice

to use when there is a group-structure in the data or when one wants to explore the data for

such a structure.

In order to use mixture models in practice, much effort has gone into finding proper ways

to estimate the parameters. It is only in the recent twenty years that substantial advances

have been made in this area. This is due in large part to the seminal paper by Dempster,

Laird, and Rubin (1977) on the EM algorithm. It is straightforward to obtain the maxi-

mum likelihood estimates (MLE) of mixture model parameters via the EM algorithm, which

interprets the observed data as incomplete and introduces component indicator variables

to simplify the problem. The EM algorithm has led to increased use of mixture models in

various fields. For the analysis of complicated statistical models, more and more statisticians

are turning to Bayesian methods. With the advent of high-speed computers, Markov Chain

Monte Carlo (MCMC) methods have been developing rapidly and have become one of the

most commonly used techniques for fitting complex finite mixture models.

As the simplest mixture models for univariate variables, classic mixture models, which

do not include any covariates, have been already extensively studied, and the applications

of the EM algorithm to fit these models are simple.

Mixtures-of-experts, proposed by Jacobs, Jordan, Nowlan and Hinton (1991), is a mix-

ture model for univariate variables, where both the component distributions and the mixing

1



proportions are allowed to depend on covariates. In practice, the components are usually

generalized linear models. The mixtures-of-experts model combines the properties of general-

ized linear models with those of standard mixture models. Peng, Jocobs, and Tanner (1996)

illustrated how to use the EM algorithm and MCMC methodology to fit mixtures-of-experts

and their extension, hierarchical mixtures-of-experts.

There is some literature on formulating extensions of mixture models for dependent

data. The hidden Markov model is a convenient way as it employs a stationary Markovian

model for the latent states. It allows successive observations to be dependent through the

component states from which they are generated. In one dimension, the hidden states are

distributed as a Markov chain, whereas in two or more dimensions, they are distributed

as a Markov random field. As for estimating the parameters in hidden Markov models,

the EM algorithm, referred to as the forward-backward algorithm in this context, is fairly

commonly used in the one-dimension case even though it is time-consuming and numerically

sensitive. However, the EM algorithm is extremely complicated for Markov random fields.

MCMC methods turn out to be a powerful approach to parameter estimation in hidden

Markov models. The applications of MCMC methods to hidden Markov models have been

demonstrated in a number of papers, including Robert, Celeux, and Diebolt (1993) and Chib

(1996).

In another approach for dependent data, Rubin and Wu (1997) suggested an “extra com-

ponent mixture” model to fit to a data set concerning normal and schizophrenic eye-tracking

behavior. In their proposed model, the repeated measurements in the schizophrenic subjects

are modeled with a two-component mixture model where the components are linear regres-

sions with random effects, and the mixing proportions are governed by a logistic regression.

Rubin and Wu demonstrated that their model can be fitted by the ECM algorithm, an ex-

tension of the EM algorithm, as well as by MCMC methods. Rosen, Jiang and Tanner (2000)

proposed mixtures of marginal models for dependent data, which combine the properties of

mixtures-of-experts and those of generalized estimating equations. Parameter estimation in

their models was performed by a generalization of the EM algorithm.

In this dissertation, we propose three mixture models for repeated measurements, all of

which can be viewed as multivariate extensions of mixtures-of-experts.
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Our models are motivated by a number of neurological postmortem brain tissue studies,

where repeated measurements are often observed. These observations are taken on the same

experimental subject and are therefore dependent within the subject. Furthermore, each

observation can be viewed as coming from one of a pre-specified number of populations,

and subject-level covariates impact both the mixing proportions and the locations of the

mixture components. Two such motivating data sets involving grain count data and neuron

volume data are used in this dissertation to illustrate our methodology. In addition to

a wide variety of applications in quantitative neurobiology, our models can be applied to

longitudinal studies where repeated measurements taken over time arise from more than one

population.

The first model that we propose is a mixture of generalized linear mixed models (mixture

of GLMMs), where we include subject-specific random effects in the component distributions

to account for the within-subject correlation present in the data. The components are

generalized linear models with random effects, while the mixing proportions are governed by

logistic or probit regressions. In this model, the latent component indicator random variables

are considered to be independent within a subject.

Our second proposed model is a multivariate Bernoulli mixture model, where the within-

subject observations are taken to be correlated by introducing dependence among the unob-

servable component-indicator variables within each subject. We use multivariate Bernoulli

random variables that depend on covariates to describe the component indicator variables,

while the mixture components in this model are generalized linear models. We focus on

multivariate Bernoulli mixture of normals, which is a multivariate Bernoulli mixture model

where the mixture components are linear regressions and the mixing proportions are modeled

by logistic regressions with random effects.

The third model that we propose combines mixtures of GLMMs and multivariate Bernoulli

mixture models, so that the within-subject dependence is induced not only through the com-

ponent distributions, but also through the hidden component indicator variables. We refer

to it as multivariate Bernoulli mixtures of GLMMs. As a special case of this model, we focus

on multivariate Bernoulli mixtures of mixed normals, where the mixture components are

linear regressions with random effects while the mixing proportions are logistic regressions

3



with random effects.

In Chapter 2, we provide a literature review of some important results on classic mix-

ture models, mixtures-of-experts, mixture models for dependent data, the EM algorithm,

and MCMC methods. In Chapter 3, we employ classic Poisson mixture models with a

pre-specified number of components to model the grain count data. The EM algorithm is

implemented estimating the model parameters. We also provide a discussion of the statistical

and computational issues concerning estimation of classic Poisson mixtures. In this chapter,

we employ another existing mixture model, the Poisson component mixture-of-experts to

model the grain count data as well. The first new model, mixture of GLMMs is presented

in Chapter 4. We develop the estimation procedures for Poisson component mixtures of

GLMMs. In Chapter 5, we describe the multivariate Bernoulli mixture of normals and its

extensions. We illustrate how to use MCMC methods to fit this model to the neuron volume

data. The third proposed model, the multivariate Bernoulli mixture of mixed normals and

its application to neuron volume data are given in Chapter 6. In Chapter 7, we summarize

the possible extensions of our models and some future topics.

4



2.0 LITERATURE REVIEW

2.1 CLASSIC MIXTURE MODELS

Let Y1, . . . , Yn denote a random sample of size n and suppose that the density or probability

mass function of Yi can be written in the form

f(yi) =

g∑

k=1

pkfk(yi, θk), (2.1)

where the fk(yi, θk), k = 1, . . . , g, are densities or probability mass functions with parameters

θk, and pk are nonnegative quantities that sum to one, that is 0 < pi < 1, k = 1, . . . g, and
∑g

k=1 pk = 1. To ensure that the parameters are identifiable, we take θ1 < θ2 < . . . < θg.

In this part of the literature review, we concentrate on classic mixture models, where

the components fk and mixing proportion pk are without covariates. However, most of the

results here can be extended to any arbitrary component distributions.

A very important and difficult problem in mixture models is to assess the number of

components g in a mixture. This has not been completely resolved. When we know the

number of the groups in a population a priori, each component in a mixture corresponds to

a distinct existing group. In this situation, where g is known, there is one difficulty noted

by Donoho (1988) that a mixture with g components might be empirically indistinguishable

from one with fewer than g components, because in some instances, two components are too

close to be separated. Overfitting mixture models may cause nonidentifiability, as pointed

out by Crawford (1994), which may lead to either one of the mixing proportions being equal

to 0 or two component densities being the same. Hence, if either of these two situations

occurs in fitting a mixture with g components, we know that some of the corresponding

components are not widely apart enough to be separated.
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On the other hand, in practice there are many examples involving the use of mixture

models where we do not have information about the number of the groups in a population.

McLachlan and Peel (2000, Section 6) gave a lucid account of approaches for assessing the

number of components g in a mixture model in this situation. To avoid the nonidentifi-

ability problem, it is reasonable in practice to assess the number of components in terms

of estimating the mixture order, which is defined as the smallest value of g such that all

components fk(yi) are different and none of the mixing proportions pk are zero. The order

of a mixture model can be investigated nonparametrically in terms of assessing the number

of modes of a distribution. Such inferential procedures were illustrated by Titterington,

Smith, and Makov (1985). However, the drawback of this approach is that the components

of the mixture have to be sufficiently wide apart in order to be detected as modes. Other

than a few nonparametric methods, assessing the order of a mixture model has been mainly

considered in two ways, both using the likelihood function, as described by McLachlan and

Peel (2000). One approach is based on a penalized form of the log likelihood. As the log like-

lihood increases with an additional component, it is subtracted by a term, which penalizes

the model for the number of components. The penalized log likelihood yields information

criteria such as AIC and BIC for the choice of g. The shortcoming of these criteria is that

they are unable to produce a number to quantify the confidence in the result, such as a p

-value. The other main approach to estimating the order of a mixture model is to carry out

a likelihood ratio test (LRT). In mixture models, the regularity conditions break down for

the LRT to have its usual asymptotic χ2 null distribution with degrees of freedom equal to

the difference between the number of parameters under the null and alternative hypotheses.

Hence some demanding resampling approaches such as the bootstrap have to be used in

order to assess the p -value of the LRT. Karlis and Xekalaki (1999) proposed a method of

bootstrapping LRTs to estimate the number of components in Poisson mixtures. For more

details on their approach, see Section 3.3.1, where we carry out this approach to test the

number of components in the grain count data.

As for estimating the parameters in mixture models for fixed g, maximum likelihood

has been one of the most commonly used approaches since the advent of the EM algorithm,

especially for the classic mixture model described previously. We review the EM algorithm
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and illustrate how to fit classic mixture models via the EM algorithm in Section 2.4.1. Here

we interpret the mixture model expressed in (2.1) in the EM framework. The observed data

point yi, is augmented with a g-dimensional vector zi where for j = 1, . . . , g, the jth element

zij = 1, or 0, indicating whether or not the observation yi came from the jth component.

Since in (2.1), the random variables Y1, . . . , Yn are assumed to be independent, it follows

that the random vectors Z1, . . . , Zn
i.i.d.∼ multinomial(1, p1, . . . , pg). In the EM framework,

the yi’s can be viewed as the incomplete data, because the associated zi’s are unobservable.

The pairs {yi,zi}, i = 1, . . . , n, can be treated as the complete or augmented data, where

z1, . . . , zn are realizations from the multinomial(1, p1, . . . , pg). We denote the complete data

by Yc.

After the number of the components have been determined and the parameter estimates

have been obtained via the EM algorithm, the next natural problem considered is obtaining

the standard errors of the parameter estimates. There are three main approaches in general.

The first two methods are information-based. In this chapter, for ease of notation, we use

Ψ to denote the unknown parameter vector and y to denote all the observed data. It is well

known that the asymptotic covariance matrix of the MLE Ψ̂ is equal to the inverse of the

Fisher information matrix, I(Ψ), and consequently, the standard error of Ψ̂r, the rth entry

of Ψ̂, is estimated by

ŜE(Ψ̂r) = (I−1(Ψ))1/2
rr . (2.2)

The matrix I(Ψ) can be approximated by the observed information matrix I(Ψ̂; y), which

is the Hessian of the negative log likelihood function evaluated at Ψ̂. The standard error of

Ψ̂r, can be estimated by

ŜE(Ψ̂r) = (I−1(Ψ̂; y))1/2
rr . (2.3)

In order to evaluate I(Ψ̂; y), one obvious approach is to analytically compute the second

derivatives of the log likelihood. In practice, however, this may be difficult or tedious for

most mixture models.

To simplify the problem of computing derivatives, a commonly used approach is Louis’

method which computes the observed information matrix in the context of the EM algorithm.
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Louis (1982) showed that the observed information matrix I(Ψ̂; y), can be computed as

I(Ψ̂; y) = E
{

Ic(Ψ̂,Yc)|y
}
− V ar

{
Sc(Yc; Ψ̂)|y

}
, (2.4)

where Ic(Ψ̂,Yc), Sc(Yc; Ψ̂) denote the observed information matrix and the score statistics,

respectively, for the complete data introduced within the EM framework. More details about

Louis’ method are given by Tanner (1996, Section 4).

A second approach is to use the obvious approximation of I(Ψ), which is I(Ψ̂), the plug-

in estimator, that is, the expected information matrix evaluated at Ψ = Ψ̂. The standard

error of Ψ̂r, is estimated by

ŜE(Ψ̂r) = (I−1(Ψ̂))1/2
rr . (2.5)

The expected information matrix is usually more complicated to use than the observed

information matrix, since it requires an expectation to be taken. Moreover, Efron and

Hinkley (1978) have provided explanations that I(Ψ̂,y) is better than I(Ψ̂) in terms of

estimating the standard error of the MLE.

The third method to obtain standard errors uses the bootstrap approach. The estimation

of the standard errors of the elements of Ψ̂ can be implemented by the following steps using

the bootstrap.

Step 1. A bootstrap sample y∗
b , is generated from the original observed data y.

Step 2. The EM algorithm is applied to the bootstrap sample y∗
b to obtain the MLE Ψ̂

∗
b

for this new data set.

Step 3. Repeat Step 1-2 B times for b = 1, . . . , B. Then the covariance matrix of Ψ̂ can be

approximated by the sample covariance matrix of these B bootstrap realizations.

ˆcov(Ψ̂) =
B∑

b=1

(Ψ̂
∗
b − ¯̂

Ψ∗)(Ψ̂
∗
b − ¯̂

Ψ∗)T /(B − 1), (2.6)

where,

¯̂
Ψ∗ =

B∑

b=1

Ψ̂
∗
b/B. (2.7)

As in (2.2), the standard error of the rth element of Ψ̂ can be estimated by taking the square

root of the rth diagonal element of (2.6). McLachlan and Peel (2000, Section 2) have provided
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a detailed account of estimating standard errors using the bootstrap. Basford, Greenway,

McLachlan, and Peel (1997) compared the bootstrap and information-based methods for

some mixtures with normal components. They concluded that the standard errors given by

information-based approaches are less stable than those obtained by the bootstrap unless

the sample size is very large.

All the above approaches for obtaining the standard errors of the parameter estimates

are based on frequentist theory. If a Bayesian approach is taken, we generate samples from

the posterior distributions of the unknown parameters. The standard errors of the parameter

estimates are therefore assessed by the sample standard deviations of the simulated samples.

2.2 MIXTURES-OF-EXPERTS

The mixtures-of-experts model was first introduced in the neural network literature by Jacobs

et al. (1991); see also Jordan and Jacobs (1994). As a mixture model in which both the

component densities and the mixing proportions are dependent on covariates, the mixtures-

of-experts model has the properties of both generalized linear models and mixture models.

Suppose that we have n independent observations Y1, . . . , Yn with corresponding covariate

vectors x1, . . . , xn. In the mixtures-of-experts model, the density of Yi can be modeled as

f(yi|xi,Ψ) =

g∑

k=1

pk(xi; γ)fk(yi|xi,βk, φk), (2.8)

where Ψ = (γT ,βT
1 , . . . , βT

k , φ1, . . . , φn)T , and the number of components is fixed at g.

If the component densities fk(yi|xi,βk, φk) belong to the exponential family, (2.8) can

be considered as a mixture of generalized linear models (GLM). In practice, the component

densities of mixtures-of-experts usually belong to the exponential family.

The common model for expressing the mixing proportions pk(xi; γ), k = 1, . . . , g is a

generalization of logistic regression:

pk(xi; γ) =
exT

i γk

1 +
∑g−1

h=1 exT
i γh

, k = 1, . . . , g − 1, (2.9)

9



and pg(xi; γ) = 1 − ∑g−1
h=1 ph(xi; γl), where γ = (γ1

T , . . . , γg−1
T )T . Alternatively, we can

model the mixing proportions by a generalization of probit regression as proposed in Albert

and Chib (1993). We define the cumulative probabilities

qk(xi; γ) =
k∑

h=1

ph(xi; γ), k = 1, . . . , g − 1, (2.10)

and qk can be given by

qk(xi; γ) = Φ(γk − xT
i α), (2.11)

where γ = (γ1, . . . , γg−1, αT )T is the unknown parameter vector. To ensure that the para-

meters are identifiable, we take γ1 = 0 without loss of generality.

A probabilistic motivation for mixtures-of-experts is as follows. Given covariates xi,

• A vector ek = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the kth position is selected from a multino-

mial distribution with probability pk(xi; γ), where γ is the parameter vector underlying

the multinomial distribution.

• Given ek, a response yi is generated from fk(yi|xi,βk, φk), where βk is a parameter

vector and φk is a dispersion parameter. Assume that fk(yi|xi, βk, φk) belongs to the

exponential family and let µik denote the expectation of yi|ek. If h is the canonical link,

the natural parameter and dispersion parameter of the conditional distribution of yi|ek

are ηik = h(µik) = xT
i βk and φk respectively.

Mixtures-of-experts can also be viewed as fitting piecewise regression functions to the

input data {xi}. However, contrary to traditional piecewise regression where each function

is based on disjoint input regions, mixtures-of-experts adopts functions that are defined on

overlapping regions. In other words, an input point may lie in multiple regions simultane-

ously in mixtures-of-experts. These regions therefore have “soft” boundaries. Moreover, the

boundaries between these regions are simple functions which are dependent on input points.

Estimating the parameters in mixtures-of-experts can be implemented via the EM al-

gorithm. After the component-indicator variables are introduced, parameter estimates can

be obtained by the Iteratively Re-weighted Least Squares (IRWLS) procedure of GLM.

McLachlan and Peel (2000) gave a comprehensive review of this. We demonstrate how to

fit mixtures-of-experts models via the EM algorithm with applications to the grain count
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data and neuron volume data in Section 3.5 and in Appendix B. A full Bayesian approach is

another way to do inference for mixtures-of-experts. Peng et al. (1996) discussed the fitting

of mixtures-of-experts using MCMC methods. Our review of MCMC methods, including the

Gibbs sampler and the Metropolis algorithm, is presented in Section 2.4.2.

2.3 MIXTURE MODELS FOR DEPENDENT DATA

Some work has been done in recent years to extend mixture models to dependent data. Most

of this work has concentrated on hidden Markov models, which are mixture models whose

component indicators are unobserved random variables distributed as finite state Markov

chains. Hidden Markov models are most useful when the observations are serially correlated.

In classic mixture models, the yi’s are generated independently from the distribution in

(2.1). Hidden Markov models relax the independence of the yi’s by imposing dependence for

the component states from which the yi’s are generated. We use Vi to denote the component

state random variables in the context of hidden Markov models. Let Vi ∈ {1, 2, . . . , g}, be

the unobservable state random variable associated with each yi, where i = 1, . . . , n. The Vi’s

are assumed to be distributed as a finite-state Markov chain, denoted by Markov(A, π1),

which means that,

Vi|Vi−1 ∼ Markov(A,π1) (2.12)

where A = (pkw) is the transition probability matrix and π1 = (π11, . . . , π1g) is the initial

probability distribution. We have P (Vi = w|Vi−1 = k) = pkw and P (V1 = k) = π1k, for

k = 1, . . . , g. Given Vi = k, the observation yi can be selected from a population with

density fk(θk), where θk is the parameter vector. The corresponding random variable Yi is

therefore conditionally distributed as follows:

f(yi|Vi−1 = vi−1,Ψ) =





∑g
k=1 π1kfk(yi, θk) for i = 1

∑g
k=1 pkvi−1

fk(yi, θk) for i > 1.

(2.13)
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In (2.13), the unknown parameter vector is Ψ = {θ1, . . . , θg, A, π1}. Given all the component

state random variables Vi’s, the Yi’s are assumed to be conditionally independent; that is

f(y1, . . . , yn|V1, . . . , Vn) =
∏n

i=1 f(yi|Vi).

Note that the classic mixture model described in (2.1) is a special case of the hidden

Markov model when the Vi’s are distributed independently and identically over time. This

happens if and only if the initial distribution π1 = (p1, . . . , pg)
T , and the transition proba-

bility matrix satisfies A = (π1 : π1 : . . . : π1)
T .

If the component state variables Vi’s are assumed to arise from a Markov random field in

two or more dimensions, the corresponding mixture model is referred to as hidden Markov

random field. For more details, see Geman and Geman (1984).

As in other mixture models, parameter estimation in hidden Markov models usually can

be done in either a frequentist or a Bayesian approach. In a series of papers, Baum and

his colleagues (Baum and Petrie (1966), and Baum, Petrie, Soules, and Weiss (1970)) dis-

cussed a recursive algorithm to obtain the MLE’s in hidden Markov models. Their work,

which precedes the EM algorithm, is now referred to as the forward-backward algorithm.

This recursive algorithm is actually an application of the EM algorithm to hidden Markov

models. As noted by Leroux and Puterman (1992), the forward-backward algorithm and its

subsequent modifications are unfortunately time-consuming and numerically unstable. Con-

cerning the EM algorithm in hidden Markov random fields, Qian and Titterington (1991)

explained that this problem increases with complex structures of the component states, and

concluded that the EM algorithm may not be useful in hidden Markov random fields in most

situations. A Bayesian approach can avoid the computation of the likelihood by treating the

unobservable Markov states vi as unknown parameters and simulating them along with the

other unknown model parameters using the Gibbs sampler. Robert et al. (1993) showed how

to perform Bayesian estimation for hidden Markov models through the Gibbs sampler. Chib

(1996) improved previous methods and showed that the latent states vi’s can be simulated

from their joint distribution simultaneously, instead of n individual conditional distributions.

This greatly improved the convergence of the Gibbs sampler. Using the pseudolikelihood

function in place of the likelihood, Rydén and Titterington (1998) circumvented the difficul-

ties with hidden Markov random fields and applied the Gibbs sampler for this model. When
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g is unknown, Robert, Rydén, and Titterington (2000) proposed reversible jump MCMC

methods to estimate the parameters, as well as the number of components. For more recent

work regarding Bayesian methods for hidden Markov models, see the review written by Scott

(2002).

In some other work on mixture models that allow for dependent data, instead of imposing

the dependence of the component-indicator variables through a Markov chain, random effects

are incorporated into the component distributions to account for the correlation in the data.

Aitkin (1996, 1999) considered repeated measurements selected from mixtures of GLMs,

where the mixing proportions were not dependent on covariates. In his papers, the likelihood

can be written as an integral over the random effect and is approximated numerically by

Gaussian quadrature.

Rubin and Wu (1997) suggested the “Extra-Component Mixture Model” to fit a data

set concerning normal and schizophrenic eye-tracking behavior. The data set includes

repeated measurements of manual reaction times for each of 43 normal subjects and 43

schizophrenic subjects. On average, there are 34 observations for each subject. For suscep-

tible schizophrenic subjects, the observed outcomes were considered as coming from one of

two populations. One consists of responses which suffer from a deficit, and are similar to the

normal observations but relatively slower; while the other consists of responses which suffer

additionally from intermittent disruptions and are slower and more variable. In the Rubin

and Wu model, the repeated measurements in the susceptible schizophrenic subjects were

modeled with a two-component mixture model where the components were linear regressions

with random effects and the mixing proportions were governed by logistic regressions. We

term this model the Rubin-Wu model in this dissertation although it is less general than the

“Extra-Component Mixture Model”, where Rubin et al. also modeled the observations from

the normal subjects and non susceptible schizophrenic subjects. Briefly speaking, let Yij be

the jth measurement on subject i, the vector xij be the covariates and αi be the random
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effect. Then the Rubin-Wu model can be rewritten as:

(Yij|Zij = 0,xij , αi)
indep∼ N(αi + xT

ijβ1, σ
2
1),

(Yij|Zij = 1,xij, αi)
indep∼ N(αi + xT

ijβ2, σ
2
2),

αi
indep∼ N(0, σ2

α);

and for the latent component indicator random variables,

Zij
indep∼ Bernoulli(λij),

logit(λij) = xT
ijβλ,

where β1, β2, βλ, σ2
1, σ2

2, σ2
α are unknown parameters. The Zij’s and αi’s are mutually

independent. The xij ’s are covariate vectors. The model was fitted by MCMC methods

with the starting values chosen as the estimates from the ECM (expectation–conditional

maximization) algorithm. ECM is an extension of the EM algorithm, which replaces the

M-step in the EM algorithm by a sequence of conditional M steps, when a single M-step has

no closed form.

As an extension of mixtures-of-experts, mixtures of marginal models were developed by

Rosen et al. (2000) for repeated measurements. It combines the properties of mixtures-of-

experts and those of generalized estimating equations, which was introduced by Liang and

Zeger (1986) and Zeger and Liang (1986). In mixtures of marginal models, the marginal

distributions for each observation are considered as mixtures-of-experts and written in the

form of (2.8). To account for the correlation between observations on the same subject, Rosen

et al. (2000) introduced the working correlation matrix for each component and employed

generalized estimating equations in the M-step of the EM algorithm.
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2.4 COMPUTATIONAL APPROACHES TO FITTING MIXTURE

MODELS

2.4.1 The EM Algorithm

The EM algorithm was introduced by Dempster, Laird and Rubin (1977). It is an iterative

method to find the mode of a likelihood function L(Ψ|y). By augmenting the data with the

latent data z, the augmented log likelihood function log L(Ψ|y, z) can be written in a simpler

form than the original log likelihood. In each iteration, there are two steps: Expectation

(E-step) and Maximization (M-step). Let Ψ(t) be the current guess of the mode at iteration

t, and p (z|y,Ψ(t)) denote the conditional distribution of the latent random variable Z. The

E-step consists of taking the expectation of the augmented log likelihood with respect to

p (z|y,Ψ(t)), that is,

Q(Ψ,Ψ(t)) =

∫

z

log L(Ψ|y,z)p (z|y,Ψ(t))dz. (2.14)

The M-step consists of maximizing the Q function (2.14) with respect to Ψ to obtain Ψ(t+1).

The E-step and M-step are repeated iteratively until ‖Ψ(t+1)−Ψ(t)‖ or
∣∣∣ L(Ψ(t+1)|y)− L(Ψ(t)|y)

∣∣∣
is less than a pre-specified small number.

For the classic mixture models in (2.1), in the EM framework, the yi’s can be viewed as

the incomplete-data, while the pairs {yi,zi}, i = 1, . . . , n, can be treated as the complete or

augmented data, where z1, . . . , zn are realizations from the multinomial(1, p1, . . . , pg). The

augmented likelihood can be written as:

L(Ψ|y,z) =
n∏

i=1

g∏

k=1

{pkfk(yi, θk)}zik . (2.15)

Given the current estimate Ψ(t), in the E-step, the conditional expectation of the augmented

log likelihood can be derived from (2.14) and expressed as:

Q(Ψ,Ψ(t)) =
n∑

i=1

g∑

k=1

τ
(t)
ik {log pk + log fk(yi, θk)}. (2.16)
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where τ
(t)
ik = E(zik|y,Ψ(t)) = p

(t)
k fk(yi, θ

(t)
k )/

∑g
j=1 p

(t)
j fj(yi, θ

(t)
j ). In the M-step, by maximiz-

ing Q(Ψ,Ψ(t)) in equation (2.16), the updated p
(t+1)
k is given as

p
(t+1)
k =

n∑
i=1

τik/n (2.17)

for k = 1, . . . , g. Moreover, the updated θ
(t+1)
k (k = 1, . . . , g) can be obtained by solving the

equation
n∑

i=1

τ
(t)
ik ∂ log fk(yi, θk)/∂θk = 0, k = 1, . . . , g. (2.18)

We employ the EM algorithm with Poisson mixture components to the grain count data in

Section 3.2 and Section 3.3. The parameters in other mixture models such as mixtures-of-

experts can be estimated by the EM algorithm as well. We demonstrate this with applications

to the grain count data and neuron volume data in Section 3.5 and Appendix B.

Dempster et al. (1977) noted that the EM algorithm increases the likelihood function

L(Ψ|y) at each iteration, meaning L(Ψ(t+1)|y) ≥ L(Ψ(t)|y). They also showed that if Ψ(t)

converges, it goes to some stationary points such as local maxima or saddle points. In order

to find the global maximum, various starting values need to be tried. The convergence rate of

the EM algorithm is linear and may converge very slowly in a neighborhood of the maximum

point. For more results on the EM algorithm, see Tanner (1996, Section 4) and McLachlan

and Peel (2000) .

2.4.2 MCMC Methods

When a Bayesian approach is taken, it is usually impossible to sample from the posterior

distribution directly. To overcome this problem, MCMC methods generate samples from the

posterior distribution by constructing a Markov chain with the posterior distribution as its

stationary distribution.

The Gibbs sampler yields a Markov chain by simulating from the full conditional distri-

bution for each parameter. Let Ψ = {θ1, . . . , θd} denote the parameter vector (which may

include the parameters for the missing data), where θi (i = 1, . . . , d) is a subvector of the Ψ.

The full conditional distribution of θi is denoted by f(θi|y, θ1, . . . , θi−1,θi+1, . . . , θd). After
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a starting value of Ψ(0) is chosen, the Gibbs sampler is implemented iteratively to obtain

Ψ(t) for t (t = 1, 2, . . .) as follows:

Step1. Simulate θ
(t)
1 from f(θ1|y,θ

(t−1)
2 , . . . , θ

(t−1)
d )

Step2. Simulate θ
(t)
2 from f(θ2|y,θ

(t)
1 ,θ

(t−1)
3 , . . . , θ

(t−1)
d )

...

Step d. Simulate θ
(t)
d from f(θd|y,θ

(t)
1 ,θ

(t)
2 , . . . , θ

(t)
d−1)

The above loop is run for a burn-in period of N1 iterations. The samples, {Ψ(t), t > N1},
can therefore be regarded as having been simulated from the posterior distribution of the

unknown parameters.

The Metropolis algorithm is another important method based on Markov chain theory.

It was first proposed by Metropolis, et al. (1953). Instead of simulating from the full

conditional distributions of the parameters, it works on the posterior distribution f(Ψ|y)

directly. In each iteration, the Metropolis algorithm chooses a candidate from a pre-specified

distribution and accepts or rejects the candidate with probability defined in terms of f(Ψ|y).

A generalization of the Metropolis algorithm, is the Metropolis-Hastings algorithm (Hastings,

1970), which is carried out as follows. Given the current value Ψ(t), there are two steps in

the process of choosing the next value of the Markov chain, say Ψ(t+1), :

Step 1. Sample a candidate Ψ∗ from a proposal density q(Ψ(t),Ψ∗), which is an arbitrary

transition probability function, for example, a multivariate normal or a multivariate t

distribution.

Step 2. Accept Ψ∗ and let Ψ(t+1) = Ψ∗ with probability α(Ψ(t),Ψ∗), otherwise reject Ψ∗

and let Ψ(t+1) = Ψ(t), where

α(Ψ(t),Ψ∗) = min

{
f(Ψ∗|y)q(Ψ∗,Ψ(t))

f(Ψ(t)|y)q(Ψ(t),Ψ∗)
, 1

}
. (2.19)

In the implementation of MCMC methods for most mixture models, component-indicator

variables Zi’s defined in Section 2.4.1 are introduced. They are treated as missing data and

simulated along with the unknown parameters from their full conditional distributions. If

the full conditional distributions can be sampled directly, the Gibbs sampler can be easily
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implemented. Otherwise, Müller (1993) suggested that Metropolis steps be used within the

Gibbs sampler to handle this situation. For example, if the full conditional distribution of

θ1, i.e., f(θ1|y, θ2, . . . , θd) is not a standard distribution, one can perform Metropolis (or

Metropolis-Hastings) steps to obtain a realization from θ1. The value of θ
(t)
1 can be chosen

as the Kth value in the Metropolis subchain. Peng et al. (1996) used this strategy with

K = 40 in the implementation of MCMC to mixtures-of-experts, even though Müller pointed

out that K = 1, i.e., one pass through Step 1 and Step 2 described above is sufficient. In

a non-mixture context, Chib, Greenberg, and Winkelmann (1998) and Chib and Jeliazkov

(2001) employed Müller’s method (K = 1) to fit Poisson regression with random effects. We

apply Müller’s method with K = 1 to fit our proposed models to the motivating data sets

in Chapter 4, 5, and 6.

See Tierney (1994), Tanner (1996), and Gelman, Carlin, Stern, and Rubin (2003) for

more complete reviews of MCMC methods.
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3.0 CLASSIC POISSON MIXTURE MODELING WITH APPLICATION

TO NEUROSCIENCE

3.1 INTRODUCTION

In this chapter, the main consideration is the application of classic Poisson mixtures for

modeling some neuronal postmortem brain tissue data. In this application several additional

novel issues are raised. Overall it appears that mixture models have not been previously

applied to neuroscience data like these.

This research was motivated by the grain count data set, which was collected and de-

scribed by Hashimoto, Volk, Eggan, Mirnics, Pierri, Sun, Sampson, and Lewis (2003). Im-

pairments of certain cognitive functions, such as the working memory, are commonly ob-

served in individuals with schizophrenia. Some neuroscientists have suggested that it might

be caused by alterations in the circuitry of the prefrontal cortex (PFC). Previous studies have

shown the altered γ- aminobutyric acid (GABA) neurotransmission in the PFC of individu-

als with schizophrenia. In order to understand the neural circuitry basis of impaired working

memory in schizophrenia, it is important to identify the affected subset of GABA neurons.

Most GABA neurons express one of three calcium-binding proteins: parvalbumin (PV), cal-

retinin(CR), and calbindin D-28. These markers can be used to identify particular subsets

of GABA neurons. One of the goals of this study is to see if the PV containing neurons have

altered PV mRNA expression level in the PFC of individuals with schizophrenia.

In this study, brain tissues from fifteen pairs of schizophrenic and control subjects,

matched for sex, age and postmortem interval (PMI), were examined. For each subject,

the right PFC was blocked coronally, and serial sections were cut and then mounted onto

glass slides. Three slide sections were selected by systematic random sampling and were
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evenly spaced with the rostro-caudal locations of sections matched within each pair. These

sections were hybridized with 35S-labeled RNA probes in a hybridization buffer. These RNA

probes are radioactive, that is, emit β particles and bind specially to PV mRNA. The section

after the probe wash is coated with a photo-sensitive emulsion. The β particles emitted from

the bound 35S-labeled neurons react with the emulsion coating the sections and are visible

as grains on the film. The magnitudes of the grain counts is a measure of the PV mRNA

expression level. Thus, neurons with high visual grain counts are likely to be PV GABA

neurons. However, there is a natural background of β particles striking the section and thus

for all neurons in a section, there will typically be a non-negative grain count visible on the

neuron cross-section. Thus, the grain count for a randomly chosen neuron can be viewed

as coming from one of two populations: the grain counts for PV GABA neurons or the

grain counts for non-PV GABA neurons. To randomly sample the neurons, sampling frames

(approximately 40-80 per section) were placed by systematic random sampling within the

area of interest for each section. In each sampling frame, the grains within each neuron were

counted. There were approximately 1000 neurons counted for PV mRNA in each section,

so that these neurons can be viewed as coming from a mixtures of grain counts from the

PV-containing neurons and grain counts from non-PV-containing neurons. In postmortem

tissue studies, age, gender, PMI, pair, storage time, and brain pH of each subject often affect

the mRNA expression in the neurons. Therefore, we treat them as covariates, in addition to

regarding the diagnostic effect (schizophrenia versus control) as the main effect.

Hashimoto, et al. (2003) only used the observations which are larger than a chosen cut-off

point and treated these observations as coming from the PV-containing neuron population.

In this chapter, we first employ a two-component mixture of Poissons to model the observed

grain counts in each section, and then use a multivariate analysis of covariance model to

detect the diagnostic effect. The results are given in Section 3.2.

While not discussed in Hashimoto, et al. (2003), it is known that neuroscientists suspect

that there are at least two types of PV-containing neurons, including arbor neurons and

chandelier neurons. Arbor neurons have larger neuronal size because of their larger dendrites

while the chandelier neurons have smaller neuronal size as a result of their limited dendrites.

It is suspected that each of the various types of PV-containing neurons might show different
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numbers of grains due to their different neuronal sizes. In Section 3.3, we treat the number

of neuron types as unknown and test the number of components in a Poisson mixture using

bootstrap methods, and use an appropriate number of components in the mixture of Poisson

to model the observed grain counts.

While exploring the methodology to fit the grain count data, we obtain some new results,

given in Section 3.4 regarding estimating the standard errors of the parameter estimates in

mixtures of Poissons.

In addition to the classic Poisson modeling for the grain count data, in Section 3.5,

we employ another existing mixture model, mixtures-of-experts, to analyze the grain count

data.

3.2 FITTING TWO-COMPONENT MIXTURES OF POISSONS TO THE

GRAIN COUNT DATA

In this section, the analysis is carried out in two stages to determine the diagnostic effect

on grain counts. In the first stage, a classic two-component mixture of Poissons is fitted to

the grain counts for each slide section for each subject. Within slide section, the neurons

were treated independently. In the second stage, repeated measurement analysis is used

to evaluate the diagnostic effect upon the means of the components and mixing proportion,

respectively. The estimates of each parameter, for example, the means of the first components

on three sections of one subject, obtained in stage I, are treated as repeated measures taken

on this subject and are assumed equally correlated with exchangeable covariance structure.

3.2.1 Fitting a Two-Component Mixture of Poissons to the Data in Each Slide

Section

With the assumption that within a subject the grain counts within each section are indepen-

dent identically distributed, the mixture of Poissons model can be applied to the grain count

data. Recall that the data set consists of 15 pairs (a schizophrenic subject and a normal
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subject in each pair), 3 sections in each subject and approximately 1,000 neurons within

each section. For each subject and each of the three sections, let Y1, . . . , Yn, denote the i.i.d.

grain counts of the neurons, so that the density can be written in the form:

f(yi) =

g∑

k=1

pk
e−λkλyi

k

yi!
, (3.1)

where λk > 0, k = 1, . . . , g, are unknown parameters, pk, k = 1, . . . , g, are unknown constant

weights, and g is the number of mixture components. For identifiability, let λ1 < λ2 < . . . <

λg. We now treat the observed grain counts as coming from two population: the grain counts

for non-PV GABA neurons or the grain counts for PV GABA neurons. Thus, we assume

g = 2 in (3.1), and λ1 and λ2 are, respectively, the means of grain counts for non-PV neurons

and PV neurons, while p1 is the proportion of non-PV containing neurons on this specific

slide section.

For each subject and each slide section, we use the EM algorithm to estimate p1, λ1, λ2.

Using the EM algorithm discussed in Section 2.4.1 for classic mixture models, in the E-step,

the conditional expectation of the indicators is given by

τ
(t)
i = E(Zi1| y1, . . . , yn, p

(t)
1 , λ

(t)
1 , λ

(t)
2 )

=
p

(t)
1 e−λ

(t)
1 λ

(t)yi

1

p
(t)
1 e−λ

(t)
1 λ

(t)yi

1 + (1− p
(t)
1 )e−λ

(t)
2 λ

(t)yi

2

.

In the M-step, the updated parameters are given by

p
(t+1)
1 =

n∑
i=1

τ
(t)
i /n, (3.2)

λ
(t+1)
1 =

n∑
i=1

τ
(t)
i yi/

n∑
i=1

τ
(t)
i , (3.3)

λ
(t+1)
2 =

n∑
i=1

(1− τ
(t)
i )yi/

n∑
i=1

(1− τ
(t)
i ). (3.4)

The E-step and M-step are repeated iteratively until |p(t+1)
1 − p

(t)
1 |, |λ(t+1)

1 − λ
(t)
1 | , and

|λ(t+1)
2 − λ

(t)
2 | are all less than 0.0001.
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By fitting the two-component Poisson mixture to the grain counts in each slide section,

for section j in subject i, the estimates of p1, λ1, λ2 are obtained and denoted by p̂1ij, λ̂1ij, λ̂2ij,

where i = 1, . . . , 30 and j = 1, 2, 3.

The averages (standard errors) of λ̂2ij and p̂1ij are 43.67 (1.77) and 0.95 (0.001) respec-

tively. These values are very close to those obtained by using the cut-off point technique

described in Hashimoto, et al. (2003), where the average (standard error) of the means of

the PV-containing neurons across slide sections is 39.01 (1.48) and the average (standard

error) of the proportions of the PV-containing neurons is 0.94 (0.002).

3.2.2 Repeated Measurement Analysis

To evaluate the diagnostic effect on the mean of grain count in non-PV containing neurons, we

first perform the square root transformation on the λ̂1ij’s to stabilize the variance as they are

the estimates of Poisson means. Then the (
√

λ̂1i1,
√

λ̂1i2,
√

λ̂1i3)
T can be considered as cor-

related and treated as repeated measures with a compound symmetric covariance structure;

see Littell, Milliken, Struop, and Wolfinger (1996). In other words, (
√

λ̂1i1,
√

λ̂1i2,
√

λ̂1i3)
T is

assumed to have a multivariate normal distribution with mean (µi1, µi2, µi3)
T and compound

symmetric covariance matrix in which the diagonal elements are σ2 and the off-diagonal

elements are ρσ2. The primary model employed to detect the diagnostic effect is a multi-

variate analysis of covariance (MANCOVA) with diagnostic group as the main effect, pair,

slide section as categorical variables and storage time and brain pH as the other covari-

ates. To further validate this model, we consider a secondary model with diagnostic group

as the main effect, slide section as categorical variable and age, gender, PMI, storage time

and Brain pH as the other covariates. The same variance stabilizing transformation and

MANOVA models are employed for the λ̂2ij’s to examine the diagnostic effect on the mean

of grain counts in PV containing neurons. Since the p̂1ij’s are binomial proportions, the arc-

sine square root transformation, arcsin
√

p̂1ij, is performed to stabilize the variance before

the MANCOVA models are used. The MANCOVA analysis are implemented in SAS Proc

Mixed. The analysis is based on the transformed data. To provide the interpretability in

neuroscience, we back-transform the least squares means (lsmeans). We recognize that the
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Table 1: Results from fitting two-component mixtures of Poissons to each slide

Response variables Cont. lsmeansa Sz. lsmeansb F test % diff.c

mean of non-PV neurons 2.024 1.881 F1,12 = 4.80, p = 0.049 7.08%
mean of PV neurons 47.197 37.205 F1,12 = 13.37, p = 0.003 21.17%
prop. of non-PV neurons 0.946 0.950 F1,12 = 1.03, p = 0.330 –

aBack-transformed lsmeans for control group
bBack- transformed lsmeans for schizophrenic group
cpercent difference of the back-transformed lsmeans relative to control

back-transformed estimates may alter some of the nice properties of the estimates obtained

from the transformed data.

The results from the primary model, which are consistent with those from the sec-

ondary model for all response variables, are summarized in Table 1, where we report the

back-transformed least squares means (lsmeans) for each diagnostic group (control and

schizophrenic), the results of an F test for diagnostic effect based on type III sums of squares,

and for the mean of grain count in each Poisson component, we give the percent difference of

the back-transformed least squares means relative to the control group, which is (C− S)/C,

where C denotes the back-transformed lsmeans for the control group and S denotes the

back-transformed lsmeans for the schizophrenic group.

The MANCOVA results show that the grain counts are reduced in subjects with schizophre-

nia for both PV containing neurons, and in non-PV containing neurons. The diagnosis does

not affect the proportions of PV containing neurons. The marginally significant difference

between the two diagnostic groups of the non-PV containing neurons was initially somewhat

surprising to the neuroscientists. However, there appears a scientific explanation for this.

Recall that PV containing neurons enclose 35S-labeled RNA probes which emit β particles.

The β particles can travel from their binding site up to 100µm in emulsion and still remain

visible as grains. However, the average diameter of the neurons is 22µm. Thus, more PV in

the PV containing neurons also increases the background grain counts for nearby neurons

and seemingly there then is the impact of this on the grain counts in nearby non-PV con-

taining neurons. Since in normal subjects there are higher grain counts in the PV containing
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neurons, i.e., more 35S-labeled RNA probes, there is the potential for more background grain

counts for nearby non-PV containing neurons, and more grain counts for nearby PV con-

taining neurons as well. This perhaps explains the slightly increased grain counts in normal

subjects’ non-PV containing neurons, and also suggests that the grain counts in normal sub-

jects are probably slightly overestimated (this latter comment is not considered further in

this dissertation).

3.3 UNKNOWN NUMBER OF COMPONENTS

Neuroscientists know that two types of PV-containing neurons exist, which are arbor neurons

and chandelier neurons. However, it is not clear if there are more types of the PV-containing

neurons. Instead of viewing the grain count data as observations from two populations, PV

containing neurons and non-PV containing neurons, we now treat the grain count data as

arising from a variety of neurons, that is, arising from a mixture of Poissons where we do

not have information about the number of components.

3.3.1 Bootstrapping the LRTs to Test for the Number of Components

We again assume that the grain counts in each slide section are independent and identically

distributed, and that for each subject and each of the three sections, the grain count of each

neuron has the density written in the form (3.1). Note that approximately 1000 neurons were

counted in each section for each subject. To determine the optimal number of components

g in mixtures of Poisson, we use the methods proposed in Karlis and Xekalaki (1999).

Consider the null hypothesis H0: the number of component is g and alternative hypothe-

sis H1: the number of component is g +1. The likelihood ratio test (LRT) for testing such a

hypothesis has some difficulty since the standard asymptotic χ2 distribution is not applica-

ble. The reason for this is that pg+1 = 0 under the null hypothesis, is on the boundary of

the parameter space, and as such the regularity conditions break down. Karlis et al. (1999)

proposed using a bootstrap approach to construct the null distribution of the LRT statistic.
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Testing for the optimal number of component g can be carried out in the following steps.

Consider fitting mixtures of Poissons with g components and g + 1 components, respec-

tively, to the grain count data, and obtain the MLE’s of the parameters under each model

by the EM algorithm, denoted by Ψ̂g and Ψ̂g+1 respectively. Calculate the LRT, denoted

by Lobs. Next simulate B bootstrap samples with size n, where n is the sample size of the

observed grain counts, from a g-component mixture of Poissons with parameter Ψ̂g. For each

bootstrap sample, fit the g-component mixture of Poissons and g + 1-component mixture of

Poissons, and obtain the LRT statistic, denoted by Li, i = 1, . . . , B. Compute the assessed

p-value for Lobs relative to the distribution of Li, i = 1, . . . , B. If the assessed p-value is

smaller than the pre-specified level of significance, then continue the process comparing now

g+1 and g+2 components. If the p-value is larger, then one concludes that there are exactly

g components.

It is time-consuming to carry out this computationally intensive test for all 90 slide

sections. To illustrate the procedure, we choose three subjects randomly from the 30 subjects,

and for each of the three slide sections in each subject, we obtain the optimal number of

components for fitting the mixtures of Poissons to the grain counts. In Table 2, we report

for each slide section for the three chosen subjects the assessed p-values for each choice g,

for testing g versus g + 1 components. On the basis of these p-values at the 5% level of

significance, for 5 slide sections, the optimal number of components would be chosen to be

equal to 4; for 3 slide sections, it would be equal to 3; while for 1 slide section , it would

be 5. In light of these results, we view as reasonable fitting a mixture of Poissons with four

components for the grain counts in every slide section. We do so now for all 30 subjects.

3.3.2 Fitting Four-Component Mixtures of Poissons to the Grain Count Data

We employ the EM algorithm to estimate the unknown parameters λk and pk, where k =

1, . . . , 4 and
∑4

k=1 pk = 1. In the E-step, conditional on the current estimates of the unknown
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Table 2: P-values using bootstrap LRT

P-value for g versus g + 1
Subject Slide 1 2 3 4 5

1 1 0 0 0.035 0.383 –
1 2 0 0 0.005 0.254 –
1 3 0 0 0.239 – –
2 1 0 0 0.005 0.259 –
2 2 0 0 0.005 0.100 –
2 3 0 0 0.005 0.313 –
3 1 0 0 0.418 – –
3 2 0 0 0.189 – –
3 3 0 0 0.025 0.045 0.234

parameters, we calculate the expectations of the component-indicator variables by

τ
(t)
ik = E(Zik| y1, . . . , yn, p

(t)
1 , . . . , p
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1 , . . . , λ

(t)
4 )

=
p

(t)
k e−λ

(t)
k λ

(t)yi

k∑4
k=1 p

(t)
k e−λ

(t)
k λ

(t)
k yi

, k = 1, . . . , 4.

In the M-step, the updated parameters are given by

p
(t+1)
k =

n∑
i=1

τ
(t)
ik /n, (3.5)

λ
(t+1)
k =

n∑
i=1

τ
(t)
ik yi/

n∑
i=1

τ
(t)
ik , k = 1, . . . , 4. (3.6)

(3.7)

As before, the E-step and M-step are repeated until the difference between the updated value

and the current value is less than 0.0001 for all the λk’s and pk’s.

After obtaining the parameter estimates for each slide section, denoted by λ̂kij and p̂kij,

where i = 1, . . . , 30, j = 1, 2, 3, and k = 1, . . . , 4, we again employ multivariate analysis of

covariance on the λ̂1ij’s, λ̂2ij’s, λ̂3ij’s, λ̂4ij’s and p̂1ij’s, p̂2ij’s and p̂3ij’s respectively, to examine

the diagnostic effect on the mean of grain counts in each component and the proportion of

each component. As described in Section 3.2, for the λkij’s and pkij’s, we use the square

root transformations and arcsine square root transformations, respectively, to stabilize their
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Table 3: Results from fitting four-component mixtures of Poissons to each slide

Response variables Cont. lsmeansa Sz. lsmeansb F test % diff.c

mean of first comp.d 1.392(0.025) 1.280(0.025) F1,12 = 1.79, p = 0.205 8.02 %
mean of second comp. 7.043(0.119) 5.614(0.119) F1,12 = 2.65, p = 0.130 20.29%
mean of third comp. 34.101(0.173) 25.699(0.173) F1,12 = 9.25, p = 0.010 24.64%
mean of fourth comp. 93.281(0.288) 70.944(0.288) F1,12 = 8.56, p = 0.012 23.95%
prop.e of first comp. 0.810 0.788 F1,12 = 0.77, p = 0.399 –
prop. of second comp. 0.137 0.160 F1,12 = 0.82, p = 0.384 –
prop. of third comp. 0.036 0.034 F1,12 = 1.18, p = 0.299 –
prop. of forth comp. 0.017 0.018 – –

aBack-transformed lsmeans for control group (the standard error of the lsmeans in parrentheses)
bBack-transformed lsmeans for schizophrenic group (the standard error of the lsmeans in parrentheses)
cpercent difference of the back-transformed lsmeans relative to control
dcomponent
eproportion

variances, before carrying out repeated measures analysis. As in the two-component Poisson

mixture case, for each of the 7 response variables, the primary model employed has diagnostic

group as the main effect, pair, slide section as categorical factors and storage time and brain

pH as the other covariates. The secondary model has diagnostic group as the main effect, slide

section as a categorical factor and age, gender, PMI, storage time and Brain pH as the other

covariates. In Table 3, we report the MANCOVA results for each response variable from the

primary model. These results are consistent with those from the secondary model. We give

the back-transformed least squares means (lsmeans) for each diagnostic group (control and

schizophrenic), the results of an F test for the diagnostic effect, and the percent difference

of the back-transformed least squares means relative to the control group.

We can see from the Table 3 that the back-transformed lsmeans in each of the four

components decrease in subjects with schizophrenia. However, the diagnostic effects on the

grain counts in the two larger components are strongly significant, while for the two smaller

components, there are no significant diagnostic effects. However, the relative change of the

second back-transformed component is 20.29%, which is very large, indicating that there are

big differences in the second component between the two diagnostic groups, even though its

F-test shows no difference due to the relative large standard errors in both groups compared
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with their lsmeans. For the proportions of components, there are no differences between the

two diagnostic groups.

Comparing the results in Table 3 with those in Table 1, we notice that the summation

of the proportions of the first and second components in the four-component mixtures are

0.947 and 0.948, respectively, for control and schizophrenic subjects, which are close to their

proportions of non-PV neurons, which are 0.946 and 0.950, given in Table 1. Furthermore,

we calculated the weighted average of the mean of the first and second component, with

their corresponding proportions as weights. The weighted averages are 2.208 and 1.010,

respectively, for control and schizophrenic subjects, and these values are close to the lsmeans

of the grain counts in non-PV neurons for both groups. Similarly, the weighted average of

the third and fourth components are calculated, which are 52.678 and 41.526, respectively

for control and schizophrenic groups, which are close to the lsmeans for grain counts in

PV-containing neurons. These results seem to indicate that the first two components in the

four-component mixtures are actually the components of the non-PV neurons. We suspect

that the first component consists of the non-PV neurons which do not have PV-containing

neurons nearby, and so do not contain the β particles traveling from the PV-containing

neurons. In other words, the grain counts within these non-PV neurons are mostly from

the natural background β particles. On the other hand, the second component consists of

non-PV containing neurons which are close to the PV containing neurons, and thus these

non-PV neurons contain not only the natural β particles, but also the traveling β particles

from PV containing neurons. Moreover, the third and fourth components can be viewed as

two types of PV containing neurons, which one could conjecture might be chandelier and

arbor neurons.

The strong diagnostic effect on the grain counts in PV-containing neurons seen in Sec-

tion 3.2 appears to be due to the reduction in both types of PV-containing neurons. The

marginal diagnostic effect in non-PV neurons detected in Section 3.2 appears due to the

reduction in the non-PV neurons nearby the PV containing neurons, which further confirms

the suggested scientific explanation provided in Section 3.2.
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3.4 SOME NEW RESULTS ON MIXTURES OF POISSONS

There are three main approaches to assessing the standard errors of the parameter esti-

mates in mixture models obtained using the EM algorithm. These approaches are based on

the Fisher information matrix, the observed information matrix via Louis’ method, and on

bootstrapping. For the normal component mixtures, Basford et. al. (1997) claimed that the

standard errors obtained by bootstrap are more stable than those obtained by information-

based approaches unless the sample size is very large. In this section, we compare these

three methods for mixtures of Poisson components.

Let Y1, . . . , Yn denote a random sample of size n from a mixture of Poissons, with prob-

ability mass function given in (3.1), where we now assume that g = 2. The results can be

extended to any finite mixture of Poissons.

The comparison of the three methods are based on a simulation study, except for assessing

the standard errors of the parameter estimates by the Fisher information matrix, which

can be calculated directly. Both the Louis’ method and the bootstrap methods depend

on simulated data. We only did the comparison when the components are mixed in equal

proportions. Several combinations of true parameter values are formed by taking p1 =

0.5, λ1 = 1 and varying λ2 from 1.2 to 7. In Table 4, we report the comparison results of

the three methods when λ2 = 1.5 and λ2 = 4, as examples of well-separated Poisson mixture

and poorly-separated Poisson mixture. A similar pattern can be seen in all combinations of

parameter values we used.

For any given parameter values p1, λ1, λ2, the Fisher information matrix I(p1, λ1, λ2)

can be calculated directly as follows. The second derivatives of the log likelihood based

on (3.1) are first computed analytically, and then their expectations with respect to Y

are approximated by finite sums. For instance, the first diagonal element of the Fisher

information matrix is computed from

nEY
∂2 log L(p1, λ1, λ2| y)

∂λ2
1

≈ n

N∑
y=0

∂2 log L(p1, λ1, λ2| y)

∂λ2
1

f(y| p1, λ1, λ2). (3.8)

In (3.8), f(y| p1, λ1, λ2) = p1
e−λ1λy

1

y!
+ (1− p1)

e−λ2λy
2

y!
; the sample size n is chosen as 1000, and

N is a sufficiently large number such that f(y| p1, λ1, λ2) ≈ 0 for any y ≥ N . The asymptotic
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standard errors of the estimators of p1, λ1, λ2 are obtained from (2.2). It can be seen in Table

4 that the standard errors of p̂1, λ̂1, λ̂2 become large when λ2 gets close to λ1 for fixed p1.

To avoid the tedious computation of the second derivatives of the log likelihood, Louis’

method is employed to obtain the observed information matrix I(p̂1, λ̂1, λ̂2). For any given

p1, λ1, λ2, 250 random sample, each of size 1000, are simulated from a mixture of Poissons.

For each sample, the parameter estimates p̂1, λ̂1, λ̂2 are obtained via the EM algorithm as

shown in Section 3.2. The observed information matrix is obtained from (2.4) and the

estimates of the standard errors of p̂1, λ̂1, λ̂2 are then obtained from (2.3). It is shown that

the standard error estimates from these 250 samples are very stable when the two underlying

Poisson components are well separated, but are quite variable when the two components are

poorly separated. For example, when p1 = 0.5, λ1 = 1, λ2 = 1.5, the estimate of the standard

error of p̂1 varies from 0.002 to 2535.73. The latter value corresponds to a simulated data

with the estimates p̂1 = .9964, λ̂1 = 1.235, and λ̂2 = 1.235002. Eliminating this data set, the

averages and sample standard deviations of the remaining 249 standard errors of p̂1, λ̂1, λ̂2

are reported in Table 4. For other combinations of p1, λ1, λ2 values, we did not encounter

such a rare case, and the averages and sample standard deviations of the 250 standard errors

are reported in Table 4.

To examine the behavior of the bootstrap method in estimating the standard errors of

the parameter estimates, we simulate 250 random samples from a mixture of Poissons for

given values of p1, λ1, λ2. Each random sample is of size n = 1000 and the standard errors

of the estimates of p1, λ1, λ2 are obtained by carrying out the bootstrap procedure given in

Section 2.1 with the number of bootstrap samples B chosen as 500. The means and sample

standard deviation of the 250 standard errors of the estimates of p1, λ1, λ2 are given in Table

4. It is noted that the estimates of the standard errors do not vary much even when the two

underlying components are poorly separated.

To obtain the finite sample standard errors for the parameter estimates from random

samples of size n = 1000, we also simulate 5000 random samples, each of size n = 1000

from mixtures of Poissons for given values of p1, λ1, λ2. The parameter estimates p̂1, λ̂1, λ̂2

are obtained via the EM algorithm for each random sample. We give the sample standard

deviations of the 5000 replicates of p̂1, λ̂1, λ̂2 in Table 4, as simulated results.
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Table 4: A simulation study for comparing three approaches to computing standard errors

well-separated poorly-separated
Method p1 = 0.5, λ1 = 1, λ2 = 4 p1 = 0.5, λ1 = 1, λ2 = 1.5

ŝe(p̂1) ŝe(λ̂1), ŝe(λ̂2) ŝe(µ̂) ŝe(p̂1) ŝe(λ̂1), ŝe(λ̂2) se(µ̂)
Fisher Informationa 0.038 0.096 0.160 0.069 1.914 0.95 0.98 0.036
Louis’ Methodb 0.038 0.096 0.160 0.069 0.500 0.426 0.994 0.037

(0.004) (0.009) (0.013) (0.002) (0.669) (0.395) (1.028) (0.001)
Bootstrapc 0.039 0.098 0.165 0.069 0.284 0.266 0.595 0.036

(0.005) (0.012) (0.019) (0.003) (0.045) (0.128) (0.442) (0.002)
Simulationd 0.039 0.100 0.160 0.070 0.296 0.306 0.768 0.036

aThe entries for Fisher information are the true asymptotic standard errors of the parameter estimates.
bThe entries for the Loius’ method are the averages (and the corresponding sample standard deviations)

of 250 asymptotic standard errors of parameter estimates, each of which are obtained from Louis’ method
for a simulated sample of size 1000. (For p1 = 0.5, λ1 = 1, λ2 = 1.5, the presented results are the average
and standard deviation of 249 simulated samples).

cThe entries for the bootstrap are the averages (and the corresponding sample standard deviations) of
250 estimated standard errors of parameter estimates, each of which are obtained via bootstrapping for a
simulated sample of size 1000.

dThe entries for Simulation are the sample standard deviations of 5000 realizations of p̂1, λ̂1, λ̂2, each of
which are obtained from a simulated sample of size 1000.
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Comparing the standard errors obtained from the Fisher information matrix, Louis’

method and the bootstrap with the simulated results, we conclude that bootstrapping pro-

vides the closest and most reasonable estimates of standard errors of parameter estimates

for mixtures of Poissons when the components are poorly separated.

To better understanding the results of the comparison, for each combination of p1, λ1, λ2,

QQ-plots for the 5000 replicates of p̂1, λ̂1, λ̂2 obtained from the simulated results are given

in Appendix A. It is found that p̂1, λ̂1, λ̂2 are normally distributed when the two underlying

Poisson components are well separated, and they are right (or left) skewed when the two

components are poorly separated. This suggests that n = 1000 is not a sufficient sample

size to make the sampling distributions of p̂1, λ̂1, λ̂2 asymptotically normal when the two

components are not far apart. Thus the information-based methods appear to require much

larger sample size than 1000 to provide accurate estimates of the standard errors.

Another interesting result has to do with the expectation of Yi, denoted by µ, where

Yi has the distribution (3.1). Since the µ is equal to p1λ1 + (1 − p1)λ2, we estimate it by

µ̂ = p̂1λ̂1 +(1− p̂1)λ̂2. When using information-based methods to assess the standard errors

of µ̂, we consider the asymptotic standard error of µ̂, obtained via the δ method as

se(µ̂) = se(p̂1λ̂1 + (1− p̂1)λ̂2)

=
{

(λ̂1 − λ̂2, p̂1, 1− p̂1)cov(p̂1, λ̂1, λ̂2)(λ̂1 − λ̂2, p̂1, 1− p̂1)
T
}1/2

.

where cov(p̂1, λ̂1, λ̂2) denotes the asymptotic covariance matrix of p̂1, λ̂1, λ̂2. The cov(p̂1, λ̂1, λ̂2)

can be calculated as the inverse of Fisher information matrix evaluated at the true parameter

values, or approximated by the inverse of the observed information matrix evaluated at the

true parameter values. Using the bootstrap, the standard error of µ̂ is given by the sample

standard deviation of the B bootstrap realizations of p̂1λ̂1 + (1− p̂1)λ̂2. We notice in Table

4 that all methods provide almost identical estimates of the standard error of µ̂ regardless of

the separation of the two Poisson components. In addition, it can be seen that the standard

error of µ̂ is always small no matter what the standard errors of p̂1, λ̂1, λ̂2 are, which suggests

that estimating µ is very stable in any situation.

As a summary of the simulation study, we find that a bootstrapping approach provides

a better way to estimate the standard errors of the parameter estimates in comparison with
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the information-based approaches for mixtures of Poissons where the components are poorly

separated. We suspect this happens because the sample size used in our simulation study is

not large enough. This conclusion is consistent with what Basford et al. (1997) reported in

the normal mixture case. Furthermore, we find that the estimate of the expectation of the

observations is very stable regardless of the separation of the two Poisson components.

3.5 APPLYING MIXTURES-OF-EXPERTS TO THE GRAIN COUNT

DATA

With both the component densities and the mixing proportions depending on covariates, we

use the EM algorithm to fit mixtures-of-experts models with two Poisson components to the

grain count data.

To apply the mixtures-of-experts model to the grain count data, we only consider the

grain data on slide section 1 for just the schizophrenic subjects. In fact, we can consider

both schizophrenic and normal subjects by including the diagnostic effect in the mixtures-of-

experts model as one of the covariates. However, in this chapter, with the main purpose of

ensuring that the mixtures-of-experts model works for this grain count data set, we only use

the data from the schizophrenic subjects to make the problem simpler. Later, when needed,

we apply mixtures-of-experts to the whole grain count data set and the estimates are chosen

as starting values for the unknown parameters in the model given in Chapter 4.

Let Yij denote the grain counts of the jth neuron from subject i, and let xi denote the

covariate vector associated with subject i, where i = 1, . . . , 15; j = 1, . . . , li. Assume that

the Yij’s are independent and the density of Yij can be written as:

f(yij|xi,γ,β1,β2) = p(xi,γ)f(yij|xi,β1) + (1− p(xi,γ))f(yij|xi,β2) (3.9)

where

f(yij|xi, βk) =
e−λ(xi,βk)λ(xi,βk)yij

yij!
, k = 1, 2, (3.10)

p(xi,γ) =
exT

i γ

1 + exT
i γ

, (3.11)
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and

λ(xi,βk) = exT
i βk , k = 1, 2. (3.12)

In (3.11) and (3.12), γ, β1, β2 are the unknown parameter vectors, and xi is the covariate

vector for subject i. The log likelihood for γ, β1, β2 is given by

log L(γ, β1, β2|y) =
n∑

i=1

li∑
j=1

log{p(xi,γ)f(yij|xi, β1) + (1− p(xi,γ))f(yij|xi, β2)} (3.13)

In order to implement the EM algorithm to estimate the parameters, we augment the data

with component indicators Zij. Let Zij = 1 if yij comes from the first Poisson component,

so that P (Zij = 1) = p(xi,γ), and Zij = 0, otherwise with probability 1 − p(xi, γ). The

augmented log likelihood can then be written as:

log L(γ, β1, β2|y,z)

=
n∑

i=1

li∑
j=1

{zij[log p(xi,γ) + log f(yij|xi,β1)]

+ (1− zij)[log(1− p(xi,γ)) + log f(yij|xi,β2)]}. (3.14)

Therefore, for each iteration t, in the E–step, the conditional expectation of the Zij’s is

given by:

τ
(t)
ij = E(Zij| yij,γ

(t), β
(t)
1 , β

(t)
2 )

=
p(xi,γ

(t))e−λ(xi,β
(t)
1 )λ(xi,β1

(t))yij

p(xi,γ(t))e−λ(xi,β1
(t))λ(xi,β1

(t))yij + (1− p(xi,γ(t)))e−λ(xi,β2
(t))λ(xi,β2

(t))yij
.

The expectation of the augmented log likelihood can therefore be expressed as:

Q(γ, β1, β2, γ
(t), β

(t)
1 , β

(t)
2 )

=
n∑

i=1

li∑
j=1

{τ (t)
ij [log(p(xi,γ)) + log(f(yij|xi, β1))]

+ (1− τ
(t)
ij )[log(1− p(xi, γ)) + log(f(yij|xi,β2))]}. (3.15)

In the M-step, Q(γ, β1, β2,γ
(t), β

(t)
1 , β

(t)
2 ) is maximized with respect to γ, β1, β2. This is

done by maximizing

n∑
i=1

li∑
j=1

{
τ

(t)
ij log(p(xi, γ)) + (1− τ

(t)
ij ) log(1− p(xi,γ))

}
(3.16)
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with respect to γ and by maximizing

n∑
i=1

li∑
j=1

τ
(t)
ij log(f(yij|xi,β1)) (3.17)

and
n∑

i=1

li∑
j=1

(1− τ
(t)
ij ) log(f(yij|xi,β2)) (3.18)

with respect to β1 and β2 respectively. It can be seen that (3.16) has the same form

as the log likelihood function of γ in logistic regression fitted to the response variables

{τ (t)
ij , i = 1, . . . , n, j = 1, . . . , li}, and so an updated γ(t+1) can be calculated by a GLM

fitting program such as the glm( ) function in S-PLUS with binomial error distribution and

logit as the link function. Moreover, (3.17) is like the log likelihood function of β1 in a single

Poisson regression fitted to the response {yij, i = 1, . . . , n, j = 1, . . . , li} with {τ (t)
ij , i =

1, . . . , n, j = 1, . . . , li} as known weights. The updated β
(t+1)
1 can thus be computed again

by the glm( ) function with Poisson error distribution and log as the link function. Similarly,

β
(t+1)
2 can be obtained by maximizing (3.18), which can be treated as the log likelihood

function of a Poisson regression fitted to the response {yij, i = 1, . . . , n, j = 1, . . . , li} with

{1− τ
(t)
ij , i = 1, . . . , n, j = 1, . . . , li} as known weights.

The E-step and M-step are computed iteratively until | log L(γ(t+1),β
(t+1)
1 ,β

(t+1)
2 |y) −

log L(γ(t), β
(t)
1 , β

(t)
2 |y)| < 10−5. The covariates included in the model are age, gender, PMI,

storage time and brain pH. We run the EM algorithm with 50 different sets of starting values

and compute the value of the log likelihood corresponding to the each set of starting values.

The following solution is the one corresponding to the largest value of the log likelihood

γ̂ = (1.6042,−0.0003,−0.1077,−0.0024, 0.0052, 0.1762)T

β̂1 = (0.2991, 0.0028, 0.0385,−0.0067,−0.0003, 0.0412)T

β̂2 = (1.8670, 0.0043,−0.2041, 0.0049,−0.0032, 0.2769)T .

The elements of each vector are the estimates of the intercept, the coefficients of age, gen-

der, PMI, storage time and brain pH, respectively. The EM algorithm converges after 32

iterations.
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Table 5: Fitting two-component mixtures-of-experts to the grain count data

estimates
Schizophrenia subjects p̂i λ̂i1 λ̂i2

1 0.951 1.92 40.80
2 0.953 1.75 44.98
3 0.950 2.03 37.90
4 0.937 1.88 39.83
5 0.957 1.75 48.07
6 0.956 1.75 41.79
7 0.957 1.88 48.22
8 0.952 1.83 46.82
9 0.948 1.89 40.98
10 0.942 1.91 37.16
11 0.947 1.80 45.48
12 0.941 1.73 37.69
13 0.953 1.77 35.74
14 0.951 1.67 38.44
15 0.958 1.88 25.22

From (3.12), we calculate for each schizophrenic subject i, p̂i, the proportion of non-PV

containing neurons, λ̂i1, the mean of the grain count in non-PV containing neurons, and λ̂i2,

the mean of the grain count in PV containing neurons. These estimates are presented in Table

5. The averages (standard errors) of the λ̂i1, λ̂i2 and p̂i are 1.83 (0.02), 40.61 (1.53), 0.95

(0.002) respectively, which are consistent with the results from applying the two-component

mixtures of Poissons and the cut-off point technique. It can be seen that most neurons

are non-PV containing neurons and that the two underlying Poisson components are well

separated.

In Appendix B, we illustrate the procedures for fitting two normal component mixtures-

of-experts using the EM algorithm to another neuronal postmortem brain tissue data, the

neuron volume data.
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4.0 MIXTURES OF GENERALIZED LINEAR MIXED MODELS

(MIXTURES OF GLMMS)

4.1 INTRODUCTION

In this chapter, a new model, mixture of GLMMs is introduced for modeling repeated mea-

surements. This model can be viewed as an extension of mixtures-of-experts for modeling

repeated measurements which are observations taken on the same experimental subject and

are correlated within the subject. It is a mixture model where the components are general-

ized linear models with random effects, and the mixing proportions are modeled by logistic

or probit regression. The random effects are incorporated into the component distributions

to account for the within-subject correlation present in the data.

In mixtures-of-experts (Jacobs,et al, (1991)), the observations are assumed to be inde-

pendent and they follow a mixture distribution where the mixture components are typically

generalized linear models, while the mixing proportions are linear logits.

The Rubin-Wu model proposed by Rubin and Wu (1997) is a two-component mixture

model for repeated measures where the mixture components are linear regressions with

random effects and the mixing proportions are logits. The random effects in the mixture

components account for the correlation in the within-subject observations.

The model developed in this chapter extends the mixtures-of-experts by including subject

specific random effects in the mixture components in order to account for the correlation in

the data. The Rubin-Wu model is a special case of the mixture of GLMMs.

The motivating data is the grain count data described in detail in Section 3.1. To identify

the affected subset of GABA neurons which might impair certain cognitive functions in

subjects with schizophrenia, the brain tissue from 15 schizophrenic subjects and 15 normal
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subjects were examined in this study. For each subject, the part of brain of interest was

cut into serial sections which were hybridized with 35S-labeled RNA probes. The RNA

probes bind specifically with PV mRNA and emit β particles. The β particles react with

the emulsion covering the slides and can be visible as grains, which are the measurements

of the PV mRNA. On average, for each subject, the grain counts within 1000 neurons were

counted. Since there was also background β particles, each neuron has a nonnegative grain

count. Thus, we think of these grain counts as coming from two populations: PV-containing

neurons and non-PV containing neurons. The diagnostic effect is the main interest in this

study. The covariates age, gender, postmortem interval(PMI), storage time, and brain pH

are associated with the subject. Within a subject, we treat the observations on the three

slide sections as independent. Handling the correlation among the repeated sections within

an individual is a more complex task, and requires an additional extension not considered

in this dissertation.

Hashimoto, et al. (2003) used a cutoff point and assumed that all grain counts larger than

the threshold are from the PV containing neurons. In Chapter 3, we applied classic mixtures

of Poissons and mixtures-of-experts to the grain count data by ignoring the within-subject

correlation. In this chapter, we propose a more appropriate model to fit such data.

After providing an overview of mixtures of GLMMs in Section 4.2, we study the joint

distributions of the observed data to gain a better understanding of the structure of the data

under this model. In Section 4.3, we present the normal component mixtures of GLMMs and

its joint distribution. In Section 4.4, we give the Poisson component mixtures of GLMMs

and outline the fitting procedures for applying the model to the grain count data. We have

not implemented the sampling scheme given in Section 4.4 for the grain count data. This is

left as future research.
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4.2 MIXTURES OF GLMMS

4.2.1 The Model

Suppose n subjects are randomly selected, and li measurements are obtained on subject i.

Assume the subject random effects, Si’s, are random samples from a normal distribution

with mean 0 and variance σ2
s .

Let Yij denote the jth measurement on subject i, i = 1, . . . , n; j = 1, . . . , li. Given the

random effect Si, we assume that the Yij’s are independently distributed with density

f(yij|Si = si, xi, γ,β1,β2)

= p(xi,γ)f1(yij, η1(xi,β1, si), ϕ1) + (1− p(xi,γ))f2(yij, η2(xi, β2, si), ϕ2), (4.1)

where the distribution fk is a member of the exponential family with natural parameter

ηk(xi,βk, si) and dispersion parameter ϕk. If the link function is chosen as canonical, the

natural parameter is given by

ηk(xi,βk, si) = xT
i βk + si. (4.2)

In (4.1), the mixing proportion is modeled as

p(xi,γ) =
exT

i γ

1 + exT
i γ

, (4.3)

that is, logit(p(xi,γ)) = xT
i γ. For this model, the parameter vectors γ, β1, β2, ϕ1, ϕ2 and

the variance σ2
s are unknown. The vector of the covariates associated with subject i is xi.
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4.2.2 The Marginal Distribution of the Observed Data

In mixtures of GLMMs, the distribution of (Yi1, . . . , Yili), which are the observations on the

ith subject, is assumed to be independent across subjects. In this section, we present the

joint distribution of (Yi1, . . . , Yili). To simplify the notation, we omit the subject index and

denote the subject response vector (Yi1, Yi2, . . . , Yili) by (Y1, Y2, . . . , Ym). This also leads to

suppression of the covariate vector xi.

Suppose that given the subject-specific random effects, the conditional density of Yj (j =

1, . . . , m) is a two-component mixture with any kind of component distributions. Further

suppose that the subject-specific random effects are assumed to have an arbitrary distribu-

tion. The following theorem gives the distribution of (Y1, . . . , Ym) in this general setting.

Theorem 1. Assume that Y1|S, Y2|S, . . . Ym|S are i.i.d. and that the density of Yj condi-

tional on S can be written as

f(yj|S = s) = pf1(yj, η1, φ1, s) + (1− p)f2(yj, η2, φ2, s), (4.4)

where f1, f2, fS are any density or probability mass functions,

S ∼ fS(s, σs), (4.5)

and η1, φ1, η2, φ2, σs are parameters. Then the joint distribution of Y1, Y2, . . . Ym is given

by:

fy1,...,ym(y1, . . . , ym) = pmG(y1, . . . , ym; η1, η1, η1, . . . , η1; φ1, φ1, φ1, . . . , φ1; σs)

+ (1− p)pm−1[G(y1, . . . , ym; η2, η1, η1, . . . , η1; φ2, φ1, φ1, . . . , φ1; σs)

+ G(y1, . . . , ym; η1, η2, η1, . . . , η1; φ1, φ2, φ1, . . . , φ1; σs) + · · ·
+ G(y1, . . . , ym; η1, η1, η1, . . . , η2; φ1, φ1, φ1, . . . , φ2; σs)]

+ (1− p)2pm−2[G(y1, . . . , ym; η2, η2, η1, . . . , η1; φ2, φ2, φ1, . . . , φ1; σs)

+ G(y1, . . . , ym; η2, η1, η2, . . . , η1; φ1, φ2, φ2, . . . , φ1; σs) + · · ·
+ G(y1, . . . , ym; η1, η1, . . . , η2, η2; φ1, φ1, . . . , φ2, φ2; σs)]

+ · · ·
+ (1− p)mG(y1, . . . , ym; η2, η2, η2, . . . , η2; φ2, φ2, φ2, . . . , φ2; σs),

(4.6)
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where

G(y1, . . . , ym; η1, η1, η1, . . . , η1; φ1, φ1, φ1, . . . , φ1; σs)

=
∫

s
f1(y1, η1, φ1, s)f1(y2, η1, φ1, s) . . . f1(ym, η1, φ1, s)fS(s, σs)dS,

G(y1, . . . , ym; η2, η1, η1, . . . , η1; φ2, φ1, φ1, . . . , φ1; σs)

=
∫

s
f2(y1, η2, φ2, s)f1(y2, η1, φ1, s) . . . f1(ym, η1, φ1, s)fS(s, σs)dS,

G(y1, . . . , ym; η1, η2, η1, . . . , η1; φ1, φ2, φ1, . . . , φ1; σs)

=
∫

s
f1(y1, η1, φ1, s)f2(y2, η2, φ2, s) . . . f1(ym, η1, φ1, s)fS(s, σs)dS,

...

G(y1, . . . , ym; η2, η2, η2, . . . , η2; φ2, φ2, φ2, . . . , φ2; σs)

=
∫

s
f2(y1, η2, φ2, s)f2(y2, η2, φ2, s) . . . f2(ym, η2, φ2, s)fS(s, σs)dS,

There are 2m terms in (4.6).

Proof : It follows directly from fy1,...,ym(y1, . . . , ym) =
∫

s

{∏m
j=1 f(yj|S = s)

}
fS(s, σs)ds.

♦

4.3 NORMAL COMPONENT MIXTURES OF GLMMS

4.3.1 The Model

If the two components in (4.1) are normal distributions, the model is a mixture of GLMMs

with normal components. The conditional density function of yij|Si is:

f(yij|Si = si,xi,γ, β1,β2, σ
2
1, σ

2
2)

= p(xi,γ)φ(yij; µ(xi,β1, si), σ
2
1) + (1− p(xi,γ))φ(yij; µ(xi,β2, si), σ

2
2), (4.7)

where φ(yij; µ(xi,βk, si), σ
2
k) denotes the univariate normal density with mean µ(xi,βk, si)

and variance σ2
k, and µ(xi,βk, si) is given by

µ(xi,βk, si) = xT
i βk + si, k = 1, 2. (4.8)
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The model described above is actually the Rubin-Wu model. Therefore, mixtures of

GLMMs, where the mixture components can be any distribution belonging to the exponential

family, can be viewed as an extension of the Rubin-Wu model, where the two mixture

components are chosen as normal distributions. For more details on the Rubin-Wu model,

see Section 2.3.

4.3.2 The Marginal Distribution of the Observed Data

We now give the joint distribution of the observations for each individual in the case of

mixtures of GLMMs with normal components. As in Section 4.2.2, we again omit the

subject index and denote the subject response vector (Yi1, Yi2, . . . , Yili) by (Y1, Y2, . . . , Ym).

Theorem 2. Assume that Y1|S, Y2|S, . . . Ym|S are i.i.d. and that the conditional density

of Yj|S is written as

f(yj|S = s) = p φ(yj; µ1 + s, σ2
1) + (1− p)φ(yj; µ2 + s, σ2

2), (4.9)

where

S ∼ N(0, σ2
s), (4.10)

and µ1, µ2, σ
2
1, σ2

2, σ2
s are parameters. Then the joint distribution of (Y1, Y2, . . . , Ym) is

fy1,...,ym(y1, . . . , ym) = pmφm( (y1, . . . , ym)T ; (µ1, µ1, µ1, . . . , µ1)
T , Σ1)

+ (1− p)pm−1[φm( (y1, . . . , ym)T ; (µ2, µ1, µ1, . . . , µ1)
T , Σ2)

+ φm( (y1, . . . , ym)T ; (µ1, µ2, µ1, . . . , µ1)
T , Σ3) + · · ·

+ φm( (y1, . . . , ym)T ; (µ1, µ1, µ1, . . . , µ2)
T , Σm+1)]

+ (1− p)2pm−2[φm( (y1, . . . , ym)T ; (µ2, µ2, µ1, . . . , µ1)
T , Σm+2)

+ φm( (y1, . . . , ym)T ; (µ2, µ1, µ2, . . . , µ1)
T , Σm+3) + · · ·

+ φm( (y1, . . . , ym)T ; (µ1, µ1, . . . , µ2, µ2)
T , Σm+m(m−1)/2)]

+ · · ·
+ (1− p)mφm( (y1, . . . , ym)T ; (µ2, µ2, µ2, . . . , µ2)

T , Σ2m),

(4.11)
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where φm(y,µ, Σ) is the multivariate normal density with mean vector µ and covariance

matrix Σ. In (4.11),

Σ1 =




σ2
1 + σ2

s σ2
s · · · σ2

s

σ2
s σ2

1 + σ2
s · · · σ2

s

· · ·
σ2

s σ2
s · · · σ2

1 + σ2
s




, Σ2 =




σ2
2 + σ2

s σ2
s · · · σ2

s

σ2
s σ2

1 + σ2
s · · · σ2

s

· · ·
σ2

s σ2
s · · · σ2

1 + σ2
s




,

Σ3 =




σ2
1 + σ2

s σ2
s · · · σ2

s

σ2
s σ2

2 + σ2
s · · · σ2

s

· · ·
σ2

s σ2
s · · · σ2

1 + σ2
s




, · · · ,

Σ2m =




σ2
2 + σ2

s σ2
s · · · σ2

s

σ2
s σ2

2 + σ2
s · · · σ2

s

· · ·
σ2

s σ2
s · · · σ2

2 + σ2
s




. (4.12)

It is noted that each mean vector in (4.11) is described by an element of ×m
j=1{µ1, µ2};

while its corresponding covariance matrix has σ2
s as the off-diagonal elements and the di-

agonal elements are described by the corresponding element of ×m
j=1{σ2

1, σ
2
2}. If σ2

1 = σ2
2 in

(4.7), then Σ1 = Σ2 = . . . = Σ2m in Theorem 2.

Proof : By Theorem 1 and without loss of generality, we need to show that for example,

∫

s

φ(y1; µ1 + s, σ2
1)φ(y2; µ2 + s, σ2

2) . . . φ(ym; µ1 + s, σ2
1)fS(s, σs)ds

= φm( (y1, . . . , ym)T ; (µ1, µ2, µ1, . . . , µ1)
T , Σ3). (4.13)

We employ the moment generating function to show (4.13). Consider the random variables

W1, . . . , Wm and assume

Wj|S i.i.d.∼ N(µ1, σ
2
1), for j = 1, 3, . . . , m

W2|S i.i.d.∼ N(µ2, σ
2
2).
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where

S ∼ N(0, σ2
s).

We recognize that the left side of (4.13) is the joint density function of (W1, . . . , Wm).

Next we compute the moment generating function of (W1, . . . ,Wm). For any vector t =

(t1, t2, . . . , tm)T ,

M(t) = ES

[
m∏

j=1

E(exp{tjWj}|S)

]

= ES

[
exp{t1(µ1 + S) + σ2

1t
2
1/2} exp{t2(µ2 + S) + σ2

2t
2
2/2} . . . exp{tm(µ1 + S) + σ2

1t
2
m/2}]

= exp

{
t1µ1 + t2µ2 + . . . + tmµ1 +

σ2
1

2
(t21 + t23 + . . . + t2m) +

σ2
2

2
(t22)

}
ES

[
exp

{
m∑

j=1

tjS

}]

= exp

{
t1µ1 + t2µ2 + . . . + tmµ1 +

σ2
1

2
(t21 + t23 + . . . + t2m) +

σ2
2

2
(t22)

}
exp

{
σ2

s

2
(

m∑
j=1

tj)
2

}

= exp





tT




µ1

µ2

µ1

. . .

µ1




+
1

2
tT




σ2
1 + σ2

s σ2
s · · · σ2

s

σ2
s σ2

2 + σ2
s · · · σ2

s

· · ·
σ2

s σ2
s · · · σ2

1 + σ2
s




t





,

which is the moment generating function of the multivariate normal distribution with (µ1, µ2,

µ1, . . . , µ1)
T as the mean vector and Σ3 as the covariance matrix. It follows from the unique-

ness of the moment generating function that (4.13) holds, and therefore Theorem 2 is true.

♦

In both Theorem 1 and Theorem 2, the joint distributions of (Y1, Y2, . . . , Ym) are 2m

component mixtures. These mixture models provide insight into the structure of the data

under the mixtures of GLMMs, but do not aid in the estimation of the parameters. If we

estimate the unknown parameters based on the joint distribution of Y1, . . . , Ym directly, the

difficulty of the problem dramatically increases with the number of observations on each

subject.

We now give an example of Theorem 2.
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Example 1. In Theorem 2, if the number of the observations m = 2, then the joint distrib-

ution of (Y1, Y2) is

fy1,y2(y1, y2) = p2φ2( (y1, y2)
T ; (µ1, µ1)

T ,


 σ2

1 + σ2
s σ2

s

σ2
s σ2

1 + σ2
s


)

+ (1− p)p φ2( (y1, y2)
T ; (µ2, µ1)

T ,


 σ2

2 + σ2
s σ2

s

σ2
s σ2

1 + σ2
s


)

+ (1− p)p φ2( (y1, y2)
T ; (µ1, µ2)

T ,


 σ2

1 + σ2
s σ2

s

σ2
s σ2

2 + σ2
s


)

+ (1− p)2φ2( (y1, y2)
T ; (µ2, µ2)

T ,


 σ2

2 + σ2
s σ2

s

σ2
s σ2

2 + σ2
s


).

4.4 POISSON COMPONENT MIXTURES OF GLMMS

4.4.1 The Model

If the two components in (4.1) are Poisson distributions, the model is a mixture of GLMMs

with Poisson components, that is, the probability mass function of Yij|Si is

f(yij|Si = si,xi,γ,β1, β2)

= p(xi, γ)
e−λ(xi,β1,si)λ(xi,β1, si)

yij

yij!
+ (1− p(xi,γ))

e−λ(xi,β2,si)λ(xi,β2, , si)
yij

yij!
,(4.14)

where

λ(xi, βk, si) = exT
i βk+si , k = 1, 2. (4.15)
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4.4.2 The Expectation and Covariance Matrix of the Observations

In mixture of GLMMs with Poisson components, the marginal density of the multiple obser-

vations from each individual cannot be written as a mixture of standard densities because

the density function G in (4.6) does not have a closed form in this case. To gain some insight

into the joint distribution of the observed data, we give the expectation and covariance ma-

trix of the observations on each individual under this model. We again denote the subject

response vector (Yi1, Yi2, . . . , Yili) by (Y1, Y2, . . . , Ym).

Theorem 3. Assume Y1|S, Y2|S, . . . Ym|S are i.i.d. and the conditional density of Yj|S is

f(yj|S = s) = pf(yj; λ1e
s) + (1− p)f(yj; λ2e

s) (4.16)

where f(yj; θk) = e−θkθ
yj

k /yj!, k = 1, 2,

S ∼ N(0, σ2
s),

and λ1, λ2, σ2
s are parameters. Then,

E{(Y1, Y2, . . . Ym)T} = [pλ1 + (1− p)λ2]e
σ2

s/21m×1 (4.17)

V ar{(Y1, Y2, . . . Ym)T} =




a + b b · · · b

b a + b · · · b

· · ·
b b · · · a + b




m×m

, (4.18)

where

a = [pλ1 + (1− p)λ2]e
σ2

s/2 + p(1− p)(λ1 − λ2)
2e2σ2

s

b = [pλ1 + (1− p)λ2]
2(e2σ2

s − eσ2
s ).
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Proof : For j = 1, . . . , m,

E(Yj) = ES{E(Yj|S)}
= ES

{∑
yj[pf1(yj, λ1e

S) + (1− p)f2(yj, λ2e
S)]

}

= ES{pλ1e
S + (1− p)λ2e

S}
= [pλ1 + (1− p)λ2]ES(eS)

= [pλ1 + (1− p)λ2]e
σ2

s/2,

hence equation (4.17) holds.

To prove (4.18), we first show V ar(Yj) = a+b, for any j = 1, . . . ,m, using the well-known

result,

V ar(Yj) = V arS(E(Yj|S)) + ES(V ar(Yj|S)). (4.19)

Since

V arS(E(Yj|S)) = V arS{pλ1e
S + (1− p)λ2e

S}
= [pλ1 + (1− p)λ2]

2(e2σ2
s − eσ2

s )

= b

and

ES(V ar(Yj|S))

= ES

{
E(Y 2

j |S)− (E(Yj|S))2
}

= ES

{
[pλ1 + (1− p)λ2]e

S +
{
[pλ2

1 + (1− p)λ2
2]− [pλ1 + (1− p)λ2]

2
}

e2S
}

= [pλ1 + (1− p)λ2]e
σ2

s/2 + p(1− p)(λ1 − λ2)
2e2σ2

s

= a

It follows that V ar(Yj) = a + b. The result follows since for j 6= j′ , it is easy to show that

Cov(Yj, Yj′ ) = ES

{
E(Yj|S)E(Yj′ |S)

}− {E(Yj)}2

= [pλ1 + (1− p)λ2]
2(e2σ2

s − eσ2
s )

= b.
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♦

In Theorem 3, the expectation and covariance of Yj in (4.17) and (4.18) reduce to

E(Yj) = pλ1 + (1− p)λ2, (4.20)

V ar(Yj) = pλ1 + (1− p)λ2 + p(1− p)(λ1 − λ2)
2, j = 1, . . . , m, (4.21)

if and only if σ2
s = 0, i.e., if there is no subject random effect. Note that (4.20) and (4.20) are

the expectation and variance of Yj under classic mixtures of Poissons. Also, the covariance

between Yj and Yj′ (for any j′ 6= j), denoted by b in (4.18), is equal to 0. Hence, from this

special case, it can be seen again that mixtures of GLMMs is an extension of classic mixture

models and mixtures-of-experts by incorporating subject-specific random effects into the

component distributions.

4.4.3 Applying MCMC Methods to the Poisson Component Mixtures of GLMMs

In this section, we employ MCMC methods to simulate from the posterior distribution of

the parameters in the Poisson component mixtures of GLMMs given in Section 4.4.1.

4.4.3.1 The Likelihood and Conditional Distributions. Treating the component

indicators and the subject-specific random effects as missing data, we obtain the augmented

likelihood function, which has a simpler form than the original likelihood. Placing prior

distributions on the unknown parameters, conditional distributions, for implementing the

Gibbs sampler, are obtained in this section.

As before, we augment the data with indicators: Zij = 1 if Yij comes from the first

component, and Zij = 0 if Yij comes from the second component. Treating the zij’s and the

random effects si’s as missing data, the augmented likelihood function is proportional to:

(σ2
s)
−n

2

n∏
i=1

e
− s2i

2σ2
s

li∏
j=1

2∏

k=1

{
pk(xi,γ) exp

{
(xT

i βk + si)yij − e(xT
i βk+si)

}}zijk

, (4.22)

where p1(xi,γ) = exT
i γ

1+exT
i

γ
, p2(xi,γ) = 1− p1(xi, γ), and zij1 = zij, zij2 = 1− zij.
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To simulate from the posterior distribution through the Gibbs sampler, we specify prior

distributions on the unknown parameters and then derive conditional distributions of both

the missing data and the unknown parameters. We place independent normal prior distrib-

utions on each of γ,β1, and β2 with means 0 and variance matrices σ2
0I, where σ2

0 is a large

number. The prior on σ2
s is an inverse Gamma, IG(α0, β0). The sampling scheme for the

Gibbs sampler is as follows.

1. Initialize the parameters γ(0),β
(0)
1 ,β

(0)
2 , σ2(0)

s .

For iterations t = 1, 2, · · · :
2. Sample from Zij|( yij, si,γ, β1,β2, σ

2
s)

indep∼ Bernoulli(τij), where

τij = P (Zij = 1| yij, si,γ,β1,β2, σ
2
s)

=
p1(xi, γ)e(βT

1 xi+si)yij−e(βT
1 xi+si)

p1(xi,γ)e(βT
1 xi+si)yij−e(βT

1 xi+si) + (1− p1(xi, γ))e(βT
2 xi+si)yij−e(βT

2 xi+si)
.(4.23)

3. S1| ({Zij}, {Yij},γ,β1,β2, σ
2
s), . . . , Sn| ({Zij}, {Yij}, γ, β1,β2, σ

2
s) are independent and

for i = 1, . . . , n,

f(Si|{zij}, {yij}, γ,β1,β2, σ
2
s) ∝ e

− s2i
2σ2

s

li∏
j=1

2∏

k=1

{
pk(xi,γ) exp{(xT

i βk + si)yij − e(xT
i βk+si)}

}zijk

.

(4.24)

4. Sample from

f(γ|{zij}, {yij}, {si},β1,β2, σ
2
s) ∝ e

−γT γ

2σ2
0

n∏
i=1

li∏
j=1

2∏

k=1

pk(xi, γ)zijk . (4.25)

5. Sample from

f(β1,β2|{zij}, {yij}, {si},γ, σ2
s) ∝

2∏

k=1

exp

{
n∑

i=1

li∑
j=1

(yijzij1β
T
k xi − zij1e

βT
k xi+si)− βT

k βk

2σ2
0

}
.

(4.26)

6. Sample from

f(σ2
s | {zij}, {yij}, {si},γ,β1,β2) ∝

1

(σ2
s)

n
2
+1+α0

e
− 1/2

Pn
i=1 s2i +β0

σ2
s . (4.27)

50



It follows that f(σ2
s | {zij}, {yij}, {si}, γ,β1,β2) is the density of an IG(n

2
+α0,

1
2

∑n
i=1 s2

i +β0)

random variable.

It is noted that the conditional distributions of the Zij’s and σ2
s are standard densities

and therefore can be sampled from directly. However, since the conditional distributions of

the Si’s, γ,β1,β2 cannot be written in closed form, samples from these distributions will

be realized via a Metropolis-Hastings step with the proposal densities being multivariate

t-distributions.

Next we illustrate in detail how to sample from the si’s, γ, β1,β2.

4.4.3.2 Sampling from the Conditional Distribution of γ. In mixture of GLMMs,

we choose pi = exT
i γ

1+exT
i

γ
, so that the Zij’s are modeled by logistic regressions. We now follow

Chib et al. (1998) and Chib and Jeliazkov (2001) to sample γ from (4.25). The basic idea

here is to approximate f(γ|{Zij}, {yij}, {Si},β1,β2, σ
2
s) by a multivariate t distribution with

mean equal to the posterior mode and variance equal to the negative inverse of the second

derivatives of the log posterior.

First, we take the logarithm of f(γ|{Zij}, {yij}, {Si},β1,β2, σ
2
s) expressed in (4.25) and

denote it by log f(γ). The mode of log f(γ) is obtained via the Newton-Raphson algorithm

using the derivatives

∂ log f(γ)

∂γ
= − 1

σ2
0

γ +
n∑

i=1

li∑
j=1

(zij − exT
i γ

1 + exT
i γ

)xi (4.28)

∂2 log f(γ)

∂γ2
= − 1

σ2
0

I −
n∑

i=1

li∑
j=1

exT
i γ

(1 + exT
i γ)2

xix
T
i . (4.29)

Next we let m0 and V0 denote the mode of log f(γ) and (−∂2 log f(γ)
∂γ2 |m0)

−1 respectively, and

define the proposal density as

fT (γ|m0, V0, υ) ∝ |V0|−1/2

{
1 +

1

υ
(γ −m0)

T V −1
0 (γ −m0)

}−(υ+p)/2

, (4.30)

which is the multivariate t-distribution with υ degrees of freedom (υ is a given number),

location parameter vector m0 and scale matrix V0. In (4.30), p denotes the dimension of
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γ, which is equal to 6 in our case. Using the Metropolis-Hastings algorithm described in

Section 2.4.2, we propose γ∗ ∼ fT (γ|m0, V0, υ) and accept it with probability

α(γ,γ∗) = min

{
f(γ∗)fT (γ|m0, V0, υ)

f(γ)fT (γ∗|m0, V0, υ)
, 1

}
. (4.31)

4.4.3.3 Sampling the Random Effects si. We now simulate from the conditional

distributions of Si by the Metropolis-Hastings algorithm. Analogous to the case of γ in

the logistic regression, we take the logarithm of f(Si|{Zij}, {yij},γ,β1,β2, σ
2
s) expressed in

(4.24) and denote it by log f(si). The mode of log f(si) is obtained via the Newton-Raphson

algorithm using the derivatives

∂ log f(si)

∂si

= −si/σ
2
s +

li∑
j=1

2∑

k=1

(yij − exT
i βk+si)zijk (4.32)

∂2 log f(si)

∂s2
i

= −1/σ2
s +

li∑
j=1

2∑

k=1

(−exT
i βk+si)zijk. (4.33)

Next we let m0 denote the mode of log f(si) and V0 denote (−∂2 log f(si)

∂s2
i

|m0)
−1, and define the

proposal density as fT (si|m0, V0, υ) given in (4.30), where p is the dimension of si, which is

equal to 1 in our case. We propose s∗i ∼ fT (si|m0, V0, υ) and accept it with probability

α(si, s
∗
i ) = min

{
f(s∗i )fT (si|m0, V0, υ)

f(si)fT (s∗i |m0, V0, υ)
, 1

}
. (4.34)

4.4.3.4 Sampling from the Conditional Distribution of β1,β2. To simplify the

notation, let β = (βT
1 ,βT

2 )T , and fk(βk) = fk(βk|{zij}, {yij}, {si},γ, σ2
s) for k = 1, 2, where

fk(βk|{zij}, {yij}, {si},γ, σ2
s) ∝ exp

{
n∑

i=1

li∑
j=1

(yijzij1β
T
k xi − zij1e

βT
k xi+si)− βT

k βk

2σ2
0

}
.

(4.35)

Comparing with (4.26), we have

f(β) = f1(β1)f2(β2). (4.36)
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Sampling β from its conditional distribution requires the use of a Metropolis-Hastings step

again. We derive the gradient vector and Hessian matrix of the logarithm of the conditional

distribution expressed as in (4.26) and we have

∂ log f(β)

∂β
=

[(
∂ log f1(β1)

∂β1

)T

,

(
∂ log f2(β2)

∂β2

)T
]T

, (4.37)

where

∂ log fk(βk)

∂βk

= −βk/σ
2
0 +

n∑
i=1

li∑
j=1

(yij − exT
i βk+si)zijkxi, k = 1, 2; (4.38)

and

∂2 log f(β)

∂β2 =




∂2 log f1(β1)

∂β2
1

0

0 ∂2 log f2(β2)

∂β2
2


 , (4.39)

where

∂2 log fk(βk)

∂β2
k

= −I/σ2
0 +

n∑
i=1

li∑
j=1

(−exT
i βk+si)zijkxix

T
i , k = 1, 2. (4.40)

We calculate the mode of log f(β), denoted by m0, using the Newton-Raphson algorithm;

and compute (−∂2 log f(β)

∂β2 |m0)
−1, denoted by V0. Defining the proposal density as fT (β|m0, V0, υ)

as in (4.30), where p is the dimension of β, which is equal to 12 in our case, we propose

β∗ ∼ fT (β|m0, V0, υ) and accept it with probability

α(β,β∗) = min

{
f(β∗)fT (β|m0, V0, υ)

f(β)fT (β∗|m0, V0, υ)
, 1

}
. (4.41)

In summary, to simulate from the posterior distribution of the parameters in the Poisson

component mixtures of GLMMs, the Gibbs sampler will be run for N cycles beyond a burn-in

of N1 cycles after a given random starting value. Each cycle includes:

• Generate the zij’s from a Bernoulli distribution with probability τij given in (4.23).

• Generate γ as described in Section 4.4.3.2.

• Generate the si’s as described in Section 4.4.3.3.

• Generate β as described in Section 4.4.3.4.

• Generate σ2
s from the distribution IG(n

2
+ α0,

1
2

∑n
i=1 s2

i + β0).
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Rubin and Wu (1997) also employed the Gibbs sampler to estimate the model parameters.

In their sampling scheme, the conditional distributions of the subject-specific random effects

Si’s are standard densities and then Si’s were sampled directly. In our Poisson component

mixtures of GLMMs, the conditional distributions of Si’s are more complicated and we have

to implement Metropolis-Hastings steps to sample them.

4.5 EXTENSIONS

4.5.1 Using Probit Regressions to Model the Mixing Proportions

In Section 4.2, the mixing proportions are modeled as logits. An alternative to the mixing

proportions is a probit model, so that (4.3) becomes p(xi,γ) = Φ(xT
i γ), where Φ denotes

the standard normal cdf.

When we carry out MCMC methods to sample from γ, probit modeling results in closed

form distributions. However, it may not converge faster than the logit transformation. We

give the sampling scheme for γ using the probit transformation as follows.

As proposed in Albert and Chib (1993), we incorporate unobserved normal random

variables Wij, i = 1, . . . , n, j = 1, . . . , li, where Wij ∼ N(xT
i γ, 1). Let Zij = 1, if Wij > 0;

and Zij = 0, otherwise. It then follows that the Zij’s are independent Bernoulli random

variables with probability pi = Φ(xT
i γ).

The distribution of Wij, conditional on Zij,γ, is:

Wij|Zij, γ
i.i.d∼ N(xT

i γ, 1) truncated on the left by 0, if Zij = 1;

Wij|Zij, γ
i.i.d∼ N(xT

i γ, 1) truncated on the right by 0, if Zij = 0. (4.42)

Let z be the vector of (z11, . . . , z1l1 , z21, . . . , z2l2 , . . . , zn1, . . . , znln)T and w be the vec-

tor of (w11, . . . , w1l1 , w21, . . . , w2l2 , . . . , wn1, . . . , wnln)T . If the prior on γ is N(0, σ2
0I), the

conditional distribution of γ given Z and W , is given by

γ|Z,W ∼ N(γ̃, Σ̃), (4.43)
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where

γ̃ = (σ−2
0 I + XT X)−1XT w,

Σ̃ = (σ−2
0 I + XT X)−1,

and

X = (xT
1 , . . . , xT

1 ,xT
2 , . . . , xT

2 , . . . , xT
n , . . . , xT

n )T .

Note that if xi (i = 1, . . . , n) is a vector of length r, then X is a vector of length r
∑n

i=1 li.

We now carry out the Gibbs sampler to obtain a deviate of γ. The iterative scheme is

described as follows.

Step 1: Choose as starting values γ(0) = (XT X)−1XT z.

Step 2: Generate w(t+1) from (4.42), given z and γ(t).

Step 3: Generate γ(t+1) from (4.43), given z and w(t+1).

Step 4: Iterate Step 2 and Step 3 .

4.5.2 Different Subject-Specific Random Effects in the Mixture Components

The mixture of GLMMs proposed in Section 4.2 has the same random effects Si in both

components. An extension of this model is to incorporate different but correlated random

effects into the mixture components. Assume (Si1, Si2)’s are random samples from a bivariate

normal distribution with mean (0, 0) and covariance matrix Σ, then (4.1) can be modified to

f(yij|Si1 = si1, Si2 = si2,xi,γ,β1,β2)

= p(xi, γ)f1(yij, η1(xi,β1, si1), ϕ1) + (1− p(xi,γ))f2(yij, η2(xi, β2, si2), ϕ2). (4.44)

As a special case of (4.44), we incorporate correlated random effects into the normal

component mixtures of GLMMs, and give the following theorem where the number of ob-

servations on each subject is equal to 2. We denote the subject response vector (Yi1, Yi2) by

(Y1, Y2).
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Theorem 4. Assume Y1| (S1, S2), Y2| (S1, S2) are i.i.d. and the density of Yj conditional on

S1, S2 is

f(yj|S1 = s1, S2 = s2) = p φ(yj; µ1 + s1, σ
2
1) + (1− p)φ(yj; µ2 + s2, σ

2
2), (4.45)

where 
 S1

S2


 ∼ N





 0

0


 ,


 σ2

1s σ12s

σ12s σ2
2s





 , (4.46)

and µ1, µ2, σ2
1, σ2

2, σ2
1s, σ2

2s, σ12s are parameters, then the joint distribution of (Y1, Y2) is

fy1,y2(y1, y2) = p2φ2( (y1, y2)
T ; (µ1, µ1)

T ,


 σ2

1 + σ2
1s σ2

1s

σ2
1s σ2

1 + σ2
1s


)

+ (1− p)p φ2( (y1, y2)
T ; (µ2, µ1)

T ,


 σ2

2 + σ2
2s σ12s

σ12s σ2
1 + σ2

1s


)

+ (1− p)p φ2( (y1, y2)
T ; (µ1, µ2)

T ,


 σ2

1 + σ2
1s σ12s

σ12s σ2
2 + σ2

2s


)

+ (1− p)2φ2( (y1, y2)
T ; (µ2, µ2)

T ,


 σ2

2 + σ2
2s σ2

2s

σ2
2s σ2

2 + σ2
2s


).

Proof : It is similar to the proof in Theorem 2. Here we need to use the moment generating

function of (S1, S2) = E(et1S1+t2S2) = 1
2
(t1 t2)


 σ2

1s σ12s

σ12s σ2
2s


 (t1 t2)

T .

♦

Note that Theorem 4 gives the joint distribution of (Y1, Y2), where each subject has

only two replicates, as in Example 1 given in Section 4.3. Theorem 4 considers a more

complicated structure for the subject-specific random effects. Each of the two component

distributions in (4.45) has a different normally distributed random effect and the two random

effects are correlated. It can be seen that Example 1 is a special case of Theorem 4 when

σ2
1s = σ2

2s = σ12s, i.e., S1 = S2.

Theorem 4 can be generalized to the case where the number of observations on each

subject, m ≥ 3, and again the density of Y1, . . . , Ym is a mixture of 2m multivariate normal
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distributions which have the same mean vectors as in (4.11) and more complex covariance

matrices than those in (4.11). The mean vector of each multivariate normal component

is again described by an element of ×m
j=1{µ1, µ2}; while the diagonal elements of its corre-

sponding covariance matrix are described by the corresponding element of ×m
j=1{σ2

1, σ
2
2}; and

the off-diagonal elements are either σ2
1s, σ2

2s or σ12s depending on the structure of the mean

vector.

4.5.3 Other Extensions

In mixtures of GLMMs proposed in Section 4.2, the covariates xi for each subject can be

replaced by xij , which may vary with the responses within subject. Such a model can be

applied to fit longitudinal data. Because in our motivating data set, all the covariates are at

the subject level, we only use xi as covariates for simplicity of notation.

The mixtures of GLMMs can be generalized to any number of finite components g > 2.

The component distributions are modeled as before. To model the mixing proportions, the

generalization of logistic regression in (2.9) or the generalization of probit regression in (2.10)

and (2.11) can be employed.

The MCMC methods given in Section 4.4.3 can be applied to the Poisson component

mixture of GLMMs where the covariates vary with the responses within subject by simply

replacing {xi} with the corresponding {xij}. It can be modified to apply to mixtures of

GLMMs with any finite component number g > 2 as well.

Note that in mixtures of GLMMs, there is no random effect in the mixing proportions.

In Chapter 5 and Chapter 6 we introduce other new models which incorporate the subject-

specific random effects into the mixing proportions.

4.6 DISCUSSION

In this chapter, we extend mixtures-of-experts by including subject-specific random effects

into the mixture components to model repeated measures and propose mixtures of GLMMs.
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Normal component mixture of GLMMs is actually the Rubin-Wu model. For Poisson com-

ponent mixtures of GLMMs, we develop the estimation procedure using MCMC methods.

In the sampling scheme for Poisson component mixtures of GLMMs, we propose sampling

the random effects si’s and β1,β2 separately. We suspect that the Markov chain could move

very slowly due to the high correlation between β1,β2 and the si’s. If this happens in

the application, we would propose sightly modifying the Metropolis-Hastings steps given in

Section 4.4.3.3 and Section 4.4.3.4, and sample all si’s and β1, β2 together.

As part of our future research, we plan to fit the Poisson component mixtures of GLMMs

to the grain count data and implement the inference. The response variables Yij’s in the

mixtures of GLMMs are the grain counts of the jth neuron from subject i, i = 1, . . . , n; j =

1, . . . , li. The covariate vector includes the indicator of diagnostic effect, age, indicator if

gender, PMI, storage time, and brain pH associated with each subject. The reason for not

implementing the fitting procedures to the grain count data is that the two components of

the Poisson mixture in this particular data set are widely separated, as shown in Section 3.2

and in Section 3.5. The wide separation between the components poses a less challenging

computational problem when fitting the mixture distribution. We plan to apply our method-

ology to a data set with discrete outcomes where the components of the mixture are medium

or even poorly separated.
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5.0 MULTIVARIATE BERNOULLI MIXTURE MODELS WITH

APPLICATION TO POSTMORTEM TISSUE STUDIES IN

SCHIZOPHRENIA

5.1 INTRODUCTION AND MOTIVATING EXAMPLE

5.1.1 Overview

In this chapter, we introduce a novel model for repeated measures where each repeated

observation has a mixture distribution. This model is motivated by our work with neuronal

postmortem brain tissue studies, where multiple neurons are sampled within a subject, and

subject-level variables impact both the mixing proportions and the locations of the mixture

components.

Our methodology is based on a multivariate extension of mixtures-of-experts, which is

a mixture model for univariate variables proposed by Jacobs, Jordan, Nowlan and Hinton

(1991). In mixtures-of-experts, the mixture components are commonly generalized linear

models while the mixing proportions are modeled as multivariate linear logits. Both the

mixture components and the mixing proportions are allowed to depend on covariates. Our

multivariate model induces dependence by having the component indicator variables within

a subject depend on both subject-specific random effects and experimental fixed effects.

In order to account for the dependence between repeated measures involving mixtures,

several extensions have been recently proposed. To model multiple eye-tracking observations

from susceptible schizophrenic subjects, Rubin and Wu (1997) proposed a two-component

mixture model in which the components are linear regressions with random effects, and the

mixing proportions are linear logits. The within-subject dependence is accounted for by
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subject-specific random effects in the component distributions. We term this the Rubin-

Wu model, although it is actually slightly less general than the “extra component mixture”

model proposed in their paper for other purposes.

Other approaches for modeling dependent mixture response data include hidden Markov

models (see McLachlan and Peel (2000), Chapter 13) and mixtures of marginal models

(Rosen, Jiang and Tanner (2000)). The latter model combines the properties of mixtures-

of-experts with those of generalized estimating equations (Liang and Zeger, 1986) and in-

corporates a working correlation matrix into each component to account for the dependence

between observations on the same subject.

5.1.2 Motivating Example

One of the studies that strongly motivates our model is a neuronal postmortem tissue study

comparing schizophrenic and control subjects with regard to the somal volumes of deep layer

3 pyramidal neurons in the auditory association cortex (Sweet, Pierri, Auh, Sampson, and

Lewis (2003)). In subjects with schizophrenia, the precision of the auditory sensory memory

is usually deficient. Earlier studies indicate that imprecision of the auditory sensory memory

may be related to abnormalities in the auditory association cortex. To further explore this

result, Sweet et al. (2003) examined the somal volumes of deep layer 3 pyramidal cells in

the auditory association cortex (Brodmann Area 42, BA42), using postmortem brain tissues

from eighteen schizophrenic subjects and eighteen normal subjects. For each subject, three

slide sections containing the region BA42 were selected by systematic random sampling.

To sample cells on a slide section, random systematic sampling boxes were placed on the

region of interest in each section, and the sampled cell volumes were obtained using the

nucleator method (Gundersen (1988)). Approximately 100 to 250 neurons were selected in

this manner for each subject. In layer 3 of BA42, some of the neurons have a longer axon

and project to distant cortical regions. Other neurons have a shorter axon and project to the

adjoin cortical region, Brodmann Area 41 (BA41). There is evidence that neuron volume

is correlated with the extent of its axonal projection. This suggests that for each subject

there might be within region BA42 subgroups of neurons with different somal sizes. Sweet
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et al. (2003) treated all the observed neuron volume as coming from one population and

conducted a multivariate covariance analysis. They showed that the overall mean neuron

volume decreases in schizophrenic subjects. However, they were not able to detect a subgroup

of neurons that are affected in subjects with schizophrenia. This leads us to consider a

mixture model for somal volumes from BA42, where somal volumes measured within a

subject are dependent. In this area of neuroscience, it is often the case that a subject’s age,

gender, postmortem interval (PMI) and tissue storage time can affect neuron volumes and

possibly the mixing proportions. Thus, in addition to the diagnosis main effect (schizophrenia

or control), these additional covariates need to be taken into account for each subject.

In Section 5.2, we present our new model, multivariate Bernoulli mixtures of normals,

and then compare it with normal component mixtures-of-experts and the Rubin-Wu model

by examining the joint distribution of the observed data for each subject under each model.

In Section 5.3, we develop a procedure for estimating the model parameters, using Markov

chain Monte Carlo (MCMC) methods. In Section 5.4, we use our methodology to analyze the

somal volume data. Simulation results are reported in Section 5.5, while possible extensions

of our model and concluding remarks are given in Section 5.6.

5.2 MULTIVARIATE BERNOULLI MIXTURES OF NORMALS

5.2.1 The Model

Let Yij and xij denote, respectively, the jth observation on subject i, and the covariate

vector associated with observation Yij, where i = 1, . . . , n; j = 1, . . . , li. A latent component

indicator variable for each observation Yij is denoted by Zij, where Zij takes on values 0 and 1.

To describe the joint distribution of (Zi1, Zi2, . . . , Zili)
T , let Wi, i = 1, . . . , n be independent

normally distributed random variables with mean 0 and variance σ2
w. Conditional on Wi =

wi, we assume that the Zij’s, j = 1, . . . , li, are independent Bernoulli random variables with

mean

π(xij,γ, wi) =
exT

ijγ+wi

1 + exT
ijγ+wi

. (5.1)
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Thus, we assume that these Bernoulli means are logits which depend on the covariate vector

xij and random effect wi. Marginally, the Zij’s are correlated and Zi = (Zi1, . . . , Zili) follows

a multivariate Bernoulli distribution. The distribution of Yij, i = 1, . . . , n; j = 1, . . . , li, is

given by

Yij| (Zij = 1)
indep∼ N(xT

ijβ1, σ
2
1)

Yij| (Zij = 0)
indep∼ N(xT

ijβ2, σ
2
2), (5.2)

where β1, β2,γ, σ2
1, σ

2
2, σ

2
w are unknown parameters. The identifiability of the model is dis-

cussed in Appendix C.

To better understand our model, we use notation for multivariate Bernoulli distributions,

which have been extensively discussed in the literature. Let Fθ(z), θ ∈ Θ be a family of

distributions for an m-vector Z, with components Zj = 0 or 1, j = 1, . . . ,m. Such a family

is called a multivariate Bernoulli distribution (with parameter θ); we denote this as MVB(θ)

or MVB(θ, x), when a covariate x is involved.

Cox (1972) discussed several approaches to constructing multivariate Bernoulli distribu-

tions. Our approach is based on latent structures where an underlying variable accounts for

the interrelationship between the conditionally independent binary variables.

5.2.2 The Joint Distribution of the Observed Data for Each Subject

To compare our model with the normal-component mixtures-of-experts and the Rubin-Wu

model, we now derive the joint distribution of the observed data for each subject. For

simplicity of notation and without loss of generality, we assume two observations on each

subject, i.e., li = 2.

For our model, given the subject-specific random effect Wi, the conditional density of Yij

is given by f(yij|Wi = wi) = πijφ(yij; µij1, σ
2
1) + (1 − πij)φ(yij; µij2, σ

2
2), where φ(· ; µ, σ2)

denotes the normal density with mean µ and variance σ2, and πij is as in (5.1), suppressing
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xij,γ, and wi. It follows that, the joint distribution of (Yi1, Yi2) is

fyi1,yi2
(yi1, yi2)

=

∫

wi

{
2∏

j=1

f(yij|Wi = wi)

}
φ(wi; 0, σ

2
w)dwi

=

{∫
πi1πi2φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T ; (µi11, µi21)
T ,


 σ2

1 0

0 σ2
1


)

+

{∫
(1− πi1)πi2φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T ; (µi12, µi21)
T ,


 σ2

2 0

0 σ2
1


)

+

{∫
πi1(1− πi2)φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T ; (µi11, µi22)
T ,


 σ2

1 0

0 σ2
2


)

+

{∫
(1− πi1)(1− πi2)φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T ; (µi12, µi22)
T ,


 σ2

2 0

0 σ2
2


),

(5.3)

where φ2(· ; µ, Σ) is the bivariate normal density with mean vector µ and covariance matrix

Σ and

µijk = xT
ijβk, j = 1, 2 and k = 1, 2. (5.4)

For mixtures-of-experts (Jacobs et al., 1991), the latent component-indicator Zij’s are in-

dependent Bernoulli random variables with mean pij = e
xT

ijγ

1+e
xT

ij
γ
, so that, the joint distribution
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of (Yi1, Yi2) is

fyi1,yi2
(yi1, yi2) =

2∏
j=1

f(yij)

= pi1pi2φ2( (yi1, yi2)
T ; (µi11, µi21)

T ,


 σ2

1 0

0 σ2
1


)

+ (1− pi1)pi2φ2( (yi1, yi2)
T ; (µi12, µi21)

T ,


 σ2

2 0

0 σ2
1


)

+ pi1(1− pi2)φ2( (yi1, yi2)
T ; (µi11, µi22)

T ,


 σ2

1 0

0 σ2
2


)

+ (1− pi1)(1− pi2)φ2( (yi1, yi2)
T ; (µi12, µi22)

T ,


 σ2

2 0

0 σ2
2


), (5.5)

where µijk are the same as in (5.4).

In the Rubin-Wu model, the latent component-indicator random variable Zij is the same

as in mixtures-of-experts. Given Zij and a normally distributed subject-specific random

effect Si with mean 0 and variance σ2
S, where S1, . . . , Sn are independent, the conditional

distribution of Yij is:

(Yij|Zij = 0, Si = si)
indep∼ N(xT

ijβ1 + si, σ
2
1),

(Yij|Zij = 1, Si = si)
indep∼ N(xT

ijβ2 + si, σ
2
2),

where β1, β2, γ, σ2
1, σ2

2, σ2
S are the unknown parameters. In this case, the joint distribution
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of (Yi1, Yi2) is

fyi1,yi2
(yi1, yi2) =

∫

si

{
2∏

j=1

f(yij|Si = si)

}
φ(si; 0, σ

2
s)dsi

= pi1pi2φ2( (yi1, yi2)
T ; (µi11, µi21)

T ,


 σ2

1 + σ2
s σ2

s

σ2
s σ2

1 + σ2
s


)

+ (1− pi1)pi2φ2( (yi1, yi2)
T ; (µi12, µi21)

T ,


 σ2

2 + σ2
s σ2

s

σ2
s σ2

1 + σ2
s


)

+ pi1(1− pi2)φ2( (yi1, yi2)
T ; (µi11, µi22)

T ,


 σ2

1 + σ2
s σ2

s

σ2
s σ2

2 + σ2
s


)

+ (1− pi1)(1− pi2)φ2( (yi1, yi2)
T ; (µi12, µi22)

T ,


 σ2

2 + σ2
s σ2

s

σ2
s σ2

2 + σ2
s


),

(5.6)

where the µijk’s are again as in (5.4).

Comparing the joint densities of the observed data under each model in (5.3), (5.5) and

(5.6), we see that all three density functions are four-component mixtures of multivariate

normals. In our model, the covariance matrices of the multivariate normal components

are the same as those in the normal-component mixtures-of-experts; they have independent

components with ×2
j=1{σ2

1, σ
2
2} describing all possible variances. In the Rubin-Wu model,

the covariance matrix of each multivariate normal component has a compound-symmetric

structure with σ2
s as the off-diagonal elements with variances described by ×2

j=1{σ2
1 +σ2

s , σ
2
2 +

σ2
s}. As shown in (5.5) and (5.6), the mixing proportions of the joint densities in the normal-

component mixtures-of-experts and those in the Rubin-Wu model correspond to independent

random variables. In (5.3), the mixing proportions correspond to dependent multivariate

Bernoulli random variables.

These results can easily be extended to m observations on each subject, and all the

density functions can be written as 2m mixtures of multivariate normals.

65



5.3 INFERENCE

5.3.1 Augmented Likelihood and Prior Distributions

The hierarchical nature of our model lends itself naturally to Bayesian estimation via Markov

chain Monte Carlo (MCMC) methods.

We augment the observed data with the component indicators Zij, i = 1, . . . , n, j =

1, . . . , li, and the subject-specific random effects wi, i = 1, . . . , n. Let y = (y11, . . . , y1l1 , . . . ,

yn1, . . . , ynln)T , z = (z11, . . . , z1l1 , . . . , zn1, . . . , znln)T , and w = (w1, . . . , wn)T , so that the

augmented likelihood is proportional to

(σ2
w)−

n
2

n∏
i=1

exp{− w2
i

2σ2
w

}

li∏
j=1

[
πij

1√
σ2

1

exp{−(yij − xT
ijβ1)

2

2σ2
1

}
]zij

[
(1− πij)

1√
σ2

2

exp{−(yij − xT
ijβ2)

2

2σ2
2

}
]1−zij

.

We place independent normal prior distributions on γ,β1, and β2 with means 0 and

variance matrices σ2
γIq×q, σ2

β1
Iq×q, and σ2

β2
Iq×q respectively, where q is the length of the

covariate vector. The priors on σ2
1, σ2

2 and σ2
w are taken to be independent inverse Gamma

distributions, denoted by IG(α1, δ1), IG(α2, δ2), IG(αw, δw), respectively, and the priors on

β1, β2, and γ are assumed independent of those on σ2
1, σ2

2, and σ2
w. To obtain vague priors,

the values of σ2
γ, σ2

β1
, and σ2

β2
are assumed large, while α1, δ1, α2, δ2, αw, and δw are set to

small values.

5.3.2 The Sampling Scheme

The Gibbs sampler is used for sampling from the posterior distribution of the parameters.

A Metropolis-Hastings step (Hastings, 1970) is performed for nonstandard conditional dis-

tributions. To achieve good mixing, we treat γ and w as a block, and β1 and β2 as another

block. Sampling individually from the full conditional distributions of γ, β1, and β2 and

the random effects wi’s, results in slow convergence, because of high correlation between β1,

and β2, as well as between γ and w. The sampling scheme we propose is as follows.
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1. Initialize the parameters β
(0)
1 ,β

(0)
2 , σ2(0)

1 , σ2(0)

2 , γ(0), σ2(0)

w and w(0).

For iterations t = 1, 2, · · · :

2. Sample the component-indicators z
(t+1)
ij , i = 1, . . . , n, j = 1, . . . , li from a Bernoulli ran-

dom variable with mean τ
(t)
ij , where

τ
(t)
ij =

1

σ
(t)
1

exp{− (yij−xT
ijβ

(t)
1 )2

2σ
2(t)
1

+ xT
ijγ

(t) + wi}
1

σ
(t)
1

exp{− (yij−xT
ijβ

(t)
1 )2

2σ
2(t)
1

+ xT
ijγ

(t) + w
(t)
i }+ 1

σ
(t)
2

exp{− (yij−xT
ijβ

(t)
2 )2

2σ
2(t)
2

}
, (5.7)

3. Sample σ
2(t+1)
1 from IG(1

2

∑n
i=1 li + α1,

1
2

∑n
i=1

∑li
j=1 z

(t+1)
ij (yij − xT

ijβ
(t)
1 )2 + δ1).

4. Sample σ
2(t+1)
2 from IG(1

2

∑n
i=1 li + α2,

1
2

∑n
i=1

∑li
j=1(1− z

(t+1)
ij )(yij − xT

ijβ
(t)
2 )2 + δ2).

5. Sample σ
2(t+1)
w from IG(n

2
+ αw, 1

2

∑n
i=1 w

2(t)
i + δw).

6. Sample (γ(t+1),w(t+1)) as a block from their conditional distribution p (γ,w|y,z(t+1),

β
(t)
1 ,β

(t)
2 , σ

2(t+1)
1 , σ

2(t+1)
2 , , σ

2(t+1)
w ) via a Metropolis-Hastings step.

7. Sample (β
(t+1)
1 , β

(t+1)
2 ) as a block from their conditional distribution p (β1,β2|y,z(t+1),

σ
2(t+1)
1 , σ

2(t+1)
2 ,γ(t+1), w(t+1), σ

2(t+1)
w ) via a Metropolis-Hastings step.

Details of the Metropolis-Hastings steps are given in Appendix D.

When implementing this sampling scheme, some of the updated τij given in (5.7) might

be close to 0 or 1, implying that no observations, corresponding to some values of the covari-

ates, are allocated to a mixture component. If this happens, the Markov chain may move

very slowly. To avoid this problem, we choose starting values β
(0)
1 ,β

(0)
2 , σ2(0)

1 , σ2(0)

2 ,γ(0), σ2(0)

w

and w(0) that guarantee that the initial τij’s are away from 0 or 1, for all i and j. In the

Metropolis-Hastings steps, the tuning constants of the proposal distributions, described in

Appendix D, are selected such that the acceptance ratios for drawing the unknown para-

meters are larger than 0.20. Some starting values may also result in low acceptance ratios,

leading to slow convergence. For this reason, we examine the acceptance ratios in short

preliminary runs to obtain the tuning constants and the appropriate starting values.
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5.4 APPLICATION

In this section, we apply our model to the neuron volume data described in Section 5.1.2,

where a randomly chosen neuron can be viewed as coming from one of two populations:

smaller neurons or larger neurons. Since somal volume distributions are typically right

skewed, neuron volumes are first log-transformed. We then treat the transformed somal vol-

umes the yij, i = 1, . . . , n, j = 1, . . . , li as a mixture with two normal components and fit our

model. Each subject’s covariate vector xij consists of an intercept, an indicator of diagnostic

group (normal=1, schizophrenic=2), age, gender (Female=1, male=2), postmortem interval

(PMI), and the corresponding tissue storage time.

To obtain vague prior distributions, we set σ2
γ = σ2

β1
= σ2

β2
= 10 in the normal priors

on γ, β1, and β2, and take α1 = α2 = αw = 0.01 and δ1 = δ2 = δw = 0.02 in the

inverse Gamma priors on σ2
1, σ2

2, and σ2
w. The values used for the tuning constants in the

Metropolis-Hastings steps are reported in Appendix D. Random initial values are selected

such that 0.01 < τ
(0)
ij < 0.99, for all i and j, where τ

(0)
ij is the initial probability of Zij = 1,

given in (5.7). The MCMC algorithm is run for 13,000 cycles after a burn-in period of

2000 iterations, although the chain converges quickly and starts stabilizing after around 500

iterations. The algorithm is run three times starting from three different sets of random

initial values. The results from all three runs agree very closely.

Table 6 presents the posterior means and 95% credible intervals for the different parame-

ters. The posterior mean provides an estimate of each parameter, obtained as the average

of the sample values excluding the burn-in iterations. The 95% credible interval for each

parameter is obtained by ordering the sample values after discarding the burn-in samples,

and finding the 0.025 and 0.975 sample quantiles. The “smaller neuron population” and

“larger neuron population” correspond to the two normal components in the model. The

“Mixing proportions” refer to the proportions of the smaller neurons.

For each of the diagnostic main effects, a p-value is also obtained by finding two times

the posterior probability of the event. For the smaller and larger neuron populations, the p-

values of the diagnostic effects are, respectively, < 0.001 and 0.18; for the mixing proportion,

the p-value of the diagnostic effect is 0.58.
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Table 6: Results of model fitting to the neuron volume data. Estimates (posterior means) and

95% credible intervals. Results are based on 13,000 iterations after 2,000 burn-in iterations.

2.5% mean 97.5%
Smaller neuron population

intercept (β10) 6.998 7.302 7.622
diagnostic -0.195 -0.133 -0.073
age -0.0026 0.0021 0.0064
gender 0.019 0.010 0.178
PMI -0.024 -0.017 -0.009
storage time -0.00009 -0.00004 0.00001
σ2

1 0.283 0.310 0.338
Larger neuron population

intercept (β20) 6.662 7.282 7.875
diagnostic -0.230 -0.095 0.040
age 0.0017 0.0116 0.0212
gender -0.00033 0.170 0.346
PMI -0.0143 0.0003 0.0141
storage time -0.00009 0.00001 0.00011
σ2

2 0.588 0.639 0.692
Mixing proportions

intercept (γ0) -2.691 0.729 3.872
diagnostic -0.581 0.200 0.96
age -0.0599 -0.0079 0.0428
gender 0.275 1.183 2.136
PMI -0.149 -0.062 0.023
storage time -0.00122 -0.00058 0.00000
σ2

w 0.416 0.823 1.519
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The results from this analysis directly address the question in which Sweet et al. (2003)

were interested. It is seen that for the smaller neuron population, the 95% credible interval

for the diagnostic effect does not include zero ( p < 0.000), indicating a significant diagnostic

effect. The negative estimate indicates that subjects with schizophrenia have smaller volumes

than controls for this population of neurons. For the larger neuron population there is no

significant diagnostic effect (p = 0.18), and for the proportion of smaller neurons (versus

larger), there is no significant diagnostic difference (p = 0.58). Our results suggest that

the overall reduction for schizophrenic subjects in somal volume seen originally by Sweet

et al. in the deep layer 3 pyramidal neurons (BA42) appears to be due to a reduction in

somal volume of this region’s smaller pyramidal neurons, a population presumably of locally

projecting neurons. To further confirm this statement, other neurological studies need to be

conducted.

Although of much less scientific interest, there were several other significant parameters.

In the smaller neuron population, in addition to the strong diagnostic effect, there are signif-

icant gender and PMI effects and storage time effect is marginally significant. In the larger

neuron population, the age effect is significant, and the gender effect is marginally significant.

Moreover, for the mixing proportions, gender has a significant effect, whereas storage time

has a marginal effect. The male gender is associated not only with increased neuron volumes

in both smaller and larger neuron populations, but also with increased mixing proportions

of smaller neurons. Increased PMI is associated with decreased neuron volumes in smaller

neuron population. Longer storage time is connected to decreased neuron volumes in smaller

neuron population and decreased mixing proportions of smaller neurons. Increased age is

connected to increased neuron volumes in larger neuron population.

Notice that the covariate vectors xij’s in our simulated data set only contain between-

subject factors. Thus all neurons belonging to the same subject have a common mean for

the first component, a common mean for the second component, and a common proportion

for the first component, denoted by µi1, µi2, and pi respectively. Hence, we can obtain the

posterior means for µi1, µi2, and pi for each subject. The dot plots of the estimates of µi1, µi2,

and pi by diagnostic group are given in Figure 1. In Figure 1, we also provide the dot plot

of the overall mean of the log-transformed neuron volumes for each subject. It can be seen
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from these dot plots that the somal volumes in both populations decrease for schizophrenic

subjects. However, the overall reduction comes mainly from the smaller neurons.

In addition, we calculate the percent difference of the back-transformed means relative to

the control group for each population, that is, (exp(C)− exp(S))/ exp(C), where C denotes

the average of the posterior means across subjects for the control group and S denotes the

average of posterior means across subjects for the schizophrenic group. For the smaller and

larger neuron populations, the percent differences are 15.30% and 8.86% respectively. A

reanalysis of the observed neuron volumes was done treating all volumes as coming from one

population. We employed a multivariate analysis of covariance (MANCOVA) with diagnostic

group as the main effect, subject as random effect, age, gender, PMI and tissue storage time

as covariates. This analysis yielded that the percent difference of the back-transformed least

squares means relative to the control group is 13.4%. These results confirm our preceding

findings.
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5.5 SIMULATION STUDY

In this section we report the results of a simulation study conducted to ensure that the

results in Section 5.4, are valid. We simulate 30 data sets, each of which has the “same”

data structure as the neuron volume data. That is, in each data set, there are 36 subjects,

each having the same number of repeated measures as in the neuron volume data. The

response variable yij, i = 1, . . . , 36, j = 1, . . . , li, in each simulated data set can be viewed as a

simulated log-transformed neuron volume for the jth neuron in subject i. The corresponding

covariate vector xij in the simulated data set is the same as the covariate vector in the neuron

volume data.

Three sets of true parameter values for β1, β2, σ2
1, σ2

2, γ and σ2
w (See table 7) are

first chosen representing cases of well-separated, medium-separated, and poorly-separated

multivariate Bernoulli mixture of normals. Based on McLachlan et al. (2000, p 9) and

Schilling, Watkins, and Watkins (2002), the separations of the normal components can be

assessed by ∆ = |µ1− µ2|/(σ1 + σ2) if the two components have means µ1, µ2 and variances

σ1, σ2 respectively. When σ2/σ1 = 0.80, Schilling et al. (2002) pointed out that the mixture

density is bimodal if and only if ∆ > 1.35, 1.26, 1.15, 1.01, 1.29, respectively corresponding

to the mixing proportions p = 0.3, 0.4, 0.5, 0.6, 0.7. When σ2/σ1 = 0.90, the mixture density

is bimodal if and only if ∆ > 1.36, 1.25, 1.11, 1.16, 1.34, respectively corresponding to the

mixing proportions p = 0.3, 0.4, 0.5, 0.6, 0.7. In our simulated data, each neuron can be

viewed as coming from a normal mixture where the components have means µij1, µij2 and

variances σ1, σ2 respectively, where µijk = xT
ijβk, k = 1, 2. The separation of the normal

components for each neuron can be assessed by ∆ij = |µij1 − µij2|/(σ1 + σ2). Therefore,

we assess the separation of the normal components in the simulated data by looking at the

average of ∆ij across all the neurons, denoted by ∆̄. The ∆̄’s corresponding to the three

chosen sets of true parameter values are 4.1, 1.9, 1.1 respectively and the ratios of σ2 to σ1

are 0.79, 0.89 and 0.89 respectively. Moreover, for each chosen set of true parameters, the

corresponding mixing proportion for each neuron has a wide range. Comparing their ∆̄’s

with the minimum bimodal thresholds 1.01, 1.11, and 1.11, shows that the three sets of true

values of β1, β2, σ2
1, σ2

2, γ and σ2
w correspond to well-separated, medium-separated, and
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Table 7: The average of estimates and percentages of coverage (cover) of 10 runs for each of

well-separated, medium-separated, and poorly-separated cases in the simulation study. (Mean

square errors are in parentheses.)

Parameters well-separated medium-separated poorly-separated
true estimate cover true estimate cover true estimate cover

Smaller neurons
intercept (β10) 0.10 0.01(0.08) 1.0 2.70 2.77(0.16) 1.0 2.90 3.15(0.31) 0.9
diagnostic 0.30 0.30(0.01) 0.8 0.01 0.03(0.00) 1.0 0.08 0.10(0.01) 0.9
age -0.50 -0.50(0.00) 1.0 0.08 0.08(0.00) 1.0 0.08 0.08(0.00) 1.0
gender 2.60 2.64(0.02) 0.8 -0.05 -0.08(0.01) 0.8 -0.01 -0.03(0.01) 0.9
PMI 0.80 0.80(0.00) 0.9 0.02 0.02(0.00) 0.8 0.04 0.04(0.00) 0.9
storage time -0.00 -0.00(0.00) 1.0 -0.00 -0.00(0.00) 0.9 -0.00 -0.00(0.00) 1.0
σ2

1 8.00 8.06(0.04) 0.9 2.50 2.51(0.01) 0.9 2.50 2.51(0.01) 1.0
Larger neurons

intercept (β20) 0.01 0.17(0.08) 1.0 1.35 1.38(0.03) 1.0 1.35 1.34(0.03) 1.0
diagnostic 1.20 1.25(0.02) 0.9 0.12 0.14(0.00) 1.0 0.12 0.11(0.00) 1.0
age -0.10 -0.10(0.00) 1.0 0.13 0.13(0.00) 1.0 0.10 0.10(0.00) 1.0
gender 2.00 1.98(0.02) 1.0 -0.10 -0.09(0.01) 0.8 -0.10 -0.09(0.00) 1.0
PMI 0.90 0.90(0.00) 1.0 0.13 0.13(0.00) 1.0 0.11 0.11(0.00) 1.0
storage time -0.00 -0.00(0.00) 1.0 -0.00 -0.00(0.00) 0.9 -0.00 -0.00(0.00) 0.9
σ2

2 5.00 5.01(0.01) 1.0 2.00 2.02(0.00) 1.0 2.00 2.02(0.01) 0.8
Mixing prop.

intercept (γ0) -1.90 -1.53(2.71) 1.0 1.90 1.65(2.59) 1.0 1.90 1.10(4.03) 1.0
diagnostic 0.65 0.62(0.08) 1.0 -0.65 -1.04(0.61) 0.9 -0.65 -0.39(0.42) 1.0
age 0.13 0.12(0.00) 1.0 -0.13 -0.13(0.00) 1.0 -0.13 -0.12(0.00) 1.0
gender -1.50 -1.37(0.74) 0.8 1.50 1.25(0.46) 1.0 1.50 1.31(0.67) 1.0
PMI -0.21 -0.23(0.00) 1.0 0.21 0.25(0.02) 0.8 0.21 0.21(0.01) 0.9
storage time 0.00 0.00(0.00) 1.0 -0.00 -0.00(0.00) 0.9 -0.00 -0.00(0.00) 0.9
σ2

w 2.00 2.09(0.24) 0.9 4.00 4.10(1.14) 1.0 4.00 4.77(3.11) 1.0
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poorly-separated mixtures of normals respectively.

Corresponding to each set of given true parameter values, we simulate 10 data sets from

our model. The Gibbs sampler for each data set takes more than 10 hours to run. We fit our

model, to each simulated data set by using the sampling scheme described in Section 5.3.2.

The posterior mean and 95% credible interval for each parameter are obtained based on 8000

iterations after a burn-in period. For most simulated data sets, the Markov chain stabilizes

after 1000 iterations and so the burn-in period contains 1000 cycles. For some simulated

data sets corresponding to poorly-separated mixtures, the algorithm requires more burn-in

cycles, for example 3000 iterations, to achieve convergence.

For each given set of true values of β1, β2, σ2
1, σ2

2, γ and σ2
w, the average values, and

the mean square errors of each parameter across the 10 runs are obtained, and the coverage

rates of the 95% credible intervals for each true parameter are calculated.

Table 7 presents the simulation results. For each setting of well-separated, medium-

separated, and poorly-separated mixtures of normals, we report the average of the estimates,

the mean square error, and the coverage rate over 10 runs for each parameter. It can be

seen from Table 7 that the estimates have little bias, and the coverage rates are reasonable.

The mean square errors are overall small, except for estimating the intercept in the mixing

proportions and σ2
w. For the well-separated case, Figure 2 gives dot plots of the estimates

based on the 10 runs for the diagnostic, age, gender, PMI, and storage time effects for each

of the smaller and larger neuron populations and the mixing proportions. Figure 3 and

Figure 4 are respectively, dot plots for the medium-separated and poorly-separated mixtures

of normals. From the dot plots, we can also see that the estimates are fluctuating roughly

symmetrically around all the true values. The simulation results suggest that the estimates

and the inference obtained in Section 5.4 for the neuron volume data are valid.
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5.6 DISCUSSION AND SUMMARY

As mentioned in Section 5.2.1, modeling the component indicators by logits with random

effects is only one way of constructing a multivariate Bernoulli distribution. Another possi-

bility is to assume that conditional on the subject specific random effect Wi, the Zij’s are

independent Bernoulli random variables with mean Wi, and model the Wi’s to be indepen-

dent beta random variables with parameters exT
i α and exT

i γ , where α and γ are unknown

parameters. Note that the distribution of Wi depends only on xi, which consists of the

between-subject factors.

In addition to using a latent variable to account for the dependence in Zi, an al-

ternative to constructing a MVB(θ,x) is to assume that the Zi’s are distributed as a

multivariate tolerance distribution, which we illustrate in the normal setting. Let Wi =

(Wi1, . . . , Wili), i = 1, . . . , n, have independent multivariate normal distributions with mean

vector (xT
i1α,xT

i2α, . . . , xT
ili

α) and a known covariance matrix Σ, and α is an unknown para-

meter vector. Given Wi, let Zij = 1 if Wij > 0, and otherwise Zij = 0, for j = 1, . . . , li.Then

Zi=(Zi1, . . . , Zili) has a multivariate Bernoulli distribution.

The multivariate Bernoulli mixtures of normals can be generalized to multivariate Bernoulli

mixture models where the mixture components are any member of the exponential family.

The model fitting procedures given in Section 5.3 can be modified to fit other examples of

multivariate Bernoulli mixture models, such as multivariate Bernoulli mixtures of Poissons.

In this chapter, we only consider two-component multivariate Bernoulli mixtures of nor-

mals. Our results can also be extended to any finite number of components g > 2. In this

case, in order to describe the component-indicator variables, we construct families of multi-

variate multinomial distributions that depend on covariates. One approach to constructing

such a distribution is to incorporate subject-specific random effects into the mixing propor-

tions which are modeled by multivariate linear logits. Let Zij = (Zij1, Zij2, . . . , Zijg), where

Zijk = 1 if yij comes from the kth component and Zijk = 0 otherwise. Given a normal

distributed subject-specific random effect with mean 0 and variance σ2
w, assume that Zij is

distributed according to a multinomial distribution consisting of one draw from li categories
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with probabilities p1(xij), . . . , pg(xij), where

pk(xij) =
exT

ijγk+wi

1 +
∑g−1

h=1 exT
ijγh+wi

, k = 1, . . . , g − 1,

pg(xij) = 1−
g−1∑

h=1

ph(xij).

Given Zij , the conditional distribution of the observed yij is normal with mean xT
ijβk and

variance σ2
k if zijk = 1. In this model, γk, βk, σ2

k, k = 1, . . . , g − 1 and σ2
w are the unknown

parameters.

In some cases where we do not have information about the number of components in the

data, the number of components g might be treated as an unknown parameter and sampled

from the posterior distribution using a reversible jump MCMC scheme, as proposed in Green

(1995). This is a topic for further investigation.

In summary, in this chapter we present a novel mixture model for repeated measure-

ments in which correlation among repeated observations on the same subject is induced

by introducing correlation among the unobservable component-indicator variables within

each subject. The mixture components in our model are linear regressions, and the mixing

proportions are logits with random effects. Inference is facilitated by sampling from the

posterior distribution of the parameters via MCMC methods. We fit this model to the neu-

ron volume data to examine the diagnostic main effect. Although the neuron volume data

contains between-subject factors only, our model can accommodate both between-subject

and within-subject factors. Thus, our model can be applied to longitudinal studies, as well

as to neurological studies.
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6.0 MULTIVARIATE BERNOULLI MIXTURES OF GLMMS WITH

APPLICATION TO POSTMORTEM TISSUE STUDIES IN

SCHIZOPHRENIA

6.1 INTRODUCTION AND MOTIVATING EXAMPLE

We describe extensions of several recent repeated measures models which in turn can be

viewed as generalizations of mixtures-of-experts (Jacobs, Jordan, Nowlan and Hinton (1991)).

Our extended model was motivated by a neuronal postmortem human brain tissue study, in

which the observations taken on the same subject are correlated and each observation arises

from a mixture of two populations, each corresponding to a potential type of neuron.

Rubin and Wu (1997) proposed a two-component mixture model to model such data,

which is a special case of their “extra component mixture” that we refer to as the Rubin-Wu

model. To account for the within-subject dependence in the data, they introduce subject-

specific random effects into the mixture components of their model, where the mixture

components follow a linear regression model with subject-specific random effects, while the

mixing proportions are logits linear in the covariates.

In Chapter 5 we proposed a different model in this setting. That multivariate Bernoulli

mixtures of normals model, has linear regression models for the mixture components and

includes multivariate Bernoulli distributions to model the mixing proportions. The approach

for constructing a multivariate Bernoulli distribution was to model component-indicator

variables by logistic regression with subject-specific random effects. The subject-specific

random effects play the role of the latent variables which account for the dependence present

in the data.

The model we propose in this chapter, which we refer to as multivariate Bernoulli mix-
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tures of mixed normals, combines the Rubin-Wu model and the multivariate Bernoulli mix-

tures of normals. The mixture components in the proposed model are linear regressions with

subject-specific random effects, as in the Rubin-Wu model, while the mixing proportions

are governed by logistic regressions with another group of subject-specific random effects,

as in the multivariate Bernoulli mixtures of normals of Chapter 5. The subject-specific ran-

dom effects in the mixing proportions are independent of the random effects in the mixture

components, and both account for the within-subject dependence in the data.

The motivating data, which was initially analyzed in Sweet, Pierri, Auh, Sampson, and

Lewis (2003), is described in detail in Chapter 5. Brain tissue from eighteen normal subjects

and eighteen schizophrenic subjects were selected. To examine the deficient auditory sensory

memory in schizophrenic subjects, the somal volumes of deep layer 3 pyramidal cells in the

auditory association cortex in all subjects were examined. For each subject, approximately

100 to 150 neurons were sampled and their neuronal volumes were measured. These are

treated as repeated measures on each subject. Furthermore, two types of neurons exist in the

auditory association cortex: one with shorter axons and consequently having smaller neuron

volumes, and the other with longer axons and having larger somal volumes. Therefore, the

somal volume of each neuron can be viewed as coming from one of two populations: a smaller

neuron group and a larger neuron group. The known covariates associated with each subject

which can affect the measured neuron volume are age, gender, postmortem interval (PMI)

and brain storage time. The diagnostic effect is of primary interest in this study.

After describing the model in Section 6.2, we give the joint distribution of the observed

data for each individual and compare this joint distribution with those of the Rubin-Wu

model and the multivariate Bernoulli mixtures of normals. Section 6.3 outlines the estimation

procedure, based on Markov chain Monte Carlo (MCMC) methods. In Section 6.4, we present

simulation results and illustrate the difficulties we encounter in fitting the model to simulated

data. Due to these problems, we are not currently able to implement our methodology to

the neuronal auditory cortex data, and we indicate as future research what remains to be

done. Extensions of the proposed model and other future research topics are discussed in

Section 6.5.
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6.2 MULTIVARIATE BERNOULLI MIXTURES OF MIXED NORMALS

In this section, we present the model and illustrate its relationship with the Rubin-Wu model

and the multivariate Bernoulli mixtures of normals by considering the joint distribution of

the observations for each individual under each of these three models.

6.2.1 The Model

Let Yij (i = 1, . . . , n; j = 1, . . . , li) denote the jth observation on subject i, and let Zij and

xij denote, respectively, the unobservable mixture component-indicator variable and the

covariate vector associated with observation Yij. Given a subject-specific normal random

effect Wi (i = 1, . . . , n) with mean 0 and variance σ2
w, the missing component-indicator

random variables Zij (j = 1, . . . , li) have independent Bernoulli distributions with mean

πij =
exT

ijγ+wi

1 + exT
ijγ+wi

. (6.1)

The component-indicator variable Zij indicates whether the observation comes from the first

component (Zij = 1) or the second component (Zij = 0).

Furthermore, given Zij, and another subject-specific normal random effect Si (i =

1, . . . , n) with mean 0 and variance σ2
s , which is assumed to be independent of Wi (i =

1, . . . , n), the conditional density of Yij has the following normal distributions.

Yij| (Zij = 1, Si)
indep∼ N(xT

ijβ1 + si, σ
2
1)

Yij| (Zij = 0, Si)
indep∼ N(xT

ijβ2 + si, σ
2
2), (6.2)

where β1, β2,γ, σ2
1, σ

2
2, σ

2
s , σ

2
w are the unknown parameters.

The main feature of the proposed model is that the within-subject dependence is ac-

counted for in both the mixing proportions and the mixture components. Thus, the model

not only assumes that the normal components are correlated in one subject, but also as-

sumes that the component a neuron is coming from is stochastically dependent on which

components the other neurons come from in the same individual.

83



In this new model, the Zij’s are modeled by logistic regressions with random effects,

which is one approach to constructing a multivariate Bernoulli distribution, MVB(θ,x). As

suggested in Chapter 5, there are other mechanisms for building a MVB(θ,x), which are

different variations of the model proposed in this chapter.

6.2.2 The Joint Distribution of the Observed Data for Each Individual

We now provide the joint distribution of the observed data for each individual for the multi-

variate Bernoulli mixtures of mixed normals model and compare it with those of the Rubin-

Wu model and the multivariate Bernoulli mixtures of normals. For ease of notation and

without loss of generality, assume that the number of observations on each subject are equal

to 2, i.e., li = 2 (i = 1, . . . , n).

Given the subject-specific random effects Wi and Si, the conditional density of the re-

sponse variable Yij in the multivariate Bernoulli mixtures of mixed normals is written as

f(yij|Si = si,Wi = wi) = πijφ(yij, µij1 + si, σ
2
1) + (1− πij)φ(yij, µij2 + si, σ

2
2),

where φ(· , µ, σ2) denotes the normal density with mean µ and variance σ2; πij is as in (6.1)

and

µijk = xT
ijβk, j = 1, 2, and k = 1, 2. (6.3)

Therefore, the joint distribution of (Yi1, Yi2) is given by

fyi1,yi2
(yi1, yi2)

=

{∫
πi1πi2φ(wi, 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi11, µi21)
T ,


 σ2

1 + σ2
s σ2

s

σ2
s σ2

1 + σ2
s


)

+

{∫
(1− πi1)πi2φ(wi, 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi12, µi21)
T ,


 σ2

2 + σ2
s σ2

s

σ2
s σ2

1 + σ2
s


)

+

{∫
πi1(1− πi2)φ(wi, 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi11, µi22)
T ,


 σ2

1 + σ2
s σ2

s

σ2
s σ2

2 + σ2
s


)

+

{∫
(1− πi1)(1− πi2)φ(wi, 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi12, µi22)
T ,


 σ2

2 + σ2
s σ2

s

σ2
s σ2

2 + σ2
s


),

(6.4)
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where φ2(· ,µ, Σ) denotes the bivariate normal density with mean vector µ and covariance

matrix Σ.

In the Rubin-Wu model, the latent component-indicator random variable Zij has in-

dependent Bernoulli distributions with mean pij, where pij = e
xT

ijγ

1+e
xT

ij
γ
. Given Zij and the

subject-specific random effect Si which has a normal distribution with mean 0 and variance

σ2
s , the conditional distribution of Yij has the normal distribution given in (6.2). For the

Rubin-Wu model, β1, β2 ,γ, σ2
1, σ2

2 and σ2
s are the unknown parameters. As described in

Chapter 5, the joint distribution of (Yi1, Yi2) for the Rubin-Wu model is

fyi1,yi2
(yi1, yi2) = pi1pi2φ2( (yi1, yi2)

T , (µi11, µi21)
T ,


 σ2

1 + σ2
s σ2

s

σ2
s σ2

1 + σ2
s


)

+ (1− pi1)pi2φ2( (yi1, yi2)
T , (µi12, µi21)

T ,


 σ2

2 + σ2
s σ2

s

σ2
s σ2

1 + σ2
s


)

+ pi1(1− pi2)φ2( (yi1, yi2)
T , (µi11, µi22)

T ,


 σ2

1 + σ2
s σ2

s

σ2
s σ2

2 + σ2
s


)

+ (1− pi1)(1− pi2)φ2( (yi1, yi2)
T , (µi12, µi22)

T ,


 σ2

2 + σ2
s σ2

s

σ2
s σ2

2 + σ2
s


),

(6.5)

where the µijk’s are given in (6.3).

In the multivariate Bernoulli mixtures of normals, given the normally distributed subject-

specific random effect Wi with mean 0 and variance σ2
w, the conditional distribution of the

component indicator Zij is Bernoulli with mean πij, as in (6.1). The conditional distribution

of Yij|Zij is a normal distribution with mean µij1 and variance σ2
1 when Zij = 1, and other-

wise, a normal distribution with mean µij2 and variance σ2
2, where µij1 and µij2 are given in
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(6.3). In Chapter 5, we give the joint distribution of (Yi1, Yi2) for this model , which is

fyi1,yi2
(yi1, yi2)

=

{∫
πi1πi2φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T ; (µi11, µi21)
T ,


 σ2

1 0

0 σ2
1


)

+

{∫
(1− πi1)πi2φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T ; (µi12, µi21)
T ,


 σ2

2 0

0 σ2
1


)

+

{∫
πi1(1− πi2)φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T ; (µi11, µi22)
T ,


 σ2

1 0

0 σ2
2


)

+

{∫
(1− πi1)(1− πi2)φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T ; (µi12, µi22)
T ,


 σ2

2 0

0 σ2
2


),

(6.6)

All the joint distributions of the observed data for each individual under the three models

are four-component mixtures of bivariate normals. The joint distribution for each individual

under the multivariate Bernoulli mixtures of mixed normals has the same mixture compo-

nents as in the Rubin-Wu model, and the same mixing proportions as in the multivariate

Bernoulli mixtures of normals. The mixture components in the multivariate Bernoulli mix-

tures of mixed normals are bivariate normals with compound-symmetric covariance matrices.

The diagonal elements of each covariance matrix are described by pairs of elements from the

cross-product set {σ2
1 + σ2

s , σ
2
2 + σ2

s} × {σ2
1 + σ2

s , σ
2
2 + σ2

s}, while the off-diagonal elements

are σ2
s in each covariance matrix. The non-zero off-diagonal elements are one source of the

within-subject correlation. The mixing proportions in the multivariate Bernoulli mixtures of

mixed models are the expectations of a function of xT
i1γ and wi over the normally distributed

random variable wi, which provides another source of dependence for the within-subject ob-

servations. The above results can be easily extended to any number of observations for each

subject.
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6.3 INFERENCE

Inference for the proposed model is facilitated via MCMC methods. In this section, we outline

the MCMC sampling scheme for the model and provide some further details in Appendix E.

6.3.1 Augmented Likelihood and Prior Distributions

We augment the observed data with the unobservable variables, i.e., the component in-

dicators Zij, i = 1, . . . , n, j = 1, . . . , li, the subject-specific random effects in the mixing

proportions Wi, i = 1, . . . , n, and the subject-specific random effects in the mixture com-

ponents Si, i = 1, . . . , n. We treat the missing values as unknown “parameters” and sam-

ple from them along with the unknown parameters. For ease of notation, we define y =

(y11, . . . , y1l1 , . . . , yn1, . . . , ynln)T , z = (z11, . . . , z1l1 , . . . , zn1, . . . , znln)T , w = (w1, . . . , wn)T ,

and s = (s1, . . . , sn)T . The augmented likelihood is then given by:

L(β1,β2, σ
2
1, σ

2
2, σ

2
s ,γ, σ2

w|y,z,w, s)

∝ (σ2
w)−

n
2 (σ2

s)
−n

2

n∏
i=1

e
− w2

i
2σ2

w e
− s2i

2σ2
s

li∏
j=1

[
exT

ijγ+wi

1 + exT
ijγ+wi

1√
σ2

1

e
− (yij−xT

ijβ1−si)
2

2σ2
1

]zij
[

1

1 + exT
ijγ+wi

1√
σ2

2

e
− (yij−xT

ijβ2−si)
2

2σ2
2

]1−zij

.

We put independent priors on all the unknown parameter vectors β1, β2 ,γ and the

unknown variances σ2
1, σ2

2, σ2
w and σ2

s . The priors on the q-vectors γ,β1, and β2 are taken

to be q-variate normals with common mean vectors 0 and separate variance matrices σ2
γIq×q,

σ2
β1

Iq×q, and σ2
β2

Iq×q, where σ2
γ, σ2

β1
and σ2

β2
are large numbers to ensure vague priors. For

σ2
1, σ2

2, σ2
w and σ2

s , we use inverse Gammas as priors, denoted by IG(α1, δ1), IG(α2, δ2),

IG(αw, δw) and IG(αs, δs), respectively, where the shape parameters α1, α2, αs, αw and

the rate parameters δ1, δ2, δs, δw are set to small numbers such as 0.01 to make the priors

noninformative.
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6.3.2 The Sampling Scheme

The Gibbs sampler is used to sample the unknown parameters from their posterior distribu-

tion. A Metropolis-Hasting step is performed for nonstandard conditional distributions. To

achieve good mixing, we treat γ and w as a block and β1, β2, and s as another block.

1. Initialize the parameters β
(0)
1 , β

(0)
2 , γ(0), σ2(0)

1 , σ2(0)

2 , σ2(0)

s , σ2(0)

w , and missing values s(0), and

w(0).

2. Sample the component-indicators z
(t+1)
ij , i = 1, . . . , n, j = 1, . . . , li, from a Bernoulli ran-

dom variable with mean τ
(t)
ij , where

τ
(t)
ij =

1

σ
(t)
1

exp{− (yij−xT
ijβ

(t)
1 −s

(t)
i )2

2σ
2(t)
1

+ xT
ijγ

(t) + wT
i }

1

σ
(t)
1

exp{− (yij−xT
ijβ

(t)
1 −s

(t)
i )2

2σ
2(t)
1

+ xT
ijγ

(t) + w
(t)
i }+ 1

σ
(t)
2

exp{− (yij−xT
ijβ

(t)
2 −s

(t)
i )2

2σ
2(t)
2

}
.

3. Sample σ
2(t+1)
1 from IG(1

2

∑n
i=1 li + α1,

1
2

∑n
i=1

∑li
j=1 z

(t+1)
ij (yij − xT

ijβ
(t)
1 − s

(t)
i )2 + δ1).

4. Sample σ
2(t+1)
2 from IG(1

2

∑n
i=1 li +α2,

1
2

∑n
i=1

∑li
j=1(1− z

(t+1)
ij )(yij−xT

ijβ
(t)
2 − s

(t)
i )2 + δ2),

such that σ
2(t+1)
2 < σ

2(t+1)
1 for identifiability of the normal components.

5. Sample σ
2(t+1)
w from IG(n

2
+ αw, 1

2

∑n
i=1 w

2(t)
i + δw).

6. Sample σ
2(t+1)
s from IG(n

2
+ αs,

1
2

∑n
i=1 s

2(t)
i + δs).

7. Sample (γ(t+1),w(t+1)) as a block from their conditional distribution p (γ,w|y,z(t+1),

β
(t)
1 ,β

(t)
2 , s(t), σ

2(t+1)
1 , σ

2(t+1)
2 , σ

2(t+1)
s , σ

2(t+1)
w ) via a Metropolis-Hastings step.

8. Sample (β
(t+1)
1 ,β

(t+1)
2 , s(t+1)) as a block from their conditional distribution p (β1,β2, s|y,

z(t+1), σ
2(t+1)
1 , σ

2(t+1)
2 , σ

2(t+1)
s ,γ(t+1),w(t+1), σ

2(t+1)
w ) via a Metropolis-Hastings step.

For details of the Metropolis-Hastings steps, see Appendix E.

To obtain initial values for the Markov chain, we first fit mixtures-of-experts to the data

via the EM algorithm neglecting the within-subject correlation. Starting values for σ2
s , σ

2
w

are randomly selected from truncated normal distributions. Starting points for wi and si

are randomly sampled from normal distributions with means 0 and variances σ
2(0)
s and σ

2(0)
w ,

respectively.
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6.4 PROBLEM ENCOUNTERED IN A SIMULATION STUDY

Before attempting to apply our MCMC estimation method to the neuronal volume data, we

investigated the properties of our estimators. To do so, we conducted a simulation study

and encountered some problems in all three simulated data sets. For this reason, we did

not conduct further simulations. In this section, we report our findings from these three

simulated data sets and discuss a solution to the problem.

Given a set of true parameter values of (β1, β2, γ, σ2
1, σ2

2, σ2
s , σ2

w), three data sets are

simulated, where each has the “same” data structure as the neuronal volume data described

as follows. The covariate vectors xij, i = 1, . . . , 36, j = 1, . . . , li, used in the simulated

data sets are taken from the motivating neuron volume data. Each vector xij consists of

an intercept, the diagnostic effect indicator (normal=1, schizophrenic=2), age, gender effect

indicator (female=1, male=2), postmortem interval (PMI), and storage time associated with

subject i. In each simulated data, the response variables yij, i = 1, . . . , 36, j = 1, . . . , li,

which can be viewed as the log-transformed neuron volume for the j th neuron in subject

i, are simulated from the multivariate Bernoulli mixtures of mixed normals with the given

parameter values (β1, β2, γ, σ2
1, σ2

2, σ2
s , σ2

w).

We fit the multivariate Bernoulli mixtures of mixed normals, to each simulated data

set by the sampling scheme given in Section 6.3. The Markov chain converges after 10,000

iterations. To see whether or not the parameters have reached a steady state, the chain is

run for additional 30,000 iterations after the initial 10,000 iterations. To be conservative,

we treat the first 11,000 iterations as burn-in cycles, and posterior means and 95% credible

intervals for parameters of interest are calculated based on the remaining 29,000 iterations.

We study the behavior of the resulting estimates by comparing the estimates and the

credible intervals with the true parameter values. For all three simulated data sets, almost

all the true parameter values of β1, β2, γ, σ2
1, σ2

2, σ2
s , σ2

w are within their corresponding

95% credible intervals. In Table 8, we present results from one simulated data set as an

example. The “smaller neuron population” and “larger neuron population” indicate the

two normal components in the model and “Mixing proportions” indicate the proportions of

the smaller neurons. It can be seen from the table that as far as the unknown parameters
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Table 8: Results of model fitting to one of the simulated data sets. True values, estimates

(posterior means) and the 95% credible intervals.

true 2.5% mean 97.5%
Smaller neurons population

intercept (β10) 2.7000 -3.1426 0.5804 4.3998
diagnostic 0.0100 -1.6799 -0.3645 0.9192
age 0.0828 0.0212 0.0934 0.1682
gender -0.0500 -1.0008 0.5092 1.9956
PMI 0.0200 -0.1166 0.0191 0.1571
storage time -0.0015 -0.0019 -0.0010 -0.0002
σ2

1 2.5000 2.3630 2.5150 2.6740
Larger neurons population

intercept (β20) 1.3500 -3.8042 -0.0427 3.7691
diagnostic 0.1200 -1.5762 -0.2826 0.9881
age 0.1300 0.0579 0.1310 0.2048
gender -0.1000 -1.0333 0.4559 1.9291
PMI 0.1300 -0.0030 0.1327 0.2680
storage time -0.0002 -0.0008 0.0001 0.0010
σ2

2 2.0000 1.9840 2.0890 2.1990
Mixing proportions

intercept (γ0) 1.9000 -3.8925 1.0241 5.9954
diagnostic -0.6500 -2.5304 -0.9260 0.4911
age -0.1250 -0.2166 -0.1298 -0.0442
gender 1.5000 0.3463 2.0259 3.7908
PMI 0.2100 0.1412 0.3020 0.4899
storage time -0.0004 -0.0020 -0.0009 0.0002
σ2

w 4.0000 2.3160 4.5950 8.9510
σ2

s 3.0000 2.3950 3.9820 6.5740
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β1, β2, γ, σ2
1, σ

2
2, σ

2
s , and σ2

w are concerned, the model fitting procedure provides reasonable

estimates.

A problem emerges when we study parameter estimates of interest at the subject level. To

further examine the performance of the MCMC algorithm, for each subject i, i = 1, . . . , 36,

we obtain the posterior means for the random effects si and wi. Furthermore, by noticing that

the covariate vectors xij’s in our simulated data set only contain between-subject factors and

so all neurons belonging to the same subject have a common mean for the first component, a

common mean for the second component, and a common proportion for the first component,

denoted by µi1, µi2, and pi respectively, we obtain the posterior means for µi1, µi2, and pi

for each subject, by averaging respectively µ
(t)
i1 = xT

i1β
(t)
1 + s

(t)
i , µ

(t)
i2 = xT

i1β
(t)
2 + s

(t)
i , and

p
(t)
i = exT

i1γ(t)+w
(t)
i

1+exT
i1

γ(t)+w
(t)
i

after discarding the burn-in samples, where β
(t)
1 , β

(t)
2 , γ(t), s

(t)
i , and w

(t)
i

are the sample values in iteration t. In Table 9, for the same simulated data set presented

in Table 8, we give the true values and estimated values, denoted by “true” and ”est”

respectively, for si, µi1, µi2, wi and pi. We notice that, for some subjects, the estimated

si, wi and µi1, µi2, pi are far away from their true values. For example, subject 566 has much

smaller estimated first and second component means than their corresponding true values,

and the estimated si and wi are quite different from their true values. We present the true and

estimated density plots of neuron volume for Subject 566 in Figure 6.4, which highlights the

manner in which the estimated component means shift from the true values of the component

means. For this subject, given the true values of the unknown parameters and the true

values of wi and si, the true density function can be expressed as the mixture of normals

0.96φ(7.24, 2.5)+0.04φ(13.06, 2). Given the estimated parameters and the estimated wi and

si, the estimated density function is 0.01φ(1.75, 2.52) + 0.99φ(7.50, 2.09), where φ(· , µ, σ2)

denotes the normal density with mean µ and variance σ2. We can see that the first component

in the true mixture is very close to the second component in the estimated mixture, and the

estimated pi is very close to the true value of 1 − pi. Because the mixing proportion of the

second component in the true mixture, which is 0.04, and the mixing proportion of the first

component in the estimated mixture, which is 0.01, are very small, the two density plots in

Figure 6.4 are almost identical. This phenomenon happens in all three simulated data sets

for different subjects. It is noted that, all of these problematic subjects have true mixing
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proportions close to 0 or 1.

To better understand why the posterior means of µi1, µi2, pi are away from their true

values for some subjects, we calculate a group of pseudo posterior means of µi1, µi2 and pi,

denoted by est∗ in Table 9, by using their true values of si, wi, instead of the realizations of

si, wi in each iteration. These pseudo posterior means are quite close to the true µi1, µi2 and

pi for subject 566, indicating that the estimated si, wi cause the shifting, not the estimated

β1, β2, γ. A similar examination of the other two simulated data sets confirms that stray

si, wi are responsible for the shifting.

We run another Gibbs sampler starting from the true parameter values. For all subjects,

the estimated si, wi, µi1, µi2, pi are close to their true values.

We speculate that when the Markov chain starts from some other values than the true

parameter values, it is easily trapped in local maxima, where for some subjects whose true

mixing proportions close to 0 or 1, the estimated µi1, µi2, pi stray away from their true values.

To account for the incorrectly-estimated subject-specific µi1, µi2, pi, the corresponding si

and wi are able to compensate each other, therefore the Markov chain can be trapped for

an extremely long time. For most subjects, µi1, µi2, and pi are estimated correctly which

results in correct estimates of β1, β2, and γ.

In our motivating data set, there are only between-subject covariates, leading to subject-

specific µi1, µi2, pi. We conjecture that if the covariate vectors contain both between-subject

and within-subject factors, the component shifting problem might disappear. For such data,

if for some neurons of one subject, the Markov chain runs into a local maximum, there are

still other neurons in the same subject which may be estimated well, leading to the correct

estimates of wi and si, allowing the chain to quickly move out of the local maximum.
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Table 9: The estimates obtained by fitting the new model to one of the simulated data sets

si µi1 µi2 wi pi

Sub. est true est true est∗ est true est∗ est true est true est∗

178 -0.42 0.26 1.27 0.95 1.94 8.07 7.98 8.74 0.80 -0.60 0.08 0.10 0.03
234 0.72 0.91 2.77 2.47 2.95 9.93 9.85 10.11 -0.59 -2.00 0.03 0.03 0.01
250 -3.22 -3.27 -1.60 -1.82 -1.66 4.27 4.21 4.21 -1.72 -3.13 0.00 0.00 0.00
285 -1.19 -1.03 -1.32 -1.14 -1.12 5.17 5.28 5.38 -0.71 -1.67 0.43 0.45 0.27
317 -1.33 -1.18 0.64 0.44 0.77 6.86 6.85 6.99 -1.29 -2.49 0.01 0.01 0.00
322 1.36 1.69 2.59 2.66 2.91 8.52 8.70 8.85 3.17 1.61 0.67 0.67 0.33
341 2.30 1.89 3.81 3.65 3.40 10.71 10.69 10.31 -2.72 -4.34 0.00 0.00 0.00
377 -0.64 -0.72 2.01 1.67 1.91 8.26 8.10 8.16 -1.08 -2.04 0.01 0.02 0.01
395 1.62 2.00 3.88 3.80 4.27 9.77 9.72 10.16 1.52 0.82 0.77 0.78 0.62
396 -2.45 -1.99 -0.17 -0.14 0.32 6.25 6.28 6.74 -0.52 -0.88 0.71 0.69 0.62
398 2.37 1.80 3.67 3.61 3.10 9.38 9.37 8.82 0.51 -0.89 0.04 0.05 0.01
408 -1.42 -1.28 1.09 1.16 1.25 7.95 8.08 8.11 1.06 0.77 0.84 0.84 0.78
412 2.68 3.01 5.09 5.02 5.44 11.07 11.01 11.42 1.66 1.28 0.88 0.90 0.82
449 1.28 0.89 3.92 3.82 3.53 8.49 8.44 8.10 -1.30 -4.50 0.00 0.00 0.00
450 1.12 1.10 4.31 4.40 4.30 10.99 11.09 10.99 -1.48 -1.27 0.48 0.50 0.53
451 2.08 2.60 5.46 5.71 5.99 10.90 11.18 11.43 0.72 0.45 0.51 0.57 0.45
452 -0.25 -0.81 1.86 1.65 1.33 7.38 7.11 6.85 -0.10 -0.74 0.25 0.28 0.17
466 -2.14 -2.24 1.08 1.11 0.98 7.32 7.37 7.23 0.47 0.37 0.74 0.74 0.70
474 -0.02 -0.25 3.13 3.25 2.91 8.64 8.76 8.42 1.63 0.78 0.35 0.34 0.21
517 -3.35 -4.32 -0.93 -1.00 -1.90 3.04 2.96 2.07 -1.26 -2.08 0.00 0.00 0.00
537 1.18 0.00 3.42 3.34 2.26 8.06 7.83 6.91 1.24 0.60 0.60 0.61 0.45
559 -0.06 -0.95 4.63 4.65 3.73 10.25 10.33 9.36 2.00 1.42 0.25 0.23 0.20
566 -3.70 1.43 1.75 7.24 6.87 7.50 13.06 12.63 -3.96 4.24 0.01 0.96 0.95
567 -0.84 -1.41 2.78 2.90 2.23 7.55 7.56 7.00 -1.61 -2.25 0.09 0.06 0.06
568 1.28 0.68 6.13 6.09 5.52 10.76 10.76 10.15 2.94 2.02 0.22 0.21 0.14
575 0.84 0.18 5.05 4.91 4.39 9.93 9.80 9.28 1.06 0.06 0.11 0.09 0.06
581 -0.14 -0.71 3.80 3.72 3.25 10.17 9.97 9.64 2.11 2.99 1.00 1.00 1.00
587 -0.32 -1.52 2.15 2.08 0.98 7.11 6.89 5.95 3.30 2.69 0.96 0.96 0.92
592 -2.09 -2.15 1.60 1.70 1.58 7.05 6.98 7.03 -1.82 -1.10 0.89 0.88 0.93
597 2.28 1.29 5.38 5.44 4.40 9.73 9.74 8.75 -2.21 -2.60 0.01 0.01 0.00
620 0.37 0.31 6.52 6.54 6.46 11.83 11.88 11.77 1.58 2.09 0.81 0.81 0.84
625 3.49 2.91 7.85 7.83 7.29 13.54 13.42 12.99 0.99 2.55 0.97 0.99 0.99
634 1.22 1.33 6.12 6.40 6.25 10.97 11.18 11.10 0.78 1.23 0.85 0.86 0.88
643 0.46 0.45 5.35 5.55 5.38 10.98 11.05 11.01 -3.72 -2.54 0.48 0.49 0.72
656 -2.19 -3.13 1.52 1.78 0.61 6.67 6.81 5.77 -1.10 -0.99 0.24 0.26 0.29
681 -0.58 -1.11 4.38 4.14 3.87 8.40 8.06 7.88 -0.24 -0.20 0.43 0.41 0.45
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Figure 5: True and estimated density plots for subject 566.

True density function: 0.96φ(7.24, 2.5) + 0.04φ(13.06, 2); estimated density function:

0.01φ(1.75, 2.52) + 0.99φ(7.50, 2.09).
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6.5 DISCUSSION

Due to the problems discussed in the Section 6.4, we have not been able to fully apply

the proposed model to our motivating data sets. For the motivating data set, we are able

to obtain reasonable inference for diagnostic effect in both populations of neurons and the

mixing proportions; however, for a few subjects we appear to draw incorrect inferences

about the mean of each neuron population and the proportion of smaller neurons. We feel

that this model might be more useful for data with both within-subject and between-subject

covariates. In our future research, we plan to do more simulations to confirm this speculation.

In Chapter 5, we suggested other possible approaches to building a MVB(θ, x) distribu-

tion, such as modeling the component indicator variables as Bernoullis with mean wi, which

is in turn distributed as a beta distribution. Similar extensions may be developed in the

context of our proposed model.

The model proposed in this chapter can be extended to multivariate Bernoulli mixtures

of generalized linear mixed models, where the mixture components are generalized linear

mixed models, while the component-indicator variables are modeled by various multivariate

Bernoulli distributions. Because the outcomes are continuous in our motivating example,

we focus on normal mixture components in this chapter. For discrete outcomes, another

instance of multivariate Bernoulli mixed mixtures models, multivariate Bernoulli mixtures

of mixed Poissons can be used instead, where the mixture components are modeled by

Poisson regressions with a subject-specific random effect.

We only consider two-component multivariate Bernoulli mixtures of mixed normals in

this chapter. These can be extended to any finite number of components by using multi-

variate multinomial distributions to model the component-indicator variables as discussed

in Chapter 5. When the number of components is unknown a priori, it can be treated as a

missing variable and be sampled by a reversible jump MCMC algorithm, proposed by Green

(1995). This is a topic for future research.

Note that the Rubin-Wu model is a special case of the multivariate Bernoulli mixtures of

mixed normals proposed in this chapter when σ2
s = 0. On the other hand, the multivariate

Bernoulli mixture of normals, proposed in Chapter 5, is a special case of the multivariate
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Bernoulli mixture of mixed normals when σ2
w = 0. Testing which of the three models is

a better fit to the data is a very challenging problem. Under the null hypothesis, σ2
w = 0

or σ2
s = 0, are on the boundary of the parameter space, so that standard asymptotic χ2

distribution is not applicable to these likelihood ratio tests.

To summarize, in this chapter we propose a new mixture model to handle repeated

measures. This model combines the Rubin and Wu model and the multivariate Bernoulli

mixtures of normals proposed in Chapter 5. In the proposed model, the mixture components

have a linear regression model with subject-specific random effects while the mixture propor-

tions are modeled by a multivariate Bernoulli mixture distribution depending on covariates,

denoted by MVB(θ,x). The specific MVB(θ, x) distribution we use is a model with linear

logits having subject-specific random effects. The subject-specific random effects in both

the mixing proportion and the mixture components model the dependence in the data. Our

model can applied to neurological studies as well as to longitudinal studies.
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7.0 FUTURE RESEARCH

In this dissertation, we propose three mixture models for repeated measurements. All of them

can be viewed as multivariate extensions of mixtures-of-experts and have wide application

in quantitative neurobiology.

As a special case of the first model, mixtures of GLMMs, we focus on normal-component

mixtures of GLMMs and Poisson-component mixtures of GLMMs in Chapter 4. For Poisson-

component mixtures of GLMMs, we outline the sampling scheme based on MCMC methods,

but have not implemented the procedures for the motivating example, the grain count data,

which has well-separated mixture components which makes it a less challenging computa-

tional problem for fitting the mixture model. We plan to employ our fitting procedure to a

data set with medium or poorly separated Poisson mixture components in the future.

The second model, multivariate Bernoulli mixture model has been studied thoroughly

with application to the neuronal volume data in Chapter 5.

The third model, multivariate Bernoulli mixtures of mixed normals, is proposed in Chap-

ter 6. Due to problems encountered in a simulation study, we have not applied this model to

our motivating data set, the neuronal volume data. We speculate that the model might be

more appropriate for a data with both between-subject and within-subject covariates. We

plan to do more simulations to confirm this speculation and then apply the model to fit an

appropriate data set.

In addition to these preceding topics which we hope to revisit, there are some other

extensions of the proposed models we would like to explore further.
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7.1 UNKNOWN NUMBER OF COMPONENTS

In this dissertation, we assume a priori two distinct groups in a population and so only

consider two mixture components in all three proposed models. If we do not have information

on the number of components g, we can apply a reversible jump MCMC algorithm to fit the

data by treating g as missing data and sampling it with the other unknown parameters.

If we detect more than two components, i.e., g > 2, the mixing proportions in the first

proposed model are taken to be multivariate linear logits. To account for the dependency

of the component-indicator variables in the second and third proposed model, the mixing

proportions can be handled by multivariate multinomial distributions with random effects.

One approach to constructing such a distribution is to model the latent component-indicator

variables by multivariate linear logits with random effects.

7.2 OTHER APPROACHES TO CONSTRUCTING MULTIVARIATE

BERNOULLI DISTRIBUTIONS

In the models proposed in Chapter 5 and Chapter 6, the mixing proportions are modeled

by multivariate Bernoulli distributions to account for the within-subject correlation. The

approach we adopt for constructing such a distribution is to model the mixing proportions

as linear logits with random effects.

As pointed out in Section 5.6, there are other approaches to constructing multivariate

Bernoulli distributions. For example, the component-indicator variables may be samples

from a Bernoulli distribution with mean Wi, where Wi is a subject-specific random effect

which follows a beta distribution dependent on covariates. Another approach to building a

multivariate Bernoulli distribution is to model the component-indicator variables as multi-

variate tolerance distributions dependent on covariates.
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7.3 SOME EXTRA NEW MODELS

In addition to the three mixture models proposed in the previous chapters, we plan to work

on some other new models for repeated measures. We intend to further examine these

possible extensions and apply them to appropriate data sets in the future.

7.3.1 Extra New Model I

The first new model extends mixtures-of-experts, while it introduces a less complicated cor-

relation structure between the mixture components as compared to the mixtures of GLMMs.

We now present this model with normal components as an example.

Let S1i and S2i be independent subject-specific random effects having normal distribu-

tions with mean 0 and variances σ2
1s and σ2

2s respectively. The conditional density of Yij is

given as:

(Yij|Zij = 0, S1i = s1i, S2i = s2i)
indep∼ N(xT

ijβ1 + s1i, σ
2
1),

(Yij|Zij = 1, S1i = s1i, S2i = s2i)
indep∼ N(xT

ijβ2 + s2i, σ
2
2),

whereas the latent component indicator random variables, Zij’s are distributed as Bernoulli

with mean pij where logit(pij) = xT
ijγ. In this model, β1, β2 ,γ, σ2

1, σ2
2, σ2

1s and σ2
2s are the

unknown parameters.

Without loss of generality, we again assume that the number of observations on each
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subject is equal to 2. The joint distribution of (Yi1, Yi2) is

fyi1,yi2
(yi1, yi2) =

∫

s1i

∫

s2i

{
2∏

j=1

f(yij|S1i = s1i, S2i = s2i)

}
φ(s1i, 0, σ

2
1s)φ(s2i, 0, σ

2
2s)ds1i

ds2i

= pi1pi2φ2( (yi1, yi2)
T , (µi11, µi21)

T ,


 σ2

1 + σ2
1s σ2

1s

σ2
1s σ2

1 + σ2
1s


)

+ (1− pi1)pi2φ2( (yi1, yi2)
T , (µi12, µi21)

T ,


 σ2

2 + σ2
2s 0

0 σ2
1 + σ2

1s


)

+ pi1(1− pi2)φ2( (yi1, yi2)
T , (µi11, µi22)

T ,


 σ2

1 + σ2
1s 0

0 σ2
2 + σ2

2s


)

+ (1− pi1)(1− pi2)φ2( (yi1, yi2)
T , (µi12, µi22)

T ,


 σ2

2 + σ2
2s σ2

2s

σ2
2s σ2

2 + σ2
2s


),

where µijk = xT
ijβk, for j = 1, 2 and k = 1, 2.

7.3.2 Extra New Model II

The second model proposed in this section is an extension of the multivariate Bernoulli

mixtures of normals with a less complicated correlation structure between the mixture com-

ponents as compared to the multivariate Bernoulli mixtures of mixed normals.

In this model, the mixing proportions are modeled as in the multivariate Bernoulli mix-

tures of normals. Given a subject-specific normally distributed random effect Wi with mean

0 and variance σ2
w, let Zij have a Bernoulli distribution with mean πij = e

xT
ijγ+wi

1+e
xT

ij
γ+wi

.

Let S1i and S2i be independent normally distributed subject-specific random effects with

mean 0 and variances σ2
1s and σ2

2s respectively. The model is given by:

(Yij|Zij = 0, S1i = s1i, S2i = s2i)
indep∼ N(xT

ijβ1 + s1i, σ
2
1), (7.1)

(Yij|Zij = 1, S1i = s1i, S2i = s2i)
indep∼ N(xT

ijβ2 + s2i, σ
2
2), (7.2)

where β1, β2 ,γ, σ2
1, σ2

2, σ2
w, σ2

1s and σ2
2s are the unknown parameters.
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Without loss of generality, assume that the number of observations on each subject is

equal to 2. The joint distribution of (Yi1, Yi2) is

fyi1,yi2
(yi1, yi2)

=

∫

s1i

∫

s2i

∫

wi

{
2∏

j=1

f(yij|S1i = s1i, S2i = s2i)

}
φ(s1i, 0, σ

2
1s)φ(s2i, 0, σ

2
2s)φ(wi, 0, σ

2
w)ds1ids2idwi

=

{∫
πi1πi2φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi11, µi21)
T ,


 σ2

1 + σ2
1s σ2

1s

σ2
1s σ2

1 + σ2
1s


)

+

{∫
(1− πi1)πi2φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi12, µi21)
T ,


 σ2

2 + σ2
2s 0

0 σ2
1 + σ2

1s


)

+

{∫
πi1(1− πi2)φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi11, µi22)
T ,


 σ2

1 + σ2
1s 0

0 σ2
2 + σ2

2s


)

+

{∫
(1− πi1)(1− πi2)φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi12, µi22)
T ,


 σ2

2 + σ2
2s σ2

2s

σ2
2s σ2

2 + σ2
2s


),

again µijk = xT
ijβk, for j = 1, 2 and k = 1, 2.

7.3.3 Extra New Model III

This model can be viewed as a generalization of all the mixture models proposed in this dis-

sertation. It extends the multivariate Bernoulli mixtures of mixed normals by incorporating

different subject-specific random effects into the mixture components. As in the multivariate

Bernoulli mixtures of mixed normals, the mixing proportions in this mew model are linear

logits with random effects.

Assume (Si1, Si2) is a random variable following bivariate normal distribution with mean

(0, 0) and covariance matrix Σ =


 σ2

1s σ12s

σ12s σ2
2s


. In this subsection’s model, the distribution

of Yij conditional on Zij, S1i, S2i is given as in (7.1) and (7.2) while the component-indicator

variables Zij’s are modeled as in extra new model II given in Subsection 7.3.2. In this model,

β1, β2 ,γ, σ2
1, σ2

2, σ2
w, and Σ are the unknown parameters.
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Again, without loss of generality, assume that the number of observations on each subject

is equal to 2. The joint distribution of (Yi1, Yi2) under this new model is

fyi1,yi2
(yi1, yi2)

=

∫

s1i

∫

s2i

∫

wi

{
2∏

j=1

f(yij|S1i = s1i, S2i = s2i)

}
φ(s1i, 0, σ

2
1s)φ(s2i, 0, σ

2
2s)φ(wi, 0, σ

2
w)ds1ids2idwi

=

{∫
πi1πi2φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi11, µi21)
T ,


 σ2

1 + σ2
1s σ2

1s

σ2
1s σ2

1 + σ2
1s


)

+

{∫
(1− πi1)πi2φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi12, µi21)
T ,


 σ2

2 + σ2
2s σ12s

σ12s σ2
1 + σ2

1s


)

+

{∫
πi1(1− πi2)φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi11, µi22)
T ,


 σ2

1 + σ2
1s σ12s

σ12s σ2
2 + σ2

2s


)

+

{∫
(1− πi1)(1− πi2)φ(wi; 0, σ

2
w)dwi

}
φ2( (yi1, yi2)

T , (µi12, µi22)
T ,


 σ2

2 + σ2
2s σ2

2s

σ2
2s σ2

2 + σ2
2s


).

It is easy to see that extra model III reduces to multivariate Bernoulli mixtures of mixed

normals when Si1 = Si2, i.e., σ2
1s = σ2

2s = σ12s. When σ12s = 0, extra model III becomes

extra model II, which in turn becomes extra model I when σ2
w = 0.

In Figure 6, we present all the mixture models given in this dissertation and illustrate

their relationships. To compare the proposed models and test whether or not a model is a

good fit to the data are very challenging problems, which we intend to explore further.
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APPENDIX A

NEW RESULTS FOR THE CLASSIC MIXTURES OF POISSONS:

QQ-PLOTS
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Figure 7: QQ-plots for very-well-separated classic mixtures of Poissons.

QQ plots for 5000 replicates of p̂1, λ̂1, λ̂2 when p1 = 0.5, λ1 = 1, λ2 = 7. We simulate 5000

random samples, each of size n = 1000 from classic two-component mixtures of Poissons.

The parameter estimates p̂1, λ̂1, λ̂2 are obtained via the EM algorithm for each random sam-

ple.
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Figure 8: QQ-plots for well-separated classic mixtures of Poissons.

QQ plots for 5000 replicates of p̂1, λ̂1, λ̂2 when p1 = 0.5, λ1 = 1, λ2 = 4. We simulate 5000

random samples, each of size n = 1000 from classic two-component mixtures of Poissons.

The parameter estimates p̂1, λ̂1, λ̂2 are obtained via the EM algorithm for each random sam-

ple.
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Figure 9: QQ-plots for poorly-separated classic mixtures of Poissons

QQ plots for 5000 replicates of p̂1, λ̂1, λ̂2 when p1 = 0.5, λ1 = 1, λ2 = 1.5. We simulate

5000 random samples, each of size n = 1000 from classic two-component mixtures of Pois-

sons. The parameter estimates p̂1, λ̂1, λ̂2 are obtained via the EM algorithm for each random

sample.
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Figure 10: QQ-plots for very-poorly-separated classic mixtures of Poissons

QQ plots for 5000 replicates of p̂1, λ̂1, λ̂2 when p1 = 0.5, λ1 = 1, λ2 = 1.2. We simulate

5000 random samples, each of size n = 1000 from classic two-component mixtures of Pois-

sons. The parameter estimates p̂1, λ̂1, λ̂2 are obtained via the EM algorithm for each random

sample.
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APPENDIX B

APPLYING MIXTURES-OF-EXPERTS TO THE NEURON VOLUME DATA

As a preliminary model, mixtures-of-experts with two normal components is applied in this

appendix to the neuron volume data set. We only consider the data on eighteen normal

subjects. However, we can consider both schizophrenic and normal subjects by including the

diagnostic effect in the mixtures-of-experts model as one of the covariates. In this appendix,

where our main goal is to demonstrate the procedures for fitting normal component mixtures-

of-experts to neuron volume data, we only use the data from the control subjects to make

the problem simpler. The jth measurement on subject i, Yij, is taken to be the logarithm

of the neuron volume. The covariates used here are age, gender, PMI and storage time.

Assuming that all the neuron volumes within subjects and across subjects are independent,

the probability density function of {Yij} is given by

f(yij|xi,γ,β1,β2, σ
2
1, σ

2
2) = p(xi,γ)f(yij|xi, β1, σ

2
1) + (1− p(xi,γ))f(yij|xi, β2, σ

2
2),

where f(yij|xi,βk, σ2
k) is a normal density with mean µ(xi, βk) and variance σ2

k, and

p(xi,γ) =
exT

i γ

1 + exT
i γ

,

µ(xi,βk) = xT
i βk, k = 1, 2. (B.1)

By introducing component-indicators, the EM algorithm can be implemented in the same

way as in Poisson mixtures-of-experts to the grain count case, given in Section 3.5, except

that the Poisson regression is replaced with linear regression to estimate the updated β
(t+1)
k
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and σ2(t+1)

k . This can be carried out by the lm( ) function of S-PLUS. We run the EM

algorithm with various sets of starting values, and compute the value of the log likelihood

corresponding to each set of starting values. The following solution is the one corresponding

to the largest value of the log likelihood

γ̂ = (13.7464,−0.2050, 3.1092,−0.3235,−0.0017)T

β̂1 = (9.1215,−0.0197,−0.1078,−0.0321,−0.0001)T

β̂2 = (11.3197,−0.0538, 1.2036,−0.1083,−0.0004)T

σ2
1 = 0.3472

σ2
2 = 0.6749.

The elements of each vector are the estimates of the intercept, the coefficients of age, gender,

PMI and storage time respectively.

In Table 10, we report p̂i, the proportion of shorter axon neurons, µ̂i1, the mean of the

log volumes of the shorter axon neurons, and µ̂i2, the mean of the log volumes of the longer

axon neurons for each individual. It is seen from the table that these two neuron populations

are not far apart. The procedures illustrated in this appendix are used in Chapter 6, where

before implementing the MCMC algorithm to the model, we apply mixtures-of-experts to

the neuron volume data and use the estimates as starting values for the unknown parameters

in the multivariate Bernoulli mixtures of mixed normals.
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Table 10: Fitting two-component mixtures-of-experts to the neuron volume data

estimates
Control subjects p̂i µ̂i1 µ̂i2

1 0.641 7.13 8.49
2 0.370 7.41 7.86
3 0.448 7.44 7.69
4 0.893 7.25 8.78
5 0.664 7.10 8.28
6 0.845 7.20 8.62
7 0.821 7.59 8.42
8 0.873 7.22 8.73
9 0.408 7.40 7.69
10 0.173 7.28 7.39
11 0.432 7.39 7.69
12 0.213 7.29 7.55
13 0.228 7.31 7.53
14 0.802 7.14 8.35
15 0.250 6.89 7.80
16 0.824 7.15 8.52
17 0.375 6.95 7.80
18 0.975 7.35 9.18
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APPENDIX C

IDENTIFIABILITY OF MULTIVARIATE BERNOULLI MIXTURES OF

NORMALS

In this appendix, the identifiability of the new model is justified numerically while it remains

to be proved analytically. To simplify the problem, we assume two observations on each

subject, i.e., li = 2, and only between-subject factors in the model, i.e., the covariate vector

satisfies xij = xi, for all j.

Under these assumptions, according to (5.3), the density function of (Yi1, Yi2) is

fθ(yi1, yi2)

=

{∫
1

(1 + e−xT
i γ−wi)2

φ(wi, 0, σ
2
w)dwi

}
φ2( (yi1, yi2)

T , (xT
i β1, x

T
i β1)

T ,


 σ2

1 0

0 σ2
1


)

+

{∫
1

1 + exT
i γ+wi

1

1 + e−xT
i γ−wi

φ(wi, 0, σ
2
w)dwi

}
φ2( (yi1, yi2)

T , (xT
i β2,x

T
i β1)

T ,


 σ2

2 0

0 σ2
1


)

+

{∫
1

1 + e−xT
i γ−wi

1

1 + exT
i γ+wi

φ(wi, 0, σ
2
w)dwi

}
φ2( (yi1, yi2)

T , (xT
i β1,x

T
i β2)

T ,


 σ2

1 0

0 σ2
2


)

+

{∫
1

(1 + exT
i γ+wi)2

φ(wi, 0, σ
2
w)dwi

}
φ2( (yi1, yi2)

T , (xT
i β2,x

T
i β2)

T ,


 σ2

2 0

0 σ2
2


), (C.1)

where θ denotes the unknown parameter vector (βT
1 , βT

2 ,γT , σ2
1, σ

2
2, σ

2
w)T . To prove iden-

tifiability, we essentially need to show that if fθ(yi1, yi2) = fθ̃(yi1, yi2), for all yi1, yi2, then

θ = θ̃.
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Jiang and Tanner (1999) provided identifiability conditions for mixtures-of-experts. They

showed that the two-normal-component mixtures-of-experts are identifiable if the compo-

nents are ordered. However, their proof of identifiability cannot be applied to our model due

to the complex structure of the component-indicator variables in our model.

C.1 ORDER RESTRICTION FOR PARAMETERS

As in any other mixture models, without parametric restrictions, we can show that the den-

sity f of our model is invariant under permutation of the components. Let θ̃ = (βT
2 ,βT

1 ,−γT , σ2
2,

σ2
1, σ

2
w)T . It is easily shown that fθ(yi1, yi2) = fθ̃(yi1, yi2) from (C.1) and the following two

facts

∫
1

(1 + exT
i γ−wi)2

φ(wi, 0, σ
2
w)dwi =

∫
1

(1 + exT
i γ+wi)2

φ(wi, 0, σ
2
w)dwi,

∫
1

1 + e−xT
i γ+wi

1

1 + exT
i γ−wi

φ(wi, 0, σ
2
w)dwi =

∫
1

1 + e−xT
i γ−wi

1

1 + exT
i γ+wi

φ(wi, 0, σ
2
w)dwi.

The lack of the identifiability of fθ due to permutation of the components can be handled

by imposing one of the following order restrictions:

1) σ2
1 < σ2

2; or

2) σ2
1 = σ2

2 and (β1)0 < (β2)0; or

3) σ2
1 = σ2

2, (β1)0 = (β2)0 and (β1)1 < (β2)1; or

· · · · · · ;
q+1) σ2

1 = σ2
2, (β1)0 = (β2)0, . . . , (β1)q−2 = (β2)q−2, and (β1)q−1 < (β2)q−1,

where (βk)m denotes the mth entry in vector βk and q is the length of βk.

C.2 TWO EQUIVALENT CONJECTURES

We first give Conjecture 1, and then show that our model is identifiable if Conjecture 1

holds.
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Conjecture 1. For any (a, b) and (ã, b̃), where b > 0, b̃ > 0, if

∫∞
−∞

e−w2/2

1+e−(a+bw) dw =
∫∞
−∞

e−w2/2

1+e−(ã+b̃w)
dw (C.2)

and
∫∞
−∞

e−w2/2

(1+e−(a+bw))2
dw =

∫∞
−∞

e−w2/2

(1+e−(ã+b̃)w)2
dw, (C.3)

then a = ã and b = b̃.

The following theorem shows that the new model is identifiable if Conjecture 1 is true.

Theorem 5. Let θ = (βT
1 , βT

2 ,γT , σ2
1, σ

2
2, σ

2
w)T and θ̃ = (β̃1

T
, β̃2

T
, γ̃T , σ̃2

1, σ̃
2
2, σ̃

2
w)T . As-

sume X = (x1,x2, . . . , xn)T is of full rank. Given that Conjecture 1 holds, if fθ(yi1, yi2) =

fθ̃(yi1, yi2), for all yi1, yi2, where f is given in (C.1), then θ = θ̃.

Proof : Assume that fθ(yi1, yi2) = fθ̃(yi1, yi2), for all yi1, yi2, where f is a four-component

mixture of bivariate normals. By the identifiability of mixtures of multivariate normals,

shown in Yakowitz and Spragins (1968), we have

xT
i β1 = xT

i β̃1; xT
i β2 = xT

i β̃2; (C.4)

σ2
1 = σ̃2

1; σ2
2 = σ̃2

2; (C.5)

and
∫

1

(1 + e−xT
i γ−wi)2

φ(wi, 0, σ
2
w)dwi =

∫
1

(1 + e−xT
i γ̃−wi)2

φ(wi, 0, σ̃2
w)dwi; (C.6)

∫
1

1 + exT
i γ+wi

1

1 + e−xT
i γ−wi

φ(wi, 0, σ
2
w)dwi =

∫
1

1 + exT
i γ̃+wi

1

1 + e−xT
i γ̃−wi

φ(wi, 0, σ̃2
w)dwi;

(C.7)∫
1

(1 + exT
i γ+wi)2

φ(wi, 0, σ
2
w)dwi =

∫
1

(1 + exT
i γ̃+wi)2

φ(wi, 0, σ̃2
w)dwi. (C.8)

It follows from (C.4) that β1 = β̃1 and β2 = β̃2 because X is of full rank. The equations in

(C.6), (C.7), (C.8) are equivalent to
∫

1

1 + e−xT
i γ−wi

φ(wi, 0, σ
2
w)dwi =

∫
1

1 + e−xT
i γ̃−wi

φ(wi, 0, σ̃2
w)dwi; (C.9)

∫
1

(1 + e−xT
i γ−wi)2

φ(wi, 0, σ
2
w)dwi =

∫
1

(1 + e−xT
i γ̃−wi)2

φ(wi, 0, σ̃2
w)dwi. (C.10)

Let a = −xT
i γ and ã = −xT

i γ̃; b = σw and b̃ = σ̃w. So that (C.9) and (C.10) reduces to

(C.2) and (C.3), respectively. It then follows from Conjecture 1 that a = ã and b = b̃, which

implies that γ = γ̃ as X is of full rank, and σ2
w = σ̃2

w.
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♦

Next we give Conjecture 2, which is equivalent to (C.9) and (C.10), so that in turn it is

equivalent to Conjecture 1.

Conjecture 2. For two normal random variables U and U
′
with means a and ã and variances

σ2 and σ̃2 respectively, if

E
(

1
1+e−U

)
= E

(
1

1+e−U
′

)

and E
(

1
1+e−U

)2
= E

(
1

1+e−U
′

)2

,

then a = ã and σ2 = σ̃2.

C.3 NUMERICAL DEMONSTRATION

In this section we give a numerical “proof” of Conjecture 1. Let

g(a, b) =

∫ ∞

−∞

e−w2/2

1 + e−(a+bw)
dw

and h(a, b) =

∫ ∞

−∞

e−w2/2

(1 + e−(a+bw))2
dw.

The following lemmas provide some properties of g(a, b), which are used later in the numerical

demonstration of Conjecture 1.

Lemma 1.
∣∣∣g(a, b)− ∫ 10

−10
e−w2/2

1+e−(a+bw) dw
∣∣∣ < 10−22 for all a and b > 0.

Proof : Observe that
∫∞

20
e−w2/2

1+e−(a+bw) dw <
∫∞
20

e−w2/2dw < 10−23. Similarly
∫ −20

−∞
e−w2/2

1+e−(a+bw) dw <

10−23.

♦

As in Lemma 1, we can approximate h(a, b) by
∫ 10

−10
e−w2/2

(1+e−(a+bw))2
dw, and the difference is

again less than 10−23.

Lemma 2. For fixed b, g(a, b) increases with a.

Proof : This follows since ∂g(a,b)
∂a

=
∫∞
−∞

e−w2/2e−(a+bw)

(1+e−(a+bw))2
dw > 0.
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♦

Lemma 3. For fixed b, g(0, b) =
√

2π/2.

Proof : Note that ∂g(0,b)
∂b

=
∫∞
−∞

we−w2/2e−bw

(1+e−bw)2
dw = 0, since the integrand is an odd function

of w. Therefore, g(0, b) = g(0, 0) =
√

2π/2.

♦

From Lemma 3, we can see that for any b > 0, g(0, b) have the same values.

Lemma 4. If g(a, b) = g(ã, b), then a = ã.

Proof : Note that g(a, b)−g(ã, b) =
∫∞
−∞ e−w2/2ebw e−ã−e−a

(ebw+e−a)(ebw+e−ã)
dw. If g(a, b) = g(ã, b),

then e−ã = e−a as e−w2/2ebw/{(ebw + e−a)(ebw + e−ã)} > 0 for all w, and therefore a = ã.

♦

Lemma 5. g(−a, b) =
√

2π − g(a, b).

Proof : Note that g(−a, b) =
∫∞
−∞

e−w2/2

1+e(a−bw) dw =
∫∞
−∞

e−w2/2

1+e(a+bw) dw, and so that g(−a, b) +

g(a, b) =
√

2π.

♦

Lemma 6. For any a > 0, g(a, b) decreases with b and
√

2π/2 < g(a, b) <
√

2π/(1 + e−a) <
√

2π.

For any a < 0, g(a, b) increases with b and 0 <
√

2π/(1 + e−a) < g(a, b) <
√

2π/2.

Proof : Note that

∂g(a, b)

∂b
=

∫ ∞

−∞

we−w2/2e−a−bw

(1 + e−(a+bw))2
dw =

∫ ∞

0

we−w2/2

{
e−(a+bw)

(1 + e−(a+bw))2
− e−(a−bw)

(1 + e−(a−bw))2

}
dw.

Next let t = e−a and u = e−bw, so that

∆ ≡ e−(a+bw)

(1 + e−(a+bw))2
− e−(a−bw)

(1 + e−(a−bw))2
=

tu(1− t2)(u2 − 1)

(1 + tu)2(u + t)2
.

Note that u2 − 1 < 0, since 0 < u < 1 for all w > 0. It follows that a > 0 ⇒ 1 − t2 > 0 ⇒
∆ < 0 ⇒ ∂g(a,b)

∂b
< 0. Consequently,

√
2π/2 = g(a,∞) < g(a, b) < g(a, 0) <

√
2π/(1+e−a) <

√
2π. Similarly, for a < 0, g(a, b) increases with b and 0 <

√
2π/(1+e−a) < g(a, b) <

√
2π/2.

♦
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Numerical Demonstration

We now give the numerical “proof” of Conjecture 1. According to Lemma 1, in this demon-

stration, for any a and b > 0, both g(a, b) and h(a, b) are approximated by integrals with

integrating variable w varying from -10 to 10.

The essential idea of the numerical demonstration is now easy to convey. By Lemma 6,

the range of function g is (0,
√

2π). For any value c ∈ (0,
√

2π), Let Kc={(a, b), g(a, b)=c}.
If every two different points in Kc have different h values, then Conjecture 1 holds.

Based on Lemma 6, there are two cases of all possible Kc.

Case I For any c ∈ (
√

2π/2,
√

2π), all (a, b) in Kc are satisfying a > 0.

Case II For any c ∈ (0,
√

2π/2), all (a, b) in Kc are satisfying a < 0. Furthermore, By

Lemma 5, g(−a, b) =
√

2π − c.

It is apparent that we only need to focus on finding all possible Kc in Case I. After finding

Kc in Case I, the Kc in Case II can be obtained directly from the sets in Case I by changing

the sign of a.

For any chosen c ∈ (
√

2π/2,
√

2π), solving the corresponding Kc is a very difficult

task. To get around this problem, we choose a grid of (a0, b0) and denote it by G, where

G = {(a0, b0), a0 = 0.5, b0 = 0.1, 0.2, . . . , 3; or a0 = 1.5, b0 = 0.1, 0.2, . . . , 10; or a0 = 5, b0 =

0.1, 0.2, . . . , 10}. The range of g(a0, b0), for all (a0, b0) ∈ G, is (1.40, 2.49), which almost cov-

ers (
√

2π/2,
√

2π). We are unable to choose g(a0, b0) closer to
√

2π/2, which is approximately

1.25, because of numerical instability.

For each (a0, b0) ∈ G, let c = g(a0, b0) and then find the corresponding Kc. To do this,

we use a grid of possible a value to examine, namely, a = 0.1, 0.2, . . . , 5. For each a value a∗,

we use Mathcad to find the unique b, 0 < b < 30, so that g(a∗, b) = g(a0, b0). For example,

when (a0, b0) = (1.5, 0.2) and a∗ = 1.6, the b value is 0.613. In fact, for any a > 0, there

is a unique b such that (a, b) ∈ Kc. By our algorithm, we only pick countable points in Kc.

However, due to the continuity and monotonicity of h function, if there is no identical h

value for any of these countable points, then it is true for any point in Kc.

We performed the above procedures in Mathcad Professional 2001. We did not find any

two points in Kc having the same h values. Based on our numerical demonstration, we
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conclude that Conjecture 1 is true, which “proves” that our new model is identifiable.

The preceding “proof” procedure is based on the assumption of two observations on each

subject. All the results apply to any finite number of observations on each subject.
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APPENDIX D

DETAILS OF THE SAMPLING SCHEME FOR THE MULTIVARIATE

BERNOULLI MIXTURES OF NORMALS

In this appendix, we give details about the Metropolis-Hastings steps to sample from the

conditional distribution of (γ, w) block and from the conditional distribution of (β1, β2)

block. In both cases, our proposal distribution is multivariate t with mean and variance

equal respectively to the mode of the appropriate conditional distribution and the inverse

curvature of the log of this conditional distribution at the mode.

D.1 UPDATING γ AND W

The logarithm of p (γ,w|y,z,β1,β2, σ
2
1, σ

2
2, σ

2
w) is given by

n∑
i=1

li∑
j=1

{zij(x
T
ijγ + wi)− log(1 + exT

ijγ+wi)} − γT γ

2σ2
γ

−
∑n

i=1 w2
i

2σ2
w

. (D.1)

The mode of (D.1) is obtained via a Quasi-Newton algorithm maximization routine using

the derivatives

∂ log p (γ,w|y, z, β1,β2, σ
2
1, σ

2
2, σ

2
w)

∂γ
=

n∑
i=1

li∑
j=1

{zij − exT
ijγ+wi

1 + exT
ijγ+wi

}xij − 1

σ2
γ

γ

∂ log p (γ,w|y, z, β1,β2, σ
2
1, σ

2
2, σ

2
w)

∂wi

=

li∑
j=1

{zij − exT
ijγ+wi

1 + exT
ijγ+wi

} − wi

σ2
w

.
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Let m0 denote the mode of p (γ,w|y,z, β1,β2, σ
2
1, σ

2
2, σ

2
w) and V0 denote the inverse curva-

ture of log p (γ, w|y,z,β1,β2, σ
2
1, σ

2
2, σ

2
w) at m0. The necessary second derivatives are

∂2 log p (γ,w|y,z,β1, β2, σ
2
1, σ

2
2, σ

2
w)

∂γ∂γT
= −

n∑
i=1

li∑
j=1

{
exT

ijγ+wi

1 + exT
ijγ+wi

1

1 + exT
ijγ+wi

}
xijx

T
ij −

1

σ2
γ

I

∂2 log p (γ,w|y,z,β1, β2, σ
2
1, σ

2
2, σ

2
w)

∂w2
i

= −
li∑

j=1

exT
ijγ+wi

1 + exT
ijγ+wi

1

1 + exT
ijγ+wi

− 1

σ2
w

∂2 log p (γ,w|y,z,β1, β2, σ
2
1, σ

2
2, σ

2
w)

∂γ∂wi

= −
li∑

j=1

exT
ijγ+wi

1 + exT
ijγ+wi

1

1 + exT
ijγ+wi

xij.

Let the proposal density fT (γ,w|m0, τV0, υ) be a multivariate t distribution with υ degrees

of freedom, location parameter vector m0 and scale matrix τV0, where υ and τ are tuning

constants. In Section 5.4 and Section 5.5, we use υ = 4 and τ = 1.

We propose (γ∗,w∗) ∼ fT (γ,w|m0, τV0, υ) and accept it with probability

min

{
p(γ∗,w∗|y, z, β1,β2, σ

2
1, σ

2
2, σ

2
w)fT (γ, w|m0, τV0, υ)

p(γ,w|y,z,β1,β2, σ
2
1, σ

2
2, σ

2
w)fT (γ∗,w∗|m0, τV0, υ)

, 1

}
.

D.2 UPDATING β1 AND β2

The logarithm of p (β1,β2|y,z, σ2
1, σ

2
2,γ,w, σ2

w) is given by

n∑
i=1

li∑
j=1
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zij
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. (D.2)

The derivatives of (D.2) are as follows.

∂ log p (β1,β2|y,z, σ2
1, σ

2
2,γ,w, σ2

w)

∂β1

=
1

σ2
1

n∑
i=1

li∑
j=1

zij(yij − xT
ijβ1)xij − 1

σ2
β1

β1

∂ log p (β1,β2|y,z, σ2
1, σ

2
2,γ,w, σ2

w)

∂β2

=
1

σ2
2

n∑
i=1

li∑
j=1

(1− zij)(yij − xT
ijβ2)xij − 1

σ2
β2

β2

∂2 log p (β1,β2|y,z, σ2
1, σ

2
2,γ,w, σ2

w)

∂β1∂βT
1

=
1

σ2
1

n∑
i=1

li∑
j=1

zijxijx
T
ij −

1

σ2
β1

I

∂2 log p (β1,β2|y,z, σ2
1, σ

2
2,γ,w, σ2

w)

∂β2∂βT
2

=
1

σ2
2

n∑
i=1

li∑
j=1

(1− zij)xijx
T
ij −

1

σ2
β2

I.

120



The Metropolis-Hastings algorithm for this block is analogous to the one in Appendix

D.1. The tuning constants in the multivariate t distribution for this block are chosen as

υ = 2.5 and τ = 10 in Section 5.4 and Section 5.5.
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APPENDIX E

DETAILS OF THE SAMPLING SCHEME FOR MULTIVARIATE

BERNOULLI MIXTURES OF MIXED NORMALS

In this appendix, we give the details of the Metropolis-Hastings steps to sample from the

condition distribution of (γ, w) block, and from the condition distribution of (β1, β2, s)

block.

E.1 UPDATING γ AND W

The logarithm of the conditional distribution p (γ,w|y,z,β1, β2, s, σ2
1, σ

2
2, σ

2
s , σ

2
w) is given

by

n∑
i=1

li∑
j=1

{zij(x
T
ijγ + wi)− log(1 + exT

ijγ+wi)} − γT γ

2σ2
γ

−
∑n

i=1 w2
i

2σ2
w

,

which is the same as log p (γ,w|y,z, β1,β2, σ
2
1, σ

2
2, σ

2
w) given in Appendix D.1. Thus, the

Metropolis-Hastings steps to sample (γ,w) in the proposed model are identical to the proce-

dures to sample (γ, w) in the multivariate Bernoulli mixtures of normals given in Appendix

D.1.
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E.2 UPDATING β1, β2, AND S

The logarithm of p (β1,β2, s|y,z, σ2
1, σ

2
2, σ

2
s ,γ, w, σ2

w) can be written as
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The gradient vector and Hessian matrix of log p (β1,β2, s|y,z, σ2
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obtained using
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The Metropolis-Hastings algorithm for this block is analogous to the one in Appendix

D.1.
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