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ABSTRACT 
 

Leaf Huang Ph.D. 
 
 
 

INTRAVESICAL THERAPY OF INTERSTITIAL CYSTITIS 
 

Pradeep Tyagi, Ph.D. 
 

University of Pittsburgh, April 4th, 2005 
 
 
Interstitial cystitis (IC) is an inflammatory disorder of bladder which affects middle-aged 

Caucasian women. Intravesical administration of drugs is a mainstay in its treatment either as 

adjunct to oral therapy or as second-line therapy. The vehicles currently used for this route of 

administration are ideally suited for hydrophobic drugs and typically maintain drug exposure in 

the bladder for very short duration of time. The present dissertation project was aimed at 

investigating the use of alternative vehicles for improving intravesical drug delivery of 

hydrophobic small molecular weight drugs such as capsaicin misoprostol in addition to the 

delivery of large molecular weight peptide nucleic acid (PNA) for antisense based therapy. The 

hydrophobic drugs selected for this study were delivered by intravesical route using liposomes, 

thermosensitive hydrogel and TAT peptide. The efficiency of drug delivery was assessed by 

measuring the physiological response of normal and diseased rat bladder by metabolic cages and 

the method of cystometrogram (CMG). Histology and immunohistochemistry of bladder and 

spinal cord sections was done to corroborate the response measured in the physiological 

measurement. Liposomes were demonstrated to be a superior vehicle for capsaicin and 

thermosensitive hydrogel was able to sustain the exposure of a hydrophobic drug in the bladder 

for prolonged time and increase the efficacy of misoprostol in rat model of cystitis induced by 

cyclophosphamide. An interesting observation made during the study was that liposomes in 
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absence of drug were able to modulate physiological response of bladder and this observation 

was further investigated to define the charge on the lipid headgroup and the structural 

requirements of hydrophobic backbone in the lipids for reducing bladder hyperactivity induced 

by sequential infusion of protamine sulfate and high concentration of KCl. Overexpression of 

βNGF in cyclophosphamide induced cystitis was downregulated in the urothelium of rat bladder 

using antisense based therapy with PNA, which was delivered with the aid of TAT peptide. 

Overall, the study concluded that liposomes cannot only be a treatment option but can also be 

used for delivery of hydrophobic drugs. The potential of hydrogels and cell penetrating peptides 

for intravesical drug delivery needs further investigation.  
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PREFACE 
 
 
 

Interstitial cystitis (IC) is an inflammatory bladder syndrome of obscure etiology and 

pathogenesis.A patient’s response to therapy is fraught with variation owing to the multifactorial 

nature of IC, and current treatments are largely empirical achieved through a variety of oral and 

intravesical therapies. The strategies used in therapeutic management of IC patients in the clinic 

are reviewed. Intravesical agents have been used for many years as adjuncts to oral treatment 

regimens or as second-line therapies for IC.  The efficiency of intravesical drug delivery is a 

critical factor in the often incomplete and variable response from conventional formulations used 

in intravesical therapy in IC. Recent developments in the field of improved intravesical delivery 

are reviewed and the results of experiments designed to study application of liposomes and 

hydrogel as novel vehicles for drugs used in IC are reported. 

It has been suggested that neuroinflammation plays a role in painful bladder disorders of 

uncertain etiology, such as IC.  The role of inflammation in the pathogenesis of IC is reviewed. 

Inflammation in the bladder can results from disruption in the permeability barrier of urinary 

bladder from agents in the urine. Acrolein, a metabolic product of cyclophosphamide (CYP) is 

known to cause cystitis by making pores in the apical membrane of umbrella cells present in 

bladder luminal lining. The two animal models for IC used in these studies for evaluating novel 

intravesical therapies are based on disruption of permeability barrier either through agents in 

urine or by agents instilled into bladder. The ultimate goal of this work is the development of 

new and improved intravesical therapeutic strategies for cystitis. New therapeutic strategies for 

cystitis that were evaluated are liposomes and intravesical antisense delivery, the studies 

described in chapters 2 and 5. Improvements through the use of liposomes and hydrogel in 
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existing intravesical therapy of vanilloids and prostaglandins are described in chapters 3 and 4. 

CYP-induced cystitis results in a dramatic reorganization of micturition reflex circuitry 

characterized by changes in neurochemical, electrophysiological, and organizational properties. 

These changes suggest considerable reorganization of reflex connections of bladder afferents 

after bladder inflammation. Previous studies have demonstrated alterations in mRNA and/or 

protein following CYP injection. CYP-induced cystitis was used as the animal model in the 

studies described in chapters 4 and 5. 

Rat model of bladder injury was the other animal model used in the study described in 

chapter 2. Selective damage to the upper layers of the urothelium or umbrella cells is induced in 

this model by infusion of protamine sulfate and later high concentration of potassium chloride is 

infused to demonstrate bladder hyperactivity in a cystometrogram (CMG). A prior study from 

our lab using the same model of hyperactive bladder noted the novel treatment option of 

instilling liposomes as a therapeutic option. This novel treatment option was further explored in 

the present dissertation project by experiments designed to define the charge and structural 

elements of lipids necessary for efficacy in bladder injury. The study is described in chapter 2. 

Capsaicin-induced nerve desensitization of bladder afferents is a viable intravesical treatment 

option for IC patients, which is currently achieved by instilling the hydrophobic drug in saline 

using ethanol as a cosolvent. The study described in chapter 3 employed liposomes and hydrogel 

as vehicles for intravesical delivery of capsaicin for reducing the toxicity incurred from vehicle 

in normal rats without compromising efficacy of capsaicin.   

Other labs have achieved slow and sustained release of drugs in the urine by using 

prolonged infusion of drugs into the bladder. The same objective was attained in this work by 

instilling thermosensitive hydrogel as a matrix filled with drug for sustained intravesical delivery 
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of fluorescent probe in urine. The efficacy of this delivery system was studied by assessing the 

effect of misoprostol in the study described in chapter 4. The luminal lining of urinary bladder 

facing the urine, is called the urothelium, it is covered by uroplakin and together with tight 

junctions represent the toughest water tight barrier to drug delivery known so far. The 

composition of this permeability barrier in context of drug delivery and the use of liposomes as a 

treatment option is reviewed. Inflammation of the bladder seen in IC is characterized by 

heightened pain sensitivity and this hyperalgesia is the consequence of the release of 

inflammatory mediators, cytokines and growth factors from the bladder. A key participant in this 

process is the induction of the neurotrophin nerve growth factor (NGF). Prior studies suggest that 

therapies aimed at abating NGF may help treat IC. Study described in chapter 5 is about the 

improvement in the intravesical delivery of agents for blocking NGF expression by helping them 

cross the permeability barrier of urothelium. Experiments were designed to explore antisense 

based therapy with peptide nucleic acid (PNA) for downregulation of NGF in acute cystitis 

following CYP injection. The permeability of PNA across urothelium was enhanced by using the 

cell-penetrating peptide TAT. 
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graduate studies at The University of Pittsburgh School of Pharmacy. Especially, I would like to 

thank Dr. Leaf Huang, my major advisor, for his inspiration, guidance, encouragement and 
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Dr. Billy Day, Dr. Dexi Liu and Dr. Song Li, for their hepful suggestions and assistance. I 

express my special thanks to Dr. Matthew Fraser for teaching me bladder physiological 

experiments. A deep sense of gratitude is also expressed for the skilful and generous help given 
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during histopatholgical ELISA and PNA synthesis. I also wish to thank Dr. Feng Liu, Dr. 

Rajkumar banerjee and Dr. Soumitra Basu for their advice and support in the last 5 years. I also 

wish to thank all the fellow graduate students, faculty and staff members of the school of 

pharmacy especially Stella Weidner and Nicole Sebula in center for pharmacogenetics for 

ensuring the logistic support for the successful completion of this project. Finally my loving 

gratitude goes to my wife Shachi for her love, understanding and patience. 
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1. INTRODUCTION 

 
 

Interstitial cystitis (IC) is a debilitating chronic inflammatory disorder of the bladder, 

which predominantly affects middle-aged Caucasian women. It is a multifactorial syndrome of 

pelvic/perineal pain, urinary frequency and urgency (1). However, these clinical hallmarks are 

also shared by other pelvic disorders and complicate the diagnosis of IC, a term first used in 

1878 by Skene to describe unexplained pelvic pain. It is ten times more common in women than 

men. Its diagnosis is often made from the combination of symptoms, cystoscopic findings, 

bladder biopsies and by exclusion of a vast array of other possibilities, including carcinoma and 

detrusor hyperreflexia. 

 There are two subtypes of IC, classic and nonulcer IC, with similar symptoms but 

different outcomes with respect to clinical course and response to treatment (2). Histologically, 

there are fundamental differences between the two subtypes, classic IC presenting a severe 

abnormality of the urothelium and characteristic inflammatory cell infiltrates while inflammation 

is scant in nonulcer IC (3). Recent study showed that patients with classic IC had higher nitric 

oxide (NO) content in their bladder compared to patients with non ulcer IC and steroid treatment 

reduced NO content in bladder of classic IC (4). This attribute of IC is akin to asthma, where 

inflammation in patients is measured by concentration of NO in the airways to modulate the dose 

of inhaled steroids (5). Moreover, localization of afferent nerves adjacent to the urothelium argue 

for a important role in the development of afferent excitability leading upto IC symptoms (6).  

1.1. Pathophysiology 

The pathophysiology is IC incompletely understood, and numerous theories have been 

proposed to explain the pathogenesis and progression of IC symptoms including mast cell 
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activation, altered bladder epithelial permeability and afferent nerve up-regulation. Leading 

theories for the pathogenesis of IC include (1) changes in urothelial permeability; (2) mast cells 

infiltration; (3) neural-immune mechanisms; (4) plasticity in the nervous system; and (5) 

infection., toxic urinary agents, deficiency in bladder lining and neurogenic causes.  

1.1.1.1. Changes in Urothelial Permeability 
 

Most cellular membranes possess a very high permeability for a wide range of small 

molecules like water and urea, but the cells in luminal lining of urinary bladder have excessively 

low permeability to these molecules (7). In spite of being constantly exposed to urine, that is so 

different from blood in its ionic composition and osmolality, bladder lining maintains a water 

tight barrier between the blood and the contents of urine. This tight permeability barrier of 

urinary bladder is essential in storing urine for prolonged periods and to help kidneys in 

maintaining optimal plasma osmolality and ionic strength (8). The permeability barrier of 

bladder for enduring such steep gradients is believed to be erected by the uppermost layer of 

bladder epithelium also called urothelium (9). 

 The uppermost layer of urothelium is made up by umbrella cells, whose apical plasma 

membrane facing the urine has a unique lipid composition and transmembrane uroplakin 

proteins, both of which seem to play important role in reducing the permeability of the apical 

membrane to water, ammonia, protons and urea (10-12). In its healthy state, the bladder 

epithelium is almost impermeable to irritants present in urine by virtue of tight junctions joining 

the uroplakin covered umbrella cells (13, 14). The rigid plaques covering 90% of the surface area 

of these cells are composed of four major uroplakins, i.e., UPIa (27 kDa), UPIb (28 kDa), UPII 

(15 kDa) and UPIII (47 kDa) (12). It is now well accepted that the permeability of the urothelium 
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is further augmented by the mucin layer composed of proteoglycans present on the surface of 

umbrella cells (15, 16).  

Glycosaminoglycans (GAG) include chondroitin 4 and 6 sulfate, dermatan sulfate, 

heparan sulfate, and hyaluronic acid, which are present in the GAG layer on the bladder surface 

(17, 18).  The theory of changes in urothelial permeability arising from defects in GAG layer as 

the cause of IC was popularized by Parsons and coworkers (19, 20). Despite its popularity, it has 

few shortcomings that have been recently reported in the concept of defective bladder 

epithelium. Electron microscopic studies on bladder biopsies failed to show any differences in 

the GAG layer of normal and IC patients diagnosed according to National Institute of Arthritis, 

Diabetes, Digestive and Kidney Diseases criteria (21). Bladder permeability of IC patients 

measured by serum uptake of radionuclide was comparable in 70% of patients with their normal 

counterparts and it was increased in only 3 out of 10 patients (22). Serum radioactivity was taken 

as the index of bladder permeability, determined after infusion of 10 ml saline containing 5 mCi 

of radionuclide (99technetium-diethylenetriaminepentaacetic acid, 99Tc-DTPA) followed by 

bladder distension to 80% of its functional capacity with saline. Functional capacity is the 

volume of saline at which patients ask the fluid inflow into the bladder to be stopped. Potassium 

sensitivity test used in IC for a diagnosing mucosal leakage showed that instillation of potassium 

chloride into bladder provoked symptoms in only 70% of IC patients and 4.5% of normal 

volunteers (23). It seems that a defective GAG layer is the cause of IC in only a subpopulation of 

IC patients. 

1.1.1.2. Inflammation & Mast cells 
 
In recent reports however, evidence is mounting in support of a central role for 

inflammation in the propagation of IC symptoms. Inflammation has the potential to induce and 
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perpetuate neurotrophic changes in the bladder (24). Peptidergic and sympathetic innervation of 

the submucosa and muscular layers of the bladder are increased in patients with interstitial 

cystitis (2, 25). The observation of inflammation in the bladder of some IC patients parallels the 

biochemical interactions between inflammatory cells and the nervous system in murine models 

of cystitis (26, 27). In multiple animal models the stimulation of sensory nerves releases 

inflammatory neuropeptides, that induce inflammation through mast cell activation (26, 27). 

Mast cells derived from bone marrow are ubiquitous and are responsible for generating 

allergic reactions in various tissue by releasing numerous vasodilatory, nociceptive and pro-

inflammatory molecules in response to stimulation by immunoglobulin E (IgE) and specific 

antigen (28). Mast cells in the bladder have been often found in juxtaposition to neurons, where 

they can be activated by neuropeptides such as bradykinin and substance P and also by acute 

psychological stress (29). Activation of mast cells without typical exocytosis has been observed 

in the urothelium and suburothelium tissue of IC bladder (2, 30). Vasoactive and 

proinflammatory molecules released from mast cells may cause normally unexcitable C-fiber 

afferents to become hyperexcitable and spawn the symptoms of IC  (31, 32). Inflammation can 

be intiated by mast cell induced expression of cell adhesion molecules such as interacellular 

adhesion molecule ICAM-1 and P-selectin (33, 34). These effects of mast cells can explain the 

absence of cystitis in mice genetically manipulated to be deficient  in mast cell, following 

instillation of lipopolysaccharide LPS, whereas frank inflammation was observed in wild-type 

mice having functional mast cells (35). 

 

1.1.1.3. Neurogenic Causes 
It has been suggested that neuroinflammation plays a important role in painful bladder 

disorders of uncertain etiology, such as IC (36, 37). Inflammatory cells can act as an extension of 
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the peripheral nervous system in the bladder and mediate IC symptoms (38). Levels of nerve 

growth factor (NGF) were found to be increased in the bladder of IC patients (39). Increased 

(NGF) production and morphological changes in afferent neurons innervating the bladder during 

bladder inflammation argue for a complex association between inflammatory cells and the 

nervous system (24). Therapies aimed at abating NGF have shown promise in the clinic. 

Continence or control over micturition requires regulation of lumbosacral afferent fibers 

(pelvic afferents) and afferents in the hypogastric and pudendal nerves (40). The afferent 

pathway in the continent state is mediated largely by Aδ-fibers, which ultimately send 

information about the state of bladder fullness or wall tension detected by mechanoreceptors  to 

the pontine micturition center via the periaqueductal gray matter in spinal cord, while the C 

fibers mainly detect noxious signals and initiate painful sensations (32).  These afferent nerves 

have been identified in the urothelim, suburothelially as well as in the detrusor muscle (6). 

Afferent nerves can form a plexus in suburothelium, which is particularly dense in the bladder 

neck and the trigone region (41). Increased density of afferent fibers in bladder of IC patients can 

be the result of neuroplastic changes induced by inflammation (42, 43). The neuroplasticity may 

explain the mechanisms by which chronic irritative symptoms and pain may persist even after 

the removal of an inflammatory stimulus. Clinically, this corresponds to a subset of patients with 

IC who continue to have pain without inflammation or patients feeling IC associated pain even 

after removal of bladder (44).  

Bladder inflammation can bring about functional alterations in bladder afferent pathways 

comprising of small myelinated Aδ fibers and unmyelinated C fibers (45). Following bladder 

inflammation, capsaicin-sensitive C-fiber afferents can take over the role of Aδ-fibers and they 

convey the signal of bladder fullness at reduced bladder capacity (45). This shift in afferent arm 
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of micturition reflex has been modulated by instillation of botulinum toxin in a inflamed bladder, 

which only attenuated the afferent response from bladder without impairing the efferent bladder 

function (46). Alteration of afferent pathways can lead to a reduction in pain threshold 

(allodynia) and an amplification of painful sensations (hyperalgesia). Increased pain sensitivity 

can result from changes in peripheral nociceptor afferents or changes in the central nervous 

system mechanisms that process nociceptive inputs. The link between symptoms of IC and C 

fibers has not been clearly established and changes in afferent signaling bought about by 

inflammation may help in establishing the connection. Therefore modulation of the inflammatory 

cascade presents a logical therapeutic target for treating cystitis.  

 

1.2. Treatment of IC 

 

The postulated etiologies mentioned above have led to a variety of treatment regimens, 

none of which uniformly eradicates the symptoms of urinary frequency, urgency, nocturia, 

and/or pain (47). The response to therapy is fraught with variation owing to the multifactorial 

nature of IC, and clinical approaches to treatment have been largely empirical and can involve a 

variety of oral and intravesical therapies (48). Oral medication is usually the first line of 

treatment for IC, but a multipronged treatment strategy is often selected as an appropriate 

therapy and drugs treating GAG layer dysfunction, mast cell abnormalities, and neurogenic 

inflammation are frequently combined with each other (Fig.1.1) (49). Overdistension of bladder 

has nevertheless remained one of the widely used empirical method of treatment, despite its 

cytodestructive effects (50, 51). The diversity of IC therapies underscores the lack of 
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understanding about the treatment of this syndrome (52). The schematic chart shown in Fig.1.1 

shows the current approved treatment of IC and new treatment options evaluated in this project. 

 
1.2.1. Oral Therapy of IC 

Oral treatments of IC include pentosan polysulfate, tricyclic antidepressants and 

antihistamines (47). In the past, patients with long-standing disease have been given agents such 

as tricyclic antidepressants, and narcotics to suppress symptoms of hyperactivity (53, 54). 

Amitriptyline is thought to act via various mechanisms such as blockade of acetylcholine 

receptors and inhibition of reuptake of released serotonine and norepinephrine. As amitriptyline 

is known to block the histamine H1 receptor, it is also believed to act via sedation, possibly via 

its H1–antagonism. The clinical efficacy of hydroxyzine in reducing IC symptoms may be 

explained by its ability to inhibit bladder mast cell activation by neurogenic stimuli along with its 

anticholinergic, anxiolytic and analgesic properties (31). 

 
Defective GAG layer is believed to be present in a subset of IC patients, which prompted 

intravesical administration of heparin, hyaluronic acid, or pentosan polysulfate for restoring the 

GAG layer on the surface of transitional cells of bladder (55, 56). Moreover, sodium 

pentosanpolysulfate was also able to manipulate the microenvironment between umbrella cells 

and urine after prolonged oral administration and alleviate the symptoms of IC in patients (19, 

57). The beneficial response in these patients was maintained for extended over time (58).An 

open multicenter study done on 87 patients found a differnece in the therapeutic benefit obtained 

from pentosanpolysulfate in two types of IC. Patients without bladder ulceration had much 

favorable response than the patients with bladder ulcer with significantly reduced frequency of 

micturition and increased mean daily urine volume per void in the patients with non-classical IC 
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(59). In many other studies patients taking the drug reported subjective improvement in pain, 

urgency, frequency and nocturia compared to placebo (56, 60, 61). However, a recent study done 

on 121 patients randomized over 18 months a failed to show any distinct gain in terms of  

therapeutic benefits in patients treated with sodium pentosanpolysulfate over patients taking 

hydroxyzine (62).  

Oral administration of pentosan polysulfate sodium is effective in one third of IC 

patients, and continued administration for several months or more is required for reduction in the 

symptoms of pain and urgency. Apart from restoring GAG layer, it also appears to be a potent 

inhibitor of allergic and nonimmune mast cell stimulation (63). Adverse effects from 

pentosanpolysulfate are few and transient, but rare cases of serious bleeding complications have 

been reported following its use (64). Orphan drug status of sodium pentosanpolysulfate allowed 

it to be tested in the National Toxicology Program (NTP) for its chronic toxicity and 

carcinogenicity in mice and rats. Carcinogenic potential of sodium pentosanpity was not detected 

in rats, but its carcinogenic activity in mice was revealed by increased incidences of liver 

hemangiosarcoma, hepatocellular neoplasms (predominantly adenomas), and malignant 

lymphomas. Escalating doses of sodium pentosanpolysulfate also produced elevated occurrences 

of nonneoplastic lesions in multiple organs of mice and rats (65).  Increased proliferation in 

human breast cancer cell lines has also been reported at several concentrations of 

pentosanpolysulfate (66).  

Recently, a dietary supplement formulated with the natural GAG components, 

chondroitin sulfate and sodium hyaluronate was evaluated in an open label study done on 37 

female patients refractory to all forms of therapy. The dietary formulation also contained the 

flavonoid quercetin which has anti-inflammatory properties and shown to inhibit activation of 
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mast cells. This formulation sold as CystoProtek was taken for 6 months by IC patients at the 

dose of six capsules per day. Patient assessment following reatment revealed a decrease in 

Global assessment scale and OLeary/Sant Symptom index (67). 

The oral administration of anticholinergic agents for treating the symptom of urinary 

urgency in IC is justified by the physiology of voluntary or involuntary contraction of bladder, 

which involves stimulation of the muscarinic receptors in the detrusor by acetylcholine released 

from activated cholinergic nerves. However, approximately 20% to 40% of patients cannot 

tolerate anticholinergics due to the troublesome side effects such as excessive dry mouth, 

constipation or blurred vision (68). The systemic side effects of oxybutynin, a important drug in 

this class are suggested to be caused by the high serum level of its active metabolite, N-desethyl-

oxybutynin (DEOB) (69). Moreover, not all patients respond clinically to oral anticholinergic 

therapy despite maximal dosage. 

 

1.2.2.  Intravesical Treatments for IC 

For patients who do not respond to oral therapy or for those patients who suffer from a 

flare and require additional treatment, several intravesical agents are available. Intravesical 

agents have been used for many years as adjuncts to oral treatment regimens or as second-line 

therapies for IC (70). On the contrary, intravesical therapy of urinary bladder cancer has been 

more widely used to accomplish multiple goals such as eradication of existing disease, 

prevention of recurrences and tumor progression (71). The incidence of local recurrence of 

superficial transitional cell carcinoma of the bladder is reduced by intravesical adjuvant therapy 

after transurethral resection (TUR) (72). Intravesical therapy consists of drugs being placed 

directly into the bladder through a urethral catheter. 
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Figure 1.1: The role of multipronged therapy of IC in relation to the multifactorial etiology of IC. 

The current approved therapies and the therapies studied in this dissertation are shown with respect to their 
mechanism of action. 

 
 

High local drug concentrations in the bladder can be achieved with low risk of systemic 

side effects. The problem of low levels of drugs being excreted into the urine in its active form 

can also be eliminated with intravesical administration as illustrated by misoprostol.  The first 

report on intravesicular pharmacotherapy of IC appeared in 1967 with the instillation of DMSO, 

dimethyl sulphoxide into the bladder (73). DMSO was approved by FDA, as 50% solution 

(Rimso-50) for intravesical treatment of IC in 1978 (74). DMSO is an amphipathic molecule 

with a highly polar domain and two apolar methyl groups. Its mechanism of action in IC has not 

been fully elucidated, and symptomatic relief in about two-thirds of patients probably occurs 
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through its anti-inflammatory and mast cell stabilizing property (75). DMSO can disrupt 

hydrogen bonds, affect intercellular electrical uncoupler and scavenge hydroxyl radicals which is 

believed to be an important trigger of inflammatory process (76, 77). In controlled crossover trial 

done on 33 patients with biopsies suggestive of interstitial cystitis, DMSO proved superior to 

placebo in the objective and subjective improvement (78).  

DMSO has now become a standard treatment for intravesical therapy for IC (70). 

Administration can be done either in the clinic or at home by patients capable of self-

catheterization and it is generally administered weekly for at least 6 weeks (79). DMSO can 

stimulate bladder afferent pathways and induce NO release from afferent neurons which may be 

involved in desensitization of nociceptive pathways (80). A recent study done on isolated rat 

bladder strips revealed that a 50% aqueous solution of DMSO can adversely affect muscle 

contractility and decrease its compliance (81). Notwithstading the multiple effects of DMSO, its 

treatment is associated with a low frequency of serious adverse effects with only rare cases of 

systemic contact dermatitis and eosinophillic cystitis being reported  (82, 83).  

Intravesical instillation of Bacillus Calmette-Guerin (BCG) is an established therapy for 

recurrent superficial (papillary) bladder carcinoma and carcinoma in situ (84). BCG instillation 

can delay tumor progression, decrease the need for subsequent cystectomy and overall survival 

rate in cancer  patients is improved (85). The mechanism of action is still unclear, although a 

greater rate of cell turnover has been postulated. BCG triggers a variety of local immune 

responses that appear to correlate with antitumor activity (86, 87). The immunmodulatory 

activity of BCG prompted its evaluation for immunotherapy of IC and it showed a favorable 

outcome in refractory IC patients (88). Later, a randomized, double-blind, placebo controlled 

study done on 30 patients showed a 60% response rate in patients receiving 6 weekly instillations 
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of Tice strain BCG against a 27% in placebo and adverse events in both groups were mostly 

similar (89, 90). 

  BCG instillation is now considered an alternative option for symptomatic treatment of 

IC (91). The BCG therapy is thought to modulate urothelial immune responses and 

downregulation of an interleukin-6 driven type 2 T helper cell response could be the mechanism 

of BCG action in IC (92). Intravesical BCG immunotherapy can lead to a host of adverse effects 

such as malaise, low-grade fever, cystitis, and hematuria in generally up to 5% of patients (93, 

94). Recently, BCG instillation was reported to have caused a rare severe complication of 

arthralgia and arthritis (95). A prospective double-blind study was conducted to compare the 

benefits from weekly instillation of either DMSO or BCG in IC patients (96). Maximal 

functional capacity of IC patients was not changed by either treatment, but DMSO was better 

than BCG in reducing pain and urinary frequency of patients with classic IC and similar 

reduction was absent in patients instilled with BCG (96).  

Although DMSO is the principle intravesical agent approved by FDA, numerous other 

agents have been used. Intravesical sodium hyaluronate has been used to treat interstitial cystitis 

due to its possible replenishment of bladder glycosaminoglycans (97, 98). Hyaluronic acid (HA) 

is an important component in the urothelium. It inhibits adherence of immune complexes to 

polymorphonuclear cells, leukocyte migration and aggregation. Hyaluronic acid binds to 

lymphocytes and endothelial cells expressing ICAM-1 and it presumably alleviates the 

inflammatory processes by blocking the ICAM-1 receptors, but repeated instillations are needed 

to maintain the response (34). In a recent open label study, 18 patients with classic features of IC 

were instilled with 0.2% chondroitin sulfate (40 ml), once a week for four weeks and then once a 

month for 12 months (99). Patients who were positive for potassium sensitivity test reported 
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benefit from the treatment. Similar results were obtained following HA instillations in a recent 

study done on 48 patients having positive 0.4 M potassium sensitivity test  (100). 

Heparin is another GAG analogue effective in approximately 50% of patients following 

its instillation (101). As with the oral heparin analogues, intravesical heparin may also take 

several months to produce symptomatic relief. In a recent study done on mice, the expression of 

inflammatory cytokines expressed by inflamed bladder following LPS instillation was blocked 

by a novel synthetic peptide RDP58 (NH2-arg-norleucine (nle)-nle-arg-nle-nle-nle-gly-tyr-

CONH2) (102). The peptide blocked the early signal transduction pathways involved in 

expression of inflammatory cytokines.  

 Intravesical treatment of particularly severe or long-standing cases of IC requires 

addressing the significant upregulation of afferents in the bladder of patients (103). C-fiber 

afferents involved in aberrant micturition reflex of IC are believed to be silent under normal 

conditions, but are activated after bladder irritation and spinal cord injury (104, 105).   

Downregulation of sensory nerves by using neurotoxin such as capsaicin or resiniferatoxin RTX 

has proven itself a viable approach in urology (48., 106). Successful treatment of neurogenic 

incontinence with intravesical capsaicin or its ultrapotent non pungent analog, RTX  (40, 107) 

has revealed the role of capsaicin-sensitive C-fibers in the triggering of bladder hyperactivity and 

bladder pain (108). Increased suburothelial nerve density seen in the bladder of such patients can 

be reversed by successful treatment with intravesical vanilloids (42, 43). However, aqueous 

insolubility of these neurotoxins necessitates the use of ethanol as a cosolvent with saline for the 

instillation of these drugs in the treatment of IC. A recent study demonstrated the superiority of 

nonalcoholic solvents for capsaicin when compared to RTX delivered in alcohol (109).  
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1.2.3. Improvements in Intravesical Therapy 

The response of intravesical therapy in bladder cancer and cystitis is often incomplete and 

variable among patients from conventional formulations typically maintained in the bladder for 

only a short duration (i.e., 2 hours). Variable and incomplete response may be partly explained 

by resistant drug target and partly by unsuccessful drug delivery to diseased tissue.  Besides poor 

penetration of drug through urothelium, inadequate intravesical drug delivery may also arise 

from the immediate dilution of drug concentration by residual urine in the bladder, in addition to 

subsequent sustained dilution by constant urine production during the 2-hour treatment. Effect of 

physiologic variable of urine on intravesical therapy can be reduced by complete bladder 

emptying just before dose administration and rate of urine production can be reduced by 

restricting fluid intake (110). 

 Attempts to overcome inherent drawbacks of intravesical instillation has been reported 

from various labs by using the approach of a slow and sustained release of drugs using various 

methods has been reported from various labs. Prolonged intravesical instillation of RTX was 

recently demonstrated to be a feasible procedure for treating IC patients (111). RTX was infused 

through sovrapubic 5Fr mono Pigtail catheter for 10 days at the flow rate 25µl/h with the help of 

infusion pump. Patients were evaluated after 30 days from the end of infusion (primary end 

point, PEP) and after three months (secondary end point, SEP). A 30% decrease in frequency and 

a 3 fold reduction of nocturia with significant reduction of symptoms of pelvic pain for at least 

six months after the end of infusion were observed. Similar approach has been previously 

applied for local therapy with prostaglandins in the treatment of cyclophosphamide-induced 

cystitis in patients (112-114). A 100 ml irrigation of 5 µg/ml PGE2 into the bladder for 3h 

completely freed the 4 year old patient of all the symptoms within 24 hours (115). 
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Intravesical therapy can also be improved by helping drugs cross the permeability barrier 

of urothelium. However, access to urothelium is limited by a layer of glycosaminoglycans 

covalently attached to cell membrane proteins (116). In a recent phase III trial enhanced 

penetration of mitomycin C across the bladder urothelium nearly doubled the recurrence-free rate 

in superficial bladder cancer patients (117).Weekly instillations of drugs were given for 6 weeks 

and drug concentration in urine demonstrated a linear relationship with its penetration into 

bladder tissue (118). Increased concentration in urine can improve the efficacy of drug by acting 

in the bladder without significant enhancement in toxicity (110). A novel delivery system for 

administration of mitomycin for immediate and safe delivery after tumor resection has been 

recently reported (119). Intravesical electromotive administration of mitomycin increased its 

bladder uptake, and improved response rate in high risk superficial bladder cancer (120). DMSO 

has been previously used to enhance the penetration of paclitaxel from cremophor micelles 

across the swine urothelium (121). Iontophoresis has also been recently used for intravesical 

delivery of drugs for the treatment of IC (122, 123).  

Recently, certain peptides called "cell penetrating peptides" (CPP) or "protein 

transduction domains" (PTD) have been shown to possess the ability to translocate across the 

plasma membrane (124, 125). However these peptides lack the ability to be cell selective in their 

ability and are therefore a poor choice for drug targeting (126). We explored the potential of 

using shortlength TAT peptide derived from human immunodeficiency virus for regional therapy 

of large molecular weight drugs known as peptide nucleic acid (PNA) following intravesical 

administration. Peptide nucleic acids (PNAs) have been used for their antisense effect in various 

studies, because they form stable duplexes with the target mRNA and arrest translation (127, 

128). PNA was chosen in this study owing to its superior binding properties, and higher stability 
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in biological media over a wide pH range, compared to traditional oligos and ribozymes (129, 

130). Antisense effect of PNA against βNGF delivered by coupling with TAT peptide using 

solid phase synthesis was investigated as a treatment option for cystitis. 

Various labs have reported application of bioadhesion for improving intravesical drug 

delivery. Controlled release of the paclitaxel at the urothelium/urine interface of mouse bladder 

was achieved following intravesical administration of poly(methylidene malonate-2.1.2) 

bioadhesive microspheres (131). Spherical 5 µm thick microspheres adhered to the mouse 

urothelium for upto 2 days after instillation and mice having bladder cancer survived for 

significantly longer time following instillation of bioadhesive microspheres loaded with 5% w/w 

paclitaxel compared to similar doses of the conventional paclitaxel formulation. The 

microspheres survived in the mouse bladder through 12 to 15 cycles of bladder filling/emptying 

(132). 

 In another study employing similar approach, a fibrinogen-based bioadhesive loaded 

with 5-fluoruracil was used for preventing tumor recurrences in resected tumor beds of mouse 

bladder (133). Storage-phosphor autoradiography was used to quantify drug retention in the 

bladder after administration. In a recent study, magnetic resonance imaging MRI was used for 

temporal and spatial monitoring of bioadhesive polymeric microparticles following intravesical 

delivery into mouse (134). The polymeric microparticles encapsulated with MRI contrast agent 

gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) for measuring T1 relaxation rate of 

particles untill 5 days after instillation. Mitomycin-C loaded alginate and chitosan bioadhsive 

carriers were recently evaluated in mice for the post-operative chemotherapy in bladder cancer 

(135). A gelatin based sustained drug delivery system was able to release adriamycin for 12 days 

in rabbit bladder (136). Retention of doxorubin in dog bladder following instillation was 
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increased by instilling microparticles called as magnetic targeted carriers (MTC) composed of 

metallic iron and doxorubicin adsorbed onto activated carbon.  Externally applied magnetic field 

was used to achieve extended retention of magnetic targeted carriers following instillation (137). 

Isolated porcine urinary bladder was used to evaluate mucoadhesive intravesical drug delivery 

using polymers such as chitosan and polycarbophil for a hydrophilic drug. Drug distribution in to 

the bladder wall was determined by sectioning the frozen bladder and extracting the drug from 

tissue slices for analysis (138). 

A mucosal adhesion substance, hydroxypropylcellulose (HPC), was added to the 

oxybutynin chloride solution (5%w/w) to improve intravesical delivery of oxybutinin in patients 

of overactive bladder (139).  The mucoadhesive solution was instilled twice daily via the catheter 

used for bladder emptying at a dosage of 0.5 mg/ml. CMG was performed on patients before 

starting treatment and at 1 week and 3 years after the first instillation of oxybutynin. A 

significant increase in bladder capacity was observed in 4 of 6 patients.  Intravesical delivery of 

oxybutinin is suitable for patients who suffer from side effects of its metabolite N-

desethyloxybutynin (DEOB) following oral administration. This intravesical oxybutynin therapy 

is thought to depend on three mechanisms that prevent or improve urge incontinence: a direct 

effect on the bladder muscle, a topical anesthetic effect, and the indirect effect of absorbed 

oxybutynin and its metabolites (83).  

Aqueous solutions of poly(ethylene glycol-b-[DL-lactic acid-co-glycolic acid]-b-ethylene 

glycol) (PEG-PLGA-PEG) triblock copolymers form a free-flowing sol at room temperature and 

become a gel at body temperature of 37°C (140). Thermosensitive hydrogel formed by these 

polymers have been used for in situ gel formation of drug depot of hydrophobic and hydrophilic 

drugs following subcutaneous administration in rats (141). The triblock copolymer was used for 
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sustaining the residence time of hydrophobic drugs in the urine by instilling aqueous solution of 

polymer at room temperature. 

Bladder cancer cell lines were used initially to study the intracellular delivery of 

anticancer drugs and biologics using liposomes (142, 143). Use of multilamellar liposomes 

proved favorable in cell culture studies and the antiproliferative capacity of IFN-α  in resistant 

bladder cancer cell line was improved with liposomes (144).  Instillation of liposome 

encapsulated radiolabeled IFN-α or radiolabeled liposomes into mouse bladder was able to 

achieve localized therapy with negligible penetration to other organs (145). Recently, liposomes 

have been used for intravesical gene therapy; intravesical instillation of murine interleukin-2 (IL-

2) gene plasmid with cytofectins, dimyristoyl rosenthal inhibitor ether DMRIE and 

dioleoylphosphatidylethanolamine (DOPE) was used to treat 3 day-old pre-established 

orthotopic bladder tumors (146).  In a recent study, plasmid DNA for IFN-α and GM-CSF was 

transfected into implanted tumors in mouse bladder with cationic liposome, N-[1-(2,3-

dioleoyloxyl)propyl]-N,N,N-trimethylammoniummethyl sulfate and methyl-beta-cyclodextrin-

solubilized cholesterol (147). Liposomes have been used to deliver hydrophobic drugs for cancer 

treatmemt. Capsaicin is also a hydrophobic drug and lipsomes were used in this dissertation as 

vehicles for its delivery into the bladder. A prior study from our lab has demonstrated therapeutic 

beneficial of instilling liposomes in the absence of any drug in a bladder injury model. In the 

current dissertation project the requirements of charge and structural elements required in the 

lipids for making biologically active liposomes in a bladder injury model were studied.  
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2. URODYNAMIC AND IMMUNOHISTOCHEMICAL EVALUATION OF 
INTRAVESICAL CAPSAICIN DELIVERY USING THERMOSENSITIVE HYDROGEL 

& LIPOSOMES 

 

Capsaicin is the pungent chemical obtained from red pepper has been used in urology to 

treat voiding dysfunction and bladder pain (48, 106, 148). A derivative of homovanillic acid, 

capsaicin is 8-methyl-N-vanilyl-6-nonenamide, possessing an aromatic ring, amide bond and a 

hydrophobic side chain as seen in the chemical structure of capsaicin making it a highly 

hydrophobic molecule, insoluble in water (Fig.3.1). Therefore, for intravesical application, 

capsaicin is usually formulated in normal saline solution (NSS) using 30% ethanol (149). This 

vehicle has been reported to aggravate the adverse histological changes such as, epithelium 

thining and submucosal edema produced by capsaicin (150).  

Thus, there is a need for better and safer vehicles for the water insoluble vanilloids. The 

undesirable use of ethanol to dissolve vanilloids, prompted the present investigation into the 

potential of hydrogel and liposomes as alternative vehicles. The hydrophobic nature of capsaicin 

makes it amenable for entrapment in the lipid bilayer of liposomes. The success of creams and 

gels as vehicles of capsaicin in topical treatment of peripheral neuropathy and herpes zoster 

neuralgia, guided us in considering hydrogel as an alternative vehicle for intravesical capsaicin 

(151). A polymer suitable for intravesical administration of capsaicin should be in the fluid state 

at the time of instillation and switch to the gel state after instillation. The triblock 

thermosensitive polymer PEG-PLGA-PEG selected for our experiments converts to gel owing to 

sol-gel transformation at body temperature (152). The polymer accomplishes the twin goals of 

semisolid consistency once inside the bladder and ability to be injected through a PE-50 catheter.  
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Figure 2.1: Chemical structure of capsaicin having an aromatic ring, amide bond and a hydrophobic side 
chain 

Pharmacological effect of capsaicin results from its action on vanilloid receptors VR-1, 

expressed on afferent nerves and urothelial cells (153). Activation of VR-1 produces a biphasic 

response, with initial stimulation driven by influx of Na+ and Ca2+ ion, and a delayed 

desensitization underlying the paradoxical analgesia produced by capsaicin (103, 154). C-fiber 

afferents involved in the micturition reflex are believed to be silent under normal conditions, but 

are activated after bladder irritation and spinal cord injury, to cause neurogenic detrusor 

overactivity (104, 105).  Successful treatment of neurogenic incontinence with intravesical 

capsaicin or its ultrapotent non pungent analog, resinferatoxin (40, 107, 155) has revealed the 

role of capsaicin-sensitive C-fibers in the triggering of bladder hyperactivity and bladder pain 

(107, 108). 

2.1. Methods  

 
2.1.1. Preparation of formulations for instillations 

2.1.1.1. Preparation of liposome:  
Liposomes were prepared as previously reported from our lab (156). Phosphatidylcholine, 

cholesterol and capsaicin in 2:1:1 mole ratio were coated inside the glass tube and dried in 

vacuum overnight to form a thin film inside the tube. The lipids were hydrated with normal 

saline the next day to form multilamellar vesicles. 
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2.1.1.2. Preparation of Hydrogel:   
Required amount of PEG-PLGA-PEG polymer was dispersed in 0.1 M phosphate buffer 

pH 7.4 to form a 30% w/v aqueous dispersion at room temperature. Aqueous dispersion of the 

polymer was prepared by constant vortex at room temperature. The prepared polymer dispersion 

was then added to the glass tube containing 1 mM capsaicin, with stock solution solvent ethanol 

previously removed by air drying. 

2.1.1.3. Preparation of Ethanolic Solution:  
Capsaicin was added from its stock solution to normal saline containing 30% ethanol to 

produce a 1mM of capsaicin solution.  

 
2.1.2. Instillation of Formulations of Capsaicin:  

1mM capsaicin entrapped in lipid bilayer of liposome, dispersed in the polymer or 

dissolved in ethanolic saline was instilled intravesically into the female Sprague-Dawley rats 

(200-300 g) (n= 8 for each group) under halothane anaesthesia (157). The volume for 

intravesical instillation was 0.5 ml for each formulation of capsaicin. Subsequent to instillation, 

the urethra was ligated to prevent evacuation and to allow enough time for gel formation in the 

bladder, the dwell time for all instillation was 30 min. Subsequently, bladders were emptied by 

pressing the lower abdomen and washed with 0.5 ml of saline. All the animals were also treated 

with antibiotic (Pen-strep, 30mg/kg, s.c.) to prevent infection.  

 

2.1.3. Cystometry  

  Animals were anesthetized with urethane (1.2 g/kg s.c.) before transurethral cystometry, 

48 h after intravesical instillation. PE50 tubing (Clay-Adams, Parsippany, NJ) was inserted into 

the bladder through the urethra. By means of a three way stopcock the catheter was connected to 

a pressure transducer for recording intravesical pressure and to a syringe pump for infusing 
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saline into the bladder. The catheter system was filled with 0.9% w/v saline. After the bladder 

was emptied, a cystometrogram (CMG) was performed by filling with a constant infusion (0.04 

ml/min) of saline. The amplitude, pressure threshold and frequency of reflex bladder contractions 

per minute were recorded. Measurements in each animal represented the average of 3 to 5 

bladder contractions.  

 
2.1.4. Histopathological analysis 

After cystometry, whole bladders were harvested, fixed in 10% buffered formalin, and 

cryopreserved. Tissue blocks were blind coded and sectioned (20 µm thickness) for 

haematoxylin and eosin (H& E) staining and immunohistochemistry of CGRP staining. 

Statistical analysis: Quantitative data are expressed throughout this paper as means plus or 

minus standard error. Multiple comparisons among the different groups were analyzed by a 

single-factor ANOVA, followed by post hoc comparisons with Newman Keuls test, according to 

the Graph Pad prism v. 3.0 (GraphPad Software, San Diego, CA). Differences among groups 

were considered significant at p <0.05.  

2.2. Results 

 

2.2.1. Effects of intravesical capsaicin on cystometrogram 

 In the cystometric studies in rats under urethane anaesthesia, with 30% ethanol and 

liposome as vehicles, capsaicin was able to produce blockade of micturition reflex shown in 

tracings F and G of Fig. 3.2, respectively. Absence of periodic bladder contractions in the CMG 

represents blockade of micturition reflex following capsaicin treatment, and raised plateau in 

intravesical pressure reflect urinary retention. The mean bladder contraction frequency was 
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considered zero for such animals, which was observed in 6 and 4 rats of the capsaicin treated 

groups using 30% ethanol (NSS) and liposomes, respectively (n=8).  
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Figure 2.2: Representative tracings of CMG from various groups. 

Starting from top tracing A is of normal saline treated rats, showing periodic micturition events under urethane 
anesthesia. Tracing B and C represents 30% ethanol and liposomes treated rats, respectively, in absence of capsaicin 
revealing the dissimilar effects of ethanol and liposomes on bladder afferents by decrease in bladder contraction 
frequency.  Tracings D and E are hydrogel treated rats in absence and presence of capsaicin, respectively, revealing 
a decrease in bladder contraction frequency in presence of capsaicin. Tracings F and G are from rats treated with 
liposomes and 30% ethanol, respectively, in presence of capsaicin showing complete blockade of micturition reflex 
in both cases.   

 
 

The remaining rats in capsaicin treated groups using ethanol (NSS) and liposomes 

showed decreased mean bladder contraction frequency with no significant difference between 

the two groups (0.01+0.006 vs 0.01+0.007, p>0.05). Representative tracing of CMG from 

various groups are shown in (fig. 2). Hydrogel in presence of capsaicin significantly reduced 
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mean bladder contraction frequency compared to hydrogel alone (0.10+0.021 vs 0.25+0.033), a 

similar significant difference of mean bladder contraction frequency was observed in ethanol 

(NSS) treated groups in presence and absence of capsaicin. Raised plateau of bladder contraction 

pressure reflects urinary retention. (0.01+0.00654 vs 0.12+0.021) (Fig.3.2). However, liposome 

treated groups failed to show significant difference in the mean bladder contraction frequency in 

presence and absence of capsaicin (0.01+0.007 vs 0.08+0.025).  
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Figure 2.3: Rat bladder contraction frequency 48 h after administration of capsaicin in various vehicles.  

All capsaicin treated groups showed significant difference from saline treated group (p <0.05).  Comparison of 
hydrogel treated group in absence of capsaicin with saline treatment; ethanol and liposome in presence of capsaicin; 
and liposome in presence and absence of capsaicin, respectively, was not significant (p >0.05). 

 
Mean bladder contraction frequency (0.25+0.033) of hydrogel treated rats in absence of 

capsaicin was lower but not significantly different from saline treated rats (0.28+0.02491) 

(p>0.05). Other CMG parameters such as pressure threshold and amplitude of bladder 

contractions were not affected by capsaicin treatment in various vehicles (data not shown). All 

capsaicin treated groups showed significant difference from saline treated group (p <0.05).  
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Comparison of hydrogel treated group in absence of capsaicin with saline treatment; ethanol and 

liposome in presence of capsaicin; and liposome in presence and absence of capsaicin, 

respectively, was not significant (p >0.05). 

2.2.2. Gross bladder morphology:  

None of the animals in our study, showed any signs of urinary tract infection after 

instillation of the intravesical solutions. However, as shown in (fig. 3.4), bladders treated with 

30% ethanol showed sign of severe redness throughout the bladder tissue, which turned to 

bleeding within the walls and ulceration at the bladder lumen, in presence of capsaicin (Panel C 

&D), in marked contrast to untreated bladders (panel A). Only dilatation of blood vessels at the 

bladder dome was visible in other vehicle treated groups (Panel B, E and G) in absence of 

capsaicin, which become more prominent in presence of capsaicin (Panel F and H). 
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Figure 2.4: Gross bladder morphology of rat bladder 48 h after administration of capsaicin in various 
vehicles. 

Panels a) and b) are of untreated and saline treated bladder, respectively. Panels c) and d) are of 30% ethanol in 
normal saline (NSS) treatment group in the absence and presence of 1mM capsaicin, respectively. Panels e) and f) 
are from liposome treated group in the absence and presence of 1mM capsaicin, respectively.  Panels g) and h) are 
of hydrogel treated group in the absence and presence of 1mM capsaicin, respectively. Photographs of previously 
fixed bladders were taken through dissecting microscope at 1X magnification. 
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2.2.3. Immunohistochemistry  

CGRP staining was performed to assess for depletion of CGRP by capsaicin. We found that 

capsaicin caused significant depletion of CGRP with both liposomes and ethanol as vehicles 

(Panel B and D of Fig.3.5). However, capsaicin in hydrogel failed to produce the depletion 

observed in liposome and ethanol treatment groups (Panel F). Primary rabbit polyclonal antibody 

bound to the CGRP containing nerve fibers is localized by Cyanine-3 fluorescently labeled 

secondary goat antibody. 

 

2.2.4. Effect on bladder histology  

Hydrogel and lipsosome without capsaicin demonstrated similar bladder mucosal histology 

(Panel C and E, respectively, of Fig.3. 6). Intravesical instillation of ethanol alone revealed 

distinct histological changes including, thinning and denuding of epithelium, submucosal edema 

and vascular congestion (Panel A). These changes were further aggravated by capsaicin and 

acute mucosal injury was visible in capsaicin with 30% ethanolic in normal saline treatment 

group (Panel B). On comparison, histological changes produced by capsaicin delivered using 

liposome and hydrogel appeared mild (Panel C to F, respectively), with urothelium remaining 

intact in presence of capsaicin. 
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Figure 2.5: Photographs of CGRP staining in rat bladder 48 h after administration of capsaicin in various 
vehicles.  

CGRP fibers are visible as bright red lines in the bladder photographs against a dull red tissue auto-fluorescence 
(marked by horizontal white arrows in the sections visible). Panel a) is control untreated rat bladder and panel b) is 
of 30% ethanol in normal saline (NSS) treatment group in presence of 1mM capsaicin. Panels c) and d) are from 
liposome treated groups in the absence and presence of 1 mM capsaicin, respectively.  Panels e) and f) are of 
hydrogel treated group in the absence and presence of 1mM capsaicin, respectively. Magnification was 20X in all 
panels. 
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Figure 2.6: Photographs of H& E staining of rat bladder 48h after administration of capsaicin in various 
vehicles.  

Lumen side of bladder is facing upwards in all photographs (marked by horizontal white arrow in all panels). Panels 
a) and b) are of 30% ethanol in normal saline (NSS) treatment group in the absence and presence of 1 mM capsaicin, 
respectively, showing partial to complete urothelial denudation and vascular congestion. Panels c) and d) are from 
liposome treated group in the absence and presence of 1 mM capsaicin, respectively, showing normal appearance of 
urothelium.  Panels e) and f) are of hydrogel in the absence and presence of 1 mM capsaicin, respectively, revealing 
intact urothelium. Magnification was 10X in all panels.   
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2.3. Discussion 

Traditional anticholinergic therapies of hyperactive bladder target the efferent branch of 

micturition reflex. Treatment on the afferent branch of micturition reflex by using C-fiber 

neurotoxin capsaicin is an attractive alternative that would avoid systemic anticholinergic side 

effects. The role of capsaicin-sensitive bladder afferents in micturition control and bladder 

irritation is collectively supported by both close apposition of VR-1-expressing fibers with 

bladder smooth muscle cells as well as urothelial expression of VR-1 (153, 158).  Intravesical 

instillation of capsaicin and RTX for treatment of detrusor overactivity not only reduces the 

problem of systemic neurological toxicity, intrinsic property of neurotoxins (159), but also 

eliminates their significant first pass effect (160). The presently accepted vehicle for intravesical 

capsaicin is 30% ethanol in saline. Unfortunately, the ethanol vehicle alone was observed to be 

just as irritating to the bladder mucosa as capsaicin itself in a study done on spinal cord injured 

patients (161-163). The pain and autonomic dysreflexia reported by some patients during and 

sometimes after the instillations has hindered wider application of intravesical vanilloid’s clinical 

use.  

In the present study, normal adult female rats were used to investigate the efficacy of 

capsaicin entrapped in the lipid bilayer of liposomes or multilamellar vesicles (MLV) and in the 

hydrophobic matrix of thermosensitive hydrogel. Micturition in such rats with an intact neuraxis 

is dependent upon a spinobulbospinal reflex activated by Aδ bladder afferents and their 

employment as animal model for comparison of efficacy for capsaicin formulations under 

urethane anaesthesia is based on extensive information published by various laboratories. Maggi 

et al (1990) reported that the facilitatory action of capsaicin-sensitive nerves on micturition 

threshold is more evident in anesthetized than awake rats and that capsaicin-resistant bladder 
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afferents are more sensitive to the depressant action of urethane than the capsaicin-sensitive 

afferents (164). Electrophysiological experiments showed that micturition reflex triggered by 

bladder distension during CMG conducted under urethane-anesthesia requires activation of a 

supraspinal reflex pathway (165).  A recent study by Chuang et al showed that afferent limb of 

the micturition reflex under urethane anaesthesia can be blocked by intravesical administration of 

RTX, another vanilloid drug (166).  

Given this knowledge of micturition control of normal rats under urethane anaesthesia, 

we expected to see blockade of the micturition reflex, as a successful endpoint of capsaicin 

delivery from various vehicles. Moreover, by using normal rats, we can avoid the variable 

influence of disease on the uptake of capsaicin from the different delivery systems. Damaged 

urothelium is more permeable than normal urothelium and it is possible that pathological 

conditions will induce a variation in study designed to examine capsaicin uptake from various 

vehicles (167).  

Aqueous solutions of poly(ethylene glycol)-b-poly (DL-lactic acid-co-glycolic acid)-b-

poly(ethylene glycol) (PEG-PLGA-PEG) triblock copolymers  form a free-flowing sol at room 

temperature which becomes a gel at body temperature (168). The amphiphilic nature of the 

polymer used in our study might be helpful in the permeation of drug substances through 

biological membranes. The slow erosion of this material in aqueous environments gives it a 

biodegradable and ultimately more biocompatible nature. We have chemically modified this 

polymer, to improve the robustness of the hydrogel to withstand urine constituents such as urea 

and electrolytes. We compared the effect of hydrogel and liposomes containing capsaicin with 

the usual vehicle (30% alcohol in saline) as a positive control in our study. The three vehicles, 

liposomes, hydrogel and 30% ethanolic saline were also tested in our study in absence of any 
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capsaicin. CMGs done after 48 h following intravesical instillation, demonstrated, that liposomal 

capsaicin was as successful as ethanolic capsaicin in blocking the micturition reflex in urethane 

anaesthesized normal rats.   

In a previous study, a large dose of capsaicin (50 mg/kg s.c.) elicited an acute block of 

bladder activity that persisted for 8-15 h (169). The longer duration of capsaicin (48 h) effect 

reported in the present study might be explained by high local concentration of capsaicin 

following intravesical administration, which would prevent first pass effect. The prolonged 

desensitizing effect of capsaicin in our present work corroborates the earlier report documenting 

the initial excitation produced by capsaicin following its intravesical delivery using liposomes of 

similar composition. As previously reported from our laboratory (156), liposomes alone in 

absence of capsaicin were able to reduce the bladder contraction frequency in normal rats and in 

bladder injury model.  Due to lack of any previous studies in the literature on the interaction of 

liposomes with urothelium surface, at this time we can only speculate on this observation in 

normal rats. Perhaps liposome treatment produces some alteration in the biophysical properties 

of urothelium and thereby affecting the afferent branch of micturition reflex. Compared to 

hydrogel and saline treated animals, 30 % ethanol (NSS) in absence of capsaicin reduced bladder 

contraction frequency as well as produce adverse histological changes in bladder. Possible 

damage to the afferents located near the urothelium by ethanol might explain both CMG and 

histological observations. 

Hydrogel with capsaicin was effective in reducing the bladder contraction frequency 

compared to vehicle controls of hydrogel and liposomes alone, but failed to produce overflow 

continence, a feature observed, when capsaicin was delivered using 30% ethanol and liposomes 

(170).  The difference seen with of capsaicin delivery in hydrogel treated animals may be related 
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to tight binding of capsaicin with hydrophobic chains of the polymer, rendering it unavailable for 

immediate effect. However, this study was done in normal bladders, and it would be interesting 

to see, how the biocompatible and emollient nature of liposomes and hydrogel affect capsaicin 

activity in a rat model of cystitis compared to 30% ethanol.  

At the cellular level, capsaicin acts by releasing CGRP stored in afferent fibers (171) and 

it was reported to produce reduction in suburothelial nerve densities in the bladder of patients 

with detrusor hyper-reflexia. This may explain its prolonged beneficial effect in these patients 

(103). Capsaicin delivered in liposome and ethanol vehicles was able to reduce the CGRP 

staining in bladders removed following the completion of CMG studies. H&E staining on 

formalin fixed bladder sections revealed disruptive effect of existing ethanolic vehicle on 

urothelium even in absence of capsaicin. Our results agree with those reported previously (150) 

as well as explain the discomfort felt by the patients following intravesical administration in an 

ethanol vehicle. 

Conclusions:  

The findings of our study support that liposomes are a superior vehicle for intravesical 

administration of capsaicin than 30% ethanol in terms of safety and comparable in efficacy. The 

evidence gathered in favour liposomal formulation of capsaicin in this pre-clinical study argues 

for clinical translation of this work, which is yet to be determined.  Hydrogel can be a safe 

alternative option for capsaicin delivery. The study failed to show any advantage of using 

hydrogel as a vehicle for capsaicin delivery. Thermosensitive hydrogel was further studied to 

demonstrate its utility as a vehicle for sustained intravesical drug delivery in chapter 4 of this 

dissertation. Next chapter 3 describes the study done to define the charge and structural elements 

required in liposomes for efficacy in hyperactive bladder. 
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3. CHARGE AND STRUCTURAL ELEMENTS REQUIRED IN LIPOSOMES FOR 
REDUCING BLADDER HYPERACTIVITY  

 

Liposomes are vesicles composed of concentric lipid bilayers separated by aqueous 

compartments. They can be adsorbed on to cell surfaces and create a molecular film on cell 

surfaces, which prompted their use in promotion of wound healing (172, 173). Studies done on 

canine kidney cells showed that low permeability of epithelial cell membranes results from the 

low fluidity of the apical membrane of superficial cells (174). It can be argued that the special 

composition and structural packing of lipids present in apical membrane of umbrella cells is a 

key factor in urothelial barrier function (175, 176). Moreover, umbrella cells can further 

strengthen their permeability barrier against urine by establishing asymmetry in the lipid 

composition of its apical membrane also called asymmetrical unit membrane (AUM) with 

different lipids in its outer exoplasmic and inner cytoplasmic leaflets (177).  Uroplakins may 

organize and rigidify the lipids in the outer leaflet and maintain the different composition of 

lipids in the two leaflets (178, 179). Phospholipid flippases can restrict intermingling of lipids 

assigned to the two leaflets by trans-orienting phospholipids in an energy-dependent process from 

one leaflet to the other  (180). Tight junctions present in urothelium can also assist in 

establishing this bilayer asymmetry by helping the segregation of exofacial and cytoplasmic 

leaflet of the apical membrane in addition to maintaining epithelial polarity by segregating 

basolateral membrane from apical membranes (181, 182).  

 The surface area of the apical plasma membrane is much smaller than that of the 

basolateral membrane and apical membrane of umbrella cells is proposed to have different lipid 

composition in its two leaflets the based on studies done on apical membrane of canine kidney 

cells (183). The outer leaflet seems to have glycosphingolipid GSL (such as cerebrosides), 
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sphingomyelin (SPM), phosphatidylcholine (PC), and cholesterol whereas the inner cytoplasmic 

leaflet has phosphatidylserine and phosphatidylethanolamine (11, 184-186). The proposed 

asymmetric lipid composition agrees with earlier reports showing preponderance of choline-

containing lipids in the exofacial leaflet and localization of amino-containing phospholipids at 

the cytoplasmic side (187).  The importance of bilayer asymmetry in apical membrane of 

epithelial cells such as gastric apical vesicles has been demonstrated and changes in the lipid 

composition of artificial apical membrane markedly increased the water, proton, and 

nonelectrolyte permeabilities (188). A similar study done on liposomes having lipid composition 

derived from the exofacial leaflet of apical membrane in dog kidney cell also showed an 

increased  permeability towards solutes following removal of SPM and GSLs from the lipid 

composition of liposomes (184). 

Disruption in the permeability barrier of urinary bladder has been one of the accepted 

theories to explain the pathogenesis of IC (23). Previously, our lab has reported the development 

of an effective rat model of bladder injury which can simulate the condition of breached bladder 

permeability barrier observed in IC patients (189, 190). This reproducible method involves 

inducing selective damage to the upper layers of the urothelium or umbrella cells by infusion of 

protamine sulfate PS followed by potassium chloride to exhibit bladder hyperactivity in 

cystometrogram (CMG) of bladder, a prominent symptom of IC.  It has been shown that PS can 

induce nonselective pores in the apical membrane, leading to irreparable cell damage in rabbit 

bladder (191, 192). PS is a cationic peptide found in the sperms of animals, which can interact 

with anionic charged layer of surface glycosaminoglycans found on urothelial cells or specific 

lipids present in the apical, but not in its basolateral, membrane (10, 193, 194). The induced 

damage following intravesical instillation can be restricted to only the umbrella cell layer by 
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optimizing the concentration of protamine sulfate and its duration of infusion into the bladder 

(195). 

A dysfunctional urothelium can allow the transepithelial migration of solutes such as 

potassium, which can depolarize subepithelial afferent nerves and can initiate and provoke 

inflammation (11). The resultant increased afferent excitability and tissue irritation can lead to 

urinary frequency and urgency so as to reduce the effect of urine on the bladder wall (11, 196). 

The permeability barrier of bladder has been demonstrated to be disturbed in a feline model of IC 

and a majority of IC patients (22, 194). In a previous report from our lab, liposomes formulated 

with egg PC and cholesterol in 2:1 molar ratio were effective in reducing bladder hyperactivity 

in protamine sulfate bladder injury model (156). Liposomes of similar composition were used as 

vehicles for delivery of capsaicin in uninjured bladders, in the study described in chapter 2 of 

this dissertation project. As discussed earlier liposomes in absence of capsaicin were able to 

decrease the bladder contraction frequency of rats under urethane anesthesia (197).  

The present study was prompted to identify the bioactive component in egg PC that is 

responsible for reducing bladder hyper-activity, as the egg PC used in our earlier study was only 

60% pure. Experiments were designed to elucidate the charge and structural elements necessary 

in the lipids for affecting the physiological response of bladder. We evaluated the effect of 

liposomes prepared from various pure natural and synthetic lipids in the bladder injury model. 

The effect of removing cholesterol in the liposomal formulation was also studied by assessing 

the effect on CMG. Synthetic lipids having acyl chain lengths similar to natural lipids but 

varying in degree of saturation and charge on the headgroup were also tested for efficacy in the 

bladder injury model (Fig.3.1 & 3.2). 

49 



3.1. Methods 

 
3.1.1. Preparation of Liposomes 

L-α-phosphatidylcholine (egg), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-distearoyl-

sn-glycero-3-phosphocholine (DSPC), 1-oleoyl-2-stearoyl-sn-glycero-3-phosphocholine 

(OSPC), sphingomyelin, sphingosine and ceramide were obtained from Avanti Polar Lipids and 

dihydrosphingomyelin was obtained from bio-labs, Israel.  
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Figure 3.1:Pure natural lipid egg PC and its synthetic analogues varying in acyl chain length and saturation. 

L-α-Phosphatidylcholine(egg), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 

 

50 



Liposomes were prepared by adding the lipids in chloroform around the round bottom 

flask, solvent was removed under a stream of nitrogen and then lipids were dessicated under 

vacuum for 4h. Dried lipids were hydrated with saline containing 500 mM KCl  at the 

temperature above their respective transition temperatures by sonication for ~5 min. Liposomes 

were prepared at a final lipid concentration of 2.6mM (2 mg/ml).  
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,2-distearoyl-sn-glycero-3-phosphocholine(DSPC),1-oleoyl-2-stearoyl-sn-glycero-3-phosphocholine (OSPC). 

.1.2. Cystometry and drug application.  

Bladder reflex activity of Sprague-Dawley rats (200-250 g) was studied by cystometry 

erformed under urethane anesthesia (1.2 g/kg, s.c.). Their body temperature was maintained in 

he physiologic range using a heating lamp. A transurethral bladder catheter (PE-50) connected 
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by a three-way stopcock to a pressure transducer and to a syringe pump was used to record 

intravesical pressure and to infuse solutions into the bladder. A control cystometrogram (CMG) 

was performed by slowly filling the bladder with saline (0.04 ml/min) to elicit repetitive voiding. 

The bladder contraction frequency of the reflex bladder contractions was recorded.  

 
3.1.3. Induction of a hyperactive bladder 

After performing control CMGs with saline infusion for 3h, PS (Sigma Chemical; 10 

mg/ml) was infused at rate of (0.04 ml/min) for 1h to increase epithelial permeability followed 

by infusion of KCl (500 mM) for 1 h. Subsequently liposomes prepared in KCl were infused for 

2 hours. The KCl concentration was within the range of concentrations present in normal rat 

urine (198).  

 
3.1.4. C-fos Immunohistochemistry 

Activation of nociceptive primary sensory neurons resulting in pain-related behavior in 

animals evokes enhanced c-fos expression in the spinal cord (199). Rats were perfused through 

the ascending aorta with 400 ml of 0.9% w/v saline followed by 400 ml of 4% paraformaldehyde 

in 0.1M phosphate buffer, pH 7.4. The L6 spinal segments were removed and post-fixed for 12h 

into the same fixative at 4°C followed by immersion overnight in 30% sucrose in phosphate 

buffer. Spinal segments were cut by a freezing microtome into 40 µm transverse sections. After 

sectioning of spinal cords from all the animals, sections were washed with PBS and incubated in 

the same bath with a polyclonal antiserum against the c-fos protein raised in rabbit (diluted at 

1:15000; Santa Cruz Biotechnology) for 72h. The immunoreaction was visualized by the ABC-

HRP method (Vector Elite kit; Vector Laboratories, Burlingame, CA). Spinal c-fos expression 
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was analyzed by calculating the mean mean number of fos-immunoreactive cells found in the 

appropriate four animals. 

 
3.1.5. Statistical analysis 

Quantitative data are expressed as means plus or minus standard error. Multiple 

comparisons among the different groups were analyzed by a single-factor ANOVA, followed by 

post hoc comparisons with Newman Keuls test, according to the Graph Pad prism v. 3.0 

(GraphPad Software, San Diego, CA). Differences among groups were considered significant at 

p <0.05.  

3.2. Results 

 
3.2.1. Effect of Charge on the Headgroup 

We first determined the effect of charge carried by lipids in reducing bladder activity. 
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Figure 3.3: Effect of Charge carried on lipid headgroup in reducing bladder hyperactivity. 

The black arrow marks the start of infusion of liposomes in presence of the irritant 500 mM KCl.  Zwitterionic lipid 
egg PC were significantly better than lipids having negative or positive charge in their headgroup, L-α-
phosphatidylserine (POPS) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). 
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Liposomes prepared with zwitterionic lipid egg PC were compared against lipids having 

positive or negative charged polar headgroups. 1,2-dioleoyl-3-trimethylammoniumpropane 

(DOTAP) and L-α-phosphatidylserine (POPS) represented the positively and negatively charged 

lipid, respectively. Liposomes made from lipids with phosphaditylcholine (PC) head group were 

able to suppress chemically induced bladder hyperactivity to a significantly greater extent than 

lipids having cationic or anionic charge such as DOTAP and phosphatidylserine, i.e. POPS 

(Fig.3.3).  L-�- PC was able to produce a three fold higher (33 + 5.3%) reduction in the bladder 

contraction frequency over its pretreatment control compared to DOTAP (10 + 0.09%) and 

POPS (5 + 0.02%), number of rat in each group was 5 (p<0.01) 

 
3.2.2. Effect of Cholesterol on Bladder activity: 

Lipsomes prepared from pure natural lipids by exclusion of cholesterol were able to 

reduce bladder hyper activity. 
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Figure 3.4: Effect of cholesterol inclusion in the liposomes prepared from synthetic and natural lipid 

The black arrow marks the start of infusion of liposomes in presence of the irritant 500mM KCl and liposomes in 
absence of cholesterol were able to reduce bladder hyperactivity as evident from decreased bladder contraction 
frequency following the start of liposome infusion compared to the bladder contraction frequency prior to the black 
arrow. L-α phosphatidylcholine L-α-PC and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). p>0.05 
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Inclusion of cholesterol in the liposomal formulation of pure synthetic lipids at 2:1 molar 

ratio did not significantly alter the protection afforded by liposomes prepared without including 

cholesterol in their formulation (Fig. 3.4).  
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 3.5: Natural egg PC and analogue synthetic lipids infused into hyperactive bladder in absence of 
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tic lipids having saturation pattern similar to natural egg PC such as POPC and OPPC were effective in 
g bladder hyperactivity as evident from decreased bladder contraction frequency following the start of 
e infusion compared to the bladder contraction frequency prior to the black arrow. 1-palmitoyl-2-oleoyl-sn-
-3-phosphocholine (POPC), 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (OPPC), 1,2-dipalmitoyl-sn-
-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 

nfusion of PS (10 mg/ml) did not significantly change the CMGs. However, subsequent 

on of KCl resulted in an irritative effect after a delay of 30 to 40 minutes. Liposomes were 

55 



infused in presence of KCl to demonstrate immediate benefit of liposomes on injured urothelium 

in the presence of an insult (KCl). 

 
3.2.3. Pure Natural & Synthetic Lipids  

Pure natural and synthetic lipids were used to make liposomes in 500mM KCl with 

concentration of total lipids being 2mg/ml. Synthetic lipids possessing average saturation state in 

acyl chains similar to natural lipids were preferred in reduction of bladder hyperactivity.  
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Figure 3.6: Liposomes prepared from SPM, DHSPM and pure synethetic lipid having one of acyl chain 
derived from stearic acid  

Sphingomyelin was able to reduce the bladder hyperactivity in presence of KCl significantly more than 
dihydrosphingomyelin and pure synthetic lipids as evident from decreased bladder contraction frequency following 
the start of liposome infusion compared to the bladder contraction frequency prior to the black arrow. 1,2-distearoyl-
sn-glycero-3-phosphocholine(DSPC), 1-Oleoyl-2-Stearoyl-sn-Glycero-3-Phosphocholine (OSPC). 
 
 

Lipids having either both chains of unsaturated acyl chains or saturated acyl chains 

showed significantly reduced activity (Fig.3.5). Egg PC does not contain fatty acyl chains shorter 
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than 16 carbons, but it does contain minor amounts of lipids having one of the acyl chains 

derived from stearic acid. Therefore, liposomes prepared from lipids having steraoyl acyl chains 

were also tested to study their effect on bladder hyperactivity.  We observed a similar pattern of 

difference in biological activity with respect to the degree of saturation in the chains (Fig.3.6). 
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Figure 3.7: Percent decrease in bladder contraction frequency of rat bladder with liposomes. 

Sphingomyelin was able to significantly increase the percent decrease in bladder contraction frequency (BCF) 
compared to dihydrosphingomyelin and other lipids tested in the study. *p<0.05; n=7 

 
 
Optimal activity was found when only one of the linked acyl chains was unsaturated. 

witching the position of unsaturation from one chain to the other sn-2 to sn-1 did not produced 

 significant difference in the efficacy of 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine 

(OPPC) compared to POPC (p>0.05, n=5) Another lipid present as one of the impurities in the 
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egg PC is sphingomyelin SPM, which contains the same polar headgroup phosphocholine, but 

differs in hydrophobic backbone. Sphingomyelin was found to be the best among the lipids with 

PC head group in reducing the bladder contraction frequency (Fig. 3.7).Unlike other natural 

lipids, sphingomyelin possess a trans double bond and we investigated the efficacy of SPM in 

absence of that double bond i.e. dihydrosphingomyelin(DHSPM) demonstrated efficacy similar 

to natural lipids and synthetic lipids having saturation in only one of the acyl chains (Fig. 3.6, 

Fig.3.2). 

 
3.2.4. Fluorescencent Lipids  

 

A B

C D

A B

C D

Figure 3.8: Photographs of cryosections of injured rat bladder following administration of liposomes 

Panel A is liposome prepared with DOPC +1 mol%1-oleoyl-2-[6-{(7-nitro-2-1,3-benzoxadiazol-4-
yl)amino}hexanoyl]-sn-glycero-3-phosphocholine, C-6 NBD PC and panel B is SPM liposomes with 1mol% N-[6-
{(7-nitro-2-1,3-benzoxadiazol-4-yl)amino}dodecanoyl]-sphingosine-1-phosphocholine (C12-NBD Sphingomyelin). 
Bright green fluorescence of NBD was visible in both the treatment groups represented in. panel A & B. Panel C & 
D are merged images of A&B on their respective bright field images, respectively. Lumen side of urothelium having 
fluorescence is marked by white arrows and magnification is 10X. 
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We initially suspected that activity or inactivity of liposomes is related to their ability to 

adhere or coat the bladder surface. To evaluate the ability to adhere to the bladder surface, the 

liposomes were prepared having 1mol% of fluorescent lipid having the fluorescent label in the 

hydrophobic backbone. Liposomes of the most active lipid SPM were compared against the 

inactive lipid DOPC, following the addition of 1mol% lipid N-[6-[(7-nitro-2-1,3-benzoxadiazol-

4-yl)amino]dodecanoyl]-sphingosine-1-phosphocholine (C12-NBD Sphingomyelin) and 1-

oleoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-sn-glycero-3-phosphocholine, 

C-6 NBD PC respectively. The cryosections of rat bladder taken after completion of CMG 

showed a layer of bright green fluorescence from NBD adhering to the bladder surface (Fig.3.8). 

 
3.2.5. Inclusion of SPM Metabolites 

Data shown in Fig, 3.8 ruled out our initial assumption that active lipids have the better 

ability to coat the bladder surface than inactive lipid.  
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DSPC
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DOPC+1% Sphingosine

*

%Reduction in Bladder Contraction Frequency
 

Figure 3.9: Effect of adding SPM and its metabolites to DSPC and DOPC liposomes.  

Addition of sphingosine and ceramdie at 1mol% to DSPC liposomes significantly increase the percentage reduction 
of bladder contraction frequency but there was only slight increase in DOPC liposomes. Adddition of SPM to DSPC 
metabolites did not alter the efficacy of DSPC liposomes. 
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The active lipid SPM devoid of its phosphorylcholine head group is ceramide which is a 

well-known lipid second messenger that mediates a wide range of cellular responses to external 

stimuli and also used for the biosynthesis of SPM and glycosphingolipids. Since ceramide cannot 

form stable liposomes, we have to test its effect on hyperactive bladder by including it at 1 mol% 

in an inert lipid such as DSPC or DOPC.We studied the changes in the efficacy of DSPC 

following inclusion of C18 ceramide.As shown in Fig.3.9, ceramide was able to significantly 

increase the efficacy of DSPC liposomes. 
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ure 3.10: Effect of including Sphingosine-1-phosphate on efficacy of DSPC liposomes.  

gher concentration of S1P was required for improving efficacy of DSPC liposomes and S1P at lower mole 
rcentages did not have positive effect on the efficacy of DSPC liposomes. 
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Inclusion of 1mol% of sphingosine to DSPC liposomes also had similar effect, but 

addition of sphingosine to DOPC caused only a modest increase in their efficacy. The difference 

in the DOPC and DSPC liposomes to the addition of sphingsine indicates a hydrophobic 

mismatch in DOPC liposomes with sphingosine. In our experiments, addition of sphingomyelin 

at 1mol% to the DSPC liposomes did not increase the efficacy of DSPC liposomes. These 

observations seem to indicate that metabolites of SPM at the low concentration of 1mol% are far 

more active than the parent compound itself. Interestingly, inclusion of sphingosine-1-phosphate 

S1P, another SPM metabolite at 1 and 2 mol% as used for ceramide and sphingosine did not 

produce similar changes in the efficacy of DSPC liposomes. S1P is a bioactive lysophospholipid, 

whose diverse can involve both intracellular and extracellular actions (Fig. 3.10). S1P has to be 

included at 5 mol% to demonstrate any increase in the efficacy of DSPC liposomes. Perhaps at 

higher concentration, the lysophospholipid can cross the cell membrane and act intracellulary to 

produce the beneficial effect. 

 
3.2.6. Spinal C-fos expression 

Immunohistochemical staining of the L6 spinal cord revealed that KCl infusion following 

the protamine sulfate infusion in rat significantly increased the total number of Fos-positive cells 

in the L6 spinal cord. Fos-positive cells were identified as dark spots within nuclei and positive 

cells were distributed in three main areas, lamina I, intermediolateral gray matter and dorsal 

commissure. Infusion of sphingomyelin liposomes in presence of KCl was able to significantly 

reduce the number of Fos-positive neurons (Fig. 3.11 & 3.12). DOTAP liposomes failed to 

reduce the number of Fos-positive cells compared to KCl infusion. Liposomes prepared with 

DHSPM also produced reduction in Fos-positive cells, but the difference was not significant with 

respect to SPM. 
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Figure 3.11: Number of Fos-positive cells in spinal cord of rat with hyperactive bladder  

Intravesical infusion of KCl following protamine sulfate infusion was able to significantly increase the spinal c-fos 
expression in the L6 segment. Sphingomyelin was able to prevent the KCl evoked increase in the number of Fos-
immunopositive cells. *p<0.05.Error bars indicate SEM, n= 4. 
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Figure 3.12: Representative transverse sections of spinal cord of rats following liposome instillation. 

Sections were obtained immediately after infusion of either potassium chloride alone or in presence of liposomes. 
The number of dark sports (identified by white arrows) are significantly higher in Panel A of rat infused with KCl.  
Panel B is SPM and panel C is DOTAP and panel D is DHSPM. 
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3.3.  Discussion 

 

One of the most impermeable and tightest membrane barrier in the human body is erected 

by tight junctions and uroplakins of umbrella (transitional) cells in concert with  exceptionally 

low permeability of their apical membrane (186, 200-203). Investigations into the primary 

antibacterial defense mechanisms of the bladder revealed that luminal mucopolysaccharide, the 

glycosaminoglycans (GAG) layer on the surface of transitional cells is the principal barrier to 

permeability (204-206). Exposure to protamine sulfate, can compromise the GAG layer as 

revealed by a precipitous decrease in transepithelial resistance and marked increase in 

permeability of rat urothelium (195). Scanning and transmission electron microscopic 

examination of bladder treated with PS showed necrosis and sloughing of sheets of umbrella 

cells (207). 

It is believed that a subset of patients with IC seem to have defective GAG layer, and 

goal of restoring it back and palliation of IC symptoms in the process prompted intravesical 

administration of heparin, hyaluronic acid, or pentosan polysulfate (55, 56).  Although effective 

in one third of IC patients, oral administration of heparinoid-based therapy (pentosan polysulfate 

sodium) may require several months or more to provide any relief of pain and 

urgency/frequency.  Intravesical administration of GAG analogues such as pentosan polysulfate 

sodium also fails to produce immediate and sustained relief of IC symptoms (208).  

The present study was undertaken for studying the key structural elements necessary for 

efficacy of liposomes in hyperactive bladder. Previous report published from our lab, showed 

that infusion of liposomes produces an immediate decrease in bladder contraction frequency 

even in the presence of provoking agent, KCl (156). In the current study, liposomes were 
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prepared from lipids with variation in the charge carried by the polar headgroup and variation in 

hydrocarbon domain of lipid with respect to saturation and length. As reported earlier also, we 

found that neutral zwitterionic lipids are significantly effective in reducing bladder activity 

compared to anionic charged and cationic charged liposomes. Moreover, infusion of liposomes 

prepared with only pure natural lipid egg PC also produced reduction in bladder contraction 

frequency comparable to liposomes composed of pure egg PC and cholesterol. We observed 

similar results with infusion of liposomes from pure synthetic lipids in absence or presence of 

cholesterol. This led us to conclude that cholesterol is not necessary for the action of liposomes 

in hyperactive bladder.  

The experimental design of this study also sought to identify the active component in the 

liposomes used in earlier study, which were formulated with impure egg PC and cholesterol in 

2:1 molar ratio. The fatty acid distribution of egg PC is heterogeneous with a degree of 

unsaturation varying on average up to 0.35 cis-double bonds per molecule. A ratio of approx. 

0.82 exists between saturated and unsaturated fatty acids with 34% of palmitic, 32% of oleic acid 

and 11 % of stearic acid and 16% of linoleic acid. The bladder injury model used in our earlier 

study was also used in the current study to evaluate the liposomes prepared from lipids 

possessing homogenous distribution of fatty acids. Liposomes prepared with 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC) were able to reduce bladder hyperactivity with 

efficacy similar to pure egg PC.  

POPC has the chemical structure identical with the representative structure of the major 

lipid present in pure egg PC, indicating that pure synthetic lipids possessing similar acyl chain 

length and saturation can demonstrate the activity of natural egg PC. Absence or presence of 

saturation in the acyl chain linked at sn-2 position of POPC led to parallel changes in the activity 
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of liposomes. Presence of saturation in the acyl chain linked to the sn-1 and sn-2 position was 

detrimental to the efficacy of liposomes as is evident from liposomes prepared with 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) having both chains saturated. Same was true 

for lipids having both chains unsaturated, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) as 

DOPC liposomes were significantly less effective in reducing bladder hyperactivity than POPC 

or pure egg PC. Switching the position of unsaturation from one chain to the other did not 

drastically reduce the efficacy of POPC as was evident from the activity of 1-oleoyl-2-palmitoyl-

sn-glycero-3-phosphocholine (OPPC). Similarly, when both chains of DOPC were saturated as 

in 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC) , the efficacy was minimal. However, 

efficacy of 1-oleoyl-2-stearoyl-sn-glycero-3-phosphocholine OSPC was comparable to POPC, as 

saturation was absent in one of the chains.  

We observed that infusion of micelles prepared with platelet activating factor PAF, 1-O-

alkyl-2-acetyl-sn-glycero-3-phosphocholine at same lipid concentration as used for liposomes in 

hyperactive bladder further increased the bladder frequency (data not shown). Moreover, 

liposomes prepared from DMPC also failed to reduce the bladder hyperactivity in our studies 

(data not shown). DMPC has saturation in both acyl chains and they are also shorter than those 

found in egg PC. It was determined that there is a requirement for optimal acyl chain length in 

the efficacy of liposomes in hyperactive bladders. It appears that liposomes prepared from lipids 

having acyl chain lengths shorter than those found in natural lipids in cell membranes do not 

have efficacy in hyperactive bladder.  

Phospholipids with saturated fatty acid chains are known to form more rigid and stable 

membranes than natural phospholipids. Presence of double bonds imposes different packing 

constraints, creates disorder in hydrophobic region of the lipid bilayer and influence fluidity, 

65 



surface curvature, and nonlamellar phase forming of liposomes such as reverse hexagonal HII 

phase (209). In a previous study, liposomes prepared from phospholipids of natural origin (egg 

PC) could inhibit generation of superoxide anion O-2 in neutrophils to a far greater extent than 

liposomes prepared with saturated lipids such as DPPC (210). The activation of neutrophils is in 

part dependent on protein kinase C (PKC) and reduction in free radical seems to be a result from 

modification in the activity of NADPH oxidase and PKC. It is known that interaction of 

phospholipids with various forms of membrane associated protein kinase C (PKC) is drastically 

influenced by the saturation in the acyl chains of phospholipids. Symmetrically saturated 

phospholipids such as DPPC cannot inhibit PKC in nuetrophils, whereas natural lipids such as 

egg PC having asymmetric saturation in its acyl chains can inhibit PKC (211). It is a accepted 

fact that activation of PKC is greatly enhanced by unsaturated phospholipids such as DOPC than 

by saturated phospholipids and micelles of PC can activate PKC to greater extent than PC 

liposomes (212, 213). A specific lipid-protein interaction was ruled out by the unchanged 

activity of PKC following alteration in the degree of acyl chain unsaturation and positioning of 

the double bond  (213).  Addition of cholesterol to both saturated and unsaturated systems did 

not affect the PKC activation indicating fluidity is not a factor (213).  

Our observations on reduction of bladder hyperactivity with regard to liposomes prepared 

with lipids having asymmetric saturation in acyl chains and lack of benefit from inclusion of 

cholesterol seems to agree with previously reported work done on interaction of phospholipids 

with PKC. Exogenous administration of liposomes having saturation in only one of the acyl 

chains seems to reduce bladder hyperactivity by modulating the activity of PKC in addition to 

suppressing the activity of free radical generating enzymes in the inflamed condition of rat 

bladder (214). Symmetrically saturated DPPC and DSPC liposomes failed to show activity in our 
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study, perhaps due to decreased affinity for binding with PKC (215).  DOPC liposome having 

unsaturation in both acyl chains is most suitable to bind and activate the PKC activity, although 

PKC activation may already be maximal in the injured bladder following potassium chloride 

infusion and PKC activity cannot be increased any further (216). 

PKC is a key element of signal transduction and it is representative of a class of extrinsic 

membrane proteins that show lipid dependent interactions with cell membranes. Translocation 

from the cytosolic to membrane fraction of the tissue lysate following tissue injury indicates 

activation PKC (217). PKC appears to be a central player in orchestrating the inflammation and 

the role of PKC isoforms, specifically PKCδ and PKCε in mediation of intestinal inflammation 

has been previously reported (218). The phorbol ester induced nuclear translocation of annexin 

A1 , a calcium-dependent, phospholipid binding protein, can be inhibited by the PKCδ- specific 

inhibitor rottlerin, indicating that inhibition of PKCδ reduces inflammation by inhibiting  nuclear 

translocation of the cleaved annexin A1 (219).  

SPM is one of the several lipids constituting the 13% of other neutral lipids in impure egg 

PC. SPM belongs to the class of sphingolipids, a member of a diverse family of phospholipids 

and glycolipids mediating cell-cell interactions through different signal transduction pathways 

(220). Interestingly, more than half of the total phospholipid content in eukaryotic membrane 

lipids is constituted by SPM and PC, residing mostly in the outer leaflet of plasma membranes 

(221). Egg PC and SPM shares the same polar headgroup, but they differ in the interfacial and 

hydrophobic parts of the molecules such as the higher average saturation state of SPM's acyl 

chains and the greater capacity of SPM to form inter- and intramolecular hydrogen bonds, which 

can lead to significant deviations in the macroscopic properties of respective bilayers (liposomes) 

(Fig.1 & 2) (222).  
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Of all the pure lipids evaluated in our study, SPM was able to significantly reduce the 

bladder activity compared to other treatment groups. SPM contains both hydrogen bond donating 

and accepting groups, while PC only has hydrogen bond accepting groups (222). SPM molecules 

present in mammalian systems usually constitute a mixed population of different amide linked 

acyl chains, their length ranging from 16 to 24 carbons. The most common base in mammalian 

SPM is sphingosine (1,3-dihydroxy-2-amino-4-octadecene), with a chain length of 18 carbon 

atoms and a trans double bond between C4 and C5. Loss of C4-C5 double bond significantly 

reduced the efficacy, as evident from the CMG of rat treated with liposomes prepared with 

dihydrosphingomyelin DHSPM (Fig.2.7). Differences in the efficacy of liposomes prepared from 

SPM and DHSPM was also reflected in the number of cells stained positive for c-fos in the L6 

spinal cord of rat. SPM liposomes were able to reduce the number of Fos-positive cells. C-fos is 

a generic marker for trans-synaptic activity in the spinal cord and the increased number in the 

rats instilled with DOTAP and KCl alone signify bladder irritation (223). The decreased fos-

positive cells in the spinal cord of rats treated with SPM indicate suppression of irritation in 

prescence of KCl. 

It has been shown that lack of the trans-double bond C4-C5 in DHSPM  allows formation 

of more ordered membranes with a higher melting temperature (Tm) compared to acyl-chain-

matched SPM (224). Lipid bilayers of DHSPM pack more tightly, and NMR spectral trends 

suggest DHSPM have stronger intermolecular interactions in the lipid bilayer and SPM form 

more stable intramolecular hydrogen bonds between OH group in sphingosine moiety and the 

phosphate ester oxygen (225, 226). DHSPM and SPM interact differently with water molecules 

and the intramolecular hydrogen bond can be stabilized by two tightly bound water molecules 

participating in flip-flop interactions with the hydroxyl group (227). 
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Further, NMR study revealed that absence of double bond in biologically inactive 

dihydroceramide produced from DHSPM has reduced stabilization of intramolecular hydrogen 

bond than bioactive ceramide (228). Intramolecular hydrogen bond in ceramide is formed by 

hydrogen donating NH group on C1 of the sphingosine backbone and hydrogen accepting OH 

groups on carbon C3. The differences in the hydrogen bonding behavior of SPM and DHSPM is 

known to influence the fusion of Semliki forest virus with liposomes as only SPM can fuse with 

the virus (229, 230). Among other notable difference in the biophysical properties of DHSPM in 

lipid bilayers is the dramatic alteration in the transbilayer distribution of galactosylceramide in 

SPM/POPC vesicles following inclusion of 2 and 10 mol% DHSPM (231, 232).  

Moreover, it has been well established that metabolites of sphingomyelin, such as 

ceramide, sphingosine and sphingosine-1-phosphate (S1P) are bioactive lipids mediating 

essential biological functions such as chemotactic motility, calcium homeostasis, cell growth, 

cell death, and differentiation. Ceramide is formed by the hydrolysis of sphingomyelin by 

sphingomyelinase, which is activated probably as a result from agonist-induced activation of 

several receptors for tumor necrosis factor-α, γ-interferon, and interleukin-1 (233). Enzymatic 

formation of ceramide from sphingomyelin can result in aggregation and partial fusion of 

liposomes to cell membranes (234). Generation of ceramide from sphingomyelin can be 

catalyzed by at least five different sphingomyelinases; neutral sphingomyelinase in plasma 

membrane and cytosol, acid sphingomyelinases in endosome and lysosomes (235).  

Sphingosine can be generated from ceramide by action of ceramidase is also a negative 

effector of PKC action like ceramide (Fig. 2.13), which has been recently shown to reduce 

interleukin-2 production in Jurkat cells by inhibiting PKC-mediated activation of NF-κB (236).  

Emerging evidence also suggests that sphingomyelin-enriched lipid domains or "rafts" may serve 
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as substrate pools for sphingomyelinase-induced formation of ceramide microdomains that act as 

platforms from which these signal transduction cascades originate (237). Sphingosine can 

prevent activation of PKC by platelet-derived growth factor, bradykinin, and phorbol esters (238) 

Higher efficacy of SPM in reducing bladder hyperactivity observed in our study seems to emerge 

from its effect via dual pathways, SPM can act through the suppression of free radicacl 

generation and PKC inhibition similar to egg PC in addition to the metabolites of SPM further 

augmenting the effect produced by PKC inhibition. The DHSPM do not have the added effect of 

its metabolite in reduction of bladder hyperactivity and therapeutic benefit of DHSPM in 

hyperactive bladder is perhaps the results of its action via the pathway of egg PC. DHSPM is 

probably suppressing the generation of free radicals in the injured urothelium or it is modulating 

the activity of PKC. Translocation of PKC βII to the nucleus in phorbol ester stimulated HEK 

293 cells was inhibited by the addition of exogenous ceramides or formation of endogenous 

ceramide by the action of bacterial sphingomyelinase (239).  

We hypothesized that SPM higher activity of SPM over PC and other synthetically active 

lipids can be explained by the generation of metabolites. To test the hypothesis, we studied the 

effects on CMG following the inclusion of ceramide and sphingosine at low mole ratios in 

inactive lipids determined earlier such as DOPC and DSPC. Sphingosine has a long hydrophobic 

tail and a polar head containing a proton trapping amino group which allow it to act as a 

detergent on protonation (Fig.3.13). The charged form of sphingosine will predominate at the 

acidic pH of the lysosome and subsequent lysosome rupture can release proteases to induce 

apoptosis (240). Apoptosis of neutrophils and other inflammatory cells can contribute to the 

beneficial effect seen in the CMG of animals infused with ceramide and sphingosine. Inclusion 

of sphingosine was able to significantly increase the protection afforded by DSPC but not in 
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DOPC.  It appears that hydrophobic mismatch of the acyl chains may be responsible for these 

observations. Similar changes in efficacy of DSPC were obtained with ceramide at 1 mol%. 

Therapeutic benefit observed with inclusion of ceramide and sphingosine is probably in part 

mediated by inhibition of PKC as previously discussed for egg PC and synthetic lipids having 

asymmetric saturation. Interestingly, inclusion of sphingosine-1-phosphate at 1 and 2 mol% as 

used for ceramide and sphingosine did not produce similar changes in the efficacy of DSPC 

liposomes (Fig. 2.9). S1P is a bioactive lysophospholipid, whose diverse extracellular effects are 

clearly mediated through the activation of five specific G protein coupled receptors, called S1P 

receptor 1-5 (previously known as endothelial differentiation gene receptor Edg), which are 

expressed on cell surface. S1P is known to act on S1P2 receptor to produce contraction of 

coronary artery smooth muscles through S1P(2)/Rho signaling and play a role in pathogenesis of 

ischemic heart disease (241). 

 It is possible that increased bladder contraction frequency produced by S1P at lower mole 

percentages is acting through similar mechanism or through degranulation of mast cells as shown 

for airway smooth muscle cells (242). It has been widely reported that signaling induced by S1P 

is complex and can involve both intracellular and extracellular actions (243). Sphingosine-1-

phosphate has to be included at 5 mol% to demonstrate any increase in the efficacy of DSPC 

liposomes. Perhaps at higher concentration, the lysophospholipid can cross the cell membrane 

and act intracellulary to produce the beneficial effect. Besides being inducers of apoptosis, 

ceramide and sphingosine are also known to dampen mast cell responsiveness, whereas S1P can 

act as a chemoattractant and up-regulate some effector responses of mast cells (244). Mast cells, 

are well known to play a role in bladder inflammation and they represent a prototype for the 

"sphingolipid rheostat" hypothesis because of the multiple functions of S1P both as an 
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intracellular messenger and autocrine/paracrine mediator (245). Failure of SPM to increase the 

efficacy of DSPC liposomes, when added at 1mol% indicates that metabolite is more potent than 

the parent drug in altering the efficacy of DSPC liposomes. It is also possible that SPM in 

absence of its metabolic products can also influence the mast cell function  which may be 

responsible for reduction in bladder hyperactivity as it has been reported that exogenously 

administered SPM analogs such as gangliosides (GSL) can inhibit the release of preformed 

secretory mediators from mast cells activated via Fc epsilon receptor (246). Bladder injury by 

protamine sulfate is known to increase levels of malondialdehyde in rat bladder, which is an end 

product of lipid peroxidation by free radicals (207). 
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Figure 3.13: Proposed mechanism for activity of egg PC and SPM liposomes. 

 Egg PC and synthetic lipids having asymmetric saturation in acyl chains can inhibit free radical mediated lipid 
peroxidation or inhibit PKC to reduce inflammation and decrease bladder hyperactivity in bladder injury induced by 
protamine sulfate. DHSPM probably act through the pathway of egg PC and SPM can either act through the 
pathway of egg PC at the injured urothelium or its efficacy can be further augmented by the effect of one of its 
metabolites. 
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Thiobarbituric acid reactive materials following exposure to hydroxyl free radicals are 

not formed by SPM, although  they are formed by  phosphatidylcholine (PC), phosphatidylserine 

(PS) and phosphatidylethanolamine (PE) liposomes in the order PS > PC > PE (247). It is 

postulated that mostly saturated long chain hydrocarbon groups of SPM can protect against 

oxidative damage and SPM can also impede the lateral propagation of the lipid peroxides by 

decreasing membrane fluidity (Fig. 3.13) (220). SPM can also reduce phospholipase degradation 

of phospholipids by inhibiting the rate limiting step in generation of arachidonic acid from 

membrane lipids by inhibiting phospholipase A2 (248). Therefore, either in isolation or 

collectively, these molecular interplays of SPM or its metabolites may be contributing in 

reducing the bladder hyperactivity in SPM liposomes. 

 
Conclusion 

  Sphingomyelin is able to reverse the bladder hyperactivity in bladder injury model 

significantly better than egg PC and synthetic lipids. Bioactive metabolite of SPM seems to be 

responsible for this effect. No currently available intravesical IC therapy achieves immediate 

symptom relief without destroying the nerve endings. Unlike neurotoxins discussed in the 

previous chapter, sphingomyelin does not destroy the nerves. Neurotoxins such as vanilloids 

potentially may afford short term relief, but the nerves may then regenerate, with a “sprouting” 

effect that could possibly results in an increased density of nerve endings and augmented neural 

activity when the nerves eventually recover. Since SPM and other active PC are not toxic on 

intravesical application, their potential use in treating hyperactive bladder in clinic should be 

seriously considered. 
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4. SUSTAINED INTRAVESICAL DRUG DELIVERY USING THERMOSENSITIVE 
HYDROGEL 

 

A polymer chosen to serve as a vehicle for sustained intravesical drug delivery should be 

in the fluid state at the time of instillation and switch to the gel state after instillation. It is 

expected that hydrogel once formed inside the bladder can act as a matrix filled with drug for 

maintaining a prolonged exposure of drugs at the urothelium. The dispersion of a 

thermosensitive triblock co-polymer (PEG-PLGA-PEG), in 0.1M phosphate buffer exists in a sol 

state at room temperature or below but converts to a gel state at elevated temperature such as 

37°C (249). We propose to employ this thermosensitive polymer as a vehicle for extending drug 

exposure in the bladder beyond the voiding of urine post-instillation. Temperature sensitive 

gelation of the instilled polymeric dispersion is expected to happen inside the bladder, as rat 

body temperature is 37°C. Successful sustained intravesical drug delivery can eliminate multiple 

catheterizations leading to improved patient compliance, so important for the success of any 

form of therapy. 

Unlike systemic chemotherapy, responses to intravesical therapy are directly proportional 

to drug concentration rather than drug dose as shown for topical chemotherapy (250). However, 

duration of drug exposure so critical for therapeutic response is usually limited by bladder 

capacity and it is short with the use of conventional vehicles in intravesical therapy (251). Ueda 

et al showed that doxorubicin remained longer within the urinary bladder tissue of patients, when 

administered together with a mucoadhesive agent hydroxypropylcellulose and higher 

concentrations of drugs were achieved in tumorous tissue than in normal tissue (252). 

Inadequate drug delivery by conventional vehicles justifies the search for new agents to 

overcome the limitations inherent in intravesical route of drug administration. The thermo-
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sensitive and biodegradable characteristics of the triblock co-polymer, selected for our study 

have been widely reported (141, 168, 253, 254). As previously reported from our lab, a polymer 

of similar chemical composition was used as a matrix for a controlled gene delivery system 

(152). For the purpose of intravesical application, we modified the above polymer, by increasing 

its hydrophobic content to improve the robustness of the formed hydrogel in the bladder to 

endure the urine constituents such as urea and electrolytes.  

 We failed to show any therapeutic benefit of using hydrogel as a vehicle in the study 

done on capsaicin probably because the drug itself has prolonged therapeutic effect. In the, 

present study, we first used Fluorescein isothiocyanate (FITC) as a model drug to demonstrate 

sustained intravesical drug delivery. Further validation of the concept of sustained intravesical 

delivery was done with the efficacy studies of misoprostol delivered using the hydrogel. 

Intravesical administration of prostaglandins is a promising treatment of hemorrhagic cystitis 

(114). Misoprostol is a stable analogue of PGE1 a cytoprotective eicosanoid (cyclooxygenase 

mediated arachidonic acid metabolite) having several anti-inflammatory effects, including down-

regulation of the cytokine response of both macrophages and lymphocytes (255). Intravesical 

instillation of prostaglandin E2 was effective in the treatment of cyclophosphamide induced 

hemorrhagic cystitis in bone marrow transplant patients (256). In a similar study done on patients 

having grade 3 or 4 refractory hemorrhagic cystitis, intravesical infusion of a prostaglandin 

analogue, carboprost at the rate 0.8 mg/dL for 60 minutes every 6 hours, was effective in 15 out 

of 24 patients (257-259). Misoprostol is being widely used in the clinic for the treatment of 

gastric and duodenal ulcer induced by chronic consumption of NSAIDs (nonsteroidal anti-

infllammatory drugs) such as aspirin and ibuoprofen. The native drug is a racemate of four 

stereoisomers, available as a viscous liquid form, which is difficult to formulate due to its 
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chemical instability. Misoprostol rapidly de-esterifies to its active form, misoprostolic acid after 

oral administration, which is excreted in urine as its inactive metabolites with an elimination 

half-life of approximately 30 minutes. 

 

4.1. Materials & Methods 

 
4.1.1. Synthesis of Polymer:  

Modified thermosensitive triblock co-polymer, (polyethylene glycol- poly[lactic acid-co-

glycolic acid]-polyethylene glycol) PEG-PLGA-PEG were synthesized by ring-opening 

polymerization according to the modified procedure previously described (168),(260). Briefly, 

ring-opening polymerization of D,L-lactide (DLLA) and glycolide (GA) onto monomethoxy 

poly(ethylene oxide) mPEG 750 was done using 1% stannous octoate as a catalyst in toluene 

under reflux conditions at 150~170 0C, followed by coupling of the resulting diblock copolymer 

(mPEG 750-PLGA) using HMDI as a coupling agent) in toluene at 60 °C for 12 h, followed by 

reflux at 140 °C for 6 h. The resulting PEG-PLGA-PEG triblock copolymers were dried under 

reduced pressure. 1H nuclear magnetic resonance (NMR) spectra were recorded at 30°C with a 

Bruker DPX-300 NMR spectrometer operating at 300 MHz by using CDCl3 as solvent. The 

molecular weight and molecular weight distribution of the triblock copolymers were monitored 

by GPC system with Waters 1515 isocratic HPLC pump and Waters 2410 refractive index 

detector. The GPC data were calibrated with polystyrene standards with molecular weights in the 

range of 640~1,010,000. Styragel HR 4 and HR 2 columns (Waters) were used in series. The 

molecular weights were calculated using monodispersed polystyrene standard (Waters). All of 

the determinations were carried out in THF at a flow rate of 1.0 ml/min at 35 °C.  The molecular 

weight of diblock copolymers was controlled at around 3,000~4,500. PEG-PLGA-PEG triblock 
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copolymers were synthesized and its structure was confirmed by 1H NMR. The weight average 

molecular weight (Mw) of triblock copolymer was 13,981 with a polydispersity index of 1.52 as 

determined by GPC. The aqueous solutions (30%, w/v) of this polymer flow freely at room 

temperature but form a gel at 37°C (5). 

 
4.1.2. Preparation of solutions for Instillations:  

  The control animals were instilled with a 0.02%w/v solution of free FITC in 0.1 M 

phosphate buffer in absence of any polymer. Equivalent amount of FITC in 0.1M phosphate 

buffer pH 7.2 was added to a 30% w/v solution of PEG-PLGA-PEG polymer at room 

temperature by constant shaking in dark for 3h. Female Sprague-Dawley rats in the weight range 

of 200- 250g were used in the present study. 6 animals were included in each group.  

Before intravesical instillation, animals were lightly anaesthetized with halothane. 

Volume of instillation into rat bladder was kept at 0.5ml in both groups of animals instilled with 

either free FITC solution or FITC entrapped in hydrogel. Intravesical administration was done 

using a PE-50 tubing (Clay-Adams, Parsipanny, NJ), inserted into the bladder through the 

urethra and tied in place by a ligature around the urethral orifice. Under continuing halothane 

anesthesia, the urethra was left tied for 30min after instillation to prevent evacuation by the 

animal, as well as to allow enough time for sol-gel transformation to occur inside the bladder. All 

animals were given subcutaneous injection of antibiotic (Pen-strep, 30mg/kg) to prevent any 

infection as a result of the procedure. All protocols involving the use of animals in this study 

adhered to “Principles of Laboratory Animal Care” (NIH publication #85-23) and were approved 

by the IACUC of the University of Pittsburgh. 

 After recovery from halothane anesthesia, rats were kept in metabolic cages with food 

and water ad libitum for next 24 h to study the kinetics of FITC excretion in the urine. Urine was 
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collected at time points chosen arbitrarily. Cumulative urine output was measured from the 

volume of urine collected at these time points. Animals were sacrificed by carbon dioxide 

euthanasia and bladders were removed and immediately frozen for cryosections. Collected urine 

was diluted several fold for fluorescence measurement in order to reduce the background noise 

from extraneous urine constituents. Fluorescence emitted by FITC was measured using Perkin 

Elmer spectrofluorimeter at λEx= 496nm and λEm = 512nm. 

 
4.1.3. Efficacy studies:  

Adult female Sprague Dawley rats were injected intraperitoneally with a high dose of 

cyclophosphamide (150mg/kg) under halothane anaesthesia to induce cystitis (261). Chemical 

cystitis induced by cystitis is characterized by marked increase in erosions, ulcers in bladder 

including inflammatory cell infiltration, haemorrhages and increased micturition frequency 

(262). Rats injected with cyclophosphamide were divided into 4 groups and 3 of which served as 

controls were either instilled with saline, hydrogel or misoprostol independently (n=3). The main 

treatment group was instilled with hydrogel containing misoprostol. Due to the unstable nature of 

misoprostol in its native form, we used the drug available in commercially available Cytotec 

tablets from Searle. Tablets were homogenized to form a powder in mortar pestle and powdered 

tablet containing equivalent of 50µg misoprostol was administered with or without hydrogel in 

0.5ml volume of instillation. Rats were kept in the metabolic cage after instillation for 24h 

followed by cystometric measurement (CMG) under urethane anaesthesia (1.2g/kg, 

subcutaneous s/c) to measure frequency of micturition.  

CMG was done as previously reported from our lab (156) briefly, PE50 tubing (Clay-

Adams, Parsippany, NJ) was inserted into the bladder through the urethra and using a three way 

stopcock the catheter was connected to a pressure transducer for recording intravesical pressure 
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and to a syringe pump for infusing saline into the bladder. The catheter system was filled with 

0.9% w/v saline. After the bladder was emptied, a cystometrogram (CMG) was performed to 

measure micturition frequency, which was the number of voiding contractions occurring during a 

60-min time period of transurethral saline infusion at the rate of 0.04ml/min. No. of contractions 

(peaks) divided by time period (60min) gave the number used to compare efficacy of treatment.  

After completion of CMG, bladders were isolated, fixed in Zamboni fixative and then 

cryosectioned for staining with haemtoxylin and eosin (H&E). 

Statistical analysis: All values in the text and figures are mean values + SEM. Student t test was 

used to test for significance between unpaired groups. 

4.2. Results 

 
4.2.1. Kinetics of FITC excretion in urine 

Urine collected at various time points from rats in metabolic cages was used to calculate 

cumulative urine output over a 24h time period (Fig.4.1). Mean cumulative urine output of rats 

instilled with free FITC was 21.35+2.73ml and that of rats instilled with FITC entrapped in 

hydrogel was 19.55+2.72ml (number of animal in each group was 6). Difference in the 

cumulative amount of urine excreted for 24h after instillation was not significant (*p> 0.05). 

(n=6). 
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Figure 4.1: Cumulative urine output of the rats instilled with either free FITC solution or FITC entrapped in 
a hydrogel formed by a thermosensitive polymer.  

Difference in the cumulative amount of urine excreted for 24h after instillation was not significant (*p> 0.05). (n=6).  

 
 
The fluorescence intensity of urine measured at different time points from the collected 

urine is plotted (Fig. 4.2). Fluorescence intensity was normalized for the volume of urine 

collected at each time point. A significantly higher fluorescence signal was measured in the urine 

collected at the first time point of 2h from the rats instilled with free FITC solution (*p<0.01). 

Urine was diluted several folds before measuring the fluorescence of FITC at 512nm in the 

Perkin Elmer spectrofluorimeter with excitation at 498nm (mean+SEM; n=6) *p<0.01. However, 

at the later time point of 8, 16 and 24h, a higher signal was observed in the urine of rats instilled 

with FITC entrapped in hydrogel with statistical significance for later two time points (p<0.01). 
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Figure 4.2: Semi-logarithmic plot of fluorescence intensity of the urine measured at various time points after 
instillation of free FITC and FITC entrapped in hydrogel.  

A higher fluorescence signal was observed in the urine of rats instilled with FITC entrapped in hydrogel with 
statistical significance for later two time points (*p<0.01) (n=6). 
 
 

 

Figure 4.3: Photographs of the representative rat bladders instilled with either free FITC or FITC entrapped 
in hydrogel. 

Bladders were cut opened longitudinally before viewing under ultraviolet light with the aid of a dissecting 
microscope at 24h after instillation of free FITC solution (left) and FITC entrapped in hydrogel (right). In contrast to 
the bright green fluorescence of FITC seen in bladder with hydrogel, only a background signal was visible with free 
FITC (left). (Magnification at 1X). 
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Bladders from both groups were isolated 24h after instillation for examination under ultra 

violet light with the help of a dissecting microscope to detect the presence of any adhering FITC 

with the bladder. Bladders instilled with FITC entrapped in hydrogel exhibited bright green 

fluorescence of FITC whereas only background fluorescence was visible in the rats instilled with 

free FITC (Fig.3). The figure also serves as visual evidence for the formation of hydrogel inside 

the bladder after instillation, because the hydrogel was stained with the dye. 

 
4.2.2. Therapeutic effect following Intravesical delivery of misoprostol:  
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Figure 4.4: Representative cystometry recordings illustrating the effect of intravesically delivered misoprostol 
in rats treated with cyclophosphamide.  

Cyclophoshamide administration markedly increased micturition frequency as seen in the topmost panel 
representing saline treated rats. Cyclophosphamide induced increased micturition frequency was dramatically 
reduced in the rats instilled with misoprostol entrapped in hydrogel (lowermost panel). Second and third panel from 
the top are from rats treated with misoprostol in saline and hydrogel alone, respectively both of which offered only 
marginal improvement over saline instillation. Scale on vertical axis is intravesical pressure in cm of water (cm/w) 
and time is on the horizontal axis.  
 
 

Cystitis induced by injection of cyclophosphamide leads to urinary incontinence in rats 

marked by wet and dirty perineal region around urethra. Rats instilled with saline had similar 
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appearance during their stay in the metabolic cage (data not shown). Rats kept in metabolic cages 

after being instilled with misoprostol entrapped in hydrogel appeared to be continent after 

cyclophosphamide injection. Cystometric measurement performed under urethane anaesthesia 

evaluated the micturition reflexes induced by saline infusion with a transurethral catheter at a 

rate of 0.04ml/min, which approximates the rate of physiological bladder filling with urine. 

When the bladder was continuously filled, multiple contractions were elicited and the number of 

micturitions (indexed by peaks in the cystograph) evoked over a 60 min infusion period was used 

to describe micturition frequency. 

The micturition frequency, which was used to compare treatment groups with control 

groups. CMGs performed on rats 24h after cyclophosphamide injection showed a dramatic 

decrease in the frequency of micturition in the rats instilled with misprostol in hydrogel (0.04167 

± 0.01014) compared to rats instilled with saline alone (0.1583 ± 0.04640 n=3 p<0.05)(Fig.4.4). 

Histological assessment done by H&E staining revealed severe ulcerative cystitis in the saline 

instilled rats after cyclophosphamide injection, Panel A of (Fig.4.5). 

 Epithelium was denuded leaving an ulcerated area with submucosal edema, inflammation 

and vascular ectasia and congestion. Top left Panel A showed severe lesions in the epithelium, 

extensive submucosal edema, and multiple bleeding vessels in subepithelium in saline instilled 

rats.  In tissue sections obtained from rats treated with misoprostol, shown in Panel B and 

hydrogel separately Panel C, hisotological changes were less severe which included infiltration 

of inflammatory cells and edema of subepithelial tissue layer responsible for its slightly enlarged 

appearance. Lower right panel D reveals the resistance afforded by misoprostol entrapped in 

hydrogel from the chemical cystitis induced by cyclophosphamide with only slightly enlarged 

subepithelial layer due to edema (Fig.4.5). 
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Figure 4.5: Haemtoxylin and Eosin staining of cyclophosphamide treated rat bladders in representative cross 
sections. 

Sections in top right panel B and lower left panel C were from rats instilled with misoprostol and hydrogel alone, 
respectively, showing changes such as edema, moderate vascular ectasia and vascular congestion compared to saline 
treated rats. Treatment with misoprostol in hydrogel showed drastic improvement, which was evident by lack of any 
ulcerations in the normal appearing epithelium with slightly enlarged appearance in panel D (lumen side and 
bleeding spots are marked by white arrow in all sections and magnification is 10X. 
 
 

4.3. Discussion 

Intravesical drug delivery continues to remain an ideal treatment option for therapy of 

superficial bladder cancer; since drug exposure is restricted only to the disease site and systemic 

exposure to toxic anticancer drugs is avoided (250). In recent years, intravesical route has been 

exploited for effective therapy of other bladder diseases such as neurogenic bladder (263). 

Instillation of C-fiber neurotoxin into the neurogenic bladder of spinal cord injury patients, limits 
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the potent action of capsaicin only to the afferent fibers in the bladder wall and circumvents its 

possible systemic neurotoxicity (159, 264).  

However, conventional vehicles used for the intravesical route of administration fail to 

provide a sustained exposure of drug to the urothelium. Duration of exposure for instilled drugs 

does not last beyond the first voiding of urine after instillation. Increase in efficacy of drugs used 

for intravesical therapy would be expected, if the duration for direct contact between the drug 

and the abnormal urothelium were increased (145). Polymers that display a physicochemical 

response to stimuli have been widely explored as potential drug delivery systems. Therefore, in 

our present work, we explored the effectiveness of a modified PEG-PLGA-PEG polymer as a 

feasible hydrogel matrix for sustained delivery by the intravesical route. The thermosensitive 

polymer used in our study offers several advantageous over common drug delivery systems. 

First, the formulation is simple and requires no organic solvent. Second, the products from 

bioerosion of this nontoxic biocompatible polymer are polyethylene glycol (PEG), glycolic acid 

and lactic acid, all of which are nontoxic, making the polymer biocompatible (265). It was found 

that water penetration within the hydrogel changes with the change in hydrophilic PEG content 

of the polymer (266). 

We observed no significant difference in urine output with the treatment of hydrogel 

during the 24h period (Fig.4.1) indicating that the soft gel did not obstruct the elimination of 

urine from the bladder. However, the difference observed in the cumulative urine output between 

two groups did not proved to be statistically significant. The picture shown in Fig. 4.3 provides 

the most plausible explanation for the data shown in Fig.4.1. The photograph of the bladder 

taken 24h after instillation indicates that hydrogel did not completely fill the bladder, rather it 

attach itself as a smooth layer on the inner surface of the bladder. The presence of the gel inside 
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the bladder after instillation of a free flowing liquid indicates that this vehicle could produce a 

prolonged drug exposure to the urothelium, even after multiple voidings post-instillation of the 

hydrogel. 

It follows naturally from the retention inside the bladder of hydrogel delivery system, that 

it can withstand the hostile environment of rat urinary bladder. The hydrogel could also resist 

being washed away by the flush of urine during the multiple voidings that occurred during 24h. 

The higher fluorescence signal in the control group at the initial time point of 2h demonstrates 

the drawback of conventional vehicles used for intravesical drug delivery (Fig.4.2). Animals 

instilled with FITC entrapped inside a hydrogel showed a lower fluorescence at the early time 

point presumably because FITC did not exist in the bladder as free FITC, but rather it was 

sequestered in the hydrogel and was released over a period of time.  

According to earlier reports on release profile of drugs contained in the sol-gel transition 

system, it is probable that FITC is released at first by diffusion, and later by the combination of 

both diffusion and degradation mechanisms (140). The reversible nature of gelation process of a 

thermosensitive hydrogel may also facilitate easy removal of the gel from the bladder if desired 

at any time after administration by simply rinsing the bladder with sterile water at room 

temperature. A lower temperature of instilled water should convert from the gel state of the 

polymer back to its sol state allowing it to be voided in the urine. 

To answer the question, whether a drug entrapped in the hydrogel is available for its 

therapeutic action, we tested intravesical misoprostol in a rat model of cyclophosphamide 

cystitis. A previous study done on the same model reported reduction in cyclophosphamide 

induced ulceration, inflammation and edema in bladder walls of male rat following long term 

oral administration of misoprostol (267). A daily oral dose of 600µg administered chronically for 
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3 months was also effective in patients with refractory interstitial cystitis (268). Local therapy 

with prostaglandins has been shown useful for cyclophosphamide-induced cystitis in patients 

(112-114). A 100ml irrigation of 5µg/ml PGE2 into the bladder for 3h completely freed the 4 

year old patient of all the symptoms within 24 hours (115). In our study, we chose to use a 

fraction of the oral dose of misoprostol for a single intravesical administration in the same rat 

model of cystitis. Urinary incontinence induced by cyclophosphamide was observed during the 

24h metabolic cage stay of the rats. Simultaneous instillation of misoprostol in hydrogel enabled 

rats to maintain continence following intraperitonal injection of cyclophosphamide.  Cystometric 

measurements showed that misoprostol entrapped in hydrogel is available for its biological 

action as is evident from the decreased bladder contraction frequency in misoprostol treated rats 

(Fig.4.5). Rats instilled with hydrogel without misoprostol offered improvement in micturition 

frequency over saline instillation and benefit was comparable to rats instilled with suspension of 

misprostol (tablet powder). The beneficial effect observed in rats instilled with hydrogel itself 

without any drug might be a consequent of its emollient properties as hydrogel with similar 

composition have shown excellent wound dressing activity (269). It is possible that intravesically 

administered hydrogel might help in healing of ulcers induced by cyclophosphamide and wound 

healing effect of hydrogel might underlie the benefit seen in Fig.4.4.  

As previously reported from our lab that in absence of cyclophosphamide injection, 

instillation of hydrogel in normal rats did not significantly change micturition frequency 

compared to rats instilled with saline (197). Effect of misoprostol alone in improving micturition 

frequency is expected from the local action of PGE1 analogue on the urothelium mucosa. 

Histological examination (Fig.4.5) seem to support our explanation for Fig.3 as well as affirms 

that the uroprotective action of misoprostol is retained when delivered intravesically using a 
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hydrogel in rat model of cystitis. Results of our efficacy study agree with observation reported 

from another lab following oral administration of misoprostol in cyclophosphamide cystitis 

(267). 

Conclusions 

The first successful use of a modified thermosensitive PEG-PLGA-PEG polymer as a 

suitable matrix for sustained drug delivery by intravesical route is described in this present 

chapter. Modifications introduced into the polymer in our lab, enable the sol-gel transformation 

of this thermosensitive polymer to occur even in the presence of typical urine constituents, urea 

and excess electrolytes to extend its application for intravesical therapy of bladder diseases. Safe 

and long-acting intravesical delivery of misoprostol may be a desirable new treatment for 

interstitial cystitis. However, further safety studies of the polymer following intravesical 

instillation are needed before it becomes a clinically feasible drug delivery system. Successful 

delivery of small molecular weight drugs such as capsaicin and misoprostol prompted us to 

investigate the delivery of peptide nucleic acid a large molecular weight drug.in the next chapter 

of this dissertation. TAT peptide has been used to deliver large mol.wt drugs such proteins and 

oligos in studies done earlier. However its non-selective penetration following systemic delivery 

is a concern that can be obviated by regional administration. TAT peptide was used in the 

following chapter to study intravesical antisense therapeutics. 
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5. INTRAVESICAL ANTISENSE THERAPY OF CYSTITIS USING TAT-PNA 
CONJUGATES  

 

Overexpression of nerve growth factor (NGF), a neurotrophic factor, has been implicated 

in mediation of persistent pain states such as interstitial cystitis (IC) (104). The present study was 

aimed at delivering antisense molecule to this key putative molecular target identified in IC. A 

member of a growth factor family known as neurotrophins, NGF was originally identified by its 

ability to promote the survival of sensory and sympathetic neurons during development (270). It 

is a 13.6 kD natural protein, composed of a high-molecular-weight 7S NGF complex a dimmer 

of two α  and a low-molecular-weight protein called βNGF, or 2.5S NGF, dimer of two β  

subunits (271). The biologically active β subunit is proteolytically cleaved from a precurosor 

called prepro NGF, which is translated from the 3′ exon of NGF mRNA (104). 

Adenoviral mediated transfection of NGF gene in rat bladder was able to transiently 

increase NGF expression in rat bladder, which was responsible for  sensitizing afferent pathways 

and bladder overactivity in the absence of any inflammation (272). Microarray analysis done on 

rodent models of IC also implicated overexpression of βNGF gene as a primary cause of the 

disorder (273). Moreover, increased NGF followed the increase in the level of NGF mRNA in 

response to chemically induced bladder inflammation in rats (274). NGF can either activate mast 

cells via its trkA receptor or it can cause their degranulation to produce hyperalgesia through 

sensitization of nociceptive sensory neurons as well as increase their proliferation (274, 275). 

Elevated levels of NGF protein were also found in the bladder of IC patients (39).  

Most groups have demonstrated bladder urothelium to be the primary source of NGF in 

neurogenic inflammation of murine bladder and in patients with idiopathic sensory urgency (36, 

39). In a study done on patients with idiopathic detrusor instability, NGF was determined to be 
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produced by bladder smooth muscle (276).  Neutralization of NGF by antibody has been 

demonstrated to be effective in blocking bladder afferent sensitization in spinal cord injured rats 

(277). Recombinant antibody against NGF is effective in reducing the severity of IC in patients 

(Abstract # 363; AUA abstract book 2004). Although short term therapeutic use of monoclonal 

antibody in humans appears to be relatively safe, there are anecdotal accounts of antibodies used 

in disorders unrelated to IC causing severe side effects in a few patients (278). Moreover, 

development of anti- antibody responses cannot be ruled out, which can diminish  efficacy  on 

chronic use for even  “humanized” antibodies (279). 

In the present study, we explore an alternative approach for downregulation of NGF 

expression by using antisense approach. Antisense based therapy has begun to gain acceptance 

from the clinicians and this technology has emerged as a major tool in deciphering function of 

new genes in the era of post- human genome project. Peptide nucleic acids (PNAs) have been 

used for their antisense effect in various studies, because they form stable duplexes with the 

target mRNA and arrest translation (127, 128). PNA was chosen in this study owing to its 

superior binding properties, and higher stability in biological media over a wide pH range, 

compared to traditional oligos and ribozymes (129, 130). PNAs offer an exciting option for 

silencing gene expression in mammalian cells, if strategies can be developed to improve their 

poor intracellular delivery into mammalian cells (280). Non-selective cellular uptake of 

macromolecules including oligonucleotides has been reported to be facilitated by a protein 

transduction domain (PTD) of the TAT protein of human immunodeficiency virus (280). 

Moreover, a 11-mer (RRRQRRKKRGY) cell penetrating peptide derived from its PTD can even 

penetrate blood brain barrier and most other tissues (124). TAT peptide has been previously used 

to enhance the penetration of antisense PNA molecule in cell cultures (281). In the present study 
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we use the same peptide to deliver PNA across the rat urothelium, after intravesical instillation, 

for blocking NGF overexpression. 

5.1. Materials and Methods 

 
5.1.1. Design of Antisense Sequence.  

We utilized minimum free energy algorithm available on the web to predict RNA 

secondary structure (using mfold server with mfold version 3.1 (282) of the 3′exon of rat βNGF 

mRNA (283). The predicted secondary structure estimation of local folding and possible 

unpaired regions such as loops and bulges is shown in Fig.1a and b). The following sequences 

were selected for in vitro evaluation. Sequence K – TAACGATAGACACATGCC was 

complementary to the region close to the adjoining 5′ intron from nt 347-364. Similar was the 

case for sequence Q- GCCCGAGACGCCTCCCGA from 427-444, sequence B-

TACACCTTCTGACCCAC from 661-678, sequence T- TGGAGGTCCGTCGTCGGA from 

939-956 and sequence A-AGTACGTCAGGAATATTA from 1097 to 1114 in the 3′ UTR . A 

randomly scrambled control of identical length was also used in all the experiments. 

 
5.1.2. Identification of Active Antisense Oligonucleotide. 

The activity in the panel of candidate oligos having theoretical binding affinity to discrete 

sites in 3′ exon of NGF mRNA was evaluated in Griptite HEK293 cells (Invitrogen) transfected 

with cDNA coding for rat βNGF. The rat βNGF cDNA was a gift from Dr. William Goins, 

University of Pittsburgh.  Griptite HEK293 cells were grown in DMEM medium supplemented 

with 10% fetal bovine serum and 5% non-essential amino acids. Cells were plated overnight in 

24 well plates. Phosphorothioate (PS) oligonucleotides with different sequences were procured 

from Integrated DNA Technology Inc. Cationic liposomes composed of DOTAP (1,2-dioleoyl-3-
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trimethyl-ammonium-propane) were used as  transfection reagent for co-transfecting antisense 

oligos and cDNA coding for rat βNGF  for a transient production of NGF.  Forty eight hrs after 

transfection, NGF secreted into the cell medium was measured by ELISA. The isolated culture 

media samples were stored at -20°C until assay. The samples were assayed in triplicate in an 

antigen capture ELISA Emax ImmunoAssay System (Promega, Madison, Wisconsin) according 

to manufacturer instructions. ELISA plates were read at 450 nm on an Elx800 microplate reader 

(Bio-Tek Instruments, Winooski, Vermont). 

 
5.1.3. Synthesis of TAT-PNA 

The protein transduction domain (PTD) from the HIV-1 TAT protein, residue 47 -57, 

GGGGYGRKKRRQRRR-COOH known as TAT peptide was synthesized at the University of 

Pittsburgh Peptide Synthesis Facility. The peptide had its 9-fluorenylmethyloxycarbonyl (Fmoc) 

protection intact on its N-terminal and was not cleaved from the synthetic resin. The TAT 

peptide bound to the resin was extended by Fmoc solid-phase synthesis of PNA by Expedite 

8909 instrument (Applied Biosystems, Farmington MA). The first round of coupling linked the 

C-terminal residue of the PNA to the N-terminal of TAT peptide. The synthesized TAT-PNA 

conjugates were cleaved from the resin after synthesis, purified by reverse phase HPLC. 

Synthesis of full length TAT-PNA conjugate was confirmed by analyzing the HPLC purified 

compound by MALDI-TOF. The obtained mass numbers were nearly equal to the theoretical 

mass numbers.  

 
5.1.4. Rat Bladder Uptake of TAT-PNA Post-Instillation.  

 To label the PNA, TAT-PNA was chemically coupled to fluorescent probe rhodamine 

isothiocyanate (TRITC, Molecular Probes) before cleaving the TAT-PNA conjugate from the 
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resin. To determine the bladder uptake of TAT-PNA conjugates, Sprague-Dawley rats (150-

200g) were anaesthetized by halothane inhalation and instilled with 30µM of either labeled  PNA 

or TAT-PNA -Rhodamine  conjugate  in a volume of 0.2 ml through a PE-50 plastic tubing 

(Clay-Adams, Parsippany, NJ) inserted into rat urethra. Bladder outlet was tied with a suture 

thread for 1h and 3h after instillation, the bladders were drained with 0.9% saline and animals 

were allowed to recover from the anaesthesia. Twenty four hours later, animals were sacrificed 

and bladders were isolated and cryopreserved. Six micron thick bladder sections were prepared 

by cryostat for confocal microscopy (Olympus, Fluoview). Sections were counterstained with 

sytox green dye. 

 
5.1.5. Efficacy Evaluation of TAT-PNA conjugates. 

Rats were injected with cyclophosphamide (CYP) (100mg/kg i.p.) to induce acute cystits. 

Under halothane anaesthesia, either saline, TAT-PNA conjugates with selected antisense 

sequence including its scrambled control were instilled into the bladder at the concentration of 

100µM, 30 min prior to injection of cyclophosphamide. The volume for intravesical instillation 

was 0.5 ml in each animal.  Two hrs after cyclophosphamide injection, rats were injected with 

urethane (1.2g/kg s.c.) to perform open transurethral cystometry. PE50 tubing (Clay-Adams, 

Parsippany, NJ) was inserted into the bladder through the urethra. The catheter system was filled 

with 0.9% w/v saline and cystometrogram (CMG) was performed by filling the bladder with a 

constant infusion (0.04 ml/min) of saline by a syringe pump. The gradual rise in the internal 

pressure of bladder (intravesical pressure) caused by this slow filling was monitored by a 

pressure transducer connected to a side arm of the filling catheter. The frequency of reflex 

bladder contractions per minute was recorded. Measurements in each animal represented the 
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average of 3 to 5 bladder contractions. All animal experimental protocol was approved by the 

institutional animal care and use committee (IACUC) of University of Pittsburgh. 

 
5.1.6. Histopathological analysis 

After cystometry, whole bladders were harvested from the animals, fixed in 10% buffered 

formalin, and cryopreserved. Tissue blocks were sectioned (20 µm thickness) for haematoxylin 

and eosin (H& E) staining and immunohistochemistry for NGF. The polyclonal antibody against 

NGF was raised in goat and bound antibody in the tissue sections was detected with anti-rabbit 

antibody labeled with Cy3. 

 
5.1.7. Statistical analysis 

Quantitative data are expressed throughout this paper as means + standard error. Multiple 

comparisons among the different groups were analyzed by a single-factor ANOVA, followed by 

post hoc comparisons with Newman Keuls test, according to the Graph Pad prism v. 3.0 

(GraphPad Software, San Diego, CA). Differences among groups were considered significant if 

p< 0.05.  

5.2. Results 

 
5.2.1. Selecting the Antisense Sequence 

The minimum free energy algorithm helped to predict the secondary structure of rat βNGF 

mRNA (using mfold server with mfold version 3.1) (Fig. 5.1 & 5.2) (284). The sequence 

elements were then chosen and evaluated by in vitro screening using a transient transfection 

assay. 
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Figure 5.1: Schematic diagram of 3′ exon of rat NGF gene and the regions selected for designing antisense 
oligos.  

 
 

 

Figure 5
folding o

Regions  
 
 

K

Q

B

A

T

K

Q

B

A

T

.2: Folded structure of NGF mRNA as predicted by minimum free energy algorithm and local 
f selected regions. 

selected for binding are identified  in the diagram are underlined by letter A,B,Q,K and T. 

95 



The oligos with sequence T, Q and A were able to decrease the NGF expression in 

transfected cells (Fig. 5.3) and sequence T was identified to be the most effective in blocking the 

NGF expression with minimal effect on cell viability measured by MTT assay. The decrease in 

NGF protein was sequence specific as scrambled control did not show activity. 
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Bladder Uptake 

e confocal images of 6 µm bladder sections taken from the bladder sections were able to 

 the rhodamine fluorescence alongside the fluorescence from nuclear counterstain, 24 h 

tillation (Fig. 5.4). Co-localization of green fluorescence from nuclear counterstain with 

fluorescence from the rhodamine probe used in our experiment, indicate that PNA 

tly tethered to the 11-mer cell penetrating peptide could successfully penetrate into the 
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cells of the urothelium. The penetration of TAT-PNA into top cellular layers of urothelum is 

evident from the overlap yellow color seen in panel C and F of Fig.2 due to the merge of the red 

fluorescence of rhodamine with green fluorescence of sytox counterstatin 

A B C

D E F

C

 

Figure 5.4: Confocal microscopic images depicting bladder uptake of TAT-PNA. 

Photomicrogaphs of rat bladder taken with confocal microscopy after instillation of rhodamine labeled PNA alone or 
covalently tethered with TAT peptide. Cryopreserved rat bladder sectioned into 6 micron thick sections were 
counterstained with sytox green dye to stain nuclei. Top panel A and B show absence of any red fluorescence, which 
represents untreated rat bladder and bladder instilled with free PNA conjugated with rhodamine, respectively. Red 
fluorescence of rhodamine is seen overlapping with green fluorescence in panel C, which represent bladder instilled 
with rhodamine labeled PNA conjugated with the TAT peptide. Panel D, E and F are overlay images of panel A, B 
& C with their respective bright field images. Magnification is 20X in all sections.  

 
 

 Bladders treated with PNA alone without the tethered TAT did not show any rhodamine 

fluorescence (Panels B and E, Fig. 5.4) indicating TAT was required for successful delivery of 

PNA to the cells in the urothelium. 
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5.2.3. In vivo Efficacy  

The activity of sequence T was further confirmed in vivo by evaluating the efficacy of 

antisense TAT-PNA having exactly the same sequence as oligo T in cyclophosphamide induced 

cystitis in rat. 
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Figure 5.5: Effects of intraperitoneal injection of cyclophosphamide (100mg/kg) on cystometrograms in rats 
instilled with antisense sequence against rat βNGF mRNA.  

Note that in rats instilled with antisense TAT-PNA, the cyclophosphamide induced bladder hyperactivity was 
suppressed. 
 
 

Cystometrograms (CMG) performed on rats was one of the outcome measures for the 

efficacy. The slow filling of bladder during CMG gradually raises the internal pressure of 

bladder, known as intravesical pressure and micturition contractions are elicited. These reflex 

contractions are triggered by afferent activity of the bladder wall. It is suggested that, 

hyperexcitablity of afferent bladder reflexes is partly mediated by NGF during inflammation 
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induced by cyclophosphamide (285). Pre-treatment of antisense PNA conjugated with TAT was 

effective in attenuating the bladder hyperreflexia induced by cyclophosphamide (Fig.5.5). 
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Figure 5.6: Bladder contraction frequency of rats with induced cystitis instilled with antisense sequence 
against rat βNGF mRNA using either phosphothioate (PS) oligonucleotide or TAT-PNA. 

The bladder contraction frequency (BCF) was significantly decreased in rats instilled with antisense TAT-PNA 
compared to saline and other controls (*p<0.05, n=5). The rats instilled with TAT peptide alone and scrambled 
control showed BCF slightly higher than rats instilled with saline but the difference was not statistically significant. 

 
 

The bladder contraction frequency in the antisense treatment group was significantly 

reduced compared to rats instilled with other treatments such as scrambled sequence or saline or 

TAT peptide alone (Fig. 5.6). Rats instilled with TAT peptide alone and scrambled TAT-PNA 

sequence showed a slightly higher bladder contraction frequency than the rat group instilled with 

saline, but the difference was not statistically significant. Phosphorothioate oligonucleotide of 

the antisense sequence and TAT-PNA with a scrambled sequence served as control as a control. 

The higher bladder contraction frequency observed in rats instilled with phosphothioate oligos is 
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probably due to non-specific interaction of polyanionic oligos leading to aggravation of bladder 

irritation caused by CYP injection. 

 
5.2.4. Effect on Bladder NGF Levels 

 The presence of NGF in urothelium was detected by immunofluorescence. Twenty 

micron thick rat bladder sections were incubated overnight at 4οC with anti-NGF antibody and 

then the bound primary antibody was localized with secondary antibody labeled with Cy3. The 

bright red fluorescence of Cy3 was visible in deeper layers of rat bladder in all treatment groups, 

indicating lack of change in expression of NGF in deeper layers (Fig. 5.7).  

 

Figure 5.7: Effects of TAT-PNA antisense against βNGF mRNA on immunoreactivity of βNGF in rat 
urothelium.  

Panel A is rat instilled with saline, panel B is rat instilled with Phosphothioate oligo, panel C is rat instilled with 
TAT-PNA of scrambled sequence. Bladder instilled with TAT-PNA of the antisense sequence is shown in panel D. 
The decrease in immunoreactivity of βNGF is apparent from decrease in the intensity of Cy3 stain in the urothelium 
(shown by white arrows) of rat instilled with TAT-PNA of the antisense sequence.  Magnification in all of the 
sections was 20X. 
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The red fluorescence was seen in the urothelium (indicated by arrow) of all sections except 

in the urothelium (panel D) of bladder sections isolated from rat bladder instilled with TAT-PNA 

of the antisense sequence, indicating effective downregulation of NGF by TAT-PNA antisense. 

The activity was specific, because the bladder treated with TAT-PNA of a scrambled sequence 

showed high level of NGF in the urothelium (Panel C). 

 
5.2.5. Effect on Bladder Histology 

H&E staining of bladder sections revealed submucosal bleeding in most groups following 

cyclophosphamide injection (Fig. 5.8). The number of bleeding spots  appearing red in the 

submucosa of bladder sections (marked by arrows) were similar in rats instilled with either 

saline, TAT peptide alone or TAT-PNA of a scrambled sequence (Panel B, D & E respectively).  
 

CA BD E F
CA BD E F

Figure 5.8: Bladder histology of untreated and cyclophosphamide treated rat bladders instilled with antisense 
against rat βNGF mRNA 

Histology of bladder instilled with antisense TAT-PNA from a cyclophosphamide injected rat (Panel F) appeared 
similar to the bladder untreated with cyclophosphamide (Panel A). Bladder in rest of the panels were from rat 
injected with cyclophosphamide, Panel B saline, Panel C is phosphothioate oligo , Panel D and E  are rat instilled 
with TAT peptide alone, and a scrambled TAT-PNA, respectively all showing evidence of vascular ectasia and 
vascular congestion. Magnification is 10X in all sections. 
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Bladders instilled with phosphothioate oligo with the antisense sequence were slightly 

better with respect to reduced areas of bleeding spots. The submucosal bleeding spots seen in rats 

treated with cyclophosphamide is indicated by red arrows and antisense treatment could afford 

near normal histology of the rat bladder.These results indicate that bladders instilled with 

antisense TAT-PNA were able to resist the inflammatory changes induced by cyclophosphamide. 

Such resistance activity appeared to be specific for the antisense effect, as it was absent in 

bladders instilled with the scrambled TAT-PNA. 

5.3. Discussion 

 

PNA is a second generation of antisense agents first reported by Nielsen et al (286). In a 

recent study, expression of common neurotrophin receptor  p75NTR was reduced following 

intraperitoneal administration  of an 11-mer antisense PNA and the age associated 

neurodegeneration was delayed in transgenic mice with amyotrophic lateral sclerosis (287). The 

present study is the first to report the delivery of TAT-PNA conjugates by intravesical route for 

blocking βNGF overexpression in the bladder. Systemic administration of any drug or an agent 

blocking NGF expression is bound to have adverse effects on long term use as NGF signaling 

subserves multiple neuroprotective and repair functions both in the central and peripheral 

nervous systems (288). Local delivery at the disease site could be a viable approach for blocking 

NGF expression with reduced toxicity. Indeed, therapeutic advantage of drug administration by 

intravesical route is underlined by high local drug concentrations with minimal systemic 

exposure.   

  In our study, the process of selecting a biologically active antisense sequence against 

βNGF was done in two steps: first, most favorable target site was selected with the aid of an 
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algorithm followed by a second and more focused, experimental procedure to identify the 

effective antisense sequence positioned within the predicted accessible target sites in mRNA 

(289, 290). Traditional PS oligonucletides were used for determining antisense sequence against 

βNGF in an in vitro screening assay using transiently transfected HEK 293 cells. NGF secreted 

into the cell media by transfected cells was measured by ELISA. Surprisingly, the selected T 

sequence was located near the 3'-UTR of the βNGF mRNA  and it has been previously reported 

that AU nucleotide-rich sequence present around that region affects βNGF mRNA  stability  

(291).  The sequence of T oligo, which was effective in reducing NGF expression with minimal 

effect on cell viablity, was selected for in vivo experiments.  PNA was selected to substitute for 

PS oligos in evaluating the therapeutic efficacy in cyclophosphamide cystitis.  

The charged phosphothioester backbone in PS oligo is replaced by the uncharged N-(2-

aminoethyl-glycine) units in PNA (127). The absence of a repetitive charged backbone avoids 

the intrastrand repulsion during hybridization to their target mRNA. The affinity of association 

obeys Watson-Crick hydrogen bonding rules  and is independent of  salt concentration (292). 

The achiral polyamide backbone not only  provides resistance against nucleases and proteases 

(292),  but nonspecific interactions  arising from PNA binding to proteins that normally 

recognize polyanions are also prevented by the neutral backbone (293). However, antisense PNA 

uses a steric blocking of RNA translation or processing  to decrease protein expression (294 ) 

Unlike the first generation antisense agents, PNA-RNA hybrids are not substrates for RNase H 

(129, 295).  

The problem of poor cellular uptake of PNA has been resolved by conjugating cell 

penetrating peptides to inhibit gene expression in primary and transformed human cells (129, 

294, 296). This approach is uniquely suitable for PNA, as most of the penetrating peptides are 
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highly positively charged which can form an intramolecular complex with the highly negatively 

charged oligos.  In our study we examined the in vivo potential of tethering TAT peptide to aid 

translocation of PNA across the urothelium. Red fluorescence of rhodamine tagged to PNA was 

only visible in the rat bladder section administered the TAT peptide-PNA conjugates. Although, 

it has been previously reported that conjugation with cell-penetrating peptides such as TAT 

enhances delivery of PS oligonucleotides without interfering with their base-pairing function 

(126), but this observation was obtained from the study of physical interaction and effect on 

physiological activity was not determined. The exact mechanism of TAT transduction is 

unknown, but recently, convincing biochemical and genetic findings has established that the full-

length TAT protein was internalized in cells via binding with the ubiquitous heparan sulfate 

proteoglycans (125, 297).  The presence of the glycoaminoglycan layer at the apical surface of 

urothelium in rats and humans has been extensively demonstrated (18, 298, 299). Whether the 

action of TAT-PNA in the bladder is facilitated by the glycosaminoglycans is presently 

unknown. 

A well established model of cystitis was used to evaluate the in vivo efficacy of TAT-

PNA conjugates and bladder reflex activity was recorded by CMG, which is a suitable index for 

integrated neuronal response to inflammation induced by CYP. The physiological response of 

animals treated with antisense was evaluated by CMG, 4h after injection of CYP.  Concentration 

of acrolein, an irritant CYP metabolite is at it peak around that time and gene expression of other 

mediators has been shown to reach its peak around 4h after CYP injection in rats (300-302). Rats 

instilled with antisense PNA showed a significantly reduced bladder contraction frequency 

compared to rats instilled with saline alone or other controls. Rats instilled with phosphothioate 

oligo exhibited significantly increased bladder contraction frequency compared to saline. It is 
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possible that nonspecific interaction of polyanionic oligos could aggravate the irritation of 

urothelium caused by acrolein produced from CYP.  It was recently reported that full length TAT 

protein can upregulate Id1 expression and inhibit the nerve growth factor (NGF)-induced 

neuronal differentiation of PC12 cells (303). It is highly unlikely that a peptide having only the 

PTD of the TAT protein will have such deleterious effects. Moreover, such potential concerns 

for systemic toxicity from TAT peptide argue for local delivery of TAT-PNA conjugates. 

However, instillation of TAT peptide alone in CYP treated rats produced a physiological 

response similar to rat instilled with saline, indicating that the observed pharmacological effect 

of TAT-PNA antisense was not due to TAT, but resulted from the antisense effect of PNA. 

Immunohistochemistry of the bladder sections cryopreserved after CMG showed a 

decrease in immunoreactive NGF only in the urothelium of rat bladder following instillation with 

TAT-PNA conjugates. This technique has been used in many studies to demonstrate depletion of 

NGF in bladder of rodents after instillation of LPS or IC urine (304, 305). However, in our study, 

when whole bladders were used for measuring total NGF by ELISA, we failed to show any 

difference between the treatment groups (data not shown). It is possible that pre-formed NGF 

residing in tissue layers lying below urothelium contributes to the bulk of the total NGF content 

of the bladder. Nevertheless, our study was able to demonstrate that modulating the NGF content 

in the urothelium can bring about changes in the physiological response of the bladder. Besides, 

histological studies performed on bladders also corroborated with the therapeutic benefit accrued 

from treating cyclophosphamide injected bladders with antisense PNA. 

Our studies show that intravesical instillation of TAT-PNA conjugates are a feasible 

approach for determining and modulating molecular determinants of interstitial cystitis. 
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6. CONCLUSIONS AND FUTURE DIRECTIONS 

 

The clinical approach to treatment of interstitial cystitis is currently largely empirical and can 

involve a variety of oral and intravesical therapies (48). Intravesical agents have been used for 

many years as adjuncts to oral treatment regimens or as second-line therapies for IC. Intravesical 

drugs delivery has potential and real benefits for patients having morbid adverse effects from 

oral administration. It is also advantageous for patients who have developed tolerance to drug 

effects and require higher levels of drug in bladder for therapeutic benefit. Compartively high 

drug concentration can be achieved in the urinary bladder with intravesical drug delivery and the 

incidence of systemic side effects can be lowered due to the relatively poor absorption of the 

drug from the bladder. These characteristics should ensure maximal therapeutic benefit to occur 

at the site most desired. However, the only FDA approved intravesical treatment option for IC 

available in USA is DMSO (70). DMSO has multiple effects, whose instillation leaves 

discomforting bad breath in patients and it has also been associated with rare cases of systemic 

contact dermatitis and eosinophillic cystitis (82, 83). Other intravesical treatment options such as 

BCG and heparin analogues failed to show effectiveness in phase III clinical trials.  

Treatment of IC by intravesical route can be expensive if the treatment costs also include 

the costs of physician visits required in the treatment. Cost of treatment will also be higher if the 

man hours wasted in getting the treatment are counted and cost of catheters and lubricant is 

included. Insertion of catheter in the urethra for intravesical drug administration can be a cause 

of discomfort in some patients. There can be a risk of urinary tract infection and potential risk of 

a transient chemical cystitis from some drugs. 

 

106 



Intravesical Administration of Liposomes 

   

A prior study from our lab reported a promising intravesical treatment option by 

administration of liposomes prepared with egg phosphatidylcholine and cholesterol in 2:1 molar 

ratio. Liposomes were able to provide immediate symptomatic relief by reducing bladder 

contraction frequency of hyperactive bladder induced by protamine sulfate and potassium 

chloride. Here we report the identification of chief therapeutically active lipid in the liposomal 

formulation used in the earlier study. It was determined that use of cholesterol is not necessary in 

reducing bladder hyperactivity and zwitterionic lipids were significantly better in reducing 

bladder hyperactivity than lipids having anionic or cationic charged headgroup. Liposomes 

prepared with natural lipids were found to have higher efficacy than synthetic lipids and 

synthetic lipids having unsaturation ratio in acyl chains similar to efficacy similar to natural 

lipids.  

We found that a minor component of egg PC known as sphingomyelin was able to reduce 

bladder hyperactivity in bladder injury model. Moreover, metabolites of SPM added at low 

molar ratios were also able to increase the efficacy of inactive synthetic lipids. It seems efficacy 

of SPM in hyperactive bladder is augmented by the effects of its metabolites.  Further studies are 

needed to determine the exact mechanism of action of SPM using sphingomyelinase knockout 

mouse or in different models of cystis. We measured physiological response of the bladder 

following liposome administration in the prescence of anaesthesai and future studies using 

animals in the awake condition are required to be done to rule out the variation from anaesthesia.  

The existing intravesical therapy for IC are capable of achieving immediate symptom relief only 

through destruction of nerve endings by administering neurotoxins such as vanilloids or 
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botulinum toxin in the bladder or using psychotropic drugs. The regeneration of nerves with a 

“sprouting” effect can not only restrict the relief from neurotoxins as short term, and subsequent 

recovery could possibly led to genesis of a higher density of nerve endings and cause 

hyperalgesia from enhanced neural activity. Liposomes prepared from egg PC and SPM are not 

neurotoxic unlike vanilloids, and therefore they need to be evaluated as a treatment option in the 

clinical treatment of IC. 

 

Intravesical Administration of Capsaicin 

 

The approach toward intravesical drug therapy that has probably received the most 

attention has been the administration of capsaicin into the bladder. Capsaicin obtained from chilli 

peppers acts on the afferent C-fiber vanilloid receptors TRPV1. Bladder inflammation can bring 

about functional alterations in bladder afferent pathways, which in the continent state is 

constituted by small myelinated Aδ fibers (45). Aδ-fibers ultimately send information about the 

state of bladder fullness or wall tension detected by mechanoreceptors to the pontine micturition 

center via the periaqueductal gray matter in spinal cord. In the healthy state unmyelinated C 

fibers mainly detect noxious signals and initiate painful sensations (32).  Neuroinflammation 

seen in IC causes considerable reorganization of reflex connections of bladder afferents and 

capsaicin sensitive C-fiber afferents take over the role from Aδ-fibers and convey the signal of 

bladder fullness at reduced bladder capacity (45).  Therefore, capsaicin induced nerve 

desensitization of bladder afferents is a logical and viable intravesical treatment option for IC 

patients. However, instillation of capsaicin in bladder is currently achieved by using ethanol as a 

cosolvent for saline owing to the hydrophobic nature of capsaicin. 
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We demonstrated that liposomes could be a suitable vehicle for capsaicin as they had 

comparable efficacy to the standard vehicle for capsaicin. Moreover, the morphology and 

histology studies on instilled bladder revealed liposomes were far superior vehicle for capsaicin 

than 30% ethanol in saline. We suggest clinical evaluation of liposoems as a vehicle for 

capsaicin based on the work done here. We failed to show any benefit from using hydrogel as a 

vehicle for capsaicin, although instillation of thermosensitive hydrogel in rat bladder proved to 

be safe. In future studies, we suggest evaluation of hydrogel as sustained delivery of capsaicin by 

loading higher amounts of drugs in gel. Higher amounts of drug will saturate the binding sites for 

capsaicin in hydrogel and sustained release of capsaicin would be observed during the slow 

degradation of polymer.  

 

Sustained Intravesical Administration of Misoprostol 

   

Intravesical administration may solve some of the intrinsic shortcomings in oral treatment 

of IC by overcoming the drug or formulation specific vagaries in absorption, metabolism and 

renal excretion (ADME). In a previous study the cytoprotective drug misoprostol was used in the 

clinic for treatment of IC. However it was to be administered for 6 months with thrice daily 

administration for achieving therapeutic benefit. Perhaps the low amounts of drug excreted in the 

urine following oral administration might explain the need for prolonged regimen for 

demonstrating efficacy.  

Sustained intravesical delivery of drugs can ensure continuous presence of drug in the 

bladder and avoid intermittent catheterization. The concentration of drug in the bladder would be 
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constant without the peaks and valleys. Moreover, it should provide predictable, reliable therapy 

over an extended period of time. 

In this work sustained intravescial drug delivery in rat bladder was achieved using 

thermosensitive hydrogel formed by the polymer PEG-PLGA-PEG. Fluorescien Isothiocyanate 

(FITC) was loaded in the hydrogel as a model hydrophobic drug and kinetics of its excretion in 

the rat urine was studied to demonstrate sustained intravesical drug delivery. FITC was replaced 

with the misoprostol to demonstrate therapeutic benefit from sustained drug delivery afforded by 

thermosensitive hydrogel as a vehicle. Misoprostol delivered by hydrogel was able to to protect 

the rat bladder in cystitis induced by cyclophosphamide injection. Effect of misoprostol 

delivered for the first time in the rat bladder via intravesical route was assessed by CMG and 

bladder histology. Misoprostol was able to decrease the bladder contraction frequency and 

bladder histology revealed protection against tissue damage caused by acrolein produced from 

cyclophosphamide. 

  Future studies in different model of cystitis are needed to support our observations and 

higher animals such as cats, dogs or pigs need to be used to confirm the efficacy of hydrogel 

administration. Work done here supports the evaluation of hydrogel in other bladder diseases 

such as overactive bladder and bladder cancer. Intravesical administration of oxybutinin for the 

treatment of refractory overactive bladder has been desperately seeking a vehicle for its 

intravesical administration and thermosensitive hydrogel would be option that certainly merit 

evaluation based on our work. 
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Intravesical Administration of Antisense TAT-PNA. 

Intrvesical delivery allows site-specific drug delivery with a reduced side effect profile as 

compared to oral delivery systems either by avoiding first pass metabolism or by obtaining a 

local effect. NGF is shown to have beneficial and pathological effects. Peripheral administration 

of NGF is neuroprotective in multiple sclerosis and many labs have reported that intravesical 

administration of NGF can cause bladder hyperactivity. 

Therefore any agent that aim to inhibit NGF action or downregulate NGF overexpression 

in the bladder of IC patients should ideally be administered locally to avoid deleterious effects 

arising from blocking the effects of NGF on neurons innervationg healthy tissues. NGF is a 

target tissue dervid neurotrophic factor and is produced in the bladder during inflammation and 

then migrates to the spinal cord to reorganize the micturition reflex. In the work presented here, 

we identified an antisense sequence against rat βNGF mRNA by using its thermodynamically 

stable secondary structure and evaluating the five selected regions in a co-transfection assay 

done on Griptite HEK 293 cells using NGF cDNA. Short length TAT peptide was conjugated 

with PNA to produce the antisense construct TAT-PNA with the ability to cross urothelium. 

TAT-PNA with effective anstisense sequence indentical to the sequence of active PS oligo from 

contransfection assay was synthesized using Fmoc solid phase synthesis. 

The utility of coupling TAT peptide to the PNA sequence was demonstrated in bladder 

uptake studies done using TAT-PNA conjugated with rhodamine isothiocyanate. Bright red 

fluorescence visible in the cryosections of rat urothelium instilled with TAT-PNA and not with 

rhodamine labeled PNA.The in vivo efficacy of antisense TAT-PNA was shown in acute rat 

cystitis model induced by cyclophosphamide.  NGF expression is maximal around 2 to 4 h 

following cyclophosphamide injection and mRNA for rat βNGF has short half life of 2h. Peptide 
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nucleic acid (PNA) produces its antisense effect by translation arrest and short life of βNGF 

mRNA justified half an hour prior administration of antisense TAT-PNA for demonstrating its 

efficacy in this animal model. Antisense TAT-PNA was able to suppress the bladder 

hyperactivity induced by cyclophosphamide and NGF immunoreactivity was reduced in the 

urothelium. Bladder histology studies showed reduced inflammation in rats treated with 

antisense TAT-PNA. The experiments failed to show a decrease in the NGF content of bladder 

by antisense treatments. This is most likely due to the preformed NGF existing in the deeper 

layers of urinary bladder. 

Owing to the compromised antisense effect of PNA, we suggest use of small interfering 

RNA (siRNA) in future experiments. The bladder uptake experiments showed that uptake of 

TAT-PNA is only limited to urothelium and other cell penetrating peptides should be evaluated 

for deeper penetration. Chronic animal models of cystitis need to be used to demonstrate clearly 

the therapeutic benefit of intravesical antisense therapy.  
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