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INDEPENDENT FROM RESTRICTIVE CAMERA PARAMETERS 

 
Yaofeng Yue, M.S 

University of Pittsburgh, 2010 

 

Recent advances in microelectronics have produced new generations of digital cameras with 

variable focal lengths and pixel sizes which facilitate automatic and high-quality imaging. 

However, without knowing the values of these critical camera parameters, it is difficult to 

measure objects in images using existing algorithms.  This work investigates this important 

problem aiming at dimensional measurements (e.g., diameter, length, width and height) of 

regularly shaped physical objects in a single 2-D image free from restrictive camera parameters. 

Traditionally, such measurements usually require determinations of the poses of a certain 

reference feature, i.e., the location and orientation of the feature relative to the camera, in order 

to establish a geometric model for the dimensional calculation. Points or lines associated with 

certain shapes (including triangles and rectangles) are often used as reference features for the 

pose estimation. However, with only a single image as the input, these methods assume the 

availability of  3-D spatial relationships of the points or lines, which limits the applications of 

these methods to practical problems where this knowledge is unavailable or difficult to estimate, 

such as in the problem of  image-based  food portion size estimation in dietary assessment.  In 

addition to points and lines, the circle has also been used as a reference feature because it has a 

single elliptic perspective projection in images.   However, almost all the existing approaches 

treat the parameters of focal length and pixel size as the necessary prior information. Here, we 

propose a new approach to dimensional estimation based on single image input using the circular 

reference feature and a pin-hole model without considering camera distortion. Without knowing 



the focal length and pixel size, our approach provides a closed-form solution for the orientation 

estimation of the circular feature. With additional information provided, such as the size of the 

circular reference feature, analytical solutions are provided for physical length estimation 

between an arbitrary pair of points on the reference plane. Studies using both synthetic and actual 

objects have been conducted to evaluate this new method, which exhibited satisfactory results. 

This method has also been applied to the measurement of food dimensions based on digital 

pictures of foods in circular dining plates. 
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PREFACE 

 

This thesis was motivated by the work of food volume estimation in a dietary assessment study 

supported by the National Institutes of Health grant U01 HL91736. The preliminary work using 

a circular feature (e.g a spotlight pattern shining on a food or a flat surface) as a physical 

reference to calculate food portion size using one single image was conducted by Prof. Wenyan 

Jia and her colleagues. The implementation of this method was reported in the literature. In this 

method, one needs to know the focal length, pixel size and other camera parameters in order to 

take food dimension measurements. A special advantage of this method over other methods lies 

in that the circular feature (e.g. a spotlight, a plate or a bowl) serves an excellent reference to be 

used in dietary study. However, in many cases, the food images acquired in the real world do not 

have the focal length and pixel size information. It was my advisor, Prof. Mingui Sun who 

hypothesized that certain 3-D measurements could be conducted using a circular reference 

feature without knowing restrictive parameters of the camera. This hypothesis stimulated my 

further effort to bring my own contribution to the emerging research on obesity using the 

computer vision technology. Specifically, this thesis will prove the validity of this hypothesis. 

 

More importantly, I would like to take this opportunity to direct my warmest thanks to Prof. 

Mingui Sun and Prof. Zhi-Hong Mao for providing me the precious opportunity in continuing 

 x 



 xi 

study at the University of Pittsburgh. I would also like to thank Prof. Sclabassi, Prof. Fernstrom, 

and Prof. Jia and all my labmates for their valuable discussions. My thanks also go to my wife, 

Qilu Zeng, for her understanding and constant support during the course of this research. 

 

 



1.0  INTRODUCTION 

Dimensional measurement of physical objects in a single 2-D image is a fundamental problem in 

machine vision. It has wide applications in many fields, such as robotics, industrial automation, 

security and surveillance. Nowadays, the digital camera as a central component of the computer 

vision system has advanced to a highly intelligent level. For example, almost all new-generation 

digital cameras have the feature of auto-focusing. Among them, many are featured with 

automatic change in image resolution controlled by certain variables. It is expected this 

resolution change capability to become increasingly popular among new commercial products in 

the near future. With these technological advances in place, it is necessary for the engineers in 

the computer vision field to revisit the fundamental problem of modeling the process of imaging 

involving a camera and a physical object. Undoubtedly, the unknown focal length and pixel size 

impose new problems in applying the traditional approaches to dimensional measurement of  

regularly shaped objects using one single image. How can we obtain more information from the 

image without knowing focal length and pixel size? This work attempts to answer this important 

question. 

To conduct dimensional measurement using one single image, we normally need one or 

several features as the reference and require that the object under measurement be placed on the 

same plane of the reference. This problem is essentially equivalent to estimating the relative 

location and orientation of the reference to the camera (i.e., pose estimation), which is necessary 
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to build geometric models to estimate dimensions on the reference plane (details will be provided 

in section 2.3). The location and orientation estimation is usually modeled as the calibration of 

camera parameters, which establishes the perspective transformation between the 3-D object and 

its 2-D image [Sonka et al. 2007; Haralick 1980]. Within this process, the selected reference 

feature plays the key role in establishing the mathematic model and finding the solution. In 

current literature, features used as references to estimate camera parameters can be generally 

classified into two groups: points (including lines) and parameterized curves. The use of points is 

known to be the “perspective-n-point” problem (PnP) [Fischler and Bolles 1981], Given the 

relative spatial locations of n control points, and given the angle to every pair of control points 

from an additional point called the Center of Perspective (CP), the solution to the “perspective-n-

point” problem provides the lengths of the line segments (“legs”) joining the CP to each of the 

control points. Within the PnP problem, the studies using three-points (or a triangle) or four-

points (or a rectangle) as reference features were most popular. Fischler and Bolles [1981] 

pointed out that there are four possible solutions to the P3P problem but only one unique solution 

to the P4P problem when the four points are on the same plane. The P3P problem was studied 

further from different perspectives [Wolfe and Jones, 1986; Linnainmaa et al. 1988; Wolfe et al. 

1991; Menthon and Davis 1992; Gao et al. 2003]. In addition to the P3P problem, it has been 

shown that the camera parameters can be estimated using the perspective projection of a 

rectangle of know size and position, which is equivalent to the P4P problem [Haralick 1980; 

Haralick 1989; Horaud et al. 1989; Abidi and Chandra, 1995]. The quadrangular feature, a more 

generalized P4P problem, has also been studied [Abidi and Chandra, 1995]. As noticed, the 

successful solutions to the P3P and P4P problems require the 3-D locations of each pair of the 

points to be known, which may impose too many restrictions in certain practical applications. In 
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contrast to the usage of points, choosing curves as references in the estimation of camera 

parameters may help us overcome this limitation. Haralick [1984] studied the estimation of 

camera parameters for a general parameterized quadratic curve. However, as a particular instance 

of the quadratic curve, the circular feature used as a reference gained more popularity later and 

was studied in robotics by Magee and Agarwal [1984] and Kabuka et al. [1987], where only the 

focal length and size of the circular pattern need to be known. Because circular objects and 

patterns are very common, and their perspective projections are always ellipses [Narayan 1961], 

the circular feature as a potential reference in the estimation of camera parameters serves a good 

choice in certain applications. Furthermore, Mulgaonkar [1984] addressed the viewpoint of a 

circular plane using an iterative method. Marimont [1986] and Sawhney et al. [1990] presented a 

closed-form solution for the circular feature based on linear algebra. Shin and Ahmad [1989] and 

Safaee-Rad et al. [1992] provided closed-form solutions derived from geometric models.  

In this work, we study the dimensional measurement problem based on the single image 

input using the circular feature as a reference, and apply the result of this study to dietary 

assessment. We aim to eliminate the requirements of the focal length and pixel size, because 

currently most images are captured by modern digital cameras with variable focal lengths and/or 

pixel sizes. Almost all above mentioned approaches, on the other hand, treated the focal length 

and pixel size as necessary information and hence cannot be applied directly to this new type of 

digital images.  

In order to cope with the problem of unknown focal length and pixel size, we propose a 

new approach which provides closed-form solutions to the orientation of the circular feature. 

With additional information given, such as the diameter of the reference feature, analytical 

solutions for the dimensional measurements of an object on the reference plane are also provided. 
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This approach is based on the simplest pin-hole model, and currently does not consider the effect 

of camera distortion. Our derivation process of this approach provides us with the closed-form 

expressions of a number of useful intermediate parameters, including the ratio of the focal length 

respected to the pixel size, the orientation of the reference plane, and the distance from the 

optical center to the reference plane (details described in section 2.1) Experiments using both 

synthetic and real objects were conducted to test and analyze this approach, which exhibited 

satisfactory results in dimensional measurements of regularly shaped objects. However, for the 

three intermediate parameters, the results were not as satisfactory as those in the dimensional 

measurements. For example, the measured orientation had an error ranging up to between ten 

and twenty percent. Although our simulation showed that the errors for the intermediate 

parameters resulted from the ideal pin-hole model, the correction of distortion due to the model 

to improve the estimation of these intermediate parameters requires further research. This 

research may also provide an answer to the question why relatively large errors in the 

intermediate variables do not carry to the final result of dimensional measurements. Therefore, 

more extensive exploration is required for a thorough understanding of the mechanisms in the 

estimation process.  

As a specific application, we utilized our method to measure food dimensions which is 

important in the study of the rising health problem of obesity.  Traditionally, dietary assessment 

is conducted based on self-reporting of food intake. A food diary, which lists food names and 

portion sizes, or a dietary recall, which is conducted for a period of time (e.g., 24 hours), is often 

used in clinical practice. However, this method is known to be inaccurate [Trabulsi and Schoeller 

2001]. In recent years, digital cameras and cell phones have advanced rapidly. It has been 

reported that these personal imaging and communication devices can be used for dietary 
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assessment with much improved accuracy [Engelen et al. 2009 and Sun et al. 2010]. In order to 

estimate food intake from digital pictures, the volume (or the portion size) of each food 

photographed must be determined. However, given a single image, the volumetric information 

cannot be obtained without a dimensional reference and an assumption of food shape. As 

discussed above, the approaches of using N points as references are limited in that the spatial 

relationships of each pair of the points need to be known. Therefore, it is impractical and 

inconvenient for a human subject to bring a reference object (e.g. a monochrome or color 

checkerboard) to be placed next to the food before taking a picture. On the other hand, since 

most foods are served using circular plate(s) or bowl(s), these objects can be used as references. 

Therefore, the approach of using circular reference feature becomes especially appropriate for 

this specific application.  
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2.0  METHOD 

2.1 THE MODEL 

The well known pin-hole camera model provides a perspective projection from the object plane 

to the image plane. Figure 1 illustrates the geometric projective relationship between a circular 

reference object on the object plane and its projected feature, an ellipse, in the image. The vertex 

point O, the circular reference object, and the radial lines from point O passing through the 

boundary of the circular object form a cone. In this section, we will establish a mathematical 

model for this cone. Then, we will transform the conic region to a new coordinate system under 

which the original base of the cone will be perpendicular to the new z axis so that this base can 

be expressed by the standard circular equation. Since several coefficients of the new expression 

are known to be zero, a system of equations can be obtained which will be solved for the desired 

parameters. 
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Figure 1.Schematic representation of the optical center, image and object. 

 

Since the perspective projection of a circular reference feature is always an ellipse 

[Narayan 1961], we start with the well-know mathematical description of the ellipse. The general 

form of the ellipse is given by  

0''2'2''2' 22 =+++++ dyfxgybxyhxa       (1) 

Where, , , ' , ' , '  and '  are coefficients, , and  'a 'h b g f d 0'≠d ( ) 0'' 2 >−abhd

The six unknown coefficients need to be determined in order to specify an ellipse. Many 

methods are available to fit an ellipse using at least six points [Fitzgibbon et al. 1999]. However, 

since we do not know the focal length and pixel size, it is impossible to explicitly describe the 

ellipse in the input image with respect to its physical parameters. The idea of starting to work 

with the ellipse equation is to use the linearity of the first five unknown coefficients to obtain 

new representations. To do this, the ellipse information which is available in the pixel coordinate 
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in the image needs to be converted to the 2D real-world coordinates as a function of unknown 

focal length and pixel size. Here, we first select five points on the boundary of the ellipse on the 

image. Let ( ) , , be the real coordinates of these five points; and let ii yx , 5,,1L=i ( )pipi yx , , 

, be their pixel coordinates in the image. If we define5,,1L=i ( )21,cc  as the pixel coordinate of 

the center of the image and as the pixel size, then the two difference coordinates are related 

by: 
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Then the ellipse equations for these five points can be written in the following matrix form 
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Thus, we can obtain the unknown parameter and coefficients as follows 
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The right hand side has only one unknown coefficient . If we further denote the known vector, 'd

 [ TtttttA 54321
1 1=−⋅− ]    (6) 

then the five coefficients can be solved as a function of the unknown pixel size and ' ,  d
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Now we consider the pinhole model between the reference circular feature and its 

perspective projection on the 2-D image. Figure 1 shows the schematic diagram of the camera 

center, image and the object (i.e circular reference feature). In Figure 1, O is the optical center of 

the camera,  is the unknown focal length, is the f od z coordinate of the intersection point of the 

object plane and z axis. The optical center and the circular feature composes a cone, which 

interests with the image plane. The intersection area is an ellipse which is exactly the perspective 

projection of the circular feature [Narayan 1961]. 
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In the coordinate system xyz (Fig. 1), we would like to determine the cone equation which can 

be defined by a base of the elliptic feature on the image plane and the lines passing through the 

vertex point O and the boundary of the ellipse. The equation of the lines passing the point O can 

be described as, 

zyx v
z

v
y

v
x

== ,   (8) 

where ( , , ) indicates any direction vector. xv yv zv
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points need to be on the boundary of the ellipse, substituting these points into (1), we obtain 
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Combining (8) and (9), the cone equation can be obtained, 

0''2'2''2' 222222 =+++++ zdfyzffxzgyfbxyfhxfa    (10) 

Or in the matrix form, 

[ ] 0=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅

z
y
x

Qzyx , where     (11) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
'''

'''
'''

22

22

dfffg
fffbfh
fgfhfa

Q

With the equation of the cone surface established, we now determine the expression of 

the intersecting surface of the cone and object plane. We assume a normalized vector ( )  to 

be the orientation of the object plane. Because it intersects the z axis at point , its 

equation can be established as follows: 

nml ,,

( )od,0,0
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ondnzmylx =++          (12) 

where  

.1222 =++ nml      (13) 

In order to determine the circle on the object plane (i.e., the circular feature), the following 

rotational transformation is applied to the current coordinate system [Reza Safaee-Rad et al. 

1992] 
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The object plane (12) in the new coordinate '  becomes '' zyx

ondz ='          (15) 

This indicates that the object plane is perpendicular to the z’ axis under the new coordinate 

system. Figure 2 shows the system after the transformation. Substituting the transformation (14) 

into the cone equation (11), we have 
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where , and can be written as TQTQ ⋅⋅= '1 1Q
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+=

+++++=

+−+−−+−−==

−−+++=

−−+−+−==

+−−+−==

−+=

τ

τ
τ

τ
ττ

τ
ττ

τ
τ

ττ

ττττττ

ττττ

τττ
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Figure 2.Diagram of the new coordinate system x’y’z’ after rotation.    
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Now Eq. (16) represents the surface of the cone in the new coordinate system . From (15), 

we know that the object plane in this new coordinate system is vertical to the '

''' zyx

z  axis. If we 

substitute (15) to (16), the cone equation would reduce to the equation for the original circular 

reference feature. To be a circular equation, (17) must satisfy 2211 qq =  and , i.e., 012q 21 == q

fmnffnlglmnfhdnmfbnlfamlfhlfbmfa '2'22'2''''2'' 2

2
22

2

22
2

2

22
2

2
2

2

2
2

2

2
2 −−+++=−+

τ
τ

τττττ

0'''''' 2

2

2

2

22 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−+− lfmgnlfhnmfhlmnfblmnfaf

ττττ  

If we define
xp

fk = , substituting (7) to above two equations, they can be reduced to, 

kmntknltlmnktnmktnlktmlktlktmkt 542

2
2

2
2

2

22
2

32

22
2

12
2

22

2
2

32

2
2

1 2222 −−+++=−+
τ

τ
τττττ

   (18) 

( ) 0542

2

22

2

2231 =+−−+− ltmtnlktnmktlmnktt
τττ

         (19) 

In addition, we know from (17) and (13) that,  

22 ml +=τ  

1222 =++ nml   

Analyzing above equations, we have four equations but five unknowns. Generally, there are 

infinite solutions. Solving them and presenting the explicit expressions of l , ,  may help us 

understand the property of the projection system, but will also be very difficult. However, I will 

leave this task for my future work because they do not contribute directly the current solutions. 

Here, I will first derive the relationship of l , ,  using the known vector in (6). Then, I will 

solve the problem by imposing certain constraints. 

m n

m n
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2.2 ORIENTATION ESTIMATION 

From (18), we obtain, 

( ) ( )  02)(22212 2
2

22
3

22
154

22
2

22
3

22
1

3
54

24 =+−−+−++++++− mlktlktmktknmtltnmlktmktlktknmtltnn

022121 23123154 =+−−+++−++− mlktlktmktnmlktmktlktnknmtltn

which can be further reduced to 

( ) ( ) ( ) ( ) 22222222222222  (20) 

From (19), we obtain 

( ) ( )kn
mtlt

n
45

2312 1
−

=−

( ) ( )

lmtmltt 22 −+−

.
   (21) 

Substituting (21) to (20), we obtain 

( )( ) ( )

( ) .2 2
2

2
3

2
1 kmltltmt −+=

2k 2n

( )

22 22
2

2
3

2
1

45

22
231

54
22

45

22
231 knmltmtlt

mtlt
lmtmlttmtltnk

mtlt
lmtmltt

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

−
−+−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+−

( )

2

 

Eliminating  on both sides and solving for , we have, 

4
5

3
4

22
3

34
1

452312 2
mblmblmbblb

mtltmltltmtn
++++

−−+
=

3221543
2
422

2542511

2222 tttttttttb +−−=

222

    (22) 
2ml

where 

22 2 ttttttb +−=

( )

2
2542

2
435

3221541
2
524

2
2

2
31

2
43

2
41

2
53

2
513

2

2222

222

ttttttb

tttttttttb

tttttttttttb

+−=

−+−=

−−++−−=  
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Though we did not explicitly solve the equations, (22) can still help us obtain valuable solutions 

if we know any one value of l , , or a certain relationship between any two of them. Later, we 

will propose a way to solve for , ,  in the general sense.  

m

l

n

m n

 

 

Figure 3.  Projection of xyz along the x axis with two possible orientations. 

 

2.2.1 One rotation angle 

We consider the following two cases. 

Case 1:  0=l

From (22), we obtain, 

2
2542

2
43

2
41

2 tttttt
ttn

+−
=     (23) 

Here only the positive solution is retained because it only makes sense when the object is 

in front of the camera. Since (13) defines , we can substitute (23) into (13) to 

solve for m . However, this would give us two solutions, one positive and the other negative. 

Figure 3 shows the schematic representation of the relative locations of the optical center and the 

1222 =++ nml
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circular reference feature corresponding respectively to the two solutions. Whether only one 

solution should be kept is determined by the application. Because we mainly intend to apply our 

approach to the estimation of food portion sizes, only the positive solution is valid as shown in 

Fig. 3. Therefore, we obtain 

2
2542

2
43

2
41

2
1

tttttt
ttm

+−
−=    (24) 

In addition, from (19), we have  

kn
t
tm

4

2=     (25) 

Substituting (25) and (23) into (13), we can solve for parameter k (the ratio of focal length and 

pixel size). 

( )
2
21

542
2
2

2
413 2

tt
tttttttk −+−

=    (26)  

Case 2:  0=m

Similarly, 

2
2542

2
51

2
53

2 tttttt
ttn

+−
=    (27)  

2
2542

2
51

2
53

2
1

tttttt
ttm

+−
−=    (28) 

( )
2
32

542
2
2

2
531 2

tt
tttttttk −+−

=    (29)  

Though we have discussed the above two cases separately, they are actually equivalent. 

When , the object plane is parallel to x axis; hence the semi-major axis is parallel to x axis. 

When , the object plane is parallel to y axis; hence the semi-major axis is parallel to y axis. 

0=l

0=m
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So for the ellipse equation (1), the coefficients of the x term when , are equivalent to those 

of y when . From (1) and (7), and correspond respectively to and , and , 

correspond to  and  respectively. Therefore, the two cases are equivalent and the solution 

depends on how you define the x and y axes along the image plane. 

0=l

0=m

2y

1t 4t
2x x 2t

n

5t

y

Therefore, in this work, we consider the case of  and define the x and y axes in the 

direction shown in Figure 4.  

0=l

 

 

Figure 4. The directions of x and y axes mapped on the image. 

The analytical solutions (24), (25) and (26) indicate that, given one image of a circular 

object whose surface is parallel to the x axis (Fig. 4), we are able to tell its orientation, and its 

focal length in terms of the pixel size.  

2.2.2 Two rotation angles 

What can be obtained for the case when the circular reference feature is placed in an arbitrary 

orientation? As shown in section 2.1, this case requires to solve for four variables l , ,  and 

using  three equations (13), (18) and (19). Though in general this case cannot be solved, 

appropriate solutions may exist if we further constrain that the optical axis of the camera passes 

m

k
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the center of the object plan, In this subsection, I would like to propose a method to approximate 

the solutions under this constraint which was inspired from the following experience:  When we 

try to estimate the orientation of an object using one eye, we usually focus on the center of the 

object.  

Figure 5 shows a typical perspective projection of a circular feature on the image when 

the optical axis passes the ellipse center and the object plane is not parallel to x axis. On this 

image, the angle of counterclockwise rotation from the x axis to the major axis of the ellipse is 

depicted by . The proposed method assumes that after the rotation of angle , in the new 

coordinate system ( is kept unchanged), the object plane is parallel to .  In other words, 

the major axis of the ellipse is parallel to the intersection line of the image and the object plane. 

Then, under the new coordinate system, the following derivation will be very similar to that in 

the previous case. 

φ φ

111 zyx z 1x

 

 

Figure 5. A perspective projection of a circular feature on the image. 
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For the ellipse of Eq. (1), the angle of φ  can be determined by [Berger et al. 1984] 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>≠
−

+

<≠
−

>=

<=

=

−

−

'',0'
'2
''cot

2
1

2

'',0'
'2
''cot

2
1

'',0'
2

'',0'0

1

1

bah
h
ba

bah
h
ba

bah

bah

π

π

φ   (30) 

 Combining with Eq. (7), Eq. (30) can be rewritten as a function of known values 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

>≠
−

+

<≠
−

>=

<=

=

−

−

312
2

311

312
2

311

312

312

,0
2

cot
2
1

2

,0
2

cot
2
1

,0
2

,00

ttt
t
tt

ttt
t
tt

ttt

ttt

π

π

φ    (31) 

To obtain the new coordinate system ,  a rotation transformation is applied 111 zyx

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1

1

1

1

z
y
x

T
z
y
x

, where     (32)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

10
0cossin
0sincos

1

o
T φφ

φφ

 Substituting (32) into the cone equation (11), we obtain the cone equation under the new 

coordinate system 

[ ] 0

1

1

1

2111 =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅

z
y
x

Qzyx    (33) 

where,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⋅⋅=
'''

'2'2'

'2'2'

1
'

12

333231

232221

131211

qfqfq
fqfqfq
fqfqfq

TQTQ    

and 
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( )

'

sin'cos'

cossin'2cos'sin'

sin'cos'

2cos'cossin''

cossin'2sin'cos'

'

''

22'

''

''

22'

33

3223

22

3113

2112

11

dq

gfqq

hbaq

fgqq

habqq

hbaq

=

−==

−+=

+==

+−==

++=

φφ

φφφφ

φφ

φφφ

φφφφ

    

Then, in this new coordinate system, if we define the orientation of the object plane as 

, we apply the similar transformation on as equation (14) ( ',',' nml ) 111 zyx

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

2

2

2

1

1

1

z
y
x

T
z
y
x

, where 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

−
+

+
−

+
−

= '

'''0
''

''
''

'

'
''

''

''

'

22

2222

2222

2

nml

m
ml
nm

ml
l

l
ml

ln

ml

m

T     (34) 

We have known that for the cone (11), the relationship of the three components of the object’s 

orientation can be described as (22). Combining (7), Eq. (22) can be modified by 

( )( )
4

5
3

4
22

3
3

2
4

1

222
2 '''2''

mblmblmbmlblb
mglfmlhlbman

++++
−−+

=     (35) 

where, 

( )

22
5

2
4

222222
3

2
2

22
1

''''2''

''2''2'''2''2

'2''''2''''''2

''2''2'''2''2

''''2''

hfghgbb

bhhafgafhb

hbagbgafhfab

bhhafgbghb

hfghfab

+−=

−+−=

−−++−−=

+−−=

+−=

 

For the cone (33) in the new coordinate system , the relationship of will be 111 zyx ',',' nml

( )( )
4

5
3

4
22

3
3

2
4

1

2'
13

'
23

'
12

2'
22

2'
112

''''''''
''''2'''

mblmblmblmblb
mqlqlmqlqmqn

++++
−−+

=    (36) 
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where, 

( )

2'
12

'
23

'
13

'
12

2'
13

'
225

'
22

'
12

'
12

'
11

'
23

'
13

'
11

2'
23

'
124

2'
12

2'
22

'
11

2'
13

'
22

2'
13

'
11

2'
23

'
12

2'
23

'
113

'
22

'
12

'
12

'
11

'
23

'
13

'
22

2'
13

'
122

2'
12

'
23

'
13

'
12

2'
23

'
111

2

2222

222

2222

2

qqqqqqb

qqqqqqqqqb

qqqqqqqqqqqb

qqqqqqqqqb

qqqqqqb

+−=

−+−=

−−++−−=

+−−=

+−=

 

 

Substituting (7) and (33) into (36), we obtain 

( )( )
4

5
3

4
22

3
3

2
4

1

2
352

2
4

2
12

''''''''
''''2'''

mlmlmlml
mclclmclcmcn
τττττ ++++

−−+
=   (37) 

where, 

( )

( )

2
2532

2
345

4221531
2
524

2
2

2
41

2
34

2
31

2
52

2
513

4221534
2
322

2
2532

2
511

455

2
2

3
2

14

543

2132

2
2

3
2

11

2

2222

222

2222

2

sincos
cossin2cossin

sincos
2coscossin

cossin2sincos

cccccc

ccccccccc

ccccccccccc

ccccccccc

cccccc

ttc
tttc

ttc
tttc

tttc

+−=

−+−=

−−++−−=

+−−=

+−=

−=
−+=

+=
+−=
++=

τ

τ

τ

τ

τ

φφ
φφφφ

φφ
φφφ

φφφφ

 

Which is independent from parameter 
xp

fk = . Applying 0'=l on (37) yields  

5

2
31

5

2
31

1'

'

τ

τ

ccm

ccn

−=

=

     (38) 

 22 



Since the orientation ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

5

2
31

5

2
31 ,1,0

ττ
cccc  is defined under the coordinate system , we 

need to transform it back to the original coordinate system 

111 zyx

xyz . Applying (32), we have 

T
cccccc

n
m
l

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅−⋅−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

5

2
31

5

2
31

5

2
31 ,1cos,1sin

ττ
φ

τ
φ   (39) 

Substituting (39) back into (19), we obtain 

( )( )
( ) ( )22

231

22
54

lmntlmntt
mlltmtk
−+−

+−
=     (40) 

Therefore, when the ellipse center is located at the center of the image, the orientation of 

the circular reference feature and the parameter k can also be calculated. 

 

2.3 OBJECT DIMENSION ESTIMATION 

From above derivation, we have obtained analytical expressions of l , , and . Our goal is to 

perform dimensional measurements on the object plane. Obviously, these parameters are 

insufficient to determine the location of the object plane because we would get the same 

parameters by moving the object plane back and forth in parallel. Therefore, we still need some 

additional information to determine the object’s location in order to conduct the desired 

dimensional measurements. In this work, we assume that the size of the physical circular feature 

is given. Now we derive closed-form solutions for the estimation of dimensions on the object 

plane. 

m n k
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In order to use the information of the size of the reference circular feature, we need to 

obtain the standard form of the circle equation. As discussed above, (15) indicates that the object 

plane in the new coordinate system  is perpendicular to the ''' zyx 'z  axis. Therefore, if we 

substitute (15) into cone equation (17), we would obtain the equation for the circular reference 

feature. Combining with (7), the circle equation can be written as follows 

0'2'2'' 2
040302

2
1

2
1 =++−+ deydexdeyexe    (41) 

where 

( )( )
( ) ( ) ( )[ ]
( ) ( ) ( ) ( )

( ) 2
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2
2

222
3

22
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2

3
2

1
21222

3
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231
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2

122
2

2
3

2
1

2
1

222

2

2

nkmntknltmlktnmktlkte

kmtkltnlmnmntnltkmltkmtkltlmkne

nltmntlmktttkmllmkne

lmmltltmtke

+++++=

++++−−−−−+=

−+−+−+=

+−+=

−

−

−

 

Eq. (41) can be further expressed in the standard form of a circular function 

2
0

1

4
2
1

2
3

2
2

2

0
1

3

2

0
1

2 '' d
e
e

e
eed

e
eyd

e
ex ⎟⎟

⎠
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⎝

⎛
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+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−   (42) 

If we know that the diameter, D,  of the circular feature, we then have 

.
2

2/1

1

4
2
1

2
3

2
2

0

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
⋅=

e
e

e
eeDd    (43) 

The center of the physical circular feature in the coordinate system '  is '' zyx

( )
T

T ndd
e
ed

e
ezyx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 00

1

3
0

1

2'
0

'
0

'
0 ,,,,    (44) 

Substituting (44) into (14), we obtain its coordinates under the original coordinate system 

( ) ( )
( ) ( )

( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
+−+
+−+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−

−−

221221
1

23
21221

1

23
21221

1

0

0

0

nlme
mnlemnelme
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z
y
x

  (45) 
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 Since is known, the distance of the object plane to the origin point in , will be 

known.  Therefore, the location of the object plane is determined.  

0d ''' zyx 0nd

 

Figure 6. (a) dimension of the object plane; (b) dimension perpendicular to the object plane 
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2.3.1 Dimension on reference plane 

Comparing Figures 1 and 2, since the object plane in the new coordinate system '  as shown 

in Figure 2 is perpendicular to the optical axis, intuitively it appears to be easy to establish a 

geometric model in the transformed coordinate system . Let us first consider the dimension 

on the object plane (Fig. 6(a)), we assume that points A and B in the original coordinate system 

are  and . The supplemental line BC is parallel to the desired 

dimension DE, where point C is on line O’AD. We now determine the dimensional length 

'' zyx

''' zyx

( )fyxA ,,: 11 ( )fyxB ,,: 22

DE

mymfnyxA ++−− 111 ,,:

. 

The coordinates of points in the transformed coordinate system are:

and 

BA,

( )Tnf ( )TnfmymfnyxB ++−− 222 ,,: . 

The equation of line  is given by DO'

nfmymfnyx ++−− 111

DEBC //

yx
==

'' z'    (46) 

Since , the point C has the same 'z  coordinate as the point B  

nfmy +2zc =
'    (47) 

Substituting (47) into (46), we obtain  

nfmy +1

( )

nfmyxxc
+

⋅−= 2
1

'  

nfmy +1

nfmfnyyc
+

⋅+−= 2
1

my'  

Then, 

( )
2

2

2

2 ⎞⎛ +⎞⎛ + nfmynfmy

1
12

1
12 ⎟⎟

⎠
⎜⎜
⎝ +

⋅+−−+−+⎟⎟
⎠

⎜⎜
⎝ +

⋅−=
nfmy

mfnymfny
nfmy

xxBC   (48) 
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Also, because, 

0

2

nd
nfmy

DE
BC +

=    (49) 

we can solve for DE  

( 1
20

−+⋅⋅= nfmyndBCDE )    (50) 

Substituting (2) into (50), we have 

( )( )

( ) ( ) ( )
( ) ( ) ( )( ) ( )

( )
2

21

22
2122

2
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22
1112

1
220

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−

+−
⋅+−−−+−−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−

+−
⋅−−−

⋅+−⋅= −

nkcym
nkcym

mkcynmkcyn
nkcym
nkcym

cxcx

nkcymndDE

p

p
pp

p

p
pp

p

 

           (51) 

2.3.2 Vertical dimension to reference plane 

As shown in (51), we have the closed-form solution for the estimation of the dimension on the 

object plane. Then for dimensions parallel to the object plane but not on it, can we still estimate 

them? Obviously, this is just the case with a constant vertical distance (along the 'z -axis in the 

coordinate system) shifted by the object plane. This vertical distance, which often 

corresponds to the height estimation of an object, is important in calculating the volume of the 

object, as in the case of food portion size estimation. 

''' zyx

     Let us consider the diagram in Figure 6(b). Line  is the perspective projection of the 

vertical dimension E

HG

F on the image plane. The supplemental line GI is parallel to EF , and the 

point I is on line . In the original coordinate system, we define G  andFO' ( )f: yx ,, 33
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( fyxH ,,: 44 ) . Then, in  their coordinates are ''' zyx ( )TnfmymfnyxG ++−− 333 ,,: and 

.The equation of line  is given by ( )Tnfmymf ++ 4,nyxH −− 44 ,: FO'

nf

'x

my
z

mfny
y

x
x

+
=

+−
=

− 444

'''    (52) 

In the coordinate system ' , the object plane is perpendicular to 'z axis. Then, the 

vertical dimension 

' zy

FE is parallel to the 'z  axis. Hence, the supplemental line GI is perpendicular 

to the object plane and parallel to the 'z  axis, and  point I has the same  and coordinates of  

point . Substituting the and coordinates back into (52), we notice there are two equalities 

that can be used to solve for the '

'x 'y

' 'yG x

z  coordinate: 

nfmy
z

x
x I

+
=

−
−

44

3 '   (53) 

nfmy
z
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mfny I

+
=

+−
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44

3 '  (54) 

Theoretically, (53) and (54) should result in the same . However, numerically we may 

obtain different values. Because essentially we want to use the coordinate difference of the point 

I and G to calculate , we should use the equation providing the higher difference between the 

numerator and denominator of its left side. In our application to food volume estimation, the 

plate of food is usually on a table and the vertical dimension of a food object tends to align along 

the axis of the image (Fig. 4). Then, we use (54) to calculate .  

'Iz

'Iz

'Iz

y

( )
mfny
mfnynfmyzI +−

+−
⋅+=

4

3
4'    (55) 

Then 

( ) ( )
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mfnynfmynfmyGI
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+−

⋅+−+=
4

3
43   (56) 
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From '

'

E

G

z
z

EF
GI

= , we obtain 
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Substituting (2) into (57) yields 
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0 1  (58) 

Therefore, we can also calculate the dimension which is vertical to the object plane. 

Equivalently, we are able to calculate dimensions perpendicular to the object plane, such as the 

height of a regularly shaped object.  
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3.0  EXPERIMENT AND RESULT ANALYSIS 

We have shown that the orientation of the object plane can be estimated if a single image is 

given containing a circular feature with its plane parallel to x axis. This estimation does not need 

to know the focal length and pixel size of the camera. Additionally, if the optical axis of the 

camera passes through the center of the circular feature, the orientation of the object plane can 

also be calculated. If we are given the size of the physical circular feature, we are able to 

calculate dimensions of the object. In this section, we conduct both synthetic and real experiment 

to test and verify the above derivation. Figure 7 shows a typical image of 2-D patterns used in 

our experiments, where several circular reference features in different quadrants are plotted. The 

circular shapes in different locations were used in order to comprehensively verify our approach 

and analyze the effect of the location of reference feature on the estimation result.  In the 

experiment, the center of the pattern was placed on the optical axis in order to better control the 

rotation angle. Figure 8 shows the equipment used in our experiment. We will test and analyze 

the case of rotation in one direction first, and then the case of flexible orientation of the object 

plane. 
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Figure 7. Typical image of planar patterns used in experiment. 

 

Figure 8. To be changed for the equipment. 
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3.1 ONE ROTATION ANGLE 

We have set up two separate experiments to capture images of the patterns printed on a piece of 

paper at different rotation angles and the distances relative to the camera conducted by two 

different persons at different days. Within both experiments, we respectively used the four 

circles, No. 1-4 in fig. 7, in the four quadrants as the reference. For each calculation, we first 

selected eight points on the ellipse boundary and used the least square method to fit an ellipse. 

After we obtain the ellipse equation in the pixel coordinates, five points which evenly distributed 

on the ellipse were randomly generated as the input to our approach. As shown in Figure 9, when 

we used the circular reference feature in certain quadrant, we calculated the solid bold line in the 

corresponding quadrant for the first experiment and the dashed bold diameter for the second 

experiment. Figure 10-13 presents the calculated results of the rotation angle, dimension, 

distance and the ratio of the focal length to the pixel size. Note that the rotation angle can be 

easily calculated from the orientation vector. For each image, our method was applied using the 

circular shape in each of the four quadrants and gave four results as shown in the figures. Table 1 

shows the mean error of calculation. 
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Figure 9. Linear lengths measurement. 
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Figure 10. First experiment: results of estimated rotation angle.  
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Figure 11. First experiment: results of estimated  linear length.  
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Figure 12. First experiment: results of estimated distance.  
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Figure 13. First experiment: results of estimated ratio of the focal length to the pixel size.  

 

 

Table 1. Mean error using the circular reference in each quadrant for the first experiment 

  Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 
Angle 1.77% -12.41% 2.04% -4.30% 

k -28.60% 60.42% 39.08% -28.35% 
Distance -31.29% 68.31% 33.94% -25.42% 

Dimension 0.70% 0.57% 0.00% 1.29% 
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Similarly, for the second experiment, Figure 14-17 presents the results of estimated rotation 

angle, dimension, distance and ratio of focal length to pixel size. Table 2 lists the mean error 

with respect to each variable. 
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Figure 14. Second experiment: results of estimated rotation angle.  

 36 



0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

Image No.

Dimension (mm)

 

 

Quadrant 1
Quadrant 2
Quadrant 3
Quadrant 4
True value

 

Figure 15. Second experiment: results of estimated linear length.  
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Figure 16. Second experiment: results of estimated distance. 
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Figure 17. Second experiment: results of estimated ratio of the focal length to the pixel size.  

 

Table 2. Mean error using the circular reference in each quadrant for the second experiment 

  Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 
Angle 12.42% 2.52% 16.00% 9.23% 

k -11.92% 133.24% 24.76% -19.75% 
Distance -31.29% 68.31% 33.94% -25.42% 

Dimension 0.03% -0.05% 0.14% -0.08% 
 

By comparing the results of the first and second experiments shown in Figs. 10-13 and 

Figs 14-17, respectively, considerable differences in different quadrants can be observed except 

for the case of dimensional estimation. Large errors are also observed in Tables 1 and 2 with 

respect to the estimations of the rotation angle, distance, and ratio between focal length and pixel 

size. Despite the relatively large errors in these variables, the final result of dimensional 

estimation is highly accurate. In order to understand the sources of the large errors, we conducted 

a sensitivity analysis on the selection of the eight points to fit the ellipse, i.e., the sensitivity to 

ellipse equation in pixel coordinates. We chose one image, and for the ellipse in each quadrant, a 
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series of noise with normal distribution N(0,3) was added to the pixel coordinates of selected 

points.  Figures 18-21 show the results for each quadrant after 500 noise perturbations. In the 

chart of each variable, the middle black horizontal line represents the mean value and the upper 

and lower red horizontal lines represent the mean plus and minus the standard deviation, 

respectively. Table 3 provides the ratio of the standard deviation to the mean. This ratio indicates 

the estimation sensitivity to the perturbation.  
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Figure 18. Sensitivity analysis using the circular reference in quadrant 1. 

 39 



0 50 100 150 200 250 300 350 400 450 500
80

85

90

D
im

en
si

on
 (m

m
)

0 50 100 150 200 250 300 350 400 450 500
50
60
70
80

A
ng

le
(d

eg
re

e)

0 50 100 150 200 250 300 350 400 450 500
0

1

2
x 104

k

0 50 100 150 200 250 300 350 400 450 500
0

2000

4000

D
is

ta
nc

e 
(m

m
)

Image No.
 

Figure 19. Sensitivity analysis using the circular reference in quadrant 2. 
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Figure 20. Sensitivity analysis using the circular reference in quadrant 3. 
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Figure 21. Sensitivity analysis using the circular reference in quadrant 4. 

 

Table 3. The ratio of standard deviation and mean. 

  Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 
Dimension 0.98%  1.06%  0.75%  0.74% 

Angle 4.35%  3.94%  3.62%  3.08% 

Ratio k 26.97%  51.50%  13.33%  8.77% 

Distance 28.41%  53.93%  11.97%  7.55% 
 

From Figures 10-21 and Tables 2-3, it can be observed that the dimensional measurement 

is accurate and stable to the perturbation of the ellipse equation. However the intermediate 

parameters, including the ratio of focal length to pixel size, distance, and rotation angle are 

inaccurate. Among the three intermediate parameters, the error in the rotation angle, usually 

within ten percent, is relatively acceptable.  However, the results for the other two parameters are 

beyond our acceptance and they are also very sensitive to the noise. Although the above analysis 

shows that noise can cause significant error and instability, it still cannot account for the 

inconsistent results of using circular references in different quadrants. The error of our  
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equipment (an instrumentation lathe) and experimental setup were also sources of error because 

we could hardly control preciously the object board. Despite these error sources, we found that  

the idealized pin-hole model was the primary source of error because it did take the distortion 

into account, resulting in poor performances in the estimation of  the intermediate parameters. To 

eliminate the effect of equipment setup, distortion and the manual selection of points to fit 

ellipse, we performed a simulation study. Images were generated by the ideal pinhole model 

without distortion compensation from the physical locations of the pattern board and the camera 

in our second experiment.  Figure 22 shows a typical simulated pattern imposed on the original 

image. Figures 23-26 show the simulation results for all four parameters. Table 5 shows the 

mean errors for the simulation results. Figures 23-26 and Table 5 indicate that our approach is 

accurate under the ideal pin-hole model condition. In other words, the large error in the results of 

the three intermediate parameters, ratio of focal length and pixel size, distance and rotation angle 

were caused by the idealized pin-hole model. Though distortion can be compensated when using 

pinhole model as discussed in [Safaee-Rad 1992], we must pre-calibrate the camera’s intrinsic 

parameters. However, in many applications, we do not know these camera parameters and 

avoiding using these parameters is our interest. Therefore, a different approach must be taken to 

solve this problem. We will leave the study of this problem as a future work since, in the present 

study, we are interested only in dimensional estimation. Our results have shown that the 

estimation results with respect to this particular variable are highly accurate. 
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Figure 22. Simulated pattern imposed on the original image. 
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Figure 23. Simulation results of k on 48 images. 
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Figure 24. Simulation results of the rotation angle on 48 images. 
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Figure 25. Simulation results of the linear length on 48 images. 
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Figure 26. Simulation results of distance on 48 images. 

 

 

 

 

Table 4. Mean error using the circular reference in each quadrant for the synthetic experiment. 

  Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 
Angle 0% 0% 0% 0% 

k 0% 0% 0% 0% 
Distance 0% 0% 0% 0% 

Dimension 0% 0% 0% 0% 
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3.2 TWO ROTATION ANGLES 

In order to evaluate our method for the case where the circular reference plane is allowed to take 

an arbitrary orientation, we adjusted our pattern paper board and let it have two different 

rotational angles relative to the camera. Images were captured from varying distances. We used 

the central circular shape as reference in the calculation as shown in Figure 9. Figure 27 shows 

the results of two rotation angles. The upper panel in Figure 27 represents the rotation angle 

around the x-axis while the lower panel corresponds to the rotation around the y-axis. Since the 

experiment with two rotations is more difficult to control than that with one rotation, the 

estimation errors were larger. A simulation study was therefore conducted to analyze the source 

of error. Figure 28 shows the calculation result based on the simulated images. From Figure 27-

28s, we find that indeed the rotation angles can be approximated by using the deformation of the 

ellipse only when the optical axis passes through the center of the circular reference. Also, we 

notice that, as the pattern board rotates around the y-axis, the accuracy of estimation involving 

two rotation angles decreases. 
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Figure 27. Results of the two rotation angles using the central circular reference. 
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Figure 28. Simulation results of the two rotation angles. 
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4.0  APPLICATION  

The estimation of food portion size is very important in the study of obesity. The image of a food 

or an eating event usually involves one or more circular features, such as a dining plate, a bowl 

or a cup. The size of a selected circular feature can be measured by the human subject before or 

after the dietary study. Therefore, using a circular feature as a reference allows convenient 

dietary study when a wearable camera is used to take pictures automatically at a certain rate. 

This type of study is objective and passive to the human subject since he or she does not need to 

place a reference on the dining table. 

Figures 29-31 show the pictures of different foods. These pictures were taken using two 

digital cameras, both having the auto-focus function and picture resolution of 2048*1536. When 

images were acquired, we rotated the camera only in one direction. Figures 32-34 show the 

results of estimation. Table 5 provides more detailed performance information. 
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Figure 29. Roll and chicken leg used in the estimation. 

 

Figure 30. Bread and cake used in the estimation. 
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Figure 31. Carrot and strawberry used in the estimation. 
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Figure 32. Results correspond to foods in Fig. 29. Line indicates the ground truth. 
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Figure 33. Results correspond to foods in Fig. 30. Line indicates the ground truth. 
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Figure 34. Results correspond to foods in Fig. 31. Line indicates the ground truth. 
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Table 5. Estimation results of food dimensions. 

Food Dim. Type Sample Size Truth (mm) Mean (mm) Std.(mm) Error (%) 

Roll 
Length 20 70 68.63 2.45 -1.95 

Thickness 20 42 46.65 2.63 11.08 

Strawberry 
Length 24 28 27.44 1.69 -2.01 

Thickness 24 30 32.22 5.55 7.38 

Cake 
Length 26 48 46.98 1.79 -2.13 

Thickness 26 38 37.56 1.58 -1.16 

Bread 
Length 26 100 96.03 4.09 -3.97 

Thickness 26 13 13.19 1.07 1.49 
Chicken Length 20 110 113.17 4.46 2.88 
Carrot Length 24 108 108.05 4.50 0.05 

 

From Figures 32-34 and table 5, we can see that the estimation results of the food 

dimensions are very good. The thicknesses of the strawberry and the roll have relative lower 

accuracy. However, if we revisit Figures 29-31, it can be easily observed that the vertical 

dimensions for these two types of foods are relatively harder to measure. The selection of the 

starting and ending points of the vertical dimension for these foods was ambiguous. Even with 

this difficulty, the results were still satisfactory for the case of food volume estimation. 
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5.0  DISCUSSION 

Our analysis and experiments have shown that the proposed approach provides us with 

satisfactory results in dimensional estimation using a circular feature and a single image input. 

Though the closed-form solutions are mainly derived under the constraint that there is only one 

relative rotation angle between the camera and the circular reference plane, the approach still has 

many applications. We point out that the assumption of one rotation angle between the camera 

and the circular reference is realistic. For example, when a person adjusts the location and zoom 

of his/her camera in or out to optimizing the scene in the picture, he/she usually only rotates the 

camera towards or outwards the body. A parallel motion of the camera will not affect the 

application of our method as long as there is only one relative rotation angle between the camera 

and the circular feature. In robotic applications, the camera can be controlled more precisely to 

satisfy the constraint. In automatic inspection of the manufacturing process, this condition can 

also be satisfied easily. Our method also works when the second rotation angle is small. In the 

food portion size estimation study, the pictures are captured by a hand-held digital camera. 

Therefore, some small rotation along the other orthogonal direction is expected. However, as 

indicated by our experimental results, the error caused by camera rotation in the undesired 

direction was small, and the accuracy of our food portion size estimates was sufficient. Despite 

these observations, the sensitivity and tolerance of undesirable camera rotation in the 

dimensional estimation is worthy of further study in the future. 
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In our experiments, we have found that there are two special cases where our approach 

cannot handle well when the object plane rotates in one direction. These cases are:  

1) When the reference plane is vertical to the optical axis, the perspective projection of a 

circular reference feature is still a circle. In this case, no information from the shape deformation 

can be used to estimation the location of the reference plane. 

2) When the center of the circular feature is located along the y-axis, the ellipse is 

deformed only along the direction of y-axis. Then we lose one dimensional information, and 

hence cannot calculate the orientation of the reference plane as well as the parameters that 

require the orientation.  

We point out that these cases correspond to 04 =t in (23). Hence we have 0=n  and 

consequently Eq. (25) can no longer be used to calculate . k

When there are two relative rotation angles between the camera and the circular reference 

feature, certain special cases need to be discussed.  As shown in the previous section, when the 

optical axis roughly passes through the center of the circular feature, we can approximately 

estimate the orientation of the reference plane. In practical cases, if the camera can be controlled, 

its location or/and orientation can be adjusted to satisfy that the optical axis passes through the 

center of the reference feature. Then, the two relative rotation angles can be approximately 

calculated. The camera can be further adjusted to create the condition that there is only one 

rotation angle between the camera and the circular reference feature. However, when the center 

of the perspective projection of the circular reference, that is the ellipse, deviates considerably 

from the center of the image, the approach cannot estimate its rotation angles. This is because the 

deformation of the ellipse is highly related to its location in the image which cannot be covered 

only by the rotation of the coordinate system in the proposed method. 
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 Finally, our approach has provided closed-form solutions for the three intermediate 

parameters, including the orientation of the circular reference feature, its distance to the camera 

and the ratio of the focal length to the pixel size. However, our experiments have shown that, 

because of the effect of image distortion, these three parameters cannot be calculated accurately. 

However, the orientation of the reference plane can be estimated with an error usually below 

10%. However, an error up to 20% may be observed occasionally.  
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6.0  CONCLUSION 

In this thesis, a fundamental computer vision problem is revisited to estimate the dimensions of 

objects in one single image without knowing the focal length and the pixel size of the camera. A 

new approach is proposed based on a simple pin-hole camera model and a circular reference 

feature in the image to estimate the dimensions of objects in the same image.  Under the 

constraint that only one relative rotation angle is allowed between the camera and the circular 

reference feature, a set of closed-form solutions was derived for the ratio between the focal 

length and the pixel size, the orientation of the reference feature plane, the distance from the 

reference feature to the camera,  and the object dimensions. Our method is highly accurate in 

estimating object dimensions, but less accurate in estimating the ratio between the focal length 

and the pixel size, the orientation of the reference feature plane, and the distance from the 

reference feature to the camera. We have found that the estimation error is mainly due to the 

distortion of the pinhole model. Our method has been applied to the estimation of food portion 

size using a dining plate as a reference feature. We have estimated volumes of different types of 

foods, including chicken leg, carrot, dinner roll, strawberry, cake and bread. Our estimation 

results are satisfactory, providing a useful measurement tool for the study of obesity.  Although 

this work can be used to solve many practical problems, further study is necessary to improve 

estimation accuracy and extend the method to less restrictive cases. 
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