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 ABSTRACT 
Cytochrome P450 (CYP) enzymes are an important class of heme-containing proteins that 

catalyze oxidation reactions leading toward the removal of a wide variety of endogenous and 

exogenous substrates including prescription drugs. The activities of CYP enzymes are 

regulated primarily at the transcription level involving the regulatory sequences at the 5’-

flanking region of the CYP genes. The objective of this dissertation study was to characterize 

the function of the 5’-flanking sequences of selected CYP genes primarily responsible for 

drug metabolism. 

  

 Various sequences from the 5’-flanking regions of different CYP genes (CYP1A2, CYP2C9, 

CYP2C18, CYP2D6, CYP2E1, and CYP3A4) were cloned in expression vectors and tested 

for their activity in driving reporter gene expression in mouse livers and in transfected 

HepG2, 293, and BL-6 cells under optimized conditions. It was demonstrated that among the 

tested 5’-flanking regions of CYP genes, the CYP2D6 promoter showed the highest activity 

both in vivo and in vitro. The activities of various 5’-flanking regions of CYP genes in 

sustaining transgene expression were then tested in mouse liver and compared to those of 

other promoter sequences. As a result, the CYP2D6 promoter showed the highest activity and 

its activity was comparable to that of many established promoters. The mechanism 
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underlying CYP promoter activities in vivo and in vitro were then studied using the CYP2C9 

promoter as a model. Activities of various 5’-flanking sequences of CYP2C9 were evaluated 

by using deletion mutations of plasmid constructs in combination with transfection in mouse 

livers and in HepG2 cells. Finally, the role of PXR and CAR nuclear receptors in regulating 

CYP2C9 activation was investigated. The results show that both CAR and PXR are essential 

for CYP2C9 activation and that the regulatory elements reside in the proximal 1-2 kb region 

upstream of the CYP2C9 gene. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iv



  
  
 
 

 TABLE OF CONTENTS 
 
 
 
 
 TITLE PAGE.............................................................................................................................i 
 ABSTRACT............................................................................................................................ iii 
 TABLE OF CONTENTS..........................................................................................................v 
 LIST OF TABLES..................................................................................................................vii 
 LIST OF FIGURES .............................................................................................................. viii 
 LIST OF ABBREVIATIONS..................................................................................................ix 
 ACKNOWLEDGEMENTS.....................................................................................................xi 
 LITERATURE REVIEW .........................................................................................................1 

1.1 BACKGROUND .............................................................................................................1 
1.2 CYTOCHROME P450 ENZYMES ................................................................................3 

1.2.1 Regulation of CYP Expression .................................................................................8 
1.2.2 Systems Used to Assess the Induction of CYP.......................................................12 

1.3 RESEARCH OBJECTIVES ..........................................................................................16 
 MATERIALS AND METHODS............................................................................................17 

2.1 MATERIALS.................................................................................................................17 
2.2 METHODS ....................................................................................................................18 

2.2.1 Plasmid Construction ..............................................................................................18 
2.2.2 Cell Culture and Transfection.................................................................................24 
2.2.3 Hydrodynamic Transfection of Animals ................................................................24 
2.2.4 Luciferase Assay.....................................................................................................25 
2.2.5 Analysis of Serum hAAT by ELISA ......................................................................25 
2.2.6 Analysis of Green Fluorescent Protein Gene Expression .......................................26 
2.2.7 Analysis of DNA by Southern Blot ........................................................................27 
2.2.8 Northern Blot Analysis ...........................................................................................28 

 EVALUATION OF RELATIVE PROMOTER STRENGTH OF HUMAN CYTOCHROME 
P450 GENES USING OPTIMIZED TRANSFECTION IN VITRO AND IN VIVO...............29 

3.1 INTRODUCTION .........................................................................................................29 
3.2 RESULTS ......................................................................................................................31 

3.2.1 Optimization of Transfection Conditions ...............................................................31 
3.2.2 Comparison of the Relative Strength of CYP Promoters .......................................37 

3.3 DISCUSSION................................................................................................................46 
 EVALUATION OF THE ACTIVITIES OF CYTOCHROME P450 PROMOTERS IN 
SUSTAINING TRANSGENE EXPRESSION IN VIVO ........................................................51 

4.1 INTRODUCTION .........................................................................................................51 
4.2 RESULTS ......................................................................................................................52 

4.2.1 Activity of CYP Promoters in Sustaining Transgene Expression ..........................52 
4.2.2 Persistence of Plasmid DNA in Mouse Liver .........................................................59 
4.2.3 Analysis of Transgene mRNA Levels of Plasmid Constructs in Mouse Liver ......61 

4.3 DISCUSSION................................................................................................................63 
 IN VIVO ACTIVATION OF HUMAN CYP2C9 PROMOTER IN MOUSE LIVER AND 
THE ESSENTIAL ROLE OF CAR AND PXR ......................................................................69 

 v



  
  

5.1 INTRODUCTION .........................................................................................................69 
5.2 RESULTS ......................................................................................................................71 

5.2.1 Activity of Various 5’-Flanking Sequences of CYP2C9 in Mouse Liver and in 
HepG2..............................................................................................................................71 
5.2.2 Activation of CYP2C9 5’-Flanking Region by CYP Inducers and the Major Role 
of PXR and CAR .............................................................................................................76 
5.2.3 Activity of CYP2C9 5’-Flanking Region in Sustaining the Transgene Expression
..........................................................................................................................................82 
5.2.4 Identification of the Functional Elements in 5’-Flanking Region of CYP2C9 
Required for PXR/CAR-Mediated Induction ..................................................................84 

5.3 DISCUSSION................................................................................................................89 
 SUMMARY AND FUTURE PERSPECTIVE.......................................................................95 
BIBLIOGRAPHY..................................................................................................................100 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 vi



  
  
 
 

 LIST OF TABLES 
 
 
 
 
Table 1. Human CYP Families and Their Functions.................................................................7 
Table 2. Expression Sites of CYP Enzymes ..............................................................................7 
Table 3. Substrate Probes Used to Assess CYP Activities in Human .....................................15 
Table 4. Cloned Regions, Primers, and Digestion Enzymes Used in CYP Plasmid 
Construction.............................................................................................................................22 
Table 5. Cloned Regions, Primers, and Digestion Enzymes Used in CYP2C9 Plasmid 
Construction.............................................................................................................................23 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 vii



  
  
 
 

 LIST OF FIGURES 
 
 
 
 
Figure 1. Effect of PEI Amount on Overall Level of Transgene Expression among Various 
Cell Lines. ................................................................................................................................33 
Figure 2. Transfection Efficiency on HepG2 Cells. ................................................................34 
Figure 3. Transfection Efficiency on BL-6 Cells.....................................................................35 
Figure 4. Transfection Efficiency on 293 Cells. ......................................................................36 
Figure 5. Activity of CYP Promoters in HepG2 Cells.............................................................38 
Figure 6. Activity of CYP Promoters in BL-6 Cells................................................................39 
Figure 7.  Activity of CYP Promoters in 293 Cells. ................................................................40 
Figure 8. Transfection Efficiency on Mouse Hepatocytes.......................................................42 
Figure 9. Activity of CYP Promoters in Various Mouse Organs. ...........................................44 
Figure 10. Relative Strength of CYP Promoters in Mouse Liver. ...........................................45 
Figure 11. Activity of the Hepatic Promoters in Sustaining Luciferase Gene Expression......54 
Figure 12. Activity of the CYP Promoters in Sustaining hAAT Gene Expression. ................55 
Figure 13. Activity of the Viral Promoters in Sustaining Luciferase Gene Expression. .........56 
Figure 14. Activities of the Non-hepatic Promoters in Sustaining Luciferase Gene 
Expression................................................................................................................................57 
Figure 15. Activities of the Stress-Responsive Promoters in Sustaining Luciferase Gene 
Expression................................................................................................................................58 
Figure 16. Southern Blot Analysis of Plasmid DNA in Transfected Mouse Liver. ................60 
Figure 17. Transgene mRNA Analysis in Mouse Liver. .........................................................62 
Figure 18. Activity of Various 5’-Flanking Sequences of CYP2C9 in Mouse Liver..............73 
Figure 19. Activity of Various 5’-Flanking Sequences of CYP2C9 in HepG2 Cells..............74 
Figure 20. Effect of Plasmid Amount and Size on Promoter Activity in Mouse Liver...........75 
Figure 21. Effect of PXR Expression on the Activity of CYP2C9 5’-FR in Mouse Liver. ....78 
Figure 22. Effect of PXR Expression on the Activity of CYP2C9 5’FR in HepG2 Cells.......79 
Figure 23. Effect of CAR Expression on the Activity of CYP2C9 5’FR in Mouse Liver. .....80 
Figure 24. Effect of CAR Expression on the Activity of CYP2C9 5’-FR in HepG2 Cells.....81 
Figure 25. Activity of CYP2C9 5’-FR in Sustaining Transgene Expression in Mouse Liver.83 
Figure 26. Effect of PXR Expression on the Activity of Various 5’-FSs of CYP2C9 in Mouse 
Liver.........................................................................................................................................85 
Figure 27. Effect of PXR Expression on the Activity of Various 5’-FSs of CYP2C9 in HepG2 
Cells. ........................................................................................................................................86 
Figure 28. Effect of CAR Expression on the Activity of Various 5’-Flanking Sequences of 
CYP2C9 in Mouse Liver. ........................................................................................................87 
Figure 29. Effect of CAR Expression on the Activities of Various 5’-FSs of CYP2C9 in 
HepG2 Cells.............................................................................................................................88 
 
 
 
 
 

 viii



  
  
 
 

 LIST OF ABBREVIATIONS 
 
 
 
 
5'-FR 5'-flanking region 
5'-FS 5'-flanking sequence 
ACT beta actin 
ADR adverse drug reaction 
AhR aryl-hydrocarbon receptor 
APP amyloid precursor protein 
ARNT AhR-nuclear translocator 
BAC bacterial artificial chromosome 
BOP TCPOBOP or 1,4-bis[2-(3,5-Dichloropyridyloxy)]benzene 
BSA bovine serum albumin 
C/EBP CCAAT/enhancer binding protein 
CAR constitutive androstane receptor 
CAR-RE CAR-responsive elements 
CMV cytomegalovirus 
CYP cytochrome P450 
DBD DNA binding domain 
DDI drug-drug interaction 
DNA deoxyribonucleic acid 
ELISA  enzyme-linked immunosorbent assay 
FBS fetal bovine serum 
FXR farnesol X receptor 
GFP green fluorescent protein 
hAAT human alpha 1-antitrypsin 
HNF hepatic nuclear factor 
HS heat shock 
LBD ligand binding domain 
LXR liver X receptor 
mRNA messenger ribonucleic acid 
NFkB nuclear factor kappa B 
PAH polycyclic aromatic hydrocarbon 
PBS phosphate buffered saline 
PCN pregnenolone-16α-carbonitrile 
PCR polymerase chain reaction 
PEI polyethylenimine 
PHB phenobarbital 
PPAR peroxisome proliferators-activated receptor 
PXR pregnane X receptor 
RIF rifampicin 
RLU relative light units 
RSV Rous sarcoma virus 
RXR retinoid X receptor 

 ix



  
  
SA serum albumin 
SRC-1 steroid receptor coactivator-1 
TE Tris-EDTA 
VDR vitamin D receptor 
XRE xenobiotic responsive element 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 x



  
  
 
 

 ACKNOWLEDGEMENTS 
 
 
 
 
First, all praise and glory are due to Allah for all bounties granted to me and with God’s 

guidance and help this achievement became possible.  

 

I am very much indebted to many individuals who have helped and supported me during the 

past few years. I am particularly thankful to Dr. Joseph E. Knapp and Dr. Dexi Liu for their 

great guidance, advice, and support. I am very grateful to all my committee members, Dr. 

Marjorie Romkes, Dr. Paul L. Schiff, and Dr. Wen Xie for their support and valuable 

suggestions. I also would like to thank Dr. Liu’s lab members for their help with different 

aspects of this work.  

 

I am grateful to my father, Salem, and my mother, Rifaa, for their prayers, patience, and 

unlimited support. My thanks and regards also goes to my wife, Abeer, for her love, 

encouragement, and support. My sincere love and prayers to my son, Abdulmalik, and my 

daughter, Jana, and I wish them a great and successful future. 

 

Finally, I acknowledge King Saud University for providing me with the scholarship and 

supporting my graduate studies. 

 

 xi



  
  

 
 

 LITERATURE REVIEW 
 
 
 
 

1.1 BACKGROUND 
 
 
Before any drug can be approved for the clinical use, extensive studies have to be 

done to evaluate its efficacy and safety. The safety of drug treatment is a major 

concern since the adverse drug reactions (ADR’s) have been identified as a significant 

factor in patient mortality. ADR can be defined as “an appreciably harmful or 

unpleasant reaction, resulting from an intervention related to the use of a medical 

product, which predicts hazard from future administration and warrants prevention or 

specific treatment, or alteration of the dosage regiment, or withdrawal of the product” 

(1). In the United States, ADR’s occur in 1 out of 15 patients and represent the fourth 

to sixth leading cause of death to which 106,000 to 140,000 fatalities per year are 

attributed (2, 3). Between 1975 and 1999, ADR’s led to the withdrawal of 10% of 

approved drugs from the market (4). The economic burden resulting from drug-related 

morbidity and mortality exceeded $177.4 billion in year of 2000 (5). A better 

understanding of the mechanism of ADR’s is necessary to prevent the significant 

outcomes of such a major health concern.  

 

Drug-drug interactions (DDI’s) are a major cause of ADR’s, since 20-30% of all 

ADR’s are caused by such interactions (6, 7). DDI’s occur when administration of a 

drug results in undesirable modification of the pharmacological action of a second 
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concurrently administered drug (8). DDI’s can be categorized as either 

pharmacodynamic or pharmacokinetic. Pharmacodynamic drug interactions occur as 

result of competition for the same drug receptor site, resulting in synergistic or 

antagonistic drug action (3, 9). Pharmacokinetic interactions are adverse drug events 

caused by altered absorption, distribution, metabolism, or excretion (3, 8, 10). The 

pharmacologic or toxicologic effect of a drug is related to the persisting level of the 

drug within the body where any modification in that level might alter body’s 

biochemical, biological, and/or physiological homeostasis.  

 

In general, DDI’s take place in the liver where most drugs are metabolized and most 

of the metabolic enzymes are expressed (11, 12). Drug metabolism is carried out by a 

set of enzymes among which the cytochrome P450 (CYP) family considered to be the 

most involved. The expression of CYP is susceptible to modification by a variety of 

factors, including gender, age, genetic makeup, drugs, and dietary or environmental 

chemicals. Modification in drug metabolism may entail either enzyme induction or 

inhibition. A variety of ADR’s due to induction of CYP have been reported (13). 

Metabolic reactions commonly yield inactive metabolites, however, metabolites with 

equal or greater pharmacological or toxicological activity can be generated. 

Accordingly, the induction in expression of metabolizing enzymes could result in 

reduced efficacy or induced toxicity (14).  

 

The enzymes of CYP family play an important role in causing DDI’s, therefore, 

investigating their gene expression and understanding the mechanisms of their 

regulation are critical for preventing ADR’s. The biochemistry of drug metabolism 
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and the roles played by individual CYP enzymes in drug metabolism are important 

areas of molecular pharmacology and have been studied over the past decade. 

However, most of these studies were conducted using in vitro systems such as cell 

lines and hepatocytes in primary cultures. Unfortunately, liver specific gene 

expression is extinguished in these systems since crucial transcription factors are lost 

in culture. Moreover, cell culture cannot capture the full spectrum of hepatic 

responses to xenobiotic agents. Although transgenic mice have been useful in the 

investigation of gene regulation in vivo, considerable time, money, and the breeding 

of large numbers of animals over several generations are required. Therefore, 

development of an animal system modeling human drug metabolism and allowing 

identification of potential adverse effects of a drug prior to human use presents an 

urgent need in healthcare and the pharmaceutical industry. In the following sections a 

number of aspects of the CYP enzymes, and the systems used to study their regulation 

are reviewed. 

 
 
 
 

1.2 CYTOCHROME P450 ENZYMES 
 
 
Cytochrome P450 (CYP) enzymes are heme-containing, membrane-bound, and 

endoplasmic reticulum-located proteins (15, 16) that catalyze the initial step in the 

oxidative metabolism of a plethora of endogenous (steroids, bile acids, fatty acids, 

prostaglandins, leukotrienes, and biogenic amines) and exogenous (drugs, 

carcinogens, dietary supplements, pollutants, pesticides, and environmental 

chemicals) substances (17-22). They were first named in 1961, because the 
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cytochrome pigment (P) has a 450 nm ultraviolet spectral peak when reduced and 

bound to carbon monoxide (23-25) . The general catalytic reaction cycle for CYP was 

first presented in 1971 and can be summarized as (RH + O2 + 2H+ + 2e- → ROH + 

H2O) where RH represents the drug molecule (26).   

 

Based on similarities in their protein sequences, CYP enzymes have been divided into 

families and subfamilies (18, 27). Enzymes with ≤ 40% sequence similarity are 

grouped into different families, designated by an Arabic number (e.g. CYP2). The 

enzymes with 40-55% similarity are grouped into different subfamilies, designated by 

a letter (e.g. CYP2C). Enzymes with ≥ 55% similarity are classified as members of 

the same subfamily, designated by an Arabic number (e.g. CYP2C9).  

 

Fifty seven functional CYP genes and eighteen families have been identified in 

humans, among them only the first three families are involved in drug metabolism 

(23, 28-31). Table 1 summarizes all the known human CYP families along with their 

functions. A recent study showed that among 403 tested drugs, 25% were eliminated 

unchanged and 55% were metabolized via CYP enzymes (32). The liver is considered 

the major site for dug metabolism mediated by CYP (15). The major human hepatic 

CYP450 enzymes are CYP2C and CYP3A and they account for 20% and 30% of the 

total CYP protein in the liver. The CYP enzymes CYP1A2, CYP2E1, CYP2A6, 

CYP2D6, and CYP2B6 account for 13%, 7%, 4%, 2%, and < 1%,  respectively (33). 

The enzymes of CYP3A (mostly CYP3A4) subfamily are responsible for metabolism 

of 51% of the commonly prescribed drugs, followed by CYP2D6, CYP2C (mostly 

CYP2C9), CYP1A2, and CYP2E1 which are responsible for metabolism of 24%, 
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19%, 5%, and 1%, respectively (34). Each of these CYP enzymes has its distinct 

tissue distribution and genetic expression (Table 2).  

 

The human CYP1A subfamily consists of two members, CYP1A1 and CYP1A2, 

which are located in chromosome 15 (35). CYP1A2 is expressed almost exclusively 

in the liver, although low expression has also been detected in the lungs and 

intestines. CYP1A2 is responsible for bio-activation of nitrosamines, arylamines, 

polycyclic aromatic amines (PAHs), and aflatoxin B1 into intermediates that can bind 

DNA and induce mutation (36-39). It has been speculated that 90% of all known pro-

carcinogens are activated by CYP1A1 and CYP1A2 (40). CYP1A2 is responsible for 

metabolism of some food supplements and drugs such as caffeine and theophylline 

(41, 42). CYP1A2 expression is highly inducible by cigarette smoking, charbroiled 

foods, and cruciferous vegetables (43, 44). 

 

The human CYP2C subfamily consists of four genes, CYP2C8, CYP2C9, CYP2C18, 

and CYP2C19, which are located in chromosome 10 (45). CYP2C9 is the most 

abundant CYP2C protein expressed in the liver. Lower levels of CYP2C9 expression 

have been detected in the kidneys and intestines. CYP2C9 is responsible for 

metabolizing many drugs such as tolbutamide and S-warfarin (46, 47). Its  expression 

is subjected to induction by many drugs including phenobarbital and rifampicin (13, 

48). 

 

Within  the CYP2D subfamily in humans, CYP2D6 is the only active gene which is 

located in chromosome 22 (49). CYP2D6 is expressed in the liver and to lesser extent 
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in the intestines and brain. It is responsible for metabolizing a wide variety of 

prescribed drugs such as dextromethorphan and debrisoquine (50). The CYP2D6 gene 

is characterized by its high genetic polymorphism and its resistance to induction (51, 

52). 

 

The human CYP2E subfamily contains a single gene, CYP2E1, which is located in 

chromosome 10 (53). CYP2E1 is expressed mostly in the liver and to a lesser extent 

in the kidneys and lungs. It is responsible for metabolism of many compounds 

including ethanol and chlorzoxazone (54, 55). CYP2E1 expression is subject to 

induction by a variety of compounds such as ethanol and isoniazid (55-57).  

 

The human CYP3A subfamily consists of four genes, CYP3A4, CYP3A5, CYP3A7, 

and CYP3A43, which are located in chromosome 7 (58). CYP3A4 is highly expressed 

in the liver and intestines and to a lesser extent in the lungs. CYP3A4 is responsible 

for metabolism of a wide variety of drugs including nifedipine and erythromycin (59, 

60) and bio-activation of many carcinogens such as PAHs and aflatoxin B1 (36, 38). 

CYP3A4 is the most highly inducible CYP gene, and numerous pharmaceutical 

compounds, including rifampicin and dexamethasone, are able to enhance the 

expression of this gene (61, 62). 
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Table 1. Human CYP Families and Their Functions  
 
 
Family Subfamilies Genes Substrates and Functions 
CYP1 2 3 Foreign chemicals, arachidonic acid, eicosanoids 
CYP2 13 16 Foreign chemicals, arachidonic acid, eicosanoids 
CYP3 1 4 Foreign chemicals, arachidonic acid, eicosanoids 
CYP4 5 12 Fatty acids, arachidonic acid, eicosanoids 
CYP5 1 1 Thromboxane A2 synthase 
CYP7 2 2 Cholesterol, bile acid synthesis 
CYP8 2 2 Prostacyclin synthase, bile-acid synthesis 
CYP11 2 3 Steroidogenesis 
CYP17 1 1 Steroid 17α-hydroxylase, 17/20-lyase 
CYP19 1 1 Aromatase to form estrogen 
CYP20 1 1 Unknown 
CYP21 1 1 Steroid 21-hydroxylase 
CYP24 1 1 Vitamin D3 24-hydroxylase 
CYP26 3 3 Retinoic acid hydroxylation 
CYP27 3 3 Bile-acid biosynthesis, vitamin D3 hydroxylations 
CYP39 1 1 24-hydroxycholesterol 7α-hydroxylase 
CYP46 1 1 Cholesterol 24-hydroxylase 
CYP51 1 1 Lanosterol 14α-desmethylase 
 
Adapted from reference (23) 
 
 
 
Table 2. Expression Sites of CYP Enzymes  
 
 
CYP Site of Expression 
1A2 Liver (63), brain (64), duodenum (65), umbilical vein (66),  lung (67), esophagus (68)   
2C9 Liver (69-71),  intestine (72), kidney (73)  
2D6 Liver (74), intestine (75, 76), brain (77), lung (78), bladder (79), kidney (80) 
2E1 Liver (81), kidney (82), lung (83), lymphocytes (84), placenta (85) 
3A4 Liver (86-89), small intestine (76, 89, 90), intestine (91), lung (92) 
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1.2.1 Regulation of CYP Expression 
 
 
Induction in drug metabolism can be defined as “increase in the amount and/or 

activity of a drug metabolizing enzyme as result of an exposure to an inducing 

chemical whatever the underlying mechanism” (93). The induction of CYP was first 

demonstrated in 1956 following the administration of phenobarbital and 3-

methylcholanthrene to animals (94). A few years later, it was found that the induction 

was attributed to elevation in the transcriptional activity of CYP genes (95, 96). Many 

CYP subfamilies including CYP1A, CYP2B, CYP2C, and CYP3A, are highly 

inducible by xenobiotics and their induction is usually tissue specific, rapid, dose-

dependent, and reversible (29). 

 

 Induction of CYP enzymes can cause clinically significant DDI’s. The outcome of 

enzyme induction depends on the pharmacological activity of the parent compounds 

and their metabolites. If the parent compound is the active therapeutic agent, then the 

net effect of enzyme induction will be loss of the pharmacological efficacy. for 

example, rifampicin increases the CYP3A4-dependent metabolism of cyclosporine 

resulting in rejection of the transplanted organ by the body (97). On the other hand, 

when the metabolite is more active than the parent compound, then the induction will 

increase the chance for toxicity. For example, ethanol increases the CYP2E1-

dependent metabolism of acetaminophen resulting in formation of its hepatotoxic 

metabolite (N-acetyl-p-benzoquinoneimine) (98). The examples mentioned as well as 

many others all reveal the clinical consequences of CYP induction and suggest that 
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more studies are required in order to fully understand the mechanisms underlying 

their regulation.  

In the last few years, extensive efforts have been made to understand the molecular 

mechanisms underlying the expression of CYP enzymes. It has been found that the 

induction of CYP enzymes is primarily regulated by a group of orphan nuclear 

receptors. They are called orphans because they were identified without knowing their 

endogenous or exogenous ligands (32). These receptors share two essential functional 

domains that include the N-terminal DNA-binding domain (DBD) and the C-terminal 

ligand-binding domain (LBD) (99). The conserved DBD acts to link the receptor to 

specific 5’-flanking region (5’-FR) element in its target gene called the xenobiotic 

responsive element (XRE) (32). The less conserved LBD has at least four functions: 

ligand binding, binding of co-activators or co-respressors, dimerization, and 

transactivation (100). Nuclear receptors were considered prime candidates for 

mediating hepatic drug induction for several reasons (29). First, their ligands are small 

and lipophilic similar to those of CYP enzymes. They bind to specific DNA elements 

similar to those found in the 5’-flanking sequences (5’-FSs) of CYP genes. 

Furthermore, they are expressed in specific tissues where most CYP enzymes are 

expressed. Finally, they play key roles in many physiological processes in which P450 

enzymes are involved.  

 
The most studied nuclear orphan receptor is the pregnane X receptor (PXR). PXR was 

isolated and identified as a key regulator in CYP3A expression in 1998 (101-103), 

although recent studies have disclosed its regulatory role for other CYP genes such as 

CYP2C and CYP2B (104, 105).  PXR is expressed predominantly in the liver and 
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intestines and to a lesser extent in the kidneys and lungs (106). Many chemicals 

including prescription drugs, steroids, and environmental factors are able to bind and 

activate PXR (101, 107). For example, the antibiotic rifampicin and the antidepressant 

herbal product hyperforin are potent PXR activators (108, 109). The biochemical 

process of PXR activation has been illustrated (99). Upon ligand binding, a 

conformational change in the LBD creates a co-activator (e.g. steroid receptor 

coactivator-1, SRC-1) binding surface; and transcriptional activation occurs after 

recruitment of co-activator to the receptor (100). Subsequently, PXR regulates gene 

expression by forming a heterodimer with the retinoid X receptor (RXRα) and then 

regulation is achieved by binding of the PXR-RXRα heterodimer to XRE present in 

the 5’-FR of the target gene. The unique feature of PXR-mediated induction is its 

species specificity, primarily due to the differences in LBD (101). For example, 

rifampicin is a potent activator for human PXR but not the rodent isoform, whereas 

pregnenolone-16α-carbonitrile (PCN), an anti-glucocorticoid, is a rodent-specific 

activator. PXR humanized mice have been generated (110) and in these transgenic 

mice the profile of PXR-based induction was similar to the human profile.  

 
Another important nuclear receptor is the constitutive androstane receptor (CAR). 

CAR  was first isolated in 1994, but its role in CYP2B induction was not appreciated 

until 1998 (111-113). CAR also can regulate other CYP genes such as CYP3A and 

CYP2C (114, 115). CAR is expressed predominantly in the liver and intestines and 

can be activated by many drugs such as phenobarbital and phenytoin. The mechanism 

of CAR activation is more complex than that of PXR. CAR is cytosolic protein and 

upon activation, it translocates into the nucleus and forms a heterodimer with RXRα. 

 10



  
  

Similar to PXR, it is the heterodimer that binds to target gene sequence and activates 

transcription (116-118). Phenobarbital activates CAR by facilitating its nuclear 

translocation through a phosphorylation-based mechanism (116, 118, 119). The only 

molecules shown to directly bind CAR were androstanol and clotrimazole which are 

inverse agonists that deactivate the response (120). Like PXR, CAR shows species 

differences in its induction profile, for example 1,4-bis[2-(3,5 

dichloropyridyloxy)]benzene (TCPOBOP) was found to be specific mouse CAR 

activator (120, 121). The broad role of CAR and PXR in regulating many 

metabolizing enzymes and transporters and cross-regulation of gene expression has 

been reported (122).   

 

Perhaps the most well studied nuclear receptor is the aryl-hydrocarbon receptor 

(AhR). For more than thirty years, AhR has been known to be a CYP1A regulator 

(123-125). AhR is a helix-loop-helix protein that belongs to the polycyclic aromatic 

hydrocarbon (PAH) family of transcription factors. Similar to CAR, AhR is a 

cytosolic protein and becomes activated once activated by its ligand. Consequently, 

the activated receptor translocates into the nucleus, form a heterodimer with its 

nuclear translocator protein (ARNT), binds to XRE sequences upstream of CYP1 

genes, and activates gene transcription (126, 127). AhR-dependent induction is 

conserved among many cell types and across animal species. A significant number of 

substances were found to be ligands for AhR including omeprazole as well as several 

important environmental carcinogens found in auto exhaust and cigarette smoke (128, 

129). 

 

 11



  
  

Other nuclear receptors are also involved in CYP regulation. For example, the 

peroxisome proliferator-activated receptor (PPARα) regulates CYP4A (130-132) and 

the vitamin D receptor (VDR) regulates CYP3A, CYP2B, CYP2C, and CYP24 (133-

135). The liver X receptor (LXR) and the farnesol X receptor (FXR) both regulate the 

expression of CYP7A (136-138).  

 

Additionally, some transcriptional factors play crucial role in CYP regulation. For 

example, the hepatic nuclear factor (HNF1α) regulates the expression of CYP2E1, 

CYP1A2, CYP7A1, and CYP27 (139) and the HNF4α regulates CYP3A, CYP2C, 

CYP2D6, CYP2A6, and CYP2B (140-142). Other transcriptional factors such as the 

HNF3γ regulates CYP2C (143) while the CAAT/enhancer binding protein (C/EBP) 

regulates the expression of CYP2B, CYP2D, and CYP2C (144). 

 
 

1.2.2 Systems Used to Assess the Induction of CYP 
 
 
The induction of CYP enzymes can be evaluated directly in the human body using 

different substrate-probes following repeated administration of a putative inducer 

drugs (Table 3). The metabolic ratio of the probe to its metabolite represents the 

metabolic activity of a single CYP enzyme. The increase in CYP metabolic activity 

stimulated by a given drug indicates that the drug is working as an inducer for that 

specific enzyme. For obvious ethical reasons, the use of human studies is limited only 

to compounds that are at a late stage of clinical development. Moreover, human trials 

are expensive and the subjects are difficult to recruit. Such limitations have prompted 

the use of animals, often rodents, as an alternative to test in humans.  

 12



  
  

 

Compared to clinical studies, studies of drug metabolism in animals have provided a 

plethora of information about animal CYP genes, their enzymatic action, substrate 

specificity, and gene regulation. Unfortunately, it is now well known that drug 

metabolism in animals often differs from humans and data obtained from animal 

studies cannot be directly extrapolated into humans. Differences in the action of 

important signaling molecules and pathways, the extreme sexual dimorphism of 

rodent CYP, the marked species differences in the activation profiles of key nuclear 

receptors, and the differences in the layout of nuclear receptor responsive elements 

within target genes make it difficult to use animals directly as in vivo models to 

predict the induction of CYP enzymes in humans (145). To minimize such 

differences, many lines of transgenic animals expressing human CYP genes 

(CYP3A4, CYP2D6, CYP1B1 and CYP2E1) or nuclear receptors (PXR, CAR, AhR, 

and PPARα) have been generated (110, 141, 146-152)   

 

Studies have also been conducted using in vitro systems, including purified CYP 

enzymes, subcellular fractions (microsomes, or cell extracts), hepatoma cell lines, and 

primary hepatocytes cultures. More complex systems like liver slices and isolated 

liver have also been employed (12). While cell free systems are convenient and have 

been widely employed for biochemical studies of CYP, non-cellular systems cannot 

be used for gene expression studies.  

 

Before the discovery of PXR and CAR, cultured human hepatocytes were considered 

to be the suitable system to study CYP induction. In these systems, incubation of 
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hepatocytes for 24-72 hours with a compound is followed by assessment of CYP 

metabolic activities using specific substrates. The activity measured in the induced 

cells is then compared with that in untreated control cells (153). Despite the positive 

aspects, the use of hepatocytes has certain disadvantages including their availability, 

quality, involvement of phase II enzymes, and inter-individual variability toward 

xenobiotic responses as well as basal CYP expression (145). Furthermore, 

hepatocytes in primary culture tend to lose their ability to respond to CYP enzyme 

inducers rather quickly. 

 

A relatively new and more sensitive system for studying CYP induction involves 

transfection with plasmids containing reporter genes under the control of regulatory 

sequence of human CYP genes into cells with characteristically low CYP gene and 

nuclear receptor expression, but exhibiting normal expression of cofactors such as 

RXR. In general, this approach involves insertion of human CYP regulatory 

sequences into the immediate 5’ end of a reporter gene into a plasmid. The construct 

is then transfected into cells.  Similarly, a plasmid containing the coding region of a 

nuclear receptor can also be introduced to the same cells through co-transfection. 

Drug specific induction is determined by the relative level of reporter gene expression 

over that of cells without drug treatment. The major advantage of the transfection-

based approach is its convenience. Since plasmids containing nuclear receptors can be 

co-transfected with a reporter gene under control of regulatory elements of human 

CYP genes, various compounds or substances can be tested for their activity in 

inducing CYP gene expression.  
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Table 3. Substrate Probes Used to Assess CYP Activities in Human  
 
 

CYP Substrate (Sampling Procedure) 
CYP1A2 Caffeine (breath test, urine) 
CYP2C9 Tolbutamide (urine), Diclofenac (blood), Phenytoin (blood) 
CYP2D6 Sparteine (urine), Debrisoquine (urine), Dextromethorphan (urine) 
CYP2E1 Chlorzoxazone (urine, blood) 
CYP3A4 Erythromycin (breath test), Dapsone (urine), Midazolam (blood) 
 
Adapted from reference (153) 
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1.3 RESEARCH OBJECTIVES 
 
 
Many cases of clinically relevant ADR’s have been attributed to the induction in CYP 

expression. As a result, these reactions led to significant mortality and an economic 

burden. Studies that enable us to understand the mechanism of CYP induction in order 

to prevent such reactions are critically needed. In addition, to reduce the time and cost 

of developing new drugs, there is a concerted effort in the pharmaceutical industry to 

identify potential drug interactions early in the drug discovery process. The difficult 

process of accurately predicting potential interactions by new drug candidates could 

be augmented by a procedure through which selected human CYP genes are 

introduced into a mouse and their responses to the candidate drug studied under the 

physiological conditions. The work of this dissertation project was designed to 

establish such an in vivo system wherein human CYP gene sequences can be 

introduced and studied in the hepatocytes of mice. The goal of this study was to 

establish optimal conditions for transfecting mouse hepatocytes; to validate the 

system for CYP related studies; and to determine the functional role of 5’-FRs of 

human CYP genes.   
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 MATERIALS AND METHODS 
 
 
 
 

2.1 MATERIALS 
 
 
GeneChoice PCR kits that were used to amplify CYP 5’-FSs of p1A2-luc, p2C9-luc, 

p2C18-luc, p2D6-luc, p2E1-luc, and p3A4-luc were purchased from PGC Scientific 

Corporation (Frederick, MD) while PCR primers were designed and ordered from 

MWG-Biotech (High Point, NC). Failsafe PCR kits that were used to amplify 

CYP2C9 5’-FSs of p2C9-0.2K-luc, p2C9-1K-luc, p2C9-3K-luc, p2C9-5K-luc, and 

p2C9-10K-luc were purchased from Epicentre (Madison, WI) while PCR primers 

were designed and ordered from IDT (Coralville, IA). A BAC clone of RP11-208C17 

was obtained from CHORI (Oakland, CA). Luciferase assay kits were purchased from 

Promega (Madison, WI). The protein assay reagent was from Bio-Rad (Hercules, 

CA). Cell culture media were purchased from Invitrogen (Grand Island, NY). 

Polyethylenimine (PEI) (Branched, 10 KD) was synthesized according to a previously 

published procedure (154). Rifampicin, phenobarbital, 1,4-bis[2-(3,5-

Dichloropyridyloxy)]benzene (TCPOBOP), pregnenolone-16α-carbonitrile (PCN), 

and DMSO were obtained from Sigma-Aldrich (St. Louis, MO). Bacto™-tryptone, 

Bacto™-yeast extract, and Bacto™-agar were purchased from Difco (Detroit, MI). 

Restriction enzymes and T4 DNA ligase were purchased from New England BioLabs 

(Beverly, MA). All other chemicals were of cell culture grade and obtained from 
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Sigma Chemical Co. (Saint Louis, MO).  CD-1 mice (female, 18-20 g) were from 

Charles River (Wilmington, MA).  

 
 
 
 

2.2 METHODS 
 
 

2.2.1 Plasmid Construction 
 
 
All 5’-FSs for construction of p1A2-luc, p2C9-luc (or p2C9-2K-luc), p2C18-luc, 

p2D6-luc, p2E1-luc, p3A4-luc, p2C9-0.2K-luc, p2C9-1K-luc, p2C9-3K-luc, p2C9-

5K-luc, and p2C9-10K-luc (all named based on the CYP name or the length of the 

inserted CYP 5’-FSs) were cloned into pGL3-Basic vector (Promega, Madison, WI). 

The primers (forward (F) or reverse (R)) for PCR amplification, the cloned CYP 5’-

FSs, and the enzymes used in primer sequences modifications are listed in Tables 4 

and 5. Primer sequences of p1A2-luc, p2C9-luc, p2C18-luc, p2D6-luc, p2E1-luc, and 

p3A4-luc were selected based on previously published CYP gene sequences (74, 155-

158). All CYP related primers were synthesized with the KpnI or SacI site attached to 

the 5’ end of the forward primer and the MluI, BglII, or XhoI site to the 5’ end of the 

reverse primer, with the exception of the reverse and the forward primers used to 

generate fragment 1 (F1) and 2 (F2) of p2C9-10-luc, respectively (Table 5). The 

genomic DNA from human liver was used as the PCR template for 5’-FSs of p1A2-

luc, p2C9-luc, p2C18-luc, p2D6-luc, p2E1-luc, and p3A4-luc. The BAC clone of 

RP11-208C17 was used as the PCR template for 5’-FSs of p2C9-0.2K-luc, p2C9-1K-

luc, p2C9-3K-luc, p2C9-5K-luc, and p2C9-10K-luc.  
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On arrival in our laboratory, the BAC clone was inoculated into Luria Broth (LB) 

culture medium (1% Bacto™-tryptone, 0.5% Bacto™-yeast extract, 1% NaCl) 

including 20 µg/ml chloramphenicol, the BAC was then extracted using a Qiagen 

Plasmid Maxi Kit (Valencia, CA). BAC DNA concentration was measured 

spectrophotometrically by absorbance at 260 nm and 280 nm. The Identity of the 

extracted BAC DNA was confirmed by restriction enzymes digestion (BamHI or 

EcorV) and by PCR using the extracted BAC DNA as the template and F: 

CCCACACTGTACGCACAATC and R: GGAGTTGAGAAAAACCAAGGG as 

primers. 

 

Different strategies were used to clone each 5’-FSs into plasmid vector. To clone CYP 

5’-FSs into the pGL3-Basic vector, PCR products of p2C9-0.2K-luc, p2C9-1K-luc, 

p2C9-3K-luc, p2C9-5K-luc, and p2C9-10K-luc were concentrated by ethanol 

precipitation, digested with the appropriate enzymes, separated on 1% agarose gel, 

and the correct fragment extracted with a Qiagen QIAquick gel extraction kit 

(Valencia, CA). PCR products of p2C9-10K-luc F1 and F2 were purified, digested 

with XbaI (they share the same XbaI digestion site), and then ligated together before 

digestion with KpnI/XhoI. The modified PCR products were then ligated to a linear 

pGL3-Basic vector (linearized with the same pair of restriction enzymes by which the 

inserted PCR product was digested). 

 

PCR products of p1A2-luc, p2C9-luc, p2C18-luc, p2D6-luc, p2E1-luc, and p3A4-luc 

were concentrated, purified, and then ligated into pGEM easy vector (Promega, 
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Madison, WI). Each CYP 5’-FSs in pGEM easy vector was then digested with the 

proper pair of restriction enzymes, and ligated to linear pGL3-Basic vector. 

 

CYP constructs that contain the human alpha antitrypsin (AAT) reporter gene (p1A2-

hAAT, p2C9-hAAT, p2D6-hAAT, and p3A4-hAAT) were cloned by ligating the 

digested CYP PCR products into linear pGL3-Basic vector from which the luciferase 

gene was removed using HindIII / XbaI and replaced by the hAAT gene. The hAAT 

gene was amplified by PCR using primers that were designed to include HindIII 

(attached to 5' end of the forward primer) and XbaI (attached to 3' end of the reverse 

primer) cutting sites (F: GCAAGCTTACAATGCCGTCTTCTGTCTCG and R: 

GCTCTAGACTTTAATGTCATCCAGGGAGGG).  

 

Plasmids of pGL3-Basic vector to which CYP 5’-FSs were ligated were then 

transformed into E. coli DH-5α by means of a Bio-Rad MicroPulser® in a E.coli 

Pulser Cuvette (Bio-Rad, Hercules, CA). The transformed cells were then spread on 

LB-1.5% agar plates containing 100 µg/ml ampicillin, and the surviving cells were 

tested for their inclusion of the right plasmid. Plasmid DNA was extracted from cells 

either by the DNA boiling procedure or by a Qiagen Plasmid Mini Purification Kit 

(Valencia, CA). In the DNA boiling procedure, cells were boiled for 1 min in STET 

buffer (8% sucrose, 0.5% triton X-100, 50 mM EDTA pH 8, 10 mM Tris pH8) 

containing 50 µg/ml lysozyme, centrifuged (12000 rpm, 1 min, 4ºC), and DNA size 

examined on 1% agarose gel. Plasmid DNA was then confirmed by restriction 

enzyme digestion, PCR amplification, and sequencing.  
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Upon plasmid DNA confirmation,  CYP plasmids were prepared and extracted in 

large scale using the lysozyme lysis method and cesium chloride (CsCl) gradient 

centrifugation (159). Briefly, the transformed E. coli cells were grown in Terrific 

Broth (TB) culture medium (1.2% Bacto™-tryptone, 2.4% Bacto™-yeast extract, 

0.4% glycrol, 17 mM KH2PO4, 72 mM K2HPO4) containing 100 µg/ml ampicillin and 

collected by centrifugation (5000 rpm, 5 min, 4ºC). Cells were then lysed with 

solution I (1% glucose, 25 mM Tris pH 8, 20 mM EDTA pH 8) including 100 µg/ml 

lysozyme, their DNA content denatured by solution II (0.2 M NaOH, 1% SDS), and 

collected by centrifugation (8000 rpm, 20 min, 4ºC). Plasmid DNA was separated 

from chromosomal DNA and cell debris by solution III (3 M KC2H3O2, 2 M C2O2 H4) 

and centrifugation (7000 rpm, 20 min, 4ºC). Plasmid DNA was then collected and 

further purified by isopropanol (0.6 X volume) and 5 M LiCl (1X volume) 

precipitation. The plasmid DNA was then re-suspended into Tris-EDTA (TE) buffer 

(10 mM Tris-HCl, 1 mM EDTA, pH 8.0), treated with 50% CsCl  and ethidium 

bromide (0.25 mg/ml), and isolated by gradient centrifugation (64000 rpm, 18 hr, 

25ºC ). Plasmid DNA was later isolated and freed of ethidium bromide by saturated 

butanol extraction and from CsCl by water dialysis using a Spectrum molecularporous 

membrane (Rancho Dominguez, CA). Plasmid DNA was then precipitated by ethanol 

and kept in 0.9% saline solution. The purity of the plasmid DNA was confirmed 

spectrophotometrically by the ratio of ultraviolet absorbance at 260 and 280 nm as 

well as by 1% agarose-gel electrophoresis.  

 

The plasmid of pSA-luc was provided by Dr. Weidong Xiao (University of 

Pennsylvania, School of Medicine). Plasmids of pCMV-luc, pACT-luc, and pCMV-
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GFP were provided by Dr. Leaf Huang (University of Pittsburgh, School of 

Pharmacy). Plasmid of pCMV-EBV-luc was provided by Dr. O Mazda (Kyoto 

Prefectural University of Medicine, Department of Microbiology, Kamikyo Kyoto, 

Japan). Plasmid of pAAT-luc was provided by Dr. Xiao Xiao (University of 

Pittsburgh, School of Medicine). Plasmid of pAPP-luc was provided by Dr. Debomoy 

Lahiri (Indiana University, School of Medicine). Plasmids of p2b10-luc, pCMX-

CAR, pCMX-SXR, pCMX-VPCAR, and pCMX-VPSXR were provided by Dr. Wen 

Xie (University of Pittsburgh, School of Pharmacy). Plasmids of pRSV-luc, pNFkB-

luc, and pHS-luc were constructed or provided by members of our laboratory. 

 
 
 
Table 4. Cloned Regions, Primers, and Digestion Enzymes Used in CYP Plasmid 
Construction 
 
 
Construct Cloned Region Primer Sequences Enzymes 

p1A2-luc -1872/+38 F: GGTACCAAAGCCCACTCCAGTCTAAATC 
R: AGGCGTTGAGATTGGCAGGGTTGTAATG KpnI/MluI 

p2C9-luc -2145/+2 F: GGTACCGATCTCAGATATCCCTTCTATC 
R: ACGCGTATTGTTGCCTTCTCTTCTTGAC KpnI/MluI 

p2C18-luc -1224/-12 F: GGTACCTAGTGTTGCAGTCTTGCAGATC 
R: ACGCGTCTTCTTAGTAAGACAACTGGGG KpnI/MluI 

p2D6-luc -1516/+ 11 F: ATGGTACCAGCCTGGACAACTTGGAAG 
R: ATACGCGTACACTCTCAGCACACCGAG KpnI/MluI 

p2E1-luc -2670/+ 4 F: GAGCTCCCCCTACAGTATAAAGTATCCC 
R: AGATCTGGACAATCCTGTGGAAAGGAAG SacI/BglII 

p3A4-luc -1088/+85 F: GGTACCCCATCATTGCTGGTCTTTG 
R: CTCGAGTCTCTCTCCTCTGAGTCTTC KpnI/XhoI 
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Table 5. Cloned Regions, Primers, and Digestion Enzymes Used in CYP2C9 
Plasmid Construction 
 
 

Construct Cloned Region Primer Sequences Enzymes 

p2C9-0.2K-luc -211/+25 F: ATTGAGGTACCAGTGGACAATGGAACGAAGG 
R: AATTACTCGAGGCACAAGGACCACAAGAGAATC KpnI/XhoI 

p2C9-1K-luc -1011/+25 F: ATTGAGGTACCCACTGAGCGTTTCACTTCTGC 
R: AATTACTCGAGGCACAAGGACCACAAGAGAATC KpnI/XhoI 

p2C9-3K-luc -3024/+25 F: ATTGAGGTACCAAGGAAGGGAGAGAGAACACG 
R: AATTACTCGAGGCACAAGGACCACAAGAGAATC KpnI/XhoI 

p2C9-5K-luc -5470/+25 F: ATTGAGGTACCCAGCGAACTAAGAATAGAGGAGG 
R: AATTACTCGAGGCACAAGGACCACAAGAGAATC KpnI/XhoI 

p2C9-10K-luc (F1) -9900/-5485 F: ATTGAGGTACCTTGTGGAGGAAGTGAGTCCC 
R: GAATGTGTGCTGGATTTAGGC KpnI/XbaI 

p2C9-10K-luc (F2) -6437/+25 F: TAGTGAAAGCAGTGGTTAGAGGG 
R: AATTACTCGAGGCACAAGGACCACAAGAGAATC XbaI/XhoI 
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2.2.2 Cell Culture and Transfection  
 
 
Three cell lines derived from different tissues were used, HepG2 (human hepatoma), 

293 (human embryonic kidney fibroblasts) and BL-6 (murine melanoma). BL-6 cells 

were maintained in RPMI medium supplemented with 10% fetal bovine serum (FBS). 

HepG2 and 293 cells were cultured in DMEM medium with 10% FBS. For a standard 

transfection, 5x104 cells per well were seeded into a 48-well plate and allowed to 

grow for 24 hours. For each well, 100 µl of serum free medium containing the desired 

amount of plasmid DNA was mixed with 125 µl of serum free medium containing an 

appropriate amount of PEI. The mixture was incubated for 15 minutes at room 

temperature followed by mixing with 25 µl of FBS.  The mixture (250 µl total) was 

added to each well and the plates incubated for 24 hours. The transfection medium 

was then replaced with a fresh growth medium containing 10% FBS. Cells were 

cultured for an additional 24-72 hours to allow for gene expression. Prior to gene 

expression analysis, cells were washed three times with phosphate buffered saline 

(PBS) (137 mM NaCl, 2.7 mM KCl, 5.4 mM Na2HPO4, 1.7 mM NaH2PO4, pH 7.4) 

and lysed with 100 µl lysis buffer (0.1 M Tris-HCl, 0.1% Triton X-100, 2 mM EDTA, 

pH 7.8) at room temperature for 15 minutes. The cell lysates were collected and 

subjected to centrifugation (12,000 rpm, 10 min, 4oC) and the supernatant was used 

for measurement of luciferase activity and protein concentration. 

 
 

2.2.3 Hydrodynamic Transfection of Animals 
 
 

 24



  
  

CD-1 mice (female, 18-20 g) were injected via the tail vein within 3-5 seconds with 

1.8 ml of saline solution containing the desired amount of plasmid DNA according to 

our previously published procedure (160). For the CYP2C9 induction studies, two 

hours post transfection, animals were injected intraperitoneally with 100 µl DMSO 

containing rifampicin (200 mg/kg), TCPOBOP (10 mg/kg), phenobarbital (200 

mg/kg), or PCN (200 mg/kg). At the indicated time, animals were sacrificed and the 

desired tissue samples of approximately 200 mg were obtained, homogenized in 1 ml 

of lysis buffer, and centrifuged (12,000 rpm, 10 min, 4oC). Protein concentration and 

luciferase activity in the supernatant were then determined.   

 
 

2.2.4 Luciferase Assay 
 
 
Ten µl of cell lysate from either in vitro transfected cells or supernatant of tissue 

homogenate from transfected animals were added to 100 µl of substrate solution in 

the luciferase assay kit. Luciferase activity was measured in a luminometer 

(Autolumat LB953, EG & G, Berthhold, Germany) with the time for the measurement 

set for 10 seconds. Luciferase activity in each sample was normalized to relative light 

units (RLU) per mg of extracted protein. 

 
 

2.2.5 Analysis of Serum hAAT by ELISA 
 
 
Serum samples were collected from the injected mice at appropriate times and diluted 

serially with 1% bovine serum albumin (BSA) in PBS-Tween buffer before a standard 
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ELISA was performed. A rabbit anti-hAAT polyclonal antibody (12.6 µg/ml in 

carbonate buffer, pH 8.8) was used for coating of the ELISA plate (room temperature, 

overnight). The coated wells were blocked with 4% BSA in PBS-Tween buffer. After 

incubation with the diluted serum sample, biotinylated goat anti-hAAT polyclonal 

antibody (1:1000 dilution in 1% BSA in PBS-Tween buffer) was added and followed 

by incubation for 1 hour at room temperature. After washing, streptavidin–horseradish 

peroxidase conjugate (1:50000 dilution 1% BSA in PBS-Tween buffer) was then 

added to each well and incubated for 1 hour. With the exception of blocking buffer 

(200 µl per well) and the washing buffer (400 µl per well), the sample volume used 

was 100 µl per well. After addition of peroxidase substrate (3,39,5,59-

tetramethylbenzidine), the absorbency at 450 nm for each well was obtained using an 

ELISA reader. The hAAT concentration was calculated based on the standard curve 

established using pure hAAT. To minimize the plate-to-plate variation, a standard 

curve was established for each of the 96-well plates used. The concentration range for 

the standard curve was 0-32 ng/ml. The hAAT standard was prepared by dissolving 

lyophilized hAAT powder in normal mouse serum at a concentration of 500 µg/ml. 

 
 

2.2.6 Analysis of Green Fluorescent Protein Gene Expression  
 
 
Green fluorescent protein (GFP) expression in transfected cells in culture or in tissue 

samples was used to determine the transfection efficiency of the various methods 

employed. After transfection with a GFP-containing plasmid (pCMV-GFP) and at the 

indicated time, GFP positive cells were directly identified by fluorescence microscopy 

using 488 nm for excitation and 510-530 nm for emission. The transmitted light 
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image was recorded simultaneously. The transfection efficiency was estimated by the 

total number of GFP positive cells divided by the total number of cells in the same 

field detected under regular light (phase contrast). Approximately 500 cells in 

randomly selected fields were counted and used for calculation. For GFP expression 

in animals, liver samples were snap frozen on dry ice after removal from the animal. 

Tissue sections (10 µm) were made using a Cryostat and immediately observed under 

a fluorescence microscope. 

 
 

2.2.7 Analysis of DNA by Southern Blot  
 
 
Total DNA was extracted from the homogenized liver cells using DNAZOL® reagent 

following the manufacture’s procedure (Invitrogen, Carlsbad, CA). DNA 

concentration was determined by spectrophotometry at 260 nm. Twenty five 

micrograms of DNA was digested with HindIII and separated on 1% agarose gel 

using a running buffer of 40 mM boric acid, 0.4 mM EDTA and 6% formaldehyde. 

The gel was then soaked with a 0.4 M NaOH, 0.6 M NaCl buffer for 30 minutes and 

incubated at room temperature overnight. DNA bands were transferred to GeneScreen 

Plus hybridization transfer membrane (MEN™ Life Science Products, Boston, MA) 

using the soaking buffer.  The membrane then was soaked with Tris buffer (0.5 M 

Tris pH 7.0, 1 M NaCl) for 15 minutes. After UV crosslinking, the membrane was 

pre-hybridized in hybridization buffer (0.25 M NaHPO4, 0.25 M NaCl, 1 mM EDTA, 

0.25 M SDS, 50% deionized formamide, 0.1 mg/ml salmon sperm ssDNA) at 42°C 

for 3 hours. The hybridization probe of 32P-labelled luciferase cDNA made with a 

Random Primer DNA Labeling Kit (Invitrogen, Carlsbad, CA) was then added to the 
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hybridization buffer in a ratio of 106 cpm/ml, and the hybridization reaction was 

continued for 18 hours. The membrane then was washed with buffer I (0.3 M NaCl, 

0.1 M C2H3NaO2, 3.5 mM SDS), buffer II (25 mM NaHPO4, 1 mM EDTA, 1.4 mM 

SDS), and buffer III (25 mM NaHPO4, 1 mM EDTA, 14 mM SDS). The membrane 

was then dried and subjected to autoradiography. 

 
 

2.2.8 Northern Blot Analysis 
 
 
Total RNA was extracted from the homogenized liver cells using Trizol® reagent 

following the manufacture’s procedure (Invitrogen, Carlsbad, CA). RNA 

concentration was determined by spectrophotometry at 260 nm. Twenty microgram of 

total RNA was separated on 1% agarose-3% formaldehyde gel using a running buffer 

of 40 mM boric acid, 0.4 mM EDTA and 6% formaldehyde. RNA bands were 

transferred to GeneScreen Plus hybridization transfer membrane (MEN™ Life 

Science Products, Boston, MA) using a 25 mM NaHPO4 transfer buffer. After UV 

crosslinking, the membrane was pre-hybridized in hybridization buffer (0.25 M 

NaHPO4, 0.25 M NaCl, 1 mM EDTA, 0.25 M SDS, 50% deionized formamide, 0.1 

mg/ml salmon sperm ssDNA) at 42°C for 3 hours. A hybridization probe of 32P-

labelled luciferase cDNA made with a Random Primer DNA Labeling Kit 

(Invitrogen, Carlsbad, CA) was then added to the hybridization buffer at a ratio of 106 

cpm/ml, and the hybridization reaction continued for 18 hours. The membrane was 

then washed with buffer I (0.3 M NaCl, 0.1 M C2H3NaO2, 3.5 mM SDS), buffer II (25 

mM NaHPO4, 1 mM EDTA, 1.4 mM SDS), buffer III (25 mM NaHPO4, 1 mM 

EDTA, 14 mM SDS) and subjected to autoradiography. 
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 EVALUATION OF RELATIVE PROMOTER STRENGTH OF HUMAN 
CHROME P450 GENES USING OPTIMIZED TRANSFECTIO

VITRO AND IN VIVO 
CYTO N IN 

 
 
 
 

3.1 INTRODUCTION 
 
 
The expression of CYP genes is subject to diverse regulatory controls, which display 

tissue-specific, sex-specific and developmental patterns. CYP enzymes are primarily 

expressed in liver hepatocytes, and to a lesser extent, in cells of the intestines, lungs, 

kidneys, and brain (161). The CYP enzymes are important clinically in maintaining 

homeostasis by metabolizing invading xenochemicals. Striking differences in the 

amount and activity of the various CYP enzymes exist among individuals. At least 

some of these differences are responsible for the inter-individual variability in drug 

response that results in instances of treatment failure. Genetic mutations in CYP genes 

have been identified and linked to abnormal drug responses (162). However, less is 

known about how gene expression differs among the CYP genes.  

 

Certain cytochrome P450s are constitutively expressed and the expression of others is 

known to be induced by various xenobiotics including prescription drugs. Most CYP 

regulation is at the transcription level, although post-transcriptional regulation is also 

seen. Studies on the relative strength of CYP gene promoters may yield information 

leading toward a better understanding of the polymorphic nature of drug metabolism 

and aid in maximizing the benefits of drug therapy. Two general approaches have 
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been previously used to estimate the relative strength of CYP gene promoters. The 

first of these involves measurement of the mRNA or protein level of individual CYP 

gene products using Northern, Western blot analysis, or substrate-based enzyme 

activity assays. The second approach involves an in vitro transfection of cells with a 

plasmid containing a reporter gene under the control of a CYP promoter (163, 164). 

Significant information has been obtained using these approaches. However, since 

these early studies were conducted by many investigators employing various cell lines 

and different reporter systems, it is difficult to directly compare the activity of the 

different CYP promoter sequences that have been studied to date. Furthermore, results 

from cell lines, primary cell culture and tissue samples obtained from patients suggest 

that transcription activity varies significantly depending on experimental conditions 

employed. Thus, progress in developing a cohesive picture of the relative strength of 

CYP gene promoters has been slow.  

 

Recently, reliable techniques have been developed for in vitro transfer of DNA into 

cells using positively charged liposomes or cationic polymers (165-170). In addition, 

the method of hydrodynamic delivery for efficient DNA transfer into hepatocytes in 

mice has also been developed (160). These newer developments, plus the already 

available molecular biology techniques, provide a convenient means for cloning of 

CYP gene promoters into reporter containing plasmid constructs and the assessment 

of their relative promoter strength both in vitro and in vivo. Application of this 

methodology readily makes possible the side by side comparison of relative promoter 

strength under the same experimental conditions. In this chapter, we describe 

optimized conditions for such a comparison in different types of cells in vitro and in 
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vivo. Comparison of the activity obtained for a variety of CYP gene promoters 

demonstrates that, among those tested, the CYP2D6 promoter exhibits the strongest 

activity. The order of promoter strength was found to be CYP2D6> CYP1A2> 

CYP3A4> CYP2C9> CYP2C18> CYP2E1. This order of promoter strength is 

observed in vitro in cell lines transfected with the aid of cationic polymers as well as 

in vivo in mouse liver, kidney, heart, lung, and spleen cells following hydrodynamic 

transfection. 

 
 
 
 

3.2 RESULTS 
 
 

3.2.1 Optimization of Transfection Conditions 
 
 
Although PEI has been successfully used to transfer DNA into various types of cells, 

its activity varies in different cells (171). The ratio of PEI/DNA required for optimal 

transfection may vary when a fixed dose of plasmid DNA is used for different cell 

types. Figure 1 shows the effect of varying the total amount of PEI while keeping the 

amount of plasmid DNA constant at 1µg. The peak level of luciferase gene expression 

was observed at 1.5 µg of PEI for both 293 and BL-6 cells and was greater than 2.5 

µg for HepG2. 

 

It was also noted that, although the peak level of luciferase expression was obtained 

with different amounts of PEI, the absolute amount of luciferase expressed by these 

three types of cells varied (293> BL-6= HepG2). This suggests different levels of 
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transfectability of these cells by PEI. Of note is a decrease in the level of luciferase 

activity when the amount of PEI is more than 5 µg per well. Increasing the amount of 

PEI over the optimal amount resulted in cellular toxicity morphologically visible after 

transfection (data not shown).  
 

The percentage of cells transfected with time was determined using a GFP containing 

plasmid. Figures 2-4 show the images of selected fields under a fluorescence 

microscope using a FITC filter or regular light. The estimated percentages of GFP 

positive cells from an approximately 500 cells counted in randomly selected fields 

were 75% for 293 cells, 60% for BL-6 cells and greater than 15% for HepG2 cells, 

suggesting higher transfection efficiency of PEI in 293 cells than the other two cell 

lines employed.  
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Figure 1. Effect of PEI Amount on Overall Level of Transgene Expression 
among Various Cell Lines. 
  
Cells (5x104/well) were seeded in each well of a 48-well plate 24 hours prior to 
transfection with 1 µg of p2D6-luc plasmid mixed with various amounts of PEI. 
Twenty four hours later, transfection solution was replaced with fresh medium then 
luciferase activity in each well was determined 48 hours post transfection of 293 (●), 
BL-6 (○), or HepG2 cells (□). Values represent the mean ± S.E. of three independent 
transfections. 
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Figure 2. Transfection Efficiency on HepG2 Cells.  
 
HepG2 cells were seeded into a 12-well plate and transfected with 2 µg of pCMV-

GFP plasmid using 3.2 µg/µg of PEI. Twenty four, 48, or 72 hours post transfection, 

GFP positive cells were directly observed under a fluorescence (F) microscope using 

488 nm for excitation and 510-530 nm for emission and under the transmitted (B) 

light. Images were recorded simultaneously and then electronically overlaid (O). 

Images were a random shot of cells in a Petri dish with transfected cells.  
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Figure 3. Transfection Efficiency on BL-6 Cells.  
 
BL-6 cells were seeded into a 12-well plate and transfected with 2 µg of pCMV-GFP 

plasmid using 3.2 µg/µg of PEI. Twenty four, 48, or 72 hours post transfection, GFP 

positive cells were directly observed under a fluorescence (F) microscope using 488 

nm for excitation and 510-530 nm for emission and under the transmitted (B) light. 

Images were recorded simultaneously and then electronically overlaid (O). Images 

were a random shot of cells in a Petri dish with transfected cells.  
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Figure 4. Transfection Efficiency on 293 Cells. 
 
293 cells were seeded into a 12-well plate and transfected with 2 µg of pCMV-GFP 

plasmid using 3.2 µg/µg of PEI. Twenty four, 48, or 72 hours post transfection, GFP 

positive cells were directly observed under a fluorescence (F) microscope using 488 

nm for excitation and 510-530 nm for emission and under the transmitted (B) light. 

Images were recorded simultaneously and then electronically overlaid (O). Images 

were a random shot of cells in a Petri dish with transfected cells.  
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3.2.2 Comparison of the Relative Strength of CYP Promoters 
 
 
We compared the transcriptional strength of six CYP promoters in various cell lines 

using the optimal transfection conditions established in Figure 1. The human serum 

albumin (SA) gene promoter was used as a reference control. We first determined the 

relative promoter strength in HepG2 cells. Originating from human liver, HepG2 cells 

are one of the most commonly used models for studies of transcription regulation of 

CYP genes (172). Figure 5 shows that the level of luciferase activity seen in p2D6-luc 

transfected cells is the highest (5x108 RLU per mg of protein) and is approximately 6 

orders of magnitude higher than that of cells transfected with p2E1-luc and two orders 

higher than that of pSA-luc. The order of promoter strength observed was CYP2D6> 

CYP1A2> CYP2C9= CYP3A4> CYP2C18> CYP2E1. The strength of the human SA 

promoter is similar to that of the CYP1A2 promoter.  

 

Enriched expression of CYP genes in the liver has been known for many years. The 

reason for the high level of CYP enzymes in the liver has been attributed to unique 

sequences called liver specific promoters (or tissue specific promoters in general). We 

decided to examine whether our CYP promoters are active in cells of non-hepatic 

origin by performing similar transfection experiments in 293 and BL-6 cells. Neither 

of these cell lines have an obvious similarity morphologically or functionally to 

HepG2 cells. As evidenced in Figures 6 and 7, all constructs containing CYP gene 

promoters are active in these non-hepatic cells. In fact, the amount of luciferase 

protein expressed in these cells is generally higher than that in HepG2 cells due to the 

fact that these cells are more transfectable under the experimental conditions. 
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Importantly, the relative promoter strength among the CYP gene promoters examined 

is very similar to that seen in HepG2 cells, indicating a versatile nature of these CYP 

promoters in driving gene expression in different cells. 
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Figure 5. Activity of CYP Promoters in HepG2 Cells.  
 
HepG2 cells were seeded on a 48-well plate (5x104/well) 24 hours prior transfection 
with 1µg of the indicated CYP plasmid using 2.5 µg of PEI. Twenty four hours post-
transfection, the transfection solution was replaced with fresh medium and luciferase 
activity evaluated 48 hours later. Values represent the mean ± S.E. of six independent 
transfections. 
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Figure 6. Activity of CYP Promoters in BL-6 Cells.  
 
BL-6 cells were seeded on a 48-well plate (5x104/well) 24 hours prior transfection 
with 1µg of the indicated CYP plasmid using 2.5 µg of PEI. Twenty four hours post-
transfection, the transfection solution was replaced with fresh medium and luciferase 
activity evaluated 48 hours later. Values represent the mean ± S.E. of six independent 
transfections. 
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Figure 7.  Activity of CYP Promoters in 293 Cells.  
 
293 cells were seeded on a 48-well plate (5x104/well) 24 hours prior transfection with 
1µg of the indicated CYP plasmid using 2.5 µg of PEI. Twenty four hours post-
transfection, the transfection solution was replaced with fresh medium and luciferase 
activity evaluated 48 hours later. Values represent the mean ± S.E. of six independent 
transfections. 
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We extended this in vitro study to whole animals and examined whether a similar 

order of promoter strength would be obtained in various normal cells under 

physiological conditions. Toward this end, we employed the hydrodynamics-based 

procedure previously developed in our laboratory (160). Hydrodynamic delivery uses 

the hydrodynamic pressure to disrupt the blood vessel endothelium and generate 

transient pores in the plasma membrane of parenchymal cells surrounding the 

vascular capillary (173). We have previously shown that in mice a high level of 

transgene expression in the liver, heart, lung, kidney and spleen can be achieved by a 

rapid tail vein injection of a large volume of DNA solution (160, 174). A mechanistic 

study on hydrodynamic delivery revealed that, with the highest level of transgene 

expression observed, the liver is the most sensitive organ for this technique (160). 

Figure 8 shows that there 30-40% of hepatocytes are transfected by a hydrodynamic 

injection of 10 µg of pCMV-GFP plasmid DNA. The percentage of GFP positive cells 

decreases with time, indicating the transient nature of GFP expression in mouse liver. 

 

 

 

 

 

 

 

 

 

 

 41



  
  

 
 Time (hour) 
 

 8 24 48

  

 
 
 
 
 
 
 

 
 
Figure 8. Transfection Efficiency on Mouse Hepatocytes.  
 
Mouse hepatocytes were transfected with pCMV-GFP plasmid DNA via tail vein 
injection of 1.8 ml saline containing 10 µg of DNA within 3-5 seconds. At the 
indicated time, animals were sacrificed, the liver dissected out, and immediately 
frozen on dry ice. Liver sections (10 µm) were made in a Cryostat and immediately 
observed under a fluorescence microscope using 488 nm for excitation and 510-530 
nm for emission.  
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The levels of luciferase expression by CYP constructs in transfected animals are 

shown in Figure 9. In all internal organs examined, the highest luciferase gene 

expression was seen in the liver and lower similar levels were seen in the heart, lung, 

kidney, and spleen.  The approximately 3 orders of magnitude higher luciferase 

expression in the liver is largely due to the relative liver specificity of the 

hydrodynamic delivery. Importantly, the order of promoter strength for CYP 

constructs in the liver is very similar to the pattern seen in vitro experiments with 

p2D6-luc the strongest seen followed by p1A2-luc, p3A4-luc, p2C9-luc, p2C18-luc, 

and p2E1-luc. Compared to the CYP promoters, the human SA promoter exhibits 

relatively low activity in mice. 
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3.3 DISCUSSION 
 
 
Efficient transfection resulting in a high level of reporter gene expression in both cell 

culture and mice has been demonstrated. PEI has been shown previously to be one of 

the most effective polymers in transferring plasmid DNA into cells in vitro and in vivo 

(175-177). The  in vitro transfection results agree with those of previous studies in 

which the ratio of PEI and DNA at 1.2-3.5:1 was found to be optimal (154, 171). The 

excess of PEI in the DNA/PEI complexes enhances their binding to the negatively 

charged cell surface resulting in higher level of DNA internalization (154, 178). 

Transfection of mice using hydrodynamic delivery proved to be very effective with 

30-40% of hepatocytes being transfected. This level of transfection efficiency in mice 

is similar to that of the previous study using the ß-galactosidase gene as a reporter 

(160).  

 

The major interest in pursuing these methods of highly efficient DNA transfer into 

various cells was to enable the direct comparison of the transcription activity of a 

variety of CYP promoters. This is important for those interested in drug metabolism, 

as it is essential to estimate the basal level of CYP gene expression. Toward this end, 

we have cloned into pGL3-Basic vectors the promoters of six CYP genes that are 

responsible for metabolism of over 90% of commonly prescribing drugs (34).  The 

results we obtained from both in vitro and in vivo studies suggest that the CYP2D6 

promoter has the strongest promoting activity among those studied and is stronger 

than that of the human SA gene promoter. To provide a relative promoting value for 

each promoter, we have normalized the strength of each CYP gene promoter by 
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dividing the luciferase activity seen in mouse liver by that of pSA-luc transfected 

animals. Considering the human SA promoter strength as 1, the relative promoter 

strength is 269 for CYP2D6, 112 for CYP1A2, 86 for CYP3A4, 16 for CYP2C9, 2 for 

CYP2C18 and less than 1 for CYP2E1 (Figure 10).  

 

The fact that promoter strength determines the basal level of CYP gene expression 

suggests that mutations in the promoter region can certainly affect the overall CYP 

protein level. Subsequently, sequence variation in the promoter region or promoter 

polymorphism could be one of the major causes for inter-individual variability in drug 

response. Compared to efforts in the study of polymorphisms of the coding regions of 

CYP genes, efforts in studying polymorphic nature of the regulatory sequences of 

CYP genes are lacking. Identification of single nucleotide polymorphisms in 

regulatory elements (promoters, enhancing sequences, insulators, suppressors and 

introns) that control CYP gene expression thus becomes an increasingly important 

consideration in pharmacogenomics. 

 

The versatile nature of the CYP promoters driving gene expression in different cells 

has not been fully realized. Data presented in Figures 5-7 and 9 appear to suggest that 

CYP promoter activity is not limited to hepatocytes. In contrast to a common belief 

that tissue specific gene expression is controlled by the promoter sequence (the so-

called tissue specific promoter) our data suggests that these sequences do not play a 

dominant role in determining tissue specific activity. For example, all of the 

promoters examined in this study, including the human SA promoter, have been 

considered to be liver specific, although some show relatively low activities in other 
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organs such as the intestines, kidneys, and lungs. While these promoters exhibited 

good activity in driving reporter gene expression in hepatoma cell (HepG2), we 

observed similar activity in human embryonic kidney fibroblasts (293 cells), murine 

melanoma (BL-6 cells), and in mouse liver, heart, lung, kidney and spleen cells. 

These results indicate that all these cells possess transcription factors essential in 

recognizing promoter sequences and driving reporter gene expression. The liver 

specificity of the promoters could be due to upstream sequences not subcloned into 

the vector, or due to sequences in the introns or the 3’-flanking region of the genes.  

 

Compared to promoter sequences in genomic DNA that may exist in a highly folded 

chromatin structure, the promoter in a plasmid is readily accessible for transcription 

due to the lack of a high degree of folding. Thus, the tissue or cell specific gene 

expression associated with genomic DNA but not with transfected cells is likely 

determined by promoter accessibility. Under this assumption, whether a gene will be 

expressed in a given tissue is determined by its location in the chromatin structure. 

Genes whose promoter sites are readily accessible are transcribed while those that are 

wrapped inside the chromatin structure will stay inactive.  

 

It is important to point out that, although a promoter sequence is essential for 

transcription, transcription efficiency is largely controlled by transcription factors 

through various regulatory elements in DNA. For example, our attempt to correlate 

the promoter strength as shown in this study to protein level of various P450 enzymes 

in human liver did not result in a direct correlation. The lack of a direct correlation 

between the promoter strength of the CYP genes and their protein level could be due 
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to difference in CYP enzyme stability, stability of their mRNA, post transcriptional 

and/or translational modification, and the degree of transcription regulation. 

Obviously, details in mechanisms underlying gene expression regulation are yet to be 

fully investigated. 

 

Although different levels of reporter gene expression are obtained with various CYP 

promoters, at present we do not know if the promoter sequence is acting alone to 

modulate transcription efficiency or if there are any cooperative/antagonistic 

interactions between the various transcription factors.  In addition, it is possible that 

transcription factors involved in regulating transgene expression under different CYP 

promoters are also different in cell lines and in mice.  

 

With respect to the CYP2D6 promoter that exhibited consistently high activity in this 

study, we speculate that there must be some unique sequence in this promoter region 

that would enhance RNA polymerase binding. Previous studies using deletion 

mutation analysis have identified an HNF-4 binding site at the –429/-80 region (80). 

Cairns et al (179) showed that the critical sequence of the 2D6 promoter is between –

392 and –18. To see if there is a co-relationship between the HNF element in the 

promoter region and promoter strength, we have performed a promoter analysis using 

MatInspector software (180) available at Genomatix web site (www.genomatix.de). In 

the sequences employed in this study, we identified 2 HNF sites in the 1A2 promoter, 

17 in 2C9, 1 in 2C18, 7 in 2E1, and 1 in 3A4. Only 2 HNF sites are found in 2D6 

promoter region. Obviously, the number of HNF binding sites in the promoter region 

does not determine the promoter strength since CYP 2C9 promoter with 17 HNF sites 
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did not exhibit better promoter activity than the 3A4 promoter that contains only one 

such site. Evidently, additional work is needed to gain a full understanding of the 

mechanisms through which transcription is regulated.  

 

In summary, optimized procedures for in vitro and in vivo transfection were employed 

to evaluate the relative strength of promoters for 6 CYP genes that are responsible for 

metabolism of over 90% of prescription drugs. We demonstrated that, among the 6 

CYP promoters examined, the CYP2D6 promoter exhibits the strongest activity 

followed by the 1A2, 3A4, 2C9, 2C18 and 2E1 promoters. All of these promoters 

were found to be active in driving reporter gene expression in established cell lines 

(HepG2, 293, BL-6) as well as in cells in mouse liver, heart, lung, kidneys and spleen. 

Our findings indicate that the in vitro and in vivo systems explored here are useful 

tools for studying transcription regulation of various CYP genes. 
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 EVALUATION OF THE ACTIVITIES OF CYTOCHROME P450 
PROMOTERS IN SUSTAINING TRANSGENE EXPRESSION IN VIVO 

 
 
 
 

4.1 INTRODUCTION 
 
 
Cytochrome P450 (CYP) enzymes are mainly expressed in the liver, where most of 

drug metabolism processes takes place. It is well known that hepatic levels of CYP 

enzymes are subjected to regulation by many factors mostly at the transcription level. 

The activity of CYP promoters have been the subject of many studies, however, most 

of those studies aimed to investigate the role of CYP promoter sequences in 

xenobiotic mediated induction using in vitro systems.  

 

In the previous study, we evaluated the relative strength of many human CYP 

promoters under optimized conditions in vitro and in vivo. In a continuation of that 

study, we aimed here to in vivo investigate the activities of many CYP promoters in 

sustaining levels of gene expression under the physiological conditions. Here, we 

have also tested the activities of many other non-CYP promoters to compare CYP 

promoter activities to them. Fifteen promoters were examined and categorized into 

four groups. The hepatic group included human CYP1A2, CYP2C9, CYP2C18, 

CYP2D6, CYP3A4, AAT (alpha 1-antitrypsin), SA (serum albumin), and mouse 

cyp2b10 promoters. The viral promoters group included CMV (cytomegalovirus), 

CMV-EBV (EBNA1/OriP sequence of the Epstein-Barr virus under the CMV 
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promoter), and RSV (Rous sarcoma virus) promoters. The non-hepatic promoters 

included human APP (amyloid precursor protein) and chicken beta actin gene 

promoters (ACT). Promoters known to be sensitive to stress stimulation including 

NFkB (nuclear factor kappa B) and HS (heat shock protein 70) promoters were also 

included. All promoters were constructed in expression vectors containing the 

luciferase gene as a reporter.  

 

The activity of each promoter in sustaining luciferase gene expression was assessed in 

mouse livers utilizing the hydrodynamic procedure. These comparative studies 

demonstrated that among the tested CYP promoters, the CYP2D6 showed the highest 

activity in sustaining transgene expression, and its activity was comparable to that of 

known strong promoters.  

 
 
 
 

4.2 RESULTS 
 
 

4.2.1 Activity of CYP Promoters in Sustaining Transgene Expression 
 
 
To examine the activities of the various promoters in maintaining levels of luciferase 

gene expression, 10 µg of each plasmid construct was transfected into mouse 

hepatocytes using the hydrodynamic procedure. We found that eight hours post 

transfection, among the tested CYP promoters, the CYP2D6 showed the highest 

activity in driving luciferase gene expression whereas the CYP2C18 was the lowest 

(Figure 11). The superiority of CYP2D6 promoter activity over the rest of CYP 
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promoters was also confirmed by using the hAAT reporter gene, where we found that 

among the tested CYP promoters (CYP1A2, CYP2C9, CYP2D6, and CYP3A4), the 

CYP2D6 promoter showed highest activity (Figure 12). At this time point, the viral 

promoter pCMV-luc and the hepatic promoter pAAT-luc exhibited the highest levels 

of gene expression compared to all promoters whereas the hepatic promoter pSA-luc 

exhibited the lowest (Figures 11 and 13). According to the overall order of activity, 

some CYP promoters can be categorized as strong promoters in driving luciferase 

gene expression, with the CYP2D6 promoter being two orders of magnitude less 

active than the strong viral CMV promoter. Activities of the tested promoters were 

evaluated for period of 2 weeks. By the end of the second week, the activities of CYP 

promoters had declined significantly but at detectable levels. The same pattern of 

decline was observed with the non-CYP promoters (Figure 14). The p2D6-luc was 

able to sustain a high level of luciferase and hAAT gene expression for 3-4 and 7 

days, respectively. The viral pCMV-EBV-luc was the most active promoter as it 

sustained transgene expression at a high level for more than a week. By the end of the 

second week, the pAAT-luc exhibited the highest activity among the rest of all the 

tested promoters whereas the stress sensitive promoters (pNFkB-luc and pHS-luc) 

exhibited sharp declines in their activities a few days post transfection (Figure 15). 
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Figure 11. Activity of the Hepatic Promoters in Sustaining Luciferase Gene 
Expression.  
 
Animals were transfected with plasmid DNA via tail vein injection of 1.8 ml saline 
containing 10 µg of pAAT-luc ( ), p2D6-luc ( ), p3A4-luc (■), p2C18-luc (□), 
p2C9-luc (○), p2b10-luc (●), pSA-luc ( ), or p1A2-luc ( ) plasmid DNA within 3-5 
seconds. At the indicated time post transfection, luciferase activities were determined 
in the liver. Values represent the mean ± S.E. of 3 independent transfections. 
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Figure 12. Activity of the CYP Promoters in Sustaining hAAT Gene Expression. 
 
 Animals were transfected with plasmid DNA via tail vein injection of 1.8 ml saline 
containing 10 µg of p2D6-hAAT (●), p2C9-hAAT (○), p3A4-hAAT (■), or p1A2-
hAAT (□) plasmid DNA within 3-5 seconds. Blood samples were collected at the 
indicated time post transfection, and serum concentration of hAAT was determined. 
Values represent the mean ± S.E. of 3 independent transfections. 
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Figure 13. Activity of the Viral Promoters in Sustaining Luciferase Gene 
Expression.  
 
Animals were transfected with plasmid DNA via tail vein injection of 1.8 ml saline 
containing 10 µg of pCMV-EBV-luc (■), pCMV-luc (●), or pRSV-luc ( ) plasmid 
DNA within 3-5 seconds. Luciferase activities were determined in the liver at the 
indicated time post transfection. Values represent the mean ± S.E. of 3 independent 
transfections. 
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Figure 14. Activities of the Non-hepatic Promoters in Sustaining Luciferase Gene 
Expression.  
 
Animals were transfected with plasmid DNA via tail vein injection of 1.8 ml saline 
containing 10 µg of pAPP-luc (■) or pACT-luc ( ) plasmid DNA within 3-5 
seconds. Luciferase activities were determined in the liver at the indicated time post 
transfection. Values represent the mean ± S.E. of 3 independent transfections. 
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Figure 15. Activities of the Stress-Responsive Promoters in Sustaining Luciferase 
Gene Expression.  
 
Animals were transfected with plasmid DNA via tail vein injection of 1.8 ml saline 
containing 10 µg of pHS-luc (■) or pNFkB-luc ( ) plasmid DNA within 3-5 seconds. 
Luciferase activities were determined in the liver at the indicated time post 
transfection. Values represent the mean ± S.E. of 3 independent transfections. 
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4.2.2 Persistence of Plasmid DNA in Mouse Liver  
 
 
The activity pattern of rapid initial decline followed by a slow decay to a lower level 

was shared by all tested promoters. This pattern might be explained by rapid loss of 

the plasmid DNA in the transfected liver cells. To examine that, plasmid constructs of 

pCMV-EBV-luc, pRSV-luc, pACT-luc, p2D6-luc, p3A4-luc, and p2C9-luc were 

injected to the animals and the levels of their plasmid DNA as function of time were 

evaluated using Southern blot analysis. We found that regardless the origin of the 

injected promoter construct, all plasmids stayed in mouse liver in the episomal form 

for more than 2 weeks. However, some plasmids (pRSV-luc, p2D6-luc, p3A4-luc, and 

p2C9-luc) were characterized by loss of some of their initial DNA between the first 

and the third days (Figure 16). 
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Plasmid                                      Time (day) 

. 
   1           3              5            7          14                                          

 
pCMV-EBV-luc  

 
pACT-luc  

 
 p2D6-luc 
 
 p3A4-luc 
 
 

p2C9-luc  
 
 pRSV-luc 
 
 
 
Figure 16. Southern Blot Analysis of Plasmid DNA in Transfected Mouse Liver.  
 
Total DNA from the liver was prepared and analyzed from each mouse at the 
indicated time points (1, 3, 5, 7, or 14 days) post transfection and after injection of 10 
µg of (starting from the top) pCMV-EBV-luc, pACT-luc, p2D6-luc, p3A4-luc, p2C9-
luc, or pRSV-luc plasmid DNA. Each band represents the average of 3 liver samples 
from independent transfections. 
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4.2.3 Analysis of Transgene mRNA Levels of Plasmid Constructs in Mouse Liver 
 
 
To evaluate the transgene mRNA levels in transfected mouse livers this study was 

done. Plasmids were injected to animals and at the indicated time points, livers 

obtained, and transgene mRNA analyzed. We found that the mRNA level of the 

reporter gene fell below the detection level one day post transfection for all of plasmid 

constructs with exception of the plasmid containing EBV viral sequences which 

maintained a high detectable level of mRNA for more than a week. The levels of 

mRNA for some plasmid constructs (pRSV-luc, pSA-luc, p3A4-luc, p2D6-luc, 

p2C18-luc, p2C9-luc, and p1A2-luc) were analyzed in earlier time point, and found 

that eight p2D6-luc, p3A4-luc, and pRSV-luc mRNA levels could be detected (Figure 

17).  
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Figure 17. Transgene mRNA Analysis in Mouse Liver.  
 
(Upper) Animals were injected with 10 µg of (starting from the top) pCMV-EBV-luc, 
pACT-luc, p2D6-luc, or p3A4-luc; at the indicated time (1, 3, 5, 7, or 14 days) the 
livers were obtained and the total RNA extracted and subjected to Northern blot 
analysis. The lane 1 (C) represents the positive control (mouse injected with 20 µg of 
pCMV-luc and analyzed eight hours post transfection) and each band represents the 
average of three liver samples from independent transfections. (Lower) Animals were 
injected with 10 µg of (starting from the left) pRSV-luc, pSA-luc, p3A4-luc, p2D6-
luc, p2C18-luc, p2C9-luc, or p1A2-luc plasmid DNA, and eight hours post 
transfection liver samples were collected and subjected to Northern blot analysis. 
Each band represents the average of three liver samples from independent 
transfections.  
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4.3 DISCUSSION 
 
 
The promoter region of any gene is known to play the major role in initiation of the 

transcription process due to its content of essential elements required by RNA 

polymerase, nuclear receptors, and transcriptional factors. In the current study, we 

aimed to investigate the role of CYP promoters in controlling gene expression. We 

used a reporter assay to achieve this goal by inserting of different CYP 5’-FRs into 

expression vectors containing luciferase or hAAT as reporter genes.  

 

The study was carried out in vivo under the physiological conditions. Promoters of 

human CYP1A2, CYP2C9, CYP2C18, CYP2D6, and CYP3A4 as well as mouse 

cyp2b10 were included this study. The common pattern of all tested promoters was 

high initial gene expression eight hours post transfection followed by rapid decline 

and slow decay to a lower level. Unlike the others, the CYP2D6 promoter exhibited a 

different pattern by maintaining luciferase gene expression sustained at a high level 

for up to 3 days and hAAT gene expression for 7 days. This promoter was the most 

active among the tested CYP promoters (Figures 11 and 12).  

 

The activities of CYP promoters versus other hepatic promoters, pAAT-luc and pSA-

luc were also compared. Human alpha 1-antitrypsin and albumin are two of the 

abundant proteins in the serum that synthesized mainly in hepatocytes and their 

synthesis is regulated at the transcriptional level (181, 182). The human alpha 1-

antitrypsin promoter showed higher activity than the CYP promoters and was one of 

the most active promoters tested in the entire study. It was more active than the 
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CYP2D6 promoter whereas the albumin promoter showed lower activity than all of 

the tested CYP promoters (Figure 11).  

 

We also compared the activity of the hepatic promoters to that of the CMV and RSV 

viral promoters which are known for their ubiquitously potent activity. The CMV 

promoter, one of the strongest viral promoters (183), was more active than the 

CYP2D6 promoter and to a lesser extent than the alpha 1-antitrypsin promoter (Figure 

13). In our hands, the RSV promoter was less active than the CMV promoter which 

was consistent with the findings of Xu et al (184). Moreover, activities of CMV, 

alpha 1-antitrypsin, and serum albumin promoters were consistent with those reported 

by Kramer et al (185). However, the activities of non-hepatic promoters including the 

promoter of human amyloid precursor protein, mainly expressed in brain and neurons, 

and the stress-stimulated promoters were lower than many of the tested CYP 

promoters (Figures 14 and 15). 

 

The kinetics of transgene expression for the tested promoters was similar to that of 

CYP promoters with a rapid initial decline followed by a slow decay even though 

plasmid DNA was persistent in the animal liver as shown in Figure 16. This pattern 

has been considered previously to be a common phenomenon in different organs such 

as the liver, lungs, or muscles (186-188). However, the plasmid of pCMV-EBV-luc 

was the exception. This plasmid contains the EBNA1 gene sequence and the oriP 

elements of the Epstein-Barr virus. These elements are required for the viral 

properties of retention,  replication, nuclear localization, binding to the nuclear matrix 

of the target cell, and transcriptional up-regulation (189). Figure 17 shows that 
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pCMV-EBV-luc was the only plasmid kept a high detectable level of mRNA for more 

than a week, whereas for all the other plasmid constructs mRNA level fell below the 

detection limit as early as one day post transfection.  

 

Data from mRNA analysis and the observation that pCMV-EBV-luc activity started 

to significantly decline by the end of the first week, the period at which mRNA was 

detected, suggest that the major cause of the decline in the activity of the promoters 

was transcriptional shutdown. For some of the tested promoters, the initial decline 

could also be partially attributed to the initial loss in the amount of plasmid DNA in 

mouse liver.  

 

Silencing of the injected plasmid could be due to lack of integration into the 

chromosomal DNA of the target cell. Integration is the major mechanism by which 

many viral vectors provide stability and persistence in transgene expression. 

Despondently, viral vector integration is random and might generate insertional 

mutation. However, transgene integration is not the only mechanism by which gene 

silencing can be overcome since many viral vectors are non-integrated but remain 

extrachromosomal and still provide prolonged transgene expression. Unfortunately, a 

strong immune response in the host is still the main obstruction that stands in the way 

of using viral vectors. In recent years, more attention has been paid to establishing 

non-viral vectors that provide the adequate and prolonged transgene expression 

required not only for gene therapy but for the study of gene function as well. Different 

studies have suggested that inclusion of genomic sequences like gene promoters, 

enhancers, introns, 3’-flanking regions, or binding sites for some transcriptional 
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factors, dramatically improve the persistence of transgene expression (190, 191). It 

has been also proposed that the inclusion of certain elements like the ApoE gene 

hepatic locus control region (HCR), cellular elongation factor 1α (EF1α), or ubiquitin 

C (UbC) prolong transgene expression (187, 190). Moreover, recent studies have 

suggested that modification in the expression vector by linearization or exclusion of 

CpG sequences, or the bacterial backbone, significantly reduce gene silencing (186, 

192).   

 

Our results suggest that the promoter region does not exhibit tissue or species 

specificity. Promoters from different species were able to drive transgene expression 

in mouse liver. These results also suggest that the persistence of transgene expression 

in the liver is controlled by non-promoter elements. We also can not rule out the 

possibility that in our expression vectors we missed subcloning of critical promoter or 

enhancer sequences that might be required for prolonged transgene expression , since 

it has been reported that distal enhancer elements are crucial for optimizing transgene 

expression (193). Furthermore, based on our observations that plasmid constructs 

containing NFkB or HS promoters exhibited the most transient gene expression, we 

are suggesting that transgene expression is regulated by components involved in 

stress-related pathways.  

 

With respect to the activities of CYP promoters in sustaining transgene expression, 

the CYP2D6 promoter kept luciferase expression at a high level for 3 days. The 

CYP2C9 promoter also was active and sustained a good level of luciferase for more 

than 2 weeks. The CYP2C9 promoter started with relatively low activity, but the 
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interesting feature of this promoter is that it kept its activity stable for prolonged 

period of time. Whereas many of the tested promoters by the end of the first week lost 

almost 4-5 order of magnitude of their initial activity, the CYP2C9 only dropped less 

than 2 orders. In general, we found that the CYP2D6 promoter followed by the 

CYP2C9 promoter is the most active CYP promoter in sustaining transgene 

expression. This findings might explain the stability of  CYP2D6 and CYP2C9 

proteins as suggested by Renwick et al and others (194, 195).  

 

We speculated that the CYP2D6 promoter contains elements that enhance the binding 

of RNA polymerase or transcriptional factors, or lack elements required for down-

regulation. To test this hypothesis, we have performed promoter sequence analysis to 

detect any potential elements using MalInspector software (180). We found that the 

CYP2D6 promoter contains 2 binding sites for the hepatic nuclear factor 4 (HNF4) 

and 3 binding sites for the CCAAT/enhancer binding protein (C/EBP) which are 

known for their up-regulatory role in CYP expression. Compared to the CYP2D6, the 

CYP2C9 was found to contain 3 sites for the HNF4 and 4 for the C/EBP. We also 

found that only the CYP2C9 promoter includes 2 potential binding sites for NFkB, 

known for its down-regulatory role in CYP expression (196), whereas CYP2D6 does 

not, indicating that repressor elements can dominate CYP promoter activities. 

Additional work is needed for a complete understanding of the mechanisms through 

which transcription is regulated.  

 

In summary, we have investigated many CYP promoter sequences for their activities 

in sustaining the level of transgene expression in mouse liver. We demonstrated that 
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CYP2D6 was the most active CYP promoter, and its activity was compared relative to 

many other established promoters.  
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 IN VIVO ACTIVATION OF HUMAN CYP2C9 PROMOTER IN MOUSE 
LIVER AND THE ESSENTIAL ROLE OF CAR AND PXR 

 
 
 
 

5.1 INTRODUCTION 
 
 
The human CYP2C subfamily consists of four members, CYP2C8, CYP2C9, 

CYP2C18, and CYP2C19, whose genes are located in chromosome 10 (45, 197, 198). 

CYP2C enzymes are predominantly expressed in the liver (199-201), where they 

account for about 18% of total adult liver CYP content (33) and among them CYP2C9 

is the principal element (199). They are also expressed to a lesser extent in duodenum 

and the kidneys (72). While the enzymes of the CYP2C subfamily account for the 

metabolism of about 20% of clinically important drugs (202), about 16% out of that 

are mediated by CYP2C9 alone (203).  

 

Drugs with narrow therapeutic index including the hypoglycemic tolbutamide (204), 

the anticonvulsant phenytoin (205), and the anticoagulant S-warfarin (47) are mainly 

metabolized by CYP2C9. Therefore, a minor change in CYP2C9 metabolic activity 

can have a great impact on the pharmacological activity as well as the toxicity of 

many clinically used drugs. The level of CYP2C9 enzyme is reported to be 

transcriptionally induced by many chemicals such as dexamethasone, phenobarbital, 

and rifampicin (105).  
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The previous studies that investigated the function of the 5’-FR of CYP2C9 were 

carried out using in vitro systems, either in cell lines or in primary cultures of human 

hepatocytes. Those in vitro studies showed some contradictory results regarding 

CYP2C9 regulation. For example, using human hepatocytes, Runge et al proposed 

that rifampicin and phenobarbital have no inductive role in the expression of CYP2C9 

while Raucy et al reported that rifampicin and phenobarbital are potent CYP2C9 

inducers (195, 206). Moreover, role of the nuclear receptors in CYP2C9 induction has 

been debated (207).  

 

In our previous studies, we established an in vivo animal model using the 

hydrodynamic gene delivery procedure by which we were able to evaluate the activity 

of many CYP 5’-FRs. Among the tested CYP promoter, the CYP2C9 promoter 

showed significant activity. In the current study, we aimed to investigate the validity 

of the previously established animal model in studying gene induction and regulation 

using CYP2C9 as a model. Here, we studied the function of the elements of the 

CYP2C9 5’-FR in regulating both the basal and the induced gene expression.   

 

For this purpose, various 5’-FSs of CYP2C9 were cloned into luciferase containing 

expression vectors and assessed for their activities in mouse liver. Their activities 

were also evaluated in presence or absence of CYP-inducers or CYP-activator nuclear 

receptors. The experiments were also carried out into HepG2 cells to provide an in 

vivo vs. in vitro comparison. Our results suggest that PXR and CAR are essential in 

CYP2C9 induction, and that the elements of 5’-FR residing between -1000 bp and -
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2000 bp, upstream of the coding sequence, are crucial for controlling basal gene 

expression as well as PXR/CAR mediated activation. 

 
 
 
 

5.2 RESULTS 
 
 

5.2.1 Activity of Various 5’-Flanking Sequences of CYP2C9 in Mouse Liver and 
in HepG2 
 
 
To systematically evaluate the function of various segments of 5’-FSs of CYP2C9, we 

cloned various deletion constructs with part or full 5’-FSs of CYP2C9 beyond the 

promoter region deletion. Twenty micrograms of plasmids of p2C9-0.2K-luc, p2C9-

1K-luc, p2C9-2K-luc, p2C9-3K-luc, p2C9-5K-luc, or p2C9-10K-luc were transfected 

into mouse livers by the hydrodynamic procedure and  twenty four hours later 

luciferase activities in these livers were determined. The in vitro study was carried out 

by transfection of 1 µg of each of the deletion constructs into HepG2 cells using PEI 

and luciferase activities were determined forty eight hours post transfection. 

 

We found that all CYP2C9 5’-FSs were functional in driving luciferase gene 

expression. In mouse liver, the difference in activity between constructs was not 

significant with the exception of the p2C9-10K-luc which was significantly lower 

(Figure 18). In HepG2 cells, the activities were similar to what have been seen in liver 

but with more significant differences (Figure 19). The construct of p2C9-1K-luc led 

the order and the p2C9-2K-luc exhibited much lower activity compared to the in vivo 
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results. These data suggest that the p2C9-2K-luc includes some transcription elements 

which were responsive to transcriptional up-regulating factor/s provided by the in 

vitro system. They also suggest that the activity of the p2C9-10K-luc was under 

control of repressor sequences. 

 

The activity of p2C9-10K-luc, the larger construct, in mouse liver was significantly 

low compared to the other constructs. Such low activity could be attributed to 

construct size, since transfection of larger plasmid is more difficult than smaller one 

and therefore a lower amount of plasmid DNA will be available for gene expression. 

To examine if the lower amount of the p2C9-10K-luc was the reason for its low 

activity, we transfected plasmid constructs of different size (p2C9-1K-luc, p2C9-5K-

luc, and p2C9-10K-luc) and in different amounts into animal livers. The injected 

plasmid DNA doses were adjusted based on the size of plasmid, i.e. an identical molar 

amount of plasmid DNA was injected to each mouse. For example when we injected 

one group of animals with 100 µg of p2C9-10K-luc, the molar equivalent to p2C9-

5K-luc was 68.2 µg, and 39.2 µg for p2C9-1K-luc. As shown in Figure 20, the 

activity of p2C9-10K-luc tended to be low compared to other constructs at equal 

molar amount. 
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Figure 19. Activity of Various 5
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5.2.2 Activation of CYP2C9 5’-Flanking Region by CYP Inducers and the Major 
Role of PXR and CAR  
 
 
Previous studies have shown that many transcriptional factors and nuclear receptors, 

including CAR, PXR, PPAR, HNF4α, and many others, are tightly involved in CYP 

induction (208). Here we tested the effect of some of these on the activity of 5’-FR of 

CYP2C9. Such studies would enhance our understanding of the molecular 

mechanisms underlying CYP induction.  

 

To examine whether PXR or CAR can enhance the promoter activity of CYP2C9 in 

mouse liver, mice were co-injected via tail vein with p2C9-5K-luc and pCMX-SXR, 

the expression vector of PXR, or pCMX-CAR, the expression vector of CAR. Two 

hours later, the animals were injected with a single dose of rifampicin (a strong 

activator of human PXR, 200 mg/kg), PCN (strong activator of rodent PXR, 200 

mg/kg), phenobarbital (CAR activator, 200 mg/kg), or TCPOBOP (strong activator of 

mouse CAR, 10 mg/kg) dissolved in DMSO (100 µl). Twenty four hours post 

transfection, liver luciferase activities were determined. For the in vitro studies, 

HepG2 cells were co-transfected with 500 ng of p2C9-5K-luc and 100 ng of pCMX-

SXR or pCMX-CAR using PEI. Twenty four hours post transfection, cells were 

treated with rifampicin or TCPOBOP. Luciferase activities were then determined 48 

hours post transfection.    

 

We found that PXR itself enhanced the activity of the p2C9-5K-luc in mouse liver by 

2 to 3fold. When an animal was challenged with rifampicin or PCN, PXR enhanced 

the activity of the CYP2C9 5’-FR by 71 or 22fold, respectively (Figure 21). In HepG2 
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cells, we found that PXR activation of the p2C9-5K-luc was totally dependent on 

rifampicin treatment in dose dependent manner (Figure 22). When the expression 

vector of the activated PXR (pCMX-VPSXR) was used, PXR by itself was able to 

enhance p2C9-5K-luc activity by 16 fold (Figure 27). 

 

With regard to CAR, we found that CAR enhanced the activity of the p2C9-5K-luc in 

mouse liver by 2fold, whereas when the animals were challenged with phenobarbital 

or TCPOBOP, CAR significantly enhanced the CYP2C9 5’-FR activity by 10 or 

57fold, respectively (Figure 23). In HepG2, CAR enhanced the activity of the p2C9-

5K-luc by 7 fold only when TCPOBOP was added to the culturing medium. Similar 

to PXR, CAR activation of the p2C9-5K-luc was totally dependent on xenobiotic 

activation with dose dependent manner (Figure 24). When the expression vector of 

the activated CAR (pCMX-VPCAR) was used, CAR itself induced the activity of the 

p2C9-5K-luc by 31 fold (Figure 29).  

 

Roles of PPAR and HNF4α were also investigated (data not shown). We found that 

co-transfection of PPARα, γ, or δ did not affect the activity of the p2C9-5K-luc in 

mouse liver. Likewise, co-transfection of HNF4α with various 5’-FSs of CYP2C9 did 

not significantly enhance their activities in HepG2 cells. These data indicated the 

crucial role of PXR and CAR in CYP2C9 induction.  
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Figure 21. Effect of PXR Expression on the Activity of CYP2C9 5’-FR in Mouse 
Liver.  
 
Mice were transfected with plasmid DNA via tail vein injection of 1.8 ml saline 
containing 2 µg of p2C9-5K-luc and 5 µg of pCMX-SXR within 3-5 seconds. Two 
hours post transfection, the animals whose co-transfected with pCMX-SXR, if 
needed, were treated with PCN (200 mg/kg) or rifampicin (RIF, 200 mg/kg) dissolved 
in 100µl of DMSO. Twenty four hours post transfection, luciferase activities in the 
livers were determined. Values represent the mean ± S.E. of 3 independent 
transfections. 
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Figure 23. Effect of CAR Expression on the Activity of CYP2C9 5’FR in Mouse 
Liver.  
 
Mice were co-transfected with plasmid DNA via tail vein injection of 1.8 ml saline 
containing 2 µg of p2C9-5K-luc and 5 µg of pCMX-CAR within 3-5 seconds. Two 
hours later, the animals whose co-transfected with pCMX-CAR, if needed, were 
injected with phenobarbital (PHB, 200 mg/kg) or TCPOBOP (BOP, 10 mg/kg) 
dissolved in 100µl of DMSO. Twenty four hours post transfection, luciferase 
activities in the livers were determined. Values represent the mean ± S.E. of 3 
independent transfections. 
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Figure 24. Effect of CAR
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5.2.3 Activity of CYP2C9 5’-Flanking Region in Sustaining the Transgene 
Expression 
 
 
We previously studied the activity of CYP2C9 5’-FR in sustaining transgene 

expression (chapter 4). In the current study, we investigated the effect of CAR/PXR 

co-transfection as well as new distal elements of 5’-FS on the sustaining activity of 

CYP2C9 5’FR. Two groups of animals were co-transfected with 2 µg of p2C9-5K-luc 

and with either 2 µg of pCMX-PXR or pCMX-CAR. Two hours later, animals were 

treated with rifampicin (200 mg/kg) or TCPOBOP (10 mg/kg) and 22 hours later liver 

luciferase activities were determined.  

 

We found that PXR, upon activation by rifampicin was able to enhance CYP2C9 

promoter activity to the maximal peak level 24 hours post transfection, followed by a 

fast decline to a lower level. The same pattern was seen with CAR and TCPOBOP 

(Figure 25). In spite of the sharp decline in promoter activity, we found that CYP2C9 

5’-FR remained functional, since a second dose of rifampicin (200 mg/kg) at day 3 

enhanced the activity of CYP2C9 promoter by 6fold within 24 hours and a second 

dose of TCPOBOP (10 mg/kg) at day 4 enhanced the activity by about 2fold. These 

data suggest that CAR or PXR activation and the new included distal elements of 

CYP2C9 5’-FR did not improve its activity in sustaining transgene levels. They also 

clearly indicated that even when CYP2C9 5’-FR exhibited low activity in mouse 

liver, it is still functional. 
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Figure 25. Activity of CYP2C9 
Mouse Liver.  
 
Tow groups of animals were co-t
of 1.8 ml saline containing 2 µg
group, ●) or pCMX-CAR (the s
Two hours later, animals were in
(200 mg/kg) (the first group) or
indicated time post transfection,
Values represent the mean ± S.E
time of drug injection. 
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5.2.4 Identification of the Functional Elements in 5’-Flanking Region of CYP2C9 
Required for PXR/CAR-Mediated Induction 
 
 
In the previous studies we found that PXR and CAR are two essential nuclear 

receptors that mediate CYP2C9 induction. From our understanding of CAR and PXR 

activation mechanisms, these nuclear receptors exert their action in gene regulation by 

binding to certain elements in the 5’-FR of the target gene (99).  In this study, we 

aimed to identify where PXR or CAR essential elements are located in CYP2C9 5’-

FR. For this purpose, we co-transfected the animals with various CYP2C9 deletion 

constructs containing different sequences of CYP2C9 5’-FSs with or without PXR or 

CAR expression vectors.  For the in vitro studies, HepG2 cells were co-transfected 

with various deletion constructs of CYP2C9 5’-FSs in presence or absence of pCMX-

VPSXR or pCMX-VPCAR using PEI.  

 

We found that PXR, when activated by rifampicin, enhanced the p2C9-5K-luc by 

71fold. It also enhanced the p2C9-3K-luc by 18fold and the p2C9-2K-luc by 39fold. 

Such significant activation was abolished when the p2C9-1K-luc was used (Figure 

26). In HepG2, the same pattern of activity was seen, PXR enhanced the p2C9-5K-luc 

by 16fold, p2C9-3K-luc by 3fold, and p2C9-2K-luc by 57fold whereas had no effect 

on the p2C9-1K-luc (Figure 27).  

 

We also found that CAR, when activated by TCPOBOP, enhanced the p2C9-5K-luc, 

p2C9-3K-luc, and p2C9-2K-luc by 57, 23, and 52fold, respectively. Dissimilarly, 

such significant induction disappeared when the p2C9-1K-luc was used (Figure 28). 

In HepG2, the same pattern of activity was seen, CAR enhanced the activities of 
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p2C9-5K-luc by 31fold, p2C9-3K-luc by 3fold, and p2C9-2K-luc by 52fold but not 

the p2C9-1K-luc (Figure 29). These data indicate that the p2C9-2K-luc contains the 

minimal elements required for CAR/PXR activation. 
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Figure 26. Effect of PXR Expression on the Activity of Various 5’-FSs of 
CYP2C9 in Mouse Liver. 
 
Animals were transfected with plasmid DNA via tail vein injection of 1.8 saline 
containing 2 µg of various deletion constructs of CYP2C9 with (second bar in each 
pair) or without (first bar in each pair) 2 µg of pCMX-SXR plasmid DNA within 3-5 
seconds. Two hours later, animals were injected with 100 µl of free DMSO (first bar 
in each pair) or with DMSO containing rifampicin (200 mg/kg) (second bar in each 
pair). Twenty four hours post transfection, luciferase activities in the liver were 
determined. Values represent the mean ± S.E. of 3 independent transfections. 5K, 3K, 
2K, and 1K represent p2C9-5K-luc, p2C9-3K-luc, p2C9-2K-luc, and p2C9-1K-luc, 
respectively. 
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 p2C9 Plasmid  5K      3K     2K      1K 
pCMX-VPSXR   -       +   -        +   -       +    -       +  

 
 
 
Figure 27. Effect of PXR Expression on the Activity of Various 5’-FSs of 
CYP2C9 in HepG2 Cells.  
 
HepG2 cells (5x104/well) were co-transfected with 500 ng of various deletion 
constructs of CYP2C9 with (second bar in each pair) or without (first bar in each pair) 
100 ng of pCMX-VPSXR using 3.2 µg/µg of PEI. Forty eight hours post transfection, 
luciferase activities in each well were determined. Values represent the mean ± S.E. 
of 3 independent transfections. 5K, 3K, 2K, and 1K represent p2C9-5K-luc, p2C9-
3K-luc, p2C9-2K-luc, and p2C9-1K-luc, respectively. 
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Figure 28. Effect of CAR Expression on the Activity of Various 5’-Flanking 
Sequences of CYP2C9 in Mouse Liver.  
 
Animals were transfected with plasmid DNA via tail vein injection of 1.8 saline 
containing 2 µg of various deletion constructs of CYP2C9 with (second bar in each 
pair) or without (first bar in each pair) 2 µg of pCMX-CAR plasmid DNA within 3-5 
seconds. Two hours later, animals were treated with 100 µl of free DMSO (first bar in 
each pair) or DMSO containing TCPOBOP (10 mg/kg) (second bar in each pair). 
Twenty four hours post transfection, luciferase activities in the livers were 
determined. Values represent the mean ± S.E. of 3 independent transfections. 5K, 3K, 
2K, and 1K represent p2C9-5K-luc, p2C9-3K-luc, p2C9-2K-luc, and p2C9-1K-luc, 
respectively. 
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 p2C9 Plasmid  5K      3K     2K      1K 
pCMX-VPCAR   -       +    -       +    -       +    -       +  

 
 
 
Figure 29. Effect of CAR Expression on the Activities of Various 5’-FSs of 
CYP2C9 in HepG2 Cells.  
 
HepG2 cells (5x104/well) were co-transfected with 500 ng of various deletion 
constructs of CYP2C9 with (second bar in each pair) or without (first bar in each pair) 
100 ng of pCMX-VPCAR using 3.2 µg/µg of PEI. Forty eight hours post transfection, 
luciferase activities in each well were determined. Values represent the mean ± S.E. 
of 3 independent transfections. 5K, 3K, 2K, and 1K represent p2C9-5K-luc, p2C9-
3K-luc, p2C9-2K-luc, and p2C9-1K-luc, respectively. 
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5.3 DISCUSSION 
 
 
In the current study we have evaluated the activity of CYP2C9 5’-FR in driving 

transgene expression in vivo and in vitro. We also investigated the role of different 

nuclear receptors and transcriptional factors in regulation of CYP2C9 5’-FR activity 

and identified the elements of 5’-FR that are required for CYP2C9 gene expression 

and induction.  

 

Figure 18 shows that all 5’-FSs of CYP2C9 tested were active in driving transgene 

expression in mouse liver. One of the significant findings in this regard was clear 

difference between the in vivo and in vitro activities of the p2C9-2K-luc as seen in 

Figure 19. This difference can be explained by the presence of some transcription 

factors in the in vivo system that were lost in the in vitro. It also can be illustrated by 

that the p2C9-2K-luc includes binding sites for certain transcription factors that were 

missed in the other CYP2C9 constructs. Alternatively, the p2C9-2K-luc might also 

lacks some repressing elements that are included in the other CYP2C9 constructs. 

From promoter sequence analysis using MalInspector software, we found that the 

p2C9-2K-luc contains 2 and 4 potential binding sites for HNF4 and C/EBP, these sites 

were missing in the p2C9-1K-luc. Here we propose that C/EBP is responsible for the 

in vivo enhanced activity of the p2C9-2K-luc, since co-transfection of the expression 

vector of the HNF4α did not affect the basal activity of the p2C9-2K-luc in HepG2 

cells (data not shown), Although a HNF4α functional binding site at -155 bp has been 

reported (209). The previous findings that the C/EBP was able to up-regulate the basal 

expression of CYP2C9 in cell lines, support such a proposal (144).   
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Furthermore, a study by Gerbal-Chaloin et al, using human hepatocytes, proposed the 

element at -1839 bp in the CYP2C9 5’-FR as CAR responsive element and the 

element at -1675 bp as the glucocorticoid receptor-responsive element (114). 

However unlikely, Chen et al , using HepG2 cells, proposed that the element at -1839 

bp is primary PXR responsive element (207). Using human hepatocytes, the same 

element was proposed as vitamin D receptor (VDR) responsive (134).  Both elements 

are included in the p2C9-2K-luc suggesting that GR, CAR, PXR, or VDR were likely 

mediated its in vivo enhanced activity.  

 

Although VDR was suggested to control the basal expression of CYP2 and CYP3 

families in absence of xenobiotics, CYP2C9 has not been shown to be involved in 

metabolism of vitamin D (134). On the other hand, CYP2C9 was described as the 

primary glucocorticoid receptor-responsive gene and its expression under 

physiological conditions is maintained at a substantial level through GR direct 

activation (114). Moreover, GR is known for its constitutive expression and to which 

stability of CYP2C9 expression was attributed (105, 117, 210).   This receptor some 

how is  involved in induction of many nuclear receptors like PXR, CAR, and VDR 

(211). This inductive role was recently explained for CAR as involving direct CAR 

activation through GR-responsive element identified in 5’-FR of CAR gene (212).   

 

The p2C9-10K-luc construct showed a similar pattern of significant low activities in 

mouse liver and in HepG2. We attributed such weakness to its content of effective 

repressor sequences. This pattern of low activity with regard to large CYP 5’-FR 
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construct compared to smaller deletion constructs was also reported by Schuetz et al 

for CYP3A4 (213). Figure 20 shows that the difference in plasmid size and DNA 

amount were not the reasons for the activity of the p2C9-10K-luc, specially when a 

much larger construct (about 157 kb) was successfully transfected to mouse liver 

under the same conditions (214).  

 

A few previous studies, using in vitro systems, identified nuclear receptors, including 

PXR and CAR, as essential factors for CYP2C9 induction (28). These receptors were 

found to work by directly binding to their responsive elements in CYP2C9 5’-FR. So 

far, two regulatory elements in the 5’-FR of CYP2C9 have been identified for CAR 

and PXR. These are the proximal CAR-responsive element (-1839 bp) (114), and the 

distal CAR-responsive element (-2899 bp) (215). These elements were proposed to be 

mainly CAR elements. 

  

Under the physiological conditions and by employing a longer segment of CYP2C9 

5’-FR, we found that PXR significantly enhanced the activity CYP2C9 primarily post 

xenobiotic activation. Rifampicin, known for its in vivo and in vitro induction of 

CYP2C9 (105, 216), was found to be the most potent inducer for CYP2C9 via PXR 

activation (Figure 21). In mouse liver, when animals were treated with rifampicin in 

absence of PXR co-transfection, the activity of CYP2C9 5’-FR did not significantly 

enhance (data not shown), indicating the crucial role of PXR in the activity of 

CYP2C9. It also indicated the high selectivity of rifampicin toward the human 

isoform of PXR even at such a high dose (200 mg/kg). Our results disagree with the 

finding of Gebral-Chaloin et al who proposed that PXR, even when activated by 
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rifampicin, did not enhance the activity of CYP2C9 (114). Moreover, PCN, a 

selective rodent PXR activator, was able to induce the PXR-dependent activity of 

CYP2C9. Here, we propose that PXR is a crucial factor required for CYP2C9 

induction, which is consistent with the recent finding of Chen et al (207). 

 

In mouse liver, we also found CAR as another essential factor for CYP2C9 induction. 

Unlike PXR studies, in the CAR related studies we employed the mCAR isoform. 

This isoform was previously suggested as more sensitive for human CYP2C9 

induction studies than the human CAR (114) which their studies exhibited difficulty 

because of its inherited nuclear localization in cell lines and its high constitutive 

activity (207). TCPOBOP, a potent selective mouse CAR activator, was able to 

significantly enhance the activity of CYP2C9 5’-FR via CAR activation (Figure 23). 

On the other hand, TCPOBOP was partially able to induce CYP2C9 activity even in 

absence of CAR co-transfection (data not shown), indicating the involvement of the 

endogenous mouse CAR in the activity of CYP2C9 5’-FR.  Phenobarbital, known for 

its inductive activity  toward CYP2C9 (195, 217), also enhanced the activity of 

CYP2C9 but to a lesser extent. The selectivity of this reagent in activation of CAR 

has been debated, since it was reported that it can up-regulate some CYP genes via 

PXR activation (218). However, many studies described the inductive activity of 

phenobarbital as mCAR selective (215). Our results agree with findings of Ferguston 

et al and Gerbal-Chaloin et al with regard to CAR’s essential role in CYP2C9 

induction.  
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After we found that PXR and CAR are essential factors for CYP2C9 activity, we 

proceeded in exploring the mechanisms underlying CYP2C9 induction by analyzing 

its 5’-FSs and identifying the essential element required for PXR/CAR-mediated 

activation. Various deletion constructs of CYP2C9 5’-FR, starting from as long as 10 

kb to as short as 0.2 kb, were tested. As Figures 26 to 29 show, the p2C9-5K-luc, 

p2C9-3K-luc, and p2C9-2K-luc plasmid constructs were responsive to CAR and PXR 

activation in mouse liver and in cell lines as well. The shorter deletion construct, 

p2C9-1K-luc, showed obvious resistance to CAR/PXR activation, indicating that the 

p2C9-2K-luc, in its distal 1 kb sequences (from -1000 to -2000 bp), contains the 

essential elements required for CAR and PXR activation. Our observations are 

consistent with the findings of Gerbal-Chaloin et al and Chen at al who proposed the 

element located at -1839 bp as the primary element required for maximum PXR and 

CAR activation, at least in the first 10 kb of the CYP2C9 5’-FR (114, 207). Our data 

also proposed the element at -2899 bp to has a much less significant role if not 

exhibits some inhibitory effect, since the induction profile of the p2C9-3K-luc was 

less significant than that of the p2C9-2K-luc particularly under the in vitro 

circumstances.  

 

Even though we agree with some of the previously published studies, our data are 

characterized by their significant and clear induction profiles. For example, Chen at al 

showed that PXR enhanced CYP2C9 5’-FR activity via rifampicin activation by 3-

5fold in HepG2 cells, in our hands, the activity of the same CYP2C9 5’-FR (p2C9-

3K-luc) was enhanced 18fold via PXR and rifampicin in mouse liver. The 

significance of the activity was even more clear when we used a longer sequences 
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(p2C9-5K-luc), 71fold (Figure 26). The enhanced induction seen with the p2C9-5K-

luc can not be referred to sequence elements other than the common PXR element at -

1839 bp, therefore, the only factor we feel could contribute to such discrepancy is the 

in vivo environment in which we carried out our studies. Many recent  studies realized 

the significant of such in vivo systems and have alternatively employed the  

hydrodynamic based transfection to study the gene regulation of CYP genes (142, 

213, 219, 220).  

 

Furthermore, unlike most of the previously conducted studies that investigated 

regulation of CYP genes using genomic context-modified CYP 5’-FSs, all plasmid 

constructs we used in our studies contained intact CYP2C9 5’-FSs, which reflect the 

real behavior of CYP genes in vivo. This is particularly relevant in view of recent 

findings that revealed that nuclear receptor binding to the target gene 5’-FR element is 

genomic context-dependent (221). 

 

In summary, here we have demonstrated that the animal model established by the 

hydrodynamic procedure is suitable for gene regulation studies. This system showed 

realistic sensitivity to the injected gene sequence. It also showed clear responses 

toward different inductive gene elements and chemicals. From the applications point 

view, we have demonstrated that CYP2C9 induction is dependent primarily on CAR 

and PXR activation, and that these nuclear receptors exhibited their inductive 

activities via elements that reside between -1000 to -2000 bp of CYP2C9 5’-FR.     
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 SUMMARY AND FUTURE PERSPECTIVE 

 
 
 
 

 
Cytochrome P450 (CYP) is a superfamily of monooxygenases that mediate 

biotransformation of wide variety of endogenous and exogenous substances. These 

enzymes are expressed mainly in the liver and their expression is subjected to 

regulation. CYP gene expression can be regulated at the levels of transcription, 

mRNA processing and stabilization, translation, and enzyme stabilization (222). 

However, CYP induction mediated by xenobiotics mainly occurs at the transcriptional 

level where RNA polymerase II, cis-acting elements, nuclear receptors, and gene 

promoter elements are involved.  

 

In this dissertation, I started my studies by establishing an animal model that allows 

study of the function of CYP 5’-FSs and their roles in regulating gene expression 

under the physiological conditions. Sequences of 5’-FRs of CYP genes were 

constructed into expression vectors upstream of the reporter gene. Functions of CYP 

5’-FSs were then assessed in vitro and in vivo. In vitro CYP promoter activities were 

first studied in HepG2, BL-6, and 293 cell lines using optimized transfection of 

polyethyleneimine as the transfecting agent. The function of CYP 5’-FRs were then 

evaluated in vivo under the optimized conditions in mouse livers using the 

hydrodynamic procedure. This method allowed transfection of about 40% of mouse 

hepatocytes by rapid injection of naked DNA in saline. Furthermore, due to its 
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targeting mainly the liver, this method is ideally suited for study of hepatic genes, 

such as CYP. 

 

The CYP plasmid constructs used in the first study were later used to evaluate the 

activity of CYP 5’-FR in sustaining transgene expression in mouse livers. Such a 

study would help us to further understand the role of CYP promoters on basal CYP 

gene expression in human liver. This was accomplished by evaluating plasmid DNA 

and mRNA levels in liver using Southern and Northern blot analysis. In this study, the 

activity of CYP promoters were assessed and compared to viral, hepatic, and non-

hepatic promoters.  

 

Finally, after the establishment of the animal model, I investigated the ability of this 

system to adapt the gene regulation studies, and studied the function of 5’-FR of 

CYP2C9 and the molecular mechanisms underlying its activity. Various CYP 2C9 5’-

FSs (0.2, 1, 2, 3, 5, or 10 kb) were cloned into expression vectors containing 

luciferase as a reporter gene and their activities in driving transgene expression were 

evaluated. The effects of known CYP inducers, transcription factors, and nuclear 

receptors on CYP2C9 5’-FR activity were also investigated. Via plasmid deletion 

construction I identified the crucial element in 5’-FR of CYP2C9 that is required for 

its activation. 

 

Many observations have been made through the course of the study. Among the tested 

CYP promoters, the CYP2D6 showed the strongest activity followed by CYP1A2, 

CYP3A4, and CYP2C9. The pattern of activity was similar in different cell lines as 
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well as in mouse livers. While these promoters were from hepatic origin, they were 

also functional in other tissues, suggesting that the 5’-FR sequences do not control the 

tissue specificity of gene expression. With regard to the relationship between the 

observed promoter activity and the basal CYP expression, a direct correlation was not 

seen. For example, CYP3A4 is the most abundant CYP enzyme in human liver but its 

promoter showed lower activity than that of CYP2D6 which has much lower 

expression level in the human liver. Future studies to investigate whether any other 

part of the genome sequences, i.e. intron, 3’-flanking region, or distal enhancer, are 

involved more in determining tissue specificity and the levels of basal gene 

expression, are indeed necessary. Furthermore, as discussed in chapter 3, lack of 

chromatin structure of the tested promoter sequences makes the promoter sequence 

freely accessible for transcription. It is known from the mechanism of gene 

transcription that the first step required for transcriptional activation is chromatin 

structure remodeling. Therefore, future studies will be required to assess the effect of 

the lack of chromatin structure on promoter activity as a basal gene expression 

determinant. 

 

The activity of the CYP2D6 promoter is interesting, particularly when we know that 

this gene, unlike most of CYP genes, is resistant to xenobiotic induction. Its strong 

promoter activity might explain its resistance to xenobiotics activation. The CYP2D6 

promoter also showed the highest activity among tested CYP 5’-FRs for their activity 

in sustaining transgene expression in mouse livers and its initial activity was 

comparable to known strong promoters such as the viral CMV promoters. These 
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exciting observations justify the need for studies that could lead to identification of 

any unique elements responsible for CYP2D6 high promoter activity. 

 

It was observed that the pattern of CYP promoter activity was similar to that of other 

tested non-CYP promoters with a initial high activity followed by a rapid decline to a 

lower level. RNA analysis revealed that the main cause for declining was 

transcriptional shutdown. Future studies should consider gene silencing mechanism 

and study if inclusion of CYP introns or 3’-FRs could help overcome such dilemma. 

 

With regard to CYP2C9 5’-FR activity, I observed that CYP2C9 5’-FR activity was 

regulated mainly by PXR and CAR nuclear receptors. It was also demonstrated that , 

at least in the first 10 kb of the CYP2C9 5’-FR, the element located within the 

proximal 2 kb sequences (between -1000 and -2000 bp upstream of the coding 

sequence) was the main element required for PXR and CAR activation and for 

enhancing basal gene expression. One of the interesting findings was suppressing 

activity of the p2C9-10K-luc in mouse liver and in cell lines. Investigation of factors 

that led to this suppression would be a good subject for future studies. 

 

In conclusion, the observations from this dissertation work have enhanced our 

understanding of the functional role of CYP 5’-FR in gene expression and regulation. 

They also have provided direct evidence to validate that the animal model established 

by the hydrodynamic-based injection as a suitable in vivo system for gene function 

studies. The system I established for gene function and induction studies can be 

modified to adapt gene down-regulation studies under the physiological conditions. 
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Prolongation of transgene expression at a high level would indeed allow for 

investigation into the roles of repressor elements, gene down-regulation by cytokines, 

or polymorphism/mutation in regulatory region of CYP genes, and as a useful tool for 

studying correlations between gene induction and inhibition. In addition, this system 

can be used to evaluate newly developed drugs for their activities to induce CYP gene 

expression, and to help to establish the relationship between CYP gene expression and 

drug adverse effects. 
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