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Abstract 
 

     For survival data with nonproportional hazards, the weighted log-rank tests with a proper 

weighting function are expected to be more sensitive than the simple log-rank statistics for 

comparing survival data with random effects. A series of simulations were carried out to 

investigate how much better the weighted log-rank test performs under these situations. The 

nonproportional hazards data were generated by changing the hazard ratios and piecewise 

exponential functions. Our Monte Carlo simulation study shows the test with a newly developed 

weight function has an overall better sensitivity (statistical power) than the simple log-rank test 

and Harrington-Fleming’s weighted log-rank test in detecting the difference between two 

survival distributions when populations become more homogeneous as time progresses (early 

difference). For the datasets with middle difference, the test with the new weight function has 

better sensitivity than that of Harrington-Fleming’s weighted log-rank test, similar to that of the 

simple-log rank test. For late difference, all three tests have similar sensitivity. The new weight 

function can be used in testing the survival data with nonproportional hazards in public health 

relevance applications. 
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1. INTRODUCTION 

 

In this chapter, we review briefly important statistical tools often used in survival analysis. 

We also propose a new weighting function for the weighted log-rank test statistic which will be 

used in our simulations. 

 

1.1. Survival Data 

 

     Survival data usually refers to data in the form of a time from a well-defined time origin until 

the occurrence of some particular event of interest. In medical research, the time origin will often 

correspond to the recruitment of an individual into an experimental study, such as a clinical trial 

to compare two or more treatments. The end point may correspond to the relief of pain, the 

recurrence of symptoms, or the death of a patient.  

A survival model can be used when we want to relate potential prognostic factors or 

covariates to the length of time to a particular end point (survival time). Often we want to make 

inferences about the association between the survival time and certain covariates (explanatory 

variables) rather than estimate a one-sample survival function. Therefore, we often want to 

compare at least two groups of survival data adjusted for some covariates. For such comparison, 

the null hypothesis is that there is no difference among survival distributions from different 

selected comparison groups.  
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1.2. Proportional Hazards Model 

 

In summarizing survival data, two functions of central interest are the survival function and 

the hazard function. The survival function, S(t), is defined to be the probability that the survival 

time is greater than or equal to t,  

)()( tTPtS ≥= ,      (1) 

and the hazard function is defined as 

⎭
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which is the limiting conditional probability of experiencing an end point immediately after time 

t given the event has not occurred to the individual up to time t. (Collett, 2003) The most widely 

method of estimating the hazard function in the presenceof covariates is the proportional hazards 

model proposed by Cox (Cox, 1972). The Cox model assumes that the ratio of the hazards 

between two levels of a covariate (i.e treatment group) is constant over time. It is analytically 

expressed in the form 

)()( 0 theth ix
i

β= ,     (3) 

where hi(t) denotes the hazard function for the ith patient, i=1, 2, ……, n. xi is the value that the 

ith patient takes for the explanatory variable X. The term h0(t) is the baseline hazard function. 

Thus, the null hypothesis that there is no difference in survival distribution between groups 

corresponds to the null hypothesis β=0 in the model presented in Eq. (3) when i=1, 2, ……, n is 

a group indicator.  
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1.3. Simple Log-rank Test 

 

The simple log-rank test (Savage, 1956; Mantel, 1966; Peto, 1972) is perhaps the most widely 

used method in two-sample comparisons of time-to-event data. It is simple to use, nonparametric 

in nature, and highly efficient under the proportional hazards assumptions. It incorporates the 

commonly encountered rightcensorship of survival data without adding complicated elements to 

the method itself. The log-rank test can be viewed as the score test from the partial likelihood 

under the Cox model (Cox, 1975) 
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ki
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,       

where D represents the total number of failures and R represents the total number of individuals 

at risk at time of the ith failure. The log rank test can also be derived from the ranks of the 

survival times in the two groups, with the resulting rank test statistics based on the logarithm of 

the Nelson-Aalen estimate (Altshuler, 1970; Nelson, 1972; and Aalen, 1978) of the survival 

function.  

When the baseline hazard function h0(t) is totally unknown, the simple log-rank test is the 

optimal nonparametric test for testing the null hypothesis β=0 in the model presented in Eq. (3), 

for the influence of the explanatory variable xi on the survival time of individual i. If there is no 

good reason to doubt the proportional hazards assumption of the survival data, the simple log-

rank test should be used to test the hypothesis of equality of two survival distributions. However, 

if the data show some characteristics of nonproportionality, a weighted log-rank test may serve 

as a better testing scheme. 
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1.4. Frailty and Weighted Log-rank Test 

 

In the analysis of survival data, we often encounter the situation where the survival times of a 

group of individuals are not independent. Such correlations among survival times may arise 

when different individuals share some feature in common. For example, the survival data from 

the same clinic may be more similar than those from another clinic. This could be due to 

different treat teams in different clinics. Such random effects that can cause dependence in 

survival data are often referred to as frailties.  

Frailty in survival data may complicate survival analysis. The efficiency of a test statistic for 

survival data may decrease if the frailty factor is not considered mainly due to the 

nonproportionality caused by frailty. (Oak and Jeong, 1998) In addition, failure to include frailty 

in a test may result in the misspecification of the hazards model. (Oak and Jeong, 1998)  Some 

methods have been proposed to attack this problem. (Aalen, 1998) One can include the random 

effect in survival modeling by introducing a corresponding term into the proportional hazards 

model. For example, if we denote an unobserved random effect by a covariate zi, then Eq. (3) 

becomes 

)()( 0 tbeth ii zx
i

γβ += ,     (4) 

where b0(t) is an unknown baseline hazard function. Changing of baseline hazard function from 

h0(t) to b0(t) will not affect our testing results since it is a nonparametric test and the baseline 

hazard function will cancel when we form a ratio. Comparing Eq. (3) and Eq. (4), we can see that 

we actually introduced a weighting function exp(γzi) to the simple log-rank test in order to model 

the frailty. An optimal weighting function can be derived if a distribution is assumed for the 

frailty. (Oakes and Jeong, 1998) For example, if the frailty has a gamma distribution, then the 



 

5 

nonparametric test presented in Eq. (4) with a derived optimal weighting function is equivalent 

to the G-rho tests proposed by Harrington and Fleming (Harrington and Fleming 1982). When 

rho=0, the G-rho test reduces to the simple log-rank test. When rho=1, the G-rho test reduces to 

Wilcoxon test. (Collett, 2003) 

     Using a weighted log-rank test method is important in order to account for the possible frailty 

in the data. This is due to the fact that the loss of the efficiency of the test from omitting a 

covariate is generally more important than the additional loss of the efficiency due to the 

resulting misspecification of the proportional hazards model. (Jeong & Oakes, 1998) 

 

1.5. Proposed New Weighting Function 

 

     For the proportional hazard data with some kinds of frailty, a weighted log-rank test is 

optimal (Jeong 1998) and is expected to be more sensitive than the simple log-rank test. For 

example, when frailty has a gamma distribution with an index κ, weighted log-rank test with a 

weighting function of 

ρ)()( tStw =       (5) 

is still the optimal nonparametric test. These are equivalent to the “G-rho” tests of Harrington 

and Fleming (Harrington & Fleming, 1994) with rho=1/κ. 

However, when the frailty distribution affects the proportionality of the hazard data, the 

simple log-rank test and weighted log-rank test of G-rho type is no longer the optimal test, a new 

weighting function must be used. For example, when the frailty follows an inverse Gaussian 

distribution, an optimal weighting function was derived as  



 

6 

2

2

)](ˆlog2[
2

2
1)(

tS
tw

−
+=

ψ
ψ ,     (6) 

where ψ is an arbitrary controlling parameter which can take the value of 0 to +∞, )(ˆ tS  is the 

estimated common survival function based on the combined sample up to t. (Jeong & Oakes, 

1998) This proposed weighting function is used in our simulations and the sensibility in 

detecting the difference in the simulated survival data is investigated. For observed survival data, 

the test statistic is given by 
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where w(ti) is a common weighting function shared by each group, Yi1 and Yi2 are the number of 

objects at risk in group 1 and 2 at time ti, di1 and di2 are the number of events occurred in each 

group at time ti, respectively. The summation is over D, which includes a subset of survival times 

that are observed as event of interest. The variance of W can be estimated by  
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It was proved that 
V

WZ =  has an asymptotic standard normal distribution if the dataset is big 

enough (Harrington & Fleming, 1982). 

     The common survival function estimator )(ˆ tS  in Eq. (6) is given by  
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     A frailty distribution is usually unobservable, thus we do not know if the frailty itself will 

affect proportionality of the survival data at hand. So we must test if the observed survival data 

still follows proportional hazards assumption before we decide what type of weighting function 
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should be used (Therneau and Grambsch, 2000). Testing the proportionality in survival data can 

be performed by using the cox.zph procedure provided in S-Plus.  If the cox.zph test indicates 

proportionality in the data, the log-rank test statistics like simple log-rank test and Wilcoxon log-

rank test can be chosen. However, if the cox.zph test shows that the dataset does not satisfy the 

proportional hazards assumption, we should use a log-rank test with a different type of weighting 

function, such as the one for the survival data with inverse Gaussian frailty or the Harrington-

Fleming test. 
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2. SIMULATION METHODS 

 

In this chapter, we describe our simulation procedure, i. e., how we generate the survival data 

and how we performed the simulation. 

 

2.1. Methodology 

 

Suppose there are two groups of survival data with corresponding hazard functions h2(t) and 

h1(t). Survival data can be generated by Monte Carlo method according to the characteristics of 

h1 and h2. Then we can use log-rank tests with different weight functions to determine the power 

of each test method in differentiating these two groups of data. An estimate of the statistical 

power of the test is provided by  

sn
mpower = ,      (10) 

where m is the number of simulations in which the test can differentiate the data with 

significance, and ns is the total number of simulations. 

In our simulation, we take h1(t) as the baseline hazards function and set it to be a constant, ρ. 

Therefore h2 becomes 

ρββ zz ethezth == )()( 12 .     (11) 

Here z is a covariate. The null hypothesis that h1 and h2 are identical corresponds to β=0. The 

survival functions become 

tetS ρ−=)(1 ,      (12) 

and  
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zetSztS
β

)()( 12 = .      (13) 

Then for an object in group one, the probability that its survival time is less than value t is 

tetStF ρ−−=−= 1)(1)( 11 ,     (14) 

and likewise, for an object in group two, 

zetetSztF
βρ )(

22 1)(1)( −−=−= .    (15) 

Since that F1(t) and F2(t|z) conform to a uniform distribution in the range of [0,1], we have 

uetF t =−= −ρ1)(1 ,     (16) 

and  

uetF et =−= − βρ )(
2 1)( ,     (17) 

as z=1 for group two data. 

For group one survival data, we obtain  

ρ
)1ln(

1
ut −−= .      (18) 

For group two survival data, we obtain 

12
)1ln( te

e
ut β

βρ
−=−−= .     (19) 

Therefore, we can generate two groups of survival data conforming to h1 and h2 in Eq. (11) by 

starting from a uniform distribution u, and using the relationships represented in Eqs. (18) and 

(19). 
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2.2. Procedure Details 

 

The data generation procedures are as follows: 

i. Generate N* observations from uniform distribution u(0,1), designate them as ui, 

i=1,2,…N*. 

ii. Generate the survival times for group one data, t1i, i=1,2,…N*, base on Eq. (18). The 

parameter ρ in Eq. (18) is set arbitrarily; here we set it to be in [0.001, 0.1, 0.3]. The 

data are sorted ascendingly. 

.)1ln(
1 ρ

i
i

ut −−=  

iii. Generate the survival times for group two data, t2i. The random effect (frailty) of the 

survival times is substituted into the t2i by multiplying the factor of β−e  by t1i, as 

shown in Eq. (19). In our simulations, we let the premultiplier β−e  be in the range of 

(0, 1). The values of β−e  were chosen according to the shapes of hazards ratios of 

interest. For example, if we are interested in two groups of data with early difference, 

we let the β−e  take values of piece-wise proportionality reflecting early departures.  

iv. Generate the censored data in two groups from a uniform distribution randomly. In 

this study we let the censoring occur randomly. 

In testing the proportionality of the simulated data, we used the cox.zph function in the S-

Plus package. The null hypothesis for this test is that the data obey the assumption of 

proportional hazards.  
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For the two sample test, we demonstrate how the test statistics can be evaluated step by step 

in Table 4, Appendix. We found it was very difficult to incorporate the new weighting function 

in Eq. (6) into the survdiff procedure in the S-Plus package. Therefore, we wrote our own 

program in S-Plus to evaluate Eq. (7) and (8). The survival data obtained in Section 2.1 were 

transformed accordingly in order to calculate the quantities in Eq. (7) and (8) numerically. The p-

values correspond to the observed statistic, 
V

WZ = , which follow the standard normal 

distribution. The test results based on the statistics in Eq. (7) and (8) with the new weight 

function Eq. (6) are compared with a simple log-rank test and Harrington-Fleming’s weighted 

log-rank test.  
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3. SIMULATION RESULTS 

 

     In this chapter we present our simulation results. First we have used cox.zph function to 

test the proportional hazards assumption of the simulated data. Then we tested the hypothesis 

that two survival distributions are the same to evaluate the power of the three test methods, i.e., 

the simple log-rank test, the weighted log-rank test proposed by Harrington and Fleming, and the 

weighted log-rank test with the new weighting function shown in Eq. (6). 

 

3.1. Test for Proportional Hazard Assumptions 

 

The purpose of this work is to investigate how the simple log-rank test and the weighted log-

rank test of Harrington-Fleming perform for the nonproportional hazards data, compared with 

the test with the new weight function in Eq. (6). Thus, first it is worthwhile to evaluate how 

significantly the simulated data violate the proportional assumption.  

We used the cox.zph function in the S-Plus package to test the statistical significance of 

violation of the proportional hazards assumption in the simulated data. We tested simulated data 

with early, middle, and late departure. The datasets were generated by the procedures described 

in 2.2 with baseline hazard function ρ=0.3.  The specific parameters for the tests can be found in 

Figure 1-3. Our results show that cox.zph tests do identify the nonproportionality existing in 

our simulated data. However, the level of nonproportionality detected by cox.zph varies from 

dataset to dataset. We examined simulated datasets with a data size of 1500 and found that a 

large fraction of datasets detected by the cox.zph procedure to be nonproportional at the 
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significance level of 0.05. For example, for late difference datasets, 32% of 100 simulations are 

identified as nonproportional using the cox.zph procedure. For early difference datasets, about 

94% of the datasets were identified as nonproportional. For middle difference, 57% of datasets 

were shown to be nonproportional.  

In Figure 1 to 3 we show some of the estimated patterns of change of the hazard ratios from 

the cox.zph function (smoothed scaled Schoenfeld residual plots), together with the 

corresponding Kaplan-Meier plots. These figures show that nonproportionality of the simulated 

data. For example, Figure 1 and 2 shows the cox.zph test for two survival datasets with a data 

size of 1500 that have later difference. The p-value of the cox.zph test is 0.0406. It can be seen 

from the residual plots that the drifting of the residual curve from zero when time progresses 

indicates significant late difference for this particular data group. Two similar example plots for 

early difference and middle difference datasets are shown in Figure 2 and 3. In Figure 4 to 6 we 

show some other examples of simulated nonproportional data with a much smaller data size of 

100. These examples provide visual evidence that significant nonproportionality exists in the 

data. 

 

3.2. The Parameter Choices 

 

The simple log-rank and Harrington-Fleming’s weighted log-rank test can be formulated by 

properly setting the weight function w(ti) in Eqs (7) and (8). For the simple log-rank test, w(ti) 

simply equals to unity for all t, which means all the failure times are treated with equal weight. 

For Harrington-Fleming’s weighted log-rank test, the weight function w(ti) in Eqs. (7) and (8) is 

defined by  
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q
i

p
iiqp tStStw )](ˆ1[)(ˆ)( 11, −− −= ,    (20) 

where p ≥ 0, q ≥ 0. (Klein and Moeschberger, 1997) Slightly different from the )(ˆ
itS  in Eq. (9), 

the )(ˆ
1−itS  in Eq. (20) is the survival function at the previous failure time. When p=q=0 Eq. (20)  

reduces to the weigh function for the simple log-rank test. When p=1 and q=0 we have the G-rho 

test. By choosing the values of p and q properly, we assign different weights to the data points. 

For example, when q=0 and p>0, the tests with this weight function are more sensitive to early 

difference. When p=0 and q>0, the tests are more sensitive to late difference. In our simulation 

tests, we set the values of p and q in the Harrington-Fleming test as follows: 

 

Early difference data: p=1, q=0; 

Late difference data: p=0, q=1; 

Middle difference data: p=q=1. 

 

For the log-rank test with the new weight function, we need to set the parameter Ψ for the 

new weight function in Eq. (6). In this study we used three values for Ψ, 0.01, 1.0, and 5.0.  For 

the baseline hazard function, we used the values of 0.001, 0.1 and 0.3. 
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3.3. Simulation Results 

 

We chose the dataset size of the simulation to be 1500, with dataset 1 and dataset 2 having 

the same size. That is, n1=n2=N*. The data points are sorted ascendingly according to t and 

divided into 10 subgroups. For each subgroup a factor is multiplied by t to create the early, 

middle, or late difference between data group one and two. For example, when we model early 

difference data, we set a factor array of (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 0.99). 

The first subgroup of 150 survival times in group two equal to the product of 0.80 and the first 

150 data from group one. The second subgroup of 150 survival times in group two equal to the 

product of 0.825 and the first 150 data from group one, and so on. The last subgroup of 150 

survival time in group one and two are essentially the same. For each choice of factor array, 

ns=1000 simulations with randomly generated survival times were performed, with level of test 

equal to 0.05. The power of each test was computed according to Eq. (10).  

One set of results for comparing the simple log-rank, Harrington-Fleming’s weighted log-

rank, and the new weight function tests are shown in Table 1. This set of data has early 

difference. As can be seen from the simulation results, the Harrington-Fleming’s weighted log-

rank test fails to capture the difference in two survival data.  The simple log-rank test has shown 

a much higher sensitivity than the Harrington-Fleming’s test, giving an average power of about 

0.22. In contrast, the test with new weight function has about twice the power of a simple log-

rank when the parameter Ψ equals to the value of 1.0.  We should point out that all three test 

methods show a low power (less than 0.5) in differentiating the data group mainly due to the 

very small difference we design in the simulated datasets themselves. The power of Harrington-
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Fleming’s test is negligibly low. However, this does not indicate that Harrington-Fleming fails 

completely. If we increase the data difference by changing the premultiplier factor array, the 

testing powers for all three tests increase rapidly, but the power of the new weight function test 

remains the highest before they reach unity.  Also we found that variation in the constant 

baseline hazards function does change the relative sensitivity of these three test methods in 

differentiating the data groups with early departure.  

For the datasets with middle difference, the test with the new weight function shows a much 

higher power than the Harrington-Fleming test.  However, its powers are in the same range as 

that of the simple log-rank test. From Table 2, we can see the new test has a slightly higher 

power than simple log-rank test when we choose Ψ to be 1.0. This fact is similar to that we have 

seen for early difference test. It seems that Ψ = 1.0 is good choice for testing the early and 

middle difference survival data using the new weight function. Theoretically, the value of Ψ can 

be any arbitrary positive number between 0 and infinity. (Oakes and Jeong, 1998) As long as a 

positive Ψ is chosen, the weighting function will be always between 0 and 1. However, the 

change in Ψ value will change the distribution of the weighting function. Therefore, further 

careful work needs to be done before we can give a reasonable rule in choosing the optimal Ψ 

value. Again, the testing results have only a minor change when we vary the baseline function 

values.  This indicates that the value of the constant baseline hazards function has negligible 

effect on the sensitivity of these testing methods in light of the simulation fluctuations.  

Simulation results from the late difference data are shown in Table 3. We can see that the 

tests with all three methods have a power in the same range.  

We note that the factor arrays for the simulated data with different departure pattern (early, 

middle, or late difference) are in the same magnitude, ranging from 0.80 to 0.99. However, the 
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significance of nonproportionality in these datasets identified by cox.zph varies. Early 

difference data was identified by cox.zph as having the most significant nonproportionality; in 

turn the new weigh function is more powerful than the simple log-rank and Harrington-

Fleming’s weighted log-rank tests in differentiating the early difference data.  

Summarizing all the results shown in Table 1 to 3, we can see that the advantage of the new 

test is obvious. For early difference data, the new method shows better performance than either 

simple log-rank or Harrington-Fleming’s method. For middle difference, it is better than the 

Harrington-Fleming’s test. Even for the later difference, which has the least nonproportionality, 

the new weight function method has a similar sensitivity. This indicates that the new weighting 

function is successful in properly accounting for the nonproportional frailty effect of the 

simulated survival data.  

 



 

18 

 

Table 1. Monte Carlo estimate of the power of the simple log-rank, Harrington-Fleming’s 
weighted log-rank test, and the new weighted logrank test. Hypothesis: β=0; 1000 simulations 
for each N*; n1=n2=N*, level of test=0.05. The datasets have early difference, the piecewise 
nonproportional hazard array is (0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 0.99). 

baseline 

hazards 

function 

Ψ Test with 

new weight 

function, 

P1 

Simple log-

rank, P2 

Harrington-

Fleming 

weighted log-

rank, P3 

P2/P1 P3/P1 

5.0 0.285 0.793 0.007 

1.0 0.445 0.508 0.004 

0.001 

0.01 0.229 

0.226 0.05 

0.987 0.009 

5.0 0.297 0.798 0.003 

1.0 0.446 0.531 0.002 

0.1 

0.01 0.239 

0.237 0.063 

0.992 0.004 

5.0 0.312 0.731 0.003 

1.0 0.439 0.519 0.002 

0.3 

0.01 0.214 

0.228 0.057 

1.065 0.004 
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Table 2. Monte Carlo estimate of the power of the the simple log-rank, Harrington-Fleming’s 
weighted log-rank test, and the new weighted logrank test. Hypothesis: β=0; 1000 simulations 
for each N*; n1=n2=N*, level of test=0.05. The datasets have middle difference, the 
nonproportional hazard array is (0.99, 0.95, 0.90, 0.85, 0.80, 0.80, 0.85, 0.90, 0.95, 0.99). 

baseline 

hazards 

function 

Ψ Test with 

new weight 

function, 

P1 

Simple log-

rank, P2 

Harrington-

Fleming 

weighted log-

rank, P3 

P2/P1 P3/P1 

5.0 0.890 0.937 0.072 

1.0 0.945 0.883 0.068 

0.001 

0.01 0.849 

0.834 0.064 

0.982 0.075 

5.0 0.915 0.909 0.062 

1.0 0.947 0.879 0.060 

0.1 

0.01 0.818 

0.832 0.057 

1.017 0.070 

5.0 0.887 0.940 0.062 

1.0 0.957 0.871 0.057 

0.3 

0.01 0.835 

0.834 0.055 

0.999 0.066 
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Table 3. Monte Carlo estimate of the power of the simple log-rank, Harrington-Fleming’s 
weighted log-rank test, and the new weighted logrank test. Hypothesis: β=0; 1000 simulations 
for each N*; n1=n2=N*, level of test=0.05. The datasets have late difference, the nonproportional 
hazard array is (1.00, 0.99, 0.98, 0.97, 0.95, 0.93, 0.91, 0.89, 0.87, 0.85). 

baseline 

hazards 

function 

Ψ Test with 

new weight 

function, 

P1 

Simple log-

rank, P2 

Harrington-

Fleming 

weighted log-

rank, P3 

P2/P1 P3/P1 

5.0 0.977 1.009 1.011 

1.0 0.977 1.009 1.011 

0.001 

0.01 0.981 

0.986 0.988 

1.005 1.007 

5.0 0.978 1.007 1.006 

1.0 0.967 1.019 1.018 

0.1 

0.01 0.987 

0.985 0.984 

0.998 0.997 

5.0 0.983 1.003 0.998 

1.0 0.972 1.014 1.009 

0.3 

0.01 0.983 

0.986 0.981 

1.003 0.998 
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4. CONCLUSION 

 

We studied the sensitivity of a newly developed weighted log-rank test, and compared it with 

the simple log-rank test and Harrington-Fleming’s weighted log-rank test, in testing treatment 

with nonproportional survival data using Monte Carlo simulations. We found that the new test 

shows a better sensitivity in capturing the difference between the data group when the survival 

data has significant nonproportionality (here the data with early difference). For the datasets with 

less nonproportionality (here the data with middle difference), the test with the new weight 

function has better sensitivity than that of Harrington-Fleming’s weighted log-rank test, similar 

to that of the simple-log rank test. For late difference which has least nonproportionality, all 

three tests have similar sensitivity.  
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5. FUTURE WORK 

 

In the present study, we only chose three values arbitrarily for the parameter in the new 

weight function and tested its sensitivity. In future work, a more systematic study will be 

performed so that we can provide a rule of thumb in selecting the proper value for the Ψ 

parameter according to the survival data pattern.  

We only did simulation with a sample size of 1500. Such a large data size may disguise some 

of the problem in the test model. For example, the abundance of data points may compensate the 

inaccuracy in the specification of the survival model and gave an incorrect conclusion that a 

particular model is effective in capturing the data difference. In the next step, we may continue 

the simulation to determine the impact of sample size on the performance of the new weight 

function by conducting tests with various sample size.  

The purpose of this study is to use the new weight function in analyzing the survival data in 

public health applications. We will apply the method developed in this project to study the real 

data collected in cancer survival studies.  
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Figure 1. Test of nonproportional hazards in a simulated dataset. The size of datasets 
n1=n2=N*=1500. Late difference is implanted in the data, with the nonproportional hazard array 
(1.00, 0.99, 0.98, 0.97, 0.95, 0.93, 0.91, 0.89, 0.87, 0.85). The cox.zph test of the data shows that 
the data have nonproportional hazards with a p-value of 0.0406. 
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Figure 2. Test of nonproportional hazards in a simulated dataset. The size of datasets 
n1=n2=N*=1500. Early difference is implanted in the data, with the nonproportional hazard array 
(0.85, 0.80, 0.75, 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 0.99). The cox.zph test of the data shows that 
the data have nonproportional hazards with a p-value of 0.00466. 
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Figure 3. Test of nonproportional hazards in a simulated dataset. The size of datasets 
n1=n2=N*=1500. Middle difference is implanted in the data, with the nonproportional hazard 
array (0.99, 0.95, 0.90, 0.85, 0.80, 0.80, 0.85, 0.90, 0.95, 0.99). The cox.zph test of the data 
shows that the data have nonproportional hazards with a p-value of 0.0374. 
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Figure 4. Example of nonproportional hazards simulated dataset with a small data size. The size 
of datasets n1=n2=N*=100. Late difference is implanted in the data. 
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Figure 5. Example of nonproportional hazards simulated dataset with a small data size. The size 
of datasets n1=n2=N*=100. Early difference is implanted in the data. 
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Figure 6. Example of nonproportional hazards simulated dataset with a small data size. The size 
of datasets n1=n2=N*=100. Middle difference is implanted in the data. 
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APPENDIX: A Sample Simulation Table 
 
 

Table 4. An example of two sample test table. The table is constructed based on two groups of 
sorted survival data, ti1 and ti2 with early difference, using Eqs. (7) and (8). 

ti Yi1 di1 Yi2 di2 Yi di ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

i
i Y

dY 1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

i

i
ii Y

dYd 11 i
i

ii

i

i

i

i d
Y

dY
Y
Y

Y
Y

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1
1 11  )(ˆ itS  

0.0 

 1.0 

 2.0 

 3.0 

 4.0 

 5.0 

 6.0 

 7.0 

 8.0 

 9.0 

10.0 

11.0 

12.0 

13.0 

14.0 

15.0 

16.0 

17.0 

18.0 

19.0 

20.0 

21.0 

22.0 

23.0 

24.0 

100 

 86 

 68 

 61 

 51 

 40 

 34 

 30 

 27 

 22 

 15 

 13 

 10 

  9 

  7 

  6 

  6 

  4 

  4 

  4 

  4 

  3 

  3 

  1 

  1 

14 

18 

 7 

 8 

 9 

 6 

 4 

 3 

 2 

 3 

 2 

 1 

 0 

 1 

 0 

 0 

 0 

 0 

 0 

 0 

 1 

 0 

 0 

 0 

 0 

100 

 79 

 66 

 54 

 47 

 40 

 32 

 30 

 27 

 21 

 15 

 13 

 10 

  7 

  6 

  6 

  6 

  4 

  4 

  4 

  3 

  3 

  2 

  1 

  1 

21 

13 

12 

 5 

 6 

 8 

 0 

 2 

 5 

 3 

 1 

 1 

 1 

 0 

 0 

 0 

 1 

 0 

 0 

 1 

 0 

 0 

 0 

 0 

 0 

200 

165 

134 

115 

 98 

 80 

 66 

 60 

 54 

 43 

 30 

 26 

 20 

 16 

 13 

 12 

 12 

  8 

  8 

  8 

  7 

  6 

  5 

  2 

  2 

35 

31 

19 

13 

15 

14 

 4 

 5 

 7 

 6 

 3 

 2 

 1 

 1 

 0 

 0 

 1 

 0 

 0 

 1 

 1 

 0 

 0 

 0 

 0 

17.500 

16.158 

 9.641 

 6.896 

 7.806 

 7.000 

 2.060 

 2.500 

 3.500 

 3.070 

 1.500 

 1.000 

 0.500 

 0.562 

 0.000 

 0.000 

 0.500 

 0.000 

 0.000 

 0.500 

 0.571 

 0.000 

 0.000 

 0.000 

 0.000 

-3.500 

 1.842 

-2.642 

 1.104 

 1.194 

-1.000 

 1.939 

 0.500 

-1.500 

-0.070 

 0.500 

 0.000 

-0.500 

 0.438 

 0.000 

 0.000 

-0.500 

 0.000 

 0.000 

-0.500 

 0.429 

 0.000 

 0.000 

 0.000 

 0.000 

7.255 

6.321 

4.106 

2.897 

3.203 

2.924 

0.953 

1.165 

1.552 

1.321 

0.698 

0.480 

0.250 

0.246 

0.000 

0.000 

0.250 

0.000 

0.000 

0.250 

0.245 

0.000 

0.000 

0.000 

0.000 

1.000 

0.813 

0.699 

0.620 

0.526 

0.435 

0.409 

0.376 

0.328 

0.283 

0.256 

0.237 

0.226 

0.212 

0.212 

0.212 

0.196 

0.196 

0.196 

0.174 

0.152 

0.152 

0.152 

0.152 

0.152 

sum  79  80  159 81.264 -2.266 34.116  
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