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USING PRIMARY AFFERENT NEURAL ACTIVITY FOR PREDICTING

LIMB KINEMATICS IN CAT

J. B. M. Wagenaar, PhD

University of Pittsburgh, 2011

Kinematic state feedback is important for neuroprostheses to generate stable and adaptive

movements of an extremity. State information, represented in the firing rates of populations

of primary afferent neurons, can be recorded at the level of the dorsal root ganglia (DRG).

Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic

state of the hind limb using reverse regression. Although accurate decoding results were

attained, these methods did not make efficient use of the information embedded in the firing

rates of the neural population.

This dissertation proposes new methods for decoding limb kinematics from primary af-

ferent firing rates. We present decoding results based on state-space modeling, and show

that it is a more principled and more efficient method for decoding the firing rates in an

ensemble of primary afferent neurons. In particular, we show that we can extract confounded

information from neurons that respond to multiple kinematic parameters, and that includ-

ing velocity components in the firing rate models significantly increases the accuracy of the

decoded trajectory.

This thesis further explores the feasibility of decoding primary afferent firing rates in the

presence of stimulation artifact generated during functional electrical stimulation. We show

that kinematic information extracted from the firing rates of primary afferent neurons can

be used in a real-time application as a feedback for control of FES in a neuroprostheses. It

provides methods for decoding primary afferent neurons and sets a foundation for further

development of closed loop FES control of paralyzed extremities.
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Although a complete closed loop neuroprosthesis for natural behavior seems far away, the

premise of this work argues that an interface at the dorsal root ganglia should be considered

as a viable option.

Keywords: bioengineering, muscle spindle, primary afferent, nervous system, closed loop

control, state-space modeling, neuroprostheses, FES .
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1.0 INTRODUCTION

This chapter introduces the research topics discussed in document. Biomedical engineering

and in particular the neural engineering fields heavily rely upon both physiology of the

nervous system and the engineering aspects in science. Both aspects will be discussed in this

chapter followed by a section outlining the specific aims addressed in this work.

1.1 SENSORIMOTOR PHYSIOLOGY

Scientific discoveries unraveling the purpose and properties of primary afferent firing rates

will be discussed, followed by a section describing the current technology available for using

primary afferent neurons as an integrated part of a neural prosthesis.

1.1.1 Advances towards understanding the sensory nervous system.

Around the year 100 AD, Marinus described the 10th cranial nerve based on anatomic

findings in human. It took approximately 1900 years (1889) before Cajal initiated a series

of discoveries that lead to our current understanding of the nervous system as a complex

network of individual neurons. Only 120 years after Cajal, the first interface with the vagus

nerve was approved by the FDA as a treatment for people with Epilepsy. This shows a clear

picture of the incredible advances have been made in neuroscience during the last century

and might show a glimmer of the possibilities in the future.

Between 1889 and now, incremental scientific discoveries exposed the importance and

complexity of the sensory nervous system. Quickly after Cajal’s discovery, Camillo Golgi

1



described the Golgi tendon organ in 1896, followed by the discovery of the ruffini endings

by Ruffini in 1898. Although the muscle spindle structure was described by Hassal in 1851,

Kerschner was the first to suggest that it was a sensory receptor in 1888. This was later

confirmed in 1894 when Sherrington described how muscle spindles remain intact in muscles

from which all motor fibers have been removed by degeneration after cutting the ventral

roots. He could therefore conclude that muscle spindles are innervated by fibers connecting

to the dorsal roots of the spinal cord and are therefore related the sensory nervous system

[101].

Electric fields resulting from muscle activity and stretch had been described since the

second half of the eighteen-hundreds. However, nobody had recorded the response from

single afferent fibers until 1926 [57]. That year, Adrian and Zotterman recorded from frog’s

sciatic nerve and showed that by sectioning part of the muscle, they could isolate a single

afferent neuron [1]. They concluded that: 1) the afferent firing rate was a function of the

muscle load, 2) There is an all or nothing response by the neuron and 3) There is adaption

of the neuron’s excitability which they attributed to a change in the refractory period [2].

Adrian and Sherrington would receive the Nobel Prize for their work on the function of

neurons in 1932.

The term proprioception was first coined by Sherrington in 1906 to indicate the awareness

of movement from afferent information [102]. It originates from the integration of afferent

inputs in the central nervous system (CNS), provides vital information about the state of

the limb during movement and serves as feedback during motor control to create stable and

accurate movements. Although the exact pathways leading to movement perception are not

fully understood, science is continuously trying to understand the underlying sensory system.

During the 1950’s, the mechanisms responsible for the discrete responses from the sen-

sory neurons were unraveled when intracellular recordings enabled Hodgkin and Huxley to

perform their famous work on the giant axon of squid [49, 48]. Their discoveries have since

been the foundation of a plurality of modeling the nervous system at a cellular level [74].

Research by Adrian and others laid the foundation for more detailed analysis of the

function of the sensory nervous system in later years. Leading into the second half of the

century, technological improvements lead to increasingly accurate data on afferent behavior,
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the ability to record from multiple neurons simultaneously and the realization that targeted

stimulation of neurons could evoke sensory perceptions [104]. Continuing today, research is

being conducted to understand the role of the sensory nervous system in our everyday life

and how we can utilize the information that the sensory nervous system provides in devices

aimed at restoring extremity functionality in physically impaired people.

1.1.2 Firing rate properties of primary afferent neurons

This section will discuss some of the firing rate properties of primary afferent neurons. Insight

in the firing rate response of primary afferent to kinematic perturbations will be used in later

chapters as a basis for algorithms to estimate limb kinematics.

1.1.2.1 The muscle spindle In contrary to earlier beliefs that the muscle spindles are

the only sensory receptor involved in proprioception, the current thought includes other

afferent types as contributors to proprioception. However, the muscle spindle is still thought

to be the main contributor [35]. An example of muscle spindle response to passive kinematic

movement is shown in figure 1. Here, the limb was manipulated through a series of ramp and

hold patterns in different directions. The cartesian coordinates of the metatarsophalangeal

joint and the instantaneous firing rate of six muscle spindle afferents are plotted over time.

Various models with increasing complexity have been proposed for the muscle spindle

firing rate [68, 51, 80, 82, 66, 72]. These models are able to provide accurate predictions

of spindle firing rates as a function of muscle length and presumed gamma drive inputs.

A thorough classification of the muscle spindle and the afferents innervating the sensory

receptor was described as early as 1963 by Matthews. He identified two groups of afferents

originating from the muscle spindle; group 1 afferents (primary endings) and group 2 afferents

(secondary endings). In addition, he described two efferent fibers innervating the spindle; γ1

motor neurons and γ2 motor neurons [68].

3



Figure 1: Example firing rates of primary afferents during passive movement. A) Cartesian

coordinates of the metatarsophalangeal joint B) Muscle length estimates using the Goslow

model [40] C) Instantaneous firing rates of 6 primary afferent neurons
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In 1969, Matthews and Stein discussed the muscle spindle firing rate in terms of its

response to sinusoidal muscle stretch and concluded that muscle spindle response is definitely

non-linear in contrast to beliefs at the time [69]. In addition, there experiments showed that

muscle spindle output could significantly be increased when they stimulated the γ- motor

neuron innervating the spindle [69].

More recent work investigating the properties of the muscle spindle suggests that the

classification between two types of γ- motor neurons might be too simple and more work

is needed to understand the system [113, 72]. Mileusnic et al. presented the most complex

muscle spindle model in 2007. Their model consists of 22 model parameters and is a clear

demonstration that muscle spindle modeling is still a daunting task [72].

Alneas et al. found that background fusimotor activity in spinalized cat marked an

increase in the dynamic frequency of the firing rate of the primary muscle spindle neurons

but only slightly increased their response to static extensions [3]. The neural basis for gamma

motor drive has been topic for discussion for many years and various hypotheses have been

put forward. Prochazka et al. compared muscle spindle response in freely moving cats with

those recorded under anesthesia and found that gamma drive is likely set by the CNS to

different levels depending on the performed task [83]. A similar conclusion was reached by

Taylor at al. in 2000 when looking at decerebrate preparations [113].

A muscle spindle neuron can easily be detected from a neural pool of afferent responses

by its combined dynamic and static components of the firing rate response during a ramp and

hold flexion and extension of the muscle. In addition, an intravenous injection of succinyl-

choline will temporarily paralyze the muscles while increasing the muscle spindle response

[87, 114]. Figure 2 shows an example of a muscle spindle response during flexion/extension

of the muscle during a succinylcholine injection. At the beginning of the trial, the succinyl-

choline is administered intravenously and the instantaneous firing rate of the muscle spindle

is plotted for the following 10 minutes. It can be seen clearly that the instantaneous firing

rate of the neuron increases after administration of the drug and that the effect diminishes

over time. In addition, we can see the difference between the dynamic and static contri-

butions of the instantaneous firing rate increases (dynamic index) which is a well described

phenomenon [87].

5
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Figure 2: The response of a muscle spindle to succinylcholine during ramp and hold flexion

and extension of the left hindlimb in cat. The muscle spindle response was recorded by

the author in the L7 dorsal root ganglion under Isoflurane anesthesia. The first row of

figures are expanded sections of the data in the bottom figure.The numbers correspond with

the associated sections in the lower figure. In each figure, the ramp and hold trajectory is

displayed as well as the instantaneous firing rate of the primary afferent. The bottom figure

shows the instantaneous firing rate of the neuron over the duration of the trial.
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1.1.2.2 Other afferent neurons Although most focus has been on the behavior of

muscle spindles, it has been shown that other afferents, and in particular cutaneous afferents,

contribute to the sense of proprioception [33]. For example, Collins and Prochazka showed

that electrical stimulation as well as skin stretch of the back of the hand can induce illusions

of movement [25]. The importance of cutaneous afferents on motor control during walking

was confirmed in rat [116] and cat [14, 15] as the animals showed altered walking behavior

in its absence.

There are a number of different cutaneous receptor types which all have much simpler

characteristics than the muscle spindle as they are not innervated by any γ-motor neurons.

Although these sensors directly convey information about pressure and skin displacements,

they will indirectly signal information on global limb state due to the mechanics of the

extremity. For example, Haugland et. al. used compound afferent cutaneous information to

determine gait phase using a nerve cuff placed on the Sural nerve [45]. In addition, given

the premise that some cutaneous receptors modulate their response in a consistent way with

skin stretch, it is feasible that when the extremity if moved through its range of motion, the

firing rate of these neurons correlates with the global kinematic variables.

The Golgi tendon organ (GTO) is another sensory receptor of interest to proprioception.

As the GTO is located between the insertion point and the muscle belly, it’s firing rate

response is primarily correlated with muscle strain and lacks the dynamic response charac-

teristic for the muscle spindle [73]. In addition, as muscle spindles are located in series with

the muscle, they only respond when under sufficient strain. During passive movement of the

extremity, these afferent are therefore most active at the extreme extension/flexion of the

joints as there is little muscle tone [34, 4].

It can be argued that specific knowledge about the origin and class of the recorded

neurons is useful for decoding purposes. Indeed, if we knew exactly what was encoded

by the neuron and we knew exactly where the neuron was recorded, we could include this

knowledge in the decoding strategy. However, DRG recordings are often very noise recordings

and many channels can only be classified as multi-unit activity. Therefore, a more general

approach is utilized in this thesis which infers the properties of the recorded neurons from a

training data set and models its behavior accordingly.
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As we are interested in kinematic trajectories which are defined by position and velocity

of the limb segments, we aimed to extract these variables from the neural afferent firing

rates. This does not imply that the primary afferents only encode for these variables, but

we are only interested in these variables for the aims specified in section 1.3.

1.1.3 Proprioceptive coordinate frame

There are different opinions about the reference frame the CNS uses for proprioception

[13, 12, 11]. In order to use afferent information as part of a neuroprosthetic controller,

one needs to identify the kinematic reference frame in which interesting information is en-

coded. Previous efforts have focussed mainly on endpoint kinematics and joint angle reference

frames.

At the DRG level of the afferent pathways, sensory integration is non-existing as the

recorded signals are the direct response of the sensory units. However, as the global kinematic

variables are linked to the sensory afferent intrinsic response characteristics, we can infer

information about global kinematic variables when we look at populations of these primary

afferent neurons.

Although coordinate frames are interesting from a decoding point of view, it is far more

difficult to determine the proprioceptive strategy of the CNS based on the primary afferent

responses. For instance, it is possible that the CNS processes afferent information in an non-

orthogonal, non-linear and highly redundant matter [98]. Scott et al. also found that the

distribution of muscle spindles in human extremities do not favor any particular coordinate

frame [98].

Because of the intrinsic properties of the extremity, all suggested coordinate frames

are correlated. To investigate this relationship and the effects on the accuracy of linear

regression, we compared the musculo-skeletal model proposed by Goslow et al. [40] (see

figure 1), endpoint and joint angle coordinate frames using regression methods proposed in

[106, 122].

Figure 3 shows the R2- values of the fitted models Y = a0
∑k

i=1 aiFi with Y being the

kinematic variable (position or velocity) and Fi being the instantaneous firing rate of the

8



i-th afferent neuron (results are based on data from a single animal). See section 2.2.2 for a

detailed description of the method. During a random movement trial (see 3.2.2), kinematics

and neural data were recorded. For each kinematic variable, the neuron with the highest

correlation was selected and the R2-value was found (black bars in figure). Subsequently,

neurons were added to the model as long as each consecutive neuron added > 1% to the R2

value. The number on top of each bar indicates the number of neurons included and the

total length of the bar is the resulting R2-value of the model.

We can see that the same population of neurons can represent kinematic variables in

various coordinate frames and that position tends to be better represented than velocity.

This seems to agree with results presented by Weber in 2007 although these results were

observed during awake behaving animals [123]. Note that we are only looking at linear

models and that we cannot make any conclusions about how the CNS interprets these signals.

Innervating of the muscle spindles by γ-motor neurons have raised various theories about

the coordinate frame that is represented by the firing rates of these neurons. It is widely

accepted that the muscle spindle firing rate is directly correlated by the muscle fiber stretch

and stretch velocity when gamma-motor activation is held constant (see section 1.1.2.1).

However, modulation of the gamma-drive during active movement of the extremity could

potentially result in a reference frame change. Muscle spindle behavior in freely moving

cats have shown large changes in the responsiveness to limb kinematics depending on the

type of movement. This suggests that the fusimotor action can be independently set by

the CNS depending on the motor control task at hand [83]. Therefore, we can deduct that

γ activity is not used to statically transform coordinate systems. This is confirmed by

human microneurography studies that showed that γ-motor neuron activity is modulated by

attention [88, 50]. Ribot-Ciscar et.al. found that when the subject was asked to focus on

the final position in a reach task, the muscle spindle activity increased sensitivity to position

and decreased sensitivity to velocity components [88].

In absence of significant γ fluctuations during motor task, muscle spindles are known

to responds to stretch and stretch-velocity components of muscle. A simulation study was

performed to quantify the ability to infer global kinematic variables from muscle length

information. Thereto, we modeled the muscle lengths as a linear function of global variables
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Figure 4: The goslow muscle model [40] compared to other coordinate frames. A simulation

modeled various global kinematic variables onto the muscle lengths provided by the goslow

model. The R2 value is based on the fitted data of the model.

(joint coordinates, cartesian endpoint coordinates and polar endpoint coordinates). Goslow’s

musculo-skeletal model was used to generate simulated kinematics throughout the range of

motion of the hindlimb of cat [40]. Figure 4 shows the resulting R2 values after fitting each

muscle length as a linear function of the global variables. It is clear that joint angles are

more linearly related to muscle length than endpoint kinematics.

This figure shows that the joint angles are closest related to the muscle length coordinate

frame. If we assume that muscle spindles are primarily responsible for generating proprio-

ception, it is likely that the firing rate of muscle spindles are best modeled with joint angles

as the global kinematic variables. Similar results were shown in Stein et al. 2004 [106].

In summary, suggestions about the implementation of coordinate frames for propriocep-

tion in the CNS has been a topic of discussion over the past 20+ years. It has been shown

that activity in higher areas of the CNS related to motor planning can be describe in terms of

polar coordinates of the endpoint [75, 94, 38]. Although the direct response characteristics of

primary afferents are well documented and thoroughly described (see section 1.1.2), the in-
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herent kinematic correlations of the extremity result in the ability to infer global kinematics

at the level of the primary afferents. Sensory integration of these signals can further result

in a global representation of limb kinematics in higher regions of the CNS [105, 98, 12, 11].

1.1.4 Role of somatosensory afferents in regulating motor output

As previously mentioned, the exact role of somatosensory afferents in motor control remains

unsolved. However, ever since the discovery of the ‘simple reflex’ by Sherrington in the early

1900’s, is has been clear the somatosensory afferent have a direct impact on motor control.

The increased firing rate of muscle spindles during stimulation of the γ- motor neurons

has resulted in different ideas on the role of sensory integration in motor control [69]. Sev-

eral suggestions were proposed to explain the purpose of the γ drive including the ‘follow-up

length servo’ and the direct servo mechanism. Although these claims have since been dis-

puted, no concluding understanding exists about the strategies underlying the fusimotor

system and γ-motor drive [83, 113].

A relatively recent review on the effects of afferent input in locomotion revealed that

cutaneous afferents as well as muscle afferents influence the locomotion pattern generated

at the spinal cord level [90]. Removing cutaneous inputs from the hindlimb in cat will not

prevent the animal from walking on a treadmill. However, when walking on a horizontal

ladder, the animals were not able to place their feet on the rungs during the first 3-7 weeks

following de-afferenting the extremity. Although the animal regained the ability to perform

this task, the walking behavior never went back to normal [15, 14]. In addition, when

spinalized, the regained walking behavior disappeared and the animals were no longer capable

of correctly placing their paws on the rungs in contrast to spinalized animals with intact

cutaneous afferents. The role of cutaneous afferent input thus appears to be crucial for the

expression of locomotion and recovery of locomotion after spinal cord injury [90].

Proprioceptive control of movement is thought to depend on the co-operation of sensory

neurons from multiple modalities such as muscle spindles, joint and cutaneous afferents [37].

Gandevia et. al. also found evidence that motor commands contribute to proprioception.

In experiments were the subjects were asked to match wrist angle in the absence of vision,
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they found that the subject perceived movement of the wrist even in the case were the joint-

muscles were paralyzed and anesthetized [36]. It is therefore clear that proprioception and

motor control are tightly interwoven which is reinforced by the knowledge that there are

many connections between motor- and sensory cortex.

1.1.5 The impact of spinal cord injury to primary afferent response

The short and long term effects of spinal cord injury on primary afferent firing rate response

is not well documented although multiple hypotheses have been brought forward over the

years. Muscle spindles are modulated by static an dynamic γ-motor neurons during intact

behavior. Studies in acute decerebrate and spinal cats showed that static and dynamic

gamma drive is still present in the preparations and could be measured independently dur-

ing pharmaceutically induced walking. In both preparations, muscle spindle activity was

increased after onset of the locomotion with a decrease in stretch reflex sensitivity [7]. This

suggests an increase in static gamma drive during walking. There have not been any stud-

ies that have looked at the long term property changes of muscle spindles after spinal cord

injury.

Arutyunyan described muscle spindle response to chronic de-efferentation in 1981 [6]. He

found that the sensitivity of the muscle spindles increase over time and attributes this to

atrophy of the de-efferented muscles. These findings do not necessarily compare to those in

spinal cats. In 1965, Alnaes found that the dynamic fusimotor system is largely driven by

spinal mechanisms initiated by afferent inputs and that the static gamma drive is mediated

by descending tracks from higher brain regions based on dorsal root recordings in spinalized

and decerebrated cats [3].

Spasticity with associated hyper-reflexia is a common complication after spinal cord in-

jury where hyper-reflexia is defined as an increased excitability of the velocity-dependent

stretch reflex. Although it was previously believed that a decreased inhibition of fusimo-

tor drive was inherent to the increase in reflexivity, nowadays, it is thought that different

mechanics, such as recurrent inhibition of motoneurons and/or a reduced presynaptic inhibi-

tion of Ia afferents, are involved in this behavior [76]. Qualitative results of upper extremity
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spindle responses in unilateral cerebral stroke patients with spasticity seem to confirm these

beliefs. They show no difference in muscle spindle behavior with respect to healthy con-

trol subjects suggesting that the fusimotor system does not contribute significantly to the

hyper-excitability of the stretch reflex [125].

1.2 USING AFFERENT INFORMATION FOR NEURAL PROSTHESES

Neural prostheses relying on neural signals for control require a stable interface with the

nervous system. The type and location of the interface determines the types of signals that

can be processed. This section will discuss some of the uses for afferent neural interfaces and

give a brief summary on currently used electrodes used to interface with the nervous system.

1.2.1 Using primary afferent or external sensors?

For FES-based neural prostheses, one can question whether using afferent information to

infer limb kinematics has sufficient advantages over externally placed sensors that it justifies

the associated invasive surgical procedures. Depending on the application and complexity of

the neural prostheses, the answer might differ. For example, compensating foot-drop during

gait using FES can well be addressed by using a simple foot-switch [22]. However, when we

increase the number of variables we are interested in, using external sensors likely results in

problems with usability and reliability.

Using primary afferent information to decode the limb state can also potentially be favor-

able as the DRG can be used as a centralized access point for recording sensory information

throughout the extremity. The alternative of multiple external sensors is practically difficult

to achieve.It is my opinion that extracting information from primary afferent neural activity

for the use in neural prostheses will provide a better alternative than external sensors for

complex FES-applications.

14



1.2.2 Sensorimotor control as a closed loop control system

Control of extremities in the intact person can roughly be seen as a closed loop controller. An

intention is transformed into a set of instruction that activate synergies of muscles which in

turn produce the necessary torques on the skeletal structure to produce movement. Sensory

receptors in the musculo/skeletal plant as well as other sensory inputs relay information

about the actual state of the limb back to the CNS. This information is used to adapt the

instruction set to correct for errors and to provide perception to the person (figure 5).

When part of this control system is damaged, intention can no longer control movement

without external aid of a neural prosthesis. Figure 5 distinguishes between two categories

of damage; 1) The person has a spinal cord injury and is paralyzed in the extremity but

has intact sensation 2) The person is amputated at the extremity. In both scenarios, a

brain computer interface (BCI) is needed to translate intention into a command for the

neural prosthesis, however the difference between the scenarios lays within the handling of

the feedback loop.

Paralyzed muscles can be activated using functional electrical stimulation (FES). Feed-

back to the FES controller can be realized by intercepting the afferent pathways that carry

the intrinsic feedback information to the CNS. This has the advantage over externally placed

sensors in the sense that it requires less external hardware and has the potential to be accu-

rate and reliable.

In amputees, the neural prosthesis includes the electrical/mechanical plant and feedback

to the controller is therefore not an issue. The feedback that needs to be restored in this

scenario is sensory information from the neural prosthesis to the CNS. One way of achieving

this is to stimulate afferent pathways in order to mimic the natural response. In either

case, it is necessary to understand the manner in which these afferents code proprioceptive

information and, in case of paralysis, how that changes the way that this information is

generated.
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boundaries between domains indicate a translation of a signal between neural, mechanical

and electric domain.
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1.2.3 Neural interfaces

Electric discharges from muscle tissue and neurons have been recorded since the eighteenth

century [57]. However, not until recently were we able to record from large populations of

neurons simultaneously due to electrode fabrication and signal processing demands. These

developments have enabled neuroscientists to analyze population responses in the nervous

system and advanced the idea of a neuroprosthesis [121, 95]. In this section, the most

commonly used electrode interfaces for neural interfaces are discussed. Because this field is

rapidly expanding and progress is made continuously, I do not pretend, nor strive to include

all actively used electrodes.

In 1992, Jones et al. published a method for manufacturing a glass/silicon composite

intracortical electrode array (Utah-array, Blackrock Microsystems, Utah) which has since

been the standard for microelectrode arrays (MEAs) [55]. Although the array was originally

designed for intracortical recordings, it has been used in numerous studies in different levels

of the nervous system in animal [77, 16, 115, 106] and human [47, 58] subjects. Some of the

current developments using this type of array include new wafer fabrication technologies [8]

and the development of a wireless version of the array [24].

NeuroNexus (Neuronexus technologies, Ann Harbor) has been a very successful spinoff

company from the University of Michigan. They fabricate electrodes based on thin film

MEMS processes which are much cheaper to fabricate than the previously mentioned Utah

array [46, 59]. They typically contain 16-64 electrodes per probe and are better suited for

recording activity at different layers in the brain as the recording sites are located along

the insertion direction. Continuous advances in electrode design are aimed at reducing

tissue encapsulation [100], drug delivery [99], and improvements in biocompatibility using

specialized coatings [27].
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Microwire arrays, fabricated by TDT (Tucker Davis Technologies, Alachua, USA) and

MircroProbes (MicroProbes for Life Science, Gaithersburg, USA), are the third type of MEAs

currently available and have been used for recording and stimulation studies in both acute

and chronic experiments [99, 124]. Penetrating multi electrode arrays are currently the most

viable and reliable solution for neural prostheses that require high specificity on multiple

channels and are currently used by the Braingate and BrainGate2 projects to interface

cortical areas in human [31, 96].

Intrafascicular electrodes can be used to do multiunit recordings of motor or afferent

information in the peripheral nervous system.[70, 39, 61] In 1996, Yoshida et al. demon-

strated that LIFE electrodes could be used in a closed loop FES system to control ankle

flexion/extension. Here, LIFE electrodes were inserted in the common peroneal nerve and

the tibial nerve to record afferent activity related to the ankle angle while a third LIFE

electrode was placed in a fascicle of the tibial nerve innervating the medial gastrocnemius

muscle for stimulation [132].

Non-penetrating interfaces include EEG, MEG, Nerve cuffs and ECog arrays. Nerve cuffs

have been used for recording and stimulation of peripheral nerves. Haugland used a nerve

cuff to detect the start of the stance phase from the activity of the Sural nerve as a control

for a foot-drop orthosis [45]. Other groups have proposed similar usage of nerve cuffs for

gait detection which are well documented in the 2002 review on portable FES-Based Neural

orthoses by Lyons et al. [65]. As the other interfaces are incapable of being used in the

peripheral nervous system, they will not be discussed in this section.

1.2.4 Inferring limb state from afferent activity

Decoding information from neural populations has been investigated for a long time with,

perhaps, its most appealing example being control of a robotic prosthesis using population

decoding in motor cortex [38]. The work presented in this thesis utilizes an interface with the

nervous system at the level of the DRG. This has three main reasons; 1) All recorded neurons

in the DRG are, by definition, primary afferents 2) There is no integration of neuronal signals

at this level and therefore the spatial/temporal resolution is very high and 3) The DRG are
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easily accessible. When recording in the DRG, the afferent cell type can easily be classified as

either a muscle spindle, tendon organ or cutaneous. In the proposed project, this information

will be used to increase the accuracy of the prediction of kinematics.

Although a variety of models predict muscle spindle firing rate from the kinematic vari-

ables, it is inherently more difficult to invert these models to predict kinematics. Primary

reasons for this are 1) Non-linear behavior of the muscle spindle and 2) Ambiguity of position

and velocity components of the firing rate. To date, decoding efforts have not attempted

to invert the muscle spindle models but rather have based the decoding on computing a

weighted average of a population of neurons [105, 122, 106]. In this technique, a kinematic

variable (Y) such as extremity endpoint, joint angle or their velocities is modeled by a

weighted average of afferent firing rates (F) (Ŷ = a +
∑

i biFi). It was shown that a lim-

ited number of neurons could provide accurate predictions of the kinematic variable. When

decoding velocities, position could be inferred by integrating the output. However, despite

the good predictions, this model fails when it comes to generalizability. When a different

kinematic data set is used to train the model, accuracy quickly diminishes. In addition, the

model tends to overestimate the kinematic variable during higher velocities due to the fact

that the model is trained on a single kinematic parameter. We refer to this approach as

‘reverse’ regression since the natural relationships between the dependent and explanatory

variables are reversed. Chapter 2 and 3 will provide more details on the classification of

‘reverse’-regression as well as indicate some of the problems that occur as a result of this

reversal relationship.

The next two chapters of this thesis propose new decoding methods to extract kinematic

information from primary afferents. These methods consists of modeling the firing rates of

the primary afferents as functions of the kinematic parameters, and inverting these models

via a state-space procedure to decode simultaneously all limb kinematics. Preliminary results

were presented in [119] and an extension of these methods was proposed in Wagenaar et al

(2009). We compared the efficiencies of the resulting estimates with those predicted using

reverse regression [106, 122] and discuss the feasibility of using natural feedback decoding in

neuroprostheses. The results of these studies are described in later chapters of this thesis.

19



Finally, the coordinate frame in which limb kinematics are decoded has typically been

based on polar coordinates of the endpoint of the limb or the individual joint angles [123, 12].

Scott et al. (1994), found no evidence for a particular coordinate frame based on modeling

studies of muscle spindle distributions [98]. Stein et al. (2004), also found no significant

difference in correlation coefficients when comparing PA firing rates to kinematic state in

polar endpoint coordinates and joint angle space [123, 106]. We included both endpoint and

polar coordinates in the analysis of this paper since both representations are relevant for

implementation in neural prostheses. In 1998, Prochazka described the possibility to decode

muscle lengths from primary afferent firing rates by inverting the firing rate models [82].

However, the manuscript does not elaborate on the methods which were used and if these

were actually decoded trajectories from a single or multiple neural responses.

1.2.5 Closed-loop control of FES using natural sensors

In applications where functional electrical stimulation (FES) is used to restore limb functions

such as gait, posture or foot drop, it is important to provide feedback information to the

controller in order to be able to cope with perturbations, muscle fatigue and non-linear

behavior of the effected muscles [67, 126, 123]. Accessing and decoding the activity in native

afferent signaling pathways can be a natural way to determine the kinematic state (i.e.

position and velocity) of the controlled extremity [44]. Feasibility of this approach has been

demonstrated by controlling the ankle angle in a closed loop controller using the compound

afferent input recorded from LIFE electrodes by Yoshida [131]. Micera et al. used nerve

cuffs, implanted around the Peroneal and Tibial nerve ,to infer ankle angle estimates using

neuro-fuzzy network decoding algorithms [71].

The methods used by Yoshida and Micera predicted a continuous representation of a

single kinematic variable from the neural data. Although this might be sufficient for simple

closed loop FES controllers, it is likely not specific enough for a complete neural prosthesis.

For continuous predictions of multiple variable relating to the kinematic state of the ex-

tremity, one needs to record from a larger and more diverse population of primary afferents

to attain a more complete estimate of limb state. One solution is to record at the dorsal
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root ganglia where all proprioceptive information converges into the central nervous system.

Recording at this site with multi-electrode arrays grants access to a wide variety of state

information distributed across many individual neurons [106, 122, 123].

Instead of a continuous representation of limb kinematics, one could implement closed

loop control using an event based classification system as suggested by Borisoff et al. [10].

Although this work was triggered by closed loop FES for bladder control [54], it could

easily be extended to specific kinematics states of the extremity. Using classifiers instead

of continuous estimates of limb state could provide a couple of advantages. In example,

if stimulation parameters for FES should be changed depending on a certain threshold in

the limb kinematics, classifiers might be better predictors of this threshold than continuous

decoders. Section 6.2 of this thesis will elaborate a little further on the use of classifiers for

closed loop FES systems. The rest of this thesis is focussed on continuous decoding of limb

kinematics and the use of firing rate models to infer these variables.

In summary, it is widely recognized that a FES system would benefit tremendously from

sensory feedback in terms of adaptability and functionality as long as the feedback system

would be reliable [79, 67]. Using closed loop control of FES, it is possible to change the

stimulation parameters dynamically depending on the feedback from the sensors. When

accurate predictions of limb state are available to the FES controller, it will be able to

compensate for muscle fatigue and external perturbations.

1.3 SPECIFIC AIMS

This section describes the specific aims addressed in this manuscript. Each specific aim is

discussed in a separate chapter following this introduction.

1.3.1 Direct decoding of primary afferent neuron firing rates

In this aim, we propose a new method for decoding primary afferents by modeling the

firing rate of each recorded neuron to infer limb state variables. We hypothesize that direct

21



regression will improve the decoded trajectories as it correctly models the observed firing

rates and can take into account the multivariate response of an individual neuron.

• Hypothesis: Direct regression using non-linear firing rate models improves limb kinematic

estimates over currently used reverse regression methods.

1.3.2 State-space decoding of primary afferent neuron firing rates

The previous aim confirmed the fact that it is possible to estimate limb position from afferent

recordings using direct linear regression techniques. However, the dynamic muscle spindle

response mediated by limb velocity is not incorporated in those linear models. The focus of

this SA is to develop non-linear models to include both position and velocity information

from muscle spindles to resolve the ambiguity of position and velocity contributions in the

afferent firing rate models. In addition, contrary to currently used decoding algorithms, the

decoding models will be able to predict multiple kinematic parameters, such as joint angles,

simultaneously, thus finding the best prediction of the limb kinematics rather than treating

each variable as independent.

• Hypothesis 1: State-space decoding will be able to take into account the kinematic

constraints of the extremity and improve decoding accuracy using this information.

• Hypothesis 2: Including the derivatives of the kinematic variables to the firing rate

models will result in more accurate predictions of limb kinematics.

1.3.3 Improved decoding techniques for realtime applications.

In order to utilize the decoding techniques in a realtime FES application, non-linear models

will be implemented in a real-time setup which will enable the use of these decoding tech-

niques in a neural prosthesis environment. Although the decoding methods described in the

previous specific aims produce accurate results, the decoding speed is insufficient for any

realtime application. In this specific aim, non linear methods are described that are capable

of predicting limb kinematics in ‘real-time’.
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• Hypothesis: Alternative methods using non-linear reverse regression methods can im-

prove limb kinematic decoding accuracy while continue to be able to be implemented in

a ‘real-time’ environment.

1.3.4 Closed loop FES using primary afferent response as feedback

Mechanical sensors have proven difficult to implement in prostheses due to their unreliability,

fragility and other practical difficulties. Most FES systems use open-loop controllers as a

result of these limitations. However, a closed-loop feedback controller will increase the

adaptability and stability of the FES system. Specific Aim 4 will focus on developing a

controller for FES-evoked closed-loop walking. This will be implemented using a finite state

controller, alternating between states based on the estimated limb state as provided by the

neural decoder. By closing the loop, we hypothesize that the controller will be able to

generate reliable walking behavior under various conditions.

• Hypothesis 1: Primary afferent firing rates can be used to predict limb kinematics during

functional electrical stimulation.

• Hypothesis 2: Estimates of limb state can be used to control functional electrical stimu-

lation in a closed loop state feedback mechanism.
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2.0 IMPROVED DECODING OF LIMB-STATE FEEDBACK FROM

NATURAL SENSORS

The contents of this chapter are published as: “Improved decoding of limb-state feedback

from natural sensors” which was published in Conf Proc IEEE Eng Med Biol Soc, 1:42069,

2009, c©[2009] IEEE [119]. It covers specific aim 1 of this thesis and describes an alternative

to previously suggested methods for decoding limb kinematics from primary afferent firing

rates.

2.1 INTRODUCTION

During movement, proprioceptors constantly assess and relay sensory information about

the physical state of the peripheral musculature to the central nervous system (CNS). This

feedback allows the CNS an indication of the actual state of the limb and consequently

to adapt motor drive in order to realize stable and efficient movements. When functional

electrical stimulation (FES) is used to restore action to paralyzed limbs, a similar feedback

mechanism is required for executing complex movements and adapt for perturbations or

fatigue of the muscles. Accessing and decoding the activity in native afferent signaling

pathways would be a natural way to determine the kinematic state (i.e. position and velocity)

of the controlled extremity [131]. Our initial goal is therefore to predict/decode the kinematic

state of the leg using the ensemble activity of primary afferent neurons, recorded with arrays

of penetrating micro-electrodes in the dorsal root ganglia (DRG).

Previously, reverse regression methods were used to estimate limb kinematics from en-

sembles of simultaneously recorded primary afferent neurons in the dorsal root ganglia of
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anesthetized [106] and alert, locomoting cats [123]. However, direct regression methods are

more efficient and flexible than reverse regression approaches. Direct regression methods

include population vectors [38], optimal linear estimators [92], maximum likelihood [20],

Bayesian [93] methods, and filtering/dynamic Bayesian methods [133]. See [19] for a re-

view and references therein. Our goal for this paper is to determine if the simplest likelihood

method can improve upon reverse regression to decode limb position from the spiking activity

of a small ensemble of primary afferent neurons.

2.2 METHODS AND DATA

2.2.1 The experiment

Center-out patterns in a 2-dimensional plane were imposed on the hind limb of an anes-

thetized cat by a robotic arm (figure 6:b). These movements spanned a significant part of

the range of motion for the limb. See Stein et al. [106] for complete details.

The ankle (A1), knee (A2), and hip (A3) angles of the hind leg were recorded at 120

Hz with a high speed video capture system using markers placed at the Iliac Crest (IC),

Hip, Knee, Ankle and Metatarsophalangeal (MTP) joints (figure 6:c). Figure 7 shows the

recorded joint angles of knee and ankle as functions of experimental time during one trial of

the experiment. The trials were repeated to create separate data sets for model fitting (i.e.

encoding) and testing (i.e. decoding).

Primary afferent neurons were recorded using penetrating microelectrode arrays with 50

and 40 electrode sites (5x10 and 4x10, 400µm spacing). The arrays were inserted in the L7

and L6 dorsal root ganglion using a high velocity inserter. The neural signals were acquired

with a sampling frequency of 30 kHz and bandpass filtered with cutoff frequencies of 100Hz

- 3000Hz. Spikes were sorted offline via cluster analysis; figure 6:a shows the raster plot of

the spike trains of 15 neurons. We then smoothed the spike trains using a one-sided normal

distribution kernel with SD 0.15 sec. We denote by FRi the resulting firing rate of neuron i.
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Figure 6: c©[2009] IEEE, a) Responses of different neurons to passive movement of the

leg. Each vertical line represents an action potential. b) The endpoint kinematics of the

hindlimb during passive center-out movement. This movement is imposed on the hindlimb

using a robotic manipulator. c) Schematic of the hindlimb; joint angles are being decoded

to represent the kinematic state of the limb.
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2.2.2 Reverse regression

Reverse regression/correlation was used previously to estimate angular positions and veloci-

ties for the hip, knee, and ankle joints [122, 106]. The “reverse” describes the reversal of the

natural roles played by the stimulus and spike-activity response. Although in reality, it is the

neural activity that varies as a function of joint angular position, reverse regression treats

the firing rates as if they were the inputs (the x’s in regression notation), while the joint

angles are considered the output (the Y variable). That is, the joint angles Ak, k = 1, 2, 3,

are expressed as

Ak = βk0 +
∑
i∈Sk

βkiFRi (2.1)

where FRi is the firing rate of neuron i, and Sk indexes the set of neurons whose firing rates

correlate most strongly with Ak [106]. Then given a training set of angles and firing-rate

combinations, one computes the usual least-squares estimates β̂ of the β’s; this step is usually

referred to as encoding. In the decoding stage, given the firing rates FR∗i of all neurons in

a small window of time, the predictor of joint angle k is then

A∗k = β̂k0 +
∑
i∈Sk

β̂kiFR
∗
i

To allow for the possibility that the relationships between neurons’ firing rates and joint

angles are not linear, we will consider in place of Eq.2.1 the more flexible non-parametric

generalization

A = β0 +
N∑
i=1

si(FRi)

where the si(.) are taken to be moving lines with 4 non-parametric degrees of freedom (DOF).

2.2.3 Direct regression methods

Direct regression methods include population vectors, optimal linear decoding, as well as

likelihood-based and dynamic decoding. Firing rates are considered random variables whose
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distributions, often just the means, vary with joint angles. Assuming that firing rates are ap-

proximately normal with constant variances σ2
i , the simplest relationship one could consider

for neuron i is

FRi = α0i + α1iA1 + α2iA2 + α3iA3 + σ2
i εi, (2.2)

i = 1, . . . , N , where εi are standard normal random errors. Note that Eq. 2.2 specifies one

relationship per neuron, whereas Eq. 2.1 specifies one relationship per angle. Then given

a training set of angles and firing-rate combinations, encoding consists of computing the

maximum likelihood/least-squares estimates of the αji and σ2
i . In the decoding stage, the

observed firing rates FR∗i of all neurons in a small window of time are each assumed to

have distributions specified by Eq. 2.2, where the αji and σ2
i are now taken to be equal to

their estimates from encoding. The predictor of joint angle is then the least square/maximum

likelihood estimate of (A1, A2, A3) obtained from the set of N models in Eq. 2.2, i = 1, . . . , N .

Eq. 2.2 is the simplest firing rate model we could consider. To allow for non-linear

relationships between firing rates and angles, we will instead use sji(Aj) in place of αjiAj,

j = 1, 2, 3, where sji(.) are splines with 4 non-param. DOF. Our model will also include

interactions between pairs of joint angles, to allow for the possibility that relationships

between firing rates and a particular angle vary with another angle. The data supports

this possibility, as illustrated by Figure 8. We also considered hind limb biomechanics and

physiology to guide our choice of physiologically plausible firing rate models: muscle afferents

(i.e. primary and secondary muscle spindles, tendon organs) encode maximally two out of

the three joint angles (bi-articulate muscles span either hip/knee or knee/ankle). Therefore,

each neuron is modeled to encode either for one angle (hip, ankle or knee), or for two angles

(hip and knee or ankle and knee). That is, for each neuron i, we considered the two families

of firing rate models

FRi = α0i + sji(Aj) + ski(Ak) + sji(Aj) : ski(Ak) + σ2
i εi, (2.3)

for j, k = 1, 2 (ankle/knee) and j, k = 2, 3 (knee/hip), where sji(Aj) : ski(Ak) denotes an

interaction between angles j and k, and within these two families of models, we determined

the statistical significance of each term using the Bayesian information criterion (BIC) and

selected the best model based on this measure.
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2.2.4 Contrasting methods

Direct regression offers several theoretical advantages over reverse regression. In direct re-

gression, all angles are allowed to contribute to explaining the firing rates of each neuron,

whereas in reverse correlation, angles are each decoded separately, using different groups of

neurons. From a physiological view point, direct regression is more appropriate because Eq.

2.2 attempts to model how each neuron encodes joint angles, whereas there is no physiological

basis for Eq.2.1.

From an efficiency view point, if all neurons encoded single joint-angles, both methods

should predict approximately similar trajectories. As most muscles span multiple joints,

responses from muscle afferents code for multiple angles simultaneously. Fig. 8 shows an

example of a neuron whose firing rate depends not only on the hip angle but also on the knee

angle. Reverse regression decodes each angle separately so it cannot properly extract the

information in firing rates about several angles. In contrast, direct regression makes efficient

use of this information provided the firing rate model in Eq. 2.3 is accurate. For example, if

one of the joint angles is consistently better represented in the afferent data set, the weaker

contributor will be poorly estimated by a reverse regression method. On the other hand,

direct regression combines the information of strongly and weakly encoded angles to improve

the prediction of both.

2.3 RESULTS

We first selected the best 25 neurons, encoded using the first center-out movement sequence

of the experiment, and decoded with the second center-out movement trial. Fig. 7 shows

true knee and ankle trajectories, along with the decoded trajectories using reverse and direct

regression. Ankle and hip angles gave similar results so we do not show the latter. The two

decoding methods produce visually comparable results.

The integrated squared error (ISE) provides a more quantitative assessment of efficiency.

For a particular data set, the ISE is the squared difference between the decoded and actual
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Figure 7: c©[2009] IEEE, True knee and ankle trajectories (solid thin curves), along with

decoded trajectories using reverse regression (dashed) and direct regression (solid). Decoded

trajectories are based on the best 25 neurons.
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trajectories, integrated over all time bins. For this particular experiment, the time bins cor-

responding to the rest position account for over half of all bins. We therefore downweighted

these bins so that their contribution would be comparable to the contribution of each of the

8 angle configurations. The ISE is a useful efficiency measure because it typically decreases

proportionally to the inverse of the number of neurons. Therefore, based on this measure,

the accuracy of a method based on N1 neurons will be comparable to the accuracy of another

method based on N2 neurons when N2 = N1 ×R, where R = ISE1/ISE2 is the ratio of the

ISEs of the two methods.

The ISE ratios for knee and ankle in Fig. 7 are 1.12 and 0.97 respectively which indicates

both methods are approximately equally efficient. This is somewhat surprising because most

neurons actually encode more than one joint angle. Indeed, when we consider Figure 8, which

shows the firing rate of a typical neuron versus hip angle: the relationship is not random,

which suggests that this neuron encodes for hip angle. Note also that the + and o plotting

symbols correspond to small and large knee angles respectively: the two sets of symbols

hardly overlap, which suggest that the neuron also encode information about knee angle.

Moreover, the relationship between firing rate and hip angle varies with knee angle, which

suggests an interaction between hip and knee angles. These characteristics are common to

most afferent neurons we examined.

Because direct regression models how each neuron encodes information about joint an-

gles, it makes better use of the information about angles in the neurons’ firing rates. The

comparatively good efficiency of reverse regression might be due to robustness against model

misspecifications: while reverse regression uses one model per angle, direct regression speci-

fies a different model for each neuron, so that even minor model misspecifications can add up

across neurons. It also might be attributed to the number of neurons used and the careful se-

lection of the neurons used to predict limb kinematics. The results in Fig. 7 used 25 neurons

from 2 recording sites. We are unlikely to have that many well defined neurons in practice,

so we are interested in the performance of the two methods given neuron populations of

different sizes.

Fig 9 shows the result of the following analysis. We first selected a pool of neurons

encoding “well” for knee and ankle angles: we regressed the firing rates of all neurons on a
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smooth function of knee and ankle angles, and retained only the neurons for which the two

angles explained more than 40% of firing rate variations. We thus retained 64 of the 153 total

neurons. We then selected m neurons at random out of this pool of 64 neurons, decoded

knee and ankle trajectories using these m neurons using reverse and direct regression, and

calculated the ISE ratio of the two methods. We repeated this 99 more times to obtain 100

ISE values, which we plotted versus m as a violin in Fig. 9. We repeated this simulation for

several values of m.

Direct regression has clear advantages over the inverse regression methods for all number

of included neurons for the knee and up to 20 neurons for the ankle. This agrees with the

fact that most neurons primarily encode ankle angle and that only direct regression can

extract knee information from those neurons. However, when using higher neuron counts,

the sensitivity of the direct regression approach to inaccuracies in the individual firing rate

models becomes problematic, giving reverse regression methods an advantage.

2.4 DISCUSSION

The results show that direct regression methods are more efficient in using all information

from afferent firing rates which is predominantly due to the ability to include multiple joint

angles in a single model. Being more efficient, this method requires fewer neurons to predict

limb kinematics accurately. Although the CNS might not be sensitive to confounding in-

formation due to the large redundancy in the primary afferent population, the implications

are more severe for neuroprosthetics which have access to a limited subset of the neural

population. For practical reasons, it is desirable to use a decoding method that extracts the

information as efficiently as possible.

Reverse regression treats each kinematic parameter as an independent decoding problem

and will therefore suffer due to confounded information. The ability of direct regression to

use this information results in a better effective use of the afferents predominantly in the

kinematic variables that are poorly represented in the neural population (i.e. A2).
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Figure 9: c©[2009] IEEE, Violin plots of 100 ISE ratios for several neuron population size

m. The mark at the center is at the median. Violin plots are similar to boxplots but they

provide more information: they show the full smooth histogram of the data (here the 100

ISEs) whereas boxplots would only show quartiles and outliers. Independent of the available

neural population, reverse regression would need approx 25% more neurons to be as efficient

as direct regression to decode knee angle.
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The direct regression method also truly models the stimulus-response encoding proper-

ties of each neuron. In contrast to reverse regression, where model coefficients are arbitrary,

direct regression coefficients convey information to what is encoded by each individual neu-

ron. Insight into what the neurons encode is therefore apparent from the fitted models.

Classification of the origin of a particular neuron can theoretically be extracted from the

model parameters. Although, as noted in the results section, model selection should include

more complex and afferent modality specific models to predict neural type accurately.

Because of its flexibility, it is possible to improve the estimate accuracy by improving

the firing rate models. Although a basic model was chosen to demonstrate the possibilities

in this paper, there are several more sophisticated models of muscle spindles suggested in

the literature. [82, 73, 72] Any of those models can theoretically be implemented using

direct regression methods and will contribute to the prediction accuracy. Fig. 7 shows large

overshoots during the reaching movements. It is believed that the dynamic component of

primary muscle spindles is one of the leading causes for this behavior. Including a velocity

component is only possible when decoding using direct regression methods and will likely

improve the accuracy of the estimated kinematic limb state.
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3.0 STATE-SPACE DECODING OF PRIMARY AFFERENT FIRING

RATES

As a natural extension of the paper discussed in the previous chapter, the following paper

was published in the Journal of Neural Engineering with the title: “State-space decoding

of primary afferent neuron firing rates” and is included integrally in this chapter with the

permission of IOPScience [120]. It reflects the goals outlined in specific aim 2. Correlations

between the kinematic variables were addressed using a state-space model of the system

and derivatives of the kinematic variables were included in the neural firing rate models to

improve decoding accuracy.

3.1 INTRODUCTION

Proprioception, or the sensation of movement and position, results from the integration of

afferent inputs in the central nervous system (CNS). It provides vital information about the

state of the limb during movement and serves as feedback during motor control to create

stable and accurate movements. In applications where functional electrical stimulation (FES)

is used to restore limb functions such as gait, posture or foot drop, it is important to be

able to include feedback information to be able to cope with perturbations, muscle fatigue

and non-linear behavior of the effected muscles [67, 126, 123]. Accessing and decoding

the activity in native afferent signaling pathways would be a natural way to determine the

kinematic state (i.e. position and velocity) of the controlled extremity [44]. Feasibility of this

approach has been demonstrated by controlling the ankle angle in a closed loop controller
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using the compound afferent input recorded from LIFE electrodes by Yoshida [131]. However,

a larger and more diverse population of primary afferent recordings is needed to attain a

more complete estimate of limb state. One solution is to record at the dorsal root ganglia

where all proprioceptive information converges into the central nervous system. Recording

at this site with multi-electrode arrays grants access to a wide variety of state information

distributed across many individual neurons [106, 122, 123].

Although it is generally accepted that proprioception is evoked by a variety of primary

afferent (PA) inputs, including muscle, cutaneous, and joint receptors, the muscle spindle

afferents are believed to be the main contributor [35]. Various models with increasing com-

plexity have been proposed for the muscle spindle firing rate [68, 80, 82, 72]. These models

are able to provide accurate predictions of spindle firing rates as a function of muscle length

and presumed gamma drive inputs. While it might be desirable to invert these models to

decode muscle length or limb-state from the firing rates of muscle spindles, such an inversion

is not trivial because the models are non-linear, and position and velocity components of

the firing rate are confounded. Similar limitations are applicable for including cutaneous

afferents as they are often related to limb kinematics in a non-linear fashion.

To date, decoding efforts have avoided these difficulties by directly modeling each of

several kinematic variables as independent functions of the afferent firing rates [106, 122].

These studies used separate regression models to estimate the kinematic state of the hind

limb as a weighted sum of the firing rates in a population of PA neurons recorded in the

dorsal root ganglia (DRG) of cats during passive and active movements. In this paper,

we refer to this approach as reverse regression since the natural relationships between the

dependent and explanatory variables are reversed. We will discuss the limitations of that

approach and propose an alternative decoding approach that does have these limitations.

This method consists of modeling the firing rates of the primary afferents as functions of

the kinematic parameters, and inverting these models via a state-space procedure to decode

simultaneously all limb kinematics. Preliminary results were presented in [119]. In this

paper, we extend the methods proposed in Wagenaar et al (2009) to include time-derivatives

of the kinematic variables (velocities) and allow for decoding multiple correlated kinematic
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variables. We compare the efficiencies of the resulting estimates with those predicted using

reverse regression [106, 122] and discuss the feasibility of using natural feedback decoding in

neuroprostheses.

Finally, the coordinate frame in which limb kinematics are decoded has typically been

based on polar coordinates of the endpoint of the limb or the individual joint angles [123, 12].

Scott et al. (1994), found no evidence for a particular coordinate frame based on modeling

studies of muscle spindle distributions [98]. Stein et al. (2004), also found no significant

difference in correlation coefficients when comparing PA firing rates to kinematic state in

polar endpoint coordinates and joint angle space [123, 106]. We included both endpoint and

polar coordinates in the analysis of this paper since both representations are relevant for

implementation in neural prostheses.

3.2 METHODS AND DATA

3.2.1 Surgical procedures

All procedures were approved by the Institutional Animal Care and Use Committee of the

University of Pittsburgh. Two animals were used in these procedures. Both were anes-

thetized with isoflurane (1-2%) throughout the experiment. Temperature, end tidal CO2,

heart rate, blood pressure, and oxygen saturation were monitored continuously during the

experiments and maintained within normal ranges. Intravenous catheters were placed in the

forelimbs to deliver fluids and administer drugs. A laminectomy was performed to expose

the L6 and L7 dorsal root ganglia on the left side. At the conclusion of the experiments, the

animals were euthanized with KCL (120 mg/kg) injected IV.

3.2.2 The experiment

A custom frame was designed to support the cat’s torso, spine, and pelvis while allowing the

hind limb to move freely through its full range of motion (figure 10). A stereotaxic frame and
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Figure 10: The animal was positioned in a custom designed frame to support the torso

and pelvis, enabling unrestrained movement of the left hind limb. The foot was attached

to a robotic arm and active markers were placed on the hind limb to track the hind limb

kinematics. A 90 channel micro-electrode array was inserted in the L6/L7 DRG and the

neural activity was recorded using a programmable real-time signal processing system (TDT

RZ2).
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vertebrae-clamp were used to support of the head and torso, and bone screws were placed

bilaterally in the iliac crests to tether the pelvis with stainless steel wire (not shown in figure

10).

Hind limb kinematics were recorded with a high speed motion capture system (Impulse

system, PhaseSpace Motion Capture, USA). Active LED markers were placed on the iliac

crest (IC), hip, knee, ankle, and metatarsophalangeal (MTP) joints. During post-experiment

analysis, the knee position was inferred from the femur and shank segment lengths and the

hip and ankle markers because skin slip at the knee marker rendered position tracking based

on the knee marker unreliable [106, 122]. Synchronization between neural and kinematic data

was ensured by recording a time-stamp in the neural recording system for every captured

kinematic frame.

A robotic arm (VS6556E, DENSO Robotics, USA ) was used to move the left foot in

the parasagittal plane. The foot was strapped in a custom holder attached to the robot

via a pivoting joint that allowed free rotation of the foot in the parasagittal plane (figure

10). The robot was programmed to generate center-out and random movement patterns

occupying most of the motion range for the foot. Center-out patterns were ramp and hold

displacements of 4cm in eight directions from a center position. Random movements, de-

fined by a uniform distribution of limb positions and velocities within the workspace, were

approximated by manually manipulating the hind limb through the entire workspace over

a period of 5 minutes. During this time, cameras recorded the trajectory and programmed

the robotic manipulator to mimic this trajectory. The robot was then used to manipulate

the hind limb during the remainder of the trials. This ensured that we could generate the

same random movement in a reliable fashion and optimally use the entire workspace of the

hind limb.

Penetrating microelectrode arrays (1.5mm length, Blackrock Microsystems LLC, USA)

were inserted in the L7 (50 electrodes in 10x5 grid) and L6 (40 electrodes in 10x4 grid)

dorsal root ganglia. The neural data was sampled at 25kHz using an RZ-2 real-time signal

processing system from Tucker Davis Technologies, USA. The neural data was band-pass

filtered between 300 and 3000 Hz. A threshold was manually determined for each channel and
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spike events were defined as each instance the signal exceeded this threshold. Spike waveform

snippets, 32 samples in length (1.2ms) were stored each time a spike event occurred, resulting

in a time series of spikes and their corresponding waveforms per channel. Spike waveforms

were sorted manually during the post-experiment analysis (Offline Sorter, TDT, Inc.).

3.2.3 Current decoding paradigm: reverse regression

Let X = (Xk, k = 1, . . . , K) be the vector of K kinematic variables we want to decode,

based on the firing rates FR = (FRi, i = 1, . . . , I) of I neurons. In this paper, X is the limb

state expressed in one of two different reference frames, a joint-based frame with state vector

(Ak, k = 1, 2, 3) that represents intersegmental angles for the hip, knee, and ankle joints, and

an endpoint frame with state vector (R, θ) that represents the toe position relative to the hip

in polar coordinates. We let Ẋ = (Ẋk, k = 1, . . . , K) denote the velocities of the kinematic

variables, and Z = (X, Ẋ) the combined vector of limb kinematics and their velocities. A

subscript t added to any variable means that we consider the value of that variable at time

t. The methodologies described below can be applied to firing rates FR that are either

raw or smoothed spike counts. Here, we computed smoothed instantaneous firing rates by

convolving the spike events with a one-sided Gaussian kernel (σ = 50ms) to ensure causality

[106].

Reverse regression consists of modeling the mean of each kinematic variable Xk as a

function of the spike-activity,

E(Xk) = fk(FR), k = 1, . . . , K, (3.1)

where fk is some function deemed appropriate, for example a linear function as in (3.3).

An estimate f̂k of fk is obtained by least squares or maximum likelihood regression using

a training set of simultaneously recorded values of X and FR. Then, given the observed

neurons’ firing rates FRobs
t at time t, the prediction of Xk at t is

X∗kt = f̂k(FRobs
t ), k = 1, . . . , K. (3.2)
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The resulting decoded trajectories {X∗kt, t = 1, 2, . . .}, k = 1, . . . , K, are typically much more

variable than a natural movement, so they are often smoothed to fall within the expected

response frequencies (typically < 20 Hz).

Reverse regression was used by [122] and [106] to predict joint and endpoint kinematics.

They took fk in (3.1) to be a linear function of spike activity, so that

Xk = βk0 +
∑
i∈Sk

βkiFRi + εk, (3.3)

where Sk indexes the set of neurons whose firing rates correlate most strongly with Xk [106],

and εk are uncorrelated random errors. We adopt the same approach with our data: we

apply reverse regression with the linear model in (3.3) to decode joint angles (Ak, k = 1, 2, 3)

and limb end point position (R, θ), and smooth the decoded trajectories by convolving the

result with a gaussian kernel (σ = 75ms) to improve the decoding results.

One advantage of reverse regression is its simplicity: kinematic variables Xk are de-

coded separately and require just one equation each. However, the method does not allow

physiologically meaningful modeling of the relationships between firing rates and kinematic

variables. Indeed, not only do neurons often encode several kinematic variables simultane-

ously, the manner in which they encode these variables is not necessarily linear or additive.

For example, many muscles in the hind limb span two joints, so that PA neurons code for

multiple joint angles simultaneously. Such a neuron was shown in [119]: its firing rate de-

pended both on ankle and knee angles, the relationship between firing rate and ankle angle

was clearly non-linear, and the relationship changed for different values of knee angle, which

suggested the existence of an interaction between the two joint angles. Such effects cannot

be modeled in reverse regression. It is also possible for neurons to encode not only for kine-

matic variables but also for their derivatives; muscle spindle primary afferents (Ia) are such

neurons. In that case it is possible to decode Xkt based on the relationship between its ve-

locity Ẋkt ≈ (Xkt −Xk(t−δt))/δt and the neurons’ firing rates, by applying reverse regression

with Xk replaced by Ẋk in equations (3.1) and (3.2). Based on a linear function fk, this

prediction is

X∗kt = X∗k(t−δt) + δt

(
α̂k0 +

∑
i∈Sk

α̂kiFR
obs
it

)
, (3.4)
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which is different than predicting X∗kt from (3.3). Stein et al (2004) offered an ad-hoc method

of combining these two predictions. However, because it is not motivated by a principle that

guarantees superior results over either separate predictions, we did not consider this method

for our data.

3.2.4 Firing rate models and likelihood decoding

Reverse regression is easy to apply, but it does not make efficient use of the information in

the data since effects such as interactions or effects of derivatives cannot be accounted for.

In contrast, a likelihood approach can account for such effects, and is further known to be

efficient when the models involved are appropriate [56].

The likelihood approach is based on models that describe the physiological dependencies

of firing rates on limb state, which restores the natural relationship between Xk and FRi

that are swapped in the reverse regression approach. That is, the mean firing rates FRi of

each neuron are now modeled as functions of the kinematic variables Z = (X, Ẋ),

E(FRi) = gi(Z), i = 1, . . . I, (3.5)

where the functions gi are selected to accommodate any suspected effects between covariates,

such as interactions. Sections 3.2.4.1 and 3.2.4.2 summarize the functions gi we considered

for our data. Although we could let gi also depend on higher order derivatives of X, such

as acceleration, we did not consider that option because PA neurons are known to encode

primarily for muscle lengths and their velocities [85, 64, 72], and previous work using re-

verse regression methods failed to generate accurate estimates of acceleration [123]. The

maximum likelihood estimates ĝi of gi, i = 1, . . . , I, are obtained based on a training set

of simultaneously recorded values of Z and FR, and on an assumed distribution for FRi.

Here we used the Gaussian distribution since FRi are smooth firing rates, but the Bernoulli

or Poisson distributions could be used instead if FRi were raw spike trains (i.e. unfiltered

spike counts). Then, given the observed firing rates FRobs
t at time t, the prediction of Z is

obtained by solving the system of I equations

FRobs
it = ĝi(Z

∗
t ) + εit, i = 1, . . . I (3.6)
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for Z∗t . Note that all components of Z are decoded simultaneously, whereas they are decoded

separately in reverse regression. When the firing rates are not modulated by the velocities,

so that the gi’s are functions only of X, solving (3.6) amounts to performing standard least

square estimation when the gi’s are linear functions of their inputs; see section 3.2.8. Oth-

erwise, it can be challenging. In particular, (3.6) should be solved subject to the constraint

that the derivatives of the decoded positions match the decoded velocities.

We did not use likelihood decoding in this paper, partly because of the technical diffi-

culties just mentioned, but mostly because state-space models (section 3.2.5) are superior.

We nevertheless provided details because the likelihood is a component of the state-space

model, and decoding under the two approaches are related.

3.2.4.1 Firing rate models in joint angle frame We considered hind limb biome-

chanics to guide our choice of physiologically plausible firing rate models in (3.5), as follows.

We know that the firing rates of muscle spindle afferents depend primarily on the kinematic

state of one or two adjacent joints since the host muscles are either mono or bi-articular. For

example, a muscle spindle in the medial gastrocnemius muscle encodes movement of both an-

kle and knee, while a muscle spindle in the soleus muscle encodes only the movements of the

ankle. Cutaneous afferent neurons are not so tightly linked to joint motion, but our previous

work shows that even they exhibit responses that vary systematically with limb motion (see

figure 3 in Stein, JPhysiol, 2004). Therefore we considered functions gi in (3.5) that include

the effect of a single joint, s(Aj) with j = 1, 2 or 3, or the additive effects of two adjacent

joints, s(Aj) + s(Ak) with (j, k) = (1, 2) (ankle/knee) or (j, k) = (2, 3) (knee/hip). The

notation s(A) signifies that a non-parametric smoother is applied to the covariate A, which

models the potentially non-linear effect of A on the neuron’s firing rate. Here, we took s(.)

to be splines with 4 non-parametric degrees of freedom, but other smoothers could be used.

Figure 3 in [119] also suggested that interactions between joints might be present, so we also

considered the addition of interaction effects, which we denote by s(Aj) : s(Ak), (j, k) = (1, 2)

or (2, 3). We also know that muscle spindle primary afferents and possibly many rapidly

adapting cutaneous afferents exhibit a velocity dependent response. Hence we allowed the ad-
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dition of velocity terms s(Ȧj), s(Ȧj)+s(Ȧk), or s(Ȧj)∗s(Ȧk) = s(Ȧj)+s(Ȧk)+s(Ȧj) : s(Ȧk)

in the model for gi in (3.5). Finally, we also included the interactions s(Aj) : s(Ȧj) between

joints and their respective velocities, because we expect the velocity of a joint to get smaller

when it is close to full extension or full flexion.

Table 1 contains the list of firing rate models we considered for our data. All models

were fitted to all neurons by maximum likelihood using a standard statistical package (R,

http://www.R-project.org), and the best model for each neuron was selected by the Bayesian

information criterion (BIC) [97].

3.2.4.2 Firing rate models in limb end point frame We took a similar approach

to select models for the relationship between firing rates and limb end point (MTP, or toe

marker) defined by the polar coordinates (R, θ), where R is the distance from the hip marker

to the MTP marker and θ the angle between the horizontal and the vector spanned by the

hip and MTP markers. For each neuron, we considered functions gi in (3.5) that include

either s(R), s(θ), or both, and possibly their interaction. We also considered the addition

of velocity terms s(Ṙ), s(θ̇), s(Ṙ) + s(θ̇), and their interaction, as well as s(R) : s(Ṙ) and

s(θ) : s(θ̇), the interactions between effects and their respective velocities. For each neuron,

the best model was determined by BIC.

3.2.5 State-space models

The firing rate models (3.5) describe the relationships between kinematic variables and spik-

ing activity. Newer decoders provide significant improvements in decoding performance by

supplementing the firing rate models with a probabilistic model that describes the intrinsic

behavior of kinematic variables, such as constraints on velocity and trajectory smoothness.

For example, [19] suggest the a priori random walk model

Zt =

 XT
t

ẊT
t

 =

 IK×K δ × IK×K
0 IK×K

 XT
t−1

ẊT
t−1

+

 0

εt

 , (3.7)

where εt, t = 1, 2, . . . , are independent vectors with mean 0 and K ×K variance-covariance

matrix Σ. For all k = 1, . . . , K, (3.7) specifies that Ẋkt = Ẋk(t−1) plus some perturbation
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Table 1: List of the 33 models considered to describe the effect of the three joint angles

Ak, k = 1, 2, 3 on the firing rates of neurons. The notation s(.) is a spline basis with 4

non-parametric degrees of freedom. The notation s(Aj) ∗ s(Ak) means that the main effects

s(Aj), s(Ak), and their interaction s(Aj) : s(Ak) are included in the model.

Index Model description Variations

1 gi = β0i

2-4 gi = β0i + s(Aj) j = 1, 2, 3

5-6 gi = β0i + s(Aj) + s(Ak) (j, k) = (1, 2), (2, 3)

7-8 gi = β0i + s(Aj) ∗ s(Ak) (j, k) = (1, 2), (2, 3)

9-11 gi = β0i + s(Ȧj) j = 1, 2, 3

12-14 gi = β0i + s(Aj) ∗ s(Ȧj) j = 1, 2, 3

15-18 gi = β0i + s(Aj) ∗ s(Ȧj) + s(Ak) (j, k) = (1, 2), (2, 1), (2, 3), (3, 2)

19-22 gi = β0i + s(Aj) ∗ s(Ak) + s(Ȧk) (j, k) = (1, 2), (2, 1), (2, 3), (3, 2)

23-25 gi = β0i + s(Aj) + s(Ȧj) j = 1, 2, 3

26-27 gi = β0i + s(Aj) ∗ s(Ȧj) + s(Ak) ∗ s(Ȧk) (j, k) = (1, 2), (2, 3)

28-31 gi = β0i + s(Aj) + s(Ȧj) + s(Ak) (j, k) = (1, 2), (2, 1), (2, 3), (3, 2)

32-33 gi = β0i + s(Aj) ∗ s(Ak) + s(Ȧj) + s(Ȧk) (j, k) = (1, 2), (2, 3)

46



εkt, which forces the velocities to change smoothly over time if the perturbations are taken

to be small enough. Equation (3.7) also specifies that Xkt = Xk(t−1) plus the velocity Ẋk(t−1)

multiplied by the size of the decoding window, δ msec. This not only forces the positions

to be consistent with their respective velocities, but also induces the position paths to be

smooth when the velocity paths are smooth. Alternatively, one can assume the more general

random walk model  XT
t

ẊT
t

 = B

 XT
t−1

ẊT
t−1

+ εt, (3.8)

where εt, t = 1, 2, . . . , are independent vectors with mean 0 and 2K×2K variance-covariance

matrix Σ, and estimate B and Σ by maximum likelihood according to

B =
n∑
t=2

ztz
T
t−1

(
n∑
t=2

zt−1z
T
t−1

)−1

Σ =
1

n− 1

(
n∑
t=2

ztz
T
t −B

n∑
t=2

zt−1z
T
t

)
,

as in [130], where zt, t = 1, . . . , n, is a training set of kinematic data. We describe the

specific kinematic models we used for our data in section 3.2.5.1, and until then use the

generic notation

Zt = h(Zt−1) + εt. (3.9)

Once the firing rate and kinematic models are fitted to data, as described in this and

the previous sections, decoding follows a recursive scheme. Let Zpost
t be the prediction of Z

at time t; Zpost
t is a random variable since the kinematic prior model in (3.9) is stochastic,

so the actual prediction Z∗t is usually taken to be the mean of Zpost
t . Initially Z∗1 is set to

the initial hind limb state of the encoding dataset. At time (t+ 1), we first use the current

prediction Zpost
t together with the kinematic model in (3.9) to obtain the a priori distribution

of the next value of Z,

Zprior
(t+1) = h(Zpost

t ) + εt.

Then we use the observed firing rate vector FRobs
(t+1) at time (t + 1) with the firing rate

models in (3.5) to update that prior into the posterior distribution of Zpost
(t+1), and finally

take its mean to be the predicted kinematic state vector Z∗(t+1). Depending on the forms of
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the firing rate and kinematic models, the posterior calculation is carried out by Kalman or

particle filtering; these methods are described in detail in [18, 129, 21]. Here we use particle

filtering because the firing rate model in (3.5) involves splines. The resulting trajectories for

X are typically smooth enough and do not require additional smoothing.

3.2.5.1 Kinematic models For our data, we assumed the general random walk model

(3.8) and used a training set of kinematic data to estimate B. We obtained

B ≈

 I3×3 0.05× I3×3
0 I3×3


for the three joint angles (A1, A2, A3), and

B ≈

 I2×2 0.05× I2×2
0 I2×2


for the limb end-point kinematic variables (R, θ), which are precisely the a priori kinematic

models suggested by Brockwell, Kass and Schwartz (2007) in equation (3.7), with our de-

coding window of δ = 0.05 msec.

The kinematic model for (A1, A2, A3) can further be improved by taking into account

the physical constraints between these angles. These constraints are seen in figure 11, which

shows a 3D scatter plot of (A1, A2, A3) in two movement patterns: a center out path (black)

and a random path (gray). We see that hip and ankle angles are highly inter-dependent,

as was already observed in [122, 12], since the data lie almost entirely on a 2D manifold.

This explains why, when decoding via reverse regression, neurons that encode for hip could

be used to decode the ankle angle as well, and vice versa. In all experiments, the limb was

made to move by controlling only its foot position. Therefore, figure 11 displays the relative

positions that the three angles assume naturally during imposed movement of the foot.

Moreover, these natural positions appear consistent across experiments, since the data from

the random and center-our experiments lie within the same sub-space. It is thus reasonable

to assume that all passive movements share the constraints between joint angles displayed

in figure 11. We could include this prior information in the kinematic model by forcing the
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Figure 11: Observed trajectories of the three joint angles of the hind limb during ran-

dom (gray) and a center-out (black) passive movements. The joint angles are clearly inter-

dependent.

random walk in (3.8) to evolve within the envelope of the points in figure 11. However, this

envelope is probably too tight since we did not observe all possible movements, so we will

instead force the random walk to evolve near, rather than inside, the envelope, as follows.

Let A∗t = (A∗1t, A
∗
2t, A

∗
3t) be the predicted value of the joint angles at time t, depicted as

× in figure 12a; as mentioned earlier, A∗t is the mean of Apost
t , whose distribution is depicted

as the circular gray area in figure 12a. We identify the quarter of the points in figure 11 that

are closest to A∗t , and obtain the 2D plane spanned by their first two principal components,

depicted as the straight line in figure 12c; the most natural limb positions near A∗t should

be close to that plane.

To obtain the prior distribution of A at time (t+ 1), we first use the kinematic model in

(3.9) to transform the posterior distribution of A at time t into an intermediate prior for A at

time (t+1) (circular gray area in figure 12b), and we orthogonally project it half the distance

towards the principal component plane (see figure 12c). This modified random walk loosely

mimics or ‘accommodates’ the natural constraints on the joint angles. In particular, by using

only a quarter of the training data to obtain the projection plane, we enable the prior model
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Figure 12: Depiction of the random walk prior model for the joint angles, in 2D rather

than 3D to improve visibility. a) Location of the current predicted state (×), posterior

distribution of the state (small gray circular area, whose relative size represents the relative

uncertainty of the current position), and kinematic data manifold (dark curved gray area).

b) transformation of the posterior into the intermediate prior for the next state prediction,

based on the kinematic model in (3.9). c) projection of the intermediate prior towards a

locally defined plane representing the shape of the kinematic range of motion.

to follow the curvature of the cloud of points in figure 11. The polar coordinates appeared

to be independent so we did not include any additional constraints in their kinematic model.

3.2.6 Decoding efficiency

We assessed the quality of decoded trajectories by the integrated squared error (ISE), de-

fined as the squared difference between decoded and actual trajectories, integrated over all

decoded time bins. The ISE is a combined measure of bias and variance, which typically de-

creases proportionally to the inverse of the number of neurons used to decode. Hence, when

comparing two decoding methods, the ISE has the following interpretation: the accuracy of

reverse regression, based on nRR neurons, will be comparable to the accuracy of state-space

decoding, based on nSS neurons, if nRR = nSS (ISERR/ISESS). This means that if the ISE

ratio ISERR/ISESS is one, the two methods are equally efficient; if the ratio is 1.5, reverse

regression needs 50% more neurons to be as efficient as state-space decoding; etc. Therefore,
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two decoding methods can be compared by computing the ratio of their respective ISEs.

Because ISE ratios vary from dataset to dataset in repeated simulations, we summarized

their distributions using violin plots.

Violin plots are close cousins of boxplots; both show the distributions of several vari-

ables side by side, and are therefore particularly well suited to compare these distributions.

The better known boxplot does not display full distributions, but only side by side sum-

maries in the form of boxes with edges marking the quartiles. Violin plots do not reduce

the distributions to be compared to a small number of features, but instead plot the full

distributions and their mirror images vertically. They also include a marker for the medians

of the distributions.

3.2.7 State space algorithm for decoding limb state

The state space model applied in this work is an extension of the particle filter described

in Brockwell et al. [18]. A thorough explanation of the particle filter can be found in the

appendix of that work. In this appendix we summarize the procedure and indicate where

our method diverges from the algorithm in Brockwell et al.

The objective of state space decoding is to estimate the state of the hind limb, X =

(Xk, k = 1, . . . , K), based on the input firing rates of I neurons, FR = (FRi, i = 1, . . . , I).

It relies on an iterative algorithm which updates the posterior distribution of limb state (and

therefore the mean of that posterior, which is used as the estimate of limb state) as new

observations of spike counts/firing rates arrive. A Kalman filter calculates that posterior

distribution analytically, a particle filter by simulation. In this paper, we used a particle

filter with m = 3000 particles to approximate the posterior distribution, which means that a

histogram of the m particles approximates that posterior. Below we explain how to update

the particle cloud, and thus the limb state posterior distribution, at each time step.

1. Initial prior distribution for the limb state: we have no information about limb state

when we start the algorithm, so we generate the m initial particles x̃
(j)
0 , j = 1, 2 . . . ,m

from a prior distribution that has mean at the center of the limb state space, and a large
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variance to reflect the lack of information about limb state. This prior can be adjusted

if there is prior information about the limb state.

Set t = 1.

2. Let x̃
(j)
t−1, j = 1, 2 . . . ,m denote the particle cloud at time t − 1, and ẑt−1 the limb state

prediction at t − 1. To obtain the limb state prediction at time t, we first collect the

vector of observed firing rates FRobs
t .

3. We advance all particles x̃
(j)
t−1 by simulating the state model one step forward as per

(9). The resulting particles, x
prior(j)
t say, estimate the prior distribution of the kinematic

state at time t. Equation (9) simply consists of adding Gaussian random noise to all the

particles, with aim to increase the spread of the particle cloud so that it can envelop all

possible limb states at t, given the current state ẑt−1. Adding too much noise results

in particles being able to capture highly unlikely limb states, while adding too little

prevents the algorithm from tracking fast movements. To avoid making an arbitrary

decision, we estimated the variance-covariance matrix of the random noise from training

data, as described section 2.5.

4. The next step is specific to the kinematic model used in this paper for the joint angles:

project each particle x
prior(j)
t towards the physiologically plausible kinematic space. To

do that, we determine the quarter of the points in the training data set that are closest

to the current state estimate ẑt−1, and express the coordinates of each particle as a linear

combination of the 3 principle components spanning that quarter data. The first two

PCs span a local approximation of the 2D plane of the physiologically plausible kinematic

space, while the third PC is the orthogonal distance from that plane to the predicted

state variable. Hence to project the particle x
prior(j)
t towards the physiologically plausible

space, we simply scale the third PC by ζ ∈ [0, 1]. This operation reduces by a factor of

ζ the orthogonal distance of each particle to the kinematic plane.

5. We compute a weight w
(j)
t for each particle as

w
(j)
t = p

(
FRobs

t | xt = x
prior(j)
t

)
, (3.10)

which is the probability of observing the firing rate vector FRobs
t if the kinematic variable

takes value x
prior(j)
t . In this paper, we assumed that each firing rate FRi has a Gaussian
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distribution with mean ĝi(Z) and variance s2i , both estimated in the encoding stage (6),

and we assumed that the neurons were independent, so that the weights reduce to

w
(j)
t =

I∏
i=1

1√
2πs2i

exp

−
(
FRit − ĝi

(
x
prior(j)
t , ẋ

prior(j)
t

))2
2s2i

 . (3.11)

Then we normalize the weights w
(j)
t so they sum to one.

6. We create the new particle cloud by sampling the current prior particles x
prior(j)
t with

weights w
(j)
t and with replacement. Hence particles that have low weights are unlikely to

be sampled, while particles that have high weights might be sampled several times. We

call the new particles x̂
(j)
t , j = 1, 2 . . . ,m. This new particle cloud estimates the posterior

distribution of the limb at time t. We take the estimate of the limb state at time t to be

the sample mean of the particles,

ẑt =
1

m

m∑
j=1

x̂
(j)
i (3.12)

7. Set t to t+ 1 and go back to step (ii).

In summary, the estimate of the limb state evolves over time as new observations of the

firing rates arrive. The estimate at t depends on the state estimate at the previous time

point t − 1 and on the observed firing rates at time t. Since the limb state can only exist

within a confined region of the space spanned by the kinematic inputs, we constrain the

kinematic model to evolve close to that space.
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3.2.8 Details for solving eq. 3.6

When the firing rates are not modulated by the velocities, so that the gi’s are functions only

of X, solving 3.6 amounts to performing standard least square estimation when the gi’s are

linear functions of their inputs. Indeed in that case, 3.6 reduces to

FRobs
it = β̂0i +

K∑
k=1

β̂kiX
∗
kt + εit, i = 1, . . . I,

where the εit are independent Gaussian random variables with mean 0, and the β̂ki are known:

they were estimated in the encoding stage. Therefore 3.6 is a linear regression model where

the dependent variables are the FRobs
it , the role of the dependent variables are played by the

β̂ki, and the parameters to be estimated are the X∗kt. This regression can be fitted using

any statistical software. Eq. 3.6 can still be solved, although not quite as trivially, if the gi

functions are non-linear or involve derivatives of X.

3.3 RESULTS

The data from two animals are included in the analysis of this paper. Spike sorting the

neural data resulted in 158 and 116 classified neurons for each animal respectively. From

these 274 neurons, 171 neurons (115 and 56 respectively) were included in the analysis based

on the criteria described in section 3.3.1. Section 3.3.1 describes an analysis of the firing rate

models to give insight into how well each of the various state variables and their interactions

are represented in the PA ensemble. Analysis of decoded trajectories in joint angle space

and endpoint space are presented in sections 3.3.2 and 3.3.3 respectively.
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3.3.1 Encoding models

In the methods section, we argued that a decoding method that involves firing rate models

would use the data more efficiently than reverse regression because it can account for effects

of multiple joint angles and their derivatives. Here, we assess if such effects are present in

our data.

Figure 13 shows the observed firing rate response of a primary muscle spindle during

a center-out passive movement (thick gray curve). We fitted all the models in table 1 to

that neuron and selected the best model by BIC. That model has an adjusted R2 of 0.82;

it includes terms for the hip and knee joint angles, terms for their respective velocities, and

interactions terms between positions and velocities (models 26-27 in table 1). Figure 13B

shows that the firing rate predicted by that model (solid curve) closely follows the observed

firing rate, and provides a particularly good fit to the sharp firing rate increases that occur

when the joint angles shift to different positions. Figure 13B also shows the fit of the best

model with all the velocity terms omitted (dashed curve). The adjusted R2 dropped to 0.49

and the accuracy of the fit during the rapid movements degraded markedly. This shows that

the PA neuron used in figure 13 encodes not only for joint angles, but also for their velocities.

To evaluate the overall importance of the combined position and velocity models in the

population of neurons for each neuron, we collected the adjusted R2 value of three models; the

best model involving only joint angles, the best model involving only joint angle velocities,

and the overall best model. Figure 14-A shows the violin plots of the R2 values of the three

types of models. To clarify the plot, we dropped the neurons which achieved a maximum

R2 value less than 0.25, since they were deemed to encode little kinematic information.

Velocity models outperform position models, which suggests that a large number of neurons

encode information about joint angle velocity. Figure 14-A shows that the majority of the

neurons are best modeled by a combination of joint angle positions and velocities (mean

R2 = 0.68 ± 0.12), which agrees with a previous report on the encoding properties of PA

neurons [106].

Next, we assessed which kinematic variables were represented in the neural population.

We considered joint angle kinematic variables as well as polar coordinates of the MTP (i.e.
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Figure 13: A) Kinematic trajectories of hip and knee angle during a center-out passive

movement. B) Firing rate of a PA neuron during passive movement of the hind limb (thick

gray curve). Overlayed are the predicted firing rates using models that include position of

hip and knee angles(dashed curve) and position + velocity components (solid curve).
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toe position relative to the hip). For each neuron, we collected the adjusted R2 value of

5 firing rate models (hip, hip&knee, knee, knee&ankle and ankle) and 3 polar coordinate

models (R, θ and R & θ). Figure 14B shows the violin plots of the R2 distributions where we

excluded neurons which achieved maximum R2 values less than 0.25. Models that include

two joint angles generally outperform models that include only one. Similarly, including

both R and θ increases the R2 value on average. Note that θ is represented poorly in the

neural population. We can also see that the combination of R and θ results in R2 values

that are on par with the best joint angle models.

The results displayed in figure 14 suggests that most neurons encode for a combination of

angles, and their velocities. In fact, after applying the firing rate model selection procedure

outlined in section 3.2.4.1, we found that 90% of the neurons have firing rates that are best

modeled by models 26-27 in table 1. This indicates that the firing rates of these neurons

depend on multiple joint angles, on interactions between the joint angles, and on their

velocities. The neurons were equally distributed between hip/knee and knee/ankle neurons.

This makes sense since the neurons were recorded from the L6 and L7 DRG, which cover

the proximal and distal portions of the hind limb [4]. Similarly, in endpoint space, over 90%

of the best models include R, θ, Ṙ, θ̇ and their interactions; R : Ṙ and θ : θ̇.

3.3.2 Decoding joint angles

To compare the different decoding methods, we decoded limb kinematics using randomly

selected groups of neurons. Performance results are in Figure 16. We first show in Figure

15 an example where the same 23 randomly selected units were used to decode the three

joint angles using reverse regression and state-space modeling. In this case it is clear that

state-space decoding is more accurate than reverse regression decoding.
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Figure 14: A) Summary of the accuracy of firing rate models comparing position, velocity

and the combination of position and velocity. Models were trained and tested on random-

pattern datasets. B) Summary of the accuracy of firing models comparing various kinematic

explanatory variables in joint angle space and endpoint space. Each distribution contains

the R2 value of the fitted trajectories of 162 firing rate models.
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The ISE ratios for the three joint angles are 3.5, 4.3 and 5.4 respectively, which means

that to obtain the same accuracy as the state space approach, reverse regression needs

approximately 4 to 5 times more neurons. The reverse regression estimates have large errors

particularly during periods of rapid displacement, which is presumably due to the lack of

velocity integration. State-space decoding integrates the velocity components of the firing

rates and thus tracks more closely the kinematics trajectories.

We repeated the analysis of joint angle decoding based on 50 sets of 3, 8, 13, 18, 23

and 28 randomly selected neurons, for each of two animals. The two passive movement

patterns described in section 3.2.2 were decoded separately using each set. The ISE values

of the decoded trajectories for the two animals were combined, resulting in 200 ISE ratios

per decoding method and per data set size. Figure 16 summarizes these results as a function

of the size of the neural population used for decoding. It shows that our state-space model

is clearly superior to reverse regression, especially in decoding the knee angle. When using

28 randomly selected neurons, the median ISE ratio is 1.6, 2.5 and 2.1 for the hip, knee and

ankle angles respectively. This means that reverse regression needs approximately twice as

many neurons to produce results as accurate as the state-space approach on average. The

proportionally large increase in accuracy for the knee angle estimates is probably due to the

fact that 96% of the firing rate models include the knee joint and/or its derivative as one of

the explanatory variables. During decoding, this translated into a large number of neurons

contributing to the prediction of the knee angle.

Our motivation for using small groups of neurons in Figure 16 is two-fold. First, we are

interested in comparing the two decoding methods when only a limited number of neurons

are available for decoding, since it may not always be possible in practice to collect a large

population of neurons from which a set of good decoding neurons can be extracted. Second,

we need to use groups that are significantly smaller than the population available, so that the

variability observed across the repeat simulations is comparable to the variability one would

observe in practice; we have only 56 good neurons from the second animal, so we capped

at 56/2 = 28 the decoding population size. Note however that when we used more than 28

neurons for decoding (not shown), the variability of the decoding efficiency decreased across
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Figure 15: Example of hip, knee, and ankle joint angle trajectories decoded with the state-

space and reverse regression models. This result was generated as one of the simulations with

23 randomly selected neurons. We filtered the decoded trajectory of the reverse regression

post-decoding to to smooth the resultant estimates. The ISE ratio’s are displayed for each

of the kinematic variables.
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for decoding. The distribution of the ratio is plotted for groups of 3, 8, 13, 18, 23, and

28 neurons. The included data is comprised of decoded trajectories from 50 center-out and

50 random trials per animal per distribution. Therefore, each violin plot is based on 200

simulations. Firing rate models were fit to data comprised of a combination of center-out

and random trials. The median of the distribution is indicated with a dot. A ratio greater

than 1 favors the state-space decoding method. A ratio of 2 means that twice the amount

of neurons are needed with reverse regression to attain the same accuracy as the state-space

method.
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datasets, so that the violin plots became very short, which is to be expected since neurons

are drawn from a comparatively small population; however the mean decoding improvement

of the particle filter remained constant and similar to using 28 neurons, with median ISE

ratios approximately 1.6, 2.5 and 2.1 for the hip, knee and ankle angles respectively.

Finally, it is interesting to note that reverse regression does a little better on average

when very few neurons are available for decoding (n = 3). However, the actual ISE values are

very high, meaning that neither method performs well. The relatively better performance

achieved by reverse regression can be explained by the direct relation between the decoded

trajectory and the constant coefficient in (3.3): in the absence of any kinematic information

in the neural response, the decoded trajectory is predicted to be the constant coefficient of the

regression. In contrast, the state-space method is unable to produce meaningful predictions

since there is insufficient information in the neural data.

3.3.3 Decoding endpoint coordinates

The decoding efficiency of polar coordinates of the endpoint were analyzed in a similar

manner. The firing rates were modeled as functions of R and θ as described in section

3.2.4.2. We found that over 90% of the models included both kinematic variables, their

derivatives and the interaction between the variable and their derivatives. Figure 17 shows

the efficiency results of decoding in polar coordinates, based on the same sets of neurons

and trajectories used to produce figure 16. We see that state-space decoding significantly

outperforms reverse regression for R, but does not show similar improvements for θ. The

problem with θ is that it is poorly encoded by the neurons, as was shown in figure 14B.

The consequence is that both methods decode θ poorly. Reverse regression tends to predict

a constant for θ, so the estimate is biased with low variability, while the state-space model

produced a highly variable estimate due to lack of information about θ.
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Figure 17: The ISE ratios plotted as a function of the number of neurons that are used

for decoding. The distribution of the ratio is plotted for groups of 3, 8, 13, 18, 23, and 28

neurons. The included data is comprised of decoded trajectories from 50 center-out and 50

random trials per animal per distribution.
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As a final remark, note that the trajectories for R and θ could also be inferred from the

trajectories of ankle, knee, and hip angles when the segment lengths between the hip, knee,

ankle and MTP marker are known. We found that the reverse regression trajectories were

particularly poor compared to state-space decoding, presumably because the three angles

are decoded separately so that their prediction errors accumulate.

3.4 DISCUSSION

This paper addresses the problem of estimating limb state from the firing rates of an en-

semble of PA neurons recorded simultaneously in the DRG. It is an extension of previous

studies that used linear decoding models to estimate each of several kinematic variables as

a weighted sum of firing rates in the PA ensemble. In those studies, a reverse regression

approach was taken to build decoding models, which provided estimates of hind limb mo-

tion during both passive [106] and active [122, 123] movements. However, reverse regression

has some apparent limitations in decoding the activity of PA neurons, motivating a change

to maximum likelihood estimation methods such as state-space decoding. A comparison

between reverse regression and state-space decoding is provided below. We also discuss im-

plications of this and related work for developing a neural interface to provide limb-state

feedback for control of FES systems.

3.4.1 State-space decoding methods of primary afferent activity

We showed that state-space decoding performs significantly better than reverse regression.

The main limitation of reverse regression is that it is based on modeling the variations of each

state variable as functions of neural activity, i.e state = f(rate), when in reality PA neurons

are the true dependent variables modulated by one or usually multiple state variables and

their time derivatives (i.e. velocities). The representations state = f(rate) do not allow

such multivariate dependencies to be modeled, with the consequence that the information

in the firing rates cannot be used efficiently. Previously published results show that reverse
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regression is capable of producing decent estimates of limb kinematics with, as few as, 5 of

the ‘best tuned’ neurons [123, 106]. One of the key characteristics of reverse regression that

enables this accuracy is that, despite the use of linear regression, the firing rates of individual

neurons do not necessarily need to be linearly related to the kinematics. By reversing the

actual dependencies, reverse regression merely assumes that each kinematic variable is a

linear combination of the included PA neuron firing rates.

On the other hand, the state-space framework relies on modeling the actual dependencies

on the state variables that drive the neuron’s firing rate, i.e. rate = f(state). It accommodates

effects such as multivariate dependencies and interactions and thus makes the most efficient

use of information embedded in the firing rate. In this paper, we modeled the physiological

encoding properties of PA neurons by fitting their firing rates to non-linear functions of one

or more state variables, and applied model selection to ensure that the natural encoding

properties of each PA neuron were represented accurately. Previously, [106] showed that

non-linear functions could improve the accuracy of encoding models; a cubic polynomial was

used there to account for regions where the firing rates saturated (i.e. at firing rates = 0 and

the maximum discharge rate). In this paper, we used non-parametric functions consisting of

moving lines with 4 non-parametric degrees of freedom to produce a more general non-linear

fit to the firing rate models.

The state-space approach also involves a probabilistic model that describes the intrinsic

behavior of the state variables. Standard models typically account for the fact that realistic

state trajectories, eg. trajectory of the limb, should be smooth. In this paper, we not only

accounted for trajectories smoothness, but also for the apparent inter-dependencies between

the state variables in the joint angle frame (see figure 11).

Specifically, we designed a kinematic model that forces the decoded trajectories to comply

with the observed kinematic constraints. Note that with reverse regression, the effect of

kinematic dependencies is that some neurons are included in multiple state decoding models.

For example, the ankle and hip movements tend to be highly correlated, and thus, neurons
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that encode primarily for hip joint angle can also be used to estimate motion of the ankle

joint. In contrast, the state-space approach maintains the physiological relationships between

the state variables and the resulting PA firing rates.

We found that including velocity in the firing rate models improved the overall efficiency

of the decoder, and simultaneous decoding of all kinematic variables results in lower pre-

diction errors than decoding the joint angles individually. State-space decoding minimized

the prediction error over the complete limb state, whereas reverse regression minimized it

for each variable; i.e. state-space decoding provides the most likely limb posture given the

firing rates and associated encoding models for a population of PA neurons. Similarly, Wu

et al. found that simultaneous decoding of the full behavioral state vector (i.e. 2D position,

velocity, and acceleration for the hand expressed in Cartesian coordinates) yielded the best

performance in decoding neural activity in primary motor cortex.[129]

Loeb and also Prochazka [84] pioneered the development of techniques that enabled the

first recordings of muscle spindle activity in awake, behaving animals. Both groups used

microwires implanted chronically in the DRG to record simultaneously from PA neurons

in locomoting cats. Data from these experiments was useful for developing computational

models for estimating the firing rate of muscle spindle afferents as a function of muscle

length, stretch rate, and fusimotor drive to the spindles [82, 72]. However, these mechanistic

models of spindle function have not yet been used to decode limb kinematics from muscle

spindle recordings, likely because the models are nonlinear and difficult to invert. State-space

decoding could be combined with these more physiologically accurate models to generate

estimates of muscle length and stretch rate. One more step would be required to convert the

muscle-state estimates into joint angular positions and velocities, but this would be rather

straightforward given knowledge of musculoskeletal biomechanics, such as described for the

cat hind limb in [40].

Our last comment concerns the aggregation of information across neurons. Stein et al.

[106] noted that, with reverse regression, optimal decoding performance could be achieved

with approximately five ‘best-tuned’ neurons having the highest correlations with a kinematic

variable, and that including additional neurons that correlate well with kinematic variables
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did not necessarily improve decoding performance. This means that the performance of

reverse regression is highly dependent on particular neurons, and that the method fails to

incorporate the information provided by other neurons. This is likely to be an issue in

realistic applications, when a limited set of recorded neurons might not yield a large enough

crop of ‘best-tuned’ neurons. In contrast, the state-space approach appropriately aggregates

the information contained in all firing rate models via the likelihood function, and thus makes

it possible to obtain accurate decoding from a non-select set of recorded neurons.

3.4.2 Natural feedback for FES control

Microelectrode recordings of PA activity can be used to provide feedback for controlling

FES-enabled movements. Yoshida and Horch [131] recorded muscle spindle activity in the

tibialis anterior and lateral gastrocnemius muscles in response to ankle extensions generated

by stimulating the medial gastrocnemius muscle with a longitudinal intrafascicular electrode

(LIFE) in the tibial nerve. Ankle joint angle estimates from the decoded LIFE recordings

were used as feedback for a FES controller programmed to reach and maintain a range

of fixed and time-varying joint position targets [131]. Another study used the Utah Slant

Electrode Array (USEA) to establish a peripheral nerve interface for both stimulating and

recording activity in motor and sensory fibers in the sciatic nerve of anesthetized cats [17].

This technology was advanced recently by incorporating a telemetry chip into the array

assembly to create a fully implantable, wireless neural interface capable of recording and

transmitting 100 channels of unit activity (i.e. spike-threshold crossings) from peripheral

nerve or cerebral cortex [43]. Thus, the technology for establishing high-bandwidth neural

interfaces with motor and sensory nerves is advancing rapidly and holds great promise for

FES applications, as well as basic research.

To be suitable in a medical device application, the neural interface must remain viable

and stable for several years, longevity that has yet to be demonstrated with any microelec-

trode interface in peripheral nerve. To date, long-term recording stability with penetrating

microelectrode arrays in either peripheral nerve or DRG has not been demonstrated, and

more work is needed to establish reliable, long-lasting neural interfaces [122, 91]. An al-
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ternative to penetrating microelectrodes is to use nerve cuff electrodes, which measure the

combined activity of many nerve fibers passing through the cuff. However, attempts at pro-

viding graded measurements of limb-state (e.g. ground reaction force or joint position) with

nerve cuff recordings have had limited success [52]. In general, research towards the use

of nerve cuff recordings for continuous joint-angle estimation has been limited to a single

isolated joint, typically the ankle, and tested only in anesthetized animals [23, 52, 53, 71].

Cavallaro et al. [23] sought to improve continuous state estimation from nerve cuff recordings

and tested several advanced signal processing methods, but reported difficulty in achieving

generalization, especially for movements with large joint angular excursions. However, newer

nerve cuff electrode designs such as the flat intra-fascicular nerve electrode (FINE) contain a

higher density of electrodes and are designed to reshape the nerve to improve alignment and

access to central fascicles [62]. Finite element modeling studies have shown that FINE elec-

trodes may be capable of resolving compound nerve activity within individual fascicles using

beam-forming techniques, an approach that may greatly increase the quality of information

that can be extracted from nerve cuff recordings. [32].

As further improvements towards chronically stable neural interfaces proceed, focus will

shift towards interpreting the recorded signals. Advanced decoding methods, such as the

state-space decoder discussed here, will enable us to extract meaningful information from

PA firing rates and take us a step closer to incorporating afferent feedback in closed loop

neuroprostheses.

3.5 CONCLUSIONS

The results of the present study and those reviewed above demonstrate the potential for us-

ing PA neuronal activity to generate estimates of limb-state, which would be useful feedback

for controlling FES systems. State space decoding is a principled and accurate method for

decoding kinematics based on population recordings of PA neurons in the DRG. Because

of its ability to efficiently use all neural responses to predict limb state, fewer neurons are
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needed to attain a similar accuracy as reverse regression, and multi-joint dependencies are

correctly incorporated in the neural models. The ensembles of PA neurons provide signifi-

cant information about limb state and is well-suited for incorporation in a neural interface.

However, the stability and reliability of the neural interface needs to be addressed before

these decoding efforts can successfully be used to provide limb state feedback for controlling

neural prostheses.
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4.0 ALTERNATIVE DECODING TECHNIQUES FOR PREDICTING

LIMB STATE

The previously described decoding methods resulted in accurate predictions of limb kine-

matics and overall described a more principled method to decode the firing rates of primary

afferents. However, processing power requirements of these algorithms are currently too de-

manding to be implemented in a ‘real-time’ application such as a neural prosthesis. This

chapter discusses alternative methods that can be used to improve the currently used de-

coding techniques.

4.1 DYNAMIC FUZZY NEURAL NETWORKS

In 1985, fuzzy modeling was developed as a fast and cost-efficient way to model multi-

dimensional non-linear systems [110, 108]. Although fuzzy reasoning had been applied as

an engineering tool before 1985, Takagi and Sugeno’s approach limited the requirement of

operator-based learning and dynamically partitioned the input variable space in fuzzy sets,

greatly reducing the complexity seen in previous methods [110].

The fuzzy model Takagi and Sugeno proposed has been the seed of various efforts to

generalize and formalize fuzzy logic in a neural network package. Below, I summarize the

idea of the fuzzy model; refer to the original paper for a detailed walkthrough [110]. A fuzzy

set A is denoted by a membership function A(x), x ∈ X, which has a range between [0, 1];

see figure 18-B. Each of the fuzzy sets is associated with a linear model that predicts the
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Figure 18: A) A non-linear function can be described by multiple linear functions provided

that B) additional functions are provided that model the strength of each linear function

over the span of the input variable.

models the desired variable as a linear function of the inputs. At time i, given input variables

xi and output variable yi, then an implication Li is defined as:

Li : If x1 is A1, x2 is A2, . . . , xp is Ap, (4.1)

then yi = ci0 + ci1x1 + ci2x2 + . . .+ cipxp

where Aj is a fuzzy set indicating a particular range of x1 . . . xp. In other words, this states

that if the input variables are exactly in the range of the i-th fuzzy set, then the variable

y can be fully described by the i-th implication. When the inputs are not fully determined

by a single implication, the output y∗ is inferred by taking the weighted average of the yi’s

from multiple implications:

y∗ =

∑q
i=1w

iyi∑q
i=1w

i
(4.2)
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where wi indicates the weight of the i-th implication. The estimate y∗ in equation 4.2 is

calculated by finding the weights w1 . . . wq which represent the ‘closeness’ of the current

observation to each of the implications. By taking the weighted average of all yi . . . yq, y∗

describes a non-linear model comprised of a set of linear equations yi.

Figure 18 visualizes fuzzy reasoning in a simplified matter. In A), we see the non-linear

relation we are trying to model in black. In red, and green are two local linear approximates

of the relation. We can approximate the non-linear relation by combining the two linear

models with varying degrees depending on the value of input X. In B), we show the relative

strength of each of the linear models as a function of the value of X. We see that for small X,

the green model is used and for large X, the red. In the ‘fuzzy’ part, we can approximate the

non-linear function by taking a weighted average of the two models with relative strengths

as indicated in B). Although this example operates in a single dimension, this approach can

be extended to a multidimensional input space and/or a multivariate output [127].

Various derivatives of the TSK-model calculate the weights in different ways as functions

of the input variables. Takagi et al. used unit step-functions with linear falloffs (see figure

18-B), but more recent implementations use gaussian shaped kernels to infer the weight of

an implication [127, 128, 86, 71, 118]. We can regard the identification of the model during

the training session as a search to partition the input space into the fewest fuzzy subspaces

that satisfy predetermined encoding accuracy requirements [108]. The method by which the

underlying structure is identified has been the main differentiating factor between solutions

proposed by various groups.

In the early 1990’s, fuzzy neural networks were introduced as a framework for imple-

menting the TSK-algorithm [63], which was followed by the D-FNN [127] and GD-FNN

algorithms [128]. The latter algorithm is particularly interesting as it is capable of dynam-

ically partitioning the input space with limited user interaction. The GD-FNN framework

utilizes a neural network with 4 layers indicating the inputs, membership function, rules and

output variables. Training the neural network is described as an iterative process where the

rules are added and removed dynamically as the data is observed [128].
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In 2001, Micera et al. demonstrated that fuzzy neural networks could be used for decod-

ing angular information from muscle afferents using two nerve cuffs implanted around the

tibial and peroneal nerve [71].

A slight variation of the GD-FNN method was developed by Rigosa et al. in an effort to

decode limb state information from ensembles of simultaneously recorded dorsal root neurons

[89]. As part of a collaboration with this group, we implemented a similar algorithm as a tool

for decoding primary afferent firing rates in ‘real-time’. The next subsection will describe the

overall methodology used and indicate some differences between the implemented method

and the GD-FNN algorithm.

4.1.1 Alternative implementation of the GD-FNN

In order to investigate the use of the GD-FNN algorithm for real-time feedback for FES con-

trol, I worked closely with Rigosa et al. [89] in developing a fuzzy neural network algorithm

in MATLAB. The method presented in this thesis differs slightly from the method described

in [89] as I continued to develop the algorithm following the analysis presented in the pub-

lished paper. Both developed algorithms are adapted versions of the GD-FNN algorithm as

presented by Wu et al. [128]. A thorough explanation of the training algorithm can be found

in that work. This section summarizes the GD-FNN algorithm and will indicate where we

diverge from the GD-FNN algorithm. The main differences are listed below:

• During encoding, in order to determine whether the existing set of membership functions

envelope the observed data sufficiently, a distance measure is used to find the ‘distance’

of the observed data to each of the existing membership functions. The GD-FNN method

uses the euclidean distance to the center of the membership function which was copied

from the D-FNN method. However, although the euclidean distance measure was justified

in the D-FNN method, this should not have been used in the GD-FNN method. The

reason that the euclidean distance was valid in the D-FNN method was that the width of

each of the membership functions was equal and could be eliminated from the measure.

As this is not the case in the GD-FNN method, the euclidean distance is no longer a
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valid measure to find the ‘distance’ to the membership functions. Therefore, instead of

the euclidean distance, the evaluated value for each membership function was used to

determine the ‘closeness’ to a membership function.

• Second, the original TSK model normalizes the weights of the fuzzy parameters (see

equation 4.2) which is not implemented in the GD-FNN algorithm. This seems to in-

troduce some problems which, for example, could results in a highly sectioned input

space whereas the underlying correlations could actually be represented by a single lin-

ear model. In the revised method, the weights of the rules were normalized for each

evaluation of the model which solves this situation and is more true to the original fuzzy

neural theory.

• Finally, the suggested approach for assigning a new rule as described in equation 20-22 of

[128] cannot be implemented as such due to the boundary conditions the authors applied.

We simplified this step in order to accommodate all situations.

The object of training the fuzzy neural network is to partition the input variable space

F = (Fk, k = 1, . . . , K), and locally define linear regression models

Ar = ar0 +
K∑
k=1

arkFk, r = 1, . . . , R, (4.3)

with R equals the number of partitions defined during the training. The general structure

of the GD-FNN is presented in figure 1 of [128]. Each input variable has p membership

functions Akj(j = 1, 2, . . . , p) which take on the form of Gaussian functions with mean:

ukj = exp

[
−(fi − ckj)2

σ2
kj

]
(4.4)
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The partitions in the input space are referred to as rules (R) in fuzzy neural networks. The

strength of the j-th rule Rj, j = 1, . . . , p can be described as a function of the regularized

mahalanobis distance (M-distance)

θj = exp
[
−md2(j)

]
(4.5)

with

md(j) =
√

(F−Cj)
T Σ−1j (F−Cj) (4.6)

and Cj the centers of the membership functions belonging to the j-th rule and Σ−1j the an

array with the widths (σj) of the accompanying membership functions on the diagonal.

The training algorithm relies on an iterative algorithm that creates, removes rules and

updates the consequent parameters ark based on the training data. Below, a summary of the

iterative process during encoding is given below. Details for each of these steps can be found

in [128].

1. Generate first rule based on initial observed firing rate values F0. The mean ck1 is set to

the observed values and σk1 is set to a predefined value. This value could be based on

the range of the input space. Set t = 2.

2. Collect the observed firing rates Fobs
t at t and compute the mahalanobis distance md to

each of the existing rules A.

3. Compute the output error ekt as the difference between the estimated value at time t and

the training data set using the currently defined rules .

4. if ekt > eth, with eth the threshold for the decoding error, proceed to 5, else proceed to 7.

5. If min(md) > mdth, with mdth the threshold mahalanobis distance, then proceed to 5.a,

otherwise goto 5.b

a. The observed value is not represented using the previously defined rules. Increase

the number of rules j = j + 1 Add a rule with the center cj = Ft. The width of the

membership functions are chosen according to function 19 in [128]. Goto item 6
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b. Although the mahalanobis distance does not cross the threshold, the actual predic-

tion error exceeds the limits. Reduce the widths of the closest existing rule such that

it spans a reduced partition of the input space. Goto item 7

6. Analyze the existing rules by finding the subset of significant rules and delete any rules

that are no longer significant in the regression model.

7. Update t = t+ 1 and go to item 2.

Figure 19 shows a simulation which illustrates the capabilities of the implemented algo-

rithm. In A) we defined a ‘kinematic’ variable and defined two thresholds that were later

used to create non-linear responses in the simulated neurons. We simulated the firing rate

of 10 neurons as linear functions of the kinematic variable (B) and introduced noise on

each channel. An offset was introduced when the ‘kinematic’ variable crossed the predefined

thresholds. The fitted models of the fuzzy neural network and reverse regression are shown

in panel C). It can be seen clearly that reverse regression fails to capture the non-linear

components whereas the FNN does so correctly. The final panel shows the 3 rules that were

dynamically generated during the encoding process. The algorithm correctly identified the

three sections characterized by the thresholds in A).

Subsequently, the GD-FNN algorithm was used to decode the limb kinematics during

a center-out passive movement trial. The model was trained on two consecutive center-out

patterns and decoded on a different data-set. Figure 20-A shows the resulting predicted

hip angle as well as the predicted hip angle using ordinary reverse regression. Both reverse

regression and GD-FNN estimates were smoothed following the prediction using a 150ms

moving average.

The GD-FNN estimate clearly outperforms the ordinary method. Similar results were

attained looking at the knee and ankle angle (not displayed). The figure also shows a graphic

representation of the strength of the active rules during the prediction. As the strengths are

normalized, the sum equals 1 at all times. It can be seen that the dynamic encoding process

assigned three rules which are active in different partitions of the multidimensional input

space.
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Figure 19: Demonstration of non-linear decoding using fuzzy neural networks. In this exam-

ple, highly non-linear neurons are simulated and used to decode a single kinematic variable.

a) The kinematic variable that will be predicted using linear regression and a fuzzy logic NN.

The dotted lines indicate threshold values used to introduce the non-linearities in the firing

rates. b) The firing rate response of 10 simulated neurons. c) The actual trajectory with the

predicted values from both decoding methods. d) The strength of the dynamically generated

rules; the fuzzy logic NN correctly identifies the three partitions in the input space.
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Figure 20: Example of a decoded hip angle during a center-out passive movement trial. A)

The hip angle plotted versus time and the estimates of the hip angle using reverse regression

decoding and fuzzy neural network decoding. B) The strength of the rules over time during

decoding using the fuzzy neural network. The sum of the strength of the rules equals 1 at

all times. It is clear that different rules are utilized for various states of the limb kinematics.
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Although fuzzy neural networks are widely utilized by the engineering community to

implement non-linear controllers, alternative algorithms modeling non-linear behavior have

been proposed which are rooted in a more statistical reference frame. Spline regression

models provide a similar methodology to partition the input space and apply local linear

models for decoding. The next section will present decoding results using splines in an

extension of the reverse regression method.

4.2 SPLINE REVERSE REGRESSION

Instead of using fuzzy neural networks, one can extend the reverse regression models to allow

for non-linear effects of the firing rates on the kinematic variable. As described in section

2.2.2, we modeled each kinematic variable Ak as a function of the primary afferent firing

rates FR,

Ak = βk0 +
∑
i∈Sk

si(FRi) (4.7)

where s(.) indicates a spline and Sk the set of neurons used in the analysis.

Using the same data-set as the previous example, we plotted the estimates of hip-angle

using reverse regression and spline based reverse regression in figure 21. For this example

we used splines with 4 non-parametric degrees of freedom for all regression variables. As

expected, the spline based regression outperforms the reverse regression significantly.

Using splines, the input variable space is also sectioned and locally fitted. For each

regression variable, a linear or quadratic function is fitted for each of the sections marked

by the knots. Therefore, the number and location of the knots influence the variability of

the fitted model. As with fuzzy neural networks, model selection is the main difficulty when

using spline bases for the reverse regression method. Especially with the large number of

regression variables (the firing rates), there are an infinite number of feasible models. In

order to simplify the model selection, we can try to estimate the number and locations of the

knots for each regression variable separately and use the resulting knots for the kinematic
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Figure 21: Decoding center-out movement using spline reverse regression. Limb kinematic

predictions are shown for reverse regression and reverse regression using smoothing splines

with 4 degrees of freedom.

model described in equation 4.7. We can then proceed to eliminate knots from the new

model to minimize the degrees of freedom if necessary. Thus, in order to find an accurate

model for kinematic variable Ak, we first try to model this variable directly using each of

the recorded afferent firing rates individually.

We define the set of models Ak = βk0 + si(FRi), where we vary the number of knots

and/or their location. For example, we can start by performing a model selection on the

models with 1, 2 or 3 knots at equidistance. Model selection is used to determine the most

appropriate knot locations for that particular spline. Once this is done for all neurons, we

use the resulting knot locations as an initial guess for the splines in equation 4.7. We can

continue our model selection by randomly removing knots to minimize the degrees of freedom

in our kinematic model.

In summary, fuzzy logic neural networks are capable of describing a non-linear transfer

function in terms of a weighted average of linear functions. The methodology is relatively

easy to interpret which might be one of the reasons that the technique still is popular

amongst engineers for non-linear modeling. However, using non-parametric splines for non-
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linear multivariate modeling can result in similar or better estimates and is well regarded

with the statistical community. Although the primary focus of this chapter has been on the

fuzzy neural networks as a result of the collaboration with Dr. Silvestro Micera, at the ARTS

laboratory of the Scuola Superiore Sant’Anna in Italy, it seems that regression splines should

be considered as the more viable option for improving the accuracy of decoded trajectories

in a ‘real-time’ neuroprostheses. Implementation of such methods in Labview and or Matlab

are currently being pursuit in the lab and will be used during subsequent experiments.
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5.0 CLOSED LOOP CONTROL OF FUNCTIONAL ELECTRICAL

STIMULATION

A functioning demonstration of closed loop control of limb state using primary afferent

firing rates as the feedback loop for the controller is presented in this chapter. It will address

and discuss the hypothesis described in the 4th specific aim of this thesis. It combines

the techniques described in the previous chapters and provides a stepping stone for further

development towards continuous, stable and reliable feedback control of FES.

5.1 INTRODUCTION

Functional electrical stimulation (FES) has long been recognized as a viable way to restore

function in the extremities of paraplegic patients. Recognizing that the muscle is an efficient

actuator for limb movement, it is not surprising that many studies have focussed on the

implementation of FES for limb kinetic restoration. To date, multiple devices have been

developed and are commercially used such as, the bionic glove [81], the WalkAid [28, 107]

and the NESS Handmaster [42].

The Walk-aid is the only application within these examples that can be regarded as a

closed loop FES-system because stimulation is based on the angle of the shank of the affected

leg. When the subject reaches the end of the stance phase, the stimulator turns on, lifting the

foot which enables the swing phase to be executed appropriately. Despite this success story,

feedback sensors have proven difficult to implement in prosthesis due to their unreliability,

fragility and practical difficulties.
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Despite these difficulties, it is widely recognized that a FES system would benefit tremen-

dously from sensory feedback in terms of adaptability and functionality as long as the feed-

back system would be reliable [79, 67]. With closed loop control of FES, it is possible to

change the stimulation parameters dynamically and make them dependent on the feedback

from the sensors. If accurate predictions of limb state are available to the FES controller, it

will be able to compensate for muscle fatigue and possibly be able to adjust for unexpected

perturbations of the extremity, e.g. stumbling.

Although the single external sensor works well in the case of the WalkAid, this approach

might not work as well when detailed multivariate information is required as the feedback for

the neuroprosthesis [67, 53]. Implantable sensors have been suggested as a viable alternative

to external sensors. In 2004, Tan et al. described a method to use the antenna coils of

implantable stimulation units (BIONs) to infer limb state variables. They conclude that

using such sensors can potentially be combined with other sensing techniques to ultimately

provide sufficient accuracy for closed loop control of FES for patients with paralysis [112, 111].

Alternatively, one can record from the natural sensors of the nervous system and decode

the limb state based on their neural response. Muscle spindles as well as golgi tendon

organs and cutaneous afferents are known to be contributors to proprioception although it is

generally accepted that the muscle spindles are the main contributors to proprioception [35].

The firing rate response of these afferents can be correlated to global kinematic variables

such as endpoint position of the extremity of joint angles (see section 1.1.3 ).

With current technology, it is possible to record simultaneously from many of those

afferents and previous research has showed that by recording from these afferent neurons in

the Dorsal Root Ganglia (DRG), it is possible to predict the limb state accurately throughout

a movement [106, 122, 119, 120]. In these experiments, the hind limb of a cat was passively

manipulated throughout various movement patterns while kinematics and primary afferents

were recorded. After the experiment, the data was analyzed and limb kinematics were

predicted using the recorded firing rates of the primary afferents. For neural prosthesis, a

realtime version has to be implemented that is capable of estimating the limb state in real

time.
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There are various ways to implement the interface for electrical stimulation. Surface

stimulation and intra-musclular stimulation are the most direct method of activating the

muscles. Alternative methods have been proposed over the years such as selective stimulation

using a multi-site nerve cuff [62] and intra-spinal micro-stimulation [5, 41]. These methods

have the advantage that they require lower stimulation currents and have lower stimulation

artifacts as a result. In addition, these methods target multiple muscles using a single

interface which makes it attractive for clinical use. ISMS also claims to potentially activate

synergies of muscles which may be beneficial to the correct recruitment of muscle tissue [60].

In this work however, we used intramuscular stimulation as it is the easiest to implement

and the most reliable way to stimulate different muscles in an experimental setup.

The following sections investigate the feasibility of using primary afferent signals in a

‘real-time’ closed loop controller for FES. The work described in this chapter leading to-

wards the complete closed loop controller includes discussions about various aspects of this

engineering problem; 1) The real-time decoding algorithm will be discussed, 2) a method

for removing the stimulation artifacts and its implications on the decoded signal will be dis-

cussed and 3) a state-machine based stimulation controller is proposed as an initial approach

towards a closed loop FES controller.

5.2 METHODS

5.2.1 Surgical procedures

All procedures were approved by the Institutional Animal Care and Use Committee of the

University of Pittsburgh. Four animals were used in these procedures. Anesthesia was ini-

tiated using Isoflurane (1-2%) and switched to Alpha Chloralose for the duration of the

trials. Temperature, end tidal CO2, heart rate, blood pressure and oxygen saturation were

monitored continuously during the experiments and maintained within normal ranges. In-

travenous catheters were placed in the forelimbs to deliver fluids and administer drugs. A

laminectomy was performed on the left side and penetrating micro-electrode arrays (1.5mm
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length, Blackrock Microsystems LLC, USA) were inserted in the L7 (50 electrodes in 10x5

grid) and L6 (40 electrodes in 10x4 grid) dorsal root ganglia. A combination of patch and

intramuscular stimulating electrodes were placed in various muscles spanning hip, knee and

ankle joints. Suitable locations for electrode placement were found by stimulating the site

with a mono-polar probe. At the conclusion of the experiments, the animals were euthanized

with KCL (120 mg kg−1).

5.2.2 Experiment setup

A custom frame was designed to support the cats torso, spine and pelvis while allowing the

hind limb to move freely through its full range of motion. A stereotaxic frame and vertebrae

clamp were used to support the head and torso, and bone screws were place bilaterally in

the iliac crests to tether the pelvis with stainless steel wire (see figure 22).

Neural data was sampled at 25kHz using an RZ-2 real time signal processing system

(Tucker Davis Technologies, USA). The neural data was filtered using a bandpass filter with

cutoff frequencies of 300 and 3000 Hz. Neural activity was defined as an event where the raw

recorded signal crossed a manually set threshold. This threshold was set manually for each

channel depending on the signal to noise ratio of the particular electrode. A snippet of 1ms

was recorded each time the signal crossed the threshold and the neural sources on a single

channel were discriminated using a k-means clustering algorithm which was implemented to

function on the recording hardware (RZ-2). Events (spikes) were binned for each independent

source in 50ms windows within the RZ-2 device and subsequently streamed over the ethernet

using the UDP protocol to the ‘real-time’ stimulation controller.

Kinematic data was captured using a high speed motion capture system (Impulse system,

PhaseSpace Motion Capture, USA). Joint angles for hip, knee and ankle were computed in

realtime using custom developed software and were streamed over the ethernet to the ‘real-

time’ stimulation controller using the UDP protocol. A haptic device (Phantom Premium

1.5HF, Sensable Technologies Inc, USA) was used to create an artificial floor and estimate

ground reaction forces during the FES trials. In addition, a slight viscous force field was

simulated to dampen the effect of stimulation and reduce unwanted oscillations.
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TDT RZ-2
Neural Data Acquisition System

Kinematic Markers

Stereotaxic head frame 
not shown

Electrodes

L6 & L7 dorsal 
root ganglia

CWE FNS16
16 Channel Stimulator

Force Field

Figure 22: The animal was positioned in a custom designed frame to support the torso and

pelvis, enabling unrestrained movement of the left hind limb. Active markers were placed to

track the hind limb kinematics and a 90-channel micro electrode array was inserted in the

L6/L7 DRG to record neural activity. Intra-muscular electrodes were place in various hind

limb muscle to evoke movement and a phantom robot was attached to the foot to generate

an artificial floor by means of a force field (not shown).
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Binned spike counts and joint angles were retrieved by the stimulation controller PC run-

ning custom analysis software developed in Labview (National Instruments, Austin, USA).

Binned spike counts were smoothed by convolving a triangular window (150ms) were paired

with the recorded kinematics. The joint data-structure was used to train and decode the

kinematic models. Both neural and kinematic data were processed in 50ms windows to

facilitate the software to compute the kinematic predictions. This conforms with low-pass

filtering methods used in previous experiments using reverse regression methods [122, 106].

5.2.3 Realtime encoding of firing rate models

Offline decoding limb kinematics from a population of primary afferents in the DRG has

been demonstrated previously using various decoding techniques such as reverse regression

and state-space modeling [106, 119, 120]. Although the state-space modeling algorithms

were found to be clearly superior to the previously used reverse regression techniques, we

implemented the latter because of implementation considerations (see chapter 4 for additional

information). For these experiments, we did not use any non-parametric splines as the

development package did not natively support this type of regression algorithm.

For this work, let X = (Xk, k = 1, . . . , K) be the vector of K kinematic variables we

want to decode, based on the firing rates FR = (FRi, i = 1, . . . , I) of I neurons. In this

work we considered two reference frames to express limb state (X); a joint-based frame with

state vector (Ak, k = 1, 2, 3) that represents intersegmental angles for the hip, knee, and

ankle joints, and a endpoint force frame with state vector (X,Z) that represents the vertical

and forward force generated at the endpoint of the extremity. A subscript t added to any

variable means that we consider the value of that variable at time t. The firing rates FR

were obtained by smoothing the incoming binned spike counts using a triangular window

spanning 150ms. Using reverse regression we can predict the joint angles and endpoint forces

by modeling these variables as a linear function of the observed firing rates, such that

Xk = βk0 +
∑
i∈Sk

βkiFRi + εk, (5.1)
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where Sk indexes the set of neurons which were classified in realtime by the clustering

algorithm, and εk are uncorrelated random errors. The predictions are obtained by evaluating

the model at the observed firing rates.

5.2.4 Removing stimulation artifact

Stimulation of the muscles results in significant artifacts in the recorded neural data and can

potentially give rise to erroneous estimates of neural firing rates. Previous studies have used

input blanking to remove stimulation artifacts during recording, shielded the stimulation

sites to minimize artifacts [131] or used the fact that a stimulus artifact appears on all

channels simultaneously to eliminate these events in an offline analysis [123].

In order to estimate the effect of stimulation artifact on the recorded neural data and the

ability to record meaningful afferent responses, we simulated the amount of time stimulation

artifacts would mask the input channels as a function of the average stimulation frequency

and the number of independent channels of stimulation. Figure 23 shows the percentage of

time available for uncontaminated recording as a function of these variables. We can see

that the number of independent channels of stimulation significantly degrades the possibility

to record afferents. The circumvent this problem, we programmed the stimulation controller

such that all channels were synchronized during stimulation. The stimulation frequency was

set to 30Hz and the intensity of the stimulation was solely determined by the amplitude of

the stimulation pulses. At 30 Hz stimulation, muscles in general display tonic contractions.

By using synchronous stimulation of the electrodes, we can eliminate the effects of multiple

electrodes and, given a blanking window of 1ms, still have approximately 95% of the time

for neural decoding.

One problem with blanking the input channels during stimulation is that this introduced

discontinuities of the values on the input channels. As neural data are usually smoothed

before processing, this introduces unwanted oscillations following blanking. In the worst

case scenario, this could result in an unwanted spike event when the oscillations exceed the

channel threshold. In addition, blanking the inputs removes all data during that period and

makes offline analysis and verification of the method impossible.
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Figure 23: Effects of blanking stimulus artifacts on the available time to record neural data.

As the average stimulation frequency increases or multiple electrodes are active in a non-

synchronous way, the remaining time for decoding the firing rates decreases. This plot was

generated using multiple simulations of multichannel stimulation. The decoding time was

defined as the time where no stimulation was occurring.
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Detection window (DW)
Rejection window (RW)

Stimulation

Activity

Blanked activity

If DW > TH ignore(RW )

TH = threshold sum of spikes

Figure 24: This simulated schematic describes the stimulation artifact removal algorithm as

implemented on the RZ2 DSPs. Spike activity from all channels is represented on a single

time-axis. The number of spikes recorded during the detection window (DW) are summed

and if this number exceeds a threshold (TH = 0.9*number of channels), all recorded spikes

in the rejection window (RW) are ignored. The size of RW can be equal or bigger than the

size of the DW.

Using a state of the art neural data acquisition system, we were able to implement a

hardware based version of the synchronous event detection algorithm. Figure 24 shows the

implemented method. We defined a small time window (DW = 1ms) and summed all

recorded events within at each time-point. In case more than 90% of the channels recorded

a spike during that interval, all spikes in the rejection window RW were excluded from

the calculation of the instantaneous firing rates of the units. The RW could be set to

an arbitrary length and could be used to exclude afferent responses generated by direct

stimulation of the afferent fibers. The instantaneous firing rate was subsequently calculated

per unit on the neural data acquisition system and streamed over the ethernet using the UDP

protocol. Using this artifact rejection method, all signals including stimulation artifacts will

be recorded for offline analysis while they will be omitted during the realtime control of FES.
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5.3 RESULTS

Data from multiple closed loop FES experiments are presented in this section. As previous

chapters discussed the ability to decode limb kinematics from primary afferent firing rates in

detail, no example will be given in this chapter. Analysis of realtime encoding and decoding

of limb kinematics will be presented in section 5.3.1. Section 5.3.2 will present data on the

ability to decode during functional electrical stimulation and finally, section 5.3.3 will present

an example of closed loop FES.

5.3.1 Realtime decoding of primary afferents

An example of real-time decoding using reverse regression is presented in figure 25. Here,

the hindlimb was passively manipulated through a series of center-out movement tasks.

At t = 0s, the kinematics and observed instantaneous firing rates were used to update

models for the kinematic parameters (joint angles). At t = 60s, the estimated models were

used in combination with the observed firing rates to predict the kinematics. The results

in figure 25 were produced during the trial and not manipulated afterwards. The typical

noisy characteristic of reverse regression and the incorrect predictions during high velocity

movement (overshoot) can easily be seen although the overall predicted values for hip, knee

and ankle angle seem accurate.

Figure 26 shows the progression of the coefficients during the ‘realtime’ encoding process

during a random walk passive movement test. The bottom panel shows the joint angles

for hip, knee and ankle during the encoding process and the top panel shows a heat-map

representing the influence of each neuron in the model of the accompanying kinematic vari-

able. The influence was calculated by multiplying the value of the coefficient by the the

maximum firing rate of that neuron over the course of the encoding process. Subsequently

all resulting values were normalized to fall within a range of [-1,1]. The encoding algorithm

was implemented in Labview and developed such that the models were updated as fast as

possible during the trial which resulted in an update rate from 200ms to 3 seconds as the

encoding trial progressed.
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Figure 25: Realtime encoding and decoding of the firing rates of primary afferents during a

passive center-out movement trial. During the first minute, the kinematic and the observed

firing rates are used to encode the kinematic models, during the second minute the observed

firing rates are used to predict limb kinematics.
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Figure 26: Progression of regression coefficients during model encoding. Three kinematic

models for hip, knee and ankle joint angles were continuously updated during a random

passive movement trial. Each row in the upper plots represents the firing rate of a single

neuron. The influence was calculated by multiplying the value of the coefficient by the the

maximum firing rate of that neuron over the course of the encoding process. Subsequently

all resulting values were normalized to fall within a range of [-1,1].
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The neurons corresponding to each row are matched across the different models. This

implies that some of the same neurons heavily influence the predictions of multiple models.

In addition, we can see that a relatively large group of neurons have equal contributions for

the hip model whereas for knee and ankle, a limited set of neurons convey all information

about the kinematic variable.

5.3.2 Decoding during stimulation

Decoding during FES requires the controller to dismiss stimulation artifact. Figure 27 shows

that the observed firing rates of primary afferents continue to provide information about

limb state during stimulation. Here, the hind limb was manipulated through a series of

flexion and extension movements using a robotic manipulator. During the second set of

movements, electrical stimulation was applied to generate stimulation artifact at a rate of

30 Hz. The location and amplitude of the stimulation was chosen such that no significant

muscle force was generated during these trials. It can be seen that the example neurons carry

information about ankle position under both scenarios. This demonstrates that information

can be extracted from the primary afferent population in the presence of FES.

To demonstrate that the primary afferent neurons continue to generate graded responses

to the desired variables, we used FES to generate ground reaction forces in a semi-isometric

preparation. Here, the foot was strapped to a stationary force transducer. Limb extensors

were stimulated at 30 Hz over a prolonged period of time to induce fatigue. The stimulation

was alternated on/off manually to generate an alternating pattern of ground reaction forces.

Figure 28 shows the neural response as well as the stimulation times. Overlaid is a prediction

of the ground reaction forces based on the primary firing rates recorded in the DRG. The

ability to track the forces during fatigue demonstrates that the decoded forces are not merely

tracking the periods of stimulation.
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the hind-limb with and without stimulation. It can be seen that the firing rate response of

both units is maintained during stimulation of the leg. In this scenario the amplitude of the

stimulation created significant artifacts during recording but did not produce any significant

activation of a muscle.

0 10 20 30 40 50 60 70 80 90
-20

-10

0

10

Fo
rc

e 
(N

)

Time (s)

Ground reaction force Force prediction

Figure 28: Decoding ground reaction forces during functional electrical stimulation. The

stimulation was manually triggered and forces were recorded with the foot fixed to a sta-

tionary load cell. Fatigue of the muscle is accurately predicted using primary afferent firing

rates during stimulation.
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5.3.3 Closed loop control of FES

Labview was used to implement a ‘real-time’ closed loop FES controller which was capable of

switching stimulations parameters using a state machine triggered by the endpoint kinemat-

ics of the hindlimb (actual or predicted). Figure 30 shows the front-end of this state machine

as well as some of the trajectories obtained using FES on multiple channels. This display is

similar to the display used to define the state-machine during the actual experiments.

The hindlimb is represented by a stick-figure with segments between the Iliac Crest

and the Hip, Hip-Knee, Knee-Ankle and Ankle-Foot. The state machine can be configured

by ‘drawing’ boxes in the workspace to indicate the regions in which the controller should

increment the state of the stimulation paradigm and accompanying stimulation parameters.

In this case, we defined 4 states. The transition between the states was initiated when

the endpoint of the hind limb entered a switch point section and remained there for a

predetermined amount of time. Transitions between states could be set to instantaneously

or could be changed gradually by fading in/out of the stimulation amplitudes. All channels

were set to stimulate at 30 Hz in synchrony to minimize the stimulation artifacts.

Prior to the trial, we selected a subset of stimulation channels per state such that the

resulting limb movement was directed towards the next stimulation switch location. We could

do so by selecting individual channels and amplitudes per state. Minimum and maximum

stimulation period were enforced such that the trial was aborted when the next box was not

reached.

Figure 30 also shows some recorded trajectories during a closed loop trial. In this par-

ticular case, we switched the stimulation states based on the kinematics recorded with the

camera setup. Other trials using the predicted kinematics from the neural data showed

similar results, albeit a little less accurately.
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Figure 29: Limb movement and afferent responses during a closed loop stepping trial in which

movement was created by FES using 9 channels and 4 different states in the state-machine.

A) The kinematic variable indicting the distance between the hip and toe marker. B) The

stimulation pulses on 9 channels; the red lines indicate the 4 different stimulation patterns.

C) and D) show the response of two primary afferent neurons, both neurons correlate with

the kinematics independently of the stimulation.
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Subsequently, we imposed perturbations to the leg by obstructing its movement during

stimulation (not shown). This resulted in prolonged period of stimulation of the same pattern

as the leg was not able to reach the following state switch point. Although the estimates

of limb state were sufficient to drive the state-machine during these closed loop trials, the

accuracy of the decoded trajectories has room for improvement. New decoding methods,

such as those proposed in the previous chapters, should provide the required improvements

and will be implemented in future experiments.

Figure 29 shows the response of two primary afferent neurons during the closed loop

stimulation. In A), we plotted the distance between the hip marker and the toe marker

for a series of FES evoked steps. As the foot is placed forward (First red dotted line), we

can see some oscillations resulting from the simulated floor created by the haptic device.

Subsequently, the foot is pushed back, lifted up and moved forward before repeating the

sequence.

The second panel (B) shows the stimulation sequence on the 9 implanted stimulation

sites. We can see the four distinct patterns responsible for the different stages in the step-

cycle. Panels C) and D) show the response of two units which are correlated to the kinematic

variables. During these trials, all recorded unit activity was used to decode the kinematics;

that is, there was no selection of neurons used for decoding.

5.4 DISCUSSION

A closed loop neural prosthesis should be regarded as a complex system integrating different

challenges such as afferent recording, kinematic state decoding, actuating the muscles and the

accompanying control algorithms. The results presented in this chapter should be regarded

as an initial attempt to combine these challenges in order to understand the complexity of

the task. We showed that with the current technology, it is possible to develop a rudimentary

closed loop FES controller which is able to generate walking-like behavior in a closed loop

fashion.
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Figure 30: Example trajectories produced by closed loop FES. The solid thick black stick

figure represents the hind limb of the animal and the endpoint is used to trigger the state-
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the areas where the state-machine should switch stimulation parameters. The displayed

boxes are an approximate location in this particular trial. The black thin line represents the

actual limb endpoint kinematics over 4 cycles and the red dotted line represents the limb

endpoint prediction using the firing rates of the recorded primary afferent neurons.
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Although reverse regression has been proven to provide good estimates of limb kinemat-

ics, recent work has shown that other decoding techniques can improve the estimates signif-

icantly. State-space decoding improves the resulting estimates by a factor of two. However,

this decoding technique is not fast enough to be implemented in real time. An alternative

is to use a fuzzy logic decoding algorithm. Rigosa et al. showed that this type of decoder

can also improve the estimates significantly in an offline situation [89]. Fuzzy logic decoding

sections the input variable space and defines a linear model for each subspace. Limb kine-

matics are inferred by a weighted average of the models where the weights are determined

by a measure of proximity of the inputs to each section. The previous chapter also intro-

duced spline regression as a viable extension to reverse regression. Challenges will include

the implementation of such decoders in a ‘real-time’ environment as currently developed in

Labview.

Alternatively, as the stimulation parameters are driven by a state-machine, it can be

suggested to use a classifier decoding method rather than a continuous representation of

limb angles. Such a method could predict the likelihood of the leg being in one of the

switching states. Such a method might result in more robust state switching but will loose

the ability to track the limb-state variables.

Artifact rejection is an integral part of a closed loop controller using functional electrical

stimulation as the muscle activator. We showed that when the stimulation paradigm is

tuned to minimize the stimulation artifact by aligning stimulation on different channels,

it is possible to remove the stimulation artifacts without losing the ability to decode limb

state variables from the primary afferent population. Although direct stimulation artifacts

are relatively easy to identify and reject based on amplitude and wave-shape, this is not

the case for artifact arising from direct stimulation of the afferent neurons as the recorded

signal will be indistinguishable from a neural response related to a change in limb state.

However, synchrony detection across a large number of channels might be able to separate

the different scenarios. This type of artifact could potentially be greatly reduced by changing

the stimulation paradigm.
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A vast body of research has been published on the application of functional electrical

stimulation as a means of reanimating paralyzed extremities. Intra-spinal micro stimulation

(ISMS) has been suggested as an alternative to intra-muscular and surface stimulation during

the recent years [5, 41]. ISMS has the advantage that it uses very small stimulation artifacts

as compared to surface stimulation and can potentially activate synergies of muscles which

may be beneficial to the correct recruitment of muscle tissue [60]. Using the DRG or the

ventral roots as the location for stimulation has also been suggested as an alternative location

[5]. Our lab is currently investigating the feasibility of using these alternative locations for

stimulation.

The relationship between muscle length and joint or limb position is typically complex

and in many cases indeterminate [9], suggesting that other sources of feedback are required

to resolve ambiguities in spindle feedback related to joint position [26]. In addition, sensory

receptors as the muscle spindle are innervated by modulated motor neurons (γ) that change

the behavior of the sensors constantly. Spinal cord injuries change this descending neural

track and therefore alter the afferent coding scheme. The impact of this change on the

ability to decode accurately from the afferent population is unknown but highly relevant for

applications of FES while spinal cord patients are part of the target population.

In summary, a closed loop neural prosthesis comprises a complex system integrating dif-

ferent challenges such as afferent recording, kinematic state decoding, actuating the muscles

and the accompanying control algorithms. The results presented in this chapter should be

regarded as an initial attempt to combine these challenges in order to understand the com-

plexity of the task. They showed that with the current technology, it is possible to develop

a rudimentary closed loop FES controller which is able to generate walking like behavior in

a closed loop fashion.

Advancements in the neural engineering field are largely reliant of improvements of the

stability and reliability of the neural interfaces used in these applications. Continuing efforts

to improve FES control, afferent decoding and interface technology should be pursued to

enable the use of closed loop FES neuroprostheses in the future.
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6.0 GENERAL DISCUSSION

In this final chapter of my thesis, I will elaborate on the results presented in this work as

well as provide my view on the necessary research to be conducted extending the presented

work. Section 6.1 will summarize and discuss the findings in this work and section 6.2 will

discuss its significance in the bioengineering field and suggest directions for future work.

6.1 SUMMARY

It is believed that the nervous system represents the kinematic state of extremities in various

ways throughout the nervous system [38, 11, 12]. An interface with the nervous system to

extract this sensory information would significantly aid the development of advanced neu-

roprostheses using FES to animate paralyzed extremities. By means of sensory integration,

the CNS is thought to be able to reduce the highly redundant input space into a representa-

tion of limb state that is more useful to process. The location of the interface can therefore

influence the types of signals we are able to extract. The work presented in this document

has focussed solely on the sensory nervous system at the level of the DRG; the firing rates

of the individual sensory neurons.

The foundation for the work presented in this thesis originates with the work of Stein

and Weber who presented methods for decoding limb kinematics from the firing rates of

populations of primary afferent neurons in [105, 122]. In chapter 2, we provided a more

generalized and principled method for decoding limb kinematics from the firing rates of

primary afferent neurons. We showed that by modeling the firing rate of the primary afferents
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instead of modeling the kinematic variables, the decoder could take into account that the

firing rate of an afferent neurons could be non-linearly related to multiple kinematic variable.

Subsequently, in chapter 3, we extended these methods to be able to incorporate velocity

components of the firing rate. In addition, we showed how state-space modeling can be

used to predict multiple correlated kinematic variables in a principled way. The resulting

estimates of limb state were on average twice as accurate as previously suggested methods

(reverse regression). Although the results of state-space modeling were promising, it required

significant computing power to execute and was therefore not ready for implementation in

a ‘real-time’ environment at this time.

Chapter 4 discussed some alternative methods for decoding limb kinematics that would

be fast enough to implement in ‘real-time’. Fuzzy neural networks have been proposed to

find a set of input-output relations describing a non-linear process [108]. We showed that

an adapted version of the TSK fuzzy logic decoder can be used to decode limb kinematics

and improve decoding accuracy over reverse regression. Alternatively we found that spline

regression shows equal improvements over reverse regression and is more principled and easier

to implement than fuzzy neural networks. Although both methods improve upon reverse

regression, they are not as principled as state-space modeling because velocity components

and the coupling between kinematic variables are not taken into account.

Finally, in chapter 5, various aspects and challenges of a closed loop FES neuroprosthesis

are presented. A ‘real-time’ controller was implemented and it was shown that the firing

rates of primary afferents could be recorded, sorted and used for decoding limb kinematics

in such a setup. Stimulation artifacts were removed in hardware using a sliding window and

a synchronous detection algorithm. The FES controller was updated using a state-machine

based on the predicted limb kinematics.

In summary, the work in this thesis provides methods for decoding primary afferent

neurons and sets a foundation for further development of closed loop FES control of paralyzed

extremities. Although a complete closed loop neuroprosthesis for natural behavior seems far

away, the premise of this work argues that an interface at the dorsal root ganglia should be

considered as a viable option.
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6.2 SIGNIFICANCE AND FUTURE WORK

Functional electrical stimulation has been regarded as highly potential for restoring func-

tionality in hemi/paraplegic patients. It has been proven to facilitate improved hand func-

tionality [81], standing capability [29, 30], improved walking capability [107] and is used in

many other applications. Using muscles to generate movement might be the most power

efficient way to displace extremities which facilitates assisted movement of extremities with

a relatively small power source. In addition, FES helps the body to maintain muscle mass,

rigidity, and in general be in a more healthy state.

However, FES applications suffer from multiple drawbacks that require additional atten-

tion before FES can be used reliably as a means to restore the functionality of an affected

extremity. One of the most important issues that need to be addressed is how to measure

the actual kinematic state of the limb while using the prosthesis to facilitate closed-loop

control of FES [44]. Exteriorly placed sensors such as gyroscopes and goniometers, force

sensors and stretch sensors have been proposed and tested in closed loop FES applications

[78, 28, 103]. Although these options are viable when limited information is needed, the use

of exterior placed sensors rapidly becomes difficult due to practicality issues when multiple

degrees of freedom are necessary. Therefore, the use of the body’s own sensory signals has

seen an increasing amount of attention and has been the focus of this dissertation.

Fundamental knowledge of the mechanisms and nature of proprioception is necessary to

understand the neural processes responsible for motor planning, control, and adaptation.

Despite a large body of literature that describes many details of primary afferent response

characteristics, and their projections to intra-spinal networks and ascending pathways to the

brain, relatively little is known about the actual neural coding and decoding processes that

support representations of limb state at any level of the sensory system. Thus, there are

several fundamental, yet unanswered questions about the nature of somatosensory feedback.

Which state variables are represented and which classes of afferent neurons contribute to the

neural representation of each state variable? Although this thesis has mostly focussed on

the practicality of using primary afferents for neuroprostheses, more knowledge about the
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physiology, interactions and changes of primary afferent firing rates as a result of spinal cord

injury will likely be beneficial to the development of viable neuroprostheses.

This work has argued that afferent feedback is required to be able to compensate for

fatigue and account for unexpected perturbations as represented schematically in figure 5.

However, in the particular scenario where the person has impaired motor control but intact

sensory perception, one could argue against the need to decode the afferent signals for closed

loop control of FES. Although not represented in figure 5, direct connections exist between

sensory and motor areas in the higher regions of the CNS which might provide an adequate

feedback loop in this scenario. Therefore, when afferent pathways remain intact and the

patient only suffers from diminished motor control, it is possible that feedback loops in

higher regions of the CNS are sufficient to compensate the motor intent signal to the FES

controller.

It has been shown that a monkey can control a robot arm using cortical signals with

increasing accuracy and degrees of freedom [38, 117]. However, state feedback of the robotic

arm is purely visually in these experiments. An interesting extension of this work would

be to investigate whether proprioception will provide alternative/additive information which

could potentially result in better control of the neural prosthesis. This untested hypothesis

would be interesting to explore in an animal model as this could give us direct insight in the

flexibility of higher regions in the CNS to afferent information.

In order to address these questions, one could surgically sever the ventral roots innervat-

ing one of the upper extremities in a monkey while leaving the dorsal roots intact. Alterna-

tively, one could use botulinum toxin (BOTOX R©) to temporarily paralyze the muscles while

leaving the afferent response intact. Although both methods would also affect the gamma

motor drive to muscle spindles, it would provide a good model for the investigated scenario.

The affected extremity could then either be fitted with a custom exoskeletal robotic manip-

ulator or with surgically implanted FES electrodes (BOTOX R©inhibits Acetylcholine release

and it should therefore still be possible to use direct stimulation of the muscles using FES).

Results of reaching/drawing tasks could be compared to results obtained using only visual

feedback.

105



In the neural engineering community, there has been a steady search for the coordinate

frame in which the CNS encodes proprioception. In 2000, Bosco and Poppele presented

studies in which they claimed that secondary afferent neurons in the dorsal spinocerebellar

tract (DSCT) can signal foot position independently from the specific joint angles [12].

This could suggest that an abstraction of the primary afferent sensory space is performed

at relative low levels of the CNS. However, a closer look at their observations raises the

question whether the conclusions they present really reflect the observed behavior of the

DSCT neurons. For example, figure 8 in [12] is supposed to show that a neuron is invariant

to endpoint position while having different behavior in joint angle space when its response

is compared in a restraint and passive movement task. They argue that the data during the

passive trial can best be described by a linear function whereas the data in the constraint

trial is best described by a quadratic. However, this is most likely caused by the fact that

the range of motion of the hip angle is drastically smaller in the passive trial than in the

constraint trial. In my opinion, it is very likely that if the researchers would have ‘forced’

to record data over the same movement range, it would look exactly similar. As it might

be hypothesized that the neuron used for in the paper is a better than average example,

it seems that there is insufficient evidence from either statistical point or visually to infer

any underlying mechanisms in my opinion. They correctly conclude that an alternative

explanation is that the DSCT cells respond to additional unmeasured input variables such

as forces acting on the joint as a result of their setup [12].

In general, we should be very careful about statements explaining how the CNS interprets

the afferent firing rates and kinematic variables. Statements about the CNS representing

limb state only in endpoint coordinates can easily be rejected as this kinematic representation

is our ability to sense and we obviously experience more than pure endpoint positions of our

extremities. This does not mean that a reduced kinematic representation cannot be found

somewhere in our CNS but does prove that the CNS does not directly integrate all afferent

inputs to form a very reduced variable space before processing it in higher regions of the

CNS.
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Over the last couple of years, we advanced from offline reverse regression methods to

state space modeling and ‘real-time’ FES applications. Specifically looking at the ‘real-time’

application, I think that we could have focussed more directly on a decoding method based

on state classification rather than continuous decoding. The advantage of classifiers is that it

directly address the events you are interested in. Especially in gait, this might be a more solid

and robust solution to switch between the different stimulation states. However, a continuous

prediction of limb kinematics might be advantageous when more detailed information is

required. For example, if we want to detect perturbations and unexpected events. The

reason we decided to start with the continuous predictions is that it relates to previous

published work for decoding primary afferent firing rates in an offline setup.

An unmentioned, but interesting, topic concerning FES neuroprosthesis is the location

of the stimulation. We used intra-musclular electrodes for stimulation during the closed

loop experiments because of their practicality and easy of implementation. However, the

large currents necessary for muscle animation produced significant stimulation artifacts.

In addition, this type of stimulation is prone to activating the sensory receptors directly,

resulting in a distorted representation of limb kinematics directly following a stimulation

pulse. Intra-spinal microstimulation has been suggested as an alternative strategy which

lacks the drawback previously mentioned but has shown mixed results as well [109, 60].

Using the DRG or the ventral roots as the location for stimulation has previously been

suggested as an alternative location [5]. Unpublished experiments in our lab show that

micro-stimulation in these areas show potential as they can selectively activate different

muscle groups. Additional research will have to investigate the feasibility in more detail.

Finally, as mentioned in previous chapters, the physical interface with the nervous system

is a crucial point of interest for neuroprostheses and its stability and reliability needs to be

addressed before any decoding efforts can successfully be used to provide limb state feedback

for controlling neural prostheses.
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6.3 FINAL THOUGHTS

In pursuit of functional applications for neuroprostheses, one should realize that state of

the art hardware and software will continue to be one of the drivers behind their success or

failure. The experimental setup required for experiments towards these goals tend to grow

increasingly complex and the quantity of processed data require serious investments towards

analysis strategies. As this trend continues, it will be important to develop standardized

protocols for data interaction, manipulation and storage in order to maintain an efficient

research facility.

In addition, as the technology advances and the reality of bi-directional brain computer

interfaces inches closer, collaborations between the fields of Bioengineering, Robotics, Neu-

roscience, Computer science and Statistics will be more important with every step. One

of the biggest challenges will be to combine the knowledge in these fields and to rely on

each-others expertise.
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