
ONTOLOGY MAPPING NEURAL NETWORK: AN

APPROACH TO LEARNING AND INFERRING

CORRESPONDENCES AMONG ONTOLOGIES

PhD Dissertation

by

Yefei Peng

B.S., Tsinghua University, 1999

M.S., Purdue University, 2004

Submitted to the Graduate Faculty of

the School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2010

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Yefei Peng

It was defended on

April 9th 2010

and approved by

Dr. Paul Munro, School of Information Sciences

Dr. Daqing He, School of Information Sciences

Dr. Hassan Karimi, School of Information Sciences

Dr. Bambang Parmanto, Department of Health Information Management

Dr. Michael Spring, School of Information Sciences

Dissertation Director: Dr. Paul Munro, School of Information Sciences

ii

Copyright c© by Yefei Peng

2010

iii

ONTOLOGY MAPPING NEURAL NETWORK: AN APPROACH TO

LEARNING AND INFERRING CORRESPONDENCES AMONG

ONTOLOGIES

Yefei Peng, PhD

University of Pittsburgh, 2010

An ontology mapping neural network (OMNN) is proposed in order to learn and infer corre-

spondences among ontologies. It extends the Identical Elements Neural Network (IENN)’s

ability to represent and map complex relationships. The learning dynamics of simultaneous

(interlaced) training of similar tasks interact at the shared connections of the networks. The

output of one network in response to a stimulus to another network can be interpreted as

an analogical mapping. In a similar fashion, the networks can be explicitly trained to map

specific items in one domain to specific items in another domain. Representation layer helps

the network learn relationship mapping with direct training method.

The OMNN approach is tested on family tree test cases. Node mapping, relationship

mapping, unequal structure mapping, and scalability test are performed. Results show

that OMNN is able to learn and infer correspondences in tree-like structures. Furthermore,

OMNN is applied to several OAEI benchmark test cases to test its performance on ontology

mapping. Results show that OMNN approach is competitive to the top performing systems

iv

that participated in OAEI 2009.

v

TABLE OF CONTENTS

PREFACE . xiv

1.0 INTRODUCTION . 1

1.1 INTRODUCTION . 1

1.2 OVERVIEW OF OMNN APPROACH . 3

1.3 CONTRIBUTIONS OF THE DISSERTATION 4

1.4 OUTLINE . 5

2.0 LITERATURE REVIEW . 6

2.1 STATE OF THE ART ONTOLOGY MAPPING APPROACHES 6

2.1.1 Graph-based Methods . 6

2.1.1.1 Anchor-PROMPT . 6

2.1.1.2 Similarity Flooding . 7

2.1.2 Machine Learning Methods . 9

2.1.3 Heuristic and Rule-based Methods . 10

2.1.3.1 PROMPT . 10

2.1.3.2 QOM . 11

2.2 THE LATEST ONTOLOGY MAPPING SYSTEMS 16

2.2.1 RiMOM . 16

vi

2.2.2 LILY . 18

2.2.3 ASMOV . 18

2.2.4 AFlood . 19

2.3 RELATED NEURAL NETWORK MODELS 20

3.0 OMNN APPROACH . 23

3.1 GRAPH MAPPING . 24

3.1.1 Introduction . 24

3.1.2 Network Architecture 1 . 25

3.1.2.1 Network Structure . 25

3.1.2.2 Training . 26

3.1.2.3 Testing . 27

3.1.3 Network Architecture 2 . 29

3.1.3.1 Network Structure . 29

3.1.3.2 Training . 30

3.1.3.3 Explicit Training Method . 32

3.1.3.4 Testing . 33

3.2 APPROACH FOR ONTOLOGY MAPPING 39

3.3 TEST CASES AND EVALUATION CRITERIA 41

3.3.1 Test Cases for graph Mapping . 41

3.3.2 Test Cases for Ontology Mapping . 42

3.3.3 Evaluation Criteria . 43

4.0 GRAPH MAPPING EVALUATION . 48

4.1 NODE MAPPING . 49

vii

4.1.1 Experiment 1 . 49

4.1.2 Experiment 2 . 51

4.1.3 Experiment 3 . 53

4.1.4 Experiment 4 . 54

4.2 RELATIONSHIP MAPPING . 62

4.2.1 Experiment 1: No Explicit Training 62

4.2.2 Experiment 2: Explicit Training on “self” 66

4.2.3 Experiment 3: Explicit Training on “self”, “parent” and “spouse” . . . 69

4.3 SCALABILITY TEST . 73

4.3.1 Experiment 1: 4-layer Family Tree . 74

4.3.2 Experiment 2: 5-layer Family Tree . 75

4.4 UNEQUAL GRAPH MAPPING . 81

4.4.1 Experiment 1: Different Number of Nodes 81

4.4.2 Experiment 2: 3-Layer to 4-Layer Mapping 81

4.4.3 Experiment 3: One to Many Relationship Mapping 86

4.5 SUMMARY . 90

5.0 ONTOLOGY MAPPING EVALUATION 91

5.1 EXPERIMENT 1: TEST CASE 249 . 92

5.2 EXPERIMENT 2: TEST CASE 257 . 99

5.3 EXPERIMENT 3: TEST CASE 258 . 104

5.4 EXPERIMENT 4: TEST CASE 259 . 111

5.5 EXPERIMENT 5: TEST CASE 265 . 118

5.6 EXPERIMENT 6: TEST CASE 266 . 121

viii

5.7 SIGNIFICANCE TEST . 124

5.8 SUMMARY . 125

6.0 CONCLUSION AND FUTURE WORK 130

6.1 SUMMARY OF CONTRIBUTIONS . 130

6.2 FUTURE DIRECTIONS . 131

APPENDIX. OAEI 2009 BENCHMARK TESTS 133

BIBLIOGRAPHY . 137

ix

LIST OF TABLES

3.1 The description of OAEI benchmark tests . 47

5.1 Experiment Results for Benchmark 249 . 93

5.2 Experiment Results for Benchmark 257 . 100

5.3 Experiment Results for Benchmark 258 . 105

5.4 Experiment Results for Benchmark 259 . 112

5.5 Experiment Results for Benchmark 265 . 119

5.6 Experiment Results for Benchmark 266 . 122

5.7 Significance test for 19 benchmark test cases 128

5.8 Recall comparison . 128

A1 Overview of OAEI 2009 benchmark tests . 134

x

LIST OF FIGURES

1.1 System architecture of OMNN . 4

2.1 Anchor-PROMPT. Traversing the paths between anchors. 13

2.2 Example of similarity flooding . 13

2.3 Architecture of GLUE . 14

2.4 Workflow of PROMPT algorithm . 15

2.5 QOM mapping process . 15

2.6 System architecture of RiMOM . 17

2.7 System architecture of LILY . 19

2.8 System architecture of ASMOV . 20

2.9 System architecture of aFlood . 21

3.1 General IENN graph . 36

3.2 Proposed network architecture 1 . 37

3.3 Proposed network architecture 2 . 38

3.4 Two sample ontologies about vehicle . 45

3.5 Hinton’s Family Tree with Five Relationships. 46

4.1 Vertical identity tasks (A-A) for Experiment 1 55

4.2 Ambiguities on the cross testing (A-B) for Experiment 1 56

xi

4.3 Ambiguities on the cross testing (A-B) for Experiment 1: Matrix Plot 57

4.4 Ambiguities on the cross testing (A-B) for Experiment 2 58

4.5 Ambiguity exists in cross testing (A-B) for Experiment 2: Matrix Plot 59

4.6 Ambiguity exists in cross testing (A-B) for Experiment 3 60

4.7 Ambiguity exists in cross testing (A-B) for Experiment 4 61

4.8 Ambiguity exists in relationship mapping (A-B) for Experiment 1 64

4.9 Node mapping results: cross testing (A-B) for Experiment 1 65

4.10 Ambiguity exists in relationship mapping (A-B) for Experiment 2 67

4.11 Node mapping resutls: cross testing (A-B) for Experiment 2 68

4.12 Ambiguity exists in relationship mapping (A-B) for Experiment 3 70

4.13 Node mapping results: cross testing (A-B) for Experiment 3 71

4.14 Segment Plot for Output at Relationship Representation Layer 72

4.15 Familytree Test Cases. 76

4.16 Cross Testing (A-B) for 4 Layer Family Tree. 77

4.17 Cross Testing (A-B) for 4 Layer Family Tree: Matrix Plot 78

4.18 Cross Testing (A-B) for 5-layer Family Tree. 79

4.19 Cross Testing (A-B) for 5-layer Family Tree: Matrix Plot. 80

4.20 Cross testing (A-B) for Experiment 1 in 4.4.1 83

4.21 Average response matrix: 3-Layer to 4-Layer mapping case 1 84

4.22 Average response matrix: 3-Layer to 4-Layer mapping case 2 85

4.23 Relationship mapping result for experiment from 4.4.3 87

4.24 Node mapping resutl for experiment from 4.4.3 88

4.25 Segment Plot for Output at Relationship Representation Layer 89

xii

5.1 Benchmark Test 249. Top: Reference ontology. Bottom: Test ontology. . . . 94

5.2 Relationship Mapping (A-B) for Test Case 249 95

5.3 Node Mapping Resutls: Cross Testing (A-B) for Test Case 249 96

5.4 Relationship mapping (A-B) for test case 249-2 97

5.5 Node mapping resutls: cross testing (A-B) for test case 249-2 98

5.6 Benchmark Test 257. Top: Reference ontology. Bottom: Test ontology. . . . 101

5.7 Node mapping resutls: cross testing (A-B) for test case 257 102

5.8 Node mapping resutls: cross testing (A-B) for test case 257-2 103

5.9 Benchmark Test 258. Top: Reference ontology. Bottom: Test ontology. . . . 106

5.10 Relationship mapping (A-B) for test case 258 107

5.11 Node mapping resutls: cross testing (A-B) for test case 258 108

5.12 Relationship mapping (A-B) for test case 258-2 109

5.13 Node mapping resutls: cross testing (A-B) for test case 258-2 110

5.14 Hierarchy of classes in Benchmark Test 259 113

5.15 Relationship mapping (A-B) for test case 259 114

5.16 Node mapping results: cross testing (A-B) for test case 259 115

5.17 Relationship mapping (A-B) for test case 259-2 116

5.18 Node mapping results: cross testing (A-B) for test case 259-2 117

5.19 Node mapping results: cross testing (A-B) for test case 265 120

5.20 Node mapping results: cross testing (A-B) for test case 266 123

5.21 Similarity scatterplot for OAEI test cases . 125

5.22 Precision-recall curve for OAEI test cases . 127

5.23 Recall of OMNN by different percentage of training data. 129

xiii

PREFACE

I’m heartily thankful to my advisor, Dr. Paul Munro, for his supervision, guidance and

support through out my Ph.D. study, and for allowing me to work in my own way.

I gratefully acknowledge the members of my committee, Dr. Daqing He, Dr. Hassan

Karimi, Dr. Paul Munro, Dr. Bambang Parmanto and Dr. Michael Spring for their effort

and time in guiding me to fulfill the requirement of the degree.

I am deeply grateful to my parents, sisters, and their families. Their expectation encour-

aged me to persevere till the end. I owe my loving thanks to my wife Ming Mao, for her

dedication, love and persistent confidence in me all the time, also for her insightful discus-

sions on my research. I would like to thank my daughters, Jing and Ann, for allowing me to

sacrifice play time with them.

The school of Information Sciences has been a warm place provided the support I needed

to complete my study. All the faculties and staffs have been very friendly and helpful.

The financial support from the School of Information Sciences and Yahoo! is gratefully

acknowledged.

Lastly, I offer my regards and blessings to all of those who supported me in any respect

during the completion of the project.

xiv

1.0 INTRODUCTION

1.1 INTRODUCTION

The vision of the Semantic Web [BLHL01] provides many new perspectives and technolo-

gies to overcome the limitation of the WWW. Ontologies are a key component to solving

the problem of semantic heterogeneity, and thus enable semantic interoperability between

different web applications and services. An ontology is a formal, explicit specification of a

shared conceptualization [Gru93b] that provides precise notations and explicit meanings of

data (i.e. semantics) in a domain [UG04]. Although it is ideal to have a single or even a

small set of shared ontologies that can be accepted by all or be used as a reference to derive

people’s own ontologies, such a utopia is unrealistic.

The task of finding semantic correspondences between similar elements of different on-

tologies is known as ontology mapping or ontology matching. In this area, different authors

“use different words to refer to similar concepts, and, vice versa, sometimes different concepts

are referred to by the same name” [ES07]. For example, ontology mapping is defined as the

process of “mapping concepts in the various ontologies to each other, so that a concept in one

ontology corresponds to a query (i.e. view) over the other ontologies” [CGL01]. Ontology

matching is defined as “finding semantic mappings between ontologies” [DMDH02].

1

In the rest of the dissertation, the term of ontology mapping refers to the task of finding

semantic correspondences between similar elements of different ontologies. The following

applications illustrate how semantic correspondences are required in different scenarios, as

well as emphasize the importance of ontology mapping.

First of all, ontology mapping is important to the emerging Semantic Web. The per-

vasive usage of agents and web services is a characteristic of the Semantic Web. However

agents might use different protocols that are independently designed, which means that

when agents meet they have little chance for them to understand each other without an

”interpreter”. Therefore ontology mapping is ”a necessary precondition to establish inter-

operability between agents or services using different ontologies” [Ehr06]. It provides the

possibility for agents/services to either translate their messages or integrate bridge axioms

into their own models [vEdBvdHM01].

Ontology mapping is also widely used to support information transformation and inte-

gration [DMQ05] [CM03] [NM03].

Moreover, ontology mapping can support query processing across disparate sources by

expanding or rewriting the query using the correspondent information between multiple on-

tologies [GKD97] [CGL01] [HIST03] [MKSI96] [GH05]. The application of ontology mapping

can also be found in generating an ontology extension [DMQ03] and many other scenarios

[EBB+04].

The importance of ontology mapping in different applications motivates our research in-

terest in this area. The ultimate goal of this project is to accelerate the success of the semantic

interoperability between different information systems in the WWW. More specifically, we

aim to explore a new generic method to automatically map ontologies with minimum human

2

effort because while ontologies can be mapped either by hand or by tools, manual map-

ping becomes impractical as the complexity and volume of ontologies increase. Alternatively

developing fully or semi-automated mapping algorithms/tools has attracted the interest of

researchers in various areas [Noy04] [NDH05] [RB01].

1.2 OVERVIEW OF OMNN APPROACH

The Ontology Mapping Neural Network (OMNN) extends the Identical Elements Neural

Network(IENN)’s [Mun96, MB05, BM06, Mun08] ability to represent and map complex

relationships. The network can learn high-level features common to different tasks, and use

them to infer correspondence between the tasks. The learning dynamics of simultaneous

(interlaced) training of similar tasks interact at the shared connections of the networks. The

output of one network in response to a stimulus from another network can be interpreted as

an analogical mapping. In a similar fashion, the networks can be explicitly trained to map

specific items in one domain to specific items in another domain.

Separate relationship input layers and the relationship representation layer that connect

to both input layers can map relationships among different ontologies. The representation

layer helps the network learn relationship mapping with an explicit training method.

Figure 1.1 shows system architecture of OMNN ontology mapping approach. When used

as ontology mapping approach, the OMNN network has to be trained with preliminary map-

pings. The preliminary mapping part utilizes textual information to generate preliminary

mappings. High confident mapping pairs will be used as cross-training data for OMNN.

After training, OMNN will be cross-tested to generate a node response matrix and a rela-

3

tionship distance matrix. Multiple simulations will be run to get average matrixes, which

will improve performance in case of simulations converge to a local minimum with bad result.

A simple mapping extraction algorithm is run over the matrixes to extract node mappings

and relationship mappings.

Figure 1.1: System architecture of OMNN

1.3 CONTRIBUTIONS OF THE DISSERTATION

The contributions of the dissertation can be summarized as follows:

1. Proposal of a new neural network architecture OMNN for graph mapping, it supports

not only item mapping, but also relationship representation and mapping.

2. Proposal of a novel explicit training method for relationship mapping.

3. Deployment of a new ontology mapping approach with a novel way of combining textual

information and structural information.

4. Evaluation of the OMNN approach with comparison with interesting approaches, OMNN

is expected to be competitive with existing approaches, and the expectation is confirmed

by the evaluation.

4

1.4 OUTLINE

The rest of this dissertation is organized in the following manner. Chapter 2 reviews repre-

sentative works by different researchers for ontology mapping. Chapter 3 describes OMNN

approach for graph mapping and integrated OMNN approach for ontology mapping. Chap-

ter 4 evaluates OMNN graph mapping approach on family tree test cases. Results show

the OMNN approach performs as expected. Chapter 5 gives out the experimental results

of OMNN ontology mapping approach on the benchmark tests from OAEI campaign 2009,

and compares it with other systems from OAEI 2009. Results show OMNN approach is

competitive to other systems. Chapter 6 summarizes our work and outlooks future work.

5

2.0 LITERATURE REVIEW

In the first part of this chapter, main methods of ontology mapping from literatures are re-

viewed. Graph-based methods, machine learning methods, heuristic and Rule-based methods

are the three main categories of mapping methods. Latest ontology mapping systems from

OAEI 2009 are also reviewed. These systems represent most recent state of the art ontol-

ogy mapping systems. Since our approach is neural network based, in the last part of this

chapter, related neural network models are reviewed.

2.1 STATE OF THE ART ONTOLOGY MAPPING APPROACHES

2.1.1 Graph-based Methods

2.1.1.1 Anchor-PROMPT Anchor-PROMPT [NM01], which extends PROMPT [NM00],

is an ontology merging and mapping tool with a sophisticated prompt mechanism for term

matching. It treats an ontology as a directed labeled graph, where concepts are nodes and

relations are arcs.

The Anchor-PROMPT algorithm is based on the observation that if two pairs of terms

are similar and paths connect each pair, then the elements in these paths are often similar

6

as well.

A set of anchors that are identified manually by the user or automatically generated

are then served as input to the system. Anchor-PROMPT traverses the paths between

the anchors and computes the terms along these paths to find similar terms. Finally, the

Anchor-PROMPT produces a set of pairs of semantically related terms.

Figure 2.1 shows one example. There are two pairs of pre-identified anchors, classes A

and B and classes H and G, and two parallel paths, one from A to H in Ontology 1 and

the other from B to G in Ontology 2. The Anchor-PROMPT traverses the two paths and

increments the similarity score between each two classes (i.e., classes C and D, classes E

and F) reached in the same step. Then Anchor-PROMPT repeats the process for all of the

existing paths that start and end at the anchors and cumulatively aggregates the similarity

scores.

The evaluation shows that 75% of the precision of ontologies is developed independently

by different groups of researchers. One obvious limitation with anchor-PROMPT is that it

does not work well when the hierarchies of two ontologies are different, i.e. one has more

layers than the other. The other limitation is that Anchor-PROMPT is time-consuming. Its

worst case run-time behavior is O(n2log(n)), compared to PROMPT O(nlog(n)), GLUE of

O(n2) and QOM O(nlog(n)).

2.1.1.2 Similarity Flooding Similarity Flooding [MGMR02] is a generic graph match-

ing algorithm based on a fixpoint computation. The algorithm takes two graphs (schemas,

catalogs, or other data structures) as input, and produces a mapping between corresponding

nodes of the graphs as output. The principle of the similarity flooding algorithm is that the

7

similarity between two nodes depends on the similarity between their adjacent nodes. The

spread of similarities is similar to how IP packets flood a network in broadcast communica-

tion. This is why the algorithm is called similarity flooding.

Figure 2.2 illustrates the Similarity Flooding algorithm. Two ontologies, A and B, are

represented by directed labeled graphs based on the Open Information Model specification.

The algorithm creates another graph whose nodes, i.e., (a, b) and (a1, b1), are pairs of nodes

of the initial two graphs, and there is an edge l1 between (a, b) and (a1, b1) whenever there

are edges (a, l1, a1) in the first graph and (b, l1, b1) in the second one. Initial similarity

values between nodes are calculated based on their labels. Similarities are then re-computed

between nodes as a function of the similarity between the adjacent nodes. The process is

iterated until converge.

After the algorithm runs, a human is expected to check and adjust the results. The

algorithm is evaluated by counting the number of adjustments made by the human.

Thus, the function of the accuracy used in their evaluation is:

Accuracy = Recall × (2 −
1

P recision
)

This definition shows that the notion of the accuracy only makes sense when precision is

not less than 0.5. If more than half of the mappings are wrong, it would take the user more

effort to remove the false positives and add the missing mappings than to do the mapping

manually from a scratch. Their evaluation shows that their mapping accuracy over seven

users and nine problems averaged 52%.

Similarity Flooding algorithm is a generic graph matching algorithm. Though the Sim-

ilarity Flooding algorithm can be applied to 1-to-n mapping, it obtains this feature by

8

decreasing the threshold of similarity. That is not a real 1-to-n mapping.

Some limitations of the Similarity Flooding algorithm are:

1. The algorithm is based on the assumption that adjacency contributes to similarity prop-

agation. Thus, when adjacency information is not preserved the algorithm will perform

unexpectedly. For example, in some HTML pages, sometimes nodes that are displayed

visually close to each other are structurally far apart from each other. In another case

two cells in an HTML table vertically adjacent could be far apart in the document and

not able to contribute to similarity propagation.

2. The algorithm can only be applied to equal-typed models. The meaning of the edges in

the two models must be similar. For instance, it works when mapping an XML schema

against another XML schema, but not when mapping a relational schema against an

XML schema.

2.1.2 Machine Learning Methods

GLUE [DMDH03] is a system that employs machine learning techniques to find ontology

mappings. If given two ontologies, for each concept in one ontology, GLUE finds the most

similar concept in the other ontology. GLUE works with several similarity measures that

are defined with probabilistic definitions. Multiple learning strategies exploit different types

of information from instances or taxonomy structures. GLUE can also use common sense

knowledge and domain constraints instead of relaxation labeling. It is a well-known con-

straint optimization technique adapted to work efficiently.

Figure 2.3 shows the architecture of GLUE. The Distribution Estimator, Similarity Es-

timator, and Relaxation Labeler module are the three main modules. The Distribution

9

Estimator takes two taxonomies and their data instances as input. Machine learning tech-

niques are then applied to compute joint probability distribution for every pair of concepts.

Not a single learner but a set of base learner and meta learner are used in this step. The

Similarity Estimator combines the joint probability distribution from Distribution Estimator

with a user-supplied similarity function; the result is a similarity matrix with a similarity

value for each pair of concepts. The Relaxation Labeler module then takes the similarity

matrix, domain-specific constraints and heuristic knowledge, and searches for the mapping

configuration that best satisfies the domain constraints and the common knowledge by tak-

ing into account the observed similarities. This mapping configuration is the final output of

GLUE.

The problem of GLUE is that it requires a large number of instances associated with the

nodes in taxonomies. These are not available in most ontology mapping situations. Actually,

it’s not only problem of GLUE; all machine learning based systems have this limitation.

2.1.3 Heuristic and Rule-based Methods

2.1.3.1 PROMPT PROMPT[NM00] is an algorithm that provides a semi-automatic

approach to ontology merging and alignment. Figure 2.4 shows the workflow of PROMPT

algorithm: the gray boxes indicate the actions performed by PROMPT and the white box

indicates the action performed by the user. To make the initial suggestions, PROMPT uses a

measure of linguistic similarity among items in ontologies. PROMPT automatically creates

some preliminary mapping suggestions by using a mix of linguistic similarity and structure

similarity. The user is then guided to make judgments on each of the suggestions. Whenever

user makes some judgment, PROMPT will automatically update the suggestions, determines

10

possible inconsistencies in the state of the ontology based on the userŠs actions, and suggest

ways to remedy these inconsistencies. For instance, if a user says that two classes in two

source ontologies are the same, that means these two ontologies should be merged. PROMPT

would then analyz the properties of these classes, their subclasses and superclasses to look

for similarities of their definitions and suggest additional correspondences. The strategies

and algorithms are based on a general OKBC-compliant knowledge model. Therefore, these

results are applicable to a wide range of knowledge representationand ontology-development

systems.

The formative evaluation shows that PROMPT is very effective. A human expert fol-

lowed 90% of the suggestions that PROMPT generated and that 74% of the total knowledge-

base operations invoked by the user were suggested by PROMPT. One limitation of PROMPT

is that it determines the similarity based on the exact equality of labels and only one simi-

larity is computed. No similarity aggregation is performed.

2.1.3.2 QOM QOM (Quick Ontology Mapping)[ES04] is based on the hypothesis that

mapping algorithms can be streamlined so that the loss of quality is marginal, but the

improvement of efficiency is tremendous for the ad-hoc mapping of large size, light weight

ontologies. It is defined by the process model shown in Figure 2.5, it is started with two

ontologies, which are to be mapped onto one another, as its input.

1. Feature Engineering transforms the initial representation of ontologies into a format

digestible for the similarity calculations. For instance, the subsequent mapping process

may only work on a subset of RDFS primitives. This step may also involve complex

transformations, e.g. it may require the learning of classifiers as input to the next steps.

11

2. Search Step Selection. The run time complexity of a mapping algorithm is directly related

to the number of candidate mapping pairs to be examined. In the Search Step Selection

process, QOM applies a heuristic method that makes use of ontological structures to

reduce the number of candidate mappings, which improves the efficiency of QOM.

3. In the Similarity Computation step, the similarity between entities of ontologies is gen-

erated by using various similarity functions and heuristics. QOM avoids the complete

pair-wise evaluation of ontology trees to improve efficiency.

4. Similarity Aggregation. In this step, similarity measures from different methods are

aggregated. QOM uses sigmoid function to transform similarities first, and then calculate

average of similarities. The sigmoid function will emphasizes high individual similarities

rather than low individual similarities.

5. Interpretation. Three methods exist to interpret similarity results. In the first method,

spurious evidence of similarity is filtered out by a threshold. The second method is

relaxation labeling. The third method combines structural and similarity criteria.

6. Iteration. Through several iterations the quality of the results rises considerably. QOM

limits the number of iterations to 10 because empirical findings indicate that further

iterations produce insignificant changes. Eventually, the output is a mapping table rep-

resenting the relationship between the two ontologies.

Depending on the scenario, QOM can be very effective and efficient, reaching high quality

levels quickly by a factor of 10 to 100 times compared to approaches such as PROMPT and

NOM (a simulation of Anchor-PROMPT algorithm). One problem of QOM is that its

optimization of mapping approach decreases the overall mapping quality. Therefore, QOM

is only recommended when ontologies are large-scaled.

12

Figure 2.1: Anchor-PROMPT. Traversing the paths between anchors.

Figure 2.2: Example of similarity flooding

13

Figure 2.3: Architecture of GLUE

14

Figure 2.4: Workflow of PROMPT algorithm

Figure 2.5: QOM mapping process

15

2.2 THE LATEST ONTOLOGY MAPPING SYSTEMS

Formed in 2004, The Ontology Alignment Evaluation Initiative (OAEI)1 is a coordinated

international initiative to forge evaluations of ontology mapping methods. OAEI organizes a

yearly evaluation event and publishes the tests and results of the event for further analysis.

Starting from 2006, OAEI campaign is associated with ISWC Ontology matching (OM)

workshop each year. The most recent OAEI campaign is OAEI 2009. RiMOM[ZZS+09],

LILY[WX09], ASMOV[JMSK09] and aFlood[HA09] are four top ranked systems from this

campaign.

2.2.1 RiMOM

RiMOM[ZZS+09] is a general ontology mapping system based on Bayesian decision theory.

It utilizes normalization and NLP techniques and integrates multiple strategies for ontology

mapping. Afterwards RiMOM uses risk minimization to search for optimal mappings from

the results of multiple strategies. The process of RiMOM is shown in Figure 2.6.

There are six major steps in a general alignment process of RiMOM.

1. Ontology Preprocessing and Feature Factors Estimation.

2. Strategy Selection. Multiple strategies utilize different features extracted from input

ontologies. The basic idea of strategy selection is that if some features extracted from

two ontologies are very similar, then strategies based on these features will be given

high weight. A feature factor is calculated for each feature; the weight of the strategy

is decided by the feature factors. If a feature factor is too low, the strategy using the

1http://oaei.ontologymatching.org/

16

feature may not be used at all.

3. Single strategy execution. The selected strategies are run to find the alignment. Each

strategy outputs an alignment result.

4. Alignment combination. In this phase RiMOM combines the alignment results ob-

tained by the selected strategies. The combination is conducted by a linear interpolation

method.

5. Similarity propagation(Optional). In this step, structure information is used to refine

alignments and find new alignments.

6. Alignment refinement. Several heuristic rules are used to further refine the alignments

from the previous steps. The main purpose is to remove unreliable alignments.

Figure 2.6: System architecture of RiMOM

17

2.2.2 LILY

LILY[WX09] is a generic ontology mapping system based on the extraction of semantic

subgraph. It exploits both linguistic and structural information in semantic subgraphs to

generate initial alignments. After that, a subsequent similarity propagation strategy is ap-

plied to produce more alignments if necessary. Finally, LILY uses the classic image threshold

selection algorithm to automatically select the threshold, and then extracts final results based

on the stable marriage strategy.

LILY has different functions for different kinds of tasks: for example, Generic Ontology

Matching method (GOM) is used for common matching tasks with small size ontologies;

Large scale Ontology Matching method(LOM) is used for matching tasks with large size

ontologies; Semantic Ontology Matching method (SOM) is used for discovering the semantic

relations between ontologies.

Two limitations of LILY are that it needs the user to manually set the size of subgraph

according to different mapping tasks and the efficiency of semantic subgraph is very low in

large-scale ontologies.

2.2.3 ASMOV

Figure 2.8 illustrates the fully automated ASMOV [JMSK09] mapping process. In the pre-

processing phase, the ontologies are loaded into memory using the Jena ARP parser and

ASMOV’s ontology modeling component. Lexical similarity measures are calculated for

each pair of concepts, properties and individuals. Specifically, four features are analyzed:

textual description (id, label, and comment), external structure (parents and children), in-

ternal structure (property restrictions for classes; types, domains, and ranges for properties),

18

Figure 2.7: System architecture of LILY

and individual similarity. The similarities between pairs of entities along the relational struc-

ture, internal structure, and extensional dimensions are calculated, and an overall similarity

measure (or confidence value) is stored. Then a step of semantic verification is performed

to detect and prune some inconsistent mappings. Five types of inconsistencies are detected:

multiple entity correspondences, Crisscross correspondences, Disjointness-subsumption con-

tradiction, disjointness-subsumption contradiction, and domain and range incompleteness.

2.2.4 AFlood

AFlood[HA09] is an ontology schema matching algorithm that takes the essence of the lo-

cality of reference by considering neighboring concepts and relations to align the entities of

ontologies. The algorithm of aFlood is shown in Figure 2.9. It starts off a seed point called

an anchor (a pair of Şlook-alikeŤ concepts across ontologies). Then small blocks of concepts

and related properties are dynamically collected considering neighborhood information from

the anchor points. Local alignment process will align the small blocks using lexical and

19

Figure 2.8: System architecture of ASMOV

strutual information. Aligned pairs are considered the new anchors. The process is then

repeated until all of the anchors are processed.

The strength of aFlood is that it reduces the number of comparisons between entities by

only matching small blocks not whole ontologies, which increases efficency.

2.3 RELATED NEURAL NETWORK MODELS

The OMNN approach described in this dissertation is inspired by works about mapping

structure analogy. In the classic paper, Hinton [Hin86] demonstrates the role of internal

representations in the network solution of a “family tree” task. In that paper, the network is

trained on triples of the form <agent, relation, patient> to generate the patient, given the

agent and relation. For example, given the input agent=“Colin”, and relation=“mother”,

the network should compute an output that is a representation of Victoria (Colin’s Mother).

20

Figure 2.9: System architecture of aFlood

The network is trained to learn family relations from two disjoint family trees with identical

structures, i.e., there is a one-to-one mapping between individuals in two domains. Since the

output units are trained to distinguish between the two, the hidden unit weights to the input

layer are identical for many homologous pairs, and are exactly opposite for others. While

Hinton’s paper does not address analogy, similarities in the hidden unit representations of

the homology are apparent.

The Identical Elements Neural Network (IENN)[Mun96, MB05, BM06, Mun08] approach

developed by Munro is that a network that can learn high-level features common to different

tasks that are encoded in weight between two hidden layers. The shared weights then could

be used to learn a novel task which has similar high-level attributes with the trained tasks.

This IENN approach uses simultaneous training of multiple tasks, but differs from MTL in

that the tasks do not share a common input. In principle, the tasks can have inputs that

21

have very different coding, dimensionality, etc. Experiment results show that the shared

weights significantly accelerate the learning of the third task more than using random initial

weights. The network can also find analogical correspondence between patterns of tasks.

The IENN network faces difficulty when representing complex structures and relationships.

The only relationship embedded is “neighborhood”; “neighbors” and “self” are represented

as target at output layers.

The IENN network was later extended by the author to include a shared input subvector,

and was applied to tree mapping problem [PM09, MP09]. The network extends the ability

of the IENN by adding an input relationship subvector so that it can represent complex

relationship between input patterns. The network supports theoretically any number of

relationships. Four relationships were used to represent tree structure: “self”, “parent”,

“child”, and “sibling”.

The network architecture proposed in this dissertation can be seen as an offspring of the

IENN[Mun96, MB05, BM06, Mun08] and its extension [PM09, MP09]. The purpose of this

research is to deeply understand how the network works, how it can be applied to graph

mapping, and whether it works for ontology mapping.

22

3.0 OMNN APPROACH

In 3.1, two new network architectures are described for graph mapping problems. The first

network architecture provides a way to separate representation of concepts and relationships.

Thus, it’ll be easier to achieve a deeper understanding of how the network works by analyzing

the representation of concepts and relationships that evolve during training. On top of the

first network architecture, the second network architecture splits the relationship input layer

into two layers, so as to represent and map different relationships from two graphs.

In 3.2, the two network architectures are integrated into an ontology mapping approach.

The integrated approach combines both linguistic information and structural information

for mapping ontologies.

In 3.3, test cases and evaluation criteria are described. Family tree test cases are outlined

for graph mapping approach, and OAEI benchmark test cases are described for an ontology

mapping approach.

23

3.1 GRAPH MAPPING

3.1.1 Introduction

A key element in abstract reasoning is the ability to recognize corresponding elements, fea-

tures, and relationships in different situations that may not appear similar on the surface.

Here, the term structural mapping is used to refer to this aspect of cognition. Let a semantic

graph S be defined as a set of items I and a set of relationships R among them.

S = {IS, RS}

IS = {iS
1 , iS

2 , ..., iS
Ns

}

RS = {rS
1 , rS

2 , ..., rS
Ms

}

rS
k = rS

k (iS
1 , iS

2 , ...)

And let a structural mapping M from one system to another be a specification of corre-

sponding items and relationships.

M(A, B) = ((iA
j1

, iB
j1

), (iA
j2

, iB
j2

), ...; (rA
k1

, rB
k1

), (rA
k2

, rB
k2

)...)

or iB
j = m(iA

j) and rB
k = m(rA

k)

A structural mapping is considered a structural analogy to the extent that corresponding

items are related by corresponding relationships as in following equation:

rB
k (iB

k1
, iB

k2
, ...) = m(rA

k (m(iA
k1

), m(iA
k2

), ...))

In this dissertation, only structural information is used for graph mapping. However,

OMNN ontology mapping (3.2) approach can be used when textual information is available

as well.

24

The IENN[Mun96, MB05, BM06, Mun08] shown in Figure 3.1 has at least one limitation.

Only one type of relationship can be represented. It associates input of one subnet to

target at output of corresponding subnet in vertical task. In the use of IENN, self node and

neighborhood nodes are served as a target. Thus, the relationship represented is a mixture of

self and neighborhood. This restricts the representation power of IENN; it cannot represent

any more relationships.

Here two network architectures are proposed.

3.1.2 Network Architecture 1: Adding Relationship and Representation Layers

3.1.2.1 Network Structure The first network architecture is applied to cases when two

graphs have the same set of relationships, and one to one relationship mappings are known.

Real world examples include taxonomy mapping when the only relationship is “is-a”, tree

graph mapping with “parent” and “child” relationships, as well as ontology mappings where

the relationships are same between two ontologies and their mappings are known.

The first proposed network architecture is shown in Figure 3.2. Ain and Bin are input

subvectors for nodes from graph A and graph B respectively. Sin is the shared subvector

representing the relationship in both graphs. It’s similar to IENN. With IENN, the difference

is that a shared subvector Sin can represent multiple relationships.

In this network, each to-be-mapped node in graph is represented by a single active unit

in input layers (Ain, Bin) and output layers (Aout, Bout), the same way as in IENN. For

relationships representation in input layer (Sin), each relationship is represented by a single

active unit.

Two major differences between OMNN architecture are shown in Figure 3.2 and IENN.

25

First, relationship input layer is added, so that multiple relationships are supported. Sec-

ond, representation layer for items (ABr) and relationships (Sr) are added. In IENN, the

representation of items and relationships has to be decided. The representation is encoded

into patterns of input layer. In IENN, each item is represented by a single active unit in

input layer. One can argue that the first hidden layer has a representation of input items,

but it’s actually a mixed representation of items and relationships. Pure representation of

items or relationship nodes cannot be found. In contract, representation layers are added in

OMNN so that items and relationships have their own representation layers.

Although Figure 3.2 only shows two input subvectors and two output subvectors, it’s ob-

vious that it can be generalized to multiple input subvectors and multiple output subvectors,

so that mapping among multiple graphs can be done.

3.1.2.2 Training The network shown in Figure 3.2 has multiple sub networks. To name

a few, we’ll use:

• NetA : {Ain-ABr-XAB; Sin-SR-XS }-H1-W -H2-VA-Aout;

• NetB : {Bin-ABr-XAB; Sin-SR-XS }-H1-W -H2-VB-Bout;

• NetAB : {Ain-ABr-XAB; Sin-SR-XS }-H1-W -H2-VB-Bout;

• NetBA : {Bin-ABr-XAB; Sin-SR-XS }-H1-W -H2-VA-Aout;

There are two types of training in the network: vertical training and cross training. Next

we’ll use the graphs shown in Figure 3.4 as examples to describe the two types of training.

Vertical training means input and output banks belong to same tasks, e.g. standard back-

propagation training on NetA or NetB. Vertical training is used to train the network to learn

each single graph. The training data is from one graph only, for example, “parent” (Relation)

26

of “Bus” (Subject) is “Vehicle” (Object). In this example, since it’s part of graph A, NetA

will be used. The representation of “Bus” will be activated at Ain; the representation of

“parent” (Relation) will be activated at Sin, and the target at Aout will be the representation

of “Vehicle” (Object).

Cross training means input and output banks belong to different tasks, e.g. standard

backprop training on NetAB or NetBA. Cross training is used to enforce correspondence

between a specific item in graph A and a specific item in graph B; for example, “self” of

“Vehicle” in graph A corresponds to “Automobile” in graph B. NetAB will be used to train

this record. The representation of “Vehicle” will be activated at Ain; the representation of

“self” (Relation) will be activated at Sin; the target at Bout will be the representation of

“Automobile” (Object).

Networks are initialized by setting the weights to small random values from a uniform

distribution. The network is trained with two vertical training tasks (NetA and NetB), and

two cross training tasks (NetAB and NetBA). One training cycle of the networks is:

1. Randomly train a record for NetA

2. Randomly train a record for NetB

3. Train a record for NetAB and the corresponding record for NetBA with a probability.

3.1.2.3 Testing During training and testing, patterns are only presented on one input

bank(Ain or Bin) and shared bank(Sin). This restriction maintains a consistent net input to

the units of H1. There is no reason for such a constraint among the output layers during

testing. Thus, output patterns across all banks can be examined in response to the input on

a single input bank. This makes a correspondence analysis between items in different tasks

27

possible. That is, the output in Aout generated by an Ain can be compared to the outputs

in Bout generated by the set of Bin inputs. Any Bin input is a candidate for the image of

A in the input space of Bin when the Bin input generates a Bout output that is sufficiently

close to the one generated by Ain.

Another approach to correspondence analysis is to compare representations of inputs

from different input banks at the ABr level. If an Ain pattern and a Bin pattern have

identical or nearly identical) ABr representations, then they must give the same (or nearly

the same) output patterns on all output banks.

In this study, the cross testing method is presenting patterns on one input bank and

shared bank and examining output bank of another graph. The relationship presented at

shared bank is “self” only. For example, to map node in graph A to graph B, input pattern

of this node in graph A is presented on Ain, “self” relationship is presented on Sin, then

output at Bout contains information about the mapping. If we want to map node in graph B

to graph A, input pattern of this node in graph B is presented on Bin; “self” relationship is

presented on Sin, and then output at Aout contains information about the mapping. In our

experiment, we only use “self” relationship in cross-testing. It’s possible that using other

relationship will produce different mapping configurations. We’ll leave that for future work.

Since neural network training is subject to local minimum, running only one simulation

may not produce a good performance, and it may not reflect the true performance of the

approach. Running multiple simulations and getting the average of them is a better method

to fairly evaluate the approach. For each node to test in one graph, say graph A, cross-

testing is performed and output for the other graph (Bout) is recorded. Output for all nodes

in graph A can be combined into a matrix. In this matrix, each row represents one node in

28

graph A and each column represents one node in graph B. For each simulation, we have such

a matrix. We obtain a final mapping matrix by averaging all matrices from all simulations.

To derive mappings from the final mapping matrix, naïve descendant extraction algo-

rithm [MS07] is used. Their idea is as such: firstly, they get maximum value in the matrix,

save it into final mapping result, and then remove the row and column it located in; sec-

ondly, they continue this procedure for the left over matrix until no cell left in the matrix.

This way, the number of final mappings is the minimum of number of rows and number of

columns, which is the minimum of number of nodes in two graphs.

3.1.3 Network Architecture 2: Splitting Relationship Input Layer

3.1.3.1 Network Structure When two graphs have different “relationships”, these re-

lationships may also require mapping. In the previous network architecture, input layer Sin

that represents relationships is shared between two subnets. If relationships also need to be

mapped, then they can not be shared before the mapping is done.

The second network architecture shown in Figure 3.3 is proposed to account for different

relationships in two graphs. Now there are two input relationship subvectors for two graphs

respectively. RAin represents relationships from graph A; RBin represents relationships from

graph B. They share one representation layer Rr. This modification enables the network to

represent different relationships in two graphs, in order to map relationships other than

items.

In this network, each item is represented by a single active unit in input layer (Ain, Bin)

and output layer (Aout, Bout); each relationship is represented by a single active unit in

relationship input layer (RAin, RBin). A special “self” relationship is added for the network

29

to learn ontology graphs. The “self” relationship unit appears in both input relationship

layers RAin and RBin.

Again, although Figure 3.3 only shows two input subvectors and two output subvectors,

it’s obvious that it can be generalized to multiple input subvectors and multiple output

subvectors.

3.1.3.2 Training The network shown in Figure 3.3 has multiple sub networks shown in

the following list. In following text, the 3-characters representing network name denote item

input graph, relationship input graph, and item output graph respectively. For example

ABA means subject item is from graph A, relationship is from graph B, and object item is

from graph A.

The network shown in Figure 3.2 has multiple sub networks. To name a few we’ll use:

1. NetAAA : {Ain-ABr-XAB; RAin-RRA-XR }-H1-W -H2-VA-Aout;

2. NetBBB : {Bin-ABr-XAB; RBin-RRB-XR }-H1-W -H2-VB-Bout;

3. NetAAB : {Ain-ABr-XAB; RAin-RRA-XR }-H1-W -H2-VB-Bout;

4. NetBBA : {Bin-ABr-XAB; RBin-RRB-XR }-H1-W -H2-VA-Aout;

Next, we’ll use the graphs shown in Figure 3.4 as examples for describing the two types

of training.

Vertical training records will be generated for each triple (subject item, relationship,

object item) in each graph. Subject item will be presented at item input layer (Ain and

Bin). Relationship will be represented at relationship input layer (RAin and RBin), and

object item will be target at output layer (Aout and Bout). For example, “parent” (Relation)

of “Bus” (Subject) is “Vehicle” (Object). In this example, since it’s part of graph A, then

30

NetAAA will be used. The representation of “Bus” will be activated at Ain, the representation

of “parent” (Relation) will be activated at RAin; the target at Aout will be the representation

of “Vehicle” (Object).

Item cross training records will be generated for anchor mapping between graphs: for

each triple, the object item in one graph will be replaced by mapped item in the other graph.

For example, suppose one triple is in graph A : (CA1, Ra1, CA2), and one triple is in graph

B: (CB1, Rb1, CB2), and there is a mapping as m(CA2, CB2). Then two cross training pairs

will be generated as (CA1, Ra1, CB2), and (CB1, Rb1, CA2). Only “self” relationship is

used in cross training in this dissertation. For example, “self” of “Vehicle” in ontology A

corresponds to “Automobile” in Ontology B. NetAAB will be used to train this record. The

representation of “Vehicle” will be activated at Ain, the representation of “self” (Relation)

will be activated at RAin; the target at Bout will be the representation of “Automobile”

(Object). Only “self” relationship is used in all cross trainings .

Network is initialized by setting the weights to small random values from a uniform

distribution. The network is trained with two vertical training tasks (NetAAA and NetBBB),

two cross training tasks (NetAAB and NetBBA).

One training cycle of the networks is:

1. Randomly train a record for NetAAA

2. Randomly train a record for NetBBB

3. Train a record for NetAAB and the corresponding record for NetBBA with a probability

pc

31

3.1.3.3 Explicit Training Method The cross-training method described in the previ-

ous section only trains item mapping. For relationship mapping, new training method needs

to be developed.

Take a look at Figure 3.3, there is a representation layer for relationships. This layer is

the only connection between relationship input layers and the rest of the network. If two

relationships have the same representation that is represented by the vector of activation at

representation layer, then they have the same effect on the rest of the network. This fact

inspires us to propose a new explicit training method.

A explicit cross training method is to train the correspondence of two relationships by

directly making their representations more similar. Only a portion of the neural network is

involved in this cross training method: the input subvectors and representation layer. For

example, we want to train the relationship correspondence of < R1, R2 >, where R1 belongs

to graph A and R2 belongs to graph B. R1 will be presented at RAin. The output at Rr will

be recorded, which will we name as RR1. Then R2 is presented at RBin. RR1 will be treated

as target value at Rr for R2. Weights RUB will be modified so that R1 and R1 have more

similar representation at Rr with standard back propagation method. Then < R1, R2 > will

be trained so that weight RUA will be modified to make R1’s representation at Rr similar

to that of R2. The sub networks involved in this training method will be named as RNetAB

and RNetBA.

With explicite training method added, training cycle in the previous section needs to be

modified as following.

Network is initialized by setting the weights to small random values from a uniform

distribution. The network is trained with two vertical training tasks (NetAAA and NetBBB),

32

two cross training tasks (NetAAB and NetBBA), and two explicit training tasks (RNetAB

and RNetBA).

One training cycle of the networks is:

1. Randomly train a record for NetAAA

2. Randomly train a record for NetBBB

3. Train a record for NetAAB and the corresponding record for NetBBA with a probability

pc

4. Train a record for RNetAB and the corresponding record for RNetBA with a probability

pr

3.1.3.4 Testing Item mapping is obtained by the same method as described in Section

3.1.2.3. In this section, a method is described for relationship mapping.

As mentioned in Explicit Training section, if two relationships have the same representa-

tion that is represented by the vector of activation at representation layer, then they have the

same effect on the rest of the network. In this case, a metric of distance is defined between

two represtation activations for two relationships.

d(a, b) =

√

√

√

√

1
N

N
∑

i=1

(
Ra

i − Rb
i

2
)2

where N is number of units in relationship representation layer, Ra
i is representation

layer activation for relationship a, Rb
i is representation layer activation for relationship b.

Because activation is between -1 and +1, difference of Ra
i and Rb

i is divided by 2 to make

d between 0 and 1. This distance is just Euclidean distance normalized to [0,1], let’s call it

normalized Euclidean distance.

33

The selection of distance metrics is associated with the error function used by back

propagation training. The error function used is :

Error =
N

∑

i=1

(ti − Ri)
2

where Ri is activation at node i, ti is target at node i. This is the standard error

function for back propagation. If two relationships have a small error, their effects on the

rest of network are similar. By definition, their distance should also be small.

Now let’s consider why cosine similarity is not used to measure similarity between two

relationships. Cosine similarity is a measure of similarity between two vectors of n dimen-

sions by finding the cosine of the angle between them; it is often used to compare documents

in text mining. Cosine similarity is different from normalized Euclidean distance based sim-

ilarity. Let’s define normalized Euclidean distance based similarity as one minus normalized

Euclidean distance so that larger values indicate greater similarity.

Two vectors could have very different cosine similarity and normalized Euclidean distance

based similarity. In some cases normalized Euclidean distance based similarity is small while

cosine similarity is large. One example is: the first vector is (1,1), the second vector is (0.01,

0.01). Their cosine similarity is 1 and their normalized Euclidean distance based similarity

is 0.505. In some other cases normalized Euclidean distance based similarity is large while

cosine similarity is small. One example is: the first vector is (0, 0.001), the second vector

is (0.001, 0). Their cosine similarity is 0 and their normalized Euclidean distance based

similarity is 0.9995.

Normalized Euclidean distance based similarity is a more natural measure because it is

the quantity minimized by training procedure. If we use cosine similarity to test if two rela-

34

tionships are similar to each other, we could obtain different conclusions, so cosine similarity

is not used to measure similarity of relationships.

Distance between each pair of relationship from graph A and B respectively is calculated,

and a relationship distance matrix D is formed.

Similar to Section 3.1.2.3, multiple simulations with random initial weights are per-

formed. For each simulation, a relationship distance matrix is calculated. By averaging

all relationship distance matrices from all simulations, we get a final relationship distance

matrix.

To derive mappings from the final relationship distance matrix, naïve descendant extrac-

tion algorithm [MS07] is used similar to Section 3.1.2.3. However, in this case, the smaller

the value in matrix, the more confident the mapping is. The idea is to first obtain minimum

value in the matrix, save it into final mapping result, and then remove the row and column

it is located in. Then, continue this procedure for the left over matrix until no cell left in the

matrix. This way, the number of final mappings is minimum of number of rows and number

of columns, which is minimum of number of relationship in the two graphs.

35

Figure 3.1: General IENN graph. Extracted from [BM06]

36

Ain Bin Sin

ABr Sr

H1

H2

Aout Bout

UA USUB

XAB XS

W

VA VB

Figure 3.2: Proposed network architecture 1

37

Ain Bin RAin RBin

ABr Rr

H1

H2

Aout Bout

UA URA URBUB

XAB XR

W

VA VB

Figure 3.3: Proposed network architecture 2

38

3.2 APPROACH FOR ONTOLOGY MAPPING

Ontology is a formal, explicit specification of a shared conceptualization in terms of classes,

properties and relations [Gru93a]. Figure 3.4 shows sample ontologies about Vehicle. The

ontology at left has six classes: Object, Vehicle, Bus, Car, BMW, and Focus. The ontology

at right has eight classes: Thing, Automobile, Bus, Car, Luxury Car, Family Car, BMW,

and Focus. The only one relationship is “subClassOf”. In this simple example, properties

and/or instances are not included. Ontology mapping aims to find semantic correspondences

between similar elements in two homogeneous ontologies.

In this paper, “semantic correspondence” refers to “=” relationship and the “elements”

refers to classes and relationships. A mapping between similar elements ei and ej in OA

and OB respectively can be written as: m(ei, ej). In the situation of Ontology A and Ontol-

ogy B, possible mappings are: m(Object, Thing), m(V ehicle, Automobile), m(Bus, Bus),

m(Car, Car), m(BMW, BMW), m(Focus, Focus). We can also substitute the text rep-

resentation of classes by character and number representation, e.g. m(Bus, Bus) can be

simplified to m(B, b). Note that not all classes in one ontology have semantic correspon-

dence in the other ontology, e.g. “Luxury Car” and “Family Car” in the ontology on the

right side have no exact correspondence in the ontology on the left side.

In this approach, we try to extend graph mapping approach to a more generic problem:

ontology mapping.

Graph mapping is only one part of ontology mapping. A successful ontology mapping

approach needs to account for both syntactic and structural information [EBB+04]. In

previous graph mapping approach, syntactic information is not used at all. Also because

39

it requires training data while ontology mapping problem normally does not provide any

training data, it cannot be directly used as an approach for ontology mapping.

Two problems need to be solved. First, syntactic information need to be considered,

otherwise our approach won’t be competitive. Second, cross training data won’t be provided

directly for our neural network. We either need to either generate training data first or

abandon the neural network method.

To introduce syntactic information, any method that can generate textual similarity

measure for each pair of mapping candidates can be used. To solve the second problem –

the lack of training data – selected pairs with high textual similarity will be used as training

data. Specifically, mapping pairs with similarity larger than a threshold will be used as cross

training pairs. We also need to consider the similarity itself, since it conveys how confident

we are about this pair. We should not treat all such pairs the same. There are two ways to

use the similarity. First, we use a high threshold so that training pairs larger than or equal

to this threshold will be treated as high confidence pair and other pairs with less similarity

will be removed from training data. Second, we adjust learning rate of the network based on

similarity. We can directly use similarity as a factor on learning rate shown as the following

Equation:

µ = s × µ0

where µ0 is original learning rate, µ is adjusted learning rate, and s is similarity.

In this dissertation, textual similarity calculation is not our focus. The simple string

matching algorithm used to get textual similarity is edit distance based method. The edit

distance based similarity is calculated between the name (i.e. ID) of elements based on their

40

Levenshtein distance. The similarity is defined by following equation, where EditDist(iA
i , iB

j)

is Levenshtein distance between elements iA
i and iB

j , len(iA
i) and len(iB

j) are the name length

of iA
i and iB

j respectively.

NameSim(iA
i , iB

j) = 1 −
EditDist(iA

i , iB
j)

max(len(iA
i), len(iB

j))

3.3 TEST CASES AND EVALUATION CRITERIA

3.3.1 Test Cases for graph Mapping

This study is an implementation of the 1986 family trees experiment of Hinton[Hin86]. Thus,

the network architecture includes relationship units as part of the input. The original paper

includes 12 relations: sister, brother, wife, husband, mother, father, uncle, aunt, son, daugh-

ter, niece, nephew. With these relationships and only 12 people in each family, there is no

ambiguity, even without cross-training. Therefore, for this study, the relationships have been

reduced to the following: sibling, spouse, parent, child to introduce ambiguity. The “self”

relation has been added to facilitate the identification of correspondences across domains.

Hinton’s original study includes two family trees. For the purpose of distinguishing between

the trees, English names are used in one (top tree) and Italian names are used in the other

(bottom tree) as shown in Figure 3.5.

41

3.3.2 Test Cases for Ontology Mapping

Selected OAEI 20091 benchmark tests are used to evaluate OMNN approach. The domain

of benchmark tests is Bibliographic references, including one reference ontology and 51 test

ontologies generated from the reference ontology, while discarding selected information in

order to evaluate how algorithms behave when this information is lacking. More specifically,

the benchmark tests can be divided into several groups, as shown in Table 3.1, where OR

and OT denote reference and test ontology respectively. An overview of the characteristics

of each benchmark test can be found at .

All test cases share the same reference ontology, while test ontology a different. The

reference ontology contains 33 named classes, 24 object properties, 40 data properties, 56

named individuals and 20 anonymous individuals. In OMNN approach, classes are treated

as items, object properties and data properties are treated as relationships, and individuals

are not used.

Textural information is used to generate high confident mappings, which are used as

cross-training data in OMNN. However, OMNN does not focus on how well texture infor-

mation is used.

In OEAI benchmark tests (Table A1), many test cases could be done perfectly with

simple text based similarity, for example, in test cases 101-104, 203, 221-247, where all

names and comments are the same between reference and test ontologies. If these test cases

are included in evaluation, OMNN approach will get perfect mapping results simply from

first step, when textual information is used to generate preliminary mappings. In OMNN

approach, high confident mappings will be used as cross-training data. For these simple test

1http://oaei.ontologymapping.org/2009/

42

http://oaei.ontologymapping.org/2009/

cases, high confident mappings are solely correct mappings. Our neural network cannot do

anything to improve already perfect mappings, so these test cases are not included in this

evaluation because they will not test the mapping ability of the neural network. Similarly,

test cases that have the same comments or instances between reference and test ontologies

highly rely on textual information to get mappings, so they are not included in evaluation;

they are 201, 202, 206, 208-210, 250-252, 260, and 261. Some test cases have no structure

information at all. Since our network is to use structural information, these test cases are

not included in evaluation, they are 248, 253, 254, and 262. After the filtering, 19 test cases

with limited texture information are selected for our experiments. They are test case 249,

257, 258, 265, 259, 266 and their sub-cases.

In all these test cases, individuals and comments do not exist in test ontology. Only class

names and property names are available as textual information in test ontologies. These

names are either the same as those in reference ontology or random strings. In OMNN

approach, pairs having the same name are used as training pairs.

3.3.3 Evaluation Criteria

For graph mapping test cases, our focus is to evaluate whether OMNN approach can fill in

missing mappings, remove ambiguities based on training data, or generate mapping results

with any possible ambiguities. The evaluation criteria is primarily the number of simulations

with expected results.

For ontology mapping, OAEI Benchmark tests are provided with the reference align-

ments. They are evaluated using standard evaluation measures precision, recall and f-

measure computed against reference alignments. The precision, recall and f-measure are

43

defined as follows:

P recision p =
#correct found mappings

#all found mappings
(3.1)

Recall r =
#correct found mappings

#all possible mappings
(3.2)

F − measure f =
2 × p × r

p + r
(3.3)

44

R Object

A Vehicle

Bus B 1 Car

C

BMW

D

Focus

r Thing

a Automobile

Bus b 2 Car

Luxury
Car 3

C

BMW

4
Family

Car

D

Focus

Figure 3.4: Two sample ontologies about vehicle. They can also be treated as graphs.

45

Figure 3.5: Hinton’s Family Tree with Five Relationships. Note that yellow lines (“parent”

relationship) are covered by green lines (“child” relationship). “Self” relationship is covered

by other relationships most of the time.

46

Table 3.1: The description of OAEI benchmark tests

#101-104 OR and OT have exactly the same or totally different names

#201-210 OR and OT have the same graph but different linguistics in some level

#221-247 OR and OT have the same linguistics but different graph

#248-266 Both graph and linguistics are different between OR and OT

#301-304 OT are real world cases, which we have more interest in

47

4.0 GRAPH MAPPING EVALUATION

Experiments are performed to obtain a deeper understanding of the OMNN architecture.

Several questions to ask are:

• Can the network create node correspondence?

• Can the network create relationship correspondence?

• Can the network make simple inference?

• Is this approach scalable?

• Does it work on unequal structure mapping?

The test cases are the family tree test case shown in Figure 3.5 and several variants.

In this chapter, results of several experiments are reported. In section 4.1, four node

mapping experiments are performed: the purpose is to evaluate if cross-training can help

the network to disambiguate node mappings. In section 4.2, three relationship mapping

experiments are performed: the purpose is to evaluate explicit training method described in

3.1.3.3. In section 4.3, the approach is tested on larger test cases with more nodes, specifically

4-layer and 5-layer family tree test cases: the purpose is to test if the OMNN approach is

scalable. In section 4.4, three experiments with unequal family trees are performed: the

purpose is to explore one to many node mapping (section 4.4.1) and one to many relationship

48

mapping (section 4.4.3), as well as to test the ability to be guided to one of possible mappings

in mapping task with different layers.

4.1 NODE MAPPING

In this study, four experiments are performed:

1. No cross-training

2. Cross-train (Victoria-Lucia) and (James-Marco)

3. Cross-train (Christopher-Roberto) and (Andrew-Piero)

4. Cross-train (Christine-Francesca)

10 simulations are performed for each experiment. Network with representation layer

and shared relationship layer as shown in Figure 3.2 is used. Typical results for the four

experiments are shown in following figures. In following figures with subplots such as Figure

4.1 and Figure 4.2, area of node is proportional to response at output layer of the network and

text labels represents pattern shown in input layer. Red nodes correspond to the “correct”

mapping. Because of the ambiguities, the “correct” mapping is not the only mapping that

shows that the network performs as expected. In all of the following experiments, only the

results from A-B are shown because cross-testing A-B and B-A generate similar results.

4.1.1 Experiment 1

The purpose of this experiment is to demonstrate that ambiguities exist in mapping result

without any cross training. It’s expected that cross testing will show possible ambiguity

49

mappings. Figure 4.1 shows the variability in performance after training in Experiment 1

(no cross-training). Results were generally consistent for the vertical tasks (A-A and B-

B) without ambiguity. However, performance was not always perfect – occasionally (3 in

10 simulations), the network did not converge to an optimal solution. The top figure is

indicative of 6 of the 10 simulations and shows optimal performance. The middle figure is

typical of 3 of the 10 simulations and accomplishes most of the task, but shows confusion

on one item. In one of the 10 simulations (e.g., the bottom figure), the network does not

perform well. It is expected that some fine tuning of the learning parameters will result in

a more uniform convergence to optimal solutions.

While there is no ambiguity for vertical tasks, cross tasks do have ambiguities. Ambiguity

could be from these possibilities:

1. Since the tree is left-right symmetric, left side of one tree could be mapped to right side

of the other, and vice versa. For example, Christopher and Penelope’s family could be

mapped to Pierro and Francesca’s family.

2. Husband and wife cannot be distinguished in cross task. For example, Christopher could

be mapped to Maria, instead of Roberto.

3. Two grandchildren cannot be distinguished in cross task. For example, Colin could be

mapped to Sophia, instead of Alfonso.

These ambiguity effects can also be mixed together. For top layer, effect 1 and effect 2 could

be mixed, it will cause any person in top layer of the English family to be mapped to any

person in top layer of Italian family. For middle layer, only reason 1 is effective, which is

left-right symmetry. That will result two types of mapping: desired mapping and left-right

reversed mapping. For bottom layer, there are two types of mapping: either one could be

50

mapped to either person in the other family in the same layer.

Figure 4.2 shows the ambiguities in cross task (A-B) after training in Experiment 1 (no

cross-training). The top figure shows the result with desired mapping, although it’s just one

of the “correct” mappings. The middle figure shows results with Christopher mapped to

Maria and Penelope mapped to Roberto, which is from ambiguity reason 2; Colin is mapped

to Sophia and Charlotte is mapped to Alfonso, due to the ambiguity reason 3. The bottom

figure shows English family on the left side is mapped to Italian family on the right side,

and vice versa, due to the ambiguity reason 1.

Figure 4.3 shows the variability of performance on the cross task (A-B) for Experiment 1.

The top figure shows the average of response matrix over 10 simulations. The bottom figure

shows the frequency of mapping in 10 simulations. Top layer mapping corresponds to the top

left corner (4X4) of the matrix. As expected, all cells in this sub matrix have values in both

figures. Middle layer mapping corresponds to the center of the matrix where the yellow “X”

shape located. Two kinds of mappings dominate, i.e., one is the desired mapping (top-left to

bottom-right line); the other is left-right reversed mapping (top-right to bottom-left line).

The two persons in the bottom layer could be mapped to either of their correspondences in

the other family, which is shown in bottom right corner (2X2) of the matrix in the figures.

Although it is not evident in the figures, there are no cases of two subtrees in one family

mapped to one subtree in the other family.

4.1.2 Experiment 2

In this experiment, two pairs of people in the center of the family tree are cross-trained:

(Victoria-Lucia) and (James-Marco). The expected result is the ambiguity from left-right

51

symmetry is removed.

Figure 4.4 shows the ambiguities in cross task (A-B) after training in Experiment 2. The

top figure shows results: Christopher mapped to Maria and Penelope mapped to Roberto,

Andrew mapped to Francesca, and Christine mapped to Pierro due to ambiguity reason 2;

Colin mapped to Sophia and Charlotte mapped to Alfonso due to ambiguity reason 3. The

bottom figure shows that when there is ambiguity, two nodes in one family tree could be “co-

activated” by one input node in the other family tree. For example, Christopher activates

both Roberto and Maria, Andrew activates both Pierro and Francesca. This is indicative of

3 of 10 of the simulations. For 8 of 10 of the simulations, middle layer is mapped correctly.

In the two failed simulations, only one node in the middle layer is mapped to another node

in the same layer. Correct mappings are not shown.

Figure 4.5 shows the variability of performance on the cross task (A-B) for Experiment

2. Top figure shows the average of response matrix over 10 simulations. Bottom figure shows

the frequency of mapping in 10 simulations.

Top layer mapping corresponds to top-left corner (4X4) of the matrix. As expected, the

network can not distinguish husband and wife, and thus Christopher and Penelope could

be mapped to either Roberto or Maria, and Andrew and Christine could be mapped to

either Pierro or Francesca. When comparing Figure 4.5 to Figure 4.3 (no cross-training),

Christopher and Penelope can not be mapped to Pierro and Francesca in Experiment 2.

Now, the English family on the left side can only be mapped to the Italian family on the left

side, and the English family on the right side can only be mapped to the Italian family on

the right side. This is because left-right symmetry ambiguity is removed by cross-training

(Victoria-Lucia) and (James-Marco).

52

Middle layer mapping is reflected in the center of the matrix, where only correct mapping

is left. While in Experiment 1, two kinds of mappings are indicated by a yellow “X” shape

in Figure 4.3. Again, this is because of the cross-training of two pairs of nodes in the middle

layer.

Same as Experiment 1, ambiguity still exists for the two persons in the bottom layer.

They could be mapped to either of their correspondences in the other family, this is shown

in bottom right corner (2X2) of the matrix in the figures.

4.1.3 Experiment 3

In this experiment, two pairs of people in the top of the family tree are cross-trained:

(Christopher-Roberto) and (Andrew-Piero). The expected result is the ambiguity in the

top layer and the middle layer is removed. For the top layer, gender ambiguity is removed

because two pairs of male are cross-trained. For the middle layer, ambiguity is from left-

right symmetry. The cross-trained pairs have one pair from left side and one pair from right

side, hence the left-right symmetry ambiguity is also removed. For the bottom layer, the

ambiguity is still there.

Figure 4.6 shows the variability of performance on the cross task (A-B) for Experiment

3. The top figure shows the average of response matrix over 10 simulations. The bottom

figure shows the frequency of mapping in 10 simulations.

As expected, the network can map the two family trees perfectly except the ambiguity in

the top layer and the lower layer. Same as previous experiments, ambiguity still exists for the

two persons in the bottom layer. They could be mapped to either of their correspondences

in the other family, which is shown in bottom right corner (2X2) of the matrix in the figures.

53

4.1.4 Experiment 4

In this experiment, only one pair of people in the top of the family tree are cross-trained:

(Christine-Francesca). The expected result is that the ambiguity in the middle layer and the

right side of top layer is removed. For the top layer, gender ambiguity is removed only in

the right side of the tree because only one pair of females in right side is cross-trained. For

the middle layer, ambiguity is from left-right symmetry. Even though only one pair from

right side is cross-trained, if the network can map the right side to the right side, then the

left side should be mapped to the left side, and hence the left-right symmetry ambiguity is

also removed. For the bottom layer, the ambiguity is still there.

Figure 4.7 shows the variability of performance on the cross task (A-B) for Experiment

4. The top figure shows the average of response matrix over 10 simulations. The bottom

figure shows the frequency of mapping in 10 simulations.

Top layer mapping corresponds to top-left corner (4X4) of the matrix. As expected,

the network can map the two family trees perfectly except for the ambiguity in lower layer.

Same as previous experiments, ambiguity still exists for the two persons in bottom layer.

They could be mapped to either of their correspondences in the other family: this is shown

in bottom right corner (2X2) of the matrix in the figures.

54

Figure 4.1: Variability or performance on the vertical identity tasks (A-A) for Experiment 1

in 4.1.1. Red nodes represent correct mapping. Top: excellent (6/10 simulations). Middle:

good - outputs for Penelope is mapped to Christopher (3/10). Bottom: poor - 6 nodes are

mapped wrong.

55

Figure 4.2: Ambiguities on the cross testing (A-B) for Experiment 1 in 4.1.1. Top: Only

ambiguity is in grandchildren. Middle: Christopher and Penelope are reversed. Bottom:

Left side and right side of the tree are reversed (except grand children).

56

Figure 4.3: Ambiguity exists in cross testing (A-B) for Experiment 1 in 4.1.1. Top: Average

response matrix after 10 simulatioins. Bottom: Mapping matrix with number of simulation

in 10 simulations. 57

Figure 4.4: Ambiguities on the cross testing (A-B) for Experiment 2 in 4.1.2. Top: Top layer

and bottom layer have ambiguity. Bottom: Christopher and Penelope are “co-activated”.

Correct mappings are now shown.

58

Figure 4.5: Ambiguity exists in cross testing (A-B) for Experiment 2 in 4.1.2. Top: Average

response matrix after 10 simulations. Bottom: Mapping matrix with number of simulation

in 10 simulations. 59

Figure 4.6: Ambiguity exists in cross testing (A-B) for Experiment 3 in 4.1.3. Top: Average

response matrix after 10 simulations. Bottom: Mapping matrix with number of simulation

in 10 simulations. 60

Figure 4.7: Ambiguity exists in cross testing (A-B) for Experiment 4 in 4.1.4. Top: Average

response matrix after 10 simulations. Bottom: Mapping matrix with number of simulation

in 10 simulations. 61

4.2 RELATIONSHIP MAPPING

Network with representation layer and individual relationship input layer as shown in Figure

3.3 is used for this task. Comparing this network architecture with the one in Figure 3.2,

shared relationship input layer is split into two layers, one for each vertical task. The

purpose is not only finding node mapping, but also finding relationship mapping. In the

node mapping task, it’s assumed that relationship mapping is known. In this relationship

mapping task, relationship mapping is also unknown. This is a more difficult task than node

mapping alone since there are more unknowns.

Three-layer family tree mapping task as described in 3.1 is used for relationship map-

ping experiments. Experiment 1 is vertical training only, with no cross-training or explicit

relationship training. In Experiment 2, “self” relationship are explicitly trained. In Experi-

ment 3, “self”, “parent”, and “spouse” relationships are explicitly trained. Performance for

relationship mapping , as well as node mapping, are evaluated and compared. One to many

mapping is tested in Experiment 4. In Experiment 1-3, there is no cross-training on the

node.

4.2.1 Experiment 1: No Explicit Training

This experiment serves as a baseline for relationship mapping without any explicit training.

Average distance matrix at relationship representation layer is shown in the top of Figure 4.8.

From the average distance matrix, correct mappings could be derived. Mapping matrix with

simulation counts is shown in the bottom of Figure 4.8. There is still incorrect relationship

mappings. Only 49 counts are falling on correct mapping diagonal line. The ratio is 49/100 =

62

49%.

From the simulation count matrix, relationships can be divided into two groups: “parent”

and “child” in one group and“self”, “spouse” and “sibling” in another group. Mappings are

mostly within one group. Only 4 of 100 cases are cross group mapping (“child” to “self”

and “spouse”, “spouse” to “child”, “sibling” to “child”). One feature associated with this

grouping is whether or not the relationship is cross-layer: “parent” and “child” are cross-

layer relationships, while “self”, “spouse” and “sibling” are within-layer relationships. The

network tends to map cross-layer relationships with cross-layer relationships, and to map

within-layer relationships to within-layer relationships.

Node mapping results are shown in Figure 4.9. The top figure shows average response

matrix and derived mappings. The four wrong mappings are: (Penelope, Emilio), (Christine,

Maria), (Andrew, Francesca), (Arthur, Pierro). Bottom figure shows simulation count for

each mapping, the sum of all numbers is 20 ∗ 12 = 240 and 104 counts are potential correct

mappings considering ambiguity. The ratio is 43%.

63

Figure 4.8: Ambiguity exists in relationship mapping (A-B) for Experiment 1 in 4.2.1. Top:

Average distance matrix after 20 simulations. Bottom: Mapping matrix with number of

simulation in 20 simulations. 64

Figure 4.9: Node mapping resutls: cross testing (A-B) for Experiment 1 in 4.2.1. Top:

Average response matrix after 20 simulations. Bottom: Mapping matrix with number of

simulation in 20 simulations. 65

4.2.2 Experiment 2: Explicit Training on “self”

The “self” relationship is explicitly trained in this experiment. Since the “self” relationship

is added to facilitate the identification of correspondences across domains, its mapping is

always known.

Average distance matrix at relationship representation layer is shown in top of Figure

4.10. From the average distance matrix, correct mappings could be derived. The mapping

matrix with simulation counts is shown in bottom of Figure 4.10. Some relationship map-

pings are still incorrect, but it is better than previous experiment in 4.2.1. 65 counts are

falling on the correct mapping diagonal line. The ratio is 65/100 = 65%. The same ratio in

Experiment 1 is 49%.

The separation of within-layer relationships and cross-layer relationships is not as appar-

ent as in previous experiment. 8 out of 100 cases are cross group mapping.

Node mapping results are shown in Figure 4.11. The top figure shows average response

matrix and derived mappings. The derived mappings are all correct when ambiguity is

considered. The bottom figure shows simulation count for each mapping: the sum of all

numbers is 20 ∗ 12 = 240, 166 counts are potential correct mappings when ambiguity is

taken into consideration. The ratio is 69%. The same ratio in Experiment 1 is 43%.

66

Figure 4.10: Ambiguity exists in relationship mapping (A-B) for Experiment 2 in 4.2.2.

Top: Average distance matrix after 20 simulations. Bottom: Mapping matrix with number

of simulation in 20 simulations. 67

Figure 4.11: Node mapping resutls: cross testing (A-B) for Experiment 2 in 4.2.2. Top:

Average response matrix after 20 simulations. Bottom: Mapping matrix with number of

simulation in 20 simulations. 68

4.2.3 Experiment 3: Explicit Training on “self”, “parent” and “spouse”

The “self”, “parent” and “spouse” relationships are explicitly trained in this experiment.

Average distance matrix at relationship representation layer is shown in the top of Figure

4.12. From the average distance matrix, correct mappings could be derived. Mapping matrix

with simulation counts is shown in the bottom of Figure 4.12. While some relationship

mappings are still incorrect, it is better than the previous experiment in 4.2.2. 94 counts are

falling on the correct mapping diagonal line. The ratio is 94/100 = 94%. The same ratio in

Experiment 2 is 65%.

The separation of within-layer relationships and cross-layer relationships is not as appar-

ent as in the previous experiment. 8 out of 100 cases are cross group mapping.

Node mapping results are shown in Figure 4.2.3. The top figure shows average response

matrix and derived mappings. All derived mappings are correct considering ambiguity.

Bottom figure shows simulation count for each mapping. The sum of all numbers is 20∗12 =

240, among them 181 counts are potentially correct mappings when ambiguity is taken into

consideration. The ratio is 75%. The same ratio in Experiment 2 is 69%.

The segment plot for output at relationship representation layer is shown in Figure 4.14.

The value is shown by the distance from the center to the radius of the segment representing

the variable. Each subplot contains the result for one simulation. In each subplot, the top

plot is for one network, the bottom plot is for the other. The top two plots show results

where correct mapping of relationships could be found. The bottom left plot shows correct

mapping could be found but not perfect. The bottom right plot shows correct mapping

could not be found.

69

Figure 4.12: Ambiguity exists in relationship mapping (A-B) for Experiment 3 in 4.2.3.

Top: Average distance matrix after 20 simulations. Bottom: Mapping matrix with number

of simulation in 20 simulations. 70

Figure 4.13: Node mapping resutls: cross testing (A-B) for Experiment 3 in 4.2.3. Top:

Average response matrix after 20 simulations. Bottom: Mapping matrix with number of

simulation in 20 simulations. 71

Figure 4.14: Segment plot for output at relationship representation layer for Experiment 3

in 4.2.3. The value is shown by the distance from the center to the radius of the segment

representing the variable. Each subplot contains the result for one simulation. In each

subplot, the top plot is for one network, the bottom plot is for the other. The top two plots

show results where correct mapping of relationships could be found. Bottom left: correct

mapping could be found but not perfect. Bottom right: correct mapping could not be found.

72

4.3 SCALABILITY TEST

To evaluate if the OMNN approach works on a larger scale problem, the family tree test

case is expanded to more layers. For the 3-layer family tree as shown in Figure 3.5, 12 nodes

are in each family tree. For the purpose of algorithm statement, the nodes in the 3 layer

family tree are numbered from left to right, top to bottom as shown in top of Figure 4.15.

To expand i layer family tree to i + 1 layer, following algorithm is used. Suppose there are

n node in i layer family tree.

1. add node (n+1) as spouse of node (n-1).

2. copy node 1 to (n+1) to node (n+2) to (2n+2), relationship is also copied.

3. connect node n and 2n with spouse relationship.

4. add node (2n+3) and (2n+4) as children of node n and 2n.

The node number of i + 1 layer tree is 2n + 4. It could be solved that k layer family tree

has 2k+1 − 4 nodes. 4-layer family tree has 28 nodes. 5-layer family tree has 60 nodes.

To illustrate the algorithm, example of expanding 3-layer family tree to 4-layer family

tree is worked through as following. n = 12 in this example.

1. add node 13 as spouse of node 11.

2. copy node 1 to 13 to node 14 to 26, relationship is also copied.

3. connect node 12 and 24 with spouse relationship.

4. add node 27 and 28 as children of node 12 and 24.

The generated 4-layer family tree is shown in middle of Figure 4.15. 5-layer family tree

is shown in bottom of Figure 4.15.

73

4.3.1 Experiment 1: 4-layer Family Tree

In this experiment, 4-layer family trees as shown in middle of Figure 4.15 are used. 28 nodes

are in each family tree. The purpose of this experiment is to show that the OMNN can infer

mappings correctly with cross-training. Similar to 4.1.3, in the top layer of the tree, one

person from each pair of couples is cross-trained. The list of node number cross-trained is:

1;3;14;16. Four nodes are cross-trained in each family tree in total. This is about 14% of the

total nodes in each tree.

The cross-training should remove all ambiguities except those at the lowest level. Since

the cross-trained pairs are all at the top layer, the inference has to propagate from the top

to the bottom. This experiment is more difficult than the experiment in 4.1.3 because there

is one more layer for inference to propagate.

Figure 4.16 and Figure 4.17 show the variability of performance on the cross task (A-B)

for Experiment 1. Figure 4.16 shows the average of response matrix over 10 simulations.

Figure 4.17 shows the frequency of mapping in 10 simulations. All nodes, except two at the

bottom layer are mapped correctly, with a few outliers, as shown in these two figures.

Top layer mapping corresponds to top-left corner (4X4) of the matrix. As expected, the

network can map the two family trees perfectly except the ambiguity in the lower layer.

Similar to the previous experiments, ambiguity still exists for the two persons in the bottom

layer. They could be mapped to either of their correspondences in the other family, this is

shown in bottom right corner (2X2) of the matrix in the figures.

74

4.3.2 Experiment 2: 5-layer Family Tree

In this experiment, 5-layer family trees, as shown at the bottom of Figure 4.15, are used. 60

nodes are in each family tree. The purpose of this experiment is to show that the OMNN

can infer mappings correctly with cross-training. Similar to 4.1.3 and 4.3.1, in the top layer

of the tree, one person from each pair of couples is cross-trained. The list of node number

cross-trained is: 1;3;14;16;30;32;43;45. 8 nodes are cross-trained in each family tree in total.

This is about 13% of total nodes in each tree.

The cross-training should remove all ambiguities except at lowest level. Since the cross-

trained pairs are all at the top layer, the inference has to propagated from top to bottom.

This experiment is more difficult than the experiment in 4.1.3, because there is one more

layer for inference to propagate.

Figure 4.18 and Figure 4.19 show the variability of performance on the cross task (A-B)

for Experiment 2. Figure 4.18 shows the average of response matrix over 10 simulations.

Figure 4.19 shows the frequency of mapping in 10 simulations. All nodes except the two at

the bottom layer are mapped correctly, with several outliers, as shown in these two figures.

75

Figure 4.15: Family tree test cases. Top: 3 layers. Middle: 4 layers. Bottom: 5 layers.

Note that the yellow lines (“parent” relationship) are covered by the green lines (“child”

relationship). “Self” relationship is covered by other relationships most of the time.

76

Figure 4.16: Ambiguity exists in cross testing (A-B) for Experiment 1 in 4.3.1. Average

response matrix after 10 simulations.

77

Figure 4.17: Ambiguity exists in cross testing (A-B) for Experiment 1 in 4.3.1. Mapping

matrix with number of simulation in 10 simulations.

78

Figure 4.18: Ambiguity exists in cross testing (A-B) for Experiment 2 in 4.3.2. Average

response matrix after 10 simulations.

79

Figure 4.19: Ambiguity exists in cross testing (A-B) for Experiment 2 in 4.3.2. Mapping

matrix with number of simulation in 10 simulations.

80

4.4 UNEQUAL GRAPH MAPPING

4.4.1 Experiment 1: Different Number of Nodes

In this experiment, two 3-layer familytrees are used. They are similar to those shown in

Figure 3.5, except in the Italian family, “Sophia” is removed.

Just as experiment setting in 4.1.3, two pairs of people in the top of the family tree are

cross-trained: (Christopher-Roberto) and (Andrew-Piero).

Network with representation layer and shared relationship layer as shown in Figure 3.2

is used. 10 simulations were performed.

Figure 4.20 shows the variability of performance on the cross task (A-B) for Experiment

3. The top figure shows the average of response matrix over 10 simulations. The bottom

figure shows the frequency of mapping in 10 simulations. As expected, the network can map

the two family trees perfectly. “Colin” and “Charlotte” are both mapped to “Alfonso” with

roughly the same times of simulation, and the average responses are equally strong.

4.4.2 Experiment 2: 3-Layer to 4-Layer Mapping

In this experiment, two familytrees with different layers are mapped. Specifically, 3-layer

familytree is mapped to 4-layer family tree. The two trees are shown in Figure 4.15.

There are at least 3 ways to map the 3-layer familytree to 4-layer family tree. The first

way is to map 3-layer family tree to nodes 1-12 (a subtree) in 4-layer familytree. The second

way is to map 3-layer family tree to nodes 14-25(another subtree) in 4-layer familytree. The

third way is to map nodes 1-12 in 3-layer familytree to nodes 7, 8, 20, 21, 13, 11, 12, 24, 25,

26, 27 28 in 4-layer familytree.

81

In the first test case, first way of mapping is the desired mapping. Nodes 1-4, 11,

12 in 3-layer family tree are cross-trained. 20 simulations were performed. Network with

representation layer and shared relationship layer, as shown in Figure 3.2, is used.

Figure 4.4.2 shows average response matrix and derived mappings. The derived mappings

are all correct.

In the second test case, the third way of mapping is the desired mapping. Nodes 1-4,

11, 12 in 3-layer familytree are cross-trained. 20 simulations were performed. Network with

representation layer and shared relationship layer as shown in Figure 3.2 is used.

Figure 4.4.2 shows average response matrix and derived mappings. The derived mappings

are all correct.

82

Figure 4.20: Cross testing (A-B) for Experiment in 4.4.1. Top: Average response matrix

after 10 simulations. Bottom: Mapping matrix with number of simulation in 10 simulations.

83

Figure 4.21: Node mapping results: cross testing (A-B) for 3-Layer to 4-Layer Mapping in

4.4.2. Average response matrix after 20 simulations.

84

Figure 4.22: Node mapping results: cross testing (A-B) for 3-Layer to 4-Layer Mapping in

4.4.1. Average response matrix after 20 simulations.

85

4.4.3 Experiment 3: One to Many Relationship Mapping

In this experiment, one to many relationship mapping is tested. Although the method used

in this dissertation could only derive one to one mapping, one to many mapping could still

be explored.

In this experiment, two 3-layer familytrees are to be mapped as shown in Figure 3.5.

The English family has no change; however, the “sibling” relationship in the Italian family is

replaced by “brother” and “sister”. Specifically, it affects the relationship between “Emilio”

and “Lucia”, “Marco” and “Angela”, and “Alfonso” and “Sophia”.

No relationship are explicitly trained in this experiment. Expectation is that “sibling” in

the English family is mapped to both “brother” and “sister” in the Italian family. “Christo-

pher” and “Roberto” and “Andrew” and “Pierro” are cross trained.

Average distance matrix at relationship representation layer is shown in the top of Fig-

ure 4.23. From the average distance matrix, correct mappings could be derived: “sibling”

to “brother” and “sibling” to “sister” have roughly equal distance. Mapping matrix with

simulation counts is shown in bottom of Figure 4.23.

Node mapping results are shown in Figure 4.4.3. The top figure shows average response

matrix and derived mappings. The derived mappings are all correct when ambiguity is taken

into consideration. The bottom figure shows simulation count for each mapping.

86

Figure 4.23: Relationship mapping (A-B) for one to many relationship mapping experiment

from 4.4.3. Top: Average distance matrix after 20 simulations. Bottom: Mapping matrix

with number of simulation in 20 simulations.87

Figure 4.24: Node mapping results: cross testing (A-B) for one to many relationship mapping

experiment in 4.4.3. Top: Average response matrix after 20 simulations. Bottom: Mapping

matrix with number of simulation in 20 simulations.88

Figure 4.25: Segment plot for output at relationship representation layer for one to many

relationship mapping experiment in 4.4.3. The value is shown by the distance from the

center to the radius of the segment representing the variable. Each subplot contains result

for one simulation. In each subplot, top plot is for one network, bottom plot is for the other.

Bottom right: correct mapping could not be found. Others: correct mapping of relationships

could be found but not perfect.

89

4.5 SUMMARY

Experiment results in section 4.1 shows that cross-training helps the network to disambiguate

node mappings. Section 4.2 shows that explicit training method works: the training pairs

have no ambiguity in testing results, and with more training pairs, the network can get

all correct relationship mappings. Section 4.3 shows that the OMNN approach is scalable

on 4-layer and 5-layer family tree test cases. One-to-many node mapping and one-to-many

relationship mapping are explored in section 4.4, it shows that the network has the ability

to get one-to-many mappings. Mapping between family trees with different layers is tested

in section 4.4, it shows that the network does disambiguation with cross-training.

With all these test cases, we have enough confidence to apply the network to ontology

mapping tasks. Results are shown in next chapter.

90

5.0 ONTOLOGY MAPPING EVALUATION

Experiments are performed to obtain deeper understanding of the OMNN approach. TSev-

eral questions to ask are:

• Does the OMNN neural network work in the context of ontology mapping? If it does,

how much does it improve from preliminary mappings?

• Does OMNN’s performance improve when more training data available?

• How does OMNN perform compare with other systems in OAEI 2009?

Selected OAEI benchmark tests are used to evaluate OMNN approach. All test cases

share the same reference ontology, while the test ontologyis different. The reference ontology

contains 33 named classes, 24 object properties, 40 data properties, 56 named individuals

and 20 anonymous individuals. In the OMNN approach, classes are treated as items; object

properties and data properties are treated as relationships; lastly individuals are not used.

Texture information is used to generate high confident mappings which are then used as

cross-training data in OMNN. However OMNN does not focus on how well texture informa-

tion is used.

In order to compare with other approaches that heavily use texture information, 19 test

cases with limited texture information are selected to be used in our experiments. They are

test case 249, 257, 258, 265, 259, 266 and their sub-cases.

91

In all of these test cases, individuals and comments do not exist in test ontology. Only

class names and property names are available as textual information in test ontologies. These

names are either the same as those in reference ontology or random strings. In the OMNN

approach, those pairs having same names are used as training pairs.

5.1 EXPERIMENT 1: TEST CASE 249

In OAEI benchmark test case 249, structure and relationships are the same between the two

ontologies. All comments and instances are removed in test ontology. In test ontology, all

names are replaced with randomly generated strings. Basically, all of the texture information

is removed; only structural information could be used. Four sub-cases are generated with

different percentage of “names” replaced with random strings. Test cases 249-2, 249-4, 249-6,

249-8 with 20%, 40% , 60%, and 80% “names” replaced with random strings respectively.

Reference ontology and test ontology in test case 249 are shown in Figure 5.1. Sev-

eral generic classes have same name in the two ontologies: owl#Thing, foaf#Organization,

rdf#List, foaf#Person, owl#Thing, XMLSchema#string, XMLSchema#nonNegativeInteger,

XMLSchema#gDay, XMLSchema#gMonth, XMLSchema#gYear, XMLSchema#language.

Two properties have same name in the two ontologies: rdf#first,rdf#rest.

Average distance matrix at relationship representation layer is shown in Figure 5.2.

Node mapping results are shown in Figure 5.3. The figure shows average response matrix

and derived mappings.

For test case 249-2, 26 classes in test ontology have the same names with their mapping

classes in reference ontology, and 51 properties in test ontology have the same names with

92

their mapping properties in reference ontology. These classes and properties are used as

cross training pairs in OMNN. Average distance matrix at relationship representation layer

is shown in Figure 5.4. Node mapping results are shown in Figure 5.5. The figure shows

average response matrix and derived mappings. With more cross training pairs, performance

is improved.

The performance of OMNN on all 5 test cases are compared with other systems from

2009 OAEI in Table 5.1. OMNN’s performance is better than 8 of the 12 systems, and

comparable to the other 4: “aflood”, “ASMOV”, “Lily”, and “RiMOM”. The significance

test is at the final part of this chapter.

Table 5.1: Experiment Results for Benchmark 249

Systems

249 249-2 249-4 249-6 249-8

(no training) (80% training) (60% training) (40% training) (20% training)

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

OMNN 0.63 0.63 0.63 0.97 0.97 0.97 0.92 0.92 0.92 0.84 0.84 0.84 0.8 0.8 0.8

aflood 1 0.59 0.74 1 0.97 0.98 1 0.92 0.96 1 0.88 0.94 1 0.84 0.91

AgrMaker 1 0.01 0.02 1 0.79 0.88 1 0.6 0.75 1 0.41 0.58 1 0.22 0.36

aroma 1 0.01 0.02 0.94 0.78 0.85 0.92 0.63 0.75 0.82 0.42 0.56 0.89 0.25 0.39

ASMOV 0.82 0.62 0.71 0.99 0.95 0.97 0.93 0.89 0.91 0.91 0.82 0.86 0.84 0.72 0.78

DSSim 1 0.01 0.02 0.99 0.79 0.88 1 0.6 0.75 0.98 0.41 0.58 0.95 0.22 0.36

GeRoMe 0.25 0.01 0.02 0.96 0.89 0.92 0.83 0.76 0.79 0.73 0.65 0.69 0.68 0.4 0.5

kosimap 1 0.03 0.06 0.95 0.79 0.86 0.9 0.63 0.74 0.83 0.49 0.62 0.75 0.25 0.38

Lily 0.76 0.73 0.74 1 0.97 0.98 0.98 0.91 0.94 0.98 0.87 0.92 0.95 0.82 0.88

MapPSO 0 0 0 0 0 0 0.23 0.23 0.23 0 0 0 0.1 0.1 0.1

RiMOM 0.87 0.61 0.72 1 0.96 0.98 0.98 0.88 0.93 0.93 0.78 0.85 0.81 0.65 0.72

SOBOM 0 0 0 1 0.48 0.65 1 0.35 0.52 1 0.2 0.33 1 0.09 0.17

TaxoMap 0 0 0 0.9 0.29 0.44 0.78 0.22 0.34 0.67 0.16 0.26 0.8 0.08 0.15

93

Figure 5.1: Benchmark Test 249. Top: Reference ontology. Bottom: Test ontology.

94

Figure 5.2: Relationship mapping (A-B) for test case 249 in 5.1. Average distance matrix

after 20 simulations.

95

Figure 5.3: Node mapping resutls: cross testing (A-B) for test case 249 in 5.1. Average

response matrix after 20 simulations.

96

Figure 5.4: Relationship mapping (A-B) for test case 249-2 in 5.1. Average distance matrix

after 20 simulations.

97

Figure 5.5: Node mapping resutls: cross testing (A-B) for test case 249-2 in 5.1. Average

response matrix after 20 simulations.

98

5.2 EXPERIMENT 2: TEST CASE 257

In test case 257, structure is the same between the two ontologies. All comments, instances

are removed from test ontology. Moreover, all relationships (except subClassOf) are removed

in test ontology as well, which is the only difference between test case 257 and test case 249.

In test ontology, all names are replaced with randomly generated strings. Basically, all of

the texture information is removed, only simple structural information could be used. Four

sub-cases are generated with different percentage of ”names“ replaced with random strings.

Test cases 257-2, 257-4, 257-6, 257-8 with 20%, 40% , 60%, and 80% ”names“ replaced with

random strings respectively.

Reference ontology and test ontology in test case 257 are shown in Figure 5.6. Sev-

eral generic classes have same name in the two ontologies: owl#Thing, foaf#Organization,

rdf#List, owl#Thing.

Node mapping results are shown in Figure 5.7. The figure shows average response matrix

and derived mappings.

For test case 257-2, 26 classes in test ontology have the same names with their mapping

classes in reference ontology, and 51 properties in test ontology have the same names with

their mapping properties in reference ontology. These classes and properties are used as cross

training pairs in OMNN. Node mapping results are shown in Figure 5.8. The figure shows

average response matrix and derived mappings. With more cross training pairs, performance

is improved. The performance of OMNN on all 5 test cases are compared with other systems

from 2009 OAEI in Table 5.2. OMNN’s performance is better than 7 of the 12 systems,

comparable to the other 5: “aflood”, “ASMOV”, “Lily”, “MapPSO” and “RiMOM”. The

99

significance test is given at the final part of this chapter.

Table 5.2: Experiment Results for Benchmark 257

Systems

257 257-2 257-4 257-6 257-8

(no training) (80% training) (60% training) (40% training) (20% training)

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

OMNN 0.27 0.27 0.27 1 1 1 0.94 0.94 0.94 0.79 0.79 0.79 0.67 0.67 0.67

aflood 1 0.85 0.92 1 0.97 0.98 1 1 1 1 1 1 0.91 0.91 0.91

AgrMaker 0 0 0 1 0.79 0.88 1 0.61 0.76 1 0.42 0.59 1 0.21 0.35

aroma 0 0 0 0.93 0.76 0.84 0.96 0.7 0.81 0.89 0.48 0.62 0.91 0.3 0.45

ASMOV 0.5 0.06 0.11 1 0.97 0.98 1 0.88 0.94 0.88 0.7 0.78 0.83 0.45 0.58

DSSim 0 0 0 0.96 0.79 0.87 1 0.61 0.76 0.93 0.42 0.58 0.88 0.21 0.34

GeRoMe 0 0 0 0.97 0.88 0.92 0.96 0.79 0.87 0.81 0.64 0.72 1 0.36 0.53

kosimap 1 0.06 0.11 0.96 0.79 0.87 0.95 0.61 0.74 0.83 0.45 0.58 0.75 0.27 0.4

Lily 1 0.12 0.21 1 0.97 0.98 1 0.94 0.97 0.87 0.82 0.84 0.85 0.67 0.75

MapPSO 0.24 0.24 0.24 0.88 0.88 0.88 0.94 0.94 0.94 0.61 0.61 0.61 0.52 0.52 0.52

RiMOM 0.58 0.58 0.58 0.85 0.85 0.85 0.88 0.88 0.88 0.73 0.73 0.73 0.55 0.55 0.55

SOBOM 0 0 0 1 0.79 0.88 1 0.61 0.76 1 0.42 0.59 1 0.21 0.35

TaxoMap 0 0 0 0.9 0.85 0.87 0.81 0.67 0.73 0.67 0.48 0.56 0.8 0.24 0.37

100

Figure 5.6: Benchmark Test 257. Top: Reference ontology. Bottom: Test ontology.

101

Figure 5.7: Node mapping resutls: cross testing (A-B) for test case 257 in 5.2. Average

response matrix after 20 simulations.

102

Figure 5.8: Node mapping resutls: cross testing (A-B) for test case 257-2 in 5.2. Average

response matrix after 20 simulations.

103

5.3 EXPERIMENT 3: TEST CASE 258

In test case 258, test ontology has a flattened structure based on reference ontology. Com-

pared with reference ontology, four classes are removed: “Academic”, “Book”, “Informal”

and “Part”. These four classes have the same parent “Reference”. Only one sibling of them,

i.e., “Report”, still exists in test ontology. All their children in reference ontology are now

connected with “Reference” directly.

Relationships are kept in the same way as reference ontology. All comments and in-

stances are removed in test ontology. In test ontology, all names are replaced with randomly

generated strings. Basically all of the texture information is removed. Only simple structural

information can be used. Four sub-cases are generated with different percentage of ”names“,

i.e., test cases 258-2, 258-4, 258-6, 258-8 with 20%, 40% , 60%, and 80% of ”names“ replaced

with random strings.

Reference ontology and test ontology in test case 258 are shown in Figure 5.9. Several

generic classes have the same name in the two ontologies: owl#Thing, foaf#Organization,

rdf#List, foaf#Person, owl#Thing, XMLSchema#string, XMLSchema#nonNegativeInteger,

XMLSchema#gDay, XMLSchema#gMonth, XMLSchema#gYear, XMLSchema#language.

Two properties have the same name in the two ontologies: rdf#first,rdf#rest.

Average distance matrix at relationship representation layer is shown in Figure 5.10.

Node mapping results are shown in Figure 5.11. The figure shows average response

matrix and derived mappings.

For test case 258-2, 23 classes in test ontology have same names with their mapping classes

in reference ontology, and 51 properties in test ontology have same names with their mapping

104

properties in reference ontology. These classes and properties are used as cross training pairs

in OMNN. Average distance matrix at relationship representation layer is shown in Figure

5.12. Node mapping results are shown in Figure 5.13. The figure shows average response

matrix and derived mappings. With more cross training pairs, the performance is improved.

The performance of OMNN on all 5 test cases are compared with other systems from

2009 OAEI in Table 5.3.The performance of OMNN is better than 7 of the 12 systems, and

comparable to the other 5: “aflood”, “ASMOV”, “Lily”, “MapPSO” and “RiMOM”. The

significance test is given at the final part of this chapter.

Table 5.3: Experiment Results for Benchmark 258

Systems

258 258-2 258-4 258-6 258-8

(no training) (80% training) (60% training) (40% training) (20% training)

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

OMNN 0.47 0.47 0.47 0.94 0.94 0.94 0.88 0.88 0.88 0.81 0.81 0.81 0.69 0.69 0.69

aflood 1 0.09 0.17 1 0.9 0.95 0.97 0.78 0.86 0.97 0.67 0.79 1 0.53 0.69

AgrMaker 1 0.01 0.02 1 0.8 0.89 1 0.6 0.75 1 0.41 0.58 1 0.23 0.37

aroma 1 0.01 0.02 0.92 0.76 0.83 0.92 0.61 0.73 0.8 0.4 0.53 0.8 0.22 0.35

ASMOV 0.82 0.63 0.71 0.99 0.94 0.96 0.93 0.88 0.9 0.92 0.82 0.87 0.83 0.69 0.75

DSSim 1 0.01 0.02 0.99 0.8 0.88 1 0.6 0.75 0.97 0.41 0.58 0.95 0.23 0.37

GeRoMe 0.25 0.01 0.02 0.9 0.87 0.88 0.87 0.74 0.8 0.84 0.57 0.68 0.83 0.38 0.52

kosimap 1 0.01 0.02 0.99 0.74 0.85 0.98 0.57 0.72 0.95 0.4 0.56 0.91 0.23 0.37

Lily 0.76 0.56 0.64 0.99 0.96 0.97 0.96 0.88 0.92 0.95 0.83 0.89 0.94 0.8 0.86

MapPSO 0.1 0.1 0.1 0.28 0.28 0.28 0.17 0.17 0.17 0.07 0.08 0.07 0.12 0.12 0.12

RiMOM 0.5 0.15 0.23 0.99 0.76 0.86 0.97 0.81 0.88 0.8 0.74 0.77 0.79 0.58 0.67

SOBOM 0 0 0 1 0.45 0.62 1 0.32 0.48 1 0.17 0.29 1 0.09 0.17

TaxoMap 0 0 0 0.8 0.26 0.39 0.9 0.2 0.33 0.81 0.14 0.24 0.89 0.09 0.16

105

Figure 5.9: Benchmark Test 258. Top: Reference ontology. Bottom: Test ontology.

106

Figure 5.10: Relationship mapping (A-B) for test case 258 in 5.3. Average distance matrix

after 20 simulations.

107

Figure 5.11: Node mapping resutls: cross testing (A-B) for test case 258 in 5.3. Average

response matrix after 20 simulations.

108

Figure 5.12: Relationship mapping (A-B) for test case 258-2 in 5.3. Average distance matrix

after 20 simulations.

109

Figure 5.13: Node mapping resutls: cross testing (A-B) for test case 258-2 in 5.3. Average

response matrix after 20 simulations.

110

5.4 EXPERIMENT 4: TEST CASE 259

In test case 259, test ontology has an expanded structure based on reference ontology. Hi-

erarchy of the test ontology in test case 259 is shown in Figure 5.14. There are 33 classes

added to the existing 33 classes.

Relationships are kept in the same way as reference ontology. All comments, instances are

removed in test ontology. In test ontology, all names are replaced with randomly generated

strings. Basically all of the texture information is removed, and only simple structural

information can be used. One sub-case 259-2 is generated with 20% of ”names“ replaced

with random strings. Test cases 259-4, 259-6, and 259-8 are the same as 259-2, which is

probably because of human error.

Several generic classes have same names in the two ontologies: owl#Thing, foaf#Organization,

rdf#List, foaf#Person, owl#Thing, XMLSchema#string, XMLSchema#nonNegativeInteger,

XMLSchema#gDay, XMLSchema#gMonth, XMLSchema#gYear, XMLSchema#language.

Two properties have same names in the two ontologies: rdf#first,rdf#rest.

Average distance matrix at relationship representation layer is shown in Figure 5.15.

Node mapping results are shown in Figure 5.16. The figure shows average response matrix

and derived mappings.

For test case 259-2, 26 classes in test ontology have same names with their mapping classes

in reference ontology, and 51 properties in test ontology have same names with their mapping

properties in reference ontology. These classes and properties are used as cross training pairs

in OMNN. Average distance matrix at relationship representation layer is shown in Figure

5.17. Node mapping results are shown in Figure 5.18. The figure shows average response

111

matrix and derived mappings. With more cross training pairs, the performance of OMNN is

improved. The performance of OMNN on the 2 test cases compared with other systems from

2009 OAEI in Table 5.4. The performance of OMNN is better than 9 of the 12 systems and

comparable to the other 3: “aflood”, “ASMOV” and “Lily”. The significance test is given at

the final part of this chapter.

Table 5.4: Experiment Results for Benchmark 259

Systems

259 259-2

(no training) (80% training)

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

P
re

ci
si

o
n

R
ec

a
ll

F
-M

ea
su

re

OMNN 0.4 0.4 0.4 0.95 0.95 0.95

aflood 0.86 0.06 0.11 0.98 0.92 0.95

AgrMaker 1 0.01 0.02 1 0.79 0.88

aroma 0.86 0.06 0.11 0.9 0.78 0.84

ASMOV 0.81 0.62 0.7 0.97 0.93 0.95

DSSim 0.88 0.07 0.13 0.98 0.8 0.88

GeRoMe 0.28 0.05 0.08 0.91 0.9 0.9

kosimap 1 0.03 0.06 0.92 0.78 0.84

Lily 0.91 0.73 0.81 0.97 0.94 0.95

MapPSO 0.04 0.04 0.04 0.23 0.23 0.23

RiMOM 0.53 0.16 0.25 0.86 0.7 0.77

SOBOM 0 0 0 1 0.44 0.61

TaxoMap 0 0 0 0.87 0.28 0.42

112

Figure 5.14: Hierarchy of classes in Benchmark Test 259

113

Figure 5.15: Relationship mapping (A-B) for test case 259 in 5.4. Average distance matrix

after 20 simulations.

114

Figure 5.16: Node mapping results: cross testing (A-B) for test case 259 in 5.4. Average

response matrix after 20 simulations.

115

Figure 5.17: Relationship mapping (A-B) for test case 259-2 in 5.4. Average distance matrix

after 20 simulations.

116

Figure 5.18: Node mapping results: cross testing (A-B) for test case 259-2 in 5.4. Average

response matrix after 20 simulations.

117

5.5 EXPERIMENT 5: TEST CASE 265

Test case 265 is similar with test case 258, where struncture is flatteren compared with

reference ontology. The difference is, in 265 all relationships (except subClassOf) are removed

in test ontology. As other test cases, all comments, instances are removed from test ontology.

In test ontology, all names are replaced with randomly generated strings. Basically all of the

texture information is removed, only simple structural information could be used.

Node mapping results are shown in Figure 5.19. The figure shows average response

matrix and derived mappings.

The performance of OMNN compared with other systems from 2009 OAEI is shown in

Table 5.5. The performance of OMNN is better than 8 of the 12 systems, and comparable

to the other 4: “aflood”, “ASMOV”, “Lily”, and “RiMOM”. The significance test is given at

the final part of this chapter.

118

Table 5.5: Experiment Results for Benchmark 265

Systems

265

(no training)
P

re
ci

si
o
n

R
ec

a
ll

F
-M

ea
su

re

OMNN 0.28 0.28 0.28

aflood 0.8 0.14 0.24

AgrMaker 0 0 0

aroma 0 0 0

ASMOV 0.4 0.07 0.12

DSSim 0 0 0

GeRoMe 0 0 0

kosimap 0.67 0.07 0.13

Lily 0.8 0.14 0.24

MapPSO 0.1 0.1 0.1

RiMOM 0.33 0.1 0.15

SOBOM 0 0 0

TaxoMap 0 0 0

119

Figure 5.19: Node mapping results: cross testing (A-B) for test case 265 in 5.5. Average

response matrix after 20 simulations.

120

5.6 EXPERIMENT 6: TEST CASE 266

Test case 266 is similar with test case 259, where structure is expanded compared with

reference ontology. Hierarchy of test ontology in test case 266 is shown in Figure 5.14. There

are 33 classes added to the existing 33 classes.

The difference from test case 259 is, all relationships (except subClassOf) are removed in

test ontology in test case 266. Like other test cases, all comments and instances are removed

from test ontology, and all names are replaced with randomly generated strings. Basically

all of the texture information is removed, only simple structural information can be used.

Node mapping results are shown in Figure 5.20. The figure shows average response

matrix and derived mappings.

The performance of OMNN compared with other systems from 2009 OAEI is shown in

Table 5.6. The performance of OMNN is better than 8 of the 12 systems, and comparable

to the other 4: “aflood”, “ASMOV”, “Lily” and “RiMOM”. The significance test is given at

the final part of this chapter.

121

Table 5.6: Experiment Results for Benchmark 266

Systems

266

(no training)
P

re
ci

si
o
n

R
ec

a
ll

F
-M

ea
su

re

OMNN 0.21 0.21 0.21

aflood 0.5 0.06 0.11

AgrMaker 0 0 0

aroma 0 0 0

ASMOV 0.4 0.06 0.1

DSSim 0 0 0

GeRoMe 0 0 0

kosimap 0.67 0.06 0.11

Lily 0.5 0.09 0.15

MapPSO 0.06 0.06 0.06

RiMOM 0.18 0.06 0.09

SOBOM 0 0 0

TaxoMap 0 0 0

122

Figure 5.20: Node mapping results: cross testing (A-B) for test case 266 in 5.6. Average

response matrix after 20 simulations.

123

5.7 SIGNIFICANCE TEST

To get a more meaningful comparison, the Wilcox test is performed to compare OMNN with

the other 12 systems on precision, recall and f-measure. The result is shown in Table 5.7.

OMNN’s recall is significantly better than 10 of the systems, and there is no significant

difference with the recall of “aflood” and “Lily”. OMNN’s F-measure is significantly better

than 10 of the systems. There is no significant difference with the F-measure of “aflood”.

“Lily” has significantly better F-measure than OMNN.

OMNN’s precision is significantly better than “GeRoMe”, “MapPSO”, and “TaxoMap”.

OMNN’s precision has no significant difference with the precision of “aroma”, “RiMOM”, and

“SOBOM”. The precision of OMNN is significantly worse than that of “aflood”, “AgrMaker”,

“ASMOM”, “DSSim”, “kosimap”, and “Lily”.

Current OMNN approach does not have threshold to remove unlikely mappings based on

similarity of distance. Hence its precision is not very strong. For the tests mostly with low

recalls, OMNN performs well on recall. Even though OMNN has low precision, its F-measure

is very strong.

Similarity scatter plot is shown in Figure 5.22. Precison-recall curve is shown in Figure

5.22. From cutoff threshold 0.95 to 0.9, recall doesn’t change much (from 0.29 to 0.37), but

precision drops dramatically from 0.99 to 0.76. Similarity scatter plot shows that from 0.9

to 0.95, there are many false positives for cases 249, 258, and their sub-cases.

Increasing threshold neither improves overall performance nor changes significance test

results much. Using cutoff threshold 0.1 or 0.15 improves the precision a little. However,

the precision difference between “OMNN” and “AgrMaker”, “OMNN” and “DSSim” is not

124

significant and it does not change other comparisons. Using cutoff threshold larger than 0.15

hurts recall.

Figure 5.21: Similarity scatterplot for OAEI test cases. Blue circles represent correct map-

pings; Red crosses represent wrong mappings.

5.8 SUMMARY

All previous ontology mapping result shows that OMNN works in the contexty of ontology

mapping. In response to the question: “How much does OMNN improve from preliminary

mappings”, recall comparison between OMNN and preliminary mapping result is listed in

125

Table 5.8. Since there is no threshold in OMNN approach, precision, recall and F-measure

have the same value for each test case. It’s also true for preliminary mapping, so only one

metric needs to be compared. From Table 5.8, OMNN always has better performance than

preliminary mapping. The average recall improvement on the 19 test cases is 0.33. Wilcox

test shows that OMNN is significantly better than preliminary mapping.

To answer the question “Does OMNN’s performance improve when more training data

available”, we can see OMNN gets better performance with more training data from part of

the data from Table 5.8 which is plotted as Figure 5.23,

Results from section 5.7 answers the question “How does OMNN perform compared

with other systems.” OMNN approach is competitive to top ranking systems from OAEI

2009. The evaluation is performed on 19 OAEI 2009 benchmark test cases. Significance test

shows OMNN’s F-measure is significantly better than 10 of the systems, with no significant

difference with the F-measure of “aflood”, and “Lily” has significantly better F-measure than

OMNN.

126

Figure 5.22: Precision-recall curve for OAEI test cases

127

Table 5.7: p-value from Wilcox test for 19 benchmark test cases. The green color means that

OMNN is significantly better than the system; red color means the system is significantly

better than OMNN; yellow means no significant difference. Significance is defined as p-

value< 0.05.

System Precision Recall F-Measure

aflood 0.000 0.570 0.182

AgrMaker 0.014 0.000 0.000

aroma 0.420 0.000 0.000

ASMOV 0.000 0.046 0.679

DSSim 0.027 0.000 0.000

GeRoMe 0.042 0.000 0.000

kosimap 0.008 0.000 0.000

Lily 0.000 0.306 0.000

MapPSO 0.000 0.000 0.000

RiMOM 0.136 0.002 0.032

SOBOM 0.811 0.000 0.000

TaxoMap 0.011 0.000 0.000

Table 5.8: Recall comparison between OMNN and preliminary result from textual informa-

tion

test case system no training 20% training 40% training 60% training 80% training

249 OMNN 0.63 0.8 0.84 0.92 0.97

preliminary 0.05 0.24 0.41 0.6 0.79

257 OMNN 0.27 0.67 0.79 0.94 1

preliminary 0.03 0.21 0.42 0.61 0.79

248 OMNN 0.47 0.69 0.81 0.88 0.94

preliminary 0.04 0.25 0.41 0.6 0.8

259 OMNN 0.4 0.95

preliminary 0.02 0.79

265 OMNN 0.28

preliminary 0.03

266 OMNN 0.21

preliminary 0.03

128

Figure 5.23: Recall of OMNN by different percentage of training data.

129

6.0 CONCLUSION AND FUTURE WORK

OMNN approach for graph mapping and ontology mapping is presented in this dissertation.

The experiment results show that the OMNN is a generic and scalable graph mapping and

ontology mapping approach. It is competitive with all the top-ranked systems on benchmark

tests at OAEI ontology matching campaign 2009.

In this chapter, the main contributions of this dissertation are outlined and a number of

directions of future work are presented.

6.1 SUMMARY OF CONTRIBUTIONS

This dissertation proposes a new neural network architecture, i.e., OMNN, which supports

not only item mapping, but also relationship representation and mapping that is not avail-

able in IENN. A novel explicit training method for relationship mapping is proposed by

backpropagating errors from representatin layer only.

Furthermore a new ontology mapping approach with a novel way of combining textual

information and structural information is proposed to solve ontology mapping problem. The

general idea of this approach is this: it first generates high confident mapping pairs with

textual information, and then uses these pairs as cross-training data for OMNN to generate

130

more mappings.

This dissertation applies the OMNN approach to various graph mapping test cases.

Experimental results show that the network is able to fill in missing mappings and generate

ambiguous results when ambiguities exist in mapping.

The OMNN ontology mapping approach is tested on 19 benchmark test cases from OAEI

campaign 2009, and compared with other top ranked systems from OAEI 2009. Experimental

results show OMNN approach is competitive to other systems.

At the heart of this dissertation is the conjecture that the capacity for analogical reason-

ing is supported by pathways shared for a variety of cognitive tasks that share features at

an abstract level. By including (at least) two layers of hidden units, the proposed architec-

ture includes (at least) one shared pathway of synaptic connections. It is hypothesized that

these shared weights encode the high level features required to infer mappings that exhibit

properties consistent with structural analogy. When a connectionist network is trained (for

example, with backprop), the connection strengths encode statistical properties of the joint

distribution of the pattern pairs in the training environment.

The OMNN approach adds further evidence onto the conjecture that the neural processes

underlying analogical processing make use of overlapping pathways.

6.2 FUTURE DIRECTIONS

Given our findings, there is still work to be done.

Current OMNN approach supports 1-to-1 mapping only. However, it’s possible that,

in some cases, one item in one graph can be mapped to multiple items in another graph.

131

Actually OMNN’s ability to 1-to-n mapping has been demonstrated in 4.4. To extend it to

1-to-n or even m-to-n mappings, the only thing we need to do is to improve the mapping

extraction algorithm.

OMNN approach focuses on utilizing structural information. Even though any textual

information could be used in generating training data, currently only the simple string

matching algorithm is used. Since this simple edit distance based method can not deal with

synonyms and cross-lingual mapping, more complex method utilizing textual information

should be explored in future.

In real world ontology, some detailed information is not represented in OMNN approach.

For example, in OWL language object property could be transitive and relationship could be

between not only concepts but also properties, i.e. one property could be “subPropertyOf”

another property. In current OMNN approach, this detailed information is not used. Future

work should explore ways to represent them in OMNN network.

132

APPENDIX

OAEI 2009 BENCHMARK TESTS

The table below summarize what has been retracted from the reference ontology. There are

6 categories of alteration:

1. Name

Name of entities can be replaced by (R/N) random strings, (S)ynonyms, (N)ame with

different conventions, (F) strings in another language than english.

2. Comments

Comments can be (N) suppressed or (F) translated in another language.

3. Specialization Hierarchy:

Specialization Hierarchy can be (N) suppressed, (E)xpansed or (F)lattened.

4. Instances

Instances can be (N) suppressed

5. Properties

Properties can be (N) suppressed or (R) having the restrictions on classes discarded.

6. Classes

133

Classes can be (E)xpanded, i.e., relaced by several classes or (F)latened.

Table A1: Overview of OAEI 2009 benchmark tests
N

um
b

er

N
am

e

C
om

m
en

ts

Sp
ec

ia
liz

at
io

n

H
ie

ra
rc

hy

In
st

an
ce

s

P
ro

p
er

ti
es

C
la

ss
es

C
om

m
en

ts

101 0 0 0 0 0 0 Reference alignment

102 Irrelevant ontology

103 0 0 0 0 0 0 Language generalization

104 0 0 0 0 0 0 Language restriction

201 R 0 0 0 0 0 No names

202 R S 0 0 0 0 No names& no comments

203 0 S 0 0 0 0 No comments (was misspelling)

204 C 0 0 0 0 0 Naming conventions

205 S 0 0 0 0 0 Synonyms

206 F T 0 0 0 0 Translation

207 F 0 0 0 0 0

208 C S 0 0 0 0

209 S S 0 0 0 0

210 F S 0 0 0 0

221 0 0 S 0 0 0 No specialization

Continued on next page

134

N
um

b
er

N
am

e

C
om

m
en

ts

Sp
ec

ia
liz

at
io

n

H
ie

ra
rc

hy

In
st

an
ce

s

P
ro

p
er

ti
es

C
la

ss
es

C
om

m
en

ts

222 0 0 F 0 0 0 Flattened hierarchy

223 0 0 E 0 0 0 Expanded hierarchy

224 0 0 0 S 0 0 No instance

225 0 0 0 0 R 0 No restrictions

228 0 0 0 0 N 0 No properties

230 0 0 0 0 0 F Flattened classes

232 0 0 N N 0 0

233 0 0 N 0 N 0

236 0 0 0 N N 0

237 0 0 F N 0 0

238 0 0 E N 0 0

239 0 0 F 0 N 0

240 0 0 E 0 N 0

241 0 0 N N N 0

246 0 0 F N N 0

247 0 0 E N N 0

248 N N N 0 0 0

249 N N 0 N 0 0

Continued on next page

135

N
um

b
er

N
am

e

C
om

m
en

ts

Sp
ec

ia
liz

at
io

n

H
ie

ra
rc

hy

In
st

an
ce

s

P
ro

p
er

ti
es

C
la

ss
es

C
om

m
en

ts

250 N N 0 0 N 0 Individual is empty

251 N N 0 0 N 0

252 N N E 0 0 0

253 N N N N 0 0

254 N N N 0 N 0

257 N N 0 N N 0

258 N N F N 0 0

259 N N E N 0 0

260 N N F 0 N 0

261 N N E 0 N 0

262 N N N N N 0

265 N N F N N 0

266 N N E N N 0

301 Real: BibTeX/MIT

302 Real: BibTeX/UMBC

303 Real: Karlsruhe

304 Real: INRIA

136

BIBLIOGRAPHY

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web: Sci-

entific american. Scientific American, May 2001.

[BM06] Jianghua Bao and Paul W. Munro. Structural mapping with identical ele-

ments neural network. In Proceedings of the International Joint Conference

on Neural Networks - IJCNN 2006, pages 870–874. IEEE, 2006.

[CGL01] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Ontology

of integration and integration of ontologies. In Description Logics, 2001.

[CM03] M. Crubezy and M. Musen. Ontologies in support of problem solving, 2003.

[DMDH02] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map

between ontologies on the semantic web, 2002.

[DMDH03] An-Hai Doan, J. Madhavan, Pedro Domingos, and Alon Halevy. Learning

to map ontologies on the semantic web. In Proceedings of the International

World Wide Web Conference (WWW), pages 662–673, 2003.

[DMQ03] Dejing Dou, Drew Mcdermott, and Peishen Qi. Ontology translation on the

semantic web. In Journal of Data Semantics, page 2005, 2003.

[DMQ05] D. Dou, D. McDermott, and P. Qi. Ontology translation on the Semantic

Web. Journal on Data Semantics (JoDS), II:35–57, 2005.

[EBB+04] J. Euzenat, J. Barrasa, P. Bouquet, R. Dieng, M. Ehrig, M. Hauswirth,

M. Jarrar, R. Lara, D. Maynard, A. Napoli, G. Stamou, H. Stuckenschmidt,

P. Shvaiko, S. Tessaris, S. van Acker, I. Zaihrayeu, and T. L. Bach. D2.2.3:

137

State of the art on ontology alignment. Technical report, NoE Knowledge

Web project delivable, 2004. http://knowledgeweb.semanticweb.org/.

[Ehr06] Marc Ehrig. Ontology Alignment: Bridging the Semantic Gap (Semantic

Web and Beyond). Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006.

[ES04] Marc Ehrig and Steffen Staab. QOM: Quick ontology mapping. In Pro-

ceedings of the 3rd International Semantic Web Conference (ISWC), pages

683–697, 2004.

[ES07] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag,

Heidelberg (DE), 2007.

[GH05] D. Gasevic and M. Hatala. Ontology mappings to improve learning resource

search. Journal of Educational Technology(Special issue on Advances of

Semantic Web for E-learning: Expanding learning frontiers)., 2005.

[GKD97] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Info-

master: An information integration system. In in proceedings of 1997 ACM

SIGMOD Conference, pages 539–542, 1997.

[Gru93a] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifi-

cations. Knowledge Acquisition, 5(2):199–221, 1993.

[Gru93b] Tom Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2), 1993.

[HA09] Md. Seddiqui Hanif and Masaki Aono. Anchor-flood: Results for oaei 2009.

In Shvaiko et al. [SEG+09].

[Hin86] G. Hinton. Learning distributed representations of concepts. In Proceedings

of the Eighth Annual Conference of the Cognitive Science Society, pages

1–12, 1986.

[HIST03] Alon Halevy, Zachary Ives, Dan Suciu, and Igor Tatarinov. Schema media-

tion in peer data management systems. In Proceedings of the 19th Interna-

tional Conference on Data Engineering (ICDE’03), 2003.

138

[JMSK09] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. As-

mov: Results for oaei 2009. In Shvaiko et al. [SEG+09].

[MB05] P. Munro and J. Bao. A connectionist implementation of identical elements.

In In Proceedings of the Twenty Seventh Ann. Conf. Cognitive Science So-

ciety Proceedings. Lawerence Erlbaum: Mahwah NJ, 2005.

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flood-

ing: a versatile graph matching algorithm. In Proc. 18th International Con-

ference on Data Engineering (ICDE), San Jose (CA US), pages 117–128,

2002.

[MKSI96] E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. Observer: An ap-

proach for query processing in global information systems based on inter-

operability between pre-existing ontologies. In Proceedings of the Inter-

national Conference on Cooperative Information Systems (CoopIS), pages

14–25, 1996.

[MP09] Paul Munro and Yefei Peng. Analogical learning and inference in overlapping

networks. In B. Kokinov, K. Holyoak, and D Gentner, editors, New Frontiers

in Analogy Research. New Bulgarian University Press, 2009.

[MS07] C. Meilicke and H. Stuckenschmidt. Analyzing mapping extraction ap-

proaches. In In Proc. of the ISWC 2007 Workshop on Ontology Matching,

Busan, Korea, 2007.

[Mun96] P. Munro. Shared network resources and shared task properties. In Proceed-

ings of the Eighteenth Annual Conference of the Cognitive Science Society,

1996.

[Mun08] Paul W. Munro. Learning structurally analogous tasks. In Vera Kurková,

Roman Neruda, and Jan Koutńık, editors, Artificial Neural Networks -

ICANN 2008, 18th International Conference, volume 5164 of Lecture Notes

in Computer Science, pages 406–412. Springer: Berlin/Heidelberg, 2008.

[NDH05] Natalya F. Noy, AnHai Doan, and Alon Y. Halevy. Semantic integration.

AI Mag., 26(1):7–9, 2005.

139

[NM00] Natasha Noy and Mark Musen. PROMPT: Algorithm and tool for auto-

mated ontology merging and alignment. In Proc. 17th AAAI, Austin (TX

US), pages 450–455, 2000. http://citeseer.nj.nec.com/528663.html.

[NM01] Natasha Noy and Mark Musen. Anchor-PROMPT: Using non-local

context for semantic matching. In Proc. IJCAI 2001 workshop

on ontology and information sharing, Seattle (WA US), pages 63–

70, 2001. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-

WS/Vol-47/.

[NM03] N. F. Noy and M. A. Musen. The PROMPT suite: interactive tools for

ontology merging and mapping. International Journal of Human-Computer

Studies, 59(6):983–1024, 2003.

[Noy04] N. Noy. Semantic Integration: A survey of ontology-based approaches. SIG-

MOD Record, 33(4):65–70, 2004.

[PM09] Yefei Peng and Paul Munro. Learning mappings with neural network. In

Proceedings of the 2009 International Conference on Artificial Intelligence,

2009.

[RB01] Erhard Rahm and Philip Bernstein. A survey of approaches to automatic

schema matching. The VLDB Journal, 10(4):334–350, 2001.

[SEG+09] Pavel Shvaiko, Jérôme Euzenat, Fausto Giunchiglia, Heiner Stuckenschmidt,

Natalya Fridman Noy, and Arnon Rosenthal, editors. Proceedings of the

4th International Workshop on Ontology Matching (OM-2009) collocated

with the 8th International Semantic Web Conference (ISWC-2009) Chan-

tilly, USA, October 25, 2009, volume 551 of CEUR Workshop Proceedings.

CEUR-WS.org, 2009.

[UG04] M. Uschold and M. Gruninger. Ontologies and semantics for seamless con-

nectivity. SIGMOD Record, 33(4):58–64, 2004.

[vEdBvdHM01] Rogier van Eijk, Frank de Boer, Wiebe van de Hoek, and John-Jules Meyer.

On dynamically generated ontology translators in agent communication.

International journal of intelligent system, 16:587–607, 2001.

140

[WX09] Peng Wang and Baowen Xu. Lily: Ontology alignment results for oaei 2009.

In Shvaiko et al. [SEG+09].

[ZZS+09] Xiao Zhang, Qian Zhong, Feng Shi, Juanzi Li, and Jie Tang. Rimom results

for oaei 2009. In Shvaiko et al. [SEG+09].

141

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	3.1. The description of OAEI benchmark tests
	5.1. Experiment Results for Benchmark 249
	5.2. Experiment Results for Benchmark 257
	5.3. Experiment Results for Benchmark 258
	5.4. Experiment Results for Benchmark 259
	5.5. Experiment Results for Benchmark 265
	5.6. Experiment Results for Benchmark 266
	5.7. Significance test for 19 benchmark test cases
	5.8. Recall comparison
	A1. Overview of OAEI 2009 benchmark tests

	LIST OF FIGURES
	1.1. System architecture of OMNN
	2.1. Anchor-PROMPT. Traversing the paths between anchors.
	2.2. Example of similarity flooding
	2.3. Architecture of GLUE
	2.4. Workflow of PROMPT algorithm
	2.5. QOM mapping process
	2.6. System architecture of RiMOM
	2.7. System architecture of LILY
	2.8. System architecture of ASMOV
	2.9. System architecture of aFlood
	3.1. General IENN graph
	3.2. Proposed network architecture 1
	3.3. Proposed network architecture 2
	3.4. Two sample ontologies about vehicle
	3.5. Hinton's Family Tree with Five Relationships.
	4.1. Vertical identity tasks (A-A) for Experiment 1
	4.2. Ambiguities on the cross testing (A-B) for Experiment 1
	4.3. Ambiguities on the cross testing (A-B) for Experiment 1: Matrix Plot
	4.4. Ambiguities on the cross testing (A-B) for Experiment 2
	4.5. Ambiguity exists in cross testing (A-B) for Experiment 2: Matrix Plot
	4.6. Ambiguity exists in cross testing (A-B) for Experiment 3
	4.7. Ambiguity exists in cross testing (A-B) for Experiment 4
	4.8. Ambiguity exists in relationship mapping (A-B) for Experiment 1
	4.9. Node mapping results: cross testing (A-B) for Experiment 1
	4.10. Ambiguity exists in relationship mapping (A-B) for Experiment 2
	4.11. Node mapping resutls: cross testing (A-B) for Experiment 2
	4.12. Ambiguity exists in relationship mapping (A-B) for Experiment 3
	4.13. Node mapping results: cross testing (A-B) for Experiment 3
	4.14. Segment Plot for Output at Relationship Representation Layer
	4.15. Familytree Test Cases.
	4.16. Cross Testing (A-B) for 4 Layer Family Tree.
	4.17. Cross Testing (A-B) for 4 Layer Family Tree: Matrix Plot
	4.18. Cross Testing (A-B) for 5-layer Family Tree.
	4.19. Cross Testing (A-B) for 5-layer Family Tree: Matrix Plot.
	4.20. Cross testing (A-B) for Experiment 1 in 4.4.1
	4.21. Average response matrix: 3-Layer to 4-Layer mapping case 1
	4.22. Average response matrix: 3-Layer to 4-Layer mapping case 2
	4.23. Relationship mapping result for experiment from 4.4.3
	4.24. Node mapping resutl for experiment from 4.4.3
	4.25. Segment Plot for Output at Relationship Representation Layer
	5.1. Benchmark Test 249. Top: Reference ontology. Bottom: Test ontology.
	5.2. Relationship Mapping (A-B) for Test Case 249
	5.3. Node Mapping Resutls: Cross Testing (A-B) for Test Case 249
	5.4. Relationship mapping (A-B) for test case 249-2
	5.5. Node mapping resutls: cross testing (A-B) for test case 249-2
	5.6. Benchmark Test 257. Top: Reference ontology. Bottom: Test ontology.
	5.7. Node mapping resutls: cross testing (A-B) for test case 257
	5.8. Node mapping resutls: cross testing (A-B) for test case 257-2
	5.9. Benchmark Test 258. Top: Reference ontology. Bottom: Test ontology.
	5.10. Relationship mapping (A-B) for test case 258
	5.11. Node mapping resutls: cross testing (A-B) for test case 258
	5.12. Relationship mapping (A-B) for test case 258-2
	5.13. Node mapping resutls: cross testing (A-B) for test case 258-2
	5.14. Hierarchy of classes in Benchmark Test 259
	5.15. Relationship mapping (A-B) for test case 259
	5.16. Node mapping results: cross testing (A-B) for test case 259
	5.17. Relationship mapping (A-B) for test case 259-2
	5.18. Node mapping results: cross testing (A-B) for test case 259-2
	5.19. Node mapping results: cross testing (A-B) for test case 265
	5.20. Node mapping results: cross testing (A-B) for test case 266
	5.21. Similarity scatterplot for OAEI test cases
	5.22. Precision-recall curve for OAEI test cases
	5.23. Recall of OMNN by different percentage of training data.

	PREFACE
	1.0 INTRODUCTION
	1.1 INTRODUCTION
	1.2 OVERVIEW OF OMNN APPROACH
	1.3 CONTRIBUTIONS OF THE DISSERTATION
	1.4 OUTLINE

	2.0 LITERATURE REVIEW
	2.1 STATE OF THE ART ONTOLOGY MAPPING APPROACHES
	2.1.1 Graph-based Methods
	2.1.1.1 Anchor-PROMPT
	2.1.1.2 Similarity Flooding

	2.1.2 Machine Learning Methods
	2.1.3 Heuristic and Rule-based Methods
	2.1.3.1 PROMPT
	2.1.3.2 QOM

	2.2 THE LATEST ONTOLOGY MAPPING SYSTEMS
	2.2.1 RiMOM
	2.2.2 LILY
	2.2.3 ASMOV
	2.2.4 AFlood

	2.3 RELATED NEURAL NETWORK MODELS

	3.0 OMNN APPROACH
	3.1 GRAPH MAPPING
	3.1.1 Introduction
	3.1.2 Network Architecture 1
	3.1.2.1 Network Structure
	3.1.2.2 Training
	3.1.2.3 Testing

	3.1.3 Network Architecture 2
	3.1.3.1 Network Structure
	3.1.3.2 Training
	3.1.3.3 Explicit Training Method
	3.1.3.4 Testing

	3.2 APPROACH FOR ONTOLOGY MAPPING
	3.3 TEST CASES AND EVALUATION CRITERIA
	3.3.1 Test Cases for graph Mapping
	3.3.2 Test Cases for Ontology Mapping
	3.3.3 Evaluation Criteria

	4.0 GRAPH MAPPING EVALUATION
	4.1 NODE MAPPING
	4.1.1 Experiment 1
	4.1.2 Experiment 2
	4.1.3 Experiment 3
	4.1.4 Experiment 4

	4.2 RELATIONSHIP MAPPING
	4.2.1 Experiment 1: No Explicit Training
	4.2.2 Experiment 2: Explicit Training on ``self''
	4.2.3 Experiment 3: Explicit Training on ``self'', ``parent'' and ``spouse''

	4.3 SCALABILITY TEST
	4.3.1 Experiment 1: 4-layer Family Tree
	4.3.2 Experiment 2: 5-layer Family Tree

	4.4 UNEQUAL GRAPH MAPPING
	4.4.1 Experiment 1: Different Number of Nodes
	4.4.2 Experiment 2: 3-Layer to 4-Layer Mapping
	4.4.3 Experiment 3: One to Many Relationship Mapping

	4.5 SUMMARY

	5.0 ONTOLOGY MAPPING EVALUATION
	5.1 EXPERIMENT 1: TEST CASE 249
	5.2 EXPERIMENT 2: TEST CASE 257
	5.3 EXPERIMENT 3: TEST CASE 258
	5.4 EXPERIMENT 4: TEST CASE 259
	5.5 EXPERIMENT 5: TEST CASE 265
	5.6 EXPERIMENT 6: TEST CASE 266
	5.7 SIGNIFICANCE TEST
	5.8 SUMMARY

	6.0 CONCLUSION AND FUTURE WORK
	6.1 SUMMARY OF CONTRIBUTIONS
	6.2 FUTURE DIRECTIONS

	APPENDIX. OAEI 2009 BENCHMARK TESTS
	BIBLIOGRAPHY

