
 

APPLICATION OF MULTIPLE IMPUTATION IN ANALYSIS OF MISSING DATA  
IN A STUDY OF  

 HEALTH-RELATED QUALITY OF LIFE  
 
 
 
 
 
 
 
 

by 

Chunming Zhu 

B.S. of Biological Science & Biotechnology, Tsinghua University, China, 1994 

Ph.D of Biophysics, Tsinghua University, China, 1999 

 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Graduate School of Public Health in partial fulfillment  

of the requirements for the degree of 

Master of Science 

 
 
 
 
 
 
 

University of Pittsburgh 
 

2011 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12206614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PITTSBURGH 
 

Graduate School of Public Health 
 

 
This thesis was presented 

 
by 
 

Chunming Zhu 
 

It was defended on 
 

March 30, 2011 
 

and approved by 
 

Thesis Advisor: 
Gong Tang, PhD  

Assistant Professor  
Department of Biostatistics  

Graduate School of Public Health 
University of Pittsburgh 

 
Committee Member: 

Lan Kong, PhD  
Assistant Professor  

Department of Biostatistics 
 Graduate School of Public Health  

University of Pittsburgh 
 

Committee Member: 
Greg Yothers, PhD  

Research Assistant Professor  
Department of Biostatistics 

 Graduate School of Public Health 
University of Pittsburgh 

 
Committee Member: 

Tianjiao Chu, PhD  
Assistant Professor,  

Department of Obstetrics, Gynecology & Reproductive Sciences 
School of Medicine 

University of Pittsburgh 
 
 
 
 

ii 



 iii 

  

Copyright © by Chunming Zhu 

2011 



 

ii 
 

 
Gong Tang, Ph.D 

 
 

APPLICATION OF MULTIPLE IMPUTATION IN ANALYSIS OF MISSING DATA  
IN A STUDY OF HEALTH-RELATED QUALITY OF LIFE  

 
Chunming Zhu, MS 

 
University of Pittsburgh, 2011 

 
 When a new treatment has similar efficacy compared to standard therapy in medical or 

social studies, the health-related quality of life (HRQL) becomes the main concern of health care 

professionals and can be the basis for making a decision in patient management. National 

Surgical Adjuvant Breast and Bowel Protocol (NSABP) C-06 clinical trial compared two 

therapies: intravenous (IV) fluorouracil (FU) plus Leucovorin (LV) and oral uracil/ftorafur 

(UFT) plus LV, in treatment of colon cancer. However, there was a high proportion of missing 

values among the HRQL measurements that only 481 (59.8%) UFT patients and 421 (52.4%)  

FU patients submitted the forms at all time points.  Ignoring the missing data issue often leads to 

inefficient and sometime biased estimates.  

 The primary objective of this thesis is to evaluate the impact of missing data on the 

estimated the treatment effect. In this thesis, we analyzed the HRQL data with missing values by 

multiple imputation. Both model-based and nearest neighborhood hot-deck imputation methods 

were applied. Confidence intervals for the estimated treatment effect were generated based on 

the pooled imputation analysis.  

The results based on multiple imputation indicated that missing data did not introduce 

major bias in the earlier analyses. However, multiple imputation was worthwhile since the most 

estimation from the imputation datasets are more efficient than that from incomplete data.   
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 These findings have public health importance: they have implications for development of 

health policies and planning interventions to improve the health related quality of life for those 

patients with colon cancer. 
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1.0  INTRODUCTION 

 In clinical studies that compare one or more new treatments with a standard treatment, 

the efficacy in clinical outcomes such as patient survival and clinical response is usually the 

basis for treatment selection decision. However, in many circumstances, a new treatment may 

not demonstrate superiority in efficacy over the standard treatment. When efficacy is similar, 

other factors have to be incorporated in the decision making. Health-related quality of life 

(HRQL) outcomes often become an important indicator in treatment benefit in those scenarios 

and healthcare professionals may rely on them to select appropriate treatments for their patients. 

With advances in medical science and technology, there are an increasing number of people 

living with chronic diseases and disabilities. Long-term HRQL is useful for evaluating the 

benefit of a treatment beyond its efficacy in clinical outcomes. The change in our population’s 

morbidity pattern has called for a paradigm shift in how we should evaluate outcomes of illness 

and care.  

 Colon cancer is the fourth most common form of cancer in the United States and the third 

leading cause of cancer-related death in the Western world. Invasive cancers that are confined 

within the wall of the colon (stages I and II) are often curable with surgery alone. If untreated, 

they may spread to regional lymph nodes (stage III), where up to 73% are curable by surgery and 

chemotherapy. Cancer that metastasizes to distant sites (stage IV) is usually not curable, 

although chemotherapy can extend survival. In rare cases, surgery and chemotherapy together 

http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/TNM_staging_system


 2 

have seen patients through to a cure. In patients in stage II and stage III colon cancer, adjuvant 

therapy of surgery and chemotherapy is the most common treatment. Chemotherapy with 

intravenous fluorouracil (FU) and leucovorin (LV) has been demonstrated to prolong disease-

free survival (Wolmark, 1993). Another approach of chemotherapy is oral administration of 

uracil/ftorafur (UFT) plus leucovorin (LV). A small phase II study in Taiwan indicated that this 

new approach could be comparable to intravenous (IV) fluorouracil (FU) and leucovorin (LV) in 

stage IV colorectal cancer (Yang, 2002).  

 Adverse events associated both of these two treatments were reported. These two 

regimens were associated with widely different acute and late effects, which could be both 

physical and psychological in nature. The most common adverse reactions were GI toxicity 

(diarrhea, nausea, and stomatitis) and granulocytopenia (Wolmark, 1998). HRQL concerns are 

therefore important for these patients for selecting between the different treatment options. In the 

NSABP C-06 trial, not only the disease-free survival and overall survival were compared 

between these two regimens, but also the health-related quality of life outcomes from patients 

were studied.  

 

1.1 THE QUALITY OF LIFE STUDY IN NSABP C-06 TRAIL 

 National Surgical Adjuvant Breast and Bowel Protocol (NSABP) C-06 trail was a 

randomized equivalence trial to compare the intravenous FU plus LV with the oral UFT and LV. 

In this trial, patients were randomly assigned to either FU arm or UFT arm. Those assigned to 

FU+LV received LV 500mg/m2 by IV infusion over 2 hours and FU 500mg/m2 by IV bolus 
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1hour after LV infusion weekly for 6 weeks, followed by a rest period. Treatment was restarted 

21 days after the date of administration of the sixth dose of the previous cycle (1 cycle = 8 

weeks). A total of three cycles were administrated. Patients assigned to UFT+LV received UFT 

300mg/m2/day plus LV 90mg/day for 28 days followed by a 7-day rest period. Patients in this 

group took both drugs orally, the total daily dose divided into three doses to be taken 8 hours 

apart. A total of five cycles were administrated. Chemotherapy in both arms began within 1 week 

from randomization and 7 weeks from surgery.  Disease free survival and overall survival data 

were recorded. During chemotherapy and after 1 year follow up, measurement of Health-related 

quality of life (HRQL) was carried out. The study has demonstrated that two regimens are 

equivalent in terms of disease-free survival and overall survival (Lembersky 2006). 

 Health-related quality of life was measured with Functional Assessment of Cancer 

Therapy-Colorectal (FACT-C) questionnaire, Short form-36 Vitality Scale (SF-36), and  Quality 

of life Rating Scale (QLRS) at baseline, once during chemotherapy (16weeks in FU arm and 15 

weeks in UFT arm), and at 1 year.  

 Functional Assessment of Cancer Therapy-Colorectal (FACT-C) questionnaire is one of 

the two quality of life (QOL) assessment tools available for colorectal cancer patients. The 

FACT-C combines specific concerns related to colorectal cancer with concerns that are common 

to all cancer patients. It is a multi-dimensional, 44-item, cancer-oriented measure. Six subscales 

provided scores for physical well-being (pwb), social/family well-being (swb), relationship with 

physician (rwd), emotional well-being (ewb), functional well-being (fwb), and problems 

commonly experienced by patients (fc) with colorectal cancer.  

 The SF-36 was developed from work done by the RAND Corporation and the Medical 

Outcomes Study (MOS), based on the measurement strategy of the RAND Health Insurance 
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Study in the 1980s. SF-36 is a multi-purpose, short-form health survey with only 36 questions. It 

yields an 8-scale profile of functional health and well-being scores as well as psychometrically-

based physical and mental health summary measures and a preference-based health utility index. 

The SF-36 can be either self-administered or administered by a trained interviewer, either in 

person or by telephone. Over the years, the SF-36 has been used in surveys of general and 

specific populations, for comparing the relative burden of diseases across different sub-groups 

and in differentiating the health benefits produced by health care treatments.  

 The Quality of Life Rating Scaling (QLRS) evaluates the patients overall perception of 

quality of life on a 0 to 10 scale, where 0 indicates the lowest and 10 indicates the highest 

possible quality of life.  Higher scores on all of three measures indicate better health-related 

quality of life.   

1.2 THE ISSUE OF MISSING DATA 

 The NSABP C-06 study randomized 1608 patients: 803 to the FU arm and 805 to the 

UFT arm. The patients who contributed to the HRQL analysis were similar to the full study 

population (see Section 3.1). Almost 60% were 60 years old or older, slightly over 50% were 

male, and 78% were white. The distribution of patient and tumor characters was similar in both 

arms of the trial.  

 The major reason for incomplete records in this study is loss to follow up. Among the 

patients participating in the HRQL study, 79% of the patients in UFT arm and 73% in the FU 

arm completed the FACT-C at week 15/16 (during chemotherapy), while 67% and 62%, 

completed it at 1 year, respectively. A total 481 (59.8%) UFT patients versus 421(52.4%)  FU 
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patients submitted the forms containing QLRS and SF36 vitality scales at all time points. Since 

there is a difference in the response rates between two treatment arms (Kopec, 2007), data might 

not be missing completely at random. Analyses that are solely based on complete cases, which 

had complete records in the HRQL outcomes often lead to inefficient and sometimes biased 

estimates.    

1.3 STUDY OBJECTIVES 

 The main objective of this thesis is to explore the impact of missing-data. The aim of 

imputing missing-data is to reduce possible bias introduced by the use of incomplete data and to 

achieve more reliable and precise findings for potential explanatory factors that account for the 

difference (or similarity) of HRQL for the two treatment arms.  A second objective is to estimate 

the variance of parameter estimates derived from imputed datasets. 

 In this thesis, multiple imputation approaches were applied to handle the missing data. 

Through multiple imputation, the missing values were filled in according to an appropriate 

algorithm. Subsequently standard analysis techniques were performed on the resulted complete 

datasets. To account for the variation of imputed values, more than one value (for example, 20) 

were filled in for each missing value so that multiple datasets were generated for complete-data 

analysis. Then the estimates were compared to that from the original incomplete dataset. 

Variability of parameter estimates within each imputed dataset was also estimated. 
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2.0  REVIEW OF METHODS FOR ANALYSIS OF MISSING DATA  

 Missing data are prevalent in data collected throughout various scientific fields. Missing 

data may occur in two different formats: no information is provided on one or more items or no 

information is available from a whole unit. The former case is called item nonresponse and the 

latter one is called unit nonresponse. Some items may tend to have more missing values than 

others. For example, income is often an important variable in survey studies but many surveyed 

subjects tend not to report their actual income or income level because of privacy concern. 

Dropout is a typical missingness that occurs in studying the development of a process over time. 

In such studies one or more outcome variables are repeatedly measured over a certain period of 

time. Missing values appear when a participant drops out prematurely before the end of the study 

and all measurements of the outcome variable(s) are missing after that occasion. Missing values 

occur for a variety of reasons; such as that collection on a portion of subjects is discontinued 

after certain period by design, some subjects become non-compliant, or data collection is not 

done properly. 

 Rubin (1976) introduced a classification system on missing-data mechanisms and it is 

widely used in the literature. Depending on how the missing data process is related to the 

underlying hypothetical complete data, three missing-data mechanisms were defined by Rubin 

(1976). The data are called missing completely at random (MCAR) if the missingness of a 

variable Y is unrelated to either the value of Y or that of other measured variables. In other 
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words, the observed data points are a simple random sample of data had the data been complete. 

Data are called missing at random (MAR) when the missingness of a variable Y is unrelated to 

the value of Y itself after conditioning on other observed values.  Finally, data are called missing 

not at random (MNAR) when the missingness of a variable Y still depends on the value of Y 

even given the observed values. 

 In principle, it is possible to verify whether the data are MCAR or not. It is impossible to 

test the MAR mechanism except under certain parametric framework when the missing-data 

mechanism is modeled by a parametric model. This is an important practical problem for missing 

data analysis because both of the two popular techniques for analysis of missing data, the 

ignorable maximum likelihood method and multiple imputation, assume an MAR mechanism.       

2.1  COMPLETE CASE ANALYSIS 

 List-wise and pair-wise deletion methods are by far the most prevalent approaches in 

analysis of missing data in practice. The list-wise deletion approach removes the variables with 

missing data from the inferential procedure and the pair-wise deletion approach removes subjects 

with missing values (Enders, 2010). The advantage of these methods is that they are convenient 

and are standard options in statistical software packages. However, list-wise deletion may 

remove variables of interest and the pair-wise deletion assumes MCAR data and can produce 

distorted parameter estimates when this assumption does not hold. Even if the MCAR 

assumption is plausible, eliminating data leads to inefficient estimates. Consequently, these are 

not recommended unless the portion of missing data is very small.   
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2.2 LIKELIHOOD-BASED METHODS 

The maximum likelihood method (ML) (Little and Rubin, 2002) maximizes the 

likelihood based on (Yi,obs, Ri). Denote X={xi}i=1,2,…n, the covariates, Y={yi} i=1,2,…n, the outcome, 

R={Ri}i=1,2,…n, the missing-data indicator,    is parameter of interest, and   is unknown 

parameter that related to the missingness of data. The likelihood function: 

     L(    |X;Yobs;R)                           
     

   =                                      
 
     

   =                                                            
 
     

When the data are MAR, 

                                                       and  

      L(    |X;Yobs;R)      L(              ) L( |X;Yobs;R)    

Where,  

     L( |X;Yobs;R) =                  
 
     is the ignorable likelihood and  

     L(              ) =                      
    

is only related to missing-data mechanism. If   and   are also distinct, the inference on   does 

not depend on the missing-data mechanism. Therefore when data are MAR, and   and   are 

distinct, the missing-data mechanism is ignorable. When data are MNAR, ignoring missing-data 

mechanisms could lead to biased estimates of  . In such circumstances, a parametric form has to 

be assumed for the missing-data mechanism in the ML method. And the inference can be highly 

sensitive to such assumptions. 
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2.3 ESTIMATION EQUATION-BASED METHODS 

Inverse probability weighted estimating equations (IPWEE) is an estimating equation 

based method (Robins, Rotnitzky and Zhao, 1995) to make inference on selection models. A 

simple version of this method is to weigh each complete case by the inverse probability of being 

observed while constructing the estimating equation. The motivation is that each complete case 

not only represents itself but also other incomplete cases with similar characteristics. It still 

requires specifying a model for the missing-data mechanism. Mis-specification often leads to 

biased estimates for the model parameters. 

2.4 MULTIPLE IMPUTATION 

 Imputation is a general and flexible method for analysis of missing data . Missing values 

are imputed by draws from a predictive distribution of the missing values based on observed 

data. Such a predictive distribution could be an explicit model, such as unconditional mean, 

conditional mean or stochastic imputation or an implicit model such as hot deck, substitution, or 

cold deck imputation (Little and Rubin, 2002).  

 Imputations should generally be: 

a) Conditional on observed variables, to reduce bias due to no response, improve precision, 

and preserve association between missing and observed variables; 

b) Multivariate, to preserve association between missing variables; 

c) Draws from a predictive distribution rather than means, to provide valid estimates of a 

wide range of model parameters. 
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The limitation of single imputation is when a value filled to the missing value, we assume 

that the filled-in value is a true observed value and the data are complete. But the fact is that we 

do not know the true value of the missing value. In other words, the filled-in value itself has 

some uncertainty and it is not appropriate to assume it fixed. To account for this variability 

across imputations, we can create multiply imputed data sets that allow the additional uncertainty 

from imputations to be assessed. In other word, multiple imputations overcome the important 

limitation of single imputation, where standard variance formulas applied to a single imputed dataset 

systematically underestimate the variance of estimates, even when the model used to generate the 

imputations is correct (Little and Rubin, 2002).  In this thesis, two multiple imputation methods, 

explicit modeling based and hot deck methods, are used to generate imputed data sets from the 

original HRQL data. Details on these two methods are introduced in Chapter 3. 
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3.0  METHODS  

3.1 IDENTIFY MISSING DATA AND PREPARE THE HRQL DATASET  

3.1.1  Identify missing-data patterns 

 In the NSABP C-06 trial, 780 out of 803 patients in the FU arm and 784 of 805 in the 

UFT arm participated in the HRQL study. Among the patients in FU arm, 413 patients 

completed all information of the FACT-C, QLRS and SF36 vitality scales forms. In UFT arm, 

468 had complete information. Using R package mice (multivariate imputation by chained 

equations), missingness indicator matrices were generated for both FU and UFT data sets. 

According to the indicator matrices, there are 19 missing patterns in FU data set and 25 patterns 

in UFT data set. To simplify the imputation, we deleted those missing-data patterns that had only 

1 or 2 subjects. After all we had 766 patients with seven missing-data patterns in the FU arm and 

761 patients with six missing-data patterns in the UFT arm (Figure 1).  The datasets from two 

arms were kept separated for imputation approaches. Meanwhile, a data set with missing values 

was generated by combining the data from two arms. 

 

3.1.2 Check difference between complete and incomplete observations 

 Most of the missingness is from dropout. The dropouts include 268 (139+129) out of 766 

patients (89%) in the FU arm and 225 (131+94) out of 761 patients in the UFT arm. Combining 
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data from the dropouts with those from the complete cases forms a monotone missing-data 

pattern. To check if the missingness is related to the patients score or/and the treatment, we draw 

trend plots of mean values of each items in the FACT-C, QLRS and sf-36 forms versus the time 

points (Figure 2).   

3.2 IMPUTATION APPROACHES 

 It was suspected that the missingness was mostly associated with the treatment and the 

data were missing at random, so we can use multiple imputation approaches. The multiple 

imputation method basically can be carried out by three steps: imputation step, analysis step and 

summary steps. In the imputation step, each missing value was filled with several values (in this 

thesis, 20) based on a predictive distribution based on the observed data and 20 complete data 

sets are generated. We used two approaches in the imputation step, an explicit model-based 

imputation method and a nearest-neighborhood hot-deck imputation.  

 In analysis step, each imputed data set was analyzed separately, including:   

a) Check the descriptive statistics for each variable in the 20 imputed datasets, such as mean, 

standard errors; 

b) Build the models with selected covariates in each of the 20 imputed datasets.  

c) Calculate the estimated coefficients ( d), d=1, …, 20 and standard errors (    ), d=1,…, 20 

for treatment in the models, and within imputation variance is    = (    )2, d=1,…, 20. 

 In the summary step, the analysis results from each imputed dataset were combined to obtain 

the final statistical inference.  The final parameter estimates were the average of corresponding 

parameter estimates that were resulted from 20 imputed datasets. The variation of the final parameter 
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estimates were estimated by the sum of between-imputation variation and within-imputation 

variation. The between-imputation variance can be estimated by: 

  B20 =   

    
            

   
   , 

where                  =  

  
    

  
   .  

And the total variability associated with the imputation of the missing values can be estimated by: 

          +     

  
     

Where                  =    
  

     
  
    =   

  
        

 
   

    

At the final step estimate the fraction of information about treatment effect missing due to incomplete 

data by: 

     = (1+  

  
           

 

3.2.1 Explicit model-based Imputation  

 Consider a dataset where Y1,….,Yk-1 is observed and Yk has missing values.  Then we 

can impute a conditional draw based on a regression model:  

                                

   

   

         

Where zik is a random normal deviate with mean 0 and residual variance in the regression of Yk 

on Y1,….Yk-1 based on the complete cases. The addition of the random normal deviate makes the 

imputation a draw from the predictive distribution of the missing values. In above linear 

regression model, we assume the predictive distribution of missing values is normal distributed. 

When this normality assumption is not appropriate, we may use other models to approximate. 
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For example, if Yk is binary, we can use logistic model to approximate. And the random draws 

are from the complete cases with similar propensity of missingness.  

 In our HRQL data, the Sf-36 score has a scale from 0 to 100. The histogram (not shown) 

of the scores indicates that a normal distribution is appropriate. The relationship with physician 

(rwd) score in FACT-C, NRMACT (return to normal action) score and QLRS score only have 

fewer 10 or less levels and are highly skewed. It would be inappropriate to assume that they are 

normally distributed.  We can keep these variables as categorical, and use a linear discriminant 

analysis (lda) method to impute the missing values. While the physical well-being (pwb), 

social/family well-being (swb), emotional well-being (ewb), functional well-being (fwb), and 

problems commonly experienced (fc) score has a scale from 0 to 28. If we consider them as 

categorical variables, there are too many levels which cause severe collinearity when we try to 

use the mice package for imputation. So we assume that they are continuous and use Bayesian 

linear regression to impute the missing values in them as in the Sf36 scores. This imputation 

approach can be done in the R package mice, by setting imputation method to be “lda” for rwd, 

NRMACT and QLRS, and “norm”, which means Bayesian linear regression, for Sf-36 scores 

and other variables.   

 

 3.2.2 Hot deck Imputation  

 As described before, hot deck imputation is a method based on an implicit model. With 

most hot deck procedures, missing values are replaced by values from similar responding units in 

the sample.  It could be simply random sampling from the observed values with replacement, or 

random sampling within adjustment cells of observed values.  
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 A more general approach is the nearest neighbor hot deck, which is to define a metric to 

measure distance between units, based on the values of covariates, and then to choose imputed 

values that come from responding units close to the unit with the missing value. For example, let 

xi1, …, xij be the values of J appropriately scaled covariates for a unit i for which yi is missing. 

Define the distance between units i and i’ as  

 d (i, i’) =       –       
 
     

 We might choose an imputed value for yi from those unit i’ that are such that 

(1) yi’, xi’1, …, xi’j are observed, and  

(2) d (i, i’) is less than some value d0. The number of candidates i’ can be controlled by 

varying the value of d0. (Little and Rubin, 2002 )  

In our HRQL dataset the unit is an individual case with its corresponding scores as the 

covariates. We consider those units within the same missing-data pattern as a pool, so the 

programming can be more proficient. The procedure consists of two stages. First, measure the 

distances between a unit with missing values and units from complete cases and choose complete 

units which have the closest distances to the unit as its nearest neighborhood. Then a value is 

randomly drawn from the corresponding variable in its neighborhood to insert in place of the 

missing value. If the unit have more than one missing values, repeat the random draw, until all 

the missing values are filled in this unit. Then the imputation process described above is repeated n 

times to create n complete data sets. These n datasets are analyzed separately and the results are 

combined to form one overall inference.  

It is very important to define an appropriate metric to measure distance between units. In 

our dataset, NRMACT, QLRS have levels 0-10, rwd has levels 0-8, sf36 score has levels 0-100, 
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and other scores have 28 levels (0-28). So one approach is to define a metric with normalizing all 

variables to have same number of levels (0-10), which can be written as: 

d(i, i’) =[       –       
 
    +   

 
       –       + 

  

  
       –       

 
    +   

   
     –       ] / Nobs 

Where j indicate the variable NRMACT and QLRS; k, rwd;  m, 36sf; l for other variables; 

and Nobs is the number of observed values in that subject. There are 9 variables in the data, and 

each variable has three time points. If a subject didn’t fill out the form at last time point (1 year) 

and complete the other two time points then the Nobs for this subject is 9*2=18. This adjustment  

makes the distances from all patterns comparable. 

3.3 ANALYSIS HRQL WITH IMCOMPLETE AND IMPUTED DATA 

 An important end point for the HRQL study was the FACT-C total score. It was the 

normalized sum of scores from the six subscale scores, physical well-being, social/family well-

being, relationship with physician, emotional well-being, functional well-being, and problems 

commonly experienced. The normalized score is in scale 0 to 100, with higher score indicates 

better quality of life. The QLRS and sf-36 scores can be used for analysis directly. 

 One approach is to compare the treatment effect on HRQL by comparing the last time 

point scores (at 1 year), including FACT-C total scores, QLRS and SF 36 scores,  using linear 

regression models with treatment and the baseline scores as predictors. This approach is intuitive 

and easy to use and is performed in STATA. The linear regression models can be expressed as: 

                     

where    and    are scores at the baseline and 1 year, respectively.  
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 Another Statistical comparison is using GEE (generalized estimation equations) models 

with time points as the repeated variable, an unstructured covariance pattern, robust variance 

estimator were used in this model. This method utilizes all available values even there is missing 

value in some observations. This approach is also carried out in STATA, using xtgee procedure. 

All of above approaches were used for all the imputed data sets and the original incomplete data 

set.  
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4.0  RESULTS  

4.1 MISSINGNESS OF THE DATA 

4.1.1 Missing patterns 

 In the updated dataset, we have 766 patients with 7 missing patterns in 5FU arm and 761 

patients with 7 patterns in UFT arm (Figure 1).  

 

In Figure 1, the top panel is 5FU arm, and lower panel is UFT arm. The left shows the number 

of missing values for each variable at different time points. The higher of the red bar means more 
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missing values. In the right, missing patterns are showed as two color blocks, in which blue 

block means the values in the block were observed and red means the values were missing. We 

noticed that when a patient did not have a response in one score at one time point, there is no 

record of all variables at that time point. Which means the patient did not turn in the 

questionnaires form or fill the form at that time point. When a patient filled the form at a time 

point, he or she answered all the questions. About 35.0% in 5FU arm and 29.6% in UFT arm 

were drop-out, either during chemotherapy or at 1-year. Together with the complete cases, they 

form a monotonic missing pattern. But there are about 10 percent of incompleteness does not 

belong to monotonic missing pattern, in which 85 out of 766 in FU arm (11%) and 68 out of 761 

in UFT arm (8.9%).  

 

4.1.2  Difference in drop-out between treatments 

 To check if the drop-out is related to the score of those patients, we draw trends of score for 

complete cases and those with dropout (Figure 2). In Figure 2, the y axis the scores of each 

covariate, the x axis is the time point. The solid lines are for 5FU arm and dash lines for UFT arm. 

Red color is for drop out observations. For all the complete cases, there is no significant difference 

between two treatment arms. For drop out cases, the mean observed values are lower than those 

complete cases for variable NRMACT, QLRS, 36sf and most of FACT-C scores. The mean score 

difference between complete case and dropout case are not statistically significant. Therefore there is 

no obvious evidence against an MCAR mechanism.  
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Figure 2. Comparison of the complete cases and the dropout cases in FU and UFT arms. 

4.2 COMPARE THE INCOMPLETE AND IMPUTED DATASETS 

 To compare the imputed datasets to the original incomplete dataset, the mean values of 

the original incomplete dataset are summarized in Figure 3 and Table 1.  

       Table 1. Summary of the dataset before imputation 

 
 

FACTC_n_score  QLRS Sf36 Vitality 

 
baseline chemo  1-year baseline chemo  1-year baseline chemo  1-year 

FU.mean  82.99  82.93  87.16  7.45  8.04  8.45  61.03  60.41  68.02  

FU.sd 11.23  11.66  11.37  1.96  1.83  1.87  22.37  22.00  22.22  

UFT.mean  82.10  82.56  86.78  7.49  7.88  8.53  61.25  57.15  66.86  

UFT.sd 11.26  12.13  10.87  1.80  1.87  1.70  21.88  23.02  21.00  
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Figure.3 Mean values of the FACTC, QLRS and sf36-vitality scores in the incomplete data.  

 
 From model-based multiple imputation 20 datasets were obtained, 6 subscales of FACT-

C scores were added and multiply 100/140 to normalize to FACTC_n score with 0-100 scale. 

The mean values of FACTC_n score, QLRS and sf36 vitality score summarized in Figure 4, and 

Table 2. 

 
Figure 4. The mean values of the FACTC, QLRS and sf36-vitality scores in the model-based imputed datasets. On the 
top panels, the mean values from 20 imputed datasets; bottom shows the average to the means.  
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           Table 2. The summary of datasets from model-based multiple imputation  

 

 With similar procedure, we summarized the 20 datasets from hot deck imputation in 

Figure 5, and Table 3. 

 

 
Figure 5. The mean values of the FACTC, QLRS and sf36-vitality scores in the hot deck imputed datasets. On the top 
panels, the mean values from 20 imputed datasets; bottom shows the average to the means.  
 
 
Table 3. The summary of datasets from hot-deck multiple imputation  

 

 
FACTC_n_score  QLRS Sf36 Vitality 

 
Baseline chemo  1-year baseline chemo  1-year baseline chemo  1-year 

FU.mean  83.06  82.43  86.74  7.47  7.95  8.34  61.17  60.04  67.21  

FU.sd 11.25  12.10  11.78  1.96  1.97  2.03  22.46  22.67  23.35  

UFT.mean  82.10  82.19  86.20  7.49  7.84  8.39  61.30  56.62  65.58  

UFT.sd 11.29  12.47  11.28  1.81  1.89  1.89  21.97  23.322  21.60  

 
FACTC_n_score  QLRS Sf36 Vitality 

 
baseline chemo  1-year baseline chemo  1-year baseline chemo  1-year 

FU.mean  83.07  83.08  86.81  7.44  7.98  8.49  61.08  60.29  70.60  

FU.sd 11.08  10.64  9.78  1.97  1.83  1.75  22.39  21.18  20.41  

UFT.mean  82.08  82.47  86.94  7.49  7.89  8.46  61.21  57.00  66.74  

UFT.sd 11.14  11.32  9.65  1.81  1.85  1.63  21.85  23.18  20.79  
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 We noticed that mean values from imputed datasets have more variability, especially in 

the hot-deck imputations. But when we pooled the mean values from 20 datasets together, they 

are very similar to the mean values from the original incomplete dataset. The pooled within-

imputation standard errors are also very similar. This implies that there might be little difference in 

health related quality of life between the two treatments arms. 

4.3 COMPARE TREATMENT EFFECT WITH LINEAR REGRESSION MODELS 

 Using the scores (FACTC_nscore, QLRS, and sf36_vitality) at the last time point (1-

year) as outcome, the baseline scores and treatment as predictors, linear regression model was 

fitted to the incomplete data, the results are shown in Table 4. 

 
      Table 4. The linear regression model for the incomplete data 

 

 Noticed that there are only 981 observations are used in the models. These are the 

patients who have filled all the questionnaire at all three time points, 413 in FU treatment arm 

and 468 in UFT arm (Section 3.1.1, Figure 1). The model showed patients in UFT arm have 0.1 

unit increases in their FACTC score, 0.08 increases in QLRS score, and 1.96 decreases in Sf36 

vitality score comparing to FU arm. But all these changes are not statistically significant, with 

the p-values 0.878, 0.452 and 0.116 respectively. Also we noticed that the R
2 values are very 

small, which are 0.1831, 0.067, and 0.172 respectively. This means that the linear regression 

models do not fit the data well. But before we switch to another kind of model, we first check the 

 

FACTC_n score 
(n=981, R

2
=0.1831) 

QLRS 
(n=981, R

2
=0.067) 

Sf36 Vitality 
(n=981, R

2
=0.172) 

 
Est. S. E. t  Pr(>|t|) Est. S. E. t  Pr(>|t|) Est. S. E. t  Pr(>|t|) 

Intercept 49.10  2.61  18.83  0.000  6.51  0.245  26.61  0.000  43.08  1.999  21.66  0.000  

trt 0.099  0.649  0.153  0.878  0.083  0.111  0.752  0.452  -1.960  1.246  -1.573  0.116  

baseline  0.454  0.031  14.79  0.000  0.255  0.031  8.310  0.000  0.410  0.029  14.21  0.000  
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linear regression models fit the imputed datasets.  Models were fitted to 40 imputed datasets 

from imputation, among which 20 for model-based imputation datasets, 20 for hot deck 

imputation. Treatment effects in most of the linear models are not significant for FACTC and 

QLRS in the model-based imputed datasets (Figure 6). 

 
Figure 6. The histograms of p-values of linear models fitting to the imputed data  

 
 However there are some models showing that it is significant in FACTC and QLRS in the 

hot deck imputation datasets. And for Sf36 vitality, more than 11 models showed that treatment 

effect was close to statistical significance. But the R2 values were very small, which were just 

similar to that from model of incomplete data. There was obvious variability between the 

imputed datasets, we pooled the regression model coefficients information and summarized in 

Figure 7 and Table 5. 
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  Figure 7. The histograms of estimation of treatment coefficients in linear models fitting  

to the imputed data  
 

 In Figure 7, the estimated coefficients β’s are basically normally distributed, to 

estimate if it is significantly different from 0, we need to know its variability. The 

variability includes two parts, within the imputation and between the imputations. The 

later part can also be considered variability due to data missing. The variability for both 

model-based and hot deck imputed datasets were summarized in Table 5. 

Table 5. The variability of estimation in linear models for the imputed datasets 
 

  

 

 

 

In Table 5,    is the average treatment coefficients from 20 imputed datasets,        is the within 

imputation variance of treatment effect, B20 is between imputation variance,  T20  is total variability 

associated with the imputation of the missing values and γ20 is the ratio of variability due to 

 
Model-based imputation hot deck imputation 

 
FACTC QLRS Sf36 FACTC QLRS Sf36 

   -0.0999 0.0456 -1.6826 -0.0226 0.0476 -2.7102 

  20 0.2787 0.0094 1.1119 0.3929 0.0116 1.516 

B20 0.0634 0.0019 0.4863 0.2079 0.0174 2.0413 

T20 0.3389 0.0112 1.5739 0.5905 0.0281 3.4553 

γ20 0.1963 0.1769 0.3244 0.3698 0.6508 0.6203 
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missing to that due to the imputation (Section 3.2). Noticed that γ20 in hot deck imputation is 

almost twice higher than that in the model-based imputation.  

 Although the treatment effect showed in some imputed datasets is significant, it might 

just because of the variability of the missing values. To have a consistence inference, we must 

pool all the information from all 20 datasets. The pooled 95% confidence intervals were 

calculated (Table 6) by:  

95% C.I. =    ± 1.96 *sqrt(T20) 

 

Table 6. The 95% CI of treatment effect from linear models for incomplete and imputed datasets 
 

 

 

 

  The treatment effects for FACTC, QLRS and Sf36 vitality scores are not significantly 

different with pooled 95% confidence intervals (-1.241, 1.041), (-0.162, 0.253) and (-4.141, 

0.776) respectively for model based- imputed data; and (-1.529, 1.483), (-0.281, 0.376) and (-

6.353, 0.933) respectively for hot deck imputation data. This is consistent with the inference 

from incomplete data and the conclusion from the HRQL study in NSABP C-06 clinical trial 

(Kopec, 2006). Also the confidence intervals (CIs) for FACTC and QLRS from mice imputed 

data are narrower than that from incomplete Datasets. The CIs for FACTC and QLRS from hot 

deck imputed data are similar with incomplete data. But for Sf36, the CIs from imputed dataset 

did not improve in hot deck imputation.  

 

 

 
FACTC QLRS SF36 vitality 

incomplete (-1.48, 1.678) (-0.57, 0.736) (-4.164, 0.244) 

mice.impute (-1.24, 1.042) (-0.162, 0.253) (-4.142, 0.776) 

hotdeck.impute (-1.529, 1.484) (-0.281, 0.376) (-6.353, 0.933) 
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4.4 COMPARE TREATMENT EFFECT WITH GEE MODELS 

GEE (Generalized estimation equations) takes into account the correlation between 

repeated measures, and can make use of all available observed values, even when there is 

missing values in that observation. In our data we use two times (during chemotherapy and 1-

year after follow up) as repeated measures, unstructured correlation structure is selected and 

robust variance estimator is applied. The modeling result from the incomplete data is show in 

Table 7. 

Table 7. The GEE model for the imputed datasets            
  

 

 

Note: No. of obs = 3686, No. of groups = 1527 

 In Table 6, the GEE model utilized all 3686 observations in 1527 patients. Based on this 

model, patients in UFT arm have 0.55 unit decreases in their FACTC score, 0.007 increases in 

QLRS score, and 1.15 decreases in Sf36 vitality score comparing to FU arm. But all these 

changes are not statistically significant, with the p-values 0.283, 0.923 and 0.2276 respectively. 

The treatment effects were not statistically significant.  

 GEE models were fitted to each of the imputed datasets. The p-values from each model 

are summarized in Figure 8.  But as mentioned above, it is not important for making inference. 

Variables  Trt (β)  S.E.  z  P>|z|            95% CI  

FACT_C_n  -0.5475  0.5101  -1.07  0.283  -1.547  0.452  

QLRS  0.0073  0.0759  0.10  0.923  -0.141  0.156  

36SF-vit  -1.1536  0.9543  -1.21  0.227  -3.024  0.716  
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Figure 8. The histograms of p-values of GEE models fitting to the imputed data  

 
 

The estimated coefficients from GEE models were summarized in Figure 9. The 

treatment effect coefficients variability is summarized in Table 7. 

 
Figure 9. The histograms of estimation of treatment coefficients in GEE models fitting  
  to the imputed data 
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Table 8.  The variability of estimation in GEE models for the imputed datasets  
 

 Note: *, indicates these values were calculated as B20/T20 

 

    Table 9. The 95% CI of treatment effect from GEE models for incomplete and imputed datasets 

 
FACTC QLRS SF36 vitality 

incomplete  (-1.947, 0.852) (-0.533, 0.547) (-3.068, 0.762) 

mice (-1.626, 0.357) (-0.153, 0.148) (-3.44, 0.287) 

hotdeck (-2.582, 1.701) (-0.465, 0.428) (-8.986, 4.038) 

 

 The 95% confidence intervals for treatment effect on FACTC, QLRS and Sf36 vitality 

scores from above with pooled information were calculated: (-1.626,  0.357), (-0.153,  0.148) 

and (-3.440  0.287) respectively for model based- imputed data; and (-2.582, 1.701), (-0.465,  

0.428) and (-8.986, 4.038) respectively,  for hot deck imputation data. These CIs showed that the 

treatments were not significantly different in the quality of life. This is also consistent with the 

inference from incomplete data and the conclusion from the HRQL study in NSABP C-06 

clinical trial (Kopec, 2007). 

 Note that CI’s for FACTC, QLRS and Sf36 vitality from model-based imputed data are 

narrower than that from incomplete data. The CI’s for QLRS from hot deck imputed data are 

narrower than that from incomplete data. But for FACT and Sf36, the CI’s from imputed dataset 

have not improved or even worsen in hot deck imputation.  

 

 

 
Model-based imputation hot deck imputation 

 
FACTC QLRS Sf36 FACTC QLRS Sf36 

   -0.6346 -0.0023 -1.5765 -0.4406 -0.0182 -2.474 

  20 0.2418 0.0056 0.8346 0.1673 0.0042 0.6458 

B20 0.0146 3.00E-04 0.0729 1.0802 0.0502 10.939 

T20 0.2557 0.0059 0.9038 1.1935 0.0519 11.038 

γ20 0.0601 0.0574 0.0847 0.9051* 0.9672* 0.9910* 
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5.0  DISCUSSION  

5.1 MISSING MECHANISM AND IMPUTATION 

5.1.1 Missing mechanisms in HRQL data  

 Both the original paper and this thesis, concluded that the missing data might not be 

completely at random (Kopec, 2006). The original paper made the inference based on the 

response rates in two treatment arms. They authors counted the number of patients response at 

each time in both arms, using chi-square test to check if the rates are statistically different. The 

underlying assumption of the test is that all the patients responded at later time responded earlier. 

In another word, the missing is completely monotonic. But the fact is there are about 10 percent 

of incompleteness does not belong to monotonic missing pattern (section 4.1.1, 4.1.2), only 681 

out of 766 in FU arm (89%) and 693 out of 761 in UFT arm (90.1%) belong to monotonic 

pattern. So the test in the original paper is not validated. In this thesis, we use the fisher exact test 

to test drop-out rate in the monotonic pattern data (129 out of 681 in FU arm vs 94 out of 693 in 

UFT during chemotherapy) gave a p-value 0.025. This is statistically significant. Based on this 

test result, the missing patterns and differences in observed scores between complete and drop-

out subjects in two arms. Therefore we reached the same conclusion that the data were not 

completely at random. This supports the conclusion drawn in the published paper. 
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5.1.2 Imputation missing data  

 Two multiple imputation approaches were used in this thesis, explicit model-based and 

implicit model-based (hot deck). In the model-based approach, we keep the fewer level 

covariates as categorical, and use linear discriminant analysis (lda) method to impute the 

missing values, and for covariates with more than 20 levels, we use Bayesian linear regression 

method. For curious, we also tried to use Bayesian linear regression (norm) for all covariates. 

Surprisingly, the result is very similar (Figure 10). The difference is , the imputed values are not 

integers.   

Figure 10. The mean values of the FACTC, QLRS and sf36-vitality scores in the mice (norm) imputed datasets. For 
covariates, the Bayesian linear regression methods were used to impute missing values. 

 
 

 
Figure 11. The mean values of the FACTC, QLRS and sf36-vitality scores in the hot deck (un-weighted) imputed datasets. The 
distance metric is defined with original scales of each covariate. 
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  In hot deck approach, the metric to calculate neighborhood is the most important step. If 

the metric is not appropriate, it leads to severe bias in the estimation. At first, we tried to used 

difference of two units in the original scale of each covariates as distance, the mean value from 

the imputed data are very different from the original data (Figure 11), especially at the last time 

point, where the missing rate is much higher.  For FACT-C score, since it is calculated from 6 

subscales scores, the bias is cumulative, so it appears the largest bias. But we also notice that the 

20 imputed datasets are more consistent than that from weighted hot deck imputation (Section 

4.2, Figure 5). It is possible to find a definition of distance, with which we can impute the 

missing data unbiased and consistently.   

 Compare the model-based imputation and hot deck imputation data, we noticed that the 

model based imputation is more consistent in mean values of the covariates, and estimation of 

coefficients. Hot deck imputation in this thesis, has more variability. But it is difficult to say 

which one is better when we only look at the mean of the variables. Because the missing value is 

unknown, it is possible that it changes from the minimal to the maximal possible value. The 

imputation approaches are just approximately estimation based on observed values.  

5.2 ESTIMATION OF TREATMENT EFFECT  

 The estimation of treatment effect from both the original incomplete data and imputed 

datasets is quite consistent. The treatment effect on the HRQL is not significantly different in 

two arms.  People may argue that it is not necessary to do a multiple imputation. But it is 

worthwhile to because the multiple imputation approaches not only consistently estimate the 

treatment effect, it also successfully account for the uncertainty due the missing. It utilizes the 
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observed data at the same occasion. In the GEE model with model-based imputed datasets, less 

than 10 percent of the variability is due to the imputation. While for hot deck imputed datasets, 

more than 95% variability is due to the imputation. But the inferences are the same.  

 The 95% confidence intervals also indicate in both model based and hot deck imputation, 

Sf36 estimation efficiency has not improved. It may because that the scale of Sf36 vitality scores 

is so different from other covariates that the model used in the imputation process cannot account 

for it. For example, in the hot deck imputation used in this thesis, the distance definition in 

neighborhood calculation down-weighted the Sf-36 scores. It may have a balanced point that we 

can improve the estimation by modifying the definition of metric to account for both Sf36 

vitality and other covariates.  
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6.0  CONCLUSION  

 
 Based on Missing at random (MAR) mechanism, the missing data in HRQL study in the 

NSABP C-06 did not introduce significant bias since the estimates of the treatment effect for 

health related quality of life (HRQL) based on imputed datasets were similar to those based on 

the original incomplete dataset. However, the model-based multiple imputation provided 

estimates of confidence intervals that are narrower than that from incomplete data, which means 

the estimation efficiency is improved through multiple imputation.. In the GEE estimation with 

model-based imputed datasets, less than 10 percent of the variability is due to the imputation. 

While for hot deck imputed datasets, more than 95% variability is due to the imputation. But the 

inferences on the treatment effect are the same. So the two imputation approaches successfully 

account for the   uncertainty due to the incompleteness Therefore, the multiple imputation, 

especially the model based imputation, was worthwhile since it gave more reasonable and 

efficient estimates for the treatment effect.  

Similar with that from inference of survival outcomes, we didn’t find significant difference in 

treatment effect on the HRQL. So we could not make decision on treatment selection based on 

HRQL study. Further study (such as convenience of care study) is needed for the treatment 

selection.  
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APPENDIX A 

The estimation from imputed datasets 

Table A.1 Linear regression result for 20 datasets from model-based imputation 

 
FACTC_n score QLRS Sf36 Vitality 

impute 
No. Est. S.E. t P>|t| Est. S.E. t P>|t| Est. S.E. t P>|t| 

1 -0.23039 0.527373 -0.44 0.662 -0.02386 0.096816 -0.25 0.805 -1.85908 1.052378 -1.77 0.078 

2 0.151588 0.544743 0.28 0.781 0.046598 0.102158 0.46 0.648 -1.51574 1.061997 -1.43 0.154 

3 -0.21998 0.519336 -0.42 0.672 0.05164 0.095435 0.54 0.589 -0.6978 1.03438 -0.67 0.5 

4 -0.03723 0.544966 -0.07 0.946 0.078804 0.094776 0.83 0.406 -1.69423 1.082734 -1.56 0.118 

5 0.035577 0.534117 0.07 0.947 0.105635 0.096436 1.1 0.274 -0.86178 1.053863 -0.82 0.414 

6 -0.04444 0.529144 -0.08 0.933 -0.01251 0.093998 -0.13 0.894 -2.0957 1.054638 -1.99 0.047 

7 -0.40112 0.52234 -0.77 0.443 -0.0067 0.098187 -0.07 0.946 -1.99244 1.055163 -1.89 0.059 

8 -0.21547 0.521455 -0.41 0.68 0.010115 0.091878 0.11 0.912 -2.68003 1.038695 -2.58 0.01 

9 0.175258 0.535395 0.33 0.743 0.012764 0.098253 0.13 0.897 -0.80396 1.044164 -0.77 0.441 

10 0.03104 0.525341 0.06 0.953 0.049433 0.098153 0.5 0.615 -1.05863 1.046653 -1.01 0.312 

11 0.399202 0.515747 0.77 0.439 0.061116 0.09491 0.64 0.52 -0.06305 1.021956 -0.06 0.951 

12 -0.61091 0.522109 -1.17 0.242 0.036913 0.0981 0.38 0.707 -2.07045 1.030552 -2.01 0.045 

13 -0.31595 0.519906 -0.61 0.543 0.07304 0.096739 0.76 0.45 -1.9103 1.059375 -1.8 0.072 

14 -0.33802 0.530672 -0.64 0.524 0.048453 0.099774 0.49 0.627 -2.26283 1.060177 -2.13 0.033 

15 -0.03673 0.5379 -0.07 0.946 0.039569 0.095727 0.41 0.679 -2.11443 1.095749 -1.93 0.054 

16 0.091398 0.54295 0.17 0.866 0.158516 0.099597 1.59 0.112 -1.414 1.096578 -1.29 0.197 

17 0.079644 0.522924 0.15 0.879 0.031592 0.097327 0.32 0.746 -2.86995 1.015225 -2.83 0.005 

18 -0.49076 0.532054 -0.92 0.356 0.033714 0.093809 0.36 0.719 -1.80624 1.077008 -1.68 0.094 

19 -0.13558 0.508688 -0.27 0.79 0.018429 0.096152 0.19 0.848 -2.20064 1.038961 -2.12 0.034 

20 0.115224 0.519522 0.22 0.825 0.09818 0.097629 1.01 0.315 -1.67989 1.064647 -1.58 0.115 
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Table A.2 Linear regression result for 20 datasets from hot deck imputation 

 
FACTC_n score QLRS SF-36 Vitality 

Imputation 
Est. S. E. t Pr(>|t|) Est. S. E. t value Pr(>|t|) Estimate S. E.r t value Pr(>|t|) No. 

1 -0.49011 0.626896 -0.78181 0.434502 -0.03222 0.107402 -0.29996 0.764263 -2.60508 1.236512 -2.1068 0.035371 

2 0.49393 0.624859 0.790466 0.429433 -0.05003 0.106423 -0.47008 0.638394 -1.17572 1.211565 -0.97042 0.332061 

3 -0.23774 0.622577 -0.38186 0.702642 0.363166 0.125732 2.888422 0.003951 -3.44648 1.248822 -2.75978 0.005884 

4 0.100873 0.632678 0.159439 0.873354 0.007181 0.10515 0.06829 0.945568 -4.84079 1.241784 -3.89825 0.000103 

5 -0.63632 0.637048 -0.99885 0.318095 0.151464 0.105451 1.436342 0.151202 -3.63157 1.222905 -2.96962 0.003049 

6 0.123642 0.630714 0.196035 0.84462 0.063545 0.106031 0.59931 0.549095 -3.89065 1.200696 -3.24033 0.001231 

7 0.110447 0.641968 0.172044 0.863436 0.156958 0.107304 1.462747 0.143835 -1.64901 1.225817 -1.34524 0.178839 

8 -1.14425 0.622268 -1.83884 0.06622 -0.0016 0.10498 -0.01526 0.987825 -3.44029 1.272209 -2.70418 0.006958 

9 -0.23873 0.622282 -0.38363 0.701328 0.019314 0.104935 0.18406 0.854001 -2.57707 1.304355 -1.97574 0.048445 

10 0.634229 0.629677 1.007229 0.314056 0.072876 0.104607 0.696658 0.486171 -0.94433 1.197251 -0.78875 0.430437 

11 0.451862 0.616307 0.733176 0.463614 0.18986 0.105419 1.801009 0.071987 -1.31777 1.185746 -1.11134 0.266673 

12 0.471216 0.629258 0.748843 0.454119 -0.00503 0.106016 -0.04745 0.962165 -1.78477 1.247104 -1.43113 0.152689 

13 0.201571 0.630528 0.319687 0.749269 -0.056 0.106182 -0.52741 0.598023 -0.25131 1.221085 -0.20581 0.836978 

14 -0.17659 0.621445 -0.28416 0.776343 0.049929 0.105133 0.474909 0.63495 -3.08967 1.206638 -2.56056 0.010589 

15 -0.32679 0.636646 -0.5133 0.607847 0.08945 0.104438 0.856485 0.391924 -1.64668 1.258457 -1.3085 0.190991 

16 -0.28277 0.626315 -0.45149 0.651731 0.139068 0.106961 1.30018 0.193824 -3.13181 1.203593 -2.60205 0.009397 

17 0.381491 0.621094 0.614224 0.5392 0.027971 0.104793 0.266915 0.789587 -5.97738 1.279462 -4.67179 3.37E-06 

18 -0.45419 0.615468 -0.73796 0.460703 -0.05842 0.107231 -0.5448 0.586006 -1.50592 1.17976 -1.27646 0.202072 

19 0.204384 0.6247 0.327172 0.743603 0.13108 0.10602 1.236372 0.216596 -3.40527 1.201476 -2.83424 0.004681 

20 0.362021 0.623081 0.581017 0.561353 -0.30563 0.118037 -2.58923 0.009752 -3.89277 1.270879 -3.06305 0.002247 
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Table A.3 GEE result for 20 datasets from model-based imputation 

 
FACTC_n QLRS SF36_vit 

impute 
No. Est.. Std. z P>|z| Est. Std. z P>|z| Est. Std. z P>|z| 

1 -0.64639 0.491586 -1.31 0.189 -0.00646 0.073665 -0.09 0.93 -1.66014 0.909442 -1.83 0.068 

2 -0.45517 0.498241 -0.91 0.361 -0.00486 0.076189 -0.06 0.949 -1.59081 0.912295 -1.74 0.081 

3 -0.72082 0.489269 -1.47 0.141 -0.00456 0.075869 -0.06 0.952 -1.39553 0.91331 -1.53 0.127 

4 -0.5679 0.492836 -1.15 0.249 -0.0037 0.075518 -0.05 0.961 -1.52692 0.916086 -1.67 0.096 

5 -0.59704 0.491214 -1.22 0.224 0.027574 0.075159 0.37 0.714 -1.2194 0.911586 -1.34 0.181 

6 -0.69047 0.492797 -1.4 0.161 -0.02277 0.074807 -0.3 0.761 -1.68397 0.918955 -1.83 0.067 

7 -0.68611 0.485693 -1.41 0.158 -0.03267 0.075782 -0.43 0.666 -1.6848 0.915407 -1.84 0.066 

8 -0.76995 0.490068 -1.57 0.116 -0.00734 0.074948 -0.1 0.922 -1.63537 0.914932 -1.79 0.074 

9 -0.57016 0.49084 -1.16 0.245 -0.02066 0.075741 -0.27 0.785 -1.24619 0.91163 -1.37 0.172 

10 -0.60185 0.49523 -1.22 0.224 -0.02214 0.074914 -0.3 0.768 -1.45462 0.905892 -1.61 0.108 

11 -0.45975 0.491005 -0.94 0.349 0.016807 0.074591 0.23 0.822 -0.96116 0.90961 -1.06 0.291 

12 -0.95628 0.494364 -1.93 0.053 -0.00864 0.076024 -0.11 0.909 -1.61648 0.894972 -1.81 0.071 

13 -0.64059 0.492839 -1.3 0.194 0.021095 0.075811 0.28 0.781 -1.47641 0.910476 -1.62 0.105 

14 -0.65503 0.490479 -1.34 0.182 0.00098 0.075377 0.01 0.99 -1.71844 0.918106 -1.87 0.061 

15 -0.68233 0.500986 -1.36 0.173 -0.00656 0.075466 -0.09 0.931 -1.85485 0.926352 -2 0.045 

16 -0.64299 0.489176 -1.31 0.189 0.037981 0.075046 0.51 0.613 -1.67353 0.918922 -1.82 0.069 

17 -0.55265 0.493061 -1.12 0.262 -0.01907 0.074298 -0.26 0.797 -2.28241 0.90457 -2.52 0.012 

18 -0.77105 0.490776 -1.57 0.116 0.01082 0.074702 0.14 0.885 -1.79929 0.912626 -1.97 0.049 

19 -0.58821 0.487493 -1.21 0.228 -0.00838 0.073989 -0.11 0.91 -1.60757 0.926305 -1.74 0.083 

20 -0.43778 0.487245 -0.9 0.369 0.005687 0.074069 0.08 0.939 -1.44308 0.918755 -1.57 0.116 
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 Table A.4 GEE result for 20 datasets from hot deck imputation 

 
FACTC_n QLRS SF36_vit 

impute 
No. Coef. Std. z P>|z| Coef. Std. z P>|z| Coef. Std. z P>|z| 

1 -1.72334 0.406369 -4.24 0 -0.13125 0.060712 -2.16 0.031 0.04474 0.81361 0.05 0.956 
2 0.222931 0.414782 0.54 0.591 -0.08837 0.060371 -1.46 0.143 0.968554 0.798574 1.21 0.225 
3 -1.13228 0.409532 -2.76 0.006 0.463753 0.075787 6.12 0 -4.18205 0.776813 -5.38 0 
4 -0.25421 0.402128 -0.63 0.527 0.018123 0.062179 0.29 0.771 -8.00821 0.80735 -9.92 0 
5 -0.85964 0.403608 -2.13 0.033 0.316848 0.061417 5.16 0 -5.41243 0.796378 -6.8 0 
6 -0.02738 0.400256 -0.07 0.945 0.060129 0.063267 0.95 0.342 -2.88212 0.774273 -3.72 0 
7 0.613598 0.405695 1.51 0.13 0.254958 0.065243 3.91 0 -2.64344 0.786695 -3.36 0.001 
8 -2.97839 0.419934 -7.09 0 -0.06136 0.066998 -0.92 0.36 -4.339 0.805695 -5.39 0 
9 -0.76322 0.401004 -1.9 0.057 -0.22005 0.062691 -3.51 0 0.620087 0.792806 0.78 0.434 

10 0.378462 0.408851 0.93 0.355 0.054788 0.063285 0.87 0.387 0.066004 0.842581 0.08 0.938 
11 0.102989 0.411285 0.25 0.802 0.149368 0.06406 2.33 0.02 1.290604 0.810835 1.59 0.111 
12 0.509415 0.402403 1.27 0.206 -0.10453 0.062407 -1.67 0.094 -1.53751 0.80758 -1.9 0.057 
13 1.277802 0.418179 3.06 0.002 -0.35015 0.063046 -5.55 0 2.785472 0.80215 3.47 0.001 
14 -1.06248 0.405885 -2.62 0.009 -0.06517 0.061918 -1.05 0.293 -2.20508 0.798129 -2.76 0.006 
15 -1.22624 0.420788 -2.91 0.004 -0.0432 0.062501 -0.69 0.489 -0.46023 0.782079 -0.59 0.556 
16 -1.12224 0.403148 -2.78 0.005 -0.01908 0.060901 -0.31 0.754 -4.6979 0.789299 -5.95 0 
17 0.554037 0.413869 1.34 0.181 -0.09028 0.061321 -1.47 0.141 -10.4908 0.858381 -12.22 0 
18 -1.72349 0.411093 -4.19 0 -0.46902 0.073024 -6.42 0 -0.34229 0.771194 -0.44 0.657 
19 -0.09508 0.411256 -0.23 0.817 0.20978 0.065591 3.2 0.001 -2.95689 0.812827 -3.64 0 
20 0.496331 0.409049 1.21 0.225 -0.2493 0.076701 -3.25 0.001 -5.10794 0.838805 -6.09 0 
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APPENDIX B 

R-code for nearest neighborhood hot deck imputation 

##### define function to find the missing pattern 
ind.fun<-function(a){                 ### find the missing indicator matrix 
for(i in 1:nrow(a)){ 
for(j in 1:27){ 
if(!is.na(a[i,j])) d[i,j]<-1  
}} return(d) 
} 
###################### define missing pattern############# 
p1<- 0 
p2<-c(3,6,9,12,15,18,21,24,27) 
p3<-c(2,5,8,11,14,17,20,23,26) 
p4<-c(2,3,5,6,8,9,11,12,14,15,17,18,20,21,23,24,26,27) 
p5<-c(1,4,7,10,13,16,19,22,25) 
p6<-c(1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27) 
p7<-c(1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26) 
pattern<-list(p1,p2,p3,p4,p5,p6,p7)  ### this pattern list will be used in impute the different missing value in the same subject 
 
####   define function for search nearest neighbor ############################### 
searchcloseby<-function(value,set) 
       { 
 dist<-c(0,0.1,0.2,0.3,0.5, 0.7, 1,2,3,4,5,6,7,8,9,10) ### set the distance criteria for stop the loop 
 number.obs<-27-(length(value[is.na(value)]))   ### the number of variable used to calculate the distance 
   
 value[c(7:12,16:24)]<-value[c(7:12,16:24)]/2.8 ###set the weight for calculate distance in the vactor to be imputed 
 value[25:27]<- value[25:27]/10 
 value[13:15]<-value[13:15]*5/4 
 A<-sum(value, na.rm=T)  
 
 set1<-set     ###set the weight for calculate distance in the donor metrix 
 set1[,c(7:12,16:24)]<-set1[,c(7:12,16:24)]/2.8  
 set1[,25:27]<-set1[,25:27]/10 
 set1[,13:15]<-set1[,13:15]*5/4 
 B<-rowSums(set1[,pattern[9-d][[1]]]) 
  
 distance<-abs(B-A)/number.obs     #### calculate the normalized distance (in 0.00-10.00 scale,) 
 w<-cbind(distance,set)  
 w1<-w[order(w[,1]),]   ### order the distance so the nearest subject at the top 
  
 s<-1  
 while(nrow(w1[(w1[,1]<=dist[s]),])< 2 ){s<-s+1}    
 subset<- w1[(w1[,1]<=dist[s]),] 
 subset                 ### output   
      } 
############  define function for hot deck imputation ################################ 
hot.deck.impute<-function(dataset,dataout) 
{  
   combined<-dataset[Ind==a[1],]  ##set the intitial dataset 
          for(d in 2:7)       ### pattern 2 to pattern 7 have missing values 
         {   
  impset<-dataset[Ind==a[d],]      ### identify the subset which need to be imputed 
 impset[is.na(impset)]<-0   ### change NA to 0, so the imputede value can be added on  
 mdvector<-rownames(impset)       ### identify the subject of the subset 
 codeset<-dataset[Ind==a[1],]     ### use the complete cases as donor (pattern 1) 
 
 num.cases<-length(mdvector)   ### the number of subject in this pattern need to be imputed 
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 random.numbers<-matrix(runif(num.cases*27,0,1),nrow=num.cases,ncol=27,)  
  ### generate a matrix of random Number which has the same dimension as the subset to be imputed 
 income.impute<-matrix(0,nrow=num.cases,ncol=27, byrow=TRUE,dimnames = list(rownames(impset), colnames(impset)))  
  ### generate a matrix of 0 which has the ame dimension the subset to be imputed 
 
 for (i in 1:num.cases) 
 { 
  icid<-mdvector[i]         ### the subject names in the subject to be imputed 
  impcode<-dataset[rownames(dataset)==icid,] ### identify the vector of the subject 
   
        subset<-searchcloseby(impcode,codeset) ### looking for the nearest neighborhood 
  k<-nrow(subset)       
   
  for(m in pattern[d][[1]])  ### impute the missing values in the subject through random draw.   
  {         ### each missing value is imputed by a independent random draw  
  selected<-ceiling(k*random.numbers[1,m]) ###from the same neighborhood   
  income.impute[(rownames(impset)==icid),m]<-subset[selected,(m+1)] 
  }  
 } 
 imputed.set<-impset+income.impute  ### update the imputed subset  
 combined<-rbind(combined,imputed.set)  ### combined it to the initial dataset and update the dataset 
      }  
     dataout<-combined 
     dataout 
} 
########################## imputation FU #################################### 
setwd("C:/thesis/before_imputatioin/") 
FU <- read.table("5fu_before_impute_3_14.csv", header=TRUE, sep=",") 
Fu.new<-FU[,2:28] 
 
d<-matrix(0, nrow=nrow(Fu.new),ncol=27) 
ind01<-ind.fun(Fu.new)      ### the missing pattern of the 5fu data 
Ind<-0 
for(i in 1:27){ 
Ind<- Ind+ ind01[,i]*(2**(28-i))}    

 
a=unique(Ind)  ###    will give the unique patterns represented by the indicator 
a<-a[order(a, decreasing=T)] 
 
set.seed(1234) 
n.iteration<-20     
for(p in 1:n.iteration) 
{ 
fu.impute<-hot.deck.impute(Fu.new,dataout) 
write.csv(fu.impute, file=paste("fu_weighted_impute_set_", p, ".csv", sep="")) 
} 
#######################  impute uft data  #################################### 
setwd("C:/thesis/before_imputatioin/") 
 
UFT <- read.table("uft_before_impute_3_14.csv", header=TRUE, sep=",") 
UFT.new<-UFT[,2:28] 
d<-matrix(0, nrow=nrow(UFT.new),ncol=27) 
 
ind01<-ind.fun(UFT.new)      ### the missing pattern of the uft data 
Ind<-0 
for(i in 1:27){ 
Ind<- Ind+ ind01[,i]*2**((28-i))} 
 
a<-a[order(a, decreasing=T)] 
 
set.seed(1234) 
n.iteration<-20  
for(p in 1:n.iteration) 
{ 
uft.impute<-hot.deck.impute(UFT.new,dataout) 
write.csv(uft.impute, file=paste("uft_weighted_impute_set_", p, ".csv", sep="")) 
} 
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