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Each of the HIV-1 pol-encoded enzymes, protease (PR), reverse transcriptase (RT) and 

integrase (IN) are released during virion maturation and are active only as dimers. Of the three, 

only RT comprises subunits of different mass. RT in mature infectious virions is a heterodimer 

of 66 kDa and 51 kDa subunits, even though its gene encodes a 66 kDa protein. The RT p51 

subunit is formed by HIV-1 PR-catalyzed cleavage of RT p66, resulting in the removal of a 

ribonuclease H (RNH) domain. Given the existence of completely active recombinant p66/66 RT 

homodimers and alternative RT oligomers in other retroviruses, the apparent need for p66/51 RT 

heterodimers in the HIV-1 virion is unclear. To determine why the generation of active viral RT 

requires three processing events, we introduced mutations in the p51↓RNH and RT↓IN protease 

cleavage sites of an infectious HIV-1 molecular clone. Mutation of the RT↓IN cleavage site had 

no effect on the activity or proteolytic stability of the p98/51 RT product, although infectivity 

was severely attenuated. This result was similar to findings previously reported for the PR↓RT 

cleavage site. Surprisingly, mutation of the internal p51↓RNH cleavage site did not increase RT 

p66 content, but resulted in attenuated virus containing greatly decreased levels of RT that was 
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primarily RT p51. We further identified a compensatory second-site mutation T477A, found to 

restore RT activity and processing to p66/51 RT when introduced in the background of 

p51↓RNH cleavage site mutations. These studies demonstrate that cleavage of the internal 

p51↓RNH junction, not the flanking N-terminal or C-terminal junctions is essential for 

proteolytic stability of functional RT during virion maturation. These findings further emphasize 

the importance of the RNH domain in regulating proteolytic generation of p66/51 RT. The 

overall need for the RT heterodimer is attributable to the generation of its subunits. Formation of 

the 51 kDa subunit or cleavage of the p51↓RNH junction is essential for RT stability in the 

virion, whereas formation of the 66 kDa subunit is important for efficient viral replication. 
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 CHAPTER 1: INTRODUCTION 

 

 

1.1 ASSEMBLY AND MATURATION OF RETROVIRAL PARTICLES 

 

One of the most critical stages in the retroviral life cycle is the ability to transfer genomic 

RNA to subsequent host cells for efficient viral replication (Figure 1). This process entails the 

dynamic coordination of virus particle assembly, budding, and release from the host cell plasma 

membrane, followed by morphogenic maturation (537). An examination of the structural and 

functional proteins of a mature retroviral particle, such as HIV-1, does not directly provide 

clarification of the assembly process since these components are not individually packaged. Most 

viral proteins are instead translated in the cell from polycistronic unspliced viral RNA and 

incorporated into virions in the form of polyprotein precursors termed Gag (Pr55gag) and Gag-Pol 

(Pr160gag-pol) (Figure 2). The Gag precursor contains the structural proteins of the viral core 

including matrix (MA), capsid (CA), nucleocapsid (NC), p6gag and two spacer peptides p2 and 

p1. The Gag-Pol precursor contains these Gag proteins located upstream of a Pol region that 

encodes the functional viral enzymes protease (PR), reverse transcriptase (RT), and integrase 

(IN) (190). A subset of retroviruses may also encode dUTPase (DU) between RT and IN (FIV 

and EIAV) or N-terminal to PR (MPMV), to reduce dUTP incorporation errors during retroviral 

DNA synthesis in non-dividing cells (105,511). A commonly adopted model of the polyprotein 
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Figure 1.  Replication cycle of HIV-1. The early and late phase of the HIV-1 replication cycle 
may be generally divided into 10 steps. The early phase begins with the binding of viral envelope 
SU (gp120) protein to cell surface CD4 receptor and CCR5 or CXCR4 chemokine coreceptors 
(step 1). This is followed by fusion, entry and uncoating of the cone-shaped viral core (step 2). 
Reverse transcription converts the single-stranded viral RNA genome into a double-stranded 
DNA copy (step 3). The preintegration complex (PIC) of viral and cellular proteins and proviral 
DNA is transported to the nucleus (step 4), followed by integration into the host chromosomal 
DNA (step 5). In the late phase of the cycle, the integrated viral DNA is transcribed by cellular 
RNA Pol II (step 6) forming spliced and unspliced mRNA templates used for translational 
synthesis of the accessory factors and polyproteins (Gag and Gag-Pol) encoding structural 
proteins and functional enzymes (step 7). Viral RNA, polyproteins, and envelope localize to the 
inner face of the plasma membrane where they are packaged into assembling viral particles (step 
8). Finally, progeny virions bud from the cell surface as immature particles (step 9) and acquire 
infectious capacity by proteolysis-induced morphological maturation (step 10). 
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Figure 2.  Schematic representation of the genomic and polyprotein organization of HIV-1. 
The upper diagram represents the 9.8 kbp provirus which is bordered by long terminal repeats 
(LTR) and contains a number of open reading frames encoding genes for structural (gag) and 
enzymatic proteins (pol), viral infectivity factor (vif), viral proteins R and U (vpr and vpu), 
envelope proteins (env), and the negative factor protein (nef). Proteins derived from multiply 
spliced mRNA include the regulator of mRNA splicing and transport (rev) and the transactivator 
of transcription protein (tat). The lower diagram represents the HIV-1 Gag and Gag-Pol 
polyprotein precursors. The proteins encoded in pol are synthesized at a frequency of 5-10% by a 
-1 translational frameshift (fs) of the unspliced genomic mRNA template to yield Gag-Pol. At 
the stage of virion budding and release, Gag and Gag-Pol polyproteins are proteolytically 
cleaved at domain boundaries by the viral protease to release their constitutive protein species 
and complete the maturation process. The location of these protease cleavage sites are indicated 
by the vertical arrows. Primary (1), secondary (2), tertiary (3), and quaternary (4) cleavage 
events are numbered accordingly. Gag polyproteins are processed into matrix (MA, p17), capsid 
(CA, p24), nucleocapsid (NC, p7), p6gag and two spacer proteins p2 and p1. Processing of Gag-
Pol polyproteins additionally yields the transframe region proteins (TFP and p6pol), protease (PR, 
p10), reverse transcriptase (RT, p66/51) which contains an RNase H (RNH) domain in its larger 
subunit, and integrase (IN, p32).  
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structure is that of a series of independently folded domains which are later excised by the action 

of the viral-encoded PR (31,162,262,389). This strategy of assembling polyprotein precursors is 

favourable for several reasons. It not only minimizes the number of components that need 

transporting to the site of viral particle formation, but also provides a means of regulating 

assembly and the proteolytic activation of viral-encoded enzymes (76,490). Furthermore, the 

conserved sequential order and domain interactions of precursor proteins serve to properly align 

structural and functional components within the virion.  

One molecule of Gag-Pol is translated for every 10-20 Gag molecules (5-10% of the 

time), as a consequence of ribosome frameshifting or readthrough suppression of the 3’ terminal 

end of Gag (221,222). Most retroviruses, including HIV-1 and MLV synthesize PR as part of the 

Gag-Pro-Pol polyprotein, otherwise referred to as Gag-Pol. In ASLV, PR is encoded as part of 

Gag-Pro and Gag-Pro-Pol polyproteins where only the former form is necessary and sufficient 

for processing (76,490). Other retroviruses such as type B (MMTV), D (M-PMV), E (BLV, 

HTLV) and spumaretroviruses (HFV) express Pro (PR) and Pol domains independently of Gag 

(221,583). Both Gag and Gag-Pol polyproteins are subjected to many modifications after 

translational synthesis. Phosphorylation of MA proteins may have role in proteolytic processing 

and nuclear localization of preintegration complexes (PICs) (42,44,139), while phosphorylation 

(188,344) and monoubiquitination (133,143,448) of p6gag may also assist in proteolytic 

processing and budding. Moreover, myristate fatty acids are added to N-terminal glycine 

residues of Gag and Gag-Pol polyproteins to direct targeting to the plasma membrane (449) 

along elements of the cytoskeletal system or chaperone proteins (41). Perhaps the most important 

post-translational modification, as discussed below, is the proteolytic processing of these 

polyproteins into their respective structural and functional proteins during viral maturation. 
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The structural proteins of Gag and Gag-Pol are of central importance to the assembly, 

budding and maturation of nascent viral particles. The Gag polyprotein alone is sufficient for the 

production of viral particles (149), since it mediates many important functions through three 

distinct domains (Figure 3). The membrane-binding domain (M), located at the N-terminus of 

MA anchors and secures Gag and Gag-Pol polyproteins to the plasma membrane by inserting a 

myristic acid attachment and establishing electrostatic interactions (276,365). The Gag-Gag 

interaction domain (I), at the C-terminus of CA and N-terminus of NC is involved in Gag 

multimerization, RNA binding, virus assembly, budding and reverse transcription (47,132,585). 

The late domain (L) is located in p6gag and contains a PTAP motif essential for budding. 

 

 

 

 

 

Figure 3. Primary functions of Gag-associated proteins during HIV-1 assembly and 
budding. 
 

 

1.1.1 Retrovirus assembly 
 

The assembly process of retroviral particles is likely to involve a number of simultaneously 

occurring steps. These may include: (i) multimerization and the formation of Gag-mediated 

complexes (Gag/Gag, Gag/Gag-Pol, and Gag-Pol/Gag-Pol), (ii) binding of genomic viral RNA to 

these complexes, (iii) and the formation and transportation of preassembled complexes, 

containing accessory viral proteins and host cell proteins to the plasma membrane (Figure 1). 
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Polyprotein aggregation is critical to the assembly process in that mutagenesis of Gag can 

diminish membrane targeting, and inhibit virus particle production, proteolytic processing, and 

infectivity (131,132,296,542). Dimerization of viral RNA and its interaction with the NC region 

and 5’ splice donor site of Gag complexes are also important to ensure packaging (47,438) and 

the maintenance of viral particle integrity (547). A number of viral accessory proteins (Vpr, Vif, 

and Nef), and cellular proteins (cyclophilin A, HP68 and Tsg101) are packaged into virions, 

either passively or via direct interaction with Gag or Gag-Pol polyprotein precursors possessing  

myristolyated M-domain targeting signals (175). These proteins serve many structural and 

functional roles which briefly include: (i) nuclear targeting of preintegration complexes (PICs) 

and trans-activating LTR-directed expression (Vpr) (322,530), (ii) countering the antiviral 

activity of Apobec3G and stabilizing the viral core (Vif) (364,492), (iii) distinct roles in entry 

and post-entry events (cyclophilin A) (441), and (iv) the promotion of immature capsid assembly 

(HP68) (589) virus budding (Tsg101) (153). During assembly, these Gag complexes and 

components appear as electron dense patches along the plasma membrane where they induce 

membrane curvature to form budding viral particles (149). 

 

1.1.2 Retrovirus budding 
 

The packaging of Gag and Gag-Pol, 1000-2000 and 50-200 molecules, respectively 

(375,376,493), drives the budding of a nascent virion from the membrane of an infected host cell 

(Figure 1). The platform site for assembly, packaging, and budding of Gag-mediated complexes 

is characterized by membrane domains enriched with cholesterol, glycosphingolipids, and 

sphingomielin, known as lipid rafts (303). To enhance the production of high infectious virions, 

HIV-1 gene products Nef and Vpu down-modulate the CD4 receptor from the host cell surface 
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(281) and increase the incorporation of envelope (Env) proteins (8). Promotion of efficient viral 

particle release requires the phosphorylation (188,344) and ubquitination (153,369) of the p6gag L 

domain followed by the binding to the cellular protein Tsg101 (133,143,153). 

 

1.1.3 Retrovirus maturation  
 

The final stage of virus production is characterized by the release of the budding virion 

from the host cell membrane, followed by morphological changes associated with maturation 

(Figure 1) (537). Electron microscopy studies have revealed that Gag complexes assemble with 

genomic viral RNA to form lipid-associated spheres connected to the cell membrane by a thin 

stalk (202,372). Once released from the cell, viral particles are initially immature and contain a 

thick layer of submembrane density resembling a doughnut-shape. Maturation creates a thin 

layer of submembrane protein ascribed to MA, and a cone or rod-shaped electron-dense central 

core formed by the CA protein that in turn surrounds two strands of viral RNA bound NC (351). 

This morphological maturation is generally believed to be associated with dynamic structural and 

conformational rearrangements of the viral particle. Indeed, cross-linking experiments in MLV 

have suggested that some Gag-Gag protein interactions appear to change while others are 

maintained during the process of maturation (390). This complex transformation follows a 

cascade of proteolytic events mediated by a viral-encoded PR that catalytically cleaves Gag and 

Gag-Pol polyproteins into their respective structural proteins and functional enzymes (Figure 2). 

Although the exact timing of proteolytic processing is unclear, it is believed to be initiated at the 

plasma membrane during assembly, and completed after budding (244,245). 

Pulse-chase labeling studies of infected cells were the first to provide evidence for 

proteolytic processing or proteolysis in a retroviral system. Full-length Gag polyprotein 
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precursors of ASLV (Pr76gag) and MLV (Pr65gag) were shown to be processed into Gag 

structural proteins almost immediately (226,538). Similar findings were soon observed for Gag-

Pol polyprotein processing (226,367). Thereafter, the proteolytic factor responsible for both of 

these events was localized to the virus particle itself (541,580). Mutagenesis of this viral-

encoded protease (PR) clearly indicated that processing of the Gag precursor is accompanied by 

morphological changes (77,488,579) and the production of infectious virus (250,562). These 

results were later paralleled in findings for HIV-1 (262,389). 

An essential step in the viral life cycle is the proteolytic processing of Gag and Gag-Pol 

precursors by the viral-encoded PR. To that end, the association of HIV-1 with the AIDS 

epidemic has generated a considerable amount of interest to further our understanding of the 

mechanics of processing in the release of key structural and enzymatic proteins. In this review 

we summarize the current state of knowledge regarding polyprotein processing in HIV-1 with a 

particular focus directed towards the regulation and consequences of Pol processing, including 

insights into biochemical and structural aspects of RT and other Pol enzymes. For the purpose of 

comparison to HIV-1, related retroviral systems will be discussed perfunctorily. The general 

features and roles of protease (PR) will be discussed first, followed by sections on Gag and Gag-

Pol polyprotein processing. Finally, important emphasis will be given to structural aspects of 

reverse transcriptase (RT), followed by integrase (IN). 
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1.2 PROTEASE 

 

1.2.1 General features of HIV-1 PR structure and function 
 

HIV-1 protease (PR) plays an indispensable role in the viral replication cycle (Figure 1 

and 2). During the late-phase of viral replication, HIV-1 PR cleaves viral Gag and Gag-Pol 

polyproteins at a limited number of sites to release mature structural and functional proteins 

(Table 1). The role of HIV-1 PR during the early-phase remains controversial. Processing of 

cytoskeletal and sarcomeric proteins including vimentin, desmin, actin, myosin and tropomyosin 

(467,468) may be important in regulating the transport of PICs to the nucleus (41). Further 

processing of mature viral proteins CA (519) and NC (570) as well as accessory proteins Tat (7), 

Vif (255) and Nef (374,550) has also be reported to be important in efficient viral replication 

(Table 2) 

All retroviral proteases are aspartic proteases. This class of enzymes contains a conserved 

active-site triplet Asp-Thr/Ser/Gly and includes such cell-derived enzymes as pepsin, renin, 

chymotrypsin, penicillopepsin, and cathepsin D and E (84,415). In contrast to their cellular 

counterparts, retroviral proteases are smaller, less efficient, and act as symmetrical homodimers 

with two identical subunits contributing towards the active site (415,520). Although retroviral PR 

generally function best at acidic pH 4.5-6.5, they display significant in vitro activity up to 

physiological pH 7.0-7.5 (268). Recombinant forms of retroviral PR also require a specific 

solvent composition including high ionic strength and polyethylene glycol to enhance 

conformational stability, substrate affinity and catalytic activity (235,268). 

HIV-1 PR is a dimer of 10 kDa subunits and is well represented in the protein structural 

database in unliganded form and in complex with peptide and non-peptide inhibitors (544). Each 
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Table 1.  Location, sequence and hydrolysis rates of late-phase HIV-1 PR cleavage sites 
 
a, b Location and sequence of the cleavage sites in HIV-1 Gag and Gag-Pol polyprotein precursors as 
indicated from the LAI isolate of HIV-1 (416). The seven amino acid residues (P4-P3’) that interact 
directly with PR flank a scissile amide bond indicated by the vertical arrow (↓). The question mark (?) 
signifies that this cleavage site has not been absolutely confirmed. 
c Most cleavage site sequences were identified by N-terminal protein sequencing of HIV-1 virion 
proteins. The p51↓RNH cleavage site was identified by processing  representative peptides or p66/66 RT.  
d Classification of cleavage sites by type, based on sequence and residues occupying the P1 and P1’ 
positions (170,397,520). 
e Kinetic parameters of peptide hydrolysis: rate (Kcat) and efficiency (Kcat/Km) at pH 5.6, where Kcat is the 
number of substrate molecules transformed per second per molecule of enzyme and Km is the relative 
substrate affinity or substrate concentration at ½Vmax (80,516,517) 
f Polyprotein hydrolysis rates at pH 6.5 relative to p2↓NC (Gag) (395,396) or TFP↓p6pol (Pol) (309). 
Bracketed numbers represent the relative order of hydrolysis, based on catalytic efficiency or rates.  
 
 

Peptide Hydrolysis eLocation a
 

Sequence b
(P4-P3’) Ref ID c Type d Km  

(mM)
Kcat 
(s-1) 

Kcat/Km  
(mM-1 ⋅ s-1) 

Polyprotein 
Hydrolysis 

Rate f  

Gag        

MA↓CA SQNY↓PIV (190,328) 1 0.15 6.8 45.3 (3) 14x (3) 

CA↓p2 ARVL↓AEA (190,328) 2 0.01 0.09 90.0 (2) 400x (5) 

p2↓NC ATIM↓MQR (190,328) 2 - - - 1x (1) 

NC↓p1 RQAN↓FLG (190) 2 - - - 350x (4) 

p1↓p6gag PGNF↓LQS (190,534) 2 0.53 0.3 0.6 (7) 9x (2) 

Pol        

NC↓TFP RQAN↓FLR (?) (55) - - - - - 

TFP↓p6pol DLAF↓LQG (313,400) 2 - - - 1x (1) 

p6pol↓PR SFNF↓PQI (299,313) 1 <0.01 0.06 6.9 (6) 1x (1) 

PR↓RT TLNF↓PIS (298,533) 1 0.07 1.5 24.1 (4) - 

RT p51↓RNH AETF↓YVD (61,169) 2 0.04 0.4 10.0 (5) - 

RT↓IN RKVL↓FLD (298) 2 0.006 1.2 202.0 (1) - 
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Table 2.  Protein substrate and sequence of early-phase HIV-1 PR cleavage sites 
 
a Viral and cellular protein substrates containing HIV-1 protease cleavage sites 
b Sequence of the seven amino acid residues (P4-P3’) that interact directly with PR and flank the scissile 
amide bond indicated by the vertical arrow (↓). The HIV-1 sequences shown are from the LAI isolate 
(416). The question mark (?) signifies that this cleavage site has not been absolutely confirmed. 
c Literature reference(s) which identified the cleavage site 
d Classification of cleavage sites by type, based on the sequence around the cleavage site and the residues 
occupying the P1 and P1’ positions (170,397,520) 
 
 
 

Protein substrate 
a

Sequence b
(P4-P3’) Ref ID c Type d

CA (N domain) NEEA↓AEW (519) 2 

CA (C domain) TETL↓LVE (519) 2 

NC (N domain) VKCF↓NCG (570) 2 

Nef DCAW↓LEA (374) 2 

Vif YLAL↓AAL (255) 2 

Tat RKKR↓RQR (?) (7) 2 

Actin SFIG↓MES (468) 2 

Vimentin SLNL↓RET (467) 2 

EF1α GTTL↓LEA (370) 2 

NF-κB HYGF↓PTY (427) 2 
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subunit has a flexible flap region of antiparallel β-sheets with a β-turn that extends over the 

substrate-binding cleft allowing it to clamp down (Figure 4) (357). Apposing aspartic acid 

residues, D25 and D25’ in the active sites are held in position by a hydrogen-bonded network 

called a “fireman’s grip” configuration. Stabilization of the homodimer is largely accomplished 

by intermolecular contacts between the antiparallel β-sheets of both amino and carboxyl termini. 

The dissociation constant of HIV-1 PR subunits has been largely reported in the low nanomolar 

range (Kd = 20-39 nM), although higher values have been cited using various solvents and 

methods of determination (79,168). 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4.  Molecular structure of HIV-1 protease. Representative unliganded polypeptide 
schematic of a tethered PR homodimer generated from the crystal coordinates of PDB file 1G6L 
(1.9 Å resolution) (401). HIV-1 PR is symmetrical homodimer consisting of two 10 kDa subunits 
(red and blue), 99 residues in length. Each subunit has a flexible flap region of antiparallel β-
sheets (arrows) with a β-turn that extends over the substrate-binding cleft. Apposing aspartic acid 
residues D25 and D25’ (spacefilled yellow) in the active sites are held in position in a hydrogen-
bonded network called a “fireman’s grip” configuration. Stabilization of the homodimer is 
accomplished by intermolecular contacts between four-stranded antiparallel β-sheets of both N- 
and C-termini. (Modified from: Pillai, B. et al. 2001 Proteins 43(1):57). 
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1.2.1.1 HIV-1 PR-substrate interactions     

HIV-1 PR binds both peptide inhibitors and substrates asymmetrically in an extended 

anti-parallel β-sheet conformation, even though it is a symmetrical homodimer (406,407,548). 

Substrate determinants that interact with the binding cleft of HIV-1 PR lie within seven amino 

acid residues (P4 to P1 and P1’ to P3’) that flank the cleavable peptide bond (P1↓P1’), termed 

the scissile amide bond (Figure 5). Other retroviral forms of PR, such as FIV, EIAV, ASLV, and 

MLV PR are very similar in structure, but may have longer flap regions allowing them to 

recognize additional substrate elements (368,563). It has long been suggested that each side 

chain of a peptide substrate points into successive alternating subsites or pockets of the PR 

binding cleft, named for the corresponding substrate side chain (S4 to S3’) (548). The scissile 

bond is held in the proper position for hydrolysis by multiple anchoring on both sides. Most of 

the contacts made between the substrate and enzyme are in the binding cleft or with the flaps, are 

not sequence specific, and involve backbone-backbone hydrogen bond interactions. These main 

chain interactions have been predicted to contribute more towards total binding energy than side 

chain interactions (172). Although substrate-specific interactions are largely hydrophobic, side 

chains may form up to three specific hydrogen bonds with critically important subsite residues 

(406,407). Each substrate residue lies in contact with at least 5 PR residues and between 1-3 

molecules of water; with the most number of contacts established at the P2 and P2’ positions. 

After the involvement of non-specific hydrogen bond interactions, the determinants of 

specificity come from the shape of the substrate, not its sequence. The ability of a substrate to 

adopt an optimal configuration for hydrolysis is limited by cis, trans, or coupled interactions 

between substrate amino acids bound in adjacent enzyme subsites (i.e. P3 and P1, or P2 and P1’) 

(397,425,516). Thus, the conformation of PR around the different substrate side chain positions 

 13



 

has been recently reported to comprise four primary pockets: (i) P1/P3,  (ii) P2,  (iii) P1’/P3’ and 

(iv) P2’. Side chain packing between P1 and P3 or P3 and P4 results in the formation of a 

hydrophobic toroid and distortion of the peptide backbone around the scissile bond (P1↓P1’). 

This in turn may facilitate hydrolysis, by allowing the carboxyl oxygen of P1 to make an 

invariant hydrogen bond with the catalytic aspartate residue (D25 or D25’) (406,407). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Schematic representation of a substrate bound to HIV-1 protease. Substrates that 
interact with the binding cleft of HIV-1 PR lie in an extended anti-parallel β-sheet conformation 
with alternating side chains (P4-P3’) oriented in opposite directions, above and below the plane 
of the figure. The scissile amide bond to be hydrolyzed lies between P1 and P1’ residues, as 
indicated by the apposing arrows. Most of the contacts formed in the PR-substrate complex are 
not sequence specific and involve many backbone-backbone interactions. Each substrate residue 
is in contact with at least 5 PR residues and 1-3 water molecules. Specificity is based on the 
shape of the substrate. Side chain packing between P1 and P3, or P3 and P4 generates a 
hydrophobic toroid which in turn distorts the substrate backbone about the scissile bond allowing 
hydrolysis. While early studies implied the existence of individual enzyme subsites, termed S4-
S3’ (548), more recent analyses indicate that PR conformation is more appropriately divided into 
four primary pockets encompassing P1/P3, P2, P1’/P3’, and P2 (406,407). 
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1.2.1.2 Catalytic mechanism of HIV-1 PR 

The catalytic mechanism of HIV-1 PR occurs by general acid-base hydrolysis and 

proceeds through a transient tetrahedral intermediate (220,403,469). In contrast to Ser and Cys 

PR, HIV-1 PR does not form a covalent acyl-enzyme intermediate with the substrate. It therefore 

must anchor itself to the substrate at multiple sites about the scissile bond. The two catalytic 

aspartate residues (D25 and D25’) mediate the nucleophilic attack of a water molecule at the 

carbonyl of the scissile bond followed by a proton transfer to the leaving nitrogen atom of the 

substrate. Overall, the reaction appears to proceed in two steps, a physical closing down of the 

flaps onto the substrate followed by a chemical proton transfer step.  

 

1.2.2 Determinants of HIV-1 PR cleavage site recognition 
 

1.2.2.1 Viral substrates 

The major functional role of HIV-1 PR is to process Gag and Gag-Pol polyproteins by 

catalyzing the hydrolysis of specific peptide bonds that separate respective protein domains 

(Figure 2). The exact sequence and location of these cleavage sites has been largely deduced by 

direct amino-terminal sequencing of viral Gag and Pol proteins (Table 1). The absence of free 

ribonuclease H (RNH), and the difficulty associated with carboxyl-terminal sequencing have so 

far prevented a determination of the RT p51↓RNH cleavage site directly from the virus. This 

putative cleavage site was instead identified by in vitro processing of recombinant p66/66 RT 

(61,119,203,515), a Pol polyprotein (23), and peptides spanning the p51-RNH region (169,450). 

The functional consequences of mutations and processing these cleavage sites are discussed later 

(Section 1.4.3). 
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1.2.2.2 Substrate specificity and stringencies 

A comparison of all known HIV-1 PR-recognized cleavage sites shows that they are 

dissimilar with no unique consensus sequence (Table 1 and 2) (30,385,397). Recognition 

sequences are however, relatively hydrophobic and are expected to lie in less structured regions 

of the polyproteins or in exposed stretches of polypeptide connecting folded protein domains. 

HIV-1 PR appears to recognize a combination of substrate residues flanking the scissile bond 

with no one particular subsite exhibiting absolute specificity. Specificity of HIV-1 PR has been 

assessed by two methods. In the first approach, all known bona fide cleavage sites, both viral and 

non-viral, were compiled and compared (397,404). From this analysis a series of qualitative rules 

were deduced to define cleavage potential in terms of specific amino acid residues occupying 

certain substrate positions. In a second approach, substrate specificity was characterized by 

systematic testing and cleavage of polyproteins or oligopeptides (30,170,424,514,520). In this 

manner, various PR-substrate interactions could be tested through multiple amino acid 

substitutions and kinetic parameters of substrate binding (Km) and catalytic efficiency (Kcat) 

could be examined. Finally, HIV-1 PR mutants have been used to establish the importance of 

side chain interactions between PR and substrates (305,336). While all of these approaches have 

yielded important information about HIV-1 PR specificity, it remains unclear how structural 

folding and steric interactions affect substrate specificity it the natural context of the full-length 

polyprotein. 

Despite the diversity of cleavage site sequences, some generalizations can be made about 

HIV-1 PR specificity. The degree of amino acid stringency around the scissile bond appears to 

range from low (P1’), restricted (P4, P3, P1, P2’, P3’), to high (P2) (266,383,397,518). In no 

instance is only a single amino acid residue tolerated at a particular substrate position. In general, 
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both P1 and P1’ are occupied by large hydrophobic residues, P1 never contains a β-branched 

aliphatic side chain, P2 and P2’ are typically hydrophobic or small polar residues, and P4, P3 and 

P3’ can accommodate a variety of residues. HIV-1 PR specificity may also be influenced by the 

sequence context and conformation of a peptide, whereby the preference for a given subsite is 

strongly dependent on residues in other subsites. This structural dependence arises from cis and 

trans interactions between certain residues in neighboring and adjacent substrate positions (i.e. 

P2 and P1’, P1 and P3, P4 and P1, or P1 and P1’) (397,425,516).  

Attempts have been made to classify diverse collections of HIV-1 PR cleavage sites into 

groups based on rules for specificity. The most common classification was based on Gag 

cleavage sites from ten different retroviruses (170,397,520). Type 1 cleavage sites were defined 

as having Tyr or Phe at P1 and Pro at P1’, whereas type 2 cleavage sites have hydrophobic 

residues at both P1 and P1, excluding Pro (Table 1). In addition, certain amino acids are 

excluded from the P3, P2 and P2’, P3’ positions. A subsequent classification system was based 

on inferred context-dependency amongst HIV-1 PR substrates (189). Class 1 cleavage sites were 

cited as having an aromatic residue at P1, proline at P1’, hydrophobic residue at P2’, Asn at P2, 

and Gly or a polar residue at P3. Class 2 cleavage sites have Arg at P4, Phe at P1’, Leu at P2’, 

and residues in P3 and P2 are polar and hydrophobic, respectively. Finally, class 3 cleavage sites 

have Gln or Glu at P2’ and hydrophobic residues at P2-P1’. 

Computational algorithms have also been developed to predict cleavable sites by 

determining the statistical preference of amino acid residues at certain positions. Early methods 

of prediction were based on a cumulative specificity model to score the frequency of occurrence 

of amino acid residues at particular positions from a collection of substrates (404). However, this 

method failed to account for the interaction between subsites by assuming that each amino acid 
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residue acted independently in the recognition by HIV-1 PR. More recent approaches, including 

a vectorized sequence-coupling model (68), a discriminant function method (69), and a volume-

based model (433) have shown progressive improvements in correcting for these errors with 

higher frequency predictions. While these methods are reasonably sufficient at scoring peptide 

substrates as cleavable or non-cleavable, they are deficient in providing information about 

cleavage efficiency. Substrate cleavage efficiencies may actually vary widely, including: (i) 

slow-cleaving (high Km, low Kcat), (ii) low affinity, high turnover (high Km, high Kcat), (iii) bind 

tight, cleave slowly (low Km, low Kcat), and (iv) efficiently cleaved (low Km, high Kcat) 

substrates. Finally, these prediction methods fall short in accounting for the influence of 

conformational folding and structural constraints that may affect accessibility and hydrolysis 

rates.  

 

1.2.3 Activation and regulation of HIV-1 protease  
 

The critical steps in virion morphogenesis include the activation of HIV-1 PR, and the 

cleavage of Gag and Gag-Pol polyprotein precursors. In most retroviruses, the viral-encoded PR 

appears to play no causal role in the assembly process since PR-inactivating mutations or 

protease inhibitors do not prevent immature virions from budding (250,326,488). HIV-1 may be 

an exception to this generalization, where proteolytic cleavage and virion assembly are 

invariably associated. While PR-defective virions of HIV-1 are capable of budding, an active PR 

may be required for this to occur with maximum efficiency (240,244,246). A role for HIV-1 PR 

in assembly has been proposed based on the finding that premature activation excludes processed 

Gag and Pol products from assembly (43,245), overexpression of PR abrogates assembly and is 

toxic to the cell (271,272,284), and structural attributes of HIV-1 PR affect the physical stability 
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of the released virion (380). While the exact timing of PR activation is unclear, it is generally 

believed to be delayed until the late stages of assembly, once precursor polyproteins have 

reached the plasma membrane, or soon after budding (118,244,245). 

The molecular mechanisms that lead to PR activation and the regulation of polyprotein 

processing are not completely understood. Experimental findings have suggested that PR 

domains from two Gag-Pol polyprotein precursors must come together and dimerize for initial 

activation (131,140,144,318,414) and an aggregation model has been proposed to explain how 

this may be regulated (355). Timing and control of PR activation is critical, since linked dimers 

of HIV-1 PR (272) and overexpressed Gag-Pol polyprotein precursors (247,381) cause 

deleterious effects. The aggregation model suggests that some autoprocessing of PR may occur 

at the plasma membrane with occasional dimerization of Gag-Pol polyproteins. The activated 

Pol-associated PR would then passively diffuse away from the site of assembly. Since the 

majority of Gag-Pol is likely to be present in low concentration at the plasma membrane, the 

majority of PR would not be activated and released until after the volume is greatly reduced in 

the form of the budding virion. This would be followed by a cascade of intermolecular trans 

processing events to liberate the structural and functional proteins, thus making the virion 

infectious. While attractive, this model does not explain delayed processing in type-B and type-D 

retroviruses which form a compact intracytoplasmic A-type particle (ICAP) within the cell 

cytoplasm. In addition, other factors such as a drop in pH or an influx of Ca2+ ions may arguably 

trigger the activation of PR during budding (470,537). 

Given the uncertainty of PR activation it remains equally unclear whether the 

morphological changes associated with maturation occur after budding (202,372) or during the 

late stages of budding (160). In particular, the complex series of dynamic events associated with 
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PR activation, processing, and virion maturation has made it difficult to draw conclusions as to 

when one event ends and the other begins. A role for HIV-1 PR in virion maturation is certain, 

since 75-100% inactivation of PR produces non-infectious virions of immature morphology 

(147,160,246) containing incompletely processed polyproteins (16,431). However, aside from 

PR, additional unknown factors appear to be essential for virion morphogenesis and infectivity. 

Recent evidence has suggested that early released virions appear immature and are non-

infectious, but contain processed Gag proteins (40), consistent with the effect of CA (500,543) 

and NC mutations (28). One possible contributory factor may be protein phosphorylation or 

dephosphorylation at the plasma membrane, since deletions in MA cause the budding of 

immature viral particles into the endoplasmic reticulum (118). 

While the exact mechanism of PR activation in the virion remains unclear, recombinant 

studies have suggested that autocatalytic intramolecular processing of its N-terminus may be 

important. Since both N-terminal and C-terminal ends of PR are important in dimer stability and 

in modulation of activity, this concept of intramolecular autoprocessing may seem difficult to 

geometrically perceive. The current model suggests that the N-terminal region of β strands may 

peel back, cause a slight transient disruption in the remaining strands, and then slide around into 

the active site of precursor-associated PR to be processed (73,311). Other regions of Gag and 

Gag-Pol may further regulate efficient proteolysis of remaining cleavage sites by promoting 

appropriate accessibility, order and structural recognition context (177,395,407,414). While 

peptide studies have reported a range of cleavage site hydrolysis efficiencies (80,274), actual 

values arising from polyproteins (392,393,395,396) is vastly different (Table 1). This suggests 

that any number of the above factors may play a significant role in regulation of ordered 

proteolytic processing. 
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1.3 PROCESSING OF GAG 

 

1.3.1 Ordered processing of Gag polyprotein precursors 
 

Gag polyprotein precursors are cleaved within the nascent retroviral particle at least five 

times to generate mature structural proteins matrix (MA), capsid (CA), nucleocapsid (NC), p6gag 

and two smaller spacer polypeptides p2 and p1 located between CA-NC and NC-p6gag 

respectively (Figure 2) (190,368,534). Approximately 2000 Gag precursors are packaged during 

assembly to ensure a sufficient quantity of structural proteins are present in the virion 

(375,376,493). The order of Gag precursor proteins is highly conserved in all retroviruses and 

serves to align these structural domains within the virion, from the outside inward. Proteolytic 

processing of Gag induces a dramatic reorganization of the internal virion structure which is 

essential for morphological maturation and infectivity (537), but it not required for viral particle 

formation (149). Complete cleavage of the majority of Gag precursors is essential to ensure the 

production of viable infectious virus particles (246,395) with normal morphology (162,246,557). 

As a result of these events, MA protein swathes the inner surface of the membrane and CA forms 

the rod-shaped capsid shell which encloses the genomic RNA complexed with NC (146). 

It is presumed that after autoprocessing, the remaining cleavage sites are processed by 

HIV-1 in trans by an intermolecular mechanism (91,434). Numerous in vitro studies have 

indicated that proteolytic processing of HIV-1 Gag polyprotein occurs in a time-dependent, 

ordered manner through a transient series of processing intermediates that precede the formation 

of mature structural proteins (114,395,396,522,557). Similar intermediates have also been found 

in infected cells and recently budded virions (163,246,269,328,481). Cleavage of each junction 

in Gag appears to occur independently (395). Thus, processing may be a ordered process that is 
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governed by the intrinsic susceptibility and relative efficiency of each site to proteolysis (516). 

Primary processing of Pr55gag (Gag) at the p2↓NC cleavage site gives rise to p43 (MA-CA-p2) 

and p14 (NC-p1-p6gag) intermediates. Secondary processing at p1↓p6gag occurs slightly faster 

than at MA↓CA and produces p8 (NC-p1), p6gag, p17 (MA) and p25 (CA-p2) intermediates and 

products. Final tertiary processing at NC↓p1 is slightly faster than at CA↓p2 and gives rise to p7 

(NC), p1, p24 (CA) and p2 final products (Figure 2, 22, and Table 1). Interestingly, mature viral 

particles may contain a small portion of unprocessed Pr55gag as well as p41 (MA-CA) and p37 

(CA-p2-NC-p1-p6gag) intermediates (163,328,557) further suggesting that while most Gag 

precursors are fully processed, cleavage events are independently regulated. 

 

1.3.2 Structural and functional consequences of Gag processing 
 

A number of specific functions have been assigned to the individual proteins of Pr55gag 

(Gag), both before and after viral maturation. Therefore, inefficient or inaccurate processing can 

potentially cause profound defects in viral structure and infectivity (246). Adaptive changes in a 

number of these cleavage sites are possible as polymorphisms in HIV-1 PR develop with each 

subsequent passage of virus. The most variable Gag cleavage sites, both within and between 

subtypes, and before and after protease inhibitor therapy are p1↓p6gag, p2↓NC, and NC↓p1 

(74,88). Although these mutations alone may impact on processing and infectivity (158,429), in 

other instances they may partly compensate for the reduced catalytic activity of drug resistant 

mutant forms of HIV-1 PR (125). By purposely introducing mutations into Gag cleavage sites, 

researchers have been able to investigate the structural and functional consequences of Gag 

processing. Cleavage site mutations may result in (i) wild-type processing, (ii) absence of 
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processing at the mutated site, but efficient processing at distal sites, or (iii) no processing at the 

mutated site or at distal sites. 

 

1.3.2.1 Matrix (MA) 

The N-terminal myristate group and basic residues of the MA domain are important for 

targeting Gag and Gag-Pol precursor polyproteins to the plasma membrane (276,365) and in 

assisting with the incorporation of Env glycoproteins (135). MA protein in its mature trimer form 

lines the inner surface of the viral membrane (288). Phosphorylated MA may also have a role in 

the nuclear translocation of PICs in non-dividing cells by interacting with importin alpha (Rch1) 

(44,139), although the existence of a nuclear localization signal has been disputed (130,134). The 

MA↓CA cleavage site appears to play a pivotal role in core condensation during maturation, 

since mutations introduced here produce noninfectious particles with abnormal morphology 

(162,246). However, while the MA↓CA cleavage site is highly sensitive to mutagenesis (383), 

this does not prevent downstream processing (522).  

 

1.3.2.2 Capsid (CA) and the p2 spacer peptide 

Processing of the MA↓CA cleavage site is also structurally important for CA, as the P1’ 

Pro residue  becomes buried and establishes a putative salt bridge (151). The CA protein plays 

essential roles in both the early- and late-phases of infection. Mutations in the N-terminal domain 

of CA demonstrate its importance for infectivity by disturbing interactions with cyclophilin A 

(CypA) that are needed for viral uncoating (317). The C-terminal domain of CA contains the 

major homology region (MHR) which is essential in particle assembly (98,542) by facilitating 
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Gag oligomerization (585) and CA dimerization (140,543), and increasing membrane affinity 

through the exposure of hydrophobic residues (103,296). The conical core in mature infectious 

virions is formed by the association of CA proteins. Mutations introduced at the CA↓p2 cleavage 

site may inhibit budding in certain cell lines, in a manner unrelated to a defect in processing 

(162,273,395). The p2 spacer peptide itself is a 14 residue-long segment separating CA-NC. This 

spacer peptide negatively regulates the timing of CA↓p2 processing and is essential for ordered 

assembly, viral infectivity (273,395), and in excluding spliced viral RNA from packaging (439). 

Mutation of any or all of the cleavage sites between CA-NC results in the production of 

immature virions, although it does not effect the processing of other Gag cleavage sites 

(522,557). 

 

1.3.2.3 Nucleocapsid (NC) and the p1 spacer peptide 

Rapid cleavage of the p2↓NC site (114,275,395) is the first critical regulatory step in 

ordered Gag processing. Cleavage here stabilizes the viral core by triggering RNA dimerization 

and condensation upon binding NC (47,460,557). UV-cross linking experiments have 

demonstrated that the interactions between viral RNA and the NC domain of Gag differ from 

that of mature NC (488). NC is a basic protein with zinc fingers that specifically binds to the 

packaging signal (ψ) of full-length viral RNA to deliver it into the assembling viral particle 

(28,47,445). NC can also bind single-stranded nucleic acid, such as the genomic viral RNA in a 

non-specific manner to provide protection from nucleases and compactness within the viral core. 

This attribute for nucleic acid binding provides chaperone-like functions to promote annealing of 

the tRNALys,3 primer, melting of RNA secondary structures, DNA strand transfer reactions 

during reverse transcription (54,215,229,581) and stimulation of integration (57). The p1 spacer 
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peptide separating NC-p6gag is a 16 residue segment that is excised from p6gag and NC early and 

late in processing, respectively. Mutational studies have shown that processing of the NC-p6gag 

region is dependent upon the binding of viral RNA to NC; a property not found at any other 

cleavage site (461,462). These findings suggest that RNA binding may promote accessible 

processing of this region, which in turn may lead to encapsidation or condensation of the RNA. 

 

1.3.2.4 p6gag 

The early release of the p1 spacer peptide from p6gag appears to be one of several factors 

which regulate the viral budding process (212). By comparison, the N-terminal cleavage site that 

distinguishes p6gag (p1↓p6gag) from p6pol (TFP↓p6pol) differs by eight residues when the -1 

translational frameshift is taken into account (312,393). While p6pol appears to play some role in 

the regulation of PR activity (384,590), p6gag mediates the efficient release of viral particles 

during budding (161,212). This essential role of p6gag requires both phosphorylation (188,344) 

and ubquitination (153,369) followed by binding of Tsg101 (133,143,153). The p6gag domain 

also appears to incorporate the accessory protein Vpr upon interaction with its highly conserved 

LXXLF motif (17,264).  
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1.4 PROCESSING OF POL 

 

1.4.1 Ordered processing of Gag-Pol polyprotein precursors 
 

The Pol region of HIV-1 Gag-Pol encodes three viral enzymes present in the 

polycistronic order of protease (PR), reverse transcriptase (RT), and integrase (IN). The pol-

encoded enzymes of Gag-Pol are made in relatively small quantities compared to the structural 

proteins of Gag. One molecule of Gag-Pol is typically produced for every 10-20 molecules of 

Gag (222). The synthesis of Pol in fusion with Gag serves two purposes: first, the minimal 

production of Gag-Pol ensures controlled activation of the pol-encoded enzymes, and second, 

permits proper positioning of these enzymes within the virion. The initial steps in Gag-Pol 

polyprotein processing are very similar to that of Gag processing. However, the order of Pol 

proteins and the extent of processing may differ from one retrovirus to the next. Functional PR 

and IN are released as separate entities in all retroviruses, but the proteolytic events that generate 

RT appear to differ. 

The order of Pol domains ensures efficient processing of its functional constituent 

enzymes. Of all the phylogenetically related retroviruses and LTR retrotransposable elements 

that encode a complete Pol region (97,574), only Ty1 and Ty2 retrotransposons of 

Saccharomyces cerevisiae (558) and copia of Drosophilia melanogaster (340) express IN N-

terminal to RT in the order of PR-IN-RT-RNH. In HIV-1, genetic rearrangement studies have 

demonstrated the importance of domain dispositions in Pol region. Inefficient processing is 

observed with PR is inserted into the MA region, suggesting that Pol sequences outside of the PR 

domain are important (62,545). Others have shown that only the natural order of domains in a 

recombinant HIV-1 Pol polyprotein can result in efficient processing at every cleavage site (60). 
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This suggests that the proper context and folding of each domain in Pol warrants ordered 

processing of the polyprotein 

Translation of full-length Gag-Pol in vitro has been found to result in the transitional 

appearance of processing intermediates as a consequence of primary, secondary, and tertiary 

cleavage events (Figure 2 and Table 1) (392,393,481,508). Recent evidence has suggested that 

the immature polyprotein form of HIV-1 PR is responsible for processing initial cleavage sites 

through an intramolecular (cis) mechanism (392). Primary processing of Gag-Pol occurs at the 

p2↓NC cleavage junction (395,396). This event is followed by secondary and tertiary processing 

of the transframe region (termed TFR or p6*) at TFP↓p6pol and p6pol↓PR, respectively 

(309,384,399). Since the TFR region negatively regulates PR function, its removal is the 

concomitant with the appearance of elevated enzymatic activity characteristic of the mature PR 

(309,311). Subsequent quaternary processing events then occur by an intermolecular (trans) 

mechanism (384,569) to liberate the structural proteins and functional enzymes of the Gag and 

Pol regions, respectively. Based on these studies, the initial processing events within the Gag 

region of Gag-Pol give rise to p121, p114, and p107 early intermediates as a consequence of 

processing p2↓NC, TFP↓p6pol, and p6pol↓PR cleavage sites, respectively. 

Despite our knowledge of HIV-1 Gag processing, there is surprisingly little information 

available concerning the sequence of events in processing quaternary cleavage sites in HIV-1 

Pol. In particular, the events surrounding the generation of p66/51 RT and the changes that 

accompany the shift from precursor associated RT to this mature form remain poorly understood. 

Synthetic peptide cleavage studies have implied that the RT↓IN cleavage site is processed most 

efficiently, followed subsequently by PR↓RT then p51↓RNH (80,517). However, peptide 

processing efficiencies do not necessarily correlate with the order or efficiencies of polyprotein 
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processing (Table 1). Processing of the p107 Gag-Pol intermediate (PR-RT-IN) is likely to give 

rise to p76 (PR-RT) and/or p97 (RT-IN) intermediates in an ordered fashion, prior to the full 

release of all pol-encoded enzymes. Alternatively, all Pol cleavage sites could be processed with 

equal efficiency, resulting in the simultaneous liberation of PR, IN and both RT subunits, p66 

and p51. Current evidence appears to support the first model with the demonstration that 

processing of recombinant PR-RT and PR-RT-IN results in a respective unimolecular and 

bimolecular elevation of RT activity (284). While expression of a recombinant p121 intermediate 

(NC-TFR-PR-RT-IN) also leads to the formation of RT, the size and identity of the two early 

processing intermediates was unclear (179). An extension of this work demonstrated that 

inhibition of the PR↓RT cleavage site in vitro prevented processing of RT↓IN, but not vice versa 

(305). This suggests that ordered processing of Pol may proceed first at the upstream PR↓RT site 

before cleavage at RT↓IN. Interestingly, studies using HIV-1 protease inhibitors have identified 

the presence of both p76 and p97 intermediates in the lysates of viral particles (246,302,481). 

While some have suggested that PR↓RT is the first site in Pol to be processed, based on the 

presence of p14 (p6pol-PR) in infected cell lysates (2,302), the presence of the p76 (PR-RT) 

intermediate is sometimes overlooked (302). Thus, further analysis is needed to clarify the 

sequence of events in Pol processing. In particular, the ordered generation of p76 (PR-RT) or 

p98 (RT-IN) processing intermediates from Gag-Pol has not been investigated. Using a 

recombinant expression system, we and others have shown that the final step in Pol processing 

involves the excision of RT p66 followed by the formation of RT p51 (179,341,471), however 

this remains to be clarified in the virion context. 
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1.4.2 Limitations of model expression systems for Gag-Pol polyprotein processing 
 

In general, the initial events of Gag-Pol processing can be recapitulated in heterologous 

expression systems. Regrettably, however, many of these model expression systems are 

inefficient at facilitating complete processing of quaternary cleavage sites from full-length Gag-

Pol. Several factors may account for such inherent difficulties. First, processing of truncated 

forms of Gag-Pol typically excludes the involvement of extra protease domains, known to 

support HIV-1 PR activation and efficient processing (39,83,183,414,508,567,590). Second, 

ancillary factors such as cyclophilin A (325,529) or Vif (21) capable of modulating Gag-Pol 

precursor conformation to expose cleavage sites may be absent. And third, efficient processing 

of such late cleavage sites may be limited in translation expression systems by inadequate 

substrate concentration, conformation, or dimerization efficiency (311,355,392,393,567).  

In order to circumvent such difficulties, attempts have been made to examine Gag-Pol 

polyprotein processing in the natural milieu of the virion. Isolated polyproteins derived from 

immature virus-like particles of ASLV (491) or HIV-1 (265) however, have displayed varying 

degrees of proteolytic susceptibility in vitro. While Gag cleavage sites were efficiently cleaved 

by exogenously added HIV-1 PR, cleavage sites in Pol were aberrantly processed, if at all (265). 

These studies suggest that efficient ordered processing of Gag-Pol may depend on the structure 

and folding context of various domains and the regulated, ordered accessibility of cleavage sites. 

Inhibitors of HIV-1 PR have also been used in the study Gag-Pol polyprotein processing. 

However, it is difficult to initiate polyprotein processing after inhibitor treatment, by washing, 

dialysis, or treatment with detergent or dithiothreitol (86,218,227,246,326). It therefore appears 

that the key difficulty limiting a direct, reliable assessment of Gag-Pol processing kinetics is our 

inability to synchronize the maturation of retroviral particles. Future studies should consider 
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avoiding the use of tight binding protease inhibitors, damaging ultracentrifugation steps, and 

rapidly replicating chronically infected cells. 

 

1.4.3 Functional consequences of Pol processing 
 

It has been suggested that the release of functional retroviral enzymes is a late, but critical 

event in the ordered pathway of Gag-Pol processing (267,591) whereby even the most subtle 

defects can profoundly attenuate viral infectivity (246). To that end, it is reasonable to speculate 

that ordered processing may protect against the potentially damaging consequences of premature 

enzyme activation. While advances have been made to explore the functional consequences of 

Pol processing by mutating protease-recognized cleavage sites, much work remains to be done, 

particularly in the virion context. 

 

1.4.3.1 Protease (PR) 

HIV-1 PR is clearly active in precursor form, when linked to downstream Pol sequences 

(65,91,305,341), upstream Gag sequences (275,311,508), or both (392,393). Recent evidence has 

suggested that Gag-Pol is initially processed by an intramolecular mechanism, carried out by an 

immature polyprotein-embedded form of HIV-1 PR (392,393). While HIV-1 PR also appears to 

be active in the cytoplasm of infected cells, as seen by the accumulation of processed viral 

proteins (245), overexpression of PR causes intracellular cleavage of Gag and reduces viral 

infectivity (321). At first, these observations appear to suggest that processing may have a minor 

role in the activation of PR. However, regulated autoprocessing from the Gag-Pol precursor is an 

important stage in the elevation of intrinsic proteolytic activity  (310,567,591).  
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Little is known about the changes that accompany the shift from precursor-associated PR 

dimer to free enzyme, and the precise role of each in virion maturation. Before PR-mediated 

processing is observed, the PR of ASLV must be released from the Gag-Pro polyprotein by 

processing the NC↓PR cleavage site (48). In contrast, following the activation of PR, the initial 

cleavage event in HIV-1 occurs between p2 and NC (393,395,396). The subsequent series of 

events that lead to the complete activation of HIV-1 PR, have until recently remained unclear. 

The generation of the free PR dimer requires processing at two cleavage sites: the N-terminal 

p6pol↓PR  junction and C-terminal PR↓RT junction. Early reports, based on processing analyses 

of recombinant PR-fusion proteins suggested that autocatalytic excision of PR occurs first at the 

C-terminus followed by the N-terminus (177,341). Others subsequently reported opposing data 

using essentially the same bacterial expression system  (310,311,313,569). Further complicating 

the matter were the findings that mutation of the p6pol↓PR cleavage site did not affect 

autoprocessing (591) or the specific activity of PR (73,267), while mutations that block the C-

terminal processing site may or may not limit the processing of other cleavage sites (305,310) or 

affect proteolytic activity (310). If anything, these results serve to show just how unreliable 

heterologous expression systems can be at mimicking the natural course of events, particularly 

when truncated polyproteins are used. 

In an attempt to address the question whether a complete release of PR is needed to 

facilitate polyprotein processing, the full-length form of Gag-Pol has been studied. In vitro 

translation expression systems showed that after cleavage of p2↓NC junction, an extended form 

of PR completes the final processing steps by an intermolecular mechanism (392,393). Data 

acquired from a virus expression system further supports these findings, that PR must be 

expressed as an integral component of full-length Gag-Pol precursor for optimal processing 
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(591). It appears as well that removal of N-terminal Gag sequences does indeed elevate 

proteolytic activity, since mutation of the p6pol↓PR cleavage site attenuates viral infectivity and 

Gag cleavage (508,591). However, the finding that p6pol-PR fusion proteins readily exist in 

mature virions (2,302) suggests that the N-terminal junction may not require complete 

processing for sufficient quantities of active PR. Further confirming that N-terminal cleavage is 

needed for PR activation is the finding that mutation of the C-terminal PR↓RT cleavage site does 

not adversely affect the processing of viral polyproteins (65,66). While extended PR 

intermediates appear to have a transient function in the proteolytic cascade, fully released PR 

may ultimately be physiologically, if not structurally important in the virion. 

 

1.4.3.2 Reverse transcriptase (RT) 

The concept of whether processing plays a role in RT activation appears to vary amongst  

different retroviruses, as does the manner in which the Pol region in processed (Figure 8). It has 

been proposed that ordered processing of Gag-Pol is an ideal means to prevent premature reverse 

transcription before budding (562). While this notion holds true for ASLV, a retrovirus that 

shows little proteolysis before budding (489), this is not necessarily the case for MLV or HIV-1 

(77,389). In studies utilizing unprocessed viral RT, the polymerase activity varies between MLV 

(77), ASLV (76,488), and HIV-1 (243,308,388) from 15-100% of wild-type levels. 

Proteolytic processing in ASLV differs from most retroviruses in the fact that the Pol 

region is not completely processed. Proteolysis of ASLV Gag-Pol by the Gag-Pro-encoded PR 

(76) generates more PR, 63 kDa (α) and 95 kDa (β) RT subunits, an independent p32 IN domain 

(1,166,193), and an unstable dispensable C-terminal 4.1 kDa protein (1,164,252). Incomplete 

processing is demonstrated by the fact that IN forms an integral part of the RT β subunit. In this 
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system, viral PR activity appears to be required for complete activation of RT. Although 

precursor-associated forms of ASLV RT are active, processing elevates this level significantly 

(76,488,490). Mutational studies have revealed a need to process the N-terminal PR↓RT junction 

for complete activation of RT (76,488), whereas the C-terminal RT↓IN junction is dispensable 

(193). In MLV, the Pol region is completely processed at two cleavage sites giving rise to a 

single RT protein of 78 kDa. Interesting though, processing of either N-terminal PR↓RT or C-

terminal RT↓IN junction is not required for activation of RT in either the virion context (77,250) 

or in heterologous expression systems (195,496). 

Processing of HIV-1 RT is further different from either of the above systems, whereby 

three cleavage sites are processed: the N-terminal PR↓RT junction, the C-terminal RT↓IN 

junction, and an additional internal cleavage at the p51↓RNH junction. Mature HIV-1 RT is 

composed of 66 kDa and 51 kDa subunits, even though its gene encodes a 66 kDa protein. The 

smaller subunit is derived from the larger 66 kDa subunit by proteolysis at the p51↓RNH 

cleavage site, resulting in the release of a 15 kDa ribonuclease H (RNH) domain. While 

precursor associated forms of recombinant HIV-1 RT (29,211,243,388,485), and full-length 

Gag-Pol in immature virions (15,162,243,388) arguably exhibit some level of RT polymerase 

activity it is unclear how functional they are at completing reverse transcription. In order to reach 

a firm conclusion on what processing events are needed for full functionality of RT, additional 

information is required.  

Of the three cleavage sites for RT, only the N-terminal PR↓RT junction has been 

investigated in the virion context. Inhibition of this cleavage site results in the expected 77 kDa 

and 62 kDa PR-RT fusion proteins with no adverse affect on either PR or RT activity, although 

viral infectivity is diminished (65,66). The importance of the C-terminal RT↓IN cleavage site in 

 33



 

the virus is currently unclear. Further complicating the matter, are disputable reports that 

recombinant RT-IN fusion proteins may exhibit some level of RT polymerase activity (211,293). 

Mutation of the p51↓RNH cleavage site generally results in stable recombinant p51-RNH (RT 

p66) fusion proteins, although overprocessing to RT p51 is occasionally observed (203,239,332). 

In spite of these observations, the necessity for each of these cleavage sites in the activation of 

RT remains undefined. In particular, what importance does the internal RT p51↓RNH cleavage 

site serve, particularly since such a junction does not exist in other retroviral forms of RT. A 

comparative analysis is clearly needed to examine the role of each of these Pol cleavage sites in 

efficient viral replication. 

 

1.4.3.3 Integrase (IN) 

Proteolytic regulation of IN activity has not been clearly investigated in all retroviruses. 

Both ASLV (1,193) and HTLV-I (521) generate IN as part of the β subunit of RT (αβ or ββ) and 

as an independent 32 kDa protein. Both forms of ASLV IN are processed at an N-terminal 

RT↓IN junction as well as at their C-termini to remove a non-essential 4.1 kDa fragment 

(1,164,252). Both forms of ASLV IN also localize to the nucleus of infected cells, indicating 

equal involvement in the transportation of PICs (551). Further studies have shown that IN 3’-end 

processing activity is present and even similar in both forms (101,155,166,292,507). However, 

the p32 form of IN is 30-fold more efficient in strand transfer activity (551) suggesting that it is 

primarily responsible for efficient integration of proviral DNA in an infected host cell. In 

contrast, proteolytic processing in both HIV-1 and MLV results in the complete separation of IN 

from Gag-Pol in the form of p32 and p46 respectively (291). Although additional cleavage sites 

have been predicted within HIV-1 IN (69), recombinant IN (519) and its core domain (111) are 

 34



 

resistant to further proteolysis. Additional studies have suggested that HIV-1 p32 IN may be 

released from a recombinant Pol polyprotein prior to formation of the p66/51 RT heterodimer 

(49,284,293,471). However, it is unclear whether the RT↓IN junction is processed before the 

PR↓RT junction and what effect this event has on regulating IN activities in vitro, or in the 

virion context. It therefore remains to be resolved whether extended Pol intermediates of IN are 

functional, as this would provide insight into the need for HIV-1 to remove the abutting RT 

domain. 

 

 

1.5 REVERSE TRANSCRIPTASE 

 

1.5.1 General features of reverse transcription 
 

An essential step in the life cycle of HIV-1, as in other retroviruses is the conversion of 

genomic single-stranded RNA into proviral double-stranded DNA prior to integration into the 

genome of the infected host cell. While this conversion is highly complex, all of the chemical 

steps in this conversion are catalyzed by a viral-encoded multifunctional enzyme known as 

reverse transcriptase (RT). Since its original discovery within the context of a retroviral particle 

(20,505), sequence similar forms of RT has been found in a variety of organisms (574,575). Such 

systems include: retroviruses, hepadnaviruses, caulimoviruses, retrotransposons, retrons, and 

mitochondrial introns. The main enzymatic activities associated with HIV-1 RT include DNA 

polymerase activity on both DNA and RNA templates as well as ribonuclease H (RNH) activity, 

specific for RNA in RNA/DNA hybrids. By coordinating its activities, RT facilitates RNA-
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dependent DNA polymerase (RDDP) synthesis of minus-strand DNA from genomic viral RNA, 

DNA-dependent DNA polymerase (DDDP) synthesis of plus-strand DNA from minus-strand 

DNA, and formation and removal of plus-/minus-strand RNA primers by both endonucleolytic 

and 3’-5’ exonucleolytic cleavage mediated by the RNH domain (298,443). By removing the 

RNA template during DNA synthesis, RT can also facilitate a jump from one template to another 

or assist in strand transfer in order to complete reverse transcription (499). 

The polymerase activities of all forms of RT are infamous for being error-prone by virtue 

of the fact that they lack formal proofreading editing ability and show low fidelity in 

incorporating correct nucleotides (411,428). Consequently, these attributes are reflected in the 

high mutation rate of these viruses in vivo,  resulting in genetically diverse populations. Average 

mutation frequencies typically range from 10-4 to 10-3, or about 10 base changes per retroviral 

genome per replication cycle (350). From an immunological standpoint, such rapid changes in 

the genetic makeup of HIV-1 may contribute towards the progressive and prolonged nature of 

infection in an individual host, thus allowing it to evade destruction (93). However, in 

comparison to cellular polymerase enzymes, absent proofreading activity and an ability to 

incorporate chemically altered nucleotide analogs have made HIV-1 RT a favourable 

pharmaceutical target.  

In theory, reverse transcription can be completed by a single molecule of RT in 

coordination of its polymerase and RNH activities. Equally possible are the uncoupling of these 

activities on different molecules of RT to facilitate reverse transcription (94,216,503). 

Somewhere in between these two extremes lies the truth in what actually occurs during reverse 

transcription in vivo. Processivity of HIV-1 RT polymerization is intrinsically low on its natural 

heteropolymeric template in comparison to poly(rA) homopolymeric templates (216). Therefore, 
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to ensure completion of all of the various stages of viral DNA synthesis an excess quantity of RT 

may be ideal. Early estimates using SDS-PAGE or competition enzyme immunoassays predicted 

a 20-100-fold excess of RT molecules per particle of ASLV or MLV (375,376,493), which was 

also confirmed by indirect measurement of pulse-chase profiles in infected cells (182,226). 

Scanning transmission electron microscopy has recently demonstrated that the individual mass of 

RSV virions in a population is heterogeneous, and corresponds to about 1,500 Gag molecules per 

virion (539). Using densitometry analysis to scan immunoblots under sub-saturating conditions, 

we have proposed that the quantity of RT in HIV-1 may be lower than expected in virions 

produced from COS-7 transfected cells (data not shown). This would be consistent with the 

observation that 20-30 enzymatically active RT molecules in phenotypically mixed virions are 

sufficient to successfully complete reverse transcription upon infection (236). Further study may 

yet determine the absolute number of RT molecule per virion and whether cell-line dependent 

attributes such as translation and packaging efficiency affect the number of Gag-Pol molecules 

that are incorporated. 

During infection, viral particles are internalized and the viral capsid is uncoated through 

its association with a cellular chaperone known as cyclophilin A (CypA) (317). Although limited 

synthesis of minus-strand viral DNA has been documented in virions (307,523), reverse 

transcription in its entirety, takes place within the cytoplasm of the infected cell after entry of the 

viral core (258). In spite of the fact that there are two copies of genomic RNA per virion, only a 

single provirus is generated per infection (377). After reverse transcription is complete, the 

newly synthesized viral DNA migrates to the nucleus in the form of a nucleoprotein complex. 

This preintegration complex (PIC) appears to contain viral RNA and DNA in association with 

viral proteins (MA, NC, RT, IN, Nef and Vpr) (46,123,329,356) and cellular proteins (LEDGF, 
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BAF, Ini1, HMG-I) (524), although their structural association and stoichiometry remains 

undefined. It appears that transportation of HIV-1 PICs to the nucleus may be mediated by MA 

(42,44,139), Vpr (208,358,463), and/or IN (138). While there is no evidence for catalysis of 

reverse transcription by any other protein but RT, a number of viral proteins appear to play 

important roles. It is believed that NC can provide a chaperone-like function by acting as a 

single-stranded binding protein, while protecting the nucleic acid template strand from nucleases 

(549). Current data suggests that NC may promote annealing of the tRNALys,3 primer (295), 

enhance RT processivity (99), modulate RNH activity (386), catalyze strand transfer and 

template switching (54,215,386,581), and stimulate integration (57). Interestingly, the ability of 

NC to promote reverse transcription may require further proteolytic cleavage, suggesting a 

possible role for PR at the preintegration stage (349). Recent evidence has further showed that IN 

directly interacts with RT (185,588) and that this interaction is essential for efficient initiation 

(573), but not processivity (185) of reverse transcription. Finally, other reports have suggested 

that Nef may influence the amount of viral DNA produced (451), and that Vif may have an as of 

yet undefined role in reverse transcription (156,480). 

 

1.5.2 Molecular structure of HIV-1 RT 
 

The gene for RT encodes a 66 kDa protein, however the presumed biologically relevant 

form of HIV-1 RT in both virions and infected cells (298,533) is a heterodimer consisting of a 66 

kDa (p66) and 51 kDa (p51) subunit in a 1:1 stoichiometry (418,485,533). While both subunits 

share a common N-terminus (298,533), the p51 subunit has a C-terminal truncation of its RNH 

domain (15 kDa) at residue F440 (178,512), suggesting that it is derived from the larger subunit 

by proteolytic cleavage (298,450). An extensive number of three-dimensional structures of RT 
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have been resolved by X-ray crystallography. These structures have provided great insight into 

the molecular structure of HIV-1 RT, as well as the conformational changes associated with the 

mechanism of DNA polymerization. The general anthropomorphic shape of HIV-1 RT may be 

likened to that of a “right hand”, composed of fingers (residues 1-85, 118-155), palm (residues 

86-117, 156-237), thumb (residues 238-318), and connection (residues 319-426) subdomains that 

define the polymerase domain (Figure 6). Adjoining the connection subdomain in the RT p66 

subunit is the C-terminal RNH domain (residues 427-560). The HIV-1 RT heterodimer is 

asymmetric since the relative orientation and spatial arrangement of its respective subdomains in 

both p66 and p51 subunits are different. As a result, the subunit interface on p51 involves 

different amino acid residues than on p66. The overall picture that emerges is that of a flexible 

molecule, able to grasp the nucleic acid template between its fingers and thumb and thread the 

remainder across its putative binding cleft and in through the active site of the RNH domain 

(209,224,263,430,546). 

The biologically relevant form of RNH resides in the C-terminal region of the RT p66 

subunit, as determined by immunoaffinity analysis (178,205), activated gel analysis (333), and 

sequence alignment with related counterparts (97,230). Although a role for p15 RNH in the viral 

life cycle was once suggested (178), it very likely to be degraded in the virion. The crystal 

structure of the RNH domain of HIV-1 RT (85), released by proteolytic cleavage in vitro exhibits 

general folding that is quite similar to the structure of E.coli RNH and a model of MLV RNH 

(117,248,353,576) (Figure 7). This is remarkable, considering that their comparative amino acid 

homology is less than 30% (446). The RNH domain appears to be comprised of two subdomains 

separated between β1 and β4 strands. The left subdomain consists of β1, β2, β3, αE 
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Figure 6.  Molecular structure of HIV-1 reverse transcriptase. Representative unliganded 
polypeptide schematic of the p66/51 RT heterodimer generated from the crystal coordinates of 
PDB file 1LDO (2.7 Å resolution) (209). Secondary structural features, α-helices and β-strands 
are represented by coils and arrows, respectively. The gene for HIV-1 RT encodes a 66 kDa 
protein, however the presumed biologically relevant form is an obligate asymmetric heterodimer 
consisting of a 66 kDa (p66) and 51 kDa (p51) subunit in a 1:1 stoichiometry. HIV-1 RT is 
composed of fingers (blue), palm (red), thumb (green), and connection (yellow) subdomains that 
define the polymerase domain in the RT p66 subunit. These same subdomains adopt a different 
folding pattern in the RT p51 subunit (white), which is thought to have a primarily structural 
role. Adjoining the connection subdomain in the RT p66 subunit is the C-terminal RNH domain 
(orange). The protease recognized cleavage site (p51↓RNH) which generates the p51 subunit is 
located at residues F440↓Y441 (spacefilled pink), and is inaccessible in the p66 subunit of the 
mature p66/51 RT heterodimer. (Modified from: Hsiou, Y. et al 1996 Structure 4(7):853). 
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Figure 7. Molecular structure of the ribonuclease H domain of HIV-1 reverse transcriptase. 
Representative unliganded polypeptide schematic of RT residues 400-560 generated from the 
crystal coordinates of PDB file 1LDO (2.7 Å resolution) (209). The RNH domain is composed of 
two subdomains separated between β1 and β4 strands along a putative cleft (indicated by a 
forward dividing slash). The left subdomain consists of β1, β2, β3, αE and connecting loop 
while the right subdomain comprises β4, β5, αA, αB, αD and connecting loops. Both the 
polymerase domain of RT p66 and the thumb subdomain of RT p51 establish important 
structure-function tertiary contacts with the right subdomain of RNH in RT p66. The remaining 
p51↓RNH cleavage site at residues F440↓Y441 is situated in the first β strand of the left 
subdomain. (Modified from: Hsiou, Y. et al 1996 Structure 4(7):853). 
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and connecting loop while the right subdomain consists of β4, β5, αA, αB, αD and connecting 

loops. Neutron diffraction data obtained from selectively deuterated molecules of HIV-1 p66/51 

RT indicate that the RNH domain has both intra- and inter-subunit contacts (286). The 

polymerase domain of the RT p66 subunit interacts with its RNH domain in a contact area 

consisting of at least β5, αB, αD and the two connecting loops (85), while the thumb subdomain 

of p51 establishes additional interactions with opposing RNH domain that are important for 

structure and function. 

A number of overlapping regions within the RNH domain are of key importance in the 

maturation, structural stability, and function of RT. The connection subdomain (residues 319-

426) plays a major role in dimer formation by establishing contacts between both p66 and p51 

subunits. It also links the polymerase domain of p66 to its RNH domain (263), and has a modest 

role in binding and positioning the hybrid RNA-DNA substrate (237). Although sometimes 

described synonymously as the connection subdomain, the tether region (residues 394-423) is 

generally believed to be a non-functional linker region that joins the polymerase domain to the 

RNH domain (223,506). This region of RNH is rather malleable to mutagenic alteration (223), 

and composes an energy minima that serves as a hinge site to control global rotational 

reorientations of the RNH domain (506). One area of continued debate however, is which residue 

represents the actual beginning of the RNH coding region. Partial proteolytic maturation of RT 

results in the liberation of an RNH domain beginning at residue Y441 and the formation of the 

p66/51 RT heterodimer (169). The general inactivity of the free RNH domain (205) and its 

sequence comparison with related forms (97,230,576) would suggest that Y427 may be the start 

site in the p66/51 RT heterodimer, although additional N-terminal residues may be needed for 

substrate binding. These findings would suggest that the putative p51↓RNH cleavage site at 
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F440↓Y441 does not exactly delineate between the polymerase and RNH domains and may 

instead be relevant to the maturation of RT. While the p51↓RNH cleavage site itself is highly 

conserved, a number of surrounding residues are naturally polymorphic (88). Although residues 

427-433 in this region loop over strands β4 and β5, and residues 430-440 form what may be a 

protease-sensitive region (85,354), the p51↓RNH cleavage site is actually buried within the 

context of β1 in the RNH domain of the p66/51 RT heterodimer (Figure 6). Further important, 

are residues 424-429 and 434-435 which appear to make stabilizing interactions with the thumb 

subdomain of p51 and other RNH residues (332,338,506). 

Finally, there are two major differences between the structure of HIV-1, and E.coli or 

MLV RNH. First, the HIV-1 RNH domain is missing an 8 residue positively charged helix αC, 

and adjoining basic loop between αB and αD. In E.coli, the αC helix of RNH is crucial for 

binding and positioning of the nucleic acid substrate (242), while in MLV it is additionally 

important for RNH cleavage in vivo during reverse transcription (300,504). These results suggest 

that the absence of this helix from the RNH domain of HIV-1 RT may be why tRNALys,3 primer 

sequences are incompletely removed during reverse transcription, as compared to other forms of 

retroviral RT (556). Secondly, studies have shown that the C-terminal helix αE (residues 543-

553) and the preceding basic loop (residues 537-542) are disordered in the HIV-1 RNH domain 

(85,405). This loop contains a histidine residue (H539) that is highly conserved among the RNH 

family of enzymes (230), and a mutation at this position severely reduces RNH activity (442). 

Since this region in HIV-1 and E.coli RNH has been implicated in substrate binding (152,442), 

its correct positioning in HIV-1 RT may require interactions from either p66 or p51 polymerase 

domain or both. The role of the basic loop/helix αE in HIV-1 p66/51 RT appears to be in 
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directional processing and strand transfer of the nascent minus-strand DNA between RNA 

templates (150,566), as well as in stabilization of the RT-substrate interaction (327). 

It is generally believed that there is a functional interdependence between both 

polymerase and RNH domains of HIV-1 RT that is unapparent in MLV RT (496). Mutagenesis 

studies have shown that some linker insertions or point mutations in the polymerase domain can 

affect RNH activity, and similarly vice versa (194,196,238,409). The physical interconnection of 

both polymerase and RNH domains and their interaction with the nucleic acid template-primer 

suggests that they may appear to be structurally distinct but are functionally interdependent. 

Specifically, a number of significant contacts are made between the RNH domain, the 

connection subdomains of both p66 and p51, and the p51 thumb subdomain (95,263,338). The 

interaction between the extended thumb of p51 and the RNH domain of p66 may be required for 

stability, conformational change, proteolytic maturation, and for activation of polymerase and 

RNH activities of the p66/51 RT heterodimer (338) and the isolated RNH domain (205). Current 

research has provided extensive biochemical and genetic evidence supporting both coupling 

(137,159,320,565) and uncoupling (94,216) of RT polymerase and RNH activities. Coupled 

coordination of these activities would suggest that as polymerization proceeds, the template 

RNA is being removed from the RNA-DNA hybrid 18-19 nucleotides away in the active site of 

RNH (159,249). While these studies imply that template degradation can occur in two modes, 

one dependent and the other independent of DNA polymerization it is unknown what happens in 

the virion context. The uncoupled mode may be sufficient for low level viral replication (503), 

while both modes could be used simultaneously to remove the template RNA prior to the first 

strand transfer (387). 
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1.5.2.1 Role of HIV-1 RT subunits 

The role of each subunit within the p66/51 RT heterodimer has been investigated in a 

variety of studies. By selectively mutating opposing active sites in either p66 or p51 subunits, 

HIV-1 RT has been reconstituted and studied in recombinant form (204,285,315), and in vivo 

using a Vpr-mediated trans-complementation approach (343). In all of these reports, it has been 

demonstrated that the p51 subunit cannot compensate for inactivating mutations in the p66 

subunit of p66/51 RT. Thus, the catalytic residues of p51 do not directly contribute towards 

activity. This interpretation is supported by structural data of p66/51 RT which show that these 

residues are buried within the “closed” folded conformation of the p51 subunit, suggesting that 

this subunit largely plays a structural role in RT (4,224,263,501). Additional roles of the p51 

subunit may entail positioning the tRNALys,3 primer for binding and reverse transcription 

initiation (10,100,225,338,584), increasing the processivity of DNA synthesis (214), facilitating 

template-primer binding (181,323), as well as enhancing strand displacement DNA synthesis 

(206) and modulating RNH activity (54,225,338,453,454,474). Most mutagenic insertions into 

the p66 subunit of RT inactivate polymerase function, indicating that a functional p66 subunit is 

imperative. Additional studies employing activity gel analysis (485) or substrate analogue cross-

linking (63) have verified that only the p66 subunit is labeled. The p66 subunit therefore 

constitutes the catalytically competent subunit of the p66/51 heterodimer and fittingly adopts a 

clearly defined nucleic acid binding cleft within its polymerase domain (224,263,285). The 

putative polymerase active site of the p66 subunit is composed of a catalytic triad of aspartic acid 

residues (D110, D185 and D185) positioned near the primer strand 3’OH terminus (224). These 

residues act to coordinate Mg2+ ions in the nucleophilic attack of the oxygen atom of the 3’OH 
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primer terminus to the α-phosphate of the incoming dNTP, resulting in the liberation of 

pyrophosphate (PPi) and the extension of the primer by one nucleotide. 

 

1.5.2.2 Role of the RNH domain 

The role of the RNH domain in reverse transcription has been investigated by site-

specific mutagenesis and the use of defined RNA-DNA hybrids. While mutational studies have 

highlighted an interdependent functional relationship between DNA polymerization and template 

degradation, they have also identified important catalytic residues in RNH 

(238,334,408,442,513), and implicated this domain in the structural maintenance of RT 

(194,332,333). Clustered within the active site of RNH are four conserved acidic residues (D443, 

E478, D498, D549) which are involved in the coordination of Mg2+ or Mn2+ ions. During and 

after minus-strand DNA synthesis, RNH by definition, acts to degrade the plus-strand viral RNA 

genome of RNA-DNA hybrids through the cleavage of phosphodiester bonds. It is thought that 

RNH makes both specific and nonspecific cleavages to provide two important functions during 

reverse transcription, the removal of the RNA template strand to prepare for plus-strand DNA 

synthesis and both template jumps, and the formation and removal of RNA primers. While the 

products of template degradation are heterogeneous, several RT molecules are believed to bind 

after minus-strand DNA synthesis to degrade all RNA fragments except for the polypurine tracts 

which are used initiate plus-strand DNA synthesis. The analysis of labeled cleavage products 

arising from RNA-DNA hybrids have indicated that RT-associated RNH may utilize a 

combination of endonuclease and 3’-5’ exonuclease activities to carry out its responsibilities 

(137,443). Based on these types of studies, it appears that the internal structure of the RNA-DNA 

hybrid, and the structure extending beyond the RNA 5’ end are what determine the site and 
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efficiency of cleavage (371,561). To permit cleavage of the RNA strand, the hybrid duplex 

adopts a change in structure from A-form to B-form between the polymerase and RNH active 

sites (9). A unique stepwise mechanism of RNH-directed cleavage has been proposed, in 

accordance with the rates of each cut. To remove the RNA left after polymerization, RT 

positions the RNH active site approximately 18 nucleotides from the RNA 5’-end before making 

the primary cut. The enzyme then rebinds or slides to make a secondary cut, 8 nucleotides from 

the RNA 5’-end. Afterwards, RT binds the new 5’-end of the RNA created by the first primary 

or the secondary cuts in order to make the next primary cut (559-561). 

 

1.5.2.3 Recombinant RT 

Evidence that RT in mature infectious HIV-1 virions is a heterodimer comes from 

immunoaffinity (307,314,512,533) and sequential ion exchange-affinity-adsorption purification 

studies (174,178,568). Virus particles were shown to contain a roughly equal proportion of 66 

kDa and 51 kDa protein subunits, suggesting that this stoichiometry may be important for 

infectivity (485,533). However, recombinant HIV-1 RT can be prepared in multiple active 

oligomeric forms, including p66/51 heterodimers as well as p66/66 and p51/51 homodimers 

(Table 3). It should be noted, that in their immunoaffinity purification of p66/51 RT, most 

studies make the assumption that the epitopes of all possible oligomeric forms are equally 

accessible. Interestingly, some studies with HIV-1 (18,178), FIV (361), SIV (270,525) and 

chimeric SIV/HIV-1  (319,525) have reported the immunoaffinity isolation of more RT p66 than 

RT p51. Using several anti-RT monoclonal antibodies developed in our laboratory, we have 

shown that epitope binding in solution can differ between homodimeric and heterodimeric forms 

of HIV-1 RT (294). While we are not disputing the fact that the RT heterodimer may be the most 
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predominant form of RT in the virion, the existence of alternative oligomeric forms during virion 

maturation has not been fully investigated. 

 

Table 3.  Activities and stabilities of alternative oligomeric forms of recombinant HIV-1 
reverse transcriptase. 
 
a Specific RNA dependent DNA polymerase (RDDP) activity from a poly(rA)-oligo(dT)12-18 template-
primer (128) 
b Present (+) or absent (-) of RNH activity as determined from a poly(dC)-poly([3H]G) DNA-RNA hybrid 
(128). 
c Dissociation constant as determined from urea denaturation isotherms (472) 
Values chosen for a, b, c are from studies in which all three oligomeric forms of recombinant RT were 
simultaneously examined. Data not determined is represented by N/D 
 
 
 

RT form RDDP activity a 

(pmol/min/µg) 
Relative 
to WT 

RNH activity b 

(pmol/min/µg)
Present (+)/ 
Absent (-) KD c Relative  

to WT 

p51/51 8.5 ± 1 53-fold N/D - 6.7 x 10-4 4467-fold

p66/66 150 ± 10 3-fold  N/D + 2.7 x 10-6 18-fold 

p66/51 450 ± 50  N/D + 1.5 x 10-7  

 
 

 

1.5.2.3.1 Monomeric HIV-1 RT 

Since RT p66 contains all of the sequence information needed for activity, monomeric forms of 

RT should be active, but are not (22,52,418,419). One proposal suggests that the conformation of 

HIV-1 RT monomer is closed, similar to the catalytically inactive p51 subunit in the p66/51 RT 

heterodimer (204,263,314,546). Dimerization of RT monomers can essentially activate RT by 

providing the free energy required to convert one of the subunits to an open conformation, 

similar to the active p66 subunit in p66/51 RT (546). Under dilute conditions, recombinant RT 
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p66 is monomeric in solution, resistant to processing, and exhibits low specific activities (92). 

Monomeric forms of recombinant RT p66 can also be generated by the introduction of 

dimerization inhibiting mutations, such as L234A or W236A (471,494). In virions however, 

these mutations diminish Gag-Pol incorporation and cause aberrant processing of RT (582), 

suggesting that formation of RT may not be as simple as the association of two separate 

monomeric subunits. Linker insertions and substitution of the connection subdomain or RNH 

domain from MLV (196,331,373,409) or FLV (457) into HIV-1 RT has also been found to result 

in the formation of active chimeric monomers of HIV-1 RT that are resistant to proteolytic 

cleavage. These studies suggest that interactions between the β7-β8 loop of p51 and the palm 

subdomain of p66 during dimerization are essential for activation of RT by inducing formation 

of the polymerase binding cleft. In this regard, the added length between the polymerase and 

RNH domain in the chimeric MLV/HIV-1 RT monomer could permit movement of the latter 

domain to support the former (373). 

 

1.5.2.3.2 p66/66 RT   

Recombinant p66/66 RT homodimers can be readily generated and purified in the absence of 

HIV-1 PR (128,283). In vitro, p66/66 RT homodimers are catalytically active, and exhibit 

significant polymerase (23,128,204,206) and RNH activities (128,178) comparable to the p66/51 

RT heterodimer (Table 3). Although p66/66 HIV-1 RT could equally be active in virions, this 

has not been demonstrated. The only evidence that p66/66 RT may be functional in vivo was 

demonstrated in Saccharomyces cerevisiae, with the substitution of the Ty1 retrotransposon 

(359,360). Although it was originally suggested that the p66/51 RT heterodimer is far more 

stable that the p66/66 RT homodimer (418), recent evidence has confirmed a difference in 
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stability of 18-fold (Table 3) (128,472). Due to practical difficulties associated with subunit-

selective mutagenesis of p66/66 RT, and the lack of a reliable crystal structure it remains unclear 

whether both p66 subunits are functional. Current evidence appears to suggest that either subunit 

in p66/66 RT is capable of primer binding (22), and that switching of active subunits may be 

possible (458). This would suggest that p66/66 RT may adopt a quasi-stable structure. 

Alternatively, it has been proposed that p66/66 RT may adopt an asymmetric structure similar to 

the p66/51 RT heterodimer whereby one RNH domain is partially unfolded to permit proteolytic 

cleavage (203,223,458). Similarities in RT polymerase and RNH activities between recombinant 

p66/51 RT and p66/66 RT would tend to support such a scenario.  

 

1.5.2.3.3 p51/51 RT 

Recombinant RT p51 can be expressed and purified in much the same manner as other 

oligomeric forms. However, conflicting studies exist as to the extent to which this RT p51 active, 

ranging from completely inactive (178,204,285,485), weakly active (29,128,199,346,409,418), 

or substantially active (100,104,308,509,512). The contradictory nature of these reports can be 

attributed to oligomeric state of RT p51 studied. While p51/51 RT homodimers are believed to 

exhibit polymerase activity far lower than that of p66/66 RT or p66/51 RT, monomeric forms 

may be inactive (Table 3). Furthermore, DNA-dependent DNA polymerase activity of 

recombinant p51/51 RT is 13-50-fold more efficient than its RNA-dependent DNA polymerase 

activity (128,217,509). Recent evidence has indicated that p51 RT subunits do not readily 

dimerize (26,418), and that p51/51 RT homodimers are on average about 4500-fold less stable in 

solution than p66/51 RT heterodimers (Table 3) (128,472). In this regard, the use of low 

concentrations of p51 RT and thus p51/51 RT homodimers could account for low DNA 
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polymerase activity. However, significant DNA polymerase activity has been associated with the 

isolated p51 RT subunit under dilute subunit concentration conditions ranging from 20 to 200 

nM (24,100,128). We have recently demonstrated by radiation inactivation analysis, that while 

RT p51 is a monomer even at high concentrations, a homodimeric form of the enzyme is induced 

in the presence of a nucleic acid template-primer substrate (473). Finally, since active p51/51 RT 

homodimers displays no significant difference in substrate affinity compared to p66/51 RT (24), 

both enzymes may adopt similar conformations. While p51/51 RT-catalyzed polymerization is 

possible in the absence of an RNH domain (443), it is clear that the presence of this domain in 

p66/51 RT enhances processivity (24). 

 

1.5.2.3.4 Recombinant RNH 

Unlike the isolated RNH domain of MLV and E.coli, most isolated forms of recombinant HIV-1 

RNH are inactive (25,85,484) or exhibit extremely low levels of activity (174,176,179,450). It is 

hypothesized that inactivity associated with the isolated RNH domain of RT is attributable to (i) 

the absence of critical binding residues (N-terminal tryptophan-rich region of p51 or lack of 

basic helix αC/loop), (ii) dynamic differences or (iii) structural differences from the RT-

associated RNH domain (C-terminal basic loop/helix αE region).  

 

In effort to study the structure of HIV-1 RNH, attempts have been made to reconstitute the 

activity of the isolated RNH domain of HIV-1 RT. Sequences N-terminal to the putative 

p51↓RNH cleavage site have been introduced with mixed results (residues 427-560 or 400-560). 

In general, it appears that natural N-terminal sequences are unable to restore activity (25), while 

non-HIV-1 purification tags work well (115,116,475,484). Reconstitution of RNH activity has 
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also been observed by the addition of purified RT p51 (115,205,474), or introduction of the basic 

helix αC/loop structure of E.coli RNH into the corresponding position of the isolated HIV-1 

RNH domain (253,482). Although the exact mechanism of compensation is presently unclear, it 

is believed that the basic nature of these additions may restore RNH activity by enhancing 

substrate binding affinity. Early reports have further indicated that inactivity associated with the 

isolated RNH domain of HIV-1 RT may be due to its extreme dynamic behavior (254,324). 

However, a recent study using innovative NMR relaxation techniques and a physiological pH 

found that the statistical differences in dynamic behavior are marginal (342). Finally, the 

invariant H539 residue in the basic loop/helix αE region of RNH, important for substrate 

binding, appears to be disordered in crystals of the isolated RNH domain (152,442). While this 

region can be stabilized by the presence of divalent metal ions (379), it is unknown whether this 

alone is enough to restore activity to the isolated RNH domain. 

 

1.5.2.4 Other retroviral forms of RT   

A comparative examination of other retroviral forms of RT may permit some 

comprehension of what have necessitated the generation of the p66/51 RT heterodimer in HIV-1. 

A number of groups have investigated the origins and phylogenetic relationship among 

retroviruses, by comparing amino acid sequence divergency in such regions as reverse 

transcriptase. Although functionally similar, all known RT enzymes are architecturally diverse 

and have low to moderate primary sequence identity and similarity (97,230,402,574). 

Lentiviruses appear to possess the most sequence similar forms of RT, while progression from 

type B to D retroviruses coincides with a divergence in oligomeric subunit composition and 

structure to include monomers and homodimers (Figure 8). Retroviral RTs of different vertebrate 
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Figure 8.  Biosynthesis and subunit relationship of various retroviral reverse transcriptase 
enzymes. Pol enzymes are colour coded for clarification of RT subunit composition: PR 
(yellow), RT polymerase (red), RNH domain of RT (liliac), and IN (lime green). ASLV RT is 
principally a heterodimer, consisting of an incompletely processed RT-IN subunit (β) and a 
smaller RT subunit (α). Up to 45% of ASLV RT is additionally comprised of completely 
processed RT homodimers (αα) and unprocessed RT-IN (ββ) homodimers (165,197). The fully 
processed form of MLV RT is a monomer is solution, although it may dimerize upon binding to 
a nucleic acid substrate (148). While the oligomeric composition of HSRV (PFV) RT remains 
unclear, recombinant RT includes homodimeric or heterodimeric forms with PR-RT-IN and PR-
RT polypeptides (261). In lentiviruses, such as HIV-1, the biologically prevalent form of RT is a 
p66/51 heterodimer, generated by proteolytic processing of three cleavage sites. The smaller RT 
p51 subunit is derived from p66 and has a C-terminal truncation of its RNH domain (512).
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origin generally exhibit distinctive properties in vitro with respect to metal requirement, template 

preferences, processivity, and error rates. However, consistent with their evolutionary 

relatedness, the structures of RT active sites are highly conserved and retain the YXDD catalytic 

motif in their polymerase domain. Chimeric studies have further provided structure-function 

insights into different species-specific forms of RT (4,13,455,501), while also demonstrating that 

they can substitute for each other to facilitate reverse transcription (11) and viral replication 

(432,477). 

 

1.5.2.4.1 Lentiviral RT 

Aside from HIV-1, the lentiviral class of retroviruses consists of immunodeficiency viruses HIV-

2, FIV (feline), SIV (simian), infectious anemia virus EIAV (equine), arthritis-encephalitis virus 

CAEV (caprine) and visna virus. The predominant form of RT in these viruses is a heterodimer, 

and like HIV-1, is composed of a catalytic subunit with a polymerase and RNH domain and a 

smaller subunit truncated at its C-terminal end.  

 

HIV-2 RT has been purified from virions as a p68/55-58 RT heterodimer (90), although 

homodimeric forms of these subunits have been characterized in recombinant heterologous 

systems (200,345). A crystal structure of this enzyme revealed that its overall folding is generally 

similar to that of HIV-1 RT (417). Closer examination shows that the putative p51↓RNH 

cleavage site in HIV-2 RT lies in the same structural region as HIV-1, however processing 

occurs at residue M484 instead of F440 (119). While both enzymes exhibit the same catalytic 

activities, there are significant differences in their enzymatic properties. The RNH activity of the 
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HIV-2 RT heterodimer is 10 times lower than that of HIV-1, and its template affinity during 

polymerization is 15-fold higher (201,454). 

 

Recombinant FIV RT is enzymatically active as homodimers as well as a p66/51 RT heterodimer 

(3,362). Although it was reported that virion-purified FIV RT consists of a single 66 kDa 

polypeptide (361), immunoprobing of viral lysates has demonstrated that both p66 and p51 RT 

subunits are indeed present. Furthermore, cleavage of synthetic peptides in vitro with FIV PR 

indicates that the putative p51↓RNH cleavage site may lie at residue W440, the same primary 

sequence position as in HIV-1 RT (106). Comparative analyses with HIV-1 RT have further 

demonstrated that that FIV RT and its subunits exhibit similar catalytic functions and structural 

roles (4,78,501).  

 

EIAV RT purified from virions is a heterodimer. Although some researchers have indicated that 

the size of EIAV RT subunits are 66 kDa and 51 kDa subunits (89), other estimates place them 

as being closer to 70 kDa and 59 kDa (89,510). In addition, recombinant forms of EIAV p51/51 

RT homodimers have been studied (479). Both HIV-1 RT and EIAV RT exhibit comparable 

specific RNH activity (437,510) and fidelity of polymerization (19,89). Noticeable differences 

between these enzymes include specific DNA polymerase activity and sensitivity to inhibition 

(437), implying some aspect structural divergency. 

 

Finally, due to its ancestry, SIV RT has lower sequence homology to HIV-1 RT than any other 

lentiviral form. Most closely related to HIV-1 is SIV from chimpanzees (SIVcpz), while SIV 

from macaques (SIVmac), sooty mangabeys (SIVmn), African green monkey (SIVagm), and 
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mandrill (SIVmnd) are closely related to HIV-2 (459). SIV RT has been purified from virions as 

a p64/48-50 heterodimer and exhibits discernable polymerase and RNH activities (270,319). 

Although these activities have not been extensively studied in vitro, it is clear that SIV RT 

exhibits a similar sensitivity to polymerase inhibition compared to the HIV-1 (410). 

 

1.5.2.4.2 Monomeric forms of RT  

Murine leukemia virus (MLV), also called Moloney murine leukemia virus (abbreviated MMLV, 

Mo-MLV, or M-MuLV) are type C retroviruses that possess a 70-80 kDa monomeric form of RT 

(148,210,335,531). Other monomeric retroviral RT enzymes have been characterized 

biochemically from porcine endogenous retrovirus (14), bovine leukemia virus (BLV) (391), 

feline leukemia virus (FLV) (361), mouse mammory tumor virus (MMTV) (502), and Mason-

Pfizer monkey virus (MPMV) (180). While both HIV-1 and MLV RT display polymerase and 

RNH activities (210,436) they exhibit different cation requirements (199,531) and abilities to 

define RNH cleavage sites amongst mismatched segments in RNA-DNA hybrids (141). A 

continued area of dispute is that monomeric MLV RT may dimerize upon binding to a nucleic 

acid substrate (331,504). Interestingly though, BLV RT remains enzymatically active as a 

monomer, even after substrate binding (391). A further difference from HIV-1 RT is the finding 

that the polymerase and RNH domains of MLV RT act independently to complete viral DNA 

synthesis during infection (503). As such, physical separation of these domains maintains 

functionality (496). These unique attributes of MLV RT may be attributable to the length of its 

tether region, and the presence of non-conserved motifs in the connection subdomain and RNH 

domain, such as the basic loop/helix αC (141,331). The absence of such features in HIV-1 RT 

may explain the need for dimerization to maintain the active open conformation of the p66 
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subunit (181,373). The recently resolved full-length structure of MLV RT has indicated that 

there are a number of striking differences from the HIV-1 RT (81). The relative positions of the 

thumb, connection, and RNH domains, and the angles between the fingers and palm subdomains 

are different in the two structures. Consequently, the palm subdomain of MLV RT is larger, and 

the clamp-like shape of its binding cleft  requires that the trajectory of the template-primer be 

bent by 90o, as opposed to 45o when exiting the polymerase active site. Finally, the tether region 

linking the polymerase and RNH domains in MLV RT exits the connection subdomain in a 

completely opposite direction, suggesting that it may permit conformational flexibility of the 

RNH domain.  

 

1.5.2.4.3 Homodimeric and alternative heterodimeric forms of RT   

Avian sarcoma and leukosis viruses (ASLV) form the genre of type C retroviruses which 

includes Rous sarcoma virus (RSV) and avian myeloblastosis virus (AMV). The putative form of 

ASLV RT is a αβ heterodimer, with 63 and 95 kDa subunits respectively. However, gel filtration 

and sedimentation velocity experiments have since shown that while the αβ form is favoured at 

4oC, (αβ)2 tetramers predominate at 20oC (301). The β subunit (p95) contains polymerase, RNH, 

and IN domains, while the smaller α (p63) subunit contains only polymerase and RNH domains 

(155,165,292,421). Interestingly, ASLV virions are also comprised of 8% completely processed 

p63 (α) RT monomers/homodimers, and 37% unprocessed p95/95 (ββ) RT homodimers 

(165,197). Recombinant studies suggest that all oligomeric forms of ASLV RT may be 

organized in the same asymmetric manner as HIV-1 p66/51 RT (553,554), and that interestingly, 

processing of Pol does not require dimerization (1). Compared to the HIV-1 p66/66 RT 

homodimer, the ASLV αα RT homodimer is very unstable and sensitive to heat inactivation 

 57



 

(478,555). Furthermore, a single β subunit of ASLV RT (αβ or ββ) is proposed to play a 

comparable structural role to the p51 subunit of HIV-1 p66/51 RT (164,553). While the RNH 

domain of ASLV RT does not exhibit directional processing (443,555), it does have a fairly long  

tether region and a basic loop/helix αC. However, unlike MLV RT, physical separation of RT 

polymerase and RNH domains results in an inactive polymerase suggesting some degree of 

functional interdependence (280). Finally, the catalytic activities of the different ASLV RT 

oligomers can be comparatively summarized as: (i) relative RDDP activity is 1:3:5 for αα, ββ, 

and αβ respectively, (ii) αβ and ββ are more processive than αα, (iii) αβ has the greatest affinity 

for RNA templates, (iv) strand transfer efficiency follows αα = αβ > ββ and (v) RNH activities 

of αβ are greater than ββ (198,532,552,555). 

 

Other retroviruses that possess alternative oligomeric forms of RT include human T-cell 

leukemia viruses type I and II (HTLV-I and II), and spumaretroviruses or foamy viruses which 

include FFV (feline), and HFV or HSRV (human) now called PFV (prototype). In HTLV-I, the 

Gag-Pro-Pol fusion protein is expressed by double ribosomal frameshifting (222), whereas the 

Pro-Pol domain of PFV is expressed independently of Gag at its own initiation site (304,583). 

Originally purified from virions as a 95 kDa protein (422), recent  characterization of HTLV-I 

RT has shown that it has both α and β subunits similar to ASLV RT, but that they associate to 

form an active α3/β tetramer in vitro (521). PFV RT is further different, being as that virions are 

comprised of a completely processed 80 kDa PR-RT subunit and an unprocessed 127 kDa PR-

RT-IN subunit (398). Although the oligomeric composition of PFV RT remains unclear, both 

polypeptides exhibit functional in situ polymerase and RNH activities (261), and may likely 

adopt homodimeric and heterodimeric forms. It has also been demonstrated that polymerase 
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activity of PFV RT is greater and more processive than HIV-1 RT (35,426). These results could 

account for the extremely low number of PFV RT molecules per virion (186), and further 

suggest that only a few molecules of PFV RT can accomplish the same tasks as a greater number 

HIV-1 RT molecules. 

 

1.5.3 Assembly and generation of HIV-1 p66/51 RT 
 

HIV-1 RT is not synthesized de novo, but instead processed by HIV-1 PR from a fully 

translated Gag-Pol polyprotein precursor. This proteolytic maturation of HIV-1 RT is partial in 

the sense that half of the available p51↓RNH cleavage sites are processed to produce an equal 

proportion of p66 and p51 RT subunits (485,533). In the final mature p66/51 RT heterodimer the 

remaining p51↓RNH cleavage site is accessibly buried, making the structure refractory to further 

proteolytic attack. Although the mechanism of RT generation has not been determined in a virion 

context, as few possibilities exist. In the first scenario, concerted independent processing of both 

p66 and p51 RT subunits may be followed by their assembly into p66/51 RT heterodimers. 

Alternatively, a sequential form of processing would entail the liberation of RT p66 from Gag-

Pol, assembly into p66/66 RT homodimers and processing of one subunit to form p66/51 RT 

heterodimers. An adaptation to this last scenario further suggests that p66/66 RT homodimers 

could be directly released from two dimerized Gag-Pol polyprotein precursors. Since monomeric 

forms of p66 RT are resistant to internal processing at the p51↓RNH cleavage site, dimerization 

of RT subunits at some stage during virion maturation is essential (92). Our laboratory has 

previously demonstrated, using a truncated Pol polyprotein expressed in bacteria that formation 

of p66/51 RT follows a sequential mechanism of processing. However, concerted assembly of 

separate subunits in vitro can similarly produce a p66/51 RT heterodimers of identical 
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conformation and activity (5,26). Outlined in the following section is the current state of 

knowledge concerning both methods of RT preparation. 

Recombinant p66/51 RT has been prepared in a number of heterologous expression 

systems by the assembly of separate RT subunits or proteolytic processing of polyprotein-

embedded RT. Host expression systems have included E.coli (120,199,341,346,498), Bacillus 

subtilis (282), yeast (23,104,214) and vaccinia virus (129). Dimerization of RT subunits is 

essentially a bimolecular mechanism, involving rapid association followed by a slower 

isomerization to create a functionally active enzyme (96). RT subunits have been expressed in 

the same host, from a biscistronic gene or from two separate plasmids (204,232,346). The p66/51 

RT heterodimer can also be reconstituted by mixing equimolar amounts of recombinant RT p66 

and RT p51 after purification (207,285,323,483). Alternatively, expression of HIV-1 RT and PR 

in cis (from a biscistronic gene) (120,283), or in trans (on two separate plasmids) 

(120,333,341,450) results in the formation of the p66/51 RT heterodimer. Preformed 

recombinant p66/66 RT homodimers can also be processed to p66/51 RT in trans by the addition 

of recombinant HIV-1 PR (61,203,450,515). Although a number of non-viral PR including 

E.coli, Staphylococcus aureus V8, trypsin, chymotrypsin, and papain have been used to generate 

the p66/51 RT heterodimer in vitro (126,278,314) they are generally non-specific and result in 

additional cleavage products and an RT p51 subunit with heterogeneous ends (126,128,225,314). 

Taken together, these reports demonstrate that recombinant p66/51 RT can be formed in a 

number of different ways. 
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1.5.3.1 Proposed mechanisms for processing recombinant p66/66 RT  

Although it is clear that recombinant p66/51 RT can be formed from p66/66 RT by the 

removal of an RNH domain (61,203,314,450), the mechanism by which HIV-1 PR cleaves only 

one of the RT p66 subunits has not been unequivocally established. Some investigators propose 

that the p66/66 RT homodimer is an asymmetric dimer similar to the RT p66/51 heterodimer, but 

with the RNH domain of the soon-to-be p51 subunit unfolded to an extent that allow PR-

mediated cleavage at the p51↓RNH junction (85,203,314,515,546). This may be the result of 

energy derived from RT subunit dimerization that induces strain in one of the RNH domains that 

is relieved by unfolding along the tether region towards the p51↓RNH cleavage site  

(85,169,203). Other studies, supported by circular dichroism data, suggest that p66/66 RT may 

be a symmetrical homodimer, but that removal of the RNH domain from one of the p66 subunits 

induces conformational changes in the other p66 subunit that protect this subunit from similar 

cleavage at its p51↓RNH junction (5,314,338). 

 

1.5.3.2 Proteolysis of the released RNH domain of RT 

Although mature p66/51 RT is refractory to proteolytic processing (61,314,515), it 

remains in question whether the released RNH domain is further degraded in the virion. Early 

reports indicated that the p15 RNH fragment could be immunoprecipitated from virions (178). 

However, many subsequent attempts to identify or isolate such a fragment after formation of 

p66/51 RT heterodimer in vitro or in the virion context have proven unsuccessful 

(61,126,314,484). It is possible that cleavage of the p51↓RNH junction produces an isolated 

RNH domain that cannot properly fold, having lost the initial residues needed to form the middle 

β1 strand in the central β sheet of RNH (Figure 7) (85). In heterologous expression systems, the 
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generation of p66/51 RT at neutral pH releases an RNH domain that is indeed further cleaved at 

Y483, N494 and Y532 (23,61,515). Further interesting is the observation that changes in 

environmental conditions can expose up to eighteen additional cleavage sites within RT, 

presumably by altering folding (69,213). It therefore appears that the RNH domain of HIV-1 RT 

may play an as of yet undefined, but important role in the regulated generation of RT. 

 

 

1.6 INTEGRASE 

 

1.6.1 General features of integration 
 

Efficient replication of HIV-1 depends on the stable maintenance and efficient 

transcription of proviral DNA so as to produce new copies of the retroviral genome and mRNA 

templates that encode viral proteins (279). Following viral entry and reverse transcription, the 

proviral DNA copy of the full-length RNA genome is inserted into the host cell genome by a 

concerted mechanism known as integration. Originally called endonuclease (167), the pol-

encoded retroviral enzyme that mediates this process is now commonly referred to as integrase 

(IN) (251,452). The two specific, separately occurring catalytic activities of IN are 3’-end 

processing, and 3’-end joining or strand transfer. In a highly coordinated manner, IN cleaves 

both ends of proviral DNA in a hydrolytic reaction and juxtaposes these for nucleophilic attack 

of the target host DNA in a subsequent transesterification reaction (50,348). 

Integration of proviral DNA is essential for efficient replication of most retroviruses,  

bacteriophage Mu and nonviral transposons (456). In other viral systems such as parvoviruses, 

integration occurs infrequently and may represent an alternative salvage pathway of replication 
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(67). Although HIV-1 IN is vital for efficient retroviral replication, reports differ as to the extent 

to which unintegrated DNA can serve as a template for viral gene expression and protein 

synthesis. These differences appear to be attributed to the class of IN mutation examined and the 

lineage of the infected target cells (56,112,440,487). Class I IN mutations specifically block the 

integration step, whereas class II mutations cause pleiotropic defects in virion morphogenesis 

and reverse transcription (109). In the absence of functional HIV-1 IN, it appears that cellular 

recombination enzymes may facilitate illegitimate integration (145) to maintain retroviral 

replication in some semipermissive and permissive cell lines (56,352). As expected though, 

single-cycle infectivities, viral titers and DNA recombination frequencies of class I and II IN 

mutants are severely reduced compared to wild-type (352). 

The following model for retroviral integration is supported by both in vitro and viral 

replication studies. After reverse transcription, the precursor substrate to integration remains 

enclosed within a specific nucleoprotein complex known as the preintegration complex (PIC). 

This precursor is a blunt-ended linear DNA molecule of 9.8 kbp with LTR sequences at each 

end, forming an imperfect inverted repeat (38,123). While it is assumed that reverse transcription 

proceeds to completion, most proviral DNA molecules contain a discontinuous plus-strand that is 

presumably repaired by RT or cellular enzymes following integration (219,330). The first step of 

integration occurs in the cytoplasm (33) with the coordinated removal of 3’-terminal GT 

dinucleotides leaving a recessed, phylogenetically conserved CA sequence with a free 3’-

hydroxyl group (378,435). HIV-1 PICs are then actively transported into the nucleus (45) via 

MA (42,44,139) or Vpr (208,358,463) signal-mediated entry through nuclear pores. In the 

second step of integration, both 3’-hydroxyl groups of the viral DNA are juxtaposed to attack 

phosphodiester bonds on opposite strands of the target host DNA, creating a staggered cleavage 
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of five bases (535). As a result of this strand transfer, the recessed 3’-ends of the viral DNA are 

covalently joined to the 5’-phosphate ends of the target DNA creating an intermediate with 

unpaired dinucleotides at the viral 5’-ends and terminal single-stranded gaps of target site DNA 

(136). Finally, these gaps between viral and host DNA may be repaired by cellular enzymes, 

although a possible role of RT and IN has not been ruled out (36,578). 

The overall process of integration occurs without the use of exogenous energy sources 

(107), and results in the permanent association of viral DNA with the genome of the host cell 

(123). In vitro studies have suggested that IN may further catalyze a disintegration reaction. 

Essentially, the continuity of a target DNA can be restored by releasing a viral DNA segment 

(71). However, since the sites of disintegration are relatively independent of the viral DNA 

sequence this reaction may not represent a true reversal of strand transfer (527). Under 

favourable conditions, integration is highly efficient and results in the insertion of up to 50% of 

available proviral linear DNA molecules in acutely infected, permissive cells (171). While the 

linear viral products of reverse transcription initially comprise the most abundant form of viral 

DNA in the cells, those that are not integrated, because of superinfection or IN mutation adapt to 

form dead-end extrachromosomal products in the nucleus (487). These products include (i) 1-

LTR circles, formed by homologous recombination within the LTR region, (ii) 2-LTR circles, 

formed by blunt-end joining of two adjacent LTR sequences, and (iii) autointegration products, 

formed by intramolecular integration into the viral DNA molecule itself (466). Recent evidence 

suggests that viral DNA circularization results from the action of a number of host cell factors 

including components of the RAD50/MRE11/NBS1 nuclease to form 1-LTR circles and 

components of the nonhomologous DNA end-joining (NHEJ) pathway to form 2-LTR circles 

(122,257). 
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While there is no direct evidence that any other protein but IN can catalyze integration 

(51,75,251), the possibility remains that viral and cellular factors may play important roles 

(121,287,524). Insights into integration have been made by comparing in vitro reactions 

mediated by purified PICs vs. recombinant IN. Under current conditions, HIV-1 IN alone is 

remarkably inept at coordinating the joint integration of both ends of the viral DNA (50,51), 

whereas purified PICs can specifically coordinate coupled integration (58,107). Recent evidence 

suggests that both the NC protein (57,58) and the cellular nonhistone chromosomal protein 

HMG-I(Y) (121,192), present in PICs are needed to stimulate coupled integration. Metal 

cofactors such as Mn2+ and Mg2+ also appear to mediate assembly of the IN-DNA-metal 

complex (12) and contribute to substrate discrimination (577), whereas Ca2+ and Co2+ are needed 

to uncouple the assembly and catalysis functions of HIV-1 IN (184). Finally, the cellular protein 

Ini1 (hSNF5), part of the mammalian SWI/SNF complex appears to be needed during integration 

to remodel chromatin (337). 

 

1.6.1.1 Determinants of IN substrate specificity and target site selection 

HIV-1 IN displays an innate ability to recognize the ends of proviral DNA in a sequence 

specific manner, yet binds target DNA in a sequence-independent manner. The single most 

important feature of proviral DNA, in terms of IN binding, is the terminal CA/TG dinucleotide 

pair. To a lesser extent, specificity also extends up to 15 base pairs from the termini (37). A 

number of factors help to prevent non-specific binding of IN to internal viral DNA sequences, 

including sequence protection by NC (58) and HMG-I(Y) (121), the sterically controlled 

structure of the PIC (33), and cooperative interactions between RT and IN (185). By comparison, 

target site selection within the host cell genome appears to be sequence-independent and occurs 
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at an enormous number of locations (49,447,465,572). Integration generally favours the most 

accessible region of the chromatin structure where the major groove dividing phosphodiester 

bonds is widest, or rather highly bent DNA sites found at specific positions in nucleosomes 

(412,413). Interactions with cellular DNA-binding proteins such as BAF, HMG-I(Y), Ini1, Ku, 

and LEDGF are also believed to play a role by tethering IN to transcription factors or modified 

histones (363).  

The dependence of integration on favourable chromosomal target sites may consequently 

have a decisive influence on retroviral replication. If integration occurs within a sequence 

unsuitable for efficient high-level transcription, this could diminish the production of progeny 

virions (234) and possibly cause other deleterious genetic effects (465). With the recent 

completion of the human genome sequence, researchers have only now begun to execute large-

scale sequence-based surveys of integration events to determine target site preferences. The 

results of some of these studies appear to indicate that each retrovirus shows unique preferences 

for certain integration sites, which suggests that they each have different mechanisms of target 

site selection. HIV-1 integration strongly favours transcriptional units of active genes in a tissue-

specific manner. MLV integration has a strong preference for regions near to transcription start 

sites and CpG islands. Further different is ASLV, which mildly prefers integration into active 

genes and exhibits no preference for transcriptional start regions (49,447,572). 
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1.6.2 Structural organization of HIV-1 IN 
 

The gene for HIV-1 IN encodes as a 32 kDa (p32) protein, however the true multimeric 

structure and relative orientation of IN domains remains unclear. Structural and biophysical 

studies of full-length retroviral IN have generally been impeded by its poor solubility at low 

concentrations, although the use of solubilizing mutations has shown promise (228). HIV-1 IN 

can be divided into three independently folded domains, an N-terminal domain for zinc-binding, 

a catalytic core domain for polynucleotidyl transfer, and a C-terminal domain for DNA-binding 

(Figure 9) (110,528). Based on in vitro complementation and UV cross-linking experiments, IN 

appears to function as a multimer (70,108,110,528). Sedimentation analysis has shown that each 

domain exists in monomer-dimer equilibrium (191,228), while full-length IN, and its C-terminal 

two-thirds exist in dimer-tetramer equilibrium (228,233). Both IN dimer or tetramer models for 

multimerization have been proposed to account for the catalytic activities associated with 

integration (228,233). An IN dimer could theoretically contain separate sites for binding host 

DNA and viral DNA, and a single site for catalyzing IN functional activities. On the other hand, 

an IN tetramer may be better able at catalyzing a five base pair staggered cleavage. In this 

scenario, two separate IN molecules could bind to, and coordinate each of the viral ends together 

(50,348), and two additional IN molecules could bind to the host DNA target site to prepare it for 

nucleophilic attack. Irrespective of the actual oligomeric form of IN needed for integration, 

multimerization of subunits is essential. This is facilitated by direct contacts between the core 

and C-terminal domains (102,110,191) and promoted by Zn2+ binding to the N-terminal domain 

(290,586) and the presence of Mg2+ or Mn2+ (108). 
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Figure 9.  Schematic organization of the domain structure of HIV-1 integrase. Integrase is 
composed of three functional domains. The conserved central core domain contains the catalytic 
site, a triad of highly conserved acidic residues in the form of a D,D-35-E motif. While this 
domain alone can catalyze a polynucleotidyl transfer reaction (disintegration), but N- and C-
terminal domains are required for 3’-end processing and strand transfer reactions. The N-
terminal domain contains the conserved HHCC motif, which binds zinc. The poorly conserved 
C-terminal domain is capable of binding DNA non-specifically. Multimerization determinants 
are found in all IN domains. 
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1.6.2.1 Structure and roles of IN domains 

Although the core domain of IN contains the active site required for chemical catalysis, 

the roles of the N-terminal and C-terminal domains are less well understood (423). All three 

domains are required to catalyze both 3’-end processing and strand transfer activities (444,536). 

The N-terminal domain (residues 1 50) contains a highly conserved HHCC zinc-binding site 

(111) and a helix-turn-helix structure similar to that found in DNA-binding proteins (53). Binding 

of Zn2+ to the N-terminal domain appears to promote multimerization, protein stabilization 

(290,586), and enhancement of IN activity (289,586). The core domain (residues 50 212) 

contains a catalytic D,D(35)E triad motif and structure characteristic of many polynucleotidyl 

transferases including RNH, bacteriophage Mu transposase and the E.coli Holliday junction 

resolving enzyme RuvC (102). This motif is believed to compose the active site of IN through its 

coordination of metal cofactors (Mg2+ or Mn2+) and regulation of target site selection (277,464). 

Recent evidence further suggests that in addition to promoting dimerization (102,110,191), both 

the central core and C-terminal domains of IN act in connecting HIV-1 PICs with the nuclear 

import machinery (138). Although nonspecific DNA-binding activity has been associated with 

the C-terminal domain (residues 213 288), this region is not highly conserved, and its precise 

function is unclear (113,536,564). The C-terminal domain may play a role in associating the viral 

DNA ends with IN through a direct interaction with RT (185), although it remains unclear how 

DNA is arranged in a tertiary IN-DNA-metal ion complex. 

 

1.6.3 Physical association between RT and IN 
 

The final stage of reverse transcription generates a linear proviral DNA substrate that is 

acted upon by IN, and a putative interaction between RT and IN within PICs could theoretically 
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facilitate this transfer. HIV-1 IN could be brought to the viral DNA ends by RT after DNA 

synthesis, and RT could repair the gapped integration intermediate and complete plus-strand 

DNA synthesis subsequent to nuclear transport (71,219,330). To this end, several reports have 

indicated precedence in retroviral (1,185,521,573) and retrotransposon (260,363,486,558) 

systems for a role of RT and IN domains in the proper folding and enzymatic activity of each 

other. HIV-1 IN is essential for efficient initiation of reverse transcription in infected cells (573), 

but has no influence on processivity (185). Furthermore, HIV-1 RT appears to stimulate IN-

mediated strand transfer activity in vitro, but does not affect 3’-end processing activity 

(58,185,573). Associative interactions between RT and IN could be achieved in cis, when RT is 

in direct fusion with IN or in trans, by interactions between the individual mature proteins 

themselves. In ASLV (1,166) and HTLV-I (521) RT, the IN domain of the β subunit appears to 

play a structural role in RT activity, while the RT domain negatively regulates its contribution to 

integration strand transfer activity (193). In other retroviral systems such as HIV-1 and MLV, it 

is unclear what effect a forced end-to-end cis association between RT and IN would have on 

their respective activities. Recent reports have indicated that the close physical association 

between HIV-1 RT and IN is not mediated by nucleic acid bridging (573) but rather direct 

interaction between the C-terminal domain of IN and the fingers-palm subdomain and tether 

region of RT (185,588). These same functional interactions have been similarly found in the Ty3 

(260,363) and Tf1 (486) LTR retrotransposon systems. 
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1.7 RATIONALE AND STATEMENT OF HYPOTHESIS 

 

The complete proteolytic release of pol-encoded enzymes is believed to be a late event in 

the ordered pathway of Gag-Pol polyprotein processing during HIV-1 maturation (267,591). 

Surprisingly however, there is little information concerning the sequence of events and 

functional consequences of processing these late stage cleavage sites during virion maturation. 

Each of the pol-encoded enzymes, protease (PR), reverse transcriptase (RT) and integrase (IN) 

are active only as dimers. Both PR and IN are homodimers (or higher order homo-oligomers in 

the case of IN) which are comprised of subunits that are predicted from the size of their genes. In 

contrast, RT in mature infectious virions is a heterodimer of 66 kDa (p66) and 51 kDa (p51) 

subunits, even though its gene encodes only a 66 kDa protein. The p51 subunit is formed by 

HIV-1 PR-catalyzed cleavage of RT p66 during virion maturation, resulting in the removal of a 

ribonuclease H (RNH) domain. Thus, compared to formation of active PR or IN, the formation 

of mature active RT requires an additional proteolytic cleavage event. This suggests that the 

p66/51 RT heterodimer is essential for HIV-1 replication. However, recombinant p66/66 RT 

homodimers have significant enzymatic activities (23,128), and PR-RT and RT-IN fusion 

proteins arguably exhibit some level of RT polymerase activity (211,293). Furthermore, RT in 

virions of MLV is monomeric and possibly homodimeric in active form (148,531), while active 

RT in virions of ASLV is dimeric and comprised of at least one RT-IN subunit (155,197,292). 

 

The p66/51 RT heterodimer of HIV-1 is formed by the proteolytic processing of three 

different cleavage sites: the N-terminal PR↓RT junction, the internal RT p51↓RNH junction, and 

the C-terminal RT↓IN junction. The encompassing goal of the following project was to 
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determine why the generation of active viral RT requires three processing events during 

virion maturation and as such, why formation of the RT p66/51 heterodimer is necessary 

for virus replication. Since inhibition of the N-terminal PR↓RT cleavage site results in stable 

PR-RT fusion proteins with no adverse effect on virion-associated RT activity (65,66), the focus 

of this project was directed at the two remaining cleavage sites. We hypothesized that cleavage 

of the internal RT p51↓RNH junction is essential to the formation of stable functional viral 

RT, whereas cleavage of the sites flanking N-termini and C-termini are not. 

 

Specific Aim #1:  To determine the extent that proteolytic processing of RT can be 

prevented or significantly diminished by mutagenesis of RT↓IN cleavage site in an 

infectious molecular clone of HIV-1. This aim will allow for an assessment of RT content, 

activity, and replication capacity of virions unable to generate RT p66. 

 

Specific Aim #2:  To determine the extent that proteolytic processing of RT can be 

prevented or significantly diminished by mutagenesis of RT p51↓RNH cleavage site in an 

infectious molecular clone of HIV-1. This aim will allow for an assessment of RT content, 

activity, and replication capacity of virions unable to generate RT p51. 

 

The association of HIV-1 with the AIDS epidemic has generated a considerable amount 

of interest in trying to better understand the structural and functional properties of the pol-

encoded enzymes, PR, RT and IN. The vital role that RT plays in viral replication has made it 

one of the most important and ideal targets of anti-retroviral therapy. While it is clear that HIV-1 

RT is a heterodimer of 66 kDa and 51 kDa subunits, the apparent need for this oligomeric form 
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in the virion has not been clearly defined. A greater understanding of proteolytic events involved 

in the generation of HIV-1 RT will provide clarification of this necessity and perhaps insight into 

its structural differences from other retroviral forms. 

 

The progression of work outlined in this thesis is presented in the most logical order 

relevant to the overall hypothesis. However, for the purpose of continuity, reference is 

occasionally made to work outlined in previous or subsequent chapters. Where applicable, 

methods are reiterated in brief form with reference to particular differences or adaptations. In 

Chapter 2, the effect of mutagenesis of the C-terminal RT↓IN cleavage site was investigated in 

the virion context. Attributes such as viral protein composition, RT activities, infectivity and 

viral replication capacity were examined. In Chapter 3, various mutations were introduced in the 

internal RT p51↓RNH cleavage site followed by an examination of the same attributes outlined 

above. Finally, Chapter 4 is an extension of the work initiated in Chapter 3 and involves the 

characterization of a second-site compensatory mutation. 

 

 73



 

 
 
 
 

 CHAPTER 2: PROTEOLYTIC CLEAVAGE OF THE HIV-1 RT↓IN JUNCTION 

DOES NOT SERIOUSLY IMPACT RT ACTIVITY, BUT IS ESSENTIAL FOR 

EFFICIENT VIRAL REPLICATION 

 

 

2.1 ABSTRACT 

 

Reverse transcriptase (RT) and integrase (IN) are essential oligomeric enzymes released 

from the HIV-1 Gag-Pol polyprotein precursor during proteolytic maturation of virions. Mature 

RT is a heterodimer of 66 kDa and 51 kDa subunits. The smaller p51 subunit is derived from the 

larger p66 subunit by protease-catalyzed removal of a ribonuclease H (RNH) domain. Thus, 

generation of RT requires processing at three different cleavage sites: the N-terminal PR↓RT 

junction, the internal RT p51↓RNH junction and the C-terminal RT↓IN junction. To study the 

necessity for processing the RT↓IN cleavage site in the virion context, we selectively mutated 

amino acid residues at this junction in an infectious HIV-1 molecular clone. Mutation of the 

RT↓IN junction was found to result in the production of virions containing 98 kDa RT-IN and 

51 kDa RT proteins in equivalent proportion. Interestingly, we found by inhibiting HIV-1 PR 

with decreasing concentrations of ritonavir that the 47 kDa RNH-IN protein, released upon 

cleavage of the RT p51↓RNH junction was further processed to a 35 kDa form. This result 

suggests putative unfolding and further proteolysis of the abutting RNH domain, consistent with 
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processing of recombinant p66/66 RT and the absence of RNH in virions. While RT polymerase 

and RNH activities were unaffected by the RT-IN fusion, viral infectivity and replication 

capacity were severely attenuated. Repeated passage of MT-2 cells exposed to the mutant virus 

eventually lead to phenotypic and genetic reversion, suggesting that IN activity may not have 

been completely ablated by the RT↓IN cleavage site mutation. These results suggest that 

proteolytic processing of the RT↓IN junction is not essential in the generation of functional RT 

during HIV-1 maturation, but in the context of efficient viral replication, may be important for 

IN activity. A cis association between RT/RNH and IN likely disturbs the normal functional 

interactions between these enzymes that are important for integration, but not reverse 

transcription. 

 

 

2.2 INTRODUCTION 

 

During virion assembly and budding, the 160 kDa Gag-Pol polyprotein precursor of 

human immunodeficiency virus type 1 (HIV-1) is proteolytically processed at discrete cleavage 

sites to liberate the individual components of Gag and Pol (244,262). The active enzymes 

encoded in the C-terminal Pol region of this polyprotein precursor include protease, reverse 

transcriptase and integrase (416). Each of these enzymes is responsible for an essential event in 

the life cycle of HIV-1. Protease (PR) cleaves polyprotein precursors into their respective 

components during virion maturation. Reverse transcriptase (RT) catalyzes the complex 

conversion of genomic RNA into a double-stranded proviral DNA through coordination of its 

RNA- and DNA-dependent polymerase, ribonuclease H (RNH), strand transfer and strand-
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displacement activities (298,443,499). Finally, integrase (IN) acts after reverse transcription to 

covalently incorporate the proviral DNA into the genome of the infected host cell. The specific 

enzymatic reactions catalyzed by IN include: (i) 3’-end processing, the removal of two 

nucleotides from each 3’-end of the linear proviral DNA and (ii) strand transfer, the splicing of 

these processed 3’-ends into opposite DNA strands of the host chromosome (50). 

Each of the pol-encoded enzymes must oligomerize to at least a dimer for enzymatic 

activity (16,110,418). Both PR and IN are homodimers with 10 kDa and 32 kDa respective 

subunits, predicted from the size of their genes. Mature HIV-1 PR is a symmetrical homodimer 

released from Gag-Pol by autoprocessing carried out by the polyprotein-embedded form of the 

enzyme (311). HIV-1 IN is also active in a homodimeric state, although higher order tetrameric 

species may facilitate integration in vivo (108,228,233). Functional HIV-1 IN is comprised of 

three independently folded domains: (i) an N-terminal domain, involved in the coordination of 

zinc (290,586), (ii) a catalytic core domain, for polynucleotidyl transfer (102,191) and (iii) a C-

terminal domain, for DNA binding (110). The gene for HIV-1 RT encodes a protein of 66 kDa, 

and like PR and IN can form active homodimeric forms in heterologous expression systems 

(23,128,458). However, RT in mature infectious virions is a heterodimer with 66 kDa (p66) and 

51 kDa (p51) subunits (512). The smaller RT p51 subunit is derived from the larger RT p66 by 

proteolytic cleavage at an internal p51↓RNH junction, resulting in the removal of a C-terminal 

RNH domain (61,119,203,515). Although both p66 and p51 subunits have identical amino acid 

sequences, their folding within the active RT heterodimer differs, resulting in an asymmetric 

structure (263,546). Consequently, p66 forms the catalytic subunit of the p66/51 RT heterodimer, 

while p51 is presumed to play largely a structural role (4,224,285). 
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Reverse transcription generates linear proviral DNA that is acted upon by IN. Thus, a 

potential interaction between RT and IN in the nucleoprotein or preintegration complex 

(46,124,210) could facilitate the transfer of reverse transcription product to integration substrate. 

It has been further suggested that RT and IN may intimately affect each others activity. IN 

appears to stimulate the initiation of reverse transcription (573), while RT dramatically enhances 

the strand transfer activity of IN (58,185,573). Since most proviral DNA molecules contain a 

discontinuous plus-strand it is also possible that RT is required for polymerization subsequent to 

nuclear transport or integration (219,330). An associative interaction between RT and IN could 

be achieved in cis, when RT is in direct fusion with IN, or in trans, by interactions between the 

individual mature proteins. In both ASLV (166,198,292) and HTLV-I (521), IN forms an 

integral part of the β subunit of active RT in a cis association. In contrast, the RT and IN proteins 

of HIV-1 are fully separated by proteolytic cleavage (187,537) and appear to directly interact in 

trans (185,573,588). 

The generation of mature p66/51 RT in HIV-1 virions requires processing at three 

cleavage sites, the N-terminal PR↓RT and C-terminal RT↓IN junctions as well as within RT p66 

at p51↓RNH. Our previous studies suggest that p66/51 RT is generated from a truncated Pol 

polyprotein in an ordered manner through a p66/66 RT homodimer intermediate (471). This 

series of events may be preceded by PR-RT and/or RT-IN processing intermediates which have 

themselves, been observed in heterologous (239,293) and viral expression systems (302,481). In 

the virion context, mutation of the PR↓RT cleavage site produces 77 kDa and 62 kDa PR-RT 

fusion proteins and has no adverse affect on PR or RT activities, although infectivity is 

diminished (65,66). We have recently demonstrated that cleavage of the internal RT p51↓RNH 

junction is necessary to provide proteolytic stability of active RT during virion maturation 
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(Chapter 3). These results suggests that a heterodimeric form of HIV-1 RT is essential for virus 

replication. However, recombinant HIV-1 RT is active in p66/66 homodimers (23,128), and 

disputably active in fusion with IN (211,293). Furthermore, functional RT in virions of ASLV 

are comprised of at least one RT-IN subunit (155,292). Thus, it is unclear why HIV-1 RT 

requires processing of its C-terminus in the generation of a functional heterodimeric enzyme 

during virion maturation. By mutating the RT↓IN junction in molecular clones of HIV-1, we 

attempted to determine the functional consequences of processing this cleavage site. We found 

that blockage of the RT↓IN cleavage site produced the expected 98 kDa RT-IN and 51 kDa RT 

products, however viral infectivity was severely attenuated. Our data show that processing of the 

C-terminal RT↓IN junction is not essential for RT activity, since neither RT polymerase or RNH 

activities were affected by the fusion of RT and IN. However, in the context of efficient viral 

replication, cleavage of the RT↓IN junction is essential. While our findings lead us to believe 

that diminished IN activities may have been the source of the replication defect, this remains to 

be determined. 

 

 

2.3 MATERIALS AND METHODS 

 

2.3.1 Reagents 
 

The following reagents were obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAD, NIH: anti-HIV-1SF2 p24/25 IgG mAb (76C) from 

Dr. Kathelyn Steimer, Chiron Corporation; and anti-HIV-1HXB2 IN (2C11 and 8G4) IgG mAb 
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from Dr. Dag Helland. Rabbit anti-HIV-1 PR polyclonal serum directed against PR residues 86-

108 (284,341) was obtained from Dr. Stuart Le Grice, NCI-Frederick (Frederick, MD). Anti-

HIV-1IIIB RT and anti-HIV-1IIIB RNH (2F2) IgG mAb were previously generated in our 

laboratory against recombinant p66/51 RT (294). Homopolymeric template/primer poly(rA)-

oligo(dT)12-18, [3H]-TTP, goat anti-mouse-HRP and donkey anti-rabbit secondary mAb were all 

purchased from Amersham Pharmacia Biotech (Piscataway, NJ). The SuperPico ECL Substrate 

System for detection of peroxidase-labeled antibody was obtained from PIERCE (Rockford, IL). 

4-MUG (4-methylumbelliferyl-β-D-galactopyranoside), a β-galactosidase fluorescent substrate 

was obtained from Sigma-Aldrich (St. Louis, MO). HIV-1 p24 antigen ELISA kits were obtained 

from SAIC-Frederick (Frederick, MD). Sequencing, PCR amplification and mutation-containing 

oligonucleotide primers were purchased from Invitrogen (Carlsbad, CA). Oligonucleotides 

purchased from TriLink Biotechnologies (San Diego, CA) included 5’-GAU CUG AGC CUG 

GGA GCU-fluorescein-3’ and 5’-Dabcyl-AGC TCC CAG GCT CAG ATC-3’ provided as an 

annealed RNA/DNA hybrid. COS-7, 293T, and CD4+ MT-2 and MT-4 lymphocytoid cell lines 

were obtained from the American Type Culture Collection (Rockville, MD). 

 

2.3.2 Cell lines 
 

The human T-lymphocytoid MT-2 and MT-4 cell lines were maintained in RPMI 1640 

supplemented with 10% fetal bovine serum (FBS). Human 293T and monkey COS-7 fibroblast 

cell lines were maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented with 

10% FBS. P4R5 HeLa fibroblast cells, a generous gift of Dr. John Mellors at the University of 

Pittsburgh (originally obtained from Dr. Ned Landau, The Salk Institute for Biological Studies, 

La Jolla, CA) were maintained in DMEM/10% FBS additionally supplemented with Puromycin 
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(0.5 µg/mL). These cells express endogenous CXCR4 and are stably transfected to express CD4, 

CCR5, and a β-galactosidase reporter gene under the control of an HIV LTR promoter (347).  

 

2.3.3 HIV-1 molecular clone mutagenesis and transfection 
 

Plasmid pSVC21-BH10 encodes an infectious molecular clone of the IIIB (HxB2) strain 

of HIV-1 and carries an SV40 origin of replication for expression in 293T and COS-7 cells 

(127). A double amino-acid substitution (F1I/L2K) was introduced into the region corresponding 

to the RT-IN cleavage site (RKIL560↓F1LD) using the Quick Change™ Site-Directed 

Mutagenesis kit (Stratagene, La Jolla, CA). To assess Pr160gag-pol incorporation into virions a 

catalytic inactive mutation (D25A) was introduced into the PR coding region of wild-type and 

mutant molecular clones. The presence of the expected mutations was verified by sequencing. 

Virus was prepared by transfection of 293T cells by calcium phosphate co-precipitation. Virus-

containing culture supernatants were harvested 60 h post-transfection, clarified by centrifugation 

(3000 x g, 1 h at 4oC), and quantified by analyzing the levels of HIV-1 p24 antigen. Aliquots of 

virus preparations were stored at -80oC until use. 

 

2.3.4 Infectivity and viral spread 
 

Infectivity of virus particles produced from transfection of 293T cells was determined by 

using normalized quantities of HIV-1 p24 antigen content and P4R5 or MT-2 cells as targets. 

Single-cycle viral infectivity was assessed using P4R5 cells in a fluorescence-based microplate 

β-galactosidase detection assay (5 or 25 ng of viral p24 per 5 x 103 cells per well). Briefly, virus-

containing culture supernatants were removed at 48 h post-infection. Cells were lysed in 100 µL 
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lysis buffer (60 mM Na2HPO4, 40 mM NaH2PO4 [pH 7.2], 1 mM MgSO4, 100 mM β-

mercaptoethanol, 2% [v/v] triton X-100) for 1 h at 37oC. Reactions were initiated by addition of 

50 µL 4-MUG to a final concentration of 0.5 mM, incubated for 1 h at 37oC and quenched with 

150 µL 0.2 M Na2CO3, pH 11.2. Fluorescence intensity was assessed on a SPECTRAmax 

GEMINI XS dual-scanning microplate spectrofluorometer (Molecular Devices, Sunnyvale, CA) 

using an excitation wavelength of 355 nm and an emission wavelength of 480 nm, with cutoff 

filter set to 475 nm. 

Multiple-round viral replication was assessed by inoculation of MT-2 lymphoblastoid 

cells in 96-well microplates (2.5 or 20 ng of viral p24 per 6.5 x 104 cells per well) followed by 

daily microscopic observation of HIV-1 induced syncytium formation, as previously described 

(32,339). In a concurrent manner, the median tissue culture infective dose (TCID50/mL) of each 

virus was determined after seven days of culture, as described elsewhere (231).  

 

2.3.5 Molecular cloning of an RT-INF1I/L2K revertant 
 

Cytopathology appeared in infected MT-2 cells maintained in culture for 14 days. At this 

time virus-containing culture fluids were expanded briefly for 4 days by infection of fresh MT-2 

cells and collected for subsequent analysis. RNA was extracted from 0.5 mL of supernatant 

containing revertant virions by ultracentrifugation (22,500 x g, 1 hr at 4oC) and incubation in the 

presence of 20 mg/mL proteinase K (1 h at 55oC), 5.8 M guanidinium isothyocyante (5 min at 

22oC) and ethanol precipitation. RNA was reverse transcribed for 50 min at 42oC using the 

SuperScript™ First-Strand Synthesis kit (Invitrogen, Carlsbad, CA). The region encoding HIV-1 

RT-IN was then PCR amplified from the cDNA reaction mixture and directly cloned into 

pTrcHIS/TOPO (Invitrogen, Carlsbad, CA) for sequencing analysis. 
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2.3.6 Immunoblotting analysis of viral proteins 
 

Clarified virus-containing cell culture supernatants (1 µg of viral p24) were purified 

through 20% (w/v) sucrose cushions (175,000 x g, 1.5 h at 4oC) and pellets lysed in 16 µL RIPA-

lysis buffer (20 mM Tris-Cl [pH 8.0] containing 120 mM NaCl, 2 mM EDTA, 0.5% [v/v] DOC, 

0.5% [v/v] NP-40 as well as 2 µg/mL PMSF, 10 µg/mL apoprotein and 10 µg/mL pepstatin A). 

Virion particle protein composition was assessed by subjecting the lysate proteins to SDS-10% 

PAGE resolution and Western blotting. Western blots were incubated with either anti-HIV-1 RT 

(6 µg/mL), anti-HIV-1 RNH (2F2, 6 µg/mL), anti-HIV-1 IN (2C11 and 8G4, 1:40), anti-HIV-1 

PR (1:40) or anti-HIV-1 p24 (3 µg/mL) antibodies followed by incubation with the appropriate 

horse radish peroxidase-conjugated secondary antibody (1:1000). To minimize non-specific 

binding Western blots were blocked with 7% [w/v] skim milk/0.05% [v/v] tween 20 in PBS as 

well as normal goat or donkey serum (1:100) where appropriate. Immunoreactive protein bands 

were visualized by enhanced chemiluminescence (PIERCE, Rockford, IL) on a VersaDoc 

Imaging System, and quantitated by densitometry under sub-saturating exposure conditions 

using Quantity One v4.3.0 software (Bio-Rad, Hercules, CA). To assess the level of Gag-Pol 

(Pr160gag-pol) incorporation, viruses containing inactivated PR (D25A) were pre-normalized by 

Gag (Pr55gag) content prior to sucrose-cushion purification and Western blot analysis. 

 

2.3.7 Analysis of intravirion processing of Gag and Gag-Pol polyprotein precursors 
 

The accumulation of Gag-Pol processing intermediates during proteolysis was assessed 

by immunoprobing Western blots of viral protein derived from ritonavir-treated transfected 

COS-7 cells. Briefly, COS-7 cells (1.6 x 105 cells/well) were transfected with 3 µg of proviral 
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plasmid DNA (pSVC21-BH10) using LipofectAMINE Plus (Invitrogen, Carlsbad, CA) 

following which the transfection medium was replaced with cell culture medium containing 

varying concentrations of the HIV-1 PR inhibitor ritonavir (RTV), courtesy of Dr. John Mellors, 

University of Pittsburgh. Virus-containing culture supernatants were harvested at 48 hr post-

transfection, clarified and purified through 20% [w/v] sucrose cushions (175,000 x g, 1.5 h at 

4oC). Virion particle protein composition was assessed by subjecting the lysate proteins to SDS-

10% PAGE resolution, Western blotting and immunoprobing against IN and p24, as described 

above. In the absence of a readily procurable cross-specific anti-p24/Pr55gag IgG mAb, previous 

studies suggested (240,246) as was shown herein (Figure 12-B) that particle production was 

relatively equivalent at each concentration of ritonavir. Furthermore, ritonavir concentrations 

were kept below cytotoxic levels that would inhibit COS-7 cell growth, as determined by MTS 

cytotoxicity analysis (Promega, Madison, WI). 

 

2.3.8 Assay of virion-associated RT activity  
 

Virion-associated RT RNA-dependent DNA polymerase (RDDP) activity was 

determined as follows. Briefly, virus-containing culture supernatant (250 ng HIV-1 p24) was 

sucrose cushion-purified and lysed for 15 min on ice in 48 µL reaction-lysis buffer (50 mM Tris-

Cl [pH 7.9], 5 mM MgCl2, 150 mM KCl, 0.5 mM EGTA, 0.05% [v/v] triton X-100, 2% [v/v] 

ethylene glycol, 5 mM DTT, 0.5 mM reduced GSH and 50 µg/mL poly(rA)-oligo(dT)12-18). 

Reactions were initiated by the addition of 20 µCi [3H]-dTTP, incubated for 1.5 h at 37oC and 

quenched with 250 µL of ice-cold 10% trichloroacetic acid containing 20 mM NaPPi. Following 

filtration through glass fiber Type C filter multi-well plates (Millipore Corporation, Bedford, 
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MA) and sequential washing with 10% [v/v] trichloroacetic acid and ethanol, the extent of 

radionucleotide incorporation was determined by liquid scintillation spectrometry. 

 

2.3.9 Assay of virion-associated RNH activity  
 

A previously described fluorescence-based microplate assay for HIV-1 RT-associated 

RNH activity (382) was adapted for determination of virion-associated RNH activity. Twenty 

five microliters of virus-containing culture supernatants (normalized to 25 ng HIV-1 p24 with 

conditioned DMEM/10% FBS) were added to individual wells of a 96-well microplate (CoStar 

black). Viral particles were then lysed for 10 min at 22oC upon addition of an equal volume of 

100 mM Tris-Cl [pH 8.0] containing 120 mM KCl, 20 mM MgCl2 and 1% [v/v] triton X-100. 

Reactions were initiated by addition of 50 µL of a 0.5 µM solution of RNA/DNA hybrid in 50 

mM Tris-Cl [pH 8.0], containing 60 mM KCl and allowed to proceed at 37oC. Fluorescence 

intensity in each well was assessed in kinetic mode on a SPECTRAmax GEMINI XS dual-

scanning microplate spectrofluorometer (Molecular Devices, Sunnyvale, CA) using an excitation 

wavelength of 490 nm and an emission wavelength of 528 nm, with cutoff filter set to 515 nm. 

The increase in fluorescence arising from hydrolysis of the substrate was measured over 15 min 

time intervals and was linear up to 45 min at which point reactions were quenched with 50 µL of 

0.5 M EDTA, pH 8.0. Under these conditions, background fluorescence values using the same 

quantity of conditioned media were typically less than 10% of the test wells. 
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2.4 RESULTS   

 

2.4.1 Effect of RT↓IN cleavage site mutation on viral phenotype of RT and IN proteins 
 

The sequence of the RT↓IN cleavage site is RKIL560↓F1LD. To investigate the functional 

consequences of processing the RT↓IN cleavage site, by preventing its cleavage, we introduced 

mutations at the P1’ (F1I) and P2’ (L2K) positions in this PR-recognized sequence. Under 

normal wild-type conditions, proteolytic maturation of the Pol region of Gag-Pol generated 

completely processed 10 kDa PR and 32 kDa IN proteins, and an incompletely processed RT 

protein, composed of 66 and 51 kDa subunits (Figure 10-A). Based on the molecular mass of 

these proteins, it was expected that inhibition of the RT↓IN cleavage site would result in the 

formation of a 98 kDa RT-IN fusion protein, a 51 kDa RT protein and an incompletely processed 

47 kDa RNH-IN fusion protein. Immunoprobing for RT revealed the presence of 98 kDa RT-IN 

and 51 kDa RT proteins in the RT-INF1I/L2K cleavage site mutant virus (Figure 10-B, panel i-iii). 

The stability of these two immunoreactive RT bands was confirmed in replicate analyses (n = 3) 

and indicated a total average RT content of 69.2 ± 0.1 percent of the wild-type. Similarly, total 

immunoreactive RNH content averaged 62.8 ± 37.0 percent of the wild-type. Compared to the 

wild-type RT p66:p51 content ratio (0.9 ± 0.1), the relative ratio of RT-INF1I/L2K RT p98:p51 was 

occasionally higher (1.7 ± 0.8). While this result would suggest a partial interference with 

processing the RT p51↓RNH cleavage site, it was statistically insignificant. Surprisingly, the 

processing of this junction in the RT-INF1I/L2K mutant did not result in the expected formation of 

a stable 47 kDa RNH-IN fusion. Immunoprobing for IN revealed instead, the more prominent 

appearance of a 35 kDa intermediate RNH-IN protein. The relatively high ratio of p98:p35 IN
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Figure 10.  Processing products of the Pol region of wild-type and RT-INF1I/L2K cleavage 
site mutant Gag-Pol. (A) Schematic representation of the Pr160gag-pol precursor with the nine 
major processing sites shown as vertical arrows. The rates of cleavage of the three cleavage sites 
in Pol, relative to RT↓IN cleavage site are shown below, as predicted by peptide cleavage in 
vitro with recombinant PR (80,517). In the lower panel are the expected processed products of 
Pol, with their estimated polyprotein sizes under wild-type (WT) conditions and when the 
RT↓IN cleavage site is mutated (RT-INF1I/L2K). (B) Western blots of WT and RT-INF1I/L2K 
viruses (1 µg viral p24), generated by transfection of 293T cells and probed with (i) anti-RT, (ii) 
anti-RNH, (iii) anti-IN, (iv) anti-PR and (v) anti-p24 antibodies, followed by ECL exposure. The 
position of molecular size markers are shown to the left of each panel. With the exception of IN 
(ca. p35), immunoreactive Pol products of the RT-INF1I/L2K mutant line up with their expected 
sizes. (C) Western blots of WT and RT-INF1I/L2K viruses (1 µg viral p24), generated after 
multiple rounds of MT-2 cell infection (18 d). Immunoprobing and lane assignments were the 
same as those described above, before MT-2 cell infection. 
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content in the RT-INF1I/L2K mutant (3.9 ± 1.3), combined with the low overall content of IN (20 ± 

13 percent of wild-type) suggests that the 47 kDa RNH-IN fusion product may have been 

degraded upon formation. Our inability to detect either the 47 kDa or 35 kDa RNH-IN fusion 

protein on anti-RNH probed blots suggests that the epitope was lost. Further analysis using a PR-

inactivated RT-INF1I/L2K mutant indicated that this degradation of the 47 kDa RNH-IN fusion 

protein in the analogous PR-active mutant was due to HIV-1 PR activity and not diminished 

incorporation of Pr160gag-pol (Figure 11). Finally, as expected, the RT-INF1I/L2K cleavage site 

mutation did not appear to effect the viral content level of immunoreactive PR or Gag proteins 

(Figure 10-B, panel iv and v) or viral particle/p24 production (Table 4). 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Effect of RT-INF1I/L2K cleavage site mutation on Gag-Pol incorporation in 
immature virions. Immature virions containing inactive HIV-1 PR (D25A) and previously 
standardized by Pr55gag content were ultracentrifuged, lysed and resolved by SDS-10% PAGE 
and Western blot analysis. Relative viral content of (A) Pr160gag-pol and (B) Pr55gag were 
determined by probing separate blots with anti-RT and anti-p24 monoclonal antibodies 
respectively, followed by densitometry scanning analysis of ECL exposed blots under sub-
saturating conditions. 
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2.4.2 Effect of RT↓IN cleavage site mutation on intravirion processing of Gag-Pol 
 

Using an inducible bacterial expression vector we previously showed that the RT-

INF1I/L2K cleavage site mutation has no impact on the formation, or kinetics of appearance of RT 

p51 from a 90 kDa Pol polyprotein (Appendix, Figure 29) (471). However, in the absence of the 

terminal 28 kDa portion of IN, this expression system was not ideal to study the formation of 

full-length RT-IN and RNH-IN fusion proteins. A similar study showed upon expression of a 

full-length Pol polyprotein, that mutation of the RT↓IN cleavage site (L560I) resulted in the 

stable formation of 47 kDa RNH-IN (239). To investigate the effect of an RT-INF1I/L2K mutation 

on the accumulation of Gag-Pol processing intermediates in the natural viral milieu, we used the 

protease inhibitor ritonavir (RTV). Virions isolated from COS-7 cells that were transfected in the 

presence of varying concentrations of RTV exhibited a dose-dependent diminution in the extent 

of Gag and Gag-Pol processing when probed for p24 and IN, respectively (Figure 12). Although 

the accumulative pattern and molecular weights of immunoreactive Gag-Pol intermediates was 

consistent with expected cleavage events (302,392,481), it was unfeasible to verify their identity 

by protein sequencing. At progressively elevated levels of PR activity, the disappearance of the 

higher molecular weight 98 kDa RT-IN intermediate was appropriately followed by the 

appearance of 47 kDa RNH-IN and 32 kDa IN. Introduction of the RT-INF1I/L2K cleavage site 

mutation lead to the sustained presence of both 98 kDa RT-IN and 47 kDa RNH-IN 

intermediates to higher activity levels of PR. Between 0.05 and 0 µM RTV, however, the 

immunoreactive 47 kDa RNH-IN fusion protein diminished as a lower molecular weight 35 kDa 

IN protein became more prominent. The results of Figure 10 and 12 combined show that while 

an RT-IN fusion protein is stable to further proteolysis, an RNH-IN fusion protein is not. 
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2.4.3 Viral infectivity and replication kinetics of the RT↓IN cleavage site mutant 
 

Single-cycle infectivity was assessed by infecting P4R5 cells with equivalent amounts 

(25 ng viral p24) of virus-containing cell-free supernatants derived from transfected 293T cells. 

After 48 h postinfection, cells were lysed and β-galactosidase expression was quantitated by 

fluorescence. The infectivity of the RT-INF1I/L2K mutant virus was found to be severely 

attenuated, relative to the wild-type virus (Figure 13-A). This result did not correlate with the 

minor changes in virion RT and IN content. To determine whether the RT-INF1I/L2K mutant virus 

could support productive infection we assessed viral replication kinetics during long-term 

propagation in MT-2 cells. MT-2 cells were inoculated with 293T-derived virions (20 ng viral 

p24) and HIV-1 induced cytopathic effect was monitored over time (Figure 13-B). In the wild-

type infected culture, virus replication peaked after 5 days. In contrast, virus production in the 

RT-INF1I/L2K infected culture was considerably delayed, and peaked 7 days later. An assessment 

of end point dilution infectivity in MT-2 cells further showed that the infectious capacity 

(TCID50/p24) of the RT-INF1I/L2K mutant virus was substantially lower than the wild-type virus 

(Table 4). Nevertheless, fusion between RT and IN in the RT-INF1I/L2K mutant did not completely 

inhibit viral spread. 

 

2.4.4 Virion-associated RT polymerase and RNH activities 
 

To investigate the basis for the attenuated infectivity of the RT-INF1I/L2K mutant virus we 

examined the virion-associated activities of the affected Pol enzymes. Both RT polymerase 

(RDDP) and RNH activities were assessed as described in Materials and Methods using 

appropriate substrates and equivalent amounts of virus. Interestingly, fusion of IN to the C-
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Figure 12.  Effect of RT-INF1I/L2K cleavage site mutation on ordered intravirion processing 
of Gag and Gag-Pol polyproteins.  WT (left panel) and RT-INF1I/L2K (right panel) virus-
containing culture supernatants derived from COS-7 cells, transfected in the presence of 
decreasing concentrations of ritonavir were subjected to SDS-10% PAGE resolution and 
Western blotting analysis. Ordered accumulation of immunoreactive (A) Gag-Pol and (B) Gag 
polyprotein processing intermediates were observed by probing separate Western blots with  
anti-IN and anti-p24 antibodies respectively, followed by ECL exposure. The position of 
molecular size markers are shown to the left of each panel. Lines to the right of each panel 
indicate the positions and estimated molecular masses of expected polyprotein processing 
intermediates (302,392). 
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Figure 13.  Effect of RT-INF1I/L2K mutation on viral infectivity and replication. Left: (A, C) 
Single-cycle viral infectivity. P4R5 cells (5 x 103 cells) were infected in replicate (n = 5) with 
WT or RT-INF1I/L2K mutant viruses (A) generated by transfection of 293T cells (25 ng viral p24) 
or (C) generated after 18 d of multiple rounds of MT-2 cell infection (5 ng viral p24). Infectivity 
was determined, relative to WT after 48 h of culture by fluorescent measurement of β-
galactosidase gene expression, as described in Section 2.3.4. Right: (B, D) Viral replication 
kinetics. (B) MT-2 lymphocytoid cells (6.5 x 104 cells) were infected in duplicate with WT or 
RT-INF1I/L2K mutant viruses generated by transfection of 293T cells (20 ng viral p24). (D) Virus 
stocks generated after 18 d of multiple rounds of MT-2 cell infection (B), were used to infect 
fresh MT-2 cells (5 ng viral p24). Cultures were split 1:2 every 3 d to prevent overgrowth and 
examined daily for HIV-1 induced cytopathic effect (syncytium formation). Symbol legend: WT 
(�), RT-INF1I/L2K ( ). 
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Table 4.  Absolute infectivity of WT and RT-INF1I/L2K mutant HIV-1 before and after long-
term replication in MT-2 cells. 

 
a Median tissue culture infective dose (TCID50/mL) of virions generated from transfected 293T cells 
b Median tissue culture infective dose (TCID50/mL) of replication-recovered viruses from MT-2 cells 
c TCID50/p24, expressed as percent wild-type represents the relative infectivity per virion. Data represent 
the means ± S.D. from three separate experiments. 
 
 
 

Mutant TCID50/mL p24 (ng/mL) TCID50/p24 (%WT) c

aWT 9.2 x 106 ± 3.0 x 106 1222 ± 606 100 ± 18 

aRT-INF1I/L2K 2.2 x 102 ± 7.7 x 101 637 ± 252 1.6 x 10-3 ± 6.3 x 10-4

bWT 1.5 x 108 ± 3.7 x 107 278 ± 0 100 ± 24 

bRT-INF1I/L2K 1.3 x 108 ± 2.3 x 107 285 ± 0 83 ± 15 

 
 

 

terminal end of RT did not affect either the polymerase or RNH activity of RT. No significant 

differences were found with the RT-INF1I/L2K mutant virus as compared to wild-type (Figure 14).  

 

2.4.5 Characterization of viral revertants of the RT↓IN cleavage site mutant phenotype 
 

Although infectivity was severely attenuated (Figure 13-A), repeated passage of MT-2 

cells exposed to RT-INF1I/L2K mutant virus eventually resulted in the appearance of virus with 

improved replication kinetics (Figure 13-B). This result was observed in separately conducted 

experiments. To determine if the increase in peak cytopathic effect was due to the emergence of 
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Figure 14.  Effect of RT-INF1I/L2K mutation on virion-associated RT polymerase and RNH 
activities. (A) RNA-dependent DNA polymerase (RDDP) activity. Virus-containing culture 
supernatants (250 ng viral p24) generated by transfection of 293T cells were purified through 
sucrose cushions, lysed and resuspended in reaction mixtures. The extent of [3H]-dTTP 
incorporation into poly(rA)-oligo(dT)12-18 was measured in replicate (n = 3) by liquid 
scintillation spectrometry after incubation for 1.5 h at 37oC, as described in Section 2.3.8. (B) 
RNH activity. Virus-containing culture supernatants (25 ng viral p24) generated by transfection 
of 293T cells were assayed in replicate (n = 3) for RNH activity, as described in Section 2.3.9. 
Fluorescence intensity derived from hydrolysis of a fluorophore-quencher end-labeled 
RNA/DNA hybrid was monitored periodically and quenched after 45 min at 37oC, during the 
linear phase of the reaction. 
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a phenotypic revertant, supernatant from this 14 d cell culture was briefly expanded and used to 

infect fresh MT-2 cells. Figure 13D shows that this long-term passaged RT-INF1I/L2K mutant 

virus replicated in MT-2 cells almost as well as the wild-type. Consistent with this finding was a 

noticable increase in single-cycle infectivity (Figure 13-C) to near wild-type levels. Analysis of 

protein composition of the replication-recovered RT-INF1I/L2K mutant virus revealed a normal 

wild-type RT p66/51 ratio and content of p32 IN (Figure 10-C), suggesting that a phenotypic 

reversion had occurred. Sequencing analysis of the proviral RT-IN coding region, extracted from 

the recovered RT-INF1I/L2K mutant showed that the mutated RT↓IN cleavage site had reverted to 

the wild-type sequence (data not shown). 

 

 

2.5 DISCUSSION 

 

The complete proteolytic release of pol-encoded enzymes is believed to be a late event in 

the ordered pathway of Gag-Pol polyprotein processing during HIV-1 maturation (267,591). To 

date however, only a few studies have attempted to resolve the functional consequences of 

processing these PR-recognized cleavage sites in the context of the virion. Formation of the RT 

p66/51 heterodimer appears to require processing at three different sites, the N-terminal PR↓RT 

junction, the internal p51↓RNH junction and the C-terminal RT↓IN junction. The PR domain 

flanking the N-terminus of RT does not appear to influence RT activity (65,66), while processing 

of the internal RT p51↓RNH junction is essential for ensuring adequate virion levels of active 

RT that are resistant to further proteolysis (Chapter 3). However, in the context of the virion, the 

necessity for processing the C-terminal RT↓IN junction in the generation of functional RT 
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p66/51 heterodimers has remained unclear. In the current study, we have shown that mutation of 

the RT↓IN cleavage site generates RT p51 and a stable 98 kDa RT-IN fusion protein in the 

virion. Our data clearly show that processing of the C-terminal RT↓IN junction does not 

seriously impact on RT activity, since neither RT polymerase or RNH activities were affected by 

the fusion between RT and IN. Our results further suggest that proteolytic cleavage of the 

RT↓IN junction may be essential for IN activity, although the effect of RT-INF1I/L2K cleavage 

site mutation on reverse transcription and other post-entry events, such as integration remains to 

be defined. 

It was interesting to find that the 47 kDa RNH-IN fusion protein, released upon cleavage 

of the RT p51↓RNH junction in the RT-INF1I/L2K mutant was further processed by HIV-1 PR to a 

35 kDa form. This is in contrast to the observation that a full-length Pol polyprotein, containing 

an RT-INL560I cleavage site mutation and expressed in bacteria does not lead to further 

proteolysis, but rather the appearance of the expected 98 kDa RT-IN and 47 kDa RNH-IN fusion 

products (239). Moreover, recombinant HIV-1 IN is exceptionally resistant towards further 

proteolysis (111,519). By using decreasing concentrations of ritonavir we observed that the 47 

kDa RNH-IN fusion product was indeed reasonably stable until higher activity levels of HIV-1 

PR were present. This instability of the RNH-IN fusion protein thus seems to be a function of the 

intravirion milieu. Late stage processing of the RNH-IN fusion protein to the 35 kDa form may 

be due to the recognition of cleavage sites within a putative unfolded RNH domain that is 

released from RT p51. Indeed, RNH released in the formation of recombinant p66/51 RT from 

p66/66 RT is further cleaved at residues Y483, N494 and Y532 (23,61,515) and several attempts 

to identify or isolate the p15 RNH fragment from virions have proven unsuccessful (61,126,314).  
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In both retroviral and retrotransposon systems there is increasing evidence for the 

existence of an RT-IN processing intermediate in the maturation of the RT (1,521,558) and for 

functional interactions between RT and IN (185,363,573). Precedence for a cis association 

between RT and IN proteins can found in ASLV (166,198,292) and HTLV-I (521), where IN 

forms an integral part of the β subunit of active RT. In both αβ and ββ dimeric forms of ASLV 

RT, the IN domain of the β subunit serves to stabilize the enzyme (165,166,198). Interestingly, 

the ββ form of ASLV RT exhibits significant RT polymerase and RNH activities (164,553), 

implying that one of the β subunits must adopt a catalytic conformation. While cleavage of the 

RT↓IN junction in ASLV may be partial or not at all, it is not surprising that mutation of this site 

has little effect on RT polymerase or RNH activities (193). Similar observations of RT↓IN 

cleavage site mutation have also been documented in the MLV system (195,496,497), where 

Gag-Pol processing appears to have no role in the activation of RT (77,250). We now have 

extended these findings by demonstrating that processing of the C-terminal RT↓IN junction is 

not critical in the generation of active HIV-1 RT. 

It is unclear whether there is significant RT activity (polymerase and RNH) associated 

with unprocessed forms of Gag-Pol to facilitate reverse transcription (15,211,243,388,485). The 

current state of evidence, based on polymerase activity alone, suggests that proteolytic 

processing is indeed necessary to achieve complete activation of RT. Our findings, in 

combination with those of the PR↓RT cleavage site (65,66) indicate that processing of either 

flanking RT cleavage site (N-terminal or C-terminal) has no adverse effect on viral RT activities. 

The caveat in either scenario is that the internal RT p51↓RNH cleavage site continues to be 

processed. As mentioned earlier, we have recently shown that this internal cleavage event is 

necessary in the generation of a stable form of active RT that is refractory to further proteolysis 
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(Chapter 3). Moreover, mutation of both RT↓IN and RT p51↓RNH cleavage sites results in the 

same instability of RT (Appendix, Figure 30). Thus, at this stage, it is difficult to determine 

whether viral PR-RT or RT-IN fusion proteins alone would be capable of facilitating efficient 

postinfection reverse transcription. While recombinant RT-IN exhibits a low level of RT 

polymerase activity in vitro (211,284), complementation with RT p51 in the virion may serve to 

acheive complete activation and proteolytic stability of the final enzymatic form. 

Partial cleavage within the RT subunit appears to be unique to lentiviruses such as HIV-

1, whereas partial cleavage of the RT↓IN junction is common to ASLV and HTLV-I. We have 

shown that an end-to-end cis association between HIV-1 RT and IN proteins in virions does not 

seriously impact on  RT activities. This result is consistent with the report that RT activity and 

processivity is unaffected by IN when provided in trans (185,573). Our finding that p98 RT-IN 

and p51 RT were present in near equal proportion in RT-INF1I/L2K mutant virions suggests that 

p98/51 RT heterodimers may have been formed. Although p98/98 RT homodimers may also 

have been present, it is unlikely that this oligomeric form alone could account for the observed 

wild-type levels of RT activity (211,284,293). In considering that the RT-IN (β) subunit of 

ASLV αβ RT is not the catalytic subunit (164,553), further biochemical and biophysical study of 

a fully functional p98/51 RT heterodimer could certainly prove very interesting. 

The final stage of reverse transcription generates a linear proviral DNA substrate that is 

acted upon by IN. Both RT and IN are present within the nucleoprotein complex during reverse 

transcription and are retained within the nuclear preintegration complex prior to integration 

(46,124,210). Recent evidence suggests that an association between RT and IN is mediated 

through direct interaction of the C-terminal region of IN with the fingers-palm and connection 

subdomain of RT (185,573,588). Furthermore, this trans association between RT and IN not 
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only stimulates the initiation of reverse transcription (573), but also dramatically enhances the 

strand transfer activity of IN (58,185,573). It therefore seemed reasonable to ask whether 

prevention of this trans association would have an adverse effect. While mutation of the RT↓IN 

cleavage site was found to have no serious affect on virion-associated RT activity, infectivity and 

replication capacity were significantly attenuated. Taken together, these results suggest that 

processing of the RT↓IN cleavage site is not essential for RT activity, but in the context of viral 

replication may be important for IN activity. 

Two forms of viral IN were present in RT-INF1I/L2K mutant virions, RT-IN and RNH-IN. 

It was interesting, that attenuated RT-INF1I/L2K mutant virus was able to replicate and eventually 

cause genetic and phenotypic reversion. This suggests that IN activity may not have been 

completely ablated by the RT↓IN cleavage site mutation. Alternatively, host-mediated 

illegitimate DNA recombination could have taken place until such time that the virus could 

recover; a phenomenon which has been documented in a subset of transformed T-lymphocytoid 

cell lines (145,316,352). Whether the RT-IN or RNH-IN form of IN was more active remains 

unclear. However, it is likely that our HIV-1 RT-INF1I/L2K mutant resembles the ASLV system 

where αβ and ββ forms of RT are 30-fold less efficient than p32 IN in strand transfer activity 

(193). This begs the question then, why would an abutting RT or RNH domain negatively 

regulate IN activity, and how? A timely regulation of IN activity, by cleavage of the RT↓IN 

junction during virion maturation may simply reflect its position in the polyprotein and attributes 

of folding and assembly, since there is no rational reason to delay its activation in the virion 

context. Functional IN is clearly not required until after reverse transcription in the infected host 

cell. Possible factors that might account for inefficient intracellular integration, when the RT↓IN 

cleavage site is mutated include structural constraints of preintegration complexes, defects in 
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nuclear import or the timing of initiation of IN activities. Moreover, the RT or RNH domain in 

the RT-INF1I/L2K mutant could have created a structural barrier hindering accessibility to the 

DNA LTR ends, or caused disturbances in multimerization and the highly conserved functional 

motifs of the adjoining IN domain. 

In summary, formation of functional viral RT does not appear to require processing of 

either N- or C-termini cleavage sites (PR↓RT and RT↓IN). However, processing of the internal 

RT p51↓RNH cleavage site is critical, since mutation here was shown to lead to aberrant 

processing and loss of activity (Chapter 3). Our finding that processing of the RT↓IN junction 

may be necessary for IN activiation suggests that while HIV-1 RT can functionally exist in 

fusion with IN, this form of association is deterimental to efficient viral replication. While a 

physical trans association between RT and IN has been reported to be biologically relevant 

(185,573,588), we now suggest that a cis association between these enzymes may disturb those 

functional interactions essential for integration, but not reverse transcription. 
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 CHAPTER 3: VIRION INSTABILITY OF HIV-1 RT MUTATED AT THE              

RT p51↓RNH PROTEASE CLEAVAGE SITE 

 

 

3.1 ABSTRACT 

 

Each of the HIV-1 pol-encoded enzymes, protease (PR), reverse transcriptase (RT) and 

integrase (IN) is active only as a dimer (or higher order oligomer in the case of IN). Of the three, 

only RT comprises subunits of different mass. RT is a heterodimer of 66 kDa and 51 kDa 

subunits. The latter is formed by HIV PR-catalyzed cleavage of p66 during virion maturation, 

resulting in the removal of the ribonuclease H (RNH) domain of a p66 subunit. In order to study 

the apparent need for RT heterodimers in the context of the virion, we introduced a variety of 

mutations in the RT p51↓RNH protease cleavage site of an infectious HIV-1 molecular clone. 

Surprisingly, rather than leading to virions with increased RT p66 content, most of the mutations 

resulted in significantly attenuated virus that contained greatly decreased levels of RT that in 

many cases was primarily RT p51. This finding was in direct contrast to the effect that these 

mutations had on the processing of recombinant p66/66 RT and a truncated Pol polyprotein 

expressed in bacteria. Most mutant virions had wild-type IN levels; only a few showed 

somewhat diminished incorporation of the Pr160gag-pol precursor polyprotein. Mutant virion p24 

Gag levels were equivalent to wild-type virus, suggesting that the incorporation and processing 
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of Gag was not compromised by the RT p51↓RNH site mutations. Repeated passage of MT-2 

cells exposed to mutant viruses led to the appearance of virus with improved replication 

capacity; these virions contained normally processed RT at near wild-type levels. These results 

imply that additional proteolytic processing of RT to the p66/p51 heterodimer is essential to 

provide proteolytic stability of RT during HIV-1 maturation.  

 

 

3.2 INTRODUCTION 

 

The human immunodeficiency virus type 1 (HIV-1) genome encodes a variety of 

different proteins including the essential viral enzymes protease (PR), reverse transcriptase (RT) 

and integrase (IN). These viral enzymes are translated, not as discrete units, but rather as 

segments of a much larger polyprotein termed Gag-Pol (Pr160gag-pol), and nascent virions 

assemble using these polyprotein precursors. The individual active enzymes are subsequently 

formed by proteolytic cleavage at specific sites on Gag-Pol during virion assembly and budding, 

a “maturation” process catalyzed by PR (187,244).    

The monomeric subunits of the HIV-1 enzymes are inactive; each enzyme must 

oligomerize to at least a dimer for enzymatic activity (16,110,418). PR and IN are homodimers 

with subunits of the size predicted from their genes. The mature active form of HIV-1 PR is a 

symmetrical homodimer released from Gag-Pol upon auto-processing carried out by the 

polyprotein form of the enzyme (311). RT and IN are formed after activation of PR, but it is still 

unclear whether the PR-mediated proteolytic processing of these Pol proteins occurs in cis, in 

trans, or some combination of these. Like HIV-1 PR, active HIV-1 IN is at least a homodimer, 
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although higher order homo-oligomers may play a role in the multiple activities of this enzyme 

(228,233).  In contrast, RT in mature infectious virions is a heterodimer with subunits of 66 kDa 

(p66) and 51 kDa (p51) (512), even though the gene for HIV-1 RT encodes only a protein of 66 

kDa. The smaller p51 subunit is derived from the larger p66 subunit by proteolytic cleavage 

between RT amino acid residues F440↓Y441 during virion maturation (61,119,203,515). 

Although both p66 and p51 subunits have identical amino acid sequences, their folding in the 

context of the active RT heterodimer differs, resulting in an asymmetric dimer structure 

(263,546). The catalytic activities of HIV-1 RT, namely DNA polymerase and ribonuclease H 

(RNH), are carried out solely by the p66 subunit of the RT heterodimer (285). The function of 

the p51 subunit is not entirely clear, but it may play a primarily structural role (4).  

Thus, formation of mature active RT from the Gag-Pol polyprotein precursor in HIV-1 

virions requires an additional PR-catalyzed cleavage event compared to that for the formation of 

active IN or PR. This suggests that the heterodimeric form of HIV-1 RT is essential for virus 

replication. However, recombinant RT p66/p66 homodimers have significant enzymatic 

activities (DNA polymerase and RNH) compared to RT p66/p51 heterodimers (23,128). 

Furthermore, the RT in virions of other retroviruses such as Moloney murine leukemia virus 

(Mo-MuLV) consists of a single subunit (210), suggesting that the catalytically active enzyme is 

a monomer or perhaps homodimer. In addition, chimeras constructed from the first 425 amino 

acid residues of HIV-1 RT and the last 200 amino acid residues of Mo-MuLV RT have a single 

subunit composition and possess substantial enzymatic activity (331). 

So why does maturation of HIV-1 RT require an additional proteolytic processing step to 

convert p66 to p51 to form an active heterodimeric enzyme? To address this question, we 

introduced into molecular clones of HIV-1 a variety of mutations in the proteolytic cleavage site 
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for the conversion of RT p66 to p51, in an attempt to block this PR-dependent processing step. 

Unexpectedly, we found that all amino acid substitutions tested resulted in much reduced levels 

of virion RT. As well, when present, the major antibody-reactive RT in the mutant virions was 

almost exclusively the p51 form. Our data suggest that the additional proteolytic processing step 

for RT during virion maturation may be needed to stabilize the conformation of this viral enzyme 

to optimize its essential function in viral replication. 

 

 

3.3 MATERIALS AND METHODS 

 

3.3.1 Reagents and plasmid mutagenesis 
 

The following reagents were obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAD, NIH: HeLa-CD4-LTR/β-Galactosidase cells (HCB) 

obtained from Dr. Michael Emerman (259); human T-lymphocytoid MT-2 cells from Dr. 

Douglas Richman; HIV-1SF2 p24/25 Gag and anti-HIV-1SF2 p24/25 IgG mAb (76C) from Dr. 

Kathelyn Steimer, Chiron Corporation; and HIV-1 PR antiserum from DAIDS, NIAID by 

Biomolecular Technologies. The p6HRT-PROT vector (283) for expression of poly(histidine) 

affinity labeled  recombinant HIV-1IIIB p66/51 RT was a generous gift of Dr. Stuart Le Grice, 

NCI-Frederick (Frederick, MD). Anti-HIV-1IIIB RT and anti-HIV-1IIIB RNH (2F2) IgG mAb 

were previously generated in our laboratory against recombinant p66/51 RT (294), as was anti-

IN polyclonal mouse Ab against recombinant IN. Homopolymeric template/primers (T/P), 

poly(rA)-oligo(dT)12-18, poly(dC)-oligo(dG)12-18, [3H]-TTP, [3H]-dGTP, restriction enzymes, and 

goat anti-mouse-HRP secondary mAb were all purchased from Amersham Pharmacia Biotech 
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(Piscataway, NJ, USA). The SuperPico ECL Substrate System for detection of peroxidase-

labeled antibody was obtained from PIERCE (Rockford, IL, USA). Sequencing primers and 

mutation-containing oligonucleotides were purchased from Invitrogen (Carlsbad, CA, USA). 

COS-7 and human T-lymphocytoid MT-2 cell lines were obtained from the American Type 

Culture Collection (Rockville, MD). HIV-1 p24 antigen ELISA kits were obtained from SAIC-

Frederick (Frederick, MD). E.coli strains TOP10, BL21(DE3)pLysS and JM109 were obtained 

from Invitrogen and Promega (Madison, WI), respectively. 

 

3.3.2 HIV-1 molecular clone preparation, transfection and virus culture 
 

Plasmid pSVC21-BH10 encodes an infectious molecular clone of the IIIB (HxB2) strain 

of HIV-1 and carries an SV40 origin of replication for expression in COS-7 cells (127). 

Mutations in the region corresponding to the RT p51↓RNH cleavage site (residues 437 - 443) 

were introduced using the Quick Change™ Site-Directed Mutagenesis kit (Stratagene, La Jolla, 

CA). For the purpose of studying Gag-Pol (Pr160gag-pol) incorporation a catalytic inactivating 

mutation (D25A) was similarly introduced into the PR coding region of each of these clones. The 

presence of the expected mutations was verified by sequencing. 

All cell lines were maintained in either DMEM (COS-7 and HCB) or RPMI 1640 (MT-2) 

medium containing 10% (v/v) heat-inactivated fetal bovine serum, 2 mM L-glutamine, penicillin 

G (100 U/mL), and streptomycin (100 U/mL, Gibco-BRL/Life Technologies, Gaithersburg, 

MD). Culture medium for HCB cells was additionally supplemented with Gentemicin (G418; 

200 µg/mL) and hygromycin B (100 µg/mL). Virus was prepared by transfection of COS-7 cells 

using LipofectAMINE Plus (Invitrogen, Carlsbad, CA). Virus-containing culture supernatants 

were harvested 60 h post-transfection, clarified by centrifugation (3000 x g, 1 h at 4oC), and 
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quantified by analyzing the levels of HIV-1 p24 antigen. Aliquots of virus preparations were 

stored at -80oC until use. 

Infectiousness of virus particles produced from transfection of COS-7 cells was 

determined by using normalized quantities of HIV-1 p24 antigen content and HCB or MT-2 cells 

as targets. Single-cycle viral infectivity was assessed using HCB cells in a MAGI assay (1 µg or 

100 ng HIV-1 p24 per 4 x 104 cells), as previously described (259). Multiple-round viral 

replication was assessed by inoculation of MT-2 lymphoblastoid cells (1 µg or 50 ng of HIV-1 

p24 per 1 x 105 cells) followed by daily microscopic observation of HIV-1 induced syncytium 

formation, as previously described (32,339). In a concurrent manner, the median tissue culture 

infective dose (TCID50/mL) of each mutant virus was determined after seven days of culture, as 

described elsewhere (231).  

Cytopathology appeared in infected MT-2 cells maintained in culture for 30 days. At this 

time virus-containing culture fluids were expanded briefly for 5 days by infection of fresh MT-2 

cells and collected for subsequent analysis. Chromosomal DNA was extracted from these 

infected MT-2 cells using QIAamp DNA Mini Kit (Qiagen Inc., Valencia, CA). The HIV-1 Pol-

encoding region was then PCR amplified and cloned into pCR-T7/CT TOPO (Invitrogen, 

Carlsbad, CA) for sequencing analysis. 

 

3.3.3 Immunoblotting analysis of viral proteins 
 

Clarified virus-containing supernatants (1 or 5 µg viral p24) were purified and 

concentrated by ultracentrifugation through 20% (w/v) sucrose cushions (175,000 x g, 1.5 h at 

4oC). Virus pellets were lysed in 35 µL RIPA-lysis buffer (20 mM Tris-Cl, pH 8.0 containing 

120 mM NaCl, 2 mM EDTA, 0.5% DOC, 0.5% NP-40 as well as 2 µg/mL PMSF, 10 µg/mL 
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apoprotein and 10 µg/mL pepstatin A). Virion particle protein composition was assessed by 

subjecting the lysate proteins to SDS-10% PAGE resolution and Western blotting. Western blots 

were incubated with either anti-HIV-1 RT (5 µg/mL) or anti-HIV-1 p24 (5 µg/mL) monoclonal 

antibodies, or mouse anti-IN polyclonal serum (1:50) followed by incubation with secondary 

horse radish peroxidase-conjugated goat anti-mouse antibody (1:3000). Immunoreactive protein 

bands were visualized by enhanced chemiluminescence on a VersaDoc Imaging System, and 

quantitated by densitometry under sub-saturating exposure conditions using Quantity One v4.3.0 

software (Bio-Rad, Hercules, CA). To assess the level of Gag-Pol (Pr160gag-pol) incorporation, 

RT p51↓RNH mutant viruses containing inactivated PR (D25A) were pre-normalized by Gag 

(Pr55gag) content prior to ultracentrifugation and Western blot analysis. 

 

3.3.4 Assay of virion-associated RT activity  
 

Virion-associated RT RNA-dependent DNA polymerase (RDDP) activity was measured 

using [3H]-TTP and poly(rA)-oligo(dT)12-18 as template-primer and RT DNA-dependent DNA 

polymerase (DDDP) activity was measured using [3H]-dGTP and poly(dC)-oligo(dG)12-18 as 

template-primer. Reaction mixtures (50 µL total volume) contained 50 mM Tris-Cl (pH 7.9), 5 

mM MgCl2, 150 mM KCl, 0.5 mM EGTA, 0.05% (v/v) triton X-100, 2% (v/v) ethylene glycol, 5 

mM DTT, 0.5 mM GSH, 50 µg/mL poly(rA)-oligo(dT)12-18 or poly(dC)-oligo(dG)12-18, and 20 

µCi [3H]-TTP or 10 µCi [3H]-dGTP. Reactions were initiated by the addition of virus-containing 

culture supernatant (8 ng HIV-1 p24), incubated at 37oC for 5 h, then quenched with 250 µL of 

ice-cold 10% trichloroacetic acid containing 20 mM NaPPi. Quenched samples were left on ice 

for 30 min, filtered through glass fiber Type C filter multi-well plates (Millipore Corporation, 

Bedford, MA, USA) and washed sequentially with 10% trichloroacetic acid containing 20 mM 
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NaPPi followed by ethanol. The extent of radionucleotide incorporation was determined by 

liquid scintillation spectrometry. 

 

3.3.5 Analysis of proteolytic processing of RT from recombinant p66/66 RT and a Pol 
polyprotein expressed in bacteria 

 

These experiments used the pol-pET28a(+) vector that we previously used to study wild-

type Pol polyprotein processing (471), and the p6HRT-PROT vector to express recombinant 

p66/51 RT. The pol-pET28a(+) vector encodes for a truncated 90 kDa Pol polyprotein precursor 

encompassing the last four amino acid residues of NC, the native transframe region or TFR (TFP 

+ p6pol), PR, RT, and the first 46 amino acid residues of IN. The p6HRT-PR vector encodes for 

the PR and RT genes (283). We introduced the same RT p51↓RNH cleavage site mutations as 

used in preparation of mutant virions into both vectors, as well as the catalytic inactivating D25R 

mutation into the PR gene of duplicate constructs. 

To examine proteolytic processing of the truncated Pol polyprotein from pol-pET28a(+), 

overnight transformed cultures of E.coli BL21(DE3)pLysS were diluted 1/150 in minimal media 

(containing 35 µg/mL kanamycin and chloramphenicol), grown at 37oC to an OD600nm of 0.05, 

and induced with 1 mM IPTG. At various time intervals post-induction (0, 40, and every 10 min 

to 200 min), 0.5 mL aliquots were removed, briefly centrifuged (13,000 g for 30 s) and pellets 

resuspended in 1X SDS loading buffer. Induced proteins from total cell lysates were resolved by 

SDS-10% PAGE followed by Western blot analysis and probing with anti-HIV-1 RT IgG mAb 

(5 µg/mL). The kinetics of Pol polyprotein expression and processing was assessed by 

visualizing immunoreactive RT protein bands by enhanced chemiluminescence on a VersaDoc 

Imaging System (Bio-Rad, Hercules, CA).  
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To examine proteolytic processing of RT p66, E.coli JM109 was transformed with 

p6HRT-PROT, and pDPM1.I (to control for basal expression from the lac gene) (59,283). 

Overnight cultures were diluted 1/100 in minimal media (containing 100 µg/mL ampicillin and 

35 µg/mL kanamycin), grown at 37oC to an OD600nm of 0.6 and induced with 1 mM IPTG. After 

4 h post-induction, RT protein content in total cell lysates derived from 0.5 mL aliquots was 

examined in the same manner as described above. 

 

 

3.4 RESULTS 

 

3.4.1 Selection of mutations in the p51↓RNH cleavage site in HIV-1 RT 
 

Previous work has shown that while HIV-1 PR does not recognize a consensus sequence, 

the specificity of HIV-1 PR-catalyzed cleavages depends strongly on sequence context 

(27,383,385,397,406,407,516). The scissile peptide bonds recognized by HIV-1 PR lie within a 

seven amino acid segment, and the specificity of cleavage depends on the structural and 

conformational context of this segment rather than the primary sequence itself (537). The 

sequence of the RT p51↓RNH cleavage site is AETF440↓Y441VD. Our choice of mutations to 

introduce into this sequence (Table 5) was based on PR context-dependent specificity, stringency 

around PR-recognized scissile bonds, ranging from low (P1’), restricted (P4, P1, P2’), to high 

(P2), and the type of amino acid substitution (conservative or non-conservative). 
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Table 5.  Mutations introduced into the RT p51↓RNH cleavage site. 
 
a Amino acid substitutions introduced at various positions flanking the RT p51↓RNH scissile 
bond are underlined 
b, c Abbreviation and substrate position(s) of the mutation(s) 
d Conservative or radical mutation based Dayhoff’s ranking of functionally conserved amino acid 
groups, whereby chemical similarity is not necessarily as valuable as size (87) 
e Basis for the mutation with respect to known commonalities and determinants of HIV-1 PR 
context-dependent specificity (170,383,397,516) 
 
 
 

Abbrev. b Sequence a
(P4-P3’) 

Substrate 
position c

Classification 
d Comments e

WT AETF↓YVD N/A N/A Wild-type sequence 

A437I IETF↓YVD P4 Radical 
Longer P4 to disrupt 
interactions with PR flap 
regions 

V442S AETF↓YSD P2’ Radical Polar residue substitution 

F440W AETW↓YVD P1 Conservative 
Maintain hydropathicity 
and scissile bond 
aromatic symmetry 

F440V AETV↓YVD P1 Radical Non-preferred β-
branched residue 

T439S/V442G AESF↓YGD P2/P2’ Conservative 
Diminish side chain 
interactions of these 
corroborative positions 

Y441I/V442K AETF↓IKD P1’/P2’ Radical/ 
Conservative 

Disrupt hydropathicity / 
Longer positive residue 

F440A AETA↓YVD P1 Radical Non-preferred small side-
chain 

F440A/Y441A AETA↓AVD P1/P1’ Radical Non-preferred small side-
chain 

F440W/Y441W AETW↓WVD P1/P1’ Conservative 
Maintain hydropathicity 
and scissile bond 
aromatic symmetry 

E438N ANTF↓YVD P3 Conservative 
Removal of γ-carbonyl to 
diminish H-bond 
interactions with PR 
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3.4.2 RT content of mutant virions 
 

We expected that the mutations chosen would provide HIV virions containing varying 

ratios of RT p66 and p51, depending on the contribution of the specific mutated residue to PR 

recognition of the cleavage sequence (Table 5). Surprisingly, most of the RT p51↓RNH cleavage 

site mutations significantly diminished virion RT levels (Figure 15-A1). Different mutations 

provided different perturbations of virion RT p66/p51 heterodimer content, ranging from an 

increased p51 to p66 ratio relative to wild-type (A437I, V442S), to only p51 (F440A/Y441A), to 

virtually complete loss of all immunoreactive RT protein (F440V, Y441I/V442K). All mutant 

virions with detectable immunoreactive RT possessed dramatically increased levels of low 

molecular weight RT fragments (Figure 15-A2). 

 

3.4.3 Effect of RT p51↓RNH cleavage site mutations on HIV virion content of other Pol 
proteins 

 

The appearance of small molecular weight RT fragments in many of the mutant virions 

suggested that aberrant PR activity might be a factor in the observed phenotype. However, it was 

also possible that the mutations affected virion incorporation of Gag-Pol (Pr160gag-pol). To test 

this, we probed mutant virions for IN p32. Mutant virions with the most pronounced defects in 

RT p66/p51 content also showed reduced IN p32 levels (Figure 15-B), although IN levels were 

not reduced to nearly the same extent as that of RT. We were unable to probe for levels of virion 

PR as the anti-PR polyclonal antibody on hand had insufficient specificity. However, the mutants 

showed wild-type levels of Gag (Pr55gag) processing (Figure 15-C), suggesting near normal 

levels of PR activity in the virions. To better evaluate whether RT p51↓RNH cleavage site 

mutations affected virion incorporation of Gag-Pol during virus assembly, we inactivated HIV-1 
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Figure 15.  Effect of p51↓RNH cleavage site mutations on viral particle protein 
composition. Western blot analysis of wild-type and p51↓RNH cleavage site mutant viruses (5 
µg viral p24) generation by transfection of COS-7 cells and probed with (A1-2) anti-RT, (B) ant-
IN, and (C) anti-p24 antibodies, respectively. A1 and A2 represent under and over-exposures of 
viral RT content, respectively. Quantitation of viral proteins, from three independent trials was 
performed by densitometric scanning analysis of ECL exposed blots under sub-saturating 
conditions. 
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PR by introducing the D25A mutation into the protease gene (284,305) in our RT p51↓RNH 

cleavage site mutants. As shown in Figure 16, relative levels of Pr160gag-pol and Pr55gag in most 

mutants (with the exception of E438N and T439S/V442G) were similar to those of wild-type 

HIV-1 particles. The lack of degradation products in the PR-inactivated RT p51↓RNH cleavage 

site mutants suggests that the degradation of RT noted in the analogous PR-active mutants was 

due to HIV-1 PR activity, and not to any cellular proteases that may have been carried into the 

nascent virion particles.  

 

3.4.4 Virion-associated RT activity, infectivity, and viral replication kinetics of the RT 
p51↓RNH cleavage site mutants 

 

Equivalent amounts (8 ng of HIV-1 p24) of virion-containing cell-free supernatants of 

transfected COS-7 cells were assessed for RT RDDP and DDDP activities. All mutants showed 

substantially decreased RT polymerase activity levels, ranging from 1-60% of of the wild-type 

virus (Figure 17). This diminution of RT activity correlated well with the severity of the loss of 

p66/p51 heterodimeric RT in the various mutant virions (Figure 15-A). Similarly, mutant virus 

infectivity in single cycle MAGI cell infectivity assays was attenuated to different extents 

(Figure 18-A), and correlated well with virion RT content, composition and activity. 

We also assessed virus replication kinetics during long-term propagation in MT-2 cells. 

MT-2 cells were inoculated with high input (1 µg HIV-1 p24 per 1 x 105 cells) of COS-7 derived 

virions and HIV-1 induced cytopathic effect was monitored over time (Figure 18-B). Mutants 

with RT p66/p51 heterodimer content of at least 50% that of wild-type virus (A437I, V442S) 

showed replication kinetics similar to wild-type when cells were exposed to a high virus 

inoculum. However, these same mutants showed delayed replication kinetics compared to wild- 
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Figure 16.  Effect of p51↓RNH cleavage site mutations on incorporation of Gag-Pol 
(Pr160gag-pol) into immature viral particles. Western blot analysis of immature viruses, 
previously standardized for Gag (Pr55gag) content by densitometry. Relative viral content of (A) 
Pr160gag-pol and (B) Pr55gag were determined by probing separate blots with anti-RT and anti-p24 
monoclonal antibodies, respectively. Quantitation of viral polyproteins was performed by 
densitometric scanning analysis of ECL exposed blots under sub-saturating conditions. 

 113



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  Virus particle-associated RT activities. Clarified virus-containing culture 
supernatants (8 ng viral p24) were assayed separately for RNA-dependent DNA polymerase 
(RDDP) activity and DNA-dependent DNA polymerase (DDDP) activity by the incorporation of 
[3H]-dTTP into poly(rA)-oligo(dT)12-18 and [3H]-dGTP into poly(dC)-oligo(dG)12-18, 
respectively. Reaction mixtures were prepared as described in Section 3.3.4, incubated at 37oC 
for 5 h, and quenched with 10% TCA/NaPPi. Values are expressed as a percentage relative to 
WT virus. Each bar represents the average of three separate measurements.   
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Figure 18.  Replication analysis of p51↓RNH cleavage site mutant viruses. (A, C) Single-
cycle (MAGI) viral infectivity. HeLa-CD4-LTR/β-galactosidase (MAGI) cells (4 x 104) were 
infected separately with (A) COS-7 generated mutant virions (1 µg viral p24) or (C) MT-2 cell 
generated mutant viruses derived after 35 d of culture (100 ng viral p24). MAGI cells were 
stained and quantitated for β-galactosidase gene expression at 48 h post-infection. Percent 
infectivity is expressed relative to WT with each bar representing the average of two separate 
measurements. (B, D) Viral replication kinetics analysis. MT-2 lymphocytoid cells (1 x 105) 
were (B) infected with COS-7 generated mutant virions (1 µg viral p24) or (D) re-infected with 
MT-2 cell-generated mutant viruses derived after 35 d of culture (50 ng viral p24). Cultures were 
split every 3 d to prevent overgrowth and HIV-1 induced cytopathic effect (CPE) was scored 
daily as percent syncytium formation. WT (�), A437I (G), V442S ( ), F440W ( ), F440V 
( ), T439S/V442G ( ), Y441I/V442K (�), F440A ( ), F440A/Y441A ( ), F440W/Y441W 
( ), E438N (∀). 
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type when lower viral inocula were used (data not shown), consistent with the lower TCID50/p24 

values of these mutants relative to wild-type (Table 6). Interestingly, the F440W mutant showed 

only a minimal delay in replication, despite significantly decreased virion RT composition and 

content (Figure 15-A). All other mutants showed significantly delayed (F440V, E438N, 

F440A/Y441A) or no detectable replication even after 35 days of passage.   

Repeated passage of MT-2 cells exposed to mutant viruses resulted in the appearance of 

virus with improved replication capacity. Viruses inducing discernable cytopathic effect were 

harvested 30 days post-infection (12 cell passages), briefly amplified for 5 days and then 

assessed in both single cycle MAGI cell infectivity assays and in virus spread (multiple round 

replication assays) assays. All long-term passaged mutant viruses except F440A, T439S/V442G 

and Y441I/V442K mutants (none of which replicated during long term passage) showed near 

wild-type replication kinetics both in single cycle MAGI cell infectivity assays (Figure 18-C) 

and in virus spread assays in MT-2 cells (Figure 18-D).   

Analysis of the protein composition of the “recovered” mutant viruses showed near 

normal RT content and RT p66/p51 ratio (Figure 19-A) as well as wild-type levels of IN (Figure 

19-B). Sequencing of the proviral RT gene produced by the “recovered” mutants (E438N, 

F440A/Y441A) indicated that the mutated RT p51↓RNH cleavage site had reverted to the wild-

type sequence. The other “recovered” mutants retained the cleavage site mutations. We are 

presently carrying out detailed sequencing analysis of these mutants in an attempt to identify 

potential compensatory mutations that might contribute to the restoration of normal RT 

processing and viral infectivity (Chapter 4).   

 116



 

Table 6.  Infectivity of recombinant WT and mutant HIV-1. 

  
Median tissue culture infective dose (TCID50/mL) of COS-7 cell-generated virions assayed as described 

in Materials and Methods. Data represent the means ± S.D. from four separate experiments. The ratio 

TCID50/p24 represents the relative infectivity per virion, calculated upon dividing the mean TCID50/mL 

by the amount of produced viral p24 in units of ng/mL. Virus-containing supernatants that were unable to 

be titered due to low infectivity are indicated by ND (not determined). 

 
 
 

Mutant TCID50/mL p24 (ng/mL) TCID50/p24 (%WT) 

WT 2.2 x 104 ± 4.0 x 103 300 ± 58 100 ± 14 

A437I 4.7 x 103 ± 1.7 x 103 176 ± 90 31 ± 11 

V442S 3.3 x 103 ± 4.6 x 102 146 ± 83 25 ± 3 

F440W 5.0 x 102 ± 5.3 x 101 204 ± 69 3 ± 0 

F440V ND 241 ± 34 ND 

T439S/V442G ND 178 ± 1 ND 

Y441I/V442K ND 208 ± 7 ND 

F440A ND 182 ± 19 ND 

F440A/Y441A ND 182 ± 60 ND 

F440W/Y441W ND 219 ± 36 ND 

E438N ND 183 ± 69 ND 
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Figure 19.  Western blot analysis of viral protein expression of p51↓RNH cleavage site 
mutant viruses after multiple rounds of MT-2 cell infection. Wild-type and replication-
recovered p51↓RNH mutant viruses (100 ng viral p24), generated after long term culture in MT-
2 cells were probed with (A) anti-RT, (B) anti-IN, and (C) anti-p24 antibodies, respectively. 
Quantitation of viral proteins was performed by densitometric scanning analysis of ECL exposed 
blots. The position of molecular size markers are shown to the left of each panel.  
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3.4.5 Effect of p51↓RNH cleavage site mutations on RT content in bacterial expression 
systems 

 

As we have previously seen (471), and repeated in the following study, the kinetics of 

wild-type RT processing follow an ordered sequential pathway from a 90 kDa Pol polyprotein 

expressed in bacteria. After a buildup of RT p66, RT p51 begins to appear. The levels of RT p51 

increase over time concomitant with a decrease in RT p66, until the levels of the two RT 

subunits are approximately equal (Figure 20-A). Inhibition of HIV-1 PR with the D25R mutation 

indicated that this course of events was not due to the action of bacterial proteases (Figure 20-E, 

F and Figure 21-B). In contrast to our findings in the virion context (Figure 15-A), the 

introduction of p51↓RNH cleavage site mutations into pol-pET28a(+) resulted in the formation 

of vastly different RT proteins. The E438N mutation resulted in the eventual formation of RT 

p51, as per the viral expression system, however F440A/Y441A and F440V mutations resulted 

only in the formation of RT p90 and RT p66, respectively (Figure 20-D, B and C). Similarly, 

expression of cleavage site mutant HIV-1 RT p66 and PR from p6HRT-PROT resulted in 

minimal processing to RT p51 (Figure 21-A). 
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Figure 20.  Effect of p51↓RNH cleavage site mutations on the synthesis and processing of a 
90 kDa Pol polyprotein in vitro. (A) Western blot analysis of the synthesis and processing of 
RT products following IPTG induction of a wild-type 90 kDa Pol polyprotein. Aliquots were 
taken every 10 min for analysis (from 0, 40 to 200 min post-induction) and probed with anti-RT  
monoclonal antibodies. Western blot of the synthesis and processing of RT products following 
IPTG induction of a 90 kDa Pol polyprotein containing (B) F440A/Y441A, (C) F440V, and (D) 
E438N p51↓RNH cleavage site mutations. As a negative control, synthesis and processing of (E) 
wild-type and (F) F440A/Y441A Pol polyproteins was examined upon inactivation of HIV-1 PR 
(D25R). The position of molecular size markers are shown to the left of each panel.  
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Figure 21.  Effect of p51↓RNH cleavage site mutations on the synthesis of p66/51 RT in 
vitro. (A) Western blot analysis of RT subunit composition, following IPTG induction of RT p66 
in the presence of HIV-1 PR. (B) Western blot analysis of RT subunit composition, following 
IPTG induction of RT p66 in the presence of inactive HIV-1 PR. Blots were probed with a pool 
of anti-RT monoclonal antibodies, followed by ECL exposure. The position of molecular size 
markers are shown to the left of each panel.  
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3.5 DISCUSSION 

 

Each of the three HIV-1 Gag-Pol-derived enzymes, PR, RT and IN, are active only as 

dimers (or possibly higher order oligomers in the case of IN). However, of the three, only RT is a 

heterodimer. The formation of the p66/p51 RT heterodimer thus requires an additional 

proteolytic cleavage event during virion maturation. We have previously demonstrated that the 

kinetics of RT processing follow an ordered sequential pathway from a truncated Pol polyprotein 

expressed in bacteria (471). HIV-1 PR inhibitor studies suggest that similar processing kinetics 

may occur in the HIV-1 virion (471) (Chapter 4). However, because isolated recombinant HIV-1 

p66/66 RT homodimers possess similar enzymatic activity in vitro as recombinant p66/51 RT 

heterodimers (23,128,178,206), the need for the RT heterodimer structure in HIV-1 virions is 

unclear. One possibility is that the initially processed RT homodimer is in a quasi-stable 

conformation, unlike that of purified recombinant RT homodimers, and that formation of 

p66/p51 RT heterodimers proceeds through this quasi-stable p66/66 RT homodimer intermediate 

(471).  

Our data clearly show that mutations within the seven amino acid protease recognition 

sequence that defines the p51↓RNH cleavage site in the RT p66 subunit lead to defects in virion 

RT processing such that the mutant virions contain primarily RT p51 and/or much reduced levels 

of RT. Since Gag-Pol incorporation in the mutant virions was in most cases similar to that of 

wild-type virions, it seems that the p66/66 RT homodimer (or perhaps the RT p66 monomer) 

may not be proteolytically stable in the virion. Proteolytic removal of one of the RNH domains 

may thus be essential for providing a conformation of RT that is refractory to further proteolytic 

events within the virion, thereby stabilizing the protein. Our data also clearly show that the 
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diminution of mutant virion RT content is due to over-processing by HIV-1 PR, since no 

aberrant processing of RT was noted in when HIV-1 PR was inactivated (Figure 16) in mutant 

constructs that showed severe processing defects with active PR.  

The mechanism by which HIV-1 PR cleaves only one of the RT p66 subunits to form the 

p66/51 RT heterodimer has not been unequivocally established. Numerous crystal structures of 

the p66/p51 RT heterodimer show that the seven amino acid p51↓RNH cleavage sequence in the 

p66 subunit is buried (263,314,546) and therefore presumably inaccessible to PR. Some 

investigators propose that the p66/66 RT homodimer is an asymmetric dimer similar to the 

p66/51 RT heterodimer, but with the RNH domain of the soon-to-be p51 subunit unfolded to an 

extent that allows PR-mediated cleavage at the p51↓RNH junction (85,203,314,515,546). This 

may be the result of energy derived from RT subunit dimerization that induces strain in one of 

the RNH domains that is relieved by unfolding along the tether region towards the p51↓RNH 

cleavage site (85,169,203). Other studies, supported by circular dichroism data, suggest that RT 

p66/p66 may be a symmetrical homodimer, but that removal of the RNH domain from one of the 

p66 subunits induces conformational changes in the other p66 subunit that protect this subunit 

from similar cleavage at its p51↓RNH junction (5,338). Unfortunately, no structure for the 

p66/p66 RT homodimer is yet available, so it is unclear whether the p51↓RNH cleavage 

sequence is accessible in only one or in both subunits of the homodimer, or whether the 

homodimer possesses different inter- or intra-subunit contacts with this region. It is possible that 

the p51↓RNH cleavage site mutations may have altered surface accessibility of this region to 

allow processing of alternative nearby cleavage site(s) in both RT p66 subunits, leading to 

extensive destabilization and subsequent degradation of the protein. 
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While our present studies do not allow us to unequivocally differentiate between these 

models, we favour a model in which the virion p66/p66 RT homodimer initially exists in a 

“quasi-stable” symmetrical conformation, and that it is this form of the RT homodimer that can 

undergo proteolytic processing to the p66/p51 RT heterodimer. We have been unable to generate 

significant amounts of p66/p51 RT heterodimer by in vitro treatment of purified recombinant 

p66/p66 RT with HIV-1 PR in trans under physiological pH and enzyme-substrate 

concentrations (Appendix, Figure 31). This suggests that the conformation of the purified 

p66/p66 RT homodimer may be very different from that formed during HIV-1 PR-mediated 

processing of the Gag-Pol polyprotein in the virion. Interestingly, introduction of certain RT 

p51↓RNH cleavage site mutations into RT p66 or a truncated Pol polyprotein followed by 

expression in bacteria did not generally lead to aberrant proteolytic cleavage RT p51 (Figure 20 

and 21). Instability of RT mutated in the p51↓RNH cleavage sequence thus seems to be a 

function of the intravirion milieu. The observation that many of the p51↓RNH cleavage site 

mutations resulted in primarily RT p51 in the virions is intriguing. The predominance of RT p51 

may be due to cleavage at proposed alternative site(s) (e.g. G436↓A437) near the p51↓RNH 

junction (23,61,515) that do not induce conformational changes in the other p66 subunit to 

protect this subunit from similar cleavage at its p51↓RNH junction. Alternatively, the mutations 

may not in themselves prevent cleavage at the p51↓RNH junction, but instead prevent the 

attainment of a stable form of the RT p66/p51 heterodimer that is refractory to additional PR 

cleavage. Our attempts to identify the C-terminus of the RT p51 in mutant virions have been 

unsuccessful, due to the limited amounts of virion protein attainable. Furthermore, efforts to 

mutate possible alternative cleavage sites in combination with p51↓RNH mutations have 

resulted in the same instability of RT (Appendix, Figure 32). 
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Virion RT content has been estimated at 20 to 100 molecules of RT heterodimer 

(375,376,493), but in theory a single molecule of p66/p51 RT could complete reverse 

transcription. Certain p51↓RNH cleavage site mutants (e.g. A437I, V442S) showed relatively 

equivalent levels of virion RT p66 and p51 subunits, although the level of RT was reduced 

relative to wild-type virus (Figure 16-A). The infectivity of these mutants was significantly 

attenuated (Table 6). This implies that the virion needs a substantial quantity of the RT 

heterodimer for efficient viral replication. Our data are consistent with previous studies using 

phenotypically mixed virions (236) that showed virus infectivity correlated with the amount of 

active RT, especially RT DNA polymerase activity, in the virus inoculum. The apparent “excess” 

of RT in the virion may be important to compensate for the relatively low processivity of HIV-1 

RT, thereby facilitating completion of viral DNA synthesis.  

The complete proteolytic release of pol-encoded enzymes is believed to be a late event in 

the ordered pathway of Gag-Pol polyprotein processing (267,591). Formation of the p66/p51 RT 

heterodimer requires proteolytic cleavage at three different sites, the N-terminal PR↓RT 

junction, the C-terminal RT↓IN junction, and the internal p51↓RNH junction. However, few 

studies have attempted to define the functional consequences at the virus level of mutating these 

PR-recognized cleavage sites in the Pol polyprotein. Mutation of the PR↓RT junction prevented 

cleavage at this site, and resulted in virions containing RT subunits of 77 kDa (corresponding to 

the PR-RT p66 fusion) and 62 kDa (corresponding to the PR-RT p51 fusion) (65,66). The mutant 

virions showed wild-type levels of RT activity, and were only slightly attenuated in infectivity. 

Other retroviruses such as prototype foamy virus (PFV), a human spumaretrovirus, contain PR-

RT fusions. RT in PFV virions consists of a completely processed 80 kDa PR-RT subunit and an 

unprocessed 127 kDa PR-RT-IN (Pro-Pol) subunit (398). RT activity appears to be associated 

 125



 

with both homodimer forms (p80/p80 and p127/p127) as well as the p127/p80 heterodimer 

(261).  

We have recently mutated the RT↓IN junction and found that the ensuing virions contain 

RT subunits of 98 kDa (corresponding to the expected RT p66-IN fusion) and 51 kDa (RT p51), 

as well as IN subunits of 98 kDa (RT p66-IN) and approximately 35 kDa (corresponding to an 

RNH-IN fusion) (Chapter 2). Mutant virions containing the RT-IN fusions retain wild-type 

levels of RT activity. RT-IN fusions are found in virions of avian sarcoma leucosis virus (ASLV) 

(526). ASLV RT exists as subunits of 63 kDa (α subunit, corresponding to the mass defined by 

the RT gene) and 95 kDa (β subunit, corresponding to an RT-IN fusion). RT activity is present in 

both αα and ββ homodimers as well as the αβ heterodimer form of ASLV RT (64,553).  

Thus, mutations in the cleavage sites defining the N- and C-termini of HIV-1 RT p66 

result in stable fusion proteins of the expected mass, with relatively normal RT DNA polymerase 

activity. However, cleavages within the RT subunit seem to be unique to lentiviruses such as 

HIV-1. We examined the effect of a large number of conservative and non-conservative 

mutations throughout the seven amino acid p51↓RNH cleavage site in HIV-1 RT. None of these 

resulted in the expected virion p66/p66 RT homodimer phenotype, but instead resulted in 

dramatic alterations in PR processing of the RT protein, suggesting that the phenotype arising 

from this internal cleavage is essential for ensuring adequate virion levels of active RT.  
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 CHAPTER 4: THE SECOND-SITE MUTATION T477A IN HIV-1 REVERSE 

TRANSCRIPTASE RESTORES NORMAL PROCESSING OF GAG-POL 

MUTATED IN THE p51↓RNH CLEAVAGE SITE 

 

 

4.1 ABSTRACT 

 

The gene for HIV-1 reverse transcriptase (RT) encodes a 66 kDa protein, but mature 

HIV-1 RT is a p66/51 heterodimer. RT p66 is translated as part of a 160 kDa Gag-Pol 

polyprotein, and the RT p51 subunit is derived by proteolytic cleavage of the RT p66 subunit C-

terminal ribonuclease H (RNH) domain during virus maturation. We have previously shown that 

p51↓RNH cleavage site mutations potentiate pleiotropic defects on the intravirion protein levels 

of RT resulting in a disproportionately greater composition of RT p51 over RT p66 and 

diminished viral replication capacity. Repeated passage of MT-2 cells exposed to the mutant 

viruses however, eventually led to the appearance of peak cytopathic levels. In the following 

study, we identified and characterized a viral revertant of the p51↓RNH cleavage site mutant 

phenotype bearing the second-site compensatory mutation T477A. We report that T477A is 

sufficient to improve viral replication competency and restore RT subunit protein content ratios 

when introduced into the context of molecular constructs bearing a variety of RT p51↓RNH 

cleavage site mutations. To determine the compensatory effect of T477A on the mechanics of 
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RT processing we compared the accumulation of intravirion Gag-Pol processing intermediates 

inhibited by decreasing concentrations of ritonavir. In the context of p51↓RNH cleavage site 

mutations we found that early Gag-Pol intermediates accumulated, indicating inefficient 

processing of quaternary cleavage sites in Pol. The introduction of T477A elevated the 

proportion of RT p66, resulting in improved processing to p66/51 RT. Although the structural 

basis for the compensatory role of T477A is presently unclear, we hypothesize that it may impact 

on protein folding of RT mutants altered in the p51↓RNH cleavage site, thereby promoting 

proteolytic processing at, or close to the normal cleavage site. Our data suggest that the 

compensatory effect of the T477A second-site mutation was to restore proteolytic stability of 

p51↓RNH cleavage site mutant RT during HIV-1 maturation. Taken together, these findings 

underline the importance of the RNH domain in regulating proper proteolytic processing and the 

transition of Gag-Pol intermediates towards formation of the p66/51 RT heterodimer. 

 

 

4.2 INTRODUCTION 

 

Human immunodeficiency virus type 1 (HIV-1) contains a multifunctional reverse 

transcriptase (RT) enzyme responsible for the complex conversion of genomic RNA into double-

stranded proviral DNA through coordination of its DNA polymerase and RNase H (RNH) 

activities. RT in mature infectious virions is a heterodimer of 66 kDa (p66) and 51 kDa (p51) 

subunits (512). The smaller p51 subunit is derived from the larger p66 RT by proteolytic 

cleavage of an internal p51↓RNH junction, resulting in the removal of a C-terminal ribonuclease 

H (RNH) domain (61,119,203,515). The folding of each subunit within the active RT 
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heterodimer differs, resulting in an asymmetric structure (263,546). In addition, the proportion of 

these RT subunits is relatively equivalent in viral particles, suggesting that this may be essential 

for efficient viral replication (485,571). Many studies involving extensive protein mutagenesis 

and structure-function analysis (154,223,408) have provided great insight into the roles of each 

subunit of RT. While initial reports identified important catalytic residues and highlighted the 

interdependent functional relationship of RT polymerase and RNH activities 

(196,200,334,409,442,513), more recent studies have explored the importance of the RNH 

domain in the structural maintenance of RT (194,332,333).  

HIV-1 RT, like other viral proteins, is not synthesized de novo, but rather translated as 

part of a larger polyprotein precursor. HIV-1 expresses the structural and enzymatic functions 

required for assembly of infectious viral particles within two polyprotein precursors, termed Gag 

(Pr55gag) and Gag-Pol (Pr160gag-pol). The HIV-1 Gag precursor contains the structural proteins of 

the viral core including matrix (MA), capsid (CA), nucleocapsid (NC), p6gag and two spacer 

peptides p2 and p1 (522). The HIV-1 Gag-Pol precursor contains, in addition to these Gag 

proteins the functional viral enzymes protease (PR), reverse transcriptase (RT), and integrase 

(IN) within its Pol domain (368,537). These individual proteins of HIV-1 are subsequently 

released from their respective polyproteins by proteolytic cleavage at specific sites during virion 

assembly and budding, a “maturation” process catalyzed by the viral-encoded PR (244,262). 

Recent evidence has suggested that the polyprotein-embedded immature form of HIV-1 PR is 

responsible for processing initial cleavage sites (395,396) by an intramolecular cis mechanism 

(392). Removal of the transframe region (TFP and p6pol), N-terminally collinear to PR 

subsequently results in a significant elevation in proteolytic activity. Secondary and tertiary 

cleavage events (114,395,396,557) have been shown in vitro, to follow a time-dependent, 
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ordered transition of polyprotein intermediates as a consequence of intermolecular trans 

processing (310,384,569). Finally, quaternary processing of cleavage junctions within the Pol 

region of Gag-Pol result in the complete release of the essential viral enzymes, PR, RT and IN 

(Figure 22-A). 

Despite the critical role that HIV-1 PR plays in the processing of Gag and Gag-Pol 

polyproteins during viral maturation, there is surprisingly little information concerning the events 

surrounding the release of pol-encoded enzymes (Figure 22-B). Many in vitro expression 

systems have proven inefficient at exhibiting late stage processing of full-length Gag-Pol due to 

limitations in substrate concentration, conformation, and dimerization efficiency (311,392,393). 

It is clear that p66/51 RT is formed by the processing of three cleavage sites within the Pol 

region of Gag-Pol: the N-terminal PR↓RT junction, the internal p51↓RNH junction, and the C-

terminal RT↓IN junction. We have previously shown that the kinetics of wild-type RT 

processing follow an ordered sequential pathway from a truncated Pol polyprotein expressed in 

bacteria (471). After formation of the polyprotein, RT p66 appears first then decreases with the 

concomitant appearance of RT p51, until both subunits are approximately equal. This suggests 

that RT processing may proceed through a quasi-stable p66/66 RT homodimer intermediate; 

although the contributions of higher order RT processing intermediates arising from full-length 

Gag-Pol is presently unclear. 

In an earlier study we described the effect that a panel of quaternary p51↓RNH cleavage 

site mutations has on viral replication capacity and the intravirion phenotype of RT (Chapter 3). 

Since other retroviruses, such as MuLV (210) and ASLV (526) possess different oligomeric 

forms of RT, and recombinant HIV-1 p66/66 RT exhibits significant catalytic activity 

(178,204,314) our objective was to understand the need for proteolytic generation of an HIV-1 
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Figure 22.  Schematic of sequential processing of HIV-1 Gag and Gag-Pol polyprotein 
precursors. (A) Gag and Gag-Pol precursors are presented as boxes with processing cleavage 
sites, hydrolyzed by HIV-1 PR as vertical arrows (11 in total). Ordered processing of Gag and 
Gag-Pol based on the proteolytic rates of primary, secondary, and tertiary cleavage sites 
(114,302,392-394,396). Polyprotein intermediates and processed components are represented 
with their estimated molecular masses and accepted nomenclature (291). (B) Gag-Pol 
polyprotein RT intermediates and functional retroviral enzymes (PR, RT, IN) arising from the 
processing of quaternary cleavage sites. Schematic does not reflect the oligomeric nature of these 
intermediates or products.  
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p66/51 RT heterodimer. We surprisingly found that mutations in the RT p51↓RNH cleavage site 

resulted in the generation of attenuated viruses containing greatly decreased levels of RT that in 

many cases was primarily RT p51. However, in contrast, these same mutations largely permitted 

the expected generation of RT p66 from our truncated Pol polyprotein expressed in bacteria. It 

thus appeared that proteolytic instability of RT containing p51↓RNH cleavage site mutations 

was a function of the viral milieu. We further found that repeated passage of MT-2 cells exposed 

to p51↓RNH cleavage site mutant viruses eventually lead to the appearance of viruses with 

normally processed RT and improved replication capacity. 

In the following study, we describe the isolation and characterization of a phenotypic 

revertant virus of one of these p51↓RNH cleavage site mutations (F440V). We report that a 

seemingly innocuous second-site mutation of a Thr to Ala at residue 477 was compensatory and 

sufficient to alleviate the defects imposed by F440V and several other p51↓RNH cleavage site 

mutations. To investigate the compensatory role of T477A on RT processing, we compared the 

accumulation of intravirion Gag-Pol processing intermediates arising by inhibiting HIV-1 PR 

with decreasing concentrations of ritonavir (RTV). In the presence of p51↓RNH cleavage site 

mutations, the second-site T477A mutation appeared to elevate the relative proportion of RT 

p66, resulting in improved generation of p66/51 RT. While the structural basis for the 

compensatory role of T477A is presently unclear, these results suggest that the compensatory 

effect of the T477A second-site mutation was to restore proteolytic stability of p51↓RNH 

cleavage site mutant RT during HIV-1 maturation. Furthermore, these findings underline the 

importance of the RNH domain in regulating proper proteolytic generation of RT.   

 132



 

4.3 MATERIALS AND METHODS 

 

4.3.1 Reagents 
 

The following reagents were obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAD, NIH: anti-HIV-1SF2 p24/25 IgG mAb (76C) from 

Dr. Kathelyn Steimer, Chiron Corporation; and anti-HIV-1HXB2 IN (2C11 and 8G4) IgG mAb 

from Dr. Dag Helland. Rabbit anti-HIV-1 PR polyclonal serum directed against PR residues 86-

108 (284,341) was obtained from Dr. Stuart Le Grice, NCI-Frederick (Frederick, MD). Anti-

HIV-1IIIB RT mAb were previously generated in our laboratory against recombinant p66/51 RT 

(294). Goat anti-mouse-HRP and donkey anti-rabbit secondary mAb were all purchased from 

Amersham Pharmacia Biotech (Piscataway, NJ). The SuperPico ECL Substrate System for 

detection of peroxidase-labeled antibody was obtained from PIERCE (Rockford, IL). 4-MUG (4-

methylumbelliferyl-β-D-galactopyranoside), a β-galactosidase fluorescent substrate was 

obtained from Sigma-Aldrich (St. Louis, MO). HIV-1 p24 antigen ELISA kits were obtained 

from SAIC-Frederick (Frederick, MD). Sequencing, PCR amplification and mutation-containing 

oligonucleotide primers were purchased from Invitrogen (Carlsbad, CA). COS-7, 293T and 

CD4+ MT-2 lymphocytoid cell lines were obtained from the American Type Culture Collection 

(Rockville, MD). 

 

4.3.2 Cell lines 
 

The human T-lymphocytoid MT-2 cell line was maintained in RPMI 1640 supplemented 

with 10% fetal bovine serum (FBS). The human 293T and monkey COS-7 fibroblast cell lines 
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were maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% FBS. 

P4R5 HeLa fibroblast cells, a generous gift of Dr. John Mellors at the University of Pittsburgh 

(originally obtained from Dr. Ned Landau, The Salk Institute for Biological Studies, La Jolla, 

CA) were maintained in DMEM/10% FBS additionally supplemented with Puromycin (0.5 

µg/mL). These cells express endogenous CXCR4 and are stably transfected to express CD4, 

CCR5, and a β-galactosidase reporter gene under the control of an HIV LTR promoter (347).  

 

4.3.3 Molecular cloning of p51↓RNH phenotypic revertants 
 

Molecular cloning of replication-recovered p51↓RNH cleavage site mutants was 

described previously (Section 3.3.2). Cytopathology appeared in infected MT-2 cells maintained 

in culture for 30 days. At this time virus-containing culture fluids were expanded briefly for 5 

days by infection of fresh MT-2 cells, followed by extraction of chromosomal DNA using 

QIAamp DNA Mini Kit (Qiagen Inc., Valencia, CA). The HIV-1 Pol-encoding region was then 

PCR amplified and cloned into pCR-T7/CT TOPO (Invitrogen, Carlsbad, CA) for sequencing 

analysis. 

 

4.3.4 HIV-1 molecular clone mutagenesis and transfection 
 

Plasmid pSVC21-BH10 encodes an infectious molecular clone of the IIIB (HxB2) strain 

of HIV-1 and carries an SV40 origin of replication for expression in 293T and COS-7 cells 

(127). The construction of ten different derivatives of pSVC21 BH10 containing various amino 

acid substitutions about the p51↓RNH cleavage site (amino acid residues 437-443) was 

previously described (Section 3.3.2). In brief, these mutant proviral clones included: A437I, 
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V442S, F440W, F440V, T439S/V442G, Y441I/V442K, F440A, F440A/Y441A, 

F440W/Y441W, and E438N. A second-site mutation, T477A, identified in the background of the 

p51↓RNH cleavage site mutation F440V (Figure 23) was subsequently introduced into the RT 

coding region of all pSVC21 BH10 derivatives using the Quick Change™ Site-Directed 

Mutagenesis kit (Stratagene, La Jolla, CA). To assess Pr160gag-pol incorporation into virions a 

catalytic inactive mutation (D25A) was introduced into the PR coding region of wild-type and 

mutant molecular clones. The presence of the expected mutations was verified by sequencing. 

Virus was prepared by transfection of 293T cells by calcium phosphate co-precipitation. Virus-

containing culture supernatants were harvested 60 h post-transfection, clarified by centrifugation 

(3000 x g, 1 h at 4oC), and quantified by analyzing the levels of HIV-1 p24 antigen. Aliquots of 

virus preparations were stored at -80oC until use. 

 

4.3.5 Infectivity and viral spread 
 

Infectiousness of virus particles produced from transfection of 293T cells was determined 

by using normalized quantities of HIV-1 p24 antigen content and P4R5 or MT-2 cells as 

previously described (Section 2.3.4). Briefly, single-cycle viral infectivity was assessed by using 

P4R5 cells in a fluorescence-based 96-well microplate β-galactosidase detection assay (25 ng 

viral p24 per 5 x 103 cells per well). Multiple-round viral replication was assessed by inoculation 

of MT-2 lymphoblastoid cells in 96-well microplates (25 ng of viral p24 per 6.5 x 104 cells per 

well) followed by daily microscopic observation of HIV-1 induced syncytium formation 

(32,339). Median tissue culture infective dose (TCID50/mL) was determined after seven days of 

culture (231).  
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4.3.6 Immunoblotting analysis of viral proteins 
 

Virion particle protein composition was assessed by subjecting the viral lysate 

(equivalent to 1 µg viral p24) to SDS-10% PAGE resolution and Western blotting, as previously 

described (Section 2.3.6). Separate Western blots from replicate trial experiments (n = 3) were 

probed for pol-encoded enzymes (PR, RT and IN) and p24 Gag. Immunoreactive protein bands 

were visualized by enhanced chemiluminescence (PIERCE, Rockford, IL) on a VersaDoc 

Imaging System, and quantitated by densitometry under sub-saturating exposure conditions 

using Quantity One v4.3.0 software (Bio-Rad, Hercules, CA). To assess the level of Gag-Pol 

(Pr160gag-pol) incorporation, viruses containing inactivated PR (D25A) were pre-normalized by 

Gag (Pr55gag) content prior to sucrose-cushion purification and Western blot analysis. 

 

4.3.7 Analysis of intravirion processing of Gag and Gag-Pol polyprotein precursors 
 

The accumulation of Gag-Pol processing intermediates during proteolysis was assessed 

by immunoprobing Western blots of viral protein derived from ritonavir-treated transfected 

COS-7 cells, as previously described (Section 2.3.7). Briefly, virion particle protein composition 

was assessed by subjecting viral lysate proteins to SDS-10% PAGE resolution, Western blotting 

and immunoprobing against RT and p24, as described above. Immunoreactive protein bands 

visualized by enhanced chemiluminescence were quantitated by densitometry under sub-

saturating exposure conditions, followed by graphical representation versus the concentration of 

ritonavir. 
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4.4 RESULTS 

 

4.4.1 Identification of a second-site mutation in the background of a p51↓RNH cleavage 
site mutation 

 

We previously showed that p51↓RNH cleavage site mutations result in the generation of 

significantly attenuated virus containing greatly diminished levels of RT that in many cases is 

primarily RT p51. Over the course of subsequent passage in MT-2 cells, some of these viruses 

eventually became replication-competent with improved content and proportion of RT subunits 

(Chapter 3). To determine the genetic basis for this phenotypic reversion, the entire RT coding 

region of each putative revertant virus was sequenced. One group of these “replication-

recovered” p51↓RNH cleavage site mutant viruses (F440A/Y441A and E438N) had reverted to 

the wild-type sequence as well as contained a number of second-site mutations within the RNH-

coding region (Figure 23). Another group of viruses (F440V) retained the original p51↓RNH 

cleavage site mutation, but also possessed an Ala to Thr amino acid substitution at position 477 

(codon ACT to GCT). Although three additional second-site mutations (Q340R, Q367R, I393T) 

were identified in the some of these clones, the prevalence of T477A in all clones suggested that 

this may have been important for the observed recovery of RT content. 

 

4.4.2 Effect of p51↓RNH ± T477A mutations on infectivity and viral spread 
 

To determine if the T477A second-site mutation was responsible for the revertant 

phenotype, we introduced this amino acid substitution into proviral DNA constructs possessing a 

variety of p51↓RNH cleavage site mutations, including wild-type, F440V, and mutation sets that 
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Figure 23.  Sequence analysis of revertants of the p51↓RNH cleavage site mutant 
phenotype. The schematic represents the Gag-Pol precursor polyprotein with the highlighted 
amino acid sequence below indicating the region that encompasses the p51↓RNH cleavage site 
and the entire cleaved RNH domain of wild-type (WT) HIV-1IIIB RT (amino acids 420-560). 
Below that sequence are the sequences of the phenotypic revertant-derived clones with the 
original p51↓RNH cleavage site mutant presented at the top of each set. A dash indicates amino 
acid identity with WT. Changes relative to the WT sequence is indicated in the single-letter 
amino acid code. 

 

 

had reverted to wild-type during recovery of virus infectivity. Consistent with our previous 

findings (Section 3.4.4), most p51↓RNH cleavage site mutant viruses exhibited severe 

attenuations in single-cycle viral infectivity (Figure 24-A) and replication capacity (Figure 25-

A). Introduction of T477A in the context of the p51↓RNH cleavage site mutation F440V was 

found to result in a significant 28% elevation of viral infectivity (Figure 24-B) and a 

considerable acceleration in viral spread (Figure 25-B). This finding indicates that the acquisition 

of T477A by this virus was indeed compensatory. Interestingly, this improvement in viral 
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Figure 24.  Relative infectivity of WT and p51↓RNH ± T477A mutant viruses after a single-
round infection. P4R5 cells (5x103) were infected in replicate (n = 16) with (A) p51↓RNH - 
T477A or (B) p51↓RNH + T477A mutant viruses derived from transfected 293T cells, 
normalized to 25 ng viral p24. Infectivity was determined after 48 h of culture by fluorescent 
measurement of β-galactosidase gene expression, as described in Section 2.3.4. Results are 
presented as an average percentage of WT virus infectivity. Asterisks (*) indicate a statistically 
significant compensatory effect of T477A relative to its non-substituted counterpart (p < 0.05), 
as calculated using a one-tailed Student’s t-test assuming equal variance. 

 139



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25.  Virus replication kinetics of p51↓RNH ± T477A mutant viruses. MT-2 
lymphocytoid cells (1x105) were infected in duplicate with (A) p51↓RNH – T477A or (B) 
p51↓RNH + T477A mutant viruses derived from transfected 293T cells, normalized to 25 ng 
viral p24. Cultures were split 1:2 every 3 d to prevent overgrowth and HIV-1 induced cytopathic 
effect (CPE) was scored daily, post-infection as percent syncytium formation. 
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replication was not specific to F440V. Other p51↓RNH cleavage site mutant viruses were found 

to exhibit a much greater improvement in single-cycle infectivity and viral replication upon 

addition of T477A. Most notably, these T477A-substituted mutant viruses included: F440W 

(46% increase), F440A (40% increase), F440W/Y441W (58% increase), and E438N (25% 

increase). An assessment of end point dilution infectivity in MT-2 cells further showed that the 

infectious capacity (TCID50/mL) of these viruses was significantly increased in the presence of 

the T477A second-site mutation (Table 7). Finally, T477A appeared to exhibit no discernable 

effect on either the infectivity or replication capacity of the wild-type virus, suggesting that it 

was sufficient to correct for the defects imposed by most p51↓RNH cleavage site mutations. 

 

4.4.3 Effect of p51↓RNH ± T477A mutations on viral protein content and Gag-Pol 
incorporation 

 

Consistent with our previous findings (Section 3.4.2), most p51↓RNH cleavage site 

mutations significantly diminished virion RT levels and adversely affected the RT p66 to RT p51 

ratio in favour of RT p51 (Figure 26-B). Introduction of T477A, significantly improved both the 

total RT content and the RT p66 to RT p51 ratio in a number of p51↓RNH cleavage site mutant 

viruses, namely those mutants which had displayed enhanced infectivities and replication 

kinetics. These improvements however, were not complete, as observed by the continual 

presence of low molecular weight RT fragments and RT content levels that were not equivalent 

to the wild-type. In most cases, T477A also increased the total IN content (Figure 26-C) but did 

not significantly affect the level of PR (Figure 26-A). 

Although near normal levels of PR activity appeared to be present in all mutant viruses, 

based on the wild-type levels of p24/Pr55gag products we proceeded to confirm for certain that 
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Table 7.  Absolute infectivity of T477A complemented viral particles. 

 
a Absolute infectivity per virion (TCID50/p24) was calculated by dividing TCID50/mL by the normalized 
amount of viral p24 used in units of ng/mL, as described in Materials and Methods 
b Results are presented as an average percentage of WT virus infectivity with standard deviation (S.D.) 
derived from four separate experiments.  
c P values were calculated using a one-tailed Student’s t-test assuming equal variance to determine the 
statistical significance of compensatory effect inferred by T477A, relative to its non-substituted 
counterpart 
 
 
 

Mutant TCID50/p24 (%WT) a,b P value c

WT 
- T477A 

 

+ T477A 

100.0 ± 10.0 
 

100.4 ± 30.2 
0.494 

A437I 
- T477A 

 

+ T477A 

40.0 ± 18.2 
 

68.9 ± 24.5 
0.075 

V442S 
- T477A 

 

+ T477A 
23.5 ± 10.0 

 

56.8 ± 27.5 
0.053 

F440W 
- T477A 

 

+ T477A 

0.9 ± 0.3 
 

28.2 ± 6.7 
< 0.01 

F440V 
- T477A 

 

+ T477A 
0.1 ± 0.1 

 

10.4 ± 3.0 
< 0.01 

T439S/V442G 
- T477A 

 

+ T477A 

0.0 ± 0.0 
 

0.0 ± 0.0 
0.178 

Y441I/V442K 
- T477A 

 

+ T477A 
0.0 ± 0.0 

 

0.0 ± 0.0 
0.199 

F440A 
- T477A 

 

+ T477A 

0.1 ± 0.1 
 

10.2 ± 4.6 
< 0.01 

F440A/Y441A 
- T477A 

 

+ T477A 
0.1 ± 0.1 

 

0.5 ± 0.9 
0.181 

F440W/Y441W 
- T477A 

 

+ T477A 

0.1 ± 0.0 
 

31.9 ± 14.3 
< 0.01 

E438N 
- T477A 

 

+ T477A 
0.1 ± 0.2 

 

4.4 ± 3.7 
< 0.05 
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Figure 26.  Effect of p51↓RNH ± T477A mutations on viral particle protein composition. 
Western blots of wild-type (WT) and p51↓RNH ± T477A mutant viruses (1 µg viral p24) 
generated by transfection of 293T cells and probed with (A) anti-PR, (B) anti-RT, (C) anti-IN, 
and (D) anti-p24 antibodies. The position of molecular size markers are shown to the left of each 
panel. Arrows to the right of each panel indicate the positions and molecular masses of 
immunoreactive viral proteins. Quantitation of viral proteins, from three independent trials was 
performed by densitometric scanning analysis of ECL exposed blots under sub-saturating 
conditions. Statistical significance of the T477A compensatory effect was determined for each 
individual mutant virus relative to its non-substituted counterpart using a one-tailed Student’s t-
test assuming equal variance. Asterisks indicates the degree of statistical significance in relation 
to the size of the type I error: (*)p < 0.10, *p < 0.05, **p < 0.01. 
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Figure 27.  Effect of p51↓RNH ± T477A mutations on Gag-Pol incorporation in immature 
virions. Immature virions containing inactive HIV-1 PR (D25A) and previously standardized by 
Pr55gag content were ultracentrifuged, lysed and resolved by SDS-10% PAGE and Western blot 
analysis. Relative viral content of (A) Pr160gag-pol and (B) Pr55gag were determined by probing 
separate blots with anti-RT and anti-p24 monoclonal antibodies respectively, followed by 
densitometry scanning analysis of ECL exposed blots under sub-saturating conditions. The 
position of molecular size markers are shown to the left of each panel.  
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Gag-Pol incorporation was not enhanced by the T477A mutation. Elevated levels of viral p24 

were occasionally detected in 293T cell-derived virus preparations, suggesting that T477A may 

have had a positive influence on viral packaging and budding (data not shown). While the level 

of PR inactive (D25A) Gag-Pol polyprotein ranged from 57-136% of the wild-type in p51↓RNH 

cleavage site mutant viruses, introduction of T477A did not appreciably affect this level (Figure 

27). Taken together, these results suggest that the improved RT phenotype in T477A-substituted 

p51↓RNH cleavage site mutant viruses was due to an increase in proteolytic stability. 

 

4.4.4 Effect of p51↓RNH ± T477A on intravirion processing of Gag-Pol 
 

As we (Section 3.4.5) and others (311,355,392,393,567) have shown, there are inherent 

limitations in using heterologous expression systems for investigating late-stage Gag-Pol 

polyprotein processing. Therefore, we chose instead to compare the accumulation of Gag-Pol 

processing intermediates in the natural viral milieu by titrating HIV-1 PR activity with the 

inhibitor ritonavir (RTV). While this is not a kinetic analysis by any means, it is advantageous 

over previous attempts to synchronize viral maturation by treatment and removal of protease 

inhibitors (86,218,227) in that the full range of PR activity can be examined. Wild-type virions, 

isolated from COS-7 cells transfected in the presence of varying concentrations of RTV 

exhibited a dose-dependent diminution in the extent of Gag and Gag-Pol processing when 

probed for RT and p24, respectively (Figure 28, panel i, upper and lower blots, respectively). 

Although the accumulative pattern and molecular weights of immunoreactive polyprotein 

intermediates were consistent with the expected cleavage events (302,392,481), it was unfeasible 

to verify their identity by protein sequencing. As PR activity was progressively elevated, higher 

molecular weight RT intermediates disappeared as lower molecular weight intermediates became 
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evident. Most notably, after a build up of RT p66, RT p51 began to appear, consistent with our 

previous findings in a bacterial expression system (Section 3.4.5). At the highest concentration of 

RTV examined, both full-length Gag-Pol (Pr160gag-pol) and the first processing intermediate, 

p121 were present. This result complements previous observations that polyprotein-embedded 

PR exhibits a different mechanism of action and sensitivity to inhibition than the mature free 

form (302,392,481). The exact positions of other higher molecular weight RT intermediates were 

difficult to estimate due to their migration pattern. However, based on their expected molecular 

weight (Figure 22), and previous resolution of longer resolved SDS-10% PAGE gels, we 

predicted these intermediates to be p114/p107, p97 and p76 respectively. 

The most noticeable effect of p51↓RNH cleavage site mutations on Gag-Pol processing 

was the severe loss of RT subunits with increasing levels of PR activity (Figure 28, panels iii, v 

and vii). Between 10 and 1 µM RTV, the intensity of the p107 (PR-RT-IN) Pol intermediate was 

elevated in all mutants. This suggests that quaternary cleavage events were more sensitive to 

proteolytic inhibition, and possibly occurred with decreased efficiency. Between 0.05 to 0 µM 

RTV, intermediate RT products were also observed in a number of mutants (ca. 56/57 kDa and 

61 kDa), likely due to cleavage of normally unexposed junctions within the RNH domain 

(23,61,515). Minor detection of 55 kDa and 24 kDa Gag proteins in the panel of F440W/Y441W 

± T477A mutants were the consequence of using exceeding high concentrations of anti-RT 

antibodies in this particular trial. 

In the context of the same p51↓RNH cleavage site mutations, the addition of T477A was 

found to have to no compensatory effect on the accumulation of the p107 Pol intermediate as the 

level of PR activity was increased (Figure 28, panels iv, vi and viii). However, between 1 and 0 

µM RTV, the T477A second-site mutation appeared to primarily elevate the proportion of RT 
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Figure 28.  Effect of p51↓RNH ± T477A mutations on ordered intravirion processing of 
Gag and Gag-Pol polyproteins. Wild-type (i) and p51↓RNH ± T477A mutant (ii-viii) virus-
containing culture supernatants derived from COS-7 cells, transfected in the presence of 
decreasing concentrations of ritonavir were subjected to SDS-10% PAGE resolution and 
Western blotting analysis. Ordered accumulation of immunoreactive Gag-Pol (A, upper panel) 
and Gag (A, lower panel) polyprotein processing intermediates were observed by probing 
Western blots with anti-RT and anti-p24 monoclonal antibodies respectively, followed by ECL 
exposure. The position of molecular size markers are shown to the left of each panel. Lines to the 
right of each panel indicate the positions and estimated molecular masses of expected 
polyprotein processing intermediates (302,392). Immunoreactive RT processing intermediates 
from (A) were analyzed by densitometry and graphically represented in (B). Relative band 
intensity of each intermediate was normalized relative to the most intense band, set to 95% in 
arbitrary units. For graphical purposes, intermediates detected in the absence of ritonavir (0 µM) 
were assigned a ordinate value of greater than zero. 
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p66 in most mutants, leading to improved levels of p66/51 RT. This result was generally 

concomitant with a reduction in intermediate RT products of 56/57 kDa and 61 kDa. In the case 

of F440A, the introduction of T477A also slightly elevated the proportion of the preceding p76 

PR-RT intermediate. Finally, as expected, T477A alone had no discernible effect on the 

accumulation of any of the RT processing intermediates (Figure 28, panel ii), suggesting that it 

was sufficient to correct for defects imposed by most p51↓RNH cleavage site mutations. 

 

 

4.5 DISCUSSION 

 

Processing of Gag and Gag-Pol precursor polyproteins into their respective structural 

proteins and functional enzymes is a critical, carefully controlled event in the life cycle of HIV-

1. However, the forces that regulate ordered late-stage processing of Gag-Pol leading to mature 

p66/51 RT remain poorly defined. We have previously shown that p51↓RNH cleavage site 

mutations potentiate pleiotropic detrimental effects on the intravirion protein levels of RT and IN 

resulting in a disproportionately greater content of RT p51 over RT p66 and diminished viral 

replication capacity (Chapter 3). In this study, we identified and characterized a viral revertant of 

the p51↓RNH cleavage site mutant phenotype of F440V bearing the second-site compensatory 

mutation T477A. Introduction of T477A into a context of varying p51↓RNH cleavage site 

mutations, including the original resulted in the production of replication-competent viruses with 

restored protein content ratios of RT p66 RT to RT p51. By titrating the activity of HIV-1 PR 

over a range of inhibitor concentrations we were able to investigate the compensatory effect of 

T477A on the mechanics of RT processing affected by p51↓RNH cleavage site mutations. These 
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studies yielded several new insights into the transition of Gag-Pol processing intermediates 

which lead to the formation of RT and the importance of the RNH domain in regulating this 

process. 

Many studies have documented the analysis of viral revertants as a powerful tool to 

identify second-site changes which compensate for structural and functional defects imposed by 

mutation (72,256,366,495). To that end, it was not entirely surprising that continued passage of 

p51↓RNH cleavage site mutant viruses would eventually select for reversionary or second-site 

changes to overcome the phenotypic defect in RT content. Our identification of the 

compensatory nature of the second-site mutation T477A is not only a credit to the selective 

pressure presented by p51↓RNH cleavage site mutations, but additionally highlights the 

importance of this residue in the maintenance of a proteolytically stable form of RT. Like many 

polymorphic residues in RT, it should be noted that amino acid residue 477 exhibits a 3.8% 

frequency of variation of Thr to Ala (420), suggesting that this second-site mutation may 

naturally arise due to adaptation. Nevertheless, our findings with respect to T477A complement 

previous reports that other C-terminal RNH residues are important for maintaining proper 

folding and stabilizing interactions within RT. Of particular note, N494 appears to be important 

in stabilizing interactions with A437 and I434 (85,540) and D443N compensates for structural 

instability caused by D498N (332,334). 

Although the second-site mutation T477A conferred a selective advantage in the presence 

F440V, in the context of other p51↓RNH mutations, T477A was equally if not more 

compensatory in the restoration of RT and IN content and improvement of viral infectivity. One 

of our most intriguing findings was that while both F440W/Y441W and F440A/Y441A mutant 

viruses contained primarily RT p51, only the former was compensated by T477A. We have 
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recently demonstrated that RT is sequentially processed from a Pol polyprotein through a 

possible quasi-stable p66/66 RT homodimer intermediate (Section 3.4.5). Unfortunately, no 

structure for the p66/66 RT homodimer is yet available and forced stabilization during 

crystallization is unlikely to ever mimic the true form of this enzyme in the virion context. 

Therefore, in the absence of a structural understanding of proteolytic instability caused by 

p51↓RNH cleavage site mutations, the structural basis for the restored stability inferred by 

T477A remains unclear. 

We have previously suggested that the predominance of RT p51 in p51↓RNH cleavage 

site mutant viruses may be due to the cleavage at alternative cleavage sites (169,515). If RT is 

indeed formed through a p66/66 RT intermediate, then in the context of p51↓RNH mutations, 

cleavage of one subunit may not induce structural changes in the other p66 subunit to protect it 

from similar cleavage at its p51↓RNH junction. The presence of T477A could have in turn 

improved processing of this region in RT by permitting restored proteolytic stability. While 

T477A is located within the same domain as the original p51↓RNH mutations it could be (i) 

distant in the primary sequence but close in the tertiary structure, (ii) reverse a global or local 

conformational change induced by the original mutation(s), or (iii) potentially remove or 

establish intramolecular or intermolecular interactions. In the p66/51 RT heterodimer, residue 

T477 lies in close proximity (3.6-4.8 Å) to G444 and A445 of the p51↓RNH cleavage site. The 

p51↓RNH cleave-site (F440↓Y441) itself is situated in a putative β1-sheet less than 15 residues 

away from the proposed start (Y427) of the RNH domain as well as the inter-domain linker or 

tether region (K424-L429) which separates the p51 polymerase domain from RNH (Figure 7). 

The RNH domain is divided into left and right subdomains with β1, β2 opposing αA, β4 along a 

separating cleft (85). Coincidently, residue T477 lies within a short polypeptide chain which 
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connects these two subdomains between β3 and αA in the form of a loop motif. In considering 

the topology of amino acid contacts, a number of tertiary contacts likely participate in the 

stabilization of the tether region and right subdomain as well as in the maintenance of this cleft 

in the final form of RT (26,85,546). Therefore, local perturbation or interference of such 

interactions could potentially disrupt conformation, hydrodynamic hydration, functional motions, 

or even dimeric stability. If any of these attributes are at all similar in the p66/66 homodimeric 

form of RT, then it is possible that T477A may stabilize structural alterations(s) induced by 

p51↓RNH cleavage site mutations to prevent overprocessing to RT p51. Replacement of a 

hydroxyl side chain with a shortened alkyl group at position 477 (Thr to Ala) could have caused 

a slight disruption in the local hydrogen binding or electrostatic network, which did not in itself, 

appreciably affect the processing of wild-type RT from Gag-Pol. We suspect that in the context 

of p51↓RNH cleavage site mutations, T477A may have provided sufficient conformational 

flexibility of the would be β3-αA loop motif to accommodate folding defects and promote 

processing at 440↓441 or nearby alternative cleavage sites.  

Analysis of ritonavir-treated viral protein content revealed that processing intermediates 

of Gag and Gag-Pol accumulated sequentially as a function of increasing HIV-1 PR activity. 

These results were consistent with previous reports that polyprotein cleavage sites are 

differentially sensitive towards inhibition (246,271,392,481) and the relative order of primary, 

secondary and tertiary cleavage events (392,393,481,508). Inherent limitations of heterologous 

expression systems have to date precluded a reliable determination of the sequence of events 

leading to the formation of p66/51 RT from full-length Gag-Pol (311,355,392,393,567). Our 

present work extends these studies by demonstrating for the first time in the virion context, the 

spectrum of Gag-Pol processing intermediates that lead towards p66/51 RT. We note that a 
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disappearance of the p107 Pol intermediate (PR-RT-IN) is followed by the appearance of both 

p76 (PR-RT) and p97 (RT-IN) intermediates, suggesting relatively similar cleavage efficiencies 

of RT↓IN and PR↓RT junctions. Sequencing analysis of these intermediates will yet 

conclusively confirm their identity. Diminution of these intermediate(s) is followed by the 

appearance of RT p66 and later RT, consistent with our recent findings in a bacterial expression 

system (Section 3.4.5). In conjunction with previous studies on the early events of Gag-Pol 

processing, we suggest that the order of cleavage events may follow: p2↓NC > TFP↓p6pol > 

p6pol↓PR > RT↓IN ≥ PR↓RT > p51↓RNH 

While the exact mechanics and intricacies of ordered Gag-Pol polyprotein processing has 

not been resolved, it is reasonable to speculate that a number of factors may be important. After 

cleavage of the initial p2↓NC junction (395,396), the dynamics and efficiencies of subsequent 

processing events may be influenced by concentration and conformational folding of 

accumulative Gag-Pol intermediates and the accessibility and complementarily of cleavage sites 

to HIV-1 PR (183). Indeed, extra PR domains have been reported to affect dimerization and 

subsequent processing events (39,83,393,414,508,567), and the order of Pol domains themselves 

is important for efficient processing at all cleavage sites (60). After translation, the domains of 

the Gag-Pol polyprotein form by global folding and multimerization so as to compactly bury 

hydrophobic residues (34,542), and the cleavage sites, which separate these domains are 

expected to occur in less structured or exposed regions. Since peptide cleavage efficiencies do 

not mimic those seen in the polyprotein context (Table 1), efficient ordered processing of Gag-

Pol appears to depend on the structural context and accessibility of the cleavage sites in 

processing intermediates, as well as the adaptability of HIV-1 PR itself (183,395,407). Based on 

our findings of the detrimental effect of p51↓RNH cleavage site mutations on the accumulation 
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of Gag-Pol processing intermediates, and the compensation thereof by T477A, progressive 

processing may be important in structurally influencing the efficiency of quaternary cleavage 

events. The accumulation of the p107 Pol intermediate in particular, suggests that forces 

promoting processing to RT may include contributions from sequences outside the RT region. 

Furthermore, putative unfolding of the RNH domain may lead to diminished proteolytic stability 

of subsequent intermediates. 

In summary, we have demonstrated that defects imposed by p51↓RNH cleavage site 

mutations can be compensated to various extents by the intragenic second-site mutation T477A. 

Our major finding was that this second-site mutation restored processing to p66/51 RT during 

virion maturation by elevating the proportion of RT p66 in the context of p51↓RNH cleavage 

site mutations. This suggests improved proteolytic stability of RT and a significant positive 

impact of the RNH domain on progressive transition of Gag-Pol intermediates towards the 

p66/51 RT heterodimer. While T477A was not completely compensatory in its capacity to 

restore RT content for all p51↓RNH cleavage site mutations, our data indicate that it alone was 

sufficient in most instances. These findings should lead to further investigation of the effect of C-

terminal RNH residues on the structural formation RT during virion maturation. 
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 CHAPTER 5: SUMMARY AND CONCLUSIONS 

 

An essential step in the life cycle of HIV-1 is the conversion of genomic single-stranded 

RNA into proviral double-strand DNA; a complex procedure catalyzed by the viral-encoded 

enzyme known as reverse transcriptase (RT). Since its initial characterization nearly 20 years ago 

(298,533), the notion that the biologically relevant form of HIV-1 RT is a heterodimer of 66 kDa 

and 51 kDa subunits has generally gone uncontested. However, the apparent need for this 

oligomeric form of RT in the context of the virion has not been clearly defined. This is in light of 

the fact that recombinant p66/66 RT homodimers have comparable enzymatic activities to the 

p66/51 RT heterodimer (23,128), and internal processing of the RT subunit at p51↓RNH is 

unique to lentiviruses such as HIV-1. The goal of the following studies was to determine why the 

generation of active HIV-1 RT requires three proteolytic cleavage events for efficient viral 

replication. Since inhibition of the N-terminal PR↓RT cleavage site has been previously reported 

to have no adverse effect on virion-associated RT activity (65,66), our focus was directed at the 

remaining cleavage sites. We hypothesized that cleavage of the internal RT p51↓RNH is 

essential in the formation of functional viral RT, whereas cleavage of the flanking C-terminal 

RT↓IN junction is not. 
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5.1 Major Findings and Conclusions 

 

5.1.1 Chapter 2:  Proteolytic cleavage of the HIV-1 RT↓IN junction does not seriously 
impact RT activity, but is essential for efficient viral replication 

 

While precursor-associated forms of recombinant HIV-1 RT (29,211,388,485) as well as 

PR-defective or inhibited virions (15,162,243,388) arguably exhibit some level of RT 

polymerase activity, it is generally believed that proteolytic processing is necessary to obtain 

completely functional RT (284,293). Furthermore, there is increasing evidence in both retroviral 

and retrotransposon systems for the existence of an RT-IN processing intermediate in the 

maturation of RT (1,521,558), and for functional interactions between RT and IN proteins 

(185,363,573). Physical association between RT and IN could be achieved in cis, when RT is in 

direct fusion with IN, or in trans, through interaction of the individual mature proteins. 

In the following study, mutation of the RT↓IN cleavage site resulted in the expected 

generation of stable 98 kDa (RT-IN) and 51 kDa (RT) proteins in virions. Furthermore, virion-

associated RT polymerase and RNH activities were unaffected by the blockage of this cleavage 

event. These findings represent the first demonstration in the virion context of the importance of 

the C-terminal RT↓IN cleavage. Our findings, in combination with those of the PR↓RT cleavage 

site (65,66) indicate that processing of either flanking RT cleavage site (N-terminal or C-

terminal) during virion maturation does not seriously impact on RT activity. The caveat in these 

findings however, was that the internal p51↓RNH junction continued to be processed, which 

suggested that this cleavage site was unique and possibly essential. This premise set the stage for 

the investigation outlined in Chapter 3. Interestingly, while RT activities were unaffected by the 

RT-IN fusion, viral infectivity and replication capacity were severely attenuated. Although this 
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defect may have been due to diminished IN activities and integration of proviral DNA, this was 

beyond the scope of the study, and thus remains unclear. Further investigation may demonstrate, 

for the first time in the virion context that RT or RNH negatively regulate IN activation until late 

stage processing of the RT↓IN cleavage site. Overall, the results of this study further our recent 

understanding of functionally important interactions between RT and IN (90,476,573) by 

demonstrating that a cis association between these enzymes does not disturb RT activities. 

 

5.1.2 Chapter 3:  Virion instability of HIV-1 RT mutated at the RT p51↓RNH protease 
cleavage site 

 

The p66/51 RT heterodimer has been prepared in a number of heterologous expression 

systems through the assembly of separate subunits or proteolytic processing of RT-containing 

polyprotein substrates such as the p66/66 RT homodimer (23,120,129,282). Recent studies from 

our laboratory have indicated that the kinetics of RT processing follow an ordered sequential 

pathway from a truncated Pol polyprotein expressed in bacteria, whereby RT p66 begets onto RT 

p51 until both are in equal proportion. Thus, formation of p66/51 RT heterodimers may proceed 

through a quasi-stable p66/66 RT homodimer intermediate (471). 

In order to study the apparent need for RT heterodimers in the context of the virion, we 

introduced a variety of mutations in the RT p51↓RNH cleavage site with the expectation of 

generating p66/66 RT homodimer-containing viral particles. We found that surprisingly, most of 

the mutations resulted in the generation of significantly attenuated virus containing greatly 

decreased levels of RT that in many cases was primarily RT p51. This was in direct contrast to 

what was observed in the bacterial expression system, where most of the p51↓RNH cleavage site 

mutations prevented proteolytic processing to RT p51. Catalytic inhibition of HIV-1 PR showed 
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that the defect was attributable to processing by HIV-1 PR and not diminished incorporation of 

Gag-Pol. 

This is the first report to address the necessity for processing the internal RT p51↓RNH 

cleavage site in the context of the virion, and as such, that p51-RNH (RT p66) fusion proteins or 

the p66/66 RT homodimer may not be proteolytically stable in the virion. Our results imply that 

additional proteolytic processing, by removal of one of the RNH domains may be essential for 

providing a conformation of RT that is refractory to further proteolytic events within the virion, 

thus ensuring adequate levels of functional RT. Unfortunately, it remains to be determined how 

processing of the p51↓RNH cleavage site specifically stabilizes RT. Limiting further exploration 

in this field continues to be the lack of an unequivocal mechanism to explain how HIV-1 PR 

cleaves only one of the RT p66 subunits to form the p66/51 RT heterodimer, and a reliable 

crystal structure of the p66/66 RT homodimer, to explore key molecular interactions. Our 

observance of contrasting p51↓RNH cleavage site mutant phenotypes between bacterial and 

viral expression systems succinctly indicates for the first time, that the study of RT processing in 

any other milieu except the virus is essentially erroneous. The results presented in Chapter 2, 3 

and 4 collectively suggest the existence of alternative cleavage site(s) near the RT p51↓RNH 

junction that are capable of being processed efficiently only in the virion context. It is regrettable 

that our efforts to sequence the C-terminus of RT p51 in mutant virions proved unsuccessful, due 

to the limited amounts of virion protein attainable as well as the sensitivity and sequence 

coverage of various methods of mass spectroscopy. Significant advancement in either of these 

areas is certain to prompt a re-initiation of efforts to identify the p51↓RNH cleavage site directly 

from the virus, for the first time. 
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5.1.3 Chapter 4:  The second-site mutation T477A in HIV-1 RT restores normal 
processing of Gag-Pol mutated at the RT p51↓RNH protease cleavage site 

 

A number of reports have highlighted the interdependent functional relationship between 

HIV-1 RT polymerase and RNH activities (196,409,513). Given the structural importance of the 

RNH domain in RT (194,332,333), it is reasonable that it may equally be important in the 

proteolytic generation of the p66/51 RT heterodimer. Furthermore, despite the resolution of 

events and intermediates involved in the processing of the Gag polyprotein (163,396,522), the 

sequence of events surrounding the liberation of RT from the full-length Gag-Pol polyprotein 

have remained unclear. 

Repeated passage of MT-2 cells exposed to p51↓RNH cleavage site mutant viruses were 

found to eventually lead to the appearance of viruses with normal RT content and improved 

replication capacity (Chapter 3). In the following study, we identified and characterized a viral 

revertant of the p51↓RNH cleavage site mutant phenotype bearing a second-site compensatory 

mutation in the RNH domain. We found that a seemingly innocuous change of a Thr to an Ala at 

position 477 was able to restore the viral content of RT subunits in several p51↓RNH cleavage 

site mutant viruses. We proposed that the T477A change might disrupt structural interactions to 

accommodate folding defects of the mutated p51↓RNH cleavage site and allow regulated 

processing of this region, perhaps at alternative nearby sites. However, in the absence of a 

structural understanding of proteolytic instability caused by p51↓RNH cleavage site mutations, 

the structural basis for the restored stability inferred by T477A remains unclear. Previous reports 

have suggested the existence of interactions between residues of the RNH domain and the 

p51↓RNH cleavage site (85,332,334,540). Thus, the identification of T477A in itself extends 

these findings by emphasizing the importance of the RNH domain in regulating processing of the 
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p51↓RNH cleavage site region. The incredible adaptive potential of HIV-1 to revert the RT 

phenotype further exemplifies the essential need for the p66/51 RT heterodimer and cleavage of 

the internal p51↓RNH junction for efficient viral replication. 

In attempt to investigate the compensatory effect of T477A on the mechanics of RT 

processing, we analyzed the accumulation of intravirion processing intermediates arising from 

full-length Gag-Pol by inhibiting HIV-1 PR with decreasing concentrations of ritonavir. As 

proteolytic activity was elevated in the wild-type virus, higher order RT intermediates appeared, 

followed by RT p66 and RT p51, consistent with our previous findings in the bacterial 

expression system (471). This represents the first extensive examination in the virion context of 

the transition of Gag-Pol processing intermediates that give rise to p66/51 RT. While p51↓RNH 

cleavage site mutations resulted in the expected diminution of RT p66, higher order processing 

intermediates appeared more accentuated at greater levels of active HIV-1 PR. This result 

suggested a reduced efficiency of late processing events. The introduction of T477A elevated the 

proportion of RT p66, resulting in improved processing to p66/51 RT. Overall, these findings 

suggest that the compensatory effect of the T477A second-site mutation was to restore 

proteolytic stability of p51↓RNH cleavage site mutant RT during HIV-1 maturation. 

 

 

5.2 Significance and Future Studies 

 

Our studies show why the generation of functionally active RT requires three proteolytic 

cleavage events during HIV-1 maturation. In the context of the virion, processing of either N-

terminal PR↓RT or C-terminal RT↓IN cleavage site is not essential for the generation of active 
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RT. Recombinant forms of PR-RT and RT-IN arguably exhibit some level of RT activity far 

lower than the mature p66/51 RT heterodimer (29,211,293,388,485). However, mutation of 

either N-terminal (65,66) or C-terminal (Chapter 2) RT-flanking cleavage sites results in wild-

type levels of virion-associated RT activities. The generation of virions, solely containing these 

fusion forms of RT is seemingly not possible, due to the continued processing of the p51↓RNH 

cleavage site. We show that preventing cleavage of this internal p51↓RNH junction, the unique 

cleavage event associated with HIV-1, significantly reduces the stability of the RT in the virion. 

This is a significant contribution to knowledge and the take home message of this dissertation. 

Processing of the internal RT p51↓RNH cleavage site is unequivocally essential to ensure 

proteolytic stability of functional RT in the virion. 

Without question, the biologically relevant form of RT is a heterodimer of 66 kDa and 51 

kDa subunits. However, it appears that this particular heterodimeric form of viral RT is not 

absolutely required for wild-type levels of activity since p77/62 PR-RT and p98/51 RT-IN fusion 

forms are just as active. Whether all of these RT heterodimers are equally efficient at facilitating 

reverse transcription remains to be seen. Additional biochemical and biophysical studies on 

recombinant versions of these enzymes has the potential to yield a wealth of useful and 

interesting information. We have demonstrated that cleavage of the internal p51↓RNH junction 

is essential for activity and proteolytic stability of viral RT, whereas cleavage of the flanking 

junctions is not. So why then, is formation of the p66/51 RT heterodimer itself necessary for 

efficient viral replication? The answer lies, not in the effect of an abutting PR or IN domain on 

RT activity per se, but rather the effect of such oligomeric structures on other aspects of the viral 

life cycle. Inhibition of the PR↓RT cleavage site has no effect on the proteolytic processing of 

Gag and Gag-Pol polyproteins, however infectivity is diminished 20-fold (65,66). Fusion of RT 
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to PR may have enhanced the activity of PR (6,157), which in turn may have increased 

intracellular cleavage of Gag (321) or important cellular factors such as actin (468), vimentin 

(467) or NF-κB (427). Mutation of the C-terminal RT↓IN cleavage site similarly had no affect 

on RT activity, yet infectivity was significantly attenuated. Our results appear to indicate that this 

defect may have been attributable to an inhibition of IN activity by RT or RNH. Further study in 

this area will produce important information on the proteolytic regulation of IN activity and the 

functional interactions that exist between RT and IN. 

Our demonstration that mutagenesis could not produce stable p51-RNH (RT p66) fusion 

protein in virions by mutagenesis directly implies the critical importance of this internal RT 

p51↓RNH cleavage site during HIV-1 maturation. While the number of possible mutagenic 

combinations have not been exhausted, our results suggest that any future study should take into 

account the structural context of this entire region, including intra- and intermolecular 

interactions and the existence of alternative cleavage sites. However, in the absence of a reliable 

crystal structure of the p66/66 RT homodimer it remains a difficult task to plan a rational set of 

next generation p51↓RNH cleavage site mutations. Although other methods were initially 

considered, mutagenesis was judged the most straightforward means of addressing the 

importance of this internal cleavage junction. If the specific goal of future studies is to assess the 

replication capacity of viruses containing p66/66 RT homodimers, consideration could be given 

to altering the substrate specificity of HIV-1 PR. Recent reports suggest that certain amino acid 

substitutions can be introduced into HIV-1 PR to prevent the hydrolysis of specific cleavage sites 

in Gag-Pol (82,306,336). Finally, our finding that the second-site mutation T477A improved the 

proteolytic stability of RT containing p51↓RNH cleavage site mutations warrants further 

exploration on what effect of other substitutions in the RNH domain would have on the 
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generation of p66/51 RT. These studies could provide new insight into molecular interactions 

within the p66/66 RT homodimer that are important during virion maturation. 

It is interesting to speculate why an additional, internal RT p51↓RNH cleavage site is 

unique to lentiviruses such as HIV-1. The tether region and various residues leading up to the 

p51↓RNH cleavage site at F440 serve a number of important roles in the HIV-1 p66/51 RT 

heterodimer, including: (i) coordination of RT polymerase and RNH active sites (223,506), (ii) 

dimerization and interdomain interactions (332,338,506), and (iii) control of global rotational 

reorientations of the RNH domain (506). At this stage, it is unclear whether the functional 

attributes of this region are at all applicable in other retroviral forms of RT. Although the 

structure of full-length MLV RT has been recently solved (81), the absence of other retroviral 

forms of RT from the protein structural database precludes a detailed comparative analysis. As 

discussed in Chapter 1, the monomeric nature of MLV RT may be attributable to the length of its 

tether region and the presence of non-conserved motifs in the RNH domain (141,331). While the 

absence of such features in HIV-1 RT would explain the need for dimerization to support the 

catalytic subunit, they do not explain why this supporting RT subunit must be 51 kDa and not 66 

kDa in the virion. The results of our studies suggest that an additional important role of the 

p51↓RNH cleavage site region is to regulate proteolytic stability of RT during virion maturation 

to ensure generation of adequate levels of functional RT. The internal RT p51↓RNH cleavage 

site, and thus p51 subunit may be unique to HIV-1 for the simple reason that an extra RNH 

domain may serve a structural, if not functional deterrence in the confines of the viral particle. 

The past two decades have seen remarkable progress in elucidating the order of 

polyprotein processing and the maturation of retroviruses such as HIV-1. There is now a wealth 

of information about the structure and functions of HIV-1 pol-encoded  enzymes and their roles 
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in the retroviral life cycle. With this basic framework in hand, efforts should continue towards 

new frontiers in the field of HIV-1 biology in an attempt to fill in the remaining gaps of 

knowledge. The interactions between trafficking Gag and Gag-Pol polyproteins are of central 

importance to the assembly and maturation of viral particles. How do such interactions affect 

domain arrangements, multimerization, particle budding and the regulation of ordered 

polyprotein processing? Defining the molecular details of specificity and control for any of these 

steps will represent major advancement. 

There is still much to learn about the mechanics of late stage Gag-Pol polyprotein 

processing. Although our work using decreasing concentrations of ritonavir represents a first step 

towards resolving the transition of processing intermediates, further study is needed. We caution 

against the use of E.coli or other heterologous expression systems to investigate polyprotein 

processing, due to their unreliable nature in mimicking the true effect of mutations. Formation of 

HIV-1 RT does not appear to be as simple as mixing together 66 kDa and 51 kDa subunits. Our 

results suggest that efficient ordered processing of RT intermediates is mediated, not by the 

availability of cleavage sites per se, but by appropriate conformation and domain constraints. 

This is consistent with a recent report that the order of Pol domains is important for efficient 

processing at all cleavage sites (60). Future study may resolve the contribution of molecular 

chaperone proteins and other interacting viral factors in the regulation of folding and efficient 

proteolysis of Gag-Pol intermediates during virion maturation. Also worthy of consideration, is 

the need to dissect the role of the proteosome-ubiquitin system in the release and maturation of 

infectious HIV-1 particles (448), particularly given its involvement in the degradation of 

misfolded proteins in other viral systems (142). 
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It is likely that ongoing and future work will further our understanding of how cleavage 

events lead to molecular, biochemical and biophysical changes in the pol-encoded enzymes of 

HIV-1 Gag-Pol. As discussed earlier in Chapter 1, there are a number of limitations in 

synchronizing retroviral particles. One key difficulty is initiating proteolysis after treatment with 

protease inhibitors. Future studies may consider producing immature virions in the presence of 

loose-binding protease inhibitors that exhibit high Km and low Kcat values. Membrane 

permeabilization with β-octylglucoside (72) or cholesterol-depleting agents such as β-

cyclodextrin (173,297) followed by dialysis could allow for a kinetic analysis of polyprotein 

processing. Further in need of resolution, is an analysis of the structural and conformational 

context of intermediates which transition towards p66/51 RT. Biophysical analyses are likely to 

be important contributors in these efforts, including crystallography, NMR or circular dichroism 

spectroscopy of full-length Gag-Pol and its processing intermediates. Collectively, the above 

approaches will provide a view of viral assembly and maturation that is certain to be 

intellectually satisfying. 

In summary, we have demonstrated the importance of proteolytic processing in the 

generation of functionally active HIV-1 reverse transcriptase. It is our hope that this work will 

form an integral part of our global understanding of HIV-1 reverse transcriptase and other 

enzymatic proteins regulated by proteolysis in other systems. Our observation that the internal 

RT p51↓RNH cleavage site is essential to provide proteolytic stability of RT during virion 

maturation presents a novel target for therapeutic intervention. The recent advent of a betulinic 

acid inhibitor of the CA↓p2 cleavage site (241,587) suggests that a similar small-molecule could 

be designed to specifically bind to the RT p51↓RNH cleavage site. Certainly, in the face of 
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possible resistance to common HIV-1 inhibitors, complete obliteration of RT during virion 

maturation would be a favourable scenario. 
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 APPENDIX: MISCELLANEOUS FIGURES 
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Figure 29.  Effect of RT-INF1I/L2K cleavage site mutation on the synthesis and processing of 
the 90 kDa Pol polyprotein in vitro. (A) Western blot of the synthesis and processing products 
following IPTG induction of the wild-type 90 kDa Pol polyprotein, detected by a pool of 
monoclonal antibodies specific for HIV-1 RT. (B) Western blot of the synthesis and processing 
of products following IPTG induction of the 90 kDa Pol polyprotein mutated in the RT↓IN 
junction, detected by a pool of monoclonal antibodies specific for HIV-1 RT. Preparation and 
analysis of Pol polyprotein processing was performed as previously described (Section 3.3.5). 
The mutations F1I/L2K completely prevented cleavage of the RT↓IN junction, leading to the 
formation of the 71 kDa RT-IN N-terminus fusion protein. Formation of RT p51 is unaffected. 
(Modified from: Sluis-Cremer, N. et al. 2004 Int. J. Biochem. Cell. Biol. 36(9):1836). 
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Figure 30.  Effect of p51↓RNH ± RT↓IN ± T477A mutations on viral particle protein 
composition. 293T cells were transfected with 10 µg of each indicated proviral DNA construct. 
Virus containing supernatants were harvested at 60 h post-transfection, normalized by p24 (1 
µg), purified, and analyzed by Western blotting as previously described (Section 2.3.6). HIV-1 
Gag-Pol proteins (A) RT, (B) RNH, (C) IN and HIV-1 Gag proteins (D) Pr55gag, p41, p37, and 
p24 CA were probed on separate blots with appropriate primary and secondary antibodies 
followed by enhanced chemiluminescence (ECL). The position of molecular size markers are 
shown to the left of each panel.  
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Figure 31.  In vitro processing of purified recombinant p66/66 RT homodimer with HIV-1 
PR in trans. SDS-10% PAGE analysis of RT subunit composition (6 µg per lane), following 
incubation (0, 24 h at 37oC) of 1 mg recombinant p66/66 RT in the presence of 11 µg HIV-1 PR. 
Various pH conditions tested included: lane 2, pH 4.7 (0.1 M sodium acetate, 1 M NaCl, 1 mM 
EDTA, 0.1% BSA); lane 3, pH 5.5 (0.1 M sodium citrate, 1 M NaCl, 1 mM EDTA, 0.1% BSA); 
lane 3, pH 6.0 (50 mM MES ,1 M NaCl, 1 mM EDTA, 0.1% BSA). The position of molecular 
size markers are shown to the left of each panel.  
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Figure 32.  Effect of G436A ± p51↓RNH ± T477A mutations on viral particle protein 
composition. 293T cells were transfected with 10 µg of each indicated proviral DNA construct. 
Virus containing supernatants were harvested at 60 h post-transfection, normalized by p24 (1 
µg), purified, and analyzed by Western blotting as previously described (Section 2.3.6). HIV-1 
Gag-Pol proteins (A) RT and (B) IN were probed on separate blots with appropriate primary and 
secondary antibodies followed by ECL exposure and analysis. The position of molecular size 
markers are shown to the left of each panel.  
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