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Pressure ulcers are prevalent and costly, particularly for individuals with impaired mobility and 

sensation.  They are primarily caused by high pressure near bony prominences.  Multiple other 

factors include shear force, friction, temperature, and moisture.  Recent research at the 

University of Pittsburgh was conducted on local cooling effects with respect to skin blood flow.  

A reduction of skin temperature to 25°C provided a significant benefit to local tissue in healthy 

controls and subjects with spinal cord injuries. This concurs with prior animal studies which 

demonstrated reductions in breakdown at lower interface temperatures.  Pressure ulcers have 

been historically managed by providing support surfaces, such as wheelchair seat cushions, to 

redistribute pressure at the body interface.   

Few practical interventions exist to control temperature at this interface; most employ 

passive cooling methods, which are limited by their inability to modulate applied cooling in 

response to changes in microenvironment.  This study’s goal was to develop controlled, local 

cooling elements for integration into a pressure-redistributing support surface.  

A holistic view of temperature control methods in an iterative design process was taken.  

Features and design specifications were generated using information from the literature. Idea 

generation and evaluation led to the modification of a multi-cell air cushion capable of 

controlling temperature in specific high risk areas.  Proof of concept experiments were conducted 
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with respect to interface cooling to a target temperature, redistribution of pressure, and heat and 

water vapor transmission.   

The design delivered local cooling over hour-long trials on able-bodied test subjects.  No 

significant difference in skin temperature (p>0.16) was found after 15 minutes of cooling from 

our target temperature (25°C).   The modified cushion showed similar (p=0.79) peak pressure 

index values when compared to the same cushion design without the cooling elements.  A 

thermodynamic rigid cushion loading indenter mimicked the environmental conditions of the 

body on the prototype for 3-hour duration tests.  Significantly lower temperatures were observed 

after 1 hour of cooling (p<0.003).  No effect was noted for relative humidity. These experiments 

successfully demonstrated plausible, integrated cooling elements in a multi-cell air cushion for 

the delivery of local cooling for pressure ulcer prevention.  
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1.0  INTRODUCTION 

1.1 PROBLEM STATEMENT 

Pressure ulcers afflict 1.3 to 3 million patients per year [1, 2] representing 3% to 29.5% of acute 

and long term care facility patients in the US and internationally [3-7].  Patient groups at risk for 

PU in healthcare settings include the elderly, persons with impaired mobility (such as spinal cord 

injuries, or head trauma), persons with poor nutrition, and those with more severe comorbidities 

such as diabetes or stroke [8-11].  People with these conditions are generally unable or unaware 

to weight shift during prolonged pressures associated with sitting or lying down.  In 2006 the 

Agency for Healthcare Research and Quality published data collected from a sample of national 

inpatient centers which highlighted a frequency increase of 280,000 to 450,000 (63%) in hospital 

acquired pressure ulcers from 1993 to 2003 [10].  These data serve to warn us that despite 

advances in wound care protocols, support surfaces, and medical technologies, current practice 

guidelines for pressure ulcer prevention need to be improved upon. Today pressure ulcers remain 

very costly in terms of recovery time, reduction in quality of life, and finances; prevention of 

pressure ulcers is more important than ever.   

Prolonged exposure to pressure has long been attributed as the primary factor in pressure 

ulcer development [12, 13].  Pressure is defined as “force per unit area exerted perpendicular to 

the plane of interest” [14].  Early research suggested that localized pressure resulted in tissue 
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ischemia, or reduction of blood supply, which in turn limits exchange of nutrients, metabolites, 

and waste products through capillaries and larger blood vessels [12, 13, 15]. Underlying tissue 

necrosis results in ulceration of the skin [16-18].  However, there are other risk factors associated 

with pressure ulcer development at the local level. Cofactors such as shear, friction, interface 

temperature, and moisture all contribute to the skin breakdown historically assumed to be caused 

by external pressure alone [9, 19].   

Recently, our laboratory has conducted research on local cooling with respect to skin 

blood flow.  The “results showed that both fast and slow cooling provided a protective effect on 

ischemic tissue by decreasing the metabolic demand and suppressing the smooth muscle activity 

[20, 21].”  These findings concurred with prior animal studies that demonstrated similar 

decreases in tissue susceptibility to damage at lower skin temperatures [22-24].  Pressure 

reducing support surfaces, such as wheelchair seat cushions, have been shown to be effective in 

decreasing risk for pressure ulcer development in a variety of settings [25-27].  A support surface 

is defined as any “specialized device for pressure redistribution designed for management of 

tissue loads, micro-climate, and/or other therapeutic functions (i.e. any mattresses, integrated bed 

systems, mattress replacements, overlay, seat cushion, or seat cushion overlay)” [14].  Currently, 

very few options exist to manage temperature at the support surface interface; of those that exist, 

almost all utilize some form of passive cooling or open-loop control mechanisms. Passively 

cooled support surfaces are limited by their steady state temperature and thus may not be 

sufficient for all user environments and needs.  Open-loop systems do not respond to changes in 

demand as skin temperature rises and falls.  By combining a pressure-reducing support surface 

and controlled, localized cooling, a medical intervention could be developed to better protect the 

skin of individuals at the highest risk for pressure ulcer development.   
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1.2 SPECIFIC AIMS 

The purpose of this study is to generate local cooling elements which can be integrated to 

improve wheelchair seat cushion design for tissue integrity management.  This cushion will be 

distinguished from currently existing cooled support surfaces in two critical ways.  First, a 

closed-loop control system will allow the cushion to modulate its cooling output in response to 

changes in cushion interface temperature; this will be accomplished by imbedding feedback 

mechanisms in the cushion to maintain a therapeutic temperature.  Second, this cushion will 

provide cooling to select areas most at risk for tissue breakdown (e.g., ischial tuberosities); in 

this way core normothermia is maintained while local cooling takes place where protection is 

needed the most.   

Specific Aim 1 - Develop design specifications for temperature control cushion 

Specific Aim 2 – Conceptualize cooling elements, develop & fabricate prototype  

Specific Aim 3 – Develop methodologies to evaluate temperature control features of  

prototype with respect to: 

• Verification of target temperature delivery (25°C) 

• Ensuring cushion modifications do not adversely affect pressure 

redistribution characteristics  

• Heat and water vapor transmission 
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1.2.1 Design flowchart 

Figure 1 details steps carried out to better organize and report the process used to formulate our 

design goals, proof of concept tests, part configuration, and final prototype evaluation.  This 

engineering design layout was summarized from Eggert’s [28] guidelines and loosely outlines 

the contents of this report.  In this manner the idea generation, conceptualization and feasibility 

studies, individual part layouts, and prototype testing methods are detailed below: 

• Gather information
• Interpret and summarize
• Design constraints, targets   
• QFD 
• Engineering design specifications

• Clarify functional requirements
• Generate ideas and solutions
• Feasibility evaluation
• Prospective material evaluation

• Product architecture
• Part configuration
• Analyze and refine
• Model and synthesize prototype

• Proof of concept tests
• Thermal imaging
• Pressure redistribution
• Heat and water vapor transmission
• Future designs and improvements  

Figure 1: Steps taken towards the development of a cool cushion 

  

1.3 PRESSURE ULCER BACKGROUND 

1.3.1 Definition and classification of a pressure ulcer 

The National Pressure Ulcer Advisory Panel defines a pressure ulcer (PU) as a localized injury to 

the skin and/or underlying tissue usually over a bony prominence, resulting from a complex 

combination of localized pressure and other risk factors [29].  The Centers for Medicare and 
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Medicaid Services (CMS) reported that almost 10% of nursing home residents and up to 40% of 

all patients with spinal cord injury acquired at least one stage of a pressure ulcer in their lifetime, 

a majority of which resulted in significant medical interventions or hospital stays [30, 31].  A 

pressure ulcer can lead to amputation, sepsis, or death if left untreated or unrecognized.   A study 

analyzing mortality rates adjusted for comorbidities and age reported 114,380 pressure ulcers as 

a contributing cause of death identified from national multiple cause of death data in 2001 [32]. 

Roughly 19% of these deaths reported the pressure ulcer as the underlying cause [33].  

Retrospective studies estimate the price of managing a high stage pressure ulcer from 

$70,000 to $200,000 in direct hospital costs and annual expenditures could tower over $11 

billion per year in the US alone [2, 34, 35].  Nine out of every ten hospitalizations related to 

pressure ulcers were covered by government health programs; roughly 66% by Medicare and 

23% by state Medicaid [10]. Sixty-seven percent of pressure ulcers are found on the buttock and 

hip, specifically on the sacrum, ischial tuberosities, and greater trochanters [11].  Other locations 

have varying degrees of soft tissue between them and bony prominences, including elbow, heel, 

ankle, occipital, ear, and patella [11, 36].  Pressure ulcers can be classified in severity by various 

‘stages’. Stage I pressure ulcers are classified as “Intact skin with non-blanchable redness of a 

localized area usually over a bony prominence. Darkly pigmented skin may not have visible 

blanching; its color may differ from the surrounding area.” The most severe stage IV ulcers are 

defined as “Full thickness tissue loss with exposed bone, tendon or muscle. Slough or eschar 

may be present on some parts of the wound bed. Often includes undermining and tunneling” 

[29].  To emphasize the importance of prevention for clinically acquired pressure ulcers, the 

Centers for Medicare and Medicaid Services no longer issue reimbursement to healthcare 
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facilities for stage III and IV pressure ulcers that are not documented on admission as of October 

1, 2008 [37]. 

1.3.2 Etiology of Pressure Ulcers 

Prolonged exposure to pressure over a bony prominence has been routinely demonstrated as the 

primary etiological factor for developing a pressure ulcer [19, 38, 39] .  Evidence has yet to 

demonstrate whether these injuries occur initially at the skin surface, within deeper tissue such as 

muscle, or from a non-specific interaction of both [16].  Landis suspected that localized pressure 

occluded capillaries and experimentally derived the value of 32 mmHg as a capillary closing 

pressure [40].  These findings were further investigated by Kosiak in one of the earliest animal 

studies on the effects of constant and alternating pressures on rat hamstring and surrounding skin 

[12].  By comparing the histology of healthy controls to a spinal cord injury experimental group 

where innervation to the hamstring area was severed, he noted the changes to both skin and deep 

tissue.  No damage was observed at 35 mmHg over any time course; muscle tissue was highly 

susceptible to pressures as low as 70 mmHg at only two hours of exposure.  There was little 

difference between the healthy and paraplegic rat groups, which suggested that innervation is not 

a direct cofactor in PU development.  Studies following this early work suggested an inverse 

relationship between length and magnitude of local pressure and its effect on pressure ulcer 

development [18, 41, 42]; as applied pressure increases in both length and magnitude, the skin’s 

tolerance to breakdown decreases in duration.  Intrinsic risk factors include age, nutritional 

status, disease comorbidities (diabetes, spinal cord injury, muscular dystrophy) leading to 

reduced mobility, and incontinence [43]. Extrinsic factors aside from pressure include local 

friction, shear force, moisture, and heat accumulation [19].  Healthcare professionals use a 
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variety of tools to characterize an individual’s risk for developing a pressure ulcer in clinical 

settings.  Scales, such as the Braden Scale, seek to capture patient information with respect to 

these aforementioned intrinsic and extrinsic risk factors [44].  

1.3.2.1 Shear force and friction 

Pressure induces direct mechanical deformation of skin and underlying tissue.  Shear 

force or “sliding force” is applied to the surface through pressure gradients acting perpendicular 

to the direction of applied pressure [45].  Goldstein and Sanders [46] demonstrated a relationship 

similar to Reswick and Rogers’[41] summation of the pressure-time inverse relationship: as 

shear force applied to tissue increases, tissue tolerance decreases.  Friction is defined as the 

“resistance to motion in a parallel direction relative to the common boundary of two 

surfaces”[14]  and has been shown to decrease overall tissue tolerance to prolonged pressure and 

shear [47, 48].   

1.3.2.2 Ischemia and Reperfusion Injury 

Prolonged pressure exposure subjects local tissue to ischemia, defined as localized 

reduction in blood and/or lymphatic circulation [49]. On a cellular level, metabolic activity and 

exchange are severely reduced by ischemia [13, 47].  When local pressure is relieved, there is a 

natural brief increase in blood flow known as reactive hyperemia to compensate for the buildup 

of metabolic wastes and oxygen deprivation [21].  This influx of oxygen rich blood can cause 

ischemia-reperfusion (IR) injury as toxic levels oxygen-derived free radicals overcome the area’s 

natural compensation ability [15].  IR injury occurs in many organ systems [50] and is a major 

factor in the development of pressure ulcers; this previously underestimated phenomenon helps 

explain why some patients develop PU despite receiving standard of care pressure management. 
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1.3.2.3 Moisture and heat accumulation 

While the presence of elevated tissue temperatures has been linked to pressure ulcer 

formation, the exact mechanism of impact remains unexplained.  Elevated or decreased 

temperature is linked to the rate at which essential reactions take place [51], including but not 

limited to mass transport, metabolism, exchange of nutrients and waste products, and infiltration 

of cytokines [15, 50-53]. Other factors include inhibition of temperature-mediated capillary 

mechanisms, changes in blood viscosity, and increases in tissue stiffness [54]. Tissue exposed to 

the highest pressures on support surfaces (IT, sacrum, trochanter) are at the highest risks when 

coupled with ischemic events and resultant reperfusion injury when pressure is relieved. The 

metabolic demand from increased temperatures exposes tissue to a substantially higher risk of 

PU formation [55].  Moreover, local temperature increases result in perspiration increases and 

moisture buildup; this moisture macerates the skin lowering its pressure tolerance [56, 57]. The 

combination of temperature and humidity (moisture) effects with respect to a support surface is 

known as the local microenvironment [58].      
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2.0  FORMULATION DESIGN: LITERATURE REVIEW 

2.1 TEMPERATURE EFFECT OF SKIN TOLERANCE TO PRESSURE 

As previously mentioned, the objective of this study was to generate design specifications and 

features that can be used to manage interface temperature of a pressure redistributing cushion.  

Literature studies on skin cooling, technologies used to measure and quantify tissue temperature, 

and how existing support surfaces responded or accommodated changes in temperature were 

selected and examined.  The following investigations in both animal and human models sought 

to better understand the effects of temperature on PU etiology, as well as to develop tools and 

support surface technologies to analyze and alleviate elevated interface temperatures in both 

experimental and clinical settings.  

2.1.1 Animal Studies 

Kokate et al. were responsible for one of the first animal models demonstrating tissue tolerance 

by varying duration and value of applied pressure over four skin temperatures [59].  An 

experimental apparatus reliably and repeatedly applied a metal indenter disc to the dorsal aspects 

of swine at 100mmHg over five-hour periods.  The discs were outfitted with heating elements 

and water cooling channels to generate temperatures above or below core body temperature, 

respectively.  Temperatures of 25, 35, 40, and 45°C were simultaneously applied alongside the 
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contact pressure.  The animals were then monitored during a four-week follow up and recovery 

period; measurements of edema, local tissue perfusion, and skin surface temperature were 

performed by blinded observers and tissue samples were taken seven days post-

pressure/temperature application for histological analysis.  Visually observed surface changes 

over the twenty-eight day follow up period were compared alongside the histological analysis 

summarized above to assess the effect of temperature and pressure on overall skin health.  

Applied temperature of 45°C resulted in partial to full epidermal necrosis, observable damage of 

subdermal structures, and severe muscle damage. Applied temperature of 40°C was less severe 

than the highest temperature state but showed only moderate muscle damage.  Unfavorable 

results at 35°C varied individually between experimental subjects, and were generally isolated to 

areas directly above boney prominences, with little to no epidermal or dermal damage.  In 

general, higher temperatures correlated with increases in tissue damage.  Moderate to severe 

tissue damage were additionally observed at all temperatures above 25°C.   This suggested that 

lower skin temperatures could exhibit a protective effect that would allow tissue under bony 

prominences to sustain higher pressures for longer periods of time.  

Iaizzo [60] conducted a follow-up study using this previously established methodology to 

further refine the “threshold temperature below which focused cooling would minimize the 

potential for wound formation.”  In this study there were two sets of experiments conducted on 

the dorsal skin of swine.  The first was a constantly applied pressure of 100mmHg for 2, 5, or 10 

hour periods, paired with the same temperature range as the pilot study (25, 35, 40, 45°C).  In the 

second set, 100mmHg was applied for 10 hour intervals at temperatures of 25, 27.5, 30, and 

32.5°C.  Again, histology analysis verified marked increases in tissue damage for higher 

temperatures and duration, whereas minimal damage was seen at all pressure durations for low 
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skin temperature trials.  In fact, these results were true at any focal cooling temperature < 30°C, 

with the most beneficial outcomes at the lowest applied temperatures.  Also to note, deep tissue 

and muscle demonstrated greater sensitivity at the higher applicator temperatures than compared 

to the epidermis, dermis, and subcutaneous fat layers.  This data is consistent with previous 

studies focused primarily on pressure which concluded pressure ulcers originate in deep tissue 

and work upwards [61]. 

Patel et al. worked to better understand the local tissue response of increased or decreased 

temperature with respect to pressure, skin blood flow (perfusion), and stiffness [54].  Three sets 

of experiments detailed combinations of temperatures and applied pressures which 

activated/inhibited auto-regulatory mechanisms of blood flow in the skin of fuzzy rats.  In order 

to demonstrate the effect of skin perfusion in unloaded tissue, the first set of experiments applied 

a low-constant pressure of 3.7 mmHg to the skin at 28°C, 30°C, 32°C, 34°C, and 36°C.  Skin 

perfusion increased with each temperature increment, which suggested normal vasodilation 

occurred at even markedly increased skin temperatures for low pressure levels.  The second set 

of experiments applied incremental pressures from 3.7 to 62mmHg under 28 and 36°C.  They 

observed the same increases in perfusion seen in the first experiment at higher temperatures, 

although these increases tapered off at any pressure > 25 mmHg for both 28 and 36°C.  The 

authors explained that the normal vasodilatory mechanisms were unable to compensate for the 

mechanical loading of these higher pressures.  In a third experiment, tissue displacement via 

LVDT (linear variable differential transformer) was studied in response to combinations of 

pressure and temperature as conducted above to calculate changes in stiffness with respect to 

pressure and temperature.  Higher temperatures resulted in stiffer tissue, with markedly less 

creep than without heating at all levels of pressure.  Decreased ability to maintain proper blood 
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flow and stiffer supporting tissues which poorly dissipate load both could contribute towards the 

formation of pressure ulcers.   

Lachenbruch took a retrospective look at published laser Doppler and tissue oxygenation 

data from several of the aforementioned studies in order to quantify this protective effect 

provided by local cooling [62].  Using graphical techniques, he extrapolated that a pressure drop 

from 56mmHg to 40mmHg is equivalent to an 8°C drop in skin temperature; nearly a 30% 

reduction in applied pressure.  He then equated this protective effect to the pressure reduction 

granted from high end support surfaces and infers that an inexpensive support surface capable of 

providing 5°C of cooling relative to normathermal interface temperatures would have the 

equivalent pressure reduction of surfaces costing nearly double.   

2.1.2 Human Studies 

The effects of local cooling on skin tolerance to pressure have not been completely explained in 

the literature, although several methods of direct and indirect measurement of cooling effects 

have been developed.  In 1989 Meijer et. al developed an indirect method of calculating relative 

ischemia in an area of pressure application [63].  A relatively high pressure (375 mmHg) was 

applied to the trochanter region of elderly nursing home residents.  Skin temperatures were 

recorded by thermocouples affixed to the skin at the site of application.  A nearby control 

measurement was also taken for comparison.  A skin temperature decrease took place during the 

period of pressure application, although these values were not reported. This temperature 

decrease was expected because the heat transported by blood flow is much greater than that 

generated by local metabolism [64, 65], and so restriction of blood flow should naturally result in 

a decrease in temperature.  When the pressure was relieved from the application site, normal 
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blood flow resumed after a brief latency period and the surrounding area gradually warmed.  

Pressure ulcer susceptibility was calculated by summing the recovery time and the time constant 

of the re-warming period.  The measure was sensitive enough to distinguish between at-risk 

elderly patients (those with a documented history of previous pressure ulcers or multiple risk 

factors as described above) and healthy young controls in terms of susceptibility.  No statistical 

difference was found between the young healthy control group and non-risk elderly population 

(those with no history of PU or comorbidities). No pressure ulcers resulted from the application 

of the measurement apparatus.  The value of this study is that it sought to measure pressure ulcer 

risk through an indirect means.  Future experimental tools derived from local temperature 

measurement and skin blood flow response following pressure application allowed researchers to 

perform analyses on humans without biopsy and histology. 

In 2002 Meijer teamed with van Marum et al. to reinvestigate the susceptibility to 

pressure ulcers as the result of a local stimulus [66].  Instead of an applied pressure, local cooling 

was used to initiate vasoconstriction and generate a similar temperature-time response as 

described above.  Their hypothesis was that pressure ulcer incidence could be predicted by the 

velocity of the local blood flow response after cold application (17°C).  Patients who did not 

develop pressure ulcers during the follow-up period had significantly shorter recovery time 

constants than those who had future skin breakdown, although the difference between initial and 

final temperature was nonsignificant.   

A study conducted at our laboratory illustrated the protective benefit of lower skin 

temperatures at various cooling rates coupled with pressure [20, 21].  As previously mentioned, 

people with spinal cord injury are at a high risk of developing pressure ulcers and generally have 

impaired thermoregulation following their injury [67, 68].  The effect of cooling was assessed 
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using a noninvasive measure of the reactive hyperemic response in both healthy controls and 

participants with various levels of spinal cord injury.  Participants were subjected to three test 

sessions: 60mmHg pressure alone, pressure with cooling applied at a slow rate (-.033°C/min), 

and pressure cooling applied at a fast rate (-4°C/min).  The skin temperature was lowered to 

25°C at the point of pressure application.  The magnitude of the reactive hyperemia in each 

subject was a direct measure of the severity of the local tissue ischemia.  For healthy controls, 

reactive hyperemic responses was reduced by both fast and slow cooling rates, and for all 

subjects metabolic demand was shown to increase only when local cooling was absent.  This 

suggests that local skin cooling presents a beneficial effect to ischemic tissue in participants with 

or without SCI and may increase tissue tolerance to pressure during weight bearing scenarios.  

Based on the aforementioned human and animal studies, targeting a skin temperature of 

approximately 25°C would maximize the protective potential of our cool cushion design. 

2.2 MATERIAL EFFECTS ON CUSHION INTERFACE PROPERTIES 

Design specifications for a cooled cushion were generated by looking at the literature regarding 

composition and performance of currently existing cushions with respect to pressure 

redistribution and microenvironment.  Standardized reviews and observational studies of 

cushions arranged by composition and features were examined.  Foam, viscoelastic foam, and 

fluid filled (air/water/liquid) cushions were chosen for evaluation because of their high 

representation in the literature and potential ease of modification [19].   Foam is defined as a 

“lightweight cellular material resulting from the introduction of gas bubbles into a reacting 

polymer” [69]. Foam can be classified as open cell, where gases and liquids can pass through the 
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foam in a porous manner, or closed cell, in which the foam is non-permeable [14]. Viscofoams 

or “memory foams” consist of “flexible matrix material that has both elastic (displacement-

dependent) and viscous (time-dependent) properties” [69] .This classification also includes pure 

gel cushions [19].  As the name suggests, fluid-filled cushions are generally composed of 

viscoelastic, aqueous, or air filled chambers.  These chambers exhibit passive movement of fluid 

from one area to another in response to distributions of seated pressure [19]. By evaluating 

cushions grouped by construction material, decisions could be made as to what features would 

bring our cushion design closest to ideal performance. 

2.2.1 Pressure 

While the overall goal was to identify solutions for controlling cushion microclimate, the ability 

to appropriately redistribute interface pressure is still a primary concern for the design.  Support 

surfaces aim to reduce interface pressure by two main processes: immersion and envelopment 

[19].  Immersion is the “depth of penetration (sinking) into a support surface” [14].  High 

pressures concentrated at bony prominences can be spread over neighboring areas as they 

immerse into the support surface.  Envelopment is “the ability of a support surface to conform, 

so to fit or mold around irregularities in the body” [14].  Taken together these two measures 

illustrate how well a particular support surface redistributes load and minimizes interface 

pressure.   

Foam deforms in proportion to its applied load and is a relatively stiff material choice, 

mainly due to the increased thickness required to adequately support pressure loads [19].  Over 

time and extended use, mattresses and cushions can bottom out due to structural wearing of the 

natural air space within its composition [19]. An advantage to foam cushions is their ability to be 
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modified into contours, segments, or cut-outs in order to accommodate a wide range of seat 

cushion users [70].  Air cushions have good immersion and mid-level envelopment, if properly 

inflated to the appropriate internal air pressure.  Under and over-inflation can cause bottoming 

out and pressure increases, although normal operation exhibit satisfactory pressure 

redistribution[19].  Viscous fluid filled cushions also perform well with pressure unless the 

material moves out from under bony prominences [71].   

2.2.2 Shear force 

Forces generally coupled to the application of pressure are shear forces, defined as “the force per 

unit area exerted parallel to the plane of interest.”  These forces generate distortive shear strains 

as detailed in section 1.3.2.1.  Early studies comparing support surfaces with respect to shear 

force demonstrated better performance of gel or air cushions than standard foam material types 

[72, 73]. A previous study conducted in our laboratory evaluated cushions in terms of interface 

shear characteristics [74], utilizing a shear force sensor and standardized horizontal displacement 

test.  The lowest shear stresses were observed in viscous fluid cushions, followed by air, and then 

elastic and viscoelastic foams at 10, 15, and 20 mm of horizontal displacement.   

 

2.2.3 Temperature 

The temperature response of cushion composition materials was given a high amount of focus 

since lower interface temperature before modifications would most likely give rise to improved 

outcomes after incorporating methods for closed loop cooling.   Early human studies 
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investigating skin temperature focused around the interaction between a given support surface, 

time, and the resulting skin temperature, as these surfaces directly impact the microclimate 

effecting tissues at risk for pressure ulcers [58].  Fisher and Kosiak et al. recorded skin 

temperatures under ischial tuberosities and posterior thighs during 30 minute test periods on 

several commonly prescribed seat cushions [55].  They noted increases of temperature under the 

IT on standard foam cushions; whereas cushions composed of materials with higher specific 

heats (water floatation and gels) demonstrated decreases or non-significant increases in 

temperature. This can most likely be attributed to the testing duration being insufficient to 

achieve a thermal steady state for these cushions.  Stewart and Cochran et al. conducted yet 

another investigation of support surface heat distribution capability, in which they measured skin 

temperature and relative humidity for commercially available cushions (foam, viscoelastic foam, 

gel, water floatation, and air) [75]. Temperature, heat flux, and relative humidity data were 

collected by affixing appropriate sensors directly to the IT skin under loose-fitting cloth trousers.  

Results from this study were consistent with previous studies, showing monotonic changes in 

temperature from foam type cushions, decreases in water floatation, and  non-significant changes 

in gel pads, even at a two-hour interval period [55, 76] .   

Foam tends to increase cushion interface temperature because their construction materials 

and air within are poor conductors of heat [19]. Gels and viscofoams tend to have high heat 

transfer, and exhibit almost passive cooling before the body of material reaches equilibrium with 

the ambient temperature and seated individual.  After about 2 hours, this initial heat capacity is 

saturated, and pressure relief lifts must be taken or a heat will continue to accumulate in a 

manner similar to standard foams.  Microclimate of fluid cushions is affected by the specific heat 

of the fluid material contained in the support surface [19]. 
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In a study utilizing a thermodynamic rigid cushion loading indenter (TRCLI), cushion 

types were evaluated by composition with respect to temperature and local relative humidity.  

The TRCLI approximates the seated microenvironment of a human in a standardized and 

repeatable manner [58]. This study classified each cushion type as either a high/low dissipater of 

both heat and moisture.  Foam cushions were on the low end of heat but higher end of moisture 

dissipation.  Viscofoam cushions showed low heat and moisture dissipation, whereas gel 

cushions were high heat, low moisture [58].  Air cushions were closest to the cutoff between 

high and low heat dissipation, with poor performance with respect to moisture [58].  

2.2.4 Summary 

Foam cushions are the relative baseline cushion composition; this material does not exhibit 

marked ability to redistribute pressure, shear force, interface temperatures, or relative humidity.  

It is easy to manipulate for customization (contours, segments, etc.), which could be beneficial in 

the development of a modified cushion to house site-specific cooling elements.  Viscoelastic 

foams are similar in performance to standard foams, offering temperature-dependent immersion 

and envelopment levels, time dependent pressure redistribution, unremarkable handling of shear 

and initial resistance to changes in interface temperature; prolonged exposure to high 

temperatures elicit steady increases over time.  Air cushions perform well with respect to 

pressure redistribution, but this performance is dependent on appropriate initial inflation.  They 

resolve shear forces well and have good heat dissipation qualities, although are poor dissipaters 

of moisture.   
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2.3 MEDICAL AND COMMERCIAL COOLING EQUIPMENT 

Currently existing strategies to lower body temperatures were evaluated in addition to cushion 

construction materials.  Studies involving commercially available devices, support surfaces, and 

personal cooling devices are detailed below in order to ascertain the advantages and 

disadvantages of each cooling modality.   

2.3.1 Rapid hypothermia induction techniques 

Induction of both mild and severe hypothermia has been used as an intraoperative therapy for the 

reduction of cerebral ischemia, hypoxia, cardiac arrest, and many other conditions [77-80].  The 

effective principles of core body temperature reduction could be applied to local cooling 

elements. The simplest method of hypothermia induction is the application of ice or cooled gel 

packs to the head, neck, and torso of a patient, providing a slow (0.9°C/hour) cooling rate 

compared to more advanced systems detailed below [81].  Cooling blankets have been utilized 

and demonstrate core temperature decreases of 1 – 2°C; these devices circulate cold water 

through tubing or embedded chambers by a pump.  Blankets are wrapped about the patient, in 

direct contact with the skin [81, 82].  One novel device (Thermosuit system, Life recovery 

Systems, Kinnelon, NJ) utilizes the speed of direct immersion in ice-water bath by circulating a 

thin layer of ice water within a narrow plastic membrane encasing the skin [83].  This same 

concept is utilized by several forced air or circulating water mattresses, although these 

mechanisms of cooling are generally large and utilize a standard refrigeration module and 

fan/pump for circulation [78].   

 19 



Other methods involve using pre-cooled materials with high thermal conductivity that are 

fixed to the skin surface in a variety of ways.  EMCOOL’s (Emcools, Vienna, Austria)  pads are 

small, adhesive patches of a thermally conductive plastic placed directly on the skin surface, and 

provides a rapid cooling rate of 3.3°C/hour [84] in acute cardiac arrest.  A later study by the 

same research group utilized cold metal plates pre-cooled to -20°C fixed to swine skin by 

silicone webbing [85].  While highly effective in lowering body temperature, these methods 

require pre-cooling, storage of replacement pads or plates, and lose cooling capacity relative to 

ambient temperature. 

2.3.2 Personal cooling systems 

Personal cooling devices (PCD’s) have been developed to alleviate the strain associated with 

warm ambient climates or during strenuous activities such as military combat, firefighting, 

chemical processing, exercise, or strenuous labor.  PCD’s are generally garments such as vests, 

scarves, and hats which function from either passive cooling, circulated fluid (water, air), pre-

cooled thermally conductive or heat reflective materials.  In a comparison of air-cooled to water-

cooled vests by Shapiro et al., internal and external temperatures were monitored during 

strenuous activity in full military uniform [86].  Both vests demonstrated roughly equal (90W) 

cooling power in high humidity environments, based on calculations derived from Givoni and 

Goldman [87].  Both systems achieved skin cooling through evaporation of sweat, and results 

were highly dependent on ambient air temperature and relative humidity.  Subjectivity to 

ambient environment of liquid cooling garments were confirmed by later studies using dry or 

sweating thermal manikins [88, 89].  Cooling vests were proven to be ineffective in lowering 

overall body temperature in hyperthermic athletes after heavy exercise [90], and proved just as 
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effective or even less effective as hydrating with cold water for combat marines in simulated 

tasks [91].   A variety of passive cooling PCD’s were utilized to examine the effects of heat on 

work tolerance time, comfort level, heart rate, and core temperature on red pepper harvest 

workers [92]; while results were highly favorable, cooling capacity greatly diminished roughly 

one hour after initiation.  Rotating out, “recharging” or allowing these passive PCD’s to reach 

normal ambient temperatures away from the body restored their effectiveness.   

2.3.3 Cryosurgical devices 

Cryosurgery (the application of very low temperatures to tissue) has been used in a variety of 

medical fields including dermatology, oral, retinal, heart, and liver procedures [93].  Recent 

applications of two cooling and heat transferring devices have possible applications towards a 

targeted skin cooling element.  The first was the development of an instrument used to freeze 

small areas of skin for wart removal.  It consisted of a system which delivered local cooling 

through the use of thermoelectric coolers (TEC).  TEC’s utilize the Peltier effect to generate a 

temperature differential between two dissimilar metals.  If a current is passed through these two 

materials, “heat is either absorbed or released at the junction, depending on the direction of the 

current flow” [94].  Thermoelectric coolers offer the advantages of standard refrigerant systems 

without the complicated pipes, hoses, motors, and circulating fluid accompanying it.  The biggest 

challenge in TEC systems is the removal of the heat generated at the warm junction, opposite the 

side removing heat.  Generally these devices are coupled to a heat sink or radiator to be cooled 

by ambient temperature, circulating fluids, or forced air.  The aforementioned device was able to 

achieve an applied temperature differential of 45°C using a two stage, fluid cooled system.  A 

second device combined the cooling capacity of thermoelectric coolers with a heat pipe at the 
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application area to deliver cooling at the tip of a probe   Heat pipes transfer heat with very high 

efficiency (several hundred times higher than most metals), and consist of “closed, evacuated 

envelopes, in which a working fluid (whose vapor pressure is at a desired operating temperature) 

evaporates and condenses due to volume expansion of the phase change.  The working fluid then 

moves back from the condenser to the evaporator by means of capillary action through a 

specially designed wick material” [93].  While heat pipes are nearly ideal heat transfer materials, 

they also are subject to orientation limitations (as the wicking material is limited when working 

against gravity) and specific operating ranges relative to the working fluid within.   

2.3.4 Summary 

A summary of the variety of available options currently used to cool skin or core temperature in 

clinical settings was compiled; methods which were most feasible and advantageous to meet 

both technical and user needs were detailed in Table 1 below: 
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Table 1: Advantages and disadvantages of cooling methods 

Cooling Method  Advantages  Disadvantages 
Water bath Fast cooling rate Difficult to contain

High heat capacity Limited time before recooling
Most effective temperature drop in literature No closed loop control

Fans and blowers  Can be used in many orientations Air exchange required
Capacity for closed loop temperature control  Heat transfer dependent on evaporation

Noise 
Dust / moisture buildup
Requires power source
Difficult to cool well below ambient 

Heat Sinks / Passive Cooling Materials  Can be used in many orientations Functions only to a particular range of temperatures
Easy to implement  Limited time before recooling
No moving parts No closed loop control unless coupled with another system

Requires precooling
Compressor‐based cooling  Capacity for closed loop temperature control  Maintenance of moving parts

Cooling below ambient Noise 
Cooling large amounts of heat Requires power source

Size
Water circulating with heat exchanger  Capacity for closed loop temperature control  Condensation

High heat capacity Leaking / hoses 
Less heat removal
Limited by heat sink
Requires power source

Air circulating with heat exchanger  Capacity for closed loop temperature control  Dependent on relative humidity / sweating 
Heat transfer dependent on evaporation
Limited by heat sink
Requires power source

Heat pipes High thermal conductivity Limited by orientation
No moving parts No closed loop control unless coupled with another system
No power source required

Thermoelectric Coolers  Can be used in many orientations Limited by heat sink
Cooling below ambient Requires power source
No moving parts Selection of TECspecific  to desired max temperature drop
Small Size
Temperature control   

2.4 DESIGN SPECIFICATIONS 

Various design tools were useful to organize the assessment of current standards of care, support 

surfaces, and cooling methods for the design of a cooled cushion. By detailing the functional 

requirements, constraints, limitations, and available materials, decisions were made regarding the 

incorporation of features into potential solutions.  The quality function deployment (QFD) 

method is a “team-based method that draws upon the expertise of the group members to carefully 
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integrate the voice of the user” in the design process [28]; this method was useful in organizing 

and structuring features of the design and benchmarks interpreted from the literature. The house 

of quality (HoQ, Table 2) for product planning represented a graphical method to list wheelchair 

cushion user (“customers”) needs next to the various engineering characteristics of our project 

goals.  Engineering characteristics are generally defined by some physical unit or subjectivity 

measure.  By associating the end user needs with the technical requirements, our group was able 

to discuss, understand, and come to consensus on important details of the cushion design.  

Table 2: House of Quality Matrix 

 

As seen above, the HoQ matrix consists of the user requirements, technical requirements (with 

their associated units and safety limits), and marked by any interaction between them.  Both 
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needs and requirements were determined from the literature and interviews with field experts and 

wheelchair users.  HoQ diagrams are often populated with numerical correlation ratings assessed 

from surveys or other data sources, although this analysis was deemed unnecessary for our 

purposes in generating initial design solutions.  The QFD illustrated the important features to 

focus on, including: maintaining skin protection properties, comfort, meeting daily usage 

requirements (battery life), and adjustability to a variety of users and wheelchair settings.  An 

engineering design specification sheet (Table 3) was then created to summarize the findings of 

our initial design phase; this living document evolved as solutions were conceptualized, 

evaluated, and in some cases, prototyped and tested.  

 25 



Table 3:  Engineering design specifications 

Title: Cushion with site-specific temperature control for pressure ulcer prevention. 

Introduction:  

Design problem: need cushion capable of point cooling areas at highest risk under seated 

individual 

Intended purpose: Reduce the temperature at the skin-support surface interface to increase skin 

tolerance to pressure. 

Unintended purpose: Pressure redistribution 

Customer requirements: 

• Skin should be cooled to temperatures around 25 ± 1°C. 

• Battery life and heat sink capacity should be able to run 8-12 hours at a time to satisfy 

daily wheelchair cushion use.  

• Must overcome human body heat generation of 64-244 W/m2  (resting-heavy activity). 

Operating environment: 

• Wide variety of ambient temperatures ranges and relative humidity.  

• Should tolerate incidental exposure to moisture. 

• Cooling effectiveness should be variety of users’ seated skin temperatures. 

Economic: 

• Economic life of three to five years. Wear and tear dependent on activity level of user.   

• Should not require servicing outside of routine cleaning. 

Geometric limitations: 

• Cooling mechanism should fit within currently existing support surface dimensions. 
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Reliability and robustness: 

• Low failure rate during activities of daily living on a support surface.   

• Fail safe system to prevent over-cooling or undesirable operation.  

• Able to respond to changes in interface temperature (closed-loop control of cooling).  

Safety: 

• Skin should not be exposed to hot or heated portions of the device. 

• Should not overcool skin to cause cold damage or appreciably lower core temperature. 

• Cooling mechanism should not reduce support surface’s ability to redistribute pressure or 

introduce a pressure focal point. 

• Low voltage requirement < 50V. 

Pollution: 

• Will not create noise > 30-40 db. 

Human factors: 

• Support surface designed to fit 95th percentile females and males. 

• Simple mode of operation, ‘out of the box’ usage. 
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3.0  CONCEPT & CONFIGURATION DESIGN  

The conceptual design phase followed the aforementioned QFD and engineering design 

specification development.  Sketches, modeling, bench top experiments, and proof of concept 

prototypes were crucial steps towards developing our current and effective design iterations.  

Concept design refers to the process by which “alternative design concepts are distinguished as 

embodiments of physical principles, materials, or geometry.  They are evaluated for feasibility 

and/or preliminary performance.” A wide variety of cooling methods were summarized in 2.3.4 

and the two most effective means to cool a cushion interface were selected for this design phase.  

Circulating water and thermoelectric cooling systems were chosen because of their ease of 

implementation, high heat capacity, and ability to be controlled based on feedback from the 

system. Configuration design is where the overall architecture or components of a solution are 

analyzed, synthesized, and arranged [28]. This process was carried out to refine the second 

design concept, whose preliminary performance met the needs specified in the QFD and the 

targets of the design specification.  

3.1 WATER CIRCULATING SYSTEM 

The first interface cooling method attempted was circulating cooled fluid through a network of 

tubing impregnated in a standard foam block cushion.  We began with a large-scale model to 
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gauge feasibility and make observations to fine tune the design concept.  A standard foam 

cushion was chosen because of ease of modification, availability, and relatively good ability to 

dissipate pressure.  This feasibility layout, diagrammed in Figure 2, consisted of a fan-cooled 

radiator block, circulating motor, flow speed controller (Gigabyte Inc., New Taipei City, 

Taiwan), foam cushion, in-series flow temperature monitor (Thermaltake Inc.), and power 

supply.  Flexible tubing of 13mm diameter, 1.5mm thickness allowed cooled water to circulate 

across the surface of the cushion. Heat generated beneath the test subject would be conducted 

through the tubing to the water, which then passed through the radiator cooled by a variable 

speed fan.  Both the fan speed and circulating pump were thought to have an effect on the 

cushion cooling performance.  The water circulating system was adapted from a CPU liquid 

cooler, which supports chips operating from a 60-80°C range.  

 

Figure 2: Diagram of water cooling system.  (A) Fan-cooled radiator.  (B) Water circulating motor. 

(C) Flow rate adjustment knob. (D) Foam block cushion with inlaid path for water tubing.  (E) In-line water 

temperature monitor. (F) Power Supply. 
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The foam block was then outfitted with several thermistor probes (Cole-parmer Models 

U-08502-14, U-08443-20) illustrated in Figure 3 without a seated user on the cushion.  The 

cooler ran for approximately 30 minutes prior to any pilot testing in order to allow the water to 

reach constant temperature (22 ± 3°C).  A volunteer test subject sat in standard cotton scrub 

pants during 45 min trials, with temperatures recorded every 15 min under both ITs and thighs. 

Ambient temperature was 23 ± 1°C, with roughly 18% RH.  At maximum water circulation and 

fan speeds, initial seating tests showed no appreciable difference in temperature throughout the 

trial, and temperatures actually increased from an average of 25 to 34°C at each location after 45 

min.  This was thought to be attributed to the thermal insulation of the foam block as well as the 

thickness and spacing of the tubing.  Another point to note was that there was condensation 

occurring at the cushion interface at and around the cooled tubing.  These (and other benchtop 

results) data were not statistically analyzed.   

 

Figure 3: Thermocouple sensor locations - (A) Thermistor scanning module. (B) Thermistor. (C) 

Orientation of seated test subject on cooling concept. 

The layout of a commercially available seat cushion cooler which circulated water 

through a thermoelectric cooling (TEC) block was then examined in a similar manner.  The heat 

generated by the TEC units was conducted to a pair of heat sinks which were cooled by fans.    
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Reduction of foam thickness, decreasing the layout spacing of the tubing within the foam, and 

lowering the tubing dimensions to 6mm diameter, 0.5mm thickness (Figure 4) was equally 

ineffective in lowering interface temperature.  Temperatures did not increase past 32°C but were 

not reduced towards the target protective range described above.  Moisture buildup also 

continued to be a common problem during full-length trials. 

 

Figure 4: Modified tubing layout, reduction in tubing wall and foam thickness. 

3.1.1 Analysis of design 

It was concluded that using circulated fluid to cool the surface of a foam cushion was an 

ineffective means of providing local cooling.  Several key issues included: 

• The system itself was cumbersome to assemble, arrange, and utilize.   

• None of the layouts achieved the target interface temperature.   

• The water volume needed added appreciable weight to the cushion.   

• Managing the tubing to avoid kinking was challenging.   

• Several of the moving parts and components required electric power.   

• Variability in fan speed, water circulation speed, tubing length, thickness, and material 

selection all lead to changes in performance.   
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• The system was not resistant to changes in ambient temperature. 

• Condensation occurred along the length of tubing.  

• A large cooling area which did not focus anatomic locations most at risk of pressure ulcer 

development. 

 To increase effectiveness, the design would require a reduction of moving parts, lower 

condensation, and more defined points of contact cooling.  A previous study conducted in our lab 

utilized a thermoelectric cooling (TEC) module to apply local cooling at the sacrum, and 

maintained it using a small fan and heat sink [20].  Several of the challenges from the previous 

design iteration could be solved by imbedding a thermoelectric cooler within a cushion, properly 

removing the heat generated across the junction, and aligning those coolers with areas most at 

risk for pressure ulcer development. A problem with this approach is that seating a person 

directly on a stiff thermoelectric cooler would introduce a substantial pressure gradient. TEC’s 

are housed in metal or ceramic plates in various sizes, and must also be accompanied with a heat 

sink, also made of thermally conductive materials.  These components would interfere with a 

cushion’s ability to provide immersion and envelopment if imbedded directly below bony 

prominences. A medium at the interface with the buttocks which transfer cooling yet meets 

sufficient pressure requirements would be required. 
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3.2 DESIGN OF A THERMOELECTRICALLY COOLED AIR CUSHION 

3.2.1 Product layout - Air cushion with thermoelectric elements 

3.2.1.1 Design layout 

A segmented air cell cushion technology provides solutions to several of the challenges listed 

above and was selected as the core technology for this design. The ROHO single chamber high 

profile air cushion (ROHO Group, Belleville, IL) is classified by CMS as an adjustable, skin 

protection cushion [95] and provides suitable redistribution of pressure, shear, and interface 

temperature as discussed in 2.2.4. The overall construction of individual cells allows for site-

specific additions of interface cooling elements. Segmented air cell cushions, such as the ROHO 

shown in Figure 5, use a system of cells interconnected by channels that allow air to flow at a 

controlled rate from cell to cell.  As this occurs, the bony prominences are immersed and 

enveloped in the cushion material, increasing the contact area and distributing the applied force 

on the buttocks. A properly inflated segmented air cushion will allow a person to sink to roughly 

0.5” of clearance between the buttocks and the bottom of the cushion [71]; the internal pressure 

of the cushion supports the applied load of a seated person. Thermoelectrically cooled 

cushioning elements could be incorporated into this clearance space of the air cushion.   

  

Figure 5: Example of multi-cell ROHO air cushion 
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The project team postulated that gel pads or blocks could serve as the interface between 

small thermoelectric devices and the seated individual.  There are several benefits to this 

approach; first that a soft, contouring gel pad would have better contact with the skin and allow 

the cooling to be delivered more effectively. Second, the cushioning effect of the gel can protect 

the user from the force applied when the user sits upon these thermoelectric coolers rather than 

the cushion of air in the clearance space.  Third, the cooled area would be limited to the zones 

immersed farthest into the cushion, corresponding to the anatomical locations at high risk for 

developing pressure ulcers. This cooling element design is modeled below in Figure 6. 

 

Figure 6: (Left) - Exploded view of cooling element. (Right) - air cell under load. 

Individual cooling elements can be inserted through the base of the cushion into the 

individual air chambers.  The gel pad is positioned atop a thermoelectric cooler and the chamber 

resealed around the TEC using neoprene epoxy to maintain the internal pressure of the cushion 

used to support load. The hot side of the TEC is fixed to a heat sink to draw the generated heat 

away from the TEC and gel pad.  As the air cells deform, the buttocks would come in contact 

with the gel pad, which is cooled by the thermoelectric cooler situated at the base of the cushion.  

These cooling elements could be arranged in arrays throughout the cushion depending on the 

needs of the user (Figure 7).  Different zones beneath a user could be individually controlled and 
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calibrated to cover small or large areas of targeted cooling.  For the purpose of design 

development and evaluation, a single cooling element was developed, tested, and optimized. 

 

Figure 7: Potential arrangement of cooling elements within a cushion. 

3.2.1.2 Component summary 

A prototype cushion was fabricated using the aforementioned design and is detailed in Figure 8.  

The single chamber, high profile ROHO cushion (model: 1R99C) (A) sat atop a support frame 

(G) whose height accommodated the heat sink (E) and cooling fan (F).  The heat sink was 

machined from aluminum to a 76.2x63.5x63.5 mm block (3x2.5x2.5 in.) and has a basic fin 

design (spaced 2 mm apart) to allow convection to dissipate the heat created by the TEC.  

Aluminum 6061 was used due to its thermal properties and ease of machining (specific heat Al 

6061: 0.896 J/g-°C, thermal conductivity: 167 W/m-K). A Hengshan (Hengshan Group, 

FS70252M, Taiwan) CPU cooling fan was oriented perpendicular to the fins with the design of 

increasing convection to ambient air.  The gel pad (B) was set into the base of a ROHO air 

cushion located where the left IT was expected to be immersed into the cushion. Figure 9 shows 
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several views of this design; the dashed representation of the buttocks illustrates the alignment of 

a seated user on the model and prototype images.  

The initial gel pad used for prototype construction was provided and designed by 

Pittsburgh Plastics Manufacturing Inc. who partnered with our laboratory towards the completion 

of this project. The gel pads first supplied were glycerin hydrogels bound in 0.8mm urethane 

film, approximately 12.7x25.4x12.7 mm (0.5x1x0.5 in.), and press fit into the base of the 

Modified ROHO.  The gel pad was designed to cool approximately 645.16 mm2 (1 in2) while in 

contact with the buttocks. 

 

Figure 8: (A) ROHO air chamber. (B) Thermally conductive gel pad. (C) TEC unit. (D) Sensing and control 

thermistors. (E) Heat sink. (F) Heat sink cooling fan. (G) Support platform and frame. 
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Figure 9: Model and physical layout of cushion design 

The interface between the gel pad and TEC module was coated in a thin layer of thermal 

grease (Thermal Joint Compound, Wakefield Thermal Solutions, Pelham NH) to increase heat 

conduction.  For this first design iteration, the gel pad was exposed to the cushion interface 

without the neoprene material of the ROHO air chamber covering it (Figure 10).  In this manner 

a seated user would be exposed directly to the cooled gel pad.  The border surrounding the 

severed air chamber was sealed with airtight thermal epoxy (Royal Adhesives & Sealants, LLC, 

Belleville NJ).  This prevented any appreciable loss of air pressure.  The air chambers 

surrounding the thermoelectric cooling unit provided adequate support to allow a seated person 

to come in contact with the gel pad without bottoming out.   
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Figure 10: Epoxy sealed border to prevent air loss (yellow) and supporting air chambers (blue) 

3.2.1.3 Instrumentation 

A closed-loop thermoelectric cooling control system (TE Technology, Traverse City, MI) was 

used to keep skin interface temperature at approximately 25°C. The thermoelectric cooler (C) 

(TE-71-1.0-1.3) and heat sink were attached using a press fit and thermal grease. Two 

thermistors (MP-2444) were placed in the system to monitor interface temperature and send 

feedback to the temperature control board (TC-36-25-RS232). The feedback control thermistor 

was imbedded within the gel pad, and the interface thermistor was placed between the seated 

participant and the cushion itself.  The placement of these thermistors is detailed below in section 

3.2.1.5.  The control board (Figure 11) is a device that controls the voltage and the current that is 

delivered to the TEC by receiving commands from a nearby computer (see Appendix A for full 

wiring diagram). The controller utilized a proportional-integral-derivative (PID) control scheme 

to maintain the temperature of the TEC. The board was controlled from a Labview program 

(Version 8.6, National Instrument, Austin, TX) which transmitted all parameters of the controller 

program (Figure 12, Figure 13). The program was capable of recording temperature vs. time data 

in ASCII files and displayed the controller and interface temperatures in real time. 
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Figure 11: TEC controller board with two power supplies (A)(B) and dual input thermistors (E)(F). 

.  

Figure 12: Labview control program GUI 

 

Figure 13: Labview control button labels 
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3.2.1.4 Air pressure setup procedure 

In order to seat persons on the cushion in a repeatable manner, a cushion inflation protocol was 

established based on the methods used in Brienza et. al [96].  This assured that the person seated 

on the cushion was properly supported and in good contact with the thermoelectrically cooled gel 

pad for all evaluation trials.  A trained occupational therapist provided guidance and training to 

the research team for this task.   

The ROHO cushion was calibrated by overinflating the air cushion and then allowing it 

to reach environmental pressure with the air valve open. The subject was then lowered onto the 

cushion in a normal seated posture with the valve closed; care was taken to align the TEC unit 

with the IT of the seated person in the transverse plane.  The investigator then slid a hand 

between the cushion surface and the seated person, feeling for the lowest bony prominence.  Air 

was released while the investigator kept their hand under the person until there was 

approximately 0.5” of clearance between the base of the cushion and the surface of the buttocks 

just over the ischial tuberosity.  This was generally just enough room for the investigator to slide 

their fingers out from under the cushion on the unmodified side. The IT on the modified side of 

the cushion was confirmed to be directly above the imbedded cooling element by palpation.  

Inflation was checked periodically throughout each testing procedure to ensure the user had not 

bottomed out.  Bottoming out refers to when a seated user comes in unsupported contact with the 

base of the cushion due to insufficient internal air pressure. 

3.2.1.5 Gel pad and controller configuration 

Optimal use of the PID controller depended upon the location of the sensing thermistor that 

would give feedback to the system for the closed loop control.  Possible locations (Figure 14) 

included (A) within the supporting gel pad, (B) atop the supporting gel pad, (C) below the gel 
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pad directly in contact with the thermoelectric cooler, and (D) outside the cooling element on the 

skin of the seated individual.  In addition, the set point towards which the controller drove the 

thermoelectric cooler in response to the measured interface temperature had yet to be 

determined.  In the previous studies at our lab [20, 21], the controller was provided a set point of 

25°C to provide local skin cooling.  Initial bench top experiments with the prototype cushion 

demonstrated that a 25°C set point would be insufficient to reach the target protective interface 

temperatures at the skin.   

 

Figure 14: Control thermistor test locations. (A) Within gel. (B) Above gel. (C) Below gel in contact with 

TEC. (D) On skin of seated user. 

To evaluate the effect of location and set point on interface temperature delivery, the 

following experiment was conducted using the hydrogel sample from PPM.  The goal was to 

determine which experimental setups would approach 25 ± 1°C.  The highest temperature set 

point possible was preferred, since the TEC requires proportionally more power and generates 

more heat as the target temperature decreases. The conditions tested were 20, 15, and 10°C 

temperature set points.  The control thermistor locations investigated included within the gel pad, 

atop the gel pad, and between the gel pad and TEC (illustrated in Figure 14A, B and C).  
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Thermistor control at the skin (Figure 14D) was not evaluated as it was deemed impractical for 

standard everyday use of a functional cushion.   

We used an additional interface thermistor to measure the temperature between the seated 

user and the cushion in the same manner as Sprigle et. al [97].  This sensor was for data 

collection purposes only and had no influence on the control of power supplied to the TEC.  This 

thermistor was placed between the user’s IT and the gel pad; the IT location was confirmed by 

palpation. Users sat directly on the exposed hydrogel pad as the neoprene cushion material was 

removed for the cell containing the cooling element.  Subjects wore cotton scrubs and 

undergarments for each experiment.    

Prior to the test, the cooling system was not active and the cushion and gel pad were 

exposed to ambient temperature (23 ± 3°C, RH 20 ± 5%) which remained relatively constant 

throughout each trial.  Two volunteer test subjects were used for this analysis to obtain five 

repeated trials for each control thermistor location/TEC temperature set point condition. These 

subjects remained seated after being positioned on a properly inflated modified cushion as 

described in section 3.2.1.4 for hour-long intervals.  The controller was activated through the 

Labview program as either participant settled onto the cushion.  Both interface and controller 

temperatures were monitored continuously throughout the tests at 20 Hz.   

  For each test condition, interface temperature data for all trials (5 trials / condition) was 

averaged over approximately 25 seconds (500 data points) and is displayed in Figure 15. It was 

clear from the experiments that placing the control thermistor on the surface of the TEC was an 

ineffective feedback location for the interface temperature sensor.  A 20°C controller set point 

was also insufficient to bring the interface temperature below 27°C; this trend was evident during 

early testing trials inside the gel and on the TEC, and so this temperature state was not tested 
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atop the gel pad.  The most successful trials were 15 or 10°C set points with the control 

thermistor placed within the gel pad (Figure 14A) or on top of it (Figure 14B).  As stated above, 

the set point and location with the lowest power requirements and generated heat would be 

selected for use in all future tests.  A set point of 15°C combined with the control thermistor 

within the gel effectively produced an interface temperature of 25° ± 1 °C (max stdev = 

0.85°C during steady state).  The TEC temperature also oscillated at 15 ± 0.2°C, which 

demonstrated the control board was operating within its appropriate bandwidth (Figure 16).  We 

estimated that at average throughput the cooling system ran at approximately 20W. It should be 

noted that starting temperature of both the skin and gel pad was not controlled for this series of 

experiments; each trial tended to reach a steady state temperature at t = 900 sec (15 min), and it 

was from this point in time forward that the evaluation criteria was applied.  The small interface 

temperature fluctuations were caused by subject movement (e.g., leaning, shifting) during trials. 

 

Figure 15: Plot of interface temperature vs. time for various combinations of control thermistor location and 

TEC set point temperature. Values averaged over 5 trials, every 500 data points. 20C on top of the gel pad 

was not tested. 

 43 



 

 

Figure 16: Control temperature oscillation about set-point. 

3.2.1.6 Selection of gel pad materials 

Early benchtop experiments with readily available materials such as water pads, gels, ice packs, 

and comfortT floam (Otto Bock, Burlington, ON, Canada) proved unsuccessful in terms of 

thermal transfer between the TEC and cushion interface.  A local plastics company, Pittsburgh 

Plastics Manufacturing (PPM), aided us to utilize novel materials for our gel pad.  PPM provided 

us with two additional gel samples in addition to the hydrogel used for design layout and 

controller development: polyurethane gel modified with ceramic microspheres and polyurethane 

gel with resin microspheres (Figure 17). Each material was designed to maximize thermal 

conductivity while still providing adequate cushion support at the buttock interface.  Example 

thermal conductivities provided by PPM are listed in Table 4 relative to a commonly used metal 

for heat conduction. The hydrogel pad’s thermal conductivity was closest to that of glycerin 

(0.28 W/m*K) as this was its primary aqueous component, while the modified polyurethane 

gels’ conductivities would be higher (~0.4 W/m*K).   
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Table 4: Example thermal conductivities of gel pad materials relative to copper. 

 

A series of tests were conducted on the two polyurethane with the same procedures listed in 

sections 3.2.1.4 - 3.2.1.5.  The control thermistor was imbedded within the pad, and the 

controller was set to drive the TEC towards 15°C.  Each gel pad material was tested for 1 hour 

duration over 5 repeated trials.  For analysis, trials were averaged every 25 seconds (500 data 

points) and the change in temperature with respect to their initial temperature calculated.   Figure 

18 shows that the hydrogel material exhibited the largest temperature difference (< -5°C) and 

closely approached our target interface temperature of 25°C.   

 

Figure 17: Gel pad materials - (A) Hydrogel, (B) Polyurethane modified with ceramic beads 

(C) Polyurethane modified with resin beads. 
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Figure 18: Change in interface temperature from starting temperature (top) and absolute (bottom) interface 

temperature of gel pad materials. 

3.2.2 Component refinement - Air cushion with thermoelectric elements 

Following component analysis of the control parameters, thermistor locations, and gel pad 

materials, the following changes to the design were implemented towards the completion of the 

prototype.  These changes were largely the result of moving towards a more functional cushion, 

 46 



anecdotal experience while testing the previous design iterations, and optimizations for more 

efficient heat transfer, both at the gel pad and heat sink interfaces. As stated above, a 15°C 

controller temperature setting was utilized to achieve 25°C at the interface.  Control thermistors 

were imbedded within the hydrogel cushioning pad for feedback of local temperature (section 

3.2.1.5).  Version 2 of the prototype air cushion with imbedded thermoelectric elements also 

utilized the following: 

3.2.2.1 Increased hydrogel pad size 

We increased the size of the gel pads from 12.7 x 25.4 x 12.7 mm (0.5x1.0x0.5 in.) to a slightly 

larger 25.4 x 25.4 x 19.05 mm (1x1x0.75 in.), as shown in Figure 19.  Often times during 

experiments slight weight shifts or leaning would cause the gel pad to lose contact with the 

locally cooled area, resulting in observable temperature spikes at the interface.  It was thought 

that by increasing the height and width of the gel pad, more continuous contact would be 

maintained with a seated user.  Moreover, the polyurethane membrane binding the gel pad was 

removed to increase thermal transfer between the TEC, gel pad, and application site.  A small 

25.4 x 25.4 mm (1x1 in.), 0.8 mm (.03 in.) thickness square of polyurethane was placed on the 

top layer of the gel pad to prevent adhesion to the ROHO neoprene during use.  The new gel 

pads fully occupy a ROHO air chamber but left enough clearance to allow air redistribution 

between neighboring cells.   
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Figure 19: Comparison of first (A) and second (B) generation hydrogel pads. 

3.2.2.2 Fully enclosed air chamber design 

 

Figure 10 illustrates how the previous design removed the modified air chamber completely in 

order to press fit the gel pad into the ROHO cushion.  This forced the user to rely on the 

neighboring air cells to redistribute applied sitting pressures above the cooling element.  In the 

second design iteration, we removed material from the underside of the cushion only.  The void 

left by removing the base neoprene (Figure 20A) was then filled with a larger gel pad, which was 

held in place by compressive forces and secured using Neo-rez neoprene epoxy (Wahoo 

International Inc., Oceanside CA) (Figure 20B).  After curing, the control thermistor was 

punctured into the body of the gel pad, and a small amount of epoxy was used to secure it in 

place. Finally, the unit was covered in thermal grease to facilitate heat transfer to the TEC unit 

aligned below it (Figure 20C).   
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Figure 20: Underside view of gel pad secured in ROHO air chamber. 

3.2.2.3 Revised layout  

In order to increase comfort and demonstrate feasibility of the prototype on a standard manual 

wheelchair, the support base of the cushion was modified to fit a 16”x17” Quickie (Breezy Ultra 

4) wheelchair frame (Figure 21). A drop seat platform was machined to accommodate the 

aluminum heat sink below a seated user. A cooling fan from Delta Products (SFB0212HH-F00, 

Fremont CA) was aligned perpendicular to the orientation of the fins to increase convective heat 

transfer (Figure 22).  This fan offered a wider cooling area with dual rotors and dimensions that 

matched those of the heat sink. The fan and heat sink were aligned where our modified, single 

chamber ROHO’s cooling element would rest in a normal seating position.  The complete system 

(cooling element, heat sink, fan, and control board) added 1.05kg to the manual wheelchair.   
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Figure 21: Quickie wheelchair with and without modified ROHO cushion. 

 

Figure 22: Underside of machined drop seat illustrating mounted heat sink and cooling fan. 
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4.0  PROTOTYPE EVALUATION METHODS 

To evaluate the second generation prototype of the air cushion with thermoelectric cooling 

elements, experiments were designed to assess the cushion’s ability to deliver appropriate levels 

of cooling, adequately redistribute interface pressure, and provide sustainable cooling over a day 

of wheelchair cushion use.  These studies were ‘proof of concept’ in nature, and are therefore not 

necessarily hypothesis driven.  Their outputs are derived in order to evaluate the current design 

features of the cool cushion.   As such, no outside participants were enrolled nor IRB approval 

required for this study due to the nature and scope of any participants evaluating the cushion. 

Two healthy males (aged 20-30) similar in height, weight, and body composition, volunteered 

for these cushion evaluation studies.  Subjects were able bodied and not screened for specific 

diseases, or restricted from medications, food, or drink prior to the start of any evaluation.   

 

4.1 ADDITIONAL INSTRUMENTATION 

4.1.1 Thermal imager to measure interface cooling 

In addition to the instrumentation listed in section 3.2.1.3, thermal images were acquired for 7 

pairs of trials in order to verify local skin temperature resembled the temperature measured with 
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the interface thermistors.  Temperatures were recorded non-invasively using a Fluke Ti20 

Thermal Imager (Fluke Corp., Everett, WA).  The manufacturer’s reported accuracy is ±2% or 

±2°C (whichever is greater).   

4.1.2 Force sensing array to measure pressure redistribution 

Interface pressure measurements were recorded throughout the tests using a Force Sensing Array 

(FSA) pressure mapping system (Vista Medical: UT1010-4307, Winnipeg, Manitoba, Canada). 

The FSA pressure mapping systems has a 16 by 16 array of paper thin, 25.4 x 25.4 mm (1x1 in.) 

sensors to measure and display interface pressures between the body and a support surface, 

measuring a maximum of 16in2. Peak Pressure Index (PPI) was used to quantify the interface 

pressure data.  PPI is defined as “the average of the highest recorded pressure values within a 9-

10cm2 area (the approximate contact area of an IT or other bony prominence). The number of 

individual sensels included in the calculation depends on the spatial resolution of the mat” [98], 

which in our case equals four. This measure has been shown to be more repeatable and reliable 

than average or peak pressure measurement in the literature [99]. The FSA software provides a 

visual output of the pressure data by showing numerical values with a colored overlay.  These 

data can be exported to text files in order to extract numerical information, determine locations 

of high pressure areas, and to calculate PPI.  
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Figure 23: FSA pressure mat system. 

4.1.3 Thermodynamic rigid cushion loading indenter to measure heat and water vapor 

transmission 

A thermodynamic rigid cushion loading indenter (TRCLI) has been developed in order to 

simulate normal human conditions for sitting with respect to temperature delivery and water 

vapor.   This work arose from the challenges surrounding simulation of local microenvironments 

of a support surface coupled with the increasing interest in the secondary risk factors associated 

with problems such as pressure ulcers.  A full discussion of the development and function of this 

device is detailed by Ferguson-Pell et al. [58].  For the purposes of our study, this device was 

able to simulate the delivery of normal core temperature and relative humidity to our modified 

cushion (Figure 24).  The body of the indenter is composed of a water tank, water vapor 

permeable membrane, capillary matting, and the polycarbonate shell (Figure 24). The sensor 

array on the outer shell of the polycarbonate section of the indenter consists of humidity sensors 

(SHT75, Sensirion AG; Staefa, Switzerland) and J type thermocouples. 
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Figure 24: TRCLI components 

The sensors recorded data with onboard data loggers (National Instruments Field Point 

Modules 2015, FP AI-100, FP TC-100), which were accessed and controlled remotely by a 

Labview control program (Figure 25) and logged at 1 sample / minute.  The sensors were fixed 

to the indenter at several anatomic locations on the underside, including the thighs, ITs, and 

perineal area. An external water circulator (NESLAB RTE-110) was used to circulate water at 

4L/min, and 37 ± 2°C. Ambient temperature was maintained at 23 ± 2°C using a standard room 

thermostat.  Relative ambient humidity was increased to 50 ± 5% through the use of a MoistAir 

(HD14070) humidifier.  An atmospheric temperature and humidity sensor (General Eastern) was 

used to monitor the ambient climate of the testing area. 500N of total force (including the weight 

of the indenter) was applied in each cushion test to simulate 78kg (~172 lb.) of body weight.   
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Figure 25: Labview controller for Fieldpoint data loggers 

4.2 EXPERIMENTAL PROTOCOLS 

4.2.1 Verification of interface cooling 

For the study each participant completed 7 separate testing sessions. Each trial consisted of a 5 

minute pre-test session and 60 min of temperature and pressure loading. Participants wore cotton 

scrubs and undergarments for each trial.  If images were taken during the trial, the Fluke Thermal 

Imaging camera was mounted on a tripod and readied behind a privacy partition.  Foot placement 

markings were clearly labeled with tape approximately 2m from the thermal camera in order to 

keep the subject in repeatable frame and focal distance.  Images were taken of the bare buttocks 

to illustrate the area and local temperature as compared to the contralateral buttock.   
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During the 5 minute pre-test sessions the TEC cooler was not active and the cushion and 

gel pad were left at room temperature, which varied between 22-24°C and 18-22% RH (verified 

using a handheld temperature and humidity monitor).  The cushion was then positioned on the 

Quickie wheelchair as illustrated in Figure 21 of section 3.2.2.3.  The internal pressure of the 

cushion was calibrated according to the established protocol in section 3.2.1.4.  Care was taken 

to ensure the seated participant’s left IT was directly above the imbedded cooler, and that contact 

was present between the buttocks and gel pad.  After the participant was properly seated, the 

cooler was toggled on via the Labview interface, and data was recorded for the interface and 

control temperature at 20 Hz.  Test sessions were conducted for 60 minutes total as described by 

Brienza and Siekman [100] for air-filled cushions to observe when monotonic decreases tapered 

off and a steady state temperature could be observed.  In trials where thermal images were 

captured, the camera was readied after the 60 minute trial and taken in the same manner as 

described above.  This image was taken as quickly as possible (within 1 minute) to prevent 

normathermic processes and air convection from disturbing image repeatability.  Three hours or 

more were allotted to allow the system to return to equilibrium between experiments.  

4.2.2 Verification of pressure redistribution 

For this comparison there were 2 subjects completing five trials on two separate cushions.  Our 

modified prototype air cushion was compared to an unmodified high profile ROHO Quadtro 

cushion to investigate any difference in pressure redistribution measures.  All air valves were 

opened on the Quadtro cushion so it could act as a single bladder high profile cushion. For this 

study, subjects were seated on either the TEC cooled cushion or the unmodified Quadtro in the 

Quickie Breezy wheelchair.  Before placing the FSA pressure mat, the cushion was again 
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properly inflated using the methods described in section 3.2.1.4.  When the cushion was 

calibrated the participant stood and the FSA pressure mat was placed on the surface of the 

cushion.  Subjects were then lowered onto the pressure mat and interface pressures were 

observed on a nearby computer.  Crimping or folding of the mat that occurred while sitting was 

adjusted by the research team prior to data collection.  A loading time of 5 minutes was 

standardized to account for any potential creep effects on the interface materials, mat, or loaded 

tissue; this also allowed complete air distribution within the ROHO cushion to occur.  Data 

collected at the 5 minutes marker were used to compute PPI for comparison of modified and 

unmodified ROHO cushions.  Fifteen minutes were allotted to allow the cushions to reach 

equilibrium before further data was collected. 

4.2.3 Heat and water vapor transmission 

For this test we utilized an ISO standard draft protocol (CD 16840-7 Wheelchair seating, The 

determination of heat and water vapour dissipation characteristics of seat cushions intended to 

manage tissue integrity) which was modified for use with our cooled cushion[101].  The 

modification was the use of the manual wheelchair to support the cushion rather than a rigid 

platform.  The specified testing environment of 23±2°C and 50% RH was maintained with 

environmental controls and an external humidifier; these conditions were verified by both a 

handheld temperature and humidity monitor and the onboard sensors of the TRCLI.  Each heat 

and water vapor test ran for 3 hours and an additional 15 minutes following a short (45 sec) 

pressure-relief lift.  For our purposes, we ran 5 trials and compared the modified and unmodified 

IT readings from each cushion test to verify delivery of cooling when compared to the 

contralateral side.   
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At the start of each experimental trial, the modified ROHO system was positioned 

beneath the indenter in a frame utilizing a pulley system to raise and lower the test jig (Figure 

26).  The capillary mat within the indenter was wetted with ~ 100mL of water to prime it for 

transmission of water vapor with a flexible pipette.  The cushion was then overinflated as per the 

calibration procedure in 3.2.1.4.  To begin data collection, the indenter was lowered onto the 

modified ROHO while data logging was active on both the fieldpoint module and thermoelectric 

control module through their respective Labview VI’s.  Care was taken to align the IT sensor 

array of the indenter with the air chamber embedded with the TEC via palpation.   Air was 

released from the cushion under the weight of the indenter until appropriate air pressure was 

established (Figure 27).  Once aligned, the cooler was toggled on and the system was permitted 

to run for 3 hours time.  At the 3 hour mark a brief 45 sec pressure relief lift occurred with the 

TRCLI remaining roughly 100mm above the cushion.  The indenter was lowered again, the 

sensors aligned, and data acquisition continued for 15 min. Data was later retrieved from the 

fieldpoint module via Ethernet FTP.  Data points were extracted from the individual IT 

thermocouple and humidity sensor modules at: T0, T1hr,T2hr,T3h, immediately following the 

pressure lift (T3h+45’’), and at the end of the trial TF.  Data from the same cushion on the 

contralateral side were used for comparison.  Three hours were left between trials to allow the 

system to reach normal equilibrium before additional data was collected. 
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Figure 26: Modified ROHO and wheelchair base beneath TRCLI 

 

Figure 27: TRCLI resting on calibrated ROHO cushion 

4.3 RESULTS 

4.3.1 Verification of interface cooling 

The continuous temperature data was sampled from each trial (n=14) into five data points 

spaced 15 min apart.  Data were found to be normally distributed using Kolmogorov-Smirnov 

(all p > 0.01) tests and plots of normality. We used single sample, two-tailed t-tests to compare 

the average value for each time point to our target temperature of 25°C.  A p value of < 0.05 was 

 59 



regarded as a significant difference.   There was a significant difference in temperature value at 

the initial T0 (p = 0.026) when compared to our target temperature.  For the remainder of the time 

points T15, T30, T45, T60, no significant difference was calculated from our target temperature of 

25°C (p = 0.69, 0.36, 0.16, 0.29, respectively). Figure 28 visually displays average values and 

95% confidence intervals at each time point.  

While not analyzed statistically, it is interesting to note some of the example thermal 

images taken before and after each cooling session.  These images clearly demonstrated a 

distinct difference in skin temperature when compared to both pre-cooling images and the 

contralateral buttock following each test (Figure 29).  Imaging offers several advantages over 

direct interface temperature measurement, which will be discussed further in section 4.4.1. 

 
Figure 28: Average values at each time point with respective CI. 
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Figure 29: (A) Example thermal images ( °C) before (left) and after (right) cooling trials.  Dashed outline 

represents same area before and after cooling. (B) Thermal image orientation.  

 

4.3.2 Verification of pressure redistribution 

The pressure mat data was sampled 5 min after the start of the experiment to account for creep 

effects in the mat, cushion, and tissue being evaluated.   Recorded frames were exported into 

excel and PPI was then calculated using a macro enabled spreadsheet.  Average PPI for modified 

ROHO cushion was 64 ± 2.41, where PPI for unmodified cushion was 63.20 ± 2.33. Distribution 

was determined using Kolmogorov-Smirnov (all p > 0.20) tests and plots of normality. We used 

a paired, two-tailed t-test to compare the mean PPI for each both the modified ROHO and 

ROHO Quadtro cushion.  A p value of < 0.05 was regarded as a significant difference.   There 

was no significant difference in peak pressure index (p = 0.77) between the two cushions.  
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Example pressure output data and box plots of calculated PPI for both cushions are illustrated in 

Figure 30 and Figure 31.. 

 

Figure 30: Example of pressure mat data. Location of cooler labeled in red over left IT region. 

 

 

Figure 31: Plot of PPI for cushion comparison. 
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4.3.3 Heat and water vapor transmission characteristics 

The heat and water vapor data was retrieved from the field point module and sampled at 7 points 

throughout each 3 hour trial, as detailed in [58].  Sensirion humidity sensor data were converted 

from voltage to humidity values using Equation 1:  

Equation 1: Conversion of humidity input voltage to RH. 

RH = ( )( )
0062.0

16.05/ −V  

Comparisons were made between the cooled and un-cooled IT regions of the same 

prototype cushion.  Distribution was determined using Kolmogorov-Smirnov tests and plots of 

normality. Paired t-tests were used for normally distributed data while the Wilcoxon signed rank 

test was used for nonparametric distributions to compare mean temperatures and RH at each 

sampled interval.  A p value of < 0.05 was regarded as a significant difference.   Average 

Temperature and RH for each side of the cushion is summarized visually in Figure 32. 

There were no significant differences in temperature values between the contralateral 

sides for the first hour of testing (p = 0.20, 0.26, 0.13 for T0, T30, T60min respectively).  

Temperatures then diverged from 2 hours on and were significantly different throughout the 

remainder of the trial (p = 0.001, 0.002, 0.003, 0.002 < 0.05 for T120, T180, T181, T196min, 

respectively).   

There were no significant differences in relative humidity values between the 

contralateral sides for the entire test session (p = 0.15, 0.62, 0.52, 0.60, 0.11, 0.38, 0.54  for T0, 

T30, T60min, T120, T180, T181, T196min respectively).  RH data at T120 were not normally distributed so 

nonparametric tests of significance were used as described above.  All data is displayed in Figure 

33 to illustrate the high variability between trials. 
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Figure 32: Average values for contralateral sides of cool cushion. 

 

 

Figure 33: All trials for HWV characterization tests. 
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4.4 DISCUSSION 

4.4.1 Verification of interface cooling 

The series of temperature trials successfully demonstrated that achieving an interface 

temperature of 25°C and maintaining it for a sustained period of time is feasible using the 

thermoelectrically cooled system.  Previous studies by Stewart et al. and Ferguson-Pell [75, 102] 

reported temperature increases of 7-8°C from baseline temperature on air support cushions after 

a 1 hour sitting duration.  By this measure, without the cooling system active the cushion would 

be predicted to reach an interface temperature of 33-34°C after the hour long trial.  The 

difference of 8°C would substantially reduce the locally cooled tissue’s metabolic and oxygen 

consumption rate by a considerable measure (almost 46% based on the Arrhenius equation), as 

calculated by Lachenbruch in a summary of the protective effects of cooling at the skin-cushion 

interface [62].   

Ambient temperature, activity level of the cushion user, inherent metabolic differences, 

and sitting duration before cooling trials could all account for the high degree of variability seen 

in initial temperature of the verification trials (T0, Figure 28). After 15 min of use, all trials were 

within the 95% confidence interval of our goal temperature, and stayed at this level for the 

remainder of our experiments.  It should be noted that experiments challenging the cooling 

system in exaggerated hot or cold environments were not conducted.  However, successful 

operation of this design was not dependent on any of the observed starting interface 

temperatures.  Finally, while no time constant has been reported in the literature the protective 

temperature range could be induced rapidly using this design method.   
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Judy et. al. utilized a thermal camera system to record skin temperatures of patients at 

risk for pressure ulcers in conjunction with collecting the well established Braden Scale for the 

Prediction of Pressure Ulcers score [44, 103].  The hypothesis was that temperatures measured 

using thermal imaging of suspected or presented pressure ulcers would correlate well to a 

patient’s Braden score.  Images were taken at two anatomic sites: the sacrum and heel.  The 

authors defined a temperature increase of 1.5°C greater than surrounding tissue as “at risk” based 

on Sprigle et. al [104].  The thermal camera system was able to more accurately identify high 

risk patients than nurses reporting Braden Scores alone, and all low risk patients identified by the 

images were also classified as low risk by trained nursing staff.  We utilized a similar system to 

look at test skin temperatures as shown by the thermographic images in Figure 29.  All images 

taken in this study showed a locally cooled area following the trial, although the absolute 

temperature measurements of the coolest areas from the camera differed from those reported by 

the interface temperature sensors.  This can be explained by the time between when the trial 

ended and when the image capture took place; there is inherent restabilization of the skin 

temperature following exposure to ambient air temperature after direct contact with the cooler 

ceased.  Tzen surmised that a 1.6°C increase in skin temperature followed local cooling at 25°C 

within one minute of removal [20].  The thermal imaging system is also limited to a reported 

accuracy of 2°C.   

The interface sensor was placed on the surface of the ROHO cushion under the IT of 

interest, and therefore was not capturing skin temperature directly.  However, a poster 

presentation by Sprigle et al. showed that on a ROHO cushion there was only a 0.3°C difference 

in temperature for skin versus cushion mounted sensors [97].  The thermal boundary between the 

skin and the cushion surface was reduced by standardizing the user’s pant material during tests 
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and removing the standard ROHO cushion cover.  The functionality of the cooling system could 

be impeded depending on a seated user’s clothing in contact with the interface and/or the use of a 

standard cushion cover.  A lower set point temperature would have to be calibrated in these cases 

to achieve the desirable skin temperatures.  Although total cooled area was small, there exists no 

clinical or experimental guideline dictating the total cooled area, which results in the greatest 

level of skin protection related to local cooling.  Future studies should investigate the 

relationship between cooled area and effectiveness of local cooling. 

4.4.2 Verification of pressure redistribution 

There were particular concerns with the impact of modifications to the ROHO cushion with 

respect to the cushion’s pressure redistribution characteristics.  Any positive intervention from 

providing local cooling would be equally offset if a pressure reducing cushion’s capacity to 

redistribute interface pressure was compromised [105].  Moreover, some modifications could 

impart increased pressure points to an otherwise functional cushion.  For the analyses, peak 

pressure index was calculated for our modified ROHO cushion and compared to a standard 

ROHO Quadtro cushion.  The ROHO Quadtro cushion is readily available in the market and has 

been shown to be effective in redistributing pressure and preventing pressure ulcers in a recent 

RCT from our laboratory [25].  It is similarly coded for reimbursement as an adjustable skin 

protection and positioning wheelchair seat cushion [106].  An experienced seating specialist 

provided training and guidance for the calibration of the internal air pressure of both cushions 

used in this study.  This critical step allowed a seated user to sink appropriately into the 

distributed air cushion for proper immersion and optimal load distribution.  Using the same 

method as the aforementioned clinical trial, no statistical difference was calculated between the 
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cushion with the imbedded cooler and without, indicating no detectable pressure gradient was 

induced by the modifications of the single chamber ROHO cushion.   

Peak pressure index was used to quantify interface pressure data because normal peak 

pressure measurements have been shown to be unreliable [98, 107, 108].  There are few reports 

in the literature for high profile ROHO cushions with which to compare our findings.  An 

abstract by Sprigle et al. listed PPI for ROHO cushions from 0-20 months of use at 90-95 [109].  

The PPI values reported in the comparative analysis were lower than these reported values at 

around 63-64 mmHg. These lower values observed might be explained by the careful setup 

procedure and control afforded to the test condition. 

There was a detectible decrease in air pressure in the modified cushion over the course of 

use in the seated trials caused by a leak around the modified air cell.  This leak was the result of 

an incomplete seal below the ROHO cushion where the hydrogel pad was inserted at the base.  

While steps were taken to properly reseal the cushion using epoxies and neoprene repair kits 

during assembly, general use and time were factors that gradually broke down this initial fixture. 

If left uncorrected, dangerously high levels of pressure similar to those observed when a user 

bottoms out on any standard cushion could result.  Figure 34 below illustrates an intentional 

‘bottom out’ in the ROHO Quadtro (left), versus the pressure observed due to substantial air loss 

in the modified ROHO (right). It should also be noted that the modified ROHO was only 

equipped with a cooling unit below a single IT.  Users had a tendency to bear down on the gel 

pad when improperly inflated; this was corrected with reinflation and verification of 0.5” 

clearance space as per the manufacturer’s setup instructions [71].  However, this level of 

inflation could also subject the user to more direct contact with our cooling gel pad because of 

weight shifts or vibrations[108], resulting in a pressure node at the IT.  In future prototypes, 
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reinforcing the seal around the gel pad or building the pad directly in as the cushion material is 

formed is recommended to get a complete seal and prevent any sensible air loss.   

Finally, the change in total air volume temperature within the cushion was not studied in 

the verification trials.  Substantial changes in temperature within each ROHO cell could increase 

or decrease internal pressure as the supporting gas expands or contracts.  Future studies could 

address the severity of this effect on the overall cushion performance and whether these small 

changes in local temperature (and correspondingly, pressure) would put a user at risk for 

contacting the gel pad in a manner similar to Figure 34 (right). 

 

Figure 34: Examples of pressure mat readings. (left) bottoming out - (right) air loss 

   

4.4.3 Heat and water vapor transmission characteristics 

Ferguson-Pell et al. conducted a previous study in which the TRCLI was used to compare an 

unmodified ROHO cushion with various other cushion compositions [58].  Their goal was to 

group commercially available cushions by cover, core, composite material, or shape.  One of the 

strongest correlations was that of interface temperature to core material.  These previous findings 

were compared to those measured for the modified and unmodified sides of the ROHO in our 

 69 



study (Table 5).  In a general comparison, the unmodified ROHO measures were similar in 

magnitude to the previous measures with respect to temperature (< 5 °C).  The cooled cushion 

showed a 7.16°C and 5.89°C average drop as compared to the literature values at T1 and T2, 

respectively. No discernible difference is shown with respect to relative humidity at any time 

point or difference measure.  By their classification system, our modified air cushion would be 

listed as a high heat dissipater (T1 < 34°C) and low moisture dissipater (H1 > 60% RH).  

Table 5: Comparison of literature values to HWV test. 

    Direct Measurement 
Cushion  T1 H1 T2 H2 T1-0 
Ferguson-Pell 35.20 62.00 35.50 65.40 4.50 
Unmodified 30.63 68.68 33.04 75.22 4.18 
Modified  28.04 63.72 29.61 69.22 1.45 
   Difference Measure 
   H1-0 T2-1 H2-1 T2-0 H2-0 
Ferguson-Pell 19.80 0.30 3.30 4.80 23.20 
Unmodified 17.77 2.68 6.54 6.85 8.46 
Modified  2.74 1.57 5.50 3.02 8.24 
* T = °C, H = %RH         

.   

For the HWV trials, the cooled area of the cushion did not settle at 25°C as was observed 

in the temperature verification trials.  This can be explained because the TRCLI is designed to 

deliver a constant rate of heat and water vapor regardless of ambient or local conditions; this is 

not the case in vivo. In general, local perspiration rate changes with skin temperature [110, 111], 

and the inhomogeneous makeup of local skin [112] would have a different thermal conductivity 

than a polycarbonate indenter to local cooling (muscle: 0.703 W/(m*K), fat: 0.116 W/(m*K), 

skin: 0.214 W/(m*K)[113], polycarb: 0.22 W/(m*K)[114]).  The indenter also circulates water at 

37°C and presents approximately 35°C at the cushion interface.  This value is higher than any 

skin temperature we observed in 4.4.1 as well as literature reported values for clinical skin 
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temperatures near the buttock (min: 26.4°C, avg: 32.0°C) [104].  These clinical measures were 

taken at the sacrum and not at the IT, but represent typical skin temperatures 3-9°C lower than 

that of the TRCLI.  Since the cool cushion control parameters were calibrated for delivery of 

25°C, it was not surprising that the steady state temperature in the HWV trials did not decrease 

below 30°C.  There was, however, a statistically significant decrease between the cooled and 

non-cooled cushion side after 1 hour onward, and the overall effectiveness of the local cooling 

was evident in the data. 

A high amount of variation was evident across all cooling trials in the collection of both 

heat and water vapor data.  We anticipated the temperature-time plots for all trials with local 

cooling to resemble those of the non-cooled side: similar in shape, heating/cooling slope, with 

similar end point temperatures.  However, we instead observed a wide variety of responses to 

local cooling.  This can be explained primarily because of the problems with capturing cooled 

data directly below the sensor fixed to the surface of the indenter.  The testing protocol specified 

aligning the cooling element with the onboard thermistor and humidity sensor; this proved more 

challenging than aligning the interface thermistors in the skin cooling experiments since the 

seated user provided verbal feedback if they felt they were misaligned before each trial began.  

This problem is compounded by the loss of air pressure described in section 4.4.2, where 

alignment for initial internal air pressure would lose contact with the cooling element as air was 

depleted from the cushion.     

The cooling elements had surprisingly little effect on relative humidity measures.  No 

significant difference between average relative humidity at each time interval was observed. On 

average the drop in relative humidity was less pronounced than that of the uncooled IT during 
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the pressure relief lift (T180-T181).  Our design goals were to meet specific local cooling levels 

and not necessarily designed towards reducing local relative humidity. 

4.5 LIMITATIONS 

There were several limitations to the experiments conducted to validate our cool cushion design.  

Data was collected on a limited number of subjects (n=2) and number of trials for each test 

selected was arbitrarily determined.  Our data was intended to provide confirmation that the 

device met the targeted design specifications and goals.  Data from these trials could be used to 

conduct a power analysis by establishing baseline values and variability for future studies aimed 

at determining the effects across a larger sample.  Errors in data collection often eliminated 

additional trials which were not reported; however, these problems led to the development of 

more robust procedures and could then be translated into more reliable future studies. 

One of the greatest challenges in data collection was capturing the cooled area of the 

cushion between the seated user and the thermoelectric cooling unit.  This was due to the 

relatively small size of the sensing thermistors, and the tendency of seated participants to 

readjust, weight shift, or lean during seated trials.  This is the inherent disadvantage of capturing 

the interface temperature under a thermistor of <1cm2.  The TRCLI offered similar challenges to 

monitoring temperature and humidity data.  If sensors were not aligned, then the local cooling 

went unmeasured or poorly categorized. Moreover, while the TRCLI mimics in vivo boundary 

conditions, all tests were carried out in a carefully controlled environment.  The influence of 

several factors such as individual variation in metabolism, sweating, and thermal characteristics 

of tissues were not accounted for. 
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Since the cushion modifications added appreciable weight to the manual wheelchair 

(1.05kg), this cushion design may not be desirable for manual wheelchair users.  Implementing 

this solution on a power wheelchair would reduce the effect of the added weight and allow the 

system to be powered by the on-board battery. 

  Finally, this cushion prototype was manufactured using bench top methods, readily 

available materials, and previously existing cushions.  It is not intended as a marketable product, 

but rather as a demonstration of the efficacy of imbedded cooling elements for targeted local 

cooling.   

4.6 FUTURE DIRECTIONS 

Future directions for this study could focus on three major areas.  First, this cushion was 

equipped with a single cooling element near the left ischial tuberosity of a seated user.  For 

future generations of this design the skin cooling units could be expanded to both sides of the 

cushion. The locally cooled area could be increased by adding an array of individually controlled 

TEC elements clustered around anatomic locations most at risk for PU development (Figure 7).  

Each element could be individually controlled and respond independently to local changes in 

microclimate.  Future studies should clarify how many or how large a cooling area is necessary 

to provide adequate skin protection of the IT region.   

Second, the cushion could be designed as a standalone system with a variety of 

improvements.  The coolers could be controlled by programmable microcontrollers to eliminate 

the need for the control board and PC interface.  High efficiency or multiple stage thermoelectric 

coolers could be used to increase effectiveness of interface heat transfer.  Collaboration with 
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plastic manufacturers could produce more advanced gel pad materials with even higher thermal 

conductivities.  Alternative heat sinks, such as thermoconductive plastics, fluid cooled bladders, 

or phase change materials could be used to reduce the overall weight and eliminate the need for 

the aluminum heat sink and cooling fan.  Air loss (as described in 4.4.2) could be minimized by 

molding the space for the cushioning gel pad and sealing it within the cushion frame design 

Third, an improved sensor array might be capable of gathering a more complete picture 

of the locally cooled area using a cushion with embedded cooling elements.  Wireless skin- 

mounted sensors or thermistor-equipped undergarments could be implemented to more 

accurately control the TEC units by providing feedback directly to areas at risk for PU 

development. Thermal imaging methods are another option to record both interface and skin 

temperatures for the evaluation of future cool cushion designs.   

 

4.7 SUMMARY AND CONCLUSIONS 

The results of this study showed that a closed loop controlled, site-specific cushion could 

effectively deliver local cooling in the desired protective range near 25°C.   Skin temperatures 

normally increase over time on any standard cushion.  Using our system, interface temperatures 

were not significantly different from the target after 15 min of seated use in all test sessions.  

Lower interface temperatures could reduce metabolic demand of ischemic tissue, decrease the 

severity of reperfusion injury, and increase the overall tissue tolerance for pressures in areas 

most at risk for pressure ulcer formation, specifically those of the IT regions.  Introduction of 

thermoelectric cooling elements did not increase interface pressure, an indication that the 
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modified cushion would be an efficacious choice for both the redistribution of interface pressures 

and reduction of local temperatures.  In a simulated trial using the TRCLI, our system was able 

to sustain a rate of local cooling when given a constant heat source for 3 hour duration.  These 

trials did not meet the ideal protective temperature level of 25°C, but local cooling provided 

significantly reduced interface temperatures compared to the contralateral, uncooled IT.  Further 

investigations into the effects of imbedded coolers on water vapor transmission characteristics 

must be conducted to better characterize the relationship between applied cooling and relative 

humidity at the interface.  Our system illustrated a simple and effective means to deliver targeted 

local cooling which responds to changes in microenvironment.   
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APPENDIX A 

CONTROL BOARD WIRING DIAGRAM 
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