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EFFECTS OF SPIKE-DRIVEN FEEDBACK ON NEURAL GAIN AND

PAIRWISE CORRELATION

John D. Bartels, M.S.

University of Pittsburgh, 2010

Both single neuron and neural population spiking statistics, such as firing rate or temporal

patterning, are critical aspects of many neural codes. Tremendous experimental and the-

oretical effort has been devoted to understanding how nonlinear membrane dynamics and

ambient synaptic activity determine the gain of single neuron firing rate responses. Fur-

thermore, there is increasing experimental evidence that the same manipulations that affect

firing rate gain also modulate the pairwise correlation between neurons. However, there is

little understanding of the mechanistic links between rate and correlation modulation. In

this thesis, we explore how spike-driven intrinsic feedback co-modulates firing rate gain and

spike train correlation. Throughout our study, we focus on excitable LIF neurons subject to

Gaussian white noise fluctuations. We first review prior work which develops linear response

theory for studying spectral properties of LIF neurons. This theory is used to capture the

influence of weak spike driven feedback in single neuron responses. We introduce a concept

of ”dynamic spike count gain” and study how this property is affected by intrinsic feedback,

comparing theoretical results to simulations of stochastic ODE models. We then expand our

scope to a pair of such neurons receiving weakly correlated noisy inputs. Extending previous

work, we study the correlation between the spike trains of these neurons, comparing theo-

retical and simulation results. We observe that firing rate gain modulation from feedback is

largely time-scale invariant, while correlation modulation exhibits marked temporal depen-

dence. To discern whether these effects can be solely attributed to firing rate changes, we

perform a perturbative analysis to derive conditions for correlation modulation over small
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time scales beyond that expected from rate modulation. We find that correlation is not

purely a function of firing rate change; rather it is also influenced by sufficiently fast feed-

back inputs. These results offer a glimpse into the connections between gain and correlation,

indicating that attempts to manipulate either property via firing rates will affect both, and

that achievability of modulation targets is constrained by the time scale of spike feedback.
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1.0 INTRODUCTION

A central tenet of modern neuroscience is that communication between neurons is accom-

plished by encoding information in sequences of action potentials or ”spike trains”. Con-

sequently, much research has been devoted to looking for patterns in spike trains recorded

from animals engaged in prototypical tasks. Among the many spike-train statistics which

have been studied, single neuron gain [34, 37] and pairwise correlation [2] have been shown

to be particularly relevant to behavior and cognitive function. For instance, single neuron

recordings from monkeys performing visual discrimination tasks in attentive and inattentive

states show that attention to a stimulus increases the gain of a neuron’s response to that

stimulus [27]. Gain control mechanisms have also been implicated in the brain’s mapping of

visual spaces [39] and auditory spaces [41], and may produce orientation selectivity to con-

trast changes in visual stimuli [15]. The degree of spike train correlation is also influenced

by behavioral state. Subjects who are resting quietly exhibit high neural correlation which

is disrupted when the subject is roused to activity [21]. The impact of subject attention on

pairwise correlation is complex, with several studies reporting an attention-related decrease

in long time scale spike correlation [32, 8], while others report an increase in spike time

synchrony with attention [36]. Gain and correlation have also been shown to be significant

in sensory encoding. Changes in pairwise correlation between neurons in visual cortex have

been shown to differ between exposure to contrast discrimination and orientation discrimi-

nation [20]. Experiments with electric fish have shown differences in correlation arising from

communication signals versus predatory ones [7]. Recent modeling work has also bolstered

arguments for the relevance of divisive gain control in response to time-varying stimuli [25].

Despite the overwhelming evidence that both spike rate gain and spike time correlation are

affected by similar behavioral and neural manipulations, there is a lack of understanding of
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the underlying mechanisms which relate both gain and correlation control.

An important mechanistic component of firing rate gain is the membrane currents that

are recruited during single cell activity. Action potentials occur when a neuron’s electrical po-

tential reaches a critical threshold, causing the soma to release current through the dendrite.

Following a spike, there is a rapid change in the distribution of open and closed ion channels

as the neuron repolarizes. During this period, ion flux in and out of the neuron changes,

creating an after-current which in turn affects the potential of the neuron. Depending on

the net effect of this current on membrane potential, it is referred to as either a depolarizing

afterpotential (ADP) or a hyperpolarizing afterpotential (AHP) [9]. Publications in recent

years have shown self-coupling or feedback to affect many aspects of neural computation.

AHP’s have been implicated as an important mechanism behind the gain decreases observed

with increasing stimulus noise [18], while ADPs have been shown to increase gain [28]. Fig

1 shows data collected in these studies, revealing both the voltage deflections induced by

aftercurrents (panels A and C), as well as their associated changes in firing rate gain (panels

B and D).

It is known from [11] that neural correlation increases with firing rate, and firing rate gain

is, by definition, a function of firing rate. The experimental evidence cited above indicates

that self-coupled feedback alters firing rates and gains, and so would be expected to affect

correlation as well. It therefore seems reasonable to examine the effects of self-feedback

on gain and correlation, looking for similarities and differences in the underlying neural

mechanisms that affect gain and correlation control. To this end, our study investigates how

feedback from spikes affects both gain and correlation in self-coupled neurons. This work

builds off of previous theoretical results reported for leaky integrate-and-fire (LIF) neurons

subject to correlated noise inputs, including [24, 38, 16, 5, 35, 30]. While these studies

focused on a simple LIF model without internal feedback, other studies have developed tools

for studying feedback. In particular, a linear response approach for computing power and

cross-spectra of spike trains for neurons with spike-driven feedback was presented in [12, 24],

and [37] discussed calculation of gain in the presence of feedback. Our study aims to integrate

this work to better understand how gain and correlation are comodulated by feedback. We

first introduce a concept of ”dynamic gain”, and observe how it is affected by feedback.
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We then synthesize the work of [35] and [24] to explore how feedback shapes correlation at

different time scales, and finally analyze the results to explain how these effects arise.
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Figure 1: Effects of ADP’s and AHP’s. (A) Chemical inhibition of AHP reveals hyperpolar-
ization present in control. (B) Gain (slope of FI curves) changes induced by amplifying an AHP
with dynamic clamp. (C) Chemical inhibition of ADP reveals depolarizing effect present in control.
(D) Gain changes induced by suppressing ADP. Panels A and B modified from figures donated by
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2.0 THE SINGLE SELF-COUPLED NEURON

2.1 DERIVATION OF THE MODEL

While this study is primarily concerned with a pair of self-coupled neurons, we first introduce

the underlying concepts for a simple single neuron system. We represent our idealized

neurons using extensions to the the classic leaky integrate-and-fire (LIF) model:

τmV
′ = µ− V + I(t) (2.1)

Here, V represents the membrane potential of the neuron, while τm denotes the membrane

time constant. Throughout our calculations and simulations, we set τm=10 msec. The terms

µ and I(t) respectively denote constant and time-varying currents. The model is equipped

with the standard reset rule:

V (t) ≥ Vthreshold =⇒ V (t) = Vreset (2.2)

which signifies the firing of an action potential and instantaneously resets the soma potential

to its hyper-polarized state. Additionally, we assume these neurons have an absolute refrac-

tory period of duration τR, which briefly fixes the neuron’s voltage at its hyper-polarized

state after any spike time ti so that:

V ′(t) = 0 t ∈ [ti, ti + τR] (2.3)

For values of µ below 1, our neuron lies in an excitable regime - the neuron’s voltage will

never reach the spiking threshold when I(t) = 0. We focus solely on scenarios where µ lies
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in the excitable regime and our time-dependent input I(t) is a stochastic process. In this

case, our voltage equation is:

τmV
′ = µ− V (t) + σξ(t) (2.4)

where ξ(t) represents our time-dependent noise source with variance σ2. When the

stochastic input is viewed as a noise term, it is reasonable that its intensity should be

correlated with the strength of the baseline current (i.e. we assume the presynaptic pool

has Poisson statistics). We therefore parameterize µ and σ by the normalized parameter θ,

writing:

θ ∈ [0, 1] (2.5)

µ = µ0 + kµθ (2.6)

σ = σ0 + kσθ (2.7)

Throughout this study, we choose these constant values to be: µ0= .511, σ0=0.3, kµ=0.35,

kσ=0.31. These values have been chosen to satisfy several constraints: to produce a range of

output firing rates over approximately 5-50 Hz, to guarantee that that the neuron remains

in the excitable regime for all values of θ, and to ensure that σ values remain sufficiently

large to avoid numerical difficulties during evaluation.

In order to incorporate the effects of spike-driven feedback on voltage, one important

extension to the model is required. The implementation of such a feedback mechanism should

adhere to several intuitive principles. First, in the absence of spiking events (due to prolonged

hyperpolarization), there should be zero current due to spike-driven feedback. Once a spike

is emitted, the neuron should receive an influx of current after a short transmission time τD.

Following this initial influx, the spike should continue to contribute current to the neuron,

but this effect decays rapidly with time with a rate of α = 1
τs

. We follow [13], which proposes

using an alpha function to represent current due to afterpotentials.
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If we consider a sequence of k spikes occurring at times {t1, t2, ..., tk}, we can model this

time-dependent feedback current as:

x(t) = gα2

k∑
j=1

(t− tj − τD)e−α(t−tj−τD)H(t− tj − τD) (2.8)

where H denotes the Heaviside step function and g specifies the strength of the feedback.

Throughout this study, we consider both positive g (corresponding to an ADP) and negative

g (corresponding to an AHP). We note we do not consider these perturbations symmetrically:

our lower bound for g is -2, while our upper bound for g is 1. The reason for this asymmetry

is that g > 0 constitutes positive feedback into the system which introduces numerical

instability in later calculations. We have therefore confined positive g to a range where it

does not pose problems. Figure 2 illustrates the effect of this feedback on the voltage of an

LIF neuron in the immediate wake of one spike. Negative values of g exert an inhibitory

influence by causing hyperpolarization of the neuron and thus slowing subsequent rises in

voltage as compared to those of a neuron without feedback (i.e. g = 0). Conversely, positive

values of g have an excitatory influence, accelerating the depolarization of the neuron relative

to the g = 0 case. For the parameter values we have chosen, the afterpotential’s effect on

the voltage following a single spike is barely visible beyond a period of approximately 25

milliseconds. We remark that when g > 0, care must be taken to ensure the neuron remains

in the excitable regime: the combined baseline and mean feedback currents should not exceed

the threshold at which the neuron will fire in the absence of noise.

Differentiating x with respect to t, we can formulate our resulting model as a system of

stochastic first-order ODE’s:

V ′ = 1
τm

(µ− V + gx+ σξ(t))

x′ = y

y′ = −α2x− 2αy + α2
∑

j δ(t− tj − τD) (2.9)

where we have factored g out of x(t) and inserted it explicitly into the voltage equation.

For the simulation component of this study, we solve these equations numerically using

an Euler-Maruyama integration scheme [19]. Figure 3 depicts the schematic of our single

neuron system, using sample input and output from simulation.
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2.2 SPIKE TRAIN STATISTICS

In addition to simulating our model to gauge the effects of afterpotentials on spike trains, we

can also compute theoretical estimates of the relevant statistics. This theory offers a check

for our simulations, provides a more efficient method of obtaining results, and provides a

basis for our later analytical treatment of correlation modulation. Throughout this section,

we denote a sequence of spike times {tj} for a given neuron i as a series of delta functions:

yi(t) =
∑

j δ(t− tj). We now discuss several intermediate results which will be necessary to

calculate the statistics we are ultimately interested in.
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Figure 2: Aftercurrents and afterpotentials for a self-coupled neuron. (A) Our LIF
neuron is driven by constant current µ, stochastic noise ξ, and a delayed feedback current gx(t)
after each spike. Aftercurrents are shown for g=1 (red) and g=-1 (blue). (B) Voltage deflections
induced by afterpotentials in our stochastic ODE model 2.9 with θ = 1 (i.e. µ=0.861, σ=0.61)
with varying feedback strengths: g=-2 (blue), g=0 (black), and g=1 (red). Our model’s normalized
voltage outputs have been scaled by a factor of 15 for comparison to realistic neural voltages.
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are fired. Y(t) records the cumulative spike counts over time, while x(t) shows the level of feedback
current to the neuron due to its prior spiking. Here g=1 and θ=1 (i.e. µ=0.861, σ=0.61). Our
model’s normalized voltage outputs have been scaled by a factor of 15 for comparison to realistic
neural voltages.

2.2.1 FIRING RATE ESTIMATION

The simplest statistic we can compute for a spike train is its asymptotic firing rate ν: the

number of spikes produced per unit of time. Using our definition of the spike train y(t), we

can count the number of spikes observed prior to time t:

Y (t) =

∫ t

0

y(t′)dt′ (2.10)

The asymptotic firing rate of the system is then given by:

ν = lim
T→∞

Y (T )

T
(2.11)
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For an LIF neuron driven with constant current µ and Gaussian white noise of variance

σ2, the following closed form expression for firing rate is given in [40]:

ν0(µ, σ) =

[
τR +

√
π

∫ (µ−VR)

σ

(µ−VT )

σ

ez
2

dz

]−1

(2.12)

In this expresion τR represents the absolute refractory period, while VT and VR represent

the voltage threshold and reset values, respectively. In our system, however, we must also

account for the effect of feedback on firing rates. We employ the strategy of [24, 12, 14],

using the mean feedback-induced current 〈x(t)〉 to approximate the ”effective current” as a

static correction term to the baseline current:

µeff = µ+
g

τm
〈x(t)〉 = µ+

g

τm
ν (2.13)

Our corrected firing rate ν is thus given by the transcendental equation

ν = ν0(µeff , σ) = ν0(µ+
g

τm
ν, σ) (2.14)

In actual calculations, we solve for ν numerically with a root-finding method, using

ν0(µ, σ) as our initial estimate. Figure 4 compares firing rates estimated using this process

to those computed from spike trains generated by simulations of our model.
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2.2.2 LINEAR RESPONSE THEORY

Viewing changes in a neuron’s membrane potential as a stochastic process allows us to apply

useful theoretical frameworks for discussing correlations. As briefly outlined in appendix

A.0.1, the response statistics of our system are given by a Fokker-Planck equation (FPE)

associated with equation 2.4. Linear response theory, which has been developed as a way

to study perturbations to FPE’s [33], provides a useful way to model the perturbations due

to feedback. To derive formulas for dynamic gain (and ultimately correlation susceptibility

for multi-neuron scenarios), we apply linear response theory as demonstrated in [6, 24]. To

do so, we define a baseline ”unperturbed” neuron, and then consider weak feedback terms

as a small perturbation to this baseline. Our unperturbed system encompasses the leak

term, the baseline current µ, and the noise source ξ(t). Furthermore, we also incorporate the

mean of the feedback current, 〈x(t)〉, into the unperturbed neuron. Having done this, only
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the mean-corrected time-varying component of the feedback current x(t) − 〈x(t)〉 remains

unaccounted for, and it is this quantity which will constitute the perturbation to the system.

Since later calculations are more convenient in the Fourier domain, we compute the

transformed spike train: ỹ(ω) = 1√
T

∫ T
0
eiωt(y(t) − ν)dt, where we have subtracted off the

mean firing rate of the neuron, ν. To continue building our ansatz, we now compute the

Fourier transform of x(t), the feedback current as defined in equation 2.8:

F (ω) = g
eiωτD

(1− iω
α

)2
(2.15)

Introducing a linear transfer function A(ω) which incorporates the spike-induced feedback

into the spike train, we can write our final linear ansatz for the perturbed self-coupled

neuron’s spike train as:

ỹ(ω) = ỹ0(ω) + A(ω)F (ω)ỹ(ω) (2.16)

A(ω) describes the susceptibility of ỹ(ω) of being perturbed from equilibrium by inputs

with intensity F (ω). The derivation ofA(ω) requires extensive calculations which are detailed

in [23, 6]. A simplified sketch of this derivation is provided in appendix A to demonstrate

the key ideas behind it. The resulting definition of A(ω) is given by:

A(ω, µ,D) =
iνω
√

(D)

iω − 1

Diω−1

(
µ−VT√

D

)
− e∆Diω−1

(
µ−VR√

D

)
Diω

(
µ−VT√

D

)
− e∆iωτRDiω

(
µ−VR√

D

) (2.17)

∆ =
V 2
R − V 2

T + 2µ(VT − VR)

4D
(2.18)

in which the Dx terms denote the parabolic cylinder functions and the argument D = σ2

2
.

2.2.3 DYNAMIC GAIN

Neuronal gain is conventionally defined to be the rate of change in firing rate with respect

to input current, i.e. the quantity dν/dµ. In this study, we are interested not only in how

gain is affected by spike-driven feedback, but also how gain is affected over a window of

time following spiking events. Below we demonstrate both computational and theoretical

approaches to computing dynamic gain.
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2.2.3.1 COMPUTATIONAL APPROACH The conventional definition of gain can

be easily rewritten in terms of spike counts:

dν

dµ
= lim

ε→0
lim
T→∞

1

T

〈Y µ+ε
T 〉 − 〈Y µ

T 〉
ε

(2.19)

Where Y µ
T denotes the spike count over a train produced by a neuron with input µ, and

〈.〉 denotes averaging over many simulations of duration T . We can estimate this derivative

numerically by simulating our ODE model with very large values of T and tiny values of ε and

computing a finite difference quotient. Dynamic gain generalizes this concept: rather than

observing changes in asymptotic firing rates, we observe firing rate changes over a narrower

window of time immediately following a perturbation in µ. To write this formally, we make

a slight change to our definition of spike count Y , providing control over the bounds of the

window of integration:

Y (t0, t1) =

∫ t1

t0

y(t)dt (2.20)

We can incorporate a perturbation in µ into each simulation as a jump discontinuity at

some time t∗:

µ̂(t) =

 µ t < t∗

µ+ ε t ≥ t∗
(2.21)

Dynamic gain over an integration window T can then be computed as:

Gµ
T = lim

ε→0
lim
t∗→∞

1

ε

(
〈Y µ̂(t∗, t∗ + T )〉

T
− 〈Y

µ̂(0, t∗)〉
t∗

)
(2.22)

where 〈.〉 again denotes averages over many simulations of our model with different noise

realizations. In actual simulations t∗ should, of course, be chosen large enough to guarantee

that the neuron has converged to its asymptotic firing rate before the jolt is delivered. Figure

5 illustrates the use of this approximation scheme on simulation results.
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Figure 5: Numerical approximation of dynamic gain for θ=1 (i.e. µ=0.861, σ=0.61).
The shaded region illustrates the window of integration when T=5 ms. The constant current µ is
delivered up to t∗ = 0, at which point the current is increased by ε=0.1. Firing rates are plotted for
g=-2 (blue), g=0 (black), and g=1 (red), and were computed over bins of 0.5 ms width, averaged
over 10 million noise realizations. Note that firing rates are seen to rise slightly before t=0: this is
an artifact of plot interpolation for continuous values of t between the discrete bins at t=-0.5 ms
and t=0 ms.

2.2.3.2 THEORETICAL APPROACH In the continuous domain of our theory, it is

natural to implement windows of time as a kernel that places heavy weights on spikes inside

the target window, and rapidly vanishes outside it. We employ such a windowing scheme,

described in [10], by defining a window of width T in the time-domain as:

kT (t) =
T − |t|
T

(2.23)

Computing the Fourier transform of kT , we obtain

KT (ω) =
4 sin2(ωT

2
)

ω2T
(2.24)
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Noting that

lim
ω→0

A(ω) = dν/dµ (2.25)

we propose that A(ω) is a natural dynamic analog of gain and write:

GT =

∫ ∞
0

|A(ω)|KT (ω)dω (2.26)

Indeed, as T approaches infinity KT (ω) converges to δ(ω), so by 2.25 we see that our dynamic

gain converges to conventional gain, as desired:

lim
T→∞

GT =

∫ ∞
0

|A(ω)|δ(ω)dω =
dν

dµ
(2.27)

One further change is necessary to properly account for the effects of feedback on gain.

Throughout our theory, we have addressed the feedback-induced current by the approxima-

tion µeff = µ+ g
τm
ν(µeff ). To discuss the feedback-influenced gain dν/dµ requires a simple

application of the chain rule, as pointed out in [37, 14]:

dµeff
dµ

=
1

1− g
τm

dν
dµeff

(2.28)

dν

dµ
=

dν

dµeff

dµeff
dµ

=

dν
dµeff

1− g
τm

dν
dµeff

(2.29)

where dν/dµeff is obtained by differentiating the formula for ν given in equation 2.12.

Analogously, replacing dν/dµeff with A(ω) yields our expression for feedback-corrected dy-

namic gain:

GT (g) =

∫ ∞
0

|A(ω)|
1− g

τm
|A(ω)|

KT (ω)dω (2.30)

We now use both our theoretical and computational methods to predict the gain mod-

ulation due to positive and negative feedback. It is convenient to express our gain changes

relative to the baseline gain which is obtained in the g = 0 case, as shown in figure 6. Here

we see general agreement between the predictions from theory and simulation. The sign of

the gain changes matches that of g, and is roughly 10% for both positive and negative g.

Importantly, both theory and simulation show that gain modulation is relatively uniform

across all time windows.
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3.0 NETWORKS OF PAIRED SELF-COUPLED NEURONS

3.1 DERIVATION OF THE MODEL

Having discussed isolated self-coupled neurons with spike-influenced feedback, we begin to

consider networks of these neurons. Generally, such networks are constructed such that each

neuron receives spike-influenced feedback from the other neurons in the network. However,

such a setup conflates the effects from feedback with those of multi-neuron networks. To

distinguish these effects, we study an even simpler ”network”: a pair of self-coupled neurons.

Each neuron in the pair receives feedback from its own spikes, but does not communicate

with its counterpart. If the noise inputs to these neurons are completely independent, there

is nothing to study; the network would be nothing more than a collection of independent

self-coupled neurons. We therefore alter slightly our previous formulation, using two sources

of stochastic input as done in [24, 38, 16, 5, 35, 30]. As in our single-neuron formulation,

each neuron will receive its own unique source of stochastic input, ξi(t). We now add an-

other source of stochastic input which is common to all neurons in the network, ξc(t). Our

parameter σ will represent the intensity of the combined sources, and we use the normalized

parameter c to control the distribution of this intensity between the two sources. Since we

would like to maintain the condition that σ2 = σ2
i + σ2

c , we define our distribution rule as:

σi = σ
√

1− c (3.1)

σc = σ
√
c (3.2)

At one extreme, setting c=0 eliminates the common noise, while setting c=1 eliminates

all individual noise sources. In our studies, we are interested in weakly correlated inputs
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where c is small, so individual noise is considerably stronger than common noise. In all of

our work with paired neurons, we take c = 0.2.

It is simple to adapt our earlier model 2.9 to handle this new scheme. Our feedback

function x(t) requires no change from the single-neuron case, other than an index to specify

which spike train it is summating. To distinguish the spike times from the distinct trains,

we denote the time of the j-th spike of neuron i as tij. Assigning each neuron its own state

variables for feedback current levels and voltage, and adding the new noise source to the

voltage equations, we arrive at the model:

τmV
′
i = µ− Vi + gxi +

√
cσξc(t) +

√
1− cσξi(t) (3.3)

x′i = yi (3.4)

y′i = −α2xi − 2αyi + α2
∑

j δ(t− tij − τD) (3.5)

As before, we solve these equations numerically using an Euler-Maruyama integration

scheme. Figure 7 shows a schematic for the network of paired, self-coupled neurons using

sample input and output from this system.

3.2 SPIKE TRAIN STATISTICS

We now update our spike train statistic calculations for the paired, self-coupled neuron

scenario.

3.2.1 FIRING RATE ESTIMATION

Our firing rate estimation formulas from the single neuron case continue to hold here. Note

that when evaluating firing rate ν0(µ, σ), σ represents the total variance which is distributed

between both the shared and individual noise sources. Our correction for µeff also remains

unchanged.
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Figure 7: Schematic of paired self-coupled neurons

3.2.2 SPIKE TRAIN CORRELATIONS AND LINEAR RESPONSE THEORY

When working with pairs of neurons, we can now consider additional statistics that were

not relevant in the single neuron scenario. Specifically, we would like to study the degree

of correlation between the spike trains produced by each neuron of the pair. To arrive at

formulas for correlation, we continue to build on the linear response theory we used for the

single neuron. We make straightforward modifications to 2.16, adding terms for the new

noise sources to obtain:

ỹi(ω) = ỹ0,i(ω) + A(ω)
(√

cξ̃c(ω) + F (ω)ỹi(ω)
)

(3.6)
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We point out that only the common noise ξc appears explicitly in the expression above,

even though each neuron is also receiving an individual noise input ξi. The reason for

this is that, as in our previous ansatz for the single neuron case, the formula for y0 (the

”unperturbed” neuron’s spike train) accounts for the individual noise input as well as the

baseline current, the leak, and the mean of the feedback current. In this paired neuron

scenario with both common and individual noise, our perturbation now accounts for both

the common noise input and the time-varying component of the feedback current.

With this approximation, we can now compute power spectra and cross-spectra of our

transformed spike trains:

Si = lim
T→∞
〈ỹ∗i ỹi〉 ≡ power spectrum of spike train of neuron i (3.7)

Sij = lim
T→∞
〈ỹ∗i ỹj〉 ≡ cross spectrum of spike trains from neurons i and j (3.8)

Xik = 〈ỹiξ̃k〉 ≡ cross spectrum of spike train from neuron i and noise source k (3.9)

In the equations above, the 〈.〉 refers to averaging over phases. For the simple case of two

separate, self-coupled neurons subject to both shared and individual stimuli, we can use the

above definitions to obtain expressions for power and cross spectra. Expanding out the inner

products above, we obtain a system of linear equations to be solved simultaneously for the

variables Si, Sij, and X. Many of the resulting terms vanish: since the unperturbed power

is uncorrelated with the noise terms, we have 〈ỹ0
∗, ξ̃i〉 = 〈ỹ0

∗, ξ̃c〉 = 0. Furthermore, the

unperturbed spike trains themselves are independent of each other, so that 〈 ˜y0,i
∗, ˜y0,j〉 = 0

for i 6= j. Eliminating these terms and rewriting the expanded products, we find:

Si(ω) =
S0,i(ω) + c|A(ω)|2SST (ω)

|1− A(ω)F (ω)|2
i=1,2 (3.10)

S12(ω) =
c|A(ω)|2SST (ω)

|1− A(ω)F (ω)|2
(3.11)

where SST = 〈ξ̃c
∗
ξ̃c〉 denotes the power spectrum of the noise source. Considering that our

problem involves two unfiltered Gaussian sources leads us to alter these formulas. Since

the power spectrum of Gaussian white noise is well-known to be SST (ω, σ) = σ2, we could

substitute this result above. However, we also observe that unfiltered Gaussian white noise
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violates the assumptions of our ansatz - it does not have a finite cutoff frequency. To deal

with this, we adopt a strategy suggested in [24], which we briefly summarize. First, we note

that since both sources are Gaussian white noise, they can be treated as a single noise source

with combined intensity Q = cσ
2

2
+ (1− c)σ2

2
= σ2. Next, we point out that the numerator

of 3.10 is a linear approximation of the unperturbed power spectrum with combined noise,

S0,i(ω,Q). Since this is the point at which we evaluate the linear response, we argue it

suffices to replace the numerator of 3.10 with S0,i(ω,Q). Following this argument, we should

now also replace references to A(ω) with A(ω,Q), and compute firing rates with 2.12 using

σ = Q. Strictly speaking, this is no longer a true linear response approximation, as the point

around which linearization is done will depend on the strength of the signal. This approach

yields the modified formulas:

Si(ω) =
S0,i(ω,Q)

|1−A(ω,Q)F (ω,Q)|2 i = 1, 2 (3.12)

S12(ω) = c|A(ω,Q)|2σ2

|1−A(ω,Q)F (ω,Q)|2 (3.13)

Figure 8 compares the accuracy of our theoretical approximations of the spectra against

spectra calculated numerically for our simulation output using the Chronux software package

[29, 1].

3.3 CORRELATION SUSCEPTIBILITY

When studying multiple-neuron networks, we can consider the correlation between the spike

trains produced by the neurons. Correlation between spike trains may exist over a wide range

of time scales, and we are interested in how spike-driven feedback affects this structure. For

any chosen time window T , we can use our definition of the spike count Y i
T for neuron i to

compute the variance for each neuron’s spike train, as well as the covariance between them:

CovT = 〈
(
Y 1
T − 〈Y 1

T 〉
) (
Y 2
T − 〈Y 2

T 〉
)
〉 (3.14)

V ariT = 〈
(
Y i
T − 〈Y i

T 〉
)2〉 (3.15)

where 〈.〉 denotes an average over trains obtained from many realizations of the noisy inputs.
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Equipped with these definitions, we can then compute the correlation between spike

trains over window T :

ρT =
CovT√

V ar1
TV ar

2
T

(3.16)

Finally, we compute the correlation susceptibility ST [11], which describes the sensitivity

of output correlations to changes in our input correlation c:

ST =
∂ρT
∂c
≈ ρT

c
for c << 1 (3.17)
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Taking advantage of the fact that our noise sources are weakly-correlated (c = 0.2), this

approximation acts as a linear approximation to the true susceptibility.

These same notions can be extended to the continuous realm of our linear response

theory. For an LIF neuron with noisy inputs and a window length of T , we again employ

KT (ω), the Fourier-transform of the triangular time-window given in equation 2.24. The

relevant definitions for computing covariance, variance, correlation and susceptibility in the

Fourier domain are provided in [35] as:

CovT (ω) = T

∫ ∞
−∞

S12(ω)KT (ω)dω (3.18)

V ariT (ω) = T

∫ ∞
−∞

Si(ω)KT (ω)dω (3.19)

ρT (ω) =
CovT (ω)√

V ar1
T (ω)V ar2

T (ω)
(3.20)

ST (ω) =
ρT (ω)

c
(3.21)

In the course of actual calculation, it is convenient to make use of the fact that S1

and S2 will always be identical in the self-coupled neuron case we have presented. Several

figures below present comparisons between theory and simulation results. Figure 9 shows

the primary result we are interested in for a fixed θ: changes in these statistics relative to

baseline over a range of time windows. Figure 10 shows raw changes in the statistics over

a broad range of θ values, while figure 11 shows the same data relative to the non-feedback

case.

In these figures, we see that there is strong qualitative agreement between theory and

simulation, but there is visible quantitative error (particularly in the variance and covariance

plots) that merits explanation. Our theory consistently overemphasizes the effect of feedback

for both variance and covariance, though these errors tend to cancel out when we compute

susceptibilities. This overestimation arises from the magnitude of the feedback term g which

is used. Inspection of our alpha function x(t) also reveals that g’s effect is further amplified

by the time scale under consideration: the faster the feedback is, the more feedback current is

received per unit of time. As a result of these factors, the feedback currents are not truly tiny

perturbations, and test the limits of the linear response approximation. There is a tradeoff
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in this choice of g: smaller g values are more amenable to linear response but evoke changes

which are much harder to see, and will not produce the degree of voltage deflection that

is reported from ADP/AHP experiments. In the interest of producing afterpotentials that

are consistent with the literature and obtaining more distinguishable modulation, we have

chosen larger values of g at the cost of some prediction accuracy. This problem should be less

pronounced in networks of coupled neurons, where each neuron receives aftercurents which

are more diffuse over time, and realistic voltage deflections can be obtained by summing over

multiple feedback sources with smaller g values.
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Figure 9: Temporal changes in covariance, variance, and susceptibility ratios due to
feedback at θ=1 (i.e. µ=0.861, σ=0.61). Theory(solid) and simulation statistics (circles) at g=-2
(blue) and g=1 (red) are shown here relative to results for the baseline g=0.

3.4 ANALYSIS OF RESULTS

Figure 9 clearly shows correlation modulation due to self-coupling in both theory and sim-

ulation. We see that positive feedback increases susceptibility relative to baseline, while
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negative feedback decreases susceptibility. Furthermore, in both cases this effect is most

pronounced for small values of the time window T , and these effects taper off as T is in-

creased. Decomposing susceptibility into its constituent variance and covariance terms, we

see that for very small T the spike count covariance is slightly more affected by g than the

variance term is. In order to gain a better understanding of the cause of this effect, we

analyze how variance, covariance, and susceptibilities depend on g and T . In particular, we

pose the question of whether these effects can be attributed solely to changes in firing rate

arising from feedback, and answer this question with the perturbative argument presented
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below. First, recall the definition of suceptibility (where we omit the dependence on θ for

clarity):

ST (g) =
Cov(g)

V ar(g)
=

∫∞
−∞ S12(ω, g)KT (ω)dω∫∞
−∞ S1(ω, g)KT (ω)dω

(3.22)

The ratio of susceptibilities plotted in figure 9 can then be defined as RT (g):

RT (g) =
ST (g)

ST (0)
=
Cov(g)V ar(0)

V ar(g)Cov(0)
(3.23)

In the limit of small T and g, we can obtain a very simple approximation to the integral

for V ar(g). First, we replace KT (ω) with its first-order Taylor expansion about T = 0:

KT (ω) = T +O(T 2) (3.24)
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Furthermore, we know the power spectrum S1 rapidly converges to the firing rate ν as ω

grows large [23], so our integral over infinite frequencies will be completely dominated by this

ν dependence. For T very small, we can approximate the integral up to a finite frequency

ω∗ = 2π
T

:

lim
T→0

V ar(g) = lim
T→0

∫ ∞
0

S1(ω, g)KT (ω)dω ≈ Tν

∫ ω∗

0

dω = 2πν (3.25)

We conclude that for T near zero, g acts on V ar only through its effect on the firing rate

ν. With this knowledge, we can eliminate the need to consider V ar terms if we control for

g’s effect on firing rate. To do so, we can redefine µ(θ) and σ(θ) to also become functions

of g, defined to compensate for the effects of g so that a constant firing rate is maintained

at all values of g. It is possible to consider various definitions of µ(g) and σ(g) that enforce

this matching, some of which are more amenable to analysis than others. Before introducing
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specific definitions for µ(g) and σ(g), we proceed with our simplification of RT , which is

independent of the matching scheme chosen. When firing rates have been matched, result

3.25 tells us V ar(0) ≈ V ar(g) for small T, and since KT (ω) ≈ T for small T, the ratio can

be simplified to

RT (g) =
Cov(g)

Cov(0)
=

∫∞
−∞ S12(ω, g)dω∫∞
−∞ S12(ω, 0)dω

(3.26)

Before proceeding, we clarify some of the notation that will be used. We remark that the

transfer functionA under firing-rate matching has explicit dependenciesA(ω, µeff (µ(θ, g), g), σ(θ, g)).

As above, we continue to suppress the θ dependence for simplicity, and we now suppress the

g dependence as well, writing A(ω, µeff , σ). Next, it is helpful to factor the g term out of

F (g, ω) so that we can work with an F̂ (ω) that is independent of g, defined as:

F (g, ω) = gF̂ (ω) (3.27)

Lastly, we introduce functions for the real and imaginary components of the complex func-

tions A and F̂ :

A(ω, µeff , σ) = AR(ω, µeff , σ) + iAI(ω, µeff , σ) (3.28)

F̂ (ω) = F̂R(ω) + iF̂I(ω) (3.29)

Since the formula for S12 derived in 3.13 is not readily conducive to analysis, we now

rewrite its numerator NS12 and denominator DS12 as Taylor expansions about g = 0. Making

use of the fact that µeff (µ, 0) = µ, we obtain:
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S12(ω, g) = cσ2NS12(ω, g)DS12(ω, g) (3.30)

NS12(ω, g) = |A (ω, µeff (g), σ(g)) |2

= AR (ω, µeff (g), σ(g))2 + AI (ω, µeff (g), σ(g))2

= |A(ω, µ, σ)|2 +

2gAR (ω, µ, σ)
d

dg
AR (ω, µ, σ) +

2gAI (ω, µ.σ)
d

dg
AI (ω, µ, σ) +O

(
g2
)

(3.31)

DS12(ω, g) =
1

|1− gA (ω, µeff (g), σ(g)) F̂ (ω)|2

=
1

1− 2gRe
(
A (ω, µeff (g), σ(g)) F̂ (ω)

)
+O (g2)

= 1 + 2gRe
(
A (ω, µeff (0), σ(0)) F̂ (ω)

)
+O

(
g2
)

= 1 + 2gRe
(
A(ω, µ, σ)F̂ (ω)

)
+O

(
g2
)

(3.32)

Expanding out the product of 3.30 and using S12(ω, 0) = cσ2|A(ω, µ, σ)|2, to first order

in g we have:

S12(ω, g) = S12(ω, 0) +

cσ2
[
2g|A(ω, µ, σ)|2Re

(
A(ω, µ, σ)F̂ (ω)

)
+

2gAR(ω, µ, σ)
d

dg
AR(ω, µ, σ) +

2gAI(ω, µ, σ)
d

dg
AI(ω, µ, σ)

]
(3.33)

For correlation susceptibility modulation beyond that expected from firing rate changes,

we must show RT > 1 for g > 0 and RT < 1 for g < 0. By 3.26, this is equivalent to showing

∫ ∞
−∞

S12(ω, g)− S12(ω, 0)dω > 0 for g > 0 (3.34)∫ ∞
−∞

S12(ω, g)− S12(ω, 0)dω < 0 for g < 0 (3.35)
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Since the subtractive terms above eliminate the S12(ω, 0) term in 3.33, the direction of

the change in susceptibility is determined by the sign of

2cσ2g

∫ ∞
−∞

AR(ω, µ, σ)
d

dg
AR(ω, µ, σ)+AI(ω, µ, σ)

d

dg
AI(ω, µ, σ)+|A(ω, µ, σ)|2Re

(
A(ω, µ, σ)F̂ (ω)

)
dω

(3.36)

Futhermore, since the signs of the target conditions 3.34 correspond to the signs of g in

each case, it suffices to show that the following condition holds for all g:

∫ ∞
−∞

AR(ω, µ, σ)
d

dg
AR(ω, µ, σ)+AI(ω, µ, σ)

d

dg
AI(ω, µ, σ)+|A(ω, µ, σ)|2Re

(
A(ω, µ, σ)F̂ (ω)

)
dω > 0

(3.37)

Since the dA
dg

terms above will depend on µ(θ, g) and σ(θ, g), we must now commit to a

definition of our firing rate matching scheme to proceed. Below we match firing rates with µ

alone, which turns out to be more convenient than matching with both µ and σ (a strategy

which is explored in appendix B). We choose our scheme such that for g = 0, our standard

definition holds for µ(θ) and σ(θ). For g 6= 0, σ remains untouched, while we calculate an

offsetting µ(g) such that the effective current µeff (g) matches the g = 0 current. This is

easily arranged, as shown below. Our definition of firing rate matching means the following

condition must be met:

ν (µ(0), σ)− ν (µeff (g), σ) = 0 (3.38)

Equation 3.38 can only be satisfied when µeff (g) = µ(0). We can make use of this fact

and the definition of the feedback-adjusted current 2.13 to determine µ for nonzero g:

µ(0) = µeff (g) = µ(g) +
g

τm
ν (µeff (g), σ) (3.39)

= µ(g) +
g

τm
ν (µ(0), σ) (3.40)

=⇒ µ(g) = µ(0)− g

τm
ν (µ(0), σ) (3.41)
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Differentiating both AI and AR by the chain rule and using dσ
dg

= 0, we obtain for each

Aj

dAj (ω, µeff , σ)

dg
=

∂Aj
∂µeff

dµeff
∂g

(3.42)

dµeff
dg

=
dµ

dg
+

1

τm
ν(µ(0), σ) +

g

τm

dν

dg
(3.43)

dµ

dg
= −ν(µ(0), σ)

τm
(3.44)

Substituting 3.44 into 3.43 and noting that firing rate matching by definition entails

dν
dg

= 0, we have:

∂µeff
∂g

= 0 (3.45)

so by 3.42 we see

dAR
dg

=
dAI
dg

= 0 (3.46)

With this result, the required condition 3.37 reduces to∫ ∞
−∞
|A(ω, µ, σ)|2Re

(
A(ω, µ, σ)F̂ (ω)

)
dω > 0 (3.47)

Our analysis thus shows that correlation modulation can be achieved without changing

firing rates when inequality 3.47 is satisfied. The direction of the modulation follows the

sign of g, and the magnitude of the effect is determined by the Fourier transforms of both

the transfer function A and the feedback kernel F . Unlike firing rate, which is driven by

the static mean statistics (µ and σ), A and F are functions of frequency. This suggests that

correlation modulation is sensitive to the time-varying aspects of the noise, stimulus, and the

time scale of the synapse itself. Indeed, this expression implies that correlation modulation

is very dependent on the feedback’s time scale. Inspecting the definition of F (2.15), we see

that F increases as the feedback decay rate α = 1
τs

increases. Conversely, as α shrinks to zero,

F vanishes. From this, we draw the lesson that feedback modulation of correlation will be

most significant for synapses with fast rise and decay rates. Both linear response calculations

and simulation corroborate these findings. Figure 13 shows susceptibility ratio changes as

a function of T under firing rate matching. Here we have solved for the µ(g) values that
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elicit 50 Hz firing rates for each value of g. While the shape of the result remains the same

between matched and non-matched scenarios, we see that rate-matching has reduced the

magnitude of the effect somewhat compared to the unmatched case. This demonstrates that

although firing rates changes are not strictly necessary to cause correlation modulation, they

can amplify it. As expected, figure 14 shows correlation modulation being greatly attenuated

for large τs. Here we see modulation at α = 0.1 (i.e. τs = 10), as compared to our previous

plots at α = 2 (i.e. τs = 0.5). Plotting our predictions over a range of feedback time-scales

(figure 15) puts this into perspective, illustrating the spectrum of correlation changes that

can be achieved. Figure 16 helps visualize the behavior of the condition we have derived for

modulation. We see that this quantity is positive as required, and decreases as τs increases.

This figure also shows that as we increase the correlation time-window T , moving further

from the underlying assumptions of our derivation, the decay of this quantity is becoming

linearized. We caution that these results were derived for neurons in excitable regimes; it is

not necessarily true that they generalize to oscillatory regimes.
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Figure 13: Changes in susceptibility ratios with firing rate matching for θ=1(i.e.
µ=0.861, σ=0.61). The baseline θ=1 produces 50Hz firing for g=0. The g=-2 (blue) and g=1
(red) show susceptibilities relative to susceptibility at g=0.
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Figure 14: Changes in susceptibility ratios with µ-based firing rate matching for θ=1
(i.e. µ=0.861, σ=0.61) at α=0.1 (τs = 10).
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Figure 15: Range of correlation modulation as a function of τs. Here we use µ-based firing
rate matching for θ=1 (i.e. µ=0.861, σ=0.61).
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Figure 16: Extinction of theoretical condition for correlation modulation as feedback
time scale slows.
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4.0 CONCLUSIONS

We have shown that spike driven feedback influences both neural gain and correlation in

self-coupled neurons. The profiles of these effects are markedly different, however. Figure 6

shows a maximum change in dynamic gain of roughly ± 10%, fairly uniformly over all time

windows. In contrast, figure 9 illustrates marked temporal dependence in the modulation of

correlation while producing maximum effects of comparable magnitude. Other studies [11]

have shown that correlation increases with firing rate, and provided an analytical treatment

of this effect the limit of large T . It is therefore natural to ask if the correlation changes we

observe are solely due to changes in firing rate induced by feedback. By fixing firing rates

in the presence of feedback, we have shown that firing rate changes are not the sole cause of

this effect.

These findings have strong consequences for efforts to manipulate gain and correlation

by altering firing rate. We see that these properties cannot be modulated completely inde-

pendently - experimental attempts to modulate one will affect the other. Furthermore, the

time scales associated with these effects imply constraints on how simultaneous modulatory

targets can be achieved. Gain is modulated by feedback fairly uniformly over all time scales,

while correlation shaping depends strongly on the time scale of the feedback. Modulation of

gain with minimal effect on correlation should be possible for neurons with relatively slow

intrinsic feedback. This goal, however, would prove difficult to for neurons with fast intrinsic

feedback, requiring manipulation of some other more orthogonal mechanism. Conversely,

any attempt to modulate correlation entails changes in gain, regardless of the time scale

considered.

Our results can be connected to previously reported experimental results, and offer some

predictions for future work. In the presence of positive feedback we predict gain will increase
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regardless of the time-scale τs of the feedback. This prediction is consonant with the gain

increases due to ADP’s reported in [28] and shown in panels C and D of figure 1. Likewise,

our theory predicts that AHP’s will decrease gain, which concurs with the observations for

AHP’s in [18], shown in panels A and B of figure 1. Furthermore, our theory would predict

that in both cases, the observed gain modulation would persist over any chosen time window

T . Unlike gain, we predict that correlation changes are dependent on the time-scale of

the feedback. Previous modeling work done with this ADP data [28, 13] report α = 0.24,

corresponding to τs = 4.16. This τs is relatively large compared to the values that we

see maximize synchrony changes in our theory; we would predict a very mild increase in

synchrony for this experiment. The AHP study discussed above uses a dynamic clamp setup

to emulate an AHP, where the decay of the feedback is 1 second. For such slow a feedback

time scale, our theory would predict virtually no correlation modulation should be observed.

Our theory predicts that feedback alters correlations primarily over short time scales,

which should be relevant to bursting dynamics. Prior studies in electric fish [31] have explored

the role of ADP’s in as a mechanism for bursting, and proposed the viability of bursting

as a coding scheme for sensory stimuli. These experiments were also modeled using an LIF

setup very similar to ours for single neurons [13]. As expected, our work reproduces the

finding that bursting is increased by ADP’s in paired neurons. Additionally, our results

suggest that due to their limited time-scale of effectiveness in altering correlation, ADP’s are

in fact well-suited to controlling bursting by changing short-time scale correlation without

altering longer time window correlations. This further supports the notion that self-feedback

could serve as an important mechanism for implementing coding schemes based on bursting.

Recent in vivo experiments in electric fish [7] have studied bursting changes in populations

of neurons under both narrow and wide spatial field stimuli. They report that narrow field

stimulation of neurons produces increases in bursting and overall correlations, consistent

with our predictions. They also report that wide field stimulation increases the occurrence of

near-synchronous spikes as we would predict, but they find that overall correlation is actually

decreased. Our theory as it stands will not replicate this finding without invoking changes in

g or c. Alternative theories using conductance-based models have been proposed to explain

these in vivo results [22]. We propose that the reported changes are due to the complex
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interplay of mechanisms which are present in vivo, and predict that such effects would not

be observed in vitro. Our results may also have implications for constraints on the design

of neural codes - other researchers have presented theoretical arguments for the significance

of correlation with respect to population coding. In particular, it has been pointed out

that noise in the brain has its own correlation structure and this may limit how correlated

firing can implement information coding and decoding across populations of neurons [3]. We

acknowledge that our study is confined to self-coupled neurons, which do not represent the

most common form of spiking feedback in the brain. However, such architectures do arise

in nature, for example in autaptic neurons: neurons which form synapses with themselves.

Such synapses have been found to exist in many parts of the brain, including the neocortex

and striatum [4].

Lastly, we note the potential utility of this result for understanding gain and correlation

modulation in larger, cross-coupled networks. When studying such networks, it is difficult

to distinguish whether changes in outputs are evoked purely by the presence of spike-driven

feedback (regardless of its source), or whether they arise only from interactions between

distinct neurons. Self-coupled neurons provide a reference point which separates the intrinsic

effects of spiking feedback from network effects, and serve as a logical bridge between studies

of uncoupled neurons and studies of networked populations [26]. Careful comparison of

changes seen at each step in the progression from uncoupled neurons to self-coupled neurons

to cross-coupled neurons (as depicted in figure 17) may clarify our understanding of the

driving factors behind our results. Future work may explore this topic in more detail.
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Figure 17: Progression from (A) uncoupled neurons, to (B) self-coupled neurons, to
(C) cross-coupled neurons.
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APPENDIX A

DERIVATION OF SPECTRA AND TRANSFER FUNCTION

The linear response theory used throughout this thesis relies heavily upon approximations

to the transfer function A(ω), the stationary firing rate ν(µ, σ), and the unperturbed power

spectrum S0. In the following sections, we sketch the main points of the derivations of these

expressions as they are presented in [23].

A.0.1 POPULATION DENSITY AND FOKKER-PLANCK TREATMENT

The central idea underlying these derivations is the approach of modeling neural firing as a

first-passage time problem. The behavior of our model neurons is dictated by evolution of

voltages over time: current enters the neuron, raising voltage until a spike triggers a voltage

reset and the cycle continues. Since our system is in the excitable regime, we require σ > 0

to ensure spiking events, and therefore we study the aggregate behavior of a large population

of neurons which are subject to noise. Let P (v, t) denote the probability that a neuron in

this ensemble has voltage v at time t. The mean firing rate of the ensemble then corresponds

to the flux of population voltages across firing threshold over a given time window. After

a spike, the neuron’s voltage will be reset to vR, but first the neuron will enter a refractory

state, which persists for duration τ . We let PT (t) denote the probability that a neuron is in

the refractory state at time t, and note that each neuron either has voltage in [−∞, vT ], or

it is currently in the refractory state, i.e:∫ vT

−∞
P (v, t)dv + PT (t) = 1 (A.1)
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We assume that the voltage of each neuron evolves according to a fixed input current µ,

with a leak v, and a noisy input ξ with intensity D = σ2

2
:

v′(t) = µ− v +
√

2Dξ(t) (A.2)

Since neurons stay in the refractory state for duration τ , the probability PT that a

neuron is refractory corresponds to the probability that the neuron’s voltage was pushed

above threshold over the last τ time units:

PT (t) = −D
∫ t

t−τ

∂P (v, t′)

∂v
dt′
∣∣∣
v=vT

(A.3)

Next, we note that a neuron that hits the threshold instantly transitions to the refractory

state, so we have:

P (vT , t) = 0 (A.4)

Furthermore, once a neuron reaches vT , it will spend τ time units in the refractory state,

and will then immediately be set to vR. The influx of neurons (J+) with v = vR will match

the outflux of neurons (J−) with v = vT exactly τ time units ago:

J+(t) = J−(t− τ) = J(vT , t− τ) (A.5)

We can summarize this in the Fokker-Planck equation:

∂tP (v, t) = ∂v(v − µ+D∂v)P (v, t) + J+(t)δ(v − vR) = −∂vJ(v, t) (A.6)

where we stipulate that lim
v→−∞

P (v, t) = 0 to avoid non-physical solutions. Making the change

of variables x = v − µ, we obtain the final form:

∂tP (x, t) = ∂x(x+D∂x)P (x, t) = −∂xJ(x, t) (A.7)
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A.0.2 STATIONARY FIRING RATE

This thesis makes frequent use of the stationary firing rate of neurons, ν(µ, σ), which can be

derived using the Fokker-Planck formulation described above. Stationary implies ∂tP (x, t) =

0 and therefore a constant flux J(v, t) = J0. Neglecting the trivial solution of zero current,

we find the solution for finite currents to be

P0(x) = c1e
−x2/(2D)

∫ c2

x

ey
2/(2D)dy (A.8)

Using the change of variable from v to x in the previous section, we denote x− = vT − µ

as the threshold at which neurons are put into the refractory state. Likewise, we denote

x+ = vR − µ as the reset point at which neurons resume evolution after their refractory

periods. Since we require P (x−, t) = 0, we see c2 = x−. Furthermore, differentiating gives

dP0

dx
(x−) = c1. At the threshold x− this should match the outgoing current, J0

D
. However,

since current flowing out at x− reenters at x+ after the refractory period, our expression

holds only over [x+, x−]. For x < x+ we can take P0(x) = c3e
−x2/(2D). We know that the

jumps in ∂P0

∂x
at x− and x+ must be equal, which yields

c3 =
J0

D

∫ x−

x+

ey
2/(2D)dy (A.9)

Our solution has now taken the form:

P0(x) =
J0

D
e−x

2/(2D)

∫ x−

x

ey
2/(2D)H(y − x+)dy (A.10)

=
J0

D
e−x

2/(2D)


∫ x−
x+

ey
2/(2D)dy , x < x+∫ x−

x
ey

2/(2D)dy , x+ < x < x−
(A.11)

We can compute the probability of being in the refractory state by evaluating A.3 and

recalling J(vT , t) = J0, which yields PT = J0τ . Substituting back into A.1, subsequent

renormalization and simplification yields the final formula for the stationary firing rate:

ν =

(
τ +
√
π

∫ −x+√
2D

−x−√
2D

ez
2

erfc(z)dz

)−1

(A.12)
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A.0.3 POWER SPECTRA

The Wiener-Khinchin theorem tells us that the power spectrum is the Fourier transform

of the autocorrelation of a spike train y(t). Furthermore, the spiking of an LIF neuron

constitutes a renewal process with an interspike interval (ISI) density ρ(t), so we can write:

S(ω) =

∫ ∞
−∞
〈y(t)y(t+ τ)〉eiωτdτ (A.13)

= ν
1− |ρ̂ (ω)|2

|1− ρ̂ (ω)|2
+ 2πνδ(ω) (A.14)

Above we continue to denote the firing rate with ν, and ρ̂ is the Fourier transform of the

ISI density ρ(t), which is seen to be:

ρ̂(ω) =

∫ ∞
−∞

ρ(t)e−iωtdt (A.15)

=

∫ ∞
0

ρ(t)e−stdt (A.16)

= L[−iω, ρ(t)] (A.17)

where we have substituted s = iω when switching to the Laplace transform.

The quantity L[−iω, ρ(t)] = L[−iω, δ(t− τ)]L[−iω, ρFP ] requires the Laplace transform

of the absolute refractory period τ and the Laplace transform of the probability density of

our first passage time problem. The first transform is trivially found:

L[−iω, δ(t− τ)] = eiωt (A.18)

The transform of the first passage density is more involved; it is given by [17] as:

L[−iω, ρFP ] = e∆
Diω

(
(µ−vR)

√
2

σ

)
Diω

(
(µ−vT )

√
2

σ

) (A.19)

∆ =
v2
R − v2

T + 2µ(vT − vR)

4D
(A.20)

where the Diω terms denote the parabolic cylinder functions.

The result A.19 can then be substituted into A.14 to obtain the power spectrum of the

unperturbed neuron:

S(ω) = ν

∣∣∣Diω ( (µ−vT )
√

2
σ

)∣∣∣2 − e2∆
∣∣∣Diω ( (µ−vR)

√
2

σ

)∣∣∣2∣∣∣Diω ( (µ−vT )
√

2
σ

)
− e∆eiωτDiω

(
(µ−vR)

√
2

σ

)∣∣∣2 + 2πν2δ(ω) (A.21)
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A.0.4 TRANSFER FUNCTION

Noting that weak feedback to a neuron could be approximated by some Fourier series, we

consider the simplest such approximation: a single cosine term. Making this approximation,

the neuron’s potential is given by:

V ′ =
1

τm
(µ+ ε cosωt+ σξ(t)) (A.22)

We can rewrite this as a Langevin equation by making the change of variables:

x(t) = v − µ+ ε(Ae−iωt) (A.23)

A =
e−iφ

2iω − 2
(A.24)

and then differentiating to obtain:

x′ = −x+ σξ(t) (A.25)

This result can now be expressed by the Fokker-Planck equation with boundary condi-

tions as given below:

∂tP (x, t) = ∂x(x+
σ2

2
∂x)P (x, t) (A.26)

P (xt(t), t) = 0 (A.27)

[P (x, t)]xr(t) = 0 (A.28)[
∂P (x, t)

∂x

]
xr(t)

=
∂P (x, t− τ)

∂x

∣∣∣
xt(t−τ)

(A.29)

We can approximate this by

P (x, t) = P0(x) + ε(Ae−iωtp(x))e(x2
+−x2)/2σ2

(A.30)

Substituting this into the Fokker-Planck equation, we get an ODE:

σ2

2
p′′(x)−

(
x2

2σ2
− iω − 1

2

)
p(x) = 0 (A.31)
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whose solution can be written in terms of the Kummer’s function U as

ψ(x) = U(−iω − 1

2
,
−x
√

2

σ
) (A.32)

Expanding the boundary conditions to linear terms yields:

p− =
ν

De∆
(A.33)

[p+] =
ν

D
(A.34)

[p′]+ − e
∆eiωτp′− =

ν

2D2

(
eiωτx− − x+

)
(A.35)

where ∆ =
(x2

+−x2
−)

4D

We obtain:

|p(x)| =


(

ν
De∆ψ−

− ν
Dψ+

+ kY+

)
ψ(x)

ν
De∆

ψ(x)
ψ−

+ kY (x)ψ+

(A.36)

with Y (x) = ψ(x)ψ2 − ψ − ψ2(x).

Our final expression for the transfer function becomes:

A(ω, µ,D) =
iνω
√

(D)

iω − 1

Diω−1

(
µ−VT√

D

)
− e∆Diω−1

(
µ−VR√

D

)
Diω

(
µ−VT√

D

)
− e∆iωτRDiω

(
µ−VR√

D

) (A.37)

∆ =
V 2
R − V 2

T + 2µ(VT − VR)

4D
(A.38)

where the Diω terms denote the parabolic cylinder functions.
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APPENDIX B

ANALYSIS OF FIRING RATE MATCHING WITH θ

In section 3.4, we first derived a general condition for understanding the correlation modu-

lation caused by feedback in a firing-rate matched scenario. We then showed further simpli-

fications that were possible when firing rate matching was achieved using only µ. Since we

have linked µ and σ via the parameter θ throughout this work, it is natural to investigate the

consequences of rate matching which manipulates both µ and σ through θ. This appendix

shows the derivation for this scenario, which leads to a more cumbersome result.

This derivation follows the µ-matched scenario up through result 3.37. We then define a

new firing rate matching scheme:

µ(θ, g) = µ0 + kµθg(θ, g) (B.1)

σ(θ, g) = σ0 + kσθg(θ, g) (B.2)

For any given choice of θ and g, we can treat θg as a parameter using the original definition

of µ and θ:

µ(θg) = µ0 + kµθg (B.3)

σ(θg) = σ0 + kσθg (B.4)
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Rate matching is achieved by solving for the θg that satisfies the root finding problem

ν(µeff (µ(θg)), σ(θg))− ν(µ(θ, 0), σ(θ, 0)) = 0 (B.5)

(B.6)

In this approach, θg acts as a ”corrected” θ which balances out the effects of feedback on ν.

Clearly, θg > θ for negative g, while θg < θ for positive g. Figure 18 illustrates continuous

firing-rate matched curves in parameter space. Note that although all (θ, g) coordinates

along a curve produce identical firing rates, their gains are not identical. Furthermore,

changes in gain saturate as firing rate rises; at coarse resolution it is difficult to visually

distinguish between the gain curves above roughly ν=30 Hz.
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Figure 18: Firing rate matching for θ=1. We introduce a parameter ”p” for traversing firing
rate isolines in (θ, g) space. Panel (a) shows the curves in parameter space which produce identical
firing rates. Panel (b) shows the firing rates corresponding to the isolines in panel (a). Panel (c)
shows the gain at each point along the firing rate isolines.

As before, we verify that correlation modulation in this scenario is similar to that observed

without rate matching. Figure 19 shows susceptibility ratio changes as a function of T in
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a firing rate matched scenario. Here we have solved for the θg values that elicit 50 Hz

firing rates for each value of g. Just as with our µ-based rate-matching scheme, figure 19

reproduces our original findings: correlation changes are maximized at low T, and taper off

as T increases. Once again we also observe that the magnitude of the effect is diminished by

using rate matching. This confirms that the correlation modulation is not simply a result of

changes in firing rate: firing rate changes merely amplify the effect.

2 4 8 16 32 64 128 256
0.94

0.96

0.98

1

1.02

1.04

T (msec)

 

 

Figure 19: Changes in susceptibility ratios with firing rate matching for θ=1. The
baseline θ=1 produces 50Hz firing for g=0. The g=-2 (blue) and g=1 (red) show susceptibilities
relative to susceptibility at g=0. Firing rate matching is achieved with θg=1.168 (g=-2) and θg=.915
(g=1).

We now consider the form of the dA
dg

terms in condition 3.37. Firing rate matching

introduces greater chain rule dependencies as both µ and σ now change with g. Applying

the chain rule, and using the definition of µeff we have:

dA

dg
(ω, µeff , σ) =

∂A

∂µeff

dµeff
dg

+
∂A

∂σ

dσ

dg
(B.7)
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From our definition of µ(θ) and σ(θ) in 2.5, it is obvious that

dσ

dθg
= kσ (B.8)

dµ

dθg
= kµ (B.9)

Computing the relevant derivatives gives:

dµeff
dg

(µ, g) =
dµ

dg
+ ν(µeff ) + g

dν

∂g
(B.10)

=

(
∂µ

∂θg

dθg
dg

+
∂µ

∂g

)
+ ν(µeff) (B.11)

= kµ
dθg
dg

+ ν(µeff) (B.12)

dσ

dg
(µ, g) =

∂σ

∂θg

dθg
dg

+
∂σ

∂g
(B.13)

= kσ
dθg
dg

(B.14)

Assembling the results for AR and AI , we have:

dAj
dg

=
∂Aj
∂g

(
kµ
dθg
dg

+ ν(µeff)

)
+
∂Aj
∂σ

(
kσ
dθg
dg

)
(B.15)

Since dθg
dg

is determined by the firing-rate matching requirement, we can compute it:

dν

dg
= 0 =

∂ν

∂µeff

(
∂µeff
∂θg

dθg
dg

+
∂µeff
∂g

)
+
∂ν

∂σ

(
∂σ

∂θg

dθg
dg

+
∂σ

∂g

)
(B.16)

=⇒ dθg
dg

=
−ν(µeff )

∂ν
∂µeff

kµ
∂ν

∂µeff
+ kσ

dν
dσ

(B.17)

Unlike the simpler µ-based matching scheme we studied in the text, the dA
dg

terms do

not vanish in this scheme, yielding a modulation condition which is much less illuminating.

Recognizing that this result does not offer much insight, we do not pursue this analysis

further, but we note again that figure 19 confirms the existence of our central result even

with this more complicated rate-matching scheme.
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