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Despite the significant amount of research conducted on the epidemiology of seasonal influenza, 

the patterns in the annual oscillations of influenza epidemics have not been fully described or 

understood. Furthermore, the current understanding of the intrinsic properties of influenza 

epidemics is limited by the geographic scales used to evaluate the data. Analyses conducted at 

larger spatial scales may potentially conceal local trends in disease structure which may reveal 

the effect of population structure or environmental factors on disease spread. By using influenza 

incidence data from the Commonwealth of Pennsylvania and United States influenza mortality 

data, this dissertation characterizes seasonal influenza epidemics, evaluates factors that drive 

local influenza epidemics, and provides an initial assessment in how administrative borders 

influence surveillance for local and regional influenza epidemics. 

 Evidence of spatial heterogeneity existed in the distribution of influenza epidemics for 

Pennsylvania counties resulting in a cluster of elevated incidence in the South Central region of 

the state that persisted during the entire study period (2003-2009). Lower monthly precipitation 

levels during the influenza season (OR = 0.52, P = 0.0319), fewer residents over age 64 (OR = 

0.27, P = 0.01) and fewer residents with more than a high school education (OR = 0.76, P = 

0.0148) were significantly associated with membership in this cluster. In addition, significant 

synchrony in the timing of epidemics existed across the entire state and decayed with distance 

(regional correlation ρ = 62%). Synchrony as a function of population size displayed evidence of 
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hierarchical spread with more synchronized epidemics occurring among the most populated 

counties. A gravity model describing movement between two populations was the best predictor 

of influenza spread suggesting that non-routine and leisure travel drive local epidemics. Within 

the United States, clusters of epidemic synchronization existed, most notably in densely 

populated regions where connectivity is stronger.   

 Observation of county and state epidemic clusters highlights the importance and 

necessity of correctly identifying the ontologic unit of epidemicity for influenza and other 

diseases. Recognition of the appropriate geographic unit to implement effective surveillance and 

prevention methods can strengthen the public health response and minimize inefficient 

mechanisms. 
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1.0  INTRODUCTION 

1.1 OVERVIEW 

Influenza is a contagious respiratory pathogen responsible for annual seasonal epidemics in 

temperate climates resulting in significant morbidity and mortality. Epidemics in the northern 

hemisphere typically occur between October and April. The extent of antigenic variation of the 

virus, protective immunity in the population, and virus virulence influences the relative size and 

impact of the epidemic each year. Many characteristics of the transmission dynamics within 

households have been elucidated; however, less is known about the transmission dynamics at 

larger spatial scales and over longer time periods. Improvement in surveillance systems has 

fostered a new period of spatiotemporal analyses enabling researchers to reveal hierarchical 

transmission patterns. Ultimately, recognition of such trends could direct limited human and 

economic resources to improve control strategies aimed at minimizing transmission through 

targeted vaccinations, directed hygienic advertisements and informed surveillance. 

1.2 VIROLOGY 

Influenza viruses consist of eight segmented genomes and belong to the family 

Orthomyxoviridae [1]. Of the three influenza viruses A, B and C, only influenza A and B are 
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known to cause substantial seasonal morbidity and mortality [2]. Further classification of 

influenza viruses into subtypes is based on the antigenic and genetic differences between the two 

surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). The greatest glycoprotein 

diversity occurs with the Influenza A virus which has 16 HA and 9 NA identifiable subtypes. In 

contrast, influenza B has only one recognizable hemagglutinin and neuraminidase [3]. 

Hemagglutinin serves as major surface antigen responsible for binding virions to the host cell 

and thus facilitating entry [4]. Vaccines target this membrane protein. The membrane protein, 

neuraminidase, is responsible for cleaving the progeny virions from the host cell receptors 

enabling virus spread and is the focus of antiviral drugs and vaccines [3]. 

Seasonal epidemics and pandemics are maintained by antigenic variation associated with 

the two surface glycoproteins, HA and NA. Changes in the antigenic composition of influenza 

surface proteins, irrespective of previous influenza vaccination or infection by influenza, leave 

an individual susceptible to the new influenza strain. Two types of variation exist: antigenic drift 

and antigenic shift. Antigenic drift refers to the evolution of a new influenza virus strain from the 

accumulation of point mutations in the HA and NA genes. This new variant strain escapes 

immune recognition generated by previous strains and results in outbreaks in inter-pandemic 

years among both influenza A and B viruses [2]. Antigenic shift occurs when antigenic change 

leads to the development of influenza A virus with a novel HA or NA glycoprotein. Profound 

antigenic change, like that occurring with antigenic shift, in a susceptible human population 

often leads to a p andemic influenza strain. Genetic reassortment between human and animal 

influenza viruses or direct animal to human transmission is the source of antigenic shift [1]. 

Acquisition of HA and NA genes through genetic reassortment coincided with pandemics in 

1957, 1968, 1977, and more recently, the H1N1 pandemic in 2009 [5]. 
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1.3 EPIDEMIOLOGY 

1.3.1 Transmission and Clinical Illness 

The virus replicates in respiratory epithelial cells where it gains access to respiratory secretions 

enabling direct spread to occur through the formation of droplets created by coughing, sneezing, 

or speaking [1]. The opportunity for infection through indirect contact by touching an infected 

surface (fomite) has also been observed.  The median incubation period for influenza A virus is 

1.4 days, though the period ranges from 1 t o 3 da ys [6]. Upon infection, influenza illness is 

marked by an abrupt onset in adults and children and symptoms include fever, chills, cough, sore 

throat, myalgia, and a headache [7, 8]. Gastrointestinal symptoms have been observed in children 

and symptoms persist for several days [1, 7, 8]. Viral shedding is likely to be an important 

determinant in transmission and infectivity and the median duration is 5 days though children are 

thought to shed longer than adults [9, 10]. 

1.3.2 Morbidity and Mortality 

Seasonal epidemics in the Northern Hemisphere occur in the winter months between October 

and April. Within the United States, peak activity most often occurs in February [11]. Estimating 

the burden of influenza, specifically incident cases and mortality due to influenza, remains a 

challenge. Passive surveillance systems may not capture all of the incident cases and influenza-

specific deaths are often not confirmed virologically or listed on hospital death certificates [12]. 

Thus, estimates in influenza morbidity and mortality vary by reporting method. In the United 

States the attack rate ranges from 10%-20% resulting in an estimated 25-50 million yearly 
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infections [13, 14]. Age-specific differences in the attack rate have been noted with the greatest 

attack rates among persons < 2 0 years of age [13, 15]. Hospitalizations are highest among 

children and are similar to adults aged 50-64 years [16, 17]. Though, the elderly (> 65 years of 

age) had the highest rates of influenza-associated hospitalizations and this trend has been 

increasing over the past two decades as a result of the aging population [16]. Pregnant women 

are at an increased risk of developing cardiopulmonary events as the duration of the pregnancy 

increases [18]. 

Analyses of influenza-attributable mortality in the United States have produced a range of 

estimates. Using an approach based on excess deaths above an epidemic threshold, Simonsen et 

al. estimated 21,000 influenza deaths per year (1972-1992) [19]. Thompson et al. proposed an 

annual estimate of 36,000 deaths associated with influenza and further provided age-specific 

death rates [12]. More recently, Dushoff et al. predicted an annual average of 41,400 de aths 

attributed to influenza which is consistent with previous estimates and provides additional 

confirmation that influenza is an important contributor to seasonal excess deaths [20]. Globally, 

approximately 250,000 to 500,000 deaths are attributed to influenza each year [21]. 

Cumulative and age-specific mortality rates differ significantly for seasonal and 

pandemic influenza. The “Spanish flu” of 1918-1919 is widely referenced as one of the most 

devastating pandemics in history. The United States experienced > 500,000 deaths and globally 

at least 20 million deaths occurred [22].  Aside from the notable mortality rates, the proportion of 

excess deaths in persons < 65 years was greater than 99%. The age-related trends continued in 

the subsequent pandemics of 1957-58 and 1968-69 as younger persons were at a higher risk of 

death from the pandemic strains [2, 22]. These pandemics also noted significantly lower 

mortality rates particularly the 1968-69 pandemic which had a mortality rate more consistent 
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with a typical seasonal epidemic in the United States [23]. Higher attack rates among children < 

20 years were observed in both the United States and England for the recent 2009 H1N1 

pandemic [24, 25]. Pre-existing immunity might have served as a protective factor among the 

older age groups during the pandemics [22, 24, 25]. 

1.3.3 Seasonal Epidemics 

Aside from observations of seasonality and the morbidity and mortality burden, seasonal 

epidemics are often characterized by age-specific patterns, risk factors in transmission, timing 

and magnitude of epidemics, and differences in the subtypes. The reemergence of A/H1N1 in 

1977 has led to the co-circulation of two influenza A viruses (A/H1N1 and A/H3N2) each season 

for the first time in inter-pandemic history [5]. Previously, the pandemic strain replaced the 

circulating subtype. As a result, seasonal epidemics are often classified by the predominance of 

influenza A subtype and influenza B. Differences in spatiotemporal trends, timing, magnitude, 

and age-related patterns among subtypes and influenza viruses are evident. 

Age-specific attack rates exist for both seasonal epidemics and pandemics, and they are 

driven by factors such as host immunity, virulence, and contact network. Several studies have 

quantified the attack rates among children and evidence suggests that school-age children are 

important disseminators of influenza particularly within households [15, 26-28]. Because of the 

role school children have in propagating influenza epidemics, school closure has received 

significant attention as a public health intervention [29, 30]. Estimates of transmission are 

difficult to generate, though an analysis suggests transmission varies by setting with schools and 

workplaces accounting for 37%, households for 30% and the general community accounting for 

33% [31]. Within a household, approximately 40-48% of the secondary cases are attributable to 
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transmission from a child [26]. Risk factors for the transmission of influenza within households 

from other than school-aged children include exposure to preschool index patients, exposure to 

those who attend a child care center, asthma and household density [26, 32, 33]. Households 

with children less than 5 years of age experience a higher rate of influenza B and rhinovirus 

infection and influenza-associated hospitalizations than school-aged children [27, 34]. 

Several differences are noted in the epidemiology of influenza B epidemics compared to 

influenza A. Influenza B has fewer recognizable cell-surface receptors and genetic reassortment 

with a novel avian or swine heamagglutinin or neuroaminidase is not likely to occur [1]. As a 

result, evolutionary changes through antigenic drift are less frequent and opportunities for 

antigenic shift are non-existent. Since the 1980’s, two distinct lineages of influenza B have been 

co-circulating globally: the Victoria and Yamagata lineages [35, 36]. Seasons dominated by 

influenza B and A/H1N1 experienced less severe illness and mortality compared to seasons 

dominated by A/H3N2 [19, 37, 38]. However, since 1980 t here have been significantly fewer 

seasons dominated by influenza B transmission, and it has not occurred since 1992/93 [11](Stark 

unpublished data). The co-circulation of A/H3N2 and A/H1N1 has led to alternating seasons of 

subtype dominance which may be the result of epidemic interference or cross-immunity between 

the subtypes [39]. Within the United States, epidemics dominated by A/H3N2 experience 

stronger regional synchronization owing to the stronger person to person transmission, 

opportunities for multiple seeding, or less signal detection in seasons dominated by A/H1N1 and 

B [38]. Similar inter-hemispheric synchronization results are also observed [39]. In addition, 

recent findings observe peak timing of B epidemics occurring later in the season than influenza 

A (H3 and H1) [34, 39]. 
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Seasonality of influenza epidemics during the winter months of temperate climates is an 

important epidemiological phenomenon that has significant public health implications. Stimuli 

that lead to a wintertime increase in influenza activity are paramount to understanding seasonal 

host-pathogen interactions. Distinguishing between climatic factors, host immunity and the 

school calendar on seasonality is challenging given the similar periodicities [40-42]. However, 

recent experimental and epidemiologic studies conclude that absolute humidity modulates 

influenza transmissibility [43, 44]. Furthermore, anomalously low levels of absolute humidity are 

associated with the onset of influenza activity [43]. This climatic stimulus does not trigger the 

reintroduction of a latent viral population among host populations resulting in the next season’s 

epidemic. Phylogenetic analysis reveals inter-hemispheric global migration of influenza A 

viruses contributes to the introduction of seasonal epidemics [45]. These results suggest that 

geographic importation of genetically different viral strains is responsible for new epidemics 

rather than natural selection of local strains that persist during non-epidemic periods [45, 46]. 

These results highlight the importance of year round surveillance to monitor the antigenic 

characteristics of influenza A specifically in East-Southeast Asia where continuous circulation of 

A/H3N2 serves as a reservoir seeding epidemics in temperate climates [47]. 

1.3.4 Spatial and Temporal Dynamics  

Despite the regularity of seasonal epidemics, only a few studies have empirically investigated the 

spatio-temporal patterns of influenza epidemics. Over a 7 year period from 1992-1999, Sakai et 

al. observed an epidemic spread of influenza in concentric circles from western-central Japan to 

eastern Japan [48]. The timing of peak influenza-like illness (ILI) activity varied by influenza 

type; new antigenic variants of A/H3N2 demonstrated a rapid and homogenous spreading pattern 
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over a shorter time period. Similarly, spatial and temporal clusters of influenza incidence existed 

in the large urban areas of the Fukukoa prefecture in Japan and gradually diffused to the rural 

areas coinciding with the major transportation networks in that region [49]. Paget et al. observed 

a west to east spread of influenza in 4 consecutive seasons across 20 countries in Europe from 

2001-2005 and a North-South movement in 3 non-consecutive seasons [50]. 

An alternative approach to evaluating the spatiotemporal patterns involves estimating 

spatial synchrony. Synchrony, referred to as how the timing and amplitude in incidence between 

two series covaries in geographical space, has been used previously to describe the host-

pathogen relationship in measles and other ecological systems [51, 52]. Synchrony typically 

declines with distance, thus nearby populations often experience synchrony. While a ubiquitous 

presence in populations dynamics, changes in disease transmission from mass vaccination 

desynchronized measles epidemics [53, 54]. Greene et al. assessed space-time patterns of 

influenza mortality among the elderly in the United States and observed clustering of influenza 

in states that shared borders [38]. In addition, the investigators demonstrated that average 

synchrony declined over shorter distances in seasons when A/H1N1 or B dominated compared to 

A/H3N2. Evaluation of three Italian regions also displayed a high level of synchrony [55]. 

Similar excess death estimates in each region irrespective of subtype were highly correlated. 

Ecological mechanisms including host dispersal, community interaction processes 

(predator-prey), and climatic factors can induce regional synchrony [53]. An investigation of 

influenza spread and human movement revealed a significant association between human 

movements with epidemic synchrony. The investigators observed that the rates of adults 

commuting to and from work demonstrated the strongest correlation with mortality from 

influenza [56]. Furthermore within the United States, a spatial trend in peak timing from Western 
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States to New England was observed [57]. In this analysis, the Western states including 

California, Nevada, and Utah peaked approximately two to three weeks earlier than the New 

England states. Alternatively, environmental forces such as temperature and humidity could have 

a direct influence on vi rus and host susceptibility; thus modulating annual oscillations and 

disease spread [42-44, 58]. In accounting for a seasonal travelling wave in Brazil originating at 

the Equator in the North and extending towards the Southern regions, Alonso noted that the 

direction of the seasonal spread may be independent of population factors and could be attributed 

to climatic forces relevant in the geographically diverse country [59]. The authors suggested that 

a co-dependence on population movement and the environment could be the driving force behind 

the travelling wave. 

Simulation modeling has provided valuable insights into the spatial spread of influenza. 

Many simulations have been extended to pandemics and have incorporated international air 

travel to simulate the global spread of disease [31, 60-63]. These sophisticated models can 

estimate the effectiveness of prevention and control strategies while modifying the parameter 

assumptions to evaluate a range of conditions. Additional modeling strategies featured weekly 

disease counts to derive how an epidemic behaves in space and time. Bonabeau et al. used 

weekly influenza case counts from a n etwork of general practitioners in France to model the 

homogenous diffusion of disease spread throughout the country [64]. Mugglin et al. developed a 

Bayesian hierarchical model to understand the evolution of an epidemic in space and time from 

an influenza epidemic in Scotland in 1989 [65]. 
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1.4 SURVEILLANCE 

1.4.1 Systems 

The collection of structured data through routine reporting provides the foundation of influenza 

surveillance systems. In a p eriod heightened by the threat of emerging pathogens particularly 

pandemic influenza, surveillance is critical. Current influenza surveillance systems exist across a 

wide scale of administrative and political boundaries. Global influenza surveillance centers are 

the focus of the World Health Organization’s (WHO) Influenza Surveillance Network. This 

network routinely surveys samples throughout the year from over 175,000 patients located in 105 

countries [66]. In doing so, the network serves as an alert system in the identification of new 

strains and provides information for annual influenza vaccine strain selection [47, 67]. 

Additional global networks including the European Influenza Surveillance Network and the 

United States military’s global laboratory-based network also play critical roles in monitoring the 

epidemiology of influenza and emerging diseases [50, 68, 69]. 

The United States, specifically the Centers for Disease Control and Prevention (CDC), 

participates in the WHO’s network as a collaborating center designed to provide surveillance 

data and serve as a testing center for the global samples. The CDC organizes a comprehensive 

surveillance program featuring multiple data sources designed to address several goals including: 

timing of influenza activity, defining circulating subtypes, track influenza-like illness, 

hospitalizations and mortality [70]. To achieve these objectives the CDC collects data from an 

outpatient illness network, the National Respiratory and Enteric Virus Surveillance System 

(NREVSS) laboratories, metropolitan vital statistics offices, hospital networks, and State and 

Territorial Epidemiologists Reports from all 50 states and multiple territories [11]. 
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Pennsylvania participates in many of these surveillance activities for the CDC. The state 

health department coordinates influenza surveillance by focusing on passive acceptance of case 

reports, school absenteeism data, influenza-like illness reporting, and syndromic surveillance of 

hospital emergency rooms. In 2003, P ennsylvania instituted an electronic surveillance system 

(PANEDSS) as a m echanism to improve efficiency and reporting of influenza cases from 

hospitals, clinics, and laboratories [71]. This system was the first of its kind and is used in 

conjunction with syndromic surveillance of respiratory illnesses at hospital emergency rooms to 

make informed policy decisions on the geographic and temporal attributes of seasonal epidemics. 

Syndromic surveillance, including the system utilized by the Pennsylvania Department of 

Health, gained functionality and acceptance following the events of September 11, 2001. In 

response to concerns over bioterrorism, surveillance systems were designed to track chief 

complaints in hospital emergency room visits, pharmacy sales (including prescription and over 

the counter medications and medical supplies such as thermometers), and employee absenteeism 

[72, 73]. These systems are beneficial for detecting increases in viral illnesses and to compliment 

traditional surveillance systems used by state, county or city health departments. 

1.4.2 Limitations 

Development and implementation of surveillance systems specific to influenza present unique 

challenges to local, national, and global agencies. Challenges arise in providing timely, accurate, 

and uniform reporting. Typically, local and state influenza surveillance systems monitor illness 

during the epidemic season (October-April). However, the emergence of H1N1 pandemic flu in 

2009 provided the impetus for local and state health departments to extend surveillance year 

round as a means to observe unexpected outbreaks and improve our knowledge on the annual 
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burden of disease. The development of syndromic surveillance systems supports year round 

surveillance. Moreover, passive surveillance systems are dependent on those with illness to seek 

care as the mechanism for entry into the system; thus individuals with severe illness or access to 

health care are the persons who often seek medical attention. Additionally, surveillance systems 

that do not require virological confirmation of disease or rely on tests with poor sensitivity will 

not capture the true measure of influenza in the population and may describe other respiratory 

infections as well. During periods of low influenza prevalence these limitations will 

underestimate the true incidence of influenza. Nonetheless, these systems provide valuable data 

on disease incidence and further our knowledge of the epidemiologic profile of influenza. 

1.5 CONTROL AND PREVENTION 

1.5.1 Vaccines 

The significant health burden posed by influenza has led many public health agencies worldwide 

to recommend vaccination as the leading preventive strategy. Each year, the Food and Drug 

Administration’s Vaccine and Related Biological Products Advisory Committee in consultation 

with the World Health Organization and the US Centers for Disease Control and Prevention use 

global surveillance data to predict which influenza strains will be circulating the following year 

in the Northern Hemisphere. A recommendation for inclusion into the vaccine contains two 

representative viruses from influenza A (H3N2 and H1N1) and one influenza B variant. 

Accurately forecasting future viral circulation is challenging and vaccine effectiveness declines 

when the vaccine poorly matches the circulating strain. Antigenic mismatch with the influenza B 
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variant has occurred in 5 of the past 10 i nfluenza seasons and notably with influenza A in 

2003/04 [36, 74]. Additional concerns regarding vaccines focus on production, contra-

indications and achieving significant coverage. Despite these challenges, efforts continue to 

produce safer vaccines and improved immunization strategies in order to reduce the burden of 

disease. 

Two methods of influenza vaccination are currently approved in the United States: an 

inactivated subunit vaccine given intramuscularly and a l ive-attenuated vaccine with intranasal 

administration. Each vaccine induces a different immune response, affords varying levels of 

protection, recommended for different age groups, and presents unique challenges. The trivalent 

inactivated vaccine (TIV) elicits a serum immune response through the production of anti-

heamagglutinin and anti-neuradminidase antibodies [75]. Though this vaccine is produced in 

eggs, thus contraindicated to individuals with an egg allergy, it is well-tolerated and the efficacy 

is 60-90% in children and adults and the 2010-2011 season saw the introduction of higher dose 

vaccine (“Fluzone Higher Dose”) specific for persons 65 and older [1, 75, 76]. Vaccine 

effectiveness, defined as the reduction in rate of clinical illness, varies by outcome measure and 

ranges from a 3 0-70% reduction [3, 75, 76]. The inactivated design is licensed for adults and 

children > 6 m onths and there are multiple manufacturers. Several important distinctions 

between the inactivated vaccine and live attenuated influenza virus vaccine (LAIV) concern the 

age of indication and the immunogenicity. LAIV induces mucosal antibodies and a cell-mediated 

response and thus may elicit a broader immune response than the inactivated type. And while it 

is only indicated for healthy individuals 2-49 years, the efficacy among children is significantly 

higher than TIV [75, 76]. A reduction of clinical illness among adults was also evident [77]. The  
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LAIV vaccine represents a new development in influenza vaccine development and additional 

technological advances such as cell-culture vaccines, quadrivalent (two influenza B variants), 

and other adjuvant-based delivery systems are in development [3, 36]. 

1.5.2 Anti-virals 

Two classes of anti-viral drugs exist and have been approved for use in the United States:  M2 

ion channel inhibitors, amantadine and rimantadine and the neuraminidase inhibitors, zanamivir 

and oseltamivir. The M2 ion channel inhibitors are specific for influenza A viruses, and thus, do 

not provide protection from influenza B viruses. Both classes are effective in reducing the 

duration of symptoms and can be used for prophylaxis; although widespread resistance to the M2 

ion channel inhibitors among A/H3N2 has decreased their usefulness as a prophylactic drug [78, 

79]. Both neuraminidase inhibitors have proven efficacious in the prophylaxis of seasonal 

influenza in exposed adults and children [78]. In examining clinical endpoints such as 

hospitalization, symptoms, otitis media and pneumonia, oseltamivir has also proven effective in 

reducing rates [3, 78]. 

1.5.3 Non-pharmaceutical Interventions 

The practice of non-pharmaceutical interventions as a method to interrupt influenza transmission 

has gained visibility in recent years. Concerned with vaccine and anti-viral shortages during a 

pandemic, public health officials have developed, evaluated, and implemented non-

pharmaceutical interventions as an additional approach to blunt seasonal epidemics or a 

pandemic. These interventions have focused on infection control methods such as isolation and 
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quarantine, hand hygiene and use of face masks, and social distancing through school and work 

place closures [80-82]. The effect of these approaches have been evaluated through both 

empirical and simulation analysis. Observational studies point to mixed success. A review of 

hand washing studies showed significant reduction in respiratory illnesses among children and 

adults [83]. In addition, acceptance of these practices among school children has been well 

received [84, 85]. A clinical trial of hand washing and face mask use demonstrated only 

moderate success in reducing the secondary attack rate [86]. A multi-layered intervention 

demonstrated the ability to reduce influenza A infection, though not influenza B among school 

children [87]. Simulations of multi-layered interventions have proven to be more effective than 

individual strategies [31, 60, 88]. Nevertheless, the ease of application, minimal cost, success in 

educating others in the practice and demonstrated benefit in reducing transmission of respiratory 

disease makes non-pharmaceutical interventions a practical yet potent public health prevention 

method. 

In summary, influenza is one of the most widely researched infectious diseases. Within 

the past several years, advances in phylodynamics, application of synchrony techniques, and 

evaluation of climatic factors has provided insights into global migration patterns, mechanisms 

of spread, and seasonality. Despite these advances, several questions remain such as: do t he 

spatial temporal dynamics at narrow spatial scales correspond to established patterns at larger 

scales and what is the mechanism of spread between smaller spatial units such as counties. 

Answering these questions will provide a more complete picture of seasonal influenza patterns 

across multiple geographic scales. 
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2.1 ABSTRACT 

Influenza is a contagious respiratory disease responsible for annual seasonal epidemics in 

temperate climates. An understanding of how influenza spreads geographically and temporally 

within regions could result in improved public health prevention programs. We evaluated the 

spatial and temporal patterns of laboratory-confirmed influenza cases in Pennsylvania, United 

States from six influenza seasons (2003-2009). Using a test of spatial autocorrelation, local 

clusters of elevated risk were identified in the South Central region of the state. Multivariable 

logistic regression indicated that lower monthly precipitation levels during the influenza season 

(OR = 0.52, P = 0.0319), fewer residents over age 64 (OR = 0.27, p = 0.01) and fewer residents 

with more than a high school education (OR = 0.76, P  = 0.0148) were significantly associated 

with membership in this cluster. In addition, time series analysis revealed a temporal lag in the 

peak timing of the influenza B epidemic compared to the influenza A epidemic. Further 

examination of the regional transmission dynamics within these clusters may be useful in 

planning public health influenza prevention programs. 

2.2 INTRODUCTION 

Each year significant resources are expended by public health officials and health care providers 

to prevent and mitigate influenza epidemics.  Decisions on how  to allocate resources for 
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prevention programs and vaccination campaigns often rely on m acro-level information and 

recommendations without regard to spatially and temporally explicit illness patterns.  Knowledge 

of local geographic spread and variation would likely improve the ability of public health 

agencies to allocate human and material resources and allow improved targeting and timing of 

prevention and control measures. 

Despite the need for community-based influenza analyses, few studies have explored the 

spatial and temporal dynamics of incidence on a n arrow geographic scale (state or county) 

appropriate to inform local public health officials [34, 49, 89]. An analysis of influenza 

hospitalizations in Colorado, United States, noted differences in regional peak timing, influenza 

B temporality, and age group-specific rates for influenza B hospitalizations [34]. Crighton et al. 

noted spatial heterogeneity in pneumonia and influenza hospitalization rates within urban and 

rural counties across age groups in Ontario, Canada [89]. These analyses help to explain the 

regional spatiotemporal patterns of influenza within a state or province; however, hospitalization 

data used for these analyses often represents estimates of severe morbidity and may not 

accurately reflect timing of either peak influenza activity or the true incidence patterns. 

Further evaluations of seasonal transmission dynamics have concentrated on broad 

geographic scales such as a country or continent, often using data aggregated at larger spatial 

scales [38, 39, 48, 50, 56, 59, 65, 90]. Analyses conducted at smaller spatial scales may capture 

unique local trends in disease structure potentially concealed in analyses of data aggregated at 

large scales. The details of local spatial dynamics may reveal the effect of population structure or 

environmental factors on influenza incidence. 

In 2003, a  new Pennsylvania law led to mandatory influenza case reporting from all 

laboratories, providers and hospitals resulting in a detailed spatio-temporal data source not 
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previously available. As a result, a new opportunity exists to assess the local trends in disease. 

We conducted an exploratory ecological study evaluating the spatial and temporal patterns of 

laboratory-confirmed influenza cases in Pennsylvania from six consecutive influenza seasons 

(2003-2009) using Pennsylvania’s National Electronic Disease Surveillance System (PA-

NEDSS). Specifically, we assessed spatial incidence clusters, predictors, and temporal variation. 

Pennsylvania’s diverse geography and population structure make it a unique locale to evaluate 

these dynamics. 

2.3 METHODS 

Laboratory-confirmed cases of influenza from 2003-2009 were obtained from Pennsylvania’s 

National Electronic Disease Surveillance System (PA-NEDSS) managed by the Pennsylvania 

Department of Health [71]. The Pennsylvania National Electronic Disease Surveillance System 

is used to conduct surveillance of reportable diseases including influenza. The passive 

surveillance system began in 2003 and the system accepts PCR, culture and antigen tests from 

laboratories, hospitals, clinics, and individual providers in the form of online, electronic, paper or 

phone reports. Case reports are sent to NEDSS on average 5 days post-specimen collection date. 

The primary variables extracted from the database for this report included temporal attributes 

(sample specimen collection date, sample NEDSS report date), spatial attributes (subject home 

address latitude, and longitude, and zip code), influenza type, gender, reporting method, and date 

of birth. 

For each season, the influenza season defined by the surveillance system ranged from 

October 1 through April 30 of  the subsequent year. Cases were aggregated by week beginning 
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with October 1 and each subsequent 7 days formed the next week. Specimen collection date was 

considered the date of diagnosis and used for all temporal and spatial analyses. If this date was 

not available (13% missing dates), a multiple imputation method used a Poisson regression to 

model difference between the specimen collection date and the NEDSS report data (100% 

complete data). Variables considered to be associated with incomplete reporting were included 

as covariates for the model (county, report method, season). To determine whether the cases with 

missing dates displayed spatial and temporal biases, a sensitivity analysis using a reduced data 

set of only cases with complete temporal properties was performed for all analyses. 

The cumulative incidence for all six seasons was compared across counties. The total 

population of each county derived from annual population estimates of the US census served as 

the denominator [91]. For the presentation and spatial autocorrelation of the cumulative 

incidence by county, an Empirical Bayesian smoother was implemented to adjust for the inherent 

variance instability of the small incidence estimates given the small populations at risk [92, 93]. 

To assess differences in the duration of epidemics, a Gaussian distribution was fit to each 

epidemic using a non-linear least squares regression. Estimates of sigma (the width of the peak 

of the epidemic) for each epidemic were compared with 95% confidence intervals from each 

season. 

Global spatial autocorrelation of the 6 year cumulative incidence was estimated by 

Moran’s I statistic. This measure detects departures from spatial randomness; thus, a significant 

positive value would suggest that neighboring counties have statistically significantly more 

similar incidence than would be found among randomly selected pairs of counties. A significant 

negative statistic would indicate that neighboring counties have different incidence. Because the 

Moran’s I statistic is a global test of spatial autocorrelation, the local indicator of spatial 
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association (LISA) was used to detect local spatial clusters. Similar to the Moran’s I statistic, the 

Local Moran statistic derives an estimate of significance based on a Monte Carlo permutation of 

the observations. The result is a thematic map which identifies the type of local clustering. 

Regions designated high-high or low-low indicated clustering of similar values; whereas, regions 

of high-low or low-high indicated a county was an outlier in the cumulative incidence relative to 

the neighboring counties [93, 94]. 

To identify predictors of an elevated incidence cluster from the LISA cluster analysis, a 

logistic regression modeled a binary outcome which was 1 if counties were in the high incidence 

cluster (N=8) or 0 i f not (N=59). Each covariate was included separately in the model. A 

stepwise selection approach was used to identify significant predictors in the multivariable 

model. Goodness of fit for the multivariable model was assessed using Akaike’s Information 

Criteria. All p-values were two-sided based on a 95% significance level. 

Covariates selected for the model reflected three broad categories: socio-demographics, 

health indicators, and the environment. Each variable has either previously displayed an 

association with influenza incidence and seasonality or could be a confounder in the relationship 

between spatial heterogeneity and the observed incidence [26, 33, 56, 59]. Social and 

demographic variable data obtained from the US Census included: age (proportion greater than 

64), education (proportion greater than high school), race (proportion white), household income, 

population density (per square mile), and housing density (per square mile) [91]. Additional 

demographic variables summarizing the transportation networks in the region include highway 

miles (linear miles/total county area square miles), and total road miles (linear miles / to tal 

county area square miles) [95]. The health indicator variables obtained from the Area Resource 

File included county level data of active physicians (3 year mean 2005-2007/1000 persons), 
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hospitals and rural health clinics (4 year mean 2003-2006 [Hospitals] + 5 year mean 2003-2007 

[Rural Health Clinics] /1000 persons), proportion  pne umonia and influenza mortality (2003-

2005 mean/population), and proportion chronic lower respiratory disease mortality (2003-2005 

mean/population), also referred to as chronic obstructive pulmonary disease [96]. Distribution of 

influenza-like illness sentinel physicians (ILINet) and mean number of specimen submissions by 

provider were summarized for each county and included as a covariate (Owen Simwale, 

Pennsylvania Department of Health, Personal Communication). Climatic variables including 

precipitation (per 10 inches), temperature (in Celsius degrees) and dew point data were obtained 

for the study period (October – April) of each year and averaged over the time period [PRISM 

Climate Group, Oregon State University, http://www.prismclimate.org, created 4 F eb 2004]. 

Absolute humidity was calculated by converting the dew point temperature to vapor pressure and 

then divided by temperature multiplied by the gas constant for water vapor. Mean elevation 

(feet) was summarized for each county [97-99]. 

Statistical analyses were performed using the R statistical package (R Foundation for 

Statistical Computing, Vienna, Austria). Smoothing, and spatial autocorrelation were performed 

in STIS, (TerraSeer Inc., Crystal Lake, IL), and GeoDa (University of Illinois Urbana-

Champaign, Urbana, IL). Institutional review board approval was obtained from the 

Pennsylvania Department of Health. 

2.4 RESULTS 

All 67 counties in Pennsylvania reported at least one case of laboratory-confirmed influenza over 

the six year period and a total of 57598 cases were reported to the Pennsylvania Department of 
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Health during the study period (Table 1). The greatest number of reported cases occurred during 

the 2007/08 influenza season; while the 2006/07 season reported the fewest. Co-circulation of 

influenza A and B occurred during all 6 seasons; however in 2003/04, the percentage of reported 

typed viruses that were B was approximately 1%. This is in contrast to the 2008/09 season in 

which 42% of all typed viruses were B; the most in any of the 6 seasons. 

In the time series of reported influenza cases, only the 2003/04 season peaked prior to 

January 1 ( Figure 1). Each of the consecutive seasons peaked post-January 1 and the 2007/08 

season had the greatest weekly magnitude. The 2006/07 season exhibited the latest weekly 

peaks. Season 2003/04 experienced the shortest peak epidemic length (2.33 weeks) which was 

significantly shorter than the other 4 seasons (Table 2). Seasons 2004/05, 2007/08, and 2008/09 

had confidence intervals and point estimates that overlapped indicating that durations were not 

different. A negative correlation existed between reported epidemic size and duration of an 

epidemic (ρ=-0.49); however, this effect was not significant (P = 0.3231). 

Evaluation of the time series stratified by influenza type yielded two important 

observations reflecting the subtype epidemics (Figure 2). First, peak incidence of influenza B 

epidemics lagged influenza A epidemics by approximately 3 weeks (mean = 2.75). Second, the 

decline in weekly cases coincided for both influenza A and B time series in each of the seasons 

reporting significant influenza B cases even as surveillance systems were maintained.  

The Empirical Bayes smoothed cumulative incidence for the seasonal spatial distributions 

revealed clusters of elevated incidence in the Central and Northwestern portions of the state 

(Figure 4). The Southeastern and Northeastern regions of the state experienced consistently 

lower incidence for each season. The Moran’s I statistic testing for global spatial autocorrelation 

of the cumulative incidence was 0.4959 ( P = 0.07) indicating that neighboring counties have 
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similar incidence, although not statistically significantly. In the local autocorrelation analysis, the 

central portion of the state was designated as “high-high” indicating clusters of similar elevated 

incidence (Figure 5). These counties included: Bedford, Centre, Fulton, Huntingdon, Juniata, 

Mifflin, Snyder, and Union. The areas of Philadelphia and Delaware counties and the 

Northeastern region were designated as “low-low” indicating these counties had local correlation 

of a lower incidence. Analysis of individual seasons demonstrated similar patterns (data not 

shown but available from lead author).  

Descriptive statistics and results of the generalized linear model evaluating the 

relationship between membership in the elevated cluster and the predictor variables were 

presented in Table 3. The bivariate logistic regression found education > high school, age > 64, 

total miles within the county, number of physicians, clinics, and hospitals, the rate of chronic 

lower respiratory disease, and precipitation associated with membership in the cluster (P < 0.05). 

When including all predictors in a multivariable model, only mean monthly precipitation, age > 

64 and education > high school remained significant (P < 0.05) (Table 4). For a one percent 

increase in the proportion of individuals aged over 64, t he odds of membership in the cluster 

decreased adjusting for the other variables in the model (OR=0.27, CI= 0.10, 0.73). Similarly the 

odds of membership in the cluster decreased for a percent increase in the proportion of 

individuals with more than a high school decgree (OR= 0.76, CI=0.61, 0.95). An inch increase in 

monthly precipitation results in a 48% decrease in membership of the cluster (OR=0.52, 

CI=0.28, 0.94).  
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A sensitivity analysis using the reduced data set, consisting of only cases with a 

collection date (N=50421) was performed to assess whether the cases with missing dates 

displayed spatial and temporal biases. The sensitivity analyses reported limited differences in the 

spatial and temporal entities and did not influence membership in the cluster. 

2.5 DISCUSSION 

This was the first study to evaluate the spatial and temporal patterns of laboratory-confirmed 

influenza cases at the county level within a s ingle state.  T here was evidence of spatial 

heterogeneity in the distribution of influenza in Pennsylvania. Using a test of spatial 

autocorrelation, local clusters of elevated incidence existed from Centre County in the central 

portion of the state extending to the Southern border counties of Fulton and Bedford. The extent 

of these elevated risks in this region persisted in each season. A combination of both 

demographic (age and education) and climatic variables (monthly precipitation) were 

significantly associated with membership in the elevated incidence cluster. Additionally, this 

study confirmed a previous finding that influenza B epidemics occur later in the season than 

influenza A [34, 39]. 

Time series analysis of weekly influenza surveillance identified by the World Health 

Organization and National Respiratory and Enteric Virus Surveillance System (WHO/NREVSS) 

collaborating laboratories for the entire United States and the Mid-Atlantic region (New York, 

New Jersey, Pennsylvania) showed similar timing of influenza A peaks compared to the PA-

NEDSS data for most seasons under study [11]. Coinciding epidemic fade outs of influenza A 

and B were observed on a national level and within the Mid-Atlantic region from recent seasons: 
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2005/06 through 2008/09 (data not shown). Other regions of the country observed similar 

patterns of simultaneous declines. The concurrent weekly decline in reported cases for 

Pennsylvania may be the result of several factors including environmental drivers, host factors, 

diminished surveillance, and a small sample size. Changes in temperature and humidity as the 

winter shifts to spring may alter virus stability and influence patterns of crowding and host 

mixing leading to a simultaneous decline in incidence [42, 59]. Alternatively, diminished state 

surveillance as providers stop collecting and submitting specimens for influenza testing can lead 

to unreliable case estimates at the end of an epidemic producing an artifactual constraint on the 

epidemic time series. Seasonal time series encompassing longer surveillance periods are needed 

to control for the confounding effects of time in order to validate these findings.  

This study is consistent with previous findings that the influenza B epidemic typically 

occurs later in the season than the influenza A epidemic. Finkelman et al. aggregated weekly 

incidence values over a nine year study period and demonstrated that influenza B temporally lags 

both the A/H3 and A/H1 subtypes in the Northern Hemisphere [39]. The degree of temporal 

similarity in peak epidemic timing of influenza A and B across the geographic scales (counties 

and continents) suggests that the factors driving the timing of the subtype epidemics could be 

similar within the Northern Hemisphere.  

Estimates of the epidemic widths showed similarities to the peak durations observed 

among larger seasonal epidemics in Japan [48]. However, the range of epidemic lengths from the 

Pennsylvania results (2.33‐5.9) did not correlate to epidemic magnitude as noted in the seasonal 

epidemics from Japan. The non-significant correlation could be attributed to less variation in 

epidemic size or having a smaller data set. Differences in circulating influenza subtypes, 

particularly the introduction of new A/H3N2 antigenic variants in the Japan epidemics resulted 
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in shorter peak activity periods [48]. This result was in contrast to seasons without new variants 

leading to epidemics that were smaller and displayed longer periods to attain peak activity. 

Without data specific to Pennsylvania, reviewing the strain-specific information for the United 

States shows that the 2003/04, 2004/05, 2005/06, and 2007/08 seasons were dominated by 

A/H3N2. In 2003/04 the A/Fujian/411/2002 A/H3N2 virus predominated and accounted for 

88.8% of A/H3N2 isolates characterized leading to a less than optimal vaccine match [100]. Both 

the 2004/05 and 2007/08 seasons reported new A/H3N2 variants (A/California/7/2004-like and 

A/Brisbane/10/2007-like) and these epidemics reported peak durations of at least 1 week shorter 

than the 2005/06 season [101, 102]. In 2008/09, approximately 42% of all Pennsylvania cases 

were antigenically characterized by influenza B viruses. Nationally, influenza A cases were 

predominated by A/H1N1 (pre-novel H1N1) [103].  The 2008/09 season was not dominated by a 

new A/H3N2 variant, yet the epidemic length observed in this study from 2008/09 is not 

significantly different than the results from 2004/05 and 2007/08 when a new A/H3N2 antigenic 

variant appeared. In Pennsylvania, the first identified illness due to 2009 pandemic influenza 

A/H1N1 virus did not occur until the end of April and its appearance does not impact the data in 

this analysis.  During the 2008/09 season the circulating A/H1N1 viruses were related to the 

vaccine component while less than 49% of the circulating influenza B viruses were related to the 

vaccine strain. Similar to the 2003/04 season, the vaccine mismatch among the influenza B virus 

may have contributed to the overall short epidemic duration. Historically, within the United 

States, seasons dominated by A/H3N2 displayed a higher average synchrony and greater 

mortality than seasons dominated by A/H1N1 or B; though duration of B epidemics is not known 

[19, 38]. Nevertheless, the time period under study may not be representative of other influenza 

seasons and a longer time series is needed to confirm these results.  
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Discovery of the elevated incidence cluster in the central portion of the state warranted 

further investigation. The logistic model was designed to assess differences in characteristics for 

counties within and outside of the cluster with the specific intent of answering the question: what 

factors can explain the cluster of elevated incidence. Only age, education, and precipitation 

remained significant in the multivariable model.  

The association of both age and education with membership in the cluster may be a 

reflection of differences in vaccination coverage between the counties. Poor vaccination 

coverage would create upward pressure on seasonal incidence rates and mortality [75, 104, 105]. 

Regional vaccination differences have been reported in urban and rural areas, age groups, and 

with increasing levels of education [106, 107]. According to the Behavioral Risk Factor 

Surveillance System (BRFSS), vaccination rates among the elderly (Age > 65) in Pennsylvania 

only recently approached the 70% Healthy People 2010 t hreshold [108]. The proportion of 

residents greater than 64 years and with more than a high school education was significantly 

lower among the counties in the cluster; which may suggest a lower vaccination rate in the 

cluster. Without available county-explicit data estimating seasonal influenza vaccination 

coverage, interpretation of the regional trends should proceed with caution. 

Environmental factors including temperature and humidity have been long-associated as 

the driving force in the severity, spread and seasonality of influenza [38, 58, 59, 109, 110]. More 

recently, experimental and epidemiologic simulation studies have concluded that absolute 

humidity modulates influenza transmissibility leading to the observed seasonality in temperate 

climates [111, 112]. This report presented the results of multiple environmental factors including 

temperature, precipitation, dew point, and absolute humidity. In this study we found a significant 

relationship with precipitation but not with absolute humidity, nor with any other environmental 
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variables. The relationship of influenza incidence and precipitation has been inconsistent across 

studies as the associations tend to differ by country and influenza type [113-116]. Associations 

of precipitation with the onset of influenza B have been observed, though these associations have 

not persisted with influenza A. For the climatic variables used in this analysis, the monthly 

results were averaged over the study period which is in contrast to previous studies that 

evaluated monthly differences in an effort to estimate the timing of influenza incidence or the 

onset of the influenza season which may have contributed to the contrasting results. There is no 

notable spatial correlation structure in the evaluation of influenza A and B in this dataset; thus, 

these comparisons cannot be made. 

A sensitivity analysis using the reduced data set, consisting of only cases with a 

collection date (N=50421), reported limited differences in the spatial and temporal analyses. 

Spatial comparisons revealed > 2 fold differences in the cumulative incidence for Juniata, and 

Mifflin counties. These relative differences were to be expected as these three counties reported 

> 50% of cases without a collection date. Influenza did occur in these regions; however, without 

implementing the missing data imputation, the analysis would have erroneously ignored actual 

cases. The local indicators of spatial autocorrelation analysis (LISA) observed a similar pattern 

of spatial auto correlation in the center of the state except for Juniata, Snyder, and Union 

counties (data not shown). Similarities in the local spatial autocorrelations among the imputed 

and reduced data sets point to the strength of these results that the central region of the state is 

subject to an elevated risk of influenza.   

The passive surveillance system of PA-NEDSS creates reporting limitations. Even 

though Pennsylvania law mandates physicians, providers, hospitals, and laboratories to report 

specific disease data to PA-NEDSS, significant non-compliance has resulted in several types of 
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ascertainment biases [117]. First, the expected annual number of incident cases in the United 

States is estimated between 10%-20% which is substantially higher than the reported number of 

cases to PA-NEDSS [13, 118]. Many cases of influenza go undetected because the patient fails 

to seek treatment or is not tested for the disease. Moreover, seasonal variation also exists in the 

reporting due to severity of disease. A severe influenza season is likely to result in more 

symptomatic cases and more cases seeking treatment. The consequence of an increased case load 

also creates a burden on reporting for the provider or laboratory potentially resulting in fewer 

cases reported to PA-NEDSS. In addition, there is concern over the methods of data collection 

and submission from Philadelphia County which are not consistent with the remainder of the 

state. A sensitivity analysis conducted without Philadelphia County did not note any significant 

changes to these results, thus the extent of the underreporting for these analyses was limited. 

Finally, spatial differences observed could also have been affected by testing practices of health 

care providers; those with access to free testing and a greater interest in influenza could result in 

a surge of testing. Inclusion of variables reflecting spatial location and submission history of 

influenza-like illness sentinel providers, who have access to free testing, was not associated with 

the cluster of elevated incidence; thus super testers are not likely to affect the spatial results 

observed.  

The future of longitudinal data analysis within this data system is likely to be affected by 

the emergence of the H1N1 pandemic influenza subtype. Shifts in age distributions of 

pneumonia and influenza mortality have been noted in post-pandemic periods, which may have 

implications for the spatial distributions particularly in regions with younger populations [22]. 

Furthermore, there may be differences in the transmission parameters of the newly emerged 

influenza A subtype and the previous A/H1 subtypes in circulation resulting in further 
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longitudinal distortions of the data. Despite these potential shortcomings, analysis of the 

transitional pandemic period remains an essential area for further exploration of these specific 

issues.  

In conclusion, the epidemiology of influenza in Pennsylvania can be defined by a 

distinguishing spatial pattern. County level analysis revealed unique spatial patterns; a strength 

of this study. State and county public health officials should consider these findings in the 

utilization of human and economic public health resources to improve control strategies aimed at 

minimizing transmission through targeted vaccinations, directed hygienic advertisements, and 

informed surveillance. Additional research should focus on extending the analysis to the states of 

Maryland, Virginia, and West Virginia to determine if the spatial regime extends beyond the 

administrative borders. 
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2.6 TABLES 

Table 1. Characteristics of reported influenza cases in Pennsylvania, USA, 2003-2009 influenza seasons 

Influenza season, no. (%) 

Variable Cumulative 2003-2004 2004-2005 2005-2006 

Number of Cases 57598  8836 15.34% 11293 19.61% 8717 15.13% 
Flu Type         

A 35307 71.33% 5670 64.17% 8557 75.77% 6547 75.11% 
B 8169 16.50% 59 0.67% 1369 12.12% 1692 19.41% 

Unknown 6023 12.17% 3107 35.16% 1367 12.10% 477 5.47% 
Gender         

Male 23057 46.58% 4151 46.98% 5154 45.64% 4098 47.02% 
Female 26395 53.32% 4683 53.00% 6135 54.33% 4616 52.96% 

Unknown 47 0.09% 2 0.02% 4 0.04% 2 0.02% 
Age**         

Mean 34  31  45  33  
Median 27  19  46  24  

Under 5 years 9396 16.32% 2871 32.50% 1253 11.10% 1338 15.35% 
5 to 19 years 14461 25.12% 1626 18.41% 1817 16.09% 2632 30.19% 

20 to 44 years 14929 25.93% 1499 16.97% 2483 21.99% 1942 22.28% 
45 to 64 years 8479 14.73% 866 9.80% 2216 19.62% 1224 14.04% 

65 years and over 10314 17.91% 1972 22.32% 3524 31.21% 1581 18.14% 
* Nineteen subjects have missing date of birth 
**Number of Cases 
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Table 1 continued 

Influenza season, no. (%) 

Variable 2006-2007 
  

2007-2008 
  

2008-2009 
  

 
      

Number of Cases 3997 6.94% 16657 28.92% 8098 14.06% 
Flu Type       

A 3264 81.66% 11269 67.65% 4550 56.19% 
B 563 14.09% 4486 26.93% 3404 42.04% 

Unknown 170 4.25% 902 5.42% 144 1.78% 
Gender       

Male 1937 48.46% 7717 46.33% 3881 47.93% 
Female 2055 51.41% 8906 53.47% 4196 51.82% 

Unknown 5 0.13% 34 0.20% 21 0.26% 
Age*       

Mean 27  35  22  
Median 19  31  17  

Under 5 years 684 17.11% 2077 12.48% 1173 14.49% 
5 to 19 years 1348 33.73% 3562 21.41% 3476 42.92% 

20 to 44 years 1063 26.59% 5520 33.17% 2422 29.91% 
45 to 64 years 499 12.48% 2918 17.54% 756 9.34% 

65 years and over 403 10.08% 2563 15.40% 271 3.35% 
* Nineteen subjects have missing date of birth 
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Table 2. Epidemic width estimates and confidence intervals 

Season σ2 95% Confidence Interval 

Season 2003/04 2.33 2.26, 2.39 

Season 2004/05 3.6 3.2, 4.0 

Season 2005/06 4.89 4.58, 5.2 

Season 2006/07 5.9 5.19, 6.60 

Season 2007/08 3.72 3.56, 3.87 

Season 2008/09 3.82 3.64, 4.01 
* Sigma measures the epidemic length 
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Table 3. Descriptive statistics and results of logistic regression model. Dependent variable are counties 

designated HIGH-HIGH in Moran’s LISA cluster analysis, counties = 8. 

Variable 
Cluster = Yes 
Mean 

Cluster = No 
Mean 

Odds Ratio 
(OR) P-value 

DEMOGRAPHICS (N=11) 
 

  
 Household size 2.507 2.473 78.5707898 0.2940 

Proportion of families w/ 1 child < 18 years 0.4341 0.4394 0.00043812 0.5880 
Proportion of families w/ 1 child < 6 years 0.1745 0.1747 0.67139341 0.9850 
Race (proportion white) 0.9647 0.9459 2.13165782 0.4890 
Education > high school 0.3038 0.3778 2.6397E-08 0.0319* 
Age > 64 0.1448 0.1642 0.65856 0.0308* 
Household income 35035 37467 0.99994100 0.3910 
Population density per square mile 84.09 503.2 0.99133773 0.1010 
Housing denisty per square mile 34.77 215 0.97170793 0.0795 
Total road miles per area square miles 1.4892 3.1867 0.23015552 0.0102* 
Highway miles per area square miles 0.08902 0.14375 0.00027550 0.1700 

HEALTH INDICATORS (N=8) 
 

  
 Active physicians 71.75 619.7 0.9938191 0.0144* 

Active physicians per 1000 persons 1.13 2.151 0.5231432 0.2010 
Rural clinics and hospitals  1.688 4.766 0.56254 0.0387* 
Rural clinics and hospitals per 1000 persons 0.03656 0.04483 0.01993 0.6730 
ILI Sentinel Physicians 0.625 0.8305 0.8376960 0.6470 
ILI Submissions 0.9023 0.6601 193.05980 0.1990 
P&I mortality  2.40E-04 2.67E-04 0.967113 0.5200 
Chronic lower respiratory disease  0.0004663 0.0005414 0.904023 0.0423* 

ENVIRONMENT (N=6) 
 

  
 Elevation 1035.4 1227 0.999300 0.3370 

Precipitation  3.174 3.501 0.591656 0.0097* 
Minimum temperature  -1.711 -2.1358 1.209128 0.4438 
Maximum temperature  8.963 8.502 1.252322 0.3945 
Dew point  -2.172 -2.5419 1.488992 0.322 
Absolute Humidity 868.9 848.5 1.00630 0.351 
* Significance: P-value < 0.05 
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Table 4. Results of multivariable logistic regression model 

MULTIVARIABLE MODEL 
Variable Odds Ratio (OR) P-value 
Age > 64† 0.27 0.0100* 
Education > high school† 0.76 0.0148* 
Average precipitation (2003-2009)‡ 0.52 0.0319* 
* Significance: P-value < 0.05 
† Interpreted as a 1% units 
‡ Interpreted as a 1 inch units 
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2.7 FIGURES 

 

 

Figure 1. Seasonal influenza incidence in Pennsylvania (sum of all counties), 2003-2009 
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Figure 2. Seasonal influenza incidence by influenza type in Pennsylvania, 2003-2009 
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Figure 3. Monthly changes in environmental variables (October-April) averaged across all 67 counties 
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Figure 4. Cumulative incidence of six influenza seasons (2003-2009) 
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Figure 5. Spatial autocorrelation of 6-year cumulative incidence for 67 counties in Pennsylvania 
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3.1 ABSTRACT 

Understanding the mechanism of influenza spread across multiple geographic scales is not 

complete. While the mechanism of dissemination across regions and states of the United States 

has been described, understanding the determinants of dissemination between counties has not 

been performed. The paucity of high resolution spatial-temporal influenza incidence data to 

evaluate disease structure is often not available. Here, we report on the underlying relationship 

between the spread of influenza and human movement between counties of one state. Significant 

synchrony in the timing of epidemics exists across the entire state and decay with distance 

(regional correlation = 62%). Synchrony as a function of population size display evidence of 

hierarchical spread with more synchronized epidemics occurring among the most populated 

counties. A gravity model describing movement between two populations is a stronger predictor 

of influenza spread than adult movement to and from workplaces suggesting that non-routine and 

leisure travel drive local epidemics. These findings highlight the complex nature of influenza 

spread across multiple geographic scales. 

3.2 INTRODUCTION 

Despite the regularity of influenza epidemics, understanding the nature of influenza spread 

remains unclear. Inferences reflecting the spatiotemporal patterns of disease spread has been 
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advanced in recent years through availability of detailed spatial-temporal data and the application 

of synchrony and time-frequency decomposition methods [51, 119]. Evidence of spatial 

synchrony and traveling waves has been reported in infectious diseases such as measles and 

dengue resulting in novel insights into urban and rural infection hierarchies and the impact of 

spatial heterogeneities of the host population of incidence waves [51, 120, 121]. These 

approaches have been extended to influenza which has observed population density, human 

movement, and antigenic dominance as key determinants of influenza spread at the country scale 

[38, 48, 56, 122, 123]. 

The current understanding of the intrinsic properties of influenza epidemics is limited by 

the geographic scales used to evaluate the data. Often the spatial scale of analysis is the continent 

or country [38, 56, 90]. Analyses conducted at larger spatial scales may potentially conceal local 

trends in disease structure. High resolution spatial-temporal infection data is often not available. 

As a result, there are few opportunities to validate findings at large spatial scales with finer 

spatial scale observations. The mechanism of influenza spread is one such example. Brownstein 

et al. showed the importance of air travel in the dissemination of influenza cases across census 

regions in the United States [123]. Viboud et al. used state-specific mortality data to demonstrate 

the relative importance of workflows compared to distance and other movement metrics in 

capturing the spatial synchrony of influenza mortality in the United States [56]. While these 

finding are relevant to understanding the spread of influenza within the United States, 

confirmation of these results using more spatially refined incidence data would test the 

consistency of these relationships across a broad geographic spectrum.  

Gravity models have been used to explain spatial dynamics of epidemics [56, 124-126]. 

They were developed in transportation theory to model the flow of travelers across a landscape 
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[127]. The gravity model describes the magnitude of travel between two locations as a function 

of the population sizes in the two locations and the distance between those locations. Simulations 

of a gravity model fitted to workflows captured influenza spread among the states with good 

agreement in timing and duration of epidemics compared to historical data [56]. Because a 

gravity model estimates a general pattern of movement without preconditions on type or 

geographic features of the location, evaluation of a gravity-model may provide insight into local 

interactions not captured by well-defined mechanisms of travel.  

In this report, laboratory confirmed influenza cases from Pennsylvania, United States are 

used to compare county-specific incidence patterns. As the sixth most populated state in the 

United States, Pennsylvania is divided among 67 counties, of which two counties, Allegheny and 

Philadelphia, account for greater than 22% of the state's population.  The state is trifurcated by 

two major interstate highways with limited transportation networks in the northern counties and 

has international airports on oppos ite ends of the state. With extreme segmentation in the 

population structure and a divisive transportation network, Pennsylvania is a unique locale to 

assess the predictors of influenza spread at a local level.  

This is the first report to evaluate the underlying relationship of disease spread and 

human movement using county-specific influenza cases. Estimates of spatial synchrony are 

evaluated using correlation coefficients and the Mantel statistic to determine whether synchrony 

is associated with large numbers of adult workflows or gravity-like estimates of interaction. 

Understanding the mechanism of spread at a fine spatial scale would provide an improved level 

of understanding not previously available for local county and city public health officials to 

implement surveillance and response activities. 
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3.3 METHODS 

3.3.1 Data 

Weekly estimates of reported influenza cases from 2003-2009 were provided by the 

Pennsylvania Department of Health. A description of the passive surveillance system employed 

by the Department of Health has been previously described (Stark Dissertation). Briefly, the 

Pennsylvania National Electronic Disease Surveillance System (PA-NEDSS) is a co mputer 

application used to conduct surveillance of reportable diseases including influenza. Case reports 

are routinely collected by providers and laboratories and are transmitted electronically to the PA-

NEDSS system. The surveillance system defines each influenza season to begin in the 40th week 

of the calendar year through the last week of April of the following year. Influenza data 

occurring during this entire time period were used for this analysis. Cases specified to date of 

specimen collection and home address or zip-code was aggregated by week and to one of 67 

Pennsylvania counties, respectively. The total number of reported influenza cases during the 

study period (2003-2009) was 57598. The US census provided annual population estimates to 

calculate seasonal incidence for each county [128]. Rates of human work flux data between 

counties for the year 2000 was obtained from the US Census [129]. The workflow data describes 

in which county people work and in which county they reside; thus approximations of flow 

between counties can be calculated. 
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3.3.2 Sampling 

The analysis for this study uses 186 weeks of surveillance data accumulated over 6 seasons (31 

weeks/year).  Small case counts from counties with a small population may result in increased 

sampling variability and poor correlation with other counties. Even with uniform reporting 

efficiencies in each county, we expect small counties to report more weeks with zero cases which 

may lead to greater variability. Thus, it is difficult to differentiate the effect of population size 

and reporting error on d isease spread. To address these concerns, a sampling method adapted 

from Grassly et al. was employed to estimate a new correlation matrix with additional sampling 

error for the largest populated counties described by the binomial distribution [130]. For the 30 

counties with the largest population, the reported incidence rates at each time point of these 

counties were resampled 1,000 times from a binomial distribution with a sample size equal to the 

remaining 37 counties (randomly sampled with replacement). These counties are designated the 

large populated counties. The selection of 30 counties for the resampling was based on a natural 

break in the distribution of populations and reflected a large enough sample to get meaningful 

results. This provided a new distribution of a t ime series for the larger counties as if they had 

sampling error equivalent to the smaller counties (N=37). Using the binomially-generated 

predicted time series, the mean of 1000 new pair-wise correlation matrices were generated. The 

mean correlations were ranked and the 25th and 975th values were extracted and compared with 

the mean correlation of the observed correlation matrices for the 37 smaller counties. A 

statistically significant difference in the correlation between large and small counties will result 

if the distribution of binomial sampled correlations excludes the mean correlation of the smaller 

counties. Thus, a statistically significant result is not likely to reflect differences in sampling 

error and provide further confidence in the synchrony and correlation analysis. 
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3.3.3 Synchrony and Mantel Correlation Analysis 

Spatial synchrony provides an estimate of the correlation of an epidemic time series across a 

geographic region [51, 53]. For this analysis, spatial synchrony was measured as the Spearman 

rank correlation of the pairwise comparisons of weekly cases for each county over the entire 

study period. Algorithms for the spatial correlation function estimating the relationship between 

synchrony and Euclidean distance were obtained from the NCF library for R, specifically the 

non-parametric covariance function [131]. 

 Mantel tests were used to compare the matrix of pair-wise Spearman correlations of 

influenza time series to matrices describing pair wise county to county human movement, 

geographic distance, and population size [132, 133]. Thus the Mantel statistics estimates the 

correlation of the comparative elements between two matrices. A workflow matrix was created 

composed of the number of individuals who reported commuting from county i to county j in the 

US Census dataset by summing the movement to and from each county resulting in a symmetric 

67x67 matrix. Distances between counties were represented by a Euclidean distance matrix. The 

population matrix consisting of the product of counties i and j was also tested. Partial Mantel's 

tests were used to measure the association of two matrices in the presence of a third matrix. 

Two Pennsylvania counties may have limited movement between one another but may 

engage in substantial workflow contact through a third non-Pennsylvania county; thus having an 

indirect effect on t he epidemic synchrony. In order to explore whether this workflow might 

explain the pattern of correlations of influenza observed in Pennsylvania, an additional workflow 

matrix capturing these second-order movements (inter-state) for counties in Border States was 

created and included in the Mantel tests. This matrix incorporated workflows to and from 302 
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counties from the six states bordering Pennsylvania (Delaware, Maryland, Ohio, New Jersey, 

New York, and West Virginia).  

We estimated the correlation of gravity flows estimated using a published model with our 

pair-wise influenza correlation matrix [6]. This gravity model was estimated using national 

influenza mortality data. We also estimated the parameters of a gravity model that maximized the 

Mantel correlation coefficient of the gravity flow matrix with the Pennsylvania influenza time 

series and workflows using Nelder-Mead optimization. 

 Model 1 

 

A gravity model for workflows and disease spread (Cij) is parameterized by the 

population of counties i and j (Pi, Pj) and the distance between the two counties (Dij). The 

exponents τ1, τ2, and ρ, estimated by the model, quantify the attraction of the receiving and 

generating counties by population size and the distance between two counties. Theta, θ , is the 

proportionality constant. 

The Mantel test compared the pair-wise Spearman correlations of influenza time series 

and the gravity matrix. An additional Mantel statistic measured the association of influenza time 

series and the gravity matrix fitted to national influenza mortality data [56].  

Institutional review board approval was obtained from the Pennsylvania Department of 

Health. 
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3.4 RESULTS 

Of the 186 weeks of influenza data analyzed for each county, the mean number of weeks with at 

least one case was 76 weeks and the range was 11 weeks (Cameron) to 141 weeks (Allegheny). 

When comparing the proportion of total weeks reporting a case, counties with large populations 

reported 70% more weeks with a case than counties with small populations. The partition of 

counties by population size was determined by a natural break in the data. Additional statistics 

describing the differences between the large and small population counties were presented in 

Table 5. 

Results of the binomial sampling demonstrated that sampling error has limited effect on 

the correlation of epidemic time series between counties. The mean correlation of the 1000 pair-

wise binomial sampled correlations was 0.692 ( 95% CI: 0.658, 0.726). The mean Spearman 

correlation from the correlations of the 30 larger populated counties was 0.76 and 0.54 for the 37 

smaller populated counties. Because the confidence interval of binomial sampled correlations 

excludes the mean correlation of the smaller counties, we concluded that differences in the 

correlation were more likely to reflect differences in the population structure than in the 

sampling error of the smaller counties. As a result, we are confident in using the incidence data 

for all counties to further evaluate estimates of synchrony and the predictors of disease spread.  

Estimation of spatial synchrony from all 67 counties used Spearman rank correlations of 

the epidemic time series and a distance matrix composed of county centroids. Considerable 

correlation existed across the entire state as the regional correlation was 62% (Figure 6a). 

Adjacent counties had a high mean correlation of 80%; although, synchrony declined with 

distance and approached the regional mean correlation at 127km. The lower bound of the 95% 

confidence interval crosses the regional correlation at 36km. Prior to this distance, the local 
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synchrony is statistically significantly different than the state correlation. Fewer than 2% of 

county pairs have county centroids separated by 36km or less, thus the correlation in epidemic 

time series between neighboring counties was not extensive. The rising, yet not significant, 

increase in synchrony over distance (U-shaped curve) reflects strong correlation among the 

larger population regions separated by several hundred kilometers. The U-shaped trend is also 

noted in Figure 7 and is a unique feature of Pennsylvania’s geography. 

Measurement of spatial synchrony as a function of population sizes and county 

workflows also revealed interesting patterns. Synchrony increased as the product of the county 

population size increased ranging from a median correlation of 0.48 in the smallest quartile to a 

median correlation of 0.80 in the largest quartile (Figure 6b). A positive, but not significant trend 

existed for synchrony and county to county workflows (Figure 7a). These county-specific 

synchrony results were consistent with the observations of distance, population size, and 

workflow observed by Viboud et al. using state-specific mortality time series [56]. The inter-state 

workflows consisting of neighboring counties of Pennsylvania also exhibited a positive trend, 

though less variation between quartiles compared to the intra-state workflows (Figure 7b). Figure 

3 describes the three dimensional relationship between workflows, distance, and population size.  

When evaluating the yearly synchrony with distance, population, and workflows, similar 

trends as the cumulative study period (2003-2009) existed for each year (Appendix A). However, 

the 2006/07 season experienced substantially lower adjacent and statewide correlations and 

lower correlations for each population and workflow quartile particularly the first quartile 

(smallest population/workflow counties) which observed a correlation closer to 20%.  

The Mantel statistic describing the relationship between the epidemic time series and 

distance, population, and human movement are presented in Table 6. O nly Euclidean distance 
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was not significantly associated with influenza when evaluating all 67 Pennsylvania counties. 

The inter-state workflow matrix had a smaller correlation than the intra-state workflows likely 

implying that work-related movement of individuals from the neighboring counties was not 

strongly associated with disease spread within Pennsylvania. Many counties in Pennsylvania did 

not experience work-related movements to all of the border state counties; thereby, necessarily 

reducing the correlations.  

The gravity matrix fitted to Pennsylvania county disease data was the strongest predictor 

of influenza spread within the state. After adjusting for population size, distance, and workflows, 

the gravity model remained the strongest predictor of influenza spread. Similar to the 3-

dimensional figure of workflows, distance, and population (Figure 8), distance as a function of 

the gravity model also displays a U-shaped pattern (Figure 9a). Of the county pairs with high 

gravity values at a distance > 400 km, the majority involved Allegheny County. Allegheny 

County paired with Berks, Bucks, Chester, Delaware, Lackawanna, Lehigh, Luzerne, 

Montgomery, Northampton, and Philadelphia County. The remaining set of pairs involved 

Philadelphia County which paired with Beaver, Butler, Erie, Washington, and Westmoreland 

County. Only Montgomery and Westmoreland County presented a pair that did not involve 

Allegheny or Philadelphia at a distance greater than 400 km apart. As expected, these counties 

are among the largest populated counties. The gravity model fitted to Pennsylvania-specific 

workflows was not a strong predictor of disease spread (Table 6) and the trend over distance 

noted in the gravity model fitted to disease data did not materialize (Figure 9b). Furthermore, the 

small correlation between intra-state workflows and the Pennsylvania gravity model ( = 0.39, P 

< 0.001) indicated that movement within the state was not completely dependent on workflow. A 

comparison of the parameter estimates fitted by the gravity model is presented in Table 7.  
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The gravity matrix fitted to the parameters obtained from United States gravity model did 

not correlate well with disease spread using Pennsylvania’s county-specific influenza data. 

Differences in strength of correlation between gravity matrices may be the result of local 

variations within Pennsylvania captured more efficiently such as the range of county size and 

distance. It is important to note that Viboud et al. did not present a correlation of the gravity 

matrix to the epidemic time series; thus, a direct comparison of the impact of the gravity model 

on disease spread scaled to the country was not possible [56]. 

3.5 DISCUSSION 

Few studies have explored synchrony of influenza epidemics and the predictors that drive 

influenza spread. This study further evaluated these quantities though at a finer spatial scale than 

previously reported. These results demonstrated evidence of spatial-temporal correlation in the 

incidence of influenza across counties of Pennsylvania. Significant synchrony among 

neighboring counties existed.  A gravity model describing movement between two populations 

was the best predictor of influenza spread. 

Comparison of these results to inter-regional influenza spread and to the United States 

mortality data analysis could reflect differences in the mechanisms of spread at different 

geographic scales. Analysis of influenza incidence among the US Census regions demonstrated 

the importance of air travel in long-range dissemination.  While adult workflows effectively 

captured the spread of influenza across the United States, a gravity model did better at the 

smaller county to county scale. Interstate commerce and other opportunities for interstate 

workflows may be responsible for the majority of interactions at these larger distances. Within 
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one state, other interactions including those for errands, leisure, and school may be relatively 

more important.  A gravity model may capture these interactions more effectively than 

workflows. The small correlation between intra-state workflows and the Pennsylvania gravity 

model (ρ = 0.39) indicated that movement within the state was not completely dependent on 

workflows. This notion was further confirmed by the differences in distance as a function of 

gravity models fitted to disease and workflows where the movement trends did not coincide at 

longer distances. Thus mechanistically, work-related commuting did not account for the majority 

of movement at longer distances and disease synchrony within Pennsylvania, and the epidemics 

between counties in Pennsylvania were synchronized by non-routine travel.  

Estimating the movement kernel has important implications for accurately simulating 

disease spread. Multiple large-scale epidemic simulations have used a gravity-like model to 

simulate movement patterns [31, 60]. A simulation of pandemic influenza in the United States 

used a power law model for commuting data at the census tract resolution and fit a distribution of 

travel to work distances up t o 200km reasonably well [31]. The gravity model fitted to 

workflows in the United States mortality analysis displayed evidence of a distance threshold 

whereby limited work movements occurred beyond distances of 119km [56]. A similar distance 

threshold existed for the Pennsylvania gravity model fitted to workflows where work movements 

declined rapidly until 200km; this further validates the movement kernel used for the simulation 

modeling.  

A comparison of the exponents between the Pennsylvania gravity models (disease and 

workflows) highlighted differences in the movement kernel. As expected, for travel to work, the 

gravity model fitted to workflows produced larger distance and population exponents than the 

gravity model fitted to disease spread. The larger distance exponent reflected a rapid decline in 
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movement which was more common with routine work commuting. The estimated distance 

exponent of 0.098 from the Pennsylvania gravity model fitted to disease spread was only slightly 

larger than 0 which indicated that movement is independent of distance which was evidenced by 

the U-shaped curve of distance as a function of gravity. The smaller population exponent for the 

gravity model fitted to disease revealed the importance of smaller populations in the movement 

of non-routine travel and ultimately in the spread of disease.  

The 2006/07 season displayed significantly lower synchrony as a function of distance, 

population size, and workflows. This season reported the fewest number of cases during the 

study period; and as a result, the smaller populated counties are more likely to have fewer cases 

(data not shown). This was evident as no cases occurred in Forest, Sullivan and Susquehanna 

counties. Fewer weeks with zero cases will produce lower Spearman correlations between all 

counties, but most notably in the counties with smaller populations and less movement. 

Additionally, influenza A/H1N1 and influenza B dominated the 2006/07 season. These viruses 

are known to result in lower morbidity and mortality and synchrony across the United States [19, 

38, 56]. Similar patterns could be occurring at the smaller spatial scale; however, these patterns 

were not noted during another A/H1N1 and B season 2008/09. Additional time series are needed 

to confirm these results.  

The correlation matrix based on the gravity parameters derived from the complete United 

State county data was not a strong predictor of influenza spread within Pennsylvania. Local 

variations within Pennsylvania may be masked among a larger county analysis of the United 

States as a r esult of differences in the range of area, population size, and distance between 

counties. A gravity model fitted to the United States smoothed over these differences and 

conceals the variation in smaller states.  
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It was difficult to validate the findings from the United States mortality analysis because 

of the quality of the reported data. Accounting for sampling error among the smaller 

communities with the binomial sampling method was one approach to adjust for the inherent 

problems associated with passive influenza surveillance system data. However the extent of this 

sampling (reporting) error was not known and may not be fully accounted for in the analysis. 

Sampling error could have presented in the form of noncompliance in reporting, subject failure 

to seek testing, and severity of illness. These biases led to fewer reported cases and potentially 

affected the timing of the cases resulting in smaller correlations. These types of ascertainment 

could have had its greatest impact on synchrony over longer distances and thus underestimated 

the true association with distance. Without data on complete reporting for any one county in 

Pennsylvania, it was difficult to assess the extent of the bias in the correlations. Spatial analysis 

of influenza sentinel reporters did not observe spatial variation with the incidence of reporting 

suggestive of a potential limited role in a spatial reporting bias (Stark Dissertation). Additionally, 

variation in vaccination rates across the counties could have impacted these results. Lower 

vaccination rates among rural, smaller populated counties, would have lead to an increase in the 

number of cases; thereby, overestimating the Mantel correlation for population with smaller 

counties [106]. County-specific vaccination rates for Pennsylvania are not known; however, 

vaccinations rates among the elderly (Age > 65) have met the 70% Healthy People 2010 goals 

suggesting vaccination rates for this at-risk population were quite high [107, 134].  

Determining edge effects remains a challenging task in spatial analysis. For this analysis, 

special concern was devoted to adult movement across state borders which necessitated the 

development of an intrastate workflow matrix. Incorporating a total of 302 c ounties from the 

bordering states, including Pennsylvania, resulted in minimal flow between several counties 
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outside of Pennsylvania and those within Pennsylvania, thus, not significantly impacting the 

correlations with disease spread. Though, the correlation between the workflow matrices was 

70%, indicating nearly a third of work-related travel occurs across the state borders. While the 

correlation with this matrix was not a strong predictor of overall disease synchrony, the 

opportunity for border transmission still exists in the form of non-routine travel. We did not 

account for interstate long distance or air travel as these forms of travel are negligible for each 

county of the state.  

Age-specific attack rates vary by influenza strain and subtype [27, 34]. Influenza B and 

A/H1N1 typically infect younger populations which may be more mobile within communities 

but are less likely to be accounted for in the workflow matrix or gravity model. The elderly are 

also less likely to appear in the workflow matrix and this population is strongly associated with 

influenza hospitalization and mortality. Mortality analyses among the elderly have shown greater 

synchrony among A/H3N2 seasons than seasons dominated by A/H1N1 and B [38, 56]. 

Nonetheless, strain and subtype-specific analyses would further illuminate the determinants of 

disease spread between counties. However, small influenza B samples from each county and 

limited data on influenza A subtypes prevented further analysis.  

This study documents the gravity-like spread of disease within the state of Pennsylvania; 

thus placing less emphasis on the value of administrative borders for public health prevention 

methods. Public health officials should target interventions to multiple counties to effectively 

capture the flow of residents and the spread of disease. Interventions targeted to patches of the 

state that display significant gravity-like spread of disease might be more efficient than statewide 

campaigns and provide greater public health value.  
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The precision gained from using county-specific disease and exposure data improved our 

knowledge of spatial-temporal predictors of disease spread enabling this study to delineate 

differences in mechanisms dependent on geographic scale. While this study incorporated 

workflows from neighboring states, it did not include disease data.  Future studies should 

incorporate disease data from the neighboring states to confirm the gravity-like spread of disease 

across a larger administrative boundary. Through analysis of county-specific data, these results 

can be used to inform mathematical models of influenza spread at a narrow spatial scale. 

  



59 

 

 

3.6 TABLES 

Table 5. County characteristics 

 All Counties 
(N=67) 

Large Counties 
(N=30) 

Small Counties 
(N=37) 

Mean population size 183,300 349,600 48,440 

Population range 4,946 – 1,518,000 120,000 -
1,518,000 4,946 – 94,640 

Total number of weeks* 12462 5580 6882 
Proportion of total weeks with a case 41% 53% 31% 
Mean number of weeks with a case for 
each county 76 98 58 

* 186 weeks over 6 epidemic seasons (31*6) 
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Table 6. Observed Mantel statistics. Pearson correlation of the dissimilarity matrices and Spearman rank 

correlations of the epidemic time series for all counties (N=67). P-values and the corresponding confidence intervals 

(CI) are presented. Gravity Pennsylvania refers to the gravity model fitted to Pennsylvania-specific data. 

All counties (N=67) 
Matrix Correlation P-value* Lower CI Upper CI 
Euclidean distance -0.03 0.5528 -0.079 0.006 
Workflow (Intra-state) 0.14 0.0001 0.129 0.157 
Workflow (Inter-state) 0.08 0.0260 0.058 0.099 
Population  0.33 0.0004 0.310 0.389 
Gravity (United States)† 0.11 0.0013 0.094 0.140 
Gravity (Pennsylvania – Workflows) 0.19 0.0001 0.169 0.245 
Gravity (Pennsylvania - Disease) 0.63 0.0001 0.593 0.656 

Gravity(Pennsylvania - Disease) adjusting for: 
  Euclidean distance 0.63  0.001 
  Workflow (Intra-state) 0.62 0.001 
  Population 0.60  0.001 
  † Gravity matrix generated using parameters derived from Viboud et al.  

* Significance is determined at P < 0.05 
 

Table 7. Parameter estimates for gravity models (disease spreads and workflows) 

Coefficient (exponents) Gravity Model - Disease Gravity Model - Workflows 

τ1 τ2 Population 0.265 0.47 
ρ Distance  0.098 1.76 
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3.7 FIGURES 

 

Figure 6. Correlation of weekly time series with distance and population size. A) Synchrony as a function of 

distance. The spline function (middle curve) is presented with a 9 5% confidence interval (outer curves). B) 

Synchrony as a function of population size (product of population i, j). The distribution of population was 

categorized by quartile. The boxplot within each quartile represent the distribution of the correlation of population 

between pairs of counties. 
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Figure 7. Correlation of weekly time series with human movement. A) Synchrony as a function of workflows. 

B) Synchrony as a function of Pennsylvania and neighboring county workflows. The distribution of workflow was 

categorized by quartile. The boxplot within each quartile represent the distribution of the correlation of workflow 

between pairs of counties. 
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Figure 8. Association of workflows, population and distance. (y-axis, z-axis log10 scale) 
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Figure 9. Correlation of gravity model with distance. A) Distance between two counties as a function of the 

gravity model fitted to disease.  B ) Distance between two counties as a f unction of the gravity model fitted to 

workflows (y-axis log10 scale) 
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4.1 ABSTRACT 

An important aspect of a public health system is to ensure that the key inputs and processes 

deliberately account for the health event in question. Challenges to this system arise when the 

geographic boundaries of a disease do not  align with administrative, political, and legal units. 

One such example occurs among infectious diseases where the intrinsically spatial nature may 

produce boundaries incongruent with known spatial entities; thus, minimizing the effectiveness 

of public health surveillance, diagnosis, and the design of interventions. Here, we introduce the 

term ontologic unit of epidemicity to describe the spatiotemporal unit of transmission for an 

infectious disease. We review the methodological and philosophic framework in support of this 

concept and provide an example using influenza mortality data. 

4.2 INTRODUCTION 

Infectious disease dynamics are intrinsically spatial and directly transmitted diseases reflect 

human navigation of the physical landscape and the socioeconomic, demographic and behavioral 

heterogeneities in communities. Transmission patterns may not align with administrative 

boundaries, a characteristic expressed by the epidemiologic axiom that “disease knows no 

boundaries”. However, pathogens may reveal boundaries that are not readily 
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apparent. Understanding these boundaries as a subsystem of a partially decomposed system may 

be important to the success of public health surveillance and response activities. 

Here, we present a review of conceptualizations of spatial units of transmission that have 

been formulated directly for transmission in related areas.  In support of this approach, we 

introduce a new term: ontologic unit of epidemicity. We apply a set of algorithms to identify the 

spatial ontologic unit of epidemicity for influenza transmission using mortality data from the 

United States. 

4.3 HISTORICAL PERSPECTIVE 

Historically, defining the epidemiology of a disease has relied on existing territorial units for 

data acquisition, and comparison of social, demographic and economic measures. Administrative 

boundaries and the associated legal jurisdictions not only dictated the extent of epidemiological 

analyses but continued to influence disease surveillance. Presentation and access to seasonal 

influenza data located on the FluView website hosted by the CDC is organized by the nine US 

census divisions or the ten US Health and Human Service (HHS) regions [11]. The US census 

divisions initially took the form of colonial groupings and topographical regions. Though the 

three great regions and subdivisions were later adjusted in 1900 to correspond with political units 

to enable comparisons over time and improve data processing [135]. Researchers and public 

health officials have utilized the standardized data by census division and tracts to make valuable 

insights into public health issues. However, interpreting data and deriving innovative spatially 

focused public health measures is ultimately limited by the territorial boundaries that produced 

the data and the census divisions presented by the CDC for influenza challenge this approach. 
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Recently, data on human mobility patterns illuminated effective human connectivity 

borders that do not fit comfortably with existing administrative and political borders [136]. 

Moreover, membership in social networks such as Facebook reveals connectivity partitions 

based on the strength of geo-proximity to “friends” [137]. Human connectivity as demonstrated 

through analyses and simulations of influenza epidemics is an important contributing factor in 

the spread of disease [31, 56, 61]. Identifying how these connectivity borders and other drivers 

such as geography, demographics and climatic conditions are associated with the spatial structure 

of disease patterns is an important aspect of regional and global disease control; and thus, raises 

the issue of how to organize the appropriate spatial transmission unit of a host-pathogen system.  

In this report, we seek to provide a methodological and philosophic approach to 

organizing the spatiotemporal unit of transmission for an infectious disease. In doing so, we 

introduce the term: ontologic units of epidemicity (OUE) formalizing this concept.  

The term ontology is referenced in multiple disciplines; however, the concept originates 

from the branch of philosophy known as metaphysics. Philosophically, ontology simply refers to 

the study of existence or the nature of being (from the Greek word ‘ont’ – being) [138]. Over 

time ontology evolved into a distinct branch of metaphysics which incorporated concepts into 

establishing not only what is real, but the appropriate questions and classification systems to 

define what exists [139]. The ontologist, Roman Ingarden in his most influential work, The 

Literary Work of art, explains the requisite features and the interrelationships for an object to be 

considered a work of literature [139]. This ontological piece of work itself serves as a basis for 

defining ontologies in other disciplines including biology and artificial intelligence as a hierarchy  
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or classification of experiences, entities, and meanings. We extend the concept of ontology to 

public health as we explore the existence of epidemics, the components of a spatial transmission 

unit, and what relationship a spatial community structure has to physical entities. 

4.4 PARTIALLY DECOMPOSABLE SYSTEMS 

The idea that subsets of systems could be identified and analyzed in isolation from other subsets 

of a system has been suggested in many fields. Herbert Simon introduced the term partially 

decomposable systems to describe systems that could be divided into sub-systems that have 

much greater interactions within their sub-system than with other parts of the system [140]. Sub-

systems of these partially decomposable systems (or nearly decomposable systems) could be 

studied or controlled effectively by considering sub-systems in isolation from the wider system. 

Decomposability could be a result of static weak coupling between sub-systems or a mix of time 

scales of interactions where within system interactions take place at fast time scales compared to 

longer time scales between subsystem interactions. As an example, island populations of wildlife 

might be considered decomposable systems when movement between islands occurs 

infrequently. The results of analysis or simulation that assumes decomposability provides an 

approximation of the full system which ignores coupling between all components of the full 

system. The accuracy of this approximation depends on t he degree of coupling between sub-

systems. Natural systems exist on a  continuum between decomposable and non-decomposable 

systems. Useful empirical methods to identify subsystems should be able to characterize the 

strength of evidence supporting the existence of sub-systems in order to distinguish 

decomposable systems from non-decomposable systems [140]. 
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Simon described the process of identifying these sub-systems as critical to decision 

making [140]. When considering all the possible connections and ramifications of decisions for 

every possible interaction, decision makers could effectively be paralyzed. Scientists engage in a 

similar process when deciding which components to include in observation or simulation and 

which to exclude. The claim in this manuscript is that the transmission cycle of human-to-human 

transmissible infectious diseases can be considered a partially decomposable system. These 

systems might be decomposed into distinct populations of the host and pathogen determined by 

geography, climatic conditions, demographic indices or some other unknown drivers. Identifying 

the sub-systems of this system can reveal what these drivers are and allow for progress to be 

made in determining the relationships between the multiple variables that might affect the level 

of transmission in any one population. 

4.5 INFECTIOUS DISEASE EXAMPLES 

Spatial transmission units have been observed for several infectious diseases. Geographic 

variation in HIV clade structure is a distinguishing feature of the HIV pandemic with more than 

9 subtypes and multiple circulating recombinant forms dominating regional epidemics [141]. 

Africa retains the distinction of having the highest prevalence among continents and the greatest 

subtype diversity resulting in many distinctive geographic patches of subtype dominance. The 

reasons for global diversity remain elusive; however, founders effects, host genetics, and socio-

behavioral features have been postulated [141]. 

Well-documented measles epidemics throughout the world have provided an extensive 

opportunity to evaluate and report on spatial units of transmission. Within Cameroon, patterns of 
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measles incidence differed by region of the country with the Northern provinces having 

experienced annual epidemics while the Southern provinces experiencing a three year periodicity 

[142]. Barriers to migration and social contact may have contributed to the regional differences, 

although, differences in birth rates, population density, and vaccination coverage may have been 

contributing factors. The consequence of differing measles dynamics within the country is 

reflected by the supplemental immunization campaign undertaken in the Northern provinces. 

Additionally, measles infection hierarchies observed in England and Wales noted phase 

differences among urban centers, small towns and rural areas [121]. Urban centers serve as a 

reservoir of infection for smaller spatial entities; as a result, concentrating vaccination in these 

urban areas could have dual purposes in reducing infection and the limiting the role of the 

reservoir.  

Spatial heterogeneity of serotypes is an important characteristic associated with 

Streptococcus pneumoniae. The most prevalent serotypes differ between developed and 

developing countries and not all of the countries are endemic to the same serogroups [143]. Both 

serotypes 1 a nd 5 di splay significant global geographic variation. These serotypes are more 

likely to be found in South America and other developing countries as opposed to the United 

States, Canada and in similar developed countries. [143, 144]. In this example and similarly for 

the HIV example, the distribution of subtypes demonstrates the interaction networks that 

produced these spatial variations. In a well-mixed system, we would not expect to observe the 

homogenous subtypes.  

Another subsystem of Streptococcus pneumoniae to consider is the relationship of the 

pathogen to age of the host. Specific subtypes are more associated with younger age groups 

which may be related to the maturity of the immune system [144]. For example, the odds of 
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infection with serotypes 6, 14, a nd 19 significantly decline after the first decade in life [144, 

145]. Thus, defining the appropriate serotype-specific OUE for both the geographic and age-

related subsystem is imperative for public health strategy. 

4.6 HISTORICAL AND SOCIOLOGICAL PHENOMENA 

Recognition of ontologic units of is not limited to infectious disease dynamics. The field of 

dialect geography is concerned with the geographic distribution of dialects and the fundamental 

organizing principles. The Atlas of North American English (ANAE) presents a comprehensive 

analysis of the current state and diversification of North American urban dialects and sound 

changes [146]. Through a telephone survey of all major urbanized areas, the researchers 

conducted an extensive acoustic analysis of phonological and phonetic features from native 

speakers of that city. The resulting analyses identified multiple distinct dialect regions 

(isoglosses) within the United States and areas of clear internal homogeneity within the Midlands 

and Eastern dialect areas. The North East is defined by multiple isoglosses while the majority of 

states in the traditional American west are concentrated into one isogloss [146]. Collectively, 

these isoglosses represent ontologic units of dialects. 

Consistent with themes from patterns of disease spread, interaction networks described 

by diffusion and population movement are driving factors behind the spatial distribution of 

dialects. Both a gravity model and cascade model of diffusion support patterns of linguistic 

feature spread [147]. The latter model observes linguistic change spreading from the largest city 

to the smallest city in a hierarchical fashion proportional to the population size of the city and 

inversely proportional to the distance separating them. Studies in Norway, Iran, and Northern 
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Illinois support the models of diffusion and the Northern Cities Shift composing the Inland North 

isogloss of North America may have been the result of an urban diffusive spread [147-149]. 

Alternatively, some evidence suggests the phonological features of the Western states isogloss in 

North America have been attributed to the mixed settlement routes originating in the Northern, 

Southern, and Midland regions [146]. 

The concept of geographic variation in phonological features extends to social media on 

the internet. The microblogging tool, Twitter, enabled Eisenstein et al. to evaluate the geographic 

variation in the written lexicon noting strong regional differences in slang terms suggesting the 

importance of geography in slang usage [150]. The authors observe regional clustering with an 

emphasis of clusters in the major metropolitan areas. The geographic distribution of words is not 

new to linguistics. For example, the various terms used for a carbonated beverage are divided 

into 5 r egions which do not necessarily mimic phonological or other lexical isoglosses [146, 

151]. 

Another popular social media tool, Facebook, reveals interesting spatial patterns among 

networks of friends. Clear regional patterns exist emphasizing strong connections locally but 

fewer connections outside the cluster [137]. Variation also exists within each cluster as small 

cities within the West cluster had more ties to distant cities within the Western region, in contrast 

to the Pacific region in which the cities are tightly connected. While the Facebook spatial unit 

doesn’t necessarily reflect movement or face to face contact, it does potentially represent a 

previous direct connection between two individuals. Though there is no g uarantee of future 

contact, the Facebook ontologic unit represents the bounded likelihood of contact. 

Human traveling behavior expressed through dispersal of bank notes has also led to the 

observation of unique spatial mobility boundaries [136, 152]. Through the use of an online 
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database of bank note trajectories for the United States, Brockmann et al. estimated a s et of 

scaling laws to describe the dispersal of bank notes; and in essence, a proxy for human travelling 

behavior [152]. Further analyses revealed effective geographic boundaries for the United States 

[136, 153]. These human mobility borders correlated significantly with the Appalachian 

Mountain range and state boundaries but displayed unique partitions particularly with 

Pennsylvania and Missouri where the mobility border divided the state in two halves. The 

geographic information derived from the human mobility units has important implications in our 

knowledge of the geographical spread of disease and other human-related activities. 

4.7 PUBLIC HEALTH SIGNIFICANCE 

The utility of recognizing and defining a spatial ontologic unit of epidemicity has important 

public health implications. Strategies for public health prevention are inherently an exercise in 

defining; steps are taken to define surveillance activities, response activities, and coordination of 

these approaches. Recognition of the appropriate geographic unit to define these activities can 

strengthen the public health response and minimize inefficient prevention mechanisms. 

Identification of a spatial ontologic unit impacts public health surveillance in multiple 

ways. Surveillance defined as the systematic collection, analysis and interpretation of public 

health data can be used to monitor disease occurrence, observe the natural history and clinical 

course of the disease, and provide epidemiologic insights [154]. Monitoring sudden changes and 

secular trends in an OUE may reveal shifts in underlying patterns of host movement and 

behavior that may require urgent or novel interventions within the OUE or potentially in the 

definition of a new OUE. Furthermore, changes in disease frequency within one region of an 
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OUE may prompt increased surveillance and prevention activity among the entire OUE. Because 

surveillance can support planning, implementation and evaluation of prevention methods, 

surveillance within a climate-driven OUE can inform the timing of an appropriate intervention. 

One such example improving surveillance by defining an OUE is the Mekong Basin 

Disease Surveillance (MBDS) which is a group of countries in the Mekong Basin that formed a 

surveillance network as a result of cross-border disease transmission [155]. The Mekong Region 

in Asia consists of China, Thailand, Myanmar, Laos, Cambodia, and Vietnam, and is widely 

considered, as part of greater South East Asia, to be the epicenter for the emergence of pandemic 

influenza viruses and opportunities for zoonotic infections [4, 46]. Recognizing the destructive 

effects of morbidity and mortality on local populations from cross-border disease outbreaks, the 

countries of the Mekong Region established and strengthened partnerships to coordinate 

outbreak investigation, improve surveillance, share epidemiologic data, and develop response 

mechanisms [155]. In this example, the OUE of a particular host-pathogen relationship was not 

necessarily defined, rather, the territorial extent of multiple host-pathogen subsystems was 

acknowledged and the public health response was mounted.   

Effective vaccine policy also benefits from defining the OUE. In the example noted 

earlier, Cummings et al. observed different oscillatory patterns of measles incidence between the 

northern and southern provinces in Cameroon which highlight the necessity of different vaccine 

policies for the two regions [142]. Regarding the HIV vaccine, the current strategy focuses on 

subtype and region-specific vaccines reflective of the ontologic units of epidemics; though, this 

approach has been questioned in light of data regarding conserved epitopes [156-158].  

Another example demonstrating the public health implications of OUE recognition 

involves the pneumococcal vaccine. As stated, country and age-specific serotype coverage 
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influences the choice of subtypes used to compose the pneumococcal conjugate vaccine. As a 

result, the range of serotype coverage varies in each formulation in order to maximize regional 

and age effectiveness. This is especially true in the developing countries where serotype diversity 

is at its greatest [143]. Alternative strategies have focused on increasing the number of subtypes 

in the vaccine from 7-valent (pneumococcal conjugate vaccine) to 23-valent (pneumococcal 

polysaccharide vaccine); however, the 23-valent vaccine is not recommended for all groups as 

children <2 do not  have the ability to mount an effective immune response to some of the 

serotypes [159, 160]. 

Finally, refinement of model assumptions based on knowledge of the ontologic unit will 

improve epidemiologic model development. Understanding the fundamental unit of 

transmission, the appropriate aggregation level, and the drivers of the host-population subsystem 

will enable models to more accurately predict disease spread and evaluate disease containment 

policies. 

4.8 DEFINING CRITERIA 

A spatial ontologic unit of epidemicity is a group of locations for which disease dynamics are 

more highly correlated with each other than would be expected based on the overall correlation 

measured in all areas. It is similar to community structure in network analysis in which a 

network is partitioned by the strength of connections within groups. As a theoretical construct, 

the spatial OUE reflects a t hreshold of similarity in the temporal patterns of incidence among 

spatial entities. The non-metric multidimensional scaling (MDS) algorithm can aid in 

discrimination of clusters and patterns as the spatial ontologies are self-defining. As part of this 
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exploratory process, multidimensional scaling can discover directional relationships and 

illuminate the relationship between epidemic space and geo-space. Non-congruency between 

epidemic space and geo-space is of potential interest as it identifies areas where spatial 

relationships do not entirely predict similarity in dynamics. 

4.9 INCOMPATIBLE ONTOLOGIC UNITS 

Failure to correctly define an OUE may lead to the wrong conclusion or mask the true 

association. Certain communicable diseases display seasonal periodicities leading to an annual 

reset of the disease. Thus, each epidemic season is one unit of observation. Partitioning a single 

season into multiple temporal observations neglects the inherent correlation between 

observations during a single epidemic. Inappropriately characterizing epidemic seasons may 

result in incompatible associations. Checkley et al. surmised that the El Nino phenomenon in the 

form of increasing ambient temperature resulted in an elevated risk for hospital admissions of 

diarrheal diseases among Peruvian school children [161]. The analysis focused on da ily 

observations over a twenty month El Nino event which consisted of two diarrheal epidemics. 

While the association posed and demonstrated by the authors may exist for this particular El 

Nino-driven event, establishing an OUE of diarrhea in Peru driven by weather-induced changes 

from El Nino necessitates analysis of multiple exposure periods from multiple surveillance sites. 

Another such example focuses on a Chikungunya virus outbreak in coastal Kenya beginning in 

2004 [162]. The authors postulated unusually dry conditions precipitated a change in water 

storage and transmission efficiency. Similar to the previous example, the study focused on 

multiple pre-epidemic control seasons and only a single epidemic season. Persistent outbreaks 
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over multiple seasons would provide greater confidence in establishing an associated with 

climatic conditions. Finally, winter freezes have been implicated as a mechanistic force of St. 

Louis encephalitis virus epidemics in Florida [163]. The analysis of monthly sentinel data from 

17 surveillance sites is limited to two epidemic seasons over a twenty year period. While winter 

freezes were positively associated with two epidemics, the absence of an epidemic following 

multiple winter freezes was also noted; and thus, confirmation and identification of a climate-

driven OUE is incomplete. 

4.10 EXAMPLE: INFLUENZA 

Influenza is a contagious respiratory pathogen responsible for annual seasonal epidemics in 

temperate climates resulting in significant morbidity and mortality. Epidemics in the northern 

hemisphere typically occur between November and April with peak cases reported in the winter 

months. Each year significant resource demands are placed on local, state, and national public 

health officials to provide accurate and timely surveillance in order to respond with the effective 

prevention methods. Studies evaluating the spatiotemporal spread within the United States have 

been well-documented leading to numerous insights into the timing, magnitude, burden of 

disease, and transmission dynamics [12, 16, 19, 27, 164, 165]. Moreover, recent studies point to 

the synchrony of seasonal influenza epidemics within the United States and the world [38, 39, 

56, 90]. These reports highlight the mechanistic forces that synchronize epidemics across 

multiple geographic scales; however, neither of these studies evaluates the epidemic unit. 

Knowledge of the ontologic unit of epidemics for influenza could support public health officials 

in multiple ways. Identification of sub-networks could identify and prioritize effective 
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surveillance zones, create improved vaccine distribution regions, and minimize duplicated 

efforts. 

Some evidence of an influenza spatial ontology exists. Wenger et al. demonstrate a spatial 

trend in peak timing from Western to Eastern states with the New England region peaking the 

latest [57]. Peak timing patterns are most evident among the New England and Western states. 

Phylogenetic analyses of the H1N1 pandemic virus discovered distinct viral lineages that created 

clade-specific spatial patterns suggesting a role for founders effects [166]. Ultimately, this spatial 

heterogeneity disappeared during the second wave of the pandemic ceding to a single viral 

lineage from New York City [167]. These phylogenetic analyses are limited by available data 

from specific states and cities and are not representative of all regions.  

To evaluate the presence of an influenza spatial ontologic unit in the United States, we 

analyzed pneumonia and influenza mortality for the 48 contiguous states from 1972-2002. 

Methods to collect and prepare the mortality data have been described elsewhere [56]. 

Pneumonia and influenza deaths were selected from the National Center for Health Statistics and 

organized by week and administrative region. For each season’s epidemic, the period from 

December through April, a Spearman correlation of the weekly mortality rate between two states 

was calculated resulting in a 48x48 matrix (30 matrices total). Spearman correlations serve as a 

mechanism to quantify the similarities in epidemic timing between two states. Because of the 

weaker and potential inconsistent connections with the continental United States, Alaska and 

Hawaii were excluded from the analysis. 
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4.10.1 Statistical Analysis 

Identifying regions with a similar pattern of epidemic time series is performed by non-metric 

multidimensional scaling (MDS); an ordination method used to identify spatial structure in data.  

This method orders objects based on t he rank order of their similarities such that objects 

dissimilar from one another appear farther apart than objects that are similar in N-dimensional 

space [132, 168]. As opposed to ordering objects based on t he distance separating them, an 

epidemiologic parameter, such as mortality rates, serves as the distance metric. Thus, the 

location of objects on a map corresponds to the degree of similarity in their mortality rates [126]. 

For this analysis, a S pearman correlation matrix of the epidemic time series are converted to 

distances using the square root of the reciprocal of the coefficient and applied to the sammon 

function in R. 

Infectious disease dynamics have modeled population movements using a gravity model 

[56, 124, 126]. Originally developed for transportation theory, a gravity model captures the 

behavior of human movement [169]. For this analysis, we consider the generalized gravity model 

such that the interaction of sub-populations is inversely proportional to the distance separating 

them [124]. Using parameters previously identified for a gravity model of the United States, we 

estimate the stress of an MDS with an initial configuration of this gravity model. We compare 

this stress to an MDS with an initial configuration of a United States geographic map (state 

centroids). A lower stress reflects the overall fit of the algorithm and how well epidemic space 

coincides with a gravity model or geo-space.  

All statistical analyses were performed using the R statistical package version 2.11 ( R 

Foundation for Statistical Computing, Vienna, Austria). 
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4.11 RESULTS 

Exploring the geometric relationships of influenza mortality rates over a 30 year period in the 

United States revealed several notable spatial patterns. Based on a threshold of similarity, several 

groups of states are clustered together similar to their spatial proximity as states in the United 

States. New England, parts of the South (Florida, Georgia, South Carolina, Alabama, 

Mississippi, and Arkansas), the upper Midwest (Michigan, Wisconsin, Illinois, Indiana, and 

Ohio) and many of the Western states have more synchronized influenza epidemics with each 

other than neighboring states or regions (Figure 11). However, there are several states clustered 

together more on the influenza map than expected based on the spatial proximity in the United 

States (California, Texas, Florida, Pennsylvania, Ohio, North Carolina, and New York). These 

larger populated states are pulled inward, and in some instances displacing the natural location of 

other smaller populated states suggesting a population factor may account for this map 

contraction. To test the hypothesis that the influenza maps created by dimension reduction are 

more consistent with a gravity model of movement than just spatial proximity, we compared the 

MDS stress iterations of the flu map, United States map and a gravity-formulated map. The 

gravity map resulted in the lowest first iteration stress (Gravity Stress = 32, US Stress = 47) 

indicating the flu correlations are more closely aligned to gravity space than geo-space; a 

conclusion supported elsewhere [56, 170]. 

Visualization of correlation thresholds provides additional evidence supporting the spatial 

synchronization of epidemics within regions (Figure 12). Each edge (line) between two states 

(vertices) represents the correlation of the epidemic during the study period. As the correlation 

threshold increases, fewer states display similar patterns in the timing of flu epidemics. 

Synchronized epidemics remain concentrated in the heavily populated Eastern states. 
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Connections between California and Texas and four states on the interstate 95 Northeast corridor 

(Massachusetts, New York, New Jersey, and Pennsylvania) have the most similar timing in 

epidemics. Furthermore, the epidemic correlations display a strong similarity to population 

density in the United States. Few epidemics in the Western states are synchronized beyond the ρ 

= 0.45 t hreshold. This lack of synchronization verifies the limited connectivity of the large 

population centers in this region compared to the Eastern region of the United States. 

4.12 CONCLUSIONS 

Identifying the spatial ontologic unit of epidemicity has meaningful public health consequences. 

In this report, we introduce the concept of an OUE and provide an introductory framework to 

identify the unit of transmission. Though our current knowledge of this concept is incomplete, 

future observations will improve our understanding. 

The exploratory influenza analysis revealed interesting spatial units and patterns not 

previously reported. A previous analysis demonstrated a West to East trend in the timing of peak 

epidemics; however, we report on the directional relationship of synchronized yearly epidemics 

[57]. These clusters of synchronized epidemics present novel insight into the spread of influenza 

and influenza surveillance regions. Identifying discrete thresholds of similarity illustrate the 

relationship of epidemics in neighboring states such as Washington and Oregon and New Jersey 

and New York. The largest correlations in the Mid-Atlantic region suggest the scope of 

surveillance encompasses both New York and New Jersey and potentially Pennsylvania. 

Alternatively, the threshold of correlations between Washington and Oregon is not as strong. 

This pair of states may indicate the presence of a spatial surveillance unit but the strength is 
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limited. Nonetheless, these states should be more concerned with surveillance of one another 

than trends between other states in the region. Another implication of the data is the limited 

correlation in the Northwest and West with itself and other parts of the country. Weaker 

connectivity networks and greater distances between population centers may account for this 

finding.  

In defining surveillance regions it is  important to note the limitations of the available 

data. Analysis of mortality data between states lacks the granularity to capture the true spatial 

ontologic unit. Pennsylvania’s relationship with New York, New Jersey and Massachusetts may 

reflect baised mortality patterns in the Eastern region of the state that is closest to New York, 

New Jersey and Massachusetts. The Western portion of Pennsylvania because of its unique 

geography may have stronger connections to the Midwestern states. County or census tract 

analysis is likely to reveal the true ontologic unit and the most appropriate region for optimal 

surveillance.  

Congruency of the multidimensional scaling influenza map and the United States geo-

space map suggest that spatial proximity between states is an important aspect in the correlation 

of epidemics. However, non-congruency between the maps implies another factor may be 

driving the spatial relationships. We tested the hypothesis that the spatial correlation in incidence 

is more consistent with human movement flows than spatial proximity; however, climate and 

regional and historical differences in reporting may also drive the spatial relationships.  

Identification of influenza transmission units has additional implications for constructing 

transmission models. Typically, simulations model the explicit administrative unit. However, 

these analyses suggest a more refined, accurate model would be to aggregate the administrative 

unit to reflect the spatial units of transmission such as collapsing New England into one unit or 
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developing coinciding models depending on p opulation size. Moreover, by understanding the 

disparate relationship among Western and Northwestern states, predictive capabilities of models 

can be further refined.  

Many statistical techniques are available for the identification of spatial ontologies. Here, 

we present the results of a multi-dimensional scaling algorithm that visualizesthe directional 

relationships between states. Other methods such as hierarchical clustering, principal component 

analysis, factor analysis, and latent class analysis are all capable of realizing spatial transmission 

partitions.  

In conclusion, the realization of infectious disease spatial ontologies can have profound 

effects on approaches to surveillance and public health policies. Currently, public health policies 

and prediction models craft strategies based on the administrative unit used to analyze the data. 

However, consideration of the transmission unit is more prudent. 
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4.13 FIGURES 

 

Figure 10. Map of the United States with color-coded circles representing US Census regions 
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Figure 11. Map of influenza spatial structure from multidimensional scaling using color coded circles to 

represent US Census regions 
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Figure 12. Spatial network representations of correlation thresholds. Each edge (line) represents a 

correlation between two states. A) Correlations > 0.45. B) Correlations > 0.5. C) Correlations > 0.55. D) 

Correlations > 0.6 
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5.0  CONCLUSIONS 

By using spatially and temporally explicit influenza incidence data from the Commonwealth of 

Pennsylvania and influenza mortality data from the United States, this dissertation characterized 

seasonal influenza epidemics, evaluated factors that drive local influenza epidemics, and 

provided an initial assessment of how administrative borders influence surveillance for local and 

regional influenza epidemics. Understanding the geographical differences in the spatio-temporal 

dynamics of seasonal influenza epidemics has important implications for public health systems 

as practitioners can gain insight into local and regional differences to improve public health 

planning and utilization of resources. 

Despite the regularity of seasonal influenza epidemics, differences in the intrinsic 

properties of disease dynamics may exist across spatial scales. Previous research has described 

trends in timing, magnitude, and synchrony for countries and continents; however, similar 

analyses have not been completed at a finer spatial scale such as a county. Inferences reflecting 

the spatiotemporal patterns of influenza spread conducted at larger spatial scales may conceal 

local trends in disease structure. This dissertation reports the results of the first study to examine 

the spatio-temporal dynamics of influenza between counties within one state. Several important 

findings were noted, though not all were consistent with patterns observed across larger spatial 

scales. The analyses revealed similar temporal trends and synchrony in the timing of epidemics 

with epidemics across the United States. Synchrony existed across the entire state and decayed 
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with distance. Furthermore, synchrony as a function of population size displayed evidence of 

hierarchical spread with more synchronized epidemics occurring among the most populated 

counties. Despite the similarities in synchrony across spatial scales, the mechanism of disease 

spread differed. Dissemination across regions of the United States is driven by air travel and 

adult work flux drives interstate spread. This dissertation demonstrated that a gravity model was 

the strongest predictor of influenza spread and suggests that non-routine and leisure travel drive 

local epidemics. This finding has not been previously reported and highlights the complex nature 

of influenza spread across multiple geographic scales.  

Spatial analysis revealed heterogeneity in the distribution of influenza across the state. A 

test of autocorrelation revealed a cluster of cases occurring in the South Central region of the 

state consisting of 8 counties (Union, Snyder, Juniata, Mifflin, Centre, Huntingdon, Fulton, and 

Bedford). This spatial regime existed each year. Multivariable logistic regression indicated that 

lower monthly precipitation levels during the influenza season, fewer residents over age, and 

fewer residents with more than a h igh school education were significantly associated with 

membership in this cluster. Association with age and education may have reflected differences in 

vaccination coverage. These results provide the Pennsylvania Department of Health with the first 

indication of influenza case clustering in the state. These results also provide an opportunity for 

future research and collaboration. The possibility exists for extension of this spatial regime 

across the state borders into West Virginia and Maryland. The next phase of research should 

concentrate on acquisition and analysis of county-specific influenza incidence data for these two 

states to observe if the spatial cluster extends across state administrative units.  

Understanding how administrative borders influence surveillance and prevention methods 

for local and regional epidemics presents an additional challenge to the public health system as 
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noted in the spatial cluster from Pennsylvania. Defining the epidemiology of disease often relies 

on the administrative boundaries for data collection, covariate analysis, and intervention. 

However, the intrinsically spatial nature of infectious diseases may result in transmission 

boundaries that do not  align with existing territorial units. Pathogens, such as influenza, may 

expose transmission boundaries that are not readily apparent. As a result, efforts to implement 

effective surveillance and response measures may be inefficient and inadequate. Recognizing the 

spatial transmission unit is important for the success of public health activities. 

 This dissertation introduced the term ontologic unit of epidemicity (OUE) to describe the 

spatiotemporal unit of transmission for an infectious disease. Spatial ontologies have been 

observed for many infectious diseases including measles in Cameroon, global HIV clades, and 

country-specific subtypes of Streptococcus pneumoniae. Extension of this concept to sociologic 

phenomena such as dialect regions and online social networking suggest an underlying pattern of 

connectivity in the United States. Through analysis of influenza mortality data for the United 

States, this dissertation provided a framework for OUE definition and analysis. The geometric 

relationships of influenza correlations revealed strong congruency of epidemic space and geo-

space suggesting epidemics are well-synchronized in space and were consistent with a gravity-

like spread. Though regional clusters of connectivity existed, most notably in the Northeastern 

states of Massachusetts, New York, New Jersey, and Pennsylvania. The Western states had a 

lower threshold of similarity which may reflect weaker connectivity networks and greater 

distances between population centers. Realization of these spatial transmission units has 

implications for regional surveillance and simulation modeling. 
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5.1 PUBLIC HEALTH SIGNIFICANCE 

Seasonal influenza is a significant cause of morbidity and mortality with nearly 30,000 deaths 

and over 200,000 hospitalizations occurring in the United States each year. Analyzing the spatial 

temporal dynamics across multiple geographic scales provides greater understanding to the 

complex patterns of influenza spread. This dissertation provided novel insight into influenza 

dynamics within Pennsylvania and the United States which can be used to improve public health 

surveillance and response measures. 

5.2 FUTURE RESEARCH 

Future research should concentrate on further illuminating the role of administrative borders in 

defining the epidemiology of disease. Spatial analyses are needed in the Southern Border States 

of Pennsylvania to confirm the presence of the elevated incidence cluster. Additionally, 

identifying congruency between a social movement or human mobility patterns and spatial 

incidence patterns could reveal the underlying mechanism of influenza spatial ontologies. 
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APPENDIX A 

SUPPLEMENTARY FIGURES FOR MANUSCRIPT 2 

 

Figure 13. Synchrony as a function of distance for each season 
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Figure 14. Synchrony as a function of population for each season 
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Figure 15. Synchrony as a function of workflows for each season 
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Figure 16. Synchrony as a function of distance for each population quartile 
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APPENDIX B 

SUPPLEMENTARY METHODS 

B.1 MORAN’S I STATISTIC 

To evaluate the extent of spatial similarity of cumulative incidences between Pennsylvania 

counties, we used the Moran’s I method. This is a global measure summarizing the spatial 

autocorrelation across the entire state. The value of the I statistic can be defined as the product of 

the difference between Yi and Yj with the overall mean divided by the variance observed among 

Yi [93]. The formula is similar to a P earson’s correlation coefficient and can be considered a 

spatially weighted variant of the Pearson correlation coefficient. Neighboring counties with 

similar patterns of incidence will have a positive value, while neighboring counties with different 

incidences will have a negative value. A positive I statistic indicates the pattern among counties 

is clustered. Similar to Pearson’s correlation coefficient, the I statistic can take on values 

between 1, -1. Though, it is theoretically possible for regions with extreme values to be heavily 

weighted and thus have an upper bound > 1. Significance is determined by comparing the 

observed value to the expected value under the null hypothesis. Permutations of the data through 

randomization of the counties generate a d istribution. The observed value can be compared 

against the tails of the distribution. If the observed value lies in the tails, then we conclude that 
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the neighboring counties have statistically significantly more similar incidence than would be 

expected among randomly selected pairs of counties. 

The Moran’s I statistic represents a global measure to detect spatial autocorrelation over 

the entire study area; however, this method cannot detect individual clusters within the study 

area. The Local Indicators of Spatial Autocorrelation (LISA) provides a l ocal measure of 

similarity between counties. The LISA statistic is formally linked to the global test because the 

values of the ith region sum to the global indicator, thus each LISA value is a component of the 

global index [93, 94]. Thematic maps are generated of the LISA values such that high-high or 

low-low values represent clusters of similarity. Regions of low-high or high-low indicate the 

cumulative incidence of a county is an outlier relative to the neighboring counties. 

B.2 MANTEL STATISTIC 

We estimated the association between epidemic synchrony and key predictors using a M antel 

statistic. The Mantel test is a regression which estimates the comparative elements between 

dissimilarity matrices summarizing the pair-wise similarities among counties. The predictor 

variable represents the workflows between counties i,j and not just the workflow for county i or j 

[133]. Thus, the question to be addressed in this analysis is:  do  counties that are similar in 

epidemic timing also tend to be similar in workflows. The Mantel statistic is based on a cross-

product term than is normalized to the data and results in a statistic bounded to 1, -1 [133]. 

Significance is calculated by permutation of the rows and columns of the matrices. Ten thousand 

iterations of the randomly rearranged matrices generate a distribution of Mantel statistics which 

is compared to the observed value. A Partial Mantel test is used to measure the association of 
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two matrices in the presence of a third matrix. The Partial Mantel test can address questions such 

as: how strong is the association between epidemic synchrony and the gravity model after 

removing the effects of distance. The Mantel function in R estimates the Mantel statistic. 

B.3 MULTIDIMENSTIONAL SCALING 

Non-linear mapping in the form of non-metric multidimensional (MDS) scaling presents a 

mechanism to examine the spatial structure of events. Events in geographic space are represented 

with an epidemiologic metric instead of a traditional distance metric. As a result, the position of 

points on a  map represents the degree of similarity of an epidemiologic variable [126]. For 

example, mortality rates of influenza for each state can be mapped such that the location of 

objects on the map corresponds to the degree of similarity between mortality rates. 

The objective of the MDS is to represent the objects with the least number of dimensions 

while preserving the distance relationship between the objects [126]. Computation of an MDS 

employs a distance matrix using the square root of the reciprocal of the coefficient. For this 

study, a Spearman correlation matrix of the weekly mortality rates is converted to a distance 

metric. An initial configuration of the geographic locations of each state is used to preserve 

spatial proximity. Distances from the initial configuration are estimated and regressed against the 

distance matrix to generate predicted ordination distances between each state [171]. A perfect 

ordination will result if the original ordination from the distance matrix matches the predicted 

ordination distances. Sammon’s projection minimizes the distances between the original and 

predicted ordinations resulting in the Sammon stress [172]. The stress is a measure of goodness 

of fit and is iteratively calculated through recalculation of the ordination matrix and the predicted 
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distances until a specified tolerance is achieved or the minimum stress is found. The lowest stress 

reflects the ordination that summarizes the rank ordering of distances among the samples. 
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