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Total stress analyses of purely cohesive cut slopes utilize the undrained shear strength for slope 

stability analyses.  These slopes can have an in-situ lateral earth pressure that is greater than the 

vertical pressure.  Excavations into these materials results in expansion of the slope face due to 

release of confining pressure.  When strains exceed that which can be internally absorbed 

through elastic deformation, failure planes or cracks may develop at the toe of the slope.  

However, conventional limit equilibrium methods of slope stability analysis do not account for 

the in-situ stress conditions or the development of shear zones or cracks that occur from lateral 

stress relief.  Progressive failure of the slope may occur if internal lateral stresses are large 

enough to cause stress concentrations in front of the advancing toe cracks.  Finite element 

methods using substitution methods reveal two distinct shear cracks at the toe of slope consisting 

of a horizontal and an inclined failure plane while a tension zone develops in the backslope 

region.  The formation and extension of the shear cracks are strongly dependent on ko and they 

can extend to approximately ¼ of the slope height due to initial lateral stress relief.  Classical 

limit equilibrium solutions regarding the critical slope height have been revised to account for 

lateral stress relief.  Analyses indicate good agreement with published case histories and they 

reveal how the shear zones propagate to create progressive slope failure in stiff clay slopes under 

total stress analyses. 
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1.0 INTRODUCTION 

 

 

 

 

Excavation into a stiff cohesive material will result in outward movement of the new slope face 

due to lateral stress relief.  Expansion of the slope face can create a discontinuity at the toe of the 

slope as well as a tension crack at the surface of the backslope.  However, conventional limit 

equilibrium methods of slope stability analysis only consider the equilibrium of a soil mass 

tending to move down slope under the influence of gravity without regard for the in-situ stress 

conditions or the development of shear zones that occur from lateral stress relief.  There is very 

little known about how these two discontinuities form as well as how they interact to produce the 

final failure of the slope.  Research presented herein provides insight into the propagation of 

these shear zones that lead to the progressive failure of clay slopes due to lateral stress relief. 

 

1.1 SLOPE STABILITY ANALYSES OF  = 0 SLOPES 

Terzaghi (1950) indicated that the cause of landslides can be divided into external and internal 

failure modes.  External failure modes are those that produce an increase in shear stress under 

unaltered shear resistance of the slope material.  Examples of external failure modes include 

steepening or heightening of a slope by excavation.  Internal failure modes are those that produce 

slope failure without any change in surface conditions.  These failures are caused by a reduction 

in the shearing resistance of the slope material. 
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 Skempton and Sowa (1963) indicated that the undrained strength of saturated clay is 

independent of the changes in total stress acting on clay, provided that the water content 

remained constant and that there were no micro-structural alterations caused by the stress 

changes.  Under these conditions, the clay would behave as a  = 0 material with respect to 

changes in total stress (Skempton and Sowa, 1963).  Undrained shear strength is mobilized when 

failure occurs before any significant dissipation of shear induced pore water pressure; that is, the 

undrained shear strength of saturated clay is not affected by changes in confining pressure as 

long as the water content does not change (Terzaghi, Peck and Mesri, 1996). 

 Analyses performed for this research consider purely cohesive slopes and utilize the 

undrained shear strength (cu) of the soil analyzed in terms of total stress.  Under this situation, cu 

is equal to the cohesive value of the Mohr-Coulomb envelope, which is a horizontal line as noted 

on Figure 1.1.  These conditions are prevalent immediately after unloading of saturated clay with 

very low permeability and represents an end-of-construction condition design check (EM 1110-

2-1913). 

 
 

 

Figure 1.1.   = 0 Strength Envelope. 

 

 

cu 
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 Duncan (1996) notes that the  = 0 condition is applicable to impermeable soils under multi-

stage loading conditions, which includes rapid drawdown, stage construction, and any other 

condition where a period of consolidation under one set of loads is followed by a change in load 

under undrained conditions.  Terzaghi (1943), and Terzaghi and Peck (1967) note that 

combinations of shearing rates and drainage boundary conditions that could lead to undrained 

failure are theoretically possible in any soil, including soft to stiff clays and silts as well as 

fissured clays and shales.  Terzaghi and Peck (1967) also note that the  = 0 condition is also 

applicable to lightly overconsolidated clays.  For example, undrained failure could be induced in 

stiff clay from a deep and rapid excavation (Terzaghi, Peck, and Mesri, 1996). 

 Slope stability analysis using limit equilibrium methods and mass procedures have been 

developed based on the  = 0 condition (Culmann, 1866; Fellenius, 1927; Taylor, 1937; 

Terzaghi, 1943; Gibson and Morgenstern, 1962; Janbu, 1968; and Hunter and Schuster, 1968).  

Design codes developed for the professional engineering community often require  = 0 

analysis as part of design requirements for civil infrastructure projects (AASHTO, 2007; 

AREMA, 2007; EM 1110-2-1913; USDA Technical Release 60).  However, as noted in Table 

1.1, the literature contains examples of external failure modes in which the  = 0 analysis 

theoretically applied and predicted a stable excavation, yet failure occurred during or 

immediately after construction. 
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Table 1.1.  Failures in Excavated Natural Slopes Involving Theoretically Stable Slopes for  = 0 

Analysis Conditions. 

 

 

Slide Height of 

Slope 

(m) 

Time from End of 

Construction to 

Failure 

Reference 

Bradwell Slip 14.8 5 days Skempton and LaRochelle (1965) 

South Saskatchewan 

River Dam Canal 

12.2 to18.3 During Construction Peterson, et al (1957) 

Wothorpe - B 6.1 During Construction Chandler (1972, 1974) 

New Cross 23 3 years Skempton (1977) 

Isle of Sheppey – A 12 6 years James (1970) 

Isle of Sheppey – B 10 8 years James (1970) 

Oxford Slope 25 During Construction Burland, et al (1977) 

Conemaugh Slope 16.1 8 months Kutschke, et al (2007) 

 

 It should be noted that drained shear strength parameters utilizing effective stress for stability 

analyses generally represent a long term condition.  These analyses consider that the maximum 

resistance to shear in the soil is a function the difference between the total normal stress and the 

pore pressure.  The propagation of shear zones due to lateral stress relief utilizing effective stress 

analyses requires a separate analysis since shear strength is dependent on normal stress and this 

analysis is left for others. 

 

1.2 LIMIT EQUILIBRIUM SLOPE STABILITY ANALYSES 

Limit equilibrium stability analyses either consider a mass or method of slices procedure to 

determine the factor of safety.  As the name implies, the mass procedure considers the mass of 

soil above the surface of sliding to act as a unit.  This analysis is useful when the slope is a 

homogeneous soil mass.  Conversely, the method of slices procedure divides the mass of soil 
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above the surface of sliding into a number of vertical parallel slices and the stability of each slice 

is calculated.  This analysis is useful when the slope is non-homogeneous and pore water 

pressures are considered.  

 The mass procedure is applicable to total stress analyses and they represent the classical 

closed form solutions in slope stability analyses.  Research presented herein has an emphasis on 

vertical slopes, although inclined slopes are considered for completeness.  The following sections 

present the derivation of these classical equations.  As is readily evident, these classical solutions 

do not consider lateral stress relief.  

1.2.1 Vertical Slope with Plane Failure Surface 

Culmann (1866), a German structural engineer, was a pioneer of graphical methods in 

engineering.  Although much of his life was dedicated to railroad bridges, Culmann (1866) 

developed perhaps the first slope stability solution to determine the critical depth that an 

excavation into a cohesive deposit may stand without lateral support utilizing mass procedure 

concepts.  The analysis is based on the assumption that slope failure occurs along a plane when 

the average shearing stress tending to cause failure is greater than the shear strength of the soil.  

Consider a cohesive slope of unit thickness with a vertical height (H), slope face angle (), and a 

trial failure plane defined by ac , as shown on Figure 1.2. 
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Figure 1.2.  Vertical Slope with Plane Failure Surface. 

 

 

 

 The length of the failure surface (L) is defined as: 

 
sin

H
L   1-1 

where  is the angle of the failure plane with respect to the horizontal.  The mass of the soil 

above the failure plane (W) is defined by the soil unit weight () multiplied by the wedge area 

abc , and is expressed as: 

  LHW )sin(5.0    1-2 

Substituting Equation 1-1 into Equation 1-2 and reducing the expression results in the following: 

  



sin

)sin(5.0
H

HW   1-3 

H 

W 

 
 

c b 

N 

S 

a 

L 
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 






sin

sin
5.0 2 

 HW  1-4 

Equation 1-4 presents the mathematical expression of the mass of soil above a failure plane 

defined by variables H, , , and . 

 The normal force (N) and the shear force (S) acting along the failure plane ac  is expressed 

as: 

 cosWN   1-5 

 sinWS   1-6 

The Mohr-Coulomb failure criterion states that: 

  tannc   1-7 

where  = shear stress, c = cohesion, and n = normal stress.  Substituting Equations 1-5 and 1-6 

into the Mohr-Coulomb failure criterion and expressing in terms of force per unit width results 

in: 

  tancossin WcLW   1-8 

Simplifying Equation 1-8 to account for a total stress analysis with  = 0, results in the 

following: 

 cLW sin  1-9 
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Next, substitute Equation 1-9 into Equation 1-4 and simplify: 

 
 

















 









sin
sin

sin

sin
5.0 2 H

cH  1-10 

    sinsin5.0  Hc  1-11 

The angle of the critical failure plane (f) is obtained by differentiating Equation 1-11 with 

respect to , and recognizing that the terms , H and c are constants, results in: 

    0sinsin  
d

d
 1-12 

     0cossinsincos    1-13 

      cossinsincos   1-14 

 
 
 












cos

sin

cos

sin
 1-15 

    tantan  1-16 

 
2


 f  1-17 

Let  = 90 and set 
FOS

c
c f   where the factor of safety (FOS) = 1.0 to represent the average 

mobilized cohesive strength at failure.  Next substitute Equation 1-17 into Equation 1-11: 

    sinsin5.0  Hc f  1-18 
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2

sin
2

sin5.0


 







 Hc f  1-19 

 
 45sin45sin5.0 Hc f   1-20 

  5.05.0 Hc f   1-21 

 


f

Critical

c
H

4
  1-22 

Equation 1-22 represents the classical solution for the critical height (HCritical) of a vertical slope 

considering a  = 0 analysis and a plane failure surface. 

 After extensive investigation of slope failures in the 1920’s, a Swedish geotechnical 

commission recommended that the actual surface of sliding may be better approximated by a 

circular slip surface.  Two pioneers in slope stability analyses that developed the first stability 

theories using circular failure surfaces were Fellenius (1927, 1936) and Taylor (1937).  Fellenius 

(1927) developed his procedure based on method of slices, commonly referred to as the Ordinary 

Method of Slices, and was carried out by graphical trial procedure.  Conversely, Taylor (1937) 

based his analysis on a mass procedure, commonly referred to as the friction-circle method.  

Taylor (1948) notes that these two methods show close agreement, however, the mathematical 

solution developed by Taylor (1937) is more precise and thorough. 
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1.2.2 Vertical Slope with Circular Failure Surface 

Taylor (1937) published some of the first stability charts using a mass procedure known as the 

friction-circle method.  His analysis considered moment equilibrium and a circular failure 

surface, unlike Culmann’s Method which considered force equilibrium and a plane failure 

surface.  However, the same assumption is still applicable, that being that slope failure occurs 

when the average shearing stress tending to cause failure is greater than the shear strength of the 

soil.  It should also be noted that for a vertical slope where cu is constant with depth, the critical 

failure surface will be a toe circle with the slip surface passing through the toe of slope, as shown 

on Figure 1.3 (Fellenius, 1927; Taylor, 1937, 1948; Terzaghi, 1943; Terzaghi and Peck, 1967). 

 

 

Figure 1.3.  Vertical Slope with Circular Failure Surface. 
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 The following derivation has been modified from Taylor’s (1937) original work to account 

for a  = 0 analysis.  Consider a cohesive slope of unit thickness with a vertical height (H), 

slope face angle (), and a trial failure plane defined by ac , as shown on Figure 1.3.  Moment 

equilibrium requires calculating driving and resisting moments.  We shall first consider the 

resisting moment (MRESISTING) about Point O by developing an expression for the radius (R) in 

terms of , , and H: 

 
R

x1sin   1-23 

 
12

sin
x

H
  1-24 

Rearranging in terms of x1 and combining Equation 1-23 and 1-24 results in: 

 
 sinsin2

H
R   1-25 

Next, solve for the length of the failure surface (L) in terms of , , and H: 

 RRL 









180
22


  1-26 

and substitute Equation 1-25 into Equation 1-26. 

 





sinsin180

H
L 








  1-27 
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The resisting moment is the cohesive strength multiplied by Equation 1-25 and Equation 1-27, 

which results in the following expression: 

  





sinsin2sinsin

180 H
H

cRLcM RESISTING



























  1-28 

Equation 1-28 can be simplified to: 

 
 





22

2

sinsin2

180
Hc

M RESISTING   1-29 

The next step is to calculate the driving moments.  This will be accomplished in two parts; the 

first part is the wedge area created by abc , and the second part by the circular segment area 

created by arc ac .  First, consider the wedge created by abc  and solve for the soil mass (W1) in 

terms of H and . 

    







tan2tan2
11

2HH
HW

sat

Csat 















  1-30 

Next, solve for the moment arm L1 in terms of , , and H. 

   












tan3
190cos1

H
RL  1-31 

Substitute Equation 1-25 into Equation 1-21 to obtain: 

   












 tan3
190cos

sinsin2
1

HH
L  1-32 
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The driving moment (MDRIVING-abc) created by wedge abc  is (W1) x (L1), or: 

   







































tan3
190cos

sinsin2tan2

2
HHH

M
sat

abcDRIVING  1-33 

which simplifies to: 

    


















2

3

tan6

1

tansinsin4

90cos
HM abcDRIVING  1-34 

Next, consider the area of the circular segment defined by arc ac .  Using the common 

mathematical formula for the area of a circular segment, which is 



















 2sin

180
2

2

2R
, the 

mass of W2 is readily calculated as: 

 

























 


 2sin

180
2

2
2

2R
W  1-35 

Next, consider the centroid of a circle segment, which is commonly defined as 
 



2sin23

sin4 3



R
. 

The moment arm L2 is readily calculated as: 

 
 





sin

2sin23

sin4
2

3




R
L  1-36 

The driving moment (MDRIVING-arc abc) created by arc ac  is (W2) x (L2), or: 

     

























 










sin

2sin23

sin4
2sin

180
2

2

32 RR
M abcarcDRIVING  1-37 
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     33 sinsin
3

2
RM abcarcDRIVING   1-38 

    


 3

3

sinsin
sinsin23

2










H
M abcarcDRIVING

 1-39 

     












2

3

sin

1

12

1
HM abcarcDRIVING  1-40 

The last step is to establish limit equilibrium by setting the resisting moments equal to the 

driving moments, which results in the following expression: 

 
 































 2

3

2

3

22

2

sin

1

12

1

tan6

1

tansinsin4

90cos

sinsin2
HH

cH
 1-41 

Solving for H: 

 

 

 




























































22

22

sin12

1

tan6

1

tansinsin4

90cos

sinsin2

180

c
H  1-42 

Equation 1-42 may be represented by: 

  


,f
c

H 







  1-43 

The critical height is determined by differentiating Equation 1-43 with respect to  and  as 

follows:  
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   0, 


f
d

d
 and   0, 


f

d

d
 1-44 

Differentiating Equation 1-44 results in two rather cumbersome expressions and their solution is 

presented in Appendix A.  In summary, the solution to Equation 1-44 resulted in  = 47.6 and  

= 15.1 (Taylor, 1937).  Substituting these values into Equation 1-42, resulted in the following 

(Taylor, 1937): 

 


c
HCritical 83.3  1-45 

Equation 1-45 represents the critical height of a vertical slope considering a circular failure 

surface.  Recall that Equation 1-22 presented the critical height considering a plane failure.  The 

difference between these two equations is less than 5% and Terzaghi (1943) notes that these 

estimates are accurate enough that the curvature of the sliding surface through a vertical bank 

can be disregarded. 

 Taylor (1948) recognized the possibility of cracking at the top of the slope introduces 

uncertainty in stability analyses.  The presence of water and / or ice in the zone of cracking 

further exacerbates the situation.  Taylor (1937, 1948) notes that the scarcity of knowledge in 

this area could, at the present time, only be overcome by the use of a generous factor of safety or 

a reduced value of the average cohesion. 
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1.2.3 Vertical Slope with Plane Failure Surface and Tension Cracking 

Karl Terzaghi spent his early professional life in search of a rational approach to earthwork 

engineering problems.  His efforts were rewarded with the publication of his famous book on soil 

mechanics in 1925 (Terzaghi, 1925) and he has since been recognized as the Father of Soil 

Mechanics.  Of his many accomplishments, Terzaghi (1943) developed an expression which 

addressed the influence of tension cracks on the stability of vertical slopes and assumed a plane 

failure surface.  Terzaghi (1943) utilized force limit equilibrium and the assumption that slope 

failure occurred when the average shearing stress tending to cause failure was greater than the 

shear strength of the soil.  Consider a cohesive slope of unit thickness with a vertical height (H), 

slope face angle (), tension crack depth (z), and a trial failure plane defined by ad , as shown on 

Figure 1.4. 

 

 
 

 

Figure 1.4.  Vertical Slope with Plane Failure Surface and Tension Crack. 
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 The mass of soil (W) defined by block abcd  is expressed as: 

 
 





tan2

22 zH
W


  1-46 

and the sliding resistance (C) is given by: 

  zH
c

C
f


sin

 1-47 

At limit equilibrium, the sum of the forces on the sliding plane must equal 0.  Therefore, 

combining Equation 1-46 and Equation 1-47 results in: 

 
 

  0
sin

sin
tan2

22




zH
czH







 1-48 

Manipulating Equation 1-48 produces: 

     0
4

2sin22  zH
c

zH
f


  1-49 

The angle of the critical failure plane (CRITICAL) is obtained by differentiating Equation 1-49 

with respect to , which is as follows: 

     0
4

2sin22 







 zH

c
zH

d

d f





 1-50 

   0)2cos2(22  CRITICALzH   1-51 

 02cos CRITICAL  1-52 
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The solution to Equation 1-52 results in CRITICAL = 45. 

 Based on laboratory testing using gelatin samples, Terzaghi (1943) made the assumption that 

z = H/2 and substituting this value into Equation 1-49, along with letting H = HCRITICAL, CRITICAL 

= 45, and c = cf, the critical height for a vertical excavation considering a plane failure surface 

and tension crack is represented by (Terzaghi, 1943): 

 


f

CRITICAL

c
H

67.2
  1-53 

Equation 1-53 is a 33% reduction in slope height when compared to Equation 1-22.  This 

underscores the significance that the tension zone can have on slope stability.  However, 

Terzaghi’s (1943) assumption was based on limited gelatin tests and did not consider the 

influence of lateral stress relief.  Additionally and to date, literature review has not encountered 

any research that would validate z = H/2. 

1.2.4 Inclined Slopes with Circular Failure Surface 

When a slope failure occurs in such a way that the sliding surface intersects the toe of slope, the 

failure circle is referred to as a toe circle.  If the slope angle is greater than 53, the critical circle 

is always a toe circle (Fellenius, 1927, 1936; Taylor, 1937, 1948; Terzaghi, 1943; Terzaghi and 

Peck, 1967).  Moreover, Terzaghi and Peck (1967) note that if   53, the entire sliding surface 

is located above the level of the toe and the danger of a base failure does not exist. 

 Terzaghi and Peck (1967) note that mass procedures using moment equilibrium and a 

circular failure surface are applicable for total stress analyses.  The undrained strength is not 

dependent on normal stress and a very simple, but theoretically accurate method for analysis of 
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circular slip surface can be employed (Terzaghi, 1943).  Consider a cohesive slope of unit 

thickness with a vertical height (H), slope face angle (), tension crack depth (z), and a trial 

failure plane defined by ad , as shown on Figure 1.5.  Moment equilibrium requires calculating 

driving and resisting moments.  The driving moment per unit width about O (MO(Driving)) tending 

to cause slope instability is: 

 MO(Driving) = W x L 1-54 

where W = the mass of the soil above the failure surface and L = moment arm. 

 

Figure 1.5.  Inclined Slope with Circular Failure Surface. 

 

 

 

 The resistance to sliding is derived from the average cohesion acting along the failure 

surface. The resisting moment (MO(Resisting)) per unit width is expressed as: 

 MO(Resisting) = cu (AC)(1)(R) = cu R  1-55 
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At limit equilibrium, MO(Driving) = MO(Resisting), or combining Equation 1-54 and Equation 1-55 

results in the following: 

 W L = cu R  1-56 

As demonstrated under Section 1.2.2, the variables W, L, and R can be expressed in terms of H, 

, .  As such, Equation 1-56 can be rearranged to the following expression (Terzaghi, 1943): 

 
 











,,

1

f
Hcu  1-57 

The slope failure occurs along a toe circle for which cu is a maximum.  Since the angle of the 

slope () is constant, the position of the critical slip surface is determined by the following 

expressions (Terzaghi, 1943): 

 0uc
d

d


 and 0uc

d

d


 1-58 

The solution to these equations will result in critical values of  and  that are substituted into 

Equation 1-57 to determine the cohesion required to prevent a critical toe circle for a slope with 

an angle of .  Terzaghi (1943) expressed Equation 1-57 using the stability factor, Ns, which is as 

follows:  

 s
u

c N
c

H 



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





 1-59 

where Ns = f (, , ).  Terzaghi (1943) developed values of Ns for various slope angles, which 

has been redrawn as Figure 1.6.  The stability factor varies linearly from 3.85 at  = 90 to 5.52 
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at  = 53.  For completeness, Figure 1.6 also presents Ns values for  < 53 considering toe 

failures. 

 
 

 

Figure 1.6.  Stability Factor vs Slope Angle for Toe Circles and  = 0 Slopes. 
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1.3 CLAY SLOPE FAILURES THAT WILL BE USED FOR THIS STUDY 

 

Research presented herein considered two case histories that involved clay slope failures related 

to lateral stress relief.  The first case history involved a 29 meter deep excavation in Oxford Clay 

in which a horizontal shear band developed at the base of the excavation and tension cracks were 

observed in the backslope region.  The second case history involved a 30 meter deep excavation 

in Conemaugh Clay in which an inclined shear band developed at the toe of slope and extended 

into the backslope region resulting in a catastrophic slope failure. 

1.3.1 Oxford Clay Slope 

Burland, Longworth, and Moore (1977) studied a 25-m deep excavation that occurred in stiff 

Oxford Clay.  Their work was part of a long-term research study that was carried out from 1969 to 

1971 at the London Brick Company’s Saxon pit near Petersborough, England.  The Oxford Clay 

was excavated with a slope face of 72, or approximately 1/3H:1V (horizontal:vertical).  The main 

purpose of their study was to measure the magnitude and extent of ground movement and to 

examine the relative influence of material properties and geological factors on deformation 

behavior.  The measurements performed by Burland, et al (1977) provide direct field evidence that 

lateral stress relief occurred during excavation and generated a progressive shear band at the base of 

the excavation. 

 Instrumentation was installed both at the surface and at depth to measure movement of the 

ground surrounding the excavation.  Instrumentation consisted of piezometers, precise surveying, 

photogrammetry, horizontal extensometers, inclinometers, and vertical extensometers.  Burland, et 

al (1977) indicated that the measurements all indicated a mechanism of behavior in which the 
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ground within a region of about 1 to 1.5 times the depth away from the face appeared to move as a 

block, sliding on a horizontal shear band formed by bedding planes near the base of the excavation.  

The magnitude and rate of the horizontal movement of the surface points was dependent on their 

relative position to the face, the distance the face advanced in a given cut, and the time period 

between cuts.  Measurable movements extended back from the top of the face for a distance of 

about 2.5 times the depth of the excavation.  Burland, et al (1977) indicated that at distances greater 

than 30-m the vertical movements were approximately the same as the horizontal movements, 

whereas closer to the face the horizontal movement dominated. 

 Site characterization indicated a relatively constant unit weight with depth of 19.9 kN/m
3
 and a 

complicated shear strength profile in which cu increased with depth from 50 to 1200 kN/m
2
.  Using 

Equation 1-59, an assessment of the theoretical stability is as follows: 

 66.4
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The slope was 25-m high excavation, therefore: 

 66.4
9.19

25 







 uc

 

and cu = 106 kN/m
2
.  The shear strength profile of the slope was such that only the extreme upper 

reaches exhibited a cu < 106 kN/m
2
 while the vast majority exhibited a cu > 106 kN/m

2
.  As is 

readily evident, Equation 1-59 does not consider the impact of lateral stress relief which can have a 

significant impact on slope stability. 
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1.3.2 Conemaugh Clay Slope 

The author was personally involved with this project and details are presented in Kutschke, et al 

(2007).  This cut slope was part of a larger project that involved creating a new 8.7 km rail bed 

alignment at acceptable grades through the relatively mountainous terrain of southwestern 

Pennsylvania.  One aspect of the project design required the use of inclinometers to monitor 

slope movement and observation wells to monitor groundwater elevations for this 29 meter deep 

excavation.  The inclinometers all indicated the development of slope movements occurring at 

distinct zones during construction of the slope.  Because these movements stabilized following 

the completion of the excavation, they have been attributed to lateral stress relief coupled with 

vibrations from blasting operations.  However, approximately eight months after excavation, a 

slide involving approximately 6,200 m
3
 occurred.  The slide occurred in front of and down slope 

of the inclinometers (i.e., I-2 and I-3) noted in Figure 1.7.  The main scarp and flank daylighted 

in front of the inclinometer casing and not pass through the casing.  As such, the inclinometer did 

not notice any pre-slide movement as the failure plane extended from the toe of slope and 

daylighted in the backslope region.  The height of the slope from toe to scarp was 16.1-m.  The 

author firmly believes that lateral stress relief contributed to this slope failure. 
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Figure 1.7.  Clay Slope Failure. 

 

 

 

 Site characterization indicated a relatively constant unit weight with depth of 20.4 kN/m
3
 and a 

cu 86.1 kN/m
2
.  The slope was excavated at approximately 45 (1H:1V) with a 26.6 (2H:1V) 

backslope.  Recognizing Equation 1-59 is for a level backslope condition, it is conservative to 

consider a full height slope of 45 as follows: 
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Equation 1-59 indicates that the theoretical critical slope height should be at least 25.7-m.  However, 

the slope failure occurred with a critical slope height of 16.1-m, much less than theoretical.  As is 

readily evident, Equation 1-59 does not consider the impact of lateral stress relief which can have a 

significant impact on slope stability. 

 

I-3 I-2 
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1.4 RESEARCH OBJECTIVES 

Unsupported excavation into a clay stratum can result in lateral stress relief that would produce 

an outward movement of the slope face.  The outward movement can result in a toe crack and a 

tension zone in the backslope.  Classical solutions regarding stability of a clay slope do not 

address the toe crack as well as its interaction with the tension zone that can result in slope 

failure.  This research will analyze stiff clay and shale cut-slopes using laboratory, finite element, 

and fracture mechanics approaches to understand the formation and propagation of 

discontinuities that result in eventual slope failure.  In particular, the objectives of this study are 

as follows: 

 The mechanics of formation and propagation of cracks developed during the excavation 

of vertical and inclined slopes in a stiff  = 0 soil will be analyzed.  These cracks develop 

at the toe of slope. The formation of these cracks will be analyzed using Finite Element 

Methods. The direction of propagation of these cracks will be analyzed using Fracture 

Mechanics theory.  The theoretical analyses will be substantiated using: (a) laboratory 

tests on slopes with similar geometry and loads as slopes in the field, and (b) the failure 

modes experienced by two clay slopes in the field (Conemaugh Clay Slope in 

Pennsylvania and Oxford Clay Slope in England). 

 For the direction of crack propagation under Mixed-Mode type of loading, the maximum 

tangential stress and the maximum shear stress criteria will be used.  The first criterion 

assumes that cracks propagate in a direction normal to the maximum gravity induced 

tensile stress in the intact material surrounding the tip of the cracks.  The maximum shear 

strength criterion assumes the crack propagates in the direction of its own plane. 
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 Numerical methods permit solutions to many challenging geotechnical problems.  In this 

study,  finite element method models of the field and laboratory models of the slopes will 

be used to understand not only how cracks form in the slopes due to lateral stress relief, 

but also to understand how these cracks propagate. 

As outlined above, this research will utilize laboratory, fracture mechanics, and finite element 

method approaches to understand the impact that lateral stress relief has on slope stability of stiff 

purely cohesive clay slopes.  Classical solutions regarding stability of a clay slope do not address 

the toe crack as well as its interaction with the tension zone that can result in slope failure.  The 

ultimate objective of this research is to develop a solution regarding the stability of slopes with 

vertical and inclined slope faces that develop cracks as a result of a lateral stress relief.  
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2.0 FRACTURE MECHANICS 

 

 

 

 

Fracture mechanics is the field of study concerned with the propagation of cracks in materials.  

The purpose of fracture mechanics is to analyze the stability of existing cracks; how the crack 

originated in the material is another matter.  Griffith (1921), an English aeronautical engineer, is 

credited with being the first one to develop the field of fracture mechanics.  His work focused on 

explaining the failure of brittle materials that occurred during World War I.  Griffith (1921) 

quantitatively related the flaw size to the fracture stress using the First Law of Thermodynamics 

to formulate a fracture theory based on a simple energy balance.  He theorized that brittle 

fracture happened as a result of a struggle between strain energy release and surface energy 

required to create new fracture surfaces.  Griffith (1921) predicted that for a given crack length 

there is a unique critical stress above which a crack grows and below which a crack remains in 

equilibrium. 

 The work of Griffith (1921) was largely ignored until Irwin (1957) took it up during World 

War II at the U.S. Naval Research Laboratory.  Irwin (1956) developed the energy release rate 

concept, which was related to the Griffith (1921) theory, but was in a more useful form for 

solving engineering problems.  Shortly thereafter, several of Irwin’s colleagues brought to his 

attention a paper by Westergaard (1939) in which Westergaard developed a technique for 

analyzing stresses and displacements ahead of a sharp crack (Anderson, 1995).  Irwin (1957) 

found that the stress field around a micro-crack in a linear elastic material could be uniquely 

http://en.wikipedia.org/wiki/Alan_Arnold_Griffith
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defined by a stress intensity factor, K, which was related to the energy release rate.  As such, 

Irwin (1957) developed a modified form of Griffith's approach in which K replaced strain energy 

release rate, and the material property fracture toughness (KIC) replaced surface energy.  When 

the stresses near the crack tip exceed the material fracture toughness, the crack will grow and this 

condition is expressed as (Irwin, 1957): 

 ICKK   2-1 

All analyses that base K as the similitude parameter are generally referred to as Linear Elastic 

Fracture Mechanics (Broek, 1986); this parameter will be discussed further in subsequent 

sections. 

 

2.1 FRACTURE MECHANICS THEORIES 

The field of fracture mechanics can be divided into linear elastic fracture mechanics (LEFM) and 

elastic-plastic fracture mechanics (EPFM).  LEFM requires that plastic straining in the crack tip 

region is limited and is applicable to linear-elastic material (Hellen, 2001).  The stress field near 

the crack tip is calculated using the theory of elasticity.  LEFM is valid only when the inelastic 

deformation is small compared to the size of the crack, often termed small-scale yielding.  If 

large zones of plastic deformation develop before the crack grows, then Elastic Plastic Fracture 

Mechanics (EPFM) must be used.  EPFM conditions exist for a crack region which contains a 

considerable amount of plastic straining and the material behaves in a ductile manner (Hellen, 

2001).  EPFM is applicable with high toughness materials and has considerable influence in the 

aerospace, shipbuilding, and off-shore oil industry (Broek, 1989; SSC-345, 1990).  Table 2.1 

http://english.turkcebilgi.com/fracture+toughness
http://www.efunda.com/formulae/solid_mechanics/fracture_mechanics/fm_epfm.cfm
http://www.efunda.com/formulae/solid_mechanics/fracture_mechanics/fm_epfm.cfm
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presents typical toughness (KIC) values for ready reference and comparison purposes (Barsom 

and Rolfe, 1987; and Wang, et al, 2007). 

 

Table 2.1.  Typical Toughness (KIC) Values. 

 

 

Material KIC 

MPa-m
1/2

 

Aluminum Alloy 17 - 44 

High-Strength Steel 50 - 154 

Titanium Alloy 77 - 116 

Shale 0.6 

Silty Clay 0.04 

 

 

 

2.1.1 LEFM Applied to Stiff Clay 

The introduction of fracture mechanics to geotechnical engineering applications is generally 

created to Bishop (1967), Bjerrum (1967), and Skempton and Hutchinson (1969), where they 

considered fracture mechanics concepts to help explain progressive failure of stiff clay deposits.  

Since then, fracture mechanics has been applied to geotechnical engineering applications mostly 

involving theoretical applications and limited small scale laboratory testing (Aliabadi, 1999; 

Chudnovsky, et al, 1988; Covarrubias, 1969; Fang, et al, 1989; Lee, et al, 1988; Morris, et al, 

1992; Palmer and Rice, 1973; Saada, et al, 1985; Rice, 1968; Rudnicki and Rice, 1975; and 

Vallejo, 1985, 1987, 1988, 1989, 1994). 

 The proper application of LEFM principles to geotechnical applications requires an 

understanding of stress-strain behavior of the material; that is LEFM is applicable to brittle 

materials such as those involving stiff clays and rocks (Aliabadi, 1999; Chudnovsky, et al, 1988; 

Covarrubias, 1969; Fang, et al, 1989; Lee, et al, 1988; Morris, et al, 1992; Saada, et al, 1985; 
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Vallejo, 1985, 1987, 1988, 1989, 1994).  Bishop, et al (1975), Marsland (1972), and Wang, et al 

(2007) indicated that stiff clays exhibit a stress-strain relationship that very closely approximates 

that of a linear elastic material, and therefore LEFM principles apply (Irwin, 1957). 

 Duncan and Chang (1970) indicated that the stress-strain behavior of any type of soil 

depends on a number of factors such as density, water content, structure, drainage conditions, 

strain conditions, stress history, and shear stress conditions.  With regard to water content, 

Vallejo (1988) noted that this parameter was significant in determining whether clay behaves as 

a brittle or ductile material.  Vallejo (1988) reported that kaolinite clay samples with moisture 

contents greater than 20% by weight behaved and failed like a ductile material whereas samples 

with moisture content less than 20% behaved and failed like a brittle material.  Wang, et al 

(2007) also noted that there is an optimum moisture content for KIC, which for his study resulted 

in a substantial reduction to KIC for water contents greater than 18%.  This result is in general 

conformance with the findings of Vallejo (1988). 

 In summary, LEFM is applicable to stiff brittle clays (Aliabadi, 1999; Chudnovsky, et al, 

1988; Lee, et al, 1988; Saada, et al, 1985; Vallejo, 1985, 1987, 1988, 1989, 1994; and Wang, et 

al., 2007). 

 

2.2 LINEAR ELASTIC FRACTURE MECHANICS 

LEFM concepts may be applied to materials which exhibit inelastic deformations around the 

crack tip, provided that such deformations are confined to the immediate vicinity of the tip (Xie, 

1993).  However, when the zone is small compared to the overall structure such as a crack in a 
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slope, the actual evolution of stresses will still be governed by LEFM (Aliabadi, 1999).  LEFM is 

based on the assumption that crack propagation can be studied thorough the superposition of 

three independent load applications, as shown in Figure 2.1 (Irwin, 1957): 

 

 

 
 

 

Figure 2.1.  Three Modes of Crack Development. 

 

 

 

The concept of LEFM may be applied to those materials which obey Hooke’s law so that 

stress is proportional to strain.  Figure 2.2 displays typical cases of cracks in an earth slope 

subjected to Mode I and Mode II conditions (Aliabadi, 1999). 

 Ingraffea and Heuze (1980) summarized the three theories for mixed-mode fracture 

initiation, namely: the maximum tensile stress theory, the minimum strain energy density theory, 

and the maximum energy release rate theory.  Cursory details regarding these three theories are 

as follows: 

 Maximum tensile stress theory (Erdogan and Sih, 1963) – This theory is dependent on the 

circumferential tensile stress near the crack tip.  Fracture initiates from the crack tip in a 

direction normal to the maximum tensile stress. 

Mode I - Tensile Crack Mode II - Shear Crack Mode III - Tearing Crack 
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Figure 2.2.  Typical Crack Mode Conditions for a Slope. 

 

 

 

 Minimum strain energy density theory (Sih, 1974) – This theory considers that fracture 

initiation is dependent on the near tip strain energy density.  Fracture propagation will 

occur in the direction of the minimum strain energy density function.  The critical 

intensity of this potential field governs the onset of crack propagation. 

 Maximum energy release rate theory (Hussain, et al, 1974) – This theory differs in a 

number of ways from the first two theories since it does not depend on a measurement of 

a near-tip field variable but rather on a global energy change.  Fracture initiates from the 

crack tip in the direction in which the energy release rate is maximized and the crack 

propagates if the maximized energy release rate equals its critical intensity. 

This research utilized the maximum tangential stress criterion developed by Erdogan and Sih 

(1963).  This theory requires knowledge of stress conditions near the crack tip (obtainable through 

numerical modeling) and is particularly well suited for geotechnical applications since soil has 

limited tensile resistance.  According to this criteria, and referring to Figure 2.3, the tangential stress 

I 

II 



34 

(, the radial stress (r and the shear stress (r in the material located in the vicinity of a crack 

subjected to a mixed mode type of loading can be obtained from the following relationships (Broek, 

1986; and Chao and Liu, 1997): 

 

 

 

 
 

 

Figure 2.3.  LEFM Reference Model. 
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where r is the radius between the tip of the crack and a point in the clay surrounding the crack where 

the stresses are being measured,  is the angle that the radius makes with the axis of the crack, and 

KI and KII are the stress intensity factors for Mode I and Mode II type of loading.
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2.2.1 Stress Intensity Factor 

A fundamental concept of LEFM is that the stress field ahead of a crack can be characterized in 

terms of a single parameter known as the stress intensity factor, K.  This parameter is related to both 

the nominal stress level () applied to the element and the size of an existing open crack (c).  In all 

cases, the general forms of the stress-intensity factors are given by Equation 2-5 and Equation 2-6 

(Barsom and Rolfe, 1987; Broek, 1989; Anderson, 1995; and Liu and Mahadevan, 2006): 

    gfcK I )(  2-5 

    gfcKII )(  2-6 

where f(g) is a function dependent on geometry and crack characteristics.  Several closed-form 

solutions of stress intensity factors for loading with simple configurations have been derived and 

are readily available in the literature (Sih, 1973; Broek, 1989; Boresi, et al, 1993; Anderson, 

1995; Liu and Mahadevan, 2006).  As an example, Equation 2-7 presents the solution for KI for a 

single edge crack in an infinite sheet and is applicable to Mode I loading conditions (Boresi, et 

al, 1993). 

    cK I 12.1  2-7 

 One of the significant aspects of the stress intensity factor is that it relates the local stress 

field ahead of a crack to the nominal stress applied to the element away from the crack (Barsom 

and Rolfe, 1987). 
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2.2.2 Tangential Stress 

Erdogan and Sih (1963) hypothesized that crack propagation in a brittle material will occur in a 

radial direction from the tip and propagate in a direction in which   reaches its maximum 

value.  The direction of crack propagation is normal to the direction of maximum , and is 

found by:  

 0
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where  is the value reached by  when crack propagation occurs.  Differentiating Equation 2-2 

results in the following expression: 
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Rearranging and simplifying Equation 2-9 results in the following: 
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Equation 2-11 may be further simplified by applying the two-angle cosine trigonometric identity, 

 sinsincoscos)cos(  , and letting  =  and  = /2.  This results in the following: 
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Continued mathematical manipulation of Equation 2-12 resulted in the following expressions: 
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Recognizing that  cossin22sin  , Equation 2-18 can be reduced to the following: 

   03cos9sin   III KK  2-19 

Equation 2-19 applies to an open crack and this solution has been widely published in the 

literature (Broek, 1989; Vallejo, 1994; Anderson, 1995; and Aliabadi, 1999).  This expression 

may be used to predict crack propagation for either open or closed cracks by using the 

appropriate stress intensity factor (Aliabadi, 1999). 
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2.2.2.1  Open Cracks – Mode I.  Aliabadi (1999) noted that crack propagation can occur due to 

tensile stresses either directly under Mode I loading or induced tensile stresses under Mode II 

loading.  If loading occurs under pure Mode I conditions, then KI  0 and KII = 0 and Equation 2-

19 reduces to the following expression (Aliabadi, 1999): 

 0sin IK  2-20 

where  = 0 and also satisfies the second requirement, namely 0
2

2






d

d  (Aliabadi, 1999).  Under 

this loading condition, crack propagation occurs along the pre-existing open crack plane.  This 

solution is analogous to a tension crack propagating vertically downward, as noted on Figure 2.2 

and is intuitively correct. 

2.2.2.2  Open Cracks – Mode II.  If loading occurred under pure Mode II conditions, then KI = 0 

and KII  0 and Equation 2-18 reduces to the following expression: 

   01cos3 IIK  2-21 

where  = 70.5, which also satisfies 0
2

2






d

d
 (Vallejo, 1994; and Aliabadi, 1999).  This 

solution has been validated by Vallejo (1994) using controlled laboratory experiments. 

2.2.2.3  Open Cracks – Mixed Mode.  If loading occurs under mixed mode loading conditions 

in which KI  0 and KII  0, Equation 2-19 contains three unknowns, namely: KI, KII, and .  The 

stress intensity factors are dependent on loading conditions, geometry, and crack characteristics 

and as such, a general solution for mixed mode loading is not possible.  However, Figure 2.4 

presents a graphical representation of Equation 2-19 utilizing arbitrarily assigned stress intensity 
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factors and Figure 2.5 presents the graphical solution for Equation 2-19 where the stress intensity 

factors have been normalized.  Review of these figures indicates that under: 

 Pure Mode I conditions, KI  0 and KII = 0 and  = 0, which was noted above;  

 Pure Mode II conditions, KI = 0 and KII  0, and  = 70.5, which was also noted above; 

and 

 Mixed mode conditions when KI =1 and KII = 1, the theoretical angle of crack 

propagation is,  = 90, that is, tensile stresses will cause the crack to propagate normal 

to the existing crack plane. 

Review of Figure 2.5 also indicated that unless the specimen undergoes pure Mode I loading 

conditions, the angle of crack propagation due to tensile stresses will generally be greater than 

70.5. 
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Figure 2.4.   1cos3sin   III KK  vs.  for Various Values of KI and KII. 
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Figure 2.5.  Tensile Stress Open Crack Propagation under Mixed Mode Loading Conditions. 
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2.2.2.4  Closed Cracks.  The stress intensity factor for a closed crack will result in KI = 0 

(Broek, 1986; and Aliabadi, 1999).  As such, Equation 2-18 reduced to the following expression: 

   01cos3 IIK  2-22 

where  = 70.5.  This result is similar to the one described for an open crack under Mode II 

loading conditions.  The original crack remains compressed while the part that propagates is 

open and in a tensile stress field.  Therefore, a closed crack will propagate at  = 70.5 (Vallejo, 

1994; Aliabadi, 1999). 

2.2.3 Shear Stress 

Shear propagation develops in a plane that is critical from the viewpoint of shear strength.  By 

similar analogy to Erdogan and Sih (1963), this research hypothesizes that crack propagation in 

brittle material will occur in a direction parallel to that where r  reaches its maximum value, 

which is expressed as: 

 0


 

d

d r  and 0
2

2




 

d

d r
 at  =  2-23 

where  is the value reached by  when crack propagation occurs.  However, it must be noted 

that the use of LEFM concepts with regard to shear failure and ultimate propagation is a 

controversial issue as Aliabadi (1999) notes that propagation is accompanied by considerable 

energy dissipation due to friction.  Whittaker, et al (1992) note that if the crack is closed and the 

crack surfaces are not friction free, then Equations 2-2 to 2-4 are no longer valid since they were 

derived assuming that the crack surfaces are stress-free.  However, Aliabadi (1999) also noted 

that several researchers have successfully modeled this phenomenon using fracture mechanics 
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(Horri and Nemat-Nasser, 1985; Reches and Lockner, 1994; and Dyskin and Germanovich, 

1995) and as such, the use of LEFM concepts for shear failure cannot be dismissed and is further 

explored by this research. 

 Applying Equation 2-23 by differentiating Equation 2-4 resulted in the following expression: 
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Rearranging and manipulating Equation 2-24 produced the following expressions: 
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Equation 2-27 can is simplified by applying the following two trigonometry identities: 

 cos(u) cos(v) = ½ [cos(u-v) + cos(u+v)] 

 sin(u) sin(v) = ½ [cos(u-v) - cos(u+v)] 

and let u =  and v = /2.  
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Equation 2-30 applies to an open crack, but this expression may also be used to predict crack 

propagation for either open or closed cracks by using the appropriate stress intensity factor. 

2.2.3.1  Open Cracks – Mode I.  Typically, a geotechnical material with an open crack will 

undergo tensile failure before shear failure since tensile strength (and therefore tensile failure) is 

often the governing failure mode for geotechnical materials under Mode I loading conditions, as 

noted by Figure 2.6.  However, if shear loading occurs under pure Mode I conditions, then KI  0 

and KII = 0 and Equation 2-30 reduces to the following expression: 
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The solution to Equation 2-31 results in  = 70.5, 180 and 289.5.  However, these values must 

also satisfy 0
2

2




 

d

d r
, which is expressed as: 
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Figure 2.6.  Mohr-Coulomb Shear Strength Graph for a Typical Geotechnical Material. 

 

 

 

Recognizing that KII = 0, Equation 2-32 may be reduced to the following expression: 
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Applying the solutions of  = 70.5, 180 and 289.5, Equation 2-33 is satisfied when  = 70.5 

and 289.5.  This result indicates that an open crack will propagate 70.5 from the pre-existing 

crack plane under Mode I induced shear stress if the shear strength of the material is less than the 

tensile strength.  It should be noted that although there is very little published literature regarding 

Mode II crack propagation, Li, et al (2000) reported crack propagation of  = 60, for a pure 

frozen silty sand and helps conform the above analysis. 
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2.2.3.2  Open Cracks – Mode II.  If shear loading occurs under pure Mode II conditions, then KI 

= 0 and KII  0 and Equation 2-30 reduces to the following expression: 
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The solution to Equation 2-34 results in  = 0, 123.8 and 236.3.  However, these values must 

also satisfy 0
2

2




 

d

d r , which is shown as Equation 2-32.  Recognizing that KI = 0, Equation 2-32 

may be reduced to the following: 
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Applying the solutions of  = 0, 123.8, and 236.3, Equation 2-39 is satisfied when  = 0 and 

236.3, although based on observation the solution of  = 236.3 is dismissed.  This result 

indicates that an open crack will propagate along the pre-existing crack plane when subjected to 

pure Mode II conditions. 

2.2.3.3  Open Cracks – Mixed Mode.  If loading occurs under mixed mode loading conditions 

in which KI  0 and KII  0, Equation 2-30 contains three unknowns, namely: KI, KII, and .  

Figure 2.7 presents the graphical solution for Equation 2-30 where the stress intensity factors 

have been normalized.  Review of this figure indicates that under: 

 Pure Mode I conditions, KI  0 and KII = 0 and  → 70.5, which was noted above;  

 Pure Mode II conditions, KI = 0 and KII  0, and  = 0, which was also noted above; and 

 Mixed mode conditions when KI  0 and KII  0, the theoretical angle of crack 

propagation will vary from  = 0 to 70.5 as Mode I conditions become more dominate.  
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2.2.3.4  Closed Cracks.  For a closed crack, KI = 0 (Broek, 1986) and Equation 2-30 reduces to 

the following expression: 
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 2-36 

This condition resulted in the identical expression to Equation 2-34, with  = 0, and indicates 

that a closed crack will propagate along the pre-existing crack plane. 

 

 
 

 

Figure 2.7.  Open Crack Propagation from Shear Stress Loading under Mixed Mode Conditions. 
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2.2.4 LEFM Summary 

LEFM considers that crack propagation can be studied thorough the superposition of three 

independent load applications, as noted on Figure 2.1.  This research utilizes the maximum 

tangential stress theory developed by Erdogan and Sih (1963) as well as advances the concept of 

crack propagation from shear stress utilizing a similar analogy; that is crack propagation would 

also occur under maximum shear stress.  Table 2.2 summarizes the findings of these two 

concepts. 

 

 

Table 2.2. Theoretical Angle of Crack Propagation. 

 

 

Loading Condition 
   r  

Open Crack Closed Crack Open Crack Closed Crack 

Mode I 0 N/A 70.5 N/A 

Mode II 70.5 70.5 0 0 

Mixed Mode > 70.5 N/A 0 - 70.5 N/A 

 

 

 

 The controlling mode of failure will be governed by the loading conditions and the materials 

shear strength characteristics.  For example, tension cracks near the crest of a slope undergo   

Mode I loading conditions, which indicates that the cracks would tend to propagate vertically, or 

 = 0 with the crack plane.  
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3.0 LABORATORY PROGRAM 

 

 

 

 

A laboratory testing program to study crack propagation in cohesive soils was conducted in the 

soil mechanics laboratory at the University of Pittsburgh, Pittsburgh, PA.  Testing involved 

constructing prismatic soil samples for plane stress direct shear testing.  The purpose of the 

laboratory testing program was to observe and record the propagation of the failure plane when 

soil models were subjected to shear loading as well as simulated lateral stress loading conditions. 

 The first model investigated crack propagation subjected to shear loading conditions; that is 

 r  loading conditions noted in Figure 3.1.  These models are termed shear models for this study 

and fracture mechanics principles indicated that a closed crack would propagate along the 

 

 
 

 

Figure 3.1.  Laboratory Loading Conditions Reference Model. 
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 pre-existing crack plane at  = 0, or along the X-Axis at noted in Figure 3.1.  The second model 

investigated crack propagation subjected to a simulated lateral stress, which is a   loading 

condition noted in Figure 3.1.  This model is termed the homogeneous vertical slope model for 

this study and fracture mechanics principles indicated that a closed crack would propagate along 

an axis inclined from the pre-existing crack plane at  = 70.5.  

 

3.1 LABORATORY TEST PROGRAM OVERVIEW 

ASTM D3080 and AASHTO T236 provide an industry standard test methodology for direct shear 

testing of soils.  The procedure involves placing a test specimen in a shear device, which consists of 

a moveable upper frame and fixed lower frame.  Sample size is generally limited square or circular 

specimens with a minimum width or diameter of 50 mm, respectively.  The frames are sufficiently 

rigid to prevent their distortion during shear.  The test begins by applying a normal force to the soil 

sample and shear is applied by either controlled-displacement or controlled-stress test methods. 

 A disadvantage of the direct shear test apparatus is that the upper and lower frames do not 

permit observation of the developing failure plane.  The propagation of the failure surface can not 

be recorded unless the test is stopped and the sample removed for inspection.  However, stopping 

the test and inspecting the sample can introduce significant changes in the clay structure that could 

impact the development of the failure surface (Vallejo, 1987). 

 The plane stress direct shear apparatus (PSDSA) was developed at the University of Pittsburgh 

to permit observation and recording of the developing failure surface without removal of the sample 
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(Vallejo, 1987; 1991).  A schematic of the PSDSA is shown as Figure 3.2.  The device consists of 

an open shear box formed by two U-sections that enclose a prismatic soil sample.  The upper U-

section is movable and transmits the normal and shear load to the soil sample by rotation of a hand 

crank screw system.  The magnitude of normal and shear loads transmitted to the soil sample are 

measured by proving rings.  The movable upper U-section rests on a metallic plate that contains a 

ball-bearing system to minimize friction while the lower U-section is fixed to the metallic plate.  

Displacement of the upper U-section is measured by a dial gauge.  The device creates a plane stress 

loading condition since loads on a prismatic soil sample are applied in two directions 

 

 
 

 

Figure 3.2.  Plane Stress Direct Shear Apparatus. 
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(x- and y- direction) with a free face (z- direction) to permit visual observation of the developing 

failure surface.  The PSDSA can accommodate soil samples measuring 12.7 cm in length, 11.4 

cm in width, and 3.17 cm in thickness. 

 

3.2 SHEAR MODELS 

Two laboratory shear models were developed for PSDSA testing.  Kaolinite clay and Ottawa 

sand were used to construct the models.  Model details are as follows: 

 Model 1, Clay on Clay – Model consisted of 90% clay and 10% sand mixture in the 

upper U-section, and 100% clay in the lower U-section. 

 Model 2, Clayey Sand on Clay – Model consisted of 20% clay and 80% sand mixture in 

the upper U-section, and 100% clay in the lower U-section. 

 Kaolinite clay was chosen because it forms a homogeneous material and will minimize the 

adverse effects of micro-scale heterogeneities (Vallejo, 1987).  Kaolinite used for this research 

exhibited a liquid limit = 58%, plastic limit = 28%, and plasticity index = 30%. The material 

classified as CH, in accordance with the Unified Soil Classification System (USCS).  The Ottawa 

sand was a clean, uniform, sub-rounded quartz sand.  The addition of kaolinite created plastic-

type fines as well as non-plastic-type fines consisting of crushed quartz sand. 

 Clay-water and clay-sand-water mixtures were created by mixing with distilled water.  

Samples were then placed in an oedometer and consolidated under a normal pressure of 25.7 kPa 

for a period of 5 days.  After unloading the oedometer, samples were then cut to size for testing 
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in the PSDSA.  The water content of the samples were at or slightly above the plastic limit after 

removal from the oedometer.  Cracks were artificially made in the samples by a process of 

inserting and removing a thin glass sheet that was 1-mm thick and 3-cm in width in a direction 

normal to the free face.  This process of creating artificial cracks proved to be effective for 

Vallejo (1985, 1988), and Vallejo and Pramono (1984) in understanding crack propagation in 

brittle clays. 

3.2.1 Clay on Clay Test Results 

After the prepared soil sample was place in the PSDSA, a normal stress of 34.5 kPa was applied 

and the normal stress closed the crack.  The sample was sheared using a controlled displacement 

rate of 1 mm per minute.  The PSDSA test photographs for the clay on clay sample are shown as 

Figure 3.3.  The crack began to propagate at 8.6 kPa, which was approximately 0.5% strain, and 

exhibited a peak shear stress of 14.1 kPa.  At a shear displacement of 0.28 cm, or 2.2% strain, the 

crack propagated completely through the sample along a horizontal failure plane.  A summary of 

the test data is presented as Table 3.1.  Figure 3.4 presents a plot of shear stress against shear 

displacement.  The shear stress plot indicates a peak and residual strength that is characteristic of 

a stiff, brittle clay with peak strain occurring around 2% (Lambe and Whitman, 1969; Bowles, 

1996; and Das, 1990). 
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a) Shear displacement = 0.28 cm, crack propagates through sample. 

 

 

 

 
 

 

b) Shear displacement = 0.65 cm, near conclusion of test. 

 

 

Figure 3.3.  PSDSA Test for Clay on Clay. 
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Table 3.1.  PSDSA Test Results for Clay on Clay. 
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Figure 3.4.  Shear Stress vs Shear Displacement for Clay on Clay. 
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3.2.2 Clayey Sand on Clay Test Results 

As with the clay on clay test arrangement, the clayey sand on clay test also applied a normal 

stress of 34.5 kPa, which closed the crack.  The sample was sheared at a controlled displacement 

rate of 1 mm per minute.  Figure 3.5 presents the PSDSA test photographs for the clayey sand on 

clay sample.  Review of these figures indicated that the failure plane propagated horizontally, 

just below the interface in the lower clay stratum.  The water content of the upper sample was 

8.4% whereas the lower sample was 32.9%, suggesting that failure occurred in the more ductile 

clay material rather than the brittle clayey sand mixture. 

 Crack propagation for the clayey sand on clay sample began to propagate at a much higher 

shear stress of 28.9 kPa, or 2.0% strain, as compared to the clay on clay sample which began 

propagation at 0.5% strain.  The sample exhibited a peak shear stress of 30.1 kPa.  Table 3.2 

presents a summary of the test data and Figure 3.6 presents a plot of shear stress against shear 

displacement.  The shear stress plot indicated peak strength with a slight reduction to the residual 

strength.  This type of plot is characteristic of lightly to normally consolidated clay. (Lambe and 

Whitman, 1969; Bowles, 1996; and Das, 1990). 
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a) At Shear Displacement = 0, start of test. 

 

 

b) At Shear Displacement = 0.58 cm 

 

 

Figure 3.5.  PSDSA Test for Clayey Sand on Clay. 
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Table 3.2.  PSDSA Test Results for Clayey Sand on Clay. 
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Water 
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  (kPa) (kPa) (%) (%) 

20% Clay 

80% Sand 
100% Clay 28.9 30.1 8.4 32.9 

 

 

 

 

Figure 3.6.  Shear Stress vs Shear Displacement for Clayey Sand on Clay. 
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3.2.3 Evaluation of Findings 

Both samples considered a closed crack under direct shear loading, which resulted in a fracture 

mechanics r - Mode II loading condition as shown on Figure 3.7.  An artificial crack was 

created in the samples and the crack was closed by a normal stress.  The closed crack resulted in  

 

 
 

 

Figure 3.7.  Mode II Loading Condition. 

 

 

 

KI = 0.  In accordance with Table 2.2, fracture mechanics indicates that a closed crack under r - 

Mode II conditions will propagate along the pre-existing crack plane.  Both the clay on clay and 

clayey sand on clay resulted in a failure plane that propagated in a near horizontal fashion along 

the existing crack plane. 

 The closed crack began to propagate before the samples reached the peak shear stress and the 

crack fully propagated before the sample reached an apparent residual shear stress value, as 

observed in the shear stress vs. shear displacement figures.  This suggests that pre-existing cracks 

in cohesive materials propagate before achieving peak shear strengths.  Excessive strain can also 

result in full crack propagate before reaching residual shear strength. 

Mode II - Shear Crack 
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3.3 SIMULATED VERTICAL SLOPE MODEL 

A simulated vertical slope with an artificial crack inserted at the toe of slope was tested in the 

PSDSA.  The clay model simulated a vertical cut in a horizontal clay deposit.  The lateral earth 

pressure applied by the PSDSA created an idealized fracture mechanics loading condition in 

which the governing mode of failure was tangential stress (), as noted on Figure 3.1.  The 

laboratory model consisted of a homogeneous prismatic clay sample prepared by consolidating 

kaolinite clay in an oedometer.  Samples were cut from the larger consolidated sample and a toe 

crack was created by inserting and removing a thin glass sheet.  Figure 3.8 presents the general 

model dimensions.  The applied normal stress (n) simulates gravity stress acting on the slope 

and the lateral stress (l) simulates the lateral earth pressure. 

 

 
 

 

Figure 3.8.  Simulated Vertical Slope Model. 
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3.3.1 Simulated Vertical Slope Test Results 

A normal stress of 40 kPa was applied to the sample, which closed the toe crack.  The normal 

stress was kept constant during the experiment.  Lateral stress was gradually increased until the 

toe crack began to propagate, which occurred at 512 kPa.  The toe crack propagated in the model 

in the form of a secondary crack that extend from the top of the pre-existing crack and deviated 

from the original horizontal direction.  Figure 3.9 presents the clay model before and after the 

test.  Table 3.3 presents a summary of the test data and Figure 3.10 presents a plot of shear stress 

against shear displacement. 
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a) Model before test with open toe crack. 

 

 

 

 
 

 

b) Model after test with closed toe crack and inclined crack propagation. 

 

 

Figure 3.9.  Simulated Vertical Cut Slope. 

70  

  45 
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Table 3.3.  PSDSA Test Results for Simulated Vertical Slope. 
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100% Clay 512 300 40 27% 

 

 

 

 

Figure 3.10.  Stress vs Shear Displacement for Simulated Vertical Clay Slope. 
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3.3.2 Evaluation of Findings 

The simulated vertical slope model was subjected to lateral stresses (i.e., ) under Mode II 

loading conditions.  An artificial crack was created and the crack was closed by a normal stress.  

A closed crack resulted in KI = 0.  In accordance with Table 2.2, fracture mechanics indicates 

that a closed crack subjected to  - Mode II conditions will propagate at an angle of 70.5 from 

the pre-existing crack.  The simulated vertical slope model exhibited crack propagation at an 

angle of 70, as predicted by fracture mechanics.  This finding is contrary to the assumptions of 

Bjerrum (1967), and Palmer and Rice (1973) in which they indicate that a closed crack at the 

base of a slope will propagate in a direction that follows the plane of the original crack. 

 The closed crack began to propagate before the sample reached the peak shear stress, as 

observed in the stress vs. shear displacement figures.  A similar finding with the shear models 

was also observed.  This suggests that a pre-existing crack in a stiff cohesive material will 

propagate before achieving peak shear strengths. 
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4.0 FINITE ELEMENT METHODS 

 

 

 

 

Clough (1960) was a structural engineering professor for the University of California at Berkeley 

and he is considered one the founders of the Finite Element Method (FEM).  Although renowned 

for his pioneering work in the field of earthquake engineering, Clough (1960) first termed “finite 

element” for a plane stress analysis that he presented at a conference in Pittsburgh, PA.  Since 

then, a large amount of research has been devoted to FEM and it was first introduced to the 

geotechnical engineering community by Clough and Woodward (1967) at the first Berkeley 

Conference on the stability and performance of slopes and embankments.  The most significant 

aspect of their paper was the use of non-linear stress-strain relationships for the analysis of an 

embankment dam (Duncan, 1996). 

 

4.1 REVIEW OF FINITE ELEMENT THEORY 

Advanced numerical methods permit solutions to many challenging geotechnical problems.  Two 

well know numerical methods that are used in the professional engineering community are the 

finite difference method and the finite element method.  The finite difference method 

approximates solutions to differential equations by replacing derivative expressions with 

approximately equivalent difference quotients.  The finite difference method envisions the 

solution region as an array of grid points whereas the finite element method envisions the 

http://en.wikipedia.org/wiki/Structural_engineering
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/Finite_Element_Method
http://en.wikipedia.org/wiki/Difference_quotient
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solution region as many small, interconnected sub-regions or elements.  FEM is particularly 

suitable for evaluating accurate fracture mechanic parameters in arbitrarily shaped two and three 

dimensional problems (Hellen, 2001) and is the method used for this research. 

 The basic premise of the FEM is that a solution region can be analytically modeled or 

approximated by replacing it with an assembly of discrete elements.  This reduces the problem to 

a finite number of unknowns.  Each unknown variable is expressed in terms of an assumed 

approximating function that is defined at specified points called nodes.  Nodes usually are 

situated on the element boundaries where adjacent elements are connected to create a mesh.  An 

element may also have interior nodes.  The behavior of the field variable within the element is 

completely defined by the field variable and the interpolation functions.  The solution and degree 

of approximation depend not only on the size and number of the elements, but also on the 

selected interpolation functions (Huebner, et al, 2008).  Figure 4.1 depicts a typical triangular 

and rectangular two dimensional element (Bathe, 1982). 

 

 

Figure 4.1.  Standard two dimensional elements.  

Nodes 

(typ.) 
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 Displacements are fundamental variables and at any point within an element, they are related 

to the displacements at the nodes by making certain assumptions.  Strains are calculated from the 

displacements and stresses are calculated using stress-strain relationships.  Displacements at any 

point within the element are related to the displacements of the nodes through shape functions. 

The best overall elements for two dimensional meshes are isoparametric elements (Ingraffea and 

Heuze, 1980; Griffiths and Lane, 1999; Griffiths, 2000; and Hellen, 2001).  The basis of the 

isoparametric finite element formulation is the interpolation of the element coordinates and 

element displacements using the same interpolation functions, which are defined in a natural 

coordinate system (Bathe, 1982).  Considering a general two dimensional isoparametric element, 

the coordinate interpolations are (Bathe, 1982): 

 



q

i

ii xhx
1

 and 



q

i

ii yhy
1

 4-1 

where x and y are the coordinates at any point of the element (local coordinates), and xi and yi, i = 

1, …. , q are the coordinates of the q element nodes (Bathe, 1982).  The interpolation function hi 

is defined in the natural coordinate system of the element.  The interpolation function has 

variables r and s that vary from -1 to +1 and are the unknowns.  Bathe (1982) indicates that the 

fundamental property of hi is that its value in the natural coordinate system is unity at node i and 

is zero at all other nodes.  The procedure for constructing element interpolation functions for two 

dimensional elements is relatively straightforward.  For example, consider the four-node, two 

dimensional element noted in Figure 4.2, with parabolic interpolation in which interpolation 

polynomials that involve r
2
 as the highest power of r; higher order interpolation could be derived 

in an analogous way.  At Node 1, h1 must equal 1 and therefore by inspection, 
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Figure 4.2.  Typical Four Node, Two Dimensional Element. 

 

 

 

   srh  11
4

1
1  4-2 

By similar analogy, the remaining interpolation functions for the four node, two dimensional 

element noted in Figure 4.2 are as follows (Bathe, 1982): 
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Elements can have curved boundaries and another important advantage is the ease with which 

element displacements are constructed for isoparametric formulation (Bathe, 1982).  The element 

displacements are interpolated the same way as geometry, namely, 

 



q

i

iiuhu
1

 and 



q

i

iivhv
1

 4-6 

where u and v are the local element displacements at any point and ui, vi, i = 1, …, q are the 

corresponding element displacements at the node (Bathe, 1982). 

 The element stiffness matrix is evaluated by calculating the strain-displacement 

transformation matrix.  With respect to the local coordinate system, element strains are obtained 

in terms of derivatives of element displacements.  Since element displacements are defined by 

Equation 4-6 using natural coordinate system, we need to relate the x and y derivatives to the r 

and s derivatives.  As such, Equation 4-1 is of the form, 

  srfx ,1  and  srfy ,2  4-7 

The inverse relationship is expressed as, 

  yxfr ,3  and  yxfs ,4  4-8 

The required derivatives are 
x

  and 
y

  and the Chain Rule is applied (Stein, 1987), which 

for 
x

  is as follows, with a similar analogy to 
y

 , 
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Calculating Equation 4-9 requires computing 
x

r


  and 
x

s


 .  However, this requires evaluating 

Equation 4-8, which can be difficult to establish (Bathe, 1982; Pande, et al, 1990).  Using the 

chain rule, the required derivatives are evaluated using the following expression in matrix 

notation (Bathe, 1982; and Pande, et al, 1990): 

 


















































































y

x

s

y

s

x
r

y

r

x

s

r  4-10 

Equation 4-10 is more commonly expressed in matrix notation as, 
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 4-11 

where [J] is defined as the Jacobian operator which relates the natural coordinate derivatives to 

the local coordinate derivatives.  Bathe (1982) also notes that the Jacobian operator can also be 

found using Equation 4-1, 

 
r

J
x 


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

 1  4-12 

This requires that the inverse of the Jacobian operator exist.  Bathe (1982) notes that the inverse 

will exist, provided that there is a unique correspondence between the natural and local element 

coordinates.  However, this requirement will not be satisfied if there is too much element 

distortion or the element folds back upon itself (Bathe, 1982).  For [J] to be nonsingular, all 

interior angles must be smaller than 180 degrees (Bathe, 1982). 
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Equation 4-6, along with Equation 4-12, can be used to evaluate 
x

u


 , 
y

u


 , 
y

v


 , and 
y

v


  

and therefore are used to create the strain-displacement transformation matrix [B], 

 
^
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where [
^

u ] is the vector listing the element nodal point displacement of Equation 4-6 and [J] 

affects the element in [B].  The elements of [B] are a function of the natural coordinates r and s.  

The fundamental core of FEM is the element stiffness matrix, which is as follows for plain strain 

conditions (Bathe, 1982; Pande, et al, 1990; and SIGMA/W, 2007): 
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where t is the element thickness and [C] is the element property or constitutive matrix, which is 

further discussed in Section 4.1.1. 

4.1.1 Stress-Strain Relationships 

The constitutive matrix relates stresses to strains by considering the material properties of the 

element.  Equation 4-15 displays the constitutive matrix for a linear elastic, plain strain problem 

(Bathe, 1982). 
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 Duncan’s (1996) state-of-the-art treatise regarding FEM modeling for geotechnical 

engineering applications presented 20 linear-elastic, 19 multi-linear elastic, 21 hyperbolic elastic, 

and 17 elasto-plastic / elasto-visco-plastic FEM stress-strain models that were developed by 

others.  These models were created to study various dam and embankment problems regarding 

incremental construction stress-strain and / or post-construction stress-strain.  Selecting the 

appropriate soil stress-strain property depends on the type of relationship that is most suitable for 

the conditions analyzed.  Duncan (1996) indicates that: 

 The principle advantage of linear elastic analyses is simplicity; however their 

shortcoming is that it is not a good model for the actual stress-strain behavior of soils, 

except at low stress levels and small strains. 

 Multi-linear elastic stress-strain analyses use two or more straight lines to model soil 

behavior.  However, the models must be developed on a case-by-case basis to 

approximate the stress-strain curve of a particular soil.  Because they model non-linear 

stress-strain behavior, Duncan (1996) indicates that they offer some potential for studying 

the development of local failures within and around slopes.  Duncan (1996) indicates that 

it is possible to infer likely crack locations based on zones of tension computed in 

analyses. 

 Elastoplastic stress-strain relationships are useful in cases where undrained conditions are 

analyzed in terms of effective stresses and the accuracy of the analyses depends on 

reasonable predictions of the changes in pore pressures caused by changes in total stress.  

Elastoplastic and elastoviscoplastic stress-strain relationships have the advantage that 
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they model more realistically the behavior of soils close to, at, and after failure.  

However, they have the limitation of being more complex. 

 Hyperbolic stress-strain relationships can be used to model nonlinear behavior.  

Parameters used to develop the model have physical significant and can be evaluated 

using the triaxial tests.  However, they have the limitation that they are inherently 

inelastic and do not model plastic deformation in a fully logical manner. 

Wyllie and Mah (2006) indicate that linear elastic-perfectly plastic stress-strain relations are the 

most commonly used rock mass material models. 

4.1.2 Numerical Integration 

A global stiffness matrix is evaluated as a summation of the individual element stiffness matrices 

over all the elements in the mesh.  Each element stiffness matrix is evaluated using numerical 

integration.  To carry out numerical integration, the integral form of the element stiffness matrix,  

     
A

T
dABCBtK  4-16 

is replaced with the following expression, 
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where j is the integration point, n is the total number of integration points, jJdet  is the 

determinant of the Jacobian matrix, and W1j and W2j are the weighting factors which are chosen 

to obtain the maximum accuracy in the integration.  An important numerical integration 

procedure in which both the positions of the sampling points and the weights have been 
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optimized is Gauss quadrature.  This scheme requires n unequally spaced sampling points and 

integrated exactly a polynomial of order at most (2n-1) (Bathe, 1982).  However, for larger n the 

solution becomes cumbersome and it is expedient to use Legendre polynomials, which is termed 

the Gauss-Legendre integration procedure.  This procedure is commonly used in isoparametric 

finite element analysis (Bathe, 1982) and their values are readily available in the literature 

(Bathe, 1982, SIGMA/W, 2007).  For ready reference, Table 4.1 presents the node locations and 

weightings for a four node quadrilateral, with node locations corresponding to the node locations 

identified in Figure 4.2 (SIGMA/W, 2007). 

 

Table 4.1. Node Points and Weightings for Four Node Quadrilateral. 

 

 

Node r s W1 W2 

1 +0.57735 +0.57735 1.0 1.0 

2 -0.57735 +0.57735 1.0 1.0 

3 -0.57735 -0.57735 1.0 1.0 

4 +0.57735 -0.57735 1.0 1.0 

 

 

 

 A choice of different Gaussian quadrature rules exist for this integration, the order of which 

has considerable bearing on the final results.  The “complete” rule for any two dimensional 

quadratic displacement element uses three strategically placed points in each spatial direction.  

The “reduced” integration rule is one order less.  Under certain conditions, it is acceptable to use 

four-point integration for quadrilateral elements which have secondary nodes.  This procedure is 

called reduced integration and is described in Bathe (1982), and Zienkiewicz and Taylor (1989).  

For example, reduced integration may yield more accurate results in nearly incompressible 

elasticity and in elements under flexure (Hellen, 2001).  In addition, selective use of reduced 

integration can greatly reduce the required number of computations (SIGMA/W, 2007).  Hellen 
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(2001) also notes that reduced integration is well known to be more accurate than the complete 

rule, which can exhibit an effect known as “locking” in many applications and particularly so in 

fracture related problems.  Bathe (1982) confirms this and also notes that a great deal of research 

effort has been spent to evaluate the optimum integration order and scheme for isoparametric 

finite element analysis.  The integration points are known as Gauss points and are also the 

locations where stresses are most accurately calculated in each element (Bathe, 1982).  Figure 

4.3 indicates the location of Gauss points for a typical rectangular element. 

 
 

Figure 4.3.  Gauss Numerical Integration over a Typical Rectangular Element. 

 

 

 

 It is also possible to use higher order (three-point and nine-point) integration with elements 

that have no secondary nodes.  However, in this case, the benefits of using higher order 

integration are marginal, particularly for quadrilateral elements.  Nine-point integration for 

quadrilateral elements involves substantially more computing than four point integration, and 

there is little to be gained from the additional computations (Hellen, 2001).  As a general rule, 
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quadrilateral elements should have secondary nodes to achieve significant benefits from the nine 

point integration (SIGMA/W, 2007). 

 The situation is slightly different for triangular elements.  Using one-point integration implies 

that the material properties and strains are constant within the element.  This can lead to poor 

performance of the element, particularly if the element is in a region of large stress gradients 

(SIGMA/W, 2007).  Using three point integration, even without using secondary nodes, can 

improve the performance since material properties and gradients within the elements are 

distributed in a more realistic manner.  The use of three point integration in triangular elements 

with no secondary nodes is considered acceptable in a mesh that has predominantly quadrilateral 

elements (SIGMA/W, 2007).  This approach is not recommended if the mesh consists primarily 

of triangular elements with no secondary nodes (SIGMA/W, 2007). 

4.1.3 Incremental Analyses for Geotechnical Applications 

Static geotechnical problems in FEM require the use of incremental analysis techniques 

(Duncan, 1996).  Incremental analyses provide a convenient means of modeling two very 

important aspects in geotechnical engineering, namely changes in geometry and nonlinear stress-

strain behavior.  Geometry is changed by adding or removing elements to a mesh.  However, 

prior to changing geometric conditions, initial stress conditions must first be established in the 

FEM.  Initial stresses for finite element analyses are needed for the following reasons (Duncan, 

1996): 

 For incremental analyses, the changes in stress calculated during each increment are 

added to the stress at the beginning of the increment to evaluate the stress at the end. As 

such, to begin this process, it is necessary to know the initial stress; 
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 The stiffness of the soil depends on the stresses in the soil; and 

 The forces that are applied to simulate excavation of the soils are calculated using the 

before excavation stresses on the boundary of the excavation.  To calculate these forces, 

it is necessary to know the initial stresses. 

A significant parameter used in incremental analyses is the at-rest horizontal earth pressure 

coefficient, ko.  Field and laboratory studies of heavy overconsolidated clays and shales show 

that they are characterized by large horizontal stresses and thus have a greater tendency to 

laterally rebound more than normally consolidated clays. 

4.1.4 Mesh Optimization 

FEM are based on the concept of subdividing a continuum into small pieces, describing the 

behavior of the individual pieces, and then reconnecting all the pieces to represent the behavior 

of the continuum as a whole.  The process of subdividing the continuum into smaller pieces is 

known as meshing where the individual pieces are known as finite elements.  An appropriate 

finite element mesh is problem-dependent and there are no hard and fast rules for how to create a 

mesh (SIGMA/W, 2007).  Moreover, Griffiths (2009) indicates that there is no golden rule to 

mesh density; a mesh needs to be "refined enough" to give acceptable accuracy considering the 

reliability of the input data. 

 Bathe (1982) notes that the amount of stress discontinuities between elements are a measure 

of the “appropriateness” of the finite element idealization used.  The overall objective in the 

design of a finite element mesh is that in an area where high solution accuracy is required, the 

stress discontinuities between elements should be small, whereas larger stress discontinuities can 
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be tolerated away from the area of interest.  The actual amount of stress discontinuities that can 

be tolerated depends on the accuracy required in the analysis.  Bathe (1982) notes that another 

consideration in the design of a finite element mesh layout is that the performance of the 

isoparametric elements is generally best when they are used without distortion. 

 The use of FEM for geotechnical fracture mechanic investigations does require careful 

consideration.  Because of the singular nature of a crack tip, stress gradients occur which require 

graded element meshes to optimize overall accuracy.  Thus, as the crack tip is approached, the 

elements should get smaller and smaller.  However, practical mesh refinements do not need to be 

too severe provided that quadratic (or higher) displacement elements are used with reduced 

integration (Hellen, 2001).  The best overall elements for two dimensional meshes are the 

isoparametric elements, particularly those with quadratic displacement and pseudo-linear stress 

variations, which appear as either six nodded triangles or eight-noded quadrilaterals (Hellen, 

2001; Griffiths and Lane, 1999; Griffiths, 2000; and Ingraffea and Heuze, 1980). 

 Literature reviews of published slope stability FEM studies indicate that six to twelve 

elements with eight-node quadrilaterals using reduced integration represent an appropriate 

distribution over the slope height (Duncan and Dunlop, 1969; Dunlop and Duncan, 1970; Lee, 

Lo, and Lee, 1988; Griffiths and Lane, 1999; Griffiths, 2000; Khatri and Kumar, 2009).  Duncan 

and Dunlop (1969) used a non-uniform mesh that consisted of eight quadrilateral elements over 

the slope height to study stress concentrations associated with a vertical cut made in stiff clay.  

Additionally, Lee, Lo and Lee (1988) used six, eight node quadrilateral elements equally spaced 

over the height of the slope to investigate tension crack effects.  Based on the available literature, 

Figure 4.4 presents a straightforward FEM model that was developed to study the influence that 

mesh concentration has on vertical stress predictions.  
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a) Model used to establish initial stress conditions. 

 

 

 

 
 

b) Model used to predict vertical stress conditions. 

 

 

Figure 4.4.  FEM Model used for Mesh Concentration Study. 

Region removed to 

simulate excavation. 
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The FEM model used a unit weight, , and an earth pressure coefficient, ko, that were 

constant; thus the initial horizontal and vertical stresses increase linearly with depth.  The model 

used eight-node quadrilateral elements with reduced integration.  The initial mesh concentration 

consisted of 3 elements over the slope height, as noted on Figure 4.4.  Initial stresses were 

calculated (Figure 4.4(a)) and elements were removed to simulate excavation (Figure 4.4(b)).  

Vertical stress values () obtained from the FEM model at an arbitrary distance of 20 meters left 

and 20 meters right of the cut slope were compared to simple hand calculation values 

considering the following expression, 

    depth
m

kN
depth 










3
42.20  

The model was then re-meshed using an increased element concentration over the slope height.  

Appendix B contains the FEM output sheets and Figures 4.5 and 4.6 presents a graphical 

summary of the analyses.  The datum is the base of the excavation at the toe of slope.  
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Figure 4.5.  Comparison of Vertical Stress for Different FEM Element Concentrations, x = 20-m 

from Slope Face (Left). 
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Figure 4.6.  Comparison of Vertical Stress for Different FEM Element Concentrations, x = 20-m 

from Slope Face (Right). 
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Based on this study, the use of 3 and 6 elements over the slope height does not provide good 

agreement for a simple vertical stress profile.  Concentrations greater than 12 elements over the 

slope height provide nearly identical results that are in good agreement with the hand calculation 

checks.  Although this analysis is not comprehensive, it does demonstrate good agreement with 

Duncan and Dunlop (1969), Dunlop and Duncan (1970), Griffiths and Lane (1999), and Griffiths 

(2000), which used a similar mesh concentration consisting of 8 to 12 elements over the slope 

height to study stress gradients within the slope. 

 

4.2 FINITE ELEMENT METHOD APPLIED TO GEOTECHNICAL 

FRACTURE MECHANICS PROBLEMS 

 

 

The use of FEM to study geotechnical related fracture mechanics problems has been well 

documented (Hellen, 2001; Lee et al, 1988; Ingraffea and Heuze, 1980; Wyllie and Mah, 2006).  

Based on the results of finite element analysis, a procedure known as Substitution Methods can 

be used to calculate the main fracture parameters of LEFM (Hellen, 2001). 

 Substitution Methods for FEM fracture mechanic investigations consist of two methods, 

namely: displacement substitution and stress substitution.  These analyses are conducted at the 

post-FEM analysis stage and use calculated displacements (at nodes) and stresses (at Gauss 

points).  Referencing Figure 4.7, the Substitution Methods consider that for each point (r, ), 

both (u, v) and (, r, and r) are available and can be substituted in the LEFM equations.  

FEM analyses are conducted, and displacements and stresses are tabulated in the crack tip 

region.  An advantage of the substitution method is that no special software coding is required to 

model node fracture through deformation (Hellen, 2001). 
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Figure 4.7.  LEFM Reference Model. 

 

 

 

 Several finite element models have been used to study tension cracking in soils and they are 

based on substitution methods (Zienkiewicz, et al, 1968; Duncan and Dunlop, 1969; Dunlop and 

Duncan, 1970; Kawai, 1979; Naylor and Pande, 1981; and Lee, et al, 1988).  These methods 

consider cracking of the soil medium by either imposition of zero tensile stresses or zero tensile 

stiffness on the cracked elements when their tensile strength has been exceeded.  Lee et al (1988) 

conducted FEM analyses using a tensile strength criterion, whereby by computed principal 

tensile stresses were compared with an experimentally determined tensile strength to predict the 

onset of cracking of a stiff embankment on soft soil as well as an excavated clay slope. 

 Griffiths (2009) also indicates that for conventional slope stability analysis, the factor of 

safety can be obtained quite well using remarkably coarse meshes.  However, for fracture 

mechanics problems where cracks may be opening up, the FEM model will require remeshing as 

the crack propagates and localized phenomena may govern the situation requiring a finer mesh 

(Griffiths, 2009). 
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4.3 SUMMARY FOR GEOTECHNICAL FRACTURE MECHANICS APPLICATIONS 

The use of FEM for geotechnical fracture mechanic investigations requires careful consideration 

due to the singular nature of a crack tip.  As the crack tip is approached, the elements should 

seemingly get smaller and smaller.  However, practical mesh refinements do not need to be too 

severe provided that elements consist of isoparametric elements, particularly those with quadratic 

displacement and pseudo-linear stress variations, which appear as either six nodded triangles or 

eight-noded quadrilaterals.  Where high solution accuracy is required, the stress discontinuities 

between elements should be small, however, the mesh concentration needs to consider the 

reliability of the input data.  Mesh concentrations greater than 8 to 12 elements over a vertical 

slope height produce nearly identical vertical stress results.  FEM analyses should use reduced 

integration, which has particular application to fracture related problems. 

 Substitution methods can be used with FEM analyses to study fracture mechanics; hence no 

special software is required.  In particular, stress substitution method considers that for each 

point (r, ), that the , r, and r are available and obtained at the Gauss points.  Stress values 

can be tabulated and compared to failure criterion.  Crack propagation will require re-meshing 

where cracks may open.  
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5.0 EVALUATION OF LABORATORY PROGRAM RESULTS USING FINITE 

ELEMENT METHOD AND FRACTURE MECHANICS APPROACHES 

 

 

 

 

Three laboratory test models were created to study closed crack propagation under r and  

loading conditions.  The models consisted of two shear models and one vertical slope model with 

artificial cracks created in each model.  The shear models consisted of clay on clay and sand on 

clay to create two different interfaces along the potential failure plane.  The vertical slope model 

consisted of clay on clay with a pre-existing toe crack.  Finite element models were developed in 

an effort to replicate the observed laboratory results and therefore validate the use of FEM for 

additional fracture mechanics studies. 

 

5.1 DEVELOPMENT OF THE LABORATORY PROGRAM FINITE 

ELEMENT METHOD MODELS 

 

 

The FEM models used a two dimensional mesh with isoparametric elements consisting of either 

six node triangles or eight-node quadrilaterals.  The clay material utilized an elastic-plastic 

constitutive model which describes an elastic-perfectly plastic relationship.  Stresses are directly 

proportional to strains until the yield point is reached; beyond yield, the stress-strain curve is 

perfectly horizontal.  This constitutive model is most appropriate for clay slopes under undrained 

conditions, where both stress-strain relationships and the failure criteria are expressed in terms of 

total stresses (Dunlop and Duncan, 1970; Smith and Hobbs, 1974; Griffiths and Lane, 1999; and 
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Griffiths 2000).  Table 5.1 indicates the six geotechnical parameters required to develop the 

elastic-plastic constitutive model. 

 

 

Table 5.1.  Elastic – Plastic Constitutive Model Parameters. 

 

 

Model Parameters 

E, Modulus of Elasticity 

, Poisson’s Ratio 

c, Cohesion 

, Friction Angle 

, Dilation Angle 

 

 

 

 Perhaps with the exception of the dilation angle (), the parameters noted in Table 5.1 are 

relatively straightforward geotechnical material properties.  The dilation angle affects the volume 

change of a soil during yield.  It is well known that the volume change exhibited by a soil during 

yield is quite variable.  Griffiths and Lane (1999), and Griffiths (2000) indicate that  < 0 for a 

medium dense material where the material would tend to exhibit some volume decrease during 

shear followed by a dilative phase in which  > 0, leading eventually to yield under constant 

volume conditions where  = 0.  Griffiths (2000) notes that when  = , then the plasticity flow 

rule is associated with frictional soil models predicting far greater dilation than is ever observed 

in reality.  This will lead to increased failure load prediction, especially for confined problems 

such as bearing capacity (Griffiths, 1982).  However, slope stability analyses are relatively 

unconfined and the choice of dilation angle is less important (Griffiths and Lane, 1999; and 

Griffiths, 2000).  A value of  = 0, corresponding to a non-associated flow rule with zero 

volume change during yield enables slope stability analyses to give reliable factors of safety and 
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a reasonable indication of the location and shape of potential failure surfaces (Griffiths and Lane, 

1999; and Griffiths, 2000).  Additionally, it is well known that saturated, purely cohesive 

materials do not exhibit volume change when subjected to shear loading under undrained 

conditions (Craig, 1992; and Bowles, 1996). 

5.1.1 Values of Parameters used for the FEM Analyses 

The intent of the FEM analyses is to replicate the observed laboratory model results.  FEM 

analyses for the laboratory shear models should indicate crack propagation along the existing 

failure plane due to shear failure.  FEM analyses for the simulated vertical slope model should 

indicate crack propagation due to excessive tensile stress inclined from the existing toe crack.  

Aside from the concept that LEFM is based on materials which obey Hooke’s law, the direction 

of crack propagation predicted by LEFM is independent of material properties.  Crack 

propagation will occur when the material’s shear strength or tensile strength has been exceeded; 

however the direction of crack propagation is independent of these parameters.  With this in 

mind, FEM models considered standardized material properties for all models used in this 

research.  The use of standardized material properties allowed comparison between models to 

observe propagation behavior under different load conditions. 

 The clay material properties used for the FEM models were derived from laboratory testing 

of a geologic stratum known locally as the Pittsburgh Red Bed (URS, 2005).  It is important to 

note that the Pittsburgh Red Bed formation is highly variable and generalized data regarding this 

formation is not practical (Hamel and Flint, 1972; Hamel and Adams, 1981; Hamel, 1998; 

Kutschke, et al, 2007 and 2007; and Hamel, 2009).  Shear strength properties depend on whether 

the stratum is weathered or unweathered (as opposed to colluvial or residual soils derived from 
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this formation) as well as dependent on composition, degree and types of fissures and fractures at 

both macro & micro levels (Hamel, 2009).  The selected values used for the FEM laboratory 

FEM models are presented in Table 5.2.  The parameter values for sand are representative of a 

medium dense sand material (AASHTO, 1996, 2007). 

 

Table 5.2.  Geotechnical Parameters and Values Used for the Laboratory FEM Models. 

 

 

Geotechnical Parameter  Material and Parameter Values 

Clay Sand 

E, Modulus of Elasticity 177,100 kPa 44,375 kPa 

, Poisson’s Ratio 0.10 and 0.45 0.35 

c, Cohesion 86.2 kPa 0 

, Friction Angle 0 30 

, Dilation Angle 0 0 

, Unit Weight 20.42 kN/m
3
 18 kN/m

3
 

 

 

 

 Table 5.2 indicates that the clay analyses considered two different values for the Poisson’s 

ratio.  A  = 0.45 is representative of a saturated clay (Kulhawy, et al, 1983; AASHTO, 1996, 

2007; and Bowles, 1996).  It is recognized that an ideal saturated clay exhibits a  = 0.50, 

however, the use of 0.50 will result in numerical stability problems for FEM modeling.  The 

reason for the numerical problems is that, and recalling the following term in Equation 4-15, 

    211 E  which tends toward infinity as  21  tends towards zero when  → 0.50.  A 

value of  = 0.10 is representative of an unsaturated, brittle clay (Bowles, 1996). 
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5.1.2 FEM Slip Elements 

The laboratory shear model for the clay on clay condition considered a closed crack located 

along the plane of horizontal movement.  It is well known that closed cracks within cohesive 

materials tend to exhibit reduced shear strength properties (Bjerrum, 1967; Duncan and Dunlop, 

1969; Skempton, 1964; Skempton and LaRochelle, 1965; Burland, et al, 1977).  A closed crack 

for these FEM models utilized a slip surface element, in particular a quadrilateral slip surface 

element.  The slip surface element is modeled as a combination of four bar elements.  Figure 5.1 

presents a typical slip surface element with the long axis (x) inclined with respect to the global 

axis (X), and nodes 1, 2, 3 and 4 labeled. 

 

 

  
 

 

Figure 5.1.  Typical Slip Surface Element. 
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The slip surface element considered two bar elements with normal stiffness (KN) in the local, 

normal y-direction 1-4 and 2-3, and two bar elements with tangential stiffness (KT) in the local 

x-direction 1-2 and 4-3.  When formulating the element stiffness matrix [K], instead of 

evaluating the integral      dvBCB
T

, the local stiffness matrix [K] is first evaluated by 

assigning stiffness values KT and KN directly to the appropriate location in the matrix 

(SIGMA/W, 2007).  [K] is then rotated to the global coordinate system to obtain [K]. 

This constitutive model is in essence equivalent to a spring model where normal springs keep 

the opposing sides apart and tangential springs control lateral slip.  When the mobilized shear 

resistance exceeds the available shear resistance, the tangential springs are removed and replaced 

with tangential nodal forces representing the available shear resistance.  Stresses in the slip 

element are obtained from neighboring elements above and below from the Gauss points to the 

interface nodes.  Then interpolation from the nodes to the slip element Gauss points using shape 

functions.  The available shear resistance is controlled by the cohesion, and the friction angle and 

normal stress on the slip surface using shear strength properties that represent reduced or residual 

values.  In the case of  = 0, the available shear resistance is controlled by cohesion. 

5.1.3 Failure Plane Development and / or Crack Propagation 

Geotechnical failure resulting in the development of a failure plane or crack propagation is taken 

as the limiting shear stress on the potential failure surface as discussed by Duncan and Dunlop 

(1969), Griffiths and Lane (1999), and Griffiths (2000).  That is, once the shear strength of the 

material is exceeded, either a failure plane develops or the crack propagates if the crack already 

exists.  Figure 5.2 presents a typical Mohr-Coulomb failure criterion envelope for a  = 0  
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Figure 5.2.  Mohr-Coulomb Failure Criterion Envelope for a  = 0 Material. 

 

material.  The initial state of stress of an element may be given as 1 and 3 to represent the in-

situ horizontal and vertical stress conditions for an overconsolidated material, respectively.  

Values of 1 and 3 will change as the soil element undergoes shear loading.  Failure occurs 

when the stress conditions reach the undrained cohesive strength for a  = 0 material. 

5.1.4 Coalesce of Micro-Cracks 

The development of a failure plane results from coalesce of micro-cracks.  At low displacement 

levels, Skempton (1966) notes that stiff clay will develop Riedel slip discontinuities, which are 

generally inclined to the direction of shear.  As shear displacement continues, a new set of 

discontinuities develop which are termed Thrust or P- discontinuities and these develop at a 

flatter angle than the Riedel slip discontinuities.  Finally, at large shear displacement levels, the 
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Riedel and Thrust discontinuities coalesce and form an undulating, continuous sliding surface 

(Skempton, 1966).  The successive stages in the development of a shear zone are shown in 

Figure 5.3. FEM analyses are used to idealize and predict the development and propagation of 

this final slip surface without consideration for the initial Riedel or Thrust discontinuities. 

 

 
 

Figure 5.3.  Successive Development of a Shear Zone. 

 

  

Stage 1 – Riedel slip discontinuities develop. 

Stage 2 – Thrust discontinuities develop. 

Stage 3 – Coalesce of microcracking. 
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5.2 SHEAR MODEL 

The shear model represented a fracture mechanics shear stress - closed crack condition.  The 

FEM model has been scaled-up from the laboratory model (Duncan and Dunlop, 1969; Griffiths 

and Lane, 1999; Griffiths 2000; Khatri and Kumar, 2009).  FEM analyses were performed in 

stages, with the first stage used to create the in-situ stress conditions (Duncan, 1996), which is 

shown as Figure 5.4.  The model used fixed boundary conditions at the base with rollers along  

 

 
 

 

Figure 5.4.  Clay on Clay FEM Shear Model. 
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the sides during the initial stages to establish the in-situ stress.  After the initial stresses were 

established, the second stage applied a normal stress of 95 kPa in the form of a surcharge load, as 

noted in Figure 5.4.  The normal stress created a downward displacement as the model deformed 

under load and y-displacements were fixed along the top boundary condition for subsequent 

stages.  This procedure very closely mimicked the laboratory experiment procedure using the 

Plane Stress Direct Shear Apparatus.  The FEM model then applied lateral displacement 

increments.  Figure 5.5 indicates the FEM boundary conditions used during application of the 

lateral increments. 

 

 

 
 

 

Figure 5.5.  FEM Boundary Conditions. 
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5.2.1 Clay on Clay Shear Model Results 

Analyses considered three different shear strength conditions along the slip surface element to 

represent a closed crack condition.  The shear strengths for the slip elements were as follows: no 

cohesive strength reduction, an arbitrary reduction in the cohesive strength of 25%, and an 

arbitrary shear strength reduction in cohesive strength of 50%.  The no cohesive strength 

reduction case served as a baseline analysis to understand how a reduction in cohesive strength 

influences crack propagation as well as the influence that a pre-existing crack has on failure 

propagation.   

 The results of the FEM analyses were drawn with 4 kPa shear strength contours at each load 

increment for shear stress values greater than the full cohesive strength, which was 86.2 kPa.  

This condition represents a zone of failure where a failure plane has developed and / or the crack 

propagates.  The following figures present the results of the FEM analyses at various 

displacement increments (all figures magnified by 50 for clarity purposes): 

 Figure 5.6 – Poisson’s ratio = 0.1 representing a brittle clay with no cohesive strength 

reduction at the slip element. 

 Figure 5.7 – Poisson’s ratio = 0.1 representing a brittle clay with a 25% cohesive strength 

reduction at the slip element and full cohesive strength everywhere else. 

 Figure 5.8 – Poisson’s ratio = 0.1 representing a brittle clay with a 50% cohesive strength 

reduction at the slip element and full cohesive strength everywhere else. 

 Figure 5.9 – Poisson’s ratio = 0.45 representing a saturated clay with no cohesive 

strength reduction at the slip element. 
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 Figure 5.10 – Poisson’s ratio = 0.45 representing a saturated clay with a 25% cohesive 

strength reduction at the slip element and full cohesive strength everywhere else. 

 Figure 5.11 – Poisson’s ratio = 0.45 representing a brittle clay with a 50% cohesive 

strength reduction at the slip element and full cohesive strength everywhere else. 

Figures are presented in the subsequent pages. 
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a) Total displacement = 0.002-m 

 

 

 
 

b) Total displacement = 0.004-m 

 

 

 
 

c) Total displacement = 0.006-m 

 

 

 
 

d) Total displacement = 0.008-m 

 

 

Figure 5.6.  Shear Stress Contours (4 kPa) Indicating Shear Failure Zones for Clay on Clay FEM 

Shear Model with  = 0.10 and No Cohesion Reduction along Crack. 
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a) Total displacement = 0.002-m 

 

 

 
 

b) Total displacement = 0.004-m 

 

 

 
 

c) Total displacement = 0.006-m 

 

 

 
 

d) Total displacement = 0.008-m 

 

 

Figure 5.7.  Shear Stress Contours (4 kPa) Indicating Shear Failure Zones for Clay on Clay FEM 

Shear Model with  = 0.10 and 25% Cohesion Reduction along Crack. 
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a) Total displacement = 0.002-m 

 

 

 
 

b) Total displacement = 0.004-m 

 

 

 
 

c) Total displacement = 0.006-m 

 

 

 
 

d) Total displacement = 0.008-m 

 

 

Figure 5.8.  Shear Stress Contours (4 kPa) Indicating Shear Failure Zones for Clay on Clay FEM 

Shear Model with  = 0.10 and 50% Cohesion Reduction along Crack. 
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a) Total displacement = 0.002-m 

 

 

 
 

b) Total displacement = 0.004-m 

 

 

 
 

c) Total displacement = 0.006-m 

 

 

 
 

d) Total displacement = 0.008-m 

 

 

Figure 5.9.  Shear Stress Contours (4 kPa) Indicating Shear Failure Zones for Clay on Clay FEM 

Shear Model with  = 0.45 and No Cohesion Reduction along Crack. 
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a) Total displacement = 0.002-m 

 

 

 
 

b) Total displacement = 0.004-m 

 

 

 
 

c) Total displacement = 0.006-m 

 

 

 
 

d) Total displacement = 0.008-m 

 

 

Figure 5.10.  Shear Stress Contours (4 kPa) Indicating Shear Failure Zones for Clay on Clay 

FEM Shear Model with  = 0.45 and 25% Cohesion Reduction along Crack. 
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a) Total displacement = 0.002-m 

 

 

 
 

b) Total displacement = 0.004-m 

 

 

 
 

c) Total displacement = 0.006-m 

 

 

 
 

d) Total displacement = 0.008-m 

 

 

Figure 5.11.  Shear Stress Contours (4 kPa) Indicating Shear Failure Zones for Clay on Clay 

FEM Shear Model with  = 0.45 and 50% Cohesion Reduction along Crack. 



104 

5.2.1.1 Discussion of Findings.  The use of fracture mechanics principles is particularly 

applicable for this model since it is based on a  = 0 condition for a purely cohesive material 

(Whittaker, 1992; and Aliabadi, 1999).  Review of the failure stress contours presented in 

Figures 5.6 to 5.11 indicated that the failure plane propagated in a near horizontal plane.  As is 

intuitively correct, the failure plane initiated at the displacement application end where the shear 

stress was the greatest.  The failure plane then propagated to the slip element in a horizontal 

manner.  The failure plane quickly propagated through the slip element and proceeded through 

the clay in a horizontal manner.  The following findings are noted: 

 The FEM analyses for  = 0.10 indicated that a reduction in cohesive strength along the 

slip element had negligible influence on failure plane propagation; that is, both the 25% 

cohesive reduction (Figure 5.7) and the 50% cohesive reduction (Figure 5.8) resulted in 

nearly identical rates of the failure plane propagation whereas the model with no cohesive 

reduction (Figure 5.6) did not exhibit the same rate of failure plane propagation under 

identical lateral displacement.  Figure 5.12 presents the shear stresses obtained along the 

horizontal failure plane at 0.002-meter displacement.  The shear stress increase was 

nearly identical at the ends of the sample for all cases, but stress concentrations are 

present approaching the slip element.  This conclusion suggested that a slip element (or 

closed crack) with a reduced cohesive strength will promote failure plane propagation 

and rate of failure plane propagation is relatively independent from the magnitude of 

cohesive strength reduction for  = 0.10 materials.  
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Figure 5.12.  Shear Stress for Clay with  = 0.10 and Cohesive Strength Reduction along Slip 

Element. 
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 The FEM analyses for  = 0.45 indicated that a reduction in cohesive strength along the 

slip element also had negligible influence on failure plane propagation; that is, no 

cohesive strength reduction (Figure 5.9), 25% cohesive reduction (Figure 5.10), 50% 

cohesive reduction (Figure 5.11) resulted in nearly identical rates of the failure plane 

propagation under identical lateral displacement.  Figure 5.13 presents the shear stresses 

obtained along the horizontal failure plane at 0.002 meters displacement.  However, 

comparing Figures 5.12 and 5.13, it is evident that the shear stresses are slightly higher 

for the  = 0.45 case under the same lateral displacement.  The reason is as  → 0.50, the 

volumetric strain tends toward zero and the material becomes incompressible with 

shearing occurring under constant volume for a total stress analysis.  Since the material is 

confined, it becomes stiffer and consequently shear stress increased for the same 

displacement. 

 The failure planes for  = 0.10 and 0.45 both propagated in a horizontal manner.  Fracture 

mechanics predicted that a closed crack will propagate along the pre-existing crack plane 

when subjected to shear loading (Equation 2-40). 

The FEM models replicated the laboratory test results with regard to failure plane propagation 

and fracture mechanics correctly predicted the direction of propagation for the clay on clay 

models. 
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Figure 5.13.  Shear Stress for Clay with  = 0.45 and Variable Cohesive Strength Reduction 

along Slip Element. 
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5.2.2 Clayey Sand on Clay Shear Model Results 

FEM analyses were conducted with clayey sand as the upper material and clay as the base 

material.  As with the clay on clay model, the FEM analyses for the clayey sand on clay model 

also considered staged analyses.  The first stage established the initial in-situ stress conditions.  

The laboratory model considered a closed crack and this has been idealized in the FEM analyses 

using a slip element at the sand-clay interface, as shown on Figure 5.14.  The slip element was  

 

 
 

 

Figure 5.14.  Clayey Sand on Clay FEM Shear Model. 
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situated in the lower clay and considered three different shear strength reductions in the analyses: 

0%, 25%, and 50% reduction in shear strength properties of clay layer.  The slip element did not 

apply to the clayey sand layer.  Boundary conditions were similar to the clay on clay model.  

Lateral load was applied at 0.005-m increments.  The results of the FEM analyses were drawn 

with 4 kPa shear strength contours at each load increment for shear stress values greater than the 

full cohesive strength of the lower clay section, which was 86.2 kPa.  This condition represented 

a zone of failure in the clay material where a failure plane developed and / or the crack 

propagated.  The following figures present the results of the FEM analyses at various 

displacement increments (all figures magnified by 50 for clarity purposes):  

 Figure 5.15 – Poisson’s ratio = 0.1 representing a brittle clay and no pre-existing. 

 Figure 5.16 – Poisson’s ratio = 0.1 representing a brittle clay with a 25% cohesive 

strength reduction at the slip element and full cohesive strength everywhere else (clay 

layer only). 

 Figure 5.17 – Poisson’s ratio = 0.1 representing a brittle clay with a 50% cohesive 

strength reduction at the slip element and full cohesive strength everywhere else (clay 

layer only). 

 Figure 5.18 – Poisson’s ratio = 0.45 representing a saturated clay and no-pre-existing 

crack. 

 Figure 5.19 – Poisson’s ratio = 0.45 representing a saturated clay with a 25% cohesive 

strength reduction at the slip element and full cohesive strength everywhere else (clay 

layer only). 



110 

 Figure 5.20 – Poisson’s ratio = 0.45 representing a saturated clay with a 50% cohesive 

strength reduction at the slip element and full cohesive strength everywhere else (clay 

layer only). 

Figures are presented in the subsequent pages. 
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a) Total displacement = 0.005-m 

 

 

 
 

b) Total displacement = 0.010-m 

 

 

 
 

c) Total displacement = 0.015-m 

 

 
 

d) Total displacement = 0.020-m 

 

 

Figure 5.15.  Clayey Sand on Clay FEM Shear Model Analyses with  = 0.10, No Pre-Existing 

Crack and Shear Stress Contours (4 kPa) Indicating Shear Failure Zones for the Clay. 
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a) Total displacement = 0.005-m 

 

 

 
 

b) Total displacement = 0.010-m 

 

 

 
 

c) Total displacement = 0.015-m 

 

 
 

d) Total displacement = 0.020-m 

 

 

Figure 5.16.  Clayey Sand on Clay FEM Shear Model Analyses with  = 0.10, Pre-Existing 

Crack with a 25% Cohesive Strength Reduction, and Shear Stress Contours (4 kPa) Indicating 

Shear Failure Zones for the Clay. 
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a) Total displacement = 0.005-m 

 

 

 
 

b) Total displacement = 0.010-m 

 

 

 
 

c) Total displacement = 0.015-m 

 

 
 

d) Total displacement = 0.020-m 

 

 

Figure 5.17.  Clayey Sand on Clay FEM Shear Model Analyses with  = 0.10, Pre-Existing 

Crack with a 50% Cohesive Strength Reduction, and Shear Stress Contours (4 kPa) Indicating 

Shear Failure Zones for the Clay. 
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a) Total displacement = 0.005-m 

 

 

 
 

b) Total displacement = 0.010-m 

 

 

 
 

c) Total displacement = 0.015-m 

 

 
 

d) Total displacement = 0.020-m 

 

 

Figure 5.18.  Clayey Sand on Clay FEM Shear Model Analyses with  = 0.45, No Pre-Existing 

Crack and Shear Stress Contours (4 kPa) Indicating Shear Failure Zones for the Clay. 
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a) Total displacement = 0.005-m 

 

 

 
 

b) Total displacement = 0.010-m 

 

 

 
 

c) Total displacement = 0.015-m 

 

 
 

d) Total displacement = 0.020-m 

 

 

Figure 5.19.  Clayey Sand on Clay FEM Shear Model Analyses with  = 0.45, Pre-Existing 

Crack with a 25% Cohesive Strength Reduction, and Shear Stress Contours (4 kPa) Indicating 

Shear Failure Zones for the Clay. 
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a) Total displacement = 0.005-m 

 

 

 
 

b) Total displacement = 0.010-m 

 

 

 
 

c) Total displacement = 0.015-m 

 

 
 

d) Total displacement = 0.020-m 

 

 

Figure 5.20.  Clayey Sand on Clay FEM Shear Model Analyses with  = 0.45, Pre-Existing 

Crack with a 50% Cohesive Strength Reduction, and Shear Stress Contours (4 kPa) Indicating 

Shear Failure Zones for the Clay. 
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5.2.2.1 Discussion of Findings.  Review of Figures 5.15 through 5.20 indicated that the failure 

plane propagated in a near horizontal plane.  As is intuitively correct, the failure planes initiated 

at the displacement application end where the shear stress was the largest.  The failure plane then 

propagated to the slip element in a horizontal manner and quickly propagated across the model.  

The following findings are noted: 

 The FEM analyses for  = 0.10 indicated that the reduction in cohesive strength along the 

slip element had negligible influence on failure plane propagation; that is, both the 25% 

cohesive reduction (Figure 5.16) and the 50% cohesive reduction (Figure 5.17) resulted 

in nearly identical rates of the failure plane propagation whereas the model with no 

cohesive reduction (Figure 5.15) did not exhibit the same rate of failure plane 

propagation under identical lateral displacement.  As noted in Figure 5.15 through 5.17, 

the shear stress contours indicated shear stress values greater than the cohesive strength 

of the lower clay section with increasing displacement. However, these contours are not 

applicable to shear failure in the upper sand section because failure of this material is 

dependent on normal and shear stress.  Figure 5.21 presents a typical Mohr-Coulomb 

failure envelope with shear stress against normal stress taken from the FEM model 

directly above the sand-clay interface.  Refer to Appendix C for Mohr-Coulomb failure 

envelope graphs for all of the analyses.  Figure 5.21 indicates that the failure plane did 

not propagate through the sand layer as no stress values were beyond the Mohr-Coulomb 

failure criteria for all analyses.  Recall that examination of Figure 3.5 indicated that the 

laboratory model exhibited failure through the lower clay section and these FEM analyses 

indicated a similar condition. 
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Figure 5.21.  FEM Shear and Normal Stresses for the Clayey Sand Layer Obtained Directly 

Above the Clayey Sand-Clay Interface with  = 0.10 for the Clay with No Slip Element Strength 

Reduction. 

 

0

25

50

75

100

125

150

175

200

0 50 100 150 200 250 300 350 400

Normal Stress (kPa)

S
h
e
a
r 

S
tr

e
ss

 (
k
P

a
)

Displacement = 0.005-m

Displacement = 0.010-m

Displacement = 0.015-m

Displacement = 0.020-m

Mohr-Coulomb Failure

Sand 

Clay 

A A 

Stresses presented in Figure 5.21 were 

obtained along Plane A-A. 



119 

 The FEM analyses for  = 0.45 indicated that the reduction in cohesive strength along the 

slip element also had negligible influence on failure plane propagation; that is, both the 

25% cohesive reduction (Figure 5.19) and the 50% cohesive reduction (Figure 5.20) 

resulted in nearly identical rates of the failure plane propagation whereas the model with 

no cohesive reduction (Figure 5.18) did not exhibit the same rate of failure plane 

propagation under identical lateral displacement.  As previously noted, the shear stress 

contours presented in Figure 5.18 through 5.20 are not necessarily applicable to shear 

failure in the upper clayey sand section.  Figure 5.22 presents a typical Mohr-Coulomb 

failure envelope of shear stress against normal stress taken from the FEM model directly 

above the clayey sand-clay interface.  The figure indicates that the failure plane did not 

propagate through the clayey sand layer as no stress values were beyond the Mohr-

Coulomb failure criteria.  Refer to Appendix C for Mohr-Coulomb failure envelope 

graphs for all of the analyses. 

 FEM analyses indicated the significance of an existing crack.  The FEM models with an 

existing crack exhibited a greater rate of shear plane propagation than the models without 

an existing crack. 

 The failure planes for  = 0.10 and 0.45 both propagated in a horizontal manner.  Fracture 

mechanics predicted that a closed crack will propagate along the pre-existing crack plane 

when subjected to shear loading (Equation 2-40).  

As observed in the laboratory and FEM models, the failure plane propagated just below the 

clayey sand-clay interface in the clay stratum; the use of LEFM concepts is entirely valid.  The 

FEM models replicated the laboratory test results with regard to failure plane propagation and 
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fracture mechanics correctly predicted the direction of propagation for the clayey sand on clay 

models. 

 

 
 

Figure 5.22.  FEM Shear and Normal Stresses for the Sand Layer Obtained Directly Above the 

Clayey Sand-Clay Interface with  = 0.45 for the Clay with No Slip Element Strength Reduction. 
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5.3 HOMOGENEOUS VERTICAL SLOPE MODEL 

The homogeneous vertical slope model represented a fracture mechanics tangential - closed 

crack condition.  The FEM model has been scaled-up from the laboratory model (Duncan and 

Dunlop, 1969; Griffiths and Lane, 1999; Griffiths 2000; Khatri and Kumar, 2009).  FEM 

analyses were performed in stages as follows: 

 Stage 1 established the in-situ stress conditions.  As shown on Figure 5.23(a), the FEM 

model used fixed boundary conditions at the base with rollers along the sides to permit 

vertical displacement. 

 Stage II created the vertical slope by “turning-off” select elements, inserted the toe crack 

using a slip element, and applied the normal stress of 40 kPa at the top of slope in the 

form of a surcharge.  The model used fixed boundary conditions at the base with rollers 

along the sides.  Recall that the normal stress applied to the laboratory model closed the 

toe crack and the normal stress was kept constant during the experiment.  The FEM 

model maintained a constant normal stress and employed a frictionless slip element at the 

surcharge – clay interface, as noted on Figure 5.23(b). 

 Subsequent stages applied lateral stress increments to simulate the PSDSA experiment.  

Figure 5.24 indicates the FEM boundary conditions used during application of the lateral 

increments.  The FEM model very closed simulated the PSDSA experimental procedures. 
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a)  Stage I - FEM Model to Establish Initial Stresses. 

 

 

 
 

b)  Stage II - Simulated Vertical Slope FEM Model with Surcharge. 

 

 

Figure 5.23.  FEM Vertical Slope Model. 
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Figure 5.24.  Homogeneous Vertical Slope FEM Model Boundary Conditions. 

 

 

 

5.3.1 Vertical Slope Model Results 

Analyses considered three different slip surface element shear strength conditions to represent a 
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The results of the FEM analyses are drawn with lateral stress contours at -10 kPa intervals 

beginning at 0-kPa, indicating a tension zone.  The following figures present the results of the 

FEM analyses at various lateral stress increments: 

 Figure 5.25 – Poisson’s ratio = 0.1 representing a brittle clay with no cohesive strength 

reduction along the slip element. 

 Figure 5.26 – Poisson’s ratio = 0.1 representing a brittle clay with a 25% cohesive 

strength reduction along the slip element and full cohesive strength everywhere else. 

 Figure 5.27 – Poisson’s ratio = 0.1 representing a brittle clay with a 50% cohesive 

strength reduction along the slip element and full cohesive strength everywhere else. 

 Figure 5.28 – Poisson’s ratio = 0.45 representing a brittle clay with no cohesive strength 

reduction along the slip element. 

 Figure 5.29 – Poisson’s ratio = 0.45 representing a brittle clay with a 25% cohesive 

strength reduction along the slip element and full cohesive strength everywhere else. 

 Figure 5.30 – Poisson’s ratio = 0.45 representing a brittle clay with a 50% cohesive 

strength reduction along the slip element and full cohesive strength everywhere else. 

Figures are presented in the subsequent pages. 
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a) Lateral stress = 40-kPa 

 

 

 

 
 

b) Lateral stress = 80-kPa 

 

 

 
 

c) Lateral stress = 120-kPa 

 

 
 

d) Lateral stress = 160-kPa 

 

 

Figure 5.25.  Vertical Slope FEM Model Analyses with  = 0.10, No Pre-Existing Toe Crack and 

Negative X-Stress Contours (10-kPa) Indicating Tension Zones. 
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a) Lateral stress = 40-kPa 

 

 

 

 
 

b) Lateral stress = 80-kPa 

 

 

 
 

c) Lateral stress = 120-kPa 

 

 
 

d) Lateral stress = 160-kPa 

 

 

Figure 5.26.  Vertical Slope FEM Model Analyses with  = 0.10, Pre-Existing Toe Crack with a 

25% Cohesive Strength Reduction, and Negative X-Stress Contours (10-kPa) Indicating Tension 

Zones. 

  



127 

 
 

a) Lateral stress = 40-kPa 

 

 

 

 
 

b) Lateral stress = 80-kPa 

 

 

 
 

c) Lateral stress = 120-kPa 

 

 
 

d) Lateral stress = 160-kPa 

 

 

Figure 5.27.  Vertical Slope FEM Model Analyses with  = 0.10, Pre-Existing Toe Crack with a 

50% Cohesive Strength Reduction, and Negative X-Stress Contours (10-kPa) Indicating Tension 

Zones. 
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a) Lateral stress = 40-kPa 

 

 

 

 
 

b) Lateral stress = 80-kPa 

 

 
 

c) Lateral stress = 120-kPa 

 

 
 

d) Lateral stress = 160-kPa 

 

 

Figure 5.28.  Vertical Slope FEM Model Analyses with  = 0.45, No Pre-Existing Toe Crack and 

Negative X-Stress Contours (10-kPa) Indicating Tension Zones. 
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a) Lateral stress = 40-kPa 

 

 

 

 
 

b) Lateral stress = 80-kPa 

 

 
 

c) Lateral stress = 120-kPa 

 

 
 

d) Lateral stress = 160-kPa 

 

 

Figure 5.29.  Vertical Slope FEM Model Analyses with  = 0.45, Pre-Existing Toe Crack with a 

25% Cohesive Strength Reduction, and Negative X-Stress Contours (10-kPa) Indicating Tension 

Zones. 
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a) Lateral stress = 40-kPa 

 

 

 

 
 

b) Lateral stress = 80-kPa 

 

 
 

c) Lateral stress = 120-kPa 

 

 
 

d) Lateral stress = 160-kPa 

 

 

Figure 5.30.  Vertical Slope FEM Model Analyses with  = 0.45, Pre-Existing Toe Crack with a 

50% Cohesive Strength Reduction, and Negative X-Stress Contours (10-kPa) Indicating Tension 

Zones. 
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5.3.1.1 Discussion of Findings.  The homogeneous vertical slope model considered a pre-existing 

closed crack at the toe of slope.  Linear elastic fracture mechanics theory indicated that crack 

propagation in a brittle material will occur in a radial direction from the tip and propagate in a 

direction in which  reaches its maximum value, which was shown to occur at  = 70.5.  The 

FEM models indicated that crack propagation did occur in a radial direction from the tip and the 

following findings are noted: 

 FEM analyses for both the  = 0.10 and 0.45 resulted in nearly identical rates and 

direction of failure plane propagation. 

 FEM models with a pre-existing toe crack exhibited similar failure plane propagation rate 

and direction that were independent of the reduction in cohesive strength along the slip 

element; that is, both the 25% cohesive reduction and the 50% cohesive reduction 

resulted in nearly identical rates and direction of failure plane propagation. 

 FEM analyses for the simulated vertical slope model indicated the significance of an 

existing toe crack.  The FEM models with an existing toe crack exhibited tangential stress 

fields that would cause a failure plane to propagate in a radial direction whereas the 

simulated slopes with no pre-existing toe crack did not exhibit any significant tangential 

stresses. 

 FEM analyses indicated that initial failure plane propagation occurred in a radial 

direction from the tip and propagated at approximately 54 with respect to the x-axis.  

Figure 5.31 presents a plot of shear stress along the x-axis beginning at the tip of the slip 

element for  = 0.10 and considered a 25% cohesive strength reduction along the slip 
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 element.  Review of Figure 5.31 indicates that although there is stress concentrations at 

the tip of the crack, as encountered in the FEM shear models, the shear stresses at or near 

the slip element for the vertical slope model do not increase above the undrained shear 

strength until the second lateral stress increment.  However by the second lateral stress 

increment, the FEM models indicated that crack propagation had already occurred in a 

radial direction (Figure 5.26 (b)).  This finding was also noted for  = 0.45 cases.  This 

indicates that crack propagation occurred in a radial direction from the crack tip prior to 

horizontal propagation. 

 

 
 

Figure 5.31.  Shear Stress along a Horizontal Plane from the Tip of the Slip Element for  = 0.10 

and a 25% Cohesive Strength Reduction along the Slip Element. 
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5.4 SUMMARY OF FINDINGS 

FEM models were created to replicate the laboratory test program observations and study closed 

crack propagation under r and  loading conditions.  The FEM models consisted of two shear 

models and one vertical slope model and utilized a slip element to represent an idealized crack.  

The shear models consisted of clay on clay and sand on clay to create two different interfaces 

along the potential failure plane.  The vertical slope model consisted of clay on clay with a pre-

existing toe crack.  A summary of the findings from the FEM analyses is as follows: 

 FEM analyses for the shear models replicated the laboratory test program observations 

regarding horizontal crack propagation for both the clay on clay and sand on clay shear 

models. 

 FEM analyses for the shear models with  = 0.10 indicated that the rate of failure plane 

propagation occurred in a manner that was independent of the magnitude of shear 

strength reduction along the slip element; that is, both the 25% and 50% reductions in 

cohesive  shear strength models resulted in nearly identical rates of failure plane 

propagation whereas the no shear strength reduction model required additional shear 

strain to achieve complete propagation of the failure plane across the model. 

 FEM analyses for the shear models with  = 0.45 produced different results for the clay 

on clay and sand on clay models.  The clay on clay shear models underwent crack 

propagation that was independent of the slip element; that is, the no shear strength, 25% 

and 50% shear strength reduction resulted in nearly identical rates of failure plane 

propagation.  This result is attributed to the volumetric strain tending toward zero and the 

material becoming incompressible.  However, when the FEM model incorporated an 
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upper sand section, the rate of failure plane propagation occurred in a manner that was 

independent of the magnitude of shear strength reduction along the slip element; that is, 

both the 25% and 50% reductions in cohesive strength models resulted in nearly identical 

rates of failure plane propagation whereas the no shear strength reduction model required 

additional shear strain to achieve complete propagation. 

 The FEM shear models exhibited similar shear strain requirements as laboratory models; 

that is, the clay on clay model for both the laboratory and FEM model required less shear 

strain, compared to the sand on clay models, to develop the horizontal failure plane.  

 The FEM model for the homogeneous vertical slope indicated crack propagation in a 

radial direction from the tip as predicted by fracture mechanics.  Linear elastic fracture 

mechanics indicated that crack propagation would occur at 70.5 whereas the FEM 

models indicated 54.  FEM analyses for both the  = 0.10 and 0.45 resulted in nearly 

identical failure plane propagation rate and direction. 

 The FEM models for the homogeneous vertical slope with a pre-existing toe crack 

exhibited similar failure plane propagation rate and direction that were independent of the 

reduction in cohesive strength along the slip element.; that is, both the 25% cohesive 

reduction and the 50% cohesive reduction resulted in nearly identical rates and direction 

of failure plane propagation. 

 The FEM models for the homogenous vertical slope indicated the significance of an 

existing toe crack.  The FEM models with an existing toe crack exhibited tangential stress 

fields that could cause a failure plane to propagate in a radial direction whereas the 
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simulated slopes with no pre-existing toe crack did not exhibit any significant tangential 

stresses. 

FEM models were developed in an effort to replicate the observed laboratory results and 

therefore validate their use for additional fracture mechanics studies.  The FEM models and the 

principles of fracture mechanics exhibited general agreement with the laboratory testing 

program.  
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6.0 EVALAUTION OF THEORETICAL  = 0 SLOPES USING 

FINITE ELEMENT METHODS 

 

 

 

 

At-rest lateral earth pressures exist in clay soils and develop under long-term conditions as the 

soil is deposited and acted upon by changes in loading.  Excavation into these material results in 

the release of confining stress along the slope face.  The release of horizontal confining stress, or 

lateral stress relief (LSR), will produce an outward deflection along the slope face that drastically 

alters the in-situ stresses within the backslope region.  FEM analyses are used to investigate the 

impact that LSR has on the stability of  = 0 slopes. 

 

6.1 INTRODUCTION OF FINITE ELEMENT MODELS 

FEM models were developed for Vertical (90), ¼H:1V (76) and ½H:1V (63) slopes.  The 

FEM models used standardized material properties for all models developed in this research.  

The use of standardized material properties allowed comparison between models to observe 

failure plane propagation behavior under different load and geometric conditions.  The 

geotechnical values used for the FEM laboratory models are shown in Table 6.1.  These values 

were derived from laboratory testing of a geologic stratum known locally as the Pittsburgh Red 

Beds, which were discussed under Section 5.1.1. 
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Table 6.1.  Geotechnical Parameters and Values Used for the FEM Models. 

 

 

Geotechnical Parameter  Material and Parameter Values 

Clay Sand 

E, Modulus of Elasticity 177,100 kPa 44,375 kPa 

ko, lateral earth pressure 1, 2, and 3 0.54 

, Poisson’s Ratio 0.40 0.35 

c, Cohesion 86.2 kPa 0 

, Friction Angle 0 30 

, Dilation Angle 0 0 

, Unit Weight 20.42 kN/m
3
 18 kN/m

3
 

, Slope Angle 90, 76, and 63 -- 

 

 

 

 FEM models used a two dimensional mesh with isoparametric elements that consisted of 

either six node triangles or eight node quadrilaterals.  The analyses employed an elastic-plastic 

constitutive model which described an elastic-perfectly plastic relationship.  Dunlop and Duncan 

(1970), Smith and Hobbs (1974), Griffiths and Lane (1999), and Griffiths (2000) indicated that 

this constitutive model is most appropriate for clay slopes under undrained conditions where 

both stress-strain relationships and the failure criterion are expressed in terms of total stresses. 

 As noted in Table 6.1, the FEM considered three different values, namely a ko = 1, 2, and 3.  

Regarding overconsolidated clays, the at-rest lateral earth pressure coefficient is closely related 

to the stress history of the soil.  Brooker and Peck (1993) reported that a ko = 2.0 is generally 

associated with overconsolidated clays while Craig (1992) reported that ko = 2.8 for London Clay 

with an OCR = 25.  As such, a ko value for a clay material as large as 3 is considered entirely 

appropriate for this study. 
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6.1.1 Initial FEM Analyses 

FEM analyses were conducted for Vertical, ¼H:1V and ½H:1V slopes.  The typical FEM model 

developed for a vertical excavation is shown as Figure 6.1.  As indicated in Table 6.2, this slope 

had a factor of safety of 2.0 using Culmann’s (1866) method and 1.34 using Terzaghi’s (1943) 

method.  Left and right boundaries were placed at a distance greater than three times the slope 

height to eliminate their influence (Dunlop and Duncan, 1969).  In-situ stress conditions in the 

FEM model were first established without any disturbance or excavation (Duncan, 1996).  

Elements were subsequently removed and the slope face was allowed to relax under LSR.   

The initial horizontal movement along the slope face due to LSR without regard for the 

development of shear zones is shown as Figure 6.2.  These results represent consistent behavior 

with published case studies that indicate slight bulging near the toe of slope (Skempton and 

LaRochelle, 1965; Duncan and Dunlop, 1969; and Burland, et al, 1977).  LSR also created 

significant changes to ko in the backslope of the excavated face, as shown in Figure 6.3. 

It should be noted that an unsupported vertical cut is not analogous to a retained excavation 

since the stress conditions are different.  This impacts both the critical height and shape of the 

sliding surface (Terzaghi, 1943). An unsupported vertical excavation results in normal stress 

along the slope face that are equal to zero and the soil located above the potential failure surface 

is in a state of elastic equilibrium while the retained section is acted upon by compressive 

stresses in the lower region.  This condition impacts both the height and shape of the sliding 

surface. 
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Figure 6.1.  Typical FEM Model Used to Establish Initial Stress Conditions for a Clay Slope on 

Clay Base. 

 

 

 

 

 

Table 6.2.  FEM Model Critical Slope Height Parameters. 

 

 

Critical Slope                                 

Height Parameters 
Culmann’s (1866) Method Terzaghi’s (1943) Method 

Geotechnical Parameters c = 86.2 kPa,  = 20.42 kN/m
3
 

Critical Height (m)   
 (     )

     
         

    (    )

     
       

Slope Height used in FEM 

Analyses (m) 
8.45m 

Theoretical Factor of Safety 
    

    
     

    

    
      

 

  

Elements Removed to 

Simulate Excavation Slope Face 
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Figure 6.2.  Horizontal Movement of the Slope Face from LSR Neglecting Shear Zones. 
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Figure 6.3.  Impact of ko from Lateral Stress Relief on a Vertical Slope without Consideration for 

Shear Zones. 
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 Review of Figure 6.3 indicated that the lateral stress relief from an unsupported excavation 

impacted ko for a distance of two to three times the slope height at the base of the excavation and 

the influence increased significantly at the top of the slope in the tension zone.  Clough and 

O’Rourke (1990) note that the settlement profile behind a braced or anchored wall can extend 

behind the backslope a distance up to two times the depth of the excavation.  However, when a 

retaining structure is not involved and the wall face is allowed to undergo LSR, studies 

performed herein suggest that distance for an unsupported cut is significantly greater at four 

times the slope height and strongly dependent on ko.  The extent of this influence is in general 

agreement with published case studies, which indicate that excavations underlain by a great 

depth of overconsolidated clay show backslope movements extending to more than three times 

the depth of the excavation (Burland, et al, 1977; Sills, et al, 1977; and Burland and Hancock, 

1977). 

6.1.2 Evaluation of FEM Stress Conditions 

Stresses developed by the FEM models were evaluated at Gauss points to determine if shear 

planes developed using Mohr-Coulomb failure criterion.  Figure 6.4(a) indicates the total stress 

for a theoretical element representative of an overconsolidated clay with ko = 3.0.  LSR altered 

the initial stress conditions as shear stresses developed within the soil mass.  A failure plane, or 

crack, was considered to develop if Gauss point stresses exceeded the failure criterion, as shown 

on Figure 6.4(b).  
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(a) Initial Stress Conditions Prior to LSR 

 

 

 
 

(b) Stress Conditions after LSR 

 

 

Figure 6.4.  Total Stress for a Theoretical Element with ko = 3.0. 
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Vertical, horizontal, and tensile stresses were evaluated at each stage and the model was re-

meshed to model crack propagation (Hellen, 2001; Griffiths, 2009).  The FEM model developed 

areas or stress bulbs where the  (i.e., tensile strength) and / or r (i.e., shear strength) stresses 

would exceed the allowable value.  When this occurred, a failure or crack was considered to 

develop in this region.  Although actual failure planes develop from Riedel and Thrust 

discontinuities coalescing to form an undulating, continuous sliding surface (Skempton, 1966), 

these bulb failure regions were generally modeled as a single failure plane that would produce a 

kinetically viable failure plane to cause slope failure. 

 Closed cracks were modeled using slip elements with an increased mesh concentration to 

investigate failure plane propagation.   A separate FEM model from the one presented in Figure 

6.1 was developed to investigate the failure plane propagation; this model used a finer mesh 

concentration to capture the stress concentrations created by the failure plane “cracks”.  Vertical, 

horizontal, and shear stresses were evaluated at each stage and the model was re-meshed to 

model crack propagation (Hellen, 2001).  Based on research conducted by Bazett, et al (1961), 

Skempton and LaRochelle (1965), and Burland, et al (1977), the analyses considered a reduction 

in the undrained shear strength along a slip element of 50%.  It should be noted that research 

presented herein also demonstrated that as long as a reduction in shear strength occurred, the 

magnitude of that reduction did not significantly influence the rate and direction of failure plane 

propagation. 

 Angled cracks that initiated at the toe of slope were modeled as frictionless elements where 

negative lateral stress developed, indicating a gap condition.  Frictionless elements are also 

justified by field observations from Skempton and LaRochelle (1965) where they discuss clay 

“burst” that occurred at the toe of excavation in London Clay.  The London Clay was seen to 
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bulge and cracking extended into the slope face from the toe.  Tensile criterion was based on a 

correlation study performed Fang and Fernandez (1981).  Their research related unconfined 

compressive strength to tensile strength and resulted in a tensile strength of -41 kPa for the 

material noted in Table 6.1. 

 

6.2 CLAY SLOPE ON CLAY BASE 

The horizontal movement at the slope face due to LSR significantly altered the backslope 

conditions and created shear and tension cracks in the soil mass.  Studies performed herein 

indicated that the initial direction of crack propagation was strongly dependent on ko, with two 

principal failure planes developing in the soil mass at the toe of slope and one failure plane 

developing in the backslope along the crest.  The failure planes are described as follows:  

 Horizontal Failure Plane. The first failure plane, or crack, was attributed to differential 

strain-induced movement and extended in a general horizontal direction into the 

backslope at the base of the excavation.  The length of this crack was dependent on ko; 

the greater the ko, the longer the horizontal crack extended into the backslope.  This result 

is consistent with published case histories (Burland, et al, 1977). 

 Inclined Failure Plane. The second failure plane was attributed to shear-induced changes 

created by LSR and extended in an upward angle from the toe of slope.  The angle of the 

critical failure plane was also strongly dependent on ko and the angle became steeper with 

increasing ko.  This behavior was consist with Skempton and LaRochelle (1965) in which 
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they discussed clay “burst” where the toe of excavation in London Clay was seen to 

bulge and that cracking extended into the slope face from the toe. 

 Tension Crack. The final failure plane developed as a result of LSR which created a 

tension zone in the backslope that could initiate tension cracking. 

Table 6.3 provides a summary of the FEM analyses for the clay slope on clay base.  Appendix D 

contains the FEM analysis output figures. 

 

Table 6.3.  Summary of Finite Element Results for Clay Slope on Clay Base. 

 

 

 

 

 

The development of the failure planes was attributed to LSR and considered Mohr-Coulomb 

failure criterion with stresses obtained at Gauss points.  It is important to note that Table 6.3 

indicated only one critical inclined failure plane.  However, FEM analyses encountered 

numerous failure planes in the backslope, but these failure planes were disregarded in subsequent 

analyses since their impact on overall stability was considered kinematically unviable to overall 

Slope 

Face 

Angle 

Limit 

Equilibrium 

Factor of 

Safety 

ko Slope Conditions due to Initial LSR Slope Conditions due to 

Progressive Slope Failure 
Initial Height 

of Failure 

Plane / 

Total Slope 

Height 

Failure Plane Angle 

(wrt horizontal) 

Minimum Maximum Did Slope 

Failure  

Occur ? 

Depth of 

Tension 

Crack / Total 

Slope Height 

90 2.0 

1.0 < 0.10 45 45 No 0.45 

2.0 0.13 46 59 Yes 0.46 

3.0 0.21 55 77 Yes 0.48 

76 

(¼H:1V) 
2.6 

1.0 < 0.10 45 46 No N/A 

2.0 0.12 50 60 No 0.34 

3.0 0.22 50 77 Yes 0.47 

63 

(½ H:1V) 
3.2 

1.0 < 0.10 45 46 No N/A 

2.0 < 0.10 50 59 No 0.27 

3.0 0.23 51 77 No 0.47 
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slope failure.  Further investigation of the critical inclined failure planes noted in Table 6.3 

revealed that they are consistent with the classical solutions regarding the stability of 

unsupported vertical cuts when ko = 1, which results in an  = 45 (Culmann, 1866; Taylor, 

1937; and Terzaghi, 1943).  However, as ko increased, the angle of the failure plane also 

increased and initial cracking extended to approximately ¼ of the total slope height, which is 

consistent with field observations from Skempton and LaRochelle (1965) and Burland, et al, 

1977). 

6.2.1 Sequence of Crack Propagation due to Lateral Stress Relief 

FEM analyses were conducted for Vertical, ¼H:1V and ½H:1V slopes.  Based on these FEM 

studies, the general sequence of crack propagation for a vertical slope is shown as Figure 6.5 and 

is summarized as follows:  

1. Lateral stress relief resulted in the formation of a horizontal and inclined crack that 

initiated at the toe and extended into the backslope.  Both the crack length and angle were 

directly related to ko.  In addition, lateral stress relief resulted in a tension zone at the 

crest of slope which initiated tension cracking (Figure 6.5(a)); 

2. The horizontal, inclined, and tension cracks propagated simultaneously due to stress 

concentrations.  A toe failure developed that resulted in a wedge of material falling away 

from the slope due to negative vertical as well as lateral stress conditions.  The toe failure 

tended to reduce propagation of the inclined crack, however, the tensile cracking 

continued to advance as the material “unzipped” itself (Figure 6.5(b)); 
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(a)  LSR Results in Horizontal and Inclined Crack at Toe along with Tension Crack at Crest. 

 

 

 
 

(b) Horizontal, Angle, and Tension Cracks Propagate Simultaneously due to Stress 

Concentrations; Negative Vertical Stresses Result in a Toe Failure. 

 

 

 
 

(c)  Propagation of the Angle Crack Extending to the Tension Crack Resulting in Slope Failure. 

 

 

Figure 6.5.  Progressive Failure Propagation for a Vertical Slope with ko = 3.0. 
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3. Tensile crack propagation generally occurred at a greater rate than angle crack 

propagation; 

4. Ultimate slope failure was attributed to a sudden propagation of the angle crack that 

extended to the tension crack (Figure 6.5(c)). 

Analyses indicate that the ¼H:1V slope remained relatively stable when ko = 1 and 2, but failed 

when ko = 3.  Analyses also indicated that the ½H:1V slope remained stable for ko = 1, 2 and 3.  

However, it is important to note that all three slopes (i.e., Vertical, ¼H:1V and ½H:1V) 

developed horizontal and inclined cracks at the toe due to initial LSR.  Although FEM analyses 

did not predict failure in all of the models, one should not conclude that failure would not occur 

for these slopes.  The FEM models did not consider long-term phenomena such as creep and the 

gradual destruction of diagenetic bonds, which can explain the long-term failures. 

 The progressive slope movement predicted by FEM after each iteration due to crack 

propagation for vertical slopes with ko = 1, 2, and 3 is shown on Figure 6.6.  FEM predicted a 

stable slope when ko = 1.0, which is in accordance with classical solutions (Culmann, 1866; 

Taylor, 1937; and Terzaghi, 1943).  However, FEM analyses indicated progressive slope failure 

when ko = 2 and 3.  It should also be noted that at slope failure, the depth of the tension crack 

varied from approximately 0.45H to 0.48H of the slope height, in accordance with Terzaghi’s 

(1943) assumption.   

 Figures 6.7 and 6.8 present the progressive slope movement predicted by FEM after each 

iteration due to crack propagation for ¼H:1V and ½H:1V slopes, respectively.  FEM predicted 

slope failure when ko = 3.0 and a stable slope when ko = 1 and 2 for the ¼H:1V slope.  FEM 

predicted a stable slope when ko = 1, 2, and 3 for the ½H:1V slope. 
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Figure 6.6.  Progressive Horizontal Movement along a Vertical Slope Face Predicted by FEM. 
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Figure 6.7.  Progressive Horizontal Movement along a ¼H:1V Slope Face Predicted by FEM. 
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Figure 6.8.  Progressive Horizontal Movement along a ½H:1V Slope Face Predicted by FEM. 
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6.3 CLAY SLOPE ON CLAY BASE WITH OPEN TOE CRACK 

An open toe crack can develop in both natural and excavated slopes.  An open toe crack can 

develop from such processes as erosion from wave action, differential weathering of moisture 

sensitive materials, over-excavation, and mining activities.  Open toe cracks that develop from 

differential weathering are common with the moisture sensitive strata of western Pennsylvania 

(Kutschke, et al, 2007, 2007, 2007, and 2008 ).  Shotcrete and dental concrete are commonly 

used to seal these strata and minimize continued development in excavated slopes, as exampled 

by Figure 6.9 obtained from the Pennsylvania Department of Transportation (PennDOT, 1950).  

This construction detail was used during the widening of the Boulevard of the Allies in 

Pittsburgh, PA to minimize weathering of an existing open crack created by differential 

weathering between the Wellersburg Claystone and Morgantown Sandstone. 

 

 
 

Figure 6.9.  PennDOT Design Detail to Minimize Continued Development of a Toe Crack. 
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6.3.1 FEM Modeling of an Open Toe Crack 

FEM analyses were conducted for a vertical slope with an open toe crack.  The FEM models 

used the standardized material properties as noted in Table 6.1 and the slope height as noted in 

Table 6.2.  The models used a two dimensional mesh with isoparametric elements consisting of 

either six node triangles or eight node quadrilaterals and employed an elastic-plastic constitutive 

model.  FEM analyses considered three different values of ko, namely 1, 2, and 3.  Toe cracks 

were defined by the variable Crack, expressed as follows: 

 Crack = 
      

      
⁄  

where Hcrack is the crack height and for this research was maintained at 1-unit and Lcrack is the 

crack length which was the variable (e.g., when Crack = 0.25, the crack was four times longer 

than it was higher).  FEM analyses considered Crack = 0.25, 0.33 and 0.50, indicating that the 

length of the crack was 4, 3, and 2 times longer than it was higher, respectively.   

 The typical FEM model developed for a vertical excavation with a Crack = 0.25 is shown as 

Figure 6.10.  Left and right boundaries were placed at a distance greater than three times the 

slope height to eliminate their influence (Dunlop and Duncan, 1970).  In-situ stress conditions in 

the FEM model were first established without any disturbance or excavation (Duncan, 1996).  

Elements were subsequently removed and the slope face was allowed to relax under LSR. 
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Figure 6.10.  Typical FEM Model developed for a Vertical Excavation with Crack = 0.25. 

  

Close-up view of an open toe crack 

where the crack length is 4 times 
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6.3.2 FEM Analyses for Slope with an Open Toe Crack 

FEM analyses were conducted for vertical slopes with an open toe crack.  Appendix E contains 

the FEM output sheets.  The initial horizontal movements along the slope face due to lateral 

stress relief without regard for the development of shear zones are shown as Figure 6.11.  

Movement was very similar to the clay slope on clay base analyses that neglected base cracking.  

Review of Figure 6.11 indicated that horizontal slope face movement was related to the crack 

length.  A longer crack resulted in more outward slope face movement since the cantilevered 

open toe crack offered no resistance to movement.  Failure plane development at the toe of slope 

due to lateral stress relief for a clay slope with an open crack occurred in a similar manner to 

crack propagation within a clay slope with a closed toe crack.  Fracture mechanics principles 

indicated that an open or closed crack would propagate in a similar fashion under Mode II 

loading conditions. 

 The open toe crack combined with lateral stress relief created significant changes to ko in the 

backslope of the excavated face, as shown in Figure 6.12 through 6.14.  The toe crack had 

negligible impact on ko near the base and middle of the slope. However, the toe crack had 

significant influence on ko near the crest of the slope where the maximum tension zone occurred 

at 1.0H to 1.2H, where H is the total slope height.  As the crack length increased, the magnitude 

of negative lateral earth pressure along the crest also increased, which is intuitively correct.  A 

Crack = 0.50 resulted in a maximum ko value of -2.0, while a Crack = 0.25 resulted in a ko value 

of -2.7 for an initial ko = 1.0, as shown on Figure 6.12.  A similar conclusion was also noted in 

Figure 6.13 and 6.14.   
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Figure 6.11.  Initial Horizontal Movement due to LSR along a Vertical Slope Face with an Open 

Toe Crack and Neglecting the Development of Shear Zones. 
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Figure 6.12.  Variation of the Lateral Earth Pressure Coefficient for a Vertical Slope subjected to 

LSR with an Initial ko = 1.0. 
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Figure 6.13.  Variation of the Lateral Earth Pressure Coefficient for a Vertical Slope subjected to 

LSR with an Initial ko = 2.0. 
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Figure 6.14.  Variation of the Lateral Earth Pressure Coefficient for a Vertical Slope subjected to 

LSR with an Initial ko = 3.0. 
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The Crack geometry condition influenced the depth of the initial tension zone from LSR, as 

summarized in Table 6.4.  Table 6.4 also presents the depth of the initial tension zone for vertical 

clay slope on a clay base with no open toe crack at the base of the slope.  An open toe crack 

increased the depth of the initial tension zone from LSR.  This is significant since the clay slope 

on clay base FEM models with a closed crack indicated that tensile crack propagation generally 

occurred at a greater rate than angle crack propagation.  As such, vertical clay slopes with an 

open toe crack would undergo an increased rated of crack propagation. 

 

Table 6.4.  Depth of Initial Tension Crack along Backslope for Vertical Clay Slope on Clay Base 

without and with an Open Toe Crack. 
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6.4 CLAY SLOPE ON SAND BASE 

FEM models were developed for Vertical, ¼H:1V and ½H:1V clay slopes on a sand base.  The 

FEM models used standardized material properties as noted in Table 6.1 and the clay slope 

height as noted in Table 6.2.  FEM models used a two dimensional mesh with isoparametric 

elements consisting of either six node triangles or eight node quadrilaterals.  The analyses 

employed an elastic-plastic constitutive model for both the sand and clay.  Several FEM models 

were developed for this research with only the variable being the lateral earth pressure 

coefficient that considered ko = 1, 2, and 3, and the slope angle which considered  = 90, 76, 

and 63. 

6.4.1 FEM Analyses for Clay Slope on Sand Base 

The typical FEM model developed for a vertical excavation is shown as Figure 6.15.  As 

indicated in Table 6.2, this slope had a factor of safety of 2.0 using Culmann’s (1866) method 

and 1.34 using Terzaghi’s (1943) method.  Left and right boundaries were placed at a distance 

greater than three times the slope height to eliminate their influence (Dunlop and Duncan, 1970).  

In-situ stress conditions in the FEM model were first established without any disturbance or 

excavation (Duncan, 1996).  Elements were subsequently removed and the slope face was 

allowed to relax under LSR.  Appendix F contains the FEM output sheets.   

 The initial horizontal movement along the slope face due to lateral stress relief without 

regard for the development of shear zones is shown as Figure 6.16.  These results represent 

consistent behavior with published case studies which indicate slight bulging near the toe of 

slope (Skempton and LaRochelle, 1965; Duncan and Dunlop, 1969; and Burland, et al, 1977).  It  
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Figure 6.15.  Typical FEM Model Used to Establish Initial Stress Conditions for a Clay Slope on 

Sand Base. 

 

 
 

 

Figure 6.16.  Horizontal Slope Face Movement from LSR Neglecting Shear Zones.  
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is interesting to note that the slope face movement for the clay slope on sand base had larger 

displacements than the slope face movement for the clay slope on clay base; refer to Figure 6.17 

for a direct comparison.  The larger horizontal slope face movement created significant changes 

to ko in the backslope of the excavated face.  The variation of ko along the top of slope from 

initial LSR without regard for the development of shear zones is shown as Figure 6.18.  Review 

of the Figure 6.18 indicated that the greatest impact on ko from LSR was for the vertical slope 

and the impact decreased with decreasing slope angle.  LSR for the vertical slope created a 

significant tension zone in the backslope region that resulted in ko decreasing from the initial 

value of ko = 3, to a LSR value of ko = -7.0.  This is significant since tensile crack propagation 

generally occurred at a greater rate than angle crack propagation.  However, the impact of LSR 

on ko decreased with a decreasing slope angle. A slope angle of ½H:1V actually experienced a 

slight increase in ko near the slope face, which has been attributed to rebound of the slope face 

from removal of the overburden material.  

 The horizontal slope face movement also created differential movement between the upper 

clay slope and lower sand base, as shown on Figure 6.19.  The differential movement for the 

vertical slope extended approximately 1.5H back into the backslope region for the vertical slope 

face and approximately 1.0H for the ¼H:1V slope.  This finding in consistent with a published 

case history for a near vertical clay slope on a sand base in which the ground within a region of 

about 1.0 to 1.5 times the depth away from the face appeared to move as a block sliding on a 

horizontal shear band formed by bedding planes near the base of the excavation (Burland, et al, 

1977).   

 



165 

 

 

Figure 6.17.  Comparison of Horizontal Slope Face Movement due to LSR between Vertical 

Clay Slopes on Sand and Clay Bases Neglecting Shear Zones. 
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Figure 6.18.  Variation of Lateral Earth Pressure along Top of Slope from LSR for a Vertical 

Clay Slope on Sand Base. 
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Figure 6.19.  Differential Horizontal Movement due to LSR along the Interface between the 

Upper Clay and Lower Sand. 
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6.5 SUMMARY OF FEM 

LSR for clay slopes significantly altered the backslope conditions and created shear and tension 

cracks in the soil mass.  The initial direction of crack propagation was strongly dependent on ko, 

with two principal failure planes developing in the soil mass at the toe of slope and one failure 

plane developing in the backslope along the crest, as shown on Figure 6.20.  The failure planes 

are described as follows:  

 Horizontal Failure Plane. The first failure plane, or crack, was attributed to differential 

strain-induced movement and extended in a general horizontal direction into the 

backslope at the base of the excavation.  This result was consistent with the principles of 

fracture mechanics for shear induced failure in which the failure plane propagated along 

the pre-existing horizontal failure plane.  The length of this crack was dependent on ko; 

the greater the ko, the longer the horizontal crack extended into the backslope.   

 Inclined Failure Plane. The second failure plane was attributed to shear-induced changes 

created by LSR and extended in an upward angle from the toe of slope.  This result was 

consistent with the general principles of fracture mechanics, although the crack 

propagation angle was not in strict conformance.  The angle of the critical failure plane 

was also strongly dependent on ko and the angle became steeper with an increasing initial 

ko.  The crack did not propagate along a constant angle, rather it generally became flatter 

as it progressed into the backslope. 

 Tension Crack. The final failure plane developed as a result of LSR which created a 

tension zone in the backslope that could initiate tension cracking.  Tension crack 
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propagation adhered to the principles of fracture mechanics which indicates that the 

cracks would tend to propagate vertically with the crack plane. 

 

 
 

 

 

Figure 6.20.  Failure Planes Created by Lateral Stress Relief. 

 

 

 

 FEM analyses indicate a strong relationship between overall slope stability and the initial ko 

value.  A vertical slope remained stable for ko = 1.0, as predicted by classical methods.  

However, LSR resulted in the formation of toe and tension cracks that lead to eventual slope 

failure for vertical slopes with initial ko = 2 and 3.  The ¼H:1V slope remained relatively stable 

when ko = 1 and 2, but failed when ko = 3.  Analyses also indicated that the ½H:1V slope 

remained stable for ko = 1, 2 and 3. 
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7.0 MODIFICATION OF LIMIT EQUILIBRIUM STABILITY ANALYSES  

 

 

 

 

Conventional limit equilibrium methods of slope stability analysis for unsupported vertical cuts 

in cohesive material only consider the development of a tension zone (Terzaghi, 1943).  

However, FEM analyses preformed herein indicate that LSR resulted in the formation of tension 

and toe cracks that lead to the eventual slope failure for vertical as well as inclined slopes.  LSR 

for clay slopes significantly altered the backslope conditions and created shear and tension 

cracks in the soil mass.  The initial direction of crack propagation was strongly dependent on ko.  

As such, the limit equilibrium equations for the stability of analyses for unsupported vertical cuts 

in cohesive material need to consider the impact of LSR. 

 

7.1 VERTICAL SLOPES 

Conventional limit equilibrium methods of slope stability analysis for unsupported vertical cuts 

in cohesive material only consider the development of a tension zone (Terzaghi, 1943).  The 

derivation of this equation was provided under Section 1.2.3 and is presented as Equation 7-1 for 

ready reference. 

 

f

CRITICAL

c
H

67.2
  7-1 
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Equation 7-1 does not consider the development of shear zones that occur from lateral stress 

relief at the toe of slope.  Review of Figure 7.1 indicated that continued propagation of HI would 

produce a kinematically viable failure plane that would result in overall slope failure.  Terzaghi 

(1943) noted that the curvature of the sliding surface through a vertical bank can be disregarded 

since the mathematical difference between a curved and plane failure surface is, for practical 

purposes, negligible.  Applying this same assumption, the conditions for stability of a vertical 

slope has been modified to account for the inclined toe crack that develops from LSR. 

 

 

 
 

 

Figure 7.1.  Vertical Slope with Plane Failure Surface, Tension and Toe Crack. 

 

 

 

 Recall that the mass of soil (W) defined by block abcd  was expressed as: 

 
 





tan2

22 zH
W


  7-2 

 

H 

W 

C 

 

z 

F 
a 

b c 

d 

HI 



172 

The sliding resistance (C) has been modified to account for the toe crack and is given by: 

  zHH
c

C I

f


sin
 7-3 

HI is subtracted from the overall slope height and does not provide shear resistance.  FEM 

modeling indicated that ko at the toe developed negative vertical and lateral stresses that resulted 

in a section of the material dislodging from the slope face.  Skempton and LaRochelle (1965) 

confirm this finding in which they discussed clay “burst” where the toe of excavation in London 

Clay was seen to bulge and that cracking extended into the slope face from the toe.  

 At limit equilibrium, the sum of the forces on the sliding plane must equal 0.  Therefore, 

combining Equation 7-2 and Equation 7-3 resulted in the following expression: 
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Manipulating Equation 7-4 produces the following expression, which is similar to Equation 1-49, 

but considers the impact of toe cracking due to LSR: 
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Based on laboratory testing using gelatin samples, Terzaghi (1943) made the assumption that z = 

H/2.  FEM studies performed herein indicate that this assumption was appropriate as the depth of 

the tension crack varied from 0.45H to 0.48H for a vertical slope when ko varied from 1.0 to 3.0, 

respectively.  Therefore Equation 7-5 may be simplified as follows: 
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which reduces to the following expression: 
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FEM studies performed herein indicated that two parameters noted in Equation 7-7 are 

dependent on ko, namely the angle of the failure plane () and height of the inclined failure plane 

(HI).  Recall that Table 6.3 summarized the FEM values for  and Hc from initial LSR and these 

values are presented in Table 8.1 for ready reference. 

 

Table 7.1.  FEM Results for Clay Slope on Clay Base due to Initial LSR. 

 

 

ko Slope Conditions due to Initial LSR 

Height of Failure 

Plane / Total 

Slope Height (HI) 

Failure Plane Angle 

Minimum Maximum 

1.0 < 0.10 45 45 

2.0 0.13 46 59 

3.0 0.21 55 77 

 

 

 

 The maximum angle of the failure plane occurred immediately at the toe of slope in direct 

relation to ko.  Review of the FEM analyses indicted that ko increased rapidly and achieved a 

value of ko = 1.0 within 0.1 to 0.2H for all values of ko at the toe of slope, as noted in Figure 6.3.  

As such, the minimum angle of the failure plane was chosen for use in Equation 7-7 since this 

value would most accurately represent the overall failure plane conditions.  Utilizing the values 

noted in Table 7.1 for Hc and Minimum, Equation 7-1 may be expressed as noted in Figure 7.3 

where the solution has been expressed in terms of the Stability Factor, Ns.  As noted in Figure 
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7.3, the solution considered that when ko = 1.0, the limit equilibrium case was appropriate.  The 

initial height of the failure plane was less than 0.1H when ko = 1.0 and FEM analyses indicated 

agreement with the limit equilibrium solution. As such, no further modification of this expressed 

was considered for ko = 1.0. 

 

 
 

Figure 7.2.  Ns as a Function of ko considering LSR. 
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 Table 7.2 presents the revised critical height values based on the critical height parameters 

used for this study, and employing the revised Ns value noted in Figure 7.2.  The revised 

parameters indicate a critical height that is less than the critical height used in the FEM analyses.  

As such, the revised Ns values indicate slope failure, as predicted by the FEM analyses.  

 

Table 7.2.  Revised Critical Height Values for a Vertical Slope. 

 

 

Critical Slope  

Height Parameters 

ko = 3.0 ko = 2.0 

Geotechnical 

Parameters  
c = 86.2 kPa,  = 20.42 kN/m

3
 

Ns (based on LSR) 1.64 1.97 

HCRITICAL 6.9 m 8.3 m 

Slope Height Used in 

FEM Analyses 
8.45 m 8.45 m 

Factor of Safety 0.82 0.98 
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7.2 INCLINED SLOPES 

 

 

 

The limit equilibrium solution for the stability of  = 0 slope was developed by Terzaghi (1943) 

and was shown as Equation 1-59, and repeated as Equation 8-8 for ready reference. 

 s
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
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Terzaghi (1943) developed values of Ns for various slope angles and the stability factor varied 

linearly from 3.85 at  = 90 to 5.52 at  = 53.  However, the solution did not account for 

tension cracking or toe cracking due to LSR.  FEM analyses indicate that an inclined toe crack 

can develop as well as a tension crack due to LSR.  Figure 7.3 presents an inclined slope with 

both a tension crack as well as a toe crack.  Fellenis (1927), Taylor (1937, 1948); Terzaghi  

 

 
 

Figure 7.3.  Inclined Slope with Plane Failure Surface and Tension Crack.  
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1943), and Terzaghi and Peck (1967) have shown that when the slope face angle is greater than 

53, the failure surface is a circular arc that extends from the crest to the toe of slope.  The 

inclusion of tension and toe crack would reduce the length of shear resistance since a tension 

crack could offer no shear strength resistance. 

 The mass of soil defined by area     ̅̅ ̅̅ ̅̅  may be expressed as: 

       ( )( ) *  (  
 

   ( )
)+ 7-9 

where z = depth of the tension crack, L = distance from the crest to the tension crack,  = soil 

unit weight, and  = slope face angle.  Equation 7-9 may be manipulated into the following: 

     (   
  

     ( )
) 7-10 

The mass of soil defined by area     ̅̅ ̅̅ ̅̅  may be expressed as: 

       ( )(      ) *(  
 

   ( )
)      + 7-11 

where HI = height of toe crack due to LSR, and LTOE is horizontal distance between the slope 

face and the toe crack at the height of HI.  LTOE may be expressed by the following expression 

using the Law of Sines as follows: 

 
    

    (   )
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 7-12 
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Solving for LTOE, 

      [

  
    (      )

    ( )
] [    (   )] 7-13 

The triangular area defined by    ̅̅ ̅̅ ̅ is neglected in this derivation.  FEM modeling indicated that 

ko at the toe generally developed negative vertical and lateral stresses that resulted in a section of 

the material dislodging from the slope face.  This conclusion is also confirmed by Skempton and 

LaRochelle (1965) in which they discussed clay “burst” where the toe of excavation was seen to 

bulge and that cracking extended into the slope face from the toe. 

 The sliding resistance is defined by the undrained shear strength at failure (cf) acting along 

the failure plane LC.  Terzaghi (1943) noted that the curvature of the sliding surface through a 

vertical bank could be disregarded.  By similar extension, the failure surface connecting the toe 

crack and the tension crack for an inclined slope was considered to be a plane failure surface.  

The length of this failure surface is expressed by the following: 

     √      7-14 

in which the variables x and y are defined by the following equations: 

   ( )    (    )    
  

    ( )
 7-15 

           7-16 

At limit equilibrium, the sum of the forces on the sliding plane must be equal to zero, which 

results in the following: 
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 (     )    ( )  (  )(  )    7-17 

In order to reduce Equation 7-17 into simplest form, the terms HI, L, and z are normalized with 

respect to the total slope height, H.  The normalized values are shown in Table 7.4.  The values 

noted in Table 7.4 were based on the FEM analyses for a Clay Slope on Clay Base.  The toe 

crack height and depth of tension crack were presented in Table 6.3.  The distance from the slope 

crest to minimum lateral earth pressure coefficient is presented as Figure 7.4.  The tension crack 

was assumed to occur along the crest where the lateral earth pressure coefficient was at the 

greatest negative value (indicating maximum tension).  

 

 Table 7.3.  Toe Crack Height, Distance from Crest to Toe Crack, and Depth of Tension Crack 

Normalized to Total Slope Height. 
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Figure 7.4  Variation of Lateral Earth Pressure due to LSR along the Top of Slope. 
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 Equation 7-17 is now readily solved with the only unknown variables consisting of c,  and 

H, as all other variables are normalized with respect to H.  Figure 7.5 presents the solution to 

Equation 7-17 in graphical form.  It should be noted that the initial height of the failure plane 

was less than 0.1H for all cases when ko = 1.0 and FEM analyses indicated negligible tension 

zones.  As such, no further modification was considered for ko = 1.0. 

 

 

 
 

 

Figure 7.5.  Ns as a Function of ko considering LSR for Inclined Slopes. 
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 As noted below, the critical height for the ¼H:1V slope was 18.9-meters, based on equation 

1-59 and using the stability factor presented in Figure 1.6. 

 9.18)48.4(
42.20

2.86









cH

 

The actual height used in the FEM analysis was 8.45-meters, which resulted in a factor of safety 

of 18.9 / 8.45 = 2.24.  However, this solution did not account for the effects of LSR on the 

overall stability of the slope. Recall that FEM analyses indicated that slope failure did occur for 

the ¼H:1V slope when ko = 3.0, but remained stable for ko = 2 and 1. As such, it is expected that 

the factor of safety for a ¼H:1V slope when ko = 3.0 would be very close to unity.  Table 7.4 

presents the revised critical height value and employed the revised Ns value noted in Figure 7.5 

for the ¼H:1V slope.  Review of Table 7.4 indicated a considerable reduction in the factor of 

safety value. 

 

Table 7.4.  Revised Critical Height Values for ¼H:1V Slope. 

 

 

Critical Slope  

Height Parameters 

ko = 3.0 ko = 2.0 

Geotechnical Parameters  c = 86.2 kPa,  = 20.42 kN/m
3
 

Ns (based on LSR) 2.65 3.18 

HCRITICAL 11.1 13.4 

Slope Height Used in FEM 

Analyses 
8.45 m 8.45 m 

Factor of Safety 1.31 1.59 
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8.0 EVALUATION OF CASE HISTORIES USING FINITE ELEMENT METHODS 

 

 

 

 

FEM models were developed to evaluate the failure of two stiff clay slopes; the Oxford Slope 

and the Conemaugh Slope.  The Oxford Slope is a published case history of a stiff clay slope that 

involved a detailed site characterization and instrumentation program (Burland, Longworth and 

Moore, 1977; Burland and Moore, 1973; and Skempton and Hutchinson, 1969).  The 

Conemaugh Slope is also a published case history of a stiff clay slope and one in which the 

author has personnel working knowledge of (Kutschke, et al, 2007, 2007, 2007, 2008, and 2010).  

Finite element models were developed for these two slopes to investigate the effect of lateral 

stress relief on slope stability. 

 

8.1 OXFORD CLAY SLOPE 

Burland, Longworth, and Moore (1977) studied a 29-m deep excavation that occurred in stiff 

Oxford Clay.  Their work was part of a long-term research study that was carried out during 1969 to 

1971 at the London Brick Company’s Saxon pit near Peterborough, England.  The main purpose of 

their study was to measure the magnitude and extent of the ground movements and to examine the 

relative influence of material properties and geological factors on deformation behavior.  The work 

conducted by Burland, et al (1977) was the state-of-the-art for that time since the precise 

observation of movements required the development of new instrumentation and measurement 
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techniques.  Instrumentation was installed to measure ground movement surrounding the excavation 

(both at surface and at depth) and to investigate factors such as groundwater pressure.  The 

instrumentation consisted of piezometers, precise surveying, photogrammetry, horizontal 

extensometers, inclinometers, and vertical extensometers.  Refer to Burland and Moore (1973) for 

further details of the installation and performance of the instrumentation used in the Saxon Pit. 

 The excavation pit consisted of a 3 to 5-m thick mantle of sand, gravel, and weathered clay that 

overlied the Oxford Clay.  These deposits were stripped and placed in an adjoining pit.  The Oxford 

Clay was cut by a mechanical planar along a 25-m high face sloping at 72 with respect to the 

horizontal.  The gantry of the planar guided a continuous chain that carried 30-mm wide chisel bits.  

The bits would rake down the slope face and break off small lumps of clay.  The gantry pivoted 

about a vertical axis and was mounted on a rail system that traveled parallel to the slope face.  The 

resulting combination of rotation and lateral movement allowed a 10 to 15-m thick slice to be cut 

from the slope face. 

8.1.1 Site Characterization 

Site characterization was conducted by Burland, et al (1977), Burland and Moore (1973), and 

Skempton and Hutchinson (1969), and consisted of office research, field instrumentation, and 

laboratory testing to characterize the Saxon pit for geotechnical analyses.  The office research 

indicated that structurally, the area was relatively undisturbed with an average tilt of 1 to the south 

east.  Major faults had been recorded around and to the west of Peterborough, but Burland, et al 

(1977) indicated that no such faulting was evident in the brick pits.   
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The excavation in the Saxon Pit exposed the Middle and Lower Oxford Clay.  The Middle 

Oxford Clay (MOC) was 8 to 10-m thick and was more plastic than the 17-m thick Lower Oxford 

Clay (LOC).  The Kellaway Bed formation was at the base of the pit and consisted of 3.2-m of thick 

green-gray sand underlain by 2.1-m of dark blue-grey plastic clay.  The Kallaway Beds are 

underlain by the Great Oolite Series, a heterogeneous limestone stratum, and site investigation 

generally terminated at this depth. 

The MOC and LOC belong to the Callovian stage of the Upper Jurassic and were deposited in 

quite water in a relatively shallow epicontinental sea flanked by low relief (Hallam, 1975).  The 

Oxford Clays were once deeply buried and as such, are overconsolidated.  During the Pleistocene 

period, glaciers mantled the area with boulder clay, most of which had been eroded and replaced by 

terrace gravel deposits. 

The upper reaches of the MOC are moderately weathered clay with frequent brown-stained 

fissures and a homogeneous plastic appearance at the slope face.  This contrasted with the lower 

part which was much less fissured and weathered, with a blocky appearance.  The clay was 

classified as highly plastic and was considered to have a stiff consistency (Skempton and 

Hutchinson, 1969). 

The LOC consisted of two lithologic types which contrasted clearly along the excavated face.  

Dark brown-gray, strongly laminated shales predominate, especially near the base.  The LOC is 

more properly termed a clay-shale from a strength and soil fabric point-of-view.  This stratum had a 

relatively high calcium carbonate content that ranged from 10 to 20% and resulted in local 

cementing of the soil matrix (Burland, et al, 1977). 
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8.1.1.1 Geotechnical Properties of the Oxford Clay.  Burland, et al (1977) conducted an extensive 

laboratory testing program to characterize the site for geotechnical analyses.  The laboratory test 

data indicated that the unit weight of the Oxford clays were relatively consistent with depth, 

averaging 19.9 kN/m
3
, for both the MOC and LOC.  Index properties displayed small variation with 

depth, with an average liquid limit of 55% and a plastic limit of 24%, while the clay content was 

typically greater than 55%.  Water content decreased over the same depth from 22 to 18%.  The clay 

near the crest generally had a water content near the plastic limit while the clay near the base had a 

water content less than the plastic limit and was corresponding more brittle in behavior.  Burland, et 

al (1977) indicated that joints in the LOC frequently appeared to die out in the overlying MOC. 

 The undrained shear strength progressively increased with depth from 50 kPa to over 1,200 kPa 

(Burland, et al, 1977).  The rate of shear strength increase was proportionally greater in the LOC, as 

shown in Figure 8.1. 



187 

 
 

Figure 8.1.  Variation of Undrained Shear Strength with Depth for the Oxford Clay. 
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The Modulus of Elasticity also increased with depth from 20,000 kPa to 150,000 kPa (Burland, 

et al, 1977).  The rate of increase was again higher in the LOC, as shown on Figure 8.2.  The ratio of 

E/cu displayed no net increase with depth and has an approximate average value of 100. 

 

 
 

Figure 8.2.  Variation of Modulus of Elasticity with Depth for the Oxford Clay. 
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a block, sliding on a horizontal shear band formed by bedding planes near the base of the 

excavation.  The magnitude and rate of the horizontal movement of the surface points was 

dependent on their relative position to the face, the distance the face advanced in a given cut, and 

the time period between cuts.  Measurable movements extend back from the top of the face for a 

distance of about 2.5 times the depth of the excavation.  Burland, et al (1977) also indicated that at 

distances greater than 30-m from the slope face, that the vertical movements were approximately the 

same as the horizontal movements, whereas closer to the face the horizontal movement dominated. 

 

8.1.2 Finite Element Model 

A FEM model was developed to study the influence that lateral stress relief had on the Oxford 

Slope.  Review of the available literature indicated that no numerical model had been developed 

to study the movement of this slope.  The FEM model used a two dimensional mesh with 

isoparametric elements consisting of either six node triangles or eight-node quadrilaterals.  A 

fine mesh of 29 elements over the slope height was used.  Boundary conditions considered the 

base to be fixed in the horizontal and vertical direction while the sides were only fixed in the 

horizontal direction.  Figure 8.3 presents the FEM model that was used to establish the initial 

stress conditions. 

 The FEM model simulated excavation by progressively “turning-off” elements and allowing 

lateral stress relief to occur.  The elements were grouped in regions labeled 1 through 4, as noted 

in Figure 8.3.  The horizontal width of each region was 10-meters to match actual site excavation 

procedures (Burland, et al, 1977). 
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Figure 8.3.  Oxford Clay Slope FEM Model. 
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The undrained shear strength and Modulus of Elasticity values used in the FEM model are as 

noted in Figure 8.1 and 8.2, respectively.  Table 8.1 presents the geotechnical parameter values 

used for the Oxford Slope FEM analyses and are based on published data obtained from Burland, 

et al (1977). 

As noted in Table 8.1, the FEM model used a constant unit weight and a constant lateral 

earth pressure coefficient value for each stratum, so that the initial horizontal and vertical stress 

increased linearly with depth in each stratum.  As an initial analysis verification, the vertical 

stress values obtained from the FEM model were compared to simple hand calculation values 

considering the following expression, 

    depth
m

kN
depth 










3
9.19  

where () is the total vertical stress and () is the unit weight.  FEM analyses were conducted 

using the parameter values noted in Table 8.1.  FEM analyses established the in-situ stress 

conditions during Stage 1 analyses.  Figure 8.4 presents the initial in-situ stress conditions along 

with the hand calculation verification of vertical stress values.  The FEM in-situ vertical stress 

and hand calculation values indicate an exact agreement. 
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Table 8.1  Geotechnical Parameters and Values Used for the Oxford Slope FEM Model. 
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Geotechnical Strata and Value of Parameter 

Callow 

 

MOC 

 

LOC 

 

Kellaways 

Sand 

 

Kellaways 

Clay 

 

Great 

Oolite 

Series 

 

Constitutive 

Model 

 

 

Linear 

Elastic 

Elastic 

Plastic 

Elastic 

Plastic 

Linear 

Elastic 

Linear 

Elastic 

Linear 

Elastic 

Modulus of 

Elasticity, E 

 

[MPa] 

38.3 Figure 8.2 Figure 8.2 620 620 39,300 

Poisson’s Ratio,  

 

 

 

0.35 0.4 0.4 0.25 0.25 0.23 

Undrained Shear 

Strength, cu 

 

[kPa] 

-- Figure 8.1 Figure 8.1 -- -- -- 

Friction Angle,  

 

 

[deg] 

-- 0 0 -- -- -- 

Lateral Earth 

Pressure 

Coefficent, ko 

 

0.54 3.0 2.0 0.33 0.33 0.30 

Dilation Angle,  

 

 

[deg] 

-- 0 0 -- -- -- 

Unit Weight,  

 

 

[kN/m
3
] 

18.9 19.9 19.9 21.2 21.2 24.4 
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Figure 8.4.  FEM In-Situ Horizontal and Vertical Earth Pressures Prior to Excavation. 

 

 

 

8.1.2.1 Finite Element Slip Element.  The shear strength along a closed crack is generally less 

than that of the intact clay.  Skempton and LaRochelle (1965) indicated that the shear strength 

developed in London Clay along a closed crack was approximately 55% of the average 

undrained shear strength of the intact clay.  Bazett, et al (1961) indicated that the Leda Clay, near 

Massena, New York, exhibited a 75% reduction in the undrained shear strength along a closed 

crack.   

As long as there are no overall changes in water content, the undrained shear strength will 

remain constant regardless of changes in total stress (Skempton and Sowa, 1963).  The effective 
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shear strength values of intact Oxford Clay samples lifted near the base of the excavation are 

known from shear box tests to be (Burland, et al, 1977): 

Peak Values 

’ = 27.5 

c’ = 172 kPa 

Residual Values 

’ = 13 

c’ = 3.5 kPa 

 

 

Skempton and LaRochelle (1965) indicated that it is possible to calculate the effective normal 

pressure (’) corresponding to the undrained shear strength (cu) by the following expression: 

             (  ) 8-1 

Substituting the appropriate peak shear strength values obtained from Burland, et al (1977) and 

the undrained shear strength at the base of the excavation from Figure 7.1 into Equation 87.1, the 

following expression was obtained: 

1224 kPa = 172 kPa + ’ tan (27.5) 

’ = 2020 kPa 

The shear strength parameters of a closed fissure are taken as the residual values (Skempton and 

LaRochelle, 1965).  Therefore, with the same effective pressure, the average undrained strength 

along a closed fissure may be expressed as (Skempton and LaRochelle, 1965): 

cu = 3.5 kPa + ( 2020 kPa ) tan (13) 

cu = 470 kPa 
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which is a 62% reduction of the undrained shear strength along a closed fissure.  This result is in 

general agreement with studies performed by Bazett, et al (1961) and Skempton and LaRochelle 

(1965). 

 Burland, et al (1977) indicated that the shear strength of the Oxford Clay will reduce from 

peak to residual within 3 to 4-mm of movement.  This research considered that 4-mm of 

differential movement is sufficient to develop a 62% reduction in the undrained shear strength.  

As such, FEM analyses incorporated a slip element with a shear strength reduction of 62% when 

differential movement exceeded 4-mm. 

8.1.3 Finite Element Model Results 

The FEM analyses were conducted in stages to simulate actual field condition procedures.  

Figure 8.5 through 8.9 present the FEM results with displacement meshing using a 10X 

magnification to aid visual observation.  Review of these figures indicated that the slope face 

appears to move as a block, which is in close agreement with field observations conducted by 

Burland, et al (1977).  A graph of the slope face movement after each excavation is presented as 

Figure 8.10.  This figure indicates that the first initial cut resulted in the largest slope face 

movement, which is as expected since this initial excavation would produce the largest release of 

lateral stress; an inherit characteristic of the FEM model.  However, the magnitude of successive 

movements reduced and reached a relative uniform displacement with the 3
rd

 and 4
th

 cuts.  These 

last cuts essentially produced identical outward slope face movements.  Further examination of 

Figure 8.10 indicated that there is significant differential movement at the toe of slope between 

the LOC and the Kellaways Sand.  It is this differential movement that resulted in propagation of  
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Figure 8.5.  FEM Stage 1 Analysis – Mesh Deformation after Removal of Callow. 

 

 

 

 

 
 

 

Figure 8.6.  FEM Stage 2 Analysis – Mesh Deformation after First Cut. 
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Figure 8.7.  FEM Stage 3 Analysis – Mesh Deformation after Second Cut. 

 

 

 

 

 
 

 

Figure 8.8.  FEM Stage 4 Analysis – Mesh Deformation after Third Cut. 
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Figure 8.9.  FEM Stage 5 Analysis – Mesh Deformation after Fourth Cut. 

 

 

 
 

 

Figure 8.10.  Individual Slope Face Movements After Each Cut. 

-30

-25

-20

-15

-10

-5

0

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

D
ep

th
 B

el
o

w
 G

ro
u
n

d
 L

ev
el

 (
m

) 

Horizontal Movement (m) 

1st Cut

2nd Cut

3rd Cut

4th Cut

Top of Slope 

Toe of Slope 



199 

 

 

a closed crack, which was modeled in the FEM analyses with a slip element. A slip element was 

incorporated into the FEM model after review of differential displacement from the prior 

excavation.  For example, the 1
st
 cut indicated that differential movement extended a distance of 

0.9H into the slope.  Therefore the slip element for the 2
nd

 cut extended 0.9H into the slope from 

the toe of the 1
st
 Cut.  The FEM model then “turned-off” the elements within Region 2 to 

simulate the next cut.  This process was repeated for successive stages. It should be noted that 

Burland, et al (1977) indicated that slope face movements at the base typically ranged from 0.15 

to 0.20 m, which is in close agreement with the FEM analyses. 

 The differential movement for each successive cut is presented as Figure 8.11.  The variation 

in the magnitude of the differential displacement at the face of the excavation is attributed to the 

length of the slip element from each resulting cut.  However, it is significant to note that the 

differential displacements all converge at 0.8H.  Burland, et al (1977) indicated that the ground 

within a region of 1.0H from the face appeared to move as a block and these FEM analyses 

indicate a similar conclusion. 

FEM analyses indicate that the Oxford Slope is essentially a shear model in which excessive 

shear strains created and caused lateral propagation of a horizontal failure plane.  Figure 8.12 

provides the FEM lateral earth pressures near the crest and base of the slope after each cut.  

Negligible tensile stresses developed along the crest of the slope and the FEM models all 

converge in a uniform manner.  However, larger tensile stresses developed at the base of the 

slope for the 1
st 

and 2
nd

 cut; again an inherit characteristic of the FEM model which undergoes a 

significant lateral stress relief with the first cut.  The FEM again converged on a solution after  
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Figure 8.11.  Differential Movement between LOC and Kellaways Sand. 
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Figure 8.12.  Lateral Earth Pressure in Backslope Region after each Successive Cut. 
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subsequent excavations, approximately 1.0H.  Beyond 1.0H, the FEM indicated that the lateral 

earth pressures along the base are essentially equivalent, irrespective of the excavation sequence.  

The larger tensile stress near the slope face may cause crack propagation at an inclined angle, but 

these cracks are relatively close to the slope face and would be removed during subsequent 

excavations. 

Burland, et al (1977) indicated that the horizontal stress change is usually the largest and 

horizontal movements tend to dominate in excavations of overconsolidated clay. However, 

Burland, et al (1977) also recorded settlement along the crest of the slope that ranged from about 

100 to 150 mm.  Figure 8.13 indicates the FEM settlement profile along the crest of the slope for 

each cut.  These results are in excellent agreement with the observation recorded by Burland, et 

al (1977). 

Burland, et al (1977) indicated that measureable horizontal movements extended to a 

distance of about 2.5H from the slope face.  This result is similar to Sills, et al (1977), and 

Burland and Hancock (1977) in which they note that when an excavation into overconsolidated 

clay is underlain by a great depth of similar material, the horizontal movement extended to more 

than 3.0H from the slope face.  Figures 8.14 and 8.15 indicate the FEM variation of lateral earth 

pressure along a horizontal plane at the mid-height of the MOC and LOC.  FEM analyses 

converge at 3.0H, which is slightly greater than observed by Burland, et al (1977).  

The FEM analyses indicated that the Oxford Slope behaved as a shear model.  Tensile 

stresses at the base and crest of slope were not sufficient to create inclined or vertical cracking, 

respectively. Crack propagation at the base of the slope was attributed to the release of lateral  
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Figure 8.13.  Vertical Movement Along Top of MOC After Each Cut. 
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Figure 8.14.  Variation of Lateral Earth Pressure at Mid-Height of MOC. 
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Figure 8.15.  Variation of Lateral Earth Pressure at Mid-Height of LOC. 
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earth pressure that resulted in excessive shear strains from differential movement.  It is these 

shear strains that created a closed crack and it was the continuing shear strains from subsequent 

cuts that propagated the crack.  Propagation occurred along the plane of the existing crack due to 

excessive shear strain, similar to the laboratory shear model. The closed crack propagated before 

the LOC reached the peak shear stress due to differential shear strain.  Figure 8.16 and Figure 

8.17 present the shear stress contours for the 3
rd

 and 4
th

 cut.  These two figures indicate that the 

magnitude of shear stress was not sufficient to cause failure, rather the material was brittle 

enough that failure occurred due to differential shear strain and as evidenced by the laboratory 

model, crack propagation should and did occur along the pre-existing failure plane. 
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Figure 8.16.  Shear Stress Contours (200 kPa) at the 3
rd

 Excavation Stage. 

 

 

 

 

 
 

 

Figure 8.17.  Shear Stress Contours (200 kPa) at the 4
th

 Excavation Stage. 
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8.2 CONEMAUGH SLOPE 

The Conemaugh Slope is a published case history that involved a 29 m excavation into residual 

stiff clay and sedimentary rock units located in Indiana County, Pennsylvania (Kutschke, et al, 

2007, 2007, 2007, 2008, and 2010).  The Conemaugh Slope was part of a larger project that 

involved 8.7-km of new railroad track construction.  The overall project required the removal of 

1.1 million m
3
 of soil and sedimentary rock and resulted in cut slopes as deep as 46-m and fill 

slopes as high as 14-m.  Right-of-way restrictions limited rock cut slope angles to those steeper 

than traditionally used for these slide prone and highly erodible geologic strata.  Cut slopes were 

designed to fit within the proposed right-of-way by developing countermeasures to minimize 

weak rock degradation, installing sub-horizontal drains to lower groundwater levels, and 

developing an instrumentation program consisting of inclinometers and piezometers to monitor 

slope movement and water levels. The innovative geotechnical design efforts for this project 

resulted in considerable construction cost savings for the owner and earned local, state, and 

national awards from the American Society of Civil Engineers and the American Council of 

Engineering Companies.  Figure 8.18 presents an aerial view of the Conemaugh Slope during 

construction. 

8.2.1 Geologic Conditions 

The Conemaugh Slope is associated with the Conemaugh Group, Glenshaw Formation, 

Pennsylvanian Period. The constituents are described as interbedded, strong and weak 

sedimentary rocks with considerable horizontal and vertical variation in strength and 

deformability but with a general tendency for vertical repetition of behavioral characteristics  
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Figure 8.18.  Aerial View of Conemaugh Slope During Construction (viewed looking east). 

 

 

 

(Hamel, 1998).  Structural features of the subject area include the Elders Ridge Synclinal Axis  

 (to the northwest) and the Jacksonville Anticlinal Axis (to the southeast), both of which are 

oriented on a southwest-northeast trend.  The dip of the bedding plane is about 3 to the 

northwest at the project corridor.  The site soils are comprised of residual materials derived from 

weathering of the underlying bedrock. 

A characteristic feature of the Conemaugh Group is the presence of mudrocks (particularly 

massive claystone) that have undergone oxidation to impart a predominantly red color.  The local 

term “Pittsburgh Red Beds” is often used to refer to these weak, highly erodible claystone units 

that disintegrate rapidly upon exposure to form red-brown sandy, silty clay of medium plasticity 

(Hamel and Flint, 1972).  The red beds are usually penetrated by a myriad of randomly oriented, 

closely spaced fractures, often with slickensided surfaces.  The Pittsburgh Red Beds, along with 

Conemaugh Slope 

Note Train for Scale 
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other unnamed red bed formations of the Conemaugh Group, have caused numerous slope 

stability problems that have attributed to the 3,000 recent and 12,000 historic landslide noted 

throughout the region (Ackenheil, 1954; Gray, et al. 1978; Hamel and Flint, 1972; Wu, et al. 

1987, Hamel and Adams, 1981, and Pomeroy, 1982). 

8.2.2 Conemaugh Slope Geometry 

The Conemaugh Slope was designed as a 17.8-m high rock slope constructed at 3/4H:1V with an 

intermediate 4.5-m wide horizontal bench followed by a 10.9-m high soil slope excavated at 

2H:1V.  Available test borings indicated that the excavation would expose claystone associated 

with the Pittsburgh Red Beds, a weak and highly erodible rock unit.  In order to protect this 

stratum and prevent it from undermining more resistant material, a shotcrete slope protection 

system (SSPS) that consisted of shotcrete, wire mesh, and rock anchors was applied to this 

stratum immediately after excavation (Kutschke, et al, 2007).  However, construction 

encountered discontinuous rock strata that resulted in a design change.  The as-built slope, which 

was modified during construction, consisted of 12.2-m high rock slope with a 4.5-m wide 

horizontal bench.  The resulting 16.8-m high soil slope was excavated at 1H:1V for a height of 

6.9-m, with the remaining slope excavated at 2H:1V.  The as-built slope is shown as Figure 8.19 

and the generalized cross section used for finite element analyses is shown as Figure 8.20. 

8.2.3 Project Instrumentation 

Three inclinometer casings and three standpipe piezometers were installed along the Conemaugh 

Slope.  The piezometers were located immediately adjacent to the inclinometer casings since it is 

not practical to use an inclinometer casing as an observation well.  The depths of the  
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Figure 8.19.  Cross Section View of Conemaugh Slope Prior to Slope Failure. 

 

 

 

 

 
 

Figure 8.20.  As-Built Conemaugh Slope Cross Section. 
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inclinometer casings and corresponding standpipes ranged from 29 to 35-m, typically extending 

at least 3-m below the proposed track elevation into the underlying sandstone. In all cases, the  

casings were located approximately 3-m beyond the crest of the proposed cut slope, as noted in 

Figure 8.21.  The locations of the two inclinometers (I-2 and I-3) relative to the Conemaugh 

Slope are shown as Figure 8.21.   

 

 

 

 

Figure 8.21.  Inclinometer Locations along Conemaugh Slope. 

 

The inclinometer casings were installed in 15.2-cm diameter drill holes and tremie grouted 

with cement-bentonite grout mix.  The grout mix design was selected to ensure strength 

compatibility with the in-situ materials.  The standpipe piezometers consisted of Schedule 80 

PVC pipe installed in 7.6-cm diameter drill holes and the annulus was backfilled with coarse 

aggregate, sand, bentonite, and grout.  Special attention was given to grouting the soil-rock 

interface in order to prevent hydraulic communication between surface water and deeper 

aquifer(s) that may be confined. 

I-3 

I-2 

Conemaugh Slope 
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Installation of all instrumentation was completed prior to the beginning of excavation work 

so that stable baseline inclinometer and groundwater readings could be obtained.  After obtaining 

two to three sets of initial baseline inclinometer readings, subsequent readings were taken twice a 

week in areas where excavation work was occurring. The frequency of readings was periodically 

increased in response to suspected slope movements. 

In response to the deep adjacent excavations, the inclinometers all indicated the development 

of slope movements occurring at distinct zones.  Because these movements stabilized following 

the completion of the cut, they have been attributed to relief of confining pressure coupled with 

vibrations from blasting operations.  Inclinometers I-2 and I-3 indicated distinct movement at 

approximate El. 289.5-m.  The inclinometer plot for I-2 is shown as Figure 8.22.  This elevation 

corresponded to movement within the claystone stratum.  Dunnicliff (1993) indicated that time 

rate of movement is a particularly important parameter regarding inclinometer plots.  Time rate 

of movement plots are created from inclinometer data and provide important information 

regarding the rate of movement, in which the figure will clearly indicate an increasing or 

decreasing slope movement.  Figure 8.23 presents a time rate of movement plot for the 

Conemaugh Slope at El. 289.5, and it clearly illustrates lateral stress relief that occurred during 

excavation.  Upon completion of excavation, the rate of movement decreased and approached an 

asymptotic value.  The excavation depths noted in Figure 8.23 represent an approximate rate of 

excavation as construction did not occur along neat stages, but rather by bulk excavation focused 

in select areas. 
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Figure 8.22.  Inclinometer Plot for I-2. 

 

(a) Cumulative Displacement (mm) (b) Incremental Displacement (mm) 
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Figure 8.23.  Conemaugh Slope Time Rate of Movement at El. 289.5. 

 

 

 

A soil slide involving approximately 6,200 m
3
 occurred during approximately 6 months 

after construction.  The slide occurred in-front of and down slope of the inclinometers, as shown 

on Figure 8.24(a).  The main scarp daylighted in front of the inclinometer casings.  The slide did 

not pass through the inclinometer casings and the inclinometers did not notice any pre-slide 

movement.  The slide had a near vertical main scarp that had an approximate height of 7.6 m, as 

noted in Figure 8.24(b). Slope failure occurred in the soil, not in the underlying claystone, with 

the toe of the slide at approximate El. 291-m. 
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(a) Overview of slope. 

 

 

 
 

(b) View of 7.6 meter tall main scarp. 

 

 

Figure 8.24.  Conemaugh Clay Slope Failure. 
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8.2.4 Site Characterization for Finite Element Analyses 

Available subsurface information indicated three significant strata, namely: residual soil that 

consisted of clayey silt to silty clay which weathered from the underlying parent rock.  The soil 

was underlain by claystone units that were situated over sandstone. URS (2005) presented a 

detailed discussion regarding the soil properties and laboratory test data. 

8.2.4.1 Residual Soil.  Pre-slide test borings obtained for the Conemaugh Slope indicated that the 

material generally consisted of clayey silt to silty clay with trace shale fragments.  This material 

is believed to be residual material that weathered from the underlying Pittsburgh Red Bed.  

Standard penetration testing indicated uncorrected blow counts that ranged from 6 to greater than 

50 blows per foot, but generally around 22 indicating a very stiff consistency. The low N-values 

were generally encountered near surface and increased with depth.   

The soil properties used for the FEM models were derived from laboratory testing and 

published correlations (Aplan, 1967; Holtz and Kovacs, 1981; Mayne, 1984; AASHTO, 1996; 

Bowles, 1996, and URS, 2005).  Laboratory testing consisted of index property, shear strength, 

and consolidation testing. It is important to note that the Pittsburgh Red Bed formation is highly 

variable and generalized data regarding this formation is not practical (Hamel and Flint, 1972; 

Hamel and Adams, 1981; Hamel, 1998; Kutschke, et al, 2007, 2007; and Hamel, 2009).  Shear 

strength properties depend on whether the stratum is weathered or unweathered (as opposed to 

colluvial or residual soils derived from this formation) as well as dependent on composition, 

degree and types of fissures and fractures at both macro & micro levels (Hamel, 2009).  Table 

8.2 presents the selected values used for the FEM Conemaugh Slope model. 
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Table 8.2.  Geotechnical Parameters and Values for the Conemaugh Slope FEM Model. 

 

 

Geotechnical Parameter Value 

E, Modulus of Elasticity 177,100 kPa 

ko, Lateral Earth Pressure Coefficient 1.41 

, Poisson’s Ratio 0.4 

c, Cohesion 86.2 kPa 

, Friction Angle 0 

, Dilation Angle 0 

, Unit Weight 20.42 kN/m
3
 

 

 

8.2.4.2 Bedrock.  The residual soil transitioned into claystone rock associated with the 

Pittsburgh Red Bed formation.  The claystone material encountered is generally characterized as 

gray to red-brown, very soft to soft, completely to highly weathered, very intensely bedded (RD 

5), very close to closely fractured (RD 30 – 60), with slickensided to slightly rough 

fracture/joint surfaces.  Test boring information indicated percent core recoveries that ranged 

from 60 to 100 percent, but generally greater than 90 percent, and rock quality designation 

(RQD) values were typically zero.  Beneath the claystone, the test borings encountered shaley to 

fine-grained sandstone.  The rock core characteristics of the sandstone consisted of gray to green 

gray, medium hard to hard, slightly weathered, intensely bedded (RD 5), very closely to 

medium fractured (RD 10), rough to slightly rough fracture/joint surfaces.  Percent rock core 

recoveries were generally greater than 90 percent and RQD values were generally greater than 68 

percent. 

Site characterization for FEM modeling of the claystone and sandstone strata consisted of 

unconfined compressive strength (UCS) testing.  The test data was used in conjunction with the 

Geomechanics Classification System, or Rock Mass Rating (RMR) to characterize the bedrock 
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(Bieniawski, 1974).  Based upon examination of the rock cores and the available laboratory test 

data, the RMR for the claystone material ranged from 11 to 27, while the sandstone ranged from 

54 to 72. The in-situ modulus of the rock relied on the following correlation proposed by Serafim 

and Pereira (1983): 

  

where the Modulus of Elasticity is in units of GPa.  Shear strength values where developed using 

the Hoek-Brown strength criterion which resulted in a curved shear strength envelope given by 

the following equation (Hoek, 1983): 

  8-2 

where  is the shear stress at failure and ' is the instantaneous friction angle at given values of  

and ’. The value of ' used in Equation 8-2 is given by: 

  8-3 

where the variables h and   presented in Equation 8-3 are defined as: 
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The dimensionless constants m and s are dependent on rock type and the degree of fracturing of 

the rock mass (related back to the RMR analysis).  The cohesion is the intercept of the line 

defining the instantaneous friction angle on the shear axis defined by Mohr-Coulomb.  The 

features of the curved shear strength envelope are that at: 

 Low normal stress, the blocks of the rocks are interlocked and the friction angle is high.  

 High confining stress, the friction angle diminishes and the cohesion progressively 

increases with the normal stress. 

The Hoek-Brown strength criterion for the claystone stratum is presented as Figure 8.25, and 

Table 8.3 provides the selected values used for the FEM model.  The Hoek-Brown strength 

criterion for the sandstone is presented as Figure 8.26, and Table 8.4 presents the selected values 

used for the FEM model. 
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Figure 8.25.  Non-Linear Mohr Envelope for Claystone. 

 

 

 

 

Table 8.3.  Claystone Geotechnical Parameters and Values for the 

Conemaugh Slope FEM Model. 

 

 

Geotechnical Parameter Value 

E, Modulus of Elasticity 1,900,000 kPa 

ko, Lateral Earth Pressure Coefficient 3.0 

, Poisson’s Ratio 0.2 

c, Cohesion 10.8 kPa 

, Friction Angle 30 

, Dilation Angle 0 

, Unit Weight 156 pcf 
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Figure 8.26.  Non-Linear Mohr Envelope for Sandstone. 

 

 

 

 

Table 8.4.  Sandstone Geotechnical Parameters and Values for the 

Sandstone Slope FEM Model. 

 

 

Geotechnical Parameter Value 

E, Modulus of Elasticity 8,840,000 kPa 

ko, Lateral Earth Pressure Coefficient 3.87 

, Poisson’s Ratio 0.3 

c, Cohesion 430 kPa 

, Friction Angle 45 

, Dilation Angle 0 

, Unit Weight 161 pcf 
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8.2.5 Finite Element Model 

The FEM model used a two dimensional mesh with isoparametric elements consisting of six 

node triangles.  Boundary conditions considered the base to be fixed in the horizontal and 

vertical direction while the sides were only fixed in the horizontal direction.  The FEM model 

used to establish the initial stress conditions is shown as Figure 8.27. 

 

 

 
 

 

Figure 8.27.  Initial FEM Model Indicating Construction Stage Conditions. 

 

 

 

The FEM model simulated excavation by progressively “turning-off” elements and allowing 

lateral stress relief to occur.  The elements were grouped in regions labeled Stage 1 through 

Stage 6, as noted in Figure 8.27.  These regions were incrementally removed by “turning-off” the 

elements and conducting subsequent stress-deformation analyses at each stage.  The FEM 

analyses closely modeled actual excavation conditions with staged analyses.  Stage 5 analyses 

Final Slope Face 

SSPS 



224 

involved continued excavation along the slope face as well as installation of the SSPS that 

involved shotcrete and rock anchors (Kutschke, et al, 2007, 2007).  These elements were 

modeled in the FEM analyses using structural beams and structural bars and are noted in Figure 

8.27.  The rock anchors are passive elements and were not post-tensioned.  The slope protection 

served to minimize weathering of the erodible rock and was not considered in the design to 

provide structural support (Kutschke, et al, 2007).  Stage 6 completed the FEM analyses.  

The residual soil and claystone strata were modeled using elastic-plastic material properties 

in which stresses are directly proportional to stains until the yield point is reached.  In 

accordance with Wyllie and Mah (2006), the sandstone utilized a linear-elastic constitutive 

model. 

The Conemaugh Slope FEM model used a constant unit weight and constant lateral earth 

pressure coefficient value for each stratum so that the initial horizontal and vertical stress 

increased linearly with depth in each stratum.  As an initial analysis verification, the vertical 

stress values obtained from the FEM model were compared to simple hand calculation values 

considering the following expression, 

  depth   

where () is the total vertical stress and () is the unit weight of the soil.  Figure 8.28 presents the 

FEM initial vertical stress contours prior to excavation and Figure 8.29 presents the FEM initial 

horizontal and vertical stress conditions along with the hand calculation verification.  The FEM 

in-situ vertical stress and the hand calculation values indicate an accurate agreement. 
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Figure 8.28.  Initial Vertical Stress Contours (100 kPa) Prior to Excavation. 

 

 

 

 
 

 

Figure 8.29.  FEM Initial Horizontal and Vertical Earth Pressures Along the Inclinometer Prior 

to Excavation. 
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8.2.6 Evaluation of Model Results 

The FEM analyses were conducted in stages to simulate actual field excavation procedures.  

Initial analyses were first performed without consideration for pre-existing cracks.  Figures 8.30 

through 8.32 present the shear stress contours for excavation Stages 1, 2, and 3.  Examination of 

these figures indicated that Stage 1 and Stage 2 excavation did not induce sufficient shear stress 

to develop a closed crack in the clay stratum.  However, review of Figure 8.32 indicated that the 

shear stress contours are approximately equal to the undrained shear strength of the clay material 

near the clay-claystone interface.  That is, release of confining pressure resulted in outward slope 

movement that developed excessive shear stress to produce a closed crack.  Figure 8.33 provides 

detailed examination of a stress element near the toe of slope, which clearly indicates a condition 

that would result in the development of a failure plane.  Subsequent analyses utilized a slip 

element to model the closed crack that extended from the toe of slope and into the backslope 

region.  Based on research conducted by Bazett, et al (1961), Skempton and LaRochelle (1965), 

and Burland, et al (1977), the analyses used a reduction in the undrained shear strength along a 

slip element of 50%. Figure 8.34 indicates the FEM outward slope face movement for each 

excavation stage and incorporated the slip element for the 3
rd

 and subsequent stages. The impact 

that a closed crack had on the overall slope is noted on Figure 8.35, which compares the slope 

movement at the 3
rd

 Stage with and without a closed crack.  A closed crack resulted in a larger 

outward slope face movement, which is as expected since there has been a reduction in the 

overall shear strength resistance of the slope.  This research postulated that pre-existing cracks 

within this slope, combined with the construction induced cracks from lateral stress relief, 

resulted in overall slope failure.  The extent and random direction of the pre-existing cracks in  
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Figure 8.30.  Shear Stress Contours (50-kPa) for Stage 1 Excavation with No Pre-Existing Crack. 

 

 

 

 

 

 
 

 

Figure 8.31.  Shear Stress Contours (50-kPa) for Stage 2 Excavation with No Pre-Existing Crack. 
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Figure 8.32.  Shear Stress Contours (50-kPa) for Stage 3 Excavation with No Pre-Existing Crack. 
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Figure 8.33.  Shear Stresses Near Clay – Claystone Interface. 
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Figure 8.34.  FEM Slope Face Movements at Each Excavation Stage. 

 

 

 
 

 

Figure 8.35.  FEM Slope Face Movements at Excavation Stage 3. 
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the clay stratum is difficult to realistically or practically model and was not incorporated into the 

FEM model. 

The release of confining pressure caused by the excavation had a profound impact on the 

lateral earth pressures in the backslope region.  Figures 8.36 to 8.38 present the lateral earth 

pressure along a horizontal plane at the base of each excavation stage.  Figures indicated that: 

 At the base of the excavation for Stage 1 and 2, the lateral earth pressure at the toe of 

excavation increased in response to the material in the backslope region tending to move 

outward due to release of confining pressure and downward due to gravity.  This 

conclusion is evident in all figures as the material in the toe region becomes compressed 

as failure would occur at the toe (Fellenius, 1927; Taylor, 1937, 1948; Terzaghi, 1943). 

 Excavation significantly impacted the lateral earth pressures from the slope face to a 

lateral distance that ranged from 1.4 to 1.7H.  Beyond this distance, the lateral earth 

pressures were not significantly impacted by the excavation.  As indicated in Figures 8.36 

to 8.38, the inclinometer was located outside this region and did not experience any post-

construction movement in the soil backslope; this conclusion agrees well with the actual 

field observations. 

 Negative lateral earth pressure developed at the toe of slope for Stage 3, which is 

different from the first two stages that experience increased lateral earth pressures.  This 

condition is in response to the formation of a toe crack with reduced shear strength 

properties that allowed for greater toe deflection.  This result is consist with Skempton 

and LaRochelle (1965) where they discuss clay “burst” where the toe of excavation in 

London Clay was seen to bulge and that cracking extended into the slope face.  
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Figure 8.36.  Lateral Earth Pressure at Base of 1
st
 Stage along a Horizontal Plane from Slope 

Face to Inclinometer. 
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Figure 8.37.  Lateral Earth Pressure at Base of 2
nd

 Stage along a Horizontal Plane from Slope 

Face to Inclinometer. 
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Figure 8.38.  Lateral Earth Pressure at Base of 3
rd

 Stage along a Horizontal Plane from Slope 

Face to Inclinometer. 
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8.3 SUMMARY 

Excavation activities at both the Oxford Slope and the Conemaugh Slope significantly altered the 

lateral earth pressures within the backslope region.  Observations regarding the FEM analyses for 

these two models are summarized as follows: 

Oxford Slope  

 The Oxford Slope FEM model exhibited very close agreement to actual measured field 

displacements.  FEM analyses indicate that the Oxford Slope was essentially a shear 

model in which excessive shear strains created and caused lateral propagation of a 

horizontal failure plane. Propagation occurred along the plane of the existing crack due to 

excessive shear strain, similar to the laboratory shear model.  

 Tensile stresses at the base and crest of slope were not sufficient to create inclined or 

vertical cracking. The closed crack propagated horizontally before the LOC reached peak 

shear stress due to differential shear strain.  The magnitude of shear stress was not 

sufficient to cause failure, rather the material was brittle enough that failure occurred due 

to differential shear strain and as evidenced by the laboratory model, crack propagation 

should and did occur along the pre-existing failure plane. 

 

Conemaugh Slope 

 LSR resulted in outward slope movement that developed excessive shear stress to 

produce a closed crack. This research postulated that pre-existing cracks within this 

slope, combined with the construction induced cracks from lateral stress relief, resulted in 

overall slope failure.  The extent and random direction of the pre-existing cracks in the 



236 

clay stratum is difficult to realistically or practically model and was not incorporated into 

the FEM model.   
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9.0 CONCLUSIONS 

 

 

 

 

This research used finite element and fracture mechanics analyses as well as laboratory and field 

studies of slopes in purely cohesive clay ( = 0 soil) with either a vertical or an inclined slope 

face.  The analyses indicated that when Lateral Stress Relief (LSR) took place during the 

excavation of the slopes, the following was produced: 

1. Excavation into stiff cohesive material resulted in the outward movement of the new 

slope face due to LSR.  The magnitude of movement was dependent on ko and this 

movement could create a discontinuity at the toe of the slope as well as a tension crack at 

the surface of the backslope.  Conventional limit equilibrium methods of slope stability 

analysis only consider the equilibrium of a soil mass tending to move down slope under 

the influence of gravity without regard for the in-situ stress conditions or the 

development of shear zones that occur from LSR.  There was very little known about 

how these two discontinuities formed as well as how they interacted to produce the final 

failure of the slope.  Research presented herein provided insight into the propagation of 

these shear zones that lead to the progressive failure of  = 0 slopes due to LSR. 

2. LSR within  = 0 slopes significantly altered the backslope conditions and created shear 

and tension cracks in the soil mass.  The initial direction of crack propagation was 

strongly dependent on ko, with two principal failure planes developing in the soil mass at 
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the toe of slope and one failure plane developing in the backslope along the crest.  The 

failure planes that developed due to LSR can be described as follows: 

 Horizontal Failure Plane, HH , at the toe of the slope.  The first failure plane, or crack, 

was attributed to differential strain-induced movement and extended in a general 

horizontal direction into the backslope at the base of the excavation.  This result was 

consistent with the principles of fracture mechanics for shear stress controlled failure 

in which the failure plane propagated along the pre-existing horizontal failure plane.  

The length of this crack was dependent on the coefficient of earth pressure at rest (ko); 

the greater the ko, the longer the horizontal crack extended into the backslope. 

 Inclined Failure Plane, HI, at the toe of the slope.  The second failure plane was 

attributed to shear-induced changes created by LSR and extended in an upward angle 

from the toe of slope.  This result was consistent with the general principles of 

fracture mechanics, although the crack propagation angle was not in strict 

conformance.  The angle of the critical failure plane was also strongly dependent on 

ko and the angle became steeper with an increasing initial ko.  The crack did not 

propagate along a constant angle, rather it generally became flatter as it progressed 

into the backslope. 

 Tension Crack, HT, at the top of the slope.  The final failure plane developed as a 

result of LSR which created a tension zone in the backslope that could initiate tension 

cracking.  Tension crack propagation adhered to the principles of fracture mechanics 

which indicates that the cracks would tend to propagate vertically and normal to the 

gravity induced tensile stress. 
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3. FEM analyses indicated a strong relationship between overall slope stability and the 

initial ko value.  The horizontal, inclined and tension cracks propagated simultaneously 

due to stress concentrations.  A toe failure tended to develop that resulted in a wedge of 

material falling away from the slope due to negative vertical as well as lateral stress 

conditions.  The toe failure tended to reduce propagation of the inclined crack, however, 

the tensile cracking continued to advance as the material “unzipped” itself.  Tensile crack 

propagation generally occurred at a greater rate than angle crack propagation and ultimate 

slope failure was attributed to a sudden propagation of the angle crack that extended to 

the tension crack. 

4. Conventional limit equilibrium methods of slope stability analysis for unsupported 

vertical cuts do not consider the impact of LSR.  Although this condition was found to be 

appropriate for vertical slopes when ko = 1.0, research presented herein suggested that 

LSR can create tension and toe cracks that lead to the eventual slope failure for ko > 1.0.  

A modified Stability Factor (Ns) was developed to account for the impact that LSR has 

on the stability of slopes with vertical as well as for the ones with inclined faces. 

This concludes this research on the investigation of LSR on the stability of  = 0 slopes using 

laboratory, fracture mechanics, and finite element method approaches. 
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Appendix A presents the derivation of the stability number to determine the critical height of a 

vertical slope (Taylor, 1937).  Recall that Equation 1-42 was expressed as follows: 
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Equation A-4 and A-5 must both equal zero and these equations are more readily solved using 

graphical methods.  The solution to Equation A-4 and A-5 results in  = 47.6 and  = 15.1, as 

noted in Figure A.1 (Taylor, 1937). 
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FINITE ELEMENT MESH OPTIMIZATION 
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Figure B.1.  Typical FEM Before Excavation. 

 

 

 

 
 

 

Figure B.2.  Typical FEM After Excavation. 
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Figure B.3.  Vertical stress contours using three, eight-node quadrilateral elements over the slope 

height. 

 

 

 

 
 

 

Figure B.4.  Vertical stress contours using six, eight-node quadrilateral elements over the slope 

height. 
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Figure B.5.  Vertical stress contours using twelve, eight-node quadrilateral elements over the 

slope height. 

 

 

 

 
 

 

Figure B.6.  Vertical stress contours using twenty-four, eight-node quadrilateral elements over 

the slope height. 
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CLAYEY SAND ON CLAY SHEAR MODEL MOHR-

COULOMB GRAPHS 
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Figure C.1.  FEM Shear and Normal Stresses for the Clayey Sand Layer Obtained Directly above 

the Clayey Sand-Clay Interface with  = 0.10 for the Clay with No Slip Element Strength 

Reduction. 
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Figure C.2.  FEM Shear and Normal Stresses for the Clayey Sand Layer Obtained Directly above 

the Clayey Sand-Clay Interface with  = 0.10 for the Clay and 25% Slip Element Strength 

Reduction. 
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Figure C.3.  FEM Shear and Normal Stresses for the Clayey Sand Layer Obtained Directly above 

the Clayey Sand-Clay Interface with  = 0.10 for the Clay and 50% Slip Element Strength 

Reduction. 
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Figure C.4.  FEM Shear and Normal Stresses for the Clayey Sand Layer Obtained Directly above 

the Clayey Sand-Clay Interface with  = 0.45 for the Clay with No Slip Element Strength 

Reduction. 
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Figure C.5.  FEM Shear and Normal Stresses for the Clayey Sand Layer Obtained Directly above 

the Clayey Sand-Clay Interface with  = 0.45 for the Clay and 25% Slip Element Strength 

Reduction. 
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Figure C.6.  FEM Shear and Normal Stresses for the Clayey Sand Layer Obtained Directly above 

the Clayey Sand-Clay Interface with  = 0.45 for the Clay and 50% Slip Element Strength 

Reduction. 
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FEM MODELS FOR EVALUATION OF  = 0 SLOPES 
  



256 

Vertical Slope FEM Model for ko = 3.0 
 

Deformation Mesh Displayed at 10X Magnification 

 

 

 

 

 
 

 

Figure D.1.  Initial FEM Model for ko = 3.0. 
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Figure D.2.  FEM Model with Onset of Base, Inclined and Tension Cracking due to LSR. 

 

 

 

 
 

 

Figure D.3.  FEM Model with Propagation of Base, Inclined and Tension Cracking.  Inclined 

Cracking Resulted in Toe Failure and Loss of Material Due to Negative Stresses. 
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Figure D.4.  FEM Model with Continued Propagation of Inclined and Tension Cracking. 

 

 

 

 
 

 

Figure D.5.  FEM Model with Continued Propagation of Inclined and Tension Cracking. 
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Figure D.6.  FEM Model with Continued Propagation of Inclined and Tension Cracking 

Resulting in Overall Slope Failure. 
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Vertical Slope FEM Model for ko = 2.0 
 

Deformation Mesh Displayed at 20X Magnification 

 

 

 

 

 
 

 

Figure D.7.  Initial FEM Model for ko = 2.0. 

 

 

 

Slope Face 
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Figure D.8.  FEM Model with Onset of Base, Inclined and Tension Cracking due to LSR. 

 

 

 

 
 

Figure D.9.  FEM Model with Propagation of Base, Inclined and Tension Cracking. Inclined 

Cracking Resulted in Toe Failure and Loss of Material Due to Negative Stresses. 
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Figure D.10.  FEM Model with Continued Propagation of Inclined and Tension Cracking. 

Inclined Cracking Resulted in Continued Loss of Material at the Toe Due to Negative Stresses. 

 

 

 
 

 

Figure D.11.  FEM Model with Continued Propagation of Inclined and Tension Cracking. 
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Figure D.12.  FEM Model with Continued Propagation of Inclined and Tension Cracking. 

 

 

 

 
 

 

Figure D.13.  FEM Model with Continued Propagation of Inclined and Tension Cracking. 
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Figure D.14.  FEM Model with Continued Propagation of Inclined and Tension Cracking. 

 

 

 

 
 

 

Figure D.15.  FEM Model with Continued Propagation of Inclined and Tension Cracking.  
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Figure D.16.  FEM Model with Continued Propagation of Inclined and Tension Cracking that 

Resulted in Ultimate Slope Failure. 
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Vertical Slope FEM Model for ko = 1.0 
 

Deformation Mesh Displayed at 20X Magnification 

 

 

 

 

 
 

 

Figure D.17.  Initial FEM Model for ko = 1.0 

  

Slope Face 
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Figure D.18.  FEM Model with Onset of Base, Inclined and Tension Cracking due to LSR. 

 

 

 

 
 

 

Figure D.19.  FEM Model with Continued Propagation of Tension Crack. 
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Figure D.20.  FEM Model with Continued Propagation of Tension Crack. 

 

 

 

 
 

 

Figure D.21.  FEM Model with Continued Propagation of Tension Crack. 
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Figure D.22.  FEM Model with Continued Propagation of Tension Crack. 

 

 

 

 
 

 

Figure D.23.  FEM Model with Continued Propagation of Tension Crack. 
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Figure D.24.  FEM Model with Tension Crack that has Stabilized. 
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¼H:1V Slope FEM Model for ko = 3.0 
 

Deformation Mesh Displayed at 10X Magnification 

 

 

 

 

 
 

 

Figure D.25.  Initial FEM Model for ko = 3.0 
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Figure D.26.  FEM Model with Onset of Base, Inclined and Tension Cracking due to LSR. 

 

 

 

 
 

 

Figure D.27.  FEM Model with Continued Propagation of Base, Inclined and Tension Cracking.  

Inclined Cracking Resulted in Loss of Material at the Toe Due to Negative Stresses. 
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Figure D.28.  FEM Model with Continued Propagation of Base, Inclined and Tension Cracking. 

 

 

 

 
 

 

Figure D.29.  FEM Model with Continued Propagation of Inclined and Tension Cracking that 

Resulted in Ultimate Slope Failure. 
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¼H:1V Slope FEM Model for ko = 2.0 

 

Deformation Mesh Displayed at 20X Magnification 

 

 

 

 

 
 

 

Figure D.30.  Initial FEM Model for ko = 2.0 
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Figure D.31.  FEM Model with Onset of Base, Inclined and Tension Cracking due to LSR. 

 

 

 
 

 

Figure D.32.  FEM Model with Continued Propagation of Base, Inclined and Tension Cracking. 

Inclined Cracking Resulted in Loss of Material at the Toe Due to Negative Stresses. 
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Figure D.33.  FEM Model with Continued Propagation of Base, Inclined and Tension Cracking. 

 

 

 

 
 

 

Figure D.34.  FEM Model with Continued Propagation of Tension Cracking. 
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Figure D.35.  FEM Model with Continued Propagation of Tension Cracking. 

 

 

 

 
 

 
Figure D.36.  FEM Model with Stabilization of Base, Inclined and Tension Cracking. 
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¼H:1V Slope FEM Model for ko = 1.0 
 

Deformation Mesh Displayed at 20X Magnification 

 

 

 

 

 
 

 

Figure D.37.  Initial FEM Model for ko = 1.0 

 

 



279 

 
 

 

Figure D.38.  FEM Model with Onset of Base and Inclined Cracking due to LSR. Lateral 

Stresses Were Not of Sufficient Magnitude to Produce Tensile Cracking. 

 

 

 

 
 

Figure D.39.  FEM Model with Stabilization of Base and Inclined Cracking.  
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½H:1V Slope FEM Model for ko = 3.0 
 

Deformation Mesh Displayed at 10X Magnification 

 

 

 

 

 
 

 

Figure D.40.  Initial FEM Model for ko = 3.0 
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Figure D.41.  FEM Model with Onset of Base, Inclined and Tension Cracking due to LSR. 

 

 

 

 
 

 

Figure D.42.  FEM Model with Continued Propagation of Base, Inclined and Tension Cracking. 
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Figure D.43.  FEM Model with Continued Propagation of Base and Tension Cracking. 

 

 

 

 
 

 

Figure D.44.  FEM Model with Continued Propagation of Tension Cracking. 
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Figure D.45.  FEM Model with Continued Propagation of Tension Cracking. 

 

 

 

 
 

 

Figure D.46.  FEM Model with Stabilization of Base, Inclined and Tension Cracking. 



284 

½H:1V Slope FEM Model for ko = 2.0 
 

Deformation Mesh Displayed at 20X Magnification 

 

 

 

 

 
 

 

Figure D.47.  Initial FEM Model for ko = 2.0 
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Figure D.48.  FEM Model with Onset of Base, Inclined and Tension Cracking due to LSR. 

 

 

 

 
 

 

Figure D.49.  FEM Model with Propagation of Base, Inclined and Tension Cracking. 
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Figure D.50.  FEM Model with Continued Propagation of Base and Tension Cracking. 

 

 

 

 
 

 

Figure D.51.  FEM Model with Continued Propagation of Tension Cracking. 
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Figure D.52.  FEM Model with Continued Propagation of Tension Cracking. 

 

 

 

 
 

 

Figure D.53.  Stabilization of Base, Inclined and Tension Cracking. 
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½H:1V Slope FEM Model for ko = 1.0 
 

Deformation Mesh Displayed at 20X Magnification 

 

 

 

 

 
 

 

 

Figure D.54.  Initial FEM Model for ko = 1.0 
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Figure D.55.  FEM Model with Onset of Base and Inclined Cracking due to LSR.  Lateral 

Stresses Were Not of Sufficient Magnitude to Produce Tensile Cracking. 

 

 

 

 
 

 

Figure D.56.  FEM Model with Stabilization of Base and Inclined Cracking. 
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APPENDIX E 

 

 

 

 

FEM MODELS FOR EVALUATION OF  = 0 VERTICAL 

SLOPES WITH AN OPEN TOE CRACK 
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Vertical Slope FEM Model for ko = 3.0, 2.0, and 1.0, with Crack = 0.5 
 

Deformation Mesh Displayed at 30X Magnification 

 

 

 

 

 
 

 

Figure E.1.  Initial FEM Model for ko = 3.0, 2.0, and 1.0, with Crack = 0.5. 
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Figure E.2.  Deformation mesh due to LSR for ko = 3.0 and Crack = 0.5. 

 

 

 

 
 

Figure E.3.  Deformation mesh due to LSR for ko = 2.0 and Crack = 0.5. 

 

 

 

 
 

Figure E.4.  Deformation mesh due to LSR for ko = 1.0 and Crack = 0.5. 
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Vertical Slope FEM Model for ko = 3.0, 2.0, and 1.0, with Crack = 0.33 
 

Deformation Mesh Displayed at 30X Magnification 

 

 

 

 

 
 

 

Figure E.5.  Initial FEM Model for ko = 3.0, 2.0, and 1.0, with Crack = 0.33. 
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Figure E.6.  Deformation mesh due to LSR for ko = 3.0 and Crack = 0.33. 

 

 

 

 
 

Figure E.7.  Deformation mesh due to LSR for ko = 2.0 and Crack = 0.33. 

 

 

 

 
 

Figure E.8.  Deformation mesh due to LSR for ko = 1.0 and Crack = 0.33. 
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Vertical Slope FEM Model for ko = 3.0, 2.0, and 1.0, with Crack = 0.25 
 

Deformation Mesh Displayed at 30X Magnification 

 

 

 

 

 
 

 

Figure E.9.  Initial FEM Model for ko = 3.0, 2.0, and 1.0, with Crack = 0.25. 
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Figure E.10.  Deformation mesh due to LSR for ko = 3.0 and Crack = 0.25. 

 

 

 
 

Figure E.11.  Deformation mesh due to LSR for ko = 2.0 and Crack = 0.25. 

 

 

 
 

Figure E.12.  Deformation mesh due to LSR for ko = 1.0 and Crack = 0.25. 
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APPENDIX F 

 

 

 

 

FEM MODELS FOR EVALUATION OF  = 0 VERTICAL 

SLOPES ON A SAND BASE 
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Vertical Slope FEM Model for ko = 3.0, 2.0, and 1.0 
 

Deformation Mesh Displayed at 20X Magnification 

 

 

 

 

 
 

 

Figure F.1.  Initial FEM Model for ko = 3.0, 2.0, and 1.0. 
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Figure F.2.  Deformation mesh due to LSR for ko = 3.0. 

 

 

 
 

Figure F.3.  Deformation mesh due to LSR for ko = 2.0. 

 

 

 
 

Figure F.4.  Deformation mesh due to LSR for ko = 1.0. 
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¼H:1V Slope FEM Model for ko = 3.0, 2.0, and 1.0 
 

Deformation Mesh Displayed at 20X Magnification 

 

 

 

 
 

 

Figure F.5.  Initial FEM Model for ko = 3.0, 2.0, and 1.0. 
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Figure F.6.  Deformation mesh due to LSR for ko = 3.0. 

 

 

 
 

Figure F.7.  Deformation mesh due to LSR for ko = 2.0. 

 

 

 
 

Figure F.8.  Deformation mesh due to LSR for ko = 1.0. 
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½H:1V Slope FEM Model for ko = 3.0, 2.0, and 1.0 
 

Deformation Mesh Displayed at 20X Magnification 

 

 

 

 
 

 

Figure F.9.  Initial FEM Model for ko = 3.0, 2.0, and 1.0. 
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Figure F.10.  Deformation mesh due to LSR for ko = 3.0. 

 

 

 
 

Figure F.11.  Deformation mesh due to LSR for ko = 2.0. 

 

 

 
 

Figure F.12.  Deformation mesh due to LSR for ko = 1.0.  
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