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ANALYSIS AND MODELING OF NONINVASIVE MEASUREMENT OF

TISSUE CHROMOPHORES BY THE OPTICAL PHARMACOKINETIC

SYSTEM

Stephen Chad Kanick, PhD

University of Pittsburgh, 2008

Efficient design of anti-cancer treatments involving radiation- and photo-sensitizing ther-

apeutics requires knowledge of tissue-specific drug concentrations. This dissertation in-

vestigates the utility of the Optical Pharmacokinetic System (OPS), a fiber-optic based

elastic-scattering spectroscopy device, to noninvasively quantitate concentrations of sensitiz-

ing compounds and hemoglobin within tissue in vivo.

The OPS was used to quantitate concentrations of motexafin gadolinium (MGd), in

mouse tissues in vivo and in situ. An algorithm was developed to quantify MGd absorbance

by integration of the MGd peak absorbance area, thereby relaxing the requirement that

the extinction coefficient be known a priori. Concentrations measured by OPS were well-

correlated with measurements by high-performance liquid chromatography (HPLC).

Compartmental pharmacokinetic models were developed from tissue-specific MGd con-

centrations measured by OPS and HPLC. Models predicted both rapid initial distribution

and slow elimination of MGd in plasma, fast transport of MGd out of the skin, and MGd

retention at long times in the tumor. In vivo tumor MGd concentrations measured by the

OPS were estimated by a linear combination of the plasma, tumor, and skin PK profiles.

A theoretical analysis of the OPS measurement of tissue was conducted using a Monte

Carlo (MC) model of light transport through tissue that included discrete blood vessels.

Simulation results motivated extensions to a previous analysis algorithm, including: (1) a

novel analytic functionality between mean photon path length and total absorption coeffi-
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cient; and (2) incorporation of a vessel correction factor to account for the pigment packaging

effect of discrete vessels on the OPS-estimated absorption coefficient. These extensions im-

proved OPS-estimates of both silicon phthalocyanine (Pc4) and hemoglobin concentration

in a mouse xenograft in vivo following photodynamic therapy (PDT).

Mathematical models were utilized to investigate in silico the sensitivity of the OPS to

chronically and acutely hypoxic regions within tumor tissue. PDT-induced acute hypoxia

occured via simulation of the photodynamic reaction. Subsequent simulation of the OPS

measurement suggested that the OPS may be sensitive to the presence of chronically hy-

poxic vessels (an OPS-estimated hemoglobin saturation of ≥ 57% indicated < 6% of vessels

hypoxic), but may have limited application to detection of acute hypoxia following PDT.
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(Ĉ
OPS/OPS
invivo ). The contribution of plasma is given as fplasmaĈ
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1.0 INTRODUCTION

Noninvasive quantitation of optically-active chromophores in tissue in vivo has extensive

utility in clinical applications. Specifically, the noninvasive measurement of tissue drug con-

centration has potential to improve anti-cancer treatment utilizing radiation-sensitizing or

photo-sensitizing therapeutics [4, 5]. Ideally, tissue-sensitizing compounds have the special-

ized properties to selectively localize within malignant tissue following administration and

to generate reactive oxygen species in response to radiation or light exposure [6, 7]. The

protocols outlining the administration of these treatments generally involve systemic drug

administration followed by tumor irradiation at a later time, ideally when the concentra-

tion of the sensitizing agent is higher in the targeted tumor than in the surrounding normal

tissues [4, 5]. It is well-known that the rates of distribution of the sensitizing agent into

targeted malignant tissue may vary between individuals [8, 9]. However, current standard

clinical protocols do not measure tissue sensitizer concentrations following administration,

and therefore, cannot account for interpatient variability. For those compounds that selec-

tively localize in malignant tissue, there are few options for the clinical measurement of tissue

sensitizer concentrations. Standard plasma sampling is of limited use, because the plasma

concentration may not be representative of tissue concentrations [10]. Direct measurement

of tissue-localized sensitizer concentrations is usually not conducted because conventional

tissue assay techniques require invasive biopsies [11] and time consuming destructive tissue

analysis ex vivo.

Moreover, the capability to noninvasively measure hemoglobin saturation in tissue has the

potential to improve photo-sensitizing treatments. During treatment, such a measurement

may provide information about the amount of oxygen available for use in generating reactive

oxygen species (ROS), potentially providing information about the status of the reaction.
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Following treatment, the measurement of photosensitizer concentrations remaining within

the tissue, or oxygen concentrations within the local vasculature, may indicate the amount

of damage induced to the targeted tissue during treatment, potentially providing an indicator

of treatment outcome.

The Optical Pharmacokinetic System (OPS) is an optical spectroscopic device that is

capable of measuring concentrations of optically active compounds noninvasively in vivo.

Examples include its use in measuring the concentrations of sensitizing compounds and

the saturation of hemoglobin [3, 12, 13]. This dissertation develops analysis methods that

improve the accuracy of concentration estimates from the elastic-scattering measurements

made by the OPS. The dissertation also develops mathematical models that simulate OPS

measurement of tissue in silico, with simulations investigating the physiological relevance

and clinical utility of OPS estimated tissue concentrations.

1.1 IN VIVO OPTICAL SPECTROSCOPY

Over the past 40 years, optical spectroscopy has been investigated as a method to measure

concentrations of optically-active compounds noninvasively in tissues in vivo [14, 15, 16, 17].

The visible (vis) - near-infrared (NIR) wavelength spectrum (400 − 900 nm) is the major

focus of in vivo optical spectroscopy [15,16]. In this region, tissue absorbance is at a relative

minimum compared with shorter (≤ 400) or longer (≥ 900 nm) wavelengths. Here, vis-NIR

light can transmit deeply through tissue, which allows optical devices to sample macroscopic

tissue volumes (in the range of mm3-cm3) during measurement [15]. While many endogenous

compounds absorb light in this region, hemoglobin is the dominant absorber, with absorp-

tion that is an order of magnitude larger than any other endogenous compound, such as

cytochrome oxidase. [17]. The absorption bands of hemoglobin are oxygenation-state depen-

dent, as shown in Figure 1.1. This plot contains the extinction coefficients of oxygenated

(HbO2) and deoxygenated (Hb) hemoglobin. Investigators have often utilized the distinct

absorption bands of HbO2 and Hb to quantify hemoglobin saturation noninvasively in tissue

in vivo [18, 19, 20]. Between the major absorption bands of hemoglobin (500 − 600 nm)
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and the absorption of water at ≥ 800 nm, a region of low tissue absorption exists. It is

in this region where many chemo-, radio-, and photodynamic therapeutic compounds dis-

play strong absorption bands. Therefore, exogenously delivered compounds can be detected

noninvasively in this region; leading this region to be termed the ‘therapeutic window’ [21].

In order to understand in vivo optical spectroscopy, it is important to begin with a

brief description of light propagation through tissue. Light transport through tissue can

be described by interactions between photons and the subcomponents of the tissue [15].

These interactions can be simplistically categorized into two types of events: absorption

and scattering. Absorption events involve the transfer of the energy within a photon to

an accepting substance within the tissue. The absorption coefficient µa (λ) represents the

average distance that photons travel within a medium before absorption occurs [15]. This

property is wavelength (λ) dependent, such that compounds posses characteristic µa (λ)

profiles [17]. As light passes through a medium, the intensity is reduced due to interactions

with the tissue, and this reduction is termed attenuation [15]. Beer and Lambert identified

the analytical relationship between the attenuation of light that passes through a medium

and the concentration of absorbing compounds within that medium [17]. This relationship

is known as the Beer-Lambert law, and is given as:

Iatten (λ) = Iincident (λ) e(−εi(λ)CiL(λ)) (1.1)

Here, Iincident (λ) is the intensity of light incident on the sample, Iatten (λ) is the intensity of

attenuated light collected by the detector, L (λ) is the path length of light within the sam-

ple, and εi (λ) and Ci are the extinction coefficient and concentration of compound i within

the sample, respectively. This relation is classically applied to in vitro optical spectroscopy

devices, which measure a clear (non-scattering) solution that contains a small amount of

a known compound. In this situation, the distance traveled by the light within the sam-

ple (L (λ)) is simply the geometrical distance between the source and detector. Therefore,

Iincident (λ), L (λ), and εi (λ) are known parameters, and measurements of Iatten (λ) are used

to calculate changes in Ci. Moreover, the concentration of multiple compounds could be

estimated by detecting multiple wavelengths of light (with at least one wavelength per com-

ponent) [22] and solving Equation (1.1) in matrix form.
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In tissues, the process is more complicated due to scattering. Scattering events change the

direction of photon propagation and are caused by differences in the speed that photons travel

through subcomponents of the tissue [15]. Scattering events are assumed to be elastic [23],

however they do attenuate light intensity due to the diffuse ‘spreading’ of photons as light

propagates through tissue. Photon scattering within tissue is wavelength-dependent and

can be quantified by the scattering coefficient µs (λ), which describes the average number

of scattering events that a photon experiences per distance [15]. During a scattering event,

the path of the photon is altered by an angle (θscatter). This angle is dependent upon the

anisotropy (g) of the medium. The anisotropy factor provides the mean cos(θscatter) value

for photons within the medium. A value near 1 would indicate to an average deviation from

the initial path that is negligible, and this is considered forward-scattering. A value near

0 would indicate to a near-reversal of the photon path, and this is considered backward-

scattering. Tissue is classified as a strong forward-scattering medium, with g values in the

range of 0.70 − 0.95. The scattering properties determine the amount of light that remits

from the tissue surface, and the amount that is ‘lost’ by propagation deep into tissue. From

this description of light propagation, it is clear that attenuation of the light collected from

the tissue is dependent on both scattering and absorption properties.

Within tissue, scattering dominates photon propagation, with µs (λ) >> µa (λ) [24].

Therefore, during spectroscopic measurement of tissue, the photons may be scattered many

times during propagation from source to detector. This may result in photon path lengths

that can be many times greater than the geometrical separation between the source and

detector [16, 17]. Moreover, the detector collects a range of photon paths, and this range is

affected by the total µa (λ) value within tissue. Measurements of tissue with large absorption

coefficients collect fewer photons that have traveled long paths because these photons are

more likely to be absorbed. Therefore, during optical measurement of tissue in vivo, the

photon path length is dependent on both the total values of µs (λ) and µa (λ); this information

is not known a priori [16]. This complication makes optical measurements of tissue difficult

to interpret.

Many in vivo optical spectroscopic devices have been developed that measure the in-

tensity of light remitted from tissue [13, 18, 20, 25, 26]. Here, ‘remittance’ may refer to light
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exiting either an opposite face of the tissue (termed transmittance), or light that scatters,

reverses direction, and exits the original surface (termed diffuse reflectance) [15]. Due to

the high scattering coefficient of tissue, most in vivo optical spectroscopy devices measure

diffuse reflectance.

Early in vivo optical spectroscopic devices were developed to measure the diffuse re-

flectance at multiple source-detector separations [18, 25]. The detected signal was analyzed

using an analytical model of light transport known as diffusion theory [27], which estimated

both scattering and absorption properties within the tissue [18, 25]. However, these devices

contained some inherent limitations. The optical probes usually contained source-detector

separations on the order of mm to cm, which resulted in optically sampled tissue volumes

that may be larger than clinically desired (≥ 1 cm3). Another problem faced by these devices

was that the high absorption bands of hemoglobin in the 500 − 600 nm wavelength range

prevented adequate detection of light at large source-detector separations. This effectively

truncated the range of measured wavelengths to 650 − 800 nm [18], reducing the amount

of information that can be estimated from the data. Moreover, the use of diffusion theory

for spectral analysis was problematic. Diffusion theory is unable to describe light transport

short distances from the source fiber (∼ 1 mm) [27]. Also, diffusion theory requires that the

absorption coefficient be much smaller than the scattering coefficient, a requirement that

may be violated in the 500 − 600 nm wavelength range. These complications combine to

limit the utility of ‘diffusion theory based’ in vivo optical spectroscopic devices.

Mourant et al. presented an alternative approach that utilized a single, short source-

detector separation. The hypothesis was that a source-detector separation could be selected

that reduced the dependence of photon path length on the scattering properties within the

tissue [28]. This hypothesis was based on observations of how changes in scattering coefficient

affect the photon path length. Both large source-detector separations and large scattering

coefficients would case photons propagating from source to detector to undergo many scatter-

ing events. Logically, in this situation, large scattering coefficients result in long photon path

lengths. Conversely, for very small source-detector separations, very small scattering coef-

ficients allow photons to penetrate deeply into the tissue before being backscattered to the

detector fiber. Therefore, in this situation, small scattering coefficients result in long photon
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path lengths. Mourant et al. identified a source-detector separation in the ‘intermediate’

range of these two situations (1.5 − 1.8 mm) that made the photon path length insensitive

to the scattering properties of the medium [28]. This stipulation simplifies the problem

of estimating changes in chromophore concentrations from changes in light attenuation by

removing the requirement that the total scattering coefficient be known. This design was

incorporated into the device known as the Optical Pharmacokinetic System (OPS), which is

described in detail in Section 1.1.1.

Before extensive description of the OPS, it is worth noting some of the more-recent in vivo

optical spectroscopic devices and technologies that have been developed. Finlay and Foster

further developed the use of a fiber optic probe with a single, short source detector separation

(1 mm) to measure diffuse reflectance [29]. The data were analyzed using an analytical model

of light movement through tissue termed a hybrid P3-diffusion model [30]. This modeling

technique uses a third order approximation of the light transport equation, which overcomes

the limitations of diffusion theory at short distances from the source and in mediums with

large absorption coefficients. This device is capable of accurately quantitating hemoglobin

concentration in tissue in vivo and tissue simulating phantoms in vitro, and comparatively,

it represents a very similar device to the OPS.

Another device was developed by Amelink and Sterenborg [26], who termed the tech-

nology differential path-length spectroscopy. This device utilized source and detector fibers

nearly adjacent to each other. During measurement, photons exit the source, scatter through

the tissue, and are collected by both the source and detector fibers. This geometry utilizes

both detected signals to accurately estimate the photon path length, and in turn, accurately

estimate µa (λ) [26, 31]. However, the sampled tissue volume is limited to a few superficial

layers, which may limit the capability this device to quantitate drug concentrations within

macroscopic tissues.

The spectroscopic devices considered thus far are termed steady-state devices [15].

Steady-state measurements involve light entering tissue, establishing a stable distribution

throughout the sampled tissue, and photons being collected over a ‘window’ in time, with all

collected photons contributing to the detected intensity [32]. Another type of spectroscopic

device is termed a time-resolved device [33]. Time-resolved spectroscopy utilizes short light
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pulses (on the scale of picoseconds) and time-resolved detectors (with sensitivities on the scale

of pico- to nanoseconds) [15]. Using this method, the ‘time of flight’ of collected photons

are recorded and used to estimate the path length traveled by the collected photons [33,34].

Moreover, the distribution of collected photon path lengths can provide information about

inhomogeneities within the tissue sampled [32,35]. Time-resolved technologies are more com-

plicated (and expensive) than steady-state devices and this is the trade-off for the increased

information obtained from measurement with these devices.

Another alternative technology that is relevant to the complete description of in vivo

optical spectroscopy is the field of fluorescence spectroscopy. In brief, this technique in-

volves the excitation a compound (termed a fluorophore) with a beam of light (usually a

laser), which causes the compound to emit light of a lower energy [36]. The fluorescence

spectroscopic devices detect the emitted light and use this to quantitate the concentration

of the fluorophore in vivo. It has been noted that fluorescence and reflectance spectroscopies

are less ‘competing’ and more ‘complimentary’ technologies [23]. Specifically, fluorescence

spectroscopy offers the ability to quantify the concentrations of compounds that have ab-

sorption bands that overlap strong endogenous absorbers, but have a fluorescence emission

spectra that is distinct from endogenous compounds. This may allow fluorescence tech-

niques to probe a deeper volume of tissue during measurement. Conversely, it is possible

that reflectance may be more well-suited to quantitate compounds if the fluorescence emis-

sion signal is convoluted with other endogenous fluorophores, but the absorption bands are

distinct from other endogenous chromophores. The field of fluorescence spectroscopy has

been extensively reviewed and discussed by Wagnieres et al. [36].

1.1.1 Optical Pharmacokinetic System (OPS)

The OPS is a portable, hand-held, fiber-optic based spectroscopy device that measures the

intensity of elastically-scattered light at an accessible tissue site [3,12,37]. Figure 1.2 shows

a schematic of the tip of the hand-held probe, containing two optical fibers; one leads from a

light source with the second returning to a spectrophotometer. The light source is broadband,

with light in the vis-NIR wavelength range (450 − 900 nm). During OPS measurement of
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tissue, the tip is placed in contact with the surface of the tissue and photons exiting the source

fiber are elastically-scattered throughout. Photons that are back-scattered and collected by

the detection fiber are sent to the spectrophotometer.

Bigio et al. uses the term ‘elastically-scattered’ to make a distinction between the OPS

and more ‘general’ reflectance spectroscopy devices [23]. Specifically, elastically-scattered

light does not contain specular reflectance, which is defined as light that did not scatter

through tissue, instead reflecting off of the tissue/air interface and being collected by the

detector. For clarification, the elastic-scattering measurement is essentially a reflectance

measurement made with the detector fiber in contact with the surface of a tissue.

As described previously, the source-detector fiber separation distance in the range of

1.5−1.8 mm makes the effective photon path length insensitive to changes in tissue scattering

[28]. Using a modification to the Beer-Lambert law, changes in collected light intensity are

related to changes in the concentration of absorbing compounds within the medium (this

methodology is explained in detail in Chapters 2 and 4). Recent studies have utilized the

Optical Pharmacokinetic System to accurately quantitate optically active drugs in mouse

tissues in vivo [3, 12, 13, 37]. These results suggest that the OPS may have direct and

potentially significant application to the field of photodynamic therapy (PDT), which is

described in the following Section.

1.2 PHOTODYNAMIC THERAPY (PDT)

PDT is a promising treatment option for malignant and nonmalignant pathologies [4,5,38].

PDT involves the use of a photo-activated compound, termed a photosensitizer (PS) that

becomes excited when exposed to light of a specific wavelength. In the early 1900’s, Raab

was the first to report the use of a PS to destroy biological organisms [39]. He discovered, by

chance, that cells exposed to both the compound acridine and light died, while cells exposed

to either acridine or light were preserved [39]. In the 1970’s this fundamental concept was

applied to the modern clinical treatment of cancer by Dougherty and Weishaupt [40,41]. It
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Figure 1.2: Schematic of the OPS probe tip. During measurements, photons exit the source

fiber and are elastically-scattered throughout the tissue. Photons that are backscattered and

collected by the detector fiber are sent to a spectrophotometer.
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was Dougherty who extensively reported the tumor-destructive capabilities of PDT [40,41],

while Weishaupt identified singlet oxygen as the cytotoxic agent of PDT [42].

Figure 1.3 shows the energy transitions between PS and oxygen during the photodynamic

reaction of PDT. Singlet state PS molecules can interact to yield a more-stable triplet state

PS molecule, which can cause cellular damage via two pathways. The type I pathway

involves direct interaction of the triplet state PS with cellular components. The type II

pathway involves interaction of the triplet state PS with molecular oxygen, which generates

singlet oxygen and other ROS that damage cellular components. ROS compounds are highly

reactive due to the presence of unpaired valance shell electrons and are known to damage

cellular components (including DNA). The type II pathway is accepted as the dominant

cause of PDT-induced tissue damage [42,43].

In anti-cancer PDT, the PS is usually administered via intravenous (i.v.) injection.

However, for superficial malignancies, the PS can be administered locally via topical appli-

cation [4]. An ideal PS compound preferentially localizes in malignant tissue during drug

distribution, such that after some elapsed time, a positive concentration gradient exists

between malignant and surrounding non-malignant tissues [6,38,44]. At this time, illumina-

tion of targeted tumor tissue with a specific wavelength of light inflicts damage to the tumor

cells and (ideally) preserves the surrounding healthy tissues. This targeted therapy limits

the exposure of healthy tissues to toxic material, thereby reducing the systemic side effects

and patient morbidity associated with conventional anti-cancer treatments (e.g., whole body

chemo- or radiation-therapies) [38,44,45]. The mechanism of PDT does not make it suscep-

tible to drug resistance by tumor lines [5]. It also is possible to repeat PDT treatments at

a target site multiple times without additive toxicity, unlike conventional chemo- and radio-

therapies [5, 45]. Possible side effects of PDT can include damage to surrounding healthy

tissue (including burns, swelling, pain, and scarring), and skin photosensitivity [4], which

is the excitation of the PS in skin by ambient light following treatment. The occurrence

and severity of these side-effects can be reduced by delivering PS and light doses that do

not induce damage to healthy tissues [45], and by using PS compounds that rapidly clear

following treatment, reducing the need for prolonged dark periods following treatment to

avoid photosensitivity [6].
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Figure 1.3: Jablonski diagram of the populations and transitions of PS and oxygen during

PDT: (A) excitation, (B) fluorescence, (C) inter-system crossing, (D) phosphorescence, (E)

interaction of triplet state PS with cellular component, (F) transfer of energy converting

ground state to singlet state oxygen, (G) oxidation of cellular component.
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1.2.1 Photosensitizing Compounds

Ideally, the PS is nontoxic in the absence of light and becomes excited to a singlet state

when exposed to a specific wavelength of light [6, 44], with efficient PS compounds capable

of generating large amounts of ROS in response to excitation. Preferably, the excitation

wavelength is in the ‘therapeutic window’ wavelength region, which allows deep penetration

of the light into the tumor tissue.

Photofrin r© is the most commonly utilized and researched PS compound to date.

Photofrin r© is manufactured by purification of hematoporphyrin derivative, and was shown

to be effective against tumor lines by Dougherty [5]. Medical review boards world wide

have approved Photofrin r© for treatment of bladder, cervical, esophageal, lung, and head

and neck cancers, as well as precancerous lesions in patients with Barrett’s esophagus (a

possible precursor to esophageal cancer) [4,46]. However, it is not an ideal PS because it has

a relatively low absorption maximum in the red wavelength range (at 632 nm), potentially

limiting the delivered ROS yield during laser administration.

Second generation PS compounds have been developed that improve upon the capa-

bilities of Photofrin r©. Verteporfin r© is a formulation of benzoporphyrin derivative, with

an absorption maximum at 690 nm. Studies have shown that Verteporfin r© is useful in

targeting vasculature during treatment and is approved to treat age-related macular de-

generation [47, 48]. Verteporfin r© is also being considered as a treatment option for skin

cancer [49]. meta-tetrahydroxyphenyl chlorin (m-THPC, or Foscan r©) has an absorption

maximum at 652 nm, has shown increased efficiency compared with Photofrin, and is ca-

pable of achieving equivalent treatment outcome with relatively low drug doses and low

light fluence [5]. Foscan r© is being investigated for treatment of esophageal, lung, head and

neck, thoracic, and skin cancers [50, 51]. 5-aminolevulinic acid (ALA) is a compound that

accumulates in malignant cells and is metabolized in vivo into the photosensitive compound

protoporphyrin-IX [5]. ALA has an absorption maximum at 632 nm, and been investigated

to treat actinic keratosis and basal cell carcinoma [52]. Aluminum phthalocyanine sulfonate

(AlPcS) has an absorption maximum at 675 nm, shows tumor localization, and is being

investigated to treat cutaneous cancers [53]. Motexafin lutetium (MLu, or Lutex r©) is a
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non-porphyrin PS that has an absorption maximum at 732 nm, allowing deeper penetration

of light during treatment compared with Photofrin r©, Verteporfin r©, or Foscan r© [5]. MLu

has been investigated to treat breast [54] and prostate [55] cancers. A similar compound,

motexafin gadolinium (MGd, or Gadtex r©) is being investigated as a radiation-sensitizer

and chemo-sensitizer [56,57]; MGd is further discussed in Chapter 2. Silicon phthalocyanine

(Pc4) has a strong absorption maximum at 672 nm, and has been shown to be effective

preclinically [58], and is being considered to treat cutaneous cancers [59]; Pc4 is further

discussed in Chapter 4.

1.2.2 PDT Dosimetry

Despite the numerous advantages of PDT, there has not yet been widespread implementation

of this treatment option in the clinic [4, 45]. This is attributed to sub-optimal treatment

outcomes that can result from current clinical protocols [60,45]. The photochemical reaction

of PDT requires adequate amounts of photosensitizer, oxygen, and light fluence at the site of

action in order to generate the ROS yield required to induce tumor cell death [4,5,60,61]. An

inadequate supply of any these components can limit the photodynamic reaction [4,5,45,61,

62] and potentially result in non-uniform tumor necrosis, a sub-optimal treatment outcome.

Classic clinical protocols include three phases [45,44]: (1) PS administration; (2) elapsed time

to allow the PS to distribute into the target tissue; and (3) illumination of the target site with

laser light. The PS dose is usually determined by patient body weight [60], while the elapsed

time between drug administration and light exposure (known as the drug-light interval) is

usually fixed for all patients, as is the laser light intensity and laser exposure time [60].

The a priori specification of these treatment parameters does not account for interpatient

variability in either the rate and magnitude of the PS distribution into the tumor prior to

illumination or the rate of oxygen consumption within the target tissue during illumination.

Treatment designs that do not consider interpatient variability of these treatment paramters

can result in incomplete tumor cell kill and lead to tumor recurrence [4, 5, 60,62,61].

PDT dosimetry aims to design treatments that ‘potentiate’ the efficacy of the photo-

chemical reaction [61,63,64,65,66,67]. Dosimetry studies aim to deliver a sufficient amount
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of biological damage that results in the destruction of the targeted tissue. Early studies

defined the delivered PDT dose as the product of the delivered fluence and the PS concen-

tration [61]. In the presence of sufficient oxygen, this definition of dose is proportional to the

amount of ROS generated during treatment, and therefore is proportional to the amount of

necrosis induced within the targeted tissue [68]. However, in the in vivo situation, the rapid

consumption of oxygen can deplete oxygen concentrations, and limit the photodynamic re-

action. Therefore, oxygen concentration, in addition to PS concentration and light fluence,

must be considered when estimating the PDT dose delivered during treatment [69,70,71].

Multiple approaches to dosimetry have been described by Wilson and coauthors [65,72].

Direct dosimetry refers to the direct measurement of a known indicator of the treatment

outcome, such as measuring singlet oxygen at the target site during treatment [66, 73, 72].

Such measurements are currently limited in vivo due to the low fluorescent signal produced

by singlet oxygen and the difficulties associated with accurately quantitating the signal over

noise [74]. Implicit dosimetry refers to the measurement of a quantity that is an indirect

indicator of the ROS yield, such as using the rate of PS photobleaching to estimate the rate

of ROS generation during treatment [65]. Photobleaching is the irreversible destruction of

the PS molecule caused by interaction with either triplet-state PS molecules or ROS com-

pounds. This process causes PS concentrations to decrease during PDT. Observation of the

photobleaching rate in vivo has been identified as a dosimetry metric [63, 64], because it is

dependent on the rate that ROS and other radical species are generated. Explicit dosimetry

refers to the measurement of a physical quantity that is involved in the photodynamic re-

action, such as PS concentration, tissue oxygenation (measured as hemoglobin saturation),

or delivered light fluence [65]. It should be noted that hemoglobin saturation is an indirect

assessment of tissue oxygen concentration and the quality of this relationship may be ques-

tionable during PDT; this is discussed in Chapter 5. Hypothetically, measurement of these

quantities could determine if adequate amounts of the components of the photodynamic

reaction are available during treatment.

As noted, effective PDT treatment requires the presence of sufficient PS concentrations

during laser illumination. Studies have reported that in the presence of adequate oxygen and

fixed light dose, a positive correlation exists between pre-laser tumor PS concentrations and
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the degree of necrosis induced by the PDT treatment [75]. Patient-specific assessment of PS

concentrations are fundamental to PDT dosimetry because investigators have reported large

inter-patient and intra-tumor variability in PS concentrations following administration for

commonly used compounds, such as: Verteporfin r© [76], AlPcS [77], and MLu [78, 79]. In

a preclinical study, Zhou, et al. investigated the effect of tailoring the delivered laser light

intensity to the Verteporfin r© concentration measured in the tumor. This study sampled

many small tumor tissue volumes (on the order of intercapillary distances) to determine

the mean Verteporfin r© concentration and also the intersubject variability throughout the

tumor. It was shown that adjustment of laser dose to either the lower-quartile or mean PS

concentration measured within tumors significantly reduced the variability in tumor response

following treatment [60]. Currently, it is not known if these results could be obtained using

a ‘bulk’ measurement of PS concentration via a device such as the OPS.

During the photodynamic reaction, the rapid consumption of ground state oxygen

molecules by triplet state PS molecules can cause hypoxic regions to develop within the

tissue [62, 76, 80, 81, 82]. This can limit the generation of ROS to the rate of oxygen resup-

ply from the vasculature. Henderson, et al. showed that the rate of oxygen depletion in

tissue is highly dependent on the intensity of the laser light to which the tissue is exposed

during Photofrin r©-mediated PDT [62, 82]. A low intensity light dose consumes oxygen at

a lesser rate than high intensity light, thereby preserving the oxygen supply and making

the treatment more effective for the same total delivered light dose [62, 81]. However, this

low intensity scheme can require long treatment times, which are not embraced clinically, so

a method to monitor oxygen concentrations within the tissue could allow a more efficient

treatment to be designed. Another technique used to maintain tissue oxygenation is the

fractionation of light dose during treatment. Here, the laser is administered in cyclic ‘light’

and ‘dark’ periods, with laser illumination periodically halted to allow resupply of oxygen

from local blood vessels, which results in increased treatment efficacy for a fixed total light

dose [83, 84]. Curnow et al. reported temporal changes in oxygen concentration during

ALA-mediated PDT, with depletion during light cycles, and subsequent replenishment dur-

ing dark cycles [85]. However, this study determined the temporal sequence of the light

and dark periods a priori and did not use measurements of oxygen concentration to adjust
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the light/dark cycles. The on-line determination of dark periods may be important because

tissue oxygen supply can change temporally during PDT treatment, which means that the

optimal length of dark periods may change during treatment.

It is well-known that PDT can induce changes to both blood flow and hemoglobin

saturation. This has been observed for many commonly used PS compounds, including:

Photofrin r© [86,87,88,67], AlPcS [84], ALA [89,85], and Verteporfin r© [89,90]. Wang et al.

observed that hypoxia in tumor tissue following PDT treatment resulted from vascular occlu-

sion [87]. Chen et al. observed PDT-induced changes to relative blood flow [90] and vascular

permeability [91], both of which affect the rates of oxygen resupply to the tissue during PDT

treatment. The rates of tissue re-oxygenation during PDT are specific to the patient, and

may or may not be consistent between treatments on individual patients. Therefore, clinical

assessment of patient-specific changes in blood flow and hemoglobin saturation within tis-

sue could allow clinicians to adjust the light dose and/or fractionation periods to preserve

tissue oxygen and possibly achieve more uniform tumor necrosis. Moreover, some studies

have reported that the degree of hypoxia induced by PDT in the targeted tissue following

treatment is a marker of tissue necrosis [87, 88]. Therefore, spectroscopic measurement of

tissue following treatment may provide valuable information about the long term outcome

of the delivered treatment.

The time interval between drug and light administration has been shown to be another

important parameter in PDT optimization. Researchers have shown that the drug-light

interval can be used to select the treatment target as either the tumor cells or the local

vasculature [92, 93, 94]. For treatments with short drug-light intervals, the PS is primarily

localized within the vasculature during laser administration. Laser administration at this

time damages blood vessels, resulting in decreases in oxygen concentration within the tumor

tissue during and following treatment. For treatments with longer drug-light intervals, the

PS is localized in the tumor tissue during laser administration. Laser administration at

this time directly damages tumor cellular components. Pogue et al. has shown that the

drug-light interval effects on treatment are dependent on the specific PS compound [89].

Recent studies have considered targeting both the vasculature and the tumor cellular

components by administering two drug doses: one dose at a long time prior to treatment

17



(on the order of hours/days), and one dose just prior to light exposure (on the order of

minutes/hours) [92,93]. These results showed that this dosing regime is more effective than

individual targeting of either the vasculature or the tissue [92,93]. Such a treatment protocol

may benefit from noninvasive measurement of PS concentrations by the OPS. The OPS

measurement of tissue in vivo detects the PS localized in both tissue and blood perfusing

the tissue. Hypothetically, the OPS could be used to mathematically estimate the optimal

time interval between the second (vascular targeted) PS dose and the administration of laser

for individual patients. This concept is further discussed as a future direction in Chapter 6.

1.3 MATHEMATICAL MODELING OF THE PDT PROCESS

This Section outlines theoretical models that are used to study the complex interaction

among the of reactive components of the photodynamic reaction of PDT. The following

sections outline pharmacokinetic models of the PS (Section 1.3.1), models of the photody-

namic reaction (Section 1.3.2), and mathematical models of light propagation through tissue

(Section 1.3.3)

1.3.1 Mathematical Modeling of Photosensitizer Pharmacokinetics

Pharmacokineitc (PK) theory, introduced by Teorell [95, 96], is the kinetic description of

drug absorption, disposition, metabolism, and excretion of compounds within the body.

Mathematical models are used to describe time-dependent changes in the drug concentra-

tions within different regions of the body. Compartmental modeling treats the body as a

group of ‘compartments’, which may not be reflective of physiology, but is capable of pre-

dicting the dynamics of drug concentrations that occur within the biologic system following

administration.

PK analysis of classical chemotherapeutics is often concerned with predicting the overall

exposure of the tumor to the drug, which is often correlated with the effect of the drug

on the tumor. PK analysis of PS compounds is slightly different, since the PS is (ideally)

18



only active in the presence of light [6], such that PDT-induced tissue damage is dependent

on the PS concentration during illumination. This makes the drug-light interval a critical

variable in PDT treatment design, yet current clinical protocols do not determine the in-

terval for individual patients because tissue PS concentrations are not monitored following

administration. Hypothetically, the OPS could be used to monitor PS concentrations in the

tumor and surrounding tissues following administration, providing information useful to the

‘optimal’ selection of the drug-light interval.

Knowledge of the PK of the PS may allow the clinician to selectively target either tumor

tissue or the tumor vasculature during treatment [89, 94, 97]. Pogue and coauthors [77, 98],

as well as Triesscheeijn et al. [94] suggested the importance of the temporal shifting of the

PS from vasculature to tissue during distribution. This was modeled by Jones et al. [97],

who developed a compartmental PK model of Foscan r© distribution in a rat tumor model.

Here, multiple drug-light intervals were investigated, and increased effective response was

noted for laser administration both at 2 hr and 24 hr following Foscan r© dose. These times

correlated with the maximum Foscan r© concentrations estimated by the PK model in plasma

and tumor, respectively.

1.3.2 Mathematical Modeling of the Photodynamic PDT Reaction

Mathematical models of the photochemical reaction allowed researchers to identify oxygen

consumption as a limiting factor for PDT in tissue in vivo [69, 70]. Foster and coauthors

developed a one-dimensional model of oxygen consumption and diffusion within tissue dur-

ing PDT [69,70]. These studies concluded that oxygen consumption could potentially limit

ROS generation [69,70]. The distance between capillaries defined the potential of treatment

being limited by oxygen deficit [70]. The studies concluded that laser administration in a

fractionated schedule (30 sec laser on / 30 sec laser off) could relax the oxygen limitation and

improve ROS generation [69,70]. Model results adequately explained oxygen measurements

within tissue-spheroids during PDT [99]. The model was extended by Henning et al. [100]

to incorporate temporal changes in oxygen and ROS, concluding that optimal laser frac-

tionation periods should be asymmetric, with longer time allowed for oxygen resupply than
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for reaction. Yuan et al. further extended the theory to consider the development of axial

gradients of reactive components during PDT, which can cause nonuniform photodynamic

dose deposition [101].

Pogue et al. [102] modeled the effect of light/dark cycle length on the rate of singlet

oxygen generation. The study concluded that the optimal light fractionation schemes found

empirically (on the order of 30− 60 sec reoxygenation time) are much longer than would be

required for average intercapillary spacing if oxygen supply was constant during treatment

(on the order of 5−10 sec). These results suggest that vascular occlusion, vascular damage, or

chronic/acute hypoxic regions within the tissue may cause the optimal fractionation schedule

found in vivo to be longer than the time required for oxygen resupply during normal blood

flow.

Wang et al. further developed this type of model by incorporating a time-dependent

oxygen source within blood vessels and linking hemoglobin saturation to the oxygen concen-

trations in the intercapillary space [74]. Moreover, Wang concludes that volume-averaged

hemoglobin saturation is not sensitive to ‘microregional’ heterogeneities, but the signals are

dependent on the intercapillary spacing. The conclusion of PDT dependence on capillary

density (spacing) is one potential explanation for the high variability observed between pa-

tients. This is because tumor vasculature can be distributed irregularly throughout the

tissue, with intra- and inter-tumor variability in capillary density. Moreover, this value

cannot be determined noninvasively prior to clinical treatment. Therefore, these findings

support the need for patient-specific therapeutic monitoring.

The irregular arrangement of blood vessels within tumors compounds the complexity of

a mathematical description of the PDT process in vivo. Pogue et al. presented a numerical

method to simulate the spatial distribution of oxygen within tumors by applying a finite

element technique within geometries obtained from histological cross sections of tumors [103].

This model predicted large regions of hypoxia within the tumor tissue at steady state, and

the results are consistent with other empirical [104] and theoretical [105] descriptions of

tumor hypoxia. These predictions suggest that PDT-targeted tumor tissue may be hypoxic

at steady state, a condition which could limit the PDT reaction.
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The variability in tumor blood vessel arrangement and blood flow rates limits the ability

of mathematical models to predict individual PDT treatment outcome in vivo. Nonethe-

less, mathematical models of PDT provide insight into the interaction among the reaction

components and provide a means to interpret measurements of the system made during

treatment. Hypothetically, these models could be informed with measurements of PS con-

centrations, blood flow rates, and hemoglobin saturation during PDT treatment, providing

feedback regarding the clinical administration of laser during the treatment.

1.3.3 Mathematical Modeling of Light Propagation through Tissue

Mathematical models that describe the propagation of light through tissue are capable of

simulating spectroscopic measurement of tissue by optical devices such as the OPS. This Sec-

tion provides a brief outline of the light propagation models, and describes the development

and utility of these models to emulate spectroscopic measurement of tissue in silico.

An analytical description of light transport through tissue is possible using diffusion

theory [27]. This technique describes the movement of light through tissue in the direction

of a decreasing ‘photon concentration’ gradient [27]. Diffusion theory is capable of accurately

describing the spatial steady state fluence profile within a model geometry. Solutions can be

achieved quickly, making this model useful in calculating the light fluence delivered during

laser administration and for estimating the optical properties from measurements of some

diffuse reflectance devices [18,25]. However, model predictions are not valid at short distances

(∼ 1 mm) from the light source and are not well-suited to describe complex geometries [106].

Therefore, diffusion theory is not applicable to the mathematical description of the OPS

measurement of tissue.

Monte Carlo (MC) modeling of light transport is a commonly used technique, where

the optical properties of the tissue are specified by the user and photon movements are

stochastically simulated [29, 106, 107, 108, 109]. MC models originally described the move-

ment of light throughout a homogeneous medium [106]. This structure was extended by

Wang and coauthors, to describe light propagating through multilayered structures, termed

MCML [107]. The MCML code was applied to the more complicated situation of tissues that
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contain heterogeneous chromophore distributions [110], with highly absorbing blood local-

ized within discrete blood vessels. Simulation of large numbers of photons provide estimates

of reflectance and transmittance that approach true (empirical) photon distributions [106].

MC models can require significant computational time, but allow users to specify compli-

cated geometries, including the incorporation of discrete objects and the specification of

heterogeneous optical properties. Therefore, MC models are appropriate for simulation of

the OPS measurement of tissue. Mathematical models of light transport contributed to the

understanding of how discrete vessels affect the reflectance signal measured in vivo by optical

spectroscopic devices. Discrete vessels affect the distribution of light propagation because

blood (which is the dominant endogenous absorbing compound within the tissue) is localized

into small volumes within the tissue. As light enters a vessel, the blood located around the

vessel edge absorbs a large amount of light, effectively shielding the blood at the vessel center

from light. This is shown schematically in Figure 1.4. This effect is more pronounced in

the wavelength region where hemoglobin has strong absorption bands. Therefore, the light

that is remitted from the tissue may have only sampled a subset of the total amount of

blood within the tissue (due to the shielding effect shown in Figure 1.4). This phenomena

causes the absorption coefficient estimated optically to be less than the ‘true’ absorption co-

efficient within the tissue. This phenomena was reported empirically, and termed ‘pigment

packaging’ [20]. Theoretical analysis of this phenomena reported how the degree of pigment

packaging is related to the average size of the vessels and the absorption coefficient within

the vessels [110, 111, 112]. These studies suggested that a ‘vessel correction factor’ could

be incorporated into model-based analysis of spectra to estimate the wavelength-dependent

effect of pigment packaging on the absorption detected optically. Incorporation of this ves-

sel correction factor improved the ability of the model estimates to capture features of the

measured data [113]. Application of the vessel correction factor to the OPS measurement is

discussed in Chapter 4.
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Figure 1.4: Schematic of the ‘pigment packaging’ effect of discrete blood vessels on diffuse

light. See Section 1.3.3 for details.
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1.4 DISSERTATION OVERVIEW

Chapter 2 develops an analysis method that is capable of estimating chromophore concen-

trations in the presence of matrix-induced wavelength-shifts in the extinction coefficient of

the compound. This method is applied to OPS measurement of MGd in tissue-simulating

phantoms in vitro and in mouse tissues in vivo and in situ.

Chapter 3 utilizes the plasma, tumor, and skin MGd concentrations measured in Chapter

2 to develop compartmental PK models that describe the dynamics of MGd disposition

following intravenous administration. Models are fitted to data measured by both OPS in

vivo and in situ and HPLC ex vivo. The temporal contribution of MGd localized in plasma,

skin, and tumor to the ‘total’ MGd concentration measured in tumor tissue in vivo by the

OPS is also considered.

Chapter 4 investigates necessary extensions to a previous OPS data analysis algorithm

to account for effects of discrete vessels and high total absorption coefficients on absorption

measured in a murine xenograft model following PDT treatment. This study utilizes an

MC model of the OPS measurement of tissue in silico to investigate: (1) the analytical

relationship between total absorption coefficient and mean photon path length; and (2) the

utility of the vessel correction factor in estimating the true tissue absorption coefficient.

Chapter 5 utilizes a sequence of mathematical models to investigate the ability of the

OPS to detect both chronic and acute hypoxia within tumor tissue. The model geometry

mimics the tumor microvascular environment, with irregular vessel patterns and hemoglobin

saturations estimated from empirically reported frequency distributions. The photodynamic

reaction of PDT is simulated in tissue, and spatial changes in oxygen, hemoglobin saturation,

and ROS yield are calculated. Simulations investigate how changes in oxygen supply within

the vasculature and acute damage induced by PDT may affect both the progression of PDT

treatment and the signal detected by the OPS.

Chapter 6 presents an overview of the contributions this dissertation makes to the fields

of optical spectroscopy and photodynamic therapy. The Chapter also outlines possible ex-

tensions of the work within this dissertation to further the understanding and application of

the OPS as a PDT dosimetric tool.
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2.0 NONINVASIVE MEASUREMENT OF MGD BY OPS

2.1 BACKGROUND

Motexafin gadolinium (MGd) is a texaphyrin compound that has an expanded porphyrin

structure containing a central Gd ion [114,115], as shown in Figure 2.1. MGd has shown the

ability to localize in tumor tissue and is currently being considered as both a radiation and

chemotherapy sensitizing agent [56,57,116,117,118,119,120]. A method to determine MGd

concentrations in tissue noninvasively in vivo could allow clinicians to administer radiation

treatment at a time when a positive MGd concentration gradient exists between malignant

and surrounding non-malignant tissues, resulting in the destruction of the tumor and possible

preservation of surrounding healthy tissues.

Mourant et al. [3] presented a mathematical method to calculate drug concentrations

from intensity spectra collected by the OPS. The study reported a linear correlation be-

tween doxirubicin concentrations measured in vivo by OPS and ex vivo by high performance

liquid chromatography (HPLC). Over an 8-fold concentration range, the slope of a line fit to

the data (and forced through the origin) was 0.65 ± 0.08. The study showed promising re-

sults; however, the algorithm required a priori knowledge of the exact extinction coefficients

for all dominant chromophores, including the drug, εdrug. This assumption may be prob-

lematic because εdrug is dependent upon the surrounding environment [121] and, for novel

compounds, may not be well-characterized in vivo. A mismatch between the εdrug specified

and the εdrug that is expressed in the in vivo environment can result in the introduction of

bias into estimated concentrations.

The work presented in this Chapter extends the previous data-analysis algorithm to

calculate changes in MGd absorbance from measured light intensity spectra, while allow-
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ing empirical determination of εdrug. The magnitude of MGd absorbance is quantitated

by integration of the MGd peak absorbance area, and MGd concentrations are estimated

by comparison with standard curves generated using HPLC, an independent measure of

concentration. The work presented in this Chapter has been published in the Journal of

Photochemistry and Photobiology B: Biology [122].

2.2 MATERIALS AND EXPERIMENTAL METHODS

All of the experimental work presented in this Chapter was conducted by Julie Eiseman,

Jainxia Guo, and Erin Joseph at the University of Pittsburgh Cancer Institute.

2.2.1 Drugs and Reagents

Motexafin gadolinium (MGd, XCYTRIN r©, NSC 695238) and motexafin lutetium, HPLC

internal standard, (MLu, NSC 695239) were provided by Pharmacyclics (Sunnyvale, CA)

through the NCI CTEP (Rockville, MD). Intralipid r© 10% was purchased from Fresenius

Kabi Clayton, L.P. (Clayton, NC). Sterile water and heparin were purchased from Baxter

Healthcare Corp. (Deerfield, IL). RPMI-1640 Medium with L-glutamine was purchased from

Combrex Bio Science Walkersville (Walkersville, MD). Gentamicin and trypsin 10X were

purchased from Invitrogen, Gibco (Grand Island, NY). Fetal bovine serum (heat inactivated)

and phosphate buffered saline (pH 7.4, without calcium or magnesium) were purchased

from Invitrogen, Biosource (Camarillo, CA). Methoxyflurane was purchased from Medical

Developments (Springvale, Australia). Ammonium acetate was purchased from EM Science

(Cherry Hill, NJ). Acetonitrile was purchased from Alfa Aesar (Ward Hill, MD). Methanol

was purchased from EMD Chemicals (Gibbstown, NJ). Nitrogen and carbon dioxide were

purchased from Valley National Gases Inc. (West Mifflin, PA).
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Figure 2.1: Chemical structure of MGd.

27



2.2.2 Experimental Methods

2.2.3 In vitro Tissue-Phantom Preparation

MGd was added to 1% Intralipid r© in sterile water to attain concentrations of 0.03, 0.1, 0.3,

1, 3, 10, 30, and 100 µM; a blank (0 µM) was represented by 1% Intralipid r©. These samples

were prepared in duplicate and 200 µL of each solution were pipetted into separate wells of

96-well culture plates. Prior to OPS readings, the plate was placed on a black background

to prevent light reflection from the bottom of the wells. During sample preparation and

subsequent measurement, overhead fluorescent lights were turned off to prevent activation

of MGd.

2.2.4 OPS Instrumentation

The illumination light source was a pulsed xenon short-arc lamp (model FX-1160 with driver

model LS-1130, Perkin Elmer, Wellesley, MA), driven as a pulse burst (ranging, typically,

from 2−20 pulses) during the correlated integration time (10−100 msec) of the linear-array

CCD detector, which is built into the spectrometer (model S2000, Ocean Optics, Dunedin,

FL). The total optical energy incident on the tissue is less than 1 mJ. Light is delivered to

the tissue and collected from the tissue using silica optical fibers. The source and detector

fiber-core diameters are 400 and 200 µM, respectively. The center-to-center separation of

the fibers was 1.5 mm.

2.2.5 Measurement Method

The OPS was initialized with the following values: number of pulses = 4; and integration

time = 20 msec. To account for the total system response (i.e., the wavelength dependence of

the light source, fibers, grating and detector array, couplers, etc.), a reference measurement of

reflectance from a spectrally-flat diffuse reflector (Spectralon, Labsphere Inc., North Sutton,

NH) was made once at the beginning of a procedure prior to all other measurements. OPS

measurements in vitro were recorded in triplicate and made by placing the probe in the center

of each well, with the tip just breaking the fluid meniscus. The probe tip was cleaned with
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ethanol:water (70 : 30, v/v) between measurements of each well to prevent sample mixing.

OPS measurement sites in vivo and in situ were located by finding areas not directly adjacent

to visible blood vessels, and gently placing the probe into contact with the tissue surface.

Triplicate collected light spectra were recorded on all measured sites.

2.2.6 HPLC Sample Preparation

The methods used were a modification of those published by Parise et al. [123]. Tissues

were homogenized in 3-to-5 volumes of phosphate-buffered saline. To plasma or tissue ho-

mogenates (250 µL), 10 µL of MLu (25 µM) was added. After vortexing for approximately

10 sec, 1 mL of acetonitrile:methanol (1:1, v/v) was added to precipitate proteins. Following

protein precipitation, the sample was vortexed again and centrifuged (10 min, 12,000 × g,

room temperature). The resulting supernatant was decanted into glass tubes and evaporated

to dryness under a gentle stream of nitrogen at 40oC. The dried residue was reconstituted in

300 µL of mobile phase of 100 mM ammonium acetate (adjusted to pH 4.3 with glacial acetic

acid):acetonitrile:methanol (59 : 21 : 20, v/v/v). The clear supernatant was transferred to an

autosampler vial, and 100 µL was injected onto the HPLC system. All standards for HPLC

analysis were prepared in the appropriate biological matrix and processed in the same way as

the plasma and tissue samples before being injected onto the HPLC system. For preparation

of standards, 20 µL of MGd and 10 µL MLu was added to each tube containing 250 µL of

matrix such that the final MGd concentrations were 0.03, 0.1, 0.3, 1, 3, 10, 30, and 100 µM.

2.2.7 HPLC Instrumentation

The Beckman HPLC (Beckman Coulter, Fullerton, CA) Programmable Gradient System

consisted of a model 508 Autosampler, model 128 gradient solvent delivery module, and a

model 166 UV detector module. MGd and MLu were separated on a Zorbax Eclipse XDB-

C 18 (3.5 µm, 3.0 x 150 mm) column (Agilent Technologies, Palo Alto, CA) fitted with

a Brownlee C18 guard column (PerkinElmer, Boston, MA). A model LC-22A temperature

controller column heater (Bioanalytical Systems Inc., W. Lafayette, IN) was used to maintain

the column temperature at 55o C. The isocratic mobile phase was pumped at 0.6 ml/min.
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Column eluent was monitored at 470 nm. Under these conditions, the retention times of

MGd and MLu were approximately 18 and 22 min, respectively. The LLQ was determined as

0.03 µM, and the assay was linear over the range examined, with similar variability (≤ 15%)

at low, medium and high concentrations.

2.2.8 Animals

C.B-17 SCID female mice (4 − 6 weeks of age and specific pathogen-free) were purchased

from Taconic Farms (Germantown, NY) and handled in accordance with the Guide For the

Care and Use of Laboratory Animals [124] and on a protocol approved by the Institutional

Animal Care and Use Committee of the University of Pittsburgh. Mice were allowed one

week for acclimation to the animal facility before studies were initiated. Mice were housed

in sterile microisolator caging to minimize exogenous infections. Ventilation and air flow

in the animal facility were set to a minimum of 12 changes per hour. Room temperature

was regulated at 72 ± 2oF, humidity was held between 30 and 70%, and the room was

kept on a 12 hr light/dark cycle. Mice received Prolab ISOPRO RMH 3000, Irradiated Lab

Diet (PMI Nutrition International, Brentwood, MO) and sterile water ad libitum. On the

day prior to the study, food was removed at approximately 6 PM and withheld until 4 hr

after dosing on the next day. Sentinel mice, housed in 20% dirty bedding from study mice,

remained murine antibody profile-negative using Assessment + (Charles River Laboratories,

Wilmington, MA), indicating that the study mice were pathogen-free.

2.2.9 Tumor Cell Line

MDA-MB-231 human breast cancer cells were obtained from ATCC (Manassas, VA) and

expanded in culture in RPMI 1640 medium containing L-glutamine supplemented with 10%

heat inactivated fetal bovine serum and 10 µL/mL gentamicin. Cells were maintained at

37oC in an incubator with atmosphere composed of 95% room air and 5% CO2 at 95%

humidity. Cells in log phase growth were harvested using trypsin, washed with media and

resuspended at 1×108 cells/ml. Then 0.1 mL of the suspension was injected subcutaneously
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into the right flanks of passage SCID mice. Tumor volumes were calculated twice weekly

using the formula:

VTumor =
lw2

2

Where VTumor is tumor volume (mm3), l (mm) is the length of the longest diameter of the

tumor, and w (mm) is the length of the diameter perpendicular to l. When tumors in the

passage mice reached 500− 1000 mm3, the mice were euthanized and tumors were removed

using sterile techniques. Tumors were cut into approximately 25 mg fragments, study mice

were anesthetized with methoxyflurane in a vented laminar air flow hood, and the fragments

subcutaneously implanted using sterile techniques. When tumor volumes in the study mice

were greater than 100 mm3 (range: 0.1 − 0.2 g), study mice were stratified into groups

(n=3) by body weight and tumor volume so that all groups were similar based on ANOVA

(Minitab, State College, PA). On the day before the study, mice were anesthetized with

methoxyflurane in a vented laminar air flow hood, and the skin over the tumor and on the

opposite flank was shaved.

2.2.10 Dosing

MGd was administered to mice at a dose of 23 mg/kg (0.01 ml/g fasted body weight) by

bolus lateral tail vein injection. Vehicle-treated mice received 0.9% saline (0.01 ml/g fasted

body weight).

2.2.11 Sampling

Two min before the scheduled euthanasia time, the mice were gently restrained by hand

and triplicate OPS measurements (termed in vivo measurements) were made on the skin

over the subcutaneous (s.c.) tumor and on the skin site on the opposite flank. Immediately

thereafter, three mice per time point were euthanized with CO2 and blood was collected

by cardiac puncture using heparinized syringes. The time points of euthanasia were: 5, 15,

30, 60, 120, 240, 420, 960, and 1440 min after MGd administration and 5 min after vehicle

administration. Blood was transferred to microcentrifuge tubes and placed on ice until it was
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centrifuged at 13000 × g for 4 min to separate the plasma from the packed red blood cells.

After exsanguination and prior to removal of the tissues, triplicate OPS measurements were

made on the ventral surfaces of the following tissues (termed in situ measurements): liver

(right medial lobe), right kidney, lungs, heart, spleen, brain, fat, skeletal muscle, tumor and

opposite flank skin. It should be noted that low scattering prevented OPS measurement of

plasma samples. Following the triplicate measurements, the tissues were removed, weighed,

and snap frozen in liquid N2 (approximately 2 min following OPS measurements). All tissues,

plasma, and packed blood cells were stored at −70oC until HPLC analysis (termed ex vivo

measurements).

2.3 DATA ANALYSIS

2.3.1 OPS Measurement Theory

The OPS records the intensity of collected light that has been elastically-scattered through-

out a sample (e.g., Intralipid r© solution, or tissue). For a single OPS measurement, the

Beer-Lambert law applies as follows:

I (λ) = Iincident (λ) e−µtotal
a (λ)〈L〉(µtotal

a (λ))+G (2.1)

Here, λ is the wavelength, I (λ) is the collected light intensity, Iincident (λ) is the intensity

of incident light entering the sample, µtotal
a (λ) is the total molar absorption coefficient,

〈L〉
(
µtotal

a (λ)
)

is the effective photon path length (which is a function of the total molar

absorption coefficient), and G is a geometry-dependent factor that accounts for light lost

due to scattering. It should be noted that while the collected light intensity is affected by

changes in scattering properties, the path length is insensitive to these changes [28]. Here,

µtotal
a (λ) is calculated as the summation of contributions from individual chromophores:

µtotal
a (λ) =

k∑
i=1

εi (λ) Ci (2.2)
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Here, εi (λ) and Ci are the molar extinction coefficient and concentration of chromophore i,

respectively, and k is the total number of chromophores.

Equation (2.1) can be used to represent measurements of a sample before (at time to)

and after the addition of a chromophore, such as a drug (at t). Changes in the collected

light due to the addition of the drug can be evaluated using the ratio of the expressions at

t and to, as follows:

I(λ,t)
Iincident(λ,t)

I(λ,to)
Iincident(λ,to)

=
e−µtotal

a (λ,t)〈L〉(µtotal
a (λ,t))+G

e−µtotal
a (λ,to)〈L〉(µtotal

a (λ,to))+G
(2.3)

Assuming that there are no changes in the incident intensity and that scattering properties

do not change significantly between animals, Equation (2.3) reduces to:

I (λ, t)

I (λ, to)
= e−µtotal

a (λ,t)〈L〉(µtotal
a (λ,t))+µtotal

a (λ,to)〈L〉(µtotal
a (λ,to)) (2.4)

It is important to note that 〈L〉
(
µtotal

a (λ, t)
)

decreases as the total absorption coefficient

increases [125]. This phenomenon is a result of photons with long path lengths having

a higher probability of undergoing absorption events than those with short path lengths.

Accordingly, photons with long path lengths are collected less often than photons with short

path lengths, resulting in the reduction of the effective mean path length of collected photons.

Therefore, the addition of a chromophore, yielding µtotal
a (λ, to) < µtotal

a (λ, t), decreases the

effective path length, with 〈L〉
(
µtotal

a (λ, to)
)

greater than 〈L〉
(
µtotal

a (λ, t)
)
. This relationship

can be described by the introduction of a scaling factor, 0 < δL

(
µtotal

a (λ, t)
)
≤ 1, which

relates the difference between the path lengths as follows:

〈L〉
(
µtotal

a (λ, t)
)

= δL

(
µtotal

a (λ, t)
)
〈L〉

(
µtotal

a (λ, to)
)

(2.5)

Here, δL

(
µtotal

a (λ, t)
)

decreases as µtotal
a (λ, t) increases. Substitution of Equation (2.5) into

Equation (2.4) yields:

I (λ, t)

I (λ, to)
= e−µtotal

a (λ,t)δL(µtotal
a (λ,t))〈L〉(µtotal

a (λ,to))+µtotal
a (λ,to)〈L〉(µtotal

a (λ,to)) (2.6)

Next, an effective change in absorption is introduced as:

∆µ′
a (λ, t) = µtotal

a (λ, t) δL

(
µtotal

a (λ, t)
)
− µtotal

a (λ, to) (2.7)
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Note that ∆µ′
a (λ, t) is not linearly related to changes in µtotal

a (λ, t) because 〈L〉
(
µtotal

a (λ, t)
)

is not constant between to and t. Substitution of ∆µ′
a (λ, t) into Equation (2.6) yields:

I (λ, t)

I (λ, to)
= e−∆µ′a(λ,t)〈L〉(µtotal

a (λ,to)) (2.8)

Solving Equation (2.8) for ∆µ′
a (λ, t) yields:

∆µ′
a (λ, t) = − ln

(
I (λ, t)

I (λ, to)

)[
〈L〉

(
µtotal

a (λ, to)
)]−1

(2.9)

Here, 〈L〉
(
µtotal

a (λ, to)
)

is a constant, but it is not known a priori, preventing explicit cal-

culation of ∆µ′
a (λ, t). However, ∆µ′

a (λ, t) is linearly related to absorbance, A (λ, t), which

is:

A (λ, t) = − ln

(
I (λ, t)

I (λ, to)

)
(2.10)

Changes in MGd absorbance can be quantitated by integrating the peak area of the MGd

absorbance band within A (λ, t), and standard curves are constructed to relate MGd peak

absorbance area to MGd concentration, CMGd (see Section 2.3.5).

2.3.2 Deconvolution of MGd and Hemoglobin Absorbance

In tissues, µtotal
a (λ, t) is composed of contributions from exogenous MGd and endogenous

compounds such as hemoglobin, which exists in both the oxygenated (HbO2) and the de-

oxygenated (Hb) state. Changes in the total absorption between to and t can be given

as:

∆µtotal
a (λ, t) = εMGd (λ) ∆CMGd (t) + εHb (λ) ∆CHb (t) + εHbO2 (λ) ∆CHbO2 (t) (2.11)

Here, ∆Ci (t) = Ci(t)−Ci(to) are the changes in the concentrations of i = {MGd, Hb, HbO2},

respectively. This assumes that the contribution of other endogenous chromophores do not

contribute significantly to ∆µtotal
a (λ, t) (i.e., their concentrations do not change significantly

over the course of the study) [126]. Figure 1.1 shows εHb (λ) and εHbO2 (λ) in stroma-free

hemoglobin solutions prepared from erythrocyte suspensions in saline solution, as reported

by Zijlstra et al. [2]. These profiles are representative of absorbance bands in vivo in the
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range of wavelengths we have considered [127]. Inspection of these curves shows absorption

maxima between 520− 630 nm and a minor peak located near 760 nm. These bands overlap

with the MGd absorbance bands, which are dominant between 650 − 790 nm, as shown in

Figure 2.2. Because of this overlap, changes in CHb and CHbO2 could affect the integrated

MGd peak absorbance area

The method developed here requires that MGd be the primary contributor to absorption

over the wavelength range of interest. It should be noted that by taking the ratio of collected

light intensities at t and to, the calculation accounts for the concentrations of hemoglobin

and other endogenous absorbers that are present in the pre-drug measurement (at to), and

therefore, the only contributions of endogenous chromophores to the absorbance are due

to changes in their concentrations between to and t. It was a concern that ∆CHb (t) and

∆CHbO2 (t) affect to A (λ, t) and may affect the calculated MGd peak absorbance, so their

contribution was estimated and removed. In order to do this, the method assumes that

changes in CHb (t) and CHbO2 (t) between to and t have a negligible effect on the photon path

length (the impact of this assumption is addressed in the Section 2.5). Using this assumption,

A (λ, t) can be represented by a combination of absorbance due to MGd, which is termed

AMGd (λ, t), and changes in hemoglobin oxygenation states, which is termed A∆Hb (λ, t).

Here, A (λ, t) can be represented as,

A (λ, t) = AMGd (λ, t) + A∆Hb (λ, t) (2.12)

where A∆Hb (λ, t) is approximated by:

A∆Hb (λ, t) = εHb (λ) ζ1 + εHbO2 (λ) ζ2 (2.13)

It is important to note that ζ1 and ζ2 do not provide information about the concentrations

of total hemoglobin or oxygenation states because these would require knowledge of CHb (to)

and CHbO2 (to) and the relationship between hemoglobin concentration and A∆Hb (λ, t). In

Equation (2.13), ζ1 and ζ2 represent the component of A (λ, t) that is attributable to changes

in CHb (t) and CHbO2 (t) between to and t. Values for ζ1 and ζ2 were estimated over 520-620

nm, a wavelength range containing information about Hb oxygenation without confounding
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effects from MGd. The values were calculated using Equation (2.13) within a generalized

least-squares problem that is solvable analytically [128].

Next, A∆Hb (λ, t) was evaluated over 500 − 800 nm, and its contribution to absorbance

was subtracted from A (λ, t), such that the remaining absorbance is attributed to MGd, and

is calculated as:

AMGd (λ, t) = A (λ, t)− A∆Hb (λ, t) (2.14)

It should be noted that this calculation was performed for spectra measured in tissues.

For spectra measured in tissue-simulating phantoms, the absorbance area was entirely at-

tributable to MGd, as:

AMGd (λ, t) = A (λ, t) (2.15)

2.3.3 MGd Peak Absorbance Area Calculation

MGd absorbance was calculated by integrating the MGd peak area between AMGd (λ, t) and a

linear baseline over the wavelength range: 650−790 nm. In order to decrease the sensitivity of

the integrated area to the baseline endpoint values, the endpoints were selected as an average

of 15 data points (approximately 5.4 nm) on AMGd (λ, t) centered about 650 and 790 nm,

respectively. The baseline serves two purposes: first, it compensates for underlying trends in

AMGd(λ, t) attributable to differences in scattering properties between OPS measurements

at to and t. [3]; second, the baseline is constructed individually for each AMGd (λ, t) spectra,

thus normalizing for differences in absolute collected intensities. For each type of sample

measured (well-plate or tissue), the intensity spectra at t was ratio-ed to a mean intensity

spectra calculated at to, as in Equation (2.8). MATLAB (V.70.0.19901 R.14 c©2006, The

Mathworks, Natick, MA) code was scripted to integrate the MGd peak absorbance area

numerically using the modified Simpson’s Rule:

A (t) = ∆λ

[
5
12

AMGd (λ (1) , t) +
13
12

AMGd (λ (2) , t) +

(
N−2∑
i=3

AMGd (λ (i) , t)

)
· · ·

· · · +
13
12

AMGd (λ (N − 1) , t) +
5
12

AMGd (λ (N) , t)
]

(2.16)
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Here, N represents the number of measurement points along the wavelength axis between

650− 790 nm.

2.3.4 Noise Reduction Techniques

In order to remove the contribution of random noise in intensity spectra to peak absorbance

area, a boxcar filter was applied to A (λ, t) (absorbance prior to hemoglobin deconvolution).

Each point was evaluated as the average of the surrounding 15 data points (approximately

5.4 nm), a boxcar width that was less than 4% of the MGd peak width. Post-filtering

noise in A (λ, t) was quantitated by integrating peak absorbance at to, Anoise = A (to). The

Anoise was calculated for each tissue individually and used to identify the OPS lower limit

of detection (LLD), which was set equal to the mean of the noise areas plus one standard

deviation (LLD = Anoise + σnoise). Prior to construction of standard curves, all A (t) values

were decreased by Anoise, correcting for the noise contribution to the peak absorbance area.

2.3.5 OPS Standard Curve Construction

Empirically, the relationship between A (t) and MGd concentration measured by HPLC,

CHPLC
MGd (t), was determined to be a power law function. This relationship is consistent with

Equation (2.6). The functionality represents a decreased differential increase of “effective”

absorbance in response to increases in µtotal
a (λ, t) due to a decrease in photon path length.

In the expression:

A (t) = x
[
CHPLC

MGd (t)
]y

(2.17)

the power law coefficients (x and y) were calculated as follows: (1) A (t) and CHPLC
MGd (t) were

paired per mouse subject; (2) A (t) values were weighted; and (3) x and y were calculated

by minimizing the sum-squared error between the regressed model and data. The weighting

scheme was either 1
σ2 , or for data showing heteroschedastic characteristics, A

σ
(where A

is the mean absorbance area and σ is the standard deviation of the absorbance for each

measured concentration). Standard curves were generated individually for each type of
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sample measured (e.g., tissue-simulating phantoms in vitro, and in the tissue-matrix in vivo

and in situ).

The goodness-of-fit of model predictions are quantified by the Pearson correlation coef-

ficient (r). This value shows the strength of the correlation between two variables (e.g., X

and Y ), and is calculated as follows [129]:

r =
nmeas

∑
XiXi −

∑
Xi

∑
Yi√

nmeas

∑
X2

i − (
∑

Xi)
2
√

nmeas

∑
Y 2

i − (
∑

Yi)
2

(2.18)

Here, nmeas is the number of measurements. r values range between 0 (no correlation) and

1 (perfect correlation). The square of this value, r2, is often used to quantitate how the

model describes the variability present in the data set. It should be noted that a ‘weighted’

r is calculated after the parameters X and/or Y are multiplied by a weighting factor, as

described above.

2.4 RESULTS

This study evaluated the capability of the OPS to quantitate MGd in Intralipid r© tissue-

simulating phantoms in vitro and in the tissue-matrix both in vivo (noninvasively) and in

situ (nondestructively). Standard curves were generated to relate A with CHPLC
MGd . These

standard curves were used to estimate COPS
MGd, which was expected to equal CHPLC

MGd , such that

a line fit to subject-paired COPS
MGd versus CHPLC

MGd data (and forced through zero) would have

a slope of unity. The value of this slope was used to assess the accuracy of COPS
MGd, assuming

the value of CHPLC
MGd to be the accepted ‘gold standard’ [123].

2.4.1 In vitro Studies in Tissue-Simulating Phantoms

Figure 2.2 shows mean A (λ) data from OPS measurements of MGd in 1%Intralipid r© tissue-

simulating phantoms. The absorbance has been normalized by dividing by the known con-

centration. No additional peaks emerge in the absorption spectra, confirming that there is

no change in the extinction coefficient due to aggregation. No confounding absorbers were
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present, such that AMGd (λ) = A (λ), and the magnitude of absorbance bands between 650

and 790 increase with increased CMGd. Here, the increase in CMGd resulted in a linearly

proportional increase in A (λ). This agrees with the data in Figure 2.3, which shows a

near-linear relationship over the 3− 30 µM concentration range.

Figure 2.3 shown a representative Intralipid r© standard curve. The standard curves were

reproducible, with less that 20% area variability observed on repeat measurements performed

on separate days for all concentrations examined. Back-calculated COPS
MGd estimates were

well-correlated with CHPLC
MGd , such that the slope of the COPS

MGd versus CHPLC
MGd regression line

achieved a slope near unity (slope = 0.997, r2 = 0.999). This indicates that the OPS can

accurately quantitate MGd in 1% Intralipid r© tissue-simulating phantoms.

2.4.2 In vivo and in situ Studies in Mouse Tissues

Table 2.1 contains A (t) data per subject for:in vivo and in situ OPS measurements of tumor

and skin, and Table 2.2 contains data from in situ measurements of skeletal muscle, fat,

kidney, heart, lung, and liver. It should be noted that there was no difference between

absorbance areas calculated with and without the deconvolution of hemoglobin absorbance

(data not shown), and the values reported here are not corrected for hemoglobin absorbance.

Table 2.3 contains CHPLC
MGd data for plasma, tumor, skin, skeletal muscle, fat, kidney,

heart, lung, liver, and lung for each mouse at each time point. Table 2.4 contains OPS

standard curve coefficients from subject-paired tissue matrix data that show significant vari-

ability among tissues. Table 2.5 contains the slopes of a line fit (forced through zero) to

subject-paired COPS
MGd versus CHPLC

MGd data from both Intralipid r© and tissue standard curves.

2.4.2.1 Tumor and Skin Figure 2.4(Top) shows collected light intensity spectra from

OPS measurements on skin of the normal flank in vivo, taken before and 15 min after an

i.v. MGd dose (curve is the mean of three measurements). Differences between the spectra

are due to changes in the absorption of hemoglobin (500 − 620 nm) and MGd (650 − 790

nm). Figure 2.4(Bottom) shows AMGd (λ) and A (λ) calculated from one of the intensity

measurements at 15 min after dosing. Over the wavelength range 650 − 790 nm, there
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Figure 2.2: Absorbance of MGd, normalized to concentration, detected by the OPS in

tissue-simulating phantoms (MGd dilution in 1% Intralipid r©, curves are the means of 6

measurements per concentration).
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Figure 2.3: Standard curve relating OPS-determined absorbance area to HPLC-measured

concentration from tissue-simulating phantom in vitro (1%Intralipid r©).
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is no difference between the corrected and uncorrected absorbance curves. All absorbance

attributable to hemoglobin was located ≤ 650 nm. This result was similar for all other

tissues in vivo and in situ, and therefore, only the uncorrected absorbance areas are reported

in Tables 2.1 and 2.2.

Figure 2.5 shows the mean A (t) versus time data from s.c. tumor measured both in vivo

and in situ. Between 5 ≤ t < 120 min, A (t) calculated from the in vivo measurements are

greater than the corresponding in situ measurements. Plasma CHPLC
MGd values are elevated

over this time range, as shown in the Figure inset. These observations support a hypothesis

that OPS measurements of tissues in vivo detect MGd present in both the tissue and the

blood perfusing the tissue. At the early time points (5 ≤ t < 120 min) MGd within the

blood contributes to the absorbance area, while at later time points (120 ≤ t ≤ 1440 min) the

absorbance area is representative of MGd present in the tissue. COPS
MGd values were calculated

using the Intralipid r© standard curve. Table 2.5 shows the comparison of COPS
MGd with

CHPLC
MGd between 120 ≤ t ≤ 1440 min. For OPS measurements of tumor in situ, COPS

MGd values

were compared with CHPLC
MGd values over 5 ≤ t < 1440 min, because both measurements were

made after exsanguination and represented tissue-localized MGd (Table 2.5). Concentration

comparisons based on an Intralipid r© standard curve yielded slope values below unity, with

high error in the regression estimate as shown by the relatively low weighted r2 values. To

address the source of this error, COPS
MGd values were estimated using a standard curve from

the subject-paired A (t) and CHPLC
MGd data for measurements in the tissue-specific matrix.

Figure 2.6 shows the OPS standard curve for tumor from tissue-matrix measurements in

vivo, constructed using data over the 120 ≤ t ≤ 1440 min time range. Using the this

standard curve, the COPS
MGd versus CHPLC

MGd slope was closer to unity (slope = 0.900), but

outliers affected the overall fit. Appendix B contains the plots of each absorbance spectra

(for all sampled times) measured in tumor in vivo by the OPS and shows the linear baseline

used to integrate the MGd peak absorbance area.

Figure 2.7(Top) shows estimated COPS
MGd from OPS measurements of tumor in vivo and

CHPLC
MGd in tumor tissues over all time points sampled. As expected, COPS

MGd is greater than

CHPLC
MGd over 5 ≤ t < 120 min, and COPS

MGd is approximately equal to CHPLC
MGd over 120 ≤

t ≤ 1440 min. For OPS measurements of tumor in situ, a standard curve was constructed
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Figure 2.4: (Top) Collected light intensity profiles from OPS measurements of skin in vivo.

Curves show vehicle (no MGd) and 15-min post MGd i.v. dose, and spectra were normalized

in the flat 800-850 nm range for visualization purposes. (Bottom) Absorbance curve before

(A) and after (AMGd) deconvolution of hemoglobin absorbance.
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Figure 2.5: Peak absorbance area versus time from OPS measurements of tumor in vivo and

in situ. Inset shows MGd concentrations in plasma measured by HPLC.
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Figure 2.6: Tissue-matrix standard curve from OPS measurements of tumor in vivo: subject-

paired absorbance area versus concentration measured by HPLC over 120 ≤ t ≤ 1440. (Note:
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from tissue data (Table 2.4). Figure 2.7(Bottom) shows agreement between COPS
MGd and

CHPLC
MGd . These results indicate that the OPS accurately detects temporal changes in MGd

concentrations in tumor tissue. In contrast, the use of the Intralipid r© standard curve

introduces a systematic negative-bias into the estimate of COPS
MGd.

MGd concentrations in the skin of the opposite flank were not detectable by HPLC

after 120 min, or by OPS in vivo or in situ after 420 min. The OPS measurements of

skin in vivo detected MGd present in multiple sources, including the skin, underlying tissues

(skeletal muscle and fat), and blood perfusing those tissues. COPS
MGd values calculated using the

Intralipid r© standard curve were overestimates of CHPLC
MGd (slope = 1.724). This results from

the OPS detecting MGd in multiple sources, while the HPLC measured MGd only in skin.

For the skin in vivo measurements, the absorbance was not attributable to MGd localized

in skin, so a tissue matrix standard curve could not be constructed. For OPS measurements

on the skin of the opposite flank in situ, the skin was removed from underlying tissue such

that absorbance was attributable to skin-localized MGd. However, estimates of COPS
MGd in

skin from the Intralipid r© standard curve did not correlate well with CHPLC
MGd , and use of a

tissue matrix standard curve was not predictive (see Table 2.5).

2.4.2.2 Internal Tissues In the kidney, inspection of the intensity spectra showed dom-

inant absorbance bands at t ≤ 15 min, which were not present in measurements of MGd in

any other tissues. Figure 2.8(Top) shows intensity spectra in the kidney at 5 and 15 min after

MGd dose, with the new absorbance peak located at 775 nm. Hypothetically, these bands

could indicate the presence of a metabolite, aggregation of MGd, or altered photochemical

properties of MGd. A (t) was integrated over the expanded absorbance bands (650-810 nm)

to evaluate the existence of a proportional relationship between the area of the convoluted

peaks and MGd concentration. COPS
MGd was calculated using the Intralipid r© and tissue ma-

trix standard curves, with high variability noted between OPS and HPLC estimates (see

Table 2.5). Figure 2.8(Bottom) shows qualitative and dynamic agreement between COPS
MGd

and CHPLC
MGd in the kidney.

In brain, neither OPS nor HPLC showed quantitatable MGd concentrations, with MGd

detected by OPS at 5 min attributed to the presence of plasma in the sample; A (t) was < 2×
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Figure 2.7: OPS estimate of tumor MGd concentration (using the tissue matrix standard

curve) and HPLC measured tumor MGd concentration versus time for OPS measurements

(Top) in vivo and (Bottom) in situ.
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LLD after 5 min (data not shown). In skeletal muscle, MGd was undetectable after 120 min

by both OPS and HPLC. In skeletal muscle and fat, individual estimates of OPS and HPLC

concentrations were uncorrelated (Table 2.5), possibly complicated by low concentrations

(ranges: 0.98−3.5 µM in skeletal muscle, 0.4−5.1 µM in fat) that produced low absorbance

areas not far above the OPS LLD. In the heart, COPS
MGd estimates obtained from a tissue-

matrix standard curve yielded a slope of 0.75, but the regression could not explain substantial

variability in the data (Table 2.5). In the lung, there was good dynamic agreement between

concentrations measured by OPS and HPLC, and individual estimates were related (Table

2.5). In the liver, A (t) was not representative of MGd absorbance, with a peak at 240 min,

while peak concentration measured by HPLC fell between 5 and 60 min. In the spleen, only

two mice (subjects 21 and 22) had repeatable absorbance areas above the LLD. Analysis in

spleen was complicated by low concentrations (range: 0.02− 6.3 µM) and low collected light

intensities (data not shown).

2.4.2.3 Selective Localization of MGd in Tumor tissues Both the OPS and the

HPLC detected selective localization of MGd in tumor tissue in comparison to local sur-

rounding non-malignant tissues. Both OPS and HPLC detected MGd present in the tumors

at 24 hr. The HPLC was unable to detect MGd in skin and skeletal muscle after 120 min,

and in fat after 420 min. Ratios of CHPLC
MGd were: tumor to skin ratio of 6.2 at 120 min,

tumor to skeletal muscle ratio of 6.7 at 120 min, and tumor to fat ratios of 15.06, 12.43, and

8.43 at 120, 240, and 420 min, respectively. The OPS was unable to detect MGd in skin

in vivo after 420 min, and in skin or skeletal muscle in situ (in multiple subjects per time)

after 120 min and 240 min, respectively. Ratios of A (t) in tumor and in surrounding tissues

were: tumor to skin in situ ratio of 2.07 at 120 min, tumor to skeletal muscle ratio of 6.37

and 6.42 at 120 min and 240 min, and tumor to fat ratios of 3.58 and 2.68 at 120 min and

240 min, respectively.
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Figure 2.8: (Top) Collected light intensity profile from OPS measurement of kidney in situ

at 5 and 15 min after MGd dose. (Bottom) OPS estimate of MGd concentration (using the

tissue matrix standard curve) and HPLC measured MGd concentration versus time in the

kidney.
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2.5 DISCUSSION

The effectiveness of tumor treatment involving radiation-sensitizing and photo-sensitizing

therapeutics depends on the concentration of the therapeutic compound within tumor and

surrounding tissues at the time of irradiation [130,89]. A method to measure concentrations

of the therapeutic agent noninvasively in tissues in vivo would provide pharmacokinetic in-

formation about tissue-localized drug concentrations not generally available clinically due to

the invasiveness of biopsies. Mourant et al. previously developed a method to quantitate

concentrations of optically-active compounds in mouse tissues in vivo [3]. This paper ex-

tended the previous work by developing a mathematical method that allows the absorbance

bands of an exogenous compound to be determined empirically, facilitating analysis in the

presence of possible shifts due to compound-matrix interaction, and provides a means to

reduce error in OPS estimates of concentration.

One motivation for the analytical method developed here is to allow the quantitation

of a compound that undergoes red- or blue-shifting of the extinction coefficient in vivo,

without the exact nature of the shift being specified a priori. It should be noted that the

absorbance area metric makes no distinction between absorbance attributable to free drug,

and absorbance attributable to drug that is either protein bound or in an aggregated state.

In these scenarios, the shift in absorbance bands may reflect a change in the activity of the

drug, and therefore, the absorbance area metric may not quantitate drug that contributes

to treatment efficacy. In the present study, the MGd absorption spectra do not appear

to undergo shifting due to protein binding or aggregation. Hence, the spectra represent

MGd present as parent compound. Protein binding or drug aggregation limitations may

be overcome by using the absorption spectrum of the bound or aggregated drug to remove

the contributions of these components to the spectra or by selecting a wavelength range

for integration that is representative of absorbance bands only attributable to the free drug.

Conversely, if the absorbance bands for both free and bound/aggregated drug are well-known,

the extinction coefficients could be fit using the method developed by Mourant et al. [3].

The algorithm developed in this Chapter required construction of a standard curve with

an independent measure of drug concentration. In order for this method to become clinically
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useful, absorbance area must be related to concentration by standard curves that are easily

generated and validated. Ideally, standard curves would be generated from tissue-simulating

phantoms in vitro, which do not require destructive tissue analysis. However, the results of

this study suggest that A (t) evaluated in Intralipid r© in vitro is not representative of the in

vivo situation, because application of the in vitro standard curve biased estimates of COPS
MGd.

For tissues that returned appreciable light in the 500-600 nm range, we noted no difference in

absorbance areas if the absorbance attributable to changes in hemoglobin was deconvoluted,

suggesting this is not a major source of error in this study. Background tissue absorption is

one contributor to the mismatch between the in vitro and in vivo standard curves developed

in this study.

The standard curve relates the absorbance area metric to concentration without requir-

ing the calculation of changes in either absorption coefficient or path length individually,

because these relationships are implicitly captured by the standard curves. This method

assumes that changes in the background absorption between to and t due to changes in

hemoglobin concentration or oxygenation do not significantly affect the photon path length,

which could be a source of error because such changes would alter the relationship between

absorbance area and drug concentration. The magnitude of this error was characterized for

physiologically relevant ranges of hemoglobin concentration and oxygenation within tumors,

as reported by Finlay et al. [20], with the photon path length calculated as a function

of total absorption coefficient, as reported by Mourant et al. [3]. For changes in the total

hemoglobin concentration from the mean value of 82 µM to either the lower (13.5 µM) or the

upper bound (150.5 µM), the calculated change in path length was less than 10%. Changes

in the oxygen saturation from the mean value of 21% to either a low (10%) or high (33%)

value changed the calculated path length by approximately 1%. Therefore, if standard curves

are constructed with a µtotal
a tailored to match the specific tissue being analyzed, changes in

hemoglobin concentration or oxygenation between t and to are not expected to introduce sig-

nificant error. It should be noted that, at present, tissue-specific phantoms neither perfectly

match tissue optical properties, nor address the issue of dynamically changing background

absorbers upon the introduction of exogenous chromophores. This is an area in need of

future work before the OPS measurement technique can be utilized in the clinic.
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The algorithm outlined in this Chapter also required that changes in absorbance in the

wavelength range of interest be attributable to changes in CMGd. In tissues that contained

strong endogenous absorbers, identification of MGd absorbance was problematic. In the

kidney, new absorption bands were observed (Figure 2.8(Bottom)), however, the total inte-

grated area was proportional to CMGd. In the liver, the absorbance area did not correlate

with CMGd. The CHPLC
MGd reached a maximum value by 60 min and then began decreasing,

while absorbance area gradually increased from 5 min to a maximum at 240 min. In the

heart, high levels of hemoglobin absorbance were observed in the spectra, and the algorithm

was unable to deconvolute MGd and hemoglobin absorbance because no appreciable light

was transmitted between 500 and 600 nm. It is possible that more precise estimates of COPS
MGd

could be attained in these tissues with complete knowledge of the convoluted absorbance

bands, or with appreciable collected light intensities across the necessary wavelength ranges.

In this study, COPS
MGd estimates were considered accurate if the regressed slope of a line fit

to subject paired COPS
MGd versus CHPLC

MGd data approached unity. However, the significance of

these relations was often low, with low r2 values often reported (Table 2.5). Previous studies

have reported high variability in noninvasive measurements of optically-active compounds,

resulting from: (1) high inter-tumor concentration differences between subjects [89,55]; and

(2) high intra-tumor concentration gradients within tumors [131, 78, 55], possibly due to

heterogeneous perfusion [132]. Specifically, Du et al. reported high degrees of spatial het-

erogeneity in the distribution of MLu within human prostate tissue, with as much as a

five-fold intra-subject variation in drug concentration [55]. Therefore, it is reasonable to

expect that MGd would distribute heterogeneously within tissues, which could contribute to

the variability present in OPS-based estimates of MGd concentration.

Further complicating the comparison of OPS with HPLC results is the caveat that each

method analyzes a different volume of the tissue. The OPS interrogates a small section of

the tumor volume, with a mean sampling depth of approximately 1.5 mm in a hemispherical

shape [3], while the HPLC analyzes a homogenized sample of the entire tissue. An attempt

was made to use the OPS to measure the homogenized tissue samples prepared for HPLC

analysis. However, because the tissue samples had been diluted 3-to-5 fold, many samples

that previously registered detectable MGd absorbance returned signals below the OPS LLD.
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Future studies comparing in vivo optical measurements with ex vivo analytical techniques

should consider correctly matching the tissue volume measured by each technique, possibly

by excising the exact tissue volume that was optically interrogated, or optically sampling

multiple sites on the tissue to obtain a representation of drug concentration heterogeneity

throughout the tissue.

The COPS
MGd values in tissues in vivo were representative of the “total” MGd present within

the optically interrogated tissue volume, including contributions from plasma, skin, and sub-

cutaneous tissue. At short times after drug administration, estimates of COPS
MGd in vivo were

influenced by blood-localized drug, while estimates at later times were representative of the

tissue-specific MGd concentration. This temporal dependence of in vivo measurements was

reported in a similar study by Lee et al., who measured concentrations of the photosensitizer

AlPcS by fluorescence in vivo [98]. Future studies may consider use of the OPS to monitor

blood and tissue pharmacokinetics noninvasively after sensitizer administration to determine

the most beneficial timing sequence for irradiation.

It should be noted that the results reported here were obtained after an MGd dose of

23 mg/kg in mice. A recent clinical study established the maximum tolerated dose for MGd

as 6.3 mg/kg [119]. Based on metabolic rate and surface area, the allometric scaling factor

between mice and man, it is expected that a ten-fold lower dose of MGd in human subjects

would result in similar tissue concentrations to those observed in mice obtained at a 10-fold

higher dose [133]. It also should be noted that the OPS was able to detect MGd in the

forearm skin of patients in vivo, up to 240 min following a 10− 15 min infusion of MGd at

2.9 and 3.6 mg/kg (unpublished results). Therefore, it has yet to be determined if the OPS

is capable of quantitating MGd following clinically-relevent doses in human subjects.

2.6 SUMMARY

The results in this study indicate that the OPS can accurately quantitate MGd present in

Intralipid r© tissue phantoms in vitro. The OPS can detect absorbance attributable to MGd

in mouse tissues in vivo and in situ, but comparison of COPS
MGd with CHPLC

MGd is complicated
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by a mismatch between tissue volumes measured by the OPS and the HPLC, possible het-

erogeneous spatial distribution of MGd and other absorbers in tissues, and the detection

of blood-localized MGd by OPS at early time points. These results indicate that standard

curves must be developed in a medium with tissue-specific background absorption properties

in order to avoid individual studies for each species/organ/drug of interest. The mathemat-

ical method developed in this study is applicable to other optically-active compounds that

have detectable absorption in the long visible wavelength spectrum. The MGd concentra-

tions measured in this Chapter are used to develop PK models of MGd distribution into

plasma, tumor, and skin in Chapter 3.
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Table 2.1: MGd peak absorbance area measured by OPS on tumor and skin. Mean ab-

sorbance area for each mouse subject A and standard deviation σ.

Tumor in vivoa Tumor in situa Skin in vivoa Skin in situa

Time A σ A σ A σ A σ Subject
25.776 5.345 8.940 3.155 33.353 0.955 12.360 0.755 1

5 32.834 0.685 17.716 2.157 40.142 6.127 9.003 0.614 2
28.545 1.583 14.159 2.747 44.940 3.675 12.488 0.872 3
41.443 1.400 9.322 1.551 51.326 4.698 16.769 1.432 4

15 38.088 5.322 12.656 0.692 41.137 2.163 12.399 0.477 5
26.508 0.894 11.907 0.819 21.821 2.142 4.093 1.149 6
19.234 1.130 9.952 1.205 34.127 0.976 12.021 2.199 7

30 36.678 1.42 16.498 3.046 31.365 5.188 11.917 1.489 8
34.370 2.937 5.797 0.153 28.246 2.306 25.443 0.740 9
31.708 0.355 23.720 2.243 23.667 1.595 10.490 1.158 10

60 32.397 1.331 16.137 2.342 18.632 0.331 4.723 0.348 11
20.470 2.834 6.431 1.222 31.803 3.280 6.949 0.914 12
12.624 0.468 11.207 3.790 8.433 1.353 4.493 1.729 13

120 15.525 0.900 17.547 1.925 5.439 0.202 6.463 0.174 14
14.597 0.7335 9.204 2.846 9.270 0.939 7.340 0.137 15
6.544 1.204 15.190 1.073 7.034 2.429 3.635 1.283 16

240 5.114 0.310 9.160 1.236 R − − 17
7.146 0.469 4.451 0.651 6.17 1.425 − − 18
9.604 0.175 16.417 0.884 3.413 0.015 − − 19

420 2.356 0.453 − − 3.187 0.058 2.838 0.413 20
8.992 0.594 11.850 0.509 3.748 0.018 − − 21
6.077 0.849 − − − − − − 22

960 3.210 0.551 4.879 0.082 − − − − 23
3.209 0.823 5.576 0.392 − − − − 24
3.938 0.489 − − − − R 25

1440 3.095 0.163 9.072 0.795 − − R 26
3.517 0.923 9.708 0.160 − − − − 27

LLD 1.095 3.57 2.79 1.25
a: integration bounds 650-790nm

-: measurement ≤ LLD, R: data removed due to poor spectra quality
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Table 2.2: MGd peak absorbance area measured by OPS on selected internal tissues. Mean

absorbance area for each mouse subject A and standard deviation σ.

SkMuscle in situa Fat in situa Kidney in situb Heart in situa Lung in situa Liver in situa

Time A σ A σ A σ A σ A σ A σ Subject

2.609 0.248 12.109 1.264 91.282 2.073 10.888 1.313 35.231 3.041 5.968 1.108 1

5 5.794 0.475 4.536 0.394 68.471 1.57 10.546 2.065 98.967 5.276 4.820 0.490 2

6.866 0.462 10.618 0.121 90.717 0.403 13.053 0.906 56.12 6.582 3.423 0.407 3

5.040 0.266 5.908 0.909 148.720 3.067 13.729 0.061 73.637 3.326 16.294 1.180 4

15 8.208 1.251 11.102 1.425 84.279 1.075 − − 57.389 6.403 13.879 1.586 5

3.376 0.592 4.319 0.638 80.198 2.309 9.322 2.07 61.313 7.683 7.132 1.345 6

1.596 0.392 12.311 1.286 74.892 6.328 − − 66.380 15.812 22.738 1.000 7

30 2.591 0.697 3.154 0.736 130.710 1.095 − − 34.020 1.915 20.559 0.859 8

2.007 0.839 2.265 0.038 117.060 1.352 8.844 0.978 37.694 1.339 16.703 0.237 9

5.166 0.397 6.772 1.239 141.190 16.407 8.614 1.060 − − 22.122 0.641 10

60 4.931 0.655 3.434 0.419 132.220 1.153 12.687 3.382 46.729 4.445 16.495 0.090 11

3.403 0.372 3.566 1.067 61.365 5.881 10.053 1.060 48.262 0.781 21.377 1.221 12

2.053 0.626 3.338 0.430 147.200 2.861 8.159 0.306 14.458 1.873 25.310 0.567 13

120 1.924 0.655 3.731 0.349 47.477 2.019 − − 17.840 0.895 35.551 1.004 14

− − − − 160.090 3.762 − − 7.210 3.203 27.903 1.854 15

− − 3.097 1.096 123.280 7.445 − − 9.868 2.151 38.958 0.999 16

240 1.730 0.212 4.064 0.355 124.680 3.857 − − − − 22.888 6.263 17

1.270 0.280 − − 41.932 1.374 − − − − 25.502 1.346 18

− − 2.336 0.089 91.722 1.091 − − 11.970 3.234 26.692 0.888 19

420 2.425 0.459 − − 31.297 0.451 − − 10.273 1.458 35.768 0.428 20

− − − − 31.692 2.044 − − − − 20.317 0.642 21

− − − − 34.248 1.821 − − 24.565 11.460 9.674 1.211 22

960 1.495 0.199 − − 49.779 2.140 9.289 0.265 6.596 0.023 17.506 0.988 23

− − 2.336 0.0886 29.359 1.582 − − 11.344 9.380 11.686 0.294 24

− − − − 50.792 2.050 − − − − 15.582 1.051 25

1440 − − − − 53.997 1.926 − − 26.738 6.398 14.600 1.167 26

− − − − 57.774 1.728 − − 9.714 0.224 16.911 1.403 27

LLD 1.11 1.78 4.70 7.32 4.66 2.56

a: integration bounds 650-790nm, b: integration bounds 650-810nm

-: measurement ≤ LLD, R: data removed due to poor spectra quality
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Table 2.3: MGd concentrations measured by HPLC: CHPLC
MGd (µM)

Time Plasma Tumor Skin Skeletal Muscle Fat Kidney Heart Lung Liver Subject
75.209 3.080 7.698 2.020 3.860 33.710 5.170 31.80 11.998 1

5 92.133 3.680 2.972 2.214 2.590 26.930 8.395 28.680 9.460 2
74.783 3.740 3.320 1.550 5.177 25.880 9.398 30.330 12.150 3
60.937 4.070 8.345 2.167 4.107 36.840 6.579 33.510 12.380 4

15 54.510 6.420 9.785 2.256 0.766 25.430 6.215 26.690 13.880 5
78.645 3.490 8.192 1.682 0.597 30.150 4.629 15.920 9.140 6
44.397 5.360 3.554 2.278 1.553 23.740 5.023 19.150 10.270 7

30 41.564 17.360 3.5710 3.5025 0.715 65.980 4.869 18.440 8.120 8
48.385 5.670 5.162 2.035 2.047 39.770 3.682 20.490 9.550 9
27.736 9.611 3.388 1.907 1.839 62.120 3.946 17.650 11.930 10

60 32.371 12.950 3.610 1.646 1.475 77.750 4.293 15.790 13.810 11
36.937 2.970 7.419 2.043 2.700 86.950 4.081 11.280 9.827 12
4.836 8.470 1.328 1.038 0.448 85.420 2.024 4.590 8.790 13

120 3.602 5.580 1.072 0.987 0.486 43.970 1.690 5.030 4.550 14
4.977 6.290 0.880 1.014 0.422 42.340 1.866 4.680 7.830 15
0.353 9.450 − − 0.404 41.550 1.455 1.110 6.780 16

240 0.393 2.350 − − 0.410 28.350 − 1.890 3.730 17
0.484 3.350 − − 0.407 33.550 1.595 1.750 5.130 18
0.347 4.850 − − 0.385 11.710 − 0.330 1.970 19

420 0.351 1.330 − − 0.459 7.610 − 1.150 4.180 20
0.374 4.810 − − 0.397 9.580 − 0.570 1.170 21
0.353 2.970 − − − 12.070 − 0.300 0.810 22

960 0.349 1.270 − − − 12.950 − 0.270 0.850 23
0.351 1.250 − − − 7.810 − 0.920 0.690 24
0.345 2.020 − − − 8.460 − 0.240 1.280 25

1440 0.353 1.299 − − − 12.750 − 0.150 0.960 26
0.350 1.570 − − − 20.570 − 0.150 − 27
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Table 2.4: OPS standard curve coefficients in Intralipid r© and tissue matrix. Follows the

function: A (t) = x [CMGd (t)]y

Sample x y
Intralipid r© 4.965 0.803

Tumor in vivo 2.743 0.766
Tumor in situ 6.374 0.425
Skin in situ 7.195 0.393

Kidney in situ 21.98 0.424
Heart in situ 6.089 0.413
Lung in situ 12.607 0.480
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Table 2.5: COPS
MGd versus CHPLC

MGd comparisons per subject

Sample Standard Curve slope r2

Intralipid r© 0.997 0.999
Tumor in vivo1 Intralipid r© 0.414 0.472

tissue matrix 0.900 0.477
Tumor in situ2 Intralipid r© 0.687 ≈ 0

tissue matrix 1.185 0.269
Skin in vivo 2 Intralipid r© 1.730 0.159

tissue matrix N/A
Skin in situ2 Intralipid r© 0.475 ≈ 0

tissue matrix 1.019 0.011
Kidney in situ2 Intralipid r© 0.820 0.164

tissue matrix 0.942 0.353
Heart in situ2 Intralipid r© 0.488 ≈ 0

tissue matrix 0.750 0.297
Lung in situ2 Intralipid r© 0.858 0.597

tissue matrix 1.070 0.513
Liver in situ2 Intralipid r© 0.527 ≈ 0

tissue matrix NA
1: comparisons made over 120 ≤ t ≤ 1440 min

2: comparisons made over all time points with detectable MGd
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3.0 PK MODELING OF MGD IN SCID MICE

3.1 BACKGROUND

An ideal radiation- or photodynamic-sensitizing agent is one that preferentially localizes

in malignant tissue during drug distribution, such that after some elapsed time, a pos-

itive concentration gradient exists between malignant and surrounding non-malignant tis-

sues [6,44,134]. Irradiation at this time results in damage to tumor and possible preservation

of surrounding normal tissues. Current clinical protocols do not quantitate the sensitizer con-

centration in the target tissues following dosing [45]. Without this measurement, the elapsed

time between dose and irradiation is not tailored to individual patients, and treatment fails

to account for patient-specific pharmacokinetics (PK) of the sensitizer. A method to deter-

mine the sensitizer PK noninvasively at the site of action would allow clinicians to design

patient-specific treatment schedules, possibly improving the efficacy of therapy [10].

Chapter 2 reported MGd concentrations measured in female C.B-17 SCID mice bear-

ing human breast cancer xenografts dosed i.v. with 23 mg/kg. MGd concentrations were

measured in tissues noninvasively by the OPS in vivo, nondestructively by OPS in situ, and

destructively by HPLC ex vivo. This Chapter utilizes those reported concentrations to de-

velop compartmental PK models of MGd disposition in plasma, tumor, and skin. The MGd

tumor concentrations measured by OPS in vivo are estimated by a combination of PK model

predictions of MGd concentrations in plasma, tumor, and skin.
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3.2 MATHEMATICAL MODELING

3.2.1 Pharmacokinetic Model

Figure 3.1 shows the compartmental model structure used to model MGd concentrations in

plasma, skin, and tumor. Parallels between the mathematical model and physiology may

be considered, with compartment 1 representative of plasma, compartment 3 representative

of skin, compartments 4 and 5 representative of tumor, and compartment 2 representative

of other ‘peripheral’ tissues. However, it must be noted that this model is not physiologic.

In this system, the drug is introduced into the plasma compartment via an i.v. bolus,

transport occurs between plasma and tissues, and the drug is ultimately cleared from the

plasma. These phenomena are governed by the following ordinary differential equations:

dx1 (t)

dt
= D (t) + k21x2 (t) + k31x3 (t) + k41x4 (t)− (k10 + k12 + k13 + k14) x1 (t) (3.1)

dx2 (t)

dt
= k12x1 (t)− k21x2 (t) (3.2)

dx3 (t)

dt
= k13x1 (t)− k31x3 (t) (3.3)

dx4 (t)

dt
= k14x1 (t) + k54x5 (t)− (k41 + k45) x4 (t) (3.4)

dx5 (t)

dt
= k45x4 (t)− k54x5 (t) (3.5)

Ĉ1 (t) =
x1 (t)

V1

(3.6)

Ĉ3 (t) =
x3 (t)

V3

(3.7)

Ĉ4 (t) =
x4 (t)

V4

(3.8)

Here, xq (t) is the mass of MGd in compartment q (where q ∈ {1, 2, 3, 4, 5}), k10 is the mass

elimination rate from plasma, and kmn is the mass transport rate from compartment m to n.

D (t) is the bolus dose of MGd converted to 546.8 nmoles based on the average mouse weight

of 27.3 g. Ĉi (t) and Vi are the estimated MGd concentration and volume of distribution,

respectively, in compartment i (where i ∈ {1, 3, 4}). For plasma, V1 is the apparent volume

of distribution (mL), a parameter that can exceed the physical volume of plasma [128], and

it is a fitted parameter. The skin volume, V3, is calculated as 16 % of the average volume
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of the mice used in this study, assuming the density is equivalent to that of water [135].

The tumor volume, V4, is calculated from the measured weight of the extracted tumor tissue

(average tumor weight = 1.09 g). V3 and V4 are not fitted to data.

The model is informed using MGd concentration data from plasma, skin and tumor,

which correspond to compartments 1, 3, and 4, respectively. The plasma concentration was

measured by HPLC; the tumor and skin concentrations were measured by two methods:

OPS in situ and HPLC ex vivo. The model parameters were estimated independently for

the tissue-specific MGd concentrations measured by OPS and HPLC, resulting in OPS-

based and HPLC-based PK models. Compartments 2 and 5 are incorporated to allow the

model to capture the MGd dynamics observed in plasma and tumor; the mass within these

compartments is not used to estimate concentrations. The potential physiological basis for

the inclusion of these compartments is discussed in Section 3.4.

In order to determine an appropriate model structure that describes the data, candidate

model structures of increasing compartmental complexity were evaluated based on the ob-

served MGd concentrations and compared using Akaike’s information criterion (AIC) as a

performance metric. AIC is calculated as [136]:

AIC = N ln

(
SSE

N

)
+ 2M (3.9)

N is the number of data points, SSE is the sum squared error between measured and

predicted concentrations, and M is the number of estimated parameters. The AIC metric is

used to identify the model that provides the best fit without overparamaterizing the model.

The model resulting in the lowest AIC value is the superior model.

3.2.2 Parameter Estimation

The metric used to describe the quality of model fit was the sum squared error (SSE)

between the natural log of measured and estimated concentrations. The objective function

was formulated as:

Ji (p) =
Nc∑
q=1

Nt∑
j=1

(
ln (Ci(j))− ln

(
Ĉi(j, p)

))2

= SSE (3.10)
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Figure 3.1: Compartmental model of MGd concentrations in plasma, skin, and tumor tissues

following i.v. administration.
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Here, Ci(j) is the measured concentration and Ĉi(j, p) is the model estimated concentration

in compartment i (where i ∈ {1, 3, 4}), at time j for the parameter set p (where p = {kmn, V1}

and mn ∈ {12, 13, 14, 21, 31, 41, 45, 54}). The objective function sums the error over all

time-points, Nt, for all compartments corresponding to a measured concentration, Nc The

natural logarithm functions were incorporated to equally balance the contribution of error

from measurements at all measured time points to the overall error in Equation (3.10).

Parameter estimates for all kmn values and V1 were determined by minimizing Equation (3.10)

using the lsqnonlin function from the statistics toolbox in MATLAB (Release 14, r© 2007,

The MathWorks, Natick, MA). 95% confidence intervals for the estimated parameters were

calculated from the residual error and the Jacobian matrix using the nlparci function, also

available in the MATLAB r© statistics toolbox [137].

3.2.3 Estimation of MGd Detected in Tumor in vivo

It is hypothesized that the observed concentration in vivo, COPS
invivo , may be represented as a

linear combination of simulated PK predictions in plasma, tumor, and skin. An expression

for the in vivo concentration estimate (termed ĈOPS
invivo) was formulated as follows:

Ĉ
OPS/OPS
invivo (t) = fplasmaĈ

HPLC
1 (t) + ftumorĈ

OPS
4 (t) + fskinĈ

OPS
3 (t) (3.11)

Ĉ
OPS/HPLC
invivo (t) = fplasmaĈ

HPLC
1 (t) + ftumorĈ

HPLC
4 (t) + fskinĈ

HPLC
3 (t) (3.12)

Here, the in vivo concentration may be represented by measurements from OPS, Ĉ
OPS/OPS
invivo (t)

or HPLC, Ĉ
OPS/HPLC
invivo (t). fplasma, ftumor, and fskin represent the respective fractional contri-

bution of the simulated MGd plasma, tumor, and skin concentrations to COPS
invivo . Therefore,

each f value lies on the interval [0, 1], while the sum of the values is not required to equal

unity. The values of p = {fplasma, ftumor, fskin} were obtained by minimizing the difference

between estimated and measured in vivo tumor concentration (as in Equation (3.10)). f

values were estimated for both OPS- and HPLC-based PK models.
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3.3 RESULTS

Both one and two compartment structures were considered for modeling the plasma data

(i.e., with and without compartment 2). The two compartment model resulted in a better

fit (AIC of −28.29 vs. 12.19). Figure 3.2 shows CHPLC
plasma data and ĈHPLC

1 predictions. Each

data point represents the mean concentration measured in three mice per time point, and

one standard deviation is shown about each point. The PK model represents only plasma

dynamics with both k13 and k14 equal to zero, thereby eliminating transport from plasma

into either skin or tumor compartments. Estimated parameter values are listed in Table 3.1.

Following the i.v. dose, the CHPLC
plasma decreases rapidly, with a 99.5% decrease in the

concentration between 5 and 240 min. The concentration then remains relatively unchanged,

at the observed concentration of 0.349± 0.004 µM at 24 hr. The compartmental PK model

follows the HPLC observed data, predicting both the fast initial elimination of MGd, with a

99.4% decrease in concentration from 5 to 240 min, and MGd retention at late time points,

with a predicted concentration of 0.30 µM at 24 hr.

Figure 3.3 shows the data and predictions from the 5-compartment PK model that in-

cludes plasma, skin, and tumor. Figures 3.3(A) and (B) show CHPLC
skin and COPS

skin data and

the corresponding PK predictions, ĈHPLC
3 and ĈOPS

3 . In the skin, MGd is rapidly cleared

following an i.v. dose, resulting in undetectable concentrations at 240 min. Both HPLC-

and OPS-based models capture this behavior, with predicted peak MGd concentrations of

8.1 and 5.4 µM occurring at 20 and 23 min, respectively, and predicted decreases of 99.0%

and 98.7% between the observed peak and 240 min, respectively. Estimated skin to plasma

transport rates (k31) are an order of magnitude larger than the plasma to skin rates (k13),

as shown in Table 3.1.

PK models of the tumor data considered one- or two-compartment structures, with and

without compartment 5 in Figure 3.1. It was found that the inclusion of compartment 5

allowed the models to capture both the peak and retention, which improved model fit and

resulted in a reduced AIC for both HPLC-based (−72.6 vs. −59.1) and OPS-based (−44.5

vs. −37.5) models. Table 3.1 shows the estimated parameter values. There is significant

variability in the estimation of the tumor to plasma (k41) and intratumoral (k54) MGd
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Figure 3.2: MGd concentrations in plasma following i.v. dose as measured by HPLC ex

vivo and predicted using a two-compartment PK model. Inset shows MGd concentrations

at short times following dose.
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transport rates. Figures 3.3(C) and (D) show CHPLC
tumor and COPS

tumor data and the corresponding

PK predictions, ĈHPLC
4 and ĈOPS

4 . The HPLC-based model predicted a peak of 10.9 µM to

occur 71 min following i.v. dose, with a decrease of 83% by 960 min, and predicted a near

zero slope between 960 and 1440 min. The OPS-based model predicted a peak of 8.8 µM to

occur 55 min following i.v. dose, with a decrease of 70% by 960 min, and predicted a near

zero slope from 960 to 1440 min.

It should be noted that the addition of compartments 3, 4, and 5 did not significantly

change the estimated plasma MGd concentrations in compartment 1. The average percentage

deviation between the predicted plasma concentrations from the two-compartment (plasma-

only) and the five-compartment (plasma-tissue) models were 1% for the HPLC-, and 7% for

the OPS-based models.

The model shown in Figure 3.1 was unable to predict the in vivo tumor MGd concen-

trations measured by OPS, because compartment 4 was not representative of the sampled

volume, which included plasma, tumor, and skin. Figure 3.4 shows COPS
invivo data and a lin-

ear combination estimate, Ĉ
OPS/HPLC
invivo , as well as the respective contributions of plasma,

fplasmaĈ
HPLC
1 , tumor, ftumorĈ

HPLC
4 , and skin, fskinĈ

HPLC
3 , to the estimated in vivo PK.

The minimization of the SSE between COPS
total and Ĉ

OPS/HPLC
invivo was achieved using Equa-

tions (3.10) and (3.11) with fplasma = 0.231, ftumor = 0.819, and fskin = 0.534. The estimate

of Ĉ
OPS/OPS
invivo is show in the bottom plot of Figure 3.4, with similar results. The minimal

SSE between COPS
invivo and Ĉ

OPS/OPS
invivo was achieved using Equations (3.10) and (3.11) with

fplasma = 0.245, ftumor = 0.811, and fskin = 0.806. The estimate of fskin was higher for

Ĉ
OPS/OPS
invivo than for Ĉ

OPS/HPLC
invivo because the MGd skin concentration estimated by the OPS

was lower than by HPLC. These results suggest the plasma, tumor, and skin each contribute

to the concentration detected in vivo.

3.4 DISCUSSION

This Chapter presents compartmental PK models that describe MGd concentrations in

plasma, skin, and tumor following an i.v. dose. The models are informed with MGd
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Figure 3.3: Measured concentrations and 5-compartment PK model predictions for MGd

disposition. Top: Skin concentrations from 0 to 240 min, as measured by HPLC (A) and

OPS in situ (B). Bottom: Tumor concentrations from 0 to 1440 min, as measured by HPLC

(C) and OPS in situ (D).
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Figure 3.4: MGd tumor concentrations measured by OPS in vivo and estimated MGd tu-

mor concentration (Ĉ
OPS/HPLC
invivo ) using a linear combination of PK model estimates of MGd

in plasma, tumor, and skin. (Top) estimate from HPLC-based PK models (Ĉ
OPS/HPLC
invivo );

(Bottom) estimate from OPS-based PK models (Ĉ
OPS/OPS
invivo ). The contribution of plasma

is given as fplasmaĈ
HPLC
plasma is displayed on both plots. The contribution of tumor is given

as ftumorĈ
HPLC
tumor (Top) and ftumorĈ

OPS
tumor (Bottom) The contribution of skin is given as

fskinĈ
HPLC
skin (Top) and fskinĈ

OPS
skin (Bottom). Insets show MGd concentrations at short times

following dose.
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Table 3.1: Pharmacokinetic Parameters. Apparent plasma volume (V1) and mass transport

rates (kmn) given in the form: mean ± half width of 95% confidence interval.

Parameter Units Plasma model HPLC-based model OPS-based model
V1 mL 5.16± 1.23 4.76± 1.69 4.81± 1.55
k10 (min−1) (4.07± 1.21)× 10−3 (6.60± 1.35)× 10−3 (7.60± 5.31)× 10−3

k12 (min−1) (2.22± 0.05)× 10−4 (2.19± 0.188)× 10−2 (1.90± 0.54)× 10−2

k21 (min−1) (1.06± 0.43)× 10−5 (1.19± 0.48)× 10−4 (1.20± 0.80)× 10−4

k13 (min−1) - (7.43± 2.34)× 10−3 (4.56± 1.86)× 10−3

k31 (min−1) - (7.71± 0.23)× 10−2 (6.65± 3.49)× 10−2

k14 (min−1) - (9.87± 2.25)× 10−4 (9.03± 4.33)× 10−4

k41 (min−1) - 2.34× 10−10 ± 0.002 5.813× 10−5 ± 0.010
k45 (min−1) - (7.51± 1.49)× 10−3 (1.74± 1.11)× 10−2

k54 (min−1) - (2.46± 0.96)× 10−5 (8.90± 7.28)× 10−5
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concentrations measured noninvasively in vivo and nondestructively in situ by OPS and

destructively ex vivo by HPLC. Both OPS- and HPLC-based models described MGd con-

centrations in plasma, tumor, and skin. PK model predictions in plasma, tumor, and skin

were utilized to describe the MGd detected by the OPS in tumor in vivo.

A previous study analyzed the MGd PK following 40 mg/kg i.v. dose in non-tumor-

bearing CD1 mice [138]. A two-compartment model best predicted the MGd concentrations

in plasma in both the previous and current studies. Both PK analyses predicted the rapid

initial elimination of MGd from plasma, followed by a slow terminal phase. Direct comparison

of model parameters is not possible because the previous study utilized the NONMEM

software package to fit a different set of parameters from those used in the current study [138].

During the selection of the model structure used, candidate model structures were chosen

based on the observed MGd concentration vs. time profiles. The most appropriate structure

was identified by calculating AIC. MGd concentrations in plasma and tumor show two dis-

tinct phases, which were best predicted by two-compartment models. Therefore, description

of the concentrations within these tissues required the addition of Compartments 2 and 5 to

capture both phases in plasma and tumor, respectively. During the ‘initial’ phase in plasma,

MGd distributes into peripheral tissues and is cleared by the liver and kidneys. The ‘slow’

phase is attributable to release of MGd from the peripheral tissues back into the vasculature.

In tumor tissue, the ‘initial’ phase represents influx of MGd from the vasculature, while the

‘slow’ phase is attributable to an inability of the tumor to efficiently clear the drug. The

physiological basis of MGd retention is hypothesized to may be a less well-developed lym-

phatic and blood vessel network that impedes the effective clearance of the MGd from the

tumor tissue. However, it should be noted that the inclusion of Compartment 5 was insti-

tuted by the dynamics of the data, and is not directly linked to a physiological effect within

the tumor tissue.

The addition of Compartment 5 reduced the AIC, supporting the use of the 5-

compartment model to describe the data. However, it is a concern that the selected model

structure for tumor resulted in some estimated parameters having very large 95% confidence

intervals (CIs), and that these CIs overlap or nearly overlap the parameter value of zero.

This indicates that the available data are insufficient to accurately characterize the trans-
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port of MGd from tumor to plasma (k41) and within the tumor (k54), and furthermore, this

indicates that the amount of drug in the tumor does not significantly impact plasma MGd

dynamics (small k41 values). The inclusion of sampled MGd tumor concentrations at later

time points (e.g., 72 hr following i.v. dose) could allow estimation of these parameters with

higher confidence.

The predicted peak MGd concentration in the tumor in situ and ex vivo occurs approx-

imately 1 hr following i.v. dose, at a time when significant MGd is present in the skin and

vasculature surrounding the tumor. However, at 4 hr following i.v. dose, the MGd concen-

tration in the tumor tissue is an order of magnitude higher than the concentration in either

the skin or plasma. The OPS-based PK models were able to capture the development of the

MGd gradient between tumor and skin. These results suggest that OPS measurements may

be used to inform patient-specific PK models that can be used to calculate the optimal time

to administer irradiation.

Figure 3.3 clearly shows two-phase behavior in tumor MGd concentration vs. time pro-

files as measured by OPS in situ and HPLC ex vivo. In order to verify that the early phase

was not attributable to blood remaining in the tissue after exsanguination, we compared

the observed peaks in plasma and tumor. These occurred at 5 min and approximately 1

hr following i.v. dose, respectively. This 55 min interval between plasma and tumor peaks

strongly suggests the early phase in tumor is MGd distribution into tumor, rather than

residual blood that would have been present in the tumor at earlier times following dose.

In contrast to the OPS in situ and HPLC ex vivo tumor MGd data, the OPS in vivo

MGd profile presented in Figure 3.4 clearly shows an early peak related to plasma MGd

concentrations. This occurs because the tissue volume sampled optically during the OPS

measurement of tumor in vivo included contributions from plasma, tumor, and skin. The

estimated f values in Equations (3.11) and (3.12) represent the respective fractions of the

MGd concentration in plasma, tumor, and skin that are detected during measurement of the

tumor by the OPS in vivo. In order to determine the percentage of the in vivo concentration

that is attributable to the each tissue, the contributions of each are calculated as: plasma,

fplamsaĈplasma, tumor, ftumorĈtumor, and skin, fskinĈskin, with each concentration measured

either by the OPS or HPLC. Based on the estimated concentrations, as shown in Figure 3.4,
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plasma and skin PK have a near zero contribution to the in vivo tumor concentration estimate

after 240 min. Figure 3.5 shows changes in the percentage contribution of various tissues to

the total in vivo concentration at times between 5 and 240 min after dose. At 5 min after

dose, the estimated in vivo concentration was predominately due to plasma localized MGd

(87%). From 240 to 1440 min, the in vivo MGd concentration was dominated by the tumor

tissue concentration (> 93%). These results indicate that Equations (3.11) and (3.12) allow

estimation of the tumor-localized MGd concentration from the in vivo tumor concentration

measured by the OPS. Hypothetically, this information could be used to make decisions

about the timing of radiation or concurrent chemotherapy administration following MGd

administration based on the degree of MGd localization or on the concentration gradient

between tumor and surrounding tissues.

Comparison of the estimated f values for both HPLC- and OPS-based models shows

similar fplasma and ftumor values, but a difference between fskin estimates (0.534 and 0.806,

respectively). This difference may be a result of the lower predicted peak concentration in

the skin from the OPS measurement (8.1 µM vs. 5.4 µM as measured by HPLC and OPS,

respectively). The tissue volume sampled by the OPS included contributions from underlying

tissues, such as skeletal muscle. The skeletal muscle contained lower MGd concentrations

than skin at all measured time points [122], and hypothetically, could also contribute to

difference in estimated fskin values.

The HPLC- and OPS-based PK models predicted differences in the time and magnitude

of the peak MGd tumor concentrations. As reported in Section 2.5, these differences may

be due to the mismatch in the volume of tissue sampled by each technique, as well as

heterogeneous distribution of the drug within the tissue. These results suggest that in order

to characterize the PK of MGd in tumor tissue using the OPS, it may be necessary to sample

multiple sites on the tissue to estimate a tissue-average concentration. It should be noted

that the error associated with the peak MGd prediction would not affect the use of the

OPS measurement to detect the large tumor/skin gradients at the 4 hr time point. It is at

these times when OPS measurements may provide clinically relevant information to inform

radiation planning.
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vivo MGd tumor concentration detected in blood-perfused tumor during measurement by

OPS.
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3.5 SUMMARY

This Chapter presents PK models developed using tissue-localized MGd concentrations mea-

sured by OPS and HPLC in plasma, tumor, and skin. A linear combination of PK model

estimates of MGd in plasma, skin, and tumor was used to describe the “total” MGd con-

centration measured in tumor in vivo by the OPS. Hypothetically, the modeling structure

presented here is extendable to other sensitizing compounds detectable by the OPS. The

potential application of this type of model to determine patient-specific irradiation schemes

for PS compounds during PDT treatment is presented in Chapter 6.
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4.0 OPS MEASUREMENTS OF PC4-MEDIATED PDT IN MURINE

TUMORS

4.1 BACKGROUND

Silicon phthalocyanine (Pc4) is a photosensitizing compound that is being investigated for

use in anti-cancer PDT both preclinically [58] and clinically [59]. Pc4 has a strong absorption

band at 672 nm, as shown in Figure 4.1. The strength and location of this band make Pc4

a well-suited candidate for measurement by the OPS.

As explained in Chapter 2, the modified Beer-Lambert law is used to relate the changes

in light intensities measured by the OPS with changes in chromophore concentrations within

the measured medium. A previous study by Mourant et al. presented a mathematical al-

gorithm that estimates changes in the concentration of chromophores, the effect of changes

in scattering on the collected light intensity, and the effect of the total absorption coeffi-

cient on the mean photon path length [3]. The study reported a linear correlation between

doxirubicin concentrations measured in vivo by OPS and ex vivo by high performance liquid

chromatography (HPLC). The algorithm presented by Mourant et al. [3] defines a functional

relationship between the mean photon path length and the total absorption coefficient. This

function was selected empirically, by linearizing the estimated and true absorber concen-

trations from in vitro data. This functional relationship was valid for a total absorption

coefficient (µtotal
a ) less than 1 cm−1, however, for µtotal

a > 1 cm−1, the function predicts

a constant path length of 0.6 cm. The absorption coefficient within tissue can exceed this

value [78,139], especially in the 500−600 nm wavelength range where hemoglobin has strong

absorption bands. Therefore, the previous function for estimating photon path length may
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introduce error into the calculation by estimating an unrealistic ‘saturation’ of the path

length for measurements of mediums containing large absorption coefficients.

Moreover, the algorithm presented by Mourant et al. [3] assumes that chromophores

are distributed homogeneously throughout the medium. It is well known that tissues con-

tain heterogeneous chromophore distributions [110, 111, 112], with whole blood localized in

discrete vessels. Whole blood contains strong absorption bands in the vis-NIR wavelength

range [16]. This spatial distribution of µtotal
a affects the propagation of light through tissue.

As light traverses a vessel, the blood located around the vessel edge strongly attenuates the

light, effectively shielding the blood at the vessel center from light. Due to this, the light

that is collected by the OPS may have only sampled a subset of the total amount of blood

within the tissue. In this situation, the ‘apparent’ absorption coefficient estimated from the

modified Beer-Lambert law is less than the ‘true’ absorption coefficient (due to the shield-

ing effect of blood) within the measured tissue volume [110, 111, 112]. This phenomenon

is termed ‘pigment packaging’ [29]. Previous studies accounted for this by incorporating

a correction factor that estimates the effect of pigment packaging on the model-estimated

absorption coefficient [113, 140]. In these studies, the correction factor improved the ability

to mathematically capture features of the measured data, especially at wavelengths where

hemoglobin compounds have strong absorption bands, thereby causing packaging to have a

significant effect. The current study incorporates a vessel correction factor into the analysis

of elastically-scattered spectra measured by the OPS.

This Chapter presents a theoretical analysis of the measurement of tissue by the OPS

in silico. A Monte Carlo (MC) model of light propagation through tissue [107] is used to

emulate OPS measurement of a medium containing discrete vessels. Simulations are used to

investigate the functional relationship between photon path length and µtotal
a , as well as the

incorporation of a vessel correction factor into the data analysis algorithm. These extensions

are incorporated into the data analysis algorithm presented by Mourant et al. [3]. This

resultant algorithm is utilized to analyze OPS measurements for a mouse xenograft before

and after Pc4-mediated PDT. Estimates of Pc4 and total hemoglobin concentrations, as well

as hemoglobin saturation, are calculated using the previous and the extended algorithms.
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4.2 EXPERIMENTAL METHODS

All of the experimental work presented in this Chapter was conducted by Julie Eiseman and

Li Bai at the University of Pittsburgh Cancer Institute.

4.2.1 Drugs and Reagents

Pc4 (NSC 676418) was obtained from the NCI (Bethesda, MD). Sterile water and 0.9 %

Sodium Chloride Injection Solution (Saline) were purchased from Baxter Healthcare Corp.

(Deerfield, IL). RPMI medium, fetal bovine serum (heat inactivated), Trypsin-EDTA (10 x),

and phosphate-buffered saline (PBS, pH 7.4, without calcium or magnesium) were purchased

from Invitrogen (Carlsbad, CA). Penicillin-Streptomycin were purchased from Biofluids Di-

vision (Rockville, MD). Nembutal sodium solution (Covation Pharmaceutical, Inc. Deer-

field, IL), isoflurane (Hospira Inc., Lake Forest, IL) and heparin sodium for injection (10000

Units/ml, American Pharmaceutical Partners, Inc. Schaumburg, IL) were obtained through

UPCI pharmacy.

4.2.2 Animals and Tumor Model

Female C.B-17 SCID mice (specific pathogen free, 4− 6 weeks of age) were purchased from

Charles River Laboratories (Wilmington, MA) and allowed one week to acclimate to the

animal facilities at the University of Pittsburgh. Mice were handled in accordance with the

Guide For the Care and Use of Laboratory Animals [124] and on a protocol approved by

the Institutional Animal Care and Use Committee of the University of Pittsburgh. MDA-

MB-231 cells were obtained from ATCC (Manassas, VA) and grown in RPMI 1640 medium

containing 10% heat inactived fetal bovine serum, penicillin, and streptomycin in a humidi-

fied incubator at 37 oC and 5% CO2. When cells were 70% confluent, they were trypsinized

and resuspended at a final concentration of 5 × 107 cells/ml in medium. 5 × 106 cells were

implanted subcutaneously to the right flank of each passage mouse. MDA-MB-231 tumor

fragments (approximately 25 mg) from passage mice were implanted subcutaneously on the

right flank of mice.
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4.2.3 OPS Sampling

For in vivo measurements, mice were gently restrained by hand and triplicate OPS measure-

ments were made on the skin over the subcutaneous tumor. Before Pc4 administration, and

at 5, 15, 30, 60, 120, 360, 1440 min after Pc4 administration, tumor Pc4 concentrations were

measured in vivo in triplicate.

4.2.4 Pc4-PDT

40 C.B-17 SCID female mice bearing MDA-MB-231 xenografts were stratified into 5 groups

with 8 mice in each group so that the mean tumor volumes and mean body weights of

these groups are similar. These five groups were Laser only (150 J/cm2); Pc4 (2 mg/kg) +

Fractionated Laser (150 J/cm2); vehicle control; Pc4 (2 mg/kg) + Continuous Laser (150

J/cm2); and Pc4 only (2 mg/kg). The data reported in this Chapter encompass only 1 of

8 subjects enrolled in the study that received Pc4-mediated PDT treatment; ongoing work

will apply the techniques developed in this Chapter to analysis of all subjects within the

study.

Fur was removed from skin over the tumor and on the opposite flank of mice by appli-

cation of Nair (Church and Dwight Co., Princeton, NJ) 24 h before dosing under anesthesia

(Nembutal sodium solution, 50 mg/kg, intraperitoneal (i.p.)). Pc4 was administered to the

mice at 0.01 ml/mg fasted body weight by bolus lateral tail vein injection. After Pc4 was

administered, the mice were housed under Lee filter number 124 (Baltimore Stage Lighting,

Baltimore, MD, USA) which transmits light almost exclusively between 450 and 600 nm.

Mice were anesthetized with nembutal sodium solution (50 mg/kg, i.p.) and were gently

positioned in a specially designed restrainer which allowed unobstructed access to the tumor

during laser treatment. Black plastic sheets with holes of various sizes matched to tumor

sizes were used to protect the areas surrounding the tumor from the laser light. Laser light

at 672 nm from a Diode laser (HPD Inc., North Brunswick, NJ) was split into two beams

with equal power by a bifurcated optical fiber assembly (Ocean Optics, Dunedin, FL). Two

microlense fibers were connected to the two ends of the fiber assembly in order to obtain

uniformly distributed light on the tumor. Laser beams from the two fiber ends were directed
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on the tumor from opposite directions horizontally and encompassed the tumor areas. This

method was developed to assure that the internal organs (with high level of Pc4, such as

liver and kidney) below the tumor were exposed to minimal laser light. The fluence rate was

kept at 132 mW/cm2, the total fluence was 150 J/cm2 and the exposure time was 19 min.

4.3 NUMERICAL METHODS

4.3.1 OPS Data Analysis Algorithm

This section outlines the data analysis algorithm presented by Mourant et al. [3]. The

modified Beer-Lambert law is used to relate changes in collected light intensity measured by

the OPS to changes in the absorption coefficient within the medium, as follows:

− log

(
I (λ, t)

I (λ, t0)

)
= ∆µa (λ, t) 〈L〉

(
µtotal

a (λ, t)
)

+ B (λ, t) (4.1)

Here, λ is the wavelength, and I (λ, to) and I (λ, t) are the collected light intensities measured

by the OPS at times to and t, (t > to). The left-hand side term, − log
(

I(λ,t)
I(λ,t0)

)
, represents the

change in the absorbance of the sample between to and t. The ∆µtotal
a (λ, t) term represents

the change in absorption coefficient between t and to, 〈L〉
(
µtotal

a (λ, t)
)

represents the mean

photon path length, and B (λ, t) represents the changes in collected light caused by changes

in scattering properties between measurements at t and to. Each of these terms is described

individually below.

This calculation treats the change in absorption coefficient as the the sum of the contri-

bution from all chromophores within the medium, as follows:

∆µa (λ, t) =
∑

i

εi (λ) [Ci (t)− Ci (to)] =
∑

i

εi (λ) ∆Ci (t) (4.2)

Here, εi (λ) represents the molar extinction coefficient. This study assumes that the tissue

absorption coefficient in the wavelength range of 500− 800 nm is dominated by three com-

pounds: Hb, HbO2, and the PS. While other components absorb light in this wavelength
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range, the total absorbance of other absorbers is significantly less than the dominant com-

pounds, and they are assumed not to have an effect on this calculation [3]. Under this

assumption, Equation (4.2) becomes,

∆µa (λ, t) = εHb (λ) ∆CHb (t) + εHbO2 (λ) ∆CHbO2 (t) + εPS (λ) ∆CPS (t) (4.3)

The modified Beer-Lambert law, as shown in Equation (4.1), requires an estimate of

the mean path length of collected photons, and it is given by 〈L〉
(
µtotal

a (λ, t)
)
. Previously,

Mourant et al. [3] specified an analytical relationship between 〈L〉
(
µtotal

a (λ, t)
)

and µtotal
a (λ, t)

as follows:

〈Lo〉
(
µtotal

a (λ, t)
)

= x0 + x1e
(µtotal

a (λ,t)x2) (4.4)

〈Lo〉
(
µtotal

a (λ, t)
)

denotes the path length function presented by Mourant et al. Here, x0,

x1, and x2 are fitted parameters (empirically determined from in vitro OPS measurement of

blue dye in tissue-simulating phantoms [3]), and µtotal
a (λ, t) is calculated as follows:

µtotal
a (λ, t) = εHb (λ) [∆CHb (t) + CHb (to)] + εHbO2 (λ) [∆CHb (t) + CHb (to)]

+εDrug (λ) CDrug (t) (4.5)

It has been shown that the OPS source-detector fiber separation in the range 1.5−1.8 mm

makes the path length insensitive to changes in the scattering properties of the medium [28].

However, changes in scattering do affect the amount of light collected, and this is represented

by the B (λ, t) term in Equation 4.1, which is given as,

B (λ, t) = z1 (t) + z2 (t) λ + z3 (t) λ2 (4.6)

where z0 (t), z1 (t), and z2 (t) are fitted parameters.

The above equations were solved by minimizing the sum squared error between em-

pirical and estimated values of − log
(

I(t,λ)
I(t0,λ)

)
(in Equation (4.1)). This was achieved using

the lsqnonlin function within the statistics toolbox in MATLAB (V.70.0.19901 R.14 r© 2008,

The MathWorks, Natick, MA) [137]. This function utilized the Levenberg-Marquardt (LVM)

algorithm [141] to numerically minimize the sum squared error by fitting the following pa-

rameters: ∆CHb (t), ∆CHbO (t), ∆CPS (t), z0 (t), z1 (t), and z2 (t). The analysis also requires
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estimation of initial values for CHb (to), CHbO (to), CPS (to), which is done by solving Equa-

tion (4.1) with I (λ, t0) ratioed against a line with zero slope [3], as follows:

− log (I (λ, to)) = µtotal
a (λ, to) 〈L〉

(
µtotal

a (λ, to)
)

+ B (λ, to) (4.7)

with all absorption assumed to be due to the presence of Hb and HbO, as follows:

µtotal
a (λ, to) = εHb (λ) CHb (to) + εHbO (λ) CHbO (to) (4.8)

4.3.1.1 Analytical Description of Photon Path Length Equation (4.4) is unable to

describe changes in 〈L〉
(
µtotal

a (λ, t)
)

for µtotal
a (λ, t) > 1.0 cm−1, instead predicting a constant

〈L〉
(
µtotal

a (λ, t)
)

value of 0.6 cm for absorption coefficients above that threshold. This study

utilizes a MC model of the OPS measurement to investigate µtotal
a (λ, t) values between nearly

zero (10−16) and 30 cm−1, and the resulting data are represented by the following function:

〈Ln〉
(
µtotal

a (λ, t)
)

= xn0

(
µtotal

a (λ, t) + xn1

)−xn2
(4.9)

Here, xn0, xn1, and xn2 are fitted parameters. This algorithm allows changes in µtotal
a (λ, t)

when µtotal
a (λ, t) > 1 cm−1 to affect 〈Ln〉

(
µtotal

a (λ, t)
)
.

4.3.1.2 Vessel Correction Factor The incorporation of a vessel correction factor is

required to account for the pigment packaging effect of discrete vessels on the absorbance.

Studies by Savaard et al. [140] and van Veen et al. [113] have described and implemented

a functional relationship that relates the vessel correction factor to the mean vessel radius

and total intra-vascular absorption coefficient (assumed to be equal to that of whole blood).

This vessel correction factor, V C (λ, t), is given as follows:

V C (λ, t) =
1− e−2µa,blood(λ,t)rvessel(t)

2rvessel (t) µa,blood (λ, t)
(4.10)

Here, µa,blood (λ, t) is the absorption coefficient of whole blood, and rvessel (t) is the mean

vessel radius. The V C (λ, t) term is on the interval [0, 1] and represents the fraction of
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hemoglobin that contributes to the µtotal
a (λ, t) detected optically. The vessel corrected esti-

mate of µtotal
a (λ, t), termed µtotal,V C

a (λ, t), is then given as,

µtotal,V C
a (λ, t) = V C (λ, t) f (t) (εHb (λ) CHb (t) + εHbO2 (λ) CHbO2 (t))

+
∑

i/∈{Hb,HbO2}

εi (λ) Ci (t) (4.11)

where f (t) is the blood volume fraction within the tissue, and the combined contribution of

other chromophores is given by the summation term on the right-hand side of the Equation.

The V C (λ, t) term described in Equation (4.10) is applied to the algorithm presented

by Mourant et al. (and described in Section 4.3.1). Here, the V C (λ, t) describes pigment

packaging that results from the ratio of collected light intensities, as follows from the use of

the modified Beer-Lambert law in Equation (4.1). This is an important caveat, because in

this situation, the rvessel (t) parameter is not physiologically motivated. The value is simply

the difference in vessel radius between the two intensity measurements; this topic is discussed

further in Section 4.5. In order to clearly make this distinction, the ‘effective’ vessel radius

estimated in the current work is identified by rvessel (t). Incorporation of the V C (λ, t) term

into Equations (4.3) and (4.5), is given as:

∆µa (λ, t) = V C (λ, t) (εHb (λ) ∆CHb (t) + εHbO (λ) ∆CHbO (t))

+εDrug (λ) ∆CDrug (t) (4.12)

µtotal
a (λ, t) = V C (λ, t) (εHb (λ) (∆CHb (t) + CHb (t)) + εHbO (λ) (∆CHbO (t) + CHbO (to)))

+εDrug (λ) CDrug (t) (4.13)

It is worth noting that the inclusion of rvessel (t) leads to the absence of f (t) from Equa-

tions (4.12) and (4.13). This indicates that CHb and CHb2 terms in Equations (4.12) and

(4.13) represent the concentration in the entire sampled tissue volume and not only the

intra-vascular concentration. These equations were solved as in Section 4.3.1 (using the

LVM algorithm) by fitting the parameters: ∆CHb (t), ∆CHbO (t), ∆CPS (t), z0 (t), z1 (t),

z2 (t), and rvessel (t).
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4.3.2 Monte Carlo Model

The MC model used here is an adaptation of the MCML program developed by Wang

et al. [107], with the equations modified to describe photon movement through a medium

containing either homogeneous chromophores or heterogeneous chromophores placed within

discrete vessels. Figure 4.2 shows the cross-section of the MC model geometry used in

simulating OPS measurement of tissue. Here, the z-coordinate specifies tissue length, the x-

coordinate specifies tissue width, and the y-coordinate specifies tissue depth (which is normal

to the cross-section shown in Figure 4.2). The OPS source and detector fibers are located at

the air/tissue interface (z = 0). The source detector seperation is 1.75 mm, and the source

and detector radii are 200 and 100 µM, respectively. In order to increase simulation efficiency,

the detector fiber is treated as a ‘ring’ about the source fiber, such that all photons that

exit the tissue with a radial distance from the source between 1.65 and 1.85 mm contact the

detector. It is noted that this geometry does not have radial symmetry between source and

detector fibers, however, this geometry may be more representative of OPS measurements on

tissue because the orientation of source and detector fiber with respect to underlying vessels

is never known (and is therefore never pefectly symmetric).

The tissue geometry is constructed as a semi-infinite medium, with the length of each

coordinate selected such that photons propagating to these lengths would not have an impact

on the detected intensity. The geometry contains discrete blood vessels that are arranged

normal to the x− z cross-section, and are assumed to extend uniformly in the y-coordinate.

Moreover, the model specifies optical properties, such as the absorption, µa,i, and scattering,

µs,i, coefficients as a function of position (i) in the (x, z) coordinate system. This x− z cross

section is uniform for the entire y-coordinate direction. This study assumed constant scat-

tering properties throughout the geometry (including tissue and vessels), but extensions of

the code to handle heterogeneous distributions of the scattering coefficient, µs, or anisotropy

factor, g, are straightforward.

During photon propagation, the photon moves to an interaction site, where it undergoes

absorption and scattering events. Photon movements are stochastically simulated [107], with
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Figure 4.2: Geometry for MC model of OPS measurement of tissue, with photon packet

shown propagating from source to detector fiber. The tissue includes discrete blood vessels

throughout (visualized as dark circles in the diagram). Inset: tissue ‘block’ containing two

vessels with the parameters used to define vessel position and size.
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the step sizes given as:

li =
− ln (ζstep)

µs,i + µa,i

(4.14)

Here, ζstep is a random number uniformly distributed on the interval (0, 1], and µs,i and µa,i

are the respective scattering and absorption coefficients specified at position (xi, yi, zi).

Scattering events redirect the photon in a new direction that is specified by the scattering

angle, θscatter and the azithmul angle, θazim. The azithmul angle is chosen as a uniformly dis-

tributed value on the interval [0, 2π]. The expected value of θscatter is given by the anisotropy

factor of the tissue, g, which is equal to cos (θscatter). Therefore, g specifies the likelihood

of the photon being forward-scattered (g = 1), back-scattered (g = −1), or isotropically

scattered (g = 0).

The photon scattering angle, θscatter, is calculating using the Henyey-Greenstein scatter-

ing phase function, which is represented by [107]:

cos (θscatter) =
1

2g

[
1 + g2 −

(
1− g2

1− g + 2gζscatter

)2
]

(4.15)

Here, ζscatter is a random number uniformly distributed on the interval [0, 1]. For isotropic

scattering, when g = 0, equal weight is given to all possible scattering angles, and θscatter is

given by:

cos (θscatter) = 2ζscatter − 1 (4.16)

Photon trajectories are then given as:

µ′
x =

sin (θscatter)√
1− µ2

z

[µxµz cos (θazim)− µy sin (θazim)]− µx cos (θscatter) (4.17)

µ′
y =

sin (θscatter)√
1− µ2

z

[µyµzcos (θazim) + µxsin (θazim)] + µycos (θscatter) (4.18)

µ′
z = − sin (θscatter) cos (θazim)

√
1− µ2

z + µz cos (θscatter) (4.19)
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If |µz| > 0.999, the photon is almost totally forward or backward scattered, and to avoid

division by zero in Equations (4.17) and (4.18) the new trajectories are given as:

µ′
x = sin (θscatter) cos (θazim) (4.20)

µ′
y = sin (θscatter) sin (θazim) (4.21)

µ′
z = − µz

|µz|
cos (θazim) (4.22)

As a photon propagates through the tissue, it can cross the boundaries between regions

with different refractive indexes, ni. When this occurs, the photon is propagated to the

boundary, and Fresnel’s equations are used to determine if it reflects back into the original

region, or is refracted into the new region. The Fresnel reflection coefficient, R, is given as:

R =
1

2

[
sin2 (θi − θt)

sin2 (θi + θt)
+

tan2 (θi − θt)

tan2 (θi + θt)

]
(4.23)

Here, the incident angle between the photon and the boundary is given as: θi = cos−1 (µz).

A random number, ζref , uniformly distributed on the interval [0, 1], is selected and compared

with R, such that if ζref < R, the photon is refracted, otherwise it is reflected. For reflected

photons, the z-direction vector is adjusted such that:

(
µ′

x, µ
′
y, µ

′
z

)
= (µx, µy,−µz) (4.24)

The photon is then moved the remainder of the original step in the new direction. For

refracted photons, the direction of refraction is given by Snell’s law as:

ni sin (θi) = nt sin (θt) (4.25)

where the ni and nt are the refractive indexes in the original and new regions, respectively,

and θi and θt are the incident and refracted angles, respectively. The directional vectors for

refracted photons are then adjusted as:

µ′
x = µx

ni

nt

(4.26)

µ′
y = µy

ni

nt

(4.27)

µ′
z = µz

ni

nt

(4.28)
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During simulation of a medium containing discrete blood vessels, the photon path is

analyzed at each step to determine if the path intersects a vessel. When this occurs, the

photon is propagated to the site where the photon contacts the vessel, and the step is adjusted

as:

∆l′i =
µa,i

µa,j

∆li (4.29)

Here, ∆li is the remaining original step length, ∆l′i is the adjusted step length, and µa,i and

µa,j are the absorption coefficients at the original and new locations, respectively. The photon

is then propagated to a new location and the absorption coefficient of the new location is

checked and updated.

Photon absorption is modeled by simulating photon ‘packet’ propagation. This is a

technique that allows absorption to be described by depositing portions of the photon packet

at the site of each absorption event [107]. The weight for photon packet k is initialized as

Wk = 1, and during an absorption event, the deposited photon weight is calculated as

∆Wk,i =
µa,i

µa,i+µs,i
. Here, ∆Wk,i is the weight of photon packet k deposited into the tissue

at site i. The new weight of the photon after absorption calculated is W ′
k = Wk − ∆Wk,i,

and the remainder of the photon packet is then scattered. This technique is more efficient

than modeling absorption as an ‘all or nothing’ event, by reducing the number of photon

initializations [107].

During simulation, photons that cross the air interface at the location of the detector

at an angle within the fiber’s cone of acceptance are detected. The model computes the

collected light intensity (I) as:

I =

Ncollected∑
m=0

Wm

Ncollected

(4.30)

Here Wm is the weight of detected photon m, and Ncollected is the number of collected photons.

The effective mean photon path length is given as:

〈L〉 =

Ncollected∑
m=0

LmWm

Ncollected∑
m=0

Wm

(4.31)
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The total path length for each collected photon is given as the sum of individual steps, as

Lm =
∑

li. The absorption coefficient is calculated from the modified Beer-Lambert law

as:

µa(t2) =

{
− log

[
I(t2)

I(t1)

]
+ µa(t1) [〈L〉(t1)]

}
[〈L〉(t2)]−1 (4.32)

Analyzing OPS measurements in a medium with discrete vessels requires incorporation of

the vessel correction factor from Equation (4.10). This is used to quantify the absolute value

of the absorption coefficient (measured at t1), as:

µa(t1) = V C(t1)f(t1)µvessel(t1) + (1− f(t1))µa,background(t1) (4.33)

Here, f (t1) the blood volume fraction (as used in Equation (4.11)) and µa,background (t1) is

the background absorption of the tissue.

4.3.2.1 Model Geometry Blood vessels were defined within the model geometry by

analytical expressions using criteria similar to that reported by Verkruysse et al. [112]. The

inset of Figure 4.2 shows the parameters that describe a tissue-capillary ‘block’. Each block

contains two capillaries, with the shortest distance between vessel centers given as β, the

vessel radius given as r, and the block length specified as D. The blocks were repeated over

the entire sample in both x- and z-directions to construct the vessel network cross-section

within the tissue sample. Table 4.1 lists the parameter values for seven vessel configurations

that are representative of vessel networks within skin tissue in vivo. For each simulated

geometry, the fractional area occupied by vessels is calculated by f = vessel area
tissue area.
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Table 4.1: Geometric parameters describing the blood vessel configurations. Fractional vessel

area is given by f , vessel radius by rvessel, and block length by D.

Geometry f(%) rvessel(µm) D(µm)
1 33.0 32 139.6
2 22.0 32 171.0
3 16.5 32 197.5
4 11.0 32 241.9
5 5.50 32 342.0
6 2.250 32 483.7
7 1.125 32 745.2
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4.3.3 Numerical Simulation

Tissue optical properties are similar to values reported by Cheong et al. [24], including:

µs,background = µs,vessel = 50 cm−1, g = 0.95, ntissue = 1.37, nfiber = 1.45, and NAfiber = 0.22.

MC simulations investigated OPS measurement of geometries with: (1) uniformly distributed

chromophores; and (2) non-uniform distributions that contain discrete capillaries. For the

uniform case, µtotal
a is specified at 11 values, as:

µtotal
a ∈ {10−16, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30} cm−1. For the nonuniform case,

there were 7 different model geometries constructed, with details listed in Table 4.1. The

nonuniform cases specify the background (tissue) absorption fixed for all geometries at

µa,background = 0.1 cm−1, and µa,vessel is specified at 7 discrete values:

µa,vessel ∈ {10−16, 0.1, 0.3, 1, 3, 10, 30, 100} cm−1. The extinction coefficients for Hb and HbO2

were measured in water by Zijlstra et al. [2]. The concentration of total hemoglobin in whole

blood was approximated by assuming 45 % hematocrit (5400 µM) [142].

MATLAB (V.70.0.19901 R.14 r© 2008, The MathWorks, Natick, MA) code was scripted

to execute the MC simulations, with 106 photon ‘packets’ simulated per case. Standard

deviations were calculated from the results of 3 independent simulations. The MC model

was validated for the homogeneous case by comparing results with data reported by Wang

et al. [107].

A model performance metric was utilized to determine if the extensions to the previous

algorithm improved the description of the OPS data. Because the different algorithms have

a different number of fitted parameters, a fair comparison of the differing models requires

a metric that considers both the reduction in residual error and accounts for the additional

fitted parameters. Model-estimates were evaluated using the Akaike’s information criterion

(AIC) as described in Equation (3.9). The model resulting in the lowest AIC value is the

superior model.
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4.4 RESULTS

4.4.1 MC Analysis: Photon Path Length

Figure 4.3 shows the mean photon path length calculated from simulated OPS measurement

of mediums containing uniformly distributed chromophores. The data points represent the

average of mean path length values from three independent simulations, and the error-bars

indicate one standard deviation about the mean. Also shown on the plots are estimates

of 〈L〉
(
µtotal

a (λ, t)
)

from both the Mourant et al. study, 〈Lo〉
(
µtotal

a (λ, t)
)
, and the present

study, 〈Ln〉
(
µtotal

a (λ, t)
)
. The data are shown on a linear scale on Figure 4.3 (Top) and on

a ln− ln scale on Figure 4.3 (Bottom). Note that in the range 10−16 < µtotal
a (λ, t) < 0.001

cm−1, changes in µtotal
a (λ, t) are too small to have an observable effect on path length; this

phenomenon is described by both 〈Lo〉
(
µtotal

a (λ, t)
)

and 〈Ln〉
(
µtotal

a (λ, t)
)
. For µtotal

a (λ, t) <

1.0 cm−1, Figure 4.3 (Bottom) shows that 〈Ln〉
(
µtotal

a (λ, t)
)

accurately represents the data,

while 〈Lo〉
(
µtotal

a (λ, t)
)

overpredicts the path length. However, for µtotal
a (λ, t) > 1 cm−1,

〈Ln〉
(
µtotal

a (λ, t)
)

captures the relationship (and is sensitive to changes in µtotal
a (λ, t)) while

〈Lo〉
(
µtotal

a (λ, t)
)

does not (by not being sensitive to any changes in µtotal
a (λ, t) ).

4.4.2 MC Analysis: Vessel Correction Factor

MC simulations investigated OPS measurement of a medium containing discrete vessels.

Here, various vascular fractions are considered (range: 1.12−33%) each with the same vessel

radius (rvessel = 32 µm). Figure 4.4 (Top) shows the calculated vs. the specified intra-vessel

∆µa. Here, the relationship between ∆µa,calculated and ∆µa,vessel is different for each vascular

fraction, with smaller vascular fractions associated with a smaller effect on the calculated

absorption coefficient. Figure 4.4 (Bottom) shows the calculated ∆µa data from Figure 4.4

(Top) plotted vs. the vessel corrected ∆µa (calculated from Equation (4.12)). Here, the

data are shown in a ln− ln scale in order to visualize the range of simulated absorption

coefficients. This plot also contains the line of unity to show the expected relationship

between the calculated and vessel corrected absorption coefficient. Here, the calculated ∆µa

is well-correlated with the vessel corrected ∆µa (r2 = 0.994) for all geometries. These data
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Figure 4.3: Mean photon path length calculated from MC simulation of OPS measurement

of mediums containing uniformly distributed absorption coefficient. Photon path length

functions presented by Mourant et al. [3], 〈Lo〉, and Equation (4.9), 〈Ln〉. Data shown on

both linear scale (Top) and ln− ln scale (Bottom). The inset of the Top figure expands the

absorption coefficient scale over 0− 3 cm−1.
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suggest that the incorporation of a vessel correction factor into the data analysis algorithm

could account for the effect of discrete vessels on the absorption coefficient estimated from

OPS measurements.

4.4.3 Estimation of Pc4 Concentration in Intralipid r© in vitro

Figure 4.5 (Top) shows Pc4 concentration estimates from in vitro OPS measurement of an

Intralipid r© solution containing Pc4 concentrations of 0.1, 0.3, 1, 3, 10, and 30 µM. Data

points indicate Pc4 concentrations calculated from Equation (4.1), with the path length

function defined as either 〈Lo〉 or 〈Ln〉. These model estimates are termed Model-o and

Model-n, respectively. The line of unity (slope = 1) is included to show the relation between

concentrations estimated by Model-o and Model-n to the expected linear relationship. The

data show that for a Pc4 concentration range of 0.1− 10 µM, estimates from both Model-o

and Model-n are near the line of unity. However, for a Pc4 concentration of 30 µM, Model-

n is able to accurately predict the concentration, while the Model-o estimate contains a

negative bias, with significant underprediction of the actual Pc4 concentration. The error in

the Model-o estimate is due to an inability of 〈Lo〉
(
µtotal

a (λ, t)
)

to describe changes to path

length in response to changes in µtotal
a (λ, t) caused by increases in Pc4 concentration. For the

Pc4 concentration of 30 µM, the average maximum µtotal
a (λ, t) within the fitted wavelength

range was 7.5 cm−1. This causes the 〈Lo〉
(
µtotal

a (λ, t)
)

function to ‘saturate’ to a constant

value, as shown in Figure 4.5 (Bottom), which contains the photon path length estimates

vs. wavelength for one OPS measurement of Intralipid r© containing 30 µM Pc4. Here, the

model utilizing 〈Lo〉
(
µtotal

a (λ, t)
)

is unable to resolve the Pc4 absorption peak. Over the

same wavelength range, 〈Ln〉
(
µtotal

a (λ, t)
)

is able to accurately resolve the Pc4 absorption

peak. These results indicate the need to incorporate 〈Ln〉
(
µtotal

a (λ, t)
)

for estimation of

chromophore concentrations when µtotal
a (λ, t) > 1 cm−1.

4.4.4 Quantitation of Pc4 and Hb Concentration and Hb Saturation in vivo

Figure 4.6 shows an OPS measurement of a murine xenograft in vivo and the correspond-

ing model-estimated parameters. The absorbance shown in Figure 4.6(A) is calculated by
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Figure 4.4: Results from MC simulation of OPS measurement of medium containing discrete

vessels for various vascular fractions. Top: Change in calculated vs. specified absorption

coefficient within vessels. Geometries 1-7 are included (see Table 4.1), and appear in vertical

order from top (blue ‘×’, geometry 1), to bottom (black ‘◦’, geometry 7). Bottom: Change

in calculated vs. vessel corrected absorption coefficient within medium on a ln− ln scale.
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Figure 4.5: Measurement of Pc4 in Intralipid r© in vitro by OPS. Photon path length is

estimated using 〈Lo〉
(
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)
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for Model-n. Top: es-

timated vs. known Pc4 concentration. Bottom: estimated mean photon path length vs.

wavelength for both fitted models for measurement of Intralipid r© containing 30 µM Pc4.
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ratioing collected light intensities measured prior to Pc4 administration, and 5 min after com-

pletion of laser administration. This plot shows the model estimated absorbance from the

original Mourant algorithm (termed Model-o), the algorithm with 〈Ln〉
(
µtotal

a (λ, t)
)

incor-

porated (Model-n), and the algorithm with both 〈Ln〉
(
µtotal

a (λ, t)
)

and the vessel correction

factor incorporated (Model-nvc). The spectra shown in Figure 4.6(A) shows classic signs of

‘pigment packaging’. Here, the absorption band that is clearly visible in the 740 − 760 nm

range is attributable to Hb. This should correspond with a dominant peak in the 500− 600

nm range; however, the absorption bands in that range are broad and flat. This effect is

attributable to the shielding effect of discrete vessels on the elastically scattered light, which

causes light in the 500 − 600 nm wavelength range to only sample a subset of the blood

present within the tissue. The incorporation of the vessel correction factor in Model-nvc

allows the model to capture the effect of pigment packaging on µtotal
a (λ, t). Figure 4.6(B)

shows the estimate of V C (λ, t) over the fitted wavelength range, which represents the frac-

tion of blood that is sampled by the optical measurement. Here, it is evident that light in

the 500 − 600 nm wavelength range only sampled a subset of the blood present within the

tissue. Note that the absorbance spectra measured on this mouse subject at all sampling

times are included in Appendix C.

As shown in Figure 4.6A, Model-nvc clearly captures all features in the empirical data.

However, Model-o and Model-n are unable to describe the key absorption bands that are

associated with Hb, HbO2, and Pc4. The improvement in the quality of fit is displayed by

Figure 4.6(C), which shows the residual error for each model estimate. The sum squared

error (SSE) quantified over 520 − 800 nm showed that Model-nvc reduced error by 96%

compared with Model-o, and by 94% compared with Model-n. Moreover, the calculated

AIC for Model-o, Model-n, and Model-nvc are −4473, −4882, and −7187, respectively,

which indicates that Model-nvc is the superior model of the data.

Figures 4.6(D) and (E) show the estimates of µtotal
a (λ, t) and 〈L〉

(
µtotal

a (λ, t)
)

vs. wave-

length for each fitted model. The strong absorption bands of Hb and HbO2 result in estimates

of µtotal
a (λ, t) > 1 cm−1 in the 500 − 600 nm wavelength range for all models. This causes

‘saturation’ of 〈Lo〉
(
µtotal

a (λ, t)
)

in Model-o, as shown in Figure 4.6(D), and is expected to

contribute to error in predictions made using Model-o.
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Figure 4.6: Absorbance calculated from the ratio of collected light intensities prior to Pc4

administration and 5 min after laser administration. A: empirical and model-estimated
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Model-nvc; C: residual error over fitted wavelength range; D: total absorption coefficient;

and E: mean photon path length.
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Figure 4.7 shows total Hb concentration (A), Hb saturation (B), and Pc4 concentration

(C) calculated from OPS measurements of the mouse subject at time points between 1 and

1440 min following PDT. Data points represent mean values from three OPS measurements

at each time point, while error-bars indicate one standard deviation about the mean. The

model estimates of total Hb concentration shown in Figure 4.7(A) are dramatically different

for Model-nvc, due to the inclusion of the vessel correction factor. Here, Model-nvc estimates

a 235% increase in total Hb concentration in tissue between pre-laser administration and after

5 min of laser exposure. This finding is consistent with previous studies that have reported

increases in blood flow in response to PDT treatment [81]. Comparatively, over this same

time interval, Model-o estimates no change in total Hb concentration, and Model-n estimates

only a 20% increase.

Figure 4.7 (B) shows the estimated Hb saturation in the tumor xenograft, with no sig-

nificant difference between estimates from the three models. Figure 4.7 (C) shows model

estimates of Pc4 concentrations for the sampled times. After laser administration, all models

estimate a reduction in Pc4 concentration, which is possibly attributable to photobleaching

of the Pc4 compound. However, at 5 min after laser, Model-nvc estimates a Pc4 concentra-

tion of 0.27 µM , while Model-n estimates 0.08 µM, and the Model-o estimate is ∼ 0 µM.

These differences are attributed to an increased sensitivity of Model-n and Model-nvc to the

presence of the Pc4 absorption bands, compared with Model-o. This is evidenced by Figure

4.6 (A), which shows that Model-nvc is able to characterize the absorbance attributable to

the Pc4 absorption peak between 650− 700 nm, while neither Model-o nor Model-n capture

these bands. These results suggest that the inclusion of the V C term allows for improved

quantification of non-hemoglobin absorbers.

Figure 4.7 (D) shows the estimates of the effective mean vessel radius over the sampled

time points. These values range between near zero (10−12) and 0.15 mm. Estimates of vessel

radius show the same temporal dynamics as the total Hb concentration shown in 4.7A, and

there exists a strong correlation between the parameters (r = 0.854). Here, near-zero values

of rvessel (t) represent the situation where there is no change in pigment packaging between

the ratioed intensity measurements.
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The data presented thus far suggest that the incorporation of the vessel correction factor

reduces the error within the model estimates of absorbance. The reduction in error is related

to the magnitude of the estimated rvessel (t) parameter. This is shown in Figure 4.8, which

plots the percentage reduction in the residual SSE vs. the corresponding estimate of rvessel (t)

for each fitted spectra. The direct comparison of the SSE reduction between Model-o and

Model-nvc is shown in Figure 4.8(Top). Here, the mean SSE is reduced by 52.2 ± 35.0%

(range: −63.4 to 94.4). These reductions in error are attributable to the inclusion of 〈Ln〉

and the incorporation of V C. A direct comparison of the SSE resulting from Model-n and

Model-nvc is shown in Figure 4.8 (Bottom). In this case, the mean SSE is reduced by

38.7± 35.2% (range: −0.2 to 91.2). These reductions in error are attributable solely to the

effect of V C (λ, t) on fit quality. It should be noted that negative % decreases in error shown

on Figure 4.8(Top) have a negligable effect on the model estimate, and are the result of a ratio

of small numbers. Negative % changes had an absolute error difference of < 0.066, a value

an order of magnitude smaller than the mean error reduction in either plot (1.1, Top; 0.52,

Bottom). Moreover, all fits that resulted in negative % on Figure 4.8(Top) had r2 values

> 0.98. These results indicate that incorporation of 〈Ln〉
(
µtotal

a (λ, t)
)

and V C (λ, t) into

Model-nvc does not introduce error into the analysis of spectra that do not contain pigment

packaging. Moreover, these plots show that rvessel (t) estimates are associated with reductions

in SSE percentage, with larger values of rvessel (t) associated with increased reduction in error.

4.5 DISCUSSION

The OPS has been suggested as a tool to monitor photosensitizer concentration, total Hb

concentration, and Hb saturation in tissue in vivo during photodynamic therapy. This

work is an extension to a previously published algorithm [3] that improves the quality of

model-estimated chromophore concentrations from OPS measurements of tissue in vivo. An

analytical relationship between effecitve photon path length and total absorption coefficient

was established for µtotal
a ≤ 30 cm−1. This novel functionality improved the estimates of

Pc4 concentrations in Intralipid r© solutions in vitro. The results show the need to incorpo-
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Figure 4.7: Model-estimated system parameters from measurements of murine xenograft by

the OPS at sampling time prior to- and following laser administration. Estimates are given

for all three fitted models. A: total Hb concentration; B: Hb saturation; C: Pc4 concentration;

and D: effective vessel radius.
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rate a novel functional relationship between mean photon path length and total absorption

coefficient that captures the relationship for µtotal
a > 1 cm−1.

The results also motivate the incorporation of a vessel correction factor for analysis of

OPS measurements of tissue in vivo. The vessel correction factor accounts for the pigment

packaging effect of discrete blood vessels on the absorption coefficient estimated from OPS

measurements. The pigment packaging effect has been described thoroughly [29], and is

related to the mean vessel size and absorption coefficient of the blood [112]. The factor was

incorporated into analysis of measurements of tissue during PDT, resulting in large reduc-

tions in the SSE residual and significant changes to model estimates of total Hb concentration

and Pc4 concentration. Incorporation of the V C (λ, t) term allows accurate estimation of

changes to the total blood content sampled within tissue, the importance of which is shown

by the marked reduction in SSE attributable to the V C (λ, t) term. Total blood content is

an important factor for analysis of tissue after PDT treatment. PDT damage to the tissue

can cause increased blood flow via either vessel dilation or vascular spasm [81]. Moreover,

damage to the vasculature may cause blood to enter the tissue interstitial space [81]. The

results in Figure 4.7A show a 2.5-fold increase in the total Hb concentration after the ad-

ministration of laser. In order for the OPS to accurately estimate these changes following

PDT treatment, incorporation of the vessel correction factor is required.

The rvessel (t) parameter incorporated into the V C (λ, t) term in this study is an ‘effective’

value, and is not representative of actual vessel size. This is because instead of applying the

vessel correction factor to absolute values of measured spectra (as done previously [113]),

this study uses the vessel correction factor to correct for differences in ‘pigment packaging’

between two intensity measurements. The maximum estimated values of rvessel (t) in this

study were below 200 µm, which is a physiologically realistic value for tissue [113]. However,

the algorithm allows the the rvessel (t) term to approach zero, which occurred for spectra that

did not show ‘pigment packaging’ features. In situations where rvessel (t) is near zero, the

V C (λ, t) term will be equal to unity over the entire wavelength range, and the absorbance

estimate of algorithm Model-nvc collapses to Model-n.
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4.5.1 Summary

This study presented OPS measurement data from in vivo measurement of one mouse sub-

ject bearing a xenograft undergoing PDT. This was included to express the utility of the

extended algorithm. The results show that incorporation of 〈Ln〉 and V C reduced the SSE

and resulted in different model estimates for total Hb concentration and Pc4 concentration.

Moreover, algorithms without the V C factor were unable to capture key features that were

representative of pigment packaging. However, the current study does not include an inde-

pendent measurement of total Hb concentration, Hb saturation, or Pc4 concentration within

the tissue in vivo. So, while the results of the current study describe the theoretical justi-

fication for the extensions and application of the extended algorithm to in vivo data, and

suggest the utility of such extensions, there still exists the need for future work to validate

these claims in vivo. Moreover, while the current study presents in vivo data exclusively

from one murine subject, ongoing work will present analysis of multiple subjects, including

an analysis of intra- vs. inter-subject variability.
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5.0 IN SILICO DETECTION OF TUMOR HYPOXIA BY OPS

5.1 BACKGROUND

Optical spectroscopy is a technique capable of measuring noninvasively the absorption caused

by changes in chromophore concentrations in tissue in vivo [15]. Hemoglobin is an endogenous

absorber that has an oxygenation-state dependent absorption coefficient. This makes it

possible to optically quantitate changes in hemoglobin saturation (HbSat) noninvasively in

tissue. This measurement is important to the field of PDT because it may be possible to use

knowledge of tissue oxygen concentrations to ‘potentiate’ treatment effect [45]. However, the

clinical relevance of HbSat measured by the OPS is not well-understood. The OPS measures

a ‘bulk’ signal that is representative of the tissue volume sampled optically. The volume

interrogated by the OPS is approximately 1 mm3 [3], a volume that can be much larger

than hypoxic regions existing in the tissue microenvironment [103, 105, 143]. The optical

signal lacks information about the spatial distribution of chromophores, and therefore, may

lack sensitivity to the existence of small hypoxic regions. A previous study by Conover et

al. [1] investigated the sensitivity of a near-infrared reflectance spectroscopy (NIRS) device

to subpopulations of hypoxic vessels that were present in a murine tumor model. That study

compared HbSat measured in vivo by NIRS with a spatially-resolved measurement made by

cryospectrophotometry (Cryo). The results showed that a NIRS measurement of ≥ 70%

hemoglobin saturation was a statistical indicator that < 6% of vessels were hypoxic (with

hypoxia defined as < 10% HbSat). These findings suggest that an optical device with limited

spatial resolution may still provide clinically relevant information.

Measurement of hemoglobin saturation during PDT treatment presents further compli-

cations. During PDT treatment, rapid consumption of oxygen, damage to local vasculature,
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and variation in blood supply may place the tissue microenvironment into a state of acute

hypoxia [76, 81, 143]. It is not known if the ‘bulk’ optical measurement of a device such

as the OPS is sensitive to areas of severe hypoxia at a time when the tissue may contain

significant heterogeneity in oxygen concentration and hemoglobin saturation. Moreover, it

is not known if such a measurement would provide any information of the potential ROS

yield during PDT treatment.

This Chapter describes the development of mathematical models used to investigate

the sensitivity of the OPS to physiologically realistic levels of hypoxia within tumor tissue.

Simulations test the ability of the OPS to detect both chronic hypoxia, which is persistently

present in tumor tissue, and acute hypoxia, which is induced during the photochemical

reaction of PDT. The underlying goal of this study is to evaluate the clinical relevance of an

OPS measurement of HbSat in tumor tissue in vivo.

5.2 NUMERICAL METHODS

This section outlines the set of mathematical models utilized in this study. First, microvas-

cular maps are constructed that mimic the vessel arrangement within the tumor microen-

vironment. Second, a finite-element reaction/diffusion model is presented that describes

spatial and temporal changes in oxygen, ROS, and hemoglobin saturation within the model

geometry. Third, a Monte Carlo model of light propagation in tissue is applied to the model

geometry to simulate measurement by the OPS.

5.2.1 Tumor Vascular Map

This model treats the tumor tissue environment as a two-dimensional space that contains

discrete vessels interspersed throughout. It is well known that blood vessels within tumor

tissue are not arranged in the repeating grid-like patterns that are observed in normal tissue

[104]. Instead, tumor vessels may occur at irregular intervals, and this may contribute

to the existence of chronic hypoxic regions within the tissue [104, 143]. Kelly et al. [105]
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reported a mathematical technique that reproduced the irregular arrangement of vessels in

two-dimensional cross-sections. In this method, the percentage of the tissue space that is

occupied by vasculature is calculated as follows:

pvoxel =
MVD× πr2

vessel

TA
(5.1)

Here, rvessel is the vessel radius, and TA is the area of the tissue cross-section. MVD is

a clinical measurement of vessel density, given as the average number of vessels observed

in 1 mm2 tissue. The tissue space is discretized into a grid (grid size: 50 × 50 µm), and

each grid was assigned a vessel from a binomial distribution using the binornd function in the

MATLAB r© statistics toolbox [137]. This function was assigned values of either 0 or 1 in each

grid element based on the number of grid elements and the percentage of the grid elements

that are expected to contain vessels (given as pvoxel). Grid elements assigned a 1 were

populated with vessels. The resultant map represents vessels that are assumed to be normal

to the plane of the tissue cross-section. To estimate the presence of non-normal vessels, the

map is convoluted using a 3× 3 convolution kernel that approximates the portion of the cos

function between −π
2

and π
2
, as done previously by Kelly et al. [105]. The resultant map

was validated by comparing the sizes and distributions of the hypoxic areas within tumor

cross-sections between experimental observations and model predictions [105].

5.2.2 Reaction/Diffusion Model

To describe the relationship among ground state oxygen (O2) concentration, ROS concentra-

tion, and HbSat in the tumor tissue, a finite element reaction/diffusion model was applied

to the model geometry. The geometry is a two-dimensional representation of a tissue cross-

section, with discrete capillaries interspersed throughout. Oxygen supply to the tissue is

modeled by diffusion from the capillaries. The intra-vascular area is assumed to be a homo-

geneous hemoglobin solution, with blood flow normal to the tissue cross-section with velocity,

Vblood. A balance on dissolved oxygen within a vessel is given as follows:

∂Cv
O2

∂t
= DO2∇2Cv

O2 + Vblood

(
Cv

O2supply − Cv
O2

)
− κtiss (5.2)
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Here, Cv
O2 represents the intra-vascular concentration of ground state oxygen (with units

mol/cm3), and DO2 is the diffusivity of oxygen in blood. The ground state oxygen carried by

blood flowing into the vessel is given by Cv
O2supply, and oxygen exchanged with the surrounding

tissue is given by κtiss. HbSat within each vessel is calculated from the oxygen partial pressure

(given by Henry’s law: P v
O2 = HO2C

v
O2, with HO2 representing Henry’s constant) within the

vessel as follows:

HbSat =

(
P v

O2

P50

)nHill

1 +
(

P v
O2

P50

)nHill
(5.3)

Here nHill is the Hill constant, and P50 is the partial pressure of oxygen at which hemoglobin

is 50% of its saturated value.

Oxygen transport and reaction within the tissue is governed by:

∂CO2

∂t
= DO2∇2CO2 + κvessels − κmet − κPDT (5.4)

Here, CO2 represents the tissue concentration of ground state oxygen (with units mol/cm3).

The diffusivity of oxygen in tissue, DO2, is assumed to be the same as in intra-vascular

space [142]. Oxygen transport between tissue and intra-vascular space is continuous across

the vessel wall, making the common assumption that the capillary wall offers negligible mass

transfer resistance [142]. The rate of oxygen transport across the vessel wall is given as:

κvessels = κtiss (5.5)

The depletion rate of oxygen in the tissue space due to normal metabolic activity is repre-

sented by κmet, and is assumed to follow Michaelis-Menten kinetics, as follows:

κmet = κ̄met
CO2

k50 + CO2

(5.6)

Here, κ̄met is the maximum metabolic rate and k50 is the oxygen concentration at which

κmet = κ̂met

2
.

The photodynamic reaction is modeled using an expression published by Nichols and

Foster [99], where the ground state oxygen consumption term is given as follows:

κPDT = φβPDT

(
CO2

kp

kot
+ CO2

)
(5.7)
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Here, φ is the delivered fluence rate, βPDT is the proportionality constant between fluence

and photochemical reaction rate (κPDT ), kp is the rate of monomolecular decay of the excited

photosensitizer, and kot is the biomolecular rate of quenching for the excited photosensitizer.

The values for βPDT used in this study correspond to Foscan, a commonly used PS compound

[74], a uniform concentration in the tissue of 0.6 µg/ml, which is similar to concentrations

in murine tumors 3 hr after i.v. administration of 0.3 mg/kg [74]. The rate of production of

ROS is assumed to be equal and opposite to the PDT oxygen consumption rate.

dCROS

dt
= κPDT (5.8)

This model does not account for ROS diffusion after generation, which is consistent with

previous reports that singlet oxygen diffuses very short distances in vivo. On average, singlet

oxygen only diffuses 0.1 µm and generally reacts with components within the immediate

cellular environment [144].

The values of photosensitizer concentration and delivered fluence rate are assumed to be

uniform throughout the tissue geometry; in this way photobleaching of the photosensitizer

is neglected. In examination of macroscopic tissue over the course of treatment, φ and PS

concentration variations are known to have significant effect on the photochemical reaction

[74]. However, this investigation focuses on the dynamics associated with one short laser

illumination period. For the simulated reaction, the oxygen consumption rate is assumed to

be faster than the photobleaching rate [145], making it reasonable to neglect the effect of

photobleaching as a first approximation.

5.2.3 MC Model

The Monte Carlo (MC) model developed in Chapter 4 is utilized to simulate OPS mea-

surement of the tissue undergoing the photochemical reaction. All equations governing the

propagation of photons through the heterogeneous medium are unchanged. The unique ex-

tension to the MC model in this Chapter is that µa,vessel is calculated from the outputs of

the reaction/diffusion model described in Section 5.2.2. Here, the absorption coefficient for

each vessel is calculated from the mean HbSat within the intravascular space. The tissue
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geometry utilized in the reaction/diffusion simulation has dimensions of 1 mm × 1 mm. This

cross-sectional area may be smaller than the cross section of the tissue volume sampled by

the OPS during measurement. This was addressed by simply repeating the 1 mm × 1 mm

cross section, in a ‘tiling’ manner, 16 times into a 4 × 4 grid, resulting in a 4 mm × 4 mm

geometry, which was adequate to simulate the OPS measurement of tissue.

5.2.4 Numerical Simulation

MATLAB r© code was scripted to execute all simulations. For simulations evaluating the

detection of chronic hypoxia by the OPS, individual vessel hemoglobin saturations were

selected from frequency distributions as reported by Conover et al. [1]. The present study

evaluates all nine of the frequency distributions reported by Conover et al. (Figure 2(a− i),

page 2692 [1]). These distributions are reprinted in this dissertation in Appendix D. After

vessel arrangement within the vascular map, the vessels were populated with HbSat values

from each distribution 10 independent times. The MC model was used to simulate OPS

measurement of each of these 10 maps 3 times in silico. This results in 30 simulated OPS

measurements (10 randomizations, 3 measurements of each) of each map.

A finite element method (FEM) analysis was used to numerically solve the reac-

tion/diffusion model. MATLAB r© code utilized the partial differential equation toolbox [146]

to sequentially import the vascular map geometry, generate and refine the mesh surface, spec-

ify boundary and initial conditions, and iteratively solve the set of equations. The oxygen

supply term (Cv
O2supply) for each individual vessel is selected from a range of values that

represent the mean oxygen content in a vascular bed. Note that this supply term does not

refer to the arterial influx of blood into a vessel (which would be appropriate in a model that

considers axial length of vessels). Instead, the Cv
O2supply term represents the oxygen content

within a vessel at a section between the arteriolar and venular ends. This study investigates

two cases of this oxygen supply term: Case 1 — ‘venous’ supply, Cv
O2supply is selected from

a uniform distribution over the range 40 − 70 µM, values that are similar to the volume

averaged standard oxygen concentrations in normally functioning tissue [142]; and Case 2 —

‘hypoxic’ supply, Cv
O2supply is selected from a uniform distribution over the range 10−40 µM,
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values that represent a diminished, or hypoxic, oxygen supply compared with the standard

conditions.

MC simulations initialized 106 photon packets per measurement, with standard devi-

ations calculated from the results of 3 independent simulations. Values for tissue optical

properties were the same as those reported in Chapter 4. The scattering coefficient was

assumed to be constant throughout the tissue, with µs = 100 cm−1, and an anisotropic scat-

tering condition of g = 0.9 was used. The refractive indices of the tissue and fibers were given

as ntissue = 1.37 (equal to that of water) and nfiber = 1.46, and the fiber numerical aperture

was given as 0.22 [3]. The MC model simulates OPS measurement at a single wavelength of

620 nm. Assuming total hemoglobin concentration in the blood as 2.5 mM, the absorption

coefficients of oxygenated and deoxygenated hemoglobin within vessels are µa,HbO2 = 8.096

cm−1, and µa,Hb = 82.502 cm−1, respectively, at 620 nm. Background tissue absorption is

given as µa,background = 0.1 cm−1.

5.3 RESULTS

Figure 5.1 (Top) shows the spatial probability map for vessel locations within the model

tissue geometry with a cross-sectional area of 16 mm2. Figure 5.1 (Bottom) shows the

arrangement of vessels after stochastic assignment using the probabilities in 5.1 (Top). This

probability map is generated using methods in Section 5.2.1

5.3.1 OPS Detection of Chronic Hypoxia

Prior to OPS measurement of the vascular map in Figure 5.1 (Bottom), the intravascular Hb-

Sat values were specified by either (1) populating vessels uniformly throughout the map with

known HbSat values of 0, 25, 50, 75, or 100%; or (2) populating vessels stochastically using

tumor HbSat frequency distributions reported by Conover et al. [1]. The OPS-estimated

µa (t2) vs. the known HbSat values for the uniform distribution case is shown in the top plot

of Figure 5.2. Here, each data point represents the mean of three independent MC simula-
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Table 5.1: Parameter values used in simulations.

Model Parameter Value Units Reference
Vascular rvessel 20 µ m [113]

Map MV D 85 vessels/mm2 [105]
DO2 2000 µM2/sec [142]
HO2 0.74 mmHG/µM [142]
κ̄met 5.77 µM/sec [74]
k50 0.5 µM [74]

Reaction / nHill 2.46 [142,74]
Diffusion P50 26 mmHG [142,74]

Vblood 100 µm/sec [74]
φ 250 mW/(cm2 sec)

βPDT 0.1415 (µM cm2 sec)/mW [74]
kp

kot
8.7 µM [74]
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Figure 5.1: (Top) Probability map for vessel area location after sequential vessel placement

and convolution, and (Bottom) vessel locations after assignment.
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tions and error-bars indicate one standard deviation about the mean. A linear relationship

exists between µa (t2) and HbSat (r = 0.995). This function is used to relate HbSat with

the µa (t2) measured from the stochastically populated vascular maps. The bottom plot in

Figure 5.2 shows the mean µa (t2) calculated from simulated measurement of vascular maps

populated with each of the 9 frequency distributions from Conover et al. [1] and the corre-

sponding HbSat. Here, each data point represents the mean of 30 MC simulations (10 HbSat

randomizations from a given distribution, 3 measurements of each), and error-bars indicate

one standard deviation about the mean. The mean HbSat data are included in Table 5.2 for

comparison with measurements made by Cryo and NIRS for each distribution reported by

Conover et al. [1]. HbSat measured by OPS and Cryo were well-correlated (r = 0.986); the

discrepency between Cryo and OPS for case i is discussed in Seection 5.4. The Cryo and

OPS measurements agree with the NIRS values for distributions a−d, but not for e− i; this

is discussed further in Section 5.4.

Figure 5.3 shows the relationship between the percentage of hypoxic vessels (HbSat

< 10%) and the OPS-measured HbSat. Here symbols indicate measurement of different

distributions (convention is listed in Table 5.2), with points representing the mean OPS

measurement for each of the 10 assignments of each distribution (resulting in 10 points per

distribution). Plotting the data in this configuration shows the relationship between the

‘bulk’ HbSat detected optically and subpopulations of hypoxic vessels present within each

map. The OPS-estimated HbSat values are consistent the threshold suggested for NIRS [1],

with an HbSat of ≥ 70% indicating < 6% of vessels in a hypoxic state. Inspection of the

data presented in Figure 5.3 shows that no distributions that contained ≥ 6% hypoxic vessels

resulted in an OPS-detected HbSat ≥ 57%. Therefore, for the distributions investigated in

this series of simulations, the threshold may be lower for the OPS than for NIRS; the reasons

for this are discussed in Section 5.4.

5.3.2 Tumor Tissue Before and After PDT Reaction

5.3.2.1 Tumor: Venous O2 Supply A 1 mm2 subset of the vascular map shown in

Figure 5.1 (Bottom) was selected as the geometry for the finite element reaction/diffusion
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Table 5.2: Hemoglobin saturations measured by Cryo and NIRS reported by Conover et

al. [1], and from simulated measurement by the OPS.

Distribution Cryo NIRS OPS Symbol

a 73 73 72± 3 4

b 99 100 92± 2 ©

c 32 32 36± 7 �

d 43 45 46± 6 ×

e 54 62 52± 5 ∗

f 76 100 74± 3 .

g 65 92 64± 5 +

h 44 59 45± 5 /

i 21 48 37± 6 .
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Figure 5.2: ‘Bulk’ µa measured by OPS vs. volume-averaged HbSat. (Top) Uniformly

specified HbSat with values of 0, 25, 50, 75, and 100%, and (Bottom) Stochastically specified

HbSat from 9 frequency distributions reported by Conover et al. [1]
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Figure 5.3: Comparison of OPS-estimated HbSat with the percentage of vessels that contain

an HbSat < 10%. The horizontal black line indicates 6% hypoxic vessels. Vertical lines

indicate ‘threshold’ HbSat values at 70% (suggested for NIRS by Conover [1]) and 57%

(representative of simulated OPS data).
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model. Figure 5.4 (Top) shows the spatial profile of oxygen concentration in tumor tissue at

steady-state with the the oxygen supply similar to normal venous values. Predicted oxygen

concentrations range from approximately zero to ≈ 80 µM. The irregular nature of the

vessel location within the tumor tissue cross-section causes some areas of the tissue to have

a steady state oxygen concentration near zero, a phenomenon which has been reported in

vivo [76]. Figure 5.4 (Bottom) shows the predicted HbSat distribution within vessels for this

simulated geometry, which is comparatively similar to normal venous values (range from 55

to 85%) [142].

The photochemical reaction of PDT is conducted by administration of a short (30 sec),

intense (250 mW/cm2) laser illumination to the tissue. Figure 5.5 (Top) shows the oxygen

concentration throughout the tissue following the reaction. The rapid consumption of oxygen

during the reaction has caused an increase in tissue area exposed to near-zero oxygen con-

centrations. Figure 5.5 (Middle) shows the spatial profile of ROS throughout the tissue, with

high yield associated with tissue in close proximity to vessels. Here, intra-vascular ROS has

been removed from the plot (dark circles) in order to better visualize the gradient throughout

the tissue space. Because oxygen is the limiting factor for this reaction, areas with low (near

zero) oxygen concentrations at steady state are exposed to low (near zero) ROS yield during

treatment. While the photochemical reaction rapidly decreased the amount of oxygen in the

tissue, the HbSat values were relatively unchanged, as shown in Figure 5.5 (Bottom). The

HbSat distribution spans the same range of values as pre-PDT. The possible explanations

for this predicted phenomenon are described in Section 5.4.

5.3.2.2 Tumor: Hypoxic O2 Supply This Section utilizes the same vascular map as in

the previous Section, but the oxygen supply to each vessel is selected from a range of lower

values (10-50 µM) inducing more pronounced hypoxia within the tissue. The steady state

oxygen concentration profile and vessel HbSat distribution are shown in the top and bottom

of Figure 5.6. As expected, the tissue oxygen concentrations are lower than the ‘venous

supply’ case, and the HbSat distribution is shifted toward zero, with a range between ∼ 0

and 55%. This situation represents tumors that contain areas of persistently low oxygen

concentration (< 10 µM) [76,103,143,105].
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Figure 5.4: Model predictions for tumor tissue with venous oxygen supply at steady state.

(Top) Spatial profile of oxygen concentration; and (Bottom) vessel HbSat frequency distri-

bution.
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Figure 5.5: Model predictions for tumor tissue with venous oxygen supply following 30 sec

of laser illumination during PDT treatment. (Top) Spatial profiles of oxygen concentration;

(Middle) tissue ROS yield; and (Bottom) vessel HbSat frequency distribution.

119



Figure 5.7 shows model predicted outputs for the ‘hypoxic supply’ case following the PDT

reaction. Comparison of Figure 5.7 with Figure 5.5 shows decreased oxygen concentrations

(Top), tissue ROS yield (Middle), and vessel HbSat distribution (Bottom) following PDT

for the ‘hypoxic supply’ case. These results are expected to result from diminished oxygen

supply within the vasculature. As observed for the ‘venous supply’, there is little shift in the

vessel HbSat distribution between pre- and post laser; this is evidenced by comparing the

bottom plots of Figures 5.5 and Figure 5.7.

5.3.3 Acutely Damaged Tumor Tissue Before and After PDT Reaction

This model uses total ROS yield as a surrogate marker of tissue damage. Based on this

marker, the 25% of vessels that experienced the highest ROS yield in Sections 5.3.2.1 and

5.3.2.2 were assumed to be damaged, and enter vascular stasis. This was modeled by setting

the blood flow velocity to zero in these vessels.

5.3.3.1 Acutely Damaged Tumor: Venous O2 Supply Figure 5.8 (Top) shows the

spatial profile of oxygen concentration in the acutely damaged tumor tissue at steady state.

A decrease in tissue oxygen concentration is evident between the undamaged (Figure 5.4

(Top)) and acute cases (Figure 5.8 (Top)). The vessel HbSat distribution in Figure 5.8

(Bottom) is shifted toward zero from the undamaged tumor tissue case, which is shown in

Figure 5.4 (Bottom).

Figure 5.9 shows that, following the PDT reaction, tissue oxygen concentrations (Top),

tissue ROS (Middle), and HbSat values (Bottom) are all lower than in the undamaged case

(see Figure 5.7). The ROS yield shown in Figure 5.9 (Middle) shows some mircoregional

decreases in yield around static vessels. In this case, the static vessels are unable to replenish

oxygen lost during the photodynamic reaction. These are distinguishable on Figure 5.9

(Bottom) as the subpopulation located between 0 and 20% HbSat.

5.3.3.2 Acutely Damaged Tumor: Hypoxic O2 Supply Figure 5.10 shows the

steady state oxygen concentration profile (Top) and vessel HbSat distribution (Bottom) for
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Figure 5.6: Model predictions for tumor tissue with hypoxic oxygen supply at steady state.

(Top) Spatial profile of oxygen concentrations and (Bottom) vessel HbSat frequency distri-

bution.
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Figure 5.7: Model predictions for tumor tissue with hypoxic oxygen supply following 30 sec

of laser illumination during PDT treatment. (Top) Oxygen concentration; (Middle) tissue

ROS yield; and (Bottom) frequency distribution of vessel HbSat.
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Figure 5.8: Model predictions for acutely damaged tumor tissue with venous oxygen sup-

ply at steady state. (Top) Oxygen concentrations and (Bottom) vessel HbSat frequency

distribution.
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Figure 5.9: Model predictions for acutely damaged tumor tissue with venous oxygen sup-

ply after 30 sec of laser illumination during PDT treatment. (Top) Oxygen concentration;

(Middle) tissue ROS yield; and (Bottom) vessel HbSat frequency distribution.
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the acutely damaged tumor tissue with hypoxic oxygen supply. As expected, both oxygen

concentrations and HbSat values are lower than in all previous cases both at steady state

(Figure 5.10) and following PDT (Figure 5.11). The volume-averaged ROS yield is 17%

lower for this case than for undamaged tumor tissue with venous oxygen supply.

5.3.4 OPS Detection of PDT-Induced Hypoxia

The MC model simulated in silico OPS measurement of tumor tissue prior to and following

a short PDT reaction. The HbSat data for each case is shown in Table 5.3. Here, the OPS-

estimated HbSat is well-correlated with the volume-average value (r = 0.983). Figure 5.12

shows the percentage of hypoxic vessels within the simulated tumor tissue vs. OPS-estimated

‘bulk’ HbSat for each case. These data suggest that while the ‘bulk’ measurement of HbSat

by the OPS may be able to indicate the development of subpopulations of hypoxic vessels,

this measurement may not indicate the presence or absence of hypoxic regions within the

tissue.

5.4 DISCUSSION

This study investigates the sensitivity of OPS measurement of HbSat measured by OPS to

both chronic and acute hypoxia within tumor tissue. This problem is important because

regions of hypoxia within tumor tissue may be much smaller than the volume of tissue

optically sampled by the OPS during measurement. A previous study by Conover et al.

reported that a ‘bulk’ HbSat measured by a NIRS device could indicate the presence of

a significant population of hypoxic vessels within the tissue [1]. The study identified a

threshold value of ≥ 70% HbSat measured by NIRS that was indicative of a hypoxic vessel

fraction below 6%. The threshold was identified by comparing the NIRS measurement with

a spatially-resolved measurement of vessel HbSat by Cryo. The NIRS measurement was not

always representative of the Cryo value, as evidenced by distributions (e-i) in Table 5.2.

Error between the two measurement techniques could potentially be caused by at least three
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Figure 5.10: Model predictions for acutely damaged tumor tissue with hypoxic oxygen sup-

ply at steady state. (Top) Oxygen concentrations and (Bottom) vessel HbSat frequency

distribution.
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Figure 5.11: Model predictions for acutely damaged tumor tissue with hypoxic oxygen sup-

ply after 30 sec of laser illumination during PDT treatment. (Top) Oxygen concentration;

(Middle) tissue ROS yield; and (Bottom) vessel HbSat frequency distribution.
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Figure 5.12: Percentage of hypoxic vessels vs. OPS-estimated HbSat in simulated tumors.

Symbol convention given in Table 5.3.

Table 5.3: Tumor tissue hemoglobin saturations calculated from the reaction/diffusion

model. Hemoglobin saturations calculated from OPS measurement of tissue in silico and

volume-averaged value. Symbols correspond with data in Figure 5.12

Oxygen Supply Tissue Case OPS-HbSat (%) VolAvg-HbSat (%) Symbol
Venous steady state 75± 2 72 cyan ×

after PDT 71± 4 71 cyan ©
acutely damaged at steady state 62± 5 65 black 4

acutely damaged after PDT 53± 5 56 black +
Hypoxic steady state 24± 8 29 green ×

after PDT 25± 7 29 green ©
acutely damaged at steady state 15± 8 19 red 4

acutely damaged after PDT 11± 8 17 red +
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factors, as identified previously by Conover et al. [1]. First, the NIRS measurement was

made in vivo, while the Cryo measurement was made after the mouse was euthanized, and

the tissue extracted and frozen. Oxygen metabolism in the tumor during the time between

euthanization and freezing could cause HbSat measured by Cryo to be systemically lower.

Because this phenomenon was not observed in all cases, this source of error was not expected

to contribute significantly. Second, some tumor sections contained depth-dependent oxygen

gradients, which can cause the optically detected signal to no longer represent the volume-

averaged value. Third, the NIRS device interrogated a larger section of tissue than the

Cryo method, with the NIRS sampling depths up to 10 mm into the tumor, while the Cryo

measured an extracted tissue section that was 4 mm in depth. The present study simulates

OPS measurement of tissue sections similar to those reported [1]. This was interesting

because the OPS samples a volume of tissue that closely matches the volume sampled by

Cryo. OPS-estimated HbSat values were well-correlated with the Cryo measurements (r =

0.986) for all distributions reported by Conover et al. [1]. Moreover, the OPS-estimated

HbSat values were consistent with the ‘threshold’ HbSat value of ≥ 70% suggested for NIRS.

The data presented in Figure 5.3 show that no distributions that contained ≥ 6% hypoxic

vessels resulted in an OPS-detected HbSat ≥ 57%. These results suggest that the OPS may

have clinical utility in determining the possible presence of chronically hypoxic vessels; the

statistical strength of this threshold is yet to be quantified. It should be noted that the

threshold described here relates to a specific type of tumor line, and variations in both the

size and orientation of hypoxic regions exist among tumor lines [104]. It is possible that such

a threshold established in one tumor line would not be valid in another tumor line, or in the

same tumor line during acute conditions [76].

This study also investigates the sensitivity of OPS measured HbSat to acute PDT-

induced hypoxia within tumor tissue. The data in Figure 5.12 suggest that the OPS mea-

surement of HbSat may follow a threshold value, similar to that defined for detection of a

subpopulation of chronically hypoxic vessels in Figure 5.3. However, the results of this study

question if such a threshold is useful in estimating either tissue oxygen concentrations or

ROS yield in the tissue during PDT. Only 1 of the 4 post-PDT cases results in a percentage

of hypoxic vessels ≥ 10%, however, all 4 spatial oxygen profiles show significant regions of
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hypoxia within the tissue. In order to compare ROS yields for each of the 4 PDT cases, the

volume-averaged ROS concentration was calculated for the entire tissue area and then nor-

malized by the maximum value. The data are shown in Table 5.4. The conclusions drawn

from these data are intuitive, with ROS yield increasing with increasing oxygen available

for reaction. It is worth noting that these values are strongly-correlated with the HbSat

measured by OPS prior to PDT treatment (r = 0.983). This suggests that for a short,

intense PDT reaction, the ‘bulk’ HbSat measured by the OPS prior to treatment may be

an indicator of the amount of ROS generated during laser administration. Conversely, the

mean value of ROS generation in tissue may not be a useful indicator of treatment, because

if the ROS dose is not uniform (which it clearly appears to be from results shown in Figures

5.5, 5.7, 5.9, 5.11), then regions that are exposed to low amounts of ROS are more likely to

survive treatment.

It is worth noting that the model presented here simulated only one wavelength of light to

quantify changes in HbSat. This experimental design allows the estimation of one parameter

(hemoglobin saturation) from changes at the one wavelength, which was selected to provide

distinguishable differences in absorption from oxygenated and deoxygenated hemoglobin. In

practice, the OPS simultaneously measures wavelengths over a range between 450 and 900

nm. This range of values would allow the estimation of multiple parameters that define

the system (initial total hemoglobin concentration, vascular fraction, mean vessel radius,

etc.). Furthermore, the large data set would also reduce the effect of measurement noise

on the estimated parameters. Simulation of multiple wavelengths was not conducted in

this dissertation due to computational intensity, but the models presented here are readily

extendable to such investigations. It is also worth noting that the discrepency in Table

5.2 between OPS and Cryo for case i is attributable to relatively low numbers of collected

photons due to the increased total absorption coefficient for this case. This error could be

avoided by selecting the number of photon packets initialized for each simulation based on

the fraction that are collected.

The mathematical models presented in this Chapter are unique due to the link between

the photochemical reaction of PDT within tissue and the measurement of the tissue by

an optical device. This model structure has the potential to provide information about
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Table 5.4: Normalized ROS yields for each of the post-PDT cases

Oxygen Supply Tissue Case Normalized ROS
Venous undamaged after PDT 1

acutely damaged after PDT 0.91
Hypoxic undamaged after PDT 0.73

acutely damaged after PDT 0.61
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not only what system parameters are important to the optimization of PDT treatment,

but also considers what parameters are observable optically. However, the current model

structure may be limited in its ability to describe realistic temporal changes in HbSat. This

is because the two-dimensional geometry specifies an oxygen supply term that accounts for

flow ‘in’ and ‘out’ of the vessel. This formulation numerically prevents intravascular oxygen

concentrations from approaching values near zero during the simulation because the supply

term is always added during each time step. This calculation also assumes that blood flow

does not change during PDT, an assumption that is known to be false [81]. Moreover, in

real tissue, axial gradients develop along the length of the capillary, and these are known

to affect spatially-resolved values of oxygen and ROS within tissue during PDT [74]. The

outcome of this study suggests that there may be a disconnect between intra-vascular HbSat

and oxygen concentrations throughout the tumor tissue that requires further resolution. A

recent model published by Wang [74] described spatial and temporal changes in HbSat along

the axial length of a blood vessel during PDT. The axial component of vascular transport

could be incorporated into the present model by making the geometry three-dimensional

(which presents obvious computational challenges). Another option to incorporate non-

uniform oxygen supply would be the specification of a time-varying oxygen supply term,

which accounts for oxygen diffusion into tissue ‘upstream’ within the axial length of a vessel.

Incorporation of either extension could overcome the limitations experienced here; these

potential extensions are discussed in Chapter 6.

5.5 SUMMARY

This study utilizes mathematical models to simulate OPS measurement of hemoglobin satu-

ration in tissue in silico. The model geometry mimics the tumor microvascular environment,

with irregular vessel patterns and hemoglobin saturations estimated from empirically re-

ported frequency distributions. The model structure also links the photodynamic reaction of

PDT, which predicts spatial and temporal changes in oxygen, reactive oxygen species, and

hemoglobin saturation, with a Monte Carlo model that emulates the OPS measurement of
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tissue. Moreover, PDT-induced damage is estimated and used to approximate the effect of

vascular stasis on the photodynamic reaction and the optically detected signal. Simulation

results indicate that the OPS is sensitive to the presence of hypoxic vessels, with a threshold

hemoglobin saturation value of ≥ 57% indicating < 6% of vessels are in a hypoxic state.

However, simulated optical measurements also suggest that the hemoglobin saturation mea-

sured by the OPS immediately following a short, intense PDT reaction may not reflect acute

hypoxia within the tissue.

133



6.0 SUMMARY AND FUTURE WORK

6.1 SUMMARY

The work presented in this dissertation focuses on the use of the OPS to measure nonin-

vasively PS concentrations and hemoglobin concentration and saturation in tissues in vivo.

The following sections summarize the findings from each of the investigations outlined in

this document.

6.1.1 Quantitation of MGd Noninvasively by OPS

The OPS was utilized to measure concentrations of the anti-cancer agent MGd in mouse

tissues noninvasively and nondestructively using elastic-scattering spectroscopy. The magni-

tude of MGd absorbance was quantitated by integration of the MGd peak absorbance area,

and MGd concentrations were estimated by comparison with standard curves that were val-

idated by high performance liquid chromatography (HPLC) ex vivo. In tissue-simulating

phantoms in vitro, MGd peak absorbance area correlated with MGd concentration. In a

mouse PK study, OPS measurements of tissues in vivo detected MGd present in both tissue

and blood perfusing the tissue. Both the OPS and the HPLC detected selective localization

of MGd in malignant tissues compared with surrounding non-malignant tissues, and neither

technique detected MGd in brain tissue. Tumor-specific MGd concentrations measured by

HPLC correlated with those measured by OPS in vivo and in situ. Best fit lines to the

concentration estimates (forced through zero) had slopes of 0.900 and 1.185, respectively;

however, the variability was significant (r2 = 0.477 and 0.269). Overall, comparison of MGd

concentrations measured by HPLC and OPS is complicated by mismatch between measured

134



tissue volumes, heterogeneous spatial distribution of MGd in tissues, and blood-localized

MGd at early time points.

The mathematical method developed here is applicable to other optically-active com-

pounds that have detectable absorption in the long visible wavelength spectrum. This

method is advantageous for compounds that experience a matrix-induced wavelength shift

in the extinction coefficient. In such a situation, specification of the extinction coefficient a

priori can be problematic, and may potentially be a source of error when estimating concen-

trations.

It is worth noting that this technique stands to benefit significantly from the development

of in vitro tissue-simulating phantoms having optical properties that closely match tissues.

The availability of such a phantom would remove the need to estimate initial concentrations

of deoxygenated and oxygenated hemoglobin within the tissue at time to. Currently, this is a

source of error in concentration estimates because the relationship between absorbance area

and concentration is nonlinear, and it depends upon the initial value of the total absorption

coefficient. Hypothetically, the standardization of the optical properties in the measurement

of I (λ, to) could improve concentration estimates.

6.1.2 PK Analysis of MGd in vivo

Tissue-localized MGd concentrations measured by OPS and HPLC were utilized to develop

PK models of MGd disposition in plasma, tumor, and skin. The models predicted both the

rapid initial distribution and slow elimination phases of MGd in plasma, the fast transport

of MGd out of the skin (with no MGd detectable after 120 min), and MGd retention at long

times in the tumor (with detectable MGd at 24 hr). The same compartmental structure

was used to model MGd concentrations measured by OPS in situ and HPLC ex vivo. In

vivo tumor MGd concentrations measured using the OPS can be estimated by a linear

combination of the plasma, tumor, and skin PK profiles. These results support the use of

PK models to estimate tumor localized MGd from OPS measurements in vivo. The PK

modeling techniques developed here are extendable to other radiation- and photodynamic-
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sensitizing agents that are optically detectable by the OPS. The potential application of PK

modeling to determine patient specific treatment scheduling is addressed in Section 6.2.1.

6.1.3 OPS Monitoring of PDT

The OPS was utilized to monitor chromophore changes in a mouse xenograft model in vivo

following silicon phthalocyanine (Pc4) mediated PDT. OPS measurements were made on the

xenograft prior to and following laser administration. A previously published algorithm [3]

was utilized to estimate PS and Hb concentration and Hb saturation from the light intensity

measurements collected by the OPS. However, the previous algorithm predicted unrealistic

behavior for the photon path length for absorption coefficients above 1 cm−1. Also, the pre-

vious algorithm was not capable of characterizing key features in the absorbance data that

are normally associated with the ‘pigment packaging’ effect of discrete vessels in tissue. This

study utilizes a MC model to emulate the OPS measurement of tissue containing either homo-

geneously distributed chromophores or heterogeneously distributed chromophores in discrete

vessels. Simulation results were used to motivate: (1) a novel functionality between photon

path length and tissue absorption coefficient; and (2) the incorporation of a vessel correction

factor. Incorporating these extensions into the structure of the previous algorithm resulted

in marked reduction in residual error between measured and model-estimated absorbance,

with mean reduction in sum squared error of 52.2 ± 35.0%. For measurements following

PDT treatment, the extended algorithm was able to capture key features in the data that

were classically associated with pigment packaging. These features were potentially caused

by increased blood volume within the tissue resulting from PDT-induced damage during

treatment. The algorithm that incorporated both the new path length function and vessel

correction factor estimated a 2.4 fold increase in total hemoglobin concentration in the tar-

geted tissue following PDT, while the previous algorithm estimated no change. Moreover,

the extended algorithm showed an increased sensitivity to Pc4 absorption bands following

treatment. These results indicate that the extended algorithm is more sensitive to both

hemoglobin and non-hemoglobin absorbers in tissue in vivo.
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6.1.4 OPS Measurement of HbSat in silico

Mathematical models were utilized to investigate in silico the sensitivity of the OPS mea-

surement of HbSat to chronic and acute hypoxia in tumor tissue. The model geometry was

constructed to mimic the tumor microvascular environment, with irregular vessel patterns

and hemoglobin saturations estimated from empirically reported frequency distributions.

The model structure also linked the photodynamic reaction of PDT, which predicts spatial

and temporal changes in oxygen, reactive oxygen species, and hemoglobin saturation, with

a Monte Carlo model that emulates the OPS measurement of tissue in silico. Moreover,

PDT-induced damage was estimated from ROS yield and used to approximate the effect of

vascular stasis on the photodynamic reaction and the optically detected signal. Simulation

results indicate that the OPS is sensitive to the presence of hypoxic vessels, with a threshold

hemoglobin saturation value of ≥ 57 % indicating < 6 % of vessels are in a hypoxic state.

Simulation results also suggest that OPS measurement of hemoglobin saturation immedi-

ately following a short, intense PDT reaction may not detect the acute changes in tissue

oxygen concentrations. The in silico measurements may be limited due to the model formu-

lation utilized in this investigation; this complication is the basis for future work outlined in

Section 6.2.2.

6.2 FUTURE WORK

The following Sections outline work that would apply the principles presented in this dis-

sertation to further the understanding and application of the OPS as a PDT dosimetric

tool.

6.2.1 in vivo PK Model PDT Dosimetry

Recent studies [93,92] have investigated PS dosing regimens that are designed to target both

the tissue cellular components and the vasculature during PDT. These treatments incorpo-

rate two sequential PS doses, followed by laser administration of the targeted area. This dose
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sequence is illustrated in Figure 6.1. Administration of the first bolus PS dose is followed

by adequate time to allow distribution of the compound into the tumor tissue interstitial

space, usually a time period of hours to days. The second bolus PS dose is then usually

administered a few minutes to a few hours prior to laser administration. Theoretically, this

dose schedule allows the PS that was administered in the initial dose to have localized in

tissue, such that during laser administration, the ROS attacks the cellular components of

the malignant tissue. The PS delivered in the second administration is thought to be in close

proximity to blood vessels when the laser is administered. Therefore, the ROS generated

from the PS provided by the second bolus dose is thought to damage the blood vessels. Tar-

geting the vasculature is effective because by reducing blood supply, the supply of oxygen

and nutrients is also reduced. The drug-light interval between each PS dose and laser ad-

ministration is selected based on studies that have shown that efficacy ‘peaks’ in treatment

are often bi-modal, with the early peak associated with vascular damage, and the later peak

associated with cellular damage [97].

This drug-laser administration schedule may correlate well with mean outcome from

study groups, however, the treatment method does not take into account inter-patient vari-

ability in the distribution rate of the PS following administration. Knowledge of the PS

distribution rates for individual patients could potentially allow clinicians to administer the

second PS dose at a time that would potentate the PDT-induced damage delivered during

laser administration.

Logistically, this drug-laser administration schedule may lend itself to the on-line incor-

poration of a PK model. Hypothetically, after the initial PS dose, it is possible to make OPS

measurements of the PS concentration in the tumor in vivo. These measurements could be

used to inform a patient-specific PK model, which could be used to estimate the drug-light

interval between the second PS dose and the laser administration. This mathematical struc-

ture is shown in block-diagram form in Figure 6.2. This treatment regimen provides adequate

time to make the noninvasive measurements of PS concentration and ample time for the PK

parameters to be identified. Furthermore, dosing recommendations can be made and then

evaluated by clinical experts. This treatment structure could potentially reduce variability
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in treatment response that is attributable to patient-specific variability in PS concentrations

in the target tissue(s) during laser administration.

6.2.2 Extended in silico Model of PDT Monitoring by OPS

Chapter 5 outlines a set of mathematical models that link the photochemical reaction of

PDT with a simulated optical measurement of the tissue by the OPS. This model structure

utilizes a two-dimensional description of the model geometry when solving the photochem-

ical reaction. In this formulation, there is no axial component to intra-capillary transport,

and therefore, the model cannot account for axial concentration gradients that either exist

within tissue at steady state or are induced during PDT. It has been hypothesized that

these gradients may be important to the delivery of PDT dose [74]. During laser illumi-

nation, micro-regional oxygen gradients can develop and may limit the generation of ROS.

The model presented by Wang et al. [74] suggests that volume average measurements of

hemoglobin saturation may not be sensitive to the presence of these gradients, and there-

fore, such measurements may have limited application to on-line treatment design.

The model developed by Wang et al. accounts for both radial and axial species trans-

port within a tissue section during the photochemical reaction [74]. The model utilizes a

Krogh tissue cylinder to define transport between blood vessels and surrounding tissue [147].

Moreover, hemoglobin saturation is linked to intra-capillary oxygen transport using the Hill

equation. The allows reasonable estimation of spatial and temporal changes to species within

the representative capillary-tissue section during the PDT reaction.

It is possible to extend the mathematical formulation developed in Chapter 5 to consider

axial gradients within vessels. A logical extension of the current method would involve the

incorporation of time-varying oxygen supply terms within vessels. Here, the axial oxygen

gradients that occur during PDT could be estimated in the model by Wang, and then used

to approximate temporal changes to the oxygen supply term utilized in the two-dimensional

model formulation. This model implementation would have the advantage of estimating

axial changes in intra-capillary oxygen concentrations while still accounting for irregular

vessel arrangement within the tumor.
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Figure 6.1: Illustration of tumor PS concentration during combined dose regimen.
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PDT treatment.
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Another potential extension of this previous model would involve the incorporation of

three-dimensional distribution of vessels throughout a tissue section. In this case, the vessels

would be arranged stochastically, with variable distances between neighboring vessels. Ad-

ditional complexities that could be incorporated include variable vessel sizes, orientations,

and oxygen supplies. This more complicated model structure would further investigate the

utility of optical devices to measure noninvasively changes in hemoglobin saturation during

PDT treatment. It should be noted that such a model would be computationally intensive,

and may require highly specialized numerical solution techniques in order to efficiently solve

the set of partial differential equations for the three-dimensional geometry.

6.2.3 In silico Analysis of On-line Laser Scheduling during PDT

Efficient anti-cancer PDT treatment can be defined as adequate generation of ROS that

results in uniform tumor cell kill. To date, there has been little development in determining

how to utilize measurements of PS concentration and HbSat made during treatment to make

clinical decisions that could improve the potency of the delivered dose for individual patients.

It has been reported that the ideal length of light and dark cycles during fractionated PDT

treatment would be asymmetrical, with longer time periods given to the dark periods because

diffusive oxygen resupply is slower than oxygen consumption during treatment. Moreover,

as treatment progresses the resupply may become slower (due to vascular occlusion or sta-

sis), and may require progressively longer dark periods in order to allow adequate oxygen

concentrations to be reached prior to laser administration. This is illustrated in Figure 6.3,

which shows a representation of increased dark cycle length required to allow consistent ini-

tial oxygen concentration within the tissue for laser administration. Hypothetically, it may

be possible to increase the ROS yield delivered to individual patients based on tailoring of

the light/dark fractionation schemes during treatment.

The models developed in Chapter 5 and the potential extensions described in Section

6.2.2 represent a tool to theoretically investigate the utility of the hemoglobin saturation

measurements made during PDT treatment. This model structure could be placed into a

control system, as shown in Figure 6.4. This mathematical structure could simulate treat-
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ment in silico, including measurements of the physiological system. A model-based control

algorithm could be constructed to accept the measurements of oxygen concentrations within

the tissue during treatment, and make decisions about the temporal sequence of laser ad-

ministration.

This theoretical study would involve the evaluation of treatment ‘case studies’ in silico.

The initial case would evaluate the ability of the proposed control structure to achieve target

tissue damage with a perfect knowledge of all physiological quantities (e.g.: PS concentra-

tion, Hb concentration and saturation, ROS yield, blood flow rates, etc.). These quantities

would be known both temporally and spatially during treatment. The relationships between

the laser administration and ROS generation would be quantitated, with the focus of the

treatment being the delivery of adequate uniform ROS yield to all regions of tumor tissue.

Simulations of this case will establish an ‘upper bound’ on the level of control achievable if

all states were known during treatment.

The next, more-complicated case would evaluate the feasibility of control with sensor

limitations. Here, the OPS could be incorporated into the sensor block. The system block

will output spatial and temporal changes to the chromophores within the tissue, and the

MC model would simulate OPS measurement of the tissue in silico. OPS estimates of ‘bulk’

changes in hemoglobin saturation would be sent to the controller. Simulations of treatment

in this case will evaluate the role of the OPS in PDT dosimetry and treatment scheduling.

The current light fractionation schemes used clinically were suggested by ideal theo-

retical cases [69, 70], with constant blood flow and oxygen supply during treatment. In

these circumstances, it is possible to achieve adequate (uniform) ROS generation because

the oxygen resupply during dark periods is constant. However, in real treatment, there are

changes to blood flow (due to vasodilation, vasoconstriction, and capillary damage) [81].

These complications could be incorporated into the system as ‘Disturbances’. The control

loop should still achieve the desired treatment outcome if the sensor is capable of detecting

these disturbances. Therefore, simulations that consider these complications would evaluate

if the treatments adjusted using on-line dosimetery could improve efficacy compared with

pre-determined light fractionation schemes.
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The proposed series of in silico case studies have multiple applications to the field of

PDT. The studies would evaluate the potential of patient-specific dosimetry to improve PDT

treatment efficacy, specifically investigating the use of the OPS to monitor PDT treatment

in real-time. In the future, this modeling and control scheme could be used to suggest

appropriate PDT laser light dosage protocols for novel PS compounds, prior to clinical

testing. Additionally, the model could be used to re-evaluate PDT treatments using PS

compounds that previously did not achieve desired treatment outcome in the clinic using

the standard protocols, and estimate if the PS could successfully be employed if dosimetry

design techniques would have been incorporated into the trial.
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Figure 6.3: Illustration of tumor oxygen concentration during fractionated PDT treatment.
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Figure 6.4: Control loop structure for patient-specific estimation of laser light fractionation

periods during PDT.
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APPENDIX A

NOMENCLATURE

Abbreviations

AIC Akaike information criterion

ALA 5-aminolevulinic acid

AlPcS aluminum phthalocyanine

Cryo cryospectrophotometry

HPLC high preformance liquid chromatography

i.v. intravenous

i.p. intraperitoneal

LLD lower limit of detection

LLQ lower limit of quantitation

LVM Levenberg-Marquardt algorithm

m-THPC meta-tetrahydroxyphenyl chlorin

MC Monte Carlo

MCML Monte Carlo model of light transport through multi-layered tis-

sue from Wang et al. [107]

MGd motexafin gadolinium

MLu motexafin lutetium

TA area of tissue cross-section

MVD vessel density
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NIR near infrared

NIRS near infrared reflectance spectroscopy

OPS Optical Pharmacokinetic System

PDT photodynamic therapy

PK pharmacokinetics

PS photosensitizer

ROS reactive oxygen species

SCID severe combined immunodeficiency

SSE sum squared error

TA area of tissue cross-section

vis visible

General Notation

A total absorbance

Ai absorbance attributable to compound i

A absorbance area

Anoise absorbance area attributable to noise

B changes in collected light caused by changes in scattering prop-

erties between different measurements

Ci concentration of compound i

Cv
O2 intra-vascular concentration of ground state oxygen

Cv
O2supply ground state oxygen concentration of blood flowing into a vessel

DO2 diffusivity of oxygen in both tissue and intra-vascular space

f fractional vessel area

G geometry-dependent factor accounting for light lost due to scat-

tering

HO2 Henry’s constant

Hb deoxygenated hemoglobin

HbO2 oxygenated hemoglobin
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I collected light intensity

Iatten intensity of attenuated light collected by detector fiber

Iincident intensity of light incident on sample

kp rate of monomolecular decay of excited PS

kot biomolecular rate of quenching for the excited PS

L geometrical distance from source to detector

〈L〉 effective photon path length

〈Lo〉 effective photon path length function presented by Mourant et

al. [3]

〈Ln〉 effective photon path length function presented in Chapter 3

l longest diameter of tumor

M number of estimated parameters

N number of data points

nHill Hill constant

O2 ground state oxygen

P50 partial pressure of oxygen at which hemoglobin is 50% of its

saturated value

P v
O2 intra-vascular partial pressure of oxygen

r Pearson correlation coefficient

rvessel mean vessel radius

rvessel ‘effective’ vessel radius

t time

Vblood velocity of blood flow within blood vessel

VTumor measured tumor volume

V C vessel correction factor

w length of tumor diameter perpendicular to l

x, y power law coefficients

zi fitted parameters within description of B
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Greek Letters

βPDT proportionality constant between fluence and photochemical re-

action rate

δL factor relating difference between effective photon path length

between multiple measurements

εi extinction coefficient of compound i

κPDT photochemical reaction oxygen consumption rate

κtiss intra-vascular oxygen exchanged with the surrounding tissue

κvessels intra-tissue oxygen exchanged with the discrete vessels

λ wavelength

µa absorption coefficient

µs scattering coefficient

σ standard deviation

φ delivered fluence rate

Pharmacokinetic modeling parameters (Chapter 3)

ĈHPLC
i model estimated MGd concentration in compartment i fitted to

HPLC tissue data

ĈOPS
i model estimated MGd concentration in compartment i fitted to

OPS tissue data

Ĉ
OPS/HPLC
invivo in vivo concentration estimated by HPLC tissue measurements

Ĉ
OPS/OPS
invivo in vivo concentration estimated by OPS tissue measurements

D bolus dose of MGd

fplasma estimated fractional plasma concentration contributing to in

vivo tumor MGd concentration

fskin estimated fractional skin concentration contributing to in vivo

tumor MGd concentration
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ftumor estimated fractional tumor concentration contributing to in vivo

tumor MGd concentration

k10 mass elimination rate of MGd from plasma

kmn mass transport rate from compartment m to n

Nt number of time points

Nc number of compartments with corresponding measured concen-

tration

Vi volume of distribution of compartment i

xq mass of MGd in compartment q (where q ∈ {1, 2, 3, 4, 5})

Ji output of objective function

p parameter set

Monte Carlo Model parameters (Chapter 4)

β shortest distance between two vessel centers

θazim photon azithmul angle

θi incident angle for photon crossing an interface

θt transmitted angle for photon crossing an interface

θscatter photon scattering angle

µtotal
a total absorption coefficient

µa,background absorption coefficient of tissue background

µa,vessel absorption coefficient of discrete vessels

µs,background scattering coefficient of tissue background

µs,vessel scattering coefficient of discrete vessels

µx,µy,µz photon trajectory in x,y,z direction

ζscatter,ζstep,ζref random numbers uniformly distributed on the interval (0, 1]

D discrete vessel block length

g anisotropy factor

li stocastic step size for photon i

Ncollected number of photons collected by detector
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NAfiber numerical aperature of fiber

ni refractive index of medium i

pvoxel percentage of tissue space occupied by vasculature

R Fresnel reflection coefficient

Wk weight of photon k

x, y, z coordinate direction
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APPENDIX B

ABSORBANCE AREA SPECTRA: MGD
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Figure B1: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made prior to MGd administration.
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Figure B2: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made 5 min after MGd administration.
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Figure B3: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made 15 min after MGd administration.
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Figure B4: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made 30 min after MGd administration.
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Figure B5: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made 60 min after MGd administration.
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Figure B6: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made 120 min after MGd administration.
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Figure B7: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made 240 min after MGd administration.
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Figure B8: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made 420 min after MGd administration.
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Figure B9: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made 960 min after MGd administration.
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Figure B10: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made 1440 min after MGd administration.
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APPENDIX C

FITTED SPECTRA: PC4, HB, AND HBO2
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Figure C1: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements made prior to- (time= 0min), and 1 min, and 5 min following Pc4-mediated

PDT.
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Figure C2: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements 15 min, 60 min, and 240 min following Pc4-mediated PDT.
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Figure C3: Model estimates of absorbance from OPS measurement of murine xenograft.

Measurements 360 min and 1440 min following Pc4-mediated PDT.
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APPENDIX D

HBSAT FREQUENCY DISTRIBTIONS

168



5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Hb Saturation (%)

P
er

ce
n

ta
g

e 
o

f 
V

es
se

ls

Distribution 1

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Hb Saturation (%)

P
er

ce
n

ta
g

e 
o

f 
V

es
se

ls

Distribution 2

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Hb Saturation (%)

P
er

ce
n

ta
g

e 
o

f 
V

es
se

ls

Distribution 3

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Hb Saturation (%)

P
er

ce
n

ta
g

e 
o

f 
V

es
se

ls

Distribution 4

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Hb Saturation (%)

P
er

ce
n

ta
g

e 
o

f 
V

es
se

ls

Distribution 5

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Hb Saturation (%)

P
er

ce
n

ta
g

e 
o

f 
V

es
se

ls

Distribution 6

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Hb Saturation (%)

P
er

ce
n

ta
g

e 
o

f 
V

es
se

ls

Distribution 7

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Hb Saturation (%)

P
er

ce
n

ta
g

e 
o

f 
V

es
se

ls

Distribution 8

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Hb Saturation (%)

P
er

ce
n

ta
g

e 
o

f 
V

es
se

ls

Distribution 9

Figure D1: Hemoglobin saturation frequency distributions (1-9) in tumor cross sections

measured by cryospectrophotometry and reported by Conover et al. [1].
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APPENDIX E

MATLAB CODE

E.1 ABSORBANCE AREA CALCULATION

The code contained here can be run using MATLAB or an open-source alternative which

accepts “m” files. This code contains multiple M-files, of which, the first in the sequence

(AbsorbanceAreaInputs.m) is designed to edited to by users to define details of the required

analysis.

E.1.1 AbsorbanceAreaInputs.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% OPS metric evaluation software

% Code evaluates Absorbance Area over a user specified wavelength range

%

% To execute first load data in the following formats:

% wavelength (1 column, all measured wavelength values)

% datavector (n columns, with intensity measured at each wavelength)

%

% In order to deconvolute hemoglobin absorbance from data,

% extinction coefficient of Hb and HbO2 must be loaded

% current code calls this as a file ’Hb_ext_coeff.txt’

% column 1: wavelength

% column 2: oxygenated hemoglobin extinction coefficient

% column 3: deoxygenated hemoglobin extinction coefficient

%

% M-file Calls --

% AreaCall.m: call algorithms used to preform calculations
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%

% Code generated by Chad Kanick and Robert Parker

% University of Pittsburgh

% Department of Chemical Engineering

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Enter column identification information ---------------------------

% BID contains columns within datavector that identify

% location of baseline (no drug) measurements

BID=[1:10]; %

% TID contains columns within datavector that identify

% location of measurements with drug

TID=[1:100]; %

% Integration Area Options ---------------------------

% intbounds.sw - initial wavelength to start area comparison;

% intbounds.fw - wavelength at which to end area comparison;

intbounds.sw=650;

intbounds.fw=790;

% npavg: Location of linear baseline endpoints is calcualted

% at an average of data points on the absorbance curve

% about start / end wavelength bounds

% [See Chapter 2 for Details]

npavg=15; %npavg - number of data points

%Data Filter Options ---------------------------

% Boxcar filter used to smooth absorbance data

% Applies nsmooth-pt boxcar filter at each datapoint

% (with endpoints accounted for) ; NOTE: n MUST BE an ODD number

applysmooth=0; %toggle boxcar smoothing on/off (0=off, 1=on)

nsmooth=15;

%Fit Absorbtion spectra for HB and HBO2 over the bounds (sw to fw)

applyfit=0; %toggle hemoglobin deconvolution on/off (0=off, 1=on)

hbbounds.sw=520; %hbbounds.sw: starting wavelength for hb fitting

hbbounds.fw=620; %hbbounds.fw: ending wavelength for hb fitting

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% DO NOT MAKE CHANGES WITHIN THIS SECTION %%%%%%%%%

%if applyfit == 1

load Hb_ext_coeff.txt

Hb_ext_coeff(:,[2,3])=Hb_ext_coeff(:,[2,3]).*.001;

inputs.Hb_ext_coeff=Hb_ext_coeff;
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%end

inputs.wavelength=wavelength;

inputs.datavector=datavector;

inputs.BID=BID;

inputs.TID=TID;

inputs.intbounds=intbounds;

inputs.npavg=npavg;

inputs.SCParams=SCParams;

inputs.plotbounds=plotbounds;

inputs.nsmooth=nsmooth;

inputs.hbbounds=hbbounds;

inputs.applysmooth=applysmooth;

inputs.applyfit=applyfit;

inputs.applyLLD=applyLLD;

inputs.LLDfactor=LLDfactor;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[outputs]=AreaCall(inputs);

% variables outputted to workspace:_________________________________

% outputs.wavelength - vector of all wavelength values

% outputs.baseline - vector of all baseline spectra intensity values

% outputs.measure -vector of all target spectra intensity values

% outputs.logratio -vector of the negative logratio values

% outputs.Acurve - vector of calculated area under the curve

% outputs.AdjAreas - vector of areas reduced by noise area

% outputs.LLDarea - equal to integrated area of curve

% ’without drug’ attributed to noise

E.1.2 AreaCall.m

function [outputs]=AreaCall(inputs);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This file accepts user-defined inputs,

% used to call ’downstream’ m-files

% Calulates logratio of intensity data

% M-file Calls --

% boxsmooth.m: boxcar smoothing function

% HBfitplugin.m: hemoglobin fitting/deconvolution

% AreaCalculator.m: numerically integrates absorbance area

% AdjAreas.m: calculates and adjusts area

% attributable to ’noise’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%-----------------------------------------------------------

% Initialize counting variables

outputs.tc=size(inputs.TID,2);

% calculates length of data set to be analyzed

outputs.baseline=inputs.datavector(:,inputs.BID);

% pulls ’no drug’ intensity measures

outputs.measure=inputs.datavector(:,inputs.TID);

% pulls ’with drug’ intensity measures

outputs.meanbaseline(:,1)=mean(outputs.baseline,2);

% averages ’no drug’ intensities

%-----------------------------------------------------------

% Calculate ratio of each measure ’with drug’

% to mean baseline ’without drug’

for i =1:size(inputs.TID,2),

outputs.ratio(:,i)=(outputs.measure(:,i)+.0000001)

./(outputs.meanbaseline+.0000001);

%ratio value with (small) correction to

%avoid division by zero log of zero

end

% Absorbance is related to log of the ratio

%[See text in Chapter 2 for details]

outputs.logratio(:,:)=log(outputs.ratio(:,:).*100);

%-----------------------------------------------------------

% Boxcar Smoothing

if inputs.applysmooth == 1

[outputs.logratio]=boxsmooth(outputs.logratio,inputs.nsmooth);

% Calculation returns variable the same size as outputs.logratio

% with values averaged over boxcar width

end

%-----------------------------------------------------------

% HB fitting and absorbance removal

if inputs.applyfit == 1

[Hbcalc.Yreduced,Hbcalc.X]=HBfitplugin(inputs,outputs);

outputs.logratio=Hbcalc.Yreduced;

outputs.Hbrat=Hbcalc.X;

end

%-----------------------------------------------------------

% Calculate absorbance areas

[outputs.Acurve,outputs.line,outputs.pline]=

AreaCalculator(inputs,outputs);
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%-----------------------------------------------------------

% Calculate and remove ’noise’ area

[outputs]=AdjAreas(outputs,inputs)

E.1.3 boxsmooth.m

function [datavectoroutput]=boxsmooth(datavector,nsmooth)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This file returns a ’smoothed’ absorbance data

% Employs a simple boxcar filter, with each data point

% equated to the average of all points located within

% ’window’ that is ’nsmooth’ in width.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Y=datavector(:,:);

L=size(Y,1);

w=size(Y,2);

n=(nsmooth-1)/2;

for j=1:w,

smoothmeasure(1:n,j)=Y(1:n,j);

smoothmeasure(L-n:L,j)=Y(L-n:L,j);

for k=n+1:(L-n-1)

smoothmeasure(k,j)=sum(Y(k-n:k+n,j))/(2*n+1);

end

end

datavectoroutput=smoothmeasure;

E.1.4 Hbfitplugin.m

function [YreducedA,X]=Hbfitplugin(inputs,ocalc)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% M-file coded to regress contribution of Hb and HbO2 to

% OPS collected -log(I/Io) spectra%

%

% Inputs:

% Load the following files into the matlab workspace:

% (can be loaded as .mat or .txt format)

% Hb_ext_coeff.txt:

%(matrix col1: wavelength, col2: extcoeff_HbO2, col3: extcoeff_Hb)

% wavelength.txt (vector)

% datavector.txt (matrix):
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% containing all -log(I/Io) values

%

% Define the following variables:

% hbbounds.sw: wavelength to begin Hb/HbO2 fitting

% hbbounds.fw: wavelength to end Hb/HbO2 fitting

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-----------------------------------------------------------

% Tenames logratio vector and gets number of columns

% (to calculate the number of measured spectra)

L=ocalc.logratio;

l=size(ocalc.logratio,2);

%-----------------------------------------------------------

% interpolates the Hb extinction coefficients

% allows better estimation of

% Hb ext coeff at OPS-measured wavelengths

Ex(:,1)=interp(inputs.Hb_ext_coeff(:,1),10);

Ex(:,2)=interp(inputs.Hb_ext_coeff(:,2),10);

Ex(:,3)=interp(inputs.Hb_ext_coeff(:,3),10);

%-----------------------------------------------------------

%loop set up to analyze each measured spectra

for n=1:l;

% searches for ’closest’ input.wavelength

% at bounds between measured spectra

% and wavelength range of interest

[isv,j]=min((inputs.wavelength(:,1)-inputs.hbbounds.sw).^2);

[ifv,f]=min((inputs.wavelength(:,1)-inputs.hbbounds.fw).^2);

% truncate wavelength and logratio values

% to the wavelength range of interest

W=input.wavelength(j:f);

Y=ocalc.logratio([j:f],n);

% searches for ’closest’ wavelength at bounds

% between extinction coefficients

% and wavelength range of interest

[isv,j]=min((Ex(:,1)-inputs.hbbounds.sw).^2);

[ifv,f]=min((Ex(:,1)-inputs.hbbounds.fw).^2);

% truncate extinction coefficients to the

% wavelength range of interest
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KF=(Ex([j:f],1));

% wavelengths for extinction coefficients

FF1=(Ex([j:f],2));

% pull extinction coefficient values for Hb

FF2=(Ex([j:f],3));

% pull extinction coefficient values for HbO2

% expand (via interpolation) ext coeff

% to match collected light spectra

for p=1:length(Y)

Fnew(p,1)=W(p,1);

[z1,z2]=min((KF(:,1)-W(p,1)).^2);

Fnew(p,2)=FF1(z2,1);

Fnew(p,3)=FF2(z2,1);

end

% treats the ’fitting’ of the extinction

% coefficients as a generalized least squares

% problem and computes an analytical solution

Fones=ones(length(Fnew),1);

% create a vector of 1’s

A=[Fnew(:,2),Fnew(:,3),Fones];

% compse the A matrix

AT=A’;

% transpose of the A matrix

xA=((AT*A)^-1)*AT*Y(:,1);

% calculate the value of xA

% xA(:,1) is the contribution of Hb

% xA(:,2) is the contribution of HbO2

% xA(:,3) is the correction factor for the verticle shift mismatch

% between the logratio values and the extinction coefficients

Yplot=xA(1).*Fnew(:,2)+xA(2).*Fnew(:,3)+xA(3);

% Note: Yplot can be used to plot data for

% visualization of hemoglobin absorbance

%establish range of wavelengths collected by OPS

inputs.hbbounds.rsw=inputs.wavelength(1);

inputs.hbbounds.rfw=inputs.wavelength(length(inputs.wavelength));

[isv,j]=min((inputs.wavelength(:,1)-inputs.hbbounds.rsw).^2);

[ifv,f]=min((inputs.wavelength(:,1)-inputs.hbbounds.rfw).^2);

%selects correct logratio column

YE=ocalc.logratio([j:f],n);

%selects the extinction coefficient values
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% of the range of OPS-measured values

[isv,j]=min((Ex(:,1)-inputs.hbbounds.rsw).^2);

[ifv,f]=min((Ex(:,1)-inputs.hbbounds.rfw).^2);

KFE=(Ex([j:f],1));% wavelengths for extinction coefficients

FF1E=(Ex([j:f],2));

FF2E=(Ex([j:f],3));

for p=1:length(inputs.wavelength)

FEnew(p,1)=inputs.wavelength(p,1);

[z1,z2]=min((KFE(:,1)-inputs.wavelength(p,1)).^2);

FEnew(p,2)=FF1E(z2,1);

FEnew(p,3)=FF2E(z2,1);

end

% Code subtracts the weighted values of

% both extinction coefficints from the

% logratio vector over ’all’ wavelengths measured by OPS

% YreducedA: -logratio with Hb and HbO2 contribution removed

YreducedA(:,n)=YE(:,1)-(xA(1).*FEnew(:,2)+xA(2).*FEnew(:,3));

% X: relative estimates of Hb and HbO2 contribution to -logratio

X(n,:)=[xA(1),xA(2)];

end

E.1.5 AreaCalculator.m

function [Acurve,line,pline]=AreaCalculator(inputs,ocalc)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This calculation numerically integrates the area between the

% data in an the ocalc.logratio matrix, and a linear baseline,

% that is constructed individually for each spectra between

% the specified wavelength endpoints. Modified Simpsons rule

% used for numerical integration, given by Equation 2.16.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Begin Calculation of peak absorbance area

%-----------------------------------------------------------

[rsize,csize]=size(inputs.wavelength);

% gets size of wavelength vector

[rsize2,csize2]=size(ocalc.logratio);

% gets size of logratio matrix

% Variables (j and f) describe the position in the

% wavelength vector which most
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% closely match the selected bounds (sw,fw)

[isv,j]=min((inputs.wavelength(:,1)-inputs.intbounds.sw).^2);

[ifv,f]=min((inputs.wavelength(:,1)-inputs.intbounds.fw).^2);

stepsize=abs(inputs.wavelength(2,1)-inputs.wavelength(1,1));

%-----------------------------------------------------------

% Loops for each meausure contained in TID.

% Code treats endpoints of line as ’pointA’ and ’pointB’.

% ’pointA’ is located at starting wavelength (sw)

% ’pointB’ is located at ending wavelength (fw)

% Note: atrimstudy is a dummy variable

% Note: pline can be used to plot linear baseline on same scale

% as absorbance area curve

for i=1:ocalc.tc,

pointA(1,i)=mean(-ocalc.logratio((j-inputs.npavg):(j),i));

pointB(1,i)=mean(-ocalc.logratio((f):(f+inputs.npavg),i));

trimstudy(:,i)=-ocalc.logratio(j:f,i);

%generates ’dummy’ data set for manipulations

[rt,ct]=size(trimstudy);

[im,jm]=min(abs([pointA(1,i);pointB(1,i)]));

%this finds the min of abs value @ either end

Va=pointA(1,i);

Vb=pointB(1,i);

Sa=sign(pointA(1,i));

Sb=sign(pointB(1,i));

if Vb == 0,

pointB(1,i)=0.0001;

Vb=pointB(1,i);

end;

if Va == 0,

pointA(1,i)=0.0001;

Va=pointA(1,i);

end;

% if PointA is greater than PointB, then subtract

% the value of PointB across all points

if Va > Vb,

line(:,i)=((Vb-Va)/(inputs.wavelength(f,1)-inputs.wavelength(j,1)))

*(inputs.wavelength(j:f,1)-inputs.wavelength(j,1))+Va;

pline(:,i)=line(:,i)+pointB(1,i);

atrimstudy(:,i)=abs(trimstudy(:,i)-line(:,i));

Atotal(1,i)=stepsize*(sum(atrimstudy(3:rt-2,i))+(13/12)*(atrimstudy(2,i)

+atrimstudy(rt-1,i))+(5/12)*(atrimstudy(1,i)+atrimstudy(rt,i)));

Acurve(1,i)=Atotal(1,i);
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% if PointB is greater than PointA, then subtract

% the value of PointA across all points

elseif Vb > Va,

line(:,i)=((Vb-Va)/(inputs.wavelength(f,1)-inputs.wavelength(j,1)))

*(inputs.wavelength(j:f,1)-inputs.wavelength(j,1))+Va;

pline(:,i)=line(:,i)+pointA(1,i);

atrimstudy(:,i)=abs(trimstudy(:,i)-line(:,i));

Atotal(1,i)=stepsize*(sum(atrimstudy(3:rt-2,i))+(13/12)*(atrimstudy(2,i)

+atrimstudy(rt-1,i))+(5/12)*(atrimstudy(1,i)+atrimstudy(rt,i)));

Acurve(1,i)=Atotal(1,i);

end;

end;

%--------------------------------------

E.1.6 AdjAreas.m

function [outputs]=AdjAreas(outputs,inputs)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Code calculates area attributable to ’noise’ in spectra

% Areas can be reduced by this amount, effectively removing the

% contribution of ’noise’ to absorbanced area.

% [See Chapter 2 for details]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

NAreas=outputs.Acurve; %initialize manipulated variable

%LLD set (a priori) as mean + standard deviation

% of integrated areas with no drug on board

outputs.LLDarea=std(ocalc.Acurve(1:length(inputs.BID)))

+mean(ocalc.Acurve(1:length(inputs.BID))),

k=1;

for t=1:length(outputs.Acurve),

if outputs.Acurve(t) > outputs.LLDarea,

%if Area is above LLD, ’adjusted area’ is reduced by LLD value

NAreas(k)=outputs.Acurve(t)-outputs.LLDarea;

k=k+1;

else

%if Area is below LLD, ’adjusted area’ is set to LLD value

NAreas(k)=outputs.LLDarea;

end

end
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outputs.AdjAreas=NAreas;

E.2 MONTE CARLO CODE: PROPAGATION WITH DISCRETE

VESSELS

The code contained here is written in C-script, and is intended to be ‘mex-ed’ prior to use in

the MATLAB environment. The code file contained here is intended to work in sequence with

the MCML code published by Lihong Wang (Texas A&M) and Steven L. Jacques (Oregon).

Specifically, the enclosed file determines if photons propagating through a medium with

discrete vessels intersect any vessel/tissue interface during propagation. This code would

be called after a new photon location has been selected, but prior to the movement of the

photon.
The MATLAB call for this function can be given as:

[hit,Distmoved,Xh,Zh,muah,mush]=PhotonStepCheck(XPosition(MT,1),

XPosition1(MT,1),Xc,ZPosition(MT,1),

ZPosition1(MT,1),Zc,r,muap(MT,1),

musp(MT,1),muatiss,mustiss,muacap,muscap);

Where the function inputs are:

% MT: vector (length # of photons simulated) providing

% providing binary yes/no if photons are being propagated

% (No would indicates photon had exited tissue or absorbed)

%XPosition: vector (length # of photons simulated) providing

% x-coordinate prior to current step

%XPosition1: vector (length # of photons simulated) providing

% x-coordinate expected at end of current step

%Xc: vector (length # of vessels) providing x-coordinate of

% each vessel center

%ZPosition: vector (length # of photons simulated) providing

% z-coordinate prior to current step

%ZPosition1: vector (length # of photons simulated) providing

% z-coordinate expected at end of current step

%Zc: vector (length # of vessels) providing z-coordinate of each

% vessel center

%r: vector (length # of vessels) providing radius of each vessel

%muap(MT,1): vector (length # of photons simulated) providing

% absorption coefficient for each photon at (XPosition,ZPosition)
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%musp(MT,1): vector (length # of photons simulated) providing

% scattering coefficient for each photon at (XPosition,ZPosition)

%muatiss: scalar indicating tissue absorption coefficient

%mustiss: scalar indicating tissue scattering coefficient

%muacap: vector (length # of vessels) providing

% absorption coefficient within each vessel

%muscap: vector (length # of vessels) providing

% scattering coefficient within each vessel

And the function returns:

% hit: vector (length # of photons): providing binary yes/no

% (1/0) if photons hit vessel during propagation step

% Distmoved: vector (length # of photons): total distance between

% staring point and interaction point with vessel

% Xh: vector (length # of photons):

% x-coordinate of photon/vessel interaction

% Zh: vector (length # of photons):

% z-coordinate of photon/vessel interaction

% muah: vector (length # of photons): new absorption coefficient

% for photon crossing vessel

% mush: vector (length # of photons): new scattering coefficient

% for photon crossing vessel

E.2.1 PhotonStepCheck.c

#include "mex.h"

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "io64.h"

void PhotonStepCheck(double *data0x, double *data1x,

double *data2x, double *data0z, double *data1z,

double *data2z, double *datar, int nphoton, int ncap,

double *hit, double *distmoved, double *xhit,

double *zhit, double *datamua, double *datamus,

double *muahit, double *mushit, double *datamuaback,

double *datamusback, double *datamuacap,

double *datamuscap)

{

double disthit1, disthit2, d, newX, newZ;

double tempa, tempb, tempc, dataxmax, dataxmin;

double datazmax, datazmin, intpt1, intpt2, temprint;
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double tempc1, tempc2, tempc3, tempc4, p1, p2;

double dataq, step, distregion, checknewpoint, push;

int i, j;

double dx, dz, dr, D, check, intx1, intx2, intz1, intz2;

/* Loop through each photon*/

for (i = 0; i < nphoton; i++)

{

/* Find min and max X and Z values.

* Used later to determine if intersection point

* falls between inital and final points. */

if (data1x[i] > data0x[i])

{

dataxmax = data1x[i];

dataxmin = data0x[i];

}

else

{

dataxmax = data0x[i];

dataxmin = data1x[i];

}

if (data1z[i] > data0z[i])

{

datazmax = data1z[i];

datazmin = data0z[i];

}

else

{

datazmax = data0z[i];

datazmin = data1z[i];

}

/* Calculate photon step in x-z direction */

step= sqrt((data0x[i]-data1x[i]) * (data0x[i]-data1x[i])

+ (data0z[i]-data1z[i]) * (data0z[i]-data1z[i]));

/* Initalize these for each photon */

distmoved[i]=0.0;

xhit[i]=data1x[i];

zhit[i]=data1z[i];

hit[i]=0.0;

muahit[i]=datamua[i];

mushit[i]=datamus[i];

/* Loop through each capillary (n=j) within geometry*/

182



for (j = 0; j < ncap; j++)

{

/* if distregion>=0, Photon is outside of capillary(j) at (x0,z0)*/

/* Calculate minimum distance to hit capillary(j) */

distregion= sqrt((data0x[i]-data2x[j]) * (data0x[i]-data2x[j])

+ (data0z[i]-data2z[j]) * (data0z[i]-data2z[j]))-datar[j];

/* mexPrintf("step: %g, dist: %g\n", step, distregion); */

/* Determine if photon is currently within capillary(j) */

if (distregion >= 0.0)

{

/* Determine if capillary(j) is within stepping region */

if (step >= distregion)

{

/* Formula used to analytically determine possible intersection

* points between line (photon path) and circle (vessel) */

dx = (data1x[i]-data2x[j])-(data0x[i]-data2x[j]);

dz = (data1z[i]-data2z[j])-(data0z[i]-data2z[j]);

dr = sqrt(dx*dx + dz*dz);

D = (data0x[i]-data2x[j])*(data1z[i]-data2z[j])

- (data1x[i]-data2x[j])*(data0z[i]-data2z[j]);

check = datar[j]*datar[j]*dr*dr - D * D;

if (check == 0.0)

/* Photon contacts capillary at one point

* (tangent intersection) */

{

intx1 = ((D * dz ) / (dr * dr)) + data2x[j];

intz1 = ((-D * dx) / (dr * dr)) + data2z[j];

disthit1= sqrt((data0x[i]-intx1) * (data0x[i]-intx1)

+ (data0z[i]-intz1) * (data0z[i]-intz1));

}

if (check > 0.0)

{

if (dz >= 0.0)

{

intx1 = ((D * dz + dx * sqrt(check)) / (dr * dr)) + data2x[j];

intx2 = ((D * dz - dx * sqrt(check)) / (dr * dr)) + data2x[j];

intz1 = ((-D * dx + dz * sqrt(check)) / (dr * dr)) + data2z[j];

intz2 = ((-D * dx - dz * sqrt(check)) / (dr * dr)) + data2z[j];

}

else

{

intx1 = ((D * dz - dx * sqrt(check)) / (dr * dr)) + data2x[j];

intx2 = ((D * dz + dx * sqrt(check)) / (dr * dr)) + data2x[j];

intz1 = ((-D * dx - dz * sqrt(check)) / (dr * dr)) + data2z[j];
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intz2 = ((-D * dx + dz * sqrt(check)) / (dr * dr)) + data2z[j];

}

disthit1= sqrt((data0x[i]-intx1)

* (data0x[i]-intx1) + (data0z[i]-intz1)

* (data0z[i]-intz1));

disthit2= sqrt((data0x[i]-intx2)

* (data0x[i]-intx2) + (data0z[i]-intz2)

* (data0z[i]-intz2));

}

if (check >= 0.0 && intx1 >= dataxmin && intx1 <= dataxmax)

{

if (distmoved[i] > 0.0)

{

if (distmoved[i] > disthit1)

{

/* If yes: log distance,

* X and Z coordinates */

hit[i]=1.0;

distmoved[i]=disthit1;

xhit[i]=intx1;

zhit[i]=intz1;

muahit[i]=datamuacap[j];

mushit[i]=datamuscap[j];

}

}

else

{

/* If yes: log distance,

* X and Z coordinates */

hit[i]=1.0;

distmoved[i]=disthit1;

xhit[i]=intx1;

zhit[i]=intz1;

muahit[i]=datamuacap[j];

mushit[i]=datamuscap[j];

}

}

if (check > 0.0 && intx2 >= dataxmin && intx2 <= dataxmax)

/* if (intx2 >= dataxmin && intx2 <= dataxmax)*/

{

if (distmoved[i] > 0.0)

{

if (distmoved[i] > disthit2)

{

/* If yes: log distance,

184



* X and Z coordinates */

distmoved[i]=disthit2;

xhit[i]=intx2;

zhit[i]=intz2;

hit[i]=1.0;

muahit[i]=datamuacap[j];

mushit[i]=datamuscap[j];

}

}

else

{

/* If yes: log distance,

* X and Z coordinates */

distmoved[i]=disthit2;

xhit[i]=intx2;

zhit[i]=intz2;

hit[i]=1.0;

muahit[i]=datamuacap[j];

mushit[i]=datamuscap[j];

}

}

}

}

else

{

checknewpoint=sqrt((data1x[i]-data2x[j])*(data1x[i]-data2x[j])

+ (data1z[i]-data2z[j])*(data1z[i]-data2z[j]))-datar[j];

if (checknewpoint <= 0.0)

{

/* New point inside of vessel*/

hit[i]=0.0;

muahit[i]=datamuacap[j];

mushit[i]=datamuscap[j];

distmoved[i]=step;

xhit[i]=data1x[i];

zhit[i]=data1z[i];

}

else

{

/* Photon exits vessel*/

/* mexPrintf("photon exits capillary. \n"); */

dx = (data1x[i]-data2x[j])-(data0x[i]-data2x[j]);

dz = (data1z[i]-data2z[j])-(data0z[i]-data2z[j]);

dr = sqrt(dx*dx + dz*dz);

D = (data0x[i]-data2x[j])*(data1z[i]-data2z[j])
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- (data1x[i]-data2x[j])*(data0z[i]-data2z[j]);

check = datar[j]*datar[j]*dr*dr - D * D;

if (check > 0.0)

{

if (dz >= 0.0)

{

intx1 = ((D * dz + dx * sqrt(check))

/ (dr * dr)) + data2x[j];

intx2 = ((D * dz - dx * sqrt(check))

/ (dr * dr)) + data2x[j];

intz1 = ((-D * dx + dz * sqrt(check))

/ (dr * dr)) + data2z[j];

intz2 = ((-D * dx - dz * sqrt(check))

/ (dr * dr)) + data2z[j];

}

else

{

intx1 = ((D * dz - dx * sqrt(check)) / (dr * dr)) + data2x[j];

intx2 = ((D * dz + dx * sqrt(check)) / (dr * dr)) + data2x[j];

intz1 = ((-D * dx - dz * sqrt(check)) / (dr * dr)) + data2z[j];

intz2 = ((-D * dx + dz * sqrt(check)) / (dr * dr)) + data2z[j];

}

disthit1= sqrt((data0x[i]-intx1) * (data0x[i]-intx1)

+ (data0z[i]-intz1) * (data0z[i]-intz1));

disthit2= sqrt((data0x[i]-intx2) * (data0x[i]-intx2)

+ (data0z[i]-intz2) * (data0z[i]-intz2));

}

/*if (intx1 >= dataxmin && intx1 <= dataxmax)*/

if (check >= 0.0 && intx1 >= dataxmin && intx1 <= dataxmax)

{

if (distmoved[i] > 0.0)

{

if (distmoved[i] > disthit1)

{

/* If yes: log distance, X and Z coordinates */

hit[i]=1.0;

distmoved[i]=disthit1;

xhit[i]=intx1;

zhit[i]=intz1;

muahit[i]=datamuaback[0];

mushit[i]=datamusback[0];

}

}

else
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{

/* If yes: log distance, X and Z coordinates */

hit[i]=1.0;

distmoved[i]=disthit1;

xhit[i]=intx1;

zhit[i]=intz1;

muahit[i]=datamuaback[0];

mushit[i]=datamusback[0];

}

}

/* if (intx2 >= dataxmin && intx2 <= dataxmax) */

if (check > 0.0 && intx2 >= dataxmin && intx2 <= dataxmax)

{

if (distmoved[i] > 0.0)

{

if (distmoved[i] > disthit2)

{

/* If yes: log distance, X and Z coordinates */

distmoved[i]=disthit2;

xhit[i]=intx2;

zhit[i]=intz2;

hit[i]=1.0;

muahit[i]=datamuaback[0];

mushit[i]=datamusback[0];

}

}

else

{

/* If yes: log distance, X and Z coordinates */

hit[i]=1.0;

distmoved[i]=disthit2;

xhit[i]=intx2;

zhit[i]=intz2;

muahit[i]=datamuaback[0];

mushit[i]=datamusback[0];

}

}

}

}

}

}

}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
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{

int nphoton, ncap;

double *data0x, *data1x, *data2x, *data0z, *data1z, *data2z;

double *datar, *datamua, *datamus, *datamuaback;

double *datamusback, *datamuacap, *datamuscap;

double *hit, *distmoved, *xhit, *zhit, *muahit, *mushit;

/* Find the dimensions of the data */

nphoton = mxGetM(prhs[0]);

ncap = mxGetM(prhs[2]);

/* Retrieve the input data */

data0x = mxGetPr(prhs[0]);

/* data0x: x coordinates for initial photon positions */

data1x = mxGetPr(prhs[1]);

/* data1x: x coordinates for final photon positions */

data2x = mxGetPr(prhs[2]);

/* data2x: x coordinates for centers of each vessel */

data0z = mxGetPr(prhs[3]);

/* data0z: x coordinates for initial photon positions */

data1z = mxGetPr(prhs[4]);

/* data2z: x coordinates for final photon positions*/

data2z = mxGetPr(prhs[5]);

/* data2z: z coordinates for centers of each vessel */

datar = mxGetPr(prhs[6]);

/* datar: radius of each capillaries within geometry */

datamua = mxGetPr(prhs[7]);

/* datamua: absorption coefficient at (x0,y0,z0) */

datamus = mxGetPr(prhs[8]);

/* datamua: absorption coefficient at (x0,y0,z0) */

datamuaback = mxGetPr(prhs[9]);

/* datamuaback: background absorption of tissue */

datamusback = mxGetPr(prhs[10]);

/* datamuaback: background absorption of tissue */

datamuacap = mxGetPr(prhs[11]);

/* datamuacap: absorption within ’capillary’ regions */

datamuscap = mxGetPr(prhs[12]);

/* datamuacap: absorption within ’capillary’ regions */

/* Create a pointer to the output data */

plhs[0]=mxCreateDoubleMatrix(nphoton,1,mxREAL);

hit = mxGetPr(plhs[0]);

/* hit: Binary indicator if photon intersects vessel (1=yes/0=no) */

plhs[1]=mxCreateDoubleMatrix(nphoton,1,mxREAL);

distmoved = mxGetPr(plhs[1]);

/* distmoved: distance moved from inital point to
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* intersection point capillary (0 for no intersection photons) */

plhs[2]=mxCreateDoubleMatrix(nphoton,1,mxREAL);

xhit = mxGetPr(plhs[2]);

/* xhit: x coordinate for intersection point */

/*(0 for no intersection photons) */

plhs[3]=mxCreateDoubleMatrix(nphoton,1,mxREAL);

zhit = mxGetPr(plhs[3]);

/* zhit: z coordinate for intersection point */

/*(0 for no intersection photons) */

plhs[4]=mxCreateDoubleMatrix(nphoton,1,mxREAL);

muahit = mxGetPr(plhs[4]);

/* muahit: mua at intersection point */

plhs[5]=mxCreateDoubleMatrix(nphoton,1,mxREAL);

mushit = mxGetPr(plhs[5]);

/* mushit: mus at intersection point */

PhotonStepCheck(data0x,data1x,data2x,data0z,data1z,data2z,

datar,nphoton,ncap,hit,distmoved,xhit,zhit,

datamua,datamus,muahit,mushit,datamuaback,

datamusback,datamuacap,datamuscap);
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