
 

AN ANALYSIS OF MINIMUM ENTROPY TIME-FREQUENCY DISTRIBUTIONS 

 

 

 

 

 

 

 

 

by 

Paul Bradley 

BS, Grove City College, 2004 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

the Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Master of Science in Electrical Engineering 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

2008 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Paul Bradley 

 

 

 

It was defended on 

April 2, 2008 

and approved by 

Luis F. Chaparro, Associate Professor, Electrical & Computer Engineering Department 

Patrick J. Loughlin, Associate Professor, Electrical & Computer Engineering Department 

Thesis Advisor: Amro El-Jaroudi, Associate Professor, Electrical & Computer Engineering 

Department 

 

 



 iii 

 

The subject area of time-frequency analysis is concerned with creating meaningful 

representations of signals in the time-frequency domain that exhibit certain properties.  Different 

applications require different characteristics in the representation.  Some of the properties that 

are often desired include satisfying the time and frequency marginals, positivity, high 

localization, and strong finite support.  Proper time-frequency distributions, which are defined as 

distributions that are manifestly positive and satisfy both the time and frequency marginals, are 

of particular interest since they can be viewed as a joint time-frequency density function and 

ensure strong finite support.  Since an infinite number of proper time-frequency distributions 

exist, it is often necessary to impose additional constraints on the distribution in order to create a 

meaningful representation of the signal.  A significant amount of research has been spent 

attempting to find constraints that produce meaningful representations. 

Recently, the idea was proposed of using the concept of minimum entropy to create time-

frequency distributions that are highly localized and contain a large number of zero-points.  The 

proposed method starts with an initial distribution that is proper and iteratively reduces the total 

entropy of the distribution while maintaining the positivity and marginal properties.  The result 

of this method is a highly localized, proper TFD. 

This thesis will further explore and analyze the proposed minimum entropy algorithm.  

First, the minimum entropy algorithm and the concepts behind the algorithm will be introduced 
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and discussed.  After the introduction, a simple example of the method will be examined to help 

gain a basic understanding of the algorithm.  Next, we will explore different rectangle selection 

methods which define the order in which the entropy of the distribution is minimized.  We will 

then evaluate the effect of using different initial distributions with the minimum entropy 

algorithm.  Afterwards, the results of the different rectangle selection methods and initial 

distributions will be analyzed and some more advanced concepts will be explored.  Finally, we 

will draw conclusions and consider the overall effectiveness of the algorithm. 
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1.0  INTRODUCTION 

The subject area of time-frequency analysis is concerned with creating meaningful 

representations of signals in the time-frequency domain that exhibit certain properties.  Different 

applications require different characteristics in the representation.  Some of the properties that 

are often desired include satisfying the time and frequency marginals, positivity, high 

localization, and finite support.  Currently, many of the existing distributions satisfy most of the 

properties, but not all of them satisfactorily.  For example, the spectrogram distribution is 

manifestly positive, but does not satisfy the marginals. 

Proper time-frequency distributions (TFDs), which are defined as distributions that are 

manifestly positive and satisfy the time and frequency marginals, are of particular interest for 

several reasons.  First, the TFD can be viewed as a joint time-frequency density function [1] and 

[2].  As a result, the mathematical tools that are applicable to joint density functions can be 

applied to these distributions with reasonable, interpretable results.  Using these techniques with 

distributions that have negative values, such as the Wigner distribution, or do not satisfy the 

marginals, such as the spectrogram, often produce results that are difficult to interpret.  These 

properties guarantee that the TFD exhibits the correct spectral, temporal, and total signal 

energies [1].  Secondly, non-negativity and satisfying the marginals results in strong finite 

support.  Since the distribution cannot go negative, the distribution must be zero at any location 

where the time or frequency marginal is zero [1]. 
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It was shown by Wigner that bilinear distributions (i.e. signal independent distributions) 

cannot be both manifestly positive and satisfy the marginals for most signals.  For example, the 

Wigner distribution can only have these properties for a Gaussian chirp [4].    

Cohen-Posch showed that an infinite number of distributions exist that are both positive 

and satisfy the marginals, but they are not bilinear [4].  In other words, proper TFDs must be 

signal dependent for the general case.  The Cohen-Posch distribution is defined as follows: 

 

 

[1] 

An example of a kernel that would satisfy these conditions is as follows: 

(u,v) = 1 – (nu
n-1

 – 1)(mv
m-1

 – 1) 

Since there are an infinite number of kernels for the Cohen-Posch distribution, it is important to 

find the (u,v) that produces the most meaningful results [6].  Thus, it is often necessary to 

apply additional constraints. 

Several methods have been proposed to create consistently meaningful Cohen-Posch 

distributions.  Loughlin, Pitton, and Atlas proposed a method to create a proper TFD by selecting 

an initial positive TFD that does not satisfy the marginals and using cross-entropy minimization 

with the marginals (and possibly higher order moments) as constraints.  This method has been 

shown to provide meaningful, proper TFDs for a wide variety of signals [1] and [2].  Throughout 

this paper, this distribution will be referred to as the Minimum Cross-Entropy Positive Time-
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Frequency Distribution (MCE-PTFD).  Several variations on this method have been proposed to 

achieve different representations that are proper [2], [5], and [6]. 

Alternatively, El-Jaroudi proposed the idea of using the concept of minimum entropy to 

create time-frequency distributions that are highly localized and contain a large number of zero-

points.  The proposed method starts with an initial distribution that is manifestly positive and 

satisfies the marginals (i.e. proper) and iteratively reduces the total entropy of the distribution 

while maintaining the positivity and marginal properties.  The result of this method is a highly 

localized, proper TFD [3].  This thesis will further explore and analyze this method. 
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2.0  MINIMUM ENTROPY TFDS: BACKGROUND 

The idea of maximum entropy has been used extensively in creating power spectral 

densities and, to a slightly lesser extent, in time-frequency analysis. It is often argued that using 

maximum entropy in these areas results in the flattest possible spectrum or the TFD that uses the 

fewest assumptions about the original signal.  Since the goal in time-frequency analysis is to 

create a highly localized representation of the signal in the time-frequency plane, the concept of 

maximum entropy contradicts the desired results for a TFD.  Instead, the idea of minimum 

entropy seems to be the better fit for time-frequency analysis.  The minimum entropy algorithm 

proposed by El-Jaroudi attempts to create a highly localized TFD by minimizing the entropy of 

the distribution using an iterative algorithm [3]. 

The proposed algorithm starts with an initial TFD that is manifestly positive and satisfies 

the time and frequency marginals (i.e. a proper TFD).  An example of the initial TFD would be 

P(n, ) = |x(n)|
2
 |X( )|

2
 which happens to be the maximum entropy distribution of the signal.  

Any proper TFD can be utilized as the starting point [3].  If satisfying the marginals is not a 

mandatory constraint, the algorithm can start with a distribution that does not satisfy the 

marginals such as the spectrogram.  The final distribution will have the same marginal properties 

as the initial distribution.  Regardless of the marginal properties, the initial distribution must be 

manifestly positive. 
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The algorithm takes four points that create a rectangle and attempts to modify them so 

that the total entropy of the TFD is reduced while continuing to satisfy the marginals.  First, the 

four points of the selected rectangle are defined as P11 = P(n1, 1), P12 = P(n1, 2), P21 = P(n2, 1), 

and P22 = P(n2, 2).  A value, which will be referred as , is added to P11 and P22 and subtracted 

from P12 and P21.  This process modifies the TFD while continuing to satisfy the marginals [3]. 

The value  is calculated as follows.  First, entropy is defined using the Shannon entropy: 

E = - n  P(n, ) ln P(n, ) 

The loss function is then defined as: 

Loss  = Ebefore - Eafter 

= -P11lnP11 - P12lnP12 – P21lnP21  - P22lnP22 

+ (P11 - )ln(P11 - ) + (P12 - )ln(P12 - ) 

+ (P21 - )ln(P21 - ) + (P22 - )ln(P22 - ) 

It can be shown using Lagrange multipliers that the value of  that provides the greatest loss in 

entropy is either min{P11, P22} or –min{P12, P21}.  Let 1 = min{P11, P22} and 2 = –min{P12, 

P21}.  The loss function is calculated for both 1 and 2 and the value of i that provides the 

greatest loss is used as  [3]. 

The algorithm proceeds as follows: 

• Select an initial TFD P(n, ) that is manifestly positive and has the desired marginal 

properties. 

• Choose four points in the TFD matrix that create a rectangle: P(n1, 1), P(n1, 2), P(n2, 1), 

and P(n2, 2). 

• Find the value of  that provides the greatest loss in entropy. 
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• Update the four points using : P(n1, 1) = P(n1, 1) - , P(n1, 2) = P(n1, 2) + , P(n2, 1) 

= P(n2, 1) + , and P(n2, 2) = P(n2, 2) - . 

• If the entropy cannot be reduced for any rectangle in the TFD, stop.  Otherwise, continue 

with step 2 [3]. 

 

It is evident that the resulting distribution will be highly localized and will exhibit a large 

number of zero-points.  In each iteration, at least one point will be set to zero.  It is also possible 

for one or more zero-points to be set to non-zero values.  Thus, the number of total zero-points is 

not guaranteed to increase in each iteration, but will generally increase as the algorithm 

progresses. 

The algorithm must maintain the time and frequency marginals for each value of time and 

frequency in the initial distribution.  For a distribution that has n time values and w frequency 

values, the minimum entropy algorithm has n+w marginal constraints that must be satisfied with 

n*w degrees of freedom.  For example, for a distribution with 32 time values and 32 frequency 

values, the algorithm seeks to find the minimum entropy solution while satisfying the 64 total 

time and frequency marginal constraints by manipulating the 1024 points in the initial 

distribution. 

The two most significant variables in the minimum entropy algorithm are the initial TFD 

that is chosen and the rectangle selection method.  An infinite number of initial TFDs, or priors, 

exist for a given signal.  To achieve a proper TFD, the only two requirements of the prior are that 

it must be positive at every point and it must satisfy the time and frequency marginals.  Different 

priors will yield different minimum entropy TFDs.  In addition, an infinite number of rectangle 

selection methods exist with each one yielding a different final distribution.  Thus, the order in 
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which the rectangles are selected has a significant effect on the outcome of the algorithm.  Both 

of these areas will be explored in this thesis. 

 

2.1 EXAMPLE 

To demonstrate the minimum entropy algorithm, we will first consider a simple chirp 

signal.  The equation for the simple chirp signal is as follows: 

x(n) = c*e
j n^2/(2N)

 

where c is the normalization constant and N is the length of the signal which will be 32 for this 

example.  Figure 2.1 shows a plot of the real part of the signal.  Figure 2.2 shows the 

spectrogram of the signal. 

The minimum entropy algorithm was performed on this signal using P(n, ) = |x(n)|
2
 

|X( )|
2
 as the initial TFD and selecting the rectangle that results in the greatest loss in entropy for 

each iteration.  The initial TFD had a total entropy of 6.3725 and had 0 zero-points.  The final 

minimum entropy TFD exhibited a total entropy of 3.7022 and contained 961 zero-points.  

Figure 2.3 shows a plot of the initial TFD, P(n, ) = |x(n)|
2
 |X( )|

2
.  Figure 2.4 shows a plot of the 

final minimum entropy TFD.  Figure 2.5 and Figure 2.6 show the time and frequency marginals 

for the signal x(n), respectively.  Figure 2.7 and Figure 2.8 show the time and frequency 

marginals for the final minimum entropy TFD, respectively. 

These results indicate that the minimum entropy algorithm yields a valid time-frequency 

distribution that is manifestly positive, satisfies the marginals, and is highly localized with an 

increased number of zero-points.  Although the algorithm creates a highly localized TFD for this 
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example, the final plot does not appear to be a meaningful representation of the chirp signal.  

Some modifications to the algorithm such as selecting a different initial TFD or using a different 

rectangle selection method may provide better, more meaningful results. 

 

 

Figure 2.1: Plot of the real part of the simple chirp signal 
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Figure 2.2: Plot of the spectrogram of the simple chirp signal 

 

 

Figure 2.3: Plot of the initial TFD, P(n, ) = |x(n)|
2
 |X( )|

2
, for the simple chirp signal 
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Figure 2.4: Plot of the final minimum entropy TFD for the simple chirp signal 

 

 

Figure 2.5: Plot of the time marginal for the simple chirp signal 
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Figure 2.6: Plot of the frequency marginal for the simple chirp signal 

 

 

Figure 2.7: Plot of the time marginal for the minimum entropy TFD of the simple chirp signal 
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Figure 2.8: Plot of the frequency marginal for the minimum entropy TFD of the simple chirp 

signal 
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3.0  MINIMUM ENTROPY TFDS: RECTANGLE SELECTION METHODS 

With the El-Jaroudi minimum entropy algorithm, there are an infinite number of possible 

minimum entropy TFDs depending on how the minimization rectangles are selected.  For 

example, randomly selecting rectangles will produce a different result than selecting the 

rectangle that produces the greatest loss in entropy.  This characteristic brings up two questions.  

First, which rectangle selection method produces the “best” (i.e. most meaningful) TFD?  

Secondly, is it possible/feasible to find the absolute minimum entropy TFD and does this TFD 

give a meaningful result? 

To explore these questions, we will start with an initial TFD, P(n, ), that is manifestly 

positive and satisfies the marginals.  For example, the initial TFD could be the maximum entropy 

TFD of the signal, P(n, ) = |x(n)|
2
 |X( )|

2
.  The resulting P(n, ) matrix will be defined as 

follows: 

1 2 … M 

n1 P(n1, 1) P(n1, 2) … P(n1, M) 

n2 P(n2, 1) P(n2, 2) … P(n2, M) 

… … … … … 

nN P(nN, 1) P(nN, 2) … P(nN, M) 

 

With this definition, P(n1, 1) is considered to be the top-left corner, P(n1, M) is the top-

right corner, P(nN, 1) is the bottom-left corner, and P(nN, M) is the bottom-right corner. 
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There are two different types of rectangle selection methods that can be utilized to 

determine the minimum entropy TFD: the brute-force selection method and the intelligent 

selection method.  In the brute-force selection method, the minimization rectangles are chosen 

using a pattern without regard to the values in the rectangles.  For example, the algorithm could 

start at one corner of the TFD matrix and work its way to the opposite corner, taking every 

possible rectangle.  Once the opposite corner is reached, it will begin the process again at the 

initial corner.  This continues until none of the rectangles in the matrix can be reduced.  Note that 

the algorithm does not necessarily have to start at a corner.  It simply has to loop through all of 

the possible rectangles until none of them can be reduced any further. 

This section will explore four different brute-force selection methods: top-left corner, 

top-right corner, bottom-left corner, and bottom-right corner.  In the top-left corner method, the 

algorithm will begin with the top-left most rectangle and work its way to the bottom-right most 

rectangle.  It will work its way to the right before going down.  For example, for a 3x3 matrix, 

the rectangle selection order will be as follows: 

 1 2 3 

1 P(1,1) P(1,2) P(1,3) 

2 P(2,1) P(2,2) P(2,3) 

3 P(3,1) P(3,2) P(3,3) 

 

1. [P(1,1), P(2,2)] 

2. [P(1,1), P(2,3)] 

3. [P(1,1), P(3,2)] 

4. [P(1,1), P(3,3)] 

5. [P(1,2), P(2,3)] 

6. [P(1,2), P(3,3)] 

7. [P(2,1), P(3,2)] 

8. [P(2,1), P(3,2)] 

9. [P(2,2), P(3,3)] 
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In the top-right method, the algorithm will start with the top-right most rectangle and 

work its way to the bottom-left most rectangle.  It will work its way left before going down. In 

the bottom-left method, the algorithm will start with the bottom-left most rectangle and work its 

way to the top-right most rectangle.  It will work its way right before going up.  In the bottom-

right method, the algorithm will start with the bottom-right most rectangle and work its way to 

the top-left most rectangle.  It will work its way left before going up. 

In the intelligent selection method, the algorithm searches through all of the possible 

rectangles and selects the rectangle that matches a given criteria.  Some examples of this method 

include maximum entropy loss, n
th
 maximum entropy loss, and minimum entropy loss.  In the 

maximum entropy loss method, the algorithm searches through all of the possible rectangles and 

selects the rectangle that gives the greatest loss in entropy.  The n
th

 maximum entropy loss 

method searches for the rectangle that provides the n
th

 greatest loss in entropy.  The minimum 

entropy loss method searches for the rectangle that provides the smallest non-zero loss in 

entropy.  Unfortunately, this method takes a very long time to complete and is not very useful.  

This paper will explore the maximum entropy loss method and the n
th

 maximum entropy loss 

method for several different values of n. 

3.1 SIMPLE CHIRP EXAMPLE 

To evaluate each rectangle selection method, we will first look at the same simple chirp 

signal that was used in the initial example: 

x(n) = c*e
j n^2/(2N)
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where c is the normalization constant and N is the length of the signal which is 32 in this 

example.  As before, the initial TFD will be P(n, ) = |x(n)|
2
 |X( )|

2
 where X( ) is the 32 point 

DFT of x(n).  The initial TFD has a total entropy of 6.3725 and 0 zero-points.  Figures 2.1 

through 2.3 show plots of the signal, the spectrogram of the signal, and the initial TFD, 

respectively. 

3.1.1 Brute Force Methods 

First, we will consider the four brute force rectangle selection methods: top-left method, 

top-right method, bottom-left method, and bottom-right method.  The minimum entropy 

algorithm was performed on the simple chirp signal for each of the four brute force rectangle 

selection methods.  Table 3.1 summarizes the total entropy and number of zero-points for the 

final minimum entropy TFD for each brute force selection method for the simple chirp signal. 

In the top-left rectangle selection method, the algorithm starts with the top-left most 

rectangle and progresses to the bottom-right rectangle, moving to the right before going down.  

The final TFD exhibits a total entropy of 3.6885 and contains 961 zero-points.  Figure 3.1 shows 

the minimum entropy TFD obtained using the top-left method for the simple chirp signal. 

In the top-right rectangle selection method, the algorithm starts with the top-right most 

rectangle and progresses to the bottom-left rectangle moving to the left before going down.  The 

final TFD exhibits a total entropy of 3.6983 and contains 961 zero-points.  Figure 3.2 shows the 

minimum entropy TFD obtained using the top-right method for the simple chirp signal. 

In the bottom-left rectangle selection method, the algorithm starts with the bottom-left 

most rectangle and progresses to the top-right rectangle moving to the right before going up. The 
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final TFD exhibits a total entropy of 3.7058 and contains 961 zero-points.  Figure 3.3 shows the 

minimum entropy TFD obtained using the bottom-left method for the simple chirp signal. 

In the bottom-right rectangle selection method, the algorithm starts with the bottom-right 

most rectangle and progresses to the top-left rectangle, moving to the left before going up.  The 

final TFD exhibits a total entropy of 3.7026 and contains 961 zero-points.  Figure 3.4 shows the 

minimum entropy TFD obtained using the bottom-right method for the simple chirp signal. 

 

Table 3.1: Total entropy and number of zero-points for the minimum entropy TFDs of the 

simple chirp signal obtained using the different brute force rectangle selection methods. 

 

Method Total Entropy Zero-Points 

Top-Left 3.6885 961 

Top-Right 3.6983 961 

Bottom-Left 3.7058 961 

Bottom-Right 3.7026 961 
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Figure 3.1: Plot of minimum entropy TFD obtained using the top-left method for the simple 

chirp signal 

 

 

Figure 3.2: Plot of minimum entropy TFD obtained using the top-right method for the simple 

chirp signal 
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Figure 3.3: Plot of minimum entropy TFD obtained using the bottom-left method for the simple 

chirp signal 

 

 

Figure 3.4: Plot of minimum entropy TFD obtained using the bottom-right method for the 

simple chirp signal 
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3.1.2 Intelligent Selection Methods 

Next, we will consider the following intelligent selection methods: maximum entropy 

loss and n
th

 maximum entropy loss.  The minimum entropy algorithm was performed on the 

simple chirp signal using the maximum entropy loss rectangle selection method and for the n
th

 

maximum entropy loss rectangle selection method for n = 1 to 20, 50, and 100.  Table 3.2 

summarizes the total entropy and number of zero-points for the final minimum entropy TFD for 

each intelligent selection method for the simple chirp signal. 

In the maximum entropy loss method, the algorithm searches through all of the possible 

rectangles and selects the rectangle that yields the greatest loss in entropy. Figure 3.5 shows the 

minimum entropy TFD obtained using the maximum entropy loss method.  The final TFD 

exhibits a total entropy of 3.7022 and contains 961 zero-points. 

In the n
th

 maximum entropy loss method, the algorithm searches through all of the 

possible rectangles and selects the rectangle that yields the n
th

 greatest loss in entropy. Figure 3.6 

– 3.10 show the minimum entropy TFD obtained using the n
th

 maximum entropy loss method for 

n = 5, 10, 15, 20, and 50. The plots for the other values of n are not included because they do not 

provide any additional insight.  Again, Table 3.2 shows the total entropy and number of zero-

points for different values of n.  Note that the n
th

 maximum entropy loss method is identical to 

the maximum entropy loss method for n = 1. 
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Table 3.2: Total entropy and number of zero-points for the maximum entropy loss and n
th

 

maximum loss methods for different values of n for the simple chirp signal. 

 

n Total Entropy Zero-Points 

1 3.7022 961 

2 3.7014 961 

3 3.6981 961 

4 3.6979 961 

5 3.6907 961 

6 3.6953 961 

7 3.6932 961 

8 3.6936 961 

9 3.7018 961 

10 3.6942 961 

11 3.6953 961 

12 3.6990 961 

13 3.6940 961 

14 3.6943 961 

15 3.6948 961 

16 3.6914 961 

17 3.6952 961 

18 3.6916 961 

19 3.6932 961 

20 3.6940 961 

50 3.7005 961 

100 3.6979 962 
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Figure 3.5: Plot of minimum entropy TFD obtained using the maximum entropy loss method for 

the simple chirp signal 

 

 

Figure 3.6: Plot of minimum entropy TFD obtained using the 5
th
 maximum entropy loss method 

for the simple chirp signal 
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Figure 3.7: Plot of minimum entropy TFD obtained using the 10
th
 maximum entropy loss 

method for the simple chirp signal 

 

 

Figure 3.8: Plot of minimum entropy TFD obtained using the 15
th
 maximum entropy loss 

method for the simple chirp signal 
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Figure 3.9: Plot of minimum entropy TFD obtained using the 20
th
 maximum entropy loss 

method for the simple chirp signal 

 

 

Figure 3.10: Plot of minimum entropy TFD obtained using the 50
th

 maximum entropy loss 

method for the simple chirp signal 
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3.1.3 Summary 

Each TFD in this section is a valid, proper TFD.  They are all manifestly positive and 

satisfy the time and frequency marginals.  In addition, each TFD is highly localized with the 

energy concentrated at certain locations.  Each method provides a different final minimum TFD 

that has a different total entropy.  The methods have final entropies ranging from 3.68 to 3.71 

and zero-points ranging from 961 to 962. 

None of the resulting minimum entropy TFDs appears to be a meaningful representation 

of the simple chirp signal.  For the brute force methods, the only distribution that is remotely 

close to the desired result is that of the bottom-right method.  Unfortunately, this distribution 

exhibits a significant amount of energy at time-frequency points that should not have any.  The 

rest of the results from the brute force methods are not close to being accurate.  The results from 

the intelligent selection methods are also not meaningful representations.  None of the plots have 

energy concentrated in the expected areas. 

Also note that the initial TFD, P(n, ), that is used in this example is not a very good 

representation of the chirp signal.  Since the minimum entropy algorithm modifies points of the 

initial TFD, it is highly unlikely that the final TFD will be a meaningful representation if the 

initial TFD is not meaningful.  Thus, using the maximum entropy TFD as the prior could be one 

of the causes for the less than desirable results.  Different priors will be explored in later sections 

of this thesis. 
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3.2 CHIRP WITH SINUSOID EXAMPLE 

To further explore the different rectangle selection methods, we will next look at a chirp 

signal with the addition of a constant sinusoid at  = 5 /4 rad.  The equation under consideration 

is: 

x(n) = c*(e
j n^2/(2N)

 + e
j5 n/4

) 

where c is the normalization constant and N is the length of the signal which is 32 in this 

example.  As before, the initial TFD will be P(n, ) = |x(n)|
2
 |X( )|

2
 where X( ) is the 32 point 

DFT of x(n).  The initial TFD has a total entropy of 5.2592 and 64 zero-points.  Figure 3.11 

shows a plot of the real part of x(n).  Figure 3.12 shows a plot of the spectrograms for x(n), 

respectively.  Figure 3.13 shows a plot of the initial TFD P(n, ). 

 

 

Figure 3.11: Plot of the real part of the chirp with sinusoid signal 
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Figure 3.12: Plot of the spectrogram of the chirp with sinusoid signal 

 

 

Figure 3.13: Plot of the initial TFD, P(n, ) = |x(n)|
2
 |X( )|

2
, for the chirp with sinusoid signal 
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3.2.1 Brute Force Methods 

First, we will consider the four brute force rectangle selection methods: top-left method, 

top-right method, bottom-left method, and bottom-right method.  Table 3.3 shows the total 

entropy and number of zero-points for the minimum entropy TFDs for the chirp with sinusoid 

signal obtained using the different brute force rectangle selection methods.  Figure 3.14 shows 

the minimum entropy TFD obtained using the top-left method. Figure 3.15 shows the minimum 

entropy TFD obtained using the top-right method. Figure 3.16 shows the minimum entropy TFD 

obtained using the bottom-left method. Figure 3.17 shows the minimum entropy TFD obtained 

using the bottom-right method. 

 

Table 3.3: Total entropy and number of zero-points for the minimum entropy TFDs for the chirp 

with sinusoid signal obtained using the different brute force methods. 

Method Total Entropy Zero-Points 

Top-Left 3.3244 963 

Top-Right 3.3438 963 

Bottom-Left 3.2978 963 

Bottom-Right 3.3325 963 
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Figure 3.14: Plot of the minimum entropy TFD obtained using the top-left method for the chirp 

with sinusoid signal 

 

 

Figure 3.15: Plot of the minimum entropy TFD obtained using the top-right method for the chirp 

with sinusoid signal 
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Figure 3.16: Plot of the minimum entropy TFD obtained using the bottom-left method for the 

chirp with sinusoid signal 

 

 

Figure 3.17: Plot of the minimum entropy TFD obtained using the bottom-right method for the 

chirp with sinusoid signal 
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3.2.2 Intelligent Selection Methods 

Next, we will consider the intelligent selection methods for the chirp with sinusoid signal.  

The minimum entropy TFD was found for the signal using the maximum entropy loss and n
th

 

maximum entropy loss rectangle selection methods for n = 1 to 20, 50, and 100.  Table 3.4 

shows the total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the intelligent selection methods.  Figures 3.18 through 3.23 show the minimum entropy 

TFDs obtained using the maximum entropy loss method and the n
th

 maximum entropy loss 

method where n = 5, 10, 15, 20, and 50.  The plots for the other values of n are not included 

because they do not provide any additional insight. 
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Table 3.4: Total entropy and number of zero-points for the maximum entropy loss and n
th 

maximum loss methods for different values of n for the chirp with sinusoid signal. 

 

n Total Entropy Zero-Points 

1 3.3465 963 

2 3.3188 963 

3 3.3287 963 

4 3.3122 963 

5 3.3431 962 

6 3.3152 963 

7 3.3052 963 

8 3.2953 963 

9 3.3277 963 

10 3.2990 963 

11 3.2841 963 

12 3.3105 963 

13 3.3170 963 

14 3.3195 963 

15 3.3029 962 

16 3.3306 962 

17 3.3415 963 

18 3.3018 963 

19 3.3243 963 

20 3.3229 963 

50 3.3366 963 

100 3.3152 963 
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Figure 3.18: Plot of minimum entropy TFD obtained using the maximum entropy loss method 

for the chirp with sinusoid signal 

 

 

Figure 3.19: Plot of minimum entropy TFD obtained using the 5
th

 maximum entropy loss 

method for the chirp with sinusoid signal 
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Figure 3.20: Plot of minimum entropy TFD obtained using the 10
th

 maximum entropy loss 

method for the chirp with sinusoid signal 

 

 

Figure 3.21: Plot of minimum entropy TFD obtained using the 15
th

 maximum entropy loss 

method for the chirp with sinusoid signal 
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Figure 3.22: Plot of minimum entropy TFD obtained using the 20
th

 maximum entropy loss 

method for the chirp with sinusoid signal 

  

 

Figure 3.23: Plot of minimum entropy TFD obtained using the 50
th

 maximum entropy loss 

method for the chirp with sinusoid signal 
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3.2.3 Summary 

All of the final minimum entropy TFDs in this section are valid, highly-localized, proper 

TFDs.  The TFDs ended with total entropies ranging from 3.28 to 3.35 and exhibited 962 or 963 

zero-points.  Unfortunately, none of the minimum entropy distributions appear to be a 

meaningful representation of the chirp with sinusoid signal. 

Looking at the four brute force minimum entropy TFDs, the distribution found using the 

bottom-right algorithm appears to be the closest to what is expected or desired (i.e. energy at  = 

5 /4 radians and along the chirp diagonal).  All of the TFDs have energy along  = 5 /4 radians.  

The top-left, top-right, and bottom-left methods seem to completely lose the chirp information.  

The bottom-right method appears to have kept some of this information, but not completely. 

As with the brute force methods, none of the intelligent selection methods produced a 

meaningful representation of the chirp with sinusoid signal.  Although the sinusoidal energy 

along  = 5 /4 appears to remain for the most part, the chirp portion of the signal appears to be 

completely lost for all of the methods. 

Like with the simple chirp signal, the initial TFD, P(n, ), is not a very good representation 

of the signal.  Since the minimum entropy algorithm modifies points of the initial TFD, it is 

highly unlikely that the final TFD will be a meaningful representation if the initial TFD is not 

meaningful.  Thus, using the maximum entropy TFD as the prior could be one of the causes for 

the less than desirable results found in this section. 
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3.3 DOUBLE CHIRP EXAMPLE 

Finally, we will next look at a double chirp signal that has the chirp signal from the first 

example plus a chirp signal that is decreasing in frequency.  The equation under consideration is: 

x(n) = c*(e
j n^2/(2N)

 + e
j (2  - n)^2/(2N)

) 

where c is the normalization constant and N is the length of the signal which is 32 in this 

example.  As before, the initial TFD will be P(n, ) = |x(n)|
2
 |X( )|

2
 where X( ) is the 32 point 

DFT of x(n).  The initial TFD has a total entropy of 6.5581 and 0 zero-points.  Figure 3.24 shows 

a plot of the real part of x(n).  Figure 3.25 shows a plot of the spectrogram for the double chirp 

signal.  Figure 3.26 shows a plot of the initial TFD P(n, ) for the double chirp signal. 

 

Figure 3.24: Plot of the real part of the double chirp signal 
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Figure 3.25: Plot of the spectrogram of the double chirp signal 

 

 

Figure 3.26: Plot of the initial TFD, P(n, ) = |x(n)|
2
 |X( )|

2
, for the double chirp signal 
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3.3.1 Brute Force Methods 

We will first consider the four brute force rectangle selection methods: top-left method, 

top-right method, bottom-left method, and bottom-right method.  Table 3.5 shows the total 

entropy and number of zero-points for the minimum entropy TFDs for the double chirp signal 

obtained using the different brute force rectangle selection methods.  Figure 3.27 shows the 

minimum entropy TFD obtained using the top-left method. Figure 3.28 shows the minimum 

entropy TFD obtained using the top-right method. Figure 3.29 shows the minimum entropy TFD 

obtained using the bottom-left method. Figure 3.30 shows the minimum entropy TFD obtained 

using the bottom-right method. 

 

Table 3.5: Total entropy and number of zero-points for the minimum entropy TFDs for the 

double chirp signal obtained using the different brute force methods. 

 

Method Total Entropy Zero-Points 

Top-Left 3.5945 961 

Top-Right 3.5623 961 

Bottom-Left 3.5955 961 

Bottom-Right 3.5857 961 
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Figure 3.27: Plot of the minimum entropy TFD obtained using the top-left method for the 

double chirp signal 

 

 

Figure 3.28: Plot of the minimum entropy TFD obtained using the top-right method for the 

double chirp signal 
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Figure 3.29: Plot of the minimum entropy TFD obtained using the bottom-left method for the 

double chirp signal 

 

 

Figure 3.30: Plot of the minimum entropy TFD obtained using the bottom-right method for the 

double chirp signal 
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3.3.2 Intelligent Selection Methods 

Next, we will consider the intelligent selection methods for the double chirp signal.  The 

minimum entropy TFD was found for the signal using the maximum entropy loss and n
th

 

maximum entropy loss rectangle selection methods for n = 1 to 20, 50, and 100.  Table 3.6 

shows the total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the intelligent selection methods.  Figures 3.31 through 3.36 show the minimum entropy 

TFDs obtained using the maximum entropy loss method and the n
th

 maximum entropy loss 

method where n = 5, 10, 15, 20, and 50.  The plots for the other values of n are not included 

because they do not provide any additional insight. 
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Table 3.6: Total entropy and number of zero-points for the maximum entropy loss and n
th 

maximum loss methods for different values of n for the double chirp signal. 

 

n Total Entropy Zero-Points 

1 3.5464 961 

2 3.5358 961 

3 3.5420 961 

4 3.5452 961 

5 3.5945 961 

6 3.5761 961 

7 3.5677 961 

8 3.5634 961 

9 3.5620 961 

10 3.5694 961 

11 3.5611 961 

12 3.5731 961 

13 3.5512 961 

14 3.5571 961 

15 3.5693 961 

16 3.5753 961 

17 3.5807 961 

18 3.5620 961 

19 3.5647 961 

20 3.5605 961 

50 3.5580 961 

100 3.5819 961 
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Figure 3.31: Plot of the minimum entropy TFD obtained using the maximum entropy loss 

method for the double chirp signal 

 

 

Figure 3.32: Plot of the minimum entropy TFD obtained using the 5
th
 maximum entropy loss 

method for the double chirp signal 
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Figure 3.33: Plot of the minimum entropy TFD obtained using the 10
th
 maximum entropy loss 

method for the double chirp signal 

 

 

Figure 3.34: Plot of the minimum entropy TFD obtained using the 15
th
 maximum entropy loss 

method for the double chirp signal 
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Figure 3.35: Plot of the minimum entropy TFD obtained using the 20
th
 maximum entropy loss 

method for the double chirp signal 

 

 

Figure 3.36: Plot of the minimum entropy TFD obtained using the 50
th
 maximum entropy loss 

method for the double chirp signal 
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3.3.3 Summary 

All of the final minimum entropy TFDs in this section are valid, highly-localized, proper 

TFDs.  The TFDs ended with total entropies ranging from 3.53 to 3.60 and 961 zero-points.  

Unfortunately, none of the minimum entropy distributions appear to be a meaningful 

representation of the double chirp signal. 

Looking at the four brute force minimum entropy TFDs, none of the final distributions 

are meaningful or desirable for the original signal.  Each one has what appears to be random 

energy spikes scattered throughout the time-frequency domain. 

As with the brute force methods, none of the intelligent selection methods produced a 

meaningful representation of the double chirp signal.  The results of the methods also appear to 

be random. 

Like with the first two signals, the initial TFD, P(n, ), is not a very good representation of 

the signal.  Since the minimum entropy algorithm modifies points of the initial TFD, it is highly 

unlikely that the final TFD will be a meaningful representation if the initial TFD is not 

meaningful.  Thus, using the maximum entropy TFD as the prior could be one of the causes for 

the less than desirable results found in this section. 

3.4 CONCLUSIONS 

All of the distributions found using the proposed minimum entropy algorithms are valid, 

proper TFDs for their respective signal.  In other words, they are manifestly positive and satisfy 
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the time and frequency marginals.  In addition, each TFD is highly localized and contains a 

significant number of zero-points. 

For each signal and rectangle selection method, the number of zero-points appears to 

remain consistent.  For a 32x32 matrix (i.e. 1024 total points), the number of zero-points always 

ranges from 960 to 963.  Remember that the algorithm in this example has 1024 degrees of 

freedom (i.e. points) and 64 marginal constraints while minimizing the entropy and setting as 

many points as possible to zero.  The difference between 1024 and 64 is 960.  Thus, it is 

interesting and somewhat logical that the final number of zero-points is always around 960 

indicating that the algorithm requires approximately 64 points to satisfy the 64 marginal 

constraints.  In addition, it would be expected that the chirp with sinusoid signal and double chirp 

signal would require twice as many points to represent than the simple chirp signal since they 

have two frequency components at each point in time.  It appears that the minimum entropy 

algorithm will always reduce the number of non-zero points to a value close to the total number 

of points minus the number of marginal constraints or, in mathematical form, n*m – (n + m) 

where n is the number of time values in the initial TFD and m is the number of frequency values 

in the initial TFD.  This property may not be desirable for many signals. 

Unfortunately, none of the rectangle selection methods produced a meaningful 

representation for any of the signals.  The brute force methods produced seemingly random 

results that differ greatly if a different starting point or selection pattern is chosen.  Since these 

methods simply loop through all of the rectangles without regard to the values in each rectangle, 

it is difficult to optimize these methods to achieve more desirable results.  Thus, minimum 

entropy algorithms will probably not be able to produce consistently meaningful TFDs using 

brute force methods. 
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In the examples, the intelligent selection methods did not fare any better than their brute 

force counterparts.  Neither the maximum entropy loss nor the n
th

 maximum entropy loss 

methods resulted in meaningful time-frequency representations of the signals.  Unlike the brute 

force methods, the intelligent selection methods are more flexible and may be able to be used to 

obtain a meaningful TFD.  The key is to find the rectangle selection criterion that leads to a 

better result.  From the previous examples, it is evident that the maximum entropy loss criterion 

may not be the best rectangle selection method. 

The brute force algorithms are relatively easy to implement.  The algorithm simply 

begins with a rectangle and loops through all of the possible rectangles.  It repeats this process 

until none of the rectangles can be reduced.  Thus, the algorithm does not have to search through 

every possible rectangle each iteration.  Furthermore, these methods lend easily to parallelization 

since the next iteration does not always depend on the results of the previous iteration.  

Unfortunately, its ease of implementation is counterbalanced by its lack of flexibility. 

The intelligent selection methods are more complicated to implement and require much 

more time to perform.  Each iteration, the algorithm must search each possible rectangle to find 

the one that matches the stated criteria.  This often requires a significant amount of computation 

and is much less efficient than the brute force methods.  Furthermore, it is difficult to parallelize 

these types of algorithms because each iteration depends on the results of the previous iteration.  

Unlike the brute force methods, the implementation of the intelligent selection methods leads to 

increased flexibility. 

For the n
th
 maximum entropy loss methods, the results do not appear to improve or 

worsen as n varies.  The final total entropy and number of zero-points do not seem to be 



 50 

correlated to the value of n.  Also, the attractiveness of the TFD does not appear to be related to 

n.  Instead, the resulting distributions appear to be somewhat random. 

As n increases in the n
th

 maximum entropy loss methods, the time required to perform the 

algorithm also increases.  This correlation occurs for two reasons.  First, more iterations are 

required since less entropy is removed each iteration.  In other words, using the 50
th

 largest 

entropy loss removes less entropy than using the 2
nd

 largest entropy loss.  Thus, using the 50
th

 

largest entropy loss will require a significantly larger number of iterations to reach the minimum 

entropy.  Secondly, the algorithm must keep track of the n rectangles that provide the greatest 

loss in entropy.  Thus, if n is 50, the algorithm must keep track of the 50 rectangles that have the 

largest entropy loss.  On the other hand, if n is 2, it only needs to keep track of 2 rectangles.  The 

time spent sorting and keeping track of these values becomes significant over thousands of 

iterations.  As a result, using a large value of n may be too inefficient for many applications and 

is probably not very useful unless the algorithm can be greatly optimized. 
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4.0  MINIMUM ENTROPY TFDS: DIFFERENT PRIORS 

The resulting time-frequency distributions from the previous section do not appear to be 

very desirable or meaningful.  The initial time-frequency distribution that was used in the 

previous section, P(n, ) = |x(n)|
2
 |X( )|

2
, is the maximum entropy TFD and makes the fewest 

assumptions about the signal.  As a result, this distribution often loses much of the information 

from the signal.  From the plots of the initial TFDs, it is evident that a significant amount of 

information is lost before the minimum entropy algorithm begins.  If the initial TFD is not a 

reasonable representation of the signal, it is very unlikely that the final result from the minimum 

entropy algorithm will be reasonable.  In fact, if the final result does appear to represent the 

signal, it is the result of an extremely lucky rectangle selection pattern. 

The prior that is selected for the minimum entropy algorithm affects the properties of the 

final TFD.  First, the final TFD will have the same marginal properties as the initial TFD.  

Therefore, if it is desired that the final TFD satisfy the time and frequency marginals, the initial 

TFD must also satisfy the marginals.  In addition, the initial TFD must be manifestly positive.  

The algorithm cannot be performed with negative values because the Shannon entropy does not 

exist for negative numbers. 

This section will explore the effectiveness of the minimum entropy algorithm given 

different initial TFDs, or priors.  The initial TFDs that will be considered are the spectrogram 

and the Minimum Cross-Entropy Positive TFD (MCE-PTFD) proposed by Loughlin, Pitton, and 
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Atlas [1].  The results from these priors will be compared to the results found using the 

maximum entropy prior, P(n, ) = |x(n)|
2
 |X( )|

2
. 

4.1 SPECTROGRAM PRIOR 

First, we will examine using the spectrogram as the prior for the minimum entropy 

algorithm.  Note that since the spectrogram does not satisfy the time and frequency marginals, 

the final distribution also will not satisfy the marginals.  Also note that using different 

spectrograms as the initial TFD will produce different results.  In the following analysis, a 

narrowband spectrogram will be used as the initial TFD.  As before, we will look at three 

different signals: a simple chirp signal, a chirp signal with an additional sinusoid, and a double 

chirp signal.  For each signal, the minimum entropy algorithm will be completed using the four 

previously mentioned brute force rectangle selection methods, plus the maximum entropy loss 

rectangle selection method.  The results will be compared and contrasted with one another and 

the results from previous sections. 

4.1.1 Simple Chirp Signal 

To examine using the spectrogram as the prior, we will first look at the simple chirp 

signal.  As before, the simple chirp signal is defined as: 

x(n) = c*e
j n^2/(2N)

 

where c is the normalization constant and N is the length of the signal which is 32 in this 

example.  The initial TFD, P(n, ), is defined as the narrowband spectrogram of x(n).  The initial 
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spectrogram TFD has a total entropy of 5.1572 and 0 zero-points.  Figure 4.1 shows the 

narrowband spectrogram that will be used as the prior. 

 

 

Figure 4.1: Plot of the initial spectrogram TFD for the simple chirp signal 

 

The minimum entropy algorithm was performed using the following rectangle selection 

methods: top-left method, top-right method, bottom-left method, bottom-right method, and 

maximum entropy loss method.  Table 4.1 shows the final total entropy and number of zero-

points for each method.  Figure 4.2 shows the minimum entropy TFD obtained using the top-left 

rectangle selection method. Figure 4.3 shows the minimum entropy TFD obtained using the top-

right rectangle selection method. Figure 4.4 shows the minimum entropy TFD obtained using the 

bottom-left rectangle selection method. Figure 4.5 shows the minimum entropy TFD obtained 
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using the bottom-right rectangle selection method. Figure 4.6 shows the minimum entropy TFD 

obtained using the maximum entropy loss rectangle selection method. 

From the results, we can see that the final TFDs are much better representations of the 

simple chirp signal than the ones obtained using the maximum entropy TFD as the prior.  The 

bottom-right and maximum entropy loss methods appear the produce the “best” results.  It is 

evident that using a prior that has more of the signal information produces more meaningful 

results with the minimum entropy algorithm. 

 

Table 4.1: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the narrowband spectrogram as the prior for the simple chirp signal using several different 

rectangle selection methods. 

 

Method Total Entropy Zero-Points 

Top-Left 3.4688 961 

Top-Right 3.4618 961 

Bottom-Left 3.4436 961 

Bottom-Right 3.4654 961 

Maximum Entropy Loss 3.4393 961 
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Figure 4.2: Plot of the minimum entropy TFD obtained using the narrowband spectrogram as 

the prior and the top-left rectangle selection method for the simple chirp signal 

 

 

Figure 4.3: Plot of the minimum entropy TFD obtained using the narrowband spectrogram as 

the prior and the top-right rectangle selection method for the simple chirp signal 
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Figure 4.4: Plot of the minimum entropy TFD obtained using the narrowband spectrogram as 

the prior and the bottom-left rectangle selection method for the simple chirp signal 

 

 

Figure 4.5: Plot of the minimum entropy TFD obtained using the narrowband spectrogram as 

the prior and the bottom-right rectangle selection method for the simple chirp signal 
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Figure 4.6: Plot of the minimum entropy TFD obtained using the narrowband spectrogram as 

the prior and the maximum entropy loss rectangle selection method for the simple chirp signal 

4.1.2 Simple Chirp with Sinusoid Signal 

Next, we will first look at the chirp with sinusoid signal.  As before, the chirp with 

sinusoid signal is defined as: 

x(n) = c*(e
j n^2/(2N)

 + e
j5 n/4

) 

where c is the normalization constant and N is the length of the signal which is 32 in this 

example.  The initial TFD, P(n, ), is defined as the narrowband spectrogram of x(n).  The initial 

spectrogram TFD has a total entropy of 5.5954 and 0 zero-points.  Figure 4.7 shows the 

narrowband spectrogram that will be used as the prior for the chirp with sinusoid signal. 
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Figure 4.7: Plot of the initial spectrogram TFD for the chirp with sinusoid signal 

 

Again, the minimum entropy algorithm was performed using the following rectangle 

selection methods: top-left method, top-right method, bottom-left method, bottom-right method, 

and maximum entropy loss method.  Table 4.2 shows the final total entropy and number of zero-

points for each method.  Figure 4.8 shows the ME-TFD obtained using the top-left rectangle 

selection method. Figure 4.9 shows the ME-TFD obtained using the top-right rectangle selection 

method. Figure 4.10 shows the ME-TFD obtained using the bottom-left rectangle selection 

method. Figure 4.11 shows the ME-TFD obtained using the bottom-right rectangle selection 

method. Figure 4.12 shows the ME-TFD obtained using the maximum entropy loss rectangle 

selection method. 

The results are once again much better than the ones obtained using the maximum 

entropy TFD as the prior.  The bottom-left and bottom-right rectangle selection methods 
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produced particularly “good” results.  The maximum entropy loss method was not as accurate as 

the brute force methods. 

 

Table 4.2: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the narrowband spectrogram as the prior for the chirp with sinusoid signal using several 

different rectangle selection methods. 

 

Method Total Entropy Zero-Points 

Top-Left 3.4482 961 

Top-Right 3.4627 961 

Bottom-Left 3.4654 961 

Bottom-Right 3.4527 961 

Maximum Entropy Loss 3.4529 961 

 

 

Figure 4.8: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the top-left rectangle selection method for the chirp with sinusoid signal 
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Figure 4.9: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the top-right rectangle selection method for the chirp with sinusoid signal 

 

 

Figure 4.10: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the bottom-left rectangle selection method for the chirp with sinusoid signal 
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Figure 4.11: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the bottom-right rectangle selection method for the chirp with sinusoid signal 

 

 

Figure 4.12: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the maximum entropy loss rectangle selection method for the chirp with sinusoid signal 
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4.1.3 Double Chirp Signal 

Finally, we will first look at the double chirp signal.  As before, the double chirp signal is 

defined as: 

x(n) = c*(e
j n^2/(2N)

 + e
j (2  - n)^2/(2N)

) 

where c is the normalization constant and N is the length of the signal which is 32 in this 

example.  The initial TFD, P(n, ), is defined as the narrowband spectrogram of x(n).  The initial 

spectrogram TFD has a total entropy of 5.4956 and 0 zero-points.  Figure 4.13 shows the 

narrowband spectrogram that will be used as the prior for the double chirp signal. 

 

 

Figure 4.13: Plot of the initial spectrogram TFD for the double chirp signal 
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Once again, the minimum entropy algorithm was performed using the following rectangle 

selection methods: top-left method, top-right method, bottom-left method, bottom-right method, 

and maximum entropy loss method.  Table 4.3 shows the final total entropy and number of zero-

points for each method.  Figure 4.14 shows the ME-TFD obtained using the top-left rectangle 

selection method. Figure 4.15 shows the ME-TFD obtained using the top-right rectangle 

selection method. Figure 4.16 shows the ME-TFD obtained using the bottom-left rectangle 

selection method. Figure 4.17 shows the ME-TFD obtained using the bottom-right rectangle 

selection method. Figure 4.18 shows the ME-TFD obtained using the maximum entropy loss 

rectangle selection method. 

As with the other two signals, the spectrogram prior produced better results for several of 

the rectangle selection methods.  The bottom-left and bottom-right methods seemed to produce 

the best results out of all of the different rectangle selection methods. 

 

Table 4.3: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the narrowband spectrogram as the prior for the double chirp signal using several different 

rectangle selection methods. 

 

Method Total Entropy Zero-Points 

Top-Left 3.4012 961 

Top-Right 3.3752 961 

Bottom-Left 3.3858 961 

Bottom-Right 3.3808 961 

Maximum Entropy Loss 3.3673 961 
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Figure 4.14: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the top-left rectangle selection method for the double chirp signal 

 

 

Figure 4.15: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the top-right rectangle selection method for the double chirp signal 
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Figure 4.16: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the bottom-left rectangle selection method for the double chirp signal 

 

 

Figure 4.17: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the bottom-right rectangle selection method for the double chirp signal 
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Figure 4.18: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the maximum entropy loss rectangle selection method for the double chirp signal 

4.1.4 Summary 

Overall, the results from the maximum entropy algorithm with spectrogram prior appear 

to be more meaningful than the results obtained using the maximum entropy prior for several of 

the different rectangle selection methods.  For each signal, the bottom-left and bottom-right 

methods appear to give reasonable results.  Conversely, the top-left and top-right methods do not 

appear to give desirable results.  At this point, the reason for the bottom-left and bottom-right 

methods producing more desirable results is unknown.  It could either be due to chance or some 

unknown underlying factor.  The maximum entropy loss and n
th

 maximum entropy loss (which 

are not included in this paper) methods do not appear to provide meaningful results. 
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As previously mentioned, the resulting minimum entropy TFDs obtained using the 

spectrogram prior do not satisfy the time or frequency marginals.  If satisfying the marginals is 

necessary, a different prior must be used. 

4.2 MCE-PTFD PRIOR 

Next, we will examine using the Minimum Cross-Entropy Positive TFD (MCE-PTFD) 

proposed by Loughlin, Atlas, and Pitton [1] as the prior for the Minimum Entropy algorithm.  

Unlike the spectrogram, the MCE-PTFD satisfies the time and frequency marginals.  As a result, 

the final distribution will also satisfy the marginals.  In the following analysis, a MCE-PTFD will 

be used as the initial TFD.  As before, we will look at three different signals: a simple chirp 

signal, a chirp signal with an additional sinusoid, and a double chirp signal.  For each signal, the 

minimum entropy algorithm will be completed using the four previously mentioned brute force 

rectangle selection methods, plus the maximum entropy loss rectangle selection method.  The 

results will be compared and contrasted with one another and the results from previous sections. 

4.2.1 Simple Chirp Signal 

To examine using the MCE-PTFD as the prior, we will first look at the simple chirp 

signal.  As before, the simple chirp signal is defined as: 

x(n) = c*e
j n^2/(2N)

 

where c is the normalization constant and N is the length of the signal which is 32 for this 

example.   The initial TFD, P(n, ), is defined as the MCE-PTFD of x(n).  The initial TFD has a 
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total entropy of 5.4648 and 0 zero-points.  Figure 4.19 shows the MCE-PTFD that will be used 

as the prior. 

 

 

Figure 4.19: Plot of the initial MCE-PTFD prior for the simple chirp signal 

 

The Minimum Entropy algorithm was performed using the following rectangle selection 

methods: top-left method, top-right method, bottom-left method, bottom-right method, and 

maximum entropy loss method.  Table 4.4 shows the final total entropy and number of zero-

points for each method.  Figure 4.20 shows the ME-TFD obtained using the top-left rectangle 

selection method. Figure 4.21 shows the ME-TFD obtained using the top-right rectangle 

selection method. Figure 4.22 shows the ME-TFD obtained using the bottom-left rectangle 

selection method. Figure 4.23 shows the ME-TFD obtained using the bottom-right rectangle 

selection method. Figure 4.24 shows the ME-TFD obtained using the maximum entropy loss 

rectangle selection method. 
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From the figures below, it appears that the results are better than the results obtained 

using the maximum entropy prior, but do not appear to be as good as the results found using the 

spectrogram prior.  One significant advantage for the results obtained using the MCE-PTFD 

prior is the final TFD satisfies the marginals where the spectrogram results do not. 

 

Table 4.4: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the MCE-PTFD as the prior for the simple chirp signal using several different rectangle 

selection methods. 

 

Method Total Entropy Zero-Points 

Top-Left 3.6977 961 

Top-Right 3.6990 962 

Bottom-Left 3.7005 961 

Bottom-Right 3.6934 961 

Maximum Entropy Loss 3.6993 961 

 

 

Figure 4.20: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the top-left rectangle selection method for the simple chirp signal 
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Figure 4.21: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the top-right rectangle selection method for the simple chirp signal 

 

 

Figure 4.22: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the bottom-left rectangle selection method for the simple chirp signal 
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Figure 4.23: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the bottom-right rectangle selection method for the simple chirp signal 

 

 

Figure 4.24: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the maximum entropy loss rectangle selection method for the simple chirp signal 
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4.2.2 Simple Chirp with Sinusoid Signal 

To further examine using the MCE-PTFD as the prior, we will look at the simple chirp 

with sinusoid signal.  As before, the simple chirp with sinusoid signal is defined as: 

x(n) = c*(e
j n^2/(2N)

 + e
j5 n/4

) 

where c is the normalization constant and N is the length of the signal which is 32 for this 

example.   The initial TFD, P(n, ), is defined as the MCE-PTFD of x(n).  The initial TFD has a 

total entropy of 4.8347 and 64 zero-points.  Figure 4.25 shows the MCE-PTFD that will be used 

as the prior. 

 

 

Figure 4.25: Plot of the initial MCE-PTFD prior for the simple chirp with sinusoid signal 
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The Minimum Entropy algorithm was performed using the following rectangle selection 

methods: top-left method, top-right method, bottom-left method, bottom-right method, and 

maximum entropy loss method.  Table 4.5 shows the final total entropy and number of zero-

points for each method.  Figure 4.26 shows the ME-TFD obtained using the top-left rectangle 

selection method. Figure 4.27 shows the ME-TFD obtained using the top-right rectangle 

selection method. Figure 4.28 shows the ME-TFD obtained using the bottom-left rectangle 

selection method. Figure 4.29 shows the ME-TFD obtained using the bottom-right rectangle 

selection method. Figure 4.30 shows the ME-TFD obtained using the maximum entropy loss 

rectangle selection method. 

From the figures below, it appears that the results are slightly better than the results 

obtained using the maximum entropy prior, but do not appear to be nearly as good as the results 

found using the spectrogram prior although they satisfy the marginals. 

 

Table 4.5: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the MCE-PTFD as the prior for the simple chirp with sinusoid signal using several 

different rectangle selection methods. 

 

Method Total Entropy Zero-Points 

Top-Left 3.3006 963 

Top-Right 3.3395 963 

Bottom-Left 3.3052 963 

Bottom-Right 3.3422 963 

Maximum Entropy Loss 3.3148 963 

 

 



 74 

 

Figure 4.26: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the top-left rectangle selection method for the simple chirp with sinusoid signal 

 

 

Figure 4.27: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the top-right rectangle selection method for the simple chirp with sinusoid signal 
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Figure 4.28: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the bottom-left rectangle selection method for the simple chirp with sinusoid signal 

 

 

Figure 4.29: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the bottom-right rectangle selection method for the simple chirp with sinusoid signal 
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Figure 4.30: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the maximum entropy loss rectangle selection method for the simple chirp with sinusoid signal 

 

4.2.3 Double Chirp Signal 

Finally, we will look at the double chirp signal.  As before, the double chirp signal is 

defined as: 

x(n) = c*(e
j n^2/(2N)

 + e
j (2  - n)^2/(2N)

) 

where c is the normalization constant and N is the length of the signal which is 32 for this 

example.   The initial TFD, P(n, ), is defined as the MCE-PTFD of x(n).  The initial TFD has a 

total entropy of 5.7037 and 0 zero-points.  Figure 4.31 shows the MCE-PTFD that will be used 

as the prior. 
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Figure 4.31: Plot of the initial MCE-PTFD prior for the double chirp signal 

 

The Minimum Entropy algorithm was performed using the following rectangle selection 

methods: top-left method, top-right method, bottom-left method, bottom-right method, and 

maximum entropy loss method.  Table 4.6 shows the final total entropy and number of zero-

points for each method.  Figure 4.32 shows the ME-TFD obtained using the top-left rectangle 

selection method. Figure 4.33 shows the ME-TFD obtained using the top-right rectangle 

selection method. Figure 4.34 shows the ME-TFD obtained using the bottom-left rectangle 

selection method. Figure 4.35 shows the ME-TFD obtained using the bottom-right rectangle 

selection method. Figure 4.36 shows the ME-TFD obtained using the maximum entropy loss 

rectangle selection method. 
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The resulting minimum entropy TFDs for this signal do not appear to be very meaningful 

for any of the rectangle selection methods.  They do not appear to be nearly as good as the 

spectrogram prior results and are about even with the maximum entropy prior results. 

 

Table 4.6: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the MCE-PTFD as the prior for the double chirp signal using several different rectangle 

selection methods. 

 

Method Total Entropy Zero-Points 

Top-Left 3.5865 961 

Top-Right 3.6234 961 

Bottom-Left 3.5621 961 

Bottom-Right 3.5765 961 

Maximum Entropy Loss 3.5491 961 

 

 

Figure 4.32: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the top-left rectangle selection method for the double chirp signal 
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Figure 4.33: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the top-right rectangle selection method for the double chirp signal 

 

 

Figure 4.34: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the bottom-left rectangle selection method for the double chirp signal 
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Figure 4.35: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the bottom-right rectangle selection method for the double chirp signal 

 

 

Figure 4.36: Plot of the Minimum Entropy TFD obtained using the MCE-PTFD as the prior and 

the maximum entropy loss rectangle selection method for the double chirp signal 
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4.2.4 Summary 

Overall, the results from the maximum entropy algorithm using the MCE-PTFD prior 

appear to be better than the results from the maximum entropy prior but not as meaningful as the 

results from the spectrogram prior.  For the chirp signal, the initial TFD is a good representation 

of the signal.  As a result, some of the final TFDs are decent, especially the result from the 

bottom-right method.  For the chirp with sinusoid signal, the chirp information is not as 

prominent as the sinusoidal portion of the signal.  This characteristic seems to be responsible for 

much of the chirp information being lost in the final TFD.  The chirp portion of the signal seems 

to have been moved to the sinusoidal portion.  None of the representations are particularly good 

for this signal.  For the double chirp signal, the initial representation is not smooth along the two 

chirp diagonals.  Thus, the final TFDs also do not have the energy localized along these lines.  

Again, none of the final distributions are very meaningful for this signal. 

Although these distributions do not appear to be as meaningful as the ones obtained using 

the spectrogram prior, a significant advantage of these distributions is they satisfy the time and 

frequency marginals.  If a better initial representation that satisfies the marginals is employed, 

the minimum entropy algorithm may obtain better results while satisfying the marginals. 

4.3 CONCLUSIONS 

From the results, we can see that the prior that is selected has a significant influence on 

the final minimum entropy TFD.  The first prior, the maximum entropy TFD, did not yield 

meaningful results for any of the sample signals and rectangle selection methods that were 
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considered.  From the plots of the initial maximum entropy TFDs, it appears that most of the 

signal information was lost before the minimum entropy algorithm was performed.  The second 

prior, the spectrogram prior, produced significantly better results than the maximum entropy 

prior for each of the signals.  With the spectrogram prior, some of the rectangle selection 

methods produced reasonable representations of the signals.  Unfortunately, the final minimum 

entropy TFDs do not satisfy the time and frequency marginals when this prior is used.  The third 

prior, the MCE-PTFD prior, seemed to produce results somewhere in between the results from 

the maximum entropy and spectrogram priors.  Although the results for the simple chirp signal 

were reasonable, the results were not very good for the two more complex signals. 

The question arises of why the spectrogram produces better results than the other two 

priors.  First, unlike the maximum entropy prior, the spectrogram prior represents the signal and 

maintains the signal information reasonably well.  The minimum entropy algorithm is more 

likely to produce a meaningful representation of the signal if the prior is a meaningful 

representation of the signal.  Second, for the signals under consideration, the spectrogram is 

smooth and has maximum values at the appropriate time and frequency values.  The MCE-PTFD 

is relatively choppy for each signal and does not always have its maximum values at the 

expected places.  Also, although the maximum entropy TFD is smooth, it does not have its 

maximum values at the correct time and frequency values.  Thus, the smoothness and positions 

of the maximum values may have an influence over the effectiveness of the prior.  It would be 

ideal to find a prior that retains the signal information, is smooth, has the maximum values at the 

appropriate locations, and satisfies the marginals. 

The rectangle selection method has a significant effect on the final TFD.  For the 

spectrogram prior, the bottom-left and bottom-right rectangle selection methods produced decent 
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results.  On the other hand, the results from the top-left, top-right, and maximum entropy loss 

rectangle selection methods did not produce results that were very meaningful.  The exact reason 

of why the bottom-left and bottom-right methods produced the best results is unknown.  A 

method that may be good to try is one that accentuates the maximum values in the prior and 

diminishes the lesser values.  This idea will be discussed in following sections. 

Each of the final minimum entropy TFDs appears to have a number of outlier points 

which are defined as spikes of energy at locations where energy is not expected or desired.  

These spikes could be caused by a number of reasons.  First, most of the priors have very few 

zero-points.  This means that there are a number of points that have very small values.  As the 

algorithm runs, it attempts to move energy from lower values to higher values setting the lower 

values to zero.  Thus, some of the spikes could be the sum of all of the near-zero values 

consolidated at one point.  If this is the case, we might be able to either ignore these spikes when 

considering the final representation or find a way to modify the algorithm to systematically 

eliminate the outliers.  The second possible cause of the outliers is energy being moved to 

undesired locations.  This cause would be the direct result of the rectangle selection method.  

This issue will be discussed in detail in later sections. 
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5.0  MINIMUM ENTROPY TFDS: ADVANCED CONCEPTS 

So far, we have examined five relatively simple rectangle selection methods: the four 

brute force methods and the n
th
 maximum entropy loss method.  None of these methodologies 

resulted in consistently meaningful representations.  The two biggest issues with the previous 

methods are outlier spikes and high-energy points being moved to low-energy locations.  The 

rectangle selection methods need to be modified to address these issues. 

The outlier spike issue is mainly caused by summing the energies of a large number of 

near-zero points at a random location.  For example, consider the following rectangle containing 

four near-zero points: 

1 2 

4 3 

 

The minimum entropy algorithm will modify the rectangle to be as follows: 

3 0 

2 5 

 

If the high-energy points are at 100 and a number of low-energy rectangles are summed, some of 

the low-energy points will be equivalent to the high-energy points.  To resolve this issue, the 

rectangle selection method should avoid taking rectangles that have four low-energy points and 
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focus on moving the low-energy points to the high-energy points.  Each rectangle should always 

have at least one high-energy value. 

The issue of moving high-energy points to low-energy locations is generally caused by 

choosing rectangles that have high-energy points on opposite corners of the selected rectangle. 

For example, consider the following rectangle containing two high-energy points on opposite 

corners: 

100 2 

4 95 

 

The minimum entropy algorithm will modify the rectangle to be as follows: 

5 97 

99 0 

 

The result of the algorithm is to move the high-energy values to low-energy locations.  To 

resolve this issue, the rectangle selection method needs to avoid rectangles that have high-energy 

points on opposite corners. 

 This section will focus on more advanced rectangle selection methods that attempt to 

resolve these two issues. 
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5.1 SORTED RECTANGLE SELECTION METHOD 

The first method that will be examined is the sorted rectangle selection method.  The 

sorted rectangle selection method first sorts all of the points in the initial distribution from largest 

energy to smallest energy.  It then takes the largest point and the smallest point and uses them as 

opposite corners of the rectangle if the two points create a valid rectangle.  Next, the algorithm 

takes the largest point and the second smallest point.  It continues taking the largest point with 

the rest of the points in order of increasing energy.  After looping through all of the points with 

the largest point, it takes the second largest point and repeats the process of looping through all 

of the points from lowest energy to highest energy.  The method continues in this fashion until 

all of the points have been used as the initial point.  Once all of the points have been used as the 

initial point, the algorithm starts over again with the largest point.  This process continues until 

none of the rectangles can be reduce any further. 

The idea behind this method is the energy of the near-zero points will be moved to the 

high-energy points.  This method should reduce the number of outlier spikes that are the result of 

adding a large number of near-zero points.  Consequently, the sorted method does not prevent 

the selection of rectangles with high-energy values on opposite corners. 
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5.1.1 Examples 

To evaluate the sorted rectangle selection method, the minimum entropy algorithm was 

performed with this method for the simple chirp signal, the chirp with sinusoid signal, and the 

double chirp signal using spectrogram and MCE-PTFD priors. 

For the simple chirp signal with the spectrogram prior, the initial TFD has a total entropy 

of 5.1572 and 0 zero-points.  The final minimum entropy TFD has a total entropy of 3.4562 and 

961 zero-points.  Figure 5.1 shows the final distribution for the simple chirp signal using the 

sorted rectangle selection method and spectrogram prior. 

For the chirp with sinusoid signal with the spectrogram prior, the initial TFD has a total 

entropy of 5.5954 and 0 zero-points.  The final minimum entropy TFD has a total entropy of 

3.4567 and 961 zero-points.  Figure 5.2 shows the final distribution for the chirp with sinusoid 

signal using the sorted rectangle selection method and spectrogram prior. 

For the double chirp signal with the spectrogram prior, the initial TFD has a total entropy 

of 5.4956 and 0 zero-points.  The final minimum entropy TFD has a total entropy of 3.3850 and 

961 zero-points.  Figure 5.3 shows the final distribution for the double chirp signal using the 

sorted rectangle selection method and spectrogram prior. 

For the simple chirp signal with the MCE-PTFD prior, the initial TFD has a total entropy 

of 5.2584 and 0 zero-points.  The final minimum entropy TFD has a total entropy of 3.6916 and 

961 zero-points.  Figure 5.4 shows the final distribution for the simple chirp signal using the 

sorted rectangle selection method and MCE-PTFD prior. 

For the chirp with sinusoid signal with the MCE-PTFD prior, the initial TFD has a total 

entropy of 4.7352 and 64 zero-points.  The final minimum entropy TFD has a total entropy of 
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3.3004 and 963 zero-points.  Figure 5.5 shows the final distribution for the chirp with sinusoid 

signal using the sorted rectangle selection method and MCE-PTFD prior. 

For the double chirp signal with the MCE-PTFD prior, the initial TFD has a total entropy 

of 5.5150 and 0 zero-points.  The final minimum entropy TFD has a total entropy of 3.5974 and 

961 zero-points.  Figure 5.6 shows the final distribution for the double chirp signal using the 

sorted rectangle selection method and MCE-PTFD prior. 

 

 

Figure 5.1: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the sorted rectangle selection method for the simple chirp signal 
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Figure 5.2: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the sorted rectangle selection method for the chirp with sinusoid signal 

 

 

Figure 5.3: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the sorted rectangle selection method for the double chirp signal 
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Figure 5.4: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the sorted rectangle selection method for the simple chirp signal 

 

 

Figure 5.5: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the sorted rectangle selection method for the chirp with sinusoid signal 
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Figure 5.6: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the sorted rectangle selection method for the double chirp signal 

 

5.1.2 Conclusions 

Although the sorted rectangle selection method eliminates some of the outlier spikes that 

result from summing near-zero points, it does not remove all of these spikes and does nothing to 

prevent high-energy points from being moved to low-energy locations.  As a result, the final 

minimum TFDs still contain a large number of energy spikes at points that should not have much 

energy. 

Also note hat the spectrogram prior appears to produce better results than the MCE-

PTFD prior.  This trend could be due to the fact that the spectrogram has the highest energy 

values at the correct time-frequency locations for the signals under consideration where the 

MCE-PTFD prior does not.  It may be important for the initial TFD to have the property of 



 92 

having the maximum energy values at the correct time-frequency points for the sorted rectangle 

selection method to be effective. 

5.2 MODIFIED SORTED RECTANGLE SELECTION METHOD 

The modified sorted rectangle selection method is similar to the sorted method except it 

does not attempt to find the absolute minimum entropy distribution.  First, the algorithm sorts all 

of the points in the initial distribution from the largest energy value to the smallest energy value.  

It then takes the n highest energy points and the p-n lowest energy points where p is the total 

number of points in the TFD and places them in separate lists.  Next, the algorithm takes the 

largest point in the first list and the smallest point in the second list and uses them as opposing 

corners in the rectangle.  It continues with the largest point in the first list taking all of the points 

in the second list in increasing order.  Afterwards, the method repeats the process that it 

completed for the highest value in the first list for the rest of the values in the first list in 

decreasing order.  Once all of the points in the first list have been considered, the process repeats 

starting with the largest point in the first list.  This continues until none of the rectangles can be 

reduced any further. 

 Note that this method will not result in a true minimum entropy time-frequency 

distribution since all of the possible rectangles will not be considered.  This property may be 

advantageous for signals that require more non-zero points than the minimum entropy TFD will 

contain to accurately represent.  Remember that a true minimum entropy distribution will always 

contain approximately the same number of non-zero points as there are marginal constraints. 
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 Also note that the value of n that is selected will have a profound effect on the resulting 

distribution.  Assuming that the value of n is less than p/2 where p is the total number of points 

in the distribution, smaller values of n will generally produce a final distribution that has fewer 

zero-points and a higher total entropy while larger values of n will generally produce a final 

distribution that has more zero-points and a lower total entropy. 

 It seems reasonable that the value of n should be close to the number of maximum energy 

points for the ideal distribution.  For example, the ideal representation of the 32-point simple 

chirp signal that has been previously considered should have around 32 maximum values.  Thus, 

a reasonable guess for the best value of n might be somewhere around 32.  Conversely, the ideal 

representation of the 32-point chirp with sinusoid and double chirp signals should have around 

64 maximum values.  For these signals, a reasonable guess for the best value of n might be 

somewhere around 64. 

 To evaluate the modified sorted rectangle selection method, we will again consider three 

signals: the simple chirp signal, the chirp with sinusoid signal, and the double chirp signal.  The 

modified sorted rectangle selection method will be employed on all three signals for different 

values of n using both spectrogram and MCE-PTFD priors. 

5.2.1 Simple Chirp Example 

First, the minimum entropy algorithm was performed using the modified sorted rectangle 

selection method with several different values of n for the 32-point simple chirp signal using the 

spectrogram as the prior. The spectrogram prior has a total entropy of 5.1572 and 0 zero-points.  

Table 5.1 shows the total entropy and number of zero-points for the final minimum entropy 

distributions found using the modified sorted rectangle selection method for different values of n.  
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Figures 5.7 – 5.12 show the final minimum entropy TFDs for the modified sorted rectangle 

method for n = 25, 30, 35, 40, 45, and 50. 

 

Table 5.1: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the spectrogram as the prior for the simple chirp signal using the modified sorted rectangle 

selection method for different values of n. 

n Total Entropy Zero-Points 

5 4.8411 227 

10 4.5373 443 

15 4.2879 612 

20 3.9590 765 

25 3.7145 873 

30 3.7455 830 

35 3.7286 838 

40 3.6994 844 

45 3.7414 825 

50 3.6415 893 

 

 

Figure 5.7: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 25 for the simple chirp signal 
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Figure 5.8: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 30 for the simple chirp signal 

 

 

Figure 5.9: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 35 for the simple chirp signal 
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Figure 5.10: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 40 for the simple chirp signal 

 

 

Figure 5.11: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 45 for the simple chirp signal 
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Figure 5.12: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 50 for the simple chirp signal 

 

 

Next, the minimum entropy algorithm was performed using the modified sorted rectangle 

selection method with several different values of n for the 32-point simple chirp signal using the 

MCE-PTFD as the prior. The MCE-PTFD prior has a total entropy of 5.2584 and 0 zero-points.  

Table 5.2 shows the total entropy and number of zero-points for the final minimum entropy 

distributions found using the modified sorted rectangle selection method for different values of n.  

Figures 5.13 – 5.18 show the final minimum entropy TFDs for the modified sorted rectangle 

method for n = 25, 30, 35, 40, 45, and 50. 
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Table 5.2: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the MCE-PTFD as the prior for the simple chirp signal using the modified sorted rectangle 

selection method for different values of n. 

n Total Entropy Zero-Points 

5 5.0093 250 

10 4.7545 421 

15 4.5461 573 

20 4.3145 726 

25 4.1884 810 

30 4.1137 845 

35 4.0240 843 

40 4.0358 839 

45 4.0228 829 

50 3.8886 906 

 

 

 

Figure 5.13: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 25 for the simple chirp signal 
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Figure 5.14: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 30 for the simple chirp signal 

 

 

Figure 5.15: : Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 35 for the simple chirp signal 
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Figure 5.16: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 40 for the simple chirp signal 

 

 

Figure 5.17: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 45 for the simple chirp signal 
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Figure 5.18: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 50 for the simple chirp signal 

 

5.2.2 Chirp with Sinusoid Example 

The minimum entropy algorithm was performed using the modified sorted rectangle 

selection method with several different values of n for the 32-point chirp with sinusoid signal 

using the spectrogram as the prior. The spectrogram prior has a total entropy of 5.5954 and 0 

zero-points.  Table 5.3 shows the total entropy and number of zero-points for the final minimum 

entropy distributions found using the modified sorted rectangle selection method for different 

values of n.  Figures 5.19 – 5.23 show the final minimum entropy TFDs for the modified sorted 

rectangle method for n = 40, 50, 60, 70, and 80. 
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Table 5.3: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the spectrogram as the prior for the chirp with sinusoid signal using the modified sorted 

rectangle selection method for different values of n. 

n Total Entropy Zero-Points 

35 4.1381 780 

40 4.1941 783 

45 3.9712 838 

50 3.8885 834 

55 3.9345 833 

60 3.8014 861 

65 3.8807 846 

70 3.7856 864 

75 3.8926 857 

80 3.6707 876 

 

 

 

Figure 5.19: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 40 for the chirp with sinusoid signal 
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Figure 5.20: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 50 for the chirp with sinusoid signal 

 

 

Figure 5.21: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 60 for the chirp with sinusoid signal 
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Figure 5.22: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 70 for the chirp with sinusoid signal 

 

 

Figure 5.23: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 80 for the chirp with sinusoid signal 
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Next, the minimum entropy algorithm was performed using the modified sorted rectangle 

selection method with several different values of n for the 32-point chirp with sinusoid signal 

using the MCE-PTFD as the prior. The MCE-PTFD prior has a total entropy of 4.7352 and 64 

zero-points.  Table 5.4 shows the total entropy and number of zero-points for the final minimum 

entropy distributions found using the modified sorted rectangle selection method for different 

values of n.  Figures 5.24 – 5.28 show the final minimum entropy TFDs for the modified sorted 

rectangle method for n = 40, 50, 60, 70, and 80. 

 

Table 5.4: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the MCE-PTFD as the prior for the chirp with sinusoid signal using the modified sorted 

rectangle selection method for different values of n. 

n Total Entropy Zero-Points 

35 744 3.7982 

40 850 3.5082 

45 866 3.5629 

50 907 3.4276 

55 853 3.5470 

60 807 3.6384 

65 864 3.4873 

70 849 3.5298 

75 872 3.4694 

80 864 3.4640 
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Figure 5.24: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 40 for the chirp with sinusoid signal 

 

 

Figure 5.25: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 50 for the chirp with sinusoid signal 
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Figure 5.26: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 60 for the chirp with sinusoid signal 

 

 

Figure 5.27: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 70 for the chirp with sinusoid signal 
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Figure 5.28: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 80 for the chirp with sinusoid signal 

 

5.2.3 Double Chirp Example 

The minimum entropy algorithm was performed using the modified sorted rectangle 

selection method with several different values of n for the 32-point double chirp signal using the 

spectrogram as the prior. The spectrogram prior has a total entropy of 5.4956 and 0 zero-points.  

Table 5.5 shows the total entropy and number of zero-points for the final minimum entropy 

distributions found using the modified sorted rectangle selection method for different values of n.  

Figures 5.29 – 5.33 show the final minimum entropy TFDs for the modified sorted rectangle 

method for n = 40, 50, 60, 70, and 80. 
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Table 5.5: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the spectrogram as the prior for the double chirp signal using the modified sorted rectangle 

selection method for different values of n. 

n Total Entropy Zero-Points 

35 710 4.4933 

40 717 4.5079 

45 699 4.5111 

50 807 4.2252 

55 875 3.9780 

60 859 3.9911 

65 876 3.8353 

70 907 3.7232 

75 919 3.6239 

80 936 3.4591 

 

 

 

Figure 5.29: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 40 for the double chirp signal 
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Figure 5.30: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 50 for the double chirp signal 

 

 

Figure 5.31: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 60 for the double chirp signal 
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Figure 5.32: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 70 for the double chirp signal 

 

 

Figure 5.33: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the modified sorted rectangle selection method with n = 80 for the double chirp signal 
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Finally, the minimum entropy algorithm was performed using the modified sorted 

rectangle selection method with several different values of n for the 32-point double chirp signal 

using the MCE-PTFD as the prior. The MCE-PTFD prior has a total entropy of 5.5150 and 0 

zero-points.  Table 5.6 shows the total entropy and number of zero-points for the final minimum 

entropy distributions found using the modified sorted rectangle selection method for different 

values of n.  Figures 5.34 – 5.38 show the final minimum entropy TFDs for the modified sorted 

rectangle method for n = 40, 50, 60, 70, and 80. 

 

Table 5.6: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the MCE-PTFD as the prior for the double chirp signal using the modified sorted rectangle 

selection method for different values of n. 

n Total Entropy Zero-Points 

35 844 3.9945 

40 846 3.9997 

45 845 4.0093 

50 876 3.8542 

55 884 3.8791 

60 876 3.8326 

65 889 3.8102 

70 902 3.7613 

75 925 3.7114 

80 929 3.7201 
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Figure 5.34: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 40 for the double chirp signal 

 

 

Figure 5.35: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 50 for the double chirp signal 
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Figure 5.36: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 60 for the double chirp signal 

 

 

Figure 5.37: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 70 for the double chirp signal 
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Figure 5.38: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the modified sorted rectangle selection method with n = 80 for the double chirp signal 

 

5.2.4 Conclusions 

From the results, it is evident that the modified sorted rectangle method reduces the 

number of outlier spikes, but does not completely eliminate them.  Several of the final minimum 

entropy distributions appear to be quite meaningful for their particular signals. 

The spikes are not completely eliminated for several reasons.  In each case, the value of n 

is 80 or less.  In the initial distributions, there are more than 80 points that are not near-zero 

points.  Although it is impossible to have near-zero points for all four corners of the rectangle, it 

is still possible for opposing corners of the rectangle to have a significant amount of energy.  As 

a result, higher energy values are still moved to low energy locations.  A possible solution for 
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this issue is to add a check that determines if the opposing corners are greater than a certain 

value.  If so, the rectangle should not be minimized.  The additional check should significantly 

reduce the number of outlier spikes. 

The value of n has a significant impact on the final distribution.  As expected, the number 

of zero-points generally increases and the total entropy generally decreases as the value of n 

increases.  In the examples, the best values of n tend to be near the expected number of 

maximum energy points for the TFD of the signal.  For the simple chirp signal, this value is 

around 32.  For the chirp with sinusoid and double chirp signals, the value is around 64 since 

both signals have two frequency components at each time value.  In addition, as n increases past 

the number of expected maximum points, the number of outlier spikes increases.  For very small 

value of n (i.e. between 1-15 for the example signals), the final distributions tend to have n 

isolated spikes and are not significantly different from the initial TFD. 

For the simple chirp signal, the final distributions appear to be decent representations of 

the signal.  The TFD obtained using the spectrogram prior and n = 35 looks especially good.  The 

spectrogram prior generally results in better minimum entropy distributions than the MCE-PTFD 

prior.  This trend could be due to the fact that the maximum values in the spectrogram prior all 

lay along the chirp time-frequency diagonal.  In the MCE-PTFD, the maximum values are not  

always along this diagonal. 

For the simple chirp signal, the final distributions obtained using the spectrogram prior 

appear to be meaningful while the TFDs obtained using the MCE-PTFD prior appear to lose the 

chirp portion of the signal.  The TFDs found using the spectrogram prior and n = 60 and 70 

appear to be especially meaningful.  Again, the spectrogram representations are probably better 

due to the fact that the maximum energy of the initial TFD is concentrated along the chirp 
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diagonal and the sinusoidal frequency.  In the MCE-PTFD prior, the energy along the sinusoidal 

frequency is much greater than the energy along the chirp diagonal.  As a result, the chirp 

diagonal is generally not in the top 100 points of the initial distribution and is moved to the 

sinusoid.  A possible solution to this issue is to split the initial TFD into two separate 

distributions, one containing the chirp portion of the signal and one containing the sinusoid 

portion, and perform the minimum entropy algorithm on each TFD individually. 

For the double chirp signal, the representations appear to be decent, but still contain a 

large number of outlier spikes.  Neither the spectrogram prior nor the MCE-PTFD appears to 

have a strong advantage over the other. 

The modified sorted rectangle selection method does not work well for signals that have 

multiple distinct portions in the frequency domain that are at different energy levels.  As in the 

case for the chirp with sinusoid signal using the MCE-PTFD, the information for the lower 

energy portion of the signal will be lost as it is moved to the higher energy points.  The solution 

for this issue may be to break the initial TFD into different parts, one for each portion of the 

signal.  The algorithm could then be carried out on each TFD and the resulting distributions 

could be combined. 

5.3 SUPER SORTED RECTANGLE SELECTION METHOD 

The super sorted rectangle selection method is a variation of the modified sorted 

rectangle selection method.  As in the modified sorted method, the algorithm sorts all of the 

points in the initial distribution from the largest energy value to the smallest energy value.  Next, 

it takes the n highest energy points and the p-n lowest energy points where p is the total number 
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of points in the TFD and places them in separate lists.  The method then selects rectangles using 

the same pattern as the modified sorted method.  For each rectangle, it performs the following 

two checks.  First, if all four points in the rectangle are less than the n
th
 value, the rectangle will 

be skipped and will not be minimized.  This check should prevent the near-zero points from 

being summed and creating outlier spikes at low-energy points.  Secondly, if either of the two 

opposing corners in the rectangle have both points greater than or equal to the n
th
 energy value, 

the rectangle will be skipped and will not be minimized.  This check should prevent energy from 

being moved from high-energy locations to low-energy locations.  Again, the process continues 

until none of the rectangles that pass the two checks can be minimized any further. 

 Like the modified sorted method, the super sorted rectangle selection method will not 

result in a true minimum entropy time-frequency distribution since all of the possible rectangles 

are not considered.  This property may be advantageous for signals that require more non-zero 

points than the minimum entropy TFD will contain to accurately represent.  Remember that a 

true minimum entropy distribution will always contain approximately the same number of non-

zero points as there are marginal constraints. 

 To evaluate the super sorted rectangle selection method, we will again consider three 

signals: the simple chirp signal, the chirp with sinusoid signal, and the double chirp signal.  The 

super sorted rectangle selection method will be employed on all three signals for different values 

of n using both spectrogram and MCE-PTFD priors. 

5.3.1 Simple Chirp Example 

First, the minimum entropy algorithm was performed using the super sorted rectangle 

selection method with several different values of n for the 32-point simple chirp signal using the 
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spectrogram as the prior. The spectrogram prior has a total entropy of 5.1572 and 0 zero-points.  

Table 5.7 shows the total entropy and number of zero-points for the final minimum entropy 

distributions found using the super sorted rectangle selection method for different values of n.  

Figures 5.39 – 5.44 show the final minimum entropy TFDs for the super sorted rectangle method 

for n = 350, 360, 370, 380, 390, and 400. 

The best results were obtained using large values of n (between 200 and 400).  The 

minimum entropy distributions that resulted from small values of n contained a large number of 

outlier spikes.  Larger values of n resulted in a very small number of outlier spikes and produced 

the most meaningful representations.  This trend occurred because the medium-energy points 

were not included in the high-energy list for small values of n.  Thus, the algorithm treated these 

points as low-energy points and moved them to low-energy locations.  

 

Table 5.7: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the spectrogram as the prior for the simple chirp signal using the super sorted rectangle 

selection method for different values of n. 

n Total Entropy Zero-Points 

350 3.8301 941 

360 3.7184 954 

370 3.6735 950 

380 3.8160 943 

390 3.7361 948 

400 3.8200 944 
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Figure 5.39: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 350 for the simple chirp signal 

 

 

Figure 5.40: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 360 for the simple chirp signal 
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Figure 5.41: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 370 for the simple chirp signal 

 

 

Figure 5.42: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 380 for the simple chirp signal 
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Figure 5.43: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 390 for the simple chirp signal 

 

 

Figure 5.44: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 400 for the simple chirp signal 
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Next, the minimum entropy algorithm was performed using the super sorted rectangle 

selection method with several different values of n for the 32-point simple chirp signal using the 

MCE-PTFD as the prior. The MCE-PTFD prior has a total entropy of 5.2584 and 0 zero-points.  

Table 5.8 shows the total entropy and number of zero-points for the final minimum entropy 

distributions found using the super sorted rectangle selection method for different values of n.  

Figures 5.45 – 5.50 show the final minimum entropy TFDs for the super sorted rectangle method 

for n = 200, 210, 220, 230, 240, and 250. 

As with the spectrogram prior, large values of n (between 150 and 350) produced the best 

distributions.  Using a smaller value of n resulted in a distribution that contained a large number 

of outlier spikes. 

 

Table 5.8: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the MCE-PTFD as the prior for the simple chirp signal using the super sorted rectangle 

selection method for different values of n. 

n Total Entropy Zero-Points 

200 3.7876 953 

210 3.9128 951 

220 3.8570 950 

230 3.8012 958 

240 3.9067 949 

250 3.8242 953 
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Figure 5.45: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 200 for the simple chirp signal 

 

 

Figure 5.46: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 210 for the simple chirp signal 
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Figure 5.47: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 220 for the simple chirp signal 

 

 

Figure 5.48: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 230 for the simple chirp signal 
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Figure 5.49: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 240 for the simple chirp signal 

 

 

Figure 5.50: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 250 for the simple chirp signal 
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5.3.2 Chirp with Sinusoid Example 

Next, the minimum entropy algorithm was performed using the super sorted rectangle 

selection method with several different values of n for the 32-point chirp with sinusoid signal 

using the spectrogram as the prior. The spectrogram prior has a total entropy of 5.5954 and 0 

zero-points.  Table 5.9 shows the total entropy and number of zero-points for the final minimum 

entropy distributions found using the super sorted rectangle selection method for different values 

of n.  Figures 5.51 – 5.56 show the final minimum entropy TFDs for the super sorted rectangle 

method for n = 450, 460, 470, 480, 490, and 500. 

Like before, the best results were obtained using large values of n (between 300 and 500).  

Using a smaller value of n resulted in a large number of outlier spikes. 

 

Table 5.9: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the spectrogram as the prior for the chirp with sinusoid signal using the super sorted 

rectangle selection method for different values of n. 

n Total Entropy Zero-Points 

450 3.8477 947 

460 3.5948 953 

470 3.7236 947 

480 3.7637 952 

490 3.9022 939 

500 3.9319 939 
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Figure 5.51: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 450 for the chirp with sinusoid signal 

 

 

 
Figure 5.52: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 460 for the chirp with sinusoid signal 
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Figure 5.53: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 470 for the chirp with sinusoid signal 

 

 
Figure 5.54: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 480 for the chirp with sinusoid signal 
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Figure 5.55: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 490 for the chirp with sinusoid signal 

 

 

 
Figure 5.56: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 500 for the chirp with sinusoid signal 
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Next, the minimum entropy algorithm was performed using the super sorted rectangle 

selection method with several different values of n for the 32-point chirp with sinusoid signal 

using the MCE-PTFD as the prior. The MCE-PTFD prior has a total entropy of 4.7352 and 64 

zero-points.  Table 5.10 shows the total entropy and number of zero-points for the final 

minimum entropy distributions found using the super sorted rectangle selection method for 

different values of n.  Figures 5.57 – 5.62 show the final minimum entropy TFDs for the super 

sorted rectangle method for n = 250, 260, 270, 280, 290 and 300. 

 

Table 5.10: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the MCE-PTFD as the prior for the chirp with sinusoid signal using the super sorted 

rectangle selection method for different values of n. 

n Total Entropy Zero-Points 

250 4.1502 919 

260 4.1276 919 

270 3.9867 937 

280 4.1065 922 

290 4.1689 917 

300 4.2435 913 
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Figure 5.57: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 250 for the chirp with sinusoid signal 

 

 
Figure 5.58: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 260 for the chirp with sinusoid signal 
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Figure 5.59: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 270 for the chirp with sinusoid signal 

 

 
Figure 5.60: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 280 for the chirp with sinusoid signal 
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Figure 5.61: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 290 for the chirp with sinusoid signal 

 

 
Figure 5.62: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 300 for the chirp with sinusoid signal 
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5.3.3 Double Chirp Example 

Next, the minimum entropy algorithm was performed using the super sorted rectangle 

selection method with several different values of n for the 32-point double chirp signal using the 

spectrogram as the prior. The spectrogram prior has a total entropy of 5.4956 and 0 zero-points.  

Table 5.11 shows the total entropy and number of zero-points for the final minimum entropy 

distributions found using the super sorted rectangle selection method for different values of n.  

Figures 5.63 – 5.68 show the final minimum entropy TFDs for the super sorted rectangle method 

for n = 450, 460, 470, 480, 490, and 500. 

Like before, the best results were obtained using large values of n (between 300 and 500).  

Using a smaller value of n resulted in a large number of outlier spikes that were caused by 

medium-energy points being moved to low-energy locations. 

 

Table 5.11: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the spectrogram as the prior for the double chirp signal using the super sorted rectangle 

selection method for different values of n. 

n Total Entropy Zero-Points 

450 3.9177 936 

460 3.7772 945 

470 3.6137 950 

480 3.5687 948 

490 3.5969 949 

500 3.7854 942 
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Figure 5.63: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 450 for the double chirp signal 

 

 
Figure 5.64: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 460 for the double chirp signal 
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Figure 5.65: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 470 for the double chirp signal 

 

 
Figure 5.66: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 480 for the double chirp signal 
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Figure 5.67: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 490 for the double chirp signal 

 

 
Figure 5.68: Plot of the minimum entropy TFD obtained using the spectrogram as the prior and 

the super sorted rectangle selection method with n = 500 for the double chirp signal 
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Next, the minimum entropy algorithm was performed using the super sorted rectangle 

selection method with several different values of n for the 32-point double chirp signal using the 

MCE-PTFD as the prior. The MCE-PTFD prior has a total entropy of 5.5150 and 0 zero-points.  

Table 5.12 shows the total entropy and number of zero-points for the final minimum entropy 

distributions found using the super sorted rectangle selection method for different values of n.  

Figures 5.69 – 5.74 show the final minimum entropy TFDs for the super sorted rectangle method 

for n = 400, 410, 420, 430, 440, and 450. 

 

Table 5.12: Total entropy and number of zero-points for the minimum entropy TFDs obtained 

using the MCE-PTFD as the prior for the chirp with sinusoid signal using the super sorted 

rectangle selection method for different values of n. 

n Total Entropy Zero-Points 

400 3.9267 947 

410 4.2805 924 

420 4.0181 945 

430 4.3996 918 

440 4.2308 929 

450 4.2989 925 
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Figure 5.69: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 400 for the double chirp signal 

 

 
Figure 5.70: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 410 for the double chirp signal 
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Figure 5.71: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 420 for the double chirp signal 

 

 
Figure 5.72: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 430 for the double chirp signal 
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Figure 5.73: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 440 for the double chirp signal 

 

 
Figure 5.74: Plot of the minimum entropy TFD obtained using the MCE-PTFD as the prior and 

the super sorted rectangle selection method with n = 450 for the double chirp signal 
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5.3.4 Conclusions 

From the resulting distributions, it is evident that the super sorted method can be 

effectively utilized to create highly localized distributions that are meaningful for the signal 

under consideration.  Out of all of the rectangle selection methods that have been considered, the 

super sorted method provided the best representations.  Most of the outlier spikes that existed for 

the previous rectangle selection methods have been diminished or eliminated with the super 

sorted method.  In addition, the results appear to be decent for both the spectrogram and MCE-

PTFD priors.  This indicates that this method will likely work for any prior that is a good 

representation of the signal. 

The results also indicate that the value of n has a profound impact on the effectiveness of 

the super sorted method.  For all of the signals, the most effective values of n tended to be 

between 200 and 500.  The spectrogram prior seemed to work better with higher values of n 

while the MCE-PTFD prior appeared to work better with slightly lower values of n.  For 

example, the best values of n for the simple chirp signal with the spectrogram prior were 

between 350 and 400 while the best values of n for the same signal using the MCE-PTFD prior 

were between 200 and 250.  In addition, the simple chirp signal appeared to work better with 

lower values of n while the simple chirp with sinusoid and double chirp signals worked better 

with higher values of n.  For example, the best values of n for the simple chirp signal with the 

MCE-PTFD prior were between 200 and 250 while the best values of n for the double chirp 

signal using the same prior were between 350 and 400.  This trend is probably due to the fact that 

the double chirp signal contained more high-energy points than the simple chirp signal. 
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As the value of n increased, the number of outlier spikes tended to decrease.  For small 

values of n, the final minimum entropy distributions exhibited a large number of outlier spikes.  

This occurs because the medium-energy points are included in the low-energy list and, as a 

result, can be moved to low-energy locations.  Higher values of n cause the medium-energy 

points to be included in the high-energy list which prevents them from being moved to low-

energy locations.  If n is too large, the initial distribution is not reduced by a significant amount 

and the final TFD is not highly localized.  For example, if the simple chirp signal is reduced 

using the MCE-PTFD prior and super sorted method with n = 900, the final distribution has a 

total entropy of 5.2581 and 373 zero-points.  Also, the final distribution appears to be nearly 

identical to the initial distribution.  Thus, it is important to select a value of n that is not too low 

so that the outlier spikes are prevented and not too high so that the final distribution is highly 

localized. 
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6.0  CONCLUSIONS 

It has been shown that the minimum entropy algorithm can be effectively utilized to 

create highly localized time-frequency distributions that are manifestly positive and satisfy the 

time and frequency marginals.  We have also observed how different rectangle selection methods 

and initial time-frequency distributions can affect the final minimum entropy distribution.  This 

section will analyze the results from the previous sections, draw conclusions from these results, 

and offer additional ideas and questions for future research. 

6.1 RECTANGLE SELECTION METHODS 

The rectangle selection method greatly impacts the effectiveness of the minimum entropy 

algorithm.  The five rectangle selection methods that were initially considered (i.e. the top-left, 

top-right, bottom-left, bottom-right, and n
th
 maximum entropy loss rectangle selection methods) 

produced minimum entropy distributions that contained a large number of outlier spikes and 

were not meaningful representations for the signals under consideration regardless of the prior 

that was employed.  These methods cannot be used to create correct representations of signals in 

the time-frequency domain.  The sorted method also did not create consistently meaningful 

representations and also cannot be effectively utilized to create decent minimum entropy TFDs.  

The final two methods that were considered, the modified sorted and super sorted rectangle 
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selection methods, appeared to create very good representations with very few outlier spikes.  

These methods can be used to create highly localized time-frequency distributions that reflect the 

signal characteristics. 

Next, we will define a true minimum entropy rectangle selection method as one that 

attempts to minimize every rectangle in the initial distribution.  A minimum entropy rectangle 

selection method that is not true will be referred to as a partial minimum entropy rectangle 

selection method.  Thus, the top-left, top-right, bottom-left, bottom-right, n
th

 maximum loss, and 

sorted rectangle selection methods are all true rectangle selection methods.  The modified sorted 

and super sorted rectangle selection methods are both partial rectangle selection methods since 

they exclude some of the rectangles from the minimization process. 

For true minimum entropy rectangle selection methods, the number of non-zero points 

will generally be reduced to approximately the number of marginal constraints.  For all of the 

signals, true rectangle selection methods, and priors that were examined in this thesis, the final 

number of non-zero points was always in the vicinity of 64 which was the total number of time 

and frequency marginal constraints.  As previously noted, the signal under consideration may 

require more or fewer non-zero points for it to be accurately represented.  Thus, it may not be 

possible to obtain true minimum entropy distributions that adequately represent the signal for 

many signals.  The algorithm can be modified to use a partial minimum entropy rectangle 

selection method so that the final distribution has more non-zero points.  The results 

demonstrated how partial rectangle selection methods such as the modified sorted and super 

sorted methods can lead to more non-zero points and better overall representations of the signals. 

The rectangle selection method also determines the presence of outlier spikes.  

Remember that the outlier spikes are generally created by two distinct causes: summing many 
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near-zero points and moving high-energy points to low-energy locations by minimizing 

rectangles that have high-energy values on opposing corners.  All of the true minimum entropy 

rectangle selection methods resulted in a large number of outlier spikes.  These methods do not 

account for the two cases that cause these spikes.  As a result, the final minimum entropy TFDs 

are often not very meaningful.  The rectangle selection methods that account for the outlier 

causes can be used to create consistently meaningful representations of the signal. 

Since the true minimum entropy rectangle selection methods do not produce the best 

results, it is very unlikely that the absolute minimum entropy distribution for the signal would be 

a strong representation.  Thus, it is probably fruitless to attempt to find the absolute minimum 

entropy TFD for a signal since an infinite number of possible minimum entropy TFDs exist and 

it would most likely not be a very good result. 

6.2 PRIORS 

The initial TFD or prior that is selected also has a profound influence on the final 

minimum entropy time-frequency distribution.  In the initial examples, the maximum entropy 

prior produced nearly meaningless results for all of the signals and rectangle selection methods.  

Since this distribution makes the fewest assumptions about the signal, much of the signal 

information is lost.  When this prior is used with the minimum entropy algorithm, most of the 

signal information is lost before the iterative process begins and the algorithm does not have 

much of a chance of producing a meaningful distribution.  The spectrogram and MCE-PTFD 

priors produced markedly better results than the maximum entropy TFD.  For these priors, most 
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of the signal information is prominent in the distributions.  Therefore, the initial TFD must be a 

reasonable representation of the signal for the minimum entropy algorithm to be effective. 

In addition, the final minimum entropy TFD exhibits the same marginal and finite 

support properties as the initial TFD.  Since the maximum entropy and MCE-PTFD priors 

satisfied the time and frequency marginals and contained strong finite support, the final TFDs 

created using these priors also had these properties.  Conversely, the spectrogram prior did not 

satisfy either marginal and did not have any finite support which resulted in minimum entropy 

distributions without these properties.  Hence, if it is desired that the final distribution have 

certain marginal and finite support characteristics, the prior that is employed must have the same 

characteristics. 

The smoothness of the initial TFD and the location of the maximum energy values also 

seem to have an effect of the resulting distribution.  For the signals considered in this thesis, 

smoother initial TFDs appeared to produce better final distributions.  For example, the 

spectrogram tended to give slightly better results than the MCE-PTFD.  This conclusion may not 

be accurate for other signals and rectangle selection methods.  Also, the initial TFDs that 

contained the maximum energy values at the appropriate time-frequency locations produced 

better results than ones that did not.  For example, the maximum entropy prior did not contain 

the correct maximum values and resulted in minimum entropy distributions that were not 

accurate.  On the other hand, the spectrogram and MCE-PTFD priors did contain the correct 

maximum energy values and produced much more meaningful representations.  It can be 

concluded that the best prior is one that is relatively smooth and has its maximum energy points 

at the correct time-frequency values. 
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6.3 AREAS FOR ADDITIONAL RESEARCH 

Thus far, the minimum entropy algorithm is in its nascent stage and has not been fully 

investigated.  This thesis is one of the initial explorations into the topic.  As such, a number of 

questions and research areas exist regarding the minimum entropy algorithm that require further 

analysis. 

First, the algorithm needs to be tested with other signals.  So far, the algorithm has only 

been used on three relatively simple synthetic signals.  These signals do not provide a good 

indication for how the algorithm will work on signals that contain added complexity such as the 

addition of noise or many frequency components.  The algorithm needs to be tested with other, 

more complex synthetic and real-world signals to fully determine its effectiveness. 

Secondly, only a handful of rectangle selection methods have been proposed and 

analyzed.  Other rectangle selection methods could exist that may provide superior results.  

Research needs to be conducted to determine if other constraints or criteria exist that will lead to 

better, more effective rectangle selection methods.  Also, variations on existing rectangle 

selection methods should be considered.  An example of a variation is splitting an initial 

distribution into strips or squares and performing the algorithm on each strip or square.  This 

approach may work well for longer signals or signals that have distinct frequency components. 

Thirdly, this thesis only considered three initial TFDs for the minimum entropy 

algorithm: the maximum entropy TFD, the spectrogram, and the MCE-PTFD.  Other priors could 

exist that may result in better, more meaningful distributions.  Additional research needs to be 

completed to find more effective priors for the algorithm. 

So far, the only measure of entropy that has been considered is the Shannon entropy.  

Another measure of entropy, such as the Renyi entropy, may provide better results.  Also, using 
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the Shannon entropy limits the distribution to using all positive values.  A different definition of 

entropy may remove this limitation. 

In addition, the area of signal noise has not been considered in conjunction with the 

minimum entropy algorithm.  Would signal noise cause major spikes in the final distribution?  If 

the energy of the noise is significantly less than the energy of the signal, could the noise be 

completely eliminated if the super sorted rectangle selection method is used?  These areas 

require additional research to fully understand. 

Algorithm implementation is another area that requires some research.  Currently, the 

algorithm is somewhat inefficient and takes a long time to complete.  Research needs to be 

completed to determine ways to both optimize and parallelize the algorithm. 

The energy values of the final minimum entropy TFD do not accurately represent the 

actual energy values at each time-frequency point.  The final values depend strongly on the 

initial distribution and the minimization order.  Additional research needs to be completed to 

determine if any meaning can be derived from the energy values in the minimum entropy TFDs.  

The ultimate goal would be to find a prior/rectangle selection method combination that creates an 

accurate final distribution. 

Finally, the application aspect of the minimum entropy algorithm has not yet been 

examined.  Research needs to be completed to determine the applications that can benefit from 

this algorithm.  Due to the length of time required to complete the algorithm, this method is not 

useful for real-time applications.  On the other hand, it may be useful for creating highly 

localized, proper TFDs for applications that are not real-time.  
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APPENDIX A 

MATLAB CODE 

 This appendix contains the Matlab scripts used to generate the results in this thesis. 

A.1 SCRIPT TO IMPLEMENT MAXIMUM ENTROPY ALGORITHM USING 

MAXIMUM ENTROPY PRIOR 

% Paul Bradley 
% Thesis Project - Maximum Entropy TFD as prior 
  
clear all; 
  
N = 32; 
n = 0:N-1; 
  
W = N; 
w = linspace(0,2*pi,W); 
  
% Chirp signal: 
x = exp((j*pi*n.^2)/(2*N)); 
  
% Chirp with sinusoid signal: 
% x = exp((j*pi*n.^2)/(2*N)) + exp(j*5*pi*n/4); 
  
% Double chirp signal: 
% x = exp((j*pi*n.^2)/(2*N)) + exp((j*pi*(pi/2 - n.^2))/(2*N)); 
  
% Normalize input signal 
x = x/sqrt(sum(abs(x).^2)); 
  
% Plot normalized input signal 
figure(1) 
plot(n,real(x)); 
xlabel('n'); 
ylabel('Real Part of Normalized x[n]'); 
title('Plot of real part of normalized x[n] vs. n'); 
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% Determine spectrum of the signal, normalize spectrum 
xw = fft(x,W); 
xw = xw/sqrt(sum(abs(xw).^2)); 
  
% Plot spectrum 
figure(2) 
plot(w,real(xw)); 
xlabel('w'); 
ylabel('Real Part of X[w]'); 
title('Plot of real part of X[w] vs. w'); 
  
% Calculate spectrogram 
[S,F,T] = basic_spectrogram(x,16); 
S = abs(S); 
  
figure(3)    
mesh(F*pi,T,S); 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of the spectrogram of x[n]'); 
  
% Calculate P = |x(t)|^2 * |X(w)|^2 
P_init = (abs(x).^2)'*(abs(xw).^2); 
  
% Plot initial TFD 
figure(6)    
mesh(w,n,P_init) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of initial P(n,w) = |x(t)|^2 * |X(w)|^2'); 
pause(1); 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'topleft'); 
figure(7) 
mesh(w,n,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Top Left Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'topright'); 
figure(8) 
mesh(w,n,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Top Right Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'bottomleft'); 
figure(9) 
mesh(w,n,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Bottom Left Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
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[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'bottomright'); 
figure(10) 
mesh(w,n,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Bottom Right Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
for idx = 100:100 
    pause(1); 
    % Find minimum entropy TFD 
    [P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'maxloss',idx); 
     
    idx 
    start_z 
    start_e 
    end_z 
    end_e 
  
    figure(10+idx) 
    mesh(w,n,P) 
    xlabel('w (in radians)'); 
    ylabel('n'); 
    zlabel('energy'); 
    title(sprintf('Plot of minimum entropy TFD P(n,w): Maximum Loss, Depth = %d',idx)); 
end 
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A.2 SCRIPT TO IMPLEMENT MAXIMUM ENTROPY ALGORITHM USING 

SPECTROGRAM PRIOR 

% Paul Bradley 
% Thesis Project - Spectrogram as prior 
  
clear all; 
  
N = 32; 
n = 0:N-1; 
  
W = N; 
w = linspace(0,2*pi,W); 
  
% Chirp signal: 
% x = exp((j*pi*n.^2)/(2*N)); 
  
% Chirp with sinusoid signal: 
x = exp((j*pi*n.^2)/(2*N)) + exp(j*5*pi*n/4); 
  
% Double chirp signal: 
% x = exp((j*pi*n.^2)/(2*N)) + exp((j*pi*(pi/2 - n.^2))/(2*N)); 
  
% Normalize input signal 
x = x/sqrt(sum(abs(x).^2)); 
  
% Plot normalized input signal 
figure(1) 
plot(n,real(x)); 
xlabel('n'); 
ylabel('Real Part of Normalized x[n]'); 
title('Plot of real part of normalized x[n] vs. n'); 
  
% Calculate spectrogram 
[S,F,T] = basic_spectrogram(x,16); 
P_init = abs(S); 
  
figure(3)    
mesh(F*pi,T,P_init); 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of initial TFD, P(n,w) = spectrogram(x(t))'); 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'topleft'); 
figure(7) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Top Left Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'topright'); 
figure(8) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
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ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Top Right Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'bottomleft'); 
figure(9) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Bottom Left Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'bottomright'); 
figure(11) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Bottom Right Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'center'); 
figure(12) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Center Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'sorted'); 
figure(10) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Sorted Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
for idx = 450:10:500 
    [P,start_z,start_e,end_z(idx),end_e(idx)] = min_entropy_tfd(P_init,'supersorted',idx); 
    figure(300+idx) 
    mesh(F*pi,T,P) 
    xlabel('w (in radians)'); 
    ylabel('n'); 
    zlabel('energy'); 
    title(sprintf('Plot of minimum entropy TFD P(n,w): Super-Sorted Method, n = %d',idx)); 
  
    idx 
    start_z 
    start_e 
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    end_z 
    end_e 
end 
  
for idx = 95:5:145 
    [P,start_z,start_e,end_z(idx),end_e(idx)] = min_entropy_tfd(P_init,'modifiedsorted',idx); 
    figure(200+idx) 
    mesh(F*pi,T,P) 
    xlabel('w (in radians)'); 
    ylabel('n'); 
    zlabel('energy'); 
    title(sprintf('Plot of minimum entropy TFD P(n,w): Modified Sorted Method, n = %d',idx)); 
  
    idx 
    start_z 
    start_e 
    end_z 
    end_e 
end 
  
for idx = 125:125 
    pause(1); 
    % Find minimum entropy TFD 
    [P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'maxloss',idx); 
     
    idx 
    start_z 
    start_e 
    end_z 
    end_e 
  
    figure(10+idx) 
    mesh(F*pi,T,P) 
    xlabel('w (in radians)'); 
    ylabel('n'); 
    zlabel('energy'); 
    title(sprintf('Plot of minimum entropy TFD P(n,w): Maximum Loss, Depth = %d',idx)); 
end 
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A.3 SCRIPT TO IMPLEMENT MAXIMUM ENTROPY ALGORITHM USING MCE-

PTFD PRIOR 

% Paul Bradley 
% Thesis Project - MCE-PTFD as prior 
  
clear all; 
  
% *********************************************************** 
% Section: Original signal 
  
N = 32; 
n = 0:N-1; 
  
W = N; 
w = linspace(0,2*pi,W); 
  
% Chirp signal: 
x = exp((j*pi*n.^2)/(2*N)); 
  
% Chirp with sinusoid signal: 
% x = exp((j*pi*n.^2)/(2*N)) + exp(j*5*pi*n/4); 
  
% Double chirp signal: 
% x = exp((j*pi*n.^2)/(2*N)) + exp((j*pi*(pi/2 - n.^2))/(2*N)); 
  
% Normalize input signal 
x = x/sqrt(sum(abs(x).^2)); 
  
% Plot normalized input signal 
figure(1) 
plot(n,real(x)); 
xlabel('n'); 
ylabel('Real Part of Normalized x[n]'); 
title('Plot of real part of normalized x[n] vs. n'); 
  
% % Calculate signal energy 
% x_energy = sum(abs(x).^2); 
%  
% % Determine spectrum of the signal, normalize spectrum 
% xw = fft(x,W); 
% xw = xw/sqrt(sum(abs(xw).^2)); 
%  
% % Find time, frequency marginals 
% tm = abs(x).^2; 
% fm = abs(xw).^2; 
%  
% % Plot time marginal 
% figure(2)    
% plot(n,tm); 
% xlabel('n'); 
% ylabel('Time marginal of x(n)'); 
% title('Plot of time marginal of x(n)'); 
%  
% % Plot frequency marginal 
% figure(3)    
% plot(w,fm); 
% xlabel('w (in radians)'); 
% ylabel('Freqency marginal of x(n)'); 
% title('Plot of frequency marginal of x(n)'); 
% *********************************************************** 
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% % *********************************************************** 
% % Section: Initial prior 
%  
% % Calculate spectrogram, nomalize it to signal energy 
% [S,F,T] = paulSpectrogram(x,5,0.5); 
% prior = abs(S').^2; 
% prior = x_energy*prior/sum(sum(prior)); 
%  
% figure(4)    
% mesh(F*pi,T,prior); 
% xlabel('w (in radians)'); 
% ylabel('n'); 
% zlabel('energy'); 
% title('Plot of prior spectrogram for mce-ptfd'); 
%  
% % Find time, frequency marginals of prior 
% prior_tm = sum(abs(prior').^2); 
% prior_fm = sum(abs(prior).^2); 
%  
% % Plot time marginal 
% figure(5) 
% plot(T,prior_tm); 
% xlabel('n'); 
% ylabel('Time marginal for prior'); 
% title('Plot of time marginal for prior'); 
%  
% % Plot frequency marginal 
% figure(6) 
% plot(w,prior_fm); 
% xlabel('w'); 
% ylabel('Frequency marginal for prior'); 
% title('Plot of frequency marginal for prior'); 
% % *********************************************************** 
%  
% % *********************************************************** 
% % Section: Initial marginals 
%  
% % Calculate time marginal, normalize it 
% tmi = abs(x).^2; 
% tmi = x_energy*tmi/sum(tmi); 
%  
% % Calculate frequency marginal, normalize it 
% fmi = abs(xw).^2; 
% fmi = x_energy*fmi/sum(fmi); 
%  
% % Plot time marginal 
% figure(7) 
% plot(n,tmi); 
% xlabel('n'); 
% ylabel('Time marginal for mce_ptfd algorithm'); 
% title('Plot of time marginal for mce_ptfd algorithm'); 
%   
% % Plot frequency marginal 
% figure(8) 
% plot(w,fmi); 
% xlabel('w'); 
% ylabel('Frequency marginal for mce_ptfd algorithm'); 
% title('Plot of frequency marginal for mce_ptfd algorithm'); 
% % *********************************************************** 
  
% *********************************************************** 
% Section: MCE-PTFD 
  
% Find Minimum Cross Entropy PTFD 
[ptfd,F,T] = basic_mce_ptfd(x); 
  
% Plot Minimum Cross Entropy PTFD 
figure(9) 
mesh(F*pi,T,ptfd); 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
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title('Plot of ptfd, P(n,w) = mce-ptfd(x(t))'); 
  
% % Find time, frequency marginals 
% tm = sum(abs(ptfd')); 
% fm = sum(abs(ptfd)); 
%  
% % Plot time marginal 
% figure(10) 
% plot(n,tm); 
% xlabel('n'); 
% ylabel('Time marginal of mce-ptfd'); 
% title('Plot of time marginal of mce-ptfd'); 
%  
% % Plot frequency marginal 
% figure(11) 
% plot(w,fm); 
% xlabel('w'); 
% ylabel('Frequency marginal of mce-ptfd'); 
% title('Plot of frequency marginal of mce-ptfd'); 
% *********************************************************** 
  
% *********************************************************** 
  
P_init = ptfd; 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'topleft'); 
figure(12) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Top Left Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'topright'); 
figure(13) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Top Right Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'bottomleft'); 
figure(14) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Bottom Left Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'bottomright'); 
figure(15) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Bottom Right Algorithm'); 
  
start_z 
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start_e 
end_z 
end_e 
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'center'); 
figure(16) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Center Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
  
[P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'sorted'); 
figure(17) 
mesh(F*pi,T,P) 
xlabel('w (in radians)'); 
ylabel('n'); 
zlabel('energy'); 
title('Plot of minimum entropy TFD P(n,w): Sorted Algorithm'); 
  
start_z 
start_e 
end_z 
end_e 
  
for idx = 900:900 
    [P,start_z,start_e,end_z(idx),end_e(idx)] = min_entropy_tfd(P_init,'supersorted',idx); 
    figure(300+idx) 
    mesh(F*pi,T,P) 
    xlabel('w (in radians)'); 
    ylabel('n'); 
    zlabel('energy'); 
    title(sprintf('Plot of minimum entropy TFD P(n,w): Super-Sorted Method, n = %d',idx)); 
  
    idx 
    start_z 
    start_e 
    end_z 
    end_e 
end 
  
for idx = 35:5:80 
    [P,start_z,start_e,end_z(idx),end_e(idx)] = min_entropy_tfd(P_init,'modifiedsorted',idx); 
    figure(200+idx) 
    mesh(F*pi,T,P) 
    xlabel('w (in radians)'); 
    ylabel('n'); 
    zlabel('energy'); 
    title(sprintf('Plot of minimum entropy TFD P(n,w): Modified Sorted Method, n = %d',idx)); 
  
    idx 
    start_z 
    start_e 
    end_z 
    end_e 
end 
  
for idx = 100:100 
    pause(1); 
    % Find minimum entropy TFD 
    [P,start_z,start_e,end_z,end_e] = min_entropy_tfd(P_init,'maxloss',idx); 
     
    idx 
    start_z 
    start_e 
    end_z 
    end_e 
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    figure(20+idx) 
    mesh(F*pi,T,P) 
    xlabel('w (in radians)'); 
    ylabel('n'); 
    zlabel('energy'); 
    title(sprintf('Plot of minimum entropy TFD P(n,w): Maximum Loss, Depth = %d',idx)); 
end 
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A.4 MATLAB FILE: CALC_ZERO_POINTS.M 

function [z] = calc_zero_points(P) 
% Author: Paul Bradley 
% 
% Finds the number of zeros in the passed matrix 
% 
% Parameters: 
%   z       - returns number of zeros in matrix 
%   P       - matrix to check 
  
[rows,cols] = size(P); 
  
z = 0; 
  
for i = 1:rows 
    for j = 1:cols 
        if P(i,j) < 10^-17 
            z = z+1; 
        end 
    end 
end 
 

A.5 MATLAB FILE: CALC_TOTAL_ENTROPY.M 

function [entropy] = calc_total_entropy(P) 
% Author: Paul Bradley 
% 
% Finds the total Shannon entropy of the passed matrix 
% 
% Parameters: 
%   entropy - returns the entropy of the matrix 
%   P       - matrix to check 
  
[rows,cols] = size(P); 
  
entropy = 0; 
  
for i = 1:rows 
    for j = 1:cols 
        entropy = entropy + calc_entropy(P(i,j)); 
    end 
end 
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A.6 MATLAB FILE: CALC_ ENTROPY.M 

function [entropy] = calc_entropy(P) 
% Author: Paul Bradley 
% 
% Finds the Shannon entropy of the passed value, vector, or matrix 
% 
% Parameters: 
%   entropy - returns the entropy of the matrix (same size as P) 
%   P       - value, vector, or matrix for which to calculate the entropy 
  
% Determine number of rows, columns in P 
[rows,cols] = size(P); 
  
% Init entropy matrix 
entropy = zeros(rows,cols); 
  
% For each entry in P matrix, calculate entropy 
for i = 1:rows 
    for j = 1:cols 
        if P(i,j) > 0 
            entropy(i,j) = -P(i,j).*log(P(i,j)); 
        end 
    end 
end 
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A.7 MATLAB FILE: MIN_ENTROPY_TFD.M 

function [P,s_z,s_ent,e_z,e_ent] = min_entropy_tfd(P,type,depth) 
% Author: Paul Bradley 
% 
% Finds the maximum entropy time-frequency distribution for 
% the input signal 
% 
% Inputs: 
%   P - initial prior matrix to minimize 
%   type - type of minimum entropy TFD 
%          maxloss: nth Maximum Loss method 
%          topleft: Top-Left method 
%          topright: Top-Right method 
%          bottomleft: Bottom-Left method 
%          bottomright: Bottom-Right method 
%          modifiedsorted: Modified Sorted method 
%          sorted: Sorted method 
%          supersorted: Super Sorted method 
%   depth - Used with 'maxloss', 'modifiedsorted', and 'supersorted' 
%           methods 
% 
% Output: 
%   P - minimum entropy TFD 
%   s_z - start number of zero-points 
%   s_ent - start total entropy 
%   e_z - end number of zero-points 
%   e_ent - end total entropy 
  
% Calculate initial zero-points, entropy 
s_z = calc_zero_points(P); 
s_ent = calc_total_entropy(P); 
  
if strcmp(type,'maxloss') == true 
    [P] = min_entropy_max_loss(P,depth); 
elseif strcmp(type,'topleft') == true 
    [P] = min_entropy_topleft(P); 
elseif strcmp(type,'topright') == true 
    [P] = min_entropy_topright(P); 
elseif strcmp(type,'bottomleft') == true 
    [P] = min_entropy_bottomleft(P); 
elseif strcmp(type,'bottomright') == true 
    [P] = min_entropy_bottomright(P); 
elseif strcmp(type,'modifiedsorted') == true 
    [P] = min_entropy_modified_sorted(P,depth); 
elseif strcmp(type,'sorted') == true 
    [P] = min_entropy_sorted(P); 
elseif strcmp(type,'supersorted') == true 
    [P] = min_entropy_super_sorted(P,depth); 
end 
  
e_z = calc_zero_points(P); 
e_ent = calc_total_entropy(P); 
  
end 
  
  
function [P] = min_entropy_max_loss(P,depth) 
    e = calc_entropy(P); 
    [L,D] = create_loss_matrix(P,e); 
  
    last_z = 0; 
    count = 0; 
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    [loss,d,n1,w1,n2,w2] = find_maximum_loss(P,L,D,depth); 
    while loss > 0       
        P(n1,w1) = P(n1,w1) - d; 
        P(n1,w2) = P(n1,w2) + d; 
        P(n2,w1) = P(n2,w1) + d; 
        P(n2,w2) = P(n2,w2) - d; 
  
        e(n1,w1) = calc_entropy(P(n1,w1)); 
        e(n1,w2) = calc_entropy(P(n1,w2)); 
        e(n2,w1) = calc_entropy(P(n2,w1)); 
        e(n2,w2) = calc_entropy(P(n2,w2)); 
  
        [L,D] = update_loss_matrix(P,e,L,D,n1,w1,n2,w2); 
  
        % Prevent infinite loop 
        z = calc_zero_points(P); 
        if z == last_z 
            count = count + 1; 
        else 
            count = 0; 
            last_z = z; 
        end 
  
        if count > 5000 
            break; 
        end 
  
        [loss,d,n1,w1,n2,w2] = find_maximum_loss(P,L,D,depth); 
    end 
end 
  
function [P] = min_entropy_topleft(P) 
    [N,W] = size(P); 
  
    e = calc_entropy(P); 
  
    i = 0; 
    change = true; 
    while change == true && i <= 500 
        change = false; 
        for n1 = 1:N-1 
            for n2 = n1+1:N 
                for w1 = 1:W-1 
                    for w2 = w1+1:W 
                        [P,e,change] = do_entropy_loss(P,e,change,n1,w1,n2,w2); 
                    end 
                end 
            end 
        end 
  
        i = i+1; 
    end 
end 
  
function [P] = min_entropy_topright(P) 
    [N,W] = size(P); 
  
    e = calc_entropy(P); 
  
    i = 0; 
    change = true; 
    while change == true && i <= 500 
        change = false; 
        for n1 = N:-1:2 
            for n2 = n1-1:-1:1 
                for w1 = 1:W-1 
                    for w2 = w1+1:W 
                        [P,e,change] = do_entropy_loss(P,e,change,n1,w1,n2,w2); 
                    end 
                end 
            end 
        end 
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        i = i+1; 
    end 
end 
  
function [P] = min_entropy_bottomleft(P) 
    [N,W] = size(P); 
  
    e = calc_entropy(P); 
  
    i = 0; 
    change = true; 
    while change == true && i <= 500 
        change = false; 
        for n1 = 1:N-1 
            for n2 = n1+1:N 
                for w1 = W:-1:2 
                    for w2 = w1-1:-1:1 
                        [P,e,change] = do_entropy_loss(P,e,change,n1,w1,n2,w2); 
                    end 
                end 
            end 
        end 
  
        i = i+1; 
    end 
end 
  
function [P] = min_entropy_bottomright(P) 
    [N,W] = size(P); 
  
    e = calc_entropy(P); 
  
    i = 0; 
    change = true; 
    while change == true && i <= 500 
        change = false; 
        for n1 = N:-1:2 
            for n2 = n1-1:-1:1 
                for w1 = W:-1:2 
                    for w2 = w1-1:-1:1 
                        [P,e,change] = do_entropy_loss(P,e,change,n1,w1,n2,w2); 
                    end 
                end 
            end 
        end 
  
        i = i+1; 
    end 
end 
  
function [P] = min_entropy_modified_sorted(P,depth) 
    [N,W] = size(P); 
    num_points = N*W; 
     
    [sort_n,sort_w] = sort_points(P); 
     
    e_line = P(sort_n(depth),sort_w(depth)); 
    P_init = P; 
     
    e = calc_entropy(P); 
  
    count = 0; 
    change = true; 
    while change == true && count <= 40 
        change = false; 
        for idx = 1:depth 
            n1 = sort_n(idx); 
            w1 = sort_w(idx); 
  
            for idx2 = num_points:-1:depth 
                n2 = sort_n(idx2); 
                w2 = sort_w(idx2); 
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                if n1 == n2 || w1 == w2 
                    continue; 
                elseif P_init(n1,w1) >= e_line && P_init(n2,w2) >= e_line 
                    continue; 
                elseif P_init(n1,w2) >= e_line && P_init(n2,w1) >= e_line 
                    continue; 
                elseif P_init(n1,w1) < e_line && P_init(n2,w2) < e_line && P_init(n1,w2) < e_line 
&& P_init(n2,w1) < e_line 
                    continue;    
                end 
  
                [P,e,change] = do_entropy_loss(P,e,change,n1,w1,n2,w2); 
            end 
        end 
  
        count = count + 1; 
    end 
end 
  
function [P] = min_entropy_sorted(P) 
    [N,W] = size(P); 
    num_points = N*W; 
     
    [sort_n,sort_w] = sort_points(P); 
     
    e = calc_entropy(P); 
  
    count = 0; 
    change = true; 
    while change == true && count <= 40 
        change = false; 
        for idx = 1:num_points 
            n1 = sort_n(idx); 
            w1 = sort_w(idx); 
  
            for idx2 = num_points:-1:1 
                n2 = sort_n(idx2); 
                w2 = sort_w(idx2); 
  
                if n1 == n2 || w1 == w2 
                    continue; 
                end 
  
                [P,e,change] = do_entropy_loss(P,e,change,n1,w1,n2,w2); 
            end 
        end 
  
        count = count + 1; 
    end 
end 
  
function [P] = min_entropy_super_sorted(P,depth) 
    [N,W] = size(P); 
    num_points = N*W; 
     
    [sort_n,sort_w] = sort_points(P); 
     
    e_line = P(sort_n(depth),sort_w(depth)); 
    P_init = P; 
     
    e = calc_entropy(P); 
  
    count = 0; 
    change = true; 
    while change == true && count <= 30               
        for idx = 1:num_points 
            n1 = sort_n(idx); 
            w1 = sort_w(idx); 
  
            for idx2 = num_points:-1:1 
                n2 = sort_n(idx2); 
                w2 = sort_w(idx2); 
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                if n1 == n2 || w1 == w2 
                    continue; 
                elseif P_init(n1,w1) >= e_line && P_init(n2,w2) >= e_line 
                    continue; 
                elseif P_init(n1,w2) >= e_line && P_init(n2,w1) >= e_line 
                    continue; 
                elseif P_init(n1,w1) < e_line && P_init(n2,w2) < e_line && P_init(n1,w2) < e_line 
&& P_init(n2,w1) < e_line 
                    continue;    
                end 
  
                [P,e,change] = do_entropy_loss(P,e,change,n1,w1,n2,w2); 
            end 
        end 
  
        count = count + 1; 
    end 
end 
  
function [sort_n,sort_w] = sort_points(P) 
    [N,W] = size(P); 
    num_points = N*W; 
     
    sort_p = zeros(1,num_points); 
    sort_n = zeros(1,num_points); 
    sort_w = zeros(1,num_points); 
     
    for n = 1:N 
        for w = 1:W 
            value = P(n,w); 
             
            idx = 1; 
            while idx <= num_points 
                if sort_p(idx) == 0 || value >= sort_p(idx) 
                    sort_p(idx:num_points) = [value sort_p(idx:num_points-1)]; 
                    sort_n(idx:num_points) = [n sort_n(idx:num_points-1)]; 
                    sort_w(idx:num_points) = [w sort_w(idx:num_points-1)]; 
                    break; 
                end 
                idx = idx + 1; 
            end 
        end 
    end 
end 
  
function [P,e,change] = do_entropy_loss(P,e,change,n1,w1,n2,w2) 
    e_before = e(n1,w1) + e(n1,w2) + e(n2,w1) + e(n2,w2); 
  
    d1 = min([P(n1,w1),P(n2,w2)]); 
    if abs(d1) > 10^-17 
        ed = calc_entropy([P(n1,w1)-d1 P(n1,w2)+d1 P(n2,w1)+d1 P(n2,w2)-d1]); 
        e_after1 = ed(1) + ed(2) + ed(3) + ed(4); 
        loss1 = e_before - e_after1; 
    else 
        loss1 = 0; 
        d1 = 0; 
    end 
  
    d2 = -min([P(n1,w2), P(n2,w1)]); 
    if abs(d2) > 10^-17 
        ed = calc_entropy([P(n1,w1)-d2, P(n1,w2)+d2, P(n2,w1)+d2, P(n2,w2)-d2]); 
        e_after2 = ed(1) + ed(2) + ed(3) + ed(4); 
        loss2 = e_before - e_after2; 
    else 
        loss2 = 0; 
        d2 = 0; 
    end 
  
    if loss1 > loss2 
        d = d1; 
    else 
        d = d2; 
    end 
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    if abs(d) ~= 0 
        change = true; 
  
        P(n1,w1) = P(n1,w1) - d; 
        P(n1,w2) = P(n1,w2) + d; 
        P(n2,w1) = P(n2,w1) + d; 
        P(n2,w2) = P(n2,w2) - d; 
  
        e(n1,w1) = calc_entropy(P(n1,w1)); 
        e(n1,w2) = calc_entropy(P(n1,w2)); 
        e(n2,w1) = calc_entropy(P(n2,w1)); 
        e(n2,w2) = calc_entropy(P(n2,w2)); 
    end 
end 
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A.8 MATLAB FILE: FIND_MAXIMUM_ LOSS.M 

function [max_loss,max_d,max_n1,max_w1,max_n2,max_w2] = find_maximum_loss(P,L,D,depth) 
% Author: Paul Bradley 
%  
% This function finds the depth greatest maximum entropy loss from 
% the passed P matrix, loss matrix, and delta matrix. 
% 
% Inputs: 
%   P - matrix to find the greatest entropy loss 
%   L - loss matrix of P 
%   D - delta matrix of P 
%   depth - determines which loss is found; if this is 1, function 
%           finds the 1st greatest loss; if this is 2, function 
%           finds the 2nd greatest loss, if possible; etc. 
% 
% Outputs: 
%   loss - amount of loss for greatest entropy loss 
%   d - delta value for greatest entropy loss 
%   max_n1 - n1 value for greatest loss 
%   max_w1 - w1 value for greatest loss 
%   max_n2 - n2 value for greatest loss 
%   max_w2 - w2 value for greatest loss 
  
max_loss = 0; 
max_d = 0; 
max_n1 = 0; 
max_n2 = 0; 
max_w1 = 0; 
max_w2 = 0; 
  
[N,W] = size(P); 
  
m_loss = zeros(1,depth); 
m_d = zeros(1,depth); 
m_n1 = zeros(1,depth); 
m_w1 = zeros(1,depth); 
m_n2 = zeros(1,depth); 
m_w2 = zeros(1,depth); 
m_idx = 0; 
  
for n1 = 1:N 
    for n2 = 1:N 
        for w1 = 1:W 
            for w2 = 1:W 
                if n1 ~= n2 && w1 ~= w2 
                    tloss = L(n1,w1,n2,w2); 
                    td = D(n1,w1,n2,w2); 
                     
                    idx = 1; 
                    while idx <= m_idx+1 && idx <= depth 
                        if tloss > m_loss(idx) 
                            if idx < depth 
                                m_loss(idx:depth) = [tloss m_loss(idx:depth-1)]; 
                                m_d(idx:depth) = [td m_d(idx:depth-1)]; 
                                m_n1(idx:depth) = [n1 m_n1(idx:depth-1)]; 
                                m_w1(idx:depth) = [w1 m_w1(idx:depth-1)]; 
                                m_n2(idx:depth) = [n2 m_n2(idx:depth-1)]; 
                                m_w2(idx:depth) = [w2 m_w2(idx:depth-1)]; 
                            else 
                                m_loss(idx) = tloss; 
                                m_d(idx) = td; 
                                m_n1(idx) = n1; 
                                m_w1(idx) = w1; 
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                                m_n2(idx) = n2; 
                                m_w2(idx) = w2; 
                            end 
                             
                            if m_idx < depth 
                                m_idx = m_idx+1; 
                            end 
                             
                            break; 
                        end 
                        idx = idx+1; 
                    end 
                end 
            end 
        end 
    end 
end 
  
if m_idx > 0 
    max_loss = m_loss(m_idx); 
    max_d = m_d(m_idx); 
    max_n1 = m_n1(m_idx); 
    max_w1 = m_w1(m_idx); 
    max_n2 = m_n2(m_idx); 
    max_w2 = m_w2(m_idx); 
end 
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A.9 MATLAB FILE: CREATE_LOSS_MATRIX.M 

function [L,D] = create_loss_matrix(P,e) 
% Author: Paul Bradley 
% 
% Creates the loss and delta matrices for the passed P matrix. 
% 
% Inputs: 
%   P - matrix for which to create the loss matrix 
%   e - entropy matrix for P 
% 
% Outputs: 
%   L - loss matrix for P 
%   D - delta matrix for P 
  
[N,W] = size(P); 
  
L = zeros(N,W,N,W); 
D = zeros(N,W,N,W); 
  
for n1 = 1:N-1 
    for w1 = 1:W-1 
        for n2 = n1+1:N 
            for w2 = w1+1:W/2               
                [l,d] = calc_loss(P,e,n1,w1,n2,w2); 
                 
                L(n1,w1,n2,w2) = l; 
                D(n1,w1,n2,w2) = d; 
                 
                L(n2,w2,n1,w1) = l; 
                D(n2,w2,n1,w1) = d; 
                 
                [l,d] = calc_loss(P,e,n1,w2,n2,w1); 
                 
                L(n1,w2,n2,w1) = l; 
                D(n1,w2,n2,w1) = d; 
                 
                L(n2,w1,n1,w2) = l; 
                D(n2,w1,n1,w2) = d; 
            end 
        end 
    end 
end 
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A.10 MATLAB FILE: CALC_ LOSS.M 

function [loss,d] = calc_loss(P,e,n1,w1,n2,w2) 
% Author: Paul Bradley 
% 
% Calculates the loss and delta value for the specified P matrix 
% and rectangle points. 
% 
% Inputs: 
%   P - TFD matrix 
%   e - entropy matrix for P 
%   n1, w1 - first rectangle point 
%   n2, w2 - second rectangle point 
% 
% Outputs: 
%   loss - loss for specified matrix and points  
%   d - delta value for specified matrix and points 
  
% Calculate initial entropy 
e_before = e(n1,w1) + e(n1,w2) + e(n2,w1) + e(n2,w2); 
  
% For delta1... 
d1 = min([P(n1,w1), P(n2,w2)]); 
if abs(d1) > 10^-17 
    ed = calc_entropy([P(n1,w1)-d1 P(n1,w2)+d1 P(n2,w1)+d1 P(n2,w2)-d1]); 
    e_after1 = ed(1) + ed(2) + ed(3) + ed(4); 
    loss1 = e_before - e_after1; 
else 
    d1 = 0; 
    loss1 = 0; 
end 
  
% For delta2... 
d2 = -min([P(n1,w2), P(n2,w1)]); 
if abs(d2) > 10^-17 
    ed = calc_entropy([P(n1,w1)-d2 P(n1,w2)+d2 P(n2,w1)+d2 P(n2,w2)-d2]); 
    e_after2 = ed(1) + ed(2) + ed(3) + ed(4); 
    loss2 = e_before - e_after2; 
else 
    d2 = 0; 
    loss2 = 0; 
end 
  
% Find greatest loss 
if loss1 > loss2 
    loss = loss1; 
    d = d1; 
else 
    loss = loss2; 
    d = d2; 
end 
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A.11 MATLAB FILE: UPDATE_LOSS_MATRIX.M 

function [L,D] = update_loss_matrix(P,e,L,D,n1,w1,n2,w2) 
% Author: Paul Bradley 
% 
% Updates the loss and delta matrices for the passed P matrix 
% for the specified points. 
% 
% Inputs: 
%   P - matrix for which to create the loss matrix 
%   e - entropy matrix for P 
%   L - loss matrix for P 
%   D - delta matrix for P 
%   n1, w1 - first point in rectangle to update 
%   n2, w2 - second point in rectangle to update 
% 
% Outputs: 
%   L - loss matrix for P 
%   D - delta matrix for P 
  
[N,W] = size(P); 
  
for n = 1:N 
    for w = 1:W 
        if n ~= n1 && w ~= w1 
            [l,d] = calc_loss(P,e,n1,w1,n,w); 
            L(n1,w1,n,w) = l; 
            D(n1,w1,n,w) = d; 
            L(n,w,n1,w1) = l; 
            D(n,w,n1,w1) = d; 
             
            [l,d] = calc_loss(P,e,n1,w,n,w1); 
            L(n1,w,n,w1) = l; 
            D(n1,w,n,w1) = d; 
            L(n,w1,n1,w) = l; 
            D(n,w1,n1,w) = d; 
        end 
         
        if n ~= n2 && w ~= w2 
            [l,d] = calc_loss(P,e,n2,w2,n,w); 
  
            L(n2,w2,n,w) = l; 
            L(n,w,n2,w2) = l; 
            D(n2,w2,n,w) = d; 
            D(n,w,n2,w2) = d; 
             
            [l,d] = calc_loss(P,e,n2,w,n,w2); 
            L(n2,w,n,w2) = l; 
            D(n2,w,n,w2) = d; 
            L(n,w2,n2,w) = l; 
            D(n,w2,n2,w) = d; 
        end 
         
        if n ~= n1 && w ~= w2 
            [l,d] = calc_loss(P,e,n1,w2,n,w); 
  
            L(n1,w2,n,w) = l; 
            L(n,w,n1,w2) = l; 
            D(n1,w2,n,w) = d; 
            D(n,w,n1,w2) = d; 
             
            [l,d] = calc_loss(P,e,n1,w,n,w2);             
            L(n1,w,n,w2) = l; 
            D(n1,w,n,w2) = d; 
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            L(n,w2,n1,w) = l; 
            D(n,w2,n1,w) = d; 
        end 
         
        if n ~= n2 && w ~= w1 
            [l,d] = calc_loss(P,e,n2,w1,n,w); 
  
            L(n2,w1,n,w) = l; 
            L(n,w,n2,w1) = l; 
            D(n2,w1,n,w) = d; 
            D(n,w,n2,w1) = d; 
             
            [l,d] = calc_loss(P,e,n2,w,n,w1); 
            L(n2,w,n,w1) = l; 
            D(n2,w,n,w1) = d; 
            L(n,w1,n2,w) = l; 
            D(n,w1,n2,w) = d; 
        end                    
    end 
end 
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A.12 MATLAB FILE: BASIC_SPECTOGRAM.M 

function [S,F,T] = basic_spectrogram(x_init,win_length) 
% Author: Paul Bradley 
% 
% Computes spectrogram for given signal. 
% 
% Inputs: 
%   x - input signal 
%   Fs - sampling frequency 
%   window_time - length of hamming window for spectrogram 
% 
% Outputs: 
%   S - spectrogram matrix 
%   F - frequency values for spectrogram 
%   T - time values for spectrogram 
  
  
% Pad signals with zeros 
x = [zeros(1,64) x_init zeros(1,64)]'; 
  
% Find energy of input signal 
Ex = sum(abs(x).^2); 
  
% Make FFT size = 2*largest window length 
nfft = 2*win_length; 
  
                                        % zero pad signal by wlen 
xx = [zeros(1,fix(win_length/2)) x' zeros(1,fix(win_length/2))]; 
                                        % compute spectrogram 
[S,F,T] = spectrogram(xx,win_length,win_length-1,nfft,1); 
  
S = S'; 
S = abs(S).^2; 
S = Ex*S/sum(sum(S)); 
  
S = S(65:65+length(x_init)-1,:); 
T = 1:length(x_init); 
F = F'; 
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A.13 MATLAB FILE: BASIC_MCE_PTFD.M 

function [ptfd,F,T] = basic_mce_ptfd(x_init) 
% Author: Arash Mahboobin and Paul Bradley 
% 
% Finds a positive TFD for the specified signal, using MCE (minimum 
% cross-entropy).  Uses two combined spectrograms as a prior. 
% 
% Parameters: 
%   ptfd    - returns MCE positive TFD matrix 
%   x       - input signal 
  
% Pad signals with zeros 
x = [zeros(1,64) x_init zeros(1,64)]'; 
  
% Find energy of input signal 
Ex = sum(abs(x).^2); 
  
% Define window length for different spectrogram 
wlen = [12 14 16]; 
nwins = length(wlen); 
  
% Make FFT size = 2*largest window length 
nfft = 2*wlen(nwins); 
  
% Calculate spectrogram for each window length 
sg = zeros(nwins,nfft,length(x)+1);     % initialize spectrogram matrix 
for kk = 1:nwins                        % for each window length... 
                                        % zero pad signal by wlen 
    xx = [zeros(1,fix(wlen(kk)/2)) x' zeros(1,fix(wlen(kk)/2))]; 
                                        % compute spectrogram 
    [stft,F,T] = spectrogram(xx,wlen(kk),wlen(kk)-1,nfft,1); 
    sg0 = abs(stft).^2;                 % spectrogram = |B|^2 
    sg0 = Ex*sg0/sum(sum(sg0));         % normalize to signal energy 
    sg(kk,:,:) = sg0;                   % save spectrogram in matrix 
end 
  
% Calculate MCE-PTFD prior, use combined spectrograms 
c_spec = sg(1,:,:); 
for i = 2:nwins 
    c_spec = c_spec.*sg(i,:,:); 
end 
prior = sqrt(squeeze(c_spec)); 
prior = Ex*prior/sum(sum(prior));       % normalize to signal energy 
  
tm = [abs(x).^2; 0]; 
tm = tm'; 
  
fm = fft(x_init,length(x_init)); 
fm = abs(fm).^2; 
  
% Calculate MCE-PTFD (10 iterations)  
ptfd = mce_ptfd(x,prior',tm,fm,500); 
  
ptfd = ptfd(65:65+length(x_init)-1,:); 
T = 1:length(x_init); 
F = F'; 
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