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This dissertation explored the effects of two different interventions on the learning of 

statistics. Each intervention corresponded to a different conception of statistical learning and 

used a particular type of computer-tool. One intervention used data analysis tools and focused on 

authentic situations of statistical activity. The other intervention used simulations and focused on 

formal aspects of probability. Data Analysis (data) and Probability (chance) are the constituent 

parts of statistical inference and the two lens from which is possible to present this topic. In this 

study, both perspectives were compared in their effectiveness to teach ANOVA, a central topic 

in inferential statistics. The results of this study showed that the intervention that used 

simulations improved students’ knowledge about probability, sampling and sample size effects. 

Protocol analysis of students’ answers indicated that the gains in probability knowledge did not 

alter the way students explained group differences. The intervention that used data analysis tools 

showed no significant effects on students’ data analysis knowledge. Studying the evolution of a 

sub sample of students suggested that data analysis knowledge develops over periods of time 

longer than those of this study. Additionally, protocol analysis of students solving statistical 

questions showed that students use simple decision rules to evaluate sampling and data analysis 

problems. These rules allowed students coordinating simple descriptions of the problem’s 

elements with conclusions about significance and sampling effects.  
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1.0  PERSPECTIVES IN STATISTICAL EDUCATION 

Studies have not found significant differences in learning between online-supported statistics 

education and traditional face-to-face courses (Field & Collins, 2005; Wisenbaker, 2003). 

Another strand of research reports differences in quality, user satisfaction, and learning among 

different online courses (Alldredge & Som, 2002, Larreamendy et al, 2005). Taken together 

these findings suggest that the outcome of instruction is determined by specific course 

characteristics and not by the media of instruction. Therefore, it makes sense to begin to look 

seriously for the characteristics of computer-supported education that influence learning in 

specific content domains.  

This study explores the relationship between the conception of statistic activity entailed 

in computer-based instruction and the resulting learning of statistical inference. In particular this 

study focuses on two different interventions aimed at teaching statistical inference in the context 

of group mean differences. One intervention requires students to use simulations that permit the 

learner to conduct limitless trials while controlling sampling and population parameters. The 

other intervention asks the students to engage in data analysis that uses authentic data as the 

source of information. While the first type of intervention allows students to conduct many 

simulations at a very low computational and procedural cost, it restricts the possibilities of 

choice about the raw data source, organization, and representation. The second type of 

intervention allows students to control the representation of the data and pushes them to define 
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the structure of the task, but it has higher computational costs and so restricts the number of 

exercises that can be conducted. The first type of intervention is more efficient but yet not 

authentic, while the second type is authentic but constrained by time and computational costs. 

Both types of instruction are found in online statistics courses. 

This study rests within a broader debate. There is a shift in scientific education that 

questions the extent to which instruction that does not resembles authentic tasks prepares 

students for scientific activity  (Gravemeijer, 2002; Petrosino et al, 2003; Snee, 1993). Tasks 

devoid of scientific complexity preclude students from experiencing fundamental aspects of 

science such as the definition of measurement and representation frameworks, and the 

argumentative processes around evidence (Ford & Forman, 2006; Petrosino et al, 2003). 

This larger debate takes a specific form within the realm of statistics. In some way what 

is at stake in this comparison is portrayal of statistical activity that must be used to teach 

statistical inference. The first intervention conceives statistical inference as a structured task 

where representational ambiguity is not relevant, and where procedures can be understood and 

performed in a syntactic way. On the other hand, the second intervention depicts statistical 

activity as part of a broader range of activities suggested by social scientific practice. Each 

portrayal of statistical activity privileges certain aspects of the discipline. Students taught in the 

first approach learn the assumptions and basis of formal procedures; they have had contact with 

the proofs that support the mathematical structure of inferential statistics. Students taught in the 

empirical tradition conceive statistics a mechanism to produce theory using statistical tools to 

organize the complexity of the world.  From this second point of view, limiting inferential 

statistical reasoning to p-values’ interpretation might underestimate the complexities of statistical 

inference. There is a call to teach students how to carry out multiple steps of data representation 
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(Wild & Pfannkuch, 1999), produce global views of data (Ben-Zvi & Arcavi, 2001), and 

coordinate theory and evidence (Lehrer & Schauble, 2004). 

The case of statistical inference is especially interesting because there is a tradeoff 

between the authenticity of the tasks and the number of simulations or examinations that can be 

conducted. The effects of this tradeoff need to be explored carefully because statistical inference 

is at the crossroad of data analysis and probability theory. Therefore, understanding it grows 

from experiencing both data analysis in authentic contexts and repeated simulation in random 

environments. Students need to be able to conduct representational permutations, identify global 

tendencies in data, isolate data patterns and interpret variability; but they need also to recognize 

the sampling process as a random situation and identify the consequences of its random nature 

on the information they receive from the sample (Garfield & Ben-Zvi, 2002). Ignoring the 

probabilistic nature of the sampling process can lead students to use flawed reasoning 

mechanisms when producing conclusions from data. Nisbett et al (1993) showed that when 

students do not assign random attributes to a problem, they use other heuristics to make sense of 

the situation, such as, using causal mechanisms that do not allow variability. Recognizing the 

sampling process as random is fundamental in order to activate adequate probabilistic reasoning. 

If the instructional situation favors data analysis in comparison to probabilistic training, students 

can underestimate the effects of probability on their conclusions.  If the instructional situation 

focuses on fostering probabilistic understanding but ignores the data analysis aspect of inference 

then students lose perspective on the applied underpinnings of the discipline. 
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1.1 THE CHALLENGE OF TEACHING INFERENTIAL STATISTICS 

Since the empirical evidence regarding reasoning about statistical inference is limited, it is 

necessary to build a conceptual framework from which understanding the effects of computer-

based education. The difficulty of learning inference comes from the way statistics produce 

inductive arguments by comparing patterns in data with expectations in chance. At a 

psychological level, learners have to coordinate the space of data and the space of chance to 

solve problems and give meaning to the methods and tools provided by statistical inference. In 

statistical inference students have to coordinate schema properties that are superficially similar 

but essentially different. At the educational level, statistical inference confront teachers with a 

tradeoff between authenticity and repeated simulation, where the former is necessary to 

understand applied tasks, and the later is fundamental for the development of probabilistic 

heuristics.  

Formal training in mathematics is not enough to understand the use of probability in 

inferential statistics.  Formal probability describes the properties of random behavior models 

assuming that the models are completely specified, that is, that all parameter values are known 

explicitly. On the other hand, statistics uses data to estimate unknown parameters (Tappin, 

2000). In this sense, the reasoning involved in traditional probability is different from the 

reasoning involved in applications of probability to statistical science: both involve an 

underlying probabilistic model but statistical inference uses this model to answer empirical 

questions; based on the sample data, inferences can be drawn about the nature reality using the 

underlying probabilistic mechanism as a mean (Tappin 2000). Part of the problem with learning 

inferential statistics is that it requires to reason from uncertain empirical data (Moore 1992). 

What happens is that while the space of data is inductive, the space of chance is deductive, and 
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coordinating both for statistical inference is difficult (Moore 1992). Nisbett et al (1993) found 

that people may be able to apply statistical rules in one setting (for example, to random 

generating devices) but rarely or never to similar problems that involve social content. People 

might not use statistical test even when they have been trained to do so, because they do not 

appreciate its role in the description of data (Williams, 1998).  

Statistical inference can be challenging at many levels.  Learners might find it strange 

that data behave according to the predictions of probability theory. It is not clear why some 

attributes (e.g. height) have a normal distribution instead of different type of distribution. It 

might be hard for learners to differentiate the properties of the distributions in the space of data 

and in the space of chance. Student can assume that sampling distributions’ and data distribution 

represent the same type of object when actually they represent different categories of objects. A 

data sample graph represents the distribution of a given set of data; a sampling distribution graph 

(e.g sampling distribution of the mean) represents a set of possibilities organized around 

probability values. Understanding that the distribution of data in a study corresponds to the 

distribution of just one sample within the sampling distribution, and not to the whole sampling 

distribution, can be challenging for learners.  

The way in which inferential statistics connects probability and data analysis is 

ambiguous and it can create problems for learners. The relationship between data and chance in 

statistical inference can be seen in two ways: One is to use chance as the background against 

which you compare the actual data (p-value); that is, finding the probability of the data results in 

a random distribution; the other way is start from the real data and see how chance generates 

ranges of error (Confidence Intervals) around the patterns in data. Both ways represent the same 

idea, the effects of sampling on the descriptions of data, but they do it from different 
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perspectives. The coordination of both perspectives can be challenging for students and difficult 

the learning of statistical inference. 

1.2 WHAT A SUFFICIENT STATISTICAL UNDERSTANDING SHOULD LOOK 

LIKE 

A sufficient understanding of statistical inference should permit students to coordinate three 

processes: the comparison of distribution graphs, the interpretation of statistical test results (e.g. 

ANOVA table), and generation of conclusions in context. Comparing distributions is the basic 

level of inferential analysis (Ben-Zvi, 2004; Lehrer & Shauble, 2007; Watson, 2002; Watson & 

Moritz, 1999). It requires students to connect representations that contain both central tendency 

indicators and variability, in order to draw conclusions about the strength of differences in 

situations where the information provided by the data is ambiguous. In group comparison 

situations, the groups have different means but they overlap due to variability, thus, the larger the 

standard deviation of the groups, the lower the certainty of the differences. The skill of 

adequately comparing distributions is just one part of statistical inference. Additionally, learners 

need to be able to understand the effects of sampling on the process of comparing distribution 

and on the results of inferential tests. Students with inadequate conceptions of sampling 

misunderstand the way samples resemble the population (Saldanha and Thompson, 2003). 

Students must also generate conclusions from data representations and statistical tests results. 

For this, students should be able to make sense of representations and results in the context of 

research. Having command of sampling and data representation would be useless without the 

competency to produce thoughtful conclusions from data. Ideally a student knowledgeable of 
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inferential statistics should be able to go back and forth through these three outcomes. This 

coordination requires understanding that the differences and the variability seen in the 

distributions together with the sample conditions determine the statistical tests outcomes. This 

coordination requires also being able to translate the statistical results in meaningful conclusions, 

knowing that the relationships between mean differences and variability are equivalent in the 

data representations, in the mean differences p-values and in the conclusion in context. 

At the same time students move through these outcomes, they need to be able to 

coordinate knowledge on data analysis and probability (Garfield and Chance 2002). Data 

analysis knowledge produces descriptions of the patterns and the variability in the data sets. 

Probability knowledge produces descriptions of how samples should behave randomly. 

Coordination between data and chance means being able to either locate the actual data patterns 

in the random space, or to add the random variability of sampling to the pattern and variability 

found in the data. This coordination is a challenge for most learners. They need to recognize that 

even if data and chance are represented in similar ways through distribution graphs, they have 

different properties. 

The concept that permits such coordination is variability. At a specific level, students that 

understand variability are able to see that variability is constant across the three types of 

outcomes. For instance, graphs that present a small within group variability and a large between 

group variability come from samples that produce significant differences –once sampling 

variability is controlled- and they appear in theoretical situations where the model explains 

largely the behavior of the data. At a general level, understanding variability gives students the 

main tools to operate in statistics (Garfield 2005). Variability affects the informative value of 

measures of center; the presence of outliers or unusual distributions of data (e.g. high skewness) 
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warns researchers about the precision of their results. Variability is also useful to make 

comparison among groups, or to establish the precision of the model; residuals represent how 

imprecise the model is (Garfield 1995). In some way, statistical inference intends to explain 

variation by seeking the systematic effects behind random variability of individual and 

measurements (Moore 1990). 

1.3 INTERVENTION TYPES AND STATISTICAL INFERENCE 

This study compares two instructional conditions that can affect learning outcomes given the 

challenge of coordinating data and chance and given the tradeoff this relationship creates for 

teaching inferential statistics. One intervention relies on the use of simulations and dynamic 

visualizations to develop understanding of ANOVA. Tools for this type of intervention are very 

common in the statistical learning literature (Blejec, 2002; Cramer & Neslehova, 2003; Darius et 

al, 2002; DelMas, Garfield & Chance, 1999; Drier, 2000; Harner & Hengi Xue, 2003; Nicholson 

et al, 2000; Sanchez, 2002; Shaughnessy & Ciancetta, 2002; Wilensky, 1999; Wood, 2005). The 

other type of intervention relies on data analysis tasks to teach statistical inference. Examples of 

this type of intervention are found in different settings. They normally require participants to use 

statistical packages to analyze data sets coming from authentic or simulated data (Connor 2002; 

Conti & Lombardo, 2002; Hooper, 2002; McClain, 2002; Wilensky & Stroup, 1999). 

The first type of intervention should provide students with understanding of statistical 

inference as a random process because knowledge and recognition of random situations does not 

appear spontaneously (Chance, DelMas, & Garfield, 2004; Konold, 1995; Konold, Well, 

Pollatsek, & Lohmeier, 1993), but grows from the contact with random mechanism (Nisbett et al, 
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1993). Simulations can show students how probability represents tendencies in events aggregated 

over several trials (Cramer & Neslehova; DelMas, Garfield & Chance, 1999; Snir, Smith & 

Grosslight ), and provide students with intuitive proofs of the way the statistical tests work. They 

show in a graphical manner how, for example, ANOVA compares within and between 

variability. Change in the parameters of the simulation produce changes in the relationships 

among graphical representations and in numerical indicators (Darius et al, 2002; West and 

Ogden, 1998; Godino et al, 2003; Mittag). This type of intervention however has costs in terms 

of the student skills to deal with data analysis situations because there is not transfer from 

training in probability theory to applied activities in statistics (Cobb & Moore 1997; Lovett & 

Greenhouse, 2000; Snee,1993; Tappin, 2000). Additionally, the lack of authenticity in this type 

of situations can create disbelief about the accuracy of the simulation as a representation of 

actual situations (Velleman and Moore, 1996). 

The other type of intervention uses data analysis to provide learners first hand experience 

with authentic scientific situations. This experience will allow learners to develop the ability to 

organize data complexity in patterns that isolate signal from noise (Biehler 1995) Authenticity 

requires students to learn how to build measure and representation methods, to make sense of the 

actions and results during the statistical process (Lehrer & Schauble, 2004; Burgess, 2002) and to 

deal with variability in data (Kazak & Confrey, 2004; Petrosino et al, 2003). Experience with 

data analysis situations should push learners and to develop the skill to conduct representational 

permutations (Wild and Pafnnkuch), to build global views of data (Ben-Zvi & Arcavi, 2001) and 

to develop a deeper understanding of the statistical situation (Ben-Zvi, 2002). 

Computers provide visual representations that can be used as analytical tools (Garfield, 

1995) without the huge computational costs (Finzer & Erickson, 2005). The low computational 
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costs of computer-supported statistics modify the goal of the task and allow the students to focus 

more on making representational decisions and less on the calculation process (Ben-Zvi, 2000; 

Rubin, 2002). The cost of this type of intervention is that students are not exposed to the random 

process that by its own nature relies not on the analysis of one data set, but on the repeated 

generation of samples. Students in this condition should know more about analyzing data and 

less about the effects of sampling on the results. 

1.4 PURPOSE OF THE STUDY 

This study aims to compare the effects of two computer-based interventions on the learning of 

inferential statistics knowledge. One intervention focuses on the probabilistic aspects of 

inferential statistics through the use of simulations; the other intervention focuses on the data 

analysis aspects of inferential statistics. According to the educational literature, these 

interventions should have different effects on students’ knowledge and image of statistical 

activity. While using simulations privileges understanding of sampling and probability, data 

analysis fosters the understanding of statistics as a tool to organize information in authentic 

contexts. Specifically, this study seeks to evaluate the effects of these two types of intervention 

on the ability to coordinate three types of data outcomes: graphic representation, statistics test 

results, and conclusion in context. This study aims to validate a set of measures that evaluate this 

coordination and show that this coordination participates in the process of reasoning in statistical 

inference. Finally, this study examines effects of new technologies on the distribution of 

knowledge at a global scale by studying the effects of online resources on the learning of 

statistics. 
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1.5 RESEARCH QUESTIONS 

This study aims to answer the following questions: 

1. Can the ideas of data analysis and sampling be captured in a reliable and valid measurement 

system? 

a) What are students thinking when they respond to the measurement system? What 

domains are they accessing? 

b) Does this system capture change in performance in data analysis, sampling and 

inference knowledge? 

2. Is it possible to design online instruction that reflects the advantages of  each perspective in 

statistical education, and also manages to teach the target ideas of data analysis, and sampling 

equally effectively?  

a) Do data analysis, sampling or inference develop organically over time through 

sustained interaction with instructional resources and with other people? 

b) Does the evolution of statistical knowledge over time constraint the effectiveness of 

online education when teaching statistical content in short periods of time? 

3. Can either perspective be used to equal effect to teach either content (data analysis or 

sampling)? 

a) Is there a sacrifice in the understanding of data analysis if chance is used as an 

instructional medium to teach statistical inference?  

b) Is there a sacrifice in the understanding of probability if data analysis is used as an 

instructional medium to teach statistical inference? 

c) What are the tradeoffs between the authenticity of data analysis instruction and the 

sustained activity of computer-based sampling? 
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Question 1 explores  whether or not a measurement system can assess ideas and skills 

typical to the different perspectives in statistical education considered in this study: data analysis 

and chance. Each perspective highlights certain aspects of statistical inference while 

overshadows others. Particularly, data analysis is more authentic and situated; while chance is 

more mathematical and abstract. The challenge for a measurement system in this case is to be 

able to include ideas from these two sources and to capture the interaction of both knowledge 

bases when applied to statistical inference. Two related questions need to be answered also. The 

first question is how participants solve items within this measurement system; that is how 

different domains are accessed while solving questions about data analysis, sampling and 

inference. The second question is whether or not this measurement system can capture change in 

students performance in any of those statistical spaces.  

Question 2 evaluates the real potential of online education to teach statistical inference. It 

is possible that important target ideas and skills of statistics develop over time in the interaction 

with instructional resources and with other people. If data analysis and sampling knowledge 

bases develop over time, and not through isolated experiences of computer use, change in 

statistical knowledge will be observed only in long time frames. For this reason, it is necessary to 

track the evolution of a sub-group of students from the beginning of instruction to the 

intervention point. The effects of the computer-based interventions need to be understood in 

relationship with broader instructional contexts and with the evolution of students within those 

contexts. 

Question 3 evaluates the possible tradeoffs between the two perspectives of statistical 

teaching considered in this study. It is possible that the target ideas of each statistical space may 

be sensitive to the type of instruction used to teach them, particularly, to the statistical 
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perspective used in the intervention. For example, teaching sampling ideas might rest on the 

repeated observation of sampling distributions, and the data analysis perspective could not be 

able to provide this type of experience. It is possible also that there is a tradeoff between the 

number of exercises that sampling simulations can provide and the depth of data analysis 

exercises. In other words, it might not be possible to have equal amounts of practice in both 

perspectives because the average time of an authentic data analysis activity is higher than the 

average time of a simulation-based exercise.  

1.6 CONTRIBUTION TO THE FIELD 

This study expects to contribute to the field of e-learning by showing that effects of online 

education can be understood by attending to specific instructional characteristics, instead of to 

the general difference between online and face-to-face education. This study seeks to contribute 

to the field of statistical education by showing that statistical inference teaching requires both 

data analysis and simulation tasks. To demonstrate that, the expected results must show that the 

sampling condition produces larger effects in people’s skill at identifying the effects of sampling 

on the observed data results, but at a cost in their skill at conducting exploratory data analysis 

(e.g. as seen in the exploratory task of the pretest). The results must show that the opposite effect 

happens when data analysis is used in the instructional condition. Learners in this condition must 

be able to conduct exploration of data but they must have problems to understand sampling. 

Additionally, this study intends to show that computer tools can help learners to understand 

inferential statistical concepts. In particular, the study aims to show that the use of computer-

based simulations boosts the understanding of probabilistic concepts and sampling, and that the 
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use of data analysis packages permits students to analyze large sets of authentic data and to 

develop data sense. Finally, this study seeks to shed light on the way that new technologies can 

change the distribution of knowledge at a global scale, by investigating the effects of computer-

based resources on a group of Colombian students. 
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2.0  REVIEW OF THE LITERATURE 

In this chapter data and chance, the two basic spaces of statistics, are introduced. After that, a 

historical review of the origins and development of statistics is presented; this review shows how 

data and chance evolved separately until they collided to produce statistical inference. Then, the 

relationship between data and chance in statistical education is reviewed. Finally, the current 

theories on reasoning, learning and teaching in both data and chance are examined, and the role 

of computers in each area of statistical content is analyzed. 

2.1 DATA AND CHANCE: THE SPACES OF INFERENTIAL STATISTICS 

Statistics is divided by its attention to data and to chance (Garfield, 2002). This distinction is not 

arbitrary, but reflects the implicit historical structure of statistics. Each branch represents a 

different way of defining statistical problems, as well as, conceiving the object of the discipline 

itself. One statistical tradition focuses on probability and on formal representations of events that 

contain uncertainty. Going back to Gauss, Laplace and De Moivre, this tradition emphasizes the 

assumption that, when aggregated, events that contain uncertainty tend to uncover tendencies in 

the form of typical distributions. That idea is sustained by two basic findings: First, that the sum 

of any number of given random variables tends to be distributed according to a typical 

distribution. Second, that, given a sample big enough, the characteristics of the sample tend to 
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resemble those of the actual population. When a sample gets larger, the probability of an event in 

that sample approaches the actual probability of the event in the population (Nickerson, 2004).  

The other tradition, closest to applied fields such as biology and social sciences, focuses 

on finding patterns in data, modeling phenomena in ways that maximize the explanatory power 

of theories.  From a historical point of view, this tradition has its roots in the need to solve 

applied problems in conditions where multiple factors and unknowns determine the observable 

attributes of a situation, situations in which it is necessary to get a typical pattern that represents 

in some way the average behavior of phenomena that contains variability (Nickerson, 2004; 

Leinhardt & Larreamendy-Joerns, 2007). A typical pattern reduces a world that is full of 

variability to a manageable representation creating an informational gain. The interest in such 

typical representations grew initially from the need to deal with several observations of the same 

phenomena in physics, and later to account for large social phenomena during the 

industrialization process and the political consolidation of European states in the nineteenth 

century (Nickerson, 2004; Stigler, 1986). 

The distinction between data and chance is not trivial and it encompasses two very 

different ways of understanding statistics. The view focused on chance is more Platonic because 

it privileges the formal structure of distributions over the need of finding patterns in actual 

phenomena. The second tradition, data, is more Aristotelian in that it focuses on modeling, 

assuming that the statistical task rests fundamentally in the use of multiple representational 

means to make the underlying nature of reality visible. Of course, good understanding of 

statistics implies coordinating both spaces, especially when it comes to inferential statistics. Any 

teaching restrained exclusively to one of those two spaces leaves students with fundamental gaps 

in their knowledge of the disciplinary content.  
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2.2 HISTORY OF STATISTICS: HOW DATA AND CHANCE EVOLVED AS 

SEPARATED DISCIPLINARY AREAS 

Initially problems of data representation and modeling were considered independent of questions 

related to the mathematical properties of chance. On one hand, games of chance were known and 

studied intensively in Europe since the 17th century (Nickerson, 2004). On the other hand, data 

modeling started to be relevant with the flourishing of astronomy, because finding and using the 

right set of observations was critical to the attempts of modeling the astronomical phenomena 

(Stigler, 1986). Both areas of statistical thinking followed independent paths and developed 

separately of each other until they collided in some specific applied problems, in particular, 

finding a way to aggregate empirical observations (in astronomy) in the 18th century (Stigler, 

1986). However, the integration of both areas, data and chance, to produce systems of statistical 

inference took until the invention of ANOVA and Regression in the first quarter of the twentieth 

century (Nickerson, 2004). 

The first developments in probability came from the intent of understanding abstract 

games of chance. By the end of the seventeenth century and beginning of the eighteenth century, 

there was extensive work conducted by famous mathematicians such as Fermat, Pascal, Leibniz 

and Bernoulli, that described the abstract properties of games of chance. Those theoretical 

exercises inspired the first notable findings in probability. Among them, the work of Bayes in 

inverse probability, and the law of large numbers proposed by Bernoulli in 1713. These pioneer 

insights created an environment of intense intellectual exchange, that, in the end, led to the 

isolation of the properties of a subset of random distributions (binomial distributions). From the 

knowledge of those properties, deMoivre developed a proof of a special case of the central limit 

theorem that was extended by Laplace around 1800 (deMoivre, 1796; Nickerson, 2004; Shafer, 
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1993; Stigler; 1986). These mathematicians were working on solving specific abstract problems. 

The deMoivre books were devoted to solving specific probability problems. Both “De mensura 

sortis” and “the doctrine of chances” were collections of problems and solutions, but they did not 

include extensions of these solutions to principles, or connections with applied problems 

(deMoivre, 1796; Nickerson, 2004).  

It was the need of having reliable astronomical observations that brought mathematicians 

initially to deal with applied problems, and, in this way, created the connection between the 

space of data and the space of chance. The flourishing of astronomy in the eighteenth century 

created a symbiotic relationship between theorists and observers. Basically, theorists needed to 

obtain reliable observations to carry out any type of theoretical modeling. The collaboration 

between Kepler and Tycho Brahe is one of the more known of these associations. However, until 

1745, the accuracy of the observations depended on the credibility of the observer and his 

telescope. Methods of aggregation were non-existent.  

The first attempt at developing a reliable way of aggregating observations was done by 

Legendre who was working on several projects for the French government. He participated in 

large-scale measurement projects (e.g., the distance from Dunkirk to Barcelona) that required 

combining several astronomical observations. It was because of these projects that he came up 

with the initial formulation of the method of least squares, published in 1805. The method of 

least squares was a way of finding a typical value, in the center of diverse observations that were 

supposed to contain errors caused by multiple imponderable factors. The method was quite 

successful and quickly extended through Europe (Stigler, 1986). 

Legendre’s method provided an important tool for aggregating observations, but it was 

not probabilistic in nature. It was Gauss and Laplace that developed a probabilistic structure for 
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the observation errors, before data and chance could come in contact for the first time. In 1809, 

Gauss published Motus Corporum Coelestium in Sectionibus Conicis Solum Ambientium that 

explored how the motion of planetoids was affected by large planets. In an appendix of this book 

Gauss proposed that the observation errors distributed normally around the mean. However, that 

was more an assumption than a formal proof. In fact, as Laplace noted, the argument provided by 

Gauss was circular. Laplace had the tool to make it non-circular. Laplace used and perfected the 

central limit theorem, and when he read Gauss’ book, he realized that there was a relationship 

between both his central limit theorem and Gauss’ idea (Stigler, 1986). This connection 

permitted Laplace to connect the central limit theorem to linear estimation, and in this way to 

create the connection between probability and data examination. He published this finding in the 

Théorie Analytique des Probabilités in 1812, and started to use the method in applied problems 

(e.g., studying the tides of the atmosphere) around 1823. There was still a distance before 

probability theory and data examination completed their intertwining. Two processes were 

fundamental. First, the contact of different disciplines with statistics, contact that leaded to the 

widespread practice of using statistical indexes to describe natural and social phenomena. 

Second, the creation of systems of inference that would transform the knowledge of random 

distributions into reliable inferential methods.  

The first process was helped by the growing interest among ninetieth century 

governments in the measurement of social variables. Demographic data (e.g., births and deaths) 

had been gathered in England from the 17th century, and around 1860, there was an increasing 

number of statistical periodicals that produced tabulations of different types of data. The 

availability of this information produced an explosion of early attempts to make sense of them. 

Emergent disciplines known by different names (political arithmetic, social mathematics, moral 
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statistics) intended to produce valid interpretations of this information. However, people 

interested in these new disciplines were more focused on the political implications of the data 

than on any mathematical understanding of them. This trend continued even after physics and 

biology had started to use complex statistical tools to model data in the first quarter of the 

twentieth century. The tendency to look for patterns in data, and to ignore the mathematical 

aspects of modeling, outlived the birth of mathematical statistics. Data was more popular than 

chance in statistics, even when the connections between data and chance (observations and 

probability) were understood. Oberschall (1987) notes that in the second half of the nineteenth 

century, “the same impressionistic and arbitrary eyeballing techniques were used to argue” for or 

against relationships among variables (Oberschall, 1987, p.107). 

There were some mathematicians involved in serious efforts to apply mathematical tools 

to data analysis in natural and social fields. In France, Quetelet worked, at the beginning of the 

nineteenth century, analyzing the distributions of conscripts’ heights, convictions, and suicide 

rates in search of what he called “the average man.” Around the same time, Laplace discovered 

that the number of dead letters in Paris’ postal system was constant from year to year. However, 

these efforts did not permeate the mainstream of “political arithmetic,” nor did they modify the 

way theories were built until almost 100 years later when the tools necessary for statistical 

inference were developed (Nickerson, 2004). 

Probability influences statistics and data analysis in at least two ways: First, it is 

fundamental to the treatment of errors of observation. Second, it is the base for inference. The 

first influence was developed and used before 1900; the second one comes from the 

developments made in the first half of the twentieth century by Galton, Fisher, and Pearson 

(Nickerson, 2004; Stanton, 2001; Stigler, 1987). These systems of inference were built to test 
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specific models in different content areas, such as biology, and they connect the space of data 

and the space of chance in a totally different way: They compare actual patterns of data with 

what would be expected by randomness. This procedure of connecting expectation and 

observation is the common denominator of all the hypothesis-testing methods and it represents 

the final contact point between data and chance.  

The structure of statistics as a discipline reflects its historical development. Both data and 

chance are studied separately in most courses, and they collide when inference and hypothesis 

testing are introduced. In the next section, we will explore from the perspective of statistical 

education how the structure of statistics as a domain reflects its history. 

2.3 DATA AND CHANCE IN STATISTICS EDUCATION 

The distinction between data and chance is not only a historical one. It delineates the way we 

think about statistics and shapes the way we teach it. This distinction permits statistics to produce 

a type of argument that combines data modeling and probabilistic theory to produce inferences 

about reality. Statistics cannot be restricted to probability because there is in the statistical 

argument the need to deal with reality and discover regularities. It cannot be restrained to find 

patterns in data because statistics implies the theoretical exercise of looking for generalizability. 

Statistics’ goal extends beyond both. It is concerned deeply with the use of datasets to evaluate 

hypotheses in the context of theoretical debates. Statistics resolves theoretical disputes that 

otherwise would go on forever between different scientific perspectives (Abelson, 1995).  

The statistical argument makes an inductive case for science feasible. It does so by using 

chance as a contrast medium for data. Statistical inference assesses the extent to which the 
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pattern observed in data could be attributed to random effects. Another way of seeing this is that 

statistical inference procedures evaluate how much variation in the estimators that describe the 

data can be expected by randomness (Confidence Intervals), and to what extent we can be sure 

our conclusions represent the underlying nature of the data. By understanding the relationship 

between sample and population, and between statistics and parameters, we can produce theories 

without having observed all instances of a phenomenon. By addressing and measuring variation 

through chance theory, statistical inference permits us to talk about typical behavior in the 

presence of data that does not behave totally in accordance with the predictions of our 

conjectures.  

These two ideas are in some way counter-intuitive and represent a challenge for learning 

and teaching. Dealing with variation is complicated because variation nullifies or at least 

challenges generalization. When statistics produces results that average several scores and 

minimize error, it is violating assumptions that we share and use in non-scientific discussions. 

The second idea, the process of extracting conclusions from a sample and attributing them to 

general abstract populations produces a cognitive challenge for most learners. The coordination 

between the information obtained from the sample and the conclusion about the population is 

governed by rules that are unfamiliar to most people.   

To understand statistics, learners have to comprehend the nature of sampling and the 

omnipresence of variation, as well as the relationship between sample and population (Garfield 

& Ben-Zvi, 2002). Students need to understand probability as a measure of uncertainty. They 

need to know also how to develop and use models to simulate random phenomena and how to 

produce data to estimate probabilities (Garfield, 1999). More important, they need to coordinate 



 23 

and apply the probabilistic knowledge to the data they are analyzing, to the preliminary 

conclusions they are working on, and to the theoretical spaces in which they are involved. 

Good statistics instruction includes both data and chance, whether instruction is in texts 

or online. Sampling, hypothesis testing, the measurement of uncertainty, and the quantification 

of variability rest on probabilistic ideas (Cobb & Moore, 1997; DelMas, Garfield & Chance, 

1999; Garfield, 2002; Tappin, 2000). Data, chance, and inference are parts of most statistical 

courses. “The big picture” of statistics includes understanding the process of producing data, 

conducting exploratory data analysis (EDA), and making inferences from the sample to the 

population. More specifically, good statistics instruction includes EDA, the concept of sampling 

variability, the different approaches to producing data, and the logic of inference (Lovett & 

Greenhouse, 2000; Meyer & Lovett, 2002). Understanding these topics requires a basic 

understanding of probability. This idea seems to be a shared one for authors of online courses. 

Corredor & Leinhardt (2006) in a content review of six online courses showed that there were 

independent sections devoted to data, chance, and inference in all of them (See Appendix A).  

For more than 70 years, statistics was conceived of and taught as a branch of mathematics 

that rested on probability. Just as with other branches of mathematics (e.g., algebra), however, 

statistical instruction now focuses on the way real phenomena can be quantified and then 

examined. Cobb and Moore (1997) suggest that the best way to teach statistics is through EDA 

first, and then to describe the mathematical complexities of statistical inference. Focusing too 

much on the abstraction of complex mathematical arguments and probability theory is currently 

thought to be the wrong path for learning (Tappin, 2000). Lovett and Greenhouse (2000) point 

out that they focus their curriculum on “the use and interpretation of data analysis techniques 

without teaching all the probabilistic or mathematical underpinnings.” In the same sense, Snee 
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(1993) proposes to teach statistics in a way that emphasizes data collection, understanding, and 

modeling, instead of focusing on the probabilistic aspects of inference.  

2.4 CHANCE 

There are two main positions regarding the nature of statistical thinking in the space of chance. 

On one hand, one position considers that statistical thinking is an unnatural act. People think 

about probabilistic concepts in ways that contradict the predictions of probability theory. From 

this point of view, understanding probability does not arise spontaneously and training has a 

modest effect in correcting misconceptions (Konold, 1995; Kahneman & Tversky,1972). On the 

other hand, the other position asserts that people develop intuitive notions of probabilistic 

concepts and possess heuristics that permit them to deal to some extent with basic statistical 

activities. These intuitive notions arise from the contact with situations that present random 

behavior (e.g., a random number generator) (Nisbett et al, 1993) and they are used in several 

reasoning processes (e.g., everyday induction). From this point of view, the results of Kahneman 

and Tversky (1972) can be explained by the structure of questions, and the experimental contexts 

in which those results were found. People possess heuristics to solve statistical problems, but 

they do not apply that knowledge to Kahneman and Tversky’s tasks. From the perspective of 

Nisbett et al (1993), people do not recognize those tasks as random and they use other 

explanative mechanisms to understand them (e.g., deterministic models). People’s use of 

statistical heuristics depends on factors such as the clarity of the sample space or cultural 

prescriptions on which situations are random. 



 25 

Kahneman and Tversky (1972) showed that people used non-probabilistic heuristics to 

calculate gains and loses, and that these heuristics did not follow what would be a standard 

probabilistic algorithm (Kahneman, Slovic, & Tversky, 1982). These studies suggest that 

probabilistic thinking is unnatural and that people possess misconceptions that are resistant to 

change even after training (Chance, DelMas, & Garfield, 2004; Konold, 1995; Konold, Well, 

Pollatsek, & Lohmeier, 1993). 

2.4.1 Misconceptions about Probability 

2.4.1.1 The Equiprobability Bias 

There is evidence that people tend to believe that all events have the same probability in spite of 

the population characteristics. In other words, people tend to think that everything is equally 

likely to happen (Konold, 1995). For example, when extracting a random student from a class 

with more women than men, people tend to think that the probability of selecting a man is equal 

to the probability of selecting a woman, or that the different outcomes of rolling dice are equally 

probable (Lecoutre, 1992). The equiprobability misconception might be addressed by providing 

resources that simulate random phenomena in a rapid and easy form.  

2.4.1.2 Outcome Orientation 

Students have an intuitive model of chance in which probability values represent single event 

outcomes instead of tendencies in series of events (Garfield, 2002; Konold, 1989). When told, 

for instance, that there is an 80% chance of having a sunny day, people assume that there is 

going to be a sunny day (Konold, 1995). The outcome orientation is resistant to change under 

instruction (Garfield, 2002). There are several reasons for this phenomenon: Interpreting 
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probability values in terms of single event outcomes can be produced by a global 

misunderstanding of probability theories. Probability is only observable in aggregated events; it 

is never visible in single events. But everyday life is made up of single events and people are 

accustomed to thinking in those terms. Events, to say it in other words, have a p=1. As we will 

see in the following section, the outcome orientation presents an opportunity for computer 

remediation in the learning of chance. 

2.4.1.3 Sample Homogeneity and Law of Small Numbers 

 Students tend to think that all samples resemble the population from which they were obtained 

regardless of the sample size. This idea contradicts probability theory which states that the 

smaller the samples, the higher the variability among them and the higher the probability of 

finding extreme sample means (Kahneman, et al, 1982). The idea that after some point 

increasing the sample sizes does not improve the power of the analysis seem to be hard to 

understand for most people. The power of a well-drawn small sample is not easily understood 

(Kanhneman et al, 1982). Students often consider samples simply as arbitrary subsets of the 

populations that do not include variability or sampling effects. This erroneous conception of 

sample leads students to reason in flawed ways about statistical inference (Saldanha and 

Thompson, 2003). 

2.4.2 Role of Computers in Chance 

Misconceptions that surround probability are present even in students who undergo training 

(Chance, DelMas, & Garfield, 2004; Konold, 1995). This result is confirmed across cultures and 

settings (Jun & Pereira-Mendoza, 2003). It is almost as though there is something deeply 
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unnatural in probabilistic thinking, or that, not having a conception of chance people reason from 

everyday experience (Fischbein, 1975). Addressing these misconceptions is something that we 

argue can be done especially well by certain affordances available in computer-supported 

environments. Computers can help people to understand probabilistic concepts by providing 

learners with simulations of random situations. Even if the idea of Nisbett et al (1993) is more 

correct than Kahneman et al’s one (1982), and people do possess adequate statistical heuristics 

but fail to recognize many situations in probability instruction as random, then, computers can 

help to build the bridge between people’s heuristics and instructional tasks. 

The misconceptions that people have can be classified into two groups. The first group of 

misconceptions involves problems with understanding the process and characteristics of 

sampling. This group of misconceptions includes the sample homogeneity, and the large-sample 

misconceptions, and the law of small numbers. Computers can provide instantiations of sampling 

processes and make it easier for people to experience the sampling process.  

The second group of misconceptions relates to flaws in understanding the meaning of 

probability values. These misconceptions include outcome orientation and the equiprobability 

bias. Probability values are hard to understand because probability is only visible when events 

are aggregated over several trials. Thinking in probabilities is an unnatural act because it means 

thinking about something that could or could not happen. A statement like the following: “next 

year, 15% of Americans will be sick with flu,” points to many different configurations of events . 

Probabilities represent stable properties of chance setups, but they do not represent steady facts. 

What does exactly it mean to have a probability of 1/2? It means that, when aggregated, you will 

have the event in half of the trials. But if you only have one trial, then what? Actual events have 

probability 1, and we learn to use heuristics that do not involve uncertainty when solving 



 28 

problems (e.g. explaining events in terms of causal mechanisms). Most instruction leads us to 

look for informational gains that produce exact answers. Computers can help people to 

understand probability values because they can reproduce random behavior in basically time-free 

frames. In some sense, a large part of traditional instruction led us to think most phenomenon as 

not being random; for example, using a deterministic causal model to describe natural situations. 

The origin of both these groups of misconceptions relates to problems in the 

comprehension of mathematical ideas that require a knowledge of mathematical concepts (e.g., 

proofs) in order to be understood. Why should one believe that, for example, the sample size 

influences the likelihood of obtaining extremes values? Of course you can use a mathematical 

structure to demonstrate why you should expect random sampling to behave that way. But 

teaching through mathematical proofs has two problems. First, it requires sophisticated prior 

knowledge and mathematical skills from students, knowledge and skills that many students lack 

or that they do not consider an important part of their statistical training. Second, focusing on 

formal proofs takes instructional time away from more grounded authentic activities. Formal 

mathematical structures are important for students who have interests in mathematical proofs and 

logic; but they are not as relevant for students with more applied interests. In fact there is a 

tendency in statistics education to emphasize mathematical formalisms less because there does 

not appear to be transfer from formal probability theory to the applied activities in statistics 

(Cobb & Moore 1997; Lovett & Greenhouse, 2000; Snee,1993; Tappin, 2000). 

Computers may in fact fulfill a role once reserved for the mathematical proof. It is 

possible to create dynamic representations of mathematical objects in which students can 

actively interact with the mathematical properties of those objects. More important, there is now 

the capacity to represent randomness in a concrete way. Randomness is only visible when you 
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aggregate events over several trials. In the past, that fact was often ignored, represented through 

the mathematical formalism, or in the best cases explained by physical simulations of random 

process (e.g., tossing coins) (see, for example Schwarz & Sutherland, 1997). But there was no 

way, until multimedia computational technology made it possible, to show how events 

aggregated over several occasions create tendencies (Cramer & Neslehova, 2003). Now, with 

computer-supported tools, it is possible to simulate random processes, condense events over 

time, and see how tendencies change as a function of different parameters.  Tedious physical 

demonstrations can be replaced by quick, focused, computer-based simulations. The scope of 

computer simulations goes beyond replacing physical simulations and facilitating the 

presentation of randomness in the instructional processes. By its characteristics computer 

simulations permit students to connect the random processes with different graphical 

representations and numerical indexes. In this sense, simulations serve as devices to observe 

phenomena that cannot be observed under normal conditions (DelMas, Garfield, & Chance,1999; 

Snir, Smith, & Grosslight, 1995).  

For the misconceptions described in the literature, computers seem to provide a possible 

solution to the instructional problem. For the first type of misconception, computers permit one 

to conduct simulations of sampling processes and to demonstrate many of the sampling 

distribution characteristics, characteristics that would be otherwise stated abstractly. Blejec 

(2002) has proposed that graphically supported simulations can be used as proofs of statistical 

concepts for students what do not have sophisticated mathematical knowledge.  

For the second type of misconception, the type that involves misunderstanding the 

meaning of probability values, computers permit aggregation of events over several trials and in 

that way to clarify the meaning of probabilistic indexes. Running random simulations permits 
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students to see how probability values represent not steady 1-0 distributions, nor chaotic 

distributions of data, but something in the middle: distributions that over time tend to fall in 

tendencies defined by the probability values. In the following paragraphs, we present recent 

experiences in the use of computer simulations to teach probability. 

2.4.2.1 Random Simulations as Tools to Teach Chance 

In the literature, two types of activities are referred to as “use of simulations.” First, there is the 

use of ready-to-use simulations that contain all the elements necessary to be used by the students 

(programmed as Java Applets, or as objects in other programming environments) (e.g., Blejec, 

2002). Second, there are built-up simulations, that is, simulations that the same students, or the 

professor, build using spreadsheets, statistical packages with random number generators, or 

programming languages1. Both types of simulations usually depict probabilistic concepts by 

selecting several samples of a given size from different distributions to create graphical and 

numerical displays of the repeated sampling process. Each type of simulation has advantages and 

disadvantages. An advantage of available graphical representations in the first type of simulation 

is that they permit one to map abstract statements into the representations directly. A 

disadvantage of the first type of simulation is that students skip over steps in the representational 

process, steps that can be critical for  understanding and performing authentic statistical 

activities. Skipping these representational steps, when for example sampling by random selection 

from an abstract normal distribution, can reduce the confidence of learners in the representation 

 

1 This version simplifies the one proposed by Mills  (2002) by condensing in the first category 
the three categories that require student programming, and in the second the types of simulations 
that are ready-to-use in Mill’s taxonomy. 
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as an authentic representation of the world, creating the sort of disbelief in the simulation 

discussed by Velleman and Moore (1996).  

Table 1. Examples of Random Simulations 

Experience Type Pedagogical 
Experience 

Assessment  

VESTAC (Darius et al, 2002) Ready-to-use NA NA 
Nicholson et al, 2000 Ready-to-use NA NA 
EMILeA-stat (Cramer & Neslehova, 
2003) 

Ready-to-use NA NA 

MyJavaStat (Harner & Hengi Xue,  
2003) 

Ready-to-use with 
parameters 

NA NA 

Wood (2005) Ready-to-use with 
microworld 

NA NA 

The Probability Explorer (Drier , 
2000) 

Ready-to-use with 
microworld 

NA NA 

Shaughnessy & Ciancetta, 2002 Ready-to-use with 
microwrold 

Students run several 
simulations with virtual  
“fair spinners” 

Measured by 
NAEP Items 

SAMPLER (Wilensky, 1999) Ready-to-use with 
microworld and 
students’ emergent 
input 

NA NA 

DelMas, Garfield and Chance 
(1999) 

Ready-to-use Problem solving Improving when 
evaluation items 
similar to task 

Sanchez, (2002) Built-up Students solve questions 
about random 
distributions 

Students 
considered the 
simulation useful 

Blejec (2002) Built-up Students use simulated 
data to solve problems 

NA 

 

Among the topics covered by simulations are the central limit theorem, t-distribution, 

confidence intervals, binomial distribution, regression analysis, sampling distributions, 

hypothesis testing, and more recently, ANOVA , regression, t-test, and chi-square. In all cases, 

stochastic processes are used to give students inductive experiences with the concepts involved 

in the simulation (Kersten, 1983). A problem with this type of simulation is that it lacks 

authenticity and concentrates on the abstract characteristics of probability. This is not a problem 

when one is dealing with abstract probabilistic concepts (e.g., sampling distribution) but it 

becomes more serious when the objects of the simulation are close to real-world activities. 
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Authenticity requires teaching statistical concepts linked to data analysis activities. Simulations 

of the first type tend to ignore this requirement when dealing with topics such as hypothesis 

testing, ANOVA and t-tests. Table 1 presents a summary of the available programs with random 

simulation described in the literature. A more detailed description of these projects is available in 

Apendix B. 

2.5 DATA 

Data refers to activities whose goal is to explore data and discover the underlying patterns and 

tendencies in it. The data space also deals with the articulation of the process of data 

representation with disciplinary questions and theory. In other words, the space of data has to do 

with manipulating information to see patterns, relationships, and explanations in the context of 

disciplinary practices (e.g., theoretical background, measurement systems, representational tools, 

etc.) (Tukey, 1977).  

Interest in the space of data as a legitimate area of statistical learning research has been 

growing since the 1970s (Leinhardt & Leinhardt, 1980; Tukey, 1977). The so-called “data 

analysis revolution” (Biehler, 2003; Shaughnessy, Garfield & Greer, 1996) has advocated that 

EDA (Exploratory Data Analysis), not probability, should be the focus of statistical education. 

Several factors have coincided to favor this change of focus. The first factor is the realization 

that transfer does not happen spontaneously and that it depends to a great extent on the similarity 

between the source and target task (Singley & Anderson, 1989). If this is so, formal training in 

statistics does not transfer necessarily into adequate use of statistical knowledge in applied 

contexts. The second factor is discovering that authentic tasks, tasks that contain relevant 
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disciplinary traits and that resemble real contexts, predict better long-term learning and 

performance in non-school settings. A third reason supporting the interest in data is the 

availability of user-friendly computer software that permits learners and practitioners to move 

away from procedural tasks, and concentrate on the conceptual aspects of statistics (Velleman & 

Moore, 1996). New statistical packages and other computational tools change the goals of 

instruction because many tasks that used to be carried out by people, from finding sums of 

squares to looking up critical values in statistical tables, now can be conducted by computers.  

A primary idea of EDA advocates is that the nucleus of the statistical practice and 

teaching is the ability to organize the complexity of real data into clear recognizable patterns 

(Leinhardt & Leinhardt, 1983). This idea emerged as a reaction to the extreme formalism of the 

probabilistic approach that often built models that did not account for any practical situation and 

were only valid when unrealistic assumptions were accomplished. The assumptions behind the 

preference for real data are that real data possesses some type of structure and that the task of 

researchers is isolating that structure from the surrounding noise (Biehler, 1995). The data 

structure exists in the overlap of data configurations and theoretical perspectives, (e.g. the 

categories that you are using to analyze the data). The EDA perspective assumes that core 

elements of the practice and activity of data analysis cannot be captured by the mathematical 

formalism or taught by explicit direct instruction to inexperienced learners. Working with 

simplified data sets can be beneficial to learning of chance, because, for example, it facilitates 

the calculations and permits observation of the underlying mathematical mechanisms of 

hypothesis testing; but working in artificial settings does not help learners to develop essential 

skills for data analysis and interpretation (Snee, 1993). Working with real data, on the other 
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hand, forces students to deal with messier sources of information and, in this way, it forces them 

to develop critical statistical skills. 

Dealing with real data is only one of the aspects that the EDA perspective proposes. More 

generally, EDA tasks ask students to be involved in authentic statistical activities. Authentic 

activities resemble actual research pursuits and therefore they highlight critical aspects of 

statistical inquiry, such as defining the measurement system, choosing and modifying the scales, 

conducting the necessary transformations in the data, and selecting the representational means.  

Authentic activities imply more than that, they require learners to go beyond the statistical 

context and face many traits of actual scientific tasks. Authentic tasks embedded in disciplinary 

contexts prompt students to deal with aspects of learning that remain obscure when students are 

just presented with artificial simplified versions of statistical problems, with activities centered in 

mechanic calculations, and with the mathematical formalism. They push students to participate 

in the definition of the problem space (e.g., picking the attributes to be measured), the selection 

of representational tools, and the process of coordinating empirical evidence and theory. Instead 

of employing ready-to-use (ready-made) measurement tools and calculation methods, 

educational interventions based on authentic activities require learners to make sense of the 

actions in terms of the theory being evaluated and the questions being solved (Lehrer & 

Schauble, 2004). It is assumed by EDA supporters that dealing with authentic activities and 

participating in problem solving situations develops students’ data sense (Burgess, 2002). 

Data sense refers to the ability to interpret in a logical sense, the statistical results and the 

graphical representations of data. It refers also to the ability to generate information “on which 

graphs and statistics are constructed” (Burgess, 2002; Friel, Bright, Frierson, & Kader, 1997). In 

other words, data sense refers to an intuitive sense that permits students to put data in context, 
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give meaning to it, and create sensible interpretations of it, as well as to understand what the data 

means in the context of a theory.  

An argument in favor of introducing authentic activities in the curriculum is that the skills 

and knowledge needed to interpret and conduct meaningful use of data do not arise 

spontaneously. It is well known that when people are faced with data analysis tasks, they tend to 

underuse the data. In a strict sense, they do not make mistakes (e.g., they do not make errors in 

the calculations) but they often organize the activity in the wrong direction, in ways that ignore 

the nature of statistical inquiry. Several of these problems  with data interpretation have been 

identified in the literature. Ben-Zvi and Arcavi (2001) have elaborated the distinction between 

local and global views of data. Local views of data happen because learners focus on individual 

values or small subsets of data, instead of building an interpretation on the whole available 

information. Global views refers to interpretations that identify patterns and tendencies that 

enclose the complete data set. These authors found that statistics experts combine local and 

global views of data when building interpretations whereas novices focus exclusively on local 

views. This assertion is consistent with the idea of Konold et al (1997) who asserts that what 

makes a task statistical is that it encompasses building descriptions and conducting comparisons 

of non-homogeneous set of data. Global descriptions of non-homogeneous data sets require 

accounting for the variability inherent to those data sets. If you have to compare, for example, 

the weight of two men measured once, there is not much room for confusion, debate or 

interpretation.  If you have to compare the weight of two groups of men or the weight of two 

men measured several times, then, you have to make use of to more sophisticated tools and 

reasoning skills. Variability in the data makes the comparison hard. Learners tend to focus on 

particular scores and formulate interpretations based on restricted data spaces. EDA proposes 
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that learners need to be exposed to authentic activities of data interpretation in order to develop 

the skill to think in terms of group tendencies and look at data globally; skills that are necessary 

for understanding variability, building generalizations, finding relationships among variables and 

using hypothesis testing procedures (Burgess, 2002; Ben-Zvi, 2002).  

Many problems that students experience when dealing with sets of data arise from their 

tendency to think about data in terms of properties of individual cases or homogeneous subsets 

of data (Konold et al, 1997). This tendency can be an extension of everyday and school practices 

and strategies, where dealing with individual cases and homogenous representations is the rule 

(Lehrer, 2002; Petrosino et al, 1997), to the realm of statistical activities, where that kind of 

reasoning is not longer valid. Statistics experts think in terms of propensities, that is, in terms of 

properties of non-homogenous “data aggregates” (Konold et al, 1997). EDA supports the skill of 

thinking in terms of “propensities” through participating in complex statistical tasks in the early 

stages of instruction. 

Another possible extension of limited reasoning acquired through non-statistical 

everyday practices is people’s tendency to prefer concrete, punctual representations of data when 

carrying out statistical analysis. Konold (1995) reports that students have a strong preference for 

two-way tables and absolute frequencies with precise values over other types of representations 

as histograms and boxplots. It is possible that learners stick with concrete representations due to 

problems with considering permutations in the data representations. These permutations, called 

transnumerations by Wild and Pfannkuch (1999), are considered an important part of statistical 

thinking. The ability to work with multiple representations is central to the understanding of 

mathematics in general (Dreyfus & Eisenberg, 1996; Leinhardt et al, 1990) and statistics in 

particular (Burgess, 2002; Cai & Gorowara, 2002). In the case of statistics, representational 
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permutations permit learners to generate different interconnected data representations in order to 

attain a deeper understanding of the statistical situation (Ben-Zvi, 2002; Burgess, 2002).  

Concrete representations mask the existence of variability in data sets. Frequency counts 

and central tendency indicators without any corollary or context are blind to the variability that 

surrounds them. Students focus on this type of concrete representation because everyday and 

school practices to which they are exposed neglect this facet of data and reality. School-based 

instruction ignores learners’ need to be exposed to and taught to deal with variability in data 

(Kazak & Confrey, 2004; Petrosino et al, 2003; Wild & Pfannkuch, 1999). Statistical reasoning 

requires acknowledging variability as a central feature of data and reality (Garfield & Ben-Zvi, 

2005). Variability is what creates uncertainty in the conclusions and, therefore, it is what gives 

statistical character to descriptions and comparison with multi-case datasets (Konold, 1997). 

Konold and Pollatsek (2002) point out that dealing with variability is what differentiates 

generalization about variable relationships in the context of variable manipulation (e.g., Masnick 

et al, in press) from generalization in the context of statistical research. In this sense, statistical 

instruction must expose students to activities that foster understanding of variability.  

Understanding variability has several interconnected facets. It implies understanding that 

any reasonable account of data includes both the description of typical patterns and references to 

the surrounding variability. It implies acknowledging that variability nuances the interpretation 

of data but that variability falls into recognizable patterns when adequately represented. In other 

words, understanding variability implies believing that variability is not totally unsystematic, and 

that, as with chance, its form only becomes visible when you look at data globally. 

Understanding this is basic to master the process of iterative data representation, a process that 
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produces the data distributions that describe the predictable aspects of variability (Petrosino et al, 

2003).   

Understanding variability means understanding that there are two  basic sources of 

variability in statistical models: the variability generated by measurement error (e.g., the error of 

astronomical observations) and the variability that comes from the object being studied (e.g., 

phenotypical variation) (Leinhardt & Larreamendy-Joerns, 2007; Petrosino et al, 2003). Both 

sources of variation distribute normally but they represent different aspects of scientific research. 

We explore sources of variation to gain information and to reduce uncertainty, on natural and 

social phenomena, for example, by aggregating predictors in a model that explores through 

covariation the relationship between two variables (Garfield & Ben-Zvi, 2005; Wild & 

Pfunnkuch, 1999).  

Variability is not just some part of the nature of scientific research, it is the organizing 

concept of statistics. Garfield and Ben-Zvi (2005) consider that understanding variability gives 

students the main tools to operate in statistics. Graphical representations of data are to a large 

degree designed to represent variability and they help to separate signal from noise. Students 

learn to handle the data in ways that maximize the informative power of graphical and numerical 

summaries, controlling unwanted forms of variability (e.g., outliers, observational biases) and 

conditioning the use of certain tools to the presence of certain characteristics in the data (e.g., 

parametric tests and normal distributions). Describing variability is also fundamental to 

comparing data sets, to exploring the accuracy of a model (for example, when classifying 

explained and unexplained variability), and to qualifying the informative power of statistical 

indexes (Garfield & Ben-Zvi, 2005). 
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Ignoring variability as well as focusing exclusively on concrete values when conducting 

data analysis are problems that have a common root: the lack of conceptual understanding of 

statistics’ aim and tools caused, in part, by traditional teaching that is focused mainly on 

algorithms (Cai & Gorowara, 2002). Students accustomed to mechanical calculations are unable 

to give conceptual meaning to different types of statistics (mean, standard deviation) even when 

they command the algorithms necessary to come up with numerical values for these statistics 

(Batanero et al, 1994). It has been shown also that use of statistics (e.g., regression, ANOVA) 

does not happen spontaneously even when the students have the procedural knowledge necessary 

to conduct the calculations (Ben-Zvi, 2002; Gal, Rothschild, & Wagner, 1990). Among the 

causes for this situation are an incomplete or non existent understanding of the need for global 

views of data (Ben-Zvi & Arcavi, 2001), limited experience with the conditions of use of the 

statistics (e.g., mean vs median in the presence of outliers), and the inability to find meaningful 

representations of what the statistic means both in graphical and numerical form (Watson & 

Moritz, 2000). 

2.5.1 Computers and Data 

Given this situation, the requirements of instruction for data analysis and the limitations of 

existent teaching practices to develop this knowledge in students, how can computers enhance 

statistical education in the space of data? There are several possibilities. One is that computers 

can provide dynamic visualizations that enhance the understanding of statistical concepts. In the 

same way that random simulations can work as proof of concepts in chance, dynamic 

visualizations can work as proofs, or at least as enhanced demonstrations of statistical concepts 

in the data space. A second possibility is that the capacity of computers to generate 
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representations of data can help learners to operate beyond concrete numerical values (e.g., 

frequency counts), and to create several representations of statistical concepts or situations. In 

this sense, computers provide visual representations that can be used as analytical tools 

(Garfield, 1995). Third, statistical packages, the Internet and the large memory capacity of 

computers permit one to conduct authentic research in classroom settings. Computers permit 

students to access large data sets collected from real situations and to explore those sets without 

the huge computational costs that existed before (Finzer & Erickson, 2005). There are two basic 

uses of computers for teaching in the space of data: exemplification of statistical concepts using 

dynamic visualizations, and data analysis activities powered by statistical packages and the 

available large databases. 

2.5.1.1 Dynamic Visualizations 

During instruction, it is often necessary to exemplify statistical concepts and their properties. In 

traditional instruction, concepts are normally defined by their conceptual and algebraic formulas. 

The conceptual formulas permit one to derive the characteristics of the concept, by deduction, for 

those students who have the knowledge and skills to deal with the mathematical definitions. The 

computational formulas permit one to exemplify the concepts and their characteristics 

inductively from a case. However, the computational costs of exploring the concepts using the 

computational formulas, when done by hand, are large and the task seems meaningless for most 

students. Computers offer an alternative to traditional methods: dynamic visualizations.  

Dynamic visualizations are displays that work graphically and numerically on sets of 

data. In a dynamic visualization, learners operate on objects or icons to produce changes in the 

relationships among objects in the visualization and in numerical indicators associated with the 

concept being represented. For example, a representation of the arithmetic mean can show the 
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different cases in the data set as points in a Cartesian plane, and the mean as a line in the middle 

of them. Learners can move the line up and down and can see how the sum of the distances from 

the points to the line changes. More examples of dynamic visualizations are presented in 

Appendix C.  

A problem with dynamic visualizations is that they are artificial. The data sets are often 

created by the programmers; even when the data come from real situations, the context of the 

tasks is fixed and the decisions to be made by learners are limited. It is important to remember, 

as Hawkins et al (1992) proposed, that adding context to a data set is not beneficial for learning 

or assessment unless there is a meaningful purpose in the tasks.  

2.5.1.2 Exploring Data through Computers 

A more sophisticated use of computers to teach statistics is the use of databases and statistical 

packages to explore data in the context of authentic activities. There is a growing number of data 

sources on the internet and the offer of statistical packages for general and pedagogical purposes 

is huge (SPSS, Minitab, Tabletop, Fathom, Dynamic Statistics, Tinkerplots). It is important not 

to confound this type of activity with the use of dynamic visualizations. The difference between 

both is analogous to the difference between ready-to-use and built-up simulations. While 

dynamic visualizations present fixed situations, data analysis situations through statistical 

packages are flexible and permit learners to define several aspects of the task. The cost, of 

course, is that students need more background knowledge to use statistical packages. In spite of 

their differences, use of dynamic visualizations and data exploration using statistical packages 

help learners to move beyond concrete representations of data. Both types of tools permit 

learners to oscillate among different representations of statistical situations and in this way these 

tools help to develop statistical reasoning skills. Visualizations and data exploration through 
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computers help students to see statistical problems from multiple perspectives, as well as, to 

learn how to make informed decisions among different representations and numerical summaries 

(Ben-Zvi, 2000; Biehler, 1993; Garfield, 1995). 

Data exploration through computers is the computer-based equivalent to design 

experiments that require student to participate in authentic research activities (see, for example, 

Gravemeijer, 2002; Petrosino et al, 2003). In both cases, the activity requires students to analyze 

sets of data to come up with structures of distributions, to account for both underlying patterns 

and variability, and to connect the results with the questions being explored. A difference must 

be noted:  In the case of computer-based activities, the measurement process is skipped and the 

representational process limited by the options provided by the statistical package. When 

computers work as graphical devices, it is easy to switch from one representation to a different 

one and to enhance the use of multiple representations without having a large workload to 

produce them (DelMas, Garfield & Chance, 1999; Snir, Smith & Grosslight, 1995). The cost is 

that you have to “believe” in the machine (Bakker, 2002).  In this sense computers not only 

provide computational and representational power but they also change the structure of the 

instructional task (Ben-Zvi, 2000): The task is no longer to calculate a statistic or construct a 

graph; the task is to decide what to do. In the next pages, we will see some examples of uses of 

computers to teach data analysis and descriptive concepts in statistics. 

Mori, Yamamoto, and Yadohisa  (2003) focus on the pedagogical situation that the tools 

allow. They introduce DoLStat, a group of courses that use examples from online databases and 

authentic cover stories. In the perspective of these authors, using real data as well as credible 

authentic stories creates a new pedagogical situation and challenges students with the 

complexities of real statistical activity. 



 43 

Other authors hold a similar belief. A practice that is getting increasingly common is 

using census or demographic data in class activities. This type of activity has the advantage of 

presenting an authentic situation that is also socially and personally relevant for students. 

CensusAtSchool (Connor 2002; Conti & Lombardo, 2002; Hooper, 2002) is a project that 

collected demographic and other type of data from students between the ages of 7 and 16 to 

create a national UK database (Connor, 2002). The project provided two questionnaires (ages 7-

11 and 11-16) and the virtual infrastructure necessary to combine the data collected in schools 

across the country. The project’s website received information from the schools and gathered it 

in a unified database. The website also distributed the data to schools and allowed students to 

draw random samples of 200 cases. Students participated in the collection of information in 

schools and in the organization of the information in Excel spreadsheets that were mailed to 

CensusAtSchool right after the adult census was conducted in the UK. Curricular materials for 

making use of the information were available in the CensusAtSchool website. Hooper (2002) 

reports that a similar version of this project was conducted in New Zealand using the same 

virtual infrastructure. Among the interesting aspects of this second project was that students 

could compare results from the UK and New Zealand. Other uses of census data are reported by 

Conti and Lombardo (2002), Frey (http://www.ssdan.net/tarek_test/), and Finzer  and Erickson 

(2002). Finzer  and Erickson (2002) describe the use of U.S. national census records in a 

Fathom-based curriculum. They developed a curriculum that exploited the representational and 

computational properties of Fathom to analyze U.S demographic data (obtained from the 

Minnesota Population Center). Using this program, students represented and visualized the 

characteristics of diverse statistical concepts to build interpretations of the Census data. 
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Most studies mentioned to this point present either computer tools or computer-based 

curricula but they do not present in-depth descriptions or assessments of pedagogical 

experiences. However, studies that provide evidence regarding the effects of computer tools on 

statistics learning are also available. Bryc (1999) presents a very interesting curricular experience 

in which students have to decode messages in scrambled texts (texts where the characters have 

been substituted by other characters using word tools). To solve the mysteries, students must use 

statistical tools. They have to use counters to identify the most frequent characters and then to 

compare them with the Standard English frequencies. Although only anecdotic evidence is 

presented, this study shows how an engaging activity can be created using basic computer tools. 

McClain (2002) used TinkerPlots (a statistical software program for 4th- to 8th-grade 

students) to explore and visualize authentic sets of data. She found that participants developed 

strategies to manage the statistical complexity in the context of group comparisons. Students 

came up with methods to reduce variability by grouping data and methods to observe the 

characteristics of the new distributions produced by the blocking process. Participants started to 

use proportions (e.g., proportional reasoning) to interpret the relationship between bin size and 

group size in the representation of group distributions.  

Rubin (2002) describes an episode of statistics teaching for teachers that asked them to 

compare two types of batteries using a small data set. The importance of Rubin’s study rests on 

the fact that it compares the responses of participants under two conditions: doing the 

calculations by hand or using TinkerPlots. The findings show that when computational support is 

not available, participants tend to focus on the algorithmic process of calculation. When using 

TinkerPlots, they tend to focus on the representational and conceptual aspects of the task, such 

as, for example, evaluating the presence of outliers (which are invisible in hand calculations). 
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From this perspective, computers not only facilitate the activity but they also modify the 

requirements, goals, and constraints of the activity. 

A more complete version of this idea has been presented by Ben-Zvi (2000; 2002). For 

him, there are several metaphors to understand the role of computers in statistical education. One 

is the amplifier metaphor, which sees computers as tools that carry out people’s tasks but faster 

and more precisely. The second metaphor is the reorganization metaphor, which sees computers 

not as tools that facilitate the tasks, but as elements that modify the structure of the whole 

activity. From this perspective, computers have a similar role to that of memory devices and 

other material elements in distributed cognition (Hutchins, 1995). Ben-Zvi (2000) describes the 

“CompuMath” project, in which students have to use computers to analyze authentic data (e.g., 

100 meter race times analysis) by graphing in different ways the available information (e.g., 

graphing with and without outliers) in order to support statements.  Ben-Zvi shows that the goal 

of the activity changes: in CompuMath, the activity focuses on transforming representations of 

data patterns and variability. This task requires creating multiple representations and dealing 

with representational ambiguity. In this way, CompuMath encourage the process of 

interpretation by creating cognitive conflict between different representations. In the process of 

solving the conflict between different representations and building coherent interpretations, 

students come to global views of data (Ben-Zvi, 2002). 
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2.6 CHALLENGES TO SIMULATIONS, VISUALIZATIONS AND OTHER 

COMPUTER-BASED TOOLS 

Ready-to-use simulations have become increasingly popular; they are easy to access and use, and 

they require little prior knowledge on the part of learners. However, they face to challenges.  The 

first one is that the origin of the representation, the process and algorithm, and the connections 

between users’ actions and numerical changes are not evident in the situation. An advantage of 

simulations and visualizations is that they permit the direct mapping of theoretical statements 

onto the representation. A disadvantage is that students skip over critical steps in the 

representational processes. If mapping is not performed adequately, the interaction between 

parameters and graphics is not clear. That is, learners might modify parameters without knowing 

how or why they affect the representation and the results in the screen. A more important 

concern is that, when the visualization or simulation is presenting counterintuitive results, 

learners dismiss it as not realistic (Velleman & Moore, 1996). A solution to this problem is, in 

the case of simulations, to highlight the relationships between the virtual and physical 

simulations (Drier, 2000; Shaughnessy,1992). In the case of visualizations, the solution requires 

students to explain the steps of representation and calculation and to provide some knowledge of 

the basic principles upon which the simulation is built, even when total knowledge of the 

algorithm is not necessary (Nicholson et al, 2002). One can, for instance, explain the algorithm 

with some a small number of cases and use computers to explore large sets of authentic data. 

The second danger is that visualization and simulations can be used without performance 

standards by changing parameters without knowing what the task goal is. To avoid this danger, 

exploration of data through statistical packages can be more useful than use of free-exploration 

applets (Mills, 2002), because it pushes students to understand the inner logic of the used 
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procedures. For this reason, statistical packages that permit and, in some cases, require students 

to write down formulas to conduct certain procedures, create a better learning situation for some 

topics (Finzer & Erickson, 2005). Building and programming a model to test a hypothesis can be 

far more interesting than using an applet whose internal logic is unknown for learners. 

Computer-based statistical teaching should create interventions similar to the work that Burill 

(2002) conducted with physical simulations. She asked a group of students to analyze the age 

distribution of the employees laid off by a company in order to see whether or not age had a 

significant effect. Students conducted simulations (by physical means) and after that compared 

the distribution of the data in the company’s records to the distribution produced by random 

simulation. This example is interesting for two reasons: First, it shows how students can be 

introduced to modeling situations that push them to deal with ill-defined tasks. Second, it shows 

how data and chance collide in a concrete instructional situation: At the end, this task is an 

inferential one. Students had to deal both with data and with chance. They compared data 

distributions produced by random simulations and by data analysis, and in this process they 

explored the inner logic of statistical inference. This last example shows how rich pedagogical 

environments could be built around simulations. The use of computer tools in the teaching of 

statistics should follow a similar path. 

This review of the literature suggests that understanding statistical inference requires 

understanding data analysis and probability, that simulations can enhance the understanding of 

probabilistic theory, and that exploration of data with authentic data sets and computer tools can 

develop students’ data analysis skills. The next chapter describes the way in which this study 

examines the questions elaborated in Chapter One according to the literature reviewed in Chapter 
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Two. That is, the effects of simulations and data analysis tasks on the learning of inferential 

statistics. 
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3.0  METHOD 

This chapter describes the methods used to address the questions posted in Chapter One. 

Based on the stated purpose of this study, the design and methods aimed at informing our 

understanding of the relationship between the conception of statistical activity implied in two 

computer-based interventions and the learning of statistical inference. One computer-based 

intervention focused on the understanding of sampling by repeated simulation; the other 

computer-based intervention focused on data analysis by using authentic data sets and statistical 

packages. Additionally, this design tracked the evolution of data analysis and sampling 

knowledge from the beginning of instruction to the intervention point in a subgroup of 

participants and collected protocols of students answering the pre, posttest items. This chapter 

describes the population, measures, interventions, and data analysis used to explore these issues.  

Before doing so, it is necessary to clarify the terms that are going to be used in the rest of 

the text. Until now, the term chance had been used to refer different aspects of probability that 

are necessary for the learning of inference. In the following sections, sampling and sample size 

effects will be mentioned to refer particular applications of probability to the problems of  this 

study. All these terms are operational uses of chance. In the case of data analysis, the terms 

comparison of distributions, center and central tendency measures will refer operational 

applications of data analysis. ANOVA, ANOVA tables interpretation, and the elaboration of 

conclusions in context will be equivalent to inference. 
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3.1 GENERAL DESCRIPTION 

The study was a randomized design with two conditions. It was conducted in Latin America with 

84 bilingual college students taking inferential statistics courses. Students engaged in a pretest 

task, after which they were assigned randomly to one of two interventions aimed at teaching 

ANOVA. After they completed the intervention, they were evaluated again with a set of 

activities equivalent to those used before the intervention. A subset of the students (n=12) was 

asked to participate in the pre and posttest tasks while thinking aloud (see Figure 1). A different 

subgroup of participants (n=14) was studied in depth to capture the evolution of data analysis 

and sampling knowledge throughout a statistics course that used computer-based activities.   

Figure 1. General Structure of the Study 
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These measures were used to evaluate both the interventions’ effects and the constraints 

of the instructional situation presented in this study. In order to clarify the relationship between 

these measures and the research questions of this study, a correspondence table was built. This 

table presents the questions, the data, the analysis and the conclusions provided by this study 

(Table 2). Question 1 asked whether or not statistical knowledge could be captured in a 

measurement system, and what students thought while answering the systems’ questions. 

Reliability and validity analysis of the main questionnaire are presented, side by side with a 

protocol analysis of students’ reasoning process while solving the tasks in the measurement 

system.   

Table 2. Relationship between Research Questions, Measures, and Analysis 

Question Data Source Analysis 
Can the ideas of data analysis and 
sampling be captured in a reliable 
and valid measurement system? 
What are students thinking when 
they respond to the measurement 
system? 

Main Questionnaire  
Protocols 
 

Reliability and Validity Analysis. 
Protocol Analysis 

Is it possible to design online 
instruction that reflects the 
advantages of  each perspective in 
statistical education, and also 
manages to teach the target ideas of 
data analysis, and sampling equally 
effectively?  

Main Questionnaire 
Class’ Quizzes 
 
 

Mixed ANOVA 
 
 

Can either perspective be used to 
equal effect to teach either content 
(data analysis or sampling)? 

Main Questionnaire, 
Interventions’ Coding 

Mixed ANOVA 

 Question 2 asked about the actual potential of online instruction to teach data analysis 

and sampling knowledge. To solve this question, students’ gains from pretest to posttest are 

analyzed and effects in the different spaces of statistical instruction are described. Additionally, 

the evolution of a group of students is described using the political sciences course’s quizzes. 

Question 3 asked whether or not there was a tradeoff between both perspectives in statistical 
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education. Gains from pretest to posttest in the main questionnaire are examined, and compared 

in the different spaces of statistical thinking. 

3.1.1 ANOVA and Inferential Statistics 

Analysis of Variance (ANOVA) was selected for this study for several reasons. First, ANOVA is 

a statistics topic of central relevance for students in psychology and education at both the 

graduate and undergraduate levels (Curtis & Harwell, 1998). Indeed, ANOVA is the 

predominant statistical method used in educational publications (Elmore & Woehlke, 1996) and 

in statistics education for psychology students, with 88% of the doctoral programs in psychology 

offering at least one course on this topic (Aiken et al, 1990). Second, ANOVA is a simple linear 

model that allows students to experience the complexity of statistical inference in a task that 

resembles basic group comparison activities. In this sense, ANOVA connects with mechanisms 

of inferential reasoning: the intuitive notions of central tendency and variability, and the 

representation of data distributions. Additionally, understanding ANOVA requires the 

comprehension of sampling variability, and in this sense, using an ANOVA task reveals the 

extent to which students understand probabilistic concepts in inferential statistics. Finally, 

ANOVA allows a clean mapping of the three types of data outcomes (data representations, 

inference test results, and conclusions in context). The connection between variability and central 

tendency in data graphs, in statistical test results, and in conclusions in contexts is transparent in 

ANOVA. Explained and unexplained variance connects easily with the sums of squares in the 

ANOVA tables and with the different parts of the distribution graphs. 
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3.1.2 Pre and Posttest task 

In the first section of the pre, posttest, students solved a task that evaluated their ability to 

coordinate three processes: the comparison of distribution graphs, the interpretation of statistical 

test results (ANOVA tables), and the generation of conclusions in context (Appendix D). These 

three processes are basic for the understanding of statistics (Ben-Zvi, 2004; Lehrer & Shauble, 

2007; Saldanha & Thompson, 2003; Watson, 2002; Watson & Moritz, 1999). After the pre 

posttest, students responded to a questionnaire devoted to aspects of group comparison and 

sampling that affect the significance of mean differences (e.g., variance, sample size), and they 

engaged in an exploratory data analysis task. Finally, students were asked to solve a selection of 

items from the AP exam and the CAOS test in order to evaluate the use of these ideas in a more 

traditional statistical setting. The total time of the pre, posttest task was about 2 hours; 1 hour at 

the beginning of the study and 1 hour at the end.  

3.1.3 Interventions:  Data Analysis and Sampling Simulations 

Students were exposed to one of two interventions, either data analysis or sampling. In the data 

analysis condition students were asked to go through the Sampling Distribution and the ANOVA 

sections of the statistics course of the Open Learning Initiative (OLI). The OLI course was 

developed by Carnegie Mellon University (CMU) and funded by the Hewlett Foundation. This 

course explains the concept of ANOVA by placing it within the broader range of activities that 

test hypotheses for relationships. In particular the OLI course explains that the mechanism by 

which ANOVA compares differences is the contrast between explained and unexplained 

variances. The course provides several occasions for Exploratory Data Analysis (EDA) in which 



 54 

students are given data sets and asked to conduct statistical analysis using either Minitab or 

Excel (Appendix E). The exploratory data analysis situations are modeled throughout the course 

using authentic examples. 

In the sampling condition, students were asked to go through a study guide that follows 

similar steps to those in the OLI course, but instead of using exploratory data analysis, students 

were asked to pull random samples using several simulation Applets (Appendix F). To illustrate 

why it is necessary to test mean differences, students were asked to extract several samples from 

a population with a fixed mean (e.g., extract a sample of 20 cases from this distribution). The 

sample means varied due to the sampling process. The sampling intervention asked students to 

establish whether or not there was any observable difference between samples that belonged to 

the sample population and samples that came from different populations. Students were 

encouraged to test whether or not samples from a single population varied within certain limits 

and whether or not they fell according to the sampling distribution of the mean. After that, 

students were asked to play with the sample size and the standard deviation of the population and 

see how that affected the distribution of the sample means. In a final section, students explored 

what factors affected the confidence of the observed difference (e.g. the smaller the sample size, 

then, the larger the likelihood of finding a difference by chance). After that students were asked 

to use several Applets to visualize the relationship between explained and unexplained variance 

in ANOVA. 
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3.2 PARTICIPANTS 

This study was conducted with 84 students from an upper-middle class university in Latin 

America. All participants were native Spanish speakers with high English and computer 

proficiencies. Students were part of three middle-level statistics courses for social sciences 

majors. Specifically, participants came from three groups: one group was participating in a 

middle-level statistics course for psychology majors during the spring term of 2007; the second 

group was enrolled in an equivalent course during the fall of 2007; the third group was 

participating in a middle-level statistics course for political science majors taught during the fall 

of 2007. The first psychology course had about 35 students; the second psychology course had 

about 60 students, and the political science course had about 15 students. About 60 percent of 

students were women. All courses covered topics from basic descriptive statistics to basic 

inferential methods including ANOVA and Regression. All three courses had an EDA-based 

approach and students were accustomed to work with computer packages for data analysis. The 

activities necessary for this study were presented during the ANOVA sessions of the courses 

between the 12th and the 16th week of instruction. Protocols of students solving the pre, posttest 

tasks were recorded for a sub-sample of 12 students (6 in each condition). Additionally, the 

evolution of 14 students participating in the course for political science majors was registered 

from the beginning of instruction to the intervention point. 
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3.3 INSTRUMENTS 

3.3.1 Pre- and Posttest Questionnaire 

In the pre and posttest, participants were asked to respond a questionnaire that had four sections 

(see Appendix D). The first section asked students to connect three levels of data use --

distribution graphs, inferential test results, and conclusions. The second section presented open-

ended questions on sampling and data analysis in which students explained several statistical 

concepts. The third section was an exploratory data analysis activity in which students were 

asked to interpret a full set of ANOVA results that included graphs, descriptive statistics and 

ANOVA tables. The fourth section was a multiple-choice questionnaire that combined items 

from the AP exams and from the CAOS test on sampling, data analysis and inference. The pre- 

and posttest questionnaires had the same structure and they varied only in the cover stories and in 

the absolute numerical values of the parameters but the relationship among variables and the 

presence of significant differences was the same for both versions of the test. Students solved the 

pretest all at once in the first hour of the intervention, and the posttest in the last hour of the 

intervention after they had finished the computer-based activities. 

3.3.1.1 Section 1: Coordinating Distributions, ANOVA Results, and Conclusions 

The first section of the questionnaire evaluated students’ skill in coordinating distribution graph 

pairs, test results, and conclusions in context. Specifically, this section assessed students’ skill 

both in identifying distribution graph pairs that had significant differences, and in connecting 

these distribution pairs with ANOVA tables that displayed significant results and with statements 

that presented valid conclusions in context. When combined with the students’ protocols, these 



 57 

measures provided information on the students’ strategic use of central tendency and variability 

in the process of coordinating different data outcomes. 

Specifically, this section was divided into two tasks. The first task required participants to 

compare six pairs of distribution graphs. These distributions were produced using a random 

number generator and they varied in their size (n), mean, and standard deviation. The distribution 

pairs were presented graphically, and the n, the mean, and the standard deviation values were 

displayed at the right of each distribution graph. In the first item of the first task, students 

compared two distribution pairs that varied in the mean difference but had the same standard 

deviation. For example, in one pair both distributions had a standard deviation of  10 and a mean 

difference of 15; in the other pair both distributions had a standard deviation of 10 and a mean 

difference of 30. In the second item of the first task of this section, students compared 

distribution pairs that had the same mean differences but different standard deviations. In the 

third item of this task, they compared two distribution pairs with equal mean differences and 

standard deviations, but with different sample sizes. This task specifically asked participants to 

identify in each item the distribution pair that presented the most significant difference, and to 

explain the reasons for selecting some pairs over others.  

The second task of this section required students to interpret conclusions in context. In 

this task, participants read a research case that presented two findings. One of them was a 

significant mean difference; the other one was a non-significant mean difference. For both 

findings, the mean difference was the same. After reading the case, participants were required to 

solve three items. The first item required students to pair the findings in the case with two 

ANOVA tables. The second item required students to pair the findings with two graphical 

representations similar to those in the first task of this section; and the third item required 
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students to explain the difference between the two findings by picking a statement about the 

possible sample size of the results reported in the case.  

3.3.1.2 Section 2: Open-ended Questionnaire 

Section 1’s tasks provided important information on learners’ statistical reasoning. However, an 

open-ended questionnaire on sampling and data analysis was included to have a more direct 

measure of statistical knowledge. The first part of the open-ended questionnaire was devoted to 

sampling variability and data distributions. The open-ended questionnaire explored initially how 

participants understood the concepts of standard deviation, explained and unexplained variance, 

within-groups and between groups variability, and sample variability.  The second part of the 

open-ended questionnaire was a task that required students to interpret a pseudo-authentic case 

using two distribution graphs, both of which had a mean of 50. The distribution graphs differed 

in that one distribution had a normal distribution (mean = 50), and the other distribution 

combined data from two smaller distributions (means = 80 and 20) and had two peaks. This part 

of the questionnaire required participants to explain why an ANOVA did not identify significant 

differences between those two distributions. To do so, participants read a paragraph that 

presented a research case that compared a co-ed school and a single-sex school in mathematical 

learning. The two-peaked distribution corresponded to results from the co-ed school and the 

single-peaked distribution corresponded to results from the single-sex school. The paragraph 

explained that researchers sampled only a part of the students in each school (e.g., 100) and did 

not find significant differences in mathematical learning between the two schools. Participants 

were asked to assess the results of the study, and to propose options for redesigning it in order to 

improve the quality of the conclusions. Possible answers to this question were conducting a 

study with a larger sample or dividing the co-ed school data into two subsets – one for men and 



 59 

one for women. Finally, students were asked whether or not the same results would be found if 

the study were conducted again. 

3.3.1.3 Section 3: Data Analysis Task 

A data analysis task was included to evaluate students’ actual ability to deal with data analysis in 

an ill-defined task. Including this measure was consistent with the idea that contact with data 

analysis activities during learning develops data handling skills and knowledge that would not be 

developed otherwise. In this section, students had to analyze and produce conclusions from a set 

of data analysis results. The data set had been produced by random simulation but the results 

were presented as part of a real research case. The students were asked to explore the data 

analysis results, draw conclusions about the case, and explain where the conclusions came from. 

3.3.1.4 Section 4: Multiple-choice Test 

In order to evaluate students’ performance in a more traditional environment of statistics 

learning, the last section of the pre- and posttest tasks required students to answer a multiple 

choice test. This test was constructed with items from the CAOS and AP tests. These items were 

selected because they assessed distribution description and comparison, the effects of random 

sampling, the relationship between p-values and hypothesis testing, or the use and interpretation 

of ANOVA results. The CAOS test is a new tool for the assessment of statistical thinking, 

reasoning, and literacy that has been evaluated both for validity and reliability (DelMas et al, 

2006). The AP exam items are part of a large item database available at 

http://apcentral.collegeboard.com/apc/public /courses /teachers_ corner /2151.html. The AP 

statistics exam evaluates content whose level is at that of a non-calculus-based statistics college 
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course. Both tests are well-known assessments of statistics learning and are used in several 

contexts. 

3.3.2 Rationale for the Measures in Sections 1 through 4. 

The two first sections of the pre- and posttest questionnaires required students to describe and 

compare distributions. Comparing distributions presents several advantages for the study of 

statistical learning and reasoning. First, there is a growing body of research in statistics education 

that uses this task because it has the fundamental elements of statistical inference (e.g., 

contrasting typical indicators and variability) but it requires little specialized knowledge (e.g., 

Ben-Zvi, 2004; Lehrer & Shauble, in press; Watson, 2002; Watson & Moritz, 1999). Second, 

comparing distributions provides a bridge from basic exploratory tasks, as for example group 

comparisons, to advanced uses of statistical procedures in scientific contexts. Third, this type of 

task requires students to build global views of data, to understand diverse equivalent 

representations, and to produce conclusions about differences in distributions. 

In both tasks, four elements were manipulated: mean difference, standard deviation, 

sample size, and cover story. These elements participate in the assessment of mean differences’ 

significance. In the process of assessing the significance of a difference, researchers challenge 

the existence of a true difference against other possible sources of variation. Variation can be 

attributed to sampling, to the natural variation of the elements involved in the experiment, or to 

measurement process. Ideally, students should do the same.  

Natural variation was introduced in this design by having different standard deviations. 

The higher the standard deviation, the lower the confidence in the difference. The variation 

produced by the sampling process was introduced by varying the sample size; the lower the n, 
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the lower the confidence in the results. In both cases, high standard deviation and low n, the 

variation that can be attributed to factors different from those included in the model is high, thus 

the students’ confidence in the results should be low. However, evidence shows that this is not 

the case. Understanding of variation as a factor affecting the size of the mean difference appears 

only through instructional situations such as, for example, guided discovery (Lehrer & Schauble, 

in press) or cognitive conflict (Watson, 2002). In the same way, understanding that the sampling 

process generates variation, and that the lower the n, the larger the confidence interval, emerges 

only through precisely designed instructional situations (Saldanha & Thompson, 2003). 

 Inferential tests are simply a more sophisticated version of this kind of reasoning. In 

different ways, they test mean differences while accounting for the variability that can be 

attributed to within-group variance (that is, the natural variation of the objects in a category and 

the measurement error) and to the sampling process. They do so by adding variance in the case 

of confidence intervals, or by contrasting the statistic value observed in the sample against the 

sampling distribution of that statistic in the case of p-values. Cover story was introduced for two 

reasons: one to account for the fact that the interpretation of a statistical result can be affected by 

the context in which data is obtained (Nisbett et al, 1993). Second, to see how providing an 

interpretative context affects the understanding of statistical test results.  

The last three measures in the pre- and posttest questionnaires were selected for different 

reasons. The open-ended questions were included because it provided direct information on 

learners’ knowledge of probability and data analysis. The data analysis task was included 

because it reviewed the effects of the intervention in open statistics tasks that required organizing 

information and producing conclusions in research cases. According to the literature, active 

exploration and open representation of data in statistics education provide students with 
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opportunities for authentic use of data that formal training does not. The data analysis task 

should make these effects visible. The multiple-choice tests items evaluated the effects of the 

interventions in an assessment situation that was not clearly related to one of the two types of 

instructional procedures in this study (e.g., sampling simulation and data analysis), and in this 

way, these items evaluated reasoning out of the instructional setting.  

3.3.3 Main Questionnaire 

From all these measures, a main questionnaire was elaborated. This main questionnaire is 

the source of all the quantitative findings reported in this study. From now on, the items in this 

questionnaire will be referred as item, and they will numbered between 1 and 16. Questions not 

belonging to this questionnaire will be reported as open-ended questions. Items 1 to 3 are part of 

the first task of the first section of the measures (3.3.1.1.); Items 3 to 6 are part of the second task 

of the first section of the measures (3.3.1.2). Item 7 is the answer to the data analysis task 

(3.3.1.3). Items 8 to 16 are multiple choice items included in the measures (3.3.1.4). 

In terms of origin, items 1, 2, and 3 were designed by the researcher, and required 

students to identify the more significant of two distributions given the means’ difference, the 

group variance and the sample size (Table 3). Items 4, 5 and 6 were designed by the researcher 

and required students to connect a case with different data outcomes. In particular, these items 

required students identifying the data distribution graphs, ANOVA test results and sample sizes 

that connected with significant results in a hypothetical case. Item 7 was written by the 

researcher and required students to interpret the difference between two data distributions in two 

hypothetical situations. Items 8 to 16 were taken from the CAOS test. In content levels, the items 

1, 7, 8, 9, 10 required students to compare several data distributions presented in a graphic form. 
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Item 2 and 4 required students to compare data distributions accounting for group variance. Item 

3, 5, 13, 15, required students to understand the role of sample size in different statistical 

situations. To solve items 6, 11, 12, it was necessary to coordinate significance p-values either 

with graphical representation of data or with conclusion in cases. Item 14 asked students to 

figure out the relationship between sample and population characteristics. Item 16 involved 

understanding the difference between sampling and data distributions. Items 10, 11, 12, 13, and 

14 included sample size in at least one element of the problem solution. 

Table 3. Item Characteristics 

Name Item Goal Accounting for Space 
Data1 1 Identify the more significant difference Different central values D 
Data2 2 Identify the more significant difference different spreads D 
Sam1 3 Identify the more significant difference different sample size S 
Data3 4 Produce a conclusion different spreads D 
Sam2 5 Produce a conclusion Different sample size S 
Inf1 6 Produce a conclusion Different p-values I 
Data4 7 Produce a conclusion in Context Different central values D 
Data5 8 Evaluate a conclusion Different central values D 
Data6 9 Evaluate a conclusion Different central values D 
Data7 10 Evaluate a conclusion Different central values D 
Inf2 11 Interpret a significant result Sample size I 
Inf3 12 Interpret a significant result Different central values I 
Sam3 13 Connect population and sample characteristics. Sample size S 
Sam4 14 Connect population and sample characteristics Different spreads S 
Sam5 15 Connect population and sample characteristics Sample size S 
Sam6 16 Different sampling distribution and data distribution Different spreads S 
 

3.4 INTERVENTIONS 

For the intervention phase of the study, students were divided in two groups. In one group, 

participants were asked to go through a section of a statistics course that provides opportunities 

for data analysis. In the other intervention, students learned ANOVA with a study guide that had 
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the same course structure but that supported the learning of ANOVA with ready-to-use 

simulations instead of data analysis. Both interventions explained that ANOVA compared within 

and between group variance to determine when there were systematic mean differences, that 

were not due to random sampling. The literature suggests that these two types of intervention 

have different effects on the learning of statistical inference. Ready-to-use simulations allow 

students to interact with probabilistic concepts at a low procedural cost; they allow for the 

drawing of multiple samples and for visualizing how samples distribute according to the 

population parameters. However, ready-to-use simulations do not allow students to build the 

representational frameworks in which to interpret the data, and the lack of authenticity in these 

simulations can lead students to feel they are not dealing with real data. On the other hand, 

activities based on data exploration, as in the data analysis condition, require students to handle 

raw data and to control the representational frameworks in which data is organized. However, 

this type of activity (data exploration) makes connecting statistical concepts and representations 

difficult. Several steps separate data from representation, and representation from concept. Data 

exploration activity also constrains students experience to just one set of data, neglecting the 

experience of multiple sampling that is necessary to understand probabilistic concepts.  

3.4.1 Elaboration of the Interventions  

Both interventions followed the structure of the ANOVA section of the Open Learning Initiative 

(OLI) statistics course. The instructional time for both interventions was about two hours 

including the reading of the text and the completion of the exercises. The data analysis 

intervention was a simplified version of the ANOVA section of the OLI course and had all the 

same features except the feedback system. To produce this intervention, the text and exercises of 
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the OLI course were exported from the OLI website to a “.html” file that students could access 

from a CD.  To produce the Sampling intervention, the main ideas of the ANOVA section of the 

OLI course were isolated and the possible locations for simulations in this instructional sequence 

were identified (see Table 4). Then, several Applets that could serve as simulations for this 

intervention were found on the Internet, and three of them were selected. With this information 

in place, a study guide was prepared. Finally, the study guide and the links to the simulation 

Applets were exported in the same .html format used for the data analysis condition. 

Additionally, a fragment of the sampling distribution section of the OLI course was added to the 

data analysis intervention, in order to provide students in this condition with information on 

random sampling that students in the other condition would obtain from using the simulations.  

3.4.2 General Structure of the Interventions 

Both interventions were elaborated around a group of eight ideas obtained from the ANOVA and 

Sampling Distribution’s sections of the OLI course (Table 4). Although both interventions 

presented the same ideas, the specific presentation of the content varied from one intervention to 

the other. The data analysis condition tended to use more worked-out examples, while the 

sampling condition tended to use more simulation exercises.  

Table 4. Basic Ideas of the Interventions from the OLI Course 

Idea 
1. ANOVA evaluates the relationship between a categorical and a continuous variable.  
2. ANOVA is necessary to evaluate the relationship between categorical and continuous variables. 
3. ANOVA compares within and between group variances to elaborate conclusions on the sample means  
4. The variation among group means is considered negligible when within and between variances are similar. 
5. The degrees of freedom affect ANOVA’s interpretation.  
6. The elements of ANOVA tables 
7. Interpretation of p-values 
8. Interpretation of the results of ANOVA  
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Although this situation compromises the comparability of both interventions, it mirrors 

the differences between the perspectives in statistical education compared in this study. A 

probability-based perspective in statistical education privileges the teaching of probability, and 

naturally it concentrates activity around this topic; a data analysis perspective focuses on the 

teaching of data analysis, and for this reason it gives more room for data analysis activities than 

for the use of probability simulations. To make explicit these differences, this text will provide in 

the next pages a detailed account of the similarities and differences between both interventions 

attending particularly to the amount and type of text and activity devoted to each idea. 

3.4.2.1 Interventions’ Characteristics 

Interventions were coded in terms of the type of pedagogical resource they contained (e.g, texts, 

exercises, examples), and the statistical space they aimed at (e.g., data analysis, sampling, 

inference) (Table 5). This information makes it possible to compare the interventions according 

to the amount and type of activity devoted to each space of statistical content, and more 

generally it permits a more complete understanding of the intervention effects on participants. In 

the next section, the comparative results of both interventions are presented.  

Table 5. Idea units and Questions in each Intervention 

Type of Activity 

General Text Examples Exercises 
 
 
 

    Statistical        
    Space 

Data 
Intervention 

Sampling 
Intervention 

Data 
Intervention 

Sampling 
Intervention 

Data 
Intervention 

Sampling 
Intervention 

Data Analysis 21 10 43 0 7 9 

Sampling 34 19 42 5 14 35 

Inference 38 16 43 1 21 25 

 

Total 93 45 128 6 42 69 
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The results for general text show that the data analysis intervention presented more text 

than the sampling intervention. The number of idea units of general text in the data analysis 

intervention was 93, compared to the 45 idea units presented in the sampling intervention. This is 

true for all the statistical spaces considered in this study; Figure 2 shows that while the data 

analysis intervention presented 21 idea units of general text in the data analysis space, the 

sampling interventions had 10 idea units in the same dimension.  The same configuration 

appeared for the inference space where the data analysis intervention had 38 idea units, and the 

sampling intervention had 16 idea units; and for the sampling dimension where the data analysis 

intervention had 34 idea units and the sampling intervention had 19 idea units. 
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Figure 2. Idea Units in General Text per Statistical Space 

A similar pattern appeared for the example dimension: the data analysis intervention had 

128 idea units in total and the sampling intervention had 6 idea units in the same type of 
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pedagogical resource. This difference was transversal to all dimensions. 43 to 0 in the data 

analysis space, 43 to 1 in the inference space and, 42 to 5 in the sampling space (Figure 3). 
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Figure 3. Idea Units in Examples per Statistical Space 

The opposite situation happened with the exercises. The sampling intervention provided 

more exercise’s questions (69) than the data analysis intervention (45). This was true for the 

three statistical spaces (figure 4): For data analysis, the sampling intervention provided 9 

questions and the data analysis provided 7. For the inference category, the sampling intervention 

provided 25 and the data analysis provided 21 questions. Finally, for the sampling space, the 

sampling intervention provided 35 questions in the exercises and the data analysis intervention 

provided just 21 questions. 
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Figure 4. Questions in Exercises per Statistical Space 

Differences in the amount of work per space and type of resource between the two 

conditions were expressed as ratios between the number of idea units and questions in the 

sampling condition and in the data analysis condition. To test the significance of these 

differences, a Chi square was calculated for the ratio between the number of idea units or 

questions in the sampling intervention and the total number of idea units or questions in both 

interventions. It was assumed that equal work levels in both interventions will produce a .50 

ratio, that higher work levels in the sampling condition will produce ratios over .50, and that 

lower work levels in the sampling condition will produce ratios under .50. 

These results show that all the differences were significant except the differences 

between the number of exercises’ questions devoted to data analysis and inference (Table 6). In 

other words, the data analysis intervention had significantly more text and examples in any space 

than the sampling intervention, and the sampling intervention had significantly more exercises 
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devoted to sampling than the data analysis intervention. A detailed account of the coding process 

and a description of the interventions arguments are presented in Appendix G. 

Table 6. Ratios for the Number of Idea Units and Questions in the Sampling and the Data Analysis Intervention. 

 General Text Examples Exercises 
 Sam/Dat Sam/Tot Sam/Dat Sam/Tot Sam/Dat Sam/tot 
Data Analysis 10/21=.47 .32* 0/43=0 .0** 9/7=1.28 .56 
Inference 16/38=.42 .29** 1/43=02 .02** 25/21=1.19  .54 
Sampling 19/34=.55 .35* 5/42=.11 .10** 35/14=2.5 .71** 
Total 45/93=.48 .32** 6/128=.04 .04** 69/42=1.64 .62* 

 

3.5 COURSE DESCRIPTIONS 

The data for this study were collected in three different courses. This section describes both the 

general and specific characteristics of these courses. The three courses were EDA based courses 

that focused on basic and intermediate level statistics contents. The first two courses were 

intermediate level statistics courses for psychology majors taught in the first and second semester 

of 2007 by different instructors. The third course was an intermediate level statistics course for 

political science majors taught by a third instructor. The interventions were conducted in all 

courses between the 12th and the 16th week of classes. Prior to the intervention, students 

underwent training on data representation, variable types and relationships, center and spread 

measures, and correlation. The complete list of the courses topics and the order in which they 

were presented can be seen in table 7.  

Interviews with the courses’ instructors  indicated that students had extensive practice 

with data representation and interpretation, including the construction of histograms, and the 

comparison of different data distributions. During the courses, students were often required to 
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characterize distributions in terms of central tendency and spread measures, as well as, in terms 

of other distribution characteristics (e.g., skewness). 

Table 7. Comparison of Statistical Courses 

Topic Psychology I Psychology II Political Science 
Item Construction 2 2  
Sampling Techniques 3 3  
Data Bases 4 4 2 
Histograms 5 5 7 
Descriptive 
Center Measures 

6 6 4 

Measures of Spread 7 7 5 
Box Plot   6 
Variables 
Continuous Categorical 
Independent etc 

9 9 3 

Contingency Tables 10  9 
Normal Distribution 11 10 8 
Design Types 12 11 2 
t-test 13 12 11 
Correlation 14 13 10 
Intervention moment 16 14 12 

 

The interviews indicated also that formal training in mathematical proof and mechanical 

calculation was avoided in all three courses; SPSS competency was an important part of all 

courses. The courses privileged conceptual explanation of statistical techniques and measures 

(e.g., spread measures) over the mathematical and procedural aspects of them. Typical activities 

in the classes were considering a problem and a solution in the light of a data set and its 

representations. Questions like identifying the distribution with the largest spread among several 

data representations, or describing the elements of a graph were recurrent.  Class activities that 

required students to use SPSS were typical also. No probability training was given prior to the 

intervention. The sampling topic was restricted to sampling techniques (e.g. stratified, cluster) in 

each three courses. 
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3.6 PROCEDURE 

Students in the think aloud sub-sample for the pre and posttests were interviewed individually. 

Participants in this group met with the researcher in a private office; the consent forms were 

given to participants, and, if they consented to participate in the study, the general instructions 

for the study were given. These instructions basically asked participants to conduct the tasks in 

the study while talking aloud. An example and a pilot task for the talking aloud was provided and 

participants were asked to engage in a short warm-up task. The warm-up task consists of three 

two-digit multiplication problems that participants had to solve while talking aloud.  After this, 

participants in this sample solved six items of the pretest while being audio recorded, and all the 

other items in written form. No identification information was associated either with the 

audiotapes, or with the written documents. Following completion of the pretest,  participants in 

the think aloud group were randomly assigned to one of the two conditions: a data analysis 

condition, where they analyzed authentic data in the context of an statistics course (Appendix E); 

or a Sampling condition that required the students to go through a study guide and to use several 

simulation Applets (Appendix F). After the interventions, participants solved six items of the 

posttest while thinking aloud, and all the other items in written form. Students in the general 

sample followed the same procedure except that they were not interviewed individually and they 

were not required to think aloud. Only written answers to the pre- and posttest were collected for 

this larger sample. 

In addition to the large study focused on the intervention effects, a sub study aimed at 

exploring in depth the change in students knowledge prior to the intervention point was 

conducted with the political science course. The decision to conduct this sub-study was taken 

because during the initial data collection in the spring of 2007, the intervention effects were 
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restricted to sampling knowledge in the sampling condition, and the data analysis intervention 

did not produce change on data analysis knowledge. A plausible explanation for this result was 

that gains in data analysis skills and knowledge required a more intense amount of practice than 

the amount of practice provided by the data analysis intervention. Moreover, it was hypothesized 

the practice necessary for developing data analysis skill was provided prior to the intervention 

point through the courses’ representational and interpretative exercises. In fact, the initial levels 

of data analysis knowledge were higher than the initial levels of  sampling knowledge. To track 

the effects of sustained activity on students knowledge, the following procedure was designed.  

The political science class evolution was registered during a period of 11 weeks from the 

beginning of the class to the intervention point. Instructor actions and students’ gains were 

documented. This section describes in detail the instructor actions and the evaluation instruments 

used during the initial 10 weeks; the results and the changes on students’ knowledge  are 

described in the results section.  

Class actions are divided in three types: explanation, SPSS use, and interpretation. 

Explanation was the introduction to the class topics and the presentation of the main elements of 

the concept by the instructor. SPSS use was the moment in which students practiced by 

analyzing data bases with SPSS routines. Interpretation was the class moment where students  

put concepts in context, and read the SPSS results in order to solve questions. Each moment had 

a different emphasis: explanation focused on the basic ideas of each statistical concept (e.g. SD 

is related to the distribution spread); SPSS use aimed at developing competency in statistical 

package use and output reading; and interpretation worked on students skill to solve theoretical 

questions using statistical ideas. Class actions were registered by collecting the instructor SPSS 

Power Point presentations. 
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Table 8. Studying the Evolution of a Class 

    
Topic Week Class Action Weekly Quiz 
Design Types 2   
Data Bases 2   
Types of Variables 3   
Descriptive 
Measures of Center  

4 Explanation (Measures of Center) 
SPSS (Measures of Center) 
Interpretation (Measures of Center) 

 

Measures of Spread 5 Explanation (Measures of Spread) 
SPSS (Measures of Spread) 
Interpretation (Measures of Spread) 

Measures Spread and Center 

Box Plots 6 Explanation (Box Plots) 
SPSS (Box Plots) 
Interpretation (Box Plots) 

Boxplots with context 

Histograms 7 Interpretation (Box Plots) 
Explanation (Histograms) 
SPSS (Histograms) 

Boxplots and Histograms 
with context 

Normal Distribution 8 Interpretation (Histograms) 
Explanation (Normal Distribution) 

Boxplots and Histograms 
with context 

  EXAM  
Contingency Tables 9   
Correlation 10   
T test 11  Boxplots and Histograms 
    

 

The results of this sub-study come from 5 quizzes taken between week 5 and week 8 and 

from a follow-up quiz taken during week 11 (Table 8). Quizzes had one or two questions and no 

reliability measures were obtained for them. The first quiz evaluated the understanding of center 

and spread measures without attending to any graphical representation. The second quiz 

evaluated the interpretation of boxplots, particularly, the ability to compare two distribution 

represented as boxplots. The third quiz was similar to the second one but it included also 

histograms; students were asked to evaluate the similarities and differences between two 

variables; one represented as a histogram, and the other represented as a Box plot. The forth quiz 

tested both students skill to interpret histograms and boxplots in context (comparing several 

distributions and concluding about them). The follow up quiz was presented to students in week 
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11 right before the intervention and it was very similar to quiz 4. Additionally, students 

performance was registered by asking students to email the results of class exercises; class 

exercises in most cases required students conducting transformations on data using SPSS, and to 

produce short results interpretation.  

3.7 PROTOCOL CODING 

3.7.1 Coding of Protocols 

3.7.1.1 Coding of Data Analysis Items 

Students’ verbal protocols on data analysis items were parsed into idea units and then coded 

according to cognitive actions. An idea unit was defined as a non-redundant proposition with 

complete meaning. The cognitive actions considered here are describing, comparing, explaining, 

inferring, answering and metacognition.  

Describing is defined as an idea unit where the participants produced an statement about 

some directly observable feature of the distribution. Operationally, the describing code required a 

sentence whose subject (direct or implied* Spanish allows sentence without subject that can be 

implied through the conjugation of the verb) was an element of the distribution, or the 

distribution itself, and that contained the verbs “to be” or “to had” (it is, it seems to be, it appears 

to be, it appears to have).  

Comparing is defined as an idea unit where features from different distributions are put 

side by side and contrasted along some given dimension. Operationally, this code required an 

idea unit containing references to two or more distributions and the presence of a contrasting 
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verb (“compared to” “different than”) or a comparative adverb (“more than” “less than” 

“equal”). For the describing and comparing codes, a distinction was made between participants 

producing right answers and participants producing wrong answers. Right answers were marked 

with an asterisk. Additionally, a sub code was created to identify the element being described or 

compared. For the describing code the values of this argument could be center, spread, 

distribution or problem feature. For the comparing code the values could be center, spread or 

distribution.  

Explaining was a code created to account for cognitive actions in which people presented 

further justification to some statement. Explaining was coded for idea units starting with 

“because” or an equivalent word or phrase (e.g., this is due to ). Inferring was the cognitive 

action of concluding from prior information. This action was coded when  a statement was 

placed after a connector  like “thus” “therefore” or an equivalent word.  

Answering was used for idea units in which the participant presented direct answer to one 

of the items used in this part of the study. When an answering code was preceded by a connector 

like thus, therefore or equivalent word, or followed by a connector like “because” or equivalent 

word, both the answer and the accompanying statement were considered as part of a single 

answering code. This decision was taken to avoid confusion between inferring and explaining 

codes, and the answering code. This system permitted also to treat answers and explanations as 

single units in order to identify the decision rules used by participants.  

Three additional codes were created to facilitate the coding system. A metacognition 

code was created for idea units that showed knowledge self-assessments. Operationally, this code 

required that the object or subject of the idea unit were either an statement or the participant’s 
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knowledge. When the participant was assessing a final answer or description with only a verb 

(e.g., I believe that), the idea unit was coded as answering, not as meta cognition.  

A positioning code was created for idea units that inform about the part of the problem 

the student was solving. For coding purposes, this code required the idea unit to include phrases 

like “solving this”, “solving that”, or textual paraphrasing from items. A last code was created 

for affirmations not included in this system; such idea units were coded as “other”. 

Additionally, protocols of students were classified into two types depending on the length 

of the protocol. It was assumed that a short protocol implied a superficial examination of the 

item (strategy 1), and that a long protocol entailed a deeper exploration of the problem elements 

(strategy 2). Strategy 1 was defined as an answer that was given before 20 idea units; strategy 2 

was defined as an answer that was given after 20 idea units. These definitions provided a simple 

way to discern between both strategies on the assumption that the difference between students 

using both strategies lied in elements difficult to identify, such as the presence or absence of 

certain decision rules, the level of trust on those rules, or the persistence during the problem 

solving process. The decision to take 20 idea units as the cut point was made based on 

preliminary analysis of the protocols that indicated that protocols under 20 idea units tended to 

have a simple structure in which no development or discovery of new decision rules was 

possible. 

3.7.1.2 Coding of Sampling Items 

Sampling items were codified with same categories that were used for data analysis 

items. Some changes were made to adapt the system to the type of answers produced by 

participants. In the data analysis items, describing and comparing codes had arguments that 

pointed out what aspect of the distribution was being described; for the sampling items, “sample 
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size” was included among the possible arguments for describing and comparing codes. For the 

coding system, the propositions coming directly from the items text were annotated and used in 

the analysis of the decision rules. The assumption here was that the information coming from the 

text was still active in the working memory and it was being used to response the items. 

3.7.1.3 Coding Reliability  

In data analysis items, inter-rater reliability was obtained on the coding of 50.3% of 

student’s cognitive actions. The percentage of agreement was 82.0% (Kappa 0.76) for the coding 

of cognitive actions. The reliability in the identification of the object of the describing codes 

(e.g., center, spread) was calculated on a sub sample of 52.6% of the describing codes,  and the 

agreement rate was 88.7% (Kappa=.79). The coding reliability in the classification of answering 

codes into decision rules was calculated on a sub sample of 66.2% of the answering codes, and 

the agreement rate was 86.7% (Kappa=0.82). For sampling items, the reliability of the 

classification of answering codes into misconceptions was 88.9% (Kappa=0.85) based on the 

total sample of answering codes. 
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4.0  RESULTS 

This section presents the main findings of this study. After reviewing the characteristics of the 

pre, posttest items, this text explores the effects of computer-based interventions on students 

knowledge. In the second part, the text describes the evolution of students’ knowledge prior to 

the intervention point, as well as, some hypotheses about the factors that determine students 

performance on data analysis tasks. These hypotheses were based on information about class 

activities and students’ responses registered in one of the courses observed in this study. The 

third part of this section presents the conclusions of several protocol analysis of students solving 

the assessment tasks. From this protocol analysis, a plausible explanation of the intervention 

effects on students knowledge is proposed. In the final part of this section, the answers’ 

explanations provided by the students in the pre, posttest are analyzed and connected with the 

protocol analysis results.   

4.1 A MEASUREMENT SYSTEM FOR STATISTICAL KNOWLEDGE 

Students answers were analyzed in order to evaluate the quality of the measures used in this 

study. Classic measures of reliability were obtained, and, to test validity, a factor analysis on the 

pre, posttest measures was conducted to test whether or not the items behaved according to the 

underlying constructs they were supposed to measure; a complete description of the process of 
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item classification is provided in the methods section. To obtain a measure of external validity, 

the correlation between measures designed by the researcher and items obtained from standard 

statistics test (e.g., CAOS test) was calculated. 

4.1.1 General Descriptive Measures 

Table 9 presents item means and standard deviations. In the pretest, no item was answered 

correctly by more than 77% of participants. Some items, however, were answered correctly by a 

small percentage of participants. Items Inf1, Inf2, Sam3, Sam4, Sam5 and Sam6 were answered 

correctly by less than 25% of participants. All these items focused on inference and sampling 

that were statistical areas in which students had little prior training. A more careful look at table 

9 shows that 3 items were answered correctly by less than 20% of participants; 4 items were 

answered correctly by between 20% and 40% of participants; 5 items were answered correctly by 

between 40% and 60% of participants; and 4 items were answered correctly  by more than 60% 

of participants. 

In the posttest, no item was answered correctly by more than 72% and by less than 36% 

percent of students. The percentage of right answers for inference and sampling items increased, 

and the floor effects observed in the pretest disappeared. Items that had had very low response 

rates in the pretest obtained higher scores in the posttest. Only 2 items were answered correctly 

by between 20% and 40% of students; 7 items were answered between 40% and 60 % of 

participants, and 7 items were answered by more than 60% of participants. 
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Table 9. Items’ Descriptive Measures 

Name Pre Post 
 

Item 
  

Space N 
Mean S. D. Mean S. D. 

Data1 1 Data 84 .64 .48 .67 .46 
Data2 2 Data 84 .40 .49 .46 .50 
Data3 4 Data 84 .46 .50 .54 .50 
Data4 7 Data 84 .77 .42 .66 .47 
Data5 8 Data 84 .55 .49 .60 .49 
Data6 9  Data 84 .61 .48 .72 .44 
Data7 10 Data 84 .42 .49 .65 .47 
Inf1 6 Inference 84 .65 .50 .63 .48 
Inf2 11 Inference 84 .23 .42 .57 .49 
Inf3 12 Inference 84 .16 .37 .36 .48 
Sam1 3 Sampling 84 .33 .47 .54 .50 
Sam2 5 Sampling 84 .45 .50 .55 .49 
Sam3 13 Sampling 84 .15 .36 .63 .48 
Sam4 14 Sampling 84 .22 .42 .48 .50 
Sam5 15 Sampling 84 .08 .27 .38 .48 
Sam6 16 Sampling 84 .27 .44 .46 .50 
 

4.1.2 Reliability and Validity 

 To check reliability, a Cronbach’s alpha was calculated for the test and subtests involved 

in this study. For the posttest, the Cronbach’s alpha was .76. This value is acceptable given that 

the Cronbach’s alpha reported for the whole CAOS test is .77 (DelMas et al, 2006). Reliability 

was calculated also for the parts of the test devoted to specific areas of content. For the posttest, 

the Cronbach’s alpha was .74 for items devoted to data analysis, .60 for items devoted to 

sampling, and .44 for items devoted to inference. To test the effect of the number of items on the 

Cronbach’s alpha and to show that the values found for the sampling and the inference part of  

posttest were low due to the small number of items included in those subscales, a Cronbrach’s 

alpha was calculated for the sampling and inference items altogether, and the result was .66.  
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4.1.3 External Validity 

To evaluate validity, the correlation between items from standardized tests and items 

developed specifically for this study was calculated for each sub area of content. Correlations 

between the CAOS and non-standardized items were significant for the whole test and for all 

areas of contents (Table 10). For the whole test, this correlation was .59**; for the data analysis 

part, it was .52**; for the sampling part, it was .25*; and for the inference part, it was .26*. The 

improvement on students knowledge explain the observed increase in the correlations for the 

sampling and inference parts of the test. 

Table 10. Posttest Correlations between Standardized Items  and Items designed for this Study 

 Posttest Researcher Items 
 Total Sampling Data Analysis Inference 
Total .59** .42** .46** .28** 
Sampling .25* .25* .16 .11 
Data Analysis .55* .25* .52** .26* 

C
A

O
S 

IT
EM

S 

Inference .52** .43** .36** .26* 
 

4.1.4 Item Discrimination 

Item discrimination measures were obtained for the posttest items. The discrimination index was 

calculated using the procedure proposed by Kelley (Engelhart, 1965). This formula takes 

participants with scores below the 27 and above the 73 percentile,  subtracts the number of right 

answers for any given item in the high-scoring group from the number of right answers in the 

low-scoring group and then divide this number by the size of the groups. This process was 

conducted for the global score in the posttest, for the sampling, data analysis and inference 

scores. The results of this process are presented in table 11. This table presents the items’ 
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numbers and discrimination indices for the whole posttest, and for the sampling, data analysis 

and inference parts of the test in the first five columns. In the following three columns, the table 

presents the difference between the discrimination index for the whole test and the 

discrimination index for each subarea. In the last column to the right, the table presents the 

average of differences between the discrimination index for specific parts of the test and the 

discrimination index for the whole test (C7, C8. C9). In the same column in the parenthesis, it is 

presented the average of the difference between the posttest and the sampling discrimination 

index (C7), and the difference between the posttest and the data analysis index (C8). Low 

averages in this column indicate that the item discriminates between good and poor learners but 

it does not discriminate between different levels of learning in specific content areas. 

Table 11. Item Discrimination 

Name Items  Space Post Sam Data Inf Tot-Sam Tot-
Dat 

Tot-Inf Averages 

 C1 C2 C3 C4 C5 C6 C7=3-4 C8=3-5 C9=3-6 [7+8+9]/3 ([7+8]/2) 

Data1 1 Data 0.59 0.23 0.77 0.36 0.36 0.18 0.23 0.26 (0.27) 
Data2 2 Data 0.77 0.36 0.86 0.59 0.41 -0.09 0.18 0.23 (0.25) 
Sam1 3 Sam 0.55 0.82 0.27 0.41 -0.27 0.27 0.14 0.23 (0.27) 
Data3 4 Data 0.59 0.32 0.77 0.64 0.27 -0.18 -0.05 0.17 (0.23) 
Sam2 5 Sam 0.50 0.91 0.36 0.36 -0.41 0.14 0.14 0.23 (0.27) 
Inf1 6 Inf 0.50 0.32 0.41 0.82 0.18 0.09 -0.32 0.20 (0.14) 
Data4 7 Data 0.59 0.32 0.86 0.45 0.27 -0.27 0.14 0.23 (0.27) 
Data5 8 Data 0.50 0.50 0.55 0.32 0.00 -0.05 0.18 0.08 (0.02) 
Data6 9 Data 0.45 0.27 0.64 0.55 0.18 -0.18 -0.09 0.15 (0.18) 
Data7 10 Data 0.64 0.50 0.82 0.55 0.14 -0.18 0.09 0.14 (0.16) 
Inf2 11 Inf 0.73 0.82 0.45 0.91 -0.09 0.27 -0.18 0.18 (0.18) 
Inf3 12 Inf 0.55 0.23 0.36 0.73 0.32 0.18 -0.18 0.23 (0.25) 
Sam3 13 Sam 0.73 0.82 0.27 0.36 -0.09 0.45 0.36 0.30 (0.27) 
Sam4 14 Sam 0.55 0.32 0.18 0.36 0.23 0.36 0.18 0.26 (0.30) 
Sam5 15 Sam 0.18 0.50 0.00 0.05 -0.32 0.18 0.14 0.21 (0.25) 
Sam6 16 Sam 0.55 0.41 0.32 0.36 0.14 0.23 0.18 0.18 (0.18) 

 
Discrimination indexes below .2 are consider to be low and above .4 to be high (Ebel, 

1954). According to this criteria, only Sam5 would be considered as having a low discrimination 

index for the entire posttest score. Additionally, no item would be considered as having a low 
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discrimination index in its own specific statistical sub area (in gray). When the differences 

between discrimination indexes for the whole posttest and specific areas are compared, only Data 

5 seems to have a low average of differences in column 10 (.08(.02)). This low average indicates 

that this item has the same discrimination level for the whole test and for specific content sub 

areas; in other words, this item might be considered a general knowledge item. 

4.1.5 Structure of the Measures 

To explore the structure of the measures, a factor analysis was conducted on the posttest items. 

This analysis was restricted to the posttest because the initial analyses showed that low levels of 

student knowledge affected the structure and consistency of the measures in the pretest. The 

factor analysis used a orthogonal varimax rotation and the number of factors was constrained to 

two.  
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Figure 5. Factor Analysis Screeplot 
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The results of this analysis showed that items evaluating data analysis grouped in the 

same factor with exception of Data5. It showed also that the items evaluating sampling grouped 

in the same factor. Both factors had eigenvalues over 1 (Figure 5), and they explained altogether 

the 36% percent of the data variance. The first factor is the data analysis factor. As can be seen in 

table 12, it groups items Data1, Data2, Data3, Inf1, Data4, Data6 and Data7. All of them except 

Inf1 are data analysis items according to the classification explained in the methods section. Inf1 

is an inference item; it required students to interpret an ANOVA table and produce conclusions 

in the context of a case. It is hard to establish why this item falls in the data analysis category. A 

possibility is that Inf1 required interpreting the context of a case to produce a meaningful 

conclusion, and, in this sense, this item shared several characteristics with other items in the data 

analysis category (e.g., items Data3, Data4, Data6). It is possible also that, as proposed in the 

theoretical framework of this work, statistical inference requires combining data analysis and 

sampling knowledge and, for this reason, inference items could fall in either category. 

Table 12. Factor Analysis Rotated Component Matrix 

Name Item Space Component   
    1 2 
Data1 1  Data .71 -.06 
Data2 2  Data .62 .16 
Sam1 3  Sampling .03 .64 
Data3 4  Data .55 .17 
Sam2 5  Sampling .00 .68 
Inf1 6  Inference .49 .13 
Data4 7  Data .80 -.04 
Data5 8  Data .16 .45 
Data6  9  Data .63 .03 
Data7 10  Data .65 .13 
Inf2 11  Inference .34 .53 
Inf3 12  Inference .24 .36 
Sam3 13  Sampling .05 .69 
Sam4 14 Sampling .24 .32 
Sam5 15 Sampling -.14 .34 
Sam6 16  Sampling .08 .53 
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The factor 2 groups items that evaluate knowledge about sampling and sample size 

effects. Items included in this factor are  items Sam1, Sam2, Data5, Inf2, Inf3, Sam3, Sam4, 

Sam5, Sam6.  In this list, items Sam1, Sam2, Sam3, Sam4, Sam5 and Sam6 were initially 

classified as sampling items (Table 3). Items Inf2 and Inf3 were classified as inference items but 

they involve understanding sample size effects. Data5 was clearly classified as a data analysis 

item as it did not required students to understand sampling or sample size effects. A possible 

reason for this result is that this item has a high correlation with both factors. Table 13 shows 

that Data5 has a higher factor loading with factor 1 than with factor 2 before the rotation is 

conducted, and table 12 shows that the factor loadings for this item are positive with both factors 

after the rotation is conducted. It is possible that this item discriminates between high and low 

performance students despite of the knowledge on specific content areas. This statement is 

consistent with the findings described in table 11 that show that Data5 has similar discrimination 

scores for the whole test, and for the data analysis and sampling parts of the test. 

Table 13. Factor Analysis Unrotated Component Matrix 

Name Item Space Component   
    1 2 
Data1 1 Data .55 -.45 
Data2 2 Data .61 -.21 
Sam1 3 Sampling .39 .51 
Data3 4 Data .55 -.16 
Sam2 5 Sampling .38 .56 
Inf1 6 Inference .48 -.16 
Data4 7 Data .63 -.48 
Data5 8 Data .39 .28 
Data6 9 Data .54 -.33 
Data7 10  Data .61 -.25 
Inf2 11 Inference .58 .24 
Inf3 12 Inference .40 .15 
Sam3 13 Sampling .43 .54 
Sam4 14 Sampling .38 .13 
Sam5 15 Sampling .06 .36 
Sam6 16 Sampling .36 .39 
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The analysis conducted on the items shows that the measurement system used in this 

study has reasonable levels of reliability, internal consistency and external validity. The structure 

of the measures corresponds in general terms to the structure of the content domain. The 

distinction between data analysis and sampling that will be used in the subsequent analyses of 

this text is supported by the review of the measurement system. The item discrimination indexes 

have values within the limits of a decent measurement system. For future uses of this instrument 

focusing on the distinction between data analysis and sampling, it is recommended to erase 

Data5 because it relates to both spaces. It is then time to review the changes in students’ 

knowledge detected by this measurement system.  

4.2 MEASURING THE TRADEOFF BETWEEN DATA ANALYSIS AND 

SAMPLING SIMULATIONS IN STATISTICAL EDUCATION 

This section describes the analysis conducted on students answers in order to compare the effects 

of both interventions on students performance, and the potential of the measurement system to 

capture the students change during the study. The first part of this section describes analyses 

conducted on the pretest to assure that there were not prior differences between the treatment 

groups. The second part of this section describes the changes produced by the interventions on 

students knowledge. From now on, treatment, intervention or group will refer to the different 

conditions involved in this study; treatment or intervention effect will refer to differences among 

the groups; pre, posttest change, pre-post variable, occasion or time will refer to the change 

between the pretest and the posttest. Setting will refer to the different courses in which the data 

for this study was collected; for example, differences among settings will mean that there were 
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differences among the participants coming from different courses. Finally, amount activity and 

completion will refer to the percentage of exercises solve by students during the study. 

 

4.2.1 Differences in the Pretest 

The global score and the sampling, data analysis, and inference sub scores did not differ 

significantly between the participants in the sampling and data analysis conditions (Table 14). 

There were no significant differences between these groups of students in any item. The only 

item that had a p-value below .10 was Sam6; in this case, the participants assigned to the data 

analysis condition had a slightly higher mean.  

Table 14. Treatment Differences in the Pretest 

ITEM/SCORE Intervention  N Mean Std. Deviation Sig. 

SAMPLING Sampling 42 1.33 1.37 .19  
  Data 42 1.71 1.27  
INFERENCE  Sampling 42 1.07 .71 .89 
  Data 42 1.04 .93  
DATA Sampling 42 3.80 1.78 .66 
  Data 42 3.97 1.75   
PRETEST Sampling 42 6.21 2.94 .40 
  Data 42 6.73 2.83   
 

4.2.2 Intervention Effects: Effectiveness of Computer-based Statistical Education 

The intervention effects were analyzed using a Mixed ANOVA model in which the treatment 

was assigned as the between subjects factor, and the pre, posttest change was assigned as the 

within subject factor. These analyses indicated that both the pre-post variable and the interaction 

between the pre-post variable and the intervention had significant effects on the global scores. In 



 89 

other words, the results showed that there was a significant change in the global scores from the 

pretest to the posttest (F(1,82)= 33.13, p=.00), and that the trajectories of change were different 

for participants in different treatment conditions (F(1,82)=9.84, p=.00) (Figure 6). 

                          

Figure 6. Pre, Posttest Change by Intervention (Global Score) 

However, when pre and posttest scores were disaggregated into the sampling, data 

analysis, and inference parts of the test, it was clear that the change from pretest to posttest was 

produced only by gains in the sampling knowledge. When a Mixed ANOVA was calculated for 

the sampling scores, the pre-post change continued being significant (F(1,82)=57.93, p=.00), as 

well as the interaction between occasion and intervention (F(1.82)=11.53, p=.00). The situation 

was different for the data analysis scores. The Mixed ANOVA results indicated that neither the 

change in time (F(1,82)=2.66, p=.10), nor the interaction between time and intervention 

(F(1,82)=2.39, p=.13) were significant (Figure 7). 

With respect to the inference scores, the Mixed ANOVA results indicated that there is a 

strong change from pretest to posttest (F(1,82)=17.39, p=.00), and a moderate interaction 



 90 

between intervention and occasion (F(1,82)=4.15, p=.05). The change is stronger for participants 

in the sampling intervention than for the participants in the data analysis condition. A possible 

explanation for this result is that change in the inference scores was related to gains in sampling 

knowledge produced by the interventions, but it was not related to gains in the inference 

knowledge itself.  

                         

              

Figure 7. Pre, Posttest Change by Intervention (Data and Sampling Scores) 
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All the analysis presented in this section were double-checked using adjusted ANCOVAs 

on the posttest scores, controlling for pretest scores and using intervention as between-subjects 

factor. This analysis showed the same picture regarding the changes of participants during the 

study: strong effects for sampling knowledge, moderate effects for inference knowledge and no 

effect for data analysis knowledge. The effect sizes for this analysis as reported by the eta 

squared values in the adjusted ANCOVAs are .10 for the global scores, .11 for the sampling 

scores, .03 for data analysis scores, and .07 for the inference scores.  

4.2.3 Testing for Differences among Settings 

The data for this study was collected in three different settings: two psychology courses and one 

political science course. To ensure there were not differences among these settings that 

influenced the results or interactions between the settings and the treatment conditions, Mixed 

ANOVAS were calculated using the pre-posttest change as the within subjects variables, and the 

treatment conditions (Intervention) and settings as between subjects factors. For the global score, 

the introduction of the setting in the ANOVA analysis did not alter the original results: the pre-

posttest change was significant, and the intervention groups had different trajectories. The Mixed 

ANOVAs on the sampling and data analysis scores show the same pattern: only occasion and the 

interaction between occasion and intervention had significant effects (Table 15). 

For the inference scores, the pre-post change was significant, as well as the interaction 

between the pre-post change and setting. The interaction between pre-posttest change and 

intervention was not significant. Overall, it is possible to assert that the differences between the 

trajectories of both groups are weak and that means that the introduction of a new variable alters 

the significance of the F-statistics. The same happens with the trajectories of the students 



 92 

belonging to different courses: the effect of the interaction is weak and therefore the significance 

changes the intervention is introduced as a new between subjects factor. This issue will be 

explored later in the holistic models section. 

Table 15. Intervention, Setting and Pre, Posttest Change 

 

4.3 COMPLETION 

In this section, the effects of completion are explored. It is possible that students’ motivational 

levels during the study moderate the effects of the interventions. Highly motivated students can 

respond better to the interventions’ exercises than students with low motivational levels. It is 

possible that students having higher levels of completion experience larger gains during  the 

interventions. These possibilities explored in the following pages. The amount of activity during 

the study was determined by examining the answers that students gave to the activity exercises 

on the electronic forms. A variable was then constructed by calculating the percentage of 

completion in the intervention activities for each student. The pretest measures did not correlate 

with the completion scores. The differences between participants in the sampling condition and 

in the data analysis condition were evaluated using a Welch statistics and were not significant 

(Levene=6.16*, Welch(1,66.72)= 1.8, p= .174). The same result was found for participants 

belonging to different courses (Levene=5.8**, Welch(1,28.3)=1.69, p=.202).  

 Global Score Sampling Data  Inference 
Source F F F F 
Pre/Posttest Change 25.78** 40.52** 2.2 18.03** 
Pre/Posttest Change*Intervention 7.71** 8.45** 2.0 3.71 
Pre/Posttest Change*Setting .01 .28 .07 3.13* 
Pre/Posttest Change*Setting*Intervention 1.02 .09 1.4 2.05 
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There was no correlation between completion and the pre, posttest change, either in the 

total score, or in the sampling, data or inference sub scores. The same result was found with a 

repeated measures design in which completion was introduced as a covariate: there was no 

significant interaction between completion and the change from pretest to posttest in any of the 

measures (total, sampling, inference, or data). A possible explanation is that above certain 

number of exercises, the interventions had the same effect: when the correlations are calculated 

for students who completed less than 60% of exercises, the correlations between the completion 

scores and the change in the global score (.42*) and in the sampling score  (.34*) are marginally 

significant. 

4.4 HOLISTIC MODELS 

In the search of a more integrative interpretation of the results, two holistic models were 

constructed. The first model explains the change from pretest to posttest in terms of the complete 

set of variables included in this study. The second model reviews the relationship among 

sampling, data analysis and inference knowledge under the premise that sampling and data 

analysis knowledge determine the change in inference scores as suggested by the analysis of the 

literature. 

As pointed out in the theoretical review, statistical inference is, from a cognitive point of 

view, the product of combining data analysis and sampling knowledge bases. Therefore, it is 

expected that there is a strong relationship between changes in data analysis and sampling 

knowledge with the gains in the ability to solve inference problems. This hypothesis was tested 

by building  a mixed linear model with an autoregressive covariance structure that specified pre-
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posttest change in inference scores as the dependent variable, change in sampling and data 

analysis scores as covariates, and the intervention as between subjects factor. 

Table 16. Holistic Model: Data Analysis and Sampling Change predict Inference Change 

Source Numerator df Denominator df F Sig. 
Intercept 1 139.03 229.52 .00 
Intervention 1 139.03 4.07 .04 
Data Analysis Change 1 590.44 22.74 .00 
Sampling Change 1 544.18 12.21 .00 
Data Analysis*Intervention 1 590.44 1.39 .23 
Sampling*Intervention 1 544.18 .33 .56 
-2log likelihood= -503.361 
AIC= -499.362 

 

The results of this analysis, displayed in Table 16, show clearly that change in data 

analysis and sampling scores, relates to the change in students’ inference scores. The results of 

this analysis indicate also that intervention plays a role in this process. The broader picture 

depicted by the holistic models presented in this section shows that changes produced by the 

intervention were significant for sampling knowledge. The inference scores, although affected 

moderately by the interventions, were related to small changes in students data analysis 

knowledge and to strong changes in students sampling knowledge.  

According to the results of this study, hypotheses considered in the theoretical review 

regarding the relationship between sampling, data analysis and inference knowledge in statistical 

activity were confirmed; hypotheses regarding the effects of simulation-based instruction on the 

learning of students in the sampling condition seemed to find strong support also. However, the 

results in the data analysis group appeared to be more unexpected in the light of the literature 

reviewed in the initial part of this work. The performance of participants in the data analysis part 

of the pre, posttest was virtually unaffected by the data analysis intervention; this result 

contradicts claims, made in the first part of this work,  namely that computer-based data analysis 

activity should have positive effects on participants data analysis skill. Additionally, sampling 
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knowledge performance of participants in the data analysis condition improved significantly, 

although not to the same extent as for participants in the sampling condition. Gains in the data 

analysis condition were important and this was not predicted in the theoretical review conducted 

for this study. These two facts require further scrutiny of alternative evidence.  

In the next section, the results of three different types of evidence are presented in order 

to shed light on the quantitative results presented to this point. The first section reviews the 

learning process in a sub sample of students from the beginning of statistical instruction to the 

intervention point. The second section presents a short protocol analysis study of a different sub 

sample of students answering pre, posttest items while thinking aloud.  In the third section, 

students’ written explanations to pretest and posttest items are classified and analyzed in 

relationship to the quantitative results presented before, and  to the theory presented in the 

second chapter. Of particular interest is the fact that change in sampling knowledge, and no 

change in data analysis skill was found in participants in the data analysis condition. Two ideas 

were fundamental in the explanation of these results:  first, that, given the high levels of initial 

data analysis knowledge, it made sense to suppose that  the courses provided prior to intervention 

point much of the practice required to develop data analysis knowledge; and, second, that the 

improvement on sampling results was produced by the acquisition of decision rules that did not 

suggest a deep understanding of probability.   

4.5 THE DEVELOPMENT OF DATA ANALYSIS KNOWLEDGE  

An informed evaluation of students changes during the data analysis intervention requires 

understanding the context in which interventions took place. Students in this study participated in 
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three statistics courses, all with an emphasis in data analysis. A central claim in explaining the 

small gains in data analysis knowledge is that students had undergone intense prior practice in 

data analysis tasks, and that, in some way, this prior practice overshadowed the intervention 

effects. The underlying idea is that data analysis is a complex ability whose underpinnings 

cannot be acquired in a short period of time. Data analysis, as conceived here, requires practice 

sustained for a time period long enough to allow students to master coordination of theory, 

representation, and data.  

To support this idea, I describe the development of students’ knowledge in the political 

science course from the beginning of instruction to the intervention point. Understanding this 

trajectory requires acknowledging that there is a representational specificity in statistical training 

and that substantial instructional activity is required in order for students to transfer what they 

have learned in one representation to another. To support this idea, students’ transition from 

boxplots to histograms is described. A second layer of explanation delves into the assertion that 

data analysis knowledge  is more than using statistical packages. This section shows that even 

when students were trained to produce representations using statistical packages, they did not 

display adequate representational interpretation. 

4.5.1 Representational vs Interpretative skill 

Instruction about boxplots relied on the concepts of center and spread measures that had been 

taught before week 6. Evaluations in week 5 indicated that students were able to identify the 

mean, median, and standard deviation of a small data set, and therefore that they had the notions 

of spread and center basic for the understanding of boxplots. In week 6, students in the political 

science course were trained to produce boxplots using SPSS and to interpret the results of this 
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type of representation in terms of spread and measures of central tendency. At the end of the 

class, the results of the class exercises sent by students to the instructor via email showed that 

most students were able to graph variables and factor groups results as boxplots using SPSS. 

However, when asked to interpret boxplots in the quiz at the end of the class (Figure 8), more 

than half of the students were unable to produce an unified interpretation of a graph displaying 

four boxplots.  
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Figure 8. Quiz Week 6 

They were able to list information coming from the Boxplots, but they could not  produce 

a consistent comparison of the different groups. For example, student ER compared the number 

of police officers in the Midwest and in the Northeast by listing the central values of those states 

in the FTE police officers variable: 

 “The northeast counts with 23000 FTE police officers while the Midwest has 18000 

police officers”. 
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“El northeast cuenta con 23000 FTE police officers mientras el Midwest cuenta con 

18000 efectivos de policia”. 

This answer did not include any mention of variability and treated the upper quartile in 

the graph as raw data (upper quartile=total number of police officers), and it did not include any 

explicit comparison among groups, despite the fact that it was explicitly asked in the quiz. 

Student TY showed the same pattern when in the same comparison listed the information 

contained in the boxplot: 

 

“In the south the great majority of states have less than 20000 policemen and only two 

states have…have more than 20000 policmen, the majority of states in the south are very 

homogeneous in the number of policemen, since the higher 25% is not really significant, 

that is, there are very few states that are different in the # of policemen in the superior 

quartile. In the Midwest, the superior 25% is broader than the inferior (25%) but there 

are many states with more than 20000 policemen”.  

 

“en el sur la gran mayoria de stados tienen menos de 20000 policias y solo 2 estados 

tienen mas de 20000 policias. la mayoria de estados del sur son muy homogeneso en 

cuantoa numero de plicias, pues el 25% mayor es muy poco significativo, es decir, hay 

muy pocos estados que se alejan en cuanto a # de policies enel cuartil superior. En el 

Midwest el 25% superior es mas amplio que el inferior pero  hay muchos estados con 

mas de 20000 policias”. 
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This answer is more complete than the one provided by ER because it presents an 

interpretation of spread and divides the interpretation into quartiles as boxplots do. However, it 

stills avoids comparison. Overall, 4 students out 14 provided comparisons based on adequate 

boxplots interpretations; 2 presented comparisons based on inadequate boxplot interpretations; 3 

students presented adequate interpretations but no comparisons among boxplots; and 5 students 

did not produce adequate interpretations, nor comparisons during the exercise. 

From this result, the instructor decided to spend the beginning of the following class 

(week 7) reviewing several comparison examples and  portraying the characteristics of a global 

interpretation of boxplots. The purpose of this instructional sequence was to go beyond the use of 

SPSS and articulate representation and interpretation around cases (e.g. differences between 

States where Carter won, and States were Ford won). Exercises avoided the use of SPSS and 

presented several graphs containing boxplots elaborated by the instructor: the general sequence 

implied presenting a graph,  modeling the comparisons, and telling the students explicitly that no 

individual boxplot interpretations “would suffice” without an integrative interpretation. Then, the 

sequence continued by asking students to solve similar exercises and by providing feedback. In 

the quiz given two weeks later (week 8), students showed some improvement, but it took them 

two weeks of graph interpretations to go from partial interpretations to global comparisons. 

Week 8 quiz required students to interpret boxplots and histograms that displayed divorce rates 

from four USA regions. In the first part of the quiz, from 13 students that solved the quiz, 7 

students presented adequate boxplot comparisons; 4 made mistakes while trying to elaborate 

boxplot interpretations but tried to produced comparisons among boxplots; and 3 did not try to 

compare boxplots, and made mistakes in the individual boxplots interpretations. A prototypical 

right answer in this quiz was (FS): 



 100 

 

“The graph shows that the West is the region with the highest divorce rate on average. It 

is followed by the south, the Midwest, the northeast, and the west. It is important to note 

that the 25% with the highest divorce rate is very disperse. The Midwest presented an 

atypical data that is 359. In the last quartile the Midwest is very concentrated around the 

50% around the median. In the last region, west presents the highest divorce rate and has 

the highest divorce rate of all the graph”. 

  

El grafico muestra que el west es la region con una tasa mayor de divorcios en 

promedio. Le siguen el south , el midwest y el north west. Cabe resaltar que el 25% con 

la tasa mas alta de divorcios en el west es muy disperso. El midwest presenta un dato 

atipico que es 359. El ultimo cuartil de midwest esta muy concentrado alrededor del 

50%, alr ededor de la mediana . En utlimas la region west presenta la mas alta tasa de 

divorcios y tien los casos con la tasa mas alta de divorcios de toda la grafica”.   

 

In the same line of improvement, student WU, who in the first quiz did not produce a 

comparison, nor an adequate boxplot interpretation, wrote the following answer that presented 

not only a correct  boxplot interpretation but also included a explicit global comparison: 

 

“West-South: between west and south despite there are higher extreme data points in the 

west, the median is not that different, and on average the (divorce) rates are not that 

different. Between the Midwest and the south, the rate is clearly different since the mean 

of the south is equivalent to the highest data points in the midwest (or it is proximate). 

General Interpretation, the west and the south for some reason  not established in the 
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graph present mean divorce rates much higher to the extent than their averages are the 

extreme cases of other regions”. 

 

Oeste-Sur: entre el oeste y el sur si bien hay datso extremos mas altos, la meidana no es 

tan distinta y en promedio las tasas no son disimiles. Entre medioeste y sur, la tasa es 

bien ditinta pues la media del sur es uno de los dtos mas altos (o se aproxima). 

Interpretacion general: el oeste y el sur, por una razon no establecida en el grafico 

presentan tasas medias mucho mas altas de divorcio tanto que sus promedios son casos 

estresmos de otras regions”. 

 

The evolution from week 6 to week 8 shows that the process of representational 

interpretation, particularly but not exclusively of boxplots,  is a skill that does not arise 

automatically from using SPSS, or from being able to follow a procedural routine, finding the 

way through computer windows or filling dialog boxes. It requires building an interpretative 

framework in which to place the results of the computer-based processing. This skill, as shown 

by week 6 quiz, requires specific training on interpretation and comparison of specific types of 

representations, and not general instruction on the nature the use of SPSS. This training needs to 

be directed to specific tasks (e.g, comparing distributions) and needs to promote global graph 

interpretations; otherwise students will tend to elaborate concrete interpretations of data and to 

focus mainly on procedural activity.  
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4.5.2 Representational Specificity 

The second aspect of statistical instruction affecting the outcome of the data analysis intervention 

is Representational Specificity. Representational Specificity was identified during the political 

science course when instruction on Box plots did not transfer to solving problems that included 

Histograms. The qualitative nature of this finding does not allow asserting that this phenomenon 

generalizes to other types of representation; however, this finding presents a plausible 

explanation of why instruction in the data analysis intervention did not produce significant gains 

from pretest to posttest in the data analysis dimension. The fact that the data analysis exercises 

presented  all exercises but one as Venn Diagrams could decrease the intervention effect on the 

posttest exercises that were presented as histograms. The identification of representational 

specificity took place in week 7 when students had undergone the instruction on boxplots, had 

solved the first quiz, and were starting the initial instruction on histograms. 

At first, students were told that the x axis displayed the variable’s magnitude (value) and 

the y axis the counts within certain ranges of variable X. Then, concepts of spread and center in 

this type of representation were introduced and connected to some examples. Then, SPSS 

routines were presented to students using a data base that provided information about USA 

regions and States. After the instructor had demonstrated the procedure, students were asked to 

construct histograms of some variables and to send the results via email to the instructor. After 

several practice exercises, students were asked to solve a quiz that required them to find 

similarities and differences between a variable represented as a histogram (expenditure in 

education) and another variable represented as a boxplot (number of high school graduates). It 

was expected that students easily would draw parallels between both types of representations 
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because they had received instruction on boxplots during week 6  (e.g., y axis variable value; 

quartiles as presenting spread) and instruction on histograms during week 7 (Figure 9). 
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Figure 9. Quiz Week 7 

The results of the quiz however showed a different picture. Students were unable to 

evaluate the differences between box plots and histograms. On the contrary, students produced 

two typical types of answers. The first type of answer consisted of lists of unconnected 

information pieces extracted from the boxplot or the histogram, without any explicit comparison 

between them. This finding was surprising because students were told explicitly in the initial part 

of the class that comparisons were part of a complete answer in problems that required to 

compare box plots. However, students were unable to transfer that instruction to the solution of 

this question requiring compare boxplots and histograms. For example, student WU provided 

this answer: 

 

“The Boxplot shows that the four quartiles are found until approximately 3000 

(educational expenditure). But it shows also that not all the states are in the four 

quartiles because there are 5 observations (states) that are below these quartiles. The 
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histogram shows that 45 states, that are the majority, are found until 3000, and that there 

are 5 states above 3000. The histograms show also that there are 15 states in 500”.  

 

El boxplot muestra como hasta aproximadamente 3000 (gasto educativo en miles) se 

encuentra los 4 cuartiles, esto es todos los datos. Pero tambien meustra que no son todos 

los datos los que estan en los 4 cuartiles pues hay 5 observaciones (estados) es estan por 

debajo de eestos cuartiles. El histograma muestra que hasta 6000 se euncentra 45 

estados que es la mayoria que hay 5 estados por encima de 3000. El histograma muestra 

tambien que hay 15 estados en 500”. 

 

The second type of answer was a definition of boxplot, side by side with a definition of 

histograms, or a comparison of general characteristics of both types of representations without 

connection to the particular problem or data set. This type of answer represent some tendency to 

produce mechanical answers from text definitions, without understanding the problem, or 

application conditions. The answer of student AC is an example of this type of response. 

 

“The histogram and the boxplot are utilized to represent the behavior of continuous 

variables. The boxplot groups by group, as for example by region or position, and it 

permits to calculate the mean and standard distribution. The histogram represents the 

amount of data within the groups of a continuous variable for example how the 

population is distributed in relation with the mean and what type of normal distribution it 

takes. That is, if it has bias to right  or to the left of the mean”. 

 



 105 

El histograma y el boxplot se utilizan para representar el comportamiento de variables 

continuas. El boxpot agrupa por grupos, como por ejemplo por region o posicion, y 

permite calcular media y distribucion estandar. El histograma representa la cantidad de 

datos dentro de los grupos de una variable continua por ejemplo como se distribuye la 

poblacion en relacion con la me dia y que tipo de distribucion normal toma la tendencya, 

es ecir, sies normal o presenta sesgos hacia laderecha o la izquierda de la media”.  

 

The first type of answer was given by 30.7% students; the second type of answer was 

given by 38.4% students. Full interpretations or adequate comparisons were presented by 30.7% 

Students. Full interpretations were usually shorter and went directly to the point. They define the 

whole comparison in two or three lines. The first and second type of answers were longer 

because students could not give an unified account of the relationship between both variables. 

This difference can be seen in student BA that gave a full interpretation as answer for week 7 

quiz: 

 

“These diagrams are very different, which shows that there is not relationship between 

States educational expenditure, and the percentage of the population with high school 

diploma”. 

 

Estos diagramas son muy diferentes, lo que muestra que no hay una relación entre el 

gasto en educación de los Estados y el porcentaje de poblacion con diploma de 

bachillerato”. 
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For week-8 quiz, students improved in their ability to compare boxplots and histograms. 

This quiz asked students to evaluate the difference among 4 boxplots and then to evaluate the 

differences among 4 histograms, and to establish the relationship between both representations. 

In the quiz, histograms and boxplots were presented as representing different variables but they 

were actually built from the same data sets. Ten out of 14 students believed that the boxplots and 

histograms displayed the same information.  

The two phenomena depicted here explain to some extent the low change in the data 

analysis condition. Understanding of data analysis is only produced by sustained activity and 

feedback on interpretative mistakes, as well as, by strong and clear presentation of what an 

adequate interpretation requires. Activity and feedback on SPSS routines does not creates 

improvement on interpretative skills, at least that accompanied by contingent interpretation in 

context. In addition, the other phenomenon, representational specificity, suggests that training in 

the data analysis intervention could not produce change from pretest to posttest, because this 

intervention presented examples as abstracts Venn diagrams, but not as histograms or boxplots. 

A Venn diagram is the same for any data distribution and that makes hard to develop specific 

interpretative skills for deciphering boxplots and histograms in this type of instruction. 

4.6 PROTOCOL ANALYSIS: THE COGNITIVE PROCESS OF SOLVING 

STATISTICAL ITEMS  

Studying the evolution of knowledge during the political science statistics course 

explains to some extent the interventions effects on students knowledge. However, some points 

require the consideration of a different sort of evidence. Protocol analysis provides additional 
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insight on the micro processes that allow or difficult knowledge acquisition in both data analysis 

and sampling knowledge. Particularly, this type of evidence offers important insight on the 

reasons why the interventions produced significant changes in sampling knowledge of students 

in both the sampling and data analysis conditions. 

This section presents think aloud protocols obtained from 12 students answering 3 data 

analysis and 3 sampling items in the pre, posttest. The examination protocols of students solving 

data analysis questions is designed to describe the reasoning process of solving prototypical data 

analysis items and to explain why this process was untouched by the interventions. The 

examination of the protocols of students solving the sampling part of the test is aimed at 

understanding the changes in the reasoning process that made the interventions effective in 

improving students answers. In this regard, an important goal of this analysis was discerning 

between gains produced by the acquisition of propositional information, from gains produced by 

more complex modifications in the reasoning process, such as the elaboration of complex 

representations of probability theory, or chance models. 

4.6.1 Protocol Analysis of Data Analysis Items 

The three questions selected for this analysis represented prototypical tasks of 

distributions comparison. These items (Data1, Data2 and Data3 from the first section of the pre, 

posttest) required students to compare several pairs of distribution graphs with different mean 

differences, spreads and sample sizes. The items were coded according with the system 

described in the methods section.  
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4.6.1.1 The General Process of Decision Making in Data Analysis Items 

The cognitive process depicted by the protocol analysis suggests that the solution of data analysis 

problems goes through one or several rounds of description, before participants start comparing 

and trying to answer the items. This process was evident in the analysis of participants’ 

answering sequences in which descriptions of spread and center preceded the production of 

answers. Participant MC for example conducted one round of describing and comparing before 

starting to infer in order to producing an answer to Data2: 

 

In this, in the B (P)/, eeeh,no, so,/this has like the sample more compacted (DS)/, this has 

the sample more disperse (DS)/, but if I, I don’t know, compare this two segments, I think 

they are like the same (CC)…/ then the differences should be larger in this (I)/because 

there is a larger dispersion of the… the samples (E)/. Maybe, here, they are a little bit… 

lies!, je, no.(O)/ in this there is a larger differences of the samples because in this they 

overlap , they over…lap more the samples (A)/, therefore, in this there is a larger 

difference (A). 

 

En esta en el B (P)/eeeeh no pues /este tiene como la meustra mas recogida(DS)/, este 

tiene la muestra mas dispersa (DS)/ pero si yo no se comparo estos dos segmentos creo 

que son como igual(CC)…. /entonces las diferencias deberian ser mayor en esea (I)/ 

porque hay una dispersion mas grande de la… las muestras(A)/. De pronto aqui estan 

como un poquito… mentiras… je… n (O)/ . en esta hay una mayor diferencia de las 

muestras (A)/ porque en esta se superponen se superp..ponen mas las muestras (E)/, 

entonces en esta hay mayor diferencia.  
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Once the spread and center description and comparison were made, participants produced 

answers based on decision rules that will be described later. The percentage of students 

producing answers after at least one round of describing and comparing are presented in table 17. 

This type of behavior was observed for no less than 66% of the cases in any item. In most cases, 

when the describing-comparing-answering sequence was not observed, it was due to the fact that 

some students produced short integrated answers that came almost automatically. In the 

codification system of this study, when answering codes were accompanied by explaining or 

inferring codes, they were coded as a single answering code. 

Table 17. Percentage of Protocols containing Describing and Comparing prior to Answering 

Item Data1 (%) Data2 (%) Data3 (%) 
Pretest 83.3 75 66.6 
Posttest 75 75 66.6 

 

The same phenomenon was seeing when answering codes were analyzed. All protocols 

for data analysis items contained references to center and spread as justification for a given 

answer. Clearly, the justification varied as a function of the item being answered (Table 18). 

Center was core for Data1 and spread for Data2. This fact indicates that students were aware of 

the core elements of the problem, and they had been taught to identify center and spread 

differences in graphical representations. 

Table 18. Answering Codes containing Justifications in terms of Center and Spread 

 Pretest Items (%) Posttest Items (%) 
 Data1 Data2 Data3 Data1 Data2 Data3 
Center 83.3 33.3 41.3 91.6 33.3 33.3 
Spread 16.6 66.6 58.3 8.3 66.6 66.6 
Sample 0 0 0 0 0 0 
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4.6.1.2 Accuracy of Descriptions 

When the accuracy of descriptions was analyzed, it was found that most participants were able to 

produce adequate descriptions of the information being depicted by the items’ graphs. Center 

differences were described adequately by most participants in all items. That is, in all items most 

participants were able to identify the cases with largest center differences. The few errors 

observed in students answers were related to perceptual mistakes in items were the distributions 

had different spreads. Spread differences were described adequately in all items for the pretest 

and posttest.  No evident differences between pretest and posttest were found (Table 19). 

Table 19. Accuracy of Descriptions 

 Pretest Items (%) Posttest Items (%) 
 Data1 Data2 Data3 Data1 Data2 Data3 
Center 100 83.3 83.3 100 83 83 
Spread 100 100 100 100 100 100 

 

4.6.1.3 Change in Decision Rules for Data Analysis Items  

The natural question from the above presented results is  what factor made the difference 

on students that produced right answers. Most students conducted a process of description and 

comparison, and most of them were able to describe correctly the elements of the problems, 

therefore, the difference between right and wrong answers could not lie in those aspects. The 

analysis of students answers shows that the critical element in the adequate solution of data 

analysis items is the presence of certain decision rules. A decision rule was defined as a 

combination of center and spread parameters that would determine the significance of a 

difference. The decision rules were identified using either the information coming from the 
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answering code, or the combined information of the cognitive actions produced immediately 

before the answer, and the information provided by the answer itself. 

The decision rules identified in the pre, posttest answers were compared with the final 

answer provided by each participant. This analysis show that there was positive relationship 

between decision rules and right answers in the pre and posttest data analysis items.  Four main 

decision rules were found. The first rule (1): the larger the center difference, the more significant 

the mean difference (and vice versa); the second rule (2): the larger the difference between the 

extremes of the distribution, the larger the mean difference; the third rule (3): the larger the 

spread of both distributions, the more significant the difference. Finally the fourth rule (4): the 

larger the spread of both distributions, the less significant the difference. To simplify the 

presentation when decision rules appeared in different ways  in participants’ protocols but they 

had the  same meaning, they were coded as the same rule. For example, decision rule 1 was 

expressed by participant 4 in the following way: “the gray are.. is smaller, therefore the 

difference is less”, implying that there was less space between the centers of both distributions in 

the graphs.  

In Data1, it was clear that decision rules 1 and 2 were associated with right answers 

(Table 20). Most mistakes in this item were caused by erroneous description of basic features of 

the representation, by erroneous inferences (explicit or implicit) from the representation (e.g. the 

height of the curve as the mean value) or by comparisons based on erroneous descriptions or 

inferences from basic features. In Data2 and Data3, decision rule 3 was associated with wrong 

answers and decision rule 4 was associated to right answers. In some cases, students used 

decision rules 1 and 2 because they considered erroneously that there were center differences 

between the distribution pairs being compared. 
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Table 20. Percentage of Right and Wrong Answers by Decision Rules 

  Pretest Posttest 
Item Decision Rule  Right 

Answer (%) 
Wrong 
Answer (%)  

Right  
Answer (%) 

Wrong 
Answer (%) 

A larger centers’ difference implies a 
higher significance 

41.6 8.3 50 0 

A larger difference between extremes 
implies a higher significance 

33.3 16.6 41.6 8.3 

A larger distributions’ spread implies 
higher significance 

0 0 0 0 

Data1 

A larger distributions’ spread implies 
a lower significance 

0 0 0 0 

A larger centers’ difference implies a 
higher significance 

0 8.3 0 8.3 

A larger difference between extremes 
implies a higher significance 

0 8.3 0 0 

A larger distributions’ spread implies 
higher significance 

0 58.3 0 58.3 

Data2 

A larger distributions’ spread implies 
a lower significance 

25 0 33.3 0 

A larger centers’ difference implies a 
higher significance 

0 8.3 0 0 

A larger difference between extremes 
implies a higher significance 

0 8.3 0 0 

A larger distributions’ spread implies 
higher significance 

0 50 0 66.6 

Data3 

A larger distributions’ spread implies 
a lower significance 

33.3 0 33.3 0 

      
 

4.6.1.4 Long and Short Answers in Data Analysis  Items 

Additional analysis of participants answers pointed out that there were two general kinds of 

answering strategies. The first strategy was to solve items after a few rounds  of exploration. In 

this type of strategy, definitive answers were given after little exploration of the problem space, 

when the more relevant elements of the problem had been identified (e.g., distributions’ spread, 

mean differences). The second strategy implied a deeper exploration; in this strategy, participants 

not only assessed the main elements of the problem, but they tried to uncover relationships not 

evident in those elements. In strategy 1, participants did not try to discover “the decision rule” 
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for solving a problem, but they guessed from the information they had; they either had or did not 

have the answer. In the second strategy, students tried to discover the decision rule through the 

exploration of relationships hidden in the graphs (e.g., “the curves overlap more when there is 

less spread). This difference was evident in the higher presence of inferring codes in strategy 2 

protocols, but no other difference could be identified in the coding of both strategies, except the 

length of the protocol. The reason why some students produced type 1 and type 2 strategies 

might be related to participants’ global conceptions of mathematics as a discipline (Boaler & 

Greeno, 2000), to the epistemological beliefs held by students (Shoenfeld, 1983), or to individual 

differences in the tendency to produce self-explanations (Chi & Bassok, 1989). 

In the pretest, only 3 students produced strategy 2 responses for at least one item; the 

other 9 participants produced strategy 1 responses. In the posttest, all students produced strategy 

1 answers, in part because they evaluated the problem as redundant and they felt that the 

interventions did not provide new information. Strategy 2 was included because it permits one to 

illustrate complex use of information in data analysis items. Strategy 1 permits one to illustrate 

more standard processes on data analysis items. Students that used strategy 2 arrived at correct 

decision rules even when they did not have those decision rules at the beginning. Students in 

strategy 1 trusted decision rules in the absence of checking mechanisms, arriving quickly to 

conclusions that not necessarily implied deep comprehension of the rule.  

4.6.2 Protocol Analysis of Sampling Items 

The answers for sampling items (Sam1, Sam3 and Sam5) were usually shorter and the distinction 

between short and long answer was not made for sampling items. This fact suggested that fewer 

transformations were necessary to convert the items text into pieces of information. In many 
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cases answers were given right after reading the items with only short explanations as support. In 

this section, only protocols to Sam3 and Sam5 are reported. Protocols for Sam3 were usually 

short and uninformative; in the pretest, most students expressed that they did not know the 

answer; in the posttest, most students reported in very short statements that “larger samples 

implied more significance”. Protocols of students answering Sam3 and Sam5 were classified 

according to the coding system presented in the methods section. The coding system classified 

the cognitive actions of students into different categories. Describing and comparing were coded 

when students referred one or several elements of the problem directly, indicating or comparing 

either its spread, central tendency or sample size. Inferring and explaining codes were used when 

students concluded or justified an answer. Answering was coded when students presented direct 

answer to the items’ questions.  

 

4.6.2.1 Decision Rules in Sampling Items 

The protocols analysis of sampling items showed some change from probabilistic 

misconceptions in the pretest to ideas that relate correctly sample size to mean parameters in the 

posttest. This change was, however, associated to the acquisition of decision rules, without 

evidence of gains in the understanding of probabilistic behavior. Answering codes were analyzed 

an classified. In the pretest,  four main types of answers were identified. Causal explanations (1); 

equiprobability bias (2); larger samples produce lower significance (3); and larger samples 

produce higher significance (4).  Causal explanations (1) referred to answers in which the 

probability of some event was evaluated in terms of causal mechanisms. For example in Sam3, 

student 10 answered that increasing the number of times you weigh a rock does not increase the 

precision of the weight estimation, because  
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“you have to be weighing it wrong, what you have to change is the instrument, no how 

many times you weigh it”  

 

“Osea, la esta pesando mal, lo que tiene que cambiar es el instrumento y no cuantas 

veces la pesa”. 

 

Equiprobability bias (2) was coded when participants asserted that all events regardless 

the sample size had the same probability. Student 8 answer in Sam3:  

 

“I’d say that both have the same probability, thus, because I don’t think that there is an 

influence that you weighted 20 times, I imagine that, after some point it is going to weight 

the same the rock”.  

 

“Yo diria que ambos tienen la misma probabilidad pues porque no creo que influya que 

la pese 20 veces me imagino que despues de un punto siempre va a pesar igual la roca”. 

 

Larger sample sizes produce higher significance (3), and larger sample sizes produce 

lower significance (4) were coded when participants expressed the same propositional idea in 

any way. For Sam5, larger samples, lower significance was coded also when students expressed 

that small samples tended to produce more extreme data; larger samples, higher significance was 

coded when students affirmed that larger samples produce less extreme sample means (Table 

21).  
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Table 21. Percentage of Misconceptions and Decision Rules in Sampling Items 

Sampling Items Sam3 (%) Sam5 (%) 
 Pre Post Pre Post 
Causal 16.6 8.3 33.3 16.6 
Equiprobability 41.6 0 16.6 0 
Larger sample sizes imply higher significance  0 0 33.3 25 
Larger sample sizes imply lower significance 25 66.6 16.6 50 
Other 16.6 25 0 8.3 

 

4.6.2.2 Change from Pretest to Posttest in Sampling Items 

No clear tendency was found in the pretest results but the presence of probability misconceptions 

was clear (Table 21). In the posttest, results showed that students used decision rule 4 (Larger 

samples, higher significance) more frequently than any other rule. This result indicated some 

effect of the interventions on statistical reasoning. However, the acquisition of decision rule 4 did 

not seem to be associated with deep changes in the reasoning structure. There were not many 

explanations associated with students answers in the pretest, nor in the posttest. Only 16.6 

percent of students in the pretest and 25 percent of students in the posttest gave an explanation 

for the use of decision rule 4 in any sampling item. The sense-making function of having a 

complex understanding of decision rule 4 can be observed in the answer of student 6 to Sam3.  

 

“The probability of having extreme values is higher in the sample of 10 students because 

a very high or very low value can pull the sample much more significantly than  in a 

sample of 50 students, I mean, in the largest sample”  

 

“La probabilidad de tener valores extremos es mas alta en las muestras de 10 estudiantes 

porque un valor muy alto o muy bajo puede jalar la muestra mucho mas 

significativamente que en la meustra de 50 estudiantes, osea en la muestra mas grande”.  
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This type of answer shows an adequate level of command of probabilistic concepts and 

some sort of model of what sampling means. The same cannot be said about student 4’s answer 

to the same item that exemplify the acquisition of decision rule 4 without a deep understanding 

of it: 

 

“So, the larger the sample, more probability of.. no? thus the one that weights the rock 

20 times”  

“pues entre mas grande sea la muestra mas probabilidad de no? entonces el que la pesa 

20 veces.” 

 

The fact that participation in the study gave students new information but did not create 

in most cases new ways of representing sampling phenomena at least for the protocol sample 

explains the low change observed for Sam5. In Sam5, students could not use directly the rule that 

larger samples increased the significance of the  mean difference, or the trust of researchers on 

the observed differences. This item required students to predict given two sample sizes in which 

there was a larger probability of finding extreme values. Some students assume that if you have 

more cases, there will be a larger probability of finding extreme values. For example student 7 

answered:  

 

“So, here I’d choose B because within 50 students is more probable to have like the, like 

the highest and the lowest, because the sample is larger”. 
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“Pues aqui tambien escogeria B porque dentro de 50 estudiantes es mas probable tener 

como los como mas altos y mas bajos porque es mas grande la muestra”. 

 

This answer exemplifies how a mechanical translation of decision rule 4 can lead to 

incorrect answers. In the same line, the protocol analysis study presented here points out that the 

gains caused by the interventions were due to a large extent to the acquisition of decision rules, 

but not to a deep transformation in the way students understood probability. The analysis of 

students written explanations presented in the next section will come back to this point. 

4.7 EXPLANATIONS OF STUDENTS TO QUESTIONS IN THE MEASUREMENT 

SYSTEM 

Written explanations to items were collected for the whole sample of students. Many students 

answered with short answers or they did not provide any explanation to their answers. The 

analysis of the explanations give further insight on the reasoning process underlying students’ 

answers, and permit to evaluate the actual effects of the interventions on statistical thinking. 

4.7.1 Explanations: Data Analysis Items 

In this section, two types of items are considered. First, items in the first section of the pre, 

posttest requiring students to write some explanation, and, second, open-ended questions 

evaluating data analysis aspects. Specifically, the explanations included in this analysis are the 

explanations to items Data1, Data2 and Data4, the answer to the first open-ended question, that 
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asked students to explain the factors that influenced the significance of a distribution difference, 

and the answer to the second open-ended question that asked students to define between and 

within groups variability.  

                            

Figure 10. Data1: Comparing Distributions’ Pairs with Equal Spread 

For Data1, Data2 and Data4, the explanations were divided into explanations related to 

the center, related to the spread, related simultaneously to center and spread, tautological 

explanations and other. Tautological explanations are explanations based on self-evident 

definitions (e.g. “because the difference is more significant”). The “other” category was created 

for other types of explanations not included in the above mentioned categories. For item Data1, 

inter-coder reliability was 86% (Kappa=.76) in the pretest, and 82% (Kappa=.72)in the posttest. 

For Data2, inter-coder reliability was 76% (Kappa=.62) for the pretest, and 78% (Kappa=.64) for 

the posttest. For Data4, inter-coder reliability was 80% (Kappa=.66) in the pretest, and 84% 

(Kappa=.69) in the posttest. 
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Figure 11. Data2: Comparing Distributions’ Pairs with Different Spread 

Results show no evident change from pretest to posttest in the distribution of categories 

(Table 22). Explanations based on center were central for Data1 and explanation on spread were 

central for Data2. This results makes sense since in Data1 the only difference between the two 

pairs of distributions was the central value; and the only difference between the two pairs of 

distributions in Data2 was the distributions spread.  

Table 22. Classification of Students to Written Explanations in Percentages(n=84) 

 

For Data4, the question was more interesting: participants were asked to describe the 

difference between two distributions in the context of a case. The distributions varied in their 

central values and in the variability surrounding it. Most students evaluated the difference in 

Items Data1 Data2 Data4 
Explanation Pre (%) Post (%)  Pre (%)  Post (%) Pre (%) Post (%) 
Center 39.3 42.9 7.1 7.1 16.7 13.1 
Spread 6.0 3.6 31.0 33.3 2.4 3.6 
Center and Spread 14.3 11.9 10.7 6.0 45.2 48.8 
Tautological and Other 17.9 11.9 16.7 15.5 9.5 9.5 
Missing 22.6 29.8 34.5 38.1 26.2 25 
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terms of central values, but they mentioned spread in their evaluations (pre=45%,post 49%). 

Taken as a whole, results show that participants had even in the pretest awareness of central 

values and variability as parameters in the comparison of distribution pairs. However, the use of 

spread was ambiguous. Students were able to identify spread but they did not know to use it. In 

many cases, students used spread in inadequate ways. For example, several participants assert 

that “the difference between the distributions is larger because the spread is larger” (73). 

Another interesting phenomenon was the confusion shown by some students between the curve 

displaying the data distribution and a sampling distribution curve. Some students tried to extract 

directly the significance of the difference from the curve: 

  

“I think that in the two levels the difference is equal because the levels of significance are 

equal (0.02))”.  

 

“Me parece que los dos niveles de diferencia igual ya que los niveles de significancia son 

iguales (0.02)”.  

 

For the open-ended questions, results showed that students were able to differentiate the 

concepts of between and within variability, but they did not use that concept when determining 

significance. In the second open-ended question, 61% in the pretest (24 missing) and 60% in 

posttest (23 missing) of the students defined correctly within and between variability. However, 

when asked to mention the factors that determine the significance of mean differences in the first 

open-ended question, students mentioned center differences, that is, between groups variability 

as the main factor (Table 23). The use of spread in this type of comparisons was limited, which 
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to some extend explains why Data2 and Data4 (that required evaluating spread in the 

comparison) had the lowest answer rates among the data analysis items. 

Table 23. Classification of Written Answers to the Open-ended Question 1 

 Pre (%) Post (%) 
Center 35 32 
Spread 7 7 
Center and Spread 17 19 
Causal 5 6 
Tautological and Other 5 5 
Missing 32 31 

 

4.7.2 Explanations: Sampling Items 

The analysis presented in this section was elaborated based on students explanations to 

one item in the pre, posttest questionnaire, and to three open-ended questions devoted to 

sampling. The item from the pretest is Sam1 that asked students to evaluate the significance of 

mean differences given different samples sizes. The open-ended questions asked whether or not 

and why two samples obtained from the same population have the same mean (3); what factors 

explained the mean differences between two groups of people in a hypothetical case (4); and 

what effects sample size had in the sample mean (5). 

The analysis of open-ended question number 3 shows that students had intuitive notions 

of the sampling process (Table 24). They understand that sample parameters varied within 

certain range, and that sample means from the same population are different but similar. When 

asked whether or not two samples extracted from the same population would have the same 

central values, most students answered that the samples should be different but similar (44% 

pretest; 52% posttest). 
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Table 24. Written Answers to Open-ended Question 3 

 Pre (%) Post (%) 
Equal 6 4.8 

Different but similar 44 52.4 
Different 20 15.5 
Missing 29 27.4 

 

However, the analysis of Sam1 and open-ended question number 5 shows that students 

cannot specify the particular effects of sample size on the sampling process (Table 25). 

Additionally, the analysis of Sam1 in the pre, posttest, and open-ended question number 5 shows 

that the participation in the interventions produced positive changes on students answers (Table 

25). In explanations for Sam1 and open-ended question number 5, students went from stating 

that mean differences had the same significance independent of their sample sizes to associate 

large sample sizes with larger significances of mean differences. 

Table 25. Written Explanations for Sam1 and Open-ended Question 5 for participants in the Sampling Condition 

 Sam1 Open-ended Question 5 
 Pre (%) Post (%)     Pre (%)     Post (%) 
Equal 19 8.3 21.4 7.1 
Different because larger samples produce higher 
significance 

9.5 25 10.7 17.9 

Different because larger sample sizes produce lower 
significance 

3.6 6.0 6 3.6 

Missing 13.1 15.5 16.7 16.7 
 

This effect was present in both interventions and was larger for the sampling intervention. 

The gains in the data analysis condition were not predicted by the theoretical review. An 

alternative hypothesis is that gains in declarative knowledge have a lot to do with the observed 

change; that is why, both the data analysis and the sampling intervention, produced important 

change in students never exposed to probabilistic training. The analysis of open-ended question 

number 4 that asked participants to explain the factors associated to the significance of sample 
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mean differences is consistent with this hypothesis. It shows that there seems not to be a deep 

change in students understanding of probability (Table 26). 

Table 26. Written Answer to Open-ended Question 4 (n=84) 

Explanation Pre (%) Post  (%) 
Causal Factors 66.5 48.8 
Random Sampling 2.6 7.7 
Causal Factors + Random Sampling 2.6 5.2 
Missing 28.2 38.5 

 

In open-ended question 4, participants used mainly causal factors to explain the mean 

differences between two groups in a hypothetical situation. There was no important difference 

between  both pretest and posttest. Students did not incorporate what they learned about sample 

size and significance to evaluative situations requiring explanation of the reasons producing 

mean differences. In other words, students were able to assert that larger samples produced larger 

significance, but they did not connect this knowledge with the way they explained observed 

phenomena. In spite of the pervasiveness of causal explanations, probabilistic misconceptions 

decreased from pretest to posttest. For example, student 34 answered in the pretest that sample 

size did not affect the significance of mean differences “because the number of people is not 

what is being measured” (No porque no se esta midiendo el numero de personas); this 

conception was modified in the posttest where the same student gave a better, yet simplistic 

answer: “the more sample is obtained, the more significant are the results” (“entre mas muestra 

se tenga mas significantes son los resultados”). In another example of the way change happened 

during the interventions, student 48 answered in the posttest that two samples coming from the 

same population should be different because “they are not the same students and differences can 

be found in the obtained results” (“porque no son los mismos estudiantes y pueden presentarse 

diferencias en los resultados obtenidos”). The same student had written in the pretest “if is the 
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same variable, they (the means) should be the same because it’s the same data (“si es de la 

misma variable deberian ser la misma porque son los mismos datos”). Finally, the change can 

be observed in student 79 that asserted in the pretest that “in a large sample, there are larger 

possibilities of finding atypical data that alter the mean” (“en una muestra grande hay mas 

posibilidades de encontrar datos atipicos que alteren la media”), and stated in the posttest that 

“the larger the sample, the less the variation among samples and the more trustworthy the 

result” (“entre mas grande la muestra menos varian las muestras entre si y mas confiable el 

resultado”). 
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5.0  CONCLUSIONS 

The results presented in the previous chapter portray a complex picture regarding statistical 

reasoning and the effects of computer-based interventions on this process. This picture includes 

quantitative evidence that indicates that computer-based interventions improve student’s ability 

to think about probability and repair some important probabilistic misconceptions. This sort of 

evidence shows also that the gains in probabilistic knowledge are stronger for students exposed 

to simulations than for students exposed to data analysis exercises and worked-out examples. 

These results are consistent with predictions made in the literature review that indicated that the 

use of simulations improves the representation of random process and therefore it increases the 

levels of statistical reasoning. However, qualitative analysis conducted on open-ended 

explanations and protocols of students solving statistical problems show that no deep change is 

occurring in the students’ representation of random processes. While participants seem to 

incorporate the notion that larger samples increase significance, they do not seem to modify the 

conceptions of statistical explanation that underlie the coordination of theory and evidence in the 

statistical process. This lack of deep effect can be explained by the short time of the interventions 

and by the absence of additional mechanisms supporting learning such as feedback systems, 

natural language tutoring systems, and blackboards. In a more complete version of online 

instruction, these mechanisms would be available to support students’ process of learning. 
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5.1 SUMMARY 

Interventions reduce the prevalence of statistical misconceptions such as the equiprobability bias, 

and the law of large numbers, but the effects on data analysis knowledge are very soft. 

Accounting for these results requires considering different factors contributing to this outcome. 

In the first place, participants knew more about data analysis than about probability before the 

intervention as evidenced by pretest scores. At the moment of the intervention, students in the 

three groups had undergone intensive training in data analysis as part of the basic sequence of the 

statistics courses. In part, this training was a necessary prior to ANOVA and other mean 

comparison procedures; at some other level, this training was a personal and pedagogical choice 

of instructors that consider data analysis a central part of social sciences’ use of statistics. The 

intensive training fostered in students skills for data representation and interpretation, as shown 

by the evolution of students in the political science course. The sub-study in the political science 

course showed that shortening the distance between representation and interpretation implied 

data-based dialog and substantive feedback on students’ answers. This study showed also that 

connecting different types of representations in order to correct representational specificity 

implied pedagogical support beyond the use of statistical packages.  

These results considered altogether suggest that the data analysis intervention was less 

effective perhaps because students had developed their data analysis skills to a considerable level 

prior to the intervention. Additionally, the same nature of the data analysis intervention 

contributed to the lack of effect on students’ data analysis knowledge. As shown by the 

comparison of the interventions made in the methods section, the data analysis intervention had 

lower levels of engagement than the sampling intervention; authentic data analysis is time 

consuming and, even with computers, it requires students to spend considerable time and 
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resources on one task in order to produce an interpretable result. Low levels of engagement are 

not a characteristic of online instruction, but a defect in this particular design. In the context of 

this study, this constraint led to the presentation of content through worked-out examples instead 

of through student exercises. This difference between interventions combined with the high base 

line for data analysis knowledge affected the magnitude of students gains in data analysis skill. 

A complementary issue explored in this work was the relationship between inference, 

data analysis, and sampling knowledge as constituents of statistical thinking. The theoretical 

framework suggested that students’ conducting statistical inference combined data analysis and 

sampling knowledge to produce plausible interpretations in statistical cases. This point was 

supported by the results of this study showing that change in inference knowledge is predicted 

significantly by change in sampling and data analysis, and by the participation in the sampling 

intervention.  

5.2 CHALLENGES FOR ONLINE STATISTICAL INSTRUCTION 

This study has shown that computer-based interventions can be to some extent effective to 

generate changes on students’ reasoning. However, this effect is constrained to areas where 

students possess low knowledge (e.g., sampling knowledge in the pretest). In many regards, the 

results of this study suggest that the efficiency of computer-based tools needs to be mediated by 

pedagogical practices either human or computer-supported. Emphasis on the necessity of 

adequate scaffolding of statistical argumentation  is made here. Scaffolding can be provided in 

the form of blended teaching or mediated through different kinds of computer tools from 

automatic feedback based on task analysis to participation in discussion boards. Learning 
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statistics means coordinating theory, data and representation in the context of random effects and 

variability. While representation of data and randomness can be facilitated through computers, 

understanding probability and commanding statistical argumentation do not grow automatically 

from the use of data analysis statistical packages. Computers provide several tools that  can help 

this process; feedback systems and discussion boards are some of them. 

5.3 RESEARCH QUESTIONS  

At this point is convenient to go back to the research questions proposed in the methods 

section. Research question 1 inquired whether or not it was possible to build a measurement 

system able to capture the core ideas of data analysis and sampling in a reliable and valid way. 

The results of this study show that such system is possible, and that it can capture students gains 

in statistical knowledge. The posttest results show that the coordination of distribution graphs, 

test results and conclusions in context that measured inferential knowledge in the items designed 

by the researcher correlated to some extent with standardized measures of inference and data 

analysis knowledge, but they did not correlate with sampling measures. Additionally, the results 

of this study show that the coordination of data analysis and probability is related to students 

performance in inferential statistics. Specifically, gains in data analysis and sampling knowledge 

predicted students gains in inference knowledge. 

Research question 2 inquired about the real potential of online education to teach data 

analysis, sampling and inference knowledge in short time frames. The answer provided by this 

study to this question is that computer-based simulations favor the learning of probability and 

formal aspects of statistics. On the other side of the question, the results of this study show that a 
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limited number of computer-based data analysis exercises does not produce gains in data 

analysis knowledge when students have been exposed previously to activities of representation 

and comparison of data sets. Additionally, the sub study of the evolution of the political science 

course shows that data analysis knowledge grows over time. 

Research question 3 reviewed the possible tradeoffs between data analysis and 

simulations as tools to teach statistical inference. Regarding research question 3, this study 

shows that there is an important tradeoff between the authenticity of data analysis exercises, and 

the sustained activity of sampling simulations in the teaching of statistical content, particularly, 

of probability. Simulations are more effective to teach probability than data analysis exercises. 

Additionally, as shown by the codification of the interventions, the number of sampling 

questions in the data analysis intervention is lower than the number of sampling questions in the 

sampling intervention. A possible explanation for this fact is that conducting data analysis 

requires more instructional time than using simulations. This tradeoff makes simulations a better 

tool to teach probability.  

5.4 IN HINDSIGHT 

The results of this study present a promising line of research. However, it is necessary at 

this point to indicate important flaws in this design that need to be avoided in future research. 

The first element that needs to be considered is the no effect observed in data analysis 

knowledge. The data analysis intervention presented few exercises, and some features of the OLI 

course were excluded in order to increase the comparability of the two conditions of this study. 

These features such as learning checks and videos could change the outcome of comparisons 



 131 

similar to those presented in this study. Additionally, the time of instruction used here is below 

the standard time of a naturalistic experiment. Several weeks of instruction may be necessary to 

observe change in data analysis activity.  

More important, the design of the study created a systematic bias in favor of the learning 

of sampling knowledge. Sampling knowledge was better represented in this study than data 

analysis and inference knowledge. Understanding sampling size effects and observing 

simulations of sampling distributions are tasks that are close to the core of probability. 

Comparisons of center and spread among distributions are just a marginal subset of what data 

analysis is. The items evaluating data analysis in the pre, posttest questionnaire focused on tasks 

that are secondary to data analysis. The same can be said about the gains in inference knowledge. 

ANOVA and understanding of ANOVA tables are just a minimal part of what statistical 

inference is. In further studies, it is necessary to correct this flaw using data analysis tasks that 

capture the complexity of the statistics. 

5.5 LIMITATIONS AND FURTHER DEVELOPMENTS 

This dissertation suggests a research agenda on statistical learning and educational 

technology. This agenda includes a randomized study comparing two perspectives in statistical 

instruction; a protocol analysis study on the reasoning process underlying sampling and data 

analysis exercises; and a classroom study on the instructional process of statistical data analysis 

from the beginning of the class to the intervention point. This agenda is a work in progress. 

Regarding the randomized study, the first point to note is that the comparison between 

the sampling and the data analysis perspectives is not transparent. In order to produce an 
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ecologically-valid comparison, this study mixed several factors in what constituted two opposed 

perspectives. In the quest for ecological validity, several facets were varied across the lines of the 

interventions. For example, the sampling intervention contained more sampling exercises than 

the data analysis intervention. This variation seemed natural because of the emphasis on 

sampling in the sampling perspective, but it introduced confounding effects in the design. The 

comparison here proposed contrasted two broad views of statistical instruction. However, fine-

grained studies that provide analytical evidence regarding two aspects of the interventions are 

necessary: first, it is necessary to prove that higher engagement produce higher levels of learning 

in all domains and not just on the sampling dimension of statistical thinking; and second, it is 

necessary to test if worked-out examples are effective in learners at initial stages of data analysis 

training. The studies required to fill this gaps are experimental in nature and entail controlling all 

aspects of a particular comparison even if that implies sacrificing ecological validity. 

The think aloud protocol analysis study needs a larger sample and maybe one or two 

additional studies. One additional study on the instructional conditions that foster complex and 

larger sequences of description and comparison in the solution of data analysis items. This study 

needs to delve into the specific characteristics of those sequences, connecting in one hand the 

statistical reasoning research and in the other the literature about self-explanations. In addition, 

this complementary study needs to identify the factors producing long and deep exploratory 

behavior, from the presence of certain declarative statements in instruction to differences in the 

disciplinary epistemologies held by students. Another protocol analysis study is necessary 

regarding the particularities of the knowledge gains in the sampling condition; particularly it is 

necessary a detailed description of the effects that a working model of probability has on 

students answering complex probability problems. In other words, it is necessary to identify what 
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advantages a working model of probability has over a declarative representation of the effects of 

sample size. Protocols of some students in this dissertation permit to anticipate that a mental 

representation of sampling allows students to apply probability to a widest range of situations, 

including for example item Sam5 where students had to revert the decision rule to produce a 

correct answer. In the decision rule taught in the interventions, larger sample size increased 

significance; in item sam5, larger sample sizes decreased the probability of finding extreme 

values. This reversion was difficult for some students holding just declarative knowledge.  

Regarding the findings of the classroom study, experimental evidence in a controlled 

setting is necessary to confirm the existence of representational specificity and to evaluate the 

actual effects of the distance between interpretation and representation in students’ learning. For 

example, representational specificity could be tested using a design in which students with some 

knowledge about either histograms or box plots would be asked to pair graphs of both types 

representing the same and dissimilar data. Finally, a large controlled classroom study is required 

to capture in greater detail the teacher’s instructional moves and the changes in classroom 

discourse. This study must include sessions video recording and open-ended interviews with 

students at different points of the course. 
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APPENDIX A 

ADDENDUM TO AMERICAN STATISTICIAN ARTICLE (08/2005) 

  

June 6, 2006 

Javier Corredor and Gaea Leinhardt 

This report follows up on the article that appeared in the American Statistician 

(Larreamendy-Joerns, Leinhardt, Corredor, 2005) in which we compared six on-line statistics 

courses.  In this report we add to that two additional courses: the OLI statistics course and 

ActivStats.  We add OLI because it is the focus of our work and we add ActivStats because 

although it is a CD and not an online course it is one that is highly used and deeply respected by 

the statistics community itself. 

To review briefly, in the American Statistician article we engaged in the following 

activities: we compared the overall content and approach of the courses; we focused on the types, 

frequency, and breadth of instructional examples; we compared the types of exercises students 

were asked to complete; and finally we estimated the cognitive complexity or demands of the 

exercises.  In this report we add two additional courses to the original coding and discuss the 

results. 
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Content Analysis 

To compare the courses in terms of the content they presented, we built a list of the topics 

covered by each course. This list of topics was initially conceived as a mechanism to compare 

the content of the courses with the AP Central Statistics Exam content. We started by listing the 

topics that were covered by the AP exams as a base line. Next, we looked for the topics covered 

by instruction in the online courses. Appendix A shows the details of the results of this analysis. 

OLI and ActivStats covered 70% of the AP content. Cyberstat covered the 88%; and Seeing 

statistics covered the 51% of the AP contents. The online courses also covered topics that were 

not part of the AP list, but, as it is shown in Appendix A, those topics were few in all the courses. 

The exception was Cyberstats which is by far the most comprehensive course.  

The topic list (Appendix A) presents the subjects that are included in the four online 

courses that appeared most complete: Seeing Statistics and Cyber stat from the AS article, and 

OLI and ActivStats in this report. All courses cover more or less the same topics. However, some 

courses are larger than others and that makes a difference in the depth in which topics are taught. 

Cyberstats is an especially large course. This feature has the advantage of permitting a deeper 

exploration of the topics. In some sense a larger course is more akin to provide more and more 

authentic examples and exercises, and to give more information in general.  

From the list of topics, we noticed that the four courses organized their content in three 

sub areas: Examining data, Probability, and Inference. Examining data refers to methods that 

permit one to find, summarize and represent patterns in data. Probability refers to content 

devoted specifically to the laws of chance, and to the characteristics of sampling distributions. 

And Inference refers to procedures of hypothesis testing that contrast the predictions of 

probability theory with the patterns in actual data. All the four courses make explicit distinctions 
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between these three content sub areas when they presented the overview of the course in the 

introduction. Additionally, all the courses contained content on “producing data’, that is, on 

methods of collection of data, and on theory in the sources of data and their characteristics. 

However, this last area of content was less large and presented in a more implicit way. The 

distinction between the four sub areas was present in the AP content and appears to be a standard 

distinction within statistics.  

Courses Description and Resources 

OLI. The OLI statistics course is one of several courses included in the Online Learning 

Initiative authored by CMU faculty and available for free in the Internet. The course has been 

designed with attention to cognitive principles of learning (“Cognitively-informed education”) 

that encourage the active use of declarative knowledge, and the provision of timed feedback. The 

design of the course also avoids instructional situations that create high working memory loads. 

This course presents content through different means: text, video, interactive exercises (that 

provide feedback on student answers). Additionally, it presents an Intelligent tutoring system 

(Stat Tutor). The course checks student learning constantly with “did I get this?” questions and it 

provides “learning by doing” that presents complex situations to students to work on. 

Additionally, the course includes a section called “many students wonder” that gathers questions 

provided by students using the course. The goals of each unit are presented and they are easily 

accessible by clicking in an icon in the navigation bar.  

The course content follows a structure that attends to what they called “the big picture” of 

statistics. The big picture of statistics refers to the process of “converting data in useful 

information”. This process includes three basic steps: collecting data, summarizing data, and 

interpreting data. At the end of each unit, the OLI course provides a section with resources that 



 137 

include data sets, and examples, but the examples are not enough to compensate for the small 

number of examples provided in the content. 

In terms of resources (Table 1), the OLI course is very complete. It is at the same level of 

the top online course available today (CyberStat, ActivStats), and it is far better than most of the 

other courses including SeeingStatistics. The OLI course, however, lacks of online active 

interactive and simulations, and rather it relies on links to external applets for that purpose. Some 

simulations of random behavior are conducted using the random generators functions from 

statistical packages, but this strategy can create problems for students not familiar with 

programming, and is not nearly as natural or easy as having such simulations built in and easily 

available. 

Table 1. Available Online Resources per Course 

 
Resources CyberStats SeeingStat OLI ActivStats 
Applets ✔ ✔ ✔ ✔ 
Videos   ✔ ✔ 
Statistical Software ✔  ✔ ✔ 
Virtaul labs    ✔ 
Note-taking facilities ✔  ✔  
Course Map ✔ ✔ ✔ ✔ 
Glossary ✔ ✔  ✔ 
Search engine ✔ ✔   
Course management system ✔  ✔ ✔ 
Links to external sources ✔  ✔  
Electronic forums ✔    
Multiple-choice questions ✔  ✔ ✔ 
Short answer questions ✔ ✔ ✔ ✔ 
Feedback ✔ ✔ ✔ ✔ 
 

ActivStats. ActivStats is an online course developed by Paul Velleman a highly respected 

statistician and statistics educator. This course is not available for free in the Internet. It is 

released in a CD that can be bought online for about $50. The course is very complete, it 

provides a course management system that keeps track of students’ actions and helps them to 
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follow the course sequence. ActivStats has the characteristic of presenting an example in each 

unit –usually in the form of a video- and developing that example carefully through the unit. One 

strength of this course is that it provides active simulations that illustrate important statistical 

ideas. Additionally, the course provides drag and drop quizzes, and a system of data management 

that contains data sets and acts as a statistical package. In this data management system, the 

students can conduct authentic research by following the instructions for each exercise that 

appeared in boxes when the students are using the system.  
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Figure 1. Authenticity vs Mean number of examples  

Examples 

Examples are a key element in any mathematical explanation (Leinhardt, 2002; Renkl, 

1997; Zhu & Simon, 1987).  Examples are also a critical mechanism for learning as shown by 

Simon and his colleagues.  But examples must be carefully selected to show the range of 

conditions of use, the subtleties of differing circumstances, and authenticity of the domains core 

questions (Risland 1991).  In addition, examples must be unpacked or explicated in a variety of 

levels of depth to assure that students engage with them (Zhu and Simon, 1987).  To code 

examples we selected three target topics in introductory statistics (Central Tendency, ANOVA, 
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and Regression) and identified all of the material that constituted an example (for details see 

Larreamendy-Joerns et al, 2005).  For each example we then categorized a number of features.  

Figure 1 shows the new results for the additional courses. 

With respect to frequency CyberStat and Seeing have the most in terms of number and 

variety of examples while the remaining six courses all cluster around 3.5 or 4 examples per unit.  

OLI and ActivStats both have fewer than these two leaders, however, they do unpack their 

examples in greater depth. Frequency is important not only because of issues of range but 

because it appears that the actual cognitive arrangement of concepts is expanded if there is 

greater frequency.  With respect to issues of authenticity OLI and ActivStats are comparable and 

in the upper half of the reviewed courses.  The authenticity index was developed by scoring each 

example as to whether it had no cover story, a cryptic cover story, or an authentic cover story.  

Authenticity reflects the uses of statistics and the field in and of itself.  The majority of examples 

in OLI and ActivStats had cover stories and some of the stories were developed in considerable 

depth.  There is an inherent trade off between depth and frequency when the total length is fixed. 

The number of examples in Seeing is very high because the course is designed to allow for 

additional examples on demand that are suitable for different content areas (economics, 

psychology, sociology).  

Figure 2 shows the quality of examples in terms of the variability. There are two basic 

indicators of variability. One is the mean number of different topics covered by the examples 

within the different units evaluated. The other is the mean number of different covers that are 

included to explain each topic. In both indicators ActivStats and the OLI appear low. One 

explanation for this is that both courses present few examples but they organize a large set of 

activities around them. In the case of ActivStats, it is true that there is an important set of random 
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simulation generators that produce data each time that the user requests it. For the case of OLI, a 

factor that could affect this result is that the structure of the course divides areas the 

2

3

4

5

6

7

1 2 3 4 5 6 7

Psych3000
IntroStats

Investigating
SurfStat

CyberStats

SeeingActivStats
            OLI

Mean number of covers

 

Figure 2: Mean number of different example covers and conceptually distinct examples per unit and course. 

content in a way that is not typical of the content distribution of most courses. OLI course 

have big units of content that represent the structure of statistics (e.g. examining data), and 

subdivide those units in specific procedures (e.g. central tendency measures). Most other courses 

use specific procedures as thematic units. How does it affect the counting of examples? Being 

the studied units in the case of OLI subordinates to other larger thematic units make this units 

smaller, and thus, the number of examples and their variability naturally lower.  
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Exercises 

Figure 3 shows a comparable analysis of the courses for exercises.  In earlier evaluations 

of statistics texts exercises along were the main criteria for evaluation of material because they 

are so central to the learning process in quantitative domains.  Here we compared the frequency 

and authenticity of the exercises in which students were expected to engage.  Other than 

CyberStat, OLI has a reasonable authenticity index and a reasonable frequency of exercises for 

the students. In the case of ActivStats, the presence of random simulation generators in the 

exercises can compensate the low number of exercises. Random simulations produce multiple 

data sets on which the students can work. It is important to note that a tradeoff associated with 

the use of random generators is the lack of authenticity inherent to them. While using sets of real 

data creates both a natural data structure and a credible cover story, using random generators 

creates a large of set of cases, but the data structure is fixed (although it is possible to use 
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probability functions to build them), and the cover story usually false and poor. The authenticity 

score for ActivStats was lowered by the fact that this course contains a large number of this type 

of exercises.  

In the case of OLI, the authenticity score for the exercises can be explained in the 

following way. The OLI contains two types of exercises: Learning by doing exercises and 

checking knowledge exercises (“Did I get this?”). The first type of exercises has a high level of 

authenticity because it refers to complete situations where learners are confronted with authentic 

problems. The second type of exercises (“Did I get this’) has a low level of authenticity because 

the purpose of the exercise is not to face students with a complex situation, but to evaluate how 

they had learned basic chunks of information.  

In terms of the cognitive demand of the exercises, both OLI and ActivStats show a 

reasonable level of demand. In the case of OLI more than 75% of the exercises demand from 

students the complex use of procedures. In the case of ActivStats complex use of procedures was 

also the more common category. This was also the case of CyberStats and Seeing. What this 

means is that the students face complex tasks and are required to use the knowledge they have in 

a flexible way. Students have to coordinate sequences of goals and subgoals, and divide the task 

into different steps. It means also that they work through ill-defined tasks in which they define 

the framework of the task. Another characteristic of these courses is that they have a variety of 

cognitive demand levels.  
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Conclusions and Possible contrast for OLI 

From this report we can conclude that OLI and ActivStats are solid courses and seem to 

be among the upper set of courses available. They present students with authentic examples and 

exercises. They present students with exercises that have high cognitive demand. The resources 

available in the courses are as good as or better than the resources provided by other online 

courses. The main weakness of both courses is the low number of examples. In part, this is due 

to the fact that these courses are relatively short. A solution that could work in this case is to 

create pop-up windows that present additional examples at the request of the learner.  

A characteristic that negatively differentiates OLI from all the other courses is the lack of 

interactive simulations. The simulations provided by OLI must be created using the random 

number generator functions of statistical packages. Interactive simulations in the form of Applets 

have advantages and disadvantages. A disadvantage is that they give the students quick 
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visualization of statistical ideas. A disadvantage is that students do not engage in modeling tasks 

by themselves. These modeling tasks can be a core for the understanding of statistical ideas.  

The results of this study suggest some points of contrast for research.  presence or 

absence of simulations; increase or decrease in quantity and range of statistical examples; 

increase or decrease in range of covers and breadth of examples . These three features suggest 

contrasts between OLI, ActivStats, and Cyberstats might be informative.  
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Appendix A: Topics’ List 

 

Content AP OLI ActivStats CyberStat 
Seeing 
Statistics 

The big picture   Introduction     Introduction 
            
EDA   Examining Examining Examining Examining 
Dotplot Examining   Examining   Examining 
Pie Chart   Examining   Examining   
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Bar-chart   Examining Examining Examining   
Histogram Examining Examining Examining Examining Examining 
Simple plot         Examining 
Stem-plot Examining Examining Examining Examining   
Cumulative 
Frequency plot Examining         
Measures Center Examining Examining Examining Examining Examining 
Mean Examining Examining Examining Examining Examining 
Median Examining Examining Examining Examining Examining 
Typical values         Examining 
Measures of Spread Examining Examining Examining Examining Examining 
Range Examining Examining Examining Examining Examining 
Median absolute 
deviation         Examining 
Inter-quartile range Examining Examining Examining Examining   
Standard Deviation Examining Examining Examining Examining Examining 
Box Plot Examining Examining Examining Examining Examining 
Independent 
Variable   Examining Examining Examining   
Dependent Variable    Examining Examining Examining   
Context of data     Examining     
Backtobackstem 
Plots Examining Examining   Examining   
Comparing boxplots   Examining Examining Examining   
Frequency tables bar 
charts Examining         
Marginal and joint in 
freq.tables Examining         
Conditional relative 
frequencies Examining         
Scatterplot Examining Examining Examining Examining Examining 
Linear 
transformations Examining   Examining Examining Examining 
Linear Relationships   Examining Examining Examining Examining 
Correlation 
Coefficient-r   Examining Examining Examining Examining 
RegressionI Examining Examining Examining Examining Examining 
Causation   Examining   Examining   
Sampling Producing Producing Producing Producing   
Study design   Producing   Producing   
Randomization Producing Producing   Producing Producing 
Methods of data 
collection Producing     Producing Producing 
Census Producing         



 146 

Experiment Producing   Producing Producing   
Observational study Producing     Producing   
Survey design Producing Producing Producing Producing   
Control group Producing     Producing   
Block designs Producing     Producing   
Simulation Others         
randomness     Probability Probability   
Probability 
(definition) Probability Probability Probability Probability Probability 
Probability 
(calculation) Probability Probability Probability Probability   
Relative frequency 
of events Probability Probability   Probability Probability 
Equaly likely events Probability probability   Probability   
Probability rules Probability Probability Probability Probability   
Conditional 
probability Probability Probability Probability Probability   
Large numbers Probability   Probability Probability   
Bayes Rule   Probability   Probability   
Binomial 
distribution         Probability 
Random Variable Probability Probability Probability Probability   
Discrete random 
variable Probability Probability Probability Probability   
Continuous random 
variables Probability Probability Probability Probability   
Normal random 
variables Probability probability Probability Probability Probability 
Sampling 
distribution Probability Probability Probability Probability Probability 
Central limit 
theorem Probability   Probability Probability Probability 
Sample vs 
population Probability Probability Probability Probability Probability 
Sampling 
distribution 
proportion Probability Probability   Probability   
Sampling 
distribution mean Probability Probability Probability Probability Probability 
t-distribution Probability   Probability Probability Probability  
Chi square 
distribution Probability     Probability Probability 
Confidence     Inference Inference Inference 
Point Estimation Inference Inference Inference Inference   
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decision making         Inference 
Interval Estimation Inference Inference Inference Inference   
Interval Estimation 
slope and differences Inference     Inference   
Hypothesis Testing Inference Inference Inference Inference Inference  
Sample Size Inference Inference Inference Inference   
Inference for means Inference Inference Inference inference   
Inference for 
proportions Inference Inference Inference inference Inference 
Ht for proportions Inference Inference Inference inference Inference  
Ht for mean Inference Inference Inference Inference   
Z test for one 
variable Inference Inference Inference Inference Inference 
t test for one variable Inference Inference Inference Inference Inference 
Two sample t test 
(independent) Inference Inference Inference Inference Inference 
Two sample t tests 
(paired) Inference Inference Inference Inference Inference 
ANOVA   Inference Inference Inference Inference 
Chi Inference Inference Inference Inference Inference 
Regression linear   Inference Inference Inference Inference 
F distribution     Inference Inference Inference 
Multiple regression     Inference Inference Inference 
Time series        Inference   
Treatment       Producing   
tree diagram        Examining   
Binomial 
distribution       Probability   
Bivariate (data)       Examining   
Blind        Producing   
Cause-and-effect 
diagram        Inference   
Composite event        Examining   
Compound event       Examining   
Ecological 
correlation        Inference   
Elliptical point cloud        Examining   
Flowchart        Examining   
Jitter        Other   
Long-run mean        Examining   
Lurking variable   Examining     Examining  
Memoryless property        Examining   
Pareto diagram        Examining   
Placebo        Producing   
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QQ-plot        Inference   
 
OLI 18/61 (70%) 
Active stats 18/61 (70%) 
CyberStats 7/61 (88%) 
Seeing Statistics 31/61 (51%) 

 

. 



 149 

APPENDIX B 

SIMULATIONS 

The VESTAC project (Darius et al, 2002) presents a collection of applets devoted to different 

statistical concepts. VESTAC contains applets devoted to visualize diverse distributions 

(Univariate and Bivariate normal) and demonstrate the Central Limit Theorem by showing how 

the mean of samples from “different distributions gradually approaches a normal distribution”.  

There are also a group of applets devoted to show the relation between population and sample for 

the particular cases of regression and ANOVA: that is, to show how the values of the statistics 

(e.g. regression slope) vary within certain limits when repeated sampling from a population is 

conducted.  

Similar projects have presented by Nicholson et al (2000), Cramer & Neslehova (2003), 

and by Harner & Hengi Xue (2003). Nicholson et al (2000) present a system that creates samples 

based on the selection of parameters made by the learners. Neslehova and Cramer (2003) present 

a collection of applets that integrates a textbook type of course with active simulations 

(EMILeA-stat) and other tools for teaching statistics; and Harner and Hengi Xue (2003) 

(http://www.8-mobius.com) present a java-based environment (myJavaStat) to teach statistics, 

that includes, among other modules, a section for simulation of probabilistic processes. The 
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design of myJavaStat’s module for probabilistic simulations is more sophisticated than a stand-

alone applet. It permits through five steps to perform some built-up modeling of the probabilistic 

process. This feature permits students to make choices about the structure of the task. First, 

students have to decide what kind of distribution they are dealing with (e.g. normal, binomial, 

etc). Second the students have to select a sampling method and a sample size. Third, the statistics 

of interest and the event are introduced in the system. After that, the simulation is conducted and 

presented graphically and analytically to the students. This type of program permits to simulate 

complex processes and conducting pseudo-experiments. This approach is an interesting 

alternative that has the functionality of stand-alone simulations but that has the flexibility and 

open task structure of programmed simulations.  

Wood (2005) and Drier (2000) describe simulations that add a new characteristic: they 

not only permit learners to operate in abstract distributions, but they reproduce micro worlds 

where the sampling happens. In this case, students are not operating on the properties of abstract 

distributions, but on the structure of objects in the virtual environment. Wood (2005) presents a 

program that samples “balls” from hypothetical “buckets” to illustrate how typical values 

distribute within confidence intervals when you aggregate multiple samples. Drier (2000) 

describes a similar program: the probability explorer. The probability explorer is a computer 

program that permits students to simulate random events (e.g. tossing coins) by operating in 

virtual icons in a micro-world. The program provides also several graphical displays of the 

virtual situation that permit students to access several representations of the events (e.g. from 

cumulative frequencies to bar graphs). Students can decide many facets of the experiment, as for 

example, the elements to be sampled, the sample size and the outcomes’ probabilities. 
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Shaughnessy and Ciancetta (2002) present a type of simulation that is even more 

authentic. They simulate the behavior of two “fair spinners” to help students understand how the 

probability of an event is calculated. This type of simulation is an alternative to teaching “the 

laws of probability” in a formal manner. It permits to exemplify how probability works without 

proving it mathematically. Shaughnessy & Ciancetta (2002) report also that working with this 

simulation improves students’ probabilistic reasoning as measured by some NAEP items. It is 

important to note, that the fair spinner is a virtual version of a question in the NAEP exam and 

then it shares many superficial features with the questions used to assess the effectiveness of the 

simulation. 

Another approach to present simulations in an authentic situation is the S.A.M.P.L.E.R –

Statistics As Multi-Participant Learning-Environment-(Wilensky & Stroup, 1999). 

S.A.M.P.L.E.R is a participatory simulation that gathers information from several terminals that 

permit students to participate as individual agents in a complex phenomenon. The terminals 

transmit the individual decisions of each student to the S.A.M.P.L.E.R server that, according to 

some parameters controlled by the instructor, creates the population attributes. Then, the 

program permits the students to take samples from different parts of this population. 

Pedagogical experiences using random simulations. DelMas, Garfield and Chance 

(1999) present a class intervention that uses a sampling distribution program. This program 

permits students to explore the process of sampling by using an interactive tool that allows them 

to select the sample size and “the shape of a population” from which samples are going to be 

obtained. The program conducts repeated sampling and then creates diverse representations of 

the simulation results (e.g. Histograms). DelMas, Garfield and Chance (1999) not only present 

the program but they explain how the simulations are used in a pedagogical model to teach 
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statistical concepts. The pedagogical model asks the students to solve problems using the 

simulation program. Students explore questions like “What is the relationship between sample 

size and the spread of the sampling distribution?”. After working with the simulations, the 

students are evaluated. The authors found poorer results when the intervention activities and the 

assessment task were different than when activities were similar to the assessment items. This 

result shows that transfer between tasks with different superficial features is difficult for students 

in statistics. 

 Sanchez (2002) emphasizes the pedagogical approach than to the tool. He 

describes how the use of programmed simulations using Fathom (a data management program) 

promotes the learning of probability. This project belongs to the second type of simulation and 

focused on problem solving by simulation. Instead of taking a formal approach, learners could 

use random number generators to simulate problem situations, and solve questions related with 

the characteristics and results of random distributions. In subsequent interviews, Sanchez found 

that participants considered the simulations useful to facilitate the solving problem process 

around core probabilistic concepts (e.g. the concept of relative frequencies). 

Blejec (2002) generates simulated data and use it to clarify statistical concepts during 

instruction. It is unclear, however, how the students can see the connection between the 

simulated data and the statistical properties they are observing since it is the teacher, not the 

students, who program the simulation. Students cannot witness the actual sampling process or 

the programming of the sampling process when studying data produced by the simulation, so, 

why should they regard the data as representing real sampling situations? 
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APPENDIX C 

 

DYNAMIC VISUALIZATIONS 

Several examples of uses of dynaic visualizations to teach statistical data analysis can be found 

in the literature. The VESTAC project (Darius et al, 2002) provides dynamic visualizations and 

random simulations. The random simulations were described in the section devoted to computer 

tools in the space of chance. The dynamic visualizations of VESTAC are Applets devoted to 

several statistical topics. Some of these topics are descriptive statistics concepts, such as 

histograms, box-plots, QQ-plots, and correlation. Other topics are part of inferential statistics, for 

example, confidence intervals, one- and two-sample tests, the types of errors in hypothesis 

testing, the least-square method, the regression line, and the relationship between explained and 

unexplained variability in ANOVA. The dynamic visualizations devoted to regression and 

ANOVA combine both random generation of data, like simulations, and dynamic visualization 

of the characteristics of these inferential procedures.  

West and Ogden (1998) present a summary of the “interactive demonstrations” available 

on the Internet and show how these demonstrations can be used to teach the representational 
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features of histograms, (e.g., the effects of the width or number of bins). The authors describe 

also how these interactive demonstrations can be used to illustrate the characteristics of samples 

generated  randomly and the behavior of the regression line in relationship to different data sets 

created by students. Their program also provides simulations that represent probability concepts 

(central limit theorem, confidence interval) and inferential procedures (power and hypothesis 

testing). 

Godino et al (2003) describe how applets can be used in problem solving situations. They 

use specifically two applets: one that works as a spreadsheet and permits users to perform 

calculations and to do graphing of data sets; and another that permits users to compare the mean 

and the median as central tendency measures of two small artificial samples (n=7). 

Biehler  (2003) describes the use of Fathom, a statistical package that permits users to 

create visualizations in order to explore statistical concepts in the context of an introductory 

statistics course. In New Zealand, Stirling (2002) reports the use of CASTS, a computer-based 

application, to conduct simulations, and explore data in descriptive and inferential statistics. 

Marasinghe (2002) presents a series of modules to teach statistics (programmed in lisp-stat) that 

permit students to study confidence intervals and to visualize least squares fitting and variation 

among experimental units.  

A similar project has been presented by Cramer and Camps (2003). Their project, called 

EMILeA, is devoted to statistics instruction. EMILeA-stat covers a variety of topics in statistics 

and probability. It contains interactive visualizations and java applets that help students to 

comprehend concepts in data analysis, probability, and inference. In the same vein, Mittag 

(2003) describes a project called “new statistics” that offers 60 applets to teach diverse statistical 

concepts. Applets in this project relate to diverse topics and they contain descriptive simulations 
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and other types of tools that permit students to visualize statistical concepts. Razi and Hiemenz 

(2003) refer to the same project as being part of a statistic learning sequence with diverse 

scenarios for learning. 
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APPENDIX D 

PRE, POSTTEST 
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Pre-test 

Section 1. 

Task 1 

In this section, you will find several distribution graphs. Each graph presents two data 

distributions. One in black, the other in gray. From the eight distribution pairs displayed below, 

five have significant differences at p=0.01. You have to identify which are the significant pairs 

and to explain which criteria you used to identify a distribution as significant. 

Please, write here the letter corresponding to the distribution pairs you consider have 

significant differences. 

 

_____ 

_____ 

_____ 

_____ 

_____ 

 

Explain the criteria you used to identify the significant differences: 
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Distributions 

a) n=50 

 

 

 

 

 

 

 

 

 

b) n=100 
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c) n=50 

 

 

 

 

 

 

 

 

d) 100 
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e) n=50 

 

 

 

 

 

 

 

 

 

 

 

f) n=100 
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g) n=50 

 

 

 

 

 

 

 

 

h) n=100 
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Pre-test 

Section 1 

Task 2 

 

In the next section you will find the tables displaying the results of eight ANOVAs 

calculated using the same raw data using to build the distributions in task 1.  Please, pair them, 

trying to identify which distribution corresponds to which ANOVA table. Second, identify in the 

distribution graph were the between groups and within group indexes were obtained from. 

 

ANOVA Distribution Pair 
a)   
b)  
c)  
d)  
e)  
f)  
g)  
h)  
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a) 
  Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

962.908 1 962.908 2.389 .125 

Within 
Groups 

39098.718 97 403.080     

Total 40061.626 98       
 
b) 
  Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

726.128 1 726.128 5.888 .017 

Within 
Groups 

11961.750 97 123.317     

Total 12687.879 98       
 
c) 
  Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

2813.604 1 2813.604 23.670 .000 

Within 
Groups 

11530.017 97 118.866     

Total 14343.621 98       
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d) 
 
 
 
 
 
 
 
 

 
 
e) 
  Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

4086.461 1 4086.461 43.880 .000 

Within 
Groups 

18439.568 198 93.129     

Total 22526.029 199       
 
f) 
  Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

5037.576 1 5037.576 13.883 .000 

Within 
Groups 

71845.268 198 362.855     

Total 76882.844 199       
 
g) 
  Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

950.020 1 950.020 8.943 .003 

Within 
Groups 

21034.761 198 106.236     

Total 21984.781 199       
 
h) 
  Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

525.998 1 525.998 1.421 .235 

Within 
Groups 

73286.964 198 370.136     

Total 73812.963 199       

  Sum of 
Squares 

df Mean 
Square 

F Sig. 

Between 
Groups 

2463.032 1 2463.032 6.098 .015 

Within 
Groups 

39177.714 97 403.894     

Total 41640.746 98       
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Section 1 

Task 3 

 

Case 1. 

Searching for gender differences in the use of online and offline resources, a group of Colombian 

researchers replicated the Roy et al (2003) study on web and library search patterns. The study 

assigned students randomly to one of two search conditions (web or library). The students then 

have to find information related to a target question (“How do mosquitoes find their prey?”). The 

Colombian study showed different results than the original study (Roy et al, 2003). The original 

study found that the web was superior to the library for searching target-specific information but 

this difference was not significant, and that in the web condition boys learned more target-

specific information than girls. In the Colombian case, results showed that the web was superior 

to the library in learning gains with a significant difference, and that boys learn more target-

specific information than girls in both the library and web conditions. (Sig=0.01) 

 

Identify a graph and the ANOVA result for the next situations and explain why having the same 

differences in each pair, in some cases the different is significant and in other it is not. 

 

• A difference of 5 points between boys and girls in the web condition with a 

significant difference (Colombian study). 

• A difference of 5 points between boys and girls in the library condition with a 

significant difference (Colombian study). 
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• A difference of 10 points between the web and library condition with a 

significant difference (Original study). 

• A difference of 10 points between boys and girls in the library condition without 

a significant difference (Original study). 

• A difference of 10 points between the web and library condition without a 

significant differences (Original study). 

• A difference of 10 points between the web and library condition with a 

significant difference (Colombian Study). 

 

Roy, M., Taylor, R. & Chi, M.T.H. (2003). Searching for information on-line and off-line: 

Gender differences among middle school students. Journal of Educational Computing Research, 

29(2), 229-252. 
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Case 2. 

A group of biology students wants to replicate Creasy et al (1997) study on the population and 

biology of the majid spider crab. They are particularly interested in finding out if there are 

significant size differences between male and female specimens. They collected specimens from 

two populations –one found at 150 m and the other found at 650m depth- on the coast of Oman. 

In both populations, females were consistently larger than male by the same amount. However, 

in the 150 meters population the different was significant, and in the 650 population the 

difference was not significant, when they conducted one way ANOVAs. Due to this fact, they 

collected a larger sample from both populations, this time the observed differences were smaller 

than in the first version of the study but they were found significant this time. 

Identify a graph and the ANOVA result for the next situations and explain why having the same 

differences in each pair, in some cases the difference is significant and in other it is not. 

• A difference of 10 cm between females and males in the 150 m condition with a 

significant difference (Original study). 

• A difference of 10 cm between females and males in the 650 m condition without 

a significant difference (Original study).  

• A difference of 5 cm between females and males in the 150 m condition with a 

significant difference (replication). 

• A difference of 5 cm between females and males in the 650 m condition without 

a significant difference (replication). 

• A difference of 10 cm between the mean of crabs found at 150 m and at 650 m 

without a significant difference in the original study. 

• A difference of 10 cm between the average size of crabs found at 150 m and at 



 169 

650 m with a significant difference in the replication. 

 

Simon, R. A, Tyler, P., Young, C., &, Gage, J. (1997). The Population Biology and Genetics of 

the Deep-Sea Spider Crab, Encephaloides armstrongi Wood-Mason 1891 (Decapoda: Majidae). 

Philosophical Transactions: Biological Sciences, Volume 352, Issue 1351, pp. 365-379. 
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Section 2 

Open-ended Questionnaire 

 

What the standard deviation means conceptually? What does it indicate you? ____________ 

 

 ___________________________________________________________________________ 

 

What is the difference between group variance and within group variance? ______________ 

___________________________________________________________________________ 

What within group variance means conceptually? What does indicate you? ______________ 

___________________________________________________________________________ 

What between group variance means conceptually? What does indicate you? ____________ 

___________________________________________________________________________ 

When you get samples for two groups and you find differences, those differences can be due to 

which factors? ______________________________________________________________ 

__________________________________________________________________________ 

If you sample twice from a population, the results are going to be the same for both samples? 

__________________________________________________________________________ 

__________________________________________________________________________ 

If you have several pairs of data distributions, and all they have the same mean difference, the 

results of the ANOVA table are going to be the same for all the pairs?  

__________________________________________________________________________ 
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Open-ended Questionnaire 2 

ANOVA 

VARIABLE  

  Sum of 
Squares 

df Mean 
Square 

F Sig. 

Between 
Groups 

7.311 1 7.311 .003 .958 

Within 
Groups 

526506.800 198 2659.125     

Total 526514.111 199       
 

a) 

VARIABLE
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b) 
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The above displayed graphs correspond to two the data distribution for two different 

schools. Graph a) corresponds to the distribution of data of co-ed school in mathematical 

competency for fourth grade; distribution b) corresponds to the results of a masculine school in 

the same test. 100 students out of 400 were tested in each school due to budget limitations. The 

ANOVA table was obtained by comparing both data distributions.  

Is there any difference between the schools? ____________________________________ 

________________________________________________________________________ 

Is this difference significant? ________________________________________________ 

________________________________________________________________________ 

Explain the results in your own words. ________________________________________ 

________________________________________________________________________ 

Explain the reason for these results.___________________________________________ 

________________________________________________________________________ 

How would you change this study to make it better? _____________________________ 

________________________________________________________________________ 

If you repeat the study, will you find the same results? ____________________________ 

________________________________________________________________________ 

Why? __________________________________________________________________ 

________________________________________________________________________ 
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Section 3 

Data Analysis 

In this exercise, you will receive a set of data that compares the levels of performance of 

two groups of therapists. One group has less than 3 years of experience; the other group has more 

than 20 years of experience. They have been evaluated in their skill for producing adequate 

evaluations of psychological cases and suggesting appropriate treatments for those cases.  

Acording to Ericsson (2000)  

“Among investigators of expertise, it has generally been assumed that the performance of 

experts improved as a direct function of increases in their knowledge through training and 

extended experience.  However, recent studies show that there are, at least,  some domains where 

"experts" perform no better then less trained individuals (cf. outcomes of therapy by clinical 

psychologists, Dawes, 1994) and that sometimes experts' decisions are no more accurate than 

beginners' decisions and simple decision aids (Camerer & Johnson, 1991; Bolger & Wright, 

1992)”.  

Expert Performance and Deliberate Practice: An updated excerpt from Ericsson (2000) 

http://www.psy.fsu.edu/faculty/ericsson/ericsson.exp.perf.html  

Conduct the necessary calculations using SPSS and write a paragraph stating your 

conclusion with respect to Ericsson’s (2000) assertion. 
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Section 4 

Standardized Items 

 

 

The standardized items used in the final version of the main questionnaire were taken from the 

CAOS test and the ARTIST Scale.  

Data5, Data6, Data7 are items 11, 12, and 13 in the CAOS TEST 4 Version 31, September, 8, 

2005. 

Inf2, and Inf3 are items 23 and 24 in the CAOS TEST 4 Version 31, September, 8, 2005. 

Sam3 is Item 6 is the Artist Scale (Measures of Spread), April, 2006. 

Sam4, Sam5, and Sam6 are Item 1, Item 2, and Item 5 in the Artist Scale (Sampling Variability)  

April, 2006. 

These materials can be requested at: 

https://app.gen.umn.edu/artist/tests/index.html 
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APPENDIX E 

INTERVENTION 1: DATA ANALYSIS 
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The data analysis intervention was taken from the OLI course.  

Module 9 (Sampling Distributions) from Unit 4 (Probability) was used. 

Module 10 (Introduction) and Case I of Module 12 (Inference for relationships) from 

Unit 5 (Inference) were used. 

Feedback systems included in the OLI course were not used in this study. Only text and 

exercises were kept.  

This course can be visited at.  

http://www.cmu.edu/oli/courses/enter_statistics.html 
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APPENDIX F 

INTERVENTION 2: SAMPLING 
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INTERVENTION 2 

Until now  you’ve read the general idea of ANOVA: Evaluating the relationship between a 

independent categorical variable and a dependent continuous variable by comparing group 

means. But, do you know what that really means? Why isn’t it enough to see the plain means and 

compare their values? After all, the numbers are pretty clear; if a group mean is higher than 

other, well, it is higher, right? Well, in this section we will delve into the reasons for which we 

need a procedure to evaluate differences. Part of the reason we need a procedure to evaluate 

mean differences is that mean differences are not transparent. A mean does not speak by itself, it 

needs to be contrasted with the variability that surrounds it, and with the conditions under which 

the sample was obtained. For example, if you hear someone saying that all Latin-Americans 

party a lot, you can object that statement by saying that it is not true for everyone: some people 

here and there party more than others. In this section we explore the factors that affect the 

interpretation of mean differences, and some of the solutions to the problem of group 

comparisons.   

Applet 

In this section you’ll be using the next Applet. This applet allows you to draw random samples 

while controlling the population parameters.  The Applet allows you to control four parameters: 

µ (the mean of the population), σ (the standard deviation of the population), number of products 

(the sample size), and number of samples (the number of samples you obtain each time you click 

“draw”). The Applet displays three diagrams. The diagram under “population” displays the 

population characteristics you’ve chosen. The diagram under “last sample” displays the results of 

the last sample you draw. The diagram under mean differences displays the cumulative result for 
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all the samples you have drawn. For example, if you are evaluating 30 students from the total 

population of a school, the results of that sample will be displayed under “last sample” and the 

characteristics of the population will be displayed under “population”. In this Applet you can 

control the mean and standard deviation of the school by changing µ (the mean of the 

population), or σ (the standard deviation of the population). If you draw a second sample, then 

the results of that sample will be displayed under “last sample” and the combined results of the 

first and second sample will be displayed under “mean differences”. Do you notice that in the 

first trial, the “last sample” results and the “mean differences” results are the same. You can also 

draw several samples at the same time by changing “num samples” or changing the size of the 

sample by modifying “num products”. 

http://statweb.calpoly.edu/chance/applets /Shopping/Shopping.html. 

 

Please, set the indicator “num samples” to 1, and sample a couple of times.  

What does a point (dot) in the bottom center diagram means? ____________________ 

Why does a point (dot) in the up-right diagram means? _________________________ 
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What is the difference between the three diagrams? ________________________ 

If you want to get a sample of n = 50, what do you have to do? _______________ 

Exercise 1 

In this exercise, we explore the reasons why we need to test for mean differences. The basic goal 

of this exercise is to show that mean differences can be produced by factors different to the 

existence of a real mean difference. Suppose you are trying to find out the true mean of verbal 

reasoning for the students of a given school. Suppose also that you can’t test all the students in 

the school. So, you draw a sample of students.  

Draw a sample using the tool. Suppose that the average score of the students in the school, not in 

the sample, is 20 and establish that average for the population in the average window (marked 

with miu); suppose that the standard deviation (marked with sigma) is 7.5. Then, draw a sample. 

What is the mean of this sample:_____________________________________ 

Is the mean of this sample equal to the mean of all the students in the school?   

________________________________________________________________ 

Now, draw another sample from the population with the same parameters. 

What is the mean of this second sample? _______________________________ 

Is the mean of this sample equal to the mean of the population (all students in the school)? 

________________________________________________________________ 

Is the mean of this sample equal to the mean of the first sample?  

_________________________________________________________________ 

If you have several samples from a population, how can you know what it is the true mean of the 

population. Or for the case of the example, if you can’t test all the students in the school, how 

can you know what is the true average score of the school’s students in verbal reasoning. The 



 182 

only real way to know it is testing all the students in the school. If you can’t test them all, there is 

no way to know the exact mean of the school. However, we can know that the majority of the 

sample means fall within a certain range. To prove this, we conduct the next exercise. 

Draw 10 samples using the Applet. Compare the diagrams in the Applet. 

What the diagram in the bottom of the Applet represents? ____________________ 

__________________________________________________________________ 

What the diagram in the upper right corner of the Applet represents? ___________ 

___________________________________________________________________ 

What the diagram in the upper left corner of the Applet represents?_____________ 

___________________________________________________________________ 

Then, draw 40 samples more using the automatic function. You can observe how the sample 

means (in the diagram at the bottom of the applet) accumulate in certain zones of the 

distribution. 

Try to identify the value at highest point of this distribution (the distribution of sample means at 

the bottom of the applet):  

______________________________________ 

To which number is this score is similar: 

a) to the mean of the population b) to the mean of the last sample 

Now, that we know that the samples accumulate close to the population mean, we want to know 

how far from the population mean, the samples means fall. Using the counting function of the 

Applet, please build the next table… 

Table 1. 

Less than 5 Between 5 and 
12.5 

Between 12.5 and 
20 

Mean = 
20 

Between 20 and 
27.5 

Between 27.5 and 
35. 

More than 
35. 
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As  a conclusion,  we cannot know if the mean we obtained from a sample is the exact mean of 

the population, but we can know that those samples are more likely to fall within certain limits. 

We do not go to the specific details of this calculation but its possible to obtain an interval 

around the sample means that indicates, with a certain probability, where the population mean 

should be. For example, if we obtain a sample that has a mean of 30, we cannot be sure that 30 is 

the mean of the school, but we can assert that the mean of the school is between 25 and 35 with 

80% probability, meaning that if we draw many samples they will fall between 25 and 35 80% of 

the times. 

Can you explain this idea using the example of the school? Suppose you’re trying to find the 

mean of the school on verbal reasoning but you only have a sample of 50 students. You obtain 

the sample using the Applet. What mean did you obtain? ______ 

Where the mean of the population must be? __________________________________ 

_____________________________________________________________________ 

Exercise 2 

Now we go to a more interesting question. If we are testing for a mean difference, how can we 

know really exists. For example, you are comparing to high schools in knowledge about ecology. 

You go to school 1 get a sample and evaluate it. Then, you go to the school 2 and evaluate 

another sample. You analyze the data you have and see that school 1’s average is higher than 

school’s 2. What if you  were just lucky and got the higher sample mean from school 1 vs the 

lower sample mean of school 2. What if there is not any real different? The next exercise will 

help to explore the possible ways to solve this problem.  
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Let’s simulate the situation described above.  You have two schools. School 1 has an average of 

20; school 2 has an average of 40. The standard deviation is 7.5.  Draw 50 samples from each 

school and fill the following table. 

Table 2. 

 

Can you observe a difference between the mean distributions produced by the two schools? 

____________________________________________________________ 

____________________________________________________________ 

What is the most common value within this sample from school 1?2 ______________ 

______________________________________________________________________________ 

You can see that there is a common range where means from both schools fall? What is this 

common range? ________________________________________________________________ 

Are there more or less sample means in this range than in the other intervals? _______________ 

Well, as the last exercise shows, there is a range of error when comparing two groups, but 

normally the sample means from a higher mean population tend to be higher than the means 

from a population with a lower mean. Statistical tools that test for mean differences evaluate the 

strength of you conclusion regarding the existence of mean differences. 

 

2 This question does not have an actual answer; it is just to check they are able to differentiate 
between sample mean and sample distribution of the mean. 

X

<5 

5

>X>10 

 

10>X>15 

2

0>X>25 

2

5>X>30 

3

0>X>35 

3

5>X>40 

4

0>X>45 

4

5>X>50 

5

0>X>55 

5

5>X>60 

6

0<X 
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A complementary question here is if mean differences created but sampling look the same that 

mean differences created by systematic effects in the model. In terms of our example, if we take 

two samples from school 1 and get a mean difference for them, does that mean difference tend to 

be higher or lower than if we take two mean differences from the same school and then we 

calculate the difference between both of them. 

To find out, let’s make the next exercise. Draw 10 samples from the school 1 (mean 20, sd 7.5) 

and 10 samples from school 2 (mean 40 sd 7.5), pair them and calculate the difference. Write the 

differences you find: ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

Now, draw 20 samples from school 2 and pair them in the order you are obtaining them (e.g. pair 

the first with the second, the third with the fourth).  Then, calculate the difference for each pair. 

Write the differences: ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

What differences are larger in average? __________________________________________ 

_____________________________________________________________________________ 

Other way to see this is use the information that we collected in table 2.  

Table 3 

School1/ 

school2 

 

10>X>15 

15>X>20 20>X>25 25>X>30 30>X>35 35>X>40 40>X>45 45>X>50 

10>x>15 0  5 10 15 20 25 30 35 

15>x>20 -5  0  5 10 15 20 25 30 

20>x>25 -10   -5 0 5 10 15 20 25 

25>x>30 -15 -10 -5 0  5 10 15 20 

30>x>35 -20 -15 -10 -5 0  5 10 15 

35>x>40 -25 -20 -15 -10 -5 0  5 10 

40>x>45 -30 -25 -20 -15 -10 -5 0  5 

45>x>50 -35 -30 -25 -20 -15 -10 -5 0  
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This table displays the possible mean differences for school 1 and school 2. For example, if 

school 1 has a mean that is between 10 and 15, and school to has a mean that is between 15 and 

20, the maximum mean difference in this group is 10 and the minimum mean difference is 0. The 

value displayed in each box is in the middle of these two values. The idea of this exercise is to 

see approximately where there are more likelihood of finding mean differences. To do this, you 

have to take the mean distribution of school 1 and the mean distribution of school 2 and put the 

values side by side in the table, and then multiply them. That will indicate you where more mean 

differences can be found. For example, if you have two means in school 1  (20, 21) and two 

means in school 2 (25, 27), you have four possible mean differences (25-20, 25-21, 27-20, 27-

25).  

In which box there are more possible mean differences? ___________________ 

Now do the same exercise but instead of using the data from schools, use the data from 

school 1, (like if you were taking two samples from school 1). 

Table 4. 

School1/ 

School1 

 10>X>15 15>X>20 20>X>25 25>X>30 30>X>35 35>X>40 40>X>45 45>X>50 

10>x>15 0  5 10 15 20 25 30 35 

15>x>20 -5  0  5 10 15 20 25 30 

20>x>25 -10   -5 0 5 10 15 20 25 

25>x>30 -15 -10 -5 0  5 10 15 20 

30>x>35 -20 -15 -10 -5 0  5 10 15 

35>x>40 -25 -20 -15 -10 -5 0  5 10 

40>x>45 -30 -25 -20 -15 -10 -5 0  5 

45>x>50 -35 -30 -25 -20 -15 -10 -5 0  

  

In which box, there are more possible mean differences? ________________________________ 
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Are the results from table 3 and table 4 different? _____ How? _____________________ 

______________________________________________________________________________ 

Well, the question to solve here is this: if we take two samples from the same school, we’ll find 

differences due to the sampling process, however, there is not any real mean difference, because 

the mean of the population/school is the same.  How can we differentiate this situation from a 

situation where we have two samples from different schools and there is, in fact, different mean 

for the schools? ___________________________________________________________ 

______________________________________________________________________________ 

Well, the answer to the question is this. It is not possible to differentiate fully between both 

situations, but it is possible to know how likely is a mean difference to come from random 

sampling. That is, if a sample is likely to come from sampling, we assume that there is not 

enough evidence to assume there is a real difference between the schools. For example, look for 

the most common value in table 3, and write here ____: Is that value the most common value in 

table 4? ____ 

The theoretical implications of the idea presented before are really important. For example, 

imagine that you are comparing men and women in IQ and that there is not any difference 

between both populations. That is that the population has the same mean (like if you were 

sampling from school 1 all the time). You can find differences when evaluating a sample, 

however, when evaluating the likelihood of those differences you should find that they’re most 

similar to sample produced by populations with the same mean, than to be produced by 

populations with different means. 

Write here another example of this type of comparison (use drawings if you need it). 

______________________________________________________________________________
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______________________________________________________________________________

______________________________________________________________________________ 

There are two factors that influence the distribution of means coming from a population: the 

sample size and the standard deviation of the population. The smaller the sample size, the larger 

the variability of the sample means found. You can see this by obtaining 50 samples with a 

sample size of 50 and 50 samples with a sample of size of 5.  

Fill this table. 

Table 5. 

 X<10  10>X>15 20>X>25 25>X>30 30>X>35 35>X>40 40>X>45 45>X>50 50>X>55 55<X 

Size=50           

Size=4           

 

Where do you get more extreme sample means? _____________________ 

The fact that a smaller samples size creates larger variability is very important for analyzing 

mean differences because the reliability of your conclusions decreases. For example, in the case 

of the school, you can be sampling from only school 1, and finding large differences caused just 

by random sampling. In the case of the men and women comparison, you can find large 

differences but without the existence of any real IQ difference between both population. 

Statistical test like ANOVA evaluate the mean differences accounting for the differences in 

sample size. 

The second factor affecting the distribution of mean samples is the standard deviation. The larger 

the standard deviation of the population, the larger the variability among samples and the larger 

the standard deviation of the samples themselves…and of course, the lower our confidence in the 

mean difference we are observing. To see this idea, you can do next exercise. 
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Draw (paint) two samples with a normal distribution. 

Figure 1 

 

 

 

 

 

 

 

Now, draw two samples with the same mean difference but make them longer like if they had a 

larger standard deviation. If you can’t figure this out, you can’t use the simulator and put the 

standard deviation at different levels, so you can see how samples with small and large 

distribution look.  

Figure 2 

 

 

 

 

 

 

 

Compare the graphs. In which case, do the samples overlap more? ____________ 
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In both cases the mean difference is the same, but, in which case you think that difference is 

clearer? ___________________________________________________ 

Now, using the random sampling generator, draw 50 samples from a population with a large 

standard deviation and 50 from a population with a small standard deviation. Fill the following 

table. 

Table 6 

 X<10  10>X>15 20>X>25 25>X>30 30>X>35 35>X>40 40>X>45 45>X>50 50>X>55 55<X 

Size=50           

Size=4           

 

In which case, do you find more extreme values? ______________________ 

In which case, do you think larger mean differences can be produced just by the sampling 

process? _______________________________________________________  

______________________________________________________________  

The idea behind ANOVA 

As you have seen, mean random sampling produces mean differences. These mean differences 

however fall within certain limits and means from samples obtained from two populations differ 

more than means from samples obtained from the same population. We need a reliable method to 

differentiate both cases. ANOVA is the procedure that permits us to establish whether or not we 

have differences produced by random sampling. To do so, ANOVA compares within and 

between group variability. Within group variability is the variability among the members of a 

group that is not explain by the categorical variable that determines the groups used in the 

ANOVA. For example, in a study that compares men and women, within group variability is the 

variability among men, and among women. Between group variability is the variability between 
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men and women, that is, the mean difference between both groups. Remember that in this 

example, gender is the categorical variable of the study, and men and women the two groups of 

this variable. Gender can explain the difference between men and women, but it cannot explain 

the differences within each group.   

Now you have read the idea behind ANOVA. In the next pages you will find some exercises that 

help you to clarify the meaning of this idea. The first exercise requires you to use the following 

Applet. This Applet visualizes the relationship between explained and unexplained variance in a 

pie diagram. In the right half of the Applet, three vertical lines represent three different groups in 

an ANOVA (See figure). In each line, black dots represent the data points (individual scores) and 

a red line represents the mean of the group. Students have seven data sets to work with. Once the 

data set is uploaded, you can move the points (black slots) in each line. The Applet automatically 

modifies the numerical indicators presented in an ANOVA table in the lower part of the diagram, 

and the relationship between explained and unexplained variance in the pie diagram. 

http://www.ruf.rice.edu/~lane/stat_sim/one_way/index.html 
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In this applet, yo u can move the dots to create different configurations of data. If you have equal 

means, the between variance is large. If you have equal means and the dots are separated from 

each other, the between variance is small and the within variance is large. If you have large mean 

differences, the between variance grows. If you separate the dots, even if the means do not 

change, the within variance grows. You can see the explained and unexplained variance in the 

pie diagram at the right of the Applet. SS Between (Sum of Squares Between groups) and SS 

Within (Sum of Squares Within groups) represent the explained and unexplained variances 

respectively. 

Tell us in your own words, what between group sums of squares represents 

______________________________________________________________________________ 

You can see the same indicators in the ANOVA table in the lower part of the Applet. In that 

table, you can see the sum of squares and the resulting F and p-value. 

Create two samples with large within variance and describe it here: ___________________ 

______________________________________________________________________________ 

Create two samples with small within variance and describe it here: _______________________ 

______________________________________________________________________________ 

Create two samples with small between variance and large within variance, and describe it here: 

______________________________________________________________________________ 

______________________________________________________________________________ 

Create two samples with small within variance and large between variance, and describe it here: 

______________________________________________________________________________ 

___________________________________________________________________________ 

How do the F and the p value change when between SS increases? 



 193 

______________________________________________________________________________

______________________________________________________________________________ 

How do the F and the p-value change when within SS increases? 

______________________________________________________________________________ 

 

So, what the F and the p-value indicate us? ___________________________________________  

 

The fundamental mechanism of ANOVA is comparing within and between variance. This is so 

because when randomly sampling from a single population (like in the school example), the 

distance (the mean difference) between groups belonging to the same population tend to be the 

same than the distances (the score differences) between the cases in each group. No example of 

this situation was given in the section 1 of this intervention because it is very tedious to do, but it 

follows the same logic. When you sample randomly from a single population, the scores you 

obtain tend to have the same between variance (group mean difference) than within variance 

(group standard deviation). Of course, this is not true all the time. Some time you have samples 

where the within variance is smaller than the between variance. But probabilistically, samples 

with large between variance and small within variance tend not to happen when you are 

sampling from a single population. They only happen when you sample from populations that 

have different means. In this way ANOVA tests for mean differences. ANOVA’s reasoning 

follows a logic like this: if the ratio between  “between” variance and “within” variance is similar 

to the ratio should come out of random sampling, the procedures assume that there is not a effect 

of the categorical variable, and that the differences are the product of random sampling. If this 

ratio is more similar to the ratio we should expect when you are sampling from populations with 
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different means, then the procedure assumes that the differences come from the effect of the 

categorical variable. 

For the following exercises, you will use the following Applet. 

 .  

This Applet permits you to sample from three groups while controlling population and sampling 

parameters. You can control the means of the three populations, and the size and standard 

deviation of the samples.  The results for each group can be displayed as histograms (dot plots) 

or as box plots (see figure). Numerical results are presented as an ANOVA table in the bottom of 

the Applet. In this case, between groups is called “groups”; and within groups is called error 

(because it is not explained by the model). The probability of obtaining each sample is displayed 

as a red band in an ANOVA distribution graph 

In this exercise you will observe how random sampling produce variation in the ratio between 

“between” and “within” variance, but overall the relationship stays constant among different 
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samples. Please, set both Applets with a small mean difference –all the mean groups at the same 

level- and draw several samples.  

Fill the next tables. 

Table 7 

Applet 1. 

Sample 1 2 3 4 5 6 7 8 

Between 

SOS 

        

Within 

SOS 

        

F         

p-value         

 

What you did when you set all the groups at a similar level was to establish the population 

means. You can see that the real means you obtain vary from sample to sample –in the same 

fashion that they did in the part 1 of this intervention-. For this same reason, the between and 

within variance, and the F value, vary among trials. What we want to show however is that, even 

if this values vary, they vary in a different way than in a situation where there is a large means 

difference. To see this, you have to set the Applets with a large mean difference that is with the 

group means at very different levels. Please fill these table.  

Table 8 

Sample 1 2 3 4 5 6 7 8 

Between 

SOS 

        

Within 

SOS 

        

F         
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p-value         

 

Do you find a difference between the results of table 7 and 8, and the results of table 9 and 10? 

_____________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

When you have large mean differences in the population, the sample between variance tends to 

be larger than the within variance. That is how ANOVA establish if a sample permits to suppose 

that there is a mean difference among the different groups in the sample.  

For the case of ANOVA, the results are influenced by the sample size of the sample and standard 

deviation of the population, for the reasons explained in the first part of this intervention. 

How does sample size influence the behavior of the sample means when sampling from a 

population? ______________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

How does the standard deviation of the population influence the behavior of the sample means 

when sampling from a population? ______________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

How does it affect our reasoning when comparing group means? _____________ 

______________________________________________________________________________ 

______________________________________________________________________________  

______________________________________________________________________________ 
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In the next exercise, we will see that this influence happens also when comparing means using 

ANOVA. We are going to vary sample size and standard deviation, while keeping the mean 

difference constant. Set the group means at a similar level that you did when filling tables 9 and 

10. Now, increase the standard deviation and fill the following tables. 

Table 9 

 Applet. 

Sample 1 2 3 4 5 6 7 8 

Between 

SOS 

        

Within 

SOS 

        

F         

p-value         

 

How the values in these tables look different that the values in tables 9 and 10?  

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

Increasing the standard deviation increases the within groups variance because cases in each 

group vary more. For the same reasons observed in figure 1 and 2, the significance of the 

differences decreases (the p value). Now, we are going to evaluate the influence of sample size. 

Take the same parameter used in the last exercise, but use a smaller sample size. Fill the 

following tables. 

Table 10 

Applet. 
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Sample 1 2 3 4 5 6 7 8 

Between 

SOS 

        

Within 

SOS 

        

F         

p-value         

 

How the values in these tables look different that the values in tables 11 and 12?  

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

Why? 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

Observe the behavior of the p-value. What can you conclude about the meaning of this indicator? 

____________________________________________________________________ 
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APPENDIX G 

INTERVENTIONS’ CODING AND ARGUMENT 
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1. Coding of the Interventions 

In the initial stage of coding, the whole interventions’ text was parsed into three types of larger 

units: exercises, examples, and paragraphs. An exercise was defined as a fragment of text that 

required students to solve one or more questions referring a single situation or data set. An 

example was defined as a fragment of text that illustrated a concept or procedure using a 

situation with at least a cover a story and a set of data results and/or representations. No 

distinction was made between worked-out examples and simple examples. Isolated sentences 

that exemplified concepts were not included in the list of examples. No mathematical pure 

examples were found in any of the intervention; in other words, sets of data and results were 

always presented with a cover story. All remaining text was classified as pure text and parsed 

into paragraphs; that is, units of minimum 3 sentences referring a single concept (e.g., sampling 

variability). 

In the second stage of coding,  exercises, examples and paragraphs were divided into smaller 

units. Exercises were divided into questions; a question was a part of an exercise that required a 

student to produce a single theoretical answer or mathematical result. Examples and paragraphs 

were divided into idea units. An idea unit was defined as a non-redundant proposition (subject + 

predicate) (Chafe, 1985; Steffensen et al., 1979). When two or more consecutive sentences 

referred to the same proposition, they were coded as a single idea unit. When an idea unit 

appeared two or more non consecutive times, each appearance of the idea unit was kept as an 

independent element in the idea units list. 

2. Construction of the Idea Units Map 

The idea unit map (Table 1) was built based on the data analysis intervention. This intervention’s 

text and exercises were taken from the OLI course and served as an external source of the 
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interventions’ content. Once the map was finished, the sampling intervention was coded 

according to this map. The process of building the data analysis map started by classifying the 

idea units into redundant and non-redundant ideas. Redundant ideas referred the idea units that 

were repeated in the idea unit list;  non-redundant ideas referred all the other idea units. As 

explained before, when an idea unit appeared two non-consecutive times in the text, it was kept 

as two separate idea units in the list. Therefore, in the list there were some idea units that were 

repeated two or more times.  Repetition was considered as an indicator of the importance of the 

idea unit within the argument of the data analysis intervention. Even though, this criteria was 

arbitrary and did not include the meaning of the idea units, it provided an unambiguous way to 

rate  the idea units’ saliency. 

After that, redundant idea units were sorted out to produce the intervention content map (Table 

1). Specifically, redundant idea units were classified according to the core ideas they support. 

Supporting a core idea meant basically three things: paraphrasing, serving as an argument or 

explaining an aspect or detail of the core idea. Some of the redundant idea units had a unique 

relationship with the core ideas, other participated in two or more parts of the argument and 

therefore they had a relationship with several core ideas. This situation was more evident in the 

last part of the intervention where most core ideas required information from the first parts of the 

intervention to build an argument. To represent this situation, redundant idea units related to 

more than one core idea appear as complete sentences in front of the first core idea they support, 

and as a number in front of any other core idea they are related to.  

Table 1. Idea Unit Map 

Idea  Sub-idea Sub-idea Sub-idea Sub-idea 
1.ANOVA evaluates 
the relationship 
between a 
categorical and a 

1.1.ANOVA tests 
the relationship 
between a 
categorical and a 

1.2.Variables can be 
represented in 
different forms. 
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continuous variable.  continuous variable. 
2.ANOVA is 
necessary to 
evaluate the 
relationship between 
categorical and 
continuous 
variables. 

2.1.Sampling creates 
variation  
 

2.2.Sampling creates 
variation within 
certain limits.  
 

2.3.Parameters and 
Statistics are 
different (mean and 
SD) 
 

2.4.ANOVA is 
useful to establish 
whether or not the 
observed differences 
are due to 
systematic 
differences among 
groups or to other 
factors.  

3.ANOVA 
compares within and 
between group 
variances to 
elaborate 
conclusions on the 
sample means  

3.1.ANOVA 
compares between 
and within variances 
to produce 
conclusions.  
 

3.2.Between and 
within variances are 
defined in different 
ways (or 
representation). 

3.3.SD influences 
the comparison of 
group means 
because it increases 
within variance. 

3.3.SD influences 
the comparison of 
group means 
because it increases 
within variance. 

4. The variation 
among group means 
is considered 
negligible when 
within and between 
variances are 
similar. 

4.1.The F test 
permits to decide 
about the ha and the 
null hypothesis, that 
is about the group 
differences.  
 

4.2.The F test 
permits to decide 
between the null and 
the alternative 
hypothesis, that is 
about the group 
differences, based 
on the mean 
differences and in 
the group variation.  

2.1 
2.2 
2.4  

2.4 

5. The degrees of 
freedom affect 
ANOVA’s 
interpretation.  

5.1.Sample size 
influence sampling 
variation. 

2.1  
2.2 

  

6. The elements of 
ANOVA tables 
7. Interpretation of 
p-value.  

6.1.ANOVA Tables 
have sum of squares, 
F and p-values that 
are the result of 4. 

4.1 7.1.Meaning of the 
p-value. 

4.2 
6.1 

8. Interpretation of 
the results of 
ANOVA  

8.1.Sampling 
Variation happens in 
real research and 
needs to be account 
for.  

8.2.The question of 
a study connects 
with the mean 
differences and the 
method of ANOVA 
to test for true mean 
differences (ha y 
ho).  

  

 

The next step was situating the remaining idea units in this map. To do so, the remaining idea 

units (non-redundant idea units) were arranged in groups corresponding to the redundant ideas in 

the table. The relationship between the non-redundant idea units and the redundant idea units in 

the map were of three types: the non-redundant idea unit could be paraphrasing the redundant 
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idea in a way that was not similar enough to considered them the same idea unit; the non-

redundant idea could be explaining a detail or aspect of the redundant idea; or the non-redundant 

idea unit could be connecting a detail in the explanation to the redundant idea.  

3. Counting the Number of Idea Units supporting each Redundant Idea  

Once the groups were formed, the number of non-redundant idea units aligned with each 

redundant idea unit was counted. This procedure was conducted for the general text and for the 

examples in both interventions. The number of questions in the exercises devoted to each 

redundant idea was added up also. Table 2 presents six numbers below each redundant-idea. The 

three numbers in the first row present the counting results for the sampling intervention; the three 

numbers in the second row represent the same results for data analysis intervention. In both 

rows, the first number represents the number of idea units in the general text; the second number 

presents the number of idea units in the examples; the third number presents the number of 

questions in the exercises devoted to each idea.  

4. Classification of the Redundant Ideas Units 

The redundant idea units in table 2 were classified according to the spaces of inferential 

statistics: Data Analysis, sampling or statistical inference. Data analysis idea units were defined 

as idea units that participate in the comparison of two or more data distributions from a graphical 

or numerical point of view. Idea units in this category explained the characteristics of data 

representations, the idea and types of variance, the specific influence of explained and 

unexplained variance in drawing of conclusions about mean differences. Sampling ideas were 

defined as idea units that explained the relationship between sample and population 

characteristics. This type of idea focused on sampling variability, particularly on the effects of 
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population variance and sample size on sample mean differences. Inference idea units were 

defined as the idea units that connected both data analysis and sampling ideas to inference in real 

situations. This definition included connections from ANOVA results to conclusions in context, 

explanations about the meaning of ANOVA tables, and the variables’ structure on which 

ANOVA operates. The classification given to each redundant idea appears in Table 2 after the 

redundant idea number in the form of the first letter of the statistical space assigned to each one 

(e.g., D for Data Analysis; S for Sampling; I for Inference). 

Table 2. Redundant Idea Units Counting and Classification 

Sub-idea (line) Sub-idea Sub-idea Sub-idea 
1.1. (I) ANOVA tests the 
relationship between a 
categorical and a continuous 
variable.  
S= (1)(0)(0) 
D=(2)(22)(1) 

1.2. (D) Variables can be 

represented in different forms. 

S=(0)(0)(0) 

D=(0)(6)(0) 

 

 

  

2.1. (S) Sampling creates 
variation  
S=(5)(0)(8) 
D=(4)(13)(0) 

2.2. (S) Sampling creates variation 
within certain limits.  
S=(7)(2)(10) 
D=(0)(13)(0) 

2.3. (S) Parameters 
and Statistics are 
different (mean and 
SD) 
S=(3)(0)(4) 
D=(22)(7) (3) 

(I) 2.4.ANOVA is useful to 
establish whether or not the 
observed differences are 
due to systematic 
differences among groups 
or to other factors.  
S=(6)(1)(3) 
D=(20)(0)(3) 

3.1. (D) ANOVA compares 
between and within variances 
to produce conclusions.  
S=(2)(0)(0) 
D=(9)(8)(0) 

3.2. (D) Between and within variances 
are defined in different ways (or 
representation). 
S=(2)(0)(3) 
D=(3)(3)(3) 

3.3. (D) SD 
influences the 
comparison of group 
means because it 
increases within 
variance. 
S=(3)(0) (5) 
D=(6)(5)(3) 

 

4.1. (I) The F test permits to 
decide about the ha and the null 
hypothesis, that is about the 
group differences.  
S=(1)(0)(2) 
D=(10)(1)(2) 

4.2. (D) The F test permits to decide 
between the null and the alternative 
hypothesis, that is about the group 
differences, based on the mean 
differences and in the group variation.  
S=(3)(0)(1) 
D=(3)(21)(1) 

2.1 
2.2 
2.4  

2.4 

5.1. (S) Sample size influence 
sampling variation. 
S=(3)(2)(11) 
D=(8)(0)(0) 

2.1  
2.2 
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6.1. (I) ANOVA Tables have 
sum of squares, F and p-values 
that are the result of 4. 

S=(2)(0)(9) 

D=(1)(8)(2) 

4.1 
 

7.1. (I) Meaning of 
the p-value.  
S=(2)(0)(3) 
D=(3)(1) (10) 

4.2 
6.1 
 

7.1. (S) Sampling Variation 
happens in real research and 
needs to be account for.  
S=(1)(1)(2) 
D=(0)(9)(0) 

7.2. (I) The question of a study 
connects with the mean differences and 
the method of ANOVA to test for true 
mean differences (ha y ho).  
S=(4)(0)(8) 
D=(2)(11)(3) 

  

 

5. Items Coding  

After the coding of the interventions was complete, 16 questionnaire items were coded in the 

three statistical spaces: Data analysis, sampling, and inference (Table 3). 6 items came from the 

first section of the pre, posttest task, 1 item came from the open-ended questionnaire, and 9 items 

came from the collection of standardized items used to evaluate the students. For coding 

purposes, data analysis items required participant to compare two or more distributions 

represented in different ways; sampling items required students to understand the relationship 

between population and sample characteristics; and inference items required participants to 

interpret ANOVA results. Side by side with this process, items were classified according to the 

redundant idea units that were necessary to solve them (right column of table 3). This list was 

produced by comparing the goal of the exercise, the elements of the problem that needed to be 

account for and the input information in each exercise. For example, if a item required students 

to interpret a significant result using the information in ANOVA table, idea units related to 

interpretation of ANOVA results and the ANOVA table elements were included in the list; if the 

item additionally required student to account for sample size, then, an idea unit related to sample 

variability was included in the list. In a different example, if the item used as input information a 
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graph representing two distributions, then, idea units related to data representation and 

comparison were included. Finally, each item was classified according to the most common type 

of idea required to solve it. For instance, if an item required participants to use more sampling 

idea units than any other type of idea units, then the item was classified as a sampling item. The 

classification of items using this method and the direct classification coincided. 

Table 3. Item Classification 

Item Goal Accounting for Space Idea Units 
1 Identify the more significant difference Different central values D 1.2, 3.1,3.2,4.2, 
2 Identify the more significant difference different spreads D 1.2. 3.1,3.2,3.3,4.2, 
3 Identify the more significant difference different sample size S 2.1,5.1,8.1, 
4 Produce a conclusion different spreads D 1.2,2.4,3.1,3.2,3.3,4.2,8.2 
5 Produce a conclusion Different sample size S 2.1,2.4,5.1,8.1,8.2 
6 Produce a conclusion Different p-values I 2.4,4.1,6.1, 7.1,8.2 
7 Produce a conclusion in Context Different central values D 1.1,1.2,3.1,3.2,4.2,8.2 
8 Evaluate a conclusion Different central values D 1.2,2.4,3.1,3.2,4.2,8.2 
9 Evaluate a conclusion Different central values D 1.2,2.4,3.1,3.2,4.2,8.2 
10 Evaluate a conclusion Different central values D 1.2,2.4,3.1,3.2,4.2,8.2 
11 Interpret a significant result Sample size I 1.1,2.4,2.3,4.1,5.1,7.1, 
12 Interpret a significant result Different central values I 1.1,2.4,3.1,3.2,4.1,4.2,7.1,8.2 
13 Connect population and sample 

characteristics. 
Sample size S 2.1,2.2,2.3,5.1, 

14 Connect population and sample 
characteristics 

Different spreads S 2.1,2.2,2.3,3.1,3.2,3.3,4.2, 

15 Connect population and sample 
characteristics 

Sample size S 2.1,2.2,2.3,5.1, 

16 Different sampling distribution and 
data distribution 

Different spreads S 1.2,2.3,3.1,3.2,3.3,4.2, 

 

6. Reliability 

The purpose of the above described process was establishing which questions in exercises, and 

which idea units in examples and general text connected to each statistical space. However, once 

that connection was established, it was possible to obviate all the other sub-steps in the 

exploratory process and to focus on the relationship between idea units, or questions, and the 

statistical spaces. Reliability indexes were obtained only for the classification of idea units from 

general text and examples, and for the classification of questions from the exercises because the 
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comparison between the conditions of this study was based exclusively on that classification. No 

reliability was calculated for the relationship between redundant and non-redundant idea units, 

nor for the relationship between redundant ideas and statistical spaces.  

Two independent coders classified 59.2%  of the idea units in general text and examples, and 

49.5% of the exercises’ questions. Both coders classified the items into data analysis, sampling 

and inference using for that the idea units and questions list and the definitions used to classify 

the redundant idea units in section 3.4.2.4.  The agreement rate for both coders was 85.7% for the 

idea units, and 92.7% for the exercises’ questions. A similar process was conducted for the item 

classification. The classification of items (Forth column from left to right in table 5) in the three 

statistical spaces was conducted independently by two coders using the definitions in section 

3.4.2.5. The agreement rate was 81.2%. 

7. Description of Intervention 1: Data Analysis 

The Data Analysis condition required students to go through an instructional experience that 

combined the sampling distribution and ANOVA sections of the OLI course (Open Learning 

Initiative) (Appendix E). The OLI course is part of the Open Learning Initiative funded by the 

Hewlett Foundation. This initiative aims to produce several online courses, accessible through 

Internet, that innovate both in the content and in the instructional means used to teach statistics. 

The OLI course shows the “big picture” of statistics, that is the relationship among exploratory 

data analysis (EDA), probability, and statistical inference. The OLI course claims to provide 

students with several opportunities to explore data sets using computer packages. Both the use of 

the programs and the interpretation of the results are modeled in the course through several 

examples.  
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In the first pages of the sampling distribution section of the OLI course included in this 

intervention, students learn the concept of sampling distribution and explore the relationship 

between sample and population in an authentic example. After that, students go through the 

ANOVA section of the OLI course. This section has seven pages that explain ANOVA’s logic 

and process of hypothesis testing. The first page presents the introduction to ANOVA. In this 

introduction, ANOVA is regarded as a procedure to evaluate the relationship between a 

categorical independent variable with two or more groups and a dependent continuous variable. 

This introduction indicates also that evaluating this relationship implies comparing the group 

means of the categories defined by the independent variable. Included in the introduction is an 

example that organizes the explanation across the chapter; the example is a study of the 

relationship between academic major and frustration scores. The second page explains that 

ANOVA’s F-test works in a different way than other inferential tests because the hypothesis 

used in ANOVA is not directional. The third page explains the “idea behind the ANOVA F-test” 

using two pseudo-authentic scenarios (that is, two possible configurations of data for the 

example mentioned above). The idea of ANOVA, according to this text, is that it compares 

within- and between- group variances to draw conclusions about the sample mean differences  

(e.g., “when the variation within group is large (like in scenario #1), the variation (differences) 

among the sample means could become negligible and the data have very little evidence against 

Ho”).  On the fourth page, the same idea is restated and a short quiz is given. After that, the text 

continues with an explanation of how the degrees of freedom affect ANOVA’s interpretation. 

Alongside this text, the assumptions of ANOVA are presented and instantiated in an example. 

On the fifth page, the meaning and location of the p-value are explained. Finally, the text 

provides a very short explanation about how p-values can be interpreted in context. The sixth 
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page presents a worked-out example of ANOVA use; this example deals specifically with the 

relationship between the educational level of a journal and the number of words in its ads. 

Included in this page is a “learning by doing” exercise that asks students to conduct a complete 

ANOVA analysis using Excel. The seventh page presents some final comments on the 

interpretation of the results of ANOVA, specifically on the fact that a significant ANOVA F-test 

does not specify which groups in particular are producing the differences detected by the 

ANOVA. Alongside this explanation, the text presents a visual method to detect those 

differences by comparing the confidence intervals of the group means involved in the ANOVA..  

8. Description Intervention 2: Sampling with Simulations 

In this condition, students went through an instructional experience built on the same ideas of the 

OLI course. This intervention asked students to use simulations instead of data analysis to learn 

ANOVA (Appendix F). Initially, students were asked to use a random-sampling simulator 

available at http://statweb.calpoly.edu/chance/applets /Shopping/Shopping.html. This random-

sampling program allowed them to draw samples from a population while controlling the sample 

mean and the standard deviation (Figure 1). Students could see the results of a particular sample 

and the cumulative results of repeated sampling; they could also control the scale of the 

histograms that presented the results. Numerical results were presented in the top right corner of 

the histograms. The first activity was to identify the elements in the diagram. A brief explanation 

was provided in order to map the elements in the graphical display of the Applet onto statistical 

concepts.  

 



 210 

 

 

Figure 1. Applet of the Sampling Distribution of the Mean 

To do so, a pseudo authentic example was presented (e.g., “you are trying to find the 

mean in mathematical reasoning of tenth grade students, but you are unable to evaluate them all. 

You sample 30 of them; their individual results are presented in the top right diagram”) and some 

questions were asked (e.g. “What does the point in the bottom center diagram mean?”) to be sure 

the students understood and could use the Applet diagram. In order to explain why ANOVA is 

necessary to evaluate mean differences, students were asked to draw several samples from the 

population and to write down the mean of some of them. Then they were asked to think about 

what process is drawing a research sample analogous. Students had to realize that drawing a 

sample is equivalent to collecting data on a given phenomenon. The instruction provided in this 

part of the intervention suggested that it is impossible to observe all the possible instances of a 



 211 

given phenomenon, and that therefore sampling is a necessary part of scientific research. This 

was the point where the sampling intervention introduced questions on the variability of the 

samples. Students were asked basically why samples obtained from the same population have 

different sample means, and then they were asked to consider how researchers can be sure of the 

accuracy of their research conclusions. The instruction then suggested that sampling creates 

variability but that sampling variability is not unpredictable. Samples vary within certain ranges 

that depend on the parameters of the population. To prove that, students were asked to draw a 

large number of samples (n=40) and use a sample counter – available in the same Applet-- to 

quantify the number of samples under or below certain limits. The next step was to extend these 

conclusions to the case of two populations with different means. Students sampled from each 

population and had to find out how many sample means fell within a common range for both 

groups. They, then, repeated the same exercise but this time they sampled from the same 

population. At this point students were asked to compare the means from the one-population 

sampling and the means from the two-population sampling. Then, students repeated the same 

exercises but they played with different parameters (sample size and standard deviation) to 

establish how those parameters affect the confidence in the observed mean difference. Finally, 

there was an explanation about how ANOVA helps researchers to identify whether a difference 

is the result of either systematic effects or random sampling. 

At this point, the intervention explained that the idea behind ANOVA is the comparison 

of within- and between- group variability. To explain this idea,  the intervention used two new 

applets. The first Applet visualized the relationship between explained and unexplained variance 

in a pie diagram (http://www.ruf.rice.edu/~lane/stat_sim/one_way/index.html). In the right half 

of the Applet, three vertical lines represented three different groups in an ANOVA (see figure 2). 
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In each line, black dots represented the data points (individual scores) and a red line represented 

the mean of the group. Students had seven data sets to work with. Once the data set was 

uploaded, students could move the points (black slots) in each line. The Applet automatically 

modified the numerical indicators presented in an ANOVA table in the lower part of the 

diagram, and also modified the relationship between explained and unexplained variance 

depicted in the pie diagram.  

 

Figure 2. First ANOVA Applet 

The second Applet used in the intervention to illustrate the idea behind ANOVA came 

from the Rossman and Chance Applet collection. This collection is available at 

http://www.rossmanchance.com/applets/Anova/Anova.html. This Applet permitted students to 

sample from three groups while controlling population and sample parameters. Students 
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controlled the means of the three populations, and the size and standard deviation of the samples.  

The results for each group could be displayed as histograms (dotplots) or as boxplots (see Figure 

3). Numerical results were presented as an ANOVA table in the bottom of the Applet. The 

probability of obtaining each sample was displayed as a red band in an ANOVA distribution 

graph. Sampling results were not accumulated in any graph of this Applet. 

 

Figure 3. Second ANOVA Applet 

The second part of this intervention asked students to use the first Applet to visualize the 

relationship between explained and unexplained variance in a small data set. Students were asked 

to move the points in the graph to obtain different amounts of explained variability. They had to 

find out which data configuration produced larger explained variance results. After that, students 

had to explain the meaning of the indicators displayed in the ANOVA table by finding the 

relationship between different configurations of data in the graph and different results in the F 

and p-values. Students had also to find out the effects of sample size and standard deviation on F 
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and p-values, by changing them while keeping constant the relationship between explained and 

unexplained variance. 

After that, students were asked to use the third Applet.  First they had to draw 10 samples 

from a situation where the populations had small mean differences. Then, they had to draw 10 

samples from a situation where the populations had large mean differences. Participants should 

explore the difference between the configurations of data in those two situations and find out that 

large mean differences produced higher levels of explained variance in the Applet. The next step 

asked students to play with sample size and variability (standard deviation) to see how those 

parameters affected the obtained samples. The final question in this exercise was about the 

meaning of the p-value in this context according to the result of the simulations.  



 215 

APPENDIX H 

Motivation 

Motivation was defined as the disposition to act and persevere towards a goal (Svinicki, 1994). 

This definition was used to elaborate a small questionnaire of six items that asked students to 

evaluate their own effort during the interventions, and the perceived usefulness of the activity. 

This variable was introduced to control for the possible effects of motivation on learning during 

the study and it was obtained at the end of the intervention. Previous research indicates that 

motivation plays an important role in the process of learning and in the performance of students 

during testing situations, face-to-face instruction, and online learning (Pintrich & Schunk, 1996). 

The items in this instrument were of three types. The first three items evaluated students’ 

concentration, effort and dedication. These items measured the perceived performance of 

students, under the assumption that students with low levels of dedication to the task (e.g., 

skipping exercises; writing random answers) would report that situation, under no academic or 

social pressure. This type of item has been used before in questionnaires evaluating motivation in 

testing situations (Sundre & Moore, 2002). The second type of item assessed students’ opinion of 

the task; that is, whether or not students considered the task worthy. Task value is a common 

measure of students’ motivation, and it relates to performance in face-to-face and online 

activities (Artino, 2008; Schunck, 2005). The last item of the scale asked students to evaluate 
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their learning during the study. Self-efficacy is another common measure of motivation, and it 

predicts engagement and learning in online environments (Pintrich & De Groot, 1990). 

 

HOLISTIC MODELS FOR STATISTICAL KNOWLEDGE PRE, POSTTEST CHANGE 

The same analysis was conducted on the sampling scores (Table 2). Four different models were 

tested. The more complex model (Model 1) included pre-post change as within subjects factor, 

setting and intervention as between subjects factor, and motivation and completion as covariates. 

Two intermediate levels were built by introducing motivation or completion as sole covariates 

(Model 2 and Model 3). The simplest model included just intervention and setting as explanatory 

variables (Model 4). 

Table 2. Holistic Models for Sampling Knowledge 

 Model 1 Model 2 Model 3 Model 4 
Source SS F Sig. SS F Sig. SS F Sig SS F Sig 
Occasion .05 1.20 .27 .02 .42 .51 .02 .54 .46 2.03 40.52 .00 
Occasion*Completion .03 .68 .41 .07 1.45 .23 NA NA NA NA NA NA 
Occasion*Motivation .32 7.01 .01 NA NA NA .36 7.93 .00 NA NA NA 
Occasion*Intervention .41 9.00 .00 .41 8.38 .00 .42 9.12 .00 .42 8.45 .00 
Occasion*Setting .10 1.14 .32 .02 .24 .78 .12 1.33 .27 .02 .28 .75 
Occasion*Intervention* Setting .03 .42 .65 .02 .22 .80 .05 .54 .58 .00 .09 .91 
Error 3.51     3.84   3.55   3.91   
 

The results for the sampling scores behaved similar to the results for the global scores. In 

the simplest model, pre-post change and the interaction of pre-post change with intervention 

were significant. The introduction of motivation or completion as covariates made pre-post 

change non significant; in the case of motivation, this effect was caused by the significant 

relationship of motivation with pre-posttest change. In the case of completion, this effect was 

produced by the various effects of this variable with the other predictors.  
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3. Holistic Models for Data Analysis Knowledge 

Similar models were calculated for the data analysis score (Table 3). These models showed that 

the pre-post test data change was not significant under any circumstance. Neither the 

introduction of completion, nor motivation as covariates created significant effects in the pre-

post change. These variables did not have significant effects on the trajectories of the different 

groups of participants from pretest to posttest. This set of results points out that the change in 

data analysis scores was small and no significant interaction existed with pre- post change. 

Table 3. Holistic Models for Data Analysis Knowledge 

 Model 1 Model 2 Model 3 Model 4 
Source SS F Sig. SS F Sig. SS F Sig SS F Sig 
Occasion .14 2.22 .14 .05 .77 .38 .06 .93 .33 .15 2.26 .13 
Occasion*Completion .08 1.33 .25 .12 1.86 .17 NA NA NA NA NA NA 
Occasion*Motivation .10 1.65 .20 NA NA NA .14 2.19 .14 NA NA NA 
Occasion*Intervention .12 1.97 .16 .13 1.96 .16 .13 2.02 .15 .13 2.01 .16 
Occasion*Setting .02 .17 .84 .00 .01 .98 .04 .31 .73 .00 .07 .93 
Occasion*Intervention* Setting .13 1.06 .34 .17 1.32 .27 .18 1.37 .26 .20 1.49 .23 
Error 4.96     5.07   5.04   5.19   

4. Holistic Models for Inference Scores 

Models explaining the change from pretest to posttest in the inference scores were 

difficult to interpret (Table 4). This situation was in part due to the weak effects of the 

explanatory variables on the change of inference scores, and also to the crossed relationships 

among predictor variables in the model. The results can be summarized the in the following way: 

In the simplest model (model 4) the pre, posttest change was highly significant, the effect of 

setting on this change was moderately significant, and the effect of intervention was non-

significant. When motivation was introduced only the interaction of motivation with pre-post 
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change was significant. When completion was introduced and motivation taken out, no variable 

had a significant effect.  

Table 4. Holistic Models for Inference Knowledge 

 Model 1 Model 2 Model 3 Model 4 
Source SS F Sig. SS F Sig. SS F Sig SS F Sig 
Occasion .00 .01 .89 .23 3.62 .06 .08 1.39 .24 1.17 18.03 .00 
Occasion*Completion .08 1.38 .24 .03 .53 .46 NA NA NA NA NA NA 
Occasion*Motivation .45 7.56 .00 NA NA NA .40 6.72 .01 NA NA NA 
Occasion*Intervention .24 4.03 .04 .24 3.73 .05 .23 3.93 .05 .24 3.71 .05 
Occasion*Setting .13 1.08 .34 .38 2.91 .06 .16 1.35 .26 .40 3.13 .04 
Occasion*Intervention* Setting .28 2.32 .10 .28 2.19 .11 .22 1.86 .16 .26 2.05 .13 
Error 4.58   5.04   4.67   5.08   

 

Finally, when the complete model was evaluated the interaction between pre, posttest 

change and motivation was highly significant, and the interaction between pre-post change and 

intervention was moderately significant. These outcomes indicate that the interaction between 

motivation and pre-post change was consistently significant for inference scores, and that a 

moderate relationship between intervention and the trajectories of change was only visible when 

motivation and completion were introduced in the model. The introduction of the covariates 

redistributed variance from the pre-post change and put it on the interaction between intervention 

and pre-post change; at the same time, the introduction of the covariates subtracted unexplained 

variance from the model. These two facts combined increased  the significance of the interaction 

between intervention and pre-post change. The opposite effect was observed in the relationship 

between setting variable and pre-post change: the covariates reduced the influence of the 

interaction between setting and occasion because pre-posttest had a slightly negative relationship 

with setting.  That was so, because students in settings with high pre-post change in inference 

had slightly lower values in motivation and completion. Overall, only a highly significant 

relationship between motivation and pre-post change, and a moderate relationship between 

intervention and change seem to be supported by these results.  
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APPENDIX I 

INTERVENTIONS IN SPANISH 
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Actividades Iniciales 
 
1. En cada uno de los siguientes pares de distribuciones indique con una X cual cree usted 
presenta una diferencia más significativa? Y explique brevemente su respuesta a la derecha de 
las distribuciones.  
 
n= el tamaño de los grupos comparados. 
 
A)   
n=50 
 
 
 
 
 
 
 
 
n=50 
 
 
 
 
 
 
 
 
 
B) 
n=100 
 
 
 
 
 
 
 
n=100 
 
 
 
 
 
 
 
C)  
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n=100 
 
 
 
 
 
 
 
 
n=50 
 
 
 
 
 
 
 
 
2- A continuación se presenta un caso.  Usted debe identificar que gráficos corresponden a los 
resultados del caso. 
 
En busca de diferencias significativas en razonamiento matemático entre los estudiantes de 
noveno y décimo grado, un grupo de investigadores evaluó una muestra de estudiantes en dos 
colegios. La diferencia entre los estudiantes de noveno y décimo fue la misma para los dos 
colegios. Sin embargo, los tests estadísticos mostraron que la diferencia era significativa para el 
colegio A pero no para el colegio B. 
 
A) A continuación usted encuentra dos pares de distribuciones. Uno corresponde al colegio A y 
el otro corresponde al colegio B. Su tarea es identificar cual es cual. 
 
a) 
 
 
 
 
 
 
 
 
b) 
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B) Otra posibilidad para explicar los resultados es que:  
 
a) El colegio A tenga una muestra el doble de grande que el colegio B. 
b) El colegio B tenga una muestra el doble de grande que el colegio A.  
 
C) Cual de las siguientes dos tablas de ANOVA corresponde al colegio A? 
a) 
 

 
 
 
 
 
 
 
 

 
 
 
 
b)  
 
 Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

962.908 1 962.908 2.389 .125 

Within 
Groups 

39098.718 97 403.080     

Total 40061.626 98       
 
 
3. Lea cuidadosamente el siguiente caso y responda las preguntas al final.  
 
Un grupo de estudiantes, como parte de su formación en métodos, decidió recolectar datos y 
realizar un macroestudio. Ellos eligieron comparar el numero de pulsaciones por minuto para 
hombres y mujeres. Ellos consiguieron medir las pulsaciones por minuto de 100 hombres y 100 
mujeres.  A continuación usted encuentra las graficas representando las distribuciones de datos 
para hombres y para mujeres.  
 
      Hombres 

 Sum of 
Squares 

df Mean 
Square 

F Sig. 

Between 
Groups 

2813.604 1 2813.604 23.670 .000 

Within 
Groups 

11530.017 97 118.866     

Total 14343.621 98       
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B
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      Mujeres 

B

77.5

75.0

72.5

70.0

67.5

65.0

62.5

60.0

57.5

55.0

52.5

50.0

47.5

45.0

42.5

40.0

37.5

35.0

32.5

20

10

0

Std. Dev = 9.79  

Mean = 51.8

N = 100.00

 
 
Escriba una breve interpretación de los resultados obtenidos. 
 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
________________________________________________ 
 
Si usted utiliza un test estadístico cree que encontrará diferencias significativas? ______ 
Porque? ________________________________________________________________ 
_______________________________________________________________________ 
 
 
 
Preguntas Abiertas 
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A continuación usted encontrará una serie de preguntas respóndalas brevemente en el espacio 
indicado. 
a) Cual es la diferencia entre variabilidad entre grupos (explicada) y variabilidad dentro de los 
grupos (no explicada)? 
______________________________________________________________________________
______________________________________________________________________________
____________________________________________________________ 
 
b) Cuando usted toma muestras de dos grupos –por ejemplo, toma una muestra de 30 hombres y 
30 mujeres para compararlos en algún atributo- las diferencias que usted encuentra pueden ser 
debidas a que factores? 
______________________________________________________________________________
______________________________________________________________________________
____________________________________________________________ 
 
c) Si usted toma una muestra de estudiantes de un curso de estadística y obtiene una media para 
cierta variable, y después toma otra muestra al azar del mismo curso, las medias de las dos 
muestras van a ser las mismas? Porque? 
______________________________________________________________________________
______________________________________________________________________________
____________________________________________________________ 
 
d) Cual es el efecto del tamaño muestral sobre la significancía de una diferencia de medias? 
______________________________________________________________________________
__________________________________________________________________ 
________________________________________________________________________ 
 
e) Cual es el efecto de la variabilidad interna de dos grupos en el proceso de comparar las medias 
de estos grupos? 
______________________________________________________________________________
__________________________________________________________________ 
________________________________________________________________________ 
 
Dibuje dos distribuciones de datos y señale donde esta la variabilidad entre grupos, la 
variabilidad dentro de los grupos y la variabilidad producto del proceso de muestreo? 
______________________________________________________________________________
______________________________________________________________________________
____________________________________________________________ 
 
 
 
 
 
 
 
Selección Múltiple 
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Responda los siguientes ítems. 
 
Una compañía productora de drogas desarrolló una nueva fórmula para su remedio contra el 
dolor de cabeza. Para testear la efectividad de esta nueva fórmula, 250 personas fueron 
seleccionadas aleatoriamente  de la población general de pacientes con dolor de cabeza. 100 
personas fueron asignadas al azar al grupo que recibiría la nueva formula (new). Las otras 150 
personas recibieron la medicación que contiene la formula antigua (old). El tiempo que tardo la 
droga en eliminar los síntomas del dolor de cabeza fue anotado para cada paciente. Los 
resultados de estas pruebas se presentan en la parte inferior. Las preguntas 1, 2 y 3 presentan las 
conclusiones de tres estudiantes  sobre los resultados del estudio. Usted debe indicar si la 
conclusión es valida o no. 

 
 
1*. La formula antigua funciona mejor. Dos personas que tomaron la formula antigua se 
sintieron mejor en menos de 20 minutos; por el contrario, ninguna persona que tomo la nueva 
formula sintió alivio en menos de 20 minutos. También, el peor resultado –casi 120 minutos- 
sucedió con la nueva formula. 
a) Valida 
b) No valida. 
 
2*. El tiempo promedio que requiere la nueva formula para producir efecto es menor que el 
tiempo de la formula antigua. Yo concluiría que las personas tomando la nueva formula tienden a 
sentir alivio aproximadamente 20 minutos más rápido que aquellos tomando la formula antigua. 
a) Valida. 
b) No valida. 
 
3*. Yo no concluiría nada porque el numero de personas en los dos grupos no es igual, entonces 
no tiene sentido comparar los dos grupos. 
a) Valida. 
b) No valida. 
 
Un investigador en una ciencia ambiental está realizando un estudio para investigar el impacto de 
un herbicida particular en una especie de peces. El tiene 60 peces saludables y los asigna 
aleatoriamente a dos condiciones: un grupo control o un grupo experimental.  El grupo 
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experimental estuvo en contacto con el herbicida por un periodo de 10 días. El grupo 
experimental mostró niveles mas altos de una encima maligna. 
 
4*. Suponga que un test de signficancia fue realizado correctamente en los datos y mostró que no 
había diferencias significativas entre las medias de los grupos experimental y control en la 
encima indicada. Que conclusión se puede obtener de estos resultados? 
 
a. El investigador no debe estar interpretando los resultados correctamente; debe haber una 
diferencia significativa. 
b. El tamaño de la muestra puede ser muy pequeño para detectar diferencias estadísticas 
significativas.  
c. Debe ser verdad que el herbicida no causa niveles más altos de la encima maligna. 
 
5*. Suponga que un test de significancia fue realizado correctamente y mostró una diferencia 
significativa en el promedio de la enzima entre el grupo control y el grupo experimental.  Que 
conclusión se puede obtener? 
a. Hay una asociación evidente, pero no una relación causal entre el herbicida y los niveles de la 
encima. 
b. El tamaño de la muestra era muy pequeño como para obtener una conclusión valida. 
c. El investigador ha probado que el herbicida causa niveles más altos de la encima maligna.  
d. Hay evidencia que el herbicida causa niveles más altos de la encima para esta especie de 
peces. 
 
6*. En un curso de geología, los estudiantes aprendían como usar una balanza para hacer 
predicciones precisas de los pesos de diferentes rocas. Un estudiante planea pesar una roca veinte 
veces y calcular el promedio de las 20 medidas para calcular el verdadero peso de la roca. Otro 
estudiante planea pesar la roca 5 veces y calcular el promedio de las 5 medidas para estimar el 
peso verdadero de la roca. Que estudiante tiene mas probabilidad de obtener un estimativo muy 
cercano al verdadero peso de la roca? 
a. El estudiante que peso la roca 20 veces. 
b. El estudiante que peso la roca 5 veces. 
c. Ambos estudiantes tiene la misma probabilidad de encontrar el verdadero peso de la roca. 
 
7*. Considere dos poblaciones en el mismo estado. Ambas poblaciones tienen el mismo tamaño 
muestral (22.000). La población 1 está conformada por estudiantes de una universidad estatal.  
La población 2 está conformada por todos los residentes de un pueblo pequeño. Considere la 
variable Edad. Que población debería tener la distribución estándar más alta? 
a. La población 1 debe tener una distribución estandar más alta. 
b. La población 2 debe tener una distribución estandar más alta. 
c. Ambas poblaciones deben tener la misma desviación estandar porque ambas tienen el mismo 
tamaño muestral. 
d. No hay suficiente información para resolver esta pregunta.  
 
8*. Usted intenta evaluar el nivel de motivación por el aprendizaje en los estudiantes de una 
universidad. Primero obtiene 30 muestras de 10 estudiantes cada una y calcula los promedios de 
esos grupos. Después obtiene 30 muestras de 50 estudiantes y calcula los promedios de los 
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grupos. En cual de los dos grupos de muestras, usted tiene más probabilidad de obtener el valor 
mas alto y el valor mas bajo? 
a) en las muestras de 10 estudiantes 
b) en las muestras de 30 estudiantes 
c) la probabilidad es igual en ambos casos 
d) no se puede saber 
 
9*. La figura A representa los pesos de una población de 26 canicas. La figura B representa los 
pesos promedio de varias muestras de 3 canicas obtenidas de la población representada en la 
figura A. Un valor está encerrado en un circulo en cada distribución. Hay alguna diferencia entre 
lo que es representado por el X encerrado en la figura A, y lo que es representado por el X 
encerrado en el circulo en la figura B. Seleccione la mejor respuesta. 
 

 
a. No, en la figura A y en la figura B, el X representa una canica que pesa 6 gramos. 
b. Si, en la figura A hay un rango mas amplio de valores que en la figura B. 
c. Si, la X en la figura A es el peso de una sola canica, mientras el X en la figura B representa el 
peso promedio de 3 canicas. 
 
 
*Ítems 1 to 6 were taken from the CAOS test as explained in Appendix  D. 
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Análisis de Datos 
 
1. A continuación usted encuentra dos graficas. 
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Esas graficas corresponden a una comparación en la estatura de los estudiantes de dos colegios. 
La grafica de la parte superior corresponde a un colegio femenino, la grafica de la parte inferior 
corresponde a un colegio mixto. Ambas graficas representan submuestras de 100 estudiantes 
seleccionados al azar en esos colegios. 
 
Una ANOVA fue llevada a cabo y produjo los siguientes resultados. 
 
 Sum of 

Squares 
df Mean 

Square 
F Sig. 

Between 
Groups 

7.311 1 7.311 .003 .958 

Within 
Groups 

526506.800 198 2659.125     

Total 526514.111 199       
 
 
Escriba una breve interpretación de los resultados: 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________ 
 
Usted cree que hay alguna forma de mejorar la comparación y producir resultados más 
significativos en la comparación? 
______________________________________________________________________________
______________________________________________________________________________
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______________________________________________________________________________
______________________________________________________ 
Si usted toma otras muestras de estudiantes al azar de estos colegios, cree usted que obtendrá los 
mismos resultados? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________ 
 
2. 
Evalúe su nivel de concentración en este ejercicio de 1 a 10 (siendo 1 bajo, 10 alto): ___ 
Evalué su nivel de esfuerzo en este ejercicio de 1 a 10 (siendo1 bajo, 10 alto):           ___ 
Evalúe su nivel de dedicación a esta actividad de 1 a 10 (siendo 1 bajo, 10 alto):       ___ 
Evalué de 1 a 10 que tan interesante encuentra usted esta actividad:                            ___ 
Evalué de 1 a 10 la metodología de esta actividad         ___ 
Evalué de 1 a 10 que tanto cree usted que aprendió en esta actividad:        ___ 
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