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Ionic polymer transducers (IPTs) represent a relatively new class of active (‘smart’) materials, 

which can function as highly sensitive mechanical sensors as well as actuators. An IPT is made 

of an ionic polymer membrane sandwiched between two conductive electrodes. They generate 

controllable strain when applying a low voltage (<5 V) across their thickness and generate 

measurable currents due to extremely small mechanical strain. IPTs are cost effective and often 

have superior sensing capabilities compared to other active materials such as piezoelectrics. 

However, this novel class of transducers has not been widely employed mainly because the 

mechanism of IPT sensing is not clearly understood.  

In this dissertation, the mechanical properties of ionic polymers (Nafion and Selemion), 

the ionomer morphology, and the fundamental mechanism responsible for the electromechanical 

sensing responses of IPTs are studied. A multiscale model for the prediction of material stiffness 

is presented. The results give access to a fundamental material parameters currently inaccessible 

via experimentation, namely local stiffness. Subsequently the sensing mechanism of stream 

potential is hypothesized. It is argued that the mechanism of streaming potential, unlike prior 

hypotheses, is able to systematically explain generalized experimentally observed sensing 

phenomena, such as the observation of an optimum conductive particulate volume fraction in the 
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interpenetrating electrode region of the transducer. Moreover, it is argued that coupling the 

exploration of local stiffness and streaming potential is prerequisite to gaining insight into subtler 

experimental sensing phenomena such as experimentally observed variations in sensing due to 

variations in IPT architecture.        



 vi 

TABLE OF CONTENTS 

TABLE OF CONTENTS ........................................................................................................... VI 

LIST OF TABLES ...................................................................................................................... IX 

LIST OF FIGURES ..................................................................................................................... X 

NOMENCLATURE ................................................................................................................. XIII 

ACKNOWLEDGEMENTS ...................................................................................................... XX 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 MOTIVATION .................................................................................................... 2 

1.2 OBJECTIVE ........................................................................................................ 3 

1.3 CONTRIBUTIONS ............................................................................................. 4 

1.4 DOCUMENT ORGANIZATION ...................................................................... 4 

2.0 BACKGROUND AND LITERATURE REVIEW .................................................... 6 

2.1 IONIC POLYMER TRANSDUCER APPLICATIONS .................................. 7 

2.2 IONOMER MORHOLOGY............................................................................... 9 

2.2.1 Cluster Morphology .................................................................................... 10 

2.2.2 Parallel Water Channel Morphology ........................................................ 13 

2.2.3 Role of Ionomer Stiffness ........................................................................... 14 

2.2.4 Rotational Isomeric State (RIS) Multiscale Stiffness Assessment .......... 15 

2.3 IPT EXPERIMENTAL BACKGROUND ....................................................... 17 

2.3.1 Actuation and Sensing ................................................................................ 18 



 vii 

2.3.2 IPT Electrodes ............................................................................................. 21 

2.3.3 IPT Diulents ................................................................................................. 23 

2.4 IPT TRANSDUCTION MODELS ................................................................... 24 

2.5 STREAMING POTENTIAL HYPOTHESIS ................................................. 28 

3.0 MULTISCALE STIFFNESS PREDICTIONS ........................................................ 31 

3.1 INTRODUCTION TO ROTATIONAL ISOMERIC STATE THEORY .... 32 

3.2 MODELS AND COMPUTATIONAL METHODS FOR NAFION ............. 34 

3.2.1 Simulation of Polymer Chain Conformation ........................................... 35 

3.2.2 Macroscopic Model for Stiffness Prediction............................................. 41 

3.2.3 Statistical Analysis Methods ...................................................................... 43 

3.3 MULTISCALE STIFFNESS PREDICITONS OF NAFION ........................ 44 

3.3.1 Nafion 1200 EW in Lithium form.............................................................. 46 

3.3.2 Nafion 1200 EW in Sodium form .............................................................. 51 

3.3.3 Discussion..................................................................................................... 54 

3.4 MULTISCALE STIFFNESS PREDICTIONS OF SELEMION® ............... 56 

3.4.1 Introduction to Selemion® ......................................................................... 57 

3.4.2 RIS-MC Model for Selemion® .................................................................. 60 

3.4.3 Results and Discussions .............................................................................. 61 

4.0 STREAMING POTENTIAL METHOD FOR MODELING THE 
ELECTROMECHANICAL RESPONSES OF IONIC POLYMER TRANSDUCERS ...... 66 

4.1 THE STREAMING POTENTIAL HYPOTHESIS ........................................ 67 

4.2 PRELIMINARY MODEL FOR IPT SENSING IN BENDING ................... 70 

4.2.1 Charge Density in Small Channels ............................................................ 72 

4.2.2 Pressure Difference for Bending Mode ..................................................... 73 

4.2.3 Streaming Current in an IPT Bender ....................................................... 74 

4.2.4 Preliminary Predictions.............................................................................. 75 



 viii 

4.2.5 Channel Geometry ...................................................................................... 76 

4.3 EFFECT OF ELECTRODE ARCHITECTURE ........................................... 80 

4.3.1 Electrode Morphology ................................................................................ 80 

4.3.2 Darcy's Law ................................................................................................. 82 

4.3.3 IPTs with Different Electrode Particulate Volume Fraction .................. 85 

4.3.4 Effective Surface Area of the Electrode Particulates .............................. 87 

4.4 EFFECT OF DILUENT VARIATION ........................................................... 90 

4.4.1 Ionic Liquid versus Water as IPT Diluent ................................................ 90 

4.4.2 Sodium versus Lithium Cases for Water as IPT Diluent ........................ 95 

4.5 EFFECT OF IONOMER MORPHOLOGY ................................................... 96 

4.6 TRANSIENT RESPONSE UNDER STEP BENDING ................................ 101 

4.7 EFFECT OF STRAIN RATE ......................................................................... 105 

4.8 DISCUSSION ................................................................................................... 108 

5.0 CONCLUSIONS AND FUTURE WORK ............................................................. 111 

5.1 CONCLUSIONS .............................................................................................. 111 

5.2 CONTRIBUTIONS ......................................................................................... 114 

5.3 FUTURE WORK ............................................................................................. 115 

APPENDIX A ............................................................................................................................ 116 

BIBLIOGRAPHY ..................................................................................................................... 129 

  



 ix 

LIST OF TABLES 

Table 1. Discrete probability distribution of n values [42]   ........................................................... 36

Table 2. Cluster morphology values based on [14]   ...................................................................... 45

Table 3. Stiffness predictions [MPa] of Nafion 1200 EW in Li+ for different m-values, Johnson 
Bounded distribution.   .................................................................................................................... 47

Table 4. Stiffness predictions [MPa] of Nafion 1200 EW in Li+ for different m-values, Johnson 
Unbounded distribution.   ............................................................................................................... 47

Table 5. Stiffness predictions [MPa] of Nafion 1200 EW in Na+ with 10 vol% water   ................ 52

Table 6. Stiffness predictions [MPa] of Nafion 1200 EW in Na+ with 30 vol% water   ................ 52

Table 7. Stiffness predictions of Nafion 1200 EW in Li + and in Na+.   ......................................... 53

Table 8. Discrete probability distribution for n values of Selemion®   .......................................... 59

Table 9. Parameters and results of calculation for cluster size in Selemion®   .............................. 62

Table 10. Stiffness predictions for Selemion® [MPa], m=50, Johnson Bounded distribution.   ... 63

Table 11. Predicted variation in channel size with electrode particulate [50].   ............................. 85

Table 12. Percentage of effective channels.   .................................................................................. 89

Table 13. Relevant parameters for water and EMI-Tf form IPT samples   .................................... 92

Table 14. Parameters for Nafion 1200 EW in Li and Na forms   ................................................... 96

Table 15. Predictions per Schmidt-Rohr and Chen morphology comparing with reported 
experimental data   .......................................................................................................................... 96

Table 16. Predictions per Schmidt-Rohr and Chen parallel channel morphology and Hsu and 
Gierke cluster morphology comparing with reported experimental data   ................................... 100

Table 17. Young’s modulus of Nafion at different strain rate   .................................................... 107

 



 x 

LIST OF FIGURES 

Figure 1.1: Structure of a typical IPT (schematic view)   ................................................................. 1

Figure 2.1: Spherical cluster morphology with intercluster channels proposed by Hsu and Gierke 
[23] and the selective ionic conduction.   ....................................................................................... 11

Figure 2.2: Cross-sectional view of a typical IPT relative to the assumed ionic polymer clustering 
morphology by Hsu and Gierke [23].   ........................................................................................... 12

Figure 2.3: Parallel water channel morphology proposed by Schmidt-Rohr and Chen where 
channels vary between 1.8 and 3.5 nm in diameter [29]   .............................................................. 14

Figure 2.4: Displacement of Nafion-based IPT under step voltage: from A to B fast initial 
motion, from B to C slow back relaxation, from C to D fast motion upon shorting, and from D to 
E slow final relaxation [43].   .......................................................................................................... 19

Figure 2.5: The normalized sensing response per unit strain of a RuO2 based IPT as a function of 
(a) electrode thickness, and (b) electrode metal composition (volume percent) [50].   .................. 23

Figure 2.6: Schematic illustration of ionic polymer clusters: (a) ion pairs within a cluster and (b) 
dipole induced by imposed bending curvature [14].   ..................................................................... 27

Figure 2.7: Electric double layer and streaming potential   ............................................................ 29

Figure 3.1: Schematic of the spacial geometry of a Nafion molecule [42]   .................................. 32

Figure 3.2: End-to-end distance r between cross-links for a single Nafion polymer chain [77]   .. 34

Figure 3.3: Chemical structure of Nafion monomer   ..................................................................... 36

Figure 3.4: Cluster distribution akin to a cubic lattice [42]   .......................................................... 37

Figure 3.5 Flow chart for the improved RIS model   ...................................................................... 40

Figure 3.6: Typical Johnson Unbounded and Bounded estimated PDFs and -values of 19.3 and 
19.0 Å, respectively, for a simulation including [50, 80] m-values.   ............................................. 49

Figure 3.7: An elecetrochemical separation  module for carbon dioxide [78]   ............................. 57

or



 xi 

Figure 3.8: Structure of Selemion® network.   ............................................................................... 58

Figure 3.9: Backbone strucutre of Selemion® (a) our model – single backbone chain (b) the real 
branched backbone chain.   ............................................................................................................. 64

Figure 4.1:  Schematic illustration of the multiscale structures of an IPT and the origin of the 
streaming current in a channel   ...................................................................................................... 67

Figure 4.2:  Selective ionic conduction in parallel nanochannel model   ....................................... 71

Figure 4.3: A cantilever beam with an end load   ........................................................................... 73

Figure 4.4:  Preliminary predictions of IPT currents at various tip deflections   ............................ 75

Figure 4.5: (a) Parallel circular cylindrical nanochannel morphology proposed by Schimdt-Rohr 
and Chen, (b) a model of identical and uniformly distributed parallel channels with rectangular 
cross-section, and (c) the adapted model of parallel channels with round cross-section   ............. 77

Figure 4.6: Normalized streaming current vs. tip deflection for IPT cantilevers with free lengths 
of 15 mm and 20 mm. for both rectangular and circular cylindrical channel models   .................. 79

Figure 4.7： Scanning electron microscopy (SEM) showing (a) the top crosssection of a Nafion 
117 ionomer painted with a 9.5 μm RuO2 / Nafion electrode. (b) shows the top cross-section of a 
Nafion 117 ionomer painted with a 38 μm RuO2 / Nafion electrode [48].   ................................... 81

Figure 4.8: Scanning electron microscopy (SEM) SEM images of the high surface area RuO2 
electrode with (a) 22, (b) 30, (c) 36, and (d) 66 vol % metal [48].   ............................................... 82

Figure 4.9: Normalized streaming current as RuO2 volume fraction varies.   ................................ 87

Figure 4.10: Normalized modeling sensing trends for IPTs with variation in the metal content of 
RuO2 and Au for consistent total volume of metal   ....................................................................... 89

Figure 4.11: Strain output of  IPTs for samples produced by variation in the metal content with 
consistent volume to the application of square wave potentials of  ±2 V [48].   ............................ 90

Figure 4.12: Predictions of streaming current trends in IPTs in water and ionic liquid form   ...... 93

Figure 4.13: Charge-to-stress sensing response of samples in water and ionic liquid (EMI-Tf) 
form [12]   ....................................................................................................................................... 94

Figure 4.14: Sectional view of the channels in the models of (a) Schimdt-Rohr and Chen parallel 
channel morphology and (b) Hsu and Gierke cluster morphology   ............................................... 97

Figure 4.15: Demensions of clusters and conduction channels   .................................................... 99

Figure 4.16: Step displacement input by Farinholt et al [11]   ..................................................... 103



 xii 

Figure 4.17: Normalized predictions of IPT current under step tip displacement plotted with 
measured current with normalization. Solid line is from experiment, dashed line is the predicted 
response. Discrete points correspond to points at which data is visually extracted from 
experimental stimulus plot of Figure 4.16.   ................................................................................. 103

Figure 4.18: Young’s modulus of N117-H at 3% strain with 0.7 min-1 initial strain rate [92].   . 105

Figure 4.19: Relaxation effect during the process of step displacement   .................................... 105

Figure 4.20: Normalized IPT current at different frequencies   .................................................... 108

Figure 4.21: IPT macroscopic sensing modes [50]   ..................................................................... 109

Figure 4.22:  An IPT sensor under imposed shear loading   ......................................................... 110

Figure 4.23: Shear deformation and the velocity of the moving surface   .................................... 110

 



 xiii 

NOMENCLATURE 

Chapter 2 

d  Electromechanical coupling coefficient 

2h  Mean square polymer chain length 

k  Boltzmann’s constant 

eM  Ionomer equivalent weight 

AN  Avogadro’s number 

cr  Cluster radius 

T  Temperature 

iV  Volume of ion exchange site 

cγ  Surface energy density of cluster 

V∆  Polymer volume change with water uptake 

V ′∆  Volume fraction of ion exchange sites  

dρ  Density of dry polymer 

wρ  Density of water 

*ρ  Effective density of hydrated polymer 

 

 



 xiv 

Chapter 3  

c  Constant of integration 

E  Young’s modulus 

aveE  Young’s modulus of bulk material 

bbE  Young’s modulus of polymer backbone 

clE  Young’s modulus of cluster 

scE  Young’s modulus of semicrystalline region of material 

f  Function of Johnson distribution 

f ′  First derivative of f  

f ′′  Second derivative of f  

bbf  Backbone volume fraction 

clf  Cluster volume fraction 

scf  Semicrystalline region volume fraction 

*f  Nominal stress 

2h  Mean square polymer chain length 

k  Boltzmann’s constant 

ccl −  Carbon-carbon bond length 

m  Number of repeating monomer units in a polymer molecule 

eM  Ionomer equivalent weight 

ccMW −  Molecular weight of the portion of the chain between two cluster 
communication points 

n  Number of repeating groups in a monomer unit  

AN  Avogadro’s number 



 xv 

Chapter 3 (continued) 

P  Probability density function 

Q  Normalized statistical weight matrix 

r  End-to-end chain length 

or  Root mean square of r-values 

S  Entropy 

T  Temperature 

U  Statistical weight matrix 

iV  Volume of ion exchange site 

α  Relative length of material 

γ  Shape parameter of the PDF for Johnson family distributions 

cγ  Surface energy density of cluster 

V∆  Polymer volume change with water uptake 

V ′∆  Volume fraction of ion exchange sites  

δ  Shape parameter of the PDF for Johnson family distributions 

θ  In-plane bond angle 

λ  Scale parameter of the PDF for Johnson family distributions 

υ  Number density of network chains 

ξ  Location parameter of the PDF for Johnson family distributions 

ρ  Material density 

dρ  Density of dry polymer 

*ρ  Effective density of hydrated polymer 

ϕ  Out-of-plane rotation angle 

 



 xvi 

 

Chapter 4 

a  Channel radius 

eA  Effective area of metal-polymer interfacial area 

cha  Radius of conduction channel 

cla  Radius of cluster 

ILa  Channel radius in ionic liquid swollen IPT 

Lia  Channel radius in lithium form IPT 

Naa  Channel radius in sodium form IPT 

wa  Channel radius in water swollen IPT 

B  Dimensionless constant 

C  Dimensionless constant 

d  Cluster center-to-center distance 

E  Young’s modulus of bulk material 

fE  Young’s modulus at frequency f  

e  Electro charge 

h  Half of the channel height 

ILI  Current in ionic liquid swollen IPT 

LiI  Current in lithium form IPT 

NaI  Current in sodium form IPT 

sI  Streaming current in a channel 



 xvii 

Chapter 4 (continued) 

tI  Total current in an IPT 

wI  Current in water swollen IPT 

yI  Moment of inertia 

][i  Free ion concentration 

k  Boltzmann’s constant 

l  Channel length 

chl  Legnth of conduction channel 

fL  Cantilever free length 

N  Number of channels 

n  Number density of monovalent ions 

AN  Avogadro’s number 

ann  Number of anions in a cluster 

eN  Effective number of channels 

fn  Number of free ions in a cluster 

pn  Number of ion pairs in a cluster 

P  Force on cantilever end 

q  Flux 

T  Temperature 

v  Flow velocity 

1−κ
v  Flow velocity within one Debye length 



 xviii 

Chapter 4 (continued) 

anionV  Anion volume 

cationV  Cation volume 

channelV  Volume of a channel 

clV  Volume of a cluster 

flV  Volume of fluid in a cluster 

electrodeV  Volume of metal electrode 

%AuV  Au volume fraction in metal electrode 

%
2RuOV  RuO2 volume fraction in metal electrode 

NafionV  Volume of Nafion 

totalV  Total volume of porours medium 

voidV  Volume of void in porous medium 

W  Cantilever width 

w  Channel width 

β  Cluster radius ratio 

p∆  Pressure difference 

δ  Cantilever tip deflection 

ε  Dielectric constant of water 

oε  Permittivity of vacuum 

η  Viscosity 

ILη  Viscosity of ionic liquid 



 xix 

Chapter 4 (continued) 

Liη  Viscosity of water with lithium cations 

Naη  Viscosity of water with sodium cations 

wη  Viscosity of water 

κ  Permeability of medium 

1−κ  Debye length of the diluent 

Lifv ,  Water volume fraction in lithium form IPT 

wfv ,  Water volume fraction 

ILfv ,  Ionic liquid volume fraction 

lfv ,  Diluent volume fraction 

Nafv ,  Water volume fraction in sodium form IPT 

pfv ,  Particulates volume fraction 

ρ  Charge density 

eρ  Charge density of the solution 

sρ  Charge density at shear surface 

φ  Porosity 

 

 



 xx 

ACKNOWLEDGEMENTS 

During my study at the University of Pittsburgh, many people have supported and helped me. I 

would like to take this opportunity to thank them. 

First and foremost, I would like to thank my academic advisor, Dr. Lisa Weiland, for her 

guidance and advice throughout my Ph.D. studies, for being supportive and patient, and for 

giving me the opportunity to explore the possibilities of my potential. She always supports and 

helps me in every possible way that a professor can help her/his students.  Thank you very much! 

I would like to thank my thesis committee members, for being on my committee and providing 

valuable discussions.  

I would like to thank all of my friends, teachers, professors, and colleagues throughout 

my career at the University of Science and Technology of China, the University of Pittsburgh, 

and ANSYS, Inc. for always supporting me and seeing my potential. Special thanks to Dr. 

Guoyu Lin for always believing in me, being supportive and patient, and helping me with my job 

search. 

Last but not the least, I would like to express my deep gratitude to my parents, Youchao 

Gao and Xiaoling He, and my best friends, Yan Yang, Jie Wu Pan, Chao Chen, and Wei An,  for 

their love, support, and always being there to turn to. Without you, I could have accomplished 

nothing. 

 



 1 

1.0  INTRODUCTION 

Ionic polymer transducers (IPTs) represent a relatively new class of active (‘smart’) materials, 

which can function as highly sensitive mechanical sensors as well as actuators. The 

electromechanical sensing properties of ionic polymers were first reported by Sadeghipour et al. 

in 1992 [1]. But to date the physical mechanism responsible for this sensing response is not yet 

understood, limiting exploitation of these sensors.  

 

 

Figure 1.1: Structure of a typical IPT (schematic view) 

 

To access the electromechanical coupling the ionic polymer (often Nafion by DuPont) 

must be sandwiched between two conductive electrodes. The structure of a typical IPT is shown 

in Figure 1.1. The exact state of the ionic polymer can be manipulated, but is typically ion 

exchanged from its virgin acid (H+) form to sodium (Na+) or lithium (Li+) forms, and saturated 

with water.  IPTs are sometimes referred to as Ionic Polymer-Metal Composites (IPMCs), which 

places emphasis on the constituents frequently utilized in the creation of these transducers. This 



 2 

work adopts the moniker IPT as favoring a description of the functionality while leaving open 

the possibility of developing IPTs with alternate-to-metal electrically conductive media.  

IPTs generate controllable strain when applying a low voltage (<5 V) across their 

thickness and generate measurable currents due to extremely small mechanical strain. The 

voltage produced across the thickness of the IPT strip by bending it can be calibrated and 

correlated to the applied loads or stresses. Sadeghipour et al. have demonstrated the potential of 

IPTs as accelerometers for vibration sensing with linear characteristics and high sensitivity [1]. 

Shahinpoor et al. also reported the application of IPT sensors to quasi-static or dynamic 

displacement sensing [2]. While there has been considerable discussion of their response in 

bending mode, IPTs are also effective shear, compression, and tension sensors. For example, for 

10 mm x 30 mm IPT samples, a relationship between electric charge and strain was found under 

shear loading. The average sensitivity was reported to be 0.0242 μC/ε at frequencies of 30 to 120 

Hz [3]. 

In this dissertation, the mechanical properties of ionic polymers, the ionomer morphology, 

and the fundamental mechanism responsible for the electromechanical sensing responses of IPTs 

are studied. This will promote the development and optimization of sensing systems that are 

highly sensitive, miniature, compliant and potentially autonomous.  

1.1 MOTIVATION 

In mechanical and civil engineering, mechanical deformation/strain sensing is of great 

importance. Sensor systems are capable of improving the precision of mechanical systems, 

performing nondestructive damage evaluation, and expanding device reliability, lifetime, and 
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application environments. The extent to which these goals may be realized is frequently a 

function of the sensor’s sensitivity. IPTs are cost effective and often have superior sensing 

capabilities compared to other active materials such as piezoelectrics. However, this novel class 

of transducers has not been widely employed because the mechanism of IPT sensing is not 

clearly understood. Further, it is widely accepted that strong correlations exists among the ionic 

polymer morphology and stiffness, electrode architecture, and active response. Perhaps not 

surprisingly, ionomer morphology and stiffness evolution are also poorly understood. This work 

is intended to investigate the fundamental mechanism of IPT sensing through simultaneous 

consideration of morphology and stiffness.  

1.2 OBJECTIVE 

The immediate goal of this work is to investigate the fundamental sensing mechanism in IPTs. 

Specifically the hypothesis of a streaming potential mechanism in the electrode region is 

explored. In order to do this a number of contributing factors must be considered, such as the 

roles of ionomer stiffness, ionomer morphology, and electrode architecture. Physics-based 

models are developed and compared to reported experimental studies. The ultimate goals of this 

dissertation are to provide meaningful insight into the interrelation among these parameters, and 

subsequently to test the hypothesis of streaming potential as the mechanism responsible for IPT 

sensing. Achieving these goals will enable the optimization and widespread use of IPT sensor 

arrays. 
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1.3 CONTRIBUTIONS 

The contributions of this dissertation include (i) creation of models which enable assessment of 

multiscale stiffness parameters that are experimentally inaccessible, (ii) creation of methods 

which will enable critical review of the streaming potential hypothesis for varied electrode 

architectures, and (iii) exploration of the interface among these parameters for varied IPT 

preparations. Included in the studies are demonstrations of method effectiveness through 

comparison to experiment. Predictions are found to be consistent with experiment. More 

importantly though are the subsequent insights gained that may be employed to optimize IPT 

sensitivity and reliability. Moreover, the presented methods are consistently computationally 

unintensive, thereby increasing the likelihood of their broader usage.   

1.4 DOCUMENT ORGANIZATION 

This dissertation explores the hypothesis that streaming potential is the dominant mechanism of 

IPT sensing. This first requires review of IPTs per the current state of the art (Chapter 2). 

However, full appreciation of IPTs can be achieved only after establishing an equally in-depth 

appreciation of the active ionic polymer layer; to this end Chapter 3 explores ionic polymer 

morphology. Chapter 4 then offers development of the streaming potential modeling approach, 

including consideration of the impact of ionomer morphology. Predictions are compared to 

reported experiments for a number of IPT cases, including for varied ionomer properties and 

varied electrode architectures. Finally, Chapter 5 offers concluding remarks. Because a number 
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of modeling constructs are explored and developed in this dissertation, appropriate nomenclature 

tables are offered for Chapters 2-4 as part of the preface of this dissertation. 
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2.0  BACKGROUND AND LITERATURE REVIEW 

Ionic polymers first received widespread attention in the 1970’s for their application of 

chemoelectric properties in Polymer Electrolyte Membrane Fuel Cells (PEM FCs), and more 

recently for use in Fuel Cell Vehicles [4-6]. Recent enthusiasm aside, PEM FCs have been in 

existence for some time; they were first deployed in the Gemini space program in 1962 [7]. 

There has also been significant research activity on application of ionic polymers as transducers, 

or ‘smart materials’ since their electromechanical sensing properties were first reported later by 

Sadeghipour et al. in 1992 [1]. Their biocompatibility coupled with high gravimetric energy 

density and cryogenic functionality, has led to considerable conjecture over potential 

applications ranging from biosensors to outer-space actuators [1-3,8,9]. From the 

electromechanical transduction perspective ionic polymer transducers (IPTs) are a relatively new 

class of active materials. Like their PEM FC predecessors, it is generally accepted that 

electromechanical transduction in IPTs arises from selective ionic conduction. However, the 

exact mechanism of IPT electromechanical coupling is not understood. 

This chapter provides a review of the current state of the art in understanding of the 

active ionic polymer layer as well as the IPT as a whole. The chapter begins with a review of 

ionic polymers and of the potential applications of IPTs. Because the following dissertation 

explicitly explores the significance of ionomer morphology in IPT response, Section 2.2 presents 

the current state of understanding of ionomer morphology. Section 2.3 then reviews 
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experimentally observed IPT response including studies of the impact of electrode architecture. 

The closing section of this chapter reviews ionic polymer and IPT transduction models. The 

following chapters, which present the modeling studies of this dissertation, subsequently expand 

on the current state of the art in IPT modeling, especially as it relates to testing the hypothesis of 

streaming potential dominating IPT sensing response.     

2.1 IONIC POLYMER TRANSDUCER APPLICATIONS 

An ionic polymer, i.e., an ionomer, is a polymer that comprises both electrically neutral 

repeating units and ionized units. To access the electromechanical coupling response the ionomer 

must be sandwiched between two conductive electrodes in the creation of an IPT. IPTs generate 

controllable strain when applying a low voltage (<5 V) across their thickness and generate 

measurable currents when subjected to mechanical stimulation. 

Identification of (and ultimately, optimization of) the fundamental mechanisms 

responsible for IPT sensing is motivated by their current (not-optimized) ability to  satisfy a 

range of basic application criteria – when properly fabricated and utilized they are reliable, 

conformal, multifunctional, and highly sensitive.  

The mechanical sensing properties of ionic polymers have been quantified and compared 

to that of piezoelectric materials by Newbury and Leo [10], and Farinholt and Leo [11]. It has 

been demonstrated that, in charge sensing mode, an IPT sensor is one order of magnitude more 

sensitive than traditional piezoelectric transducers. When saturated with ionic-liquids, IPTs have 

been demonstrated to be reliable and environmentally stable [12]; in this form they can operate 

over a million cycles in open air [13]. Moreover, IPTs are soft elastic sensors which are 
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compatible with conformal structures. They can be made as thin as 10 μm and can be cut into 

any area or shape, which makes them good candidates for miniaturization. In addition, although 

an IPT in actuation generates bending deformation only, electric signals are observed in IPT 

sensors under bending, shear, compression, and tension.  

As sensors, IPTs have a broad range of potential applications. By bending the IPT strip, a 

voltage is produced across the thickness of the strip. The output voltage can be calibrated and 

correlated to the applied loads or stresses. Based on this general observation it has previously 

been established that the IPT sensors have a number of viable applications. Based on their 

vibrational damping property, Sadeghipour et al. [1] have demonstrated their potential as 

accelerometers for vibration sensing with linear characteristics and high sensitivity. Shahinpoor 

et al. [2] reported the application of IPT sensors to quasi-static or dynamic displacement sensing. 

While there has been considerable discussion of their sensing responses in bending mode, IPTs 

are also effective shear, compression, and tension sensors. For example, for IPT samples with 

dimensions of 10 mm x 30 mm, a relationship between electric charge and strain was found 

under shear loading. The average sensitivity was reported to be 0.0242 μC/ε at frequencies of 30 

to 120 Hz [3].  

Due to the electromechanical coupling properties of IPTs, they can function as 

mechanical actuators as well as sensors. As actuators, IPTs have large activation displacement, 

high gravimetric energy density, while requiring low stimulation electric field. There has been 

considerable conjecture over the potential applications of these soft transducers including 

artificial robotic muscles and cryogenic wiper blades [8,9,14-16]. To date a large volume of 

reports have emerged on IPT actuators, while comparatively few have been presented for 

sensing. 
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While not a focus of this dissertation, it should be noted that the potential for utilizing 

IPTs as energy scavengers exists. Energy scavenging is the process by which energy from the 

surrounding environment is converted into stored electrical energy. Ionic polymers are a unique 

class of material that exhibit both electromechanical and chemoelectric coupling. Besides their 

sensing and actuation functionalities when dynamic excitation is applied on ionic polymer 

membranes, they also can produce DC electricity due to the reaction of hydrogen and oxygen at 

the membrane surface, which is the basis for power generation in PEM FCs. These properties of 

ionic polymers enable their applications as mechanical and chemical energy scavengers. IPTs 

therefore have the long term potential for utilization in sensing/scavenging arrays in remote 

locations, and whose lifetime is not limited by a finite energy storage source such as a battery. 

2.2 IONOMER MORHOLOGY 

Ionomers are fabricated by the addition of an ionized (hydrophilic) pendant chain (usually no 

more than 15%) to electrically neutral (hydrophobic) polymeric chains. The addition of pendant 

ionic groups produces phase separation: nanoscale hydrophilic regions of pendant ionic groups, 

counterions, and diluents reside within a hydrophobic polymer matrix. While the counterions are 

attracted to the covalently attached pendant ionic groups, they are otherwise free to move 

through the hydrophilic regions. The capacity of counterions can be described by the equivalent 

weight (EW) of the ionic polymer, which is defined as dry mass in grams of ionic polymer in 

proton form per mole of acid groups in the polymer divided by the valence of the acid group. 

The mobility of counterions is known as selective ionic conduction and is the basis of ionic 

polymer use in fuel cell applications. The morphology developed due to hydrophobic/hydrophilic 



 10 

phase separation has a strong influence on the tortuosity of selective ionic conduction and is 

therefore of considerable interest in PEM FC applications [17].  

Despite the fact that there is no agreement on the exact mechanism responsible for IPT 

sensing, it is generally accepted that, like the chemoelectric applications, it arises from selective 

ionic conduction, which in turn is sensitive to ionomer morphology. This section is therefore 

dedicated to reviewing the current state of understanding of ionomer morphology.  

2.2.1 Cluster Morphology 

A significant number of ionomer morphologies have been proposed including, for instance, 

lamellar and planar postulates [18-20]. It has also been suggested that the morphology is not at 

all fixed, rather that it may vary significantly with hydration state [21]. But the actual 

morphology remains an open topic; in fact it has even been suggested that, based on the 

experimental procedures employed to date, the actual ionomer morphology is unlikely to be 

predicted, but should be sought nonetheless [22].   

Early models of common ionomers, such as Nafion, were based on the concept of 

spherical ‘ion clusters’ connected by ‘ion channels’ such as that proposed by Hsu and Gierke 

[23]. These models were used to predict the ordering of the clusters as a rationale for (as opposed 

to prediction of) selective ionic conduction in PEM FC applications [24,25]. Hsu and Gierke 

proposed that the hydrophilic ionic side groups and the water that has been taken up by the 

material cluster together. The model further suggests an idealized structuring whereby the 

embedded clusters are of essentially constant radius, uniformly distributed throughout the 

material, and interconnected by channels (Figure 2.1). Despite the idealized nature of the model 

and general acceptance that it is incorrect, the Hsu and Gierke model has been widely used 
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because of its simplicity, relative predictive effectiveness, and the absence of consensus for an 

alternate postulate. 

 

 

Figure 2.1: Spherical cluster morphology with intercluster channels proposed by Hsu and Gierke [23] and 
the selective ionic conduction. 

 

Consider for instance a recent micromechanical prediction of cluster size and distribution 

based on minimization of elastic, electrostatic, and cluster surface energies [26]. The approach 

draws from the Hsu and Gierke model while enabling a continuum strategy to estimate the 

morphological impact of varying the counterion, diluent, or even the base ionomer. Despite the 

fact that the predicted morphology is likely incorrect (in part because of its acceptance of the Hsu 

and Gierke model), the approach is relatively straight forward and enables prediction of the 

reality that morphology will change with ionomer state. Moreover, the magnitude of these 

predicted morphological variations, despite lacking absolute correctness, correlates appropriately 

with experimental observations.  
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Figure 2.2: Cross-sectional view of a typical IPT relative to the assumed ionic polymer clustering 
morphology by Hsu and Gierke [23]. 

 

Consider further that it has been experimentally established that active response is a 

strong function of hydration [12,27]; per the micromechanical prediction approach cluster radius 

is significantly diminished with decreasing hydration. Decreased cluster radius per the Hsu and 

Gierke model corresponds to increased tortuosity for selective ionic conduction, and 

subsequently corresponds to experimental observations of decreased electromechanical coupling 

[27,28]. Further, morphological variation is observed for varied counterions and/or diluents; 

again active response is also observed to vary [27,28].  While the spherical cluster model is 

generally accepted to be incorrect, the foregoing examples demonstrate the coupling between the 

morphological and active response domains, and thus the need to attempt morphological 

characterization. Figure 2.2 provides an illustration of scaling for the spherical cluster 

morphology model for a typical IPT case.    
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2.2.2 Parallel Water Channel Morphology 

Schmidt-Rohr and Chen [29] have recently offered arguments that for the specific case of Nafion 

the hydrophilic regions are akin to long parallel water channels (Figure 2.3).  The proposed 

channels are surrounded by partially hydrophilic pendant chains, forming inverted-micelle 

cylinders. The dimensions of these channels (1.8~3.5 nm diameter) are large compared to earlier 

postulates. For comparison, while Hsu and Gierke do not offer dimensions for the proposed 

intercluster channels qualitatively illustrated in Figure 2.1, it is understood that these dimensions 

are substantially smaller than those of the clusters (i.e., ~4.5 nm diameter clusters might have 

~0.4 nm channels).  Schmidt-Rohr and Chen go on to argue that this parallel channel 

morphology successfully explains the transport properties of hydrated Nafion as well as the 

results of a range of SAXS studies, which had been difficult to explain for the more tortuous 

morphological propositions.  

It is intuitive that parallel water channel morphology has significantly reduced tortuosity 

in the selective ionic conduction pathway as compared to the clustering postulate of Hsu and 

Gierke. For the purposes of this dissertation, these two cases are treated as bounding cases, and 

thus both will be considered in the assessment of the streaming potential hypothesis.  

While morphology models and models of active response are typically performed in 

separate studies, the notion that selective ionic conduction serves as the basis of active response 

is universal among the proposed morphological models. Similarly, the fact that morphology has 

an important role to play in the ultimate active response is generally acknowledged in 

transduction models. That both morphology and transduction remain open topics is perhaps not 

surprising.  
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Figure 2.3: Parallel water channel morphology proposed by Schmidt-Rohr and Chen where channels vary 
between 1.8 and 3.5 nm in diameter [29] 

 

2.2.3 Role of Ionomer Stiffness 

As just noted, there is a lack of consensus on both ionomer morphology and underlying 

electromechanical mechanisms responsible for IPT sensing. Despite this lack of consensus, it is 

understood that both are functions of ionomer stiffness. In the case of IPT transduction models 

this stiffness dependence is displayed at two length scales. At the device length scale, classic 

characterization parameters such as free displacement and blocked force are a function of the 

active material’s stiffness [30]. At the nanoscopic length scale, the local backbone elastic energy 

is an important parameter in morphology evolution [26]. In addition, Weiland and Leo [31,32] 

suggest that pendant chain stiffness of ionic polymers plays a role in ion distribution as it relates 

to the availability of free ions for selective ionic conduction. However, at both length scales 

ionomer stiffness values are experimentally difficult or, in some cases, impossible to measure.  

In the case of the millimeter-to-centimeter, device length scale, reported stiffness values 

can range by as much as 300%. For instance, Nafion 117 (1100 EW, 7 mils (178 μm) thick) 

membrane in Li+ form is reported to have stiffness from 70 MPa to 300 MPa for fully hydrated 
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to dry cases [14,33-35]. Experimental challenges associated with these variations include 

hydration control, sample preparation variations (such as ion exchange method), and even 

variations from one batch to the next of the ionomer itself. These difficulties are exacerbated at 

lower length scales, experimental reports at these length scales therefore tend to instead focus on 

AFM, SAXS, etc. (which are not appropriate for quantifiably reliable stiffness assessments).     

Despite the challenges associated with obtaining exacting stiffness properties, the multi-

length scale dependence of morphology and ultimately active response on stiffness warrants its 

investigation. Multiscale modeling represents one viable approach to exploring this multi-length 

scale dependence.  

2.2.4 Rotational Isomeric State (RIS) Multiscale Stiffness Assessment  

Rotational Isomeric State (RIS) theory as proposed by Flory [36] is based on the recognition that 

the conformation of a single polymer chain arises from individual bonds assuming low energy 

orientations. The premise is straight forward: it is assumed that there are a discrete number of 

low energy orientations for any given bond within a larger polymer chain. Moreover, the 

probability of each is dictated by both the magnitude of the energy barriers between orientations 

and by the orientation of the adjacent bonds. By assessing the probability of specific bond 

placements over the length of entire chains, projection of the conformation of the entire chain is 

possible. Part of this prediction necessarily includes assessing the location of crosslinks. The 

distance between crosslinks may therefore be predicted. Higher crosslink density corresponds 

with higher bulk material stiffness.  

The original strategy proposed by Flory employed Gaussian statistical approaches to the 

assessment of the distribution of crosslink lengths. In turn, probability density functions (PDFs) 
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of the crosslink lengths were employed in Boltzmann statistical mechanics to assess relative bulk 

stiffness. This decades old strategy continues to be among the most robust multiscale approaches, 

but is subject to decreasing reliability in short chain systems (a ramification of the Gaussian 

statistical approach).  

Mark and Curro [37] subsequently demonstrated that a Monte Carlo approach for 

generating crosslink distributions is effective for systems with short crosslink lengths.  Sharaf 

and co-workers [38,39] next extended the short chain approach by considering the presence of 

rigid inclusions (akin to common composite materials). It is well established in composite 

materials research that a given constituent will shift the global stiffness as a direct function of 

that constituent’s stiffness and volume fraction [40]. However the composites approach assumes 

that the stiffness of each constituent is fixed. Conversely, the works of Sharaf and co-workers 

displays that the stiffness of the polymer varies as the inclusion dimensions and volume fraction 

are varied; this is the result of the inclusions displacing and thus altering the low energy 

conformation of the polymer network.  

In all of the approaches, the network data (a list of chain lengths between crosslinks) had 

to be converted into a PDF, which was then employed in a Boltzmann statistical mechanics 

approach to the assessment of the mechanical properties of the material system. Each of the short 

chain approaches noted, however, employed a cubic spline statistical approach that included 

subjective binning of the crosslink data. This insertion of human error into the process ultimately 

necessitated the normalization of stress strain predictions to minimize this error. In other words, 

the approach could not be used to predict stiffness, only relative stiffness among similar cases. 

A multiscale RIS Monte Carlo (RIS-MC) modeling approach applied to stiffness 

prediction of ionomers with high crosslink density has subsequently been developed by Weiland 
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and co-workers [32,41,42]. The approach employs the Mark-Curro Monte Carlo approach, in 

accordance with the high crosslink density present in ionic polymers. In addition, it expands on 

the observation that the cubic spline statistical approach is inappropriate for the generation of 

repeatable stiffness predictions. These works instead employ a Johnson family statistical 

assessment in the generation of PDFs. This enabled, for the first time, stable quantitative 

stiffness predictions from this multiscale method, and thus normalization of the predictions was 

not needed. For the specific case of ionic polymers, it further adopts the composite material 

methods of Sharaf and coworders by exploring the exclusion of hydrophobic backbones from 

hydrophilic morphological regions. Because minimization of elastic energy is an important 

parameter in morphology evolution, developing an understanding of this stiffness variation may 

become significant in understanding ionomer morphology evolution.   

The approach embodies flexibility that enables prediction of ionomer stiffness as a 

function of its specific composition (ionomer type, counterion type, diluent type and uptake, etc.). 

This approach has been refined as part of this dissertation. Additional discussion and literature 

review are presented in Chapter 3 along with model development, results, and demonstration. 

2.3 IPT EXPERIMENTAL BACKGROUND 

The majority of IPT experimental studies to date have focused on actuation as opposed to 

sensing. However, experiments show that for an IPT the voltage required to induce a given 

deformation is typically one to two orders of magnitude larger than the voltage displayed when 

that same deformation is imposed, which indicates that, unlike piezoelectric transducers, the 

coupling in IPT sensing is fundamentally different from that in actuation. Thus study of sensing 
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and actuation necessarily requires consideration of different mechanisms. While it is understood 

that actuation and sensing necessarily occur via fundamentally different mechanisms, some 

correlations may be found in studies of the electrode-ionomer interface. Thus the following 

section offers review of experimental observations of IPT sensing and actuation, including 

consideration of the electrode architecture.  

2.3.1 Actuation and Sensing 

The majority of IPT research to date has focused on actuation properties. The IPT actuation 

mode of interest occurs in bending; when a step voltage (< 5V) is imposed the tip of the IPT 

cantilever bends toward the anode as illustrated in Figure 2.4. The initial displacement occurs 

over 0.1 seconds, followed by a slow relaxation spanning over 30 seconds [43]. The relaxation is 

sometimes described as ‘back relaxation’ because it often occurs in the direction opposite the 

initial displacement as in Nafion-based IPTs. However, relaxation that continues along the 

original trajectory has also been observed as in Flemion-based IPTs [28]. The magnitude of these 

responses has been shown to be a function of ionomer type, diluent type and uptake (‘hydration’ 

in the case of water as diluent), counterion, and electrode architecture. When characterized under 

dynamic excitation, the magnitude of electromechanical coupling is further found to initially 

display decreased coupling followed by stable coupling out to the limits of most tests in the low 

100s of Hz with increasing frequency; studies in the frequency domain are generally limited to 

200 Hz [3,12].         
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Figure 2.4: Displacement of Nafion-based IPT under step voltage: from A to B fast initial motion, from B 
to C slow back relaxation, from C to D fast motion upon shorting, and from D to E slow final relaxation [43]. 

 

For a typical IPT ones of volts are required for actuation to a given tip displacement 

(static or dynamic), while imposed deformation to this same displacement generates tens of 

millivolts in response [2]. This stands in stark contrast to many other electroactive materials such 

as piezoelectrics where dipole distortion is responsible for both sensing and actuation, and thus 

the magnitude of coupling is consistent in both modes. While some have artificially imposed an 

analogous piezoelectric coefficient on IPTs, because the coupling in actuation is substantially 

larger, in fact no comparable thermodynamic Maxwell relation of electromechanical coupling 

(i.e., coefficient d) can be identified for IPTs.  

It is further observed, in contrast to piezoelectric materials, that the IPT 

electromechanical response is inherently dynamic. For instance, within the quasistatic realm of 

excitation (for instance, at or below hundreds of hertz excitation) there is negligible variation in 

electromechanical coupling in piezoelectric materials. Moreover, a DC stimulation (i.e., step 

application of an electrical field) will result in a DC response in piezoelectric materials (i.e., step 

response in deformation) which is held so long as the DC stimulus is sustained. Further, 

sustained response in piezoelectric sensors is similarly observed.  The departure of IPT actuation 

from this benchmark has been addressed above (i.e., Figure 2.4). While it is maintained that the 
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dominant mechanisms responsible for IPT sensing and actuation differ, they have in common a 

dynamic basis. Namely, the magnitude of electromechanical coupling in IPT sensors varies with 

the rate of stimulus. For instance Farinholt and Leo [11] report a linear relationship between the 

short circuit current and the imposed transducer tip velocity in bending. In addition, in the 

presence of a DC deformation stimulus the corresponding IPT sensing response is observed to 

decay over the span of seconds or less [12] (While a decay is also observed in actuation as 

described by ‘relaxation’ above, the time scales are fundamentally different).  

It is also observed that a fully hydrated (preferably by boiling) IPT displays stronger 

electromechanical coupling in actuation than one that has ‘dried’ with exposure to open air [12]. 

To address this dehydration effect application of ionic liquids instead of water has been proposed 

[12].  Conversely, Bonomo et al. [44] argues that a water saturated IPT displays improved 

sensitivity when it is in equilibrium with the environment and the excess water has evaporated. 

Their experimental data show that IPT sensors saturated with water produce an extremely noisy 

sensing signal while, after reaching equilibrium with the environment, the same IPT produces a 

comparatively noiseless signal with notably higher sensitivity. Chen et al. [45] have made similar 

observations, but observe that as a hydrated sample approaches equilibrium with the 

environment, sensitivity initially improves but is then followed by decay as the water continues 

to evaporate from the transducer. Because neither of these reports fully define the IPT initialized 

or final states it is difficult to draw conclusions, but observation of a fundamentally different 

tendency for sensing as compared to actuation is clear. 

Any proposed sensing mechanism must accommodate other significant observations. For 

instance, besides diluent uptake, diluent type has been demonstrated to have a significant effect 

on the magnitude of sensing response; while use of an ionic liquid diluent results in stable 
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operation (ionic liquids do not evaporate), as compared to water the magnitude of sensing 

response is diminished [11,12]. Similarly, manipulation of the counterion is known to affect the 

magnitude of sensing response; a lithium exchanged IPT displays a sensing current that is 5 to 10 

times larger than a sodium exchanged IPT [11]. A number of potential explanations are possible, 

including the effect of diluent viscosity and the tortuosity of selective ionic conduction for 

counterions of varied sizes. But it is pertinent to recall that manipulation of diluent, counterion, 

and even base ionomer are also known to affect morphology.  

The interdependence between the ionomer material state and the IPT active response are 

clearly complex.  Thus the actual sensing mechanism remains an open topic; this knowledge gap 

has hampered widespread adoption of these otherwise competitive and potentially superior 

sensors. Before presenting the mechanisms proposed to date (Section 2.4), it is pertinent to next 

consider some details in the role of the electrode-ionomer interface. 

2.3.2 IPT Electrodes 

Shahinpoor et al. [16,46] studied the effect of surface-electrode resistance on IPT actuation and 

argued that the actuator performance is improved when the surface-electrode resistance is 

lowered by depositing highly conducting metal on top of the platinum electrode. In fact, a recent 

modeling study has gone so far as to study the effectiveness of the electrode in IPT response, in 

the absence of ionomer interaction [47]. While that study offers valuable insights into the 

implications of ‘perfect electrode communication’ assumptions, its failure to consider the active 

layer offers little insight into the underlying mechanism responsible for IPT sensing.   

Returning to electrode architecture experimental studies, recent progress is indicating that 

the electrode in IPTs plays an important role in IPT electromechanical transduction mechanism. 
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The relationship between the electrode-ionomer interface and the actuation performance in IPTs 

has been studied by Akle et al. [13,48,49]. A linear correlation between capacitance and 

actuation performance in IPTs has been proposed by Akle [48]. This work also presents an IPT 

fabrication process named the Direct Assembly Process (DAP), which improves IPT actuation 

performance by 50 times. By blending varied volume fractions and types of ionomer, diluent, 

and conducting powder (for instance, RuO2), the DAP allows the controllable creation of a wide 

array of electrode architectures. Most of the studies in Chapter 4 are based on IPTs fabricated by 

the DAP. 

For actuation, a correlation between the generated peak strain and the interfacial surface 

area between the conductor phase and the ionomer is reported [48]. The actuation strain rate is a 

function of the content and conductivity of the conductor particle in the electrode [50-52]. While 

most of the published work on the DAP focuses on IPT actuation, this process can improve IPT 

sensitivity as well (Figure 2.5).  As the thickness and concentration of the electrode increase, the 

sensitivity increases. However, the experiments also demonstrate that there is an upper bound on 

this effect. It is hypothesized that a tradeoff exists between the availability of free ions for 

selective ionic conduction through the transport media, the effective surface area of the 

electrode, and the interaction of ions with the electrode surfaces [50]. Thus, in addition to 

accommodating experimentally observed dynamic effects and compositional variation effects, 

the mechanism responsible for IPT sensing must also accommodate varied electrode architecture 

effects. 
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Figure 2.5: The normalized sensing response per unit strain of a RuO2 based IPT as a function of (a) 
electrode thickness, and (b) electrode metal composition (volume percent) [50]. 

 

2.3.3 IPT Diulents 

Of all the limitations of IPT applications the one that attracts the most attention is that a diluent is 

required for IPTs to function. Typically, water is used as the diluent. Using water as the diluent 

enables IPTs as efficient transducers in aqueous environments. However, it limits the 

performance of IPTs due to the chemical breakdown of the water molecules at low operating 

voltages and the water evaporation when operated in open air. Therefore, diluents with good 

thermal and electrochemical stability are favored to improve the operation stability of IPTs in 

open air.  

An ionic liquid is a salt in the liquid state at relatively low temperature. While ordinary 

liquids such as water and gasoline are predominantly made of electrically neutral molecules, 

ionic liquids are largely made of ions, which are typically organic cations and organic or 

inorganic anions. Recently ionic liquids have been used in Nafion based IPTs for their excellent 

thermal and electrochemical stability and low vapor pressure [12,49]. Bennett et al. [12] have 

compared water to ionic liquids as the diluents by applying a 1.5 V (peak) sine wave on a 
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platinum- and gold-plated Nafion 117 swollen with water and 1-ethyl-3-methylimidazolium 

trofluoromethanesulfonate (EMI-Tf) ionic liquid. The strain generated by the water swollen IPT 

sample decreased nearly to zero after about 2000 cycles due to the dehydration of the material 

when operated in open air. By contrast, the same actuator swollen with EMI-Tf operated for over 

250,000 cycles with only 25% decrease of generated strain. In addition, ionic liquid swollen IPTs 

are demonstrated to operate in air for up to 1 million cyles with a performance loss of less than 

43% [53]. Although there are some drawbacks for ionic liquids being used as IPT diluents, such 

as the decrease of the magnitude of the actuation response and the reduction in the speed of the 

response, the improvement of the stability of IPTs in open air could potentially increase the 

applications of IPTs dramatically. 

 

2.4 IPT TRANSDUCTION MODELS 

Previous modeling investigations of IPT transduction can be categorized in three classes: (1) 

empirical models, including black box models and grey box models [10,34,44,45,54], which are 

useful for narrow ranges of IPT synthesis, (2)‘hydraulic models’ of ion transport-induced 

deformation [55-57], and (3) electrostatic models [28,30,58].  

General ‘hydraulic models’ of ion transport-induced deformation have been proposed by 

deGennes, et al. [55], Asaka, et al. [56], and Tadokoro, et al. [57]. These models place emphasis 

on pressure induced fluid motion through an IPT, where ions are presumed to be carried with the 

fluid motion. These models accurately accommodate the experimental phenomena explored 

within each of the noted efforts. However, none of the hydraulic models of electromechanical 
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transduction have been able to represent all types of experimentally-observed phenomena. For 

instance, in order to successfully identify the physical mechanism responsible for IPT sensing it 

must first be recognized that a sensing signal may be generated in bending, tension, compression, 

or shear (not limited to bending).  

Of the models intended to address the physics of sensing, only the micromechanics 

approach by Nemat-Nasser and Li has met with some success [28,30]. Consider first the 

micromechanics aspect of these studies in isolation from sensing. Beginning with an assumption 

that the Hsu and Gierke cluster morphology applies, their micromechanics approach has been 

used to study clustering in Nafion [26]. The cluster size cr  is predicted from the minimization of 

the free energy as a function of the equivalent weight of the ionomer, volume fraction of water, 

temperature, electrostatic energy, elastic energy due to polymer chain reorganization, and cluster 

surface energy per  
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used to assess active response. However a number of significant simplifying assumptions are 

introduced in its development to enable tractable analytical assessment.   Not least among these 

assumptions is the application of the Hsu and Gierke spherical cluster morphology (as noted 

above, the morphology is generally accepted as incorrect). Thus this seminal micromechanics 

study does offer an important tool in assessing the interrelation between ionomer morphology 

and active response, however it must be imposed with due caution.  

The micromechanics study by Li and Nemat-Nasser was subsequently employed as a 

basis from which active response could be explored, similar to the goals of this thesis. Their 

work focused on the use of an electrostatics model of electromechanical deformation, which 

argues that IPT transduction is the result of the electrostatic pressure exerted on polymer clusters 

due to local charge imbalance (actuation) and is due to the formation of electric dipoles in the 

polymer clusters under mechanical deformation (sensing). They have also experimentally 

demonstrated that the response of an IPT depends on the chemical composition and structure of 

the backbone ionic polymer, the architecture of the metal electrodes, the nature of the counter-

ions, and the level of hydration, and that the model is able to accommodate their experimental 

observations. This approach has subsequently been adopted and somewhat expanded by Porfiri 

[58] to a plate-like model, which describes the contributions from a variety of IPT constituents 

and phenomena, including counterion, diluent, and polymer motions, electric dipole generation, 

osmotic effects, boundary layer formation, polymer swelling, and local charge imbalances. It 

accounts for charge redistribution inside the IPT and dipole creation induced by mechanical 

deformations. The constitutive parameters of this plate-like model are expressed in terms of 

fundamental IPT physical quantities, such as polymer hydration level, IPT dielectric constant, 

polymer and electrode dimensions and elastic properties, and diluent concentration, which are 
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consistent with experimental findings. In addition, the work shows that the electromechanical 

coupling of IPTs is strongly correlated to the capacitance, which is largely independent of the 

IPT thickness and highly correlated to the thickness of the boundary layers formed by the 

counter-ions in the vicinity of the electrodes.  

 

 

Figure 2.6: Schematic illustration of ionic polymer clusters: (a) ion pairs within a cluster and (b) dipole 
induced by imposed bending curvature [14]. 

 

The strength of these models is their consideration of the breadth of active phenomena 

present in IPTs, including consideration of morphology. However, the component of these 

models intended to justify the observation of IPT sensing is the formation of intra-cluster dipoles 

during deformation. As illustrated in Figure 2.6 the dipole hypothesis assumes the existence of 

perfectly paired, radially oriented pendant ionic groups with electro-neutralizing counterions, 

residing within spherical clusters (the Hsu and Gierke model of Figure 2.2). Under these ideal 

conditions it is then argued that in bending deformation, per a Poisson effect, the ion pairs will 

be distorted above and below the IPT neutral axis, resulting in the creation of an effective dipole 

within each cluster, which in turn gives rise to accumulation of IPT surface charge (sensing 

response). However, even under these ideal conditions, the described dipole effect cannot exist 
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under pure shear loading; but as noted above, sensing response under shear loading has been 

experimentally observed. In addition, the notion of perfect ion pairing stands in contrast to 

generally accepted mechanisms for actuation response, in which free counterions form boundary 

layers at the transducer’s surfaces (see for instance He 2008 [59]); moreover, the models 

themselves include the assessment of boundary layer formation, and therefore embody 

contradictory assumptions. Weiland and Leo [31,32] subsequently investigated the equilibrium 

state of single clusters and concluded that the perfect-pairing assumption is unlikely to be 

reasonable. Rather, it is suggested that non-ideal ion pairing enables sensing. Finally, while the 

assumption of spherical clusters is often imposed for its simplicity, the preceding morphology 

discussion draws attention to its optimistic nature; it is unlikely that the dipole theory can be 

retained for an alternate morphology. Combined these reports call the hypothesis of a 

polarization mechanism into question. 

Recently the mechanism of streaming potential as unpaired ions move relative to 

covalently affixed pendant ionic groups has been proposed [50,51]. Unlike its predecessors 

which focus on bending, it has been suggested that the mechanism of streaming potential should 

be able to predict that a sensing response will be generated for all modes of deformation.  

2.5 STREAMING POTENTIAL HYPOTHESIS 

To explore the streaming potential hypothesis, consider that it has previously been argued that 

capacitance in IPTs is mainly due to an electric double layer [48], which forms at the interface 

between the electrode and the electrolyte [60-65]. It has also been previously established that the 

existence of a double layer is prerequisite to the observation of streaming potential [66]. Thus, to 
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begin discussion of the preliminary models of the mechanism of streaming potential in IPT 

sensing, it is prudent to first review the generalized view of streaming potential. 

Figure 2.7 illustrates the fundamental streaming potential concept. When an electrode is 

submerged in an electrolyte an electric double layer is formed when the ions pass from the high 

chemical energy metal phase to the lower chemical energy electrolyte phase. If a pressure 

gradient is applied along the electrode surface and the electrolyte is sheared against the electrode, 

it will result in a disruption of the electric double layer and generate a potential and a current in 

the electrode, which are known as streaming potential and streaming current. 

 

 

Figure 2.7: Electric double layer and streaming potential 

 

Streaming current and streaming potential are two interrelated concepts in the areas of 

surface chemistry and electrochemistry. They are part of electrokinetic phenomena. When an 

electrolyte is driven by a pressure gradient through a channel or porous plug with charged walls, 

the transport of free ions along with the pressure-driven fluid flow gives rise to a net charge 

transport, i.e., the streaming current.  

For ionic polymers, consider that it has been argued that imperfect ion pairing results in 

the availability of free counterions within the hydrophilic regions [31,32], thereby resulting in 
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the presence of an electrolyte within these regions. Similarly, the unpaired but covalently 

attached anions line the walls of these regions. Provided the electrolyte is set into motion with 

respect to the bound anions, a streaming potential should result. Now considering that there is a 

net relative motion of this electrolyte with respect to the electrode for all modes of deformation, 

an impetus exists for the mechanism of streaming potential. 

A significant goal of this dissertation is testing the streaming potential hypothesis for IPT 

sensing. Expanded literature review of streaming potential phenomena at the length scale of 

typical ionomer morphological features is offered in Chapter 4 to facilitate presentation of the 

rationale for certain aspects of model development.   
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3.0  MULTISCALE STIFFNESS PREDICTIONS  

This chapter presents a multiscale model for material stiffness and morphology that is 

prerequisite to exploring streaming current. In parallel with rapid advances in computing power, 

multiscale material modeling has been receiving increasing attention. The vision is that 

multiscale modeling might ultimately serve as an alternate laboratory method or as a material 

design tool [67,68]. In general, multiscale modeling is not yet mature enough for these purposes; 

the biggest challenges are (1) identifying appropriate methods of modeling at the atomic scale, 

and (2) identifying appropriate methods to span length and time scales up to the traditional 

engineering scale [69-71]. However, the basic tenets of multiscale modeling are not new, rather 

the averaging of lower-length scale effects to anticipate larger-length scale properties has 

historically been the basis of materials research [72]. This effort adapts strategies from the earlier 

multiscale approaches (viz., comparatively computationally unintensive) to the goal of 

developing an alternate laboratory tool capable of ∼1st order accuracy. The predictions from such 

a model could guide more intensive studies in ionomeric materials. The work adapts rotational 

isomeric state (RIS) theory in combination with Monte Carlo (MC) methodology to the creation 

of a multiscale stiffness prediction model appropriate to ionic polymers. The first two sections 

provide background and define the method established as part of this dissertation. The third 

section establishes that the approach is robust for a known case - Nafion. Section 3.4 illustrates 
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how the method can be adapted to the exploration of lesser known cases - Selemion, appropriate 

to the optimization of IPT sensing response.  

3.1 INTRODUCTION TO ROTATIONAL ISOMERIC STATE THEORY 

RIS theory as described by Flory [36] has long been used to build atomic scale models to study 

deformation trends and material properties in polymeric materials. Many advancements and 

studies have been conducted regarding RIS including the accurate molecular representations of 

many polymers including Poly(dimethylsiloxane), Poly(oxyethylene), and Vinyl Polymer Glass 

[73-75]. The fundamental idea of this approach is that any given bond within a single polymer 

chain is restricted to a discrete number of possible low energy bond angles (φ as indicated in 

Figure 3.1), dictated largely by the interaction with the nearest-neighbor bond.  

 

 

Figure 3.1: Schematic of the spacial geometry of a Nafion molecule [42] 
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From the RIS theory, a Gaussian analysis is typically imposed to anticipate final chain 

conformation and corresponding mechanical response. However, application of the Gaussian 

approach to RIS theory does not represent a reasonable approximation for short chain polymers 

displaying rubber elasticity. A non-Gaussian theory of rubberlike elasticity, as discussed by 

Curro and Mark [37], has been developed to simulate the spatial configuration of short chain 

molecules in a more realistic way by applying RIS theory in combination with a MC 

methodology. This RIS-MC approach is used to computationally generate a large number of end-

to-end distances r between crosslinks of the polymer chain (Figure 3.2). The r-values are then 

used to estimate an appropriate probability density function (PDF), and subsequently any number 

of statistical methodologies may be imposed to predict material response trends. 

The Mark-Curro approach has been used to study the effect of particle reinforcement in 

polymer composites [38,39]. A similar modeling approach to stiffness predictions of hydrated 

ionic polymers is then proposed by Weiland et al. [41] and Matthews et al. [42], by applying RIS 

theory in a manner analogous to the particle inclusion works, where inclusion volumes are now 

taken to be clusters. In addition, it is assumed that these clusters, under specified conditions, may 

act as backbone cross-linking junctions, such that the ionomer stiffness is based on polymer short 

chain response (Figure 3.2). Weiland et al. [41] seek to find a relationship between statistical 

parameters and material stiffness by applying the Johnson family distributions for PDF 

estimations. Establishing a consistent relationship between these parameters and the 

corresponding stiffness predictions may ultimately serve as a first step toward the custom design 

of material stiffness at the synthesis stage. This work demonstrates that using the Johnson family 

of distributions as the density estimation method introduces stable predictions. However, there 
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are still sources of error in the approach such as simulation of polymer chain with total lengths 

that are unrealistically short.    

 

 

Figure 3.2: End-to-end distance r between cross-links for a single Nafion polymer chain [78] 

 

Computational generation of physically realistic total chain lengths is a long standing 

challenge often requiring significant computational burden [38]. As a result, many studies are 

forced to assume that the error associated with using artificially repeatable and/or short backbone 

lengths is within acceptable bounds; see, for example [41,42,76]. The current effort employs the 

method of Weiland et al. [41] but seeks to computationally attain backbone chain lengths of 

sufficient length to (1) assess the extent of error associated with artificially short backbone 

lengths, and (2) identify the simulated chain length requisite for stable stiffness predictions, as 

detailed in Gao and Weiland [77-79]. 

3.2 MODELS AND COMPUTATIONAL METHODS FOR NAFION  

In this work the mechanical responses of the ionic polymer Nafion in specific forms are 

considered: 1200 Equivalent Weight (EW), hydrated and containing Li+ or Na+ counterions. The 

model assumes a rectangular cluster orientation analogous to the cubic crystalline structure and 
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consistent with the idealized morphology proposed by Hsu and Gierke [23] indicating identical 

spherical clusters uniformly distributed within the polymer matrix and interconnected by 

channels. It is assumed that the ion exchange is complete and that the sample has been annealed 

(thereby eliminating semi-crystallinity). The Mark-Curro approach to RIS-MC theory is applied 

in a manner analogous to that used in particle reinforcement investigations [38,39], such that the 

chain conformation is excluded from occupying any volume dedicated to a hydrophilic cluster. 

Further, the polymer backbone may have discrete points of communication with the hydrophilic 

clusters via the pendant chain attachment points. These attachment points are assumed to 

approximate cross-linking points, and thus mark an end-point for the given chain length r (Figure 

3.2). 

3.2.1 Simulation of Polymer Chain Conformation  

To implement this model, geometry of the polymer backbone chain must be identified, through 

appropriate statistical weight matrices for backbone chain conformation, bond lengths, and 

distances between pendant chain attachment points. Bulk Nafion material is a complicated 

network of molecules. An individual Nafion molecule is composed of the repeating monomer 

unit shown in Figure 3.3, which is repeated by m times. The calculations in this dissertation are 

performed for fully developed Nafion chains having m = [50, 120]. The -(CF2CF)(CF2CF2)n- 

portion constitutes the hydrophobic backbone of the polymer and  is the pendant chain 

terminal ionic group which is hydrophilic and generally interacts with the nearest cluster. The 

typical composition of Nafion backbone is 87/13, meaning that there are 13 (CF2CF) groups for 

every 87 (CF2CF2) groups in the total length of the polymer backbone; thus the value of n is most 

often approximately 7. In the simulation, the actual values of n are sampled from a discrete 

−
3SO
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probability distribution in the range of [5, 11] as summarized in Table 1, with a mean of 

approximately 7 [42].    

 

 

Figure 3.3: Chemical structure of Nafion monomer 

 

Table 1. Discrete probability distribution of n values [42] 

n Probability 

5 0.1 

6 0.2 

7 0.3 

8 0.2 

9 0.1 

10 0.05 

11 0.05 

 

In the simulation, the polymer chains are placed within a (5000 Å)3 3-dimensional grid of 

spherical clusters. The grid size is selected to accommodate the longest anticipated, fully 

extended backbone chain in a fully hydrated material sample based on an estimation of Nafion 

polymer chain length [42]. The cluster distribution scheme is akin to a cubic lattice shown in 
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Figure 3.4. The center-to-center distance between clusters is determined by the cluster radius and 

volume fraction. 

 

 

Figure 3.4: Cluster distribution akin to a cubic lattice [42] 

 

Once the cluster distribution is assigned, a starting point of each polymer chain is 

randomly specified and the backbone is dynamically constructed according to the polymer 

spacial geometry within the 3-dimensional grid, where cluster locations are excluded. The 

Nafion backbone takes the form of (CF2CF2), or polytetrafluoroethylene (PTFE), based on the 

simplifying assumption that the presence of the diluent has only a small effect on backbone 

potentials [80].  For PTFE, as shown in Figure 3.1, the carbon-carbon bond length and in-plane 

bond angle are fixed at 53.1=−ccl Å, and , respectively, while the out-of-plane rotation 

angle  corresponding to energy minima must be identified by applying a statistical weight 

o116=θ

ϕ
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matrix. Thus PTFE statistical weight matrices are applied to predict Nafion backbone bond 

angles. Each subsequent bond must be similarly placed. 

For PTFE, both 3- and 4-state statistical weight matrices have previously been studied, 

where 3- and 4- dictate the number of low energy out-of-plane bond angles φ (Figure 3.1). The 

more physically realistic helical chain coiling in both PTFE and Nafion may be captured only by 

the 4-state matrices [81,82]. Therefore, the simulation adopts the 4-state model with rotation 

angles of two trans (φ = ±15°) and two gauche (φ = ±120°) conformations. The 4-state statistical 

weight matrices used in this model, as discussed in details in Matthews et al. [42] and Weiland et 

al [41], are: 
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where σ = 0.2, σ' = 2.0, ω = 0.2, β = 0.5 at 25 °C, and the rows and columns are indexed in the 

order t+ (+15 °), g+ (+120°), g - (-120°), and t - (-15°). The orientation of the second bond is 

dictated by , the third by , the last by , and all others by , except when a bond 

placement coincides with a cluster or when the bond corresponding to a pendant chain 

attachment point is being placed. These matrices have then been normalized to obtain the 

conditional probability matrices [36] as,  

2U 3U nU kU
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These matrices are employed with a random number between 0 and 1 to choose the angle of 

rotation φ for all bonds in the simulation based on the rotational state of the preceding bond. For 

example, suppose placement is being attempted of the last bond of a backbone chain where the 

preceding bond is in the t+ state. This indicates that the first row of Qn contains the appropriate 

conditional probabilities to select the particular φ value for the current bond. A random number 

generator is invoked to select a random number between 0 and 1. Assume a value of 0.5 is 

returned. Since 0.278 < 0.5 < (0.278 + 0.482), the value φn = 120º has been selected.  

In Matthews et al. [42] and Weiland et al. [41] when all out-of-plane rotation angles 

result in cluster coincidence, the chain is terminated. This resulted in the prediction of total chain 

lengths that were unrealistically short - as compared to the expected number of repeat units m 

being in the range of 135 to 225. In the Matthews et al. and Weiland et al. studies m never 

exceeded 45 but was typically much lower. To avoid early chain termination in the present 
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effort, when the current bond fails for all out-of-plane rotation angles, the preceding bond is 

replaced by choosing another low energy conformation (Figure 3.5).  

 

 

Figure 3.5 Flow chart for the improved RIS model 

 

By this means early chain termination is greatly eliminated, and more realistic r-values are 

generated from polymer chains with m up to 120. This approach is also physically consistent 

with chain reorientation upon hydration.  

It is assumed that the pendant chain terminal ionic group successfully communicates with 

the nearest cluster if the distance between the backbone connection point and the cluster is within 

8 Å. This value is an estimate of the fully extended length of the Nafion pendant chain length 

which has been reported to be in the range of about 5 to 10 Å [83]. Each simulated Nafion 

backbone chain can have multiple r-values as illustrated in Figure 3.2. The free-end effects are 

eliminated by discarding the first and last r-values for each chain because the free ends do not 

contribute to material stiffness. To assure statistical validity, a large number of r-values 
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(~10,000) are generated for each data set. From this, an appropriate PDF  for the chain 

length may be estimated. 

3.2.2 Macroscopic Model for Stiffness Prediction 

To compute Young’s modulus of the material, Boltzmann’s approach to statistical 

thermodynamics is used in a macroscopic-level model to relate the entropy of the chain )(rS  to 

the estimated PDF )(rP  for the simulated polymer chain end-to-end lengths through the 

expression 

        ( 3.2.3) 

where is Boltzmann’s constant and is a constant of integration that drops out when the 

difference in entropy for the unperturbed configuration is taken with respect to the distorted 

configuration. Under the assumption of rubberlike elasticity, the “three chain” model, as 

described by Treloar [83], yields the relation 

     ( 3.2.4) 

where  is the number density of network chains,  is the root mean square of the simulation-

generated r-values and α  is the relative length of the sample. The three chain model, in essence, 

assumes that the simulated polymer chains will tend to align with Cartesian axes.   

RIS theory assumes that under load, the rotation about a given bond is unrestricted and 

thus the Helmholtz free energy is strictly a function of entropy, allowing the nominal stress  

to be then given by 
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   ( 3.2.5) 

where is the absolute temperature,   and . The corresponding 

modulus is computed from the relation 

        ( 3.2.6) 

For small strains , the modulus  approaches Young’s modulus. The resulting 

stiffness is subsequently given by 

   ( 3.2.7) 

and  is estimated per the method of Weiland et al. [41] by 

         ( 3.2.8) 

where is the material density,  is Avogadro’s number, and  is the molecular weight 

of the portion of the chain between two cluster communication points. The material density is a 

readily available, experimentally determined value, whereas Avogadro’s number is a constant. 

is estimated based on the percentage of successful pendant chain-to-cluster 

communications. Based on the assumption of n = 7 (Figure 3.3), it corresponds to a molecular 

weight of the repeat unit of 781 g/mol, where only the backbone is considered to be load bearing. 

A single failure corresponds to a local of g/mol. Therefore, if the failure 

rate is 15%, then g/mol [41]. 

[ ])()(
3

2/12/3* −− ′−′−=






∂
∆∂

−= ααα
ν

α oo
o

T

rGrG
kTrSTf

T )(ln)( rPrG =
dr

rdGrG )()( =′

][ *f

[ ] 2

*
*

−−
−=

αα
ff

)1( →α ][ *f

( ) ( ) ( )[ ] ( ) ( )
( )[ ] 









 ′+′−′′−

= 2

2

6 o

oooooooo

rP
rPrPrPrrPrPrkTr

E
ν

υ

cc

A

MW
N

−

=
ρ

ν

ρ AN ccMW −

ccMW −

ccMW − 15622781 =×

898278115.078185.0 =××+×=−ccMW



 43 

3.2.3 Statistical Analysis Methods 

In order to apply Boltzmann statistical mechanics (Section 3.2.2), a probability density function 

must be created from the collected r-values (Section 3.2.1). Application of the traditional 

cubic spline approach can lead to prediction instability and further suffers from a lack of 

standardized application strategies [42]. Conversely application of the Johnson family of 

distributions in the estimation of  is well defined and results in stable predictions. Of the 

four Johnson family distributions (Unbounded, Bounded, Lognormal, Normal), only the 

Unbounded and Bounded families are sufficiently flexible for the data generated from the 

simulation model [41] and are used in this work.  

In general, the probability density function  based on the Johnson distributions has 

the form 

    ( 3.2.9) 

where  and  are shape parameters,  is a scale parameter,  is a location parameter, for all 

 the function  is defined according to the applied distribution family,  is the first 

derivative of with respect to , and f ′′  is the second derivative of with respect to . The 

Unbounded and Bounded distributions defining ,  and f ′′ are 

        ( 3.2.10) 

        ( 3.2.11) 
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     ( 3.2.12) 

The bounds on these distributions are 

         ( 3.2.13) 

Using (3.2.9)-(3.2.13), the function G(r) can be written as 

    ( 3.2.14) 

When this expression is substituted into (3.2.6), the resulting stiffness expression as a function of 

distortion is given by 

( 3.2.15). 

3.3 MULTISCALE STIFFNESS PREDICITONS OF NAFION 

RIS-MC simulation of long backbone chains in the presence of inclusions is known to be a 

substantial computational challenge [38,41,42]. For the material cases of Nafion considered here 

it is proposed that physically realistic chain lengths have between 135 and 225 repeat units (m-

values). However, in previous studies of this material system the simulated chain length never 
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exceeds m = 45, while typical values are much lower [42]. This is due to the early termination 

while building the backbone chain. 

In the current effort the RIS-MC approach is improved so that chain lengths 

corresponding to m-values in the range of [50, 120] are achieved. Because modest increases in 

simulated chain length can significantly increase computational burden, identification of the total 

chain length required for stable predictions is desirable (where it is assumed that total physical 

chain length may not be necessary because it is the end-to-end chain lengths that dictate the 

elastic properties of the material.).  

In this work, Nafion 1200 EW in Lithium form with 10 vol% water is first studied to 

identify the chain length that is sufficient to gain stable predictions. Based on the chain length 

that is identified, Nafion 1200 EW in Sodium form with 10 and 30 vol% of water are then 

studied to validate the modeling trends for ionomers with different counterions and hydration 

levels. The cluster size and volume fraction for Nafion in Lithium and Sodium forms are 

provided in Table 2.  

 

Table 2. Cluster morphology values based on [14]  

Counterion Li+ Na+ Na+ 

Cluster volume fraction  10%  10% 30% 

Cluster radius (Å) 13 11 21 

Cluster center-to-center distance (Å) 43.8 39.6 50.4 

 

It is significant that the cluster size and distribution differ for the two 10 vol% cases. 

These values derive from the micromechanics model discussed previously [26]. The electrostatic 
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energy term in the energy minimization differs between the cases, which causes a shift in the 

equilibrium cluster size. In turn, the electrostatic energy term differs because the two ions 

achieve different proximities to the electroneutralizing pendant group based on their physical 

sizes.    

3.3.1 Nafion 1200 EW in Lithium form 

For the Lithium cases, m-values are sampled from several smaller ranges, which are [50, 80], 

[80, 100], and [100, 120]. A set of r-values (about 10,000) is generated for each simulation. Ten 

sets of data are obtained and analyzed for each of these chain length ranges.  

The data sets of r-values are then imported into the software package FITTR1 [84] for 

statistical analysis. The package incorporates several fitting methods for each of the four Johnson 

families in the generation of a P(r) expression. In this dissertation, estimates of  are 

generated using combinations of Johnson Bounded and Unbounded distributions.  The FITTR1 

software also generates the Kolmogorov-Smirnov (K-S) statistic to assess the maximum 

discrepancy between the empirical (refers to the simulated distribution here) and fitted 

distributions as a percentage value. Based on the K-S statistic, the diagonally weighted least 

squares (DWLS) fitting method is selected as the best fit for the Nafion case considered in this 

study. Brief summaries of the predicted polymer stiffness per the DWLS fitting method for both 

the Johnson Bounded and Unbounded distributions are provided in Table 3 and Table 4, 

respectively. Full details of the multiple simulations and corresponding predictions are provided 

in appendix A.  

 

)(rP
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Table 3. Stiffness predictions [MPa] of Nafion 1200 EW in Li+ for different m-values, Johnson Bounded 
distribution. 

m 50-80 80-100 100-120 

Median [MPa] 12.8 13.1 13.0 

Standard Deviation [MPa] 0.4 0.5 0.6 
 

Table 4. Stiffness predictions [MPa] of Nafion 1200 EW in Li+ for different m-values, Johnson Unbounded 
distribution. 

m 50-80 80-100 100-120 

Median [MPa] 13.8 13.0 13.4 

Standard Deviation [MPa] 0.6 0.7 0.8 

 

Attaining longer chain lengths establishes that simulated chain length is an important 

parameter in this method. In the previous works exploring this method (m typically much less 

than 45), a standard deviation of 3.6 MPa from the predicted median stiffness of 10.0 MPa is 

sufficient to argue that the method is stable [41]. In the current effort the standard deviation is 

within a few percent of the mean stiffness of about 13 MPa for all cases; thus increasing the 

chain length improves prediction stability by almost an order of magnitude. In addition, the 

mean value predicted has modestly increased. However, chain lengths containing more repeat 

units than [50, 80], while significantly increasing the computational burden, do not offer any 

further improvements in prediction stability. It is worthy of note that it would be incorrect to 

perceive a trend of increased stability in the range of [50, 80] as compared to the range of 

[100,120]; for all ranges considered in this work the K-S statistic is virtually unchanged as chain 

length increases. The variations in the standard deviation from the median are subsequently also 

small. Similarly it does not suggest that the predictions employing the Johnson Bounded 
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distribution are significantly better than those employing the Johnson Unbounded distribution for 

the case considered in this study.   

While the current results yield no significant distinction between the predictions resulting 

from the Johnson Bounded or Johnson Unbounded distributions, early studies suggest that the 

Johnson Bounded distribution is preferred [41]. The significant difference between this study and 

earlier studies is that the root mean square value for the estimated PDFs are nearly identical for 

Johnson Bounded and Unbounded distributions as illustrated in Figure 3.6. In general, however, 

for the Johnson Unbounded distribution tends to be larger than that of the Johnson Bounded 

distribution. In instances where for the Unbounded distribution is in the vicinity of the 

inflection point of the PDF, application of the Bounded distribution will likely be preferred. The 

rationale in these cases derives from inspection of equation (3.2.15), where it is observed that the 

predicted modulus is a function of the PDF, and of its first and second derivatives; these values 

can oscillate in the vicinity of the inflection point. Further, application of the cubic spline 

approach is discouraged in this method, as the localized, user-dependent binning of the data can 

similarly yield local expressions with inflection points or other unstable qualities as compared to 

the PDF as a whole  [41,42].  

Moreover, a significant number of computational runs are completed to confirm that 

10,000 r-values are sufficient to yield a repeatable result; this is substantially fewer than the 

30,000 to 80,000 r-values previously employed in the RIS-MC approach [37-39]. Thus, a single 

computational simulation of chains with lengths in the reduced range of [50, 80], and requiring 

only ~10,000 r-values could be employed to repeatably predict bulk material stiffness of Nafion 

within a range of few percent.  

or

or

or
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Figure 3.6: Typical Johnson Unbounded and Bounded estimated PDFs and -values of 19.3 and 19.0 Å, 
respectively, for a simulation including [50, 80] m-values. 

 

One of the primary goals of this effort is to establish a repeatable and reliable first order 

multiscale material property prediction method. The foregoing establishes that the method is 

repeatable; the reliability of the method must next be considered. Experimental measurement of 

the bulk stiffness of fully hydrated Nafion 1200 EW in Lithium form suggests a stiffness in the 

range of ~75 to ~150 MPa [14,23,85] (Difficulties with hydration control are typically reported 

as the source of error in this experimental measurement.) This experimental value is a measure of 

the volume averaged bulk material stiffness including semicrystalline regions, hydrophilic 

clusters, and the net backbone contributions to stiffness. Conversely, the simulation predicts only 

the net backbone contribution to stiffness, for which there is no reliable experimental measure. 

Thus a means to compare what is reasonably known from experiment to the prediction must be 

imposed: a simple rule of mixtures strategy is employed for this purpose. 

or
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The rule of mixtures assumes that the stiffness of each constituent contributes to the bulk 

stiffness in proportion with its volume fraction, 

       ( 3.3.1) 

where is the experimentally determined bulk stiffness,  is Young’s modulus, is volume 

fraction, and the subscripts cl, sc, and bb represent the hydrophilic cluster, semicrystalline, and 

backbone regions, respectively. For the case when the cluster volume fraction is 10%, would 

be set to 0.1. But noting that this portion of the bulk material is not expected to support the 

tensile load imposed experimentally, the stiffness of this region is set to zero. The weight 

fraction of the semicrystalline regions present in ionic polymers has been reported to be in the 

range of 3~12% [80]; converting this to volume fraction yields a range of 1.8~7.4%. 

Experimental studies of the semicrystalline regions of a material that is similarly dominated by a 

PTFE backbone reports directional stiffness matrix values for the PTFE semicrystalline regions 

[87]; based on this report, 5000 MPa is a reasonable assumed value for the Young’s modulus of a 

semicrystalline region. If the semicrystalline volume fraction is assumed to be 2%, then the 

remaining polymer matrix must make up 88% of the volume. Imposing the simulation predicted 

stiffness of 13 MPa for this remaining volume in Equation (3.3.1) results in the prediction of a 

bulk material stiffness of 110 MPa, which is well within the range of experimentally reported 

stiffness for bulk Nafion in Li+ form [14].   

In the foregoing rule of mixtures analysis it is convenient to select a 2% semicrystalline 

volume fraction because, (1) using round numbers avoids the implication of artificially high 

levels of prediction precision, while (2) simultaneously illustrating that a reasonable prediction is 

within the bounds of the analysis. However, it must be recognized that the high stiffness of the 

bbbbscscclclave EfEfEfE ++=

aveE E f

clf
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semicrystalline region dominates the prediction. Thus the most significant observation that is 

drawn from this analysis is that the predicted 13 MPa contribution to stiffness from the polymer 

backbones is within an appropriate range. 

Alternatively, consider that hydrated Nafion in acid form (viz., H+ rather than Li+ cations) 

has similar bulk stiffness to that in Lithium form, with an experimentally reported range of ~100 

to ~130 MPa. Acid form Nafion hydrogel (no significant semicrystallinity) has been reported to 

have a stiffness of ~15 MPa [87]. Again, the presence of water in the samples obscures the 

polymer backbone contribution to the measurement. Because the details of the Nafion 

morphology in H+ form differ from that of Li+ form, detailed comparison of the two cases should 

be viewed with caution. However, these measurements provide a reasonable frame of reference 

that supports the perspective that the predicted backbone stiffness of ~13 MPa is within reason 

(and more specifically, is not artificially low). 

3.3.2 Nafion 1200 EW in Sodium form 

The stiffness predictions of the Nafion 1200 EW in Lithium form have been demonstrated to be 

stable and reliable. The RIS-MC approach is then used for Nafion 1200 EW in Sodium form in 

order to further check the validity of the approach for Nafion with different counterions and 

hydration levels. The cluster morphology used in the Sodium case is shown previously in Table 2. 

The foregoing effort has demonstrated that m in the range of [50-80] is sufficient to get 

repeatable and reliable stiffness predictions for Nafion 1200 EW in Lithium form. Therefore, for 

the Sodium cases, m is randomly distributed in the range of [50-80]. Since the prediction results 

of Lithium case show good stability with a standard deviation of only a few percent, only three 

data sets are generated for each of the Sodium cases. The statistical analysis of Lithium cases 
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does not suggest any superiority between Johnson Bounded and Unbounded distributions, which 

means that either of the two distributions could be used. In this work, only Johnson Bounded 

distribution is employed for the Sodium cases. 

The stiffness predictions of Nafion 1200 EW in Sodium with 10 and 30 vol% of water by 

Johnson Bounded distribution are summarized in Table 5 and Table 6, respectively. The 

resulting stiffness for the two cases are about 26.2 MPa and 15.6 MPa, respectively. The 

prediction results retain the stability with a standard deviation of a few percent. 

 

Table 5. Stiffness predictions [MPa] of Nafion 1200 EW in Na+ with 10 vol% water 

ro Stiffness 

18.55 26.2 

18.59 24.3 

18.57 27.3 

Median 26.2 

Standard Deviation 1.6 
 

Table 6. Stiffness predictions [MPa] of Nafion 1200 EW in Na+ with 30 vol% water 

ro Stiffness 

19.76 15.5 

19.57 16.0 

19.55 15.6 

Median 15.6 

Standard Deviation 0.2 
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For consistency, the rule of mixtures is applied to the sodium predictions akin to that for the 

lithium prediction to assess their reliability. As the volume fraction of cluster clf changes, the 

volume fraction of backbone regions bbf changes accordingly. For the cases when the cluster 

volume fraction is 10% and 30%, clf  would be set to 0.1 and 0.3. If the semicrystalline volume 

fraction scf is assumed to be 2% for Nafion with 10 vol% water, then the remaining polymer 

matrix must make up 88%. Based on this assumption, the semicrystalline volume fraction for 

Nafion with 30 vol% water would be 1.6%, and the remaining polymer matrix would make up 

68.4% of the total volume. Imposing the predicted stiffness values in Table 5 and Table 6, the 

predictions of bulk stiffness of Nafion in Sodium form with 10 and 30 vol% hydration are 123 

MPa and 90 MPa, respectively. The prediction trends are consistent with the experimental 

observation that Nafion with higher hydration level is softer than the polymer with lower 

hydration level.  

 

Table 7. Stiffness predictions of Nafion 1200 EW in Li + and in Na+. 

Counterion Hydration level 
[vol%] 

Backbone Stiffness 
[MPa] 

Bulk Stiffness 
[MPa] 

Li+ 10  13.8 110 

Na+ 10  26.2 123 

Na+ 30  15.6 90 

 



 54 

3.3.3 Discussion 

The stiffness predictions for all the three cases presented previously are summarized in Table 7. 

For the same hydration level (viz., 10 vol%), the predicted backbone stiffness of the Sodium case 

is significantly larger than that of the Lithium case. Thus the prediction suggests that for different 

counterions, even for the same hydration level, a different material stiffness should be expected. 

Further, this prediction was affected by the different clustering imposed for the two cases, where 

variations in electrostatic energy resulted in the imposition of smaller, more densely packed 

clustering for the sodium case. Whether or not the imposed spherical cluster morphology akin to 

that of Hsu and Gierke is strictly true, it is reasonable to expect that the nature of clustering 

would be similarly affected for other morphological postulates.   

It is next noted that the prediction is consistent with the experimental observations that 

the stiffness of dry Nafion polymer correlates with the radius of the alkli metal counter-cation in 

the polymer [14]. It is argued that in general larger cations result in larger observed dry polymer 

stiffness. This is again consistent with the influence of the electrostatic term in the evolution of 

morphology, and subsequently on the energy state of the surrounding polymer. Therefore, the 

RIS-MC prediction that the backbone stiffness of Nafion in Sodium form is larger than that of 

Lithium form is argued as reasonable.  

Consider next the predictions for the same counterion (Sodium), but for different 

hydration levels. For the sodium cases of 10 and 30 vol% water the predicted backbone stiffness 

is 26.2 and 15.6 MPa, respectively. Compared with the 10 vol% of water case, the mean root 

square of chain length ro for 30 vol% of water case is larger, and hence the stiffness is smaller. 

But the relative magnitudes may be initially counterintuitive. Namely, how could the sample 
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ever achieve 30 vol% when the elastic energy barrier at 10 vol% would necessarily be significant, 

and therefore resist the additional uptake? But consider next that achieving optimum uptake 

requires boiling. Simply soaking the sample at room temperature will not suffice; these room 

temperature predictions are consistent with that observation. While the assessment presented 

here does not address the process of how the additional energy associated with boiling results in 

30 vol%, it does predict that once the sample has achieved this maximum hydration, it will retain 

that hydration at room temperature so long as it is stored in water. In other words, the prediction 

is consistent with the reality that once this hydration level does exist, the elastic energy tending 

to expel that water is reduced. Only upon exposure to open air will the excess water be expelled. 

Thus the prediction of decreased local stiffness with increased hydration, while initially 

counterintuitive, is consistent with experimental observation.   

The last point of discussion addresses the utility of a method that can reasonably predict a 

stiffness value that is experimentally difficult or impossible to measure. For instance, the 

preceding discussion of energy barriers to water uptake illustrates the role that local stiffness can 

play in morphology evolution; these parameters are also important in understanding active 

response. However access to this local stiffness parameter is experimentally impossible. Thus, in 

light of the fact that multiscale methods, in general, have not yet reached the requisite maturity to 

routinely and accurately achieve such predictions, the ~1st order accuracy provided by the 

presented method becomes an important tool. Other significant parameters could similarly be 

assessed, such as the stiffness of the pendant chains. In the case of this alternate stiffness 

parameter, even indirect assessment of available experimental characterizations, such as the rule 

of mixtures analysis imposed here, is impossible. The importance of this parameter in the 

mechanism of ionic transport for fuel cell applications has been considered [24,25]. Similarly, 
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the importance of this parameter in actuation/sensing applications has been discussed [26,31]. 

However, in each of these efforts, because of the lack of viable experimental or modeling 

strategies to yield insight into the actual stiffness, an artificially imposed value is instead 

employed. The method presented in the current effort offers a viable strategy with only modest 

computational burden, for predicting this stiffness value, and subsequently enabling more 

informed assessment of the mechanisms responsible for ionic polymer active response.  

The foregoing describes one potential application for the modeling methodology 

described in this effort. But the approach has considerable versatility. Because the magnitude of 

the predictions assessed in detail in this effort are both reasonable and stable, it is conceivable 

that the approach could be similarly useful in the prediction of other properties (for instance, 

polarization evolution in PVDF), as well as in guiding otherwise computationally intensive 

materials studies. The next section offers one illustration of the method’s versatility through 

morphology prediction of a lesser known ionic polymer. 

3.4 MULTISCALE STIFFNESS PREDICTIONS OF SELEMION®  

The intent of the forgoing study was to establish, for a well known case, that the RIS-MC 

method is robust. In this case an often studied IPT sensor case was considered – namely an IPT 

employing a Li+ exchanged, 10 vol% of water, Nafion 1200 EW ionic polymer layer. However, 

the ultimate intent of identifying underlying response mechanisms is to use this understanding to 

enhance response via, for instance, utilization of alternate constituents. Having established that 

the method is robust, it may next be employed to forecast properties of lesser known candidate 

systems, or of material properties that are experimentally inaccessible. For instance, in a 
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subsequent companion study the method was employed as part of an iterative strategy to predict 

morphology, as detailed in the next sections. 

3.4.1 Introduction to Selemion® 

While the acidic polymer electrolyte membrane (PEM) Nafion has garnered considerable 

attention, the active response of basic PEMs offers another realm of potential applications 

[14,30]. The basic PEM Selemion® has been considered for use in desalination processes as well 

as in the development of a CO2 separation prototype device (Figure 3.7) [79]. Moreover, like the 

acidic counterpart, a basic ionomer relies on selective ionic conduction, and could therefore be 

considered in IPT development. However, Selemion® has not yet been studied as much as 

Nafion.  

 

 

Figure 3.7: An elecetrochemical separation  module for carbon dioxide [79] 

 

The mechanical response of Selemion® AMV 500 EW with carbonate counterion is 

considered. A cluster distribution akin to a cubic lattice is imposed. It is assumed that the ion 
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exchange is complete. To implement the RIS-MC model the Selemion® backbone chain 

conformation must be identified through appropriate statistical weight matrices for bond angles 

and lengths, and distances between pendant chain attachment points.   

Selemion® is a copolymer of styrene, chloromethylstyrene, and divinylbenzene, which is 

manufactured by copolymerizing these three components and introducing a trimethyl ammonium 

as the ion exchange group. Bulk Selemion® material is a complicated network of molecules, as 

shown in Figure 3.8. Styrene and divinylbenzene only contribute to building the network of the 

material and, consequently, stability; chloromethylstyrene is the component that is able to be 

attached by a pendent chain. There is little information available about the exact structure of 

individual Selemion® molecules, while the backbone of this kind of polymer is composed of 

styrene. Although the Selemion® backbone is a complicated network rather than a single 

backbone chain, the conformational characteristics of polystyrene (PS), which have been studied 

by using conformational energy calculations [88], may be used in our simplified model to 

perform a preliminary study of the properties of Selemion®. 

 

 

Figure 3.8: Structure of Selemion® network. 

 

In this model, the Selemion® molecule is considered as composed of the repeating 

monomer unit -(CH2CHC6H4CH2NR3)(CH2CHC6H5)n-, which is repeated by m times.  The -

(CH2CH)(CH2CHC6H5)n- portion constitutes the backbone of the polymer and NR3
+ (i.e., may be 
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N(CH3)3
+) is the pendant chain terminal ionic group which is hydrophilic and generally interacts 

with the nearest cluster. Based on the assumption of a PS form for the backbone, the composition 

of this backbone can be calculated from the equivalent weight of Selemion®. Based on the 

equivalent weight of the specific case considered, the value of n is approximately 3.68. In this 

simulation, the actual values of n are sampled from a discrete probability distribution on the 

range [0, 7], with a mean of approximately 3. The discrete probability distribution for n values is 

shown in Table 8. Since the actual molecular weight of Selemion® is not readily available, the m 

value used in this simulation is chosen based on the preceding studies, which show that an m 

value of 50-80 is sufficient for non-terminated Nafion polymer chains to obtain stable stiffness 

predictions [78]. It is also found that in all the data sets of r-values for a certain chain length 

range, the r-values are mostly from polymer chains with m equals to 50. This is because a small 

increase in polymer chain length increases the computational burden significantly and longer the 

polymer chain is much more likely to encounter an early termination. Therefore, chain length of 

m = 50 is chosen for the case of Selemion® 500 EW in carbonate form. 

Table 8. Discrete probability distribution for n values of Selemion® 

n Probability 

0 0.05 

1 0.1 

2 0.25 

3 0.25 

4 0.15 

5 0.1 

6 0.05 

7 0.05 
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3.4.2 RIS-MC Model for Selemion® 

In the simulation model, the polymer chains of Selemion® are placed into a certain arrangement 

of spherical clusters within a 3-dimentional grid of (5000 Å)3. A cluster distributions scheme 

analogous to cubic crystalline structure is imposed. The cluster size  for this case is calculated 

using the micromechanics approach presented by Li and Nemat-Nasser [26] as introduced in 

Chapter 2. 

Once the cluster distribution is assigned, a carbon-carbon bond is randomly placed in the 

3-dimentional grid, where cluster locations are excluded. For PS the carbon-carbon bond length 

and in-plane bond angle are fixed at l = 1.53 Å, and θ = 112°, respectively, while the out-of-

plane rotation angle must be identified by applying a statistical weight matrix, where it is 

understood that various angular orientations between bonds correspond with local low energy 

conformations. Each subsequent bond must be similarly placed. The conformational 

characteristics of PS have been studied by using conformational energy calculations [88]. PS has 

three isomeric forms: isotactic PS (iPS), which has pure meso dyads, syndiotactic PS (sPS), 

which has pure racemic dyads, and atactic PS, which has a mix of meso dyads and racemic 

dyads. The simulation adopts the 2-state model with rotation angles of 10° and 110°. The 2-state 

statistical matrix applied for meso dyads is applied, which is 

         ( 3.4.1) 

where , , and  were identified by the means provided in [88], 

and the rows and columns are indexed in the order 10° and 110°. The matrix has then been 

normalized to  
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and the orientation of the second bond is dictated by it, except when a bond placement coincides 

with a cluster or when the bond corresponding to a pendant chain attachment point is being 

placed. It is assumed that the pendant chain terminal ionic group successfully communicates with 

the nearest cluster if the distance between the backbone connection point and the cluster is within 

7 Å. This value is an estimate of the fully extended length of the Selemion® pendant chain. 

To avoid early chain termination, the previous bond is replaced by choosing a minor low 

energy conformation similar to the work presented in previous section [77,78]. By this means the 

chain termination is postponed. Therefore, more realistic r values are generated. Each simulated 

Selemion® backbone chain can have up to 50 r values. The free-end effects are also eliminated 

by discarding the first and last r value for each chain as before. To assure statistical validity, a 

large number of r values (about 10,000) are generated. From this, the probability density 

function P(r) for the chain length may be estimated using Johnson family distributions per the 

computational methods presented in section 3.2. 

3.4.3 Results and Discussions 

Fully hydrated Selemion® 500 EW polymer with cubic cluster orientation is considered. It is 

assumed that the ion exchange is complete. In equation (2.4.1), repeated here for convenience  
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the initial guess of mean square polymer chain length  for Selemion® is chosen as the mean 

square Nafion chain length from RIS-MC calculation. Imposing input values with ranges 

consistent with the current understanding of Selemion®, the cluster radius is predicted to be 24.2 

Å. The parameters are provided in Table 9.  

 

Table 9. Parameters and results of calculation for cluster size in Selemion® 

Equivalent Weight (g/mol) 500 Temperature (K) 300 

Dry density  (g/cm3) 1.20 Wet density  (g/cm3) 1.16 

Water Content (weight percent) 21% Water Content (volume percent) 25% 

Effective density (g/cm3) 1.19 Surface Energy Density (N/m) 0.0036 

Radius of Cluster rc (Å) 24.2 Mean distance between cluster (Å) 59.8 

 

 

With these parameters, the end-to-end chain lengths of Selemion® are generated by RIS-

MC method, which are then used to predict the polymer stiffness. A brief summary of the 

predicted Selemion® polymer stiffness per the DWLS fitting method for the Johnson Bounded 

distribution are provided in Table 10. The cluster size is also recalculated by using the simulated 

Selemion® chain lengths. The resulting cluster radius is 2.42 nm. With this number, per the RIS-

MC approach, the Selemion® stiffness is predicted to be 1.24 MPa, which is within the 

tolerance, which means the foregoing predictions are good and no iteration is required. 
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Table 10. Stiffness predictions for Selemion® [MPa], m=50, Johnson Bounded distribution. 

 Stiffness 

15.05 1.18 

15.55 1.11 

14.42 1.50 

15.16 1.17 

15.41 1.16 

Mean 1.22 

Standard Deviation 0.16 

 

The resulting stiffness predictions are too low. Volume averaged stiffness of hydrated 

Selemion® is on the order of 600 MPa; per the rationale of the Nafion discussions, it is not 

appropriate to directly compare the predicted local stiffness to this experimentally determined 

global stiffness, it is still reasonable to infer from this experimentally available parameter that the 

predictions are too low.  Given the simplifying assumption employed in this preliminary study, 

this is to be anticipated. Namely, because the network structure of Selemion® molecule is 

simplified as a single backbone rather than a branched system (Figure 3.9), the predicted 

crosslink density is too low. The stiffness prediction of Selemion® could be improved to achieve 

more realistic results by expanding the simplified backbone of Selemion® to a more complex 

branched structure and applying more mature statistical matrices.  

 

or
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Figure 3.9: Backbone strucutre of Selemion® (a) our model – single backbone chain (b) the real branched 
backbone chain. 

 

However, as shown in Table 10, the simulated stiffness values of this method continue to 

be stable for an alternate material system (as previously demonstrated for Nafion). As model 

complexity is increased, it may be reasonable to assume that this multiscale method will continue 

to demonstrate the ability to generate reasonable macroscopic property predictions. 

The foregoing discussion of the prediction of Selemion® morphology demonstrates the 

utility of the RIS-MC method developed in this dissertation for predicting parameters that are 

currently unavailable. While other demonstrations become little more than an academic exercise, 

the method could be similarly employed for the prediction of material parameters that are 

experimentally inaccessible. Significant among these is the prediction of pendant chain stiffness 

in specific ionomer/diluent/cation cases. 

It has previously been argued that pendant chain stiffness plays an important role in the 

concentration of inter-cluster free (unpaired) cations. In the next chapter this concentration is 

again estimated for a well studied IPT case. However, novel ionomer/diluent/cation cases will 
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require a method to estimate this value where the foregoing offers that functionality via a 

relatively straight forward, computationally un-intensive platform. 
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4.0  STREAMING POTENTIAL METHOD FOR MODELING THE 

ELECTROMECHANICAL RESPONSES OF IONIC POLYMER TRANSDUCERS  

In this chapter, a modeling construct for exploring the hypothesis of streaming potential in ionic 

polymer transducer (IPT) sensors is presented. The streaming potential hypothesis arises from 

the argument that incomplete pairing of covalently attached pendant ionic groups with their 

electro-neutralizing counterions establishes the existence of a charged electrolyte within the ionic 

polymer [31,32]. This electrolyte exists in the hydrophilic phase of the otherwise hydrophobic 

material. Under mechanical stimulation the electrolyte flows past electroded regions interspersed 

within the hydrophobic phase, generating a streaming potential in the electrode. To well illustrate 

the streaming potential hypothesis, the parallel water channel morphology in Nafion membrane 

recently proposed by Schimdt-Rohr and Chen [29] is employed in the model. The first section 

(4.1) introduces the streaming current in a single channel. In the second section (4.2) the first 

generation model is developed for the parallel water channel morphology and successfully 

addresses the physics of sensing in IPT bending. The effect of electrode architecture is 

considered in Section 4.3, while variation of the ionomer state (diluent and counterion) are 

considered in Section 4.4. Section 4.5 explores the implications of varied ionomer morphology. 

Section 0 expands the model to address transient effects, such as signal decay under DC 

deformation. Section 4.7 explores the specific case of response for varied input stimulus rates. 

The chapter is then closed with concluding discussion in Section 4.8.    
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4.1 THE STREAMING POTENTIAL HYPOTHESIS 

As a starting point, and for its ease of implementation, the parallel water channel morphology 

proposed by Schmidt-Rohr and Chen [29] has been employed a priori to explore the streaming 

potential hypothesis.  Later sections of this chapter will explore the implications of alternate 

morphological propositions.  Further, model development focuses on bending; arguments for the 

existence of a streaming current for other modes of deformation are offered in later sections. 

 

 

Figure 4.1:  Schematic illustration of the multiscale structures of an IPT and the origin of the streaming 
current in a channel 

 

The preliminary model begins by considering a pressure-driven flow (i.e., via IPT 

bending) of electrolyte in a rectangular channel. The streaming current generated in a transducer 
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can be predicted as the sum of the streaming currents in all the channels. Figure 4.1 illustrates 

how the streaming potential phenomenon may manifest itself for flow through a channel 

displaying an electric double layer at the surfaces. When a pressure gradient is applied along the 

channel, some of the ions in the double layer shear against the channel wall and are carried by 

the flowing fluid, and a streaming current sI  is established. 

The streaming current sI  generated in a single channel is equal to the product of the 

charge density of the flowing fluid,
 

)(xρ , and the local speed of the fluid, , integrated over 

the cross section of the channel [89]: 

∫−=
h

hs dxxvxwI )()(ρ                                                                                                  ( 4.1.1)  

where x  is the height from the channel midplane, w  is the channel width, and h  is half of the 

channel height (Figure 4.1). The flow velocity distribution can be described by a Poiseuille flow 

subject to the no-slip boundary conditions at the walls: 
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where p∆
 

is the pressure drop between two points a distance l  apart along the channel, and  is 

the viscosity of the flow. The local charge density in the electrolyte is zero beyond the electric 

double layer. Therefore, only the charges on the shear surface of the electric double layer 

contribute to the streaming current. In other words, of that flow, generally only the portion that is 

within one Debye length 1−κ   (~ the distance over which the double layer extends) is of 

consequence. Thus, in the electrolyte that lies within one Debye length of the solution, where 

1−−= κhx  and  2−κ  is negligible, the flow velocity is 

)(xv

η
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If the charge density )(xρ  at the surface of shear is taken as a constant sρ  , when a pressure 

gradient is applied, a streaming current  is established as, 
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Equation (4.1.4) holds in general when the channel size is relatively large. A recent work 

by Daiguji et al. [90] has demonstrated that when the channel size is on the order of or smaller 

than the Debye length, the electric double layers of two adjacent walls overlap. In this case the 

general relationship between streaming current and the flow velocity no longer applies. Instead, 

they argue that the channel becomes a unipolar solution of counterions at a concentration that 

neutralizes the surface charge of the channel. The coions are essentially repelled from the 

channel. If the pressure bias is applied between two ends of the nanochannels filled with a 

unipolar solution of counterions, only the solution of counterions can pass through the 

nanochannels so that the streaming potential and streaming current are generated. When this 

theory applies, i.e., the Debye length is greater than the channel size, the charge density can been 

seen as constant throughout the solution. So, the streaming current in a single nanochannel is 

determined by integrating the product of the charge density and the flow velocity over the cross 

section of the channel 

   ( 4.1.5) 

where  is the charge density of the unipolar solution. 
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Projection of the streaming current requires populating the right hand side of equations 

(4.1.4) and (4.1.5). In this work the dimensions w and h are selected such that they are consistent 

with that of the Schmidt-Rohr and Chen nanochannel model [29]. The macroscopically 

determined viscosity of the diluent may also be employed with the understanding that a more 

correct value would still be treated as a constant and therefore have no impact on the trends of 

interest. The remaining terms must be calculated or inferred by other means as follows in the 

next section. Whether equation (4.1.4) or equation (4.1.5) should be employed in the model, (viz. 

whether Daiguji’s theory applies) depends on the relative dimensions of the channel and the 

Debye length of the electrolyte, which is determined by 

kT
ne

oεε
κ

2
2 2
=            ( 4.1.6) 

where oε
 

is the permittivity of vacuum, ε
 

is the dielectric constant of water, k
 

is Boltzmann 

constant, T
 

is temperature, e
 

is the electron charge, and n  is the number density of the 

monovalent ions defined by 

∑⋅= ][
2
1 iNn A          ( 4.1.7) 

where AN
 

is Avogadro’s number, and ][i  is free ion concentration. 

4.2 PRELIMINARY MODEL FOR IPT SENSING IN BENDING 

In this section an IPT cantilever beam that is fabricated from Nafion membrane plated with 

conductive metal electrodes is considered. Based on the hypothesis of the parallel nanochannel 

ionomer morphology, it is assumed that the hydrophilic regions of the membrane are parallel 
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nanochannels perpendicular to the surfaces of the membrane and uniformly distributed (Figure 

4.1 and Figure 4.2). This corresponds to an assumption of 100% alignment of channels with flow 

direction for bending. This is an optimistic assumption invoked for mathematical simplicity. The 

preliminary model assumes that the interpenetrating electrodes are sufficiently interspersed for 

the resulting current to be communicated to the IPT electrodes. The nanochannel in the model 

has a height and width of  nm and  nm, which are from the average diameter 

of the cylindrical nanochannel proposed by Schmidt-Rohr and Chen [29]. The channel length is 

taken to be the depth of electrode. It is optimistically assumed that the electrodes communicate 

with all nanochannels in that depth completely. 

 

 

 

Figure 4.2:  Selective ionic conduction in parallel nanochannel model  

 

Due to the extreme small size of channels, it is necessary to compare the Debye length of 

the IPT diluent with the channel size to determine if Daiguji’s theory applies [90]. The actual 

Debye length is not accessible. In order to establish a viable frame of reference, consider that for 

two widely different diluent concentrations of 1 M and 0.001 M KCl solutions, by equations 

4.22 =h 4.2=w
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(4.1.6) and (4.1.7), the Debye lengths are 9.75 nm and 308 nm, respectively, both of which are 

greater than the 2.4 nm channel size proposed by Schmidt-Rohr and Chen [29] and are in turn 

greater than the channel size in previously proposed morphologies.  It is therefore deemed 

probable that Daiguji’s theory applies and equation (4.1.5) is employed. Moreover, as model 

evolution is presented in later sections of this chapter, the assumption is retained that Daiguji’s 

theory applies. 

4.2.1 Charge Density in Small Channels 

The charge density can be calculated based on the Weiland and Leo prediction of unpaired 

counterions in equilibrium Nafion [31,32]. The concentration of unpaired ions per unit volume 

may be used directly to estimate charge density such that, 

fl

f
e V

en
=ρ                ( 4.2.1) 

where fn  is the number of free ions, e  is the elementary charge, and the volume of the fluid flV  

is 

cationpanionanclfl VnVnVV −−=               ( 4.2.2) 

where the number n and volume V of the counterions and ionic groups are treated as non-

negligible. 
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4.2.2 Pressure Difference for Bending Mode 

The instantaneous pressure gradient in the nanochannel can be estimated from the stress 

difference between the two sides of the membrane. For a cantilever beam with an end load  

(Figure 4.3), 
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=∆          ( 4.2.3) 

where x  is the distance from the fixed end of the beam,  is the free length of the cantilever, 

and is the moment of inertia of the membrane cross section.  

 

 

Figure 4.3: A cantilever beam with an end load 

 

The tip deflection  is: 

          ( 4.2.4) 

where  is Young’s modulus of the bulk material. Combining equations (4.2.3) and (4.2.4), the 

pressure drop p∆ between the two ends of the channel has the relationship with the deflection as 
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which indicates that in the model the channel length does not affect the prediction of the 

streaming current. It does however indicate that , the Young’s modulus of the material, has a 

linear relationship with the streaming current. 

4.2.3 Streaming Current in an IPT Bender 

Combining equations (4.1.5) and (4.2.5), the streaming current in a single channel is given as 
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( 4.2.6) 

where x  varies with channel position along the length of the IPT (Figure 4.3). Consider that the 

signal expected for the array of nanochannels existing in an IPT is additive. The total current in 

an IPT equals the sum of the current in every single channel in the IPT. The total current can be 

calculated by integrating equation (4.2.6) over the length of the IPT and then imposing the 

estimated linear density of channels. Mathematically this is equivalent to multiplying the 

maximum streaming current in a single channel by half of the total channel number N. Equation 

(4.2.6) reaches its maximum at the fixed end of the IPT cantilever beam where 0=x  as 
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The number of nanochannels N can be calculated through the dimensions of the IPT and the 

channel, the thickness of the electrode, and the volume fraction of the diluent (Figure 4.2). For an 

IPT with electrolyte volume fraction of lfv , , the total number of nanochannels is 
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where is the width of the IPT cantilever, lfv ,  is the volume fraction of the diluent, and is the 

thickness of the electrodes. Hence, the total streaming current in an IPT is 
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       ( 4.2.9) 

4.2.4 Preliminary Predictions 

A 5 mm x 15 mm IPT with 38.2% volume fraction of water is considered to estimate the total 

number of channels within the volume. By equation (4.2.9), which indicates a linear relationship 

between the tip deflection and the current generated in the IPT, the projected sensing trend as a 

function of tip deflection is illustrated in Figure 4.4.  

 

 

Figure 4.4:  Preliminary predictions of IPT currents at various tip deflections 

 

The purpose of the predictions of Equation (4.2.9) and subsequently Figure 4.4 is to 

establish that the generalized approach yields physically reasonable predictions. The predicted 

current is higher than the experimental results. For instance, for the 2.0 mm deflection case the 

W l
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expected IPT current is ~0.01 mA for an 8.5 mm x 10 mm sample [11], while this prediction is 

~0.50 mA. However, observation of appropriate trends is significant. The general prediction 

trend is correct, namely, as deflection is increased the predicted IPT sensor current also increases 

[91]. 

4.2.5 Channel Geometry 

While the predictions of equation (4.2.9) and Figure 4.4 are helpful in establishing a preliminary 

proof-of-principle on the proposed method (namely, that the predicted order of magnitude is 

reasonable), for the current state of development, normalization will be more instructive and 

appropriate in the assessment of IPT predicted trends. Therefore, for IPT cantilevers with the 

same electrode characteristics (counterion, electrode thickness, diluent type and uptake), the 

streaming current of equation (4.2.9) can be normalized with respect to 
η
ρ

2

2
, EWhv elf . The 

normalized streaming current is expressed as 
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While the streaming potential hypothesis is not dependent on the exact geometry of a 

transport pathway, the parallel channel morphology is convenient for illustration. To illustreate 

this, it is prudent to adapt the streaming current predictions from the rectangular channel model 

(Figure 4.5b), to a round cross sectional channel model. Further this adaption will become 

important for model adaptation to the significantly different cluster morphology proposed by Hsu 

and Gierke (Section 4.5). Moreover, a round cross-section is more akin to the morphology model 

in Nafion proposed by Schmidt-Rohr and Chen [29], in which the dimensions of the channels are 
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distributed in a range (1.8~3.5 nm diameter; Figure 4.5a). For simplicity the nanochannels in this 

illustration are assumed to be identical parallel circular cylindrical channels with radius  

uniformly distributed throughout the IPT (Figure 4.5c). Then the flow velocity in the channel 

becomes 

         ( 4.2.11) 

where is the distance from the center of the cylindrical channel.  

 

                

(a)      (b)                                 (c) 

Figure 4.5: (a) Parallel circular cylindrical nanochannel morphology proposed by Schimdt-Rohr and Chen, 
(b) a model of identical and uniformly distributed parallel channels with rectangular cross-section, and (c) the 
adapted model of parallel channels with round cross-section 

 

For cylindrical channels, the streaming current is defined by  
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Combining equations (4.2.5), (4.3.1), and (4.3.2), the streaming current in a single channel is 

given as 
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For an IPT with diluent volume fraction of lfv , , the number of the cylindrical nanochannels is 
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Thus, per the same arguments presented above in the integration over the transducer, the total 

streaming current of an IPT equals 
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Comparing equation (4.2.16) with equation (4.2.9) for rectangular channel model in preliminary 

studies, the streaming current is observed to be a function of a single characteristic cross-

sectional dimension. Thus, while the predicted magnitude of streaming current may vary with 

assumed morphology, its existence is insensitive to the assumed morphology. Further, per the 

same method presented previously, for IPT cantilevers with the same electrode characteristics 

(counterion, electrode thickness, diluent type and uptake), the streaming current of equation 

(4.2.16) can be normalized with respect to 
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The normalized equations (4.2.10) and (4.2.17) have exactly the same expression, which 

means the predictions will not vary between these two channel geometries. This is supportive of 

the conclusion that the streaming current is insensitive to the channel geometry for the parallel 

channel model. Figure 4.6 shows the relationship between the normalized streaming currents and 

the tip deflections for IPT cantilevers with free lengths of 15 mm and 20 mm. As expected the 

shorter IPT is predicted to display a higher streaming current when subject to the same tip 

displacement, as this will incur larger internal stresses/pressure, and therefore larger flow 

velocities in the shorter IPT. While for IPTs with same free length, the normalized streaming 

current for rectangular channel model and circular cylindrical channel model are identical. Thus 

in the presence of the proposed normalization appropriate predictions are retained.  

 

  

Figure 4.6: Normalized streaming current vs. tip deflection for IPT cantilevers with free lengths of 15 mm 
and 20 mm. for both rectangular and circular cylindrical channel models 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6

N
or

m
al

iz
ed

 IP
T 

Cu
rr

en
t

Tip deflection (mm)

Lf = 15 mm for rectangular and 
circular cylindrical channel 
models

Lf = 20 mm for rectangular and 
circular cylindrical channel 
models



 80 

4.3 EFFECT OF ELECTRODE ARCHITECTURE 

As discussed in the literature review, the direct assembly process (DAP) for electrode application 

allows the controllable creation of a wide array of electrode architectures [48]. The approach 

enables blending of varied volume fractions and types of ionomer, diluent, and conducting 

powder. It has previously been demonstrated that the properties of IPTs vary with electrode 

architecture. In this section, the streaming potential method is employed to model IPT sensing 

responses with different electrode architectures. The resulting trends are compared with previous 

experimental data.  

4.3.1 Electrode Morphology 

Scanning electron microscopy (SEM) has been performed on select polymer samples by Akle to 

explore the electrode morphology effects of the DAP for varied electrode thickness and metal to 

polymer ratio in the electrode [48]. Shown in Figure 4.7 are two SEM images of DAP built 

transducers with different electrode thickness [48]. Figure 4.8 shows the SEM images of 

transducers with different metal to ionomer concentrations [48]. The transducers are saturated 

with 1-ethyl-3-methylimidazolium trofluoromethanesulfonate (EmI-Tf) ionic liquid. 

The SEM images clearly show that the electrode morphology of metal particles dispersed 

within the ionomer is similar to a porous medium. A porous medium is a matrix permeated by an 

interconnected network of voids (pores). In the streaming current model presented here, it is 

assumed that the electrode is composed of the metal particles and the voids between the particles. 

A void is the space between the particles that are touching. For porous media, a void could be air, 

water, etc. In the cases for IPTs built by DAP, the void is a mixture of the ionomer and the 
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diluent. The void volume fraction of the electrode can be considered as the porosity of the 

electrode. The electrode particles contact each other and coagulate through DAP. The “porosity” 

and surface area of the electrode are related to the extent of this coagulation. 

 

 

Figure 4.7： Scanning electron microscopy (SEM) showing (a) the top crosssection of a Nafion 117 
ionomer painted with a 9.5 μm RuO2 / Nafion electrode. (b) shows the top cross-section of a Nafion 117 ionomer 
painted with a 38 μm RuO2 / Nafion electrode [48]. 
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Figure 4.8: Scanning electron microscopy (SEM) SEM images of the high surface area RuO2 electrode 
with (a) 22, (b) 30, (c) 36, and (d) 66 vol % metal [48]. 

4.3.2 Darcy's Law 

Darcy's law is a phenomenologically derived constitutive equation that describes the flow of a 

fluid through a porous medium. Darcy's law is a simple proportional relationship between the 

instantaneous discharge rate through a porous medium, the viscosity of the fluid and the pressure 

drop over a given distance. By Darcy’s law, the pore velocity  would be the velocity a 

conservative tracer would experience if carried by the fluid through the formation  

           ( 4.3.1) 

v

φ
qv =
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where  is the porosity of the medium defined as a fraction of the volume of voids over the total 

volume 

          ( 4.3.2)  

The flux , discharge per unit area, with units of length per time, m/s, is  

pq ∇
−

=
η
κ           ( 4.3.3) 

where η  is the viscosity of the fluid, p∇ is the pressure gradient vector, and
 
κ is the permeability 

of the medium 

2aC ⋅=κ
          

( 4.3.4) 

where C is a dimensionless constant that is related to the configuration of the flow-paths, and a  

is the pore radius. Combining equations (4.3.1)-(4.3.4), the pore velocity becomes 
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ηφ
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( 4.3.5) 

Assuming the electrode area of an IPT can be considered as a porous medium, Darcy’s law can 

be used to describe the streaming potential phenomenon in the electrode. The porosity φ  here is 

the volume of the polymer times the volume fraction of the diluent in the polymer. Combine 

equations (4.3.5), and (4.2.12), the streaming potential profile simplifies to 

l
pa

CI e
s

∆⋅
=

ηφ
ρπ 4

         ( 4.3.6) 

The cantilever beam analysis arguments in the elimination of 
l
p∆  and subsequent integration 

over the transducer as presented in Sections 4.2.2 and 4.2.3 are again employed. Introducing the 
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volume fraction of metal particulates in the electrode pfv ,  as a factor for electrode-electrolyte 

communication, by equations (4.2.5), (4.2.15), and (4.3.6) the total streaming current of an IPT 

in the porous interpenetrating electrode region becomes 
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As illustrated in Figure 2.5 (copied below for convenience), varying electrode thickness 

and particulate volume fraction via the DAP has a significant effect on IPT sensing response. 

Inspection of equation (4.3.7) lends insight into the observation of increased sensitivity with 

thickness. The particulate is stiffer than the ionomer. As layers of particulate are added, the 

overall IPT stiffness E  will increase, while all other parameters remain fixed. Moreover, it is 

intuitive that sensitivity should increase with increased electrode communication surface area. 

However, the existence of some optimum in the case of varied particulate volume fraction 

requires additional consideration.  

 

 

Figure 2.5: The normalized sensing response per unit strain of a RuO2 based IPT as a function of (a) 
electrode thickness, and (b) electrode metal composition (volume percent) [12]. 
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4.3.3 IPTs with Different Electrode Particulate Volume Fraction 

When the electrode particulate volume fraction varies the elastic energy of the material system 

also varies, and so the channel size varies accordingly; thus there exists some tradeoff between 

the availability of conductive particulate and availability of streaming electrolyte. One approach 

to address the changing channel size is via Eshelby micromechanics. In general it is expected 

that, for otherwise consistent properties, the channel size will decrease with increasing 

particulate volume fraction. A rigorous solution of the variation could adapt the detailed 

mircomechanics approach by Li and Nemat-Nasser [26] to the case of elongated ellipsoids. For 

the purpose of the current work the ability to demonstrate the trend is deemed sufficient. 

Predicted evolution of spherical inclusions with particulate volume fraction has previously been 

employed to estimate channel size evolution [50]. Here the ratio (β) of evolution of spherical 

cluster size per the expression developed by Li and Nemat-Nasser [26] is imposed on channel 

cross-sectional area evolution [50] from the baseline suggested by Schmidt-Rohr and Chen [29]. 

Thus, the radius a of equation (4.3.7) is replaced by βa, 
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All the parameters in the expression expected to display comparatively small or no variation with 

the evolution of particulate volume fraction are lumped into a single constant B. For instance, 

each case considered will be subject to the same tip displacement δ. Dividing by the constant B 

enables inspection of the influence of the remaining terms, collectively described as the 

streaming current factor in Table 11 and plotted in Figure 4.9.  

 

Table 11. Predicted variation in channel size with electrode particulate [50]. 
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RuO2 volume fraction ( pfv , ) 0 0.3 0.4 0.5 0.6 

Radius Ratio ( %0,/ cc aa=β ) 1 0.98 0.92 0.85 0.75 

Porosity (φ ) 1 0.7 0.6 0.5 0.4 

Streaming current factor (
φ
β 2

, pfv
) 0 0.41 0.56 0.72 0.68 

 

IPTs with RuO2 volume fraction from 0 to 60% are calculated. To appreciate the 

population of Table 11 consider the cases of zero and 30 vol% ruthenium dioxide. When there is 

no RuO2 present, the channel size corresponds to that expected in pure, hydrated ionomer. Thus 

the radius of the channel is unaltered ( 1=β ) while porosity factor is 100% ( 1=φ ). The net factor 

is therefore 0
1
10 2

=
× ; while flow is unrestricted there is no communication with the electrode. As 

RuO2 volume fraction increases to 30 vol%, the changed cluster energy predicts a modest 

decrease in channel size ( 98.0=β ) and somewhat more restriction in flow due to porosity effects 

( 7.0=φ ), but this flow is now in communication with the electrode, and thus the net factor is non 

zero. As further RuO2 is introduced, flow is further restricted while electrode surface area 

continues to increase. At some point (beyond 50 vol% RuO2) flow becomes so restricted that 

diminishing returns are observed. 
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Figure 4.9: Normalized streaming current as RuO2 volume fraction varies. 

 

Comparing with experiment (Figure 2.5) a sensitivity peak is correctly predicted at 50 

vol%. Weiland and Akle [50] have predicted a similar peak, but failure to include porosity in 

their analysis resulted in a comparatively flat projection. The approach presented here including 

porosity more accurately predicts the relative magnitude of the experimentally observed peak.  It 

is generally agreed that when the volume fraction of metal particles increases, the porosity φ  

initially decreases but will increase again when the concentration precipitates particle 

aggregation. In this study the electrode particulates are assumed to be identical spheres. 

Therefore, the evolution of porosity remains linear because the most packed arrangement of 

identical spheres has porosity of 0.26, while in this study that transitional value is never reached. 

4.3.4 Effective Surface Area of the Electrode Particulates 

The preceding section explored the effect of varying the volume fraction of a single type of 

electrode particulate. Next consider that it has also been experimentally observed that the type of 
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particulate introduced to the IPT electrode via the DAP can have significant effect. To explore 

this, consider first that among the channels in the ionic polymer only those that contact with the 

electrode particles are effective per the streaming potential model, i.e., the streaming current is 

proportional to the metal-ionomer interfacial area. Thus the effective surface area of the 

electrode particulates is proportional to the number of effective channels that interact with the 

electrode particulates. The effective number of channels eN can be estimated as: 

2a
A

N e
e ⋅
=
π           

( 4.3.9) 

where eA is the effective area of the metal-polymer interfacial area. Now consider the case of an 

electrode region composed of blends of ruthenium dioxide and gold, the volumetric surface area 

of RuO2 and Au are 400 and 10 m, respectively. The effective metal-polymer interfacial area eA  

can be estimated as, 

%)10%400(
2 AuRuOelectrodee VVVA ×+×=       ( 4.3.10) 

where the surface area of these constituents is proportionally addressed. Imposing this expression 

for the case where the total metal volume fraction is held constant at 40 vol%, illustrates the 

predicted linearly increasing trend with the content of RuO2 for sensing observed. The relative 

number of effective channels for different content of metals is shown in Table 12. In the absence 

of experimental data for sensing with varied composition a comparison with actuation data is 

considered (Figure 4.11) [48]. The experimental data displays a plateau in the plot of strain 

output of IPTs at 50 vol% and 75 vol% RuO2. As noted above, the porosity in this dissertation 

does not consider particle aggregation for the volume fractions of pure RuO2. The experimental 

plateau could be because of the onset of particle aggregation at 50 vol% in the presence of a 
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RuO2 and Au blend, which would limit the effective surface area of the electrode. Moreover, this 

assessment does not consider the different electrical conductivities, where the superior 

conductivity of gold as compared to its volume fraction may also contribute to the onset of 

dimimishing returns at some critical volume fraction. Further, the use of actuation data in this 

instance may also represent an important source of error. However, in general the IPT 

performance shows an increasing trend when the content of RuO2 increases, which is consistent 

with the predicted increasing active response for increasing RuO2 content. 

 

Table 12. Percentage of effective channels. 

RuO2 volume fraction 1 0.75 0.5 0.25 

Au volume fraction 0 0.25 0.5 0.75 

Relative number of effective channels (n:n %) 1 0.76 0.51 0.27 

 

 

Figure 4.10: Normalized modeling sensing trends for IPTs with variation in the metal content of RuO2 and 
Au for consistent total volume of metal 
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Figure 4.11: Strain output of  IPTs for samples produced by variation in the metal content with consistent 
volume to the application of square wave potentials of  ±2 V [48]. 

4.4 EFFECT OF DILUENT VARIATION  

In addition to the IPT sensing response effects when the electrode architecture is varied, it has 

been experimentally observed that variations in the ionomer state also affect response. For 

instance, variation in diluent uptake and variation in diluent type have both been shown to affect 

response. This section as well as Section 4.5 will explore the ability of the streaming current 

model to predict experimentally observed variations in sensing response as the ionomer state and 

morphology assumptions are varied. 

4.4.1 Ionic Liquid versus Water as IPT Diluent 

Traditionally, water has been used as the diluent for IPTs. Water-swollen IPTs have to be 

operated in an aqueous environment to maintain their stability, which has limited their 

applications. While some reports suggest that dehydration may have favorable effects on 
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sensitivity, these reports have not yet reached concensus. Recently ionic liquids have been used 

as the diluents in Nafion based IPTs for their excellent thermal and electrochemical stability and 

very low vapor pressure. Bennett et al. [12] have compared water to ionic liquids as the diluents 

by applying a 1.5 V (peak) sine wave on a platinum- and gold-plated Nafion 117 swollen with 

water and 1-ethyl-3-methylimidazolium trofluoromethanesulfonate (EMI-Tf) ionic liquid, 

respectively. When operated in open air, the strain generated by the water swollen IPT sample 

decreased nearly to zero after about 2000 cycles due to the dehydration of the material. By 

contrast, the same actuator swollen with EMI-Tf operated for over 250,000 cycles with only 25% 

decrease of generated strain. Although there is a decrease of the magnitude of the actuation 

response and a reduction in the speed of the response in IPTs swollen with ionic liquids, the 

improvement of the operation stability in open air could potentially increase their applications 

dramatically.  

In this section the effect of water vs. ionic liquid EMI-Tf is considered for a case with 

Lithium counter ion, 35% electrode volume fraction, and diluent volume fraction of 32.8% for 

water and 48.2% [27] for ionic liquid EMI-Tf. Fromequation (4.3.7), the streaming current can 

be predicted by 
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To assess the variation in predicted response it is noted that the diluent volume fraction lfv , , the 

viscosity , and the channel size  vary between the two cases. The volume fraction variation is 

assessed directly (38.2% and 48.2% for water and ionic liquid, respectively). Similarly, the effect 

of variation in viscosity may be varied directly by the assumption that macroscopically measured 

properties appropriately capture the trend. While the channel size in water and ionic liquid forms 

η a
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are only slightly different, because the parameter is raised to the power of 2 the difference is 

considered. This cluster radius of EMI-Tf swollen IPT is estimated via the micromechanics 

approach proposed by Li and Nemat-Nasser [26], which was introduced in Section 2.4 and was 

previously implemented in the Chapter 3 assessment of Selemion®. The total number of 

channels is lastly accommodated via equation (4.2.15) above. The total numbers of channels are 

different due to different diluent content and channel size. All the relevant parameters are shown 

in Table 13. 

The predicted currents in water swollen Nafion is about 60 times that of EMI-Tf swollen 

Nafion as shown in Figure 4.12. Corresponding experiments have been conducted as shown in 

Figure 4.13 [12], which shows that the sensitivity of water swollen Nafion is several times higher 

than that of the ionic liquid swollen Nafion. The difference between these two diluents is less 

than the predictions. However, the fact that the sensitivity of water swollen IPT is higher is 

consistent with the predicted trends. 

 

Table 13. Relevant parameters for water and EMI-Tf form IPT samples 

Electrolyte Water (Li+) EMI-Tf 

Viscosity (cP) 1 45 

Volume fraction (%) 38.2 48.2 

Surface energy* (dyn/cm) 72.9 52 

Cluster radius (Å) 22.5[26] 17.8 

Charge density (C/m3) 2.09x107 6.55x107 
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Number of channels 2.90x1012 7.26x1012 

*(Required for micromechanics estimate of radius) 

 

 

Figure 4.12: Predictions of streaming current trends in IPTs in water and ionic liquid form 
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Figure 4.13: Charge-to-strain sensing response of samples in water and ionic liquid (EMI-Tf) form [12] 

 

The predictions are not normalized because several parameters vary for different diluents, 

including the diluent volume fraction, the channel size, and the viscosity of the diluent, and the 

Young’s modulus of the material varies as well when the frequency varies. The magnitude of the 

predictions is not comparable with the experimental data because the experiments measured the 

charge sensing sensitivity in ε/C  while the predictions are currents in mA . However, the 

predicted trends that the water swollen Nafion has higher sensitivity than the EMI-Tf swollen 

Nafion and the sensitivity increases when the frequency increases are consistent with the 

experiments. This result is encouraging, however, careful inspection of the governing equation 

illustrates that this prediction is dominated by the variation in viscosity between the two cases. 

Consider for instance restating the comparison as a ratio of the two predicted responses, by 

equation (4.4.1), the ratio is: 
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because the IPT dimensions (W  and fL ) and electrode architectures ( pfv ,  and φ ) are the same, 

and there is no significant change in Young’s modulus and charge density. It is observed that the 

impact of the channel radius has a factor of 2. This would be significant for a significant 

variation in radius. However, as compared to the 45:1 ratio of viscosity, this effect becomes 

small in the current case. It is prudent to next consider a case in which significant variation has 

been experimentally observed but for the same diluent, to isolate this effect. 

4.4.2 Sodium versus Lithium Cases for Water as IPT Diluent 

It has previously been observed that a fully hydrated (water as diluent), Lithium exchanged IPT 

displays 5 to 10 times the sensitivity of the fully hydrated Sodium exchanged case. Employing 

the same normalization approach of the previous section, where Table 13 provides pertinent 

experimentally determined parameters for assessment results in the simplified expression  
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because there is no significant variation in viscosity. Imposing the parameters of Li form and Na 

form fully hydrated Nafion 1200 EW in [26] (Table 14) results in a prediction of approximate 

1.5x sensitivity in the Lithium case. While it is encouraging the ratio predicts higher sensitivity 

in the Lithium case, even in a normalized form the prediction is substantially lower than 

experiment. Further consideration of this prediction requires assessment of the same scenarios 

per a different morphology; that proposed by Hsu and Gierke is imposed. 
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Table 14. Parameters for Nafion 1200 EW in Li and Na forms 

Cation Li+ Na+ 

Volume fraction of water (%) 38.2 30.7 

Cluster radius (nm) 2.25 2.10 

 

Table 15. Predictions per Schmidt-Rohr and Chen morphology comparing with reported experimental data 

 Predicted Experiment 

Iw : IIL x60 ~x10 

ILi : INa  x1.5 x5 to 10 

4.5 EFFECT OF IONOMER MORPHOLOGY  

The development of the streaming potential model to this point has put emphasis on the 

morphology proposed by Schmidt-Rohr and Chen [29]. This has been largely a matter of 

convenience: it is relatively straight forward to mathematically impose the streaming potential 

phenomenon in this proposed morphology. But as emphasized in Chapter 2, the actual 

morphology of Nafion, and ionomers in general, remains an open topic. However, the 

morphology of Hsu and Gierke [23] has been effectively employed and developed for over 30 

years. Thus, despite the fact that it too is almost necessarily removed from reality, the history of 

developmental adaptation may bode well for its application.  
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Recall that the proposed morphology distributes spherical hydrophilic clusters of 

electrolyte amid a matrix of hydrophobic backbone. While application of the proposed 

morphology puts emphasis on the expected cluster size, it is understood that selective ionic 

conduction occurs in the channels between the clusters (Figure 2.1 copied below for 

convenience).    

 

 

Figure 2.1: Selective Ionic Conduction per Hsu and Gierke [23]. 

 

    

(a)        (b) 

Figure 4.14: Sectional view of the channels in the models of (a) Schimdt-Rohr and Chen parallel channel 
morphology and (b) Hsu and Gierke cluster morphology 
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In order to assess the streaming current hypothesis for this cluster morphology, these 

conduction channels must take on some meaningful dimension. Here, it will be assumed that the 

volume of these channels can be approximated as right circular cylinders that typically retain 

some fixed proportion with respect to the volume of the clusters.  

32

3
4

clchch acla ⋅⋅=⋅⋅ ππ         ( 4.5.1) 

Thus an IPT with especially high uptake and cluster volume, would also be expected to display 

relative ease in communication among these clusters, while the inverse is expected for a 

relatively dehydrated sample. The total current in an IPT can be predicted by the streaming 

current in a single conduction channel multiplied by the number of the channels. Although there 

are conduction channels between every two adjacent clusters, only those parallel to the thickness 

dimension of the IPT function as conduction channels in bending mode. Moreover, the streaming 

currents in the conduction channels aligned in series are not additive. In other words, only the 

streaming currents in parallel channels are additive. The number of effective conduction 

channels can be estimated by 

2d
WL

N f=           (4.5.2) 

where d  is the cluter center-to-center distance (Figure 4.15). 
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Figure 4.15: Demensions of clusters and conduction channels  

 

If the size of these channels is further assumed to dominate the observed streaming potential (this 

is a conservative assumption), then per equation (4.2.14) for the maximum streaming current in a 

single channel can be predicted by 
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Per equation (4.5.3) the ratio of performance between two Hsu and Gierke cluster morphology 

cases becomes 
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Substitution and simplication of equations (4.5.1)-(4.5.7) result in 
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Because the cluster center-to-center distance d and the channel length chl  both have an linear 

relationship with the cluster size cla ,  4
cla drops out by being divided by 22

chld . Therefore, the 

impact of cluster size cla  on streaming current also has a factor of 2 as that of channel size a  

does in Schimdt-Rohr and Chen morphology model. The impact of diluent volume fraction is 

included in the cluster center-to-center distance. 

The expression may be similarly employed for the comparison between the water and 

ionic liquid cases where the charge density is assumed to be similar. In this case a ratio of 6.9 is 

predicted as compared to the experimentally observed ratio of about 5. For the comparison 

between the Lithium and Sodium exchanged cases, where charge density and viscosity continue 

to be similar, the predicted ratio is 4.7 as compared to the experimentally observed ratio of 5 to 

10.  Comparing with the parallel channel model with predicted ratio of about 60 and 1.5, these 

results are much closer to the experimental observation. The predictions and experimental data 

are summarized in Table 16. 

 

Table 16. Predictions per Schmidt-Rohr and Chen parallel channel morphology and Hsu and Gierke cluster 
morphology comparing with reported experimental data 

 Predicted by Schimdt-

Rohr and Chen model 

Predicted by Hsu and 

Gierke model 

Experiment 

Iw : IIL x60 x6.9 ~x10 

ILi : INa  x1.5 x4.7 x5 to 10 
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In the cluster morphology model, the predicted ratio between different diluents or cations 

is much closer to the experiments. As presented before, the impact of cluster radius has a factor 

of 2 in both models, which means the cluster radius does not contribute to the ratio difference 

between the cases. From equations (4.4.2), (4.5.7), and (4.5.8) it can be observed that the 

contribution of the diluent volume fraction has changed from lfv ,  to 
2

3

,

1











lfv
, which determines 

the cluster center-to-center distance  as well as the total number of channels. The most significant 

observations here are (1) in the absence of critical assessment of each parameter assumption (for 

instance the assumption of similar charge densities among the cases) it is difficult to assert that 

either of these cases is fundamentally superior, and (2) while accuracy varies, and in the case of 

the Hsu and Gierke morphology accuracy is quite good, both the ‘bounding’ morphologies 

considered capture the appropriate trends.   

4.6 TRANSIENT RESPONSE UNDER STEP BENDING 

In this section the transient sensing response of an IPT cantilever due to a step displacement at 

the tip is considered from the perspective of the streaming potential model.  From the 

preliminary study on the streaming potential mechanism in IPT sensing, it is observed that the 

streaming current is induced by the transport of the charged fluid at a certain velocity. The 

pressure difference between the two ends of the nanochannel is the key of the generation of the 

fluid velocity in bending.  

When suddenly bending an IPT cantilever, the stress in the compressed layer generates a 

pressure difference along the thickness of the IPT in a very short period of time; hence a 
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streaming current in the IPT is generated. However, it is also understood that the fluid motion 

serves to dissipate the pressure, and thus the streaming current response is expected to be 

transient. To analyze the transient response of IPT current due to a sudden bending, the process 

is decomposed into a number of time increments. As time increases, the IPT tip displacement 

increases. It is assumed that after every time increment, when the charged fluid is transported 

from one side of the channel to the other side, the redistribution of the charged fluid neutralizes 

the stress difference in the material and acquires an equilibrium stress state in the material. 

Therefore, the magnitude of the current is determined by the IPT tip displacement change δ∆

within a time increment, i.e., the tip velocity. For identical IPTs subject to this analysis the 

streaming current as present by equation (4.3.7) may be normalized as, 
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(4.6.1) 

Farinholt and Leo [11] have performed experiments on the sensing response of IPTs under step 

tip displacement. Imposing the displacement input of their experiments (shown in Figure 4.16) 

on equation (4.6.1), and setting the normalized IPT current at maximum tip displacement to 1, 

the prediction of IPT current due to step tip displacement is plotted in Figure 4.17. The 

prediction is largely consistent with the experimental observation that the streaming current is 

proportional to the tip velocity, as should be expected from inspection of equation (4.6.1). One 

significant variation from experiment is the absence of a delay in predicted response; however 

the experimental report notes that it is not clear whether the apparent 7.5 ms delay is a 

manifestation of a physical mechanism in the IPT or associated with delays inherent in the 

measurement device.   
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Figure 4.16: Step displacement input by Farinholt et al [11] 

 

 

Figure 4.17: Normalized predictions of IPT current under step tip displacement plotted with measured 
current with normalization. Solid line is from experiment, dashed line is the predicted response. Discrete points 
correspond to points at which data is visually extracted from experimental stimulus plot of Figure 4.16.  

 

Another notable difference is the absence of a current reversal of the predicted response 

as compared to the experimentally observed response. There are a number of possible 

explanations for the discrepancy. For instance the onset of oscillatory fluid motion in the 

presence of a viscously damped material system may display a transient current reversal. 
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Alternatively, as discussed in the previous chapter, the local stiffness (on the length scale of the 

channels) is among the parameters that will evolve with hydration [92], which will in turn have a 

proportional effect on local streaming current. In other words, hydration is increased/depleted on 

opposite sides of the transducer in bending; local stiffness evolution may transiently favor the 

streaming current on the depleting side.  

This reasoning may inadvertently open questions regarding the evolution of the global 

stiffness. However, it can be easily shown that the stress relaxation observed in Nafion at a 

global length scale is small for the time scale of the step displacement. For instance, Liu et al. 

studied the tensile behavior of Nafion by measuring the Young’s modulus of Nafion 117-H films 

at 3% strain with different initial strain rates [93]. The Young’s modulus of Nafion 117-H at 3% 

strain with 0.7 min-1 initial strain rate are plotted in Figure 4.18, with a zoomed in perspective for 

a shorter time frame presented in Figure 4.19. Based on their results the global stiffness is 

expected to change from ~229 MPa to ~224 MPa over the 0.02 sec displacement. Thus evolution 

of global stiffness in the context of a step displacement is expected to be negligible; this however 

is not the case for dynamic loading. 
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 Figure 4.18: Young’s modulus of N117-H at 3% strain with 0.7 min-1 initial strain rate [93]. 

 

 

Figure 4.19: Relaxation effect during the process of step displacement  

4.7 EFFECT OF STRAIN RATE 

Besides its dependency on temperature and hydration due to phase inversion and cluster 

formation, Nafion as a polymer, exhibits strong time and strain rate effects. At different 

100

120

140

160

180

200

220

240

0 5 10 15 20 25 30 35

Yo
un

g'
s 

M
od

ul
us

 (M
Pa

)

Time (s)

195

200

205

210

215

220

225

230

235

0 0.1 0.2 0.3 0.4

Yo
un

g'
s 

M
od

ul
us

 (M
Pa

)

Time (s)



 106 

frequencies, an IPT undergoes different strain rates. For viscoelastic materials with small strain, 

the Young’s modulus is a function of strain rate. Therefore, Young’s modulus becomes a 

function of frequency such that the IPT current is expected to have a linear relationship with the 

frequency. If global stiffness is no longer assumed as constant then the normalization proposed 

in equation (4.6.1) must now include evolution of Young’s modulus on the right hand side of the 

expression, 
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where the subscript f has been introduced to denote the Young’s modulus rate dependence. To 

retain normalization both sides of the equation can be divided by a reference value; Young’s 

modulus at 100 Hz is imposed for this purpose. 
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For an IPT vibrating with a steady maximum displacement, the expression becomes
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Franklin [94] has measured the evolution of effective Young’s modulus from 5 Hz to 100 Hz as 

shown in Table 17.  These data have been applied in equations (4.7.2) to generate the profile 

illustrated in Figure 4.20 where the normalized IPT current at 100 Hz is set to 1. It is understood 

that the load is increased to assure the same tip deflection as modulus increases. The current 

increases in the low frequency area but tends to be constant when the frequency goes up to 60 

Hz.  
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Farinholt and Leo [11] have reported sensitivity as charge per strain (C/ε) as a function of 

frequency. As is typical in dynamic tests, the experimental results are noisy at low frequency, but 

rapidly tend toward a constant (0.264 εµ /C ) as frequency increases. While the presented 

predictions instead move toward a constant asymptotically, the tendency toward a constant 

sensitivity is captured. Moreover, while not a direct validation of the hypothesis that time 

varying Young’s modulus contributes to the observed transient response to a step impulse, it is 

supportive of it. 

 

Table 17. Young’s modulus of Nafion at different strain rate 

Frequency (Hz) Young’s Modulus (MPa) Frequency (Hz) Young’s Modulus (MPa) 

5 115 60 154 

10 120 70 159 

20 129 80 160 

30 140 90 162 

40 148 100 165 

50 152   
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Figure 4.20: Normalized IPT current at different frequencies 

4.8 DISCUSSION 

The sensing responses of IPT benders are modeled from various perspectives based on the 

streaming potential mechanism. Even over the broad range of scenarios considered 

(manipulation of IPT state and loading), comparison of the normalized prediction trends with 

experimental data display good agreement. Achieving these validations indicates validity of the 

streaming potential method in bending mode. By the streaming potential method the sensing 

trends can be predicted for different IPT dimensions, electrode arthitectures, and ionomer states. 

These parameters, which have been experimentally demonstrated have different degrees of 

effects on the electromechanical properties of IPTs, can be vaired and compared arbitrarily to 

identify the desired IPT electromechanical performance. Therefore, this model can be used as an 

effective tool to assist IPT optimization.  
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To complete validation the hypothesis that the streaming potential is capable of modeling 

IPT sensing in all deformation modes must be considered (Figure 4.21). While not considered in 

detail, the legitimacy of this may be effectively addressed with qualitative arguments. The cases 

of tension and compression are relatively straight forward. For these consider first that the 

pressure gradient developed in bending corresponds to the hydrostatic component of loading. In 

both tension and compression the hydrostatic term exists, and therefore a motive force for fluid 

flow necessarly exists.  

 

 

Figure 4.21: IPT macroscopic sensing modes [50] 

 

For the case of pure shear loading however, no hydrostatic term exists, thus the motive 

force for fluid flow must be fundamentally different in this case. For this scenario, consider an 

IPT in shear mode, while one side of the IPT is fixed and the other side is driven by a shaker. 

The relative motion between the two sides of the IPT results in a shear deformation and a 

potential through the material thickness (Figure 4.22). 
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Figure 4.22:  An IPT sensor under imposed shear loading 

 

Consider each of the electrodes of an IPT as two parallel plates, the porous property of 

the electrode makes the flow in the IPT electrode viable. Therefore, a first order estimate of shear 

mode velocity of the electrolyte in the IPT electrodes can be modeled by the classic parallel-plate 

flow. The most fundamental premise of the streaming current hypothesis argues that whenever 

there is a net relative motion of the electrolyte with respect to the electrode, the streaming 

potential is developed. Therefore, the parallel-plate flow developed inside the electrodes is 

expected to be able to develop a streaming potential in the IPT.  

 

 

Figure 4.23: Shear deformation and the velocity of the moving surface 
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5.0  CONCLUSIONS AND FUTURE WORK 

Major conclusions are drawn in this chapter. A brief summary of the contributions and 

recommendations for future work are presented. 

5.1 CONCLUSIONS 

The work in this dissertation focuses on computational studies of the electromechanical 

responses of ionic polymer transducers (IPTs). The mechanical properties of ionic polymers, the 

ionomer morphology, and the fundamental mechanism responsible for the electromechanical 

sensing responses of IPTs are studied.  

A multiscale modeling approach has been developed. The approach is able to predict 

ionic polymer local stiffness, which is inaccessible via experimentation. The approach applies a 

Monte Carlo methodology in the creation of polymer chain using rotational isomeric state (RIS) 

theory. The lengths of the crosslinks in the polymer chains are then fitted with Johnson 

distributions to simulate their probability density function, which is related to the entropy change 

of the material under stress.  In this dissertation the RIS theory is adapted so that early chain 

termination is eliminated and longer molecule chains are achieved. This enables more stable and 

realistic predictions by an order of magnitude over the previous approach, and greatly lowers the 

computation burden as compared to some common computational dynamics studies. The cluster 
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morphology proposed by Hsu and Gierke [23] is imposed in the approach. Ionic polymers with 

differenct hydration levels and cations are modeled. The predicted trends that ionic polymer with 

lower hydration level is stiffer and sodium form Nafion is stiffer than lithium form Nafion are 

correct. Having estatblished that the modeling approach is robust, as an illustration it is then 

employed to forecast properties of lesser known system Selemion. Other multiscale properties 

that could be studied with this method include evolution of local stiffness and pendant chain 

stiffness.  

 The sensing responses of IPT benders are studied by a physics-based modeling approach. 

The study begins with the streaming current hypothesis, which is assumed to be the fundamental 

mechanism underlying IPT sensing. The streaming potential hypothesis argues that whenever 

there is a net relative motion of the electrolyte with respect to the electrode a streaming potential 

is devoloped, which makes this method viable for all deformation modes. To preliminarily 

illustrate the streaming potential hypothesis, the parallel water channel morphology in Nafion 

membrane proposed by Schimdt-Rohr and Chen [29] is imposed. The proof of concept modeling 

of IPT bending shows good agreement with experimental observations in both the trends and the 

magnitude of the strain induced current.  The model is then normalized to capture the prediction 

trends more easily. The effect of electrode architecture is studied by comparing the predictions of 

the sensing responses in IPTs with various electrode particulate volume fractions or metal 

contents. The predicted trend that the sensitivity first increases and then decreases when the 

electrode particulate volume fraction increases is consistent with the reported experiments. The 

predition shows that electrodes containing more large surface area particulates are more sensitive, 

which is also consistant with experimental data. The effect of IPT diluents are studied by 

comparing water swollen IPTs with ionic liquid swollen IPTs. The predictions successfully 
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capture the trends that water swollen IPTs are more sensitive and that lithium form IPTs are 

more sensitive than sodium form IPTs. The model evolves from parallel rectangular channel 

model to parallel circular cylindrical channel model, which is more akin to the morphology 

model in Nafion proposed by Schimdt-Rohr and Chen [29]. Although the adaption of channel 

geometry does not affect the prediction trends, it is important for model adaption to the cluster 

morphology proposed by Hsu and Gierke [23]. With this morphology adaption, streaming 

currents are considered to be developed in the clusters and the conduction channels. The effect of 

IPT diluent is studied again. Comparing with the parallel channel model, the model with cluster 

morphology is able to achieve predictions much closer to the reported experiments.  

It is widely accepted that strong correlations exists among the ionic polymer morphology 

and stiffness, electrode architecture, and active response. Although there is a lack of consensus 

on both ionomer morphology and underlying electromechanical mechanisms responsible for IPT 

sensing, it is understood that both are functions of ionomer stiffness. In the case of IPT 

transduction models this stiffness dependence is displayed at two length scales. At the device 

length scale, classic characterization parameters such as free displacement and blocked force are 

a function of the active material’s stiffness. At the nanoscopic length scale, the local backbone 

elastic energy is an important parameter in morphology evolution. Multiscale modeling 

represents one viable approach to exploring this multi-length scale dependence. On the other side, 

manipulation of diluent, counterion, and even base ionomer in IPTs are also known to affect 

ionomer morphology. From the multiscale modeling of ionic polymer stiffness and the modeling 

of streaming current in IPT sensing ,the interdependence between the ionomer material state and 

the IPT active response have been studied providing valuable insights into the actual mechanism 

in IPT sensing and enabling in-depth study of IPT electromechanical responses. Correlations 



 114 

appear repeatedly in the presented studies, for instance evolution of morphology was required in 

predicting that an optimum particulate volume fraction exists. While not employed in the current 

study, other important opportunities for overlap between the two studies include assessing local 

streaming current as a function of local stiffness, as well as reconsidering charge density (which 

is known to be a function of pendant chain stiffness).  

It is argued that this dissertation provides validation of the streaming potential hypothesis 

in IPT sensing. The modeling of IPT sensing responses afterwards follows the streaming 

potential method, which should be able to predict IPT sensing not only in bending, but in shear, 

tension, and compression as well. From a preliminary demonstration of IPT sensing in shear 

mode, it is argued that the streaming potential method has the potential of being used as a robust 

modeling approach to predict the sensing response of IPT in all deformation modes. 

5.2 CONTRIBUTIONS 

The main contributions of this dissertation include: 

1. A new understanding of the relationship between polymer synthesis and polymer 

morphology for a wide class of materials based on ion-conducting and electron-

conducting polymers; 

2. A new understanding of the fundamental physics underlying the electromechanical 

sensing responses in ionic polymer transducers; 

3. Creation of a computationally efficient tool for optimizing electrode architecture in ionic 

polymer transducers; 
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4.  New insights into the relationship between polymer morphology and the sensing 

responses. 

5.3 FUTURE WORK 

Based on the work presented in this dissertation, the recommendation for future work are: 

1. Integrate local stiffness predictions and streaming current predictions, i.e., assess IPT 

current as a function of local stiffness. 

2. Use the modeling method to design the electrode architecture for optimization of IPT 

sensor array. 

3. Design and perform experiments as the experimental conditions are highly consistent 

with the predicting models. 

4. Modeling the IPT sensing response in all other three deformation modes to further prove 

the streaming potential mechanism in IPT sensing. 

5. Study other phenomenon of IPT transduction (for instance, the back relaxation 

phenomena) that are not discussed in this dissertation. 
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A.1 M = 50~80, JOHNSON UNBOUNDED DISTRIBUTION, OLS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0221 -10.08 3.775 2.02 3.557 19.0376 18.5927 4.091665 13.6393 

2 0.018 -4.906 3.297 5.509 6.573 19.1487 18.6937 4.149493 13.6748 

3 0.0182 -3.855 3.215 6.884 7.752 19.0993 18.6459 4.136868 14.0921 

4 0.018 -4.261 3.043 5.418 7.692 19.0389 18.5852 4.131592 13.6292 

5 0.0193 -6.104 3.256 3.874 5.72 19.124 18.6453 4.252078 12.6808 

6 0.0166 -8.154 3.151 1.812 6.036 19.092 18.6363 4.146418 12.9683 

7 0.0158 -1.156 1.945 6.232 14.11 19.1106 18.5907 4.427291 15.6163 

8 0.0193 -6.327 3.746 5.179 4.49 18.9654 18.5227 4.073817 13.9246 

9 0.0134 -1.235 1.942 6.128 13.94 19.223 18.6956 4.471942 15.0969 

10 0.0169 -5.224 3.355 5.153 6.25 18.9029 18.463 4.054289 13.9059 

Mean 0.01776 -5.1302 3.0725 4.8209 7.612 19.07424 18.60711 4.193545 13.92282 

SD 0.002329 2.77753 0.640105 1.72626 3.612963 0.092021 0.073025 0.145635 0.879212 
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A.2 M = 50~80, JOHNSON UNBOUNDED DISTRIBUTION, DWLS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0234 -3.066 2.724 6.275 9.402 19.1445 18.6565 4.294984 13.1846 

2 0.0164 -1.352 1.86 5.543 13.72 19.3383 18.7965 4.545485 14.0693 

3 0.014 -1.23 1.835 5.632 14.03 19.2853 18.7449 4.533378 14.6451 

4 0.0156 -1.173 1.685 5.006 14.2 19.2626 18.6999 4.62185 13.9709 

5 0.0168 -1.487 1.874 5.462 13.21 19.3145 18.7483 4.642322 12.8929 

6 0.0167 -2.767 2.595 6.129 10.18 19.1058 18.6307 4.234219 13.6429 

7 0.018 -1.254 1.844 5.641 13.86 19.1985 18.6543 4.538667 14.3703 

8 0.0189 -3.035 2.774 6.526 9.351 19.1985 18.6543 4.538667 13.2742 

9 0.0165 -1.267 1.808 5.493 13.9 19.3183 18.7618 4.603431 13.988 

10 0.0171 -2.793 2.628 6.213 10 18.9867 18.5128 4.215568 13.6129 

Mean 0.01734 -1.9424 2.1627 5.792 12.1853 19.2153 18.686 4.476857 13.76511 

SD 0.002497 0.84625 0.450934 0.470148 2.139285 0.111824 0.082621 0.163364 0.547929 
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A.3 M = 50~80, JOHNSON BOUNDED DISTRIBUTION, OLS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.028 3.312 2.629 59.6 4.936 18.9187 18.5069 3.925794 13.5504 

2 0.0193 6.017 2.95 113.3 5.105 19.0889 18.6527 4.057448 13.2842 

3 0.023 3.311 2.479 58.93 5.879 19.0108 18.5935 3.961348 13.1974 

4 0.0248 4.641 2.789 80.41 5.233 18.9161 18.4982 3.954167 13.5496 

5 0.0272 4.385 3.285 79.18 1.628 18.8997 18.4708 4.003524 13.7026 

6 0.0266 3.1 2.644 56.4 4.752 18.8526 18.454 3.856217 13.9654 

7 0.0281 2.965 2.72 56.67 3.822 18.8352 18.4241 3.913732 13.6547 

8 0.0292 2.58 2.473 50.17 4.986 18.8211 18.4156 3.885805 13.4528 

9 0.0213 5.155 2.892 92.53 4.8 19.0388 18.6021 4.054353 13.1834 

10 0.028 2.796 2.584 52.48 4.697 18.7262 18.331 3.826879 13.9033 

Mean 0.02555 3.8262 2.7445 69.967 4.5838 18.91081 18.49489 3.943927 13.54438 

SD 0.003331 1.152517 0.24768 20.73283 1.157651 0.110324 0.098142 0.078211 0.272872 
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A.4 M = 50~80, JOHNSON BOUNDED DISTRIBUTION, DWLS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0271 4.691 2.777 84.4 4.936 19.0257 18.5781 4.102616 12.7406 

2 0.0212 6.683 2.943 138 5.236 19.154 18.6971 4.158626 12.7304 

3 0.022 3.967 2.521 70.85 5.979 19.0943 18.6504 4.093272 12.5356 

4 0.0214 5.019 2.79 90.24 5.234 18.9838 18.5443 4.061231 12.947 

5 0.0285 4.069 3.217 75.22 1.628 18.9614 18.5275 4.033167 13.542 

6 0.0228 3.598 2.705 63.83 4.752 18.9216 18.5072 3.938337 13.5722 

7 0.0253 3.219 2.741 60.5 3.823 18.899 18.4738 3.986341 13.2821 

8 0.0218 5.572 2.82 104.8 5.257 18.9982 18.5451 4.124424 12.6107 

9 0.0201 4.993 2.835 90.93 4.801 19.0789 18.6272 4.126966 12.7287 

10 0.0207 6.984 3.24 135.2 3.933 18.8741 18.4417 4.016883 13.5195 

Mean 0.02309 4.8795 2.8589 91.397 4.5579 18.9991 18.55924 4.064186 13.02088 

SD 0.002872 1.252466 0.222573 27.32345 1.210134 0.090333 0.079961 0.069855 0.414981 
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A.5 M = 80~100, JOHNSON UNBOUNDED DISTRIBUTION, OLS FITTING 

 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0194 -5.277 3.229 4.736 6.432 19.143 18.681 4.180274 13.2923 

2 0.0198 -6.719 3.518 3.954 5.015 19.0592 18.6099 4.113967 13.5717 

3 0.0182 -4.777 3.114 4.98 6.969 19.0242 18.5603 4.175578 13.1956 

4 0.0174 -3.8 3.115 6.485 8.001 19.0057 18.5556 4.111732 14.057 

5 0.014 -1.1 1.758 5.487 14.32 19.1745 18.6248 4.558319 14.9371 

6 0.0182 -5.566 3.34 4.683 6.039 18.987 18.5391 4.099749 13.6219 

7 0.019 -8.103 3.41 2.426 5.09 19.0535 18.6033 4.117413 13.3286 

8 0.0219 -7.106 3.734 4.181 4.324 18.9686 18.5324 4.044495 14.0078 

9 0.0182 -7.738 3.396 2.636 5.251 18.9914 18.5473 4.083006 13.4735 

10 0.0187 -6.057 3.407 4.323 5.606 19.0262 18.5769 4.110362 13.5634 

Mean 0.01848 -5.6243 3.2021 4.3891 6.7047 19.04333 18.58306 4.159489 13.70489 

SD 0.002002 2.077178 0.540167 1.216469 2.881185 0.067515 0.04661 0.145654 0.516771 
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A.6 M = 80~100, JOHNSON UNBOUNDED DISTRIBUTION, DWLS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0171 -1.143 1.655 5.011 14.32 19.3981 18.812 4.732329 13.6018 

2 0.0183 -3.698 2.861 5.741 8.383 19.142 18.6583 4.27598 12.9713 

3 0.02 -5.823 3.039 3.47 6.432 19.0946 18.6064 4.290178 12.2557 

4 0.0194 -3.888 2.906 5.561 8.141 19.0852 18.6101 4.231907 13.0964 

5 0.0157 -1.188 1.7 5.099 14.09 19.2512 18.6797 4.655911 13.7055 

6 0.0178 -8.986 3.232 1.562 5.436 19.0644 18.5956 4.201786 12.6436 

7 0.023 -0.9388 1.39 4.073 14.97 19.4652 18.8105 5.005907 12.4103 

8 0.0177 -1.137 1.718 5.217 14.28 19.2287 18.6752 4.580372 14.5359 

9 0.0204 -4.415 2.923 4.783 7.671 19.0677 18.5942 4.222903 12.8767 

10 0.0151 -1.288 1.791 5.305 13.84 19.2412 18.693 4.560211 13.9749 

Mean 0.01845 -3.25048 2.3215 4.5822 10.7563 19.20383 18.6735 4.475748 13.20721 

SD 0.002343 2.663209 0.721275 1.262072 3.836825 0.140678 0.081297 0.272892 0.729842 
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A.7 M = 80~100, JOHNSON BOUNDED DISTRIBUTION, OLS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0309 3.017 2.558 55.86 5.015 18.9529 18.5401 3.934096 13.4387 

2 0.029 3.213 2.692 58.8 4.433 18.8928 18.484 3.908917 13.7256 

3 0.0283 4.528 2.941 78.91 4.081 18.8578 18.4356 3.968031 13.5621 

4 0.029 2.606 2.429 49.66 5.408 18.8369 18.436 3.86558 13.5307 

5 0.0268 3.856 2.832 68.33 4.11 18.8655 18.4458 3.957215 13.5319 

6 0.0275 2.741 2.36 50.4 5.999 18.8269 18.4228 3.879769 13.2796 

7 0.0343 2.941 2.901 57.56 2.783 18.8078 18.4081 3.856837 14.2399 

8 0.0329 3.078 2.74 57.07 4.07 18.8176 18.4187 3.854032 14.0715 

9 0.0283 2.579 2.377 48.58 5.775 18.8214 18.425 3.842457 13.5633 

10 0.0225 3.917 2.586 68.12 5.771 18.9373 18.5166 3.969491 13.2042 

Mean 0.02895 3.2476 2.6416 59.329 4.7445 18.86169 18.45327 3.903642 13.61475 

SD 0.003286 0.645509 0.213436 9.724077 1.024429 0.050914 0.044875 0.050246 0.323683 
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A.8 M = 80~100, JOHNSON BOUNDED DISTRIBUTION, DWLS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0245 7.367 3.038 163.1 4.867 19.1456 18.6791 4.200622 12.5629 

2 0.024 4.875 3.059 86.12 3.581 18.9752 18.5439 4.022684 13.4813 

3 0.0291 3.163 2.685 59.42 4.081 18.8729 18.4462 3.990496 13.1511 

4 0.0232 4.8 2.723 86.38 5.395 18.9954 18.5508 4.085712 12.7308 

5 0.0257 3.999 2.822 71.54 4.109 18.9207 18.4862 4.031538 13.1089 

6 0.0192 5.471 2.715 102.7 5.912 18.9863 18.54 4.092431 12.6525 

7 0.0296 4.383 3.15 76.96 2.781 18.8879 18.4736 3.934319 14.0437 

8 0.0265 6.083 3.115 112.6 4.07 18.9689 18.5307 4.05368 13.3112 

9 0.0291 2.366 2.494 48.55 4.541 18.8255 18.4222 3.875822 13.5679 

10 0.0204 4.621 2.652 82.59 5.737 18.9969 18.5556 4.070862 12.7299 

Mean 0.02513 4.7128 2.8453 88.996 4.5074 18.95753 18.52283 4.035817 13.13402 

SD 0.0036 1.416846 0.227872 32.06365 0.987343 0.088458 0.072143 0.089782 0.477566 
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A.9 M = 100~120, JOHNSON UNBOUNDED DISTRIBUTION, OLS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0169 -4.242 3.05 5.572 7.501 19.0513 18.5821 4.202094 13.2209 

2 0.0145 -0.9796 1.824 5.863 14.72 19.0716 18.5579 4.396621 16.7721 

3 0.0151 -1.071 1.751 5.447 14.52 19.2278 18.6909 4.512045 15.5201 

4 0.0172 -3.422 3.106 7.117 8.5 18.9818 18.5332 4.102344 14.3392 

5 0.0221 -7.831 3.831 3.761 3.807 19.0169 18.5801 4.052452 14.0146 

6 0.0203 -10.12 3.581 1.638 4.233 19.0044 18.5555 4.106171 13.3783 

7 0.016 -5.297 3.272 4.886 6.176 19.0553 18.5894 4.187919 13.1641 

8 0.0208 -15.7 3.712 0.4151 3.8 19.0168 18.5792 4.056108 13.7592 

9 0.014 -0.9054 1.719 5.439 15.01 19.0772 18.5619 4.404024 17.2889 

10 0.0201 -7.923 3.809 3.642 3.739 19.0363 18.5919 4.089251 13.7755 

Mean 0.0177 -5.7491 2.9655 4.37801 8.2006 19.05394 18.58221 4.210903 14.52329 

SD 0.002905 4.751265 0.872372 2.04923 4.805091 0.068158 0.042284 0.166567 1.490327 



 126 

A.10 M = 100~120, JOHNSON UNBOUNDED DISTRIBUTION, DWS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0149 -1.314 1.791 5.314 13.71 19.2472 18.6863 4.612689 13.5255 

2 0.017 -1.19 1.81 5.493 14.11 19.1552 18.6266 4.468944 15.0445 

3 0.0156 -1.127 1.676 5.049 14.38 19.3114 18.7493 4.625356 14.3108 

4 0.0164 -2.845 2.724 6.602 9.787 19.0544 18.5789 4.230205 13.6971 

5 0.0219 -3.412 2.851 6.213 8.718 19.1371 18.6527 4.278479 13.143 

6 0.018 -4.58 2.978 4.796 7.324 19.0686 18.5891 4.249337 12.7249 

7 0.0164 -2.429 2.462 6.31 10.72 19.1355 18.6321 4.360299 13.1714 

8 0.0225 -15.58 3.361 0.2552 4.86 19.0717 18.6072 4.183521 12.8135 

9 0.0189 -2.303 2.511 6.534 11.13 19.0306 18.5659 4.179844 14.4576 

10 0.0214 -4.14 3.012 5.644 7.621 19.1338 18.6544 4.25625 13.0113 

Mean 0.0183 -3.892 2.5176 5.22102 10.236 19.13455 18.63425 4.344492 13.58996 

SD 0.002757 4.278216 0.583243 1.853886 3.197361 0.088147 0.055036 0.16794 0.779228 



 127 

A.11 M = 100~120, JOHNSON BOUNDED DISTRIBUTION, OLS FITTING 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0219 3.763 2.498 66.13 6.019 18.9357 18.5056 4.012917 12.7855 

2 0.0231 4.777 2.804 82.66 5.29 18.9464 18.5142 4.023738 13.6233 

3 0.032 3.457 2.991 63.39 2.962 18.8647 18.465 3.86273 14.374 

4 0.0257 2.677 2.316 49.6 6.161 18.8596 18.452 3.89977 13.0994 

5 0.0276 5.121 3.117 88.74 3.72 18.9289 18.5142 3.940514 14.0182 

6 0.0252 6.382 3.217 117.6 3.791 18.8933 18.4647 4.001455 13.6339 

7 0.02 3.001 2.264 54.21 6.661 18.9816 18.5397 4.071936 12.3653 

8 0.0264 3.71 2.56 64.23 5.851 18.9815 18.5393 4.073291 13.4259 

9 0.0261 3.053 2.534 54.18 5.552 18.822 18.4333 3.805409 14.1033 

10 0.0216 4.924 2.838 86.96 5.047 18.9884 18.5599 4.011165 13.3338 

Mean 0.02496 4.0865 2.7139 72.77 5.1054 18.92021 18.49879 3.970293 13.47626 

SD 0.003484 1.17348 0.329865 21.07092 1.22033 0.058024 0.042626 0.089982 0.616038 
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A.12 M = 100~120, JOHNSON BOUNDED DISTRIBUTION, DWLS FITTING 

 

Data set # K-S γ δ λ ξ ro Mean SD Stiffness 

1 0.0185 6.477 2.792 136.9 5.753 19.0614 18.5919 4.204548 12.1772 

2 0.0238 4.23 2.679 74.43 5.319 18.9464 18.5142 4.023738 12.9996 

3 0.0272 4.6 3.148 80.71 2.961 18.9563 18.5367 3.966366 13.9189 

4 0.0189 6.638 3.003 132.7 4.911 18.9959 18.5481 4.100269 12.9408 

5 0.0308 2.461 2.48 49.7 4.708 18.9072 18.4962 3.920816 13.3533 

6 0.023 6.494 3.187 122.9 3.862 18.9452 18.5051 4.059788 13.2978 

7 0.0197 2.881 2.218 53.12 6.66 18.9816 18.5397 4.071936 11.9765 

8 0.024 7.329 3.107 154.7 4.698 19.029 18.5819 4.100711 13.0757 

9 0.0227 7.119 3.098 144.4 4.833 18.822 18.4332 3.805893 13.4766 

10 0.0234 5.879 2.832 113.8 5.393 19.0753 18.6194 4.145481 12.5941 

Mean 0.0232 5.4108 2.8544 106.336 4.9098 18.97203 18.53664 4.039955 12.98105 

SD 0.00377 1.75707 0.320138 38.67457 1.008976 0.0752 0.053671 0.116251 0.594417 
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