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Qiang Ye, PhD 
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Ensemble approaches have been shown to enhance classification by combining the outputs from 

a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble 

performance. Multi-task learning is an important characteristic for Neural Network classifiers. 

Introducing a secondary output unit that receives different training signals for base networks in 

an ensemble can effectively promote diversity and improve ensemble performance. Here a 

Competitive Learning Neural Network Ensemble is proposed where a secondary output unit 

predicts the classification performance of the primary output unit in each base network. The 

networks compete with each other on the basis of classification performance and partition the 

stimulus space. The secondary units adaptively receive different training signals depending on 

the competition. As the result, each base network develops “preference” over different regions of 

the stimulus space as indicated by their secondary unit outputs. To form an ensemble decision, 

all base networks’ primary unit outputs are combined and weighted according to the secondary 

unit outputs. The effectiveness of the proposed approach is demonstrated with the experiments 

on one real-world and four artificial classification problems.  
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Chapter 1 

Introduction 

 

1.1 Classification Background 

Classification is a statistical procedure where individual objects are placed into groups 

based on quantitative information on one or more characteristics of the objects [33]. For example, 

in a customer segmentation problem, classification can be the procedure of assigning individuals 

to target customers or non-target customers based on their demographic information and 

historical shopping behavior. The mapping from the values of the object characteristics to a 

discrete set of pre-defined class labels is called a classifier [53]. Classifiers have been widely 

applied in the fields of pattern recognition, data mining and artificial intelligence. 

More specifically, a classification task is concerned with the process of assigning data 

objects into a set of pre-defined class labels. For each problem involving classification, the 

following denotations are adopted as the extension of the terminology used in [81].  

 The set of c class labels consists of all possible mutually exclusive classes 

denoted Ω = {W1, … , Wc}. 

 The features, or attributes are the characteristics of an object. 

 The feature space is the space consisting of all possible values of the features, 

denoted Ř
n
. 

 The feature values are the values of the features of a specific object denoted by 

the vector x = [x1, … , xn], or x Ř
n
. The feature values can be continuous, binary 

or categorical. 

 The feature labels are the labels for each of the features denoted              

X=[X1, … , Xn]. 

 The training data set is a set of data objects specified by their feature values and 

is denoted T = [T1, … , TN], Tj   Ř
n
. Usually, the data objects are labeled with the 

corresponding class, so that   Ti=(xi, yi), yi  Ω.  



2 

 

 The validation or test data set is the dataset withdraw from the same distribution 

of the training data. Such dataset is used for evaluating the performance of a 

trained classifier in order to avoid overfitting.  

 

A classifier is a mapping that assigns a class label to a data object, i.e.  

  C: Ř
n 
  Ω, x  Ř

n
, C(x)   Ω.   (Equation 1.1) 

Classifiers can be designed using different algorithms, and therefore vary in their ability to 

generalize. Most classifiers are based on supervised learning techniques that create a model from 

a training dataset. The training data contains known examples of input values and target outputs. 

The classifier has to learn the underlying function between the inputs and outputs from the 

training data, and generalize the predictions to new objects. A trained classifier is often evaluated 

by its performance on a test dataset, which is drawn from the same distribution of the training 

dataset.   

 

1.2. Types of Classifiers 

In this section, some of the most widely used learning algorithms for classification are 

reviewed, including Bayes, Decision Tree, and Backpropagation Neural Networks. The 

remainder of the paper will focus on Backpropagation Neural Networks as the main type of 

classification and predictive algorithm.  

 

1.2.1 Bayes Classifier 

In the Bayes model [29], the classification is conducted by finding the posterior 

probabilities for an object x belonging to each class. The posterior probability for class Wi is 

denoted by P(Wi|x), and is found by the Bayes theorem: 





c

j

jj

ii
i

WxpWP

WxPWP
xWP

1

)|()(

)|()(
)|(     (Equation 1.2) 

where P(Wj), j=1,…,c are the prior probabilities for each class, and P(x|Wj) are the class 

conditional probability density functions.  
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In a classification task, all of the posterior probabilities are calculated and the object is 

assigned to the class label with the greatest value of posterior probability. Bayes classifiers are 

scalable for large input features, robust to small changes in dataset, and able to integrate prior 

domain knowledge into learning. Bayes classifiers assume the effect of an attribute on a given 

class is independent of the value of other attribute. Although this assumption reduces the 

computational cost in learning, it may not hold in many real-world problems. Also, the prior 

probability of classes, which is required for the Bayes model is often hard to be acquired for 

many tasks. 

 

1.2.2 Tree Classifier 

A tree classifier [68] consists of a sequence of nodes and links that connect nodes. A 

terminal node without branches is called the leaf node, representing a single class label. A non-

leaf node is called the decision node that represents an input feature. A tree grows from a single 

root node connected by branches to a set of other nodes, which are in turn linked to other nodes 

in the next layer till a leaf node is reached. The challenging part of building a tree is to decide 

which feature to split, and what is the critical value to split for continuous features. In C5.0 [69] 

and CART (Classification and Regression Tree) [8], this is usually solved by evaluating the 

Information Gain [54] for each feature or candidate critical values.  

Tree classifiers can generate corresponding rule sets that are easy to interpret for humans. 

But they are usually sensitive to small changes in training data. Also trees can be expensive to 

train when there are many continuous input features or when a pruning process is necessary to 

avoid overfitting issues.  

 

1.2.3 Backpropagation Neural Network Classifier 

A neural network classifier is a learning algorithm that is inspired by the function of 

neurons in human brain [70]. Neurons are modeled as processing nodes in a neural network. A 

neural network contains several layers of nodes: an input layer, a few hidden layers and an 

output layer. Nodes in adjacent layers are interconnected with different weight strength.  

Data objects are fed into a neural network through the nodes in input layer. Nodes in 

upper layer take a linear combination of outputs from lower layer, and make a non-linear 

transformation as their outputs. There are many choices of transformation functions, but the 
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sigmoid function (Equation 1.2) is the most widely used as it can smoothly approximate linear 

and threshold functions. 

               )exp(1

1
)(





          (Equation 1.3) 

Outputs from lower layers are forwarded to nodes in the upper layer until the output layer is 

reached. This is called a feed-forward network. An example of such network with two hidden 

layers is shown in Figure 1.1 [42]. 

When an output value is generated from the output layer, it is compared with the target 

signal to calculate the delta value. Using a process derived from gradient descent, this delta value 

is back-propagated into the network to update all the connecting weights among nodes. This 

training process is repeated until a stopping criterion is reached.  

Neural networks can approximate nearly any non-linear function. The biggest 

disadvantage of Neural Network is its black-box characteristic. The trained model is typically 

hard to interpret by humans. Neural Network is also sensitive to data and is prone to overfitting 

issues. For complex tasks, it may be time consuming to train a neural network as there exist too 

many parameters to tune for an optimal performance.  

 

Fig 1.1 A schematic of a feed-forward neural network with two hidden layers [from 42] 
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1.2.4. Choice of Classifiers 

When various types of classifiers are available, it is often difficult to choose which one to 

use for a given task. Clearly, every type of classifier has its pros and cons, and there is no one 

single “best” algorithm that fits all problems. Often in real practice, various classifiers are 

evaluated onto a validation dataset and their test errors are compared to determine if there is 

significant difference among classifiers. The final choice is left to individual researchers with the 

consideration of many factors such as validation performance, computation time, difficulty of 

implementation, etc. 

 

 

1.3 Neural Network Ensemble Methods 

Given a classification task where high classification performance is more desired than 

minimizing training cost, a common practice is to train a group of different classifiers and then 

choose the one with the best performance on a test dataset. However, a better alternative has 

been proposed by researchers. They are known as “ensemble” or “committee” methods.  

When a set of trained classifiers is available for the same classification task, instead of 

choosing the single best one, the ensemble method suggests putting all or some of the classifiers 

into an ensemble and combines their outputs with an aggregate function. The rationale behind 

this idea is that if every individual classifier is reasonably accurate and makes different error; 

such error can be corrected through the combining function. Therefore the ensemble can be 

expected to reach a more accurate decision than that of the best single classifier in the pool [67]. 

The Table 1.1 shows an example of an ideal ensemble consists of three individual classifiers C1, 

C2, and C3. Suppose the test dataset contains 9 data objects. Each row in the table shows the 

outputs of the 3 classifiers on a particular data object. Let 1 denote the data object being correctly 

classified, while 0 denote it is misclassified. Each base classifier is observed having an accuracy 

of 67%. However, the ensemble output that combines the outputs of three base classifiers with a 

simple voting can achieve the perfect performance of 100% accuracy. 
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Table 1.1 An ideal classifier ensemble 

 

Item # C1 C2 C3 Vote 
1 1 1 0 1 

2 1 1 0 1 

3 1 1 0 1 

4 1 0 1 1 

5 1 0 1 1 

6 1 0 1 1 

7 0 1 1 1 

8 0 1 1 1 

9 0 1 1 1 

% Correct 67% 67% 67% 100% 

 

The ensemble methods have been applied to various types of classifiers. It has shown, 

both in formal treatments and in practice, significantly enhancing classification performance [1, 

2, 4, 18, 25, 36, 38, 41, 45, 62, 66, 79, 86, 88, 92]. Figure 1.2 [81] demonstrates the basic 

structure of a classifier ensemble and how it works. The input feature values for object x (x1,…,xn) 

are supplied to L  different classifiers. And the results from each classifier are combined by an 

aggregation function to generate the ensemble classification output.  

 

 

Figure 1.2 The architecture of a classifier ensemble [from 81] 
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1.4 Organization of the Paper  

The remainder of the paper is organized as follows.  

Chapter 2 investigates the ensemble theory from the aspect of bias-variance 

decomposition in error functions. A mathematical explanation of how ensemble methods 

improve performance is given using the concepts of error variance and covariance.  

Chapter 3 reviews and categorizes various previous research work on promoting diversity 

in neural network ensembles. 

Chapter 4 introduces the idea of a multi-task learning neural network ensemble that 

creates diversity by adding an extra output unit to base networks. Related studies are discussed.  

Chapter 5 proposes a special multi-task learning ensemble that promotes diversity based 

on competitive learning. The mechanism and architecture of the proposed approach are 

elaborated in detail. 

Chapter 6 describes the experiment designs to evaluate the proposed approach, including 

the baseline method, the datasets, and the performance measures. 

Chapter 7 shows the full experiment results to evaluate the proposed approach with four 

synthetic datasets (the annulus, the checkerboard, the 10-D parity, and the synthetic diabetes 

problems) and one real-world dataset (the SPECT heart problem). The evaluation was conducted 

on five different aspects: misclassification error, input space partition, secondary unit 

performance, bias/variance error decomposition, and the ensemble diversity. A summary of all 

experiment results is provided in the end of the chapter. 

Chapter 8 concludes this work and discusses some future research directions related to 

the proposed competitive learning ensemble approach. 
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Chapter 2 

Bias and Variance Decomposition 

 

The error reduction of ensemble methods can be mathematically explained by examining 

the bias-variance decomposition of the error function for single classifiers [23], as well as the 

bias-variance-covariance decomposition for ensemble classifiers [85]. 

2.1 Bias and Variance Decomposition for Single Classifiers 

Consider a classification task where the output variable y contains a set of discrete values 

for possible class labels Ω = {W1, … , Wc}. y is dependent on a set of input features x Ř
n
 in the 

form of: 

  y=F(x)+ε.       (Equation 2.1) 

where F(x) is the target function and reflects the true distribution of y over x. ε is a random 

variable with mean equal to zero.  

The target function F(x) can be also written as a conditional expectation of y given x, in 

the following form: 

  F(x) = E(y|x)       (Equation 2.2) 

With a specific training dataset TN of size N, the goal of the classification is to find an 

estimate function f(x; TN) to approximate F(x) so that its overall misclassification error is 

minimized. Note the estimate function f(x; TN) is dependent on the specific training set TN. The 

average performance of model f(x; TN) on training set TN can be measured in the form of Mean 

Square Error (MSE) [18] as: 

222 ))();((]))([(]));([( xFTxfxFyETxfyEMSE NN      (Equation 2.3) 

Consider re-sampling a large number of random training sets of size N from the same underlying 

distribution, the overall classification performance of the model f(x; TN) can be written [18] as:  

]))();([(]))([(]}));([({ 222 xFTxfExFyETxfyEE NTNT    (Equation 2.4) 

where ET denotes the expectation value of classification error over all possible random samples 

of size N. Note: 
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 E[(y-F(x))
2
]=E[ε

2
]                      (Equation 2.5) 

is an unavoidable estimation error due to the intrinsic noise from the training data.  

The second term ]))();([( 2xFTxfET  , however, is the effective measure of model  

f(x; TN), which can be further decomposed [18] as: 

})]);([);({()}|()];([{]))();([( 222 TxfETxfExyETxfExFTxfE TTTT   (Equation 2.6) 

The first term on the right hand side is the square of the bias, measuring how close the 

model’s average output to the target function is. It is called model bias, usually characterizing the 

model’s ability to generalize correctly. The second term measures how stable this model’s 

performance will be over various datasets of the same distribution. It is also called model 

variance, characterizing the extent to which the model is sensitive to the training data.  

This equation shows the so called “bias plus variance” decomposition [23, 85] of a 

prediction error. There is always a tradeoff between the model bias and variance. A model that 

fits the training data too closely will usually have a low bias but high variance (overfitting); 

while a model less dependent on the data will have a low variance but large bias (underfitting). 

Ensemble methods can significantly reduce the variance component of the error function by 

aggregating the outputs from a group of individual classifiers.  

 Breiman [4] found that neural network classifiers tend to overfit the data and thus prone 

to huge variance error in generalization. He also claimed neural network is categorized as 

unstable model as it is sensitive to the data. That means small changes in training samples can 

cause large variance in test set results. Therefore neural networks are especially prone to benefit 

from ensemble approaches. 

 

2.2 Bias, Variance and Covariance Decomposition for Ensembles 

 In the ensemble approach, the outputs from all base models are combined through 

averaging or voting. This effect can significantly decrease the model’s sensitivity to new datasets, 

and therefore improve the classification performance by reducing model variance. Ensemble 

approaches work well when the base models do not share coincident errors. That means all base 

models in the ensemble generalizes well (low bias in error), and if they do make errors, such 

errors are different (high variance in error). 



10 

 

Ueda and Nakano [85] studied the prediction error of an ensemble with L base models, 

and further break it down to a Bias-Variance-Covariance decomposition as the following:  

cov)
1

1(var
1

})]|()(
1

{[
22

LL
biasxyExf

L
E

i

i    (Equation 2.7) 

where the bias is the average bias of all base models: 

))|())(((
1

1





L

i

i xyExfE
L

bias       (Equation 2.8) 

The var  is the average variance of all base models: 





L

i

ii xfExfE
L 1

2})))(()({(
1

var      (Equation 2.9) 

And the cov  tells the average covariance of all base models, defined below: 


 





1

)))}(()()))((()({(
)1(

1
cov

i ij

jjii xfExfxfExfE
LL

 (Equation 2.10)  

Note while the bias and variance item are strictly to be positive, the covariance term can 

be negative. This gives the intuition that the ensemble prediction error can be significantly 

reduced when base models are negatively correlated. This error reduction is quantified in the 

covariance term.  

This result is supported by many other researchers. Perrone and Cooper [67] have shown 

theoretically that the ensemble performance cannot be worse than that of any single base model, 

as long as the predictions of each base model are unbiased and uncorrelated. Rogova [72] 

concluded that when combining base models into an ensemble, it is more important to choose 

independent classifiers, rather than individually accurate classifiers.    
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Chapter 3 

Previous Research on Ensemble Methods 

 

One of the most active research areas on ensemble methods has been to study the 

methods of building an effective ensemble. As Dietterich stated in [16], “a necessary and 

sufficient condition for an ensemble of classifiers to be more accurate than any of its individual 

members is if the classifiers are accurate and diverse”. The “key” issue is to promote diversity 

when training base models in an ensemble. This chapter reviews various techniques that have 

been developed to build effective ensembles. 

 

3.1 Varying Training Data   

The most straightforward way of creating diversity is to let each classifier be trained onto 

different subset of data, so that learners can generalize differently in the input space. Dietterich 

[16] has pointed that this method fits especially well for unstable learning algorithms such as 

neural network, decision tree, and rule learning algorithms. These learners are sensitive to the 

training data as their outputs vary in response to small changes in the data. However, this 

technique does require large amount of training data available. When data is limited, 

performance of base classifiers can be degraded due to an insufficient supply of training subsets. 

Bagging, proposed by Breiman [4], is the simplest way of building ensemble by 

manipulating training data. Bagging is derived from the idea of bootstrap aggregation [18]. For 

each classifier, a bootstrap replicate TRi is drawn randomly with replacement from the original 

training set TR. Every replicate TRi covers about 60% of the original set TR, with some training 

examples duplicated several times. Bagging is a very simple and effective method to introduce 

diversity provided the training data is abundant. The ensemble built using Bagging is usually 

adopted as baseline model by many researchers. 

 Intrator and Raviv [71] extended the Bagging idea by adding a small amount of Gaussian 

noise into bootstrap replicates sampled from the original training data. The process is repeated 

with different noise variance to determine an optimal level. Ensemble members are combined 
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with simple averaging. Experiments on two synthetic and one medical data have shown 

significant performance improvement is gained over a regular Bagging ensemble.  

Parmanto and Munro [62] proposed another technique to generate training subsets based 

on the concept of cross-validation. The ensemble built with this method is called cross-validated 

committee. In this approach, the original training data is divided into k subsets. By leaving out a 

different one of the k subsets as validation data, and the remaining k-1 subsets as training data, k 

sets of training data can be generated. An important issue of this method is the degree of data 

overlap between the replicates. This overlap degree depends on both the number of replicates 

and the size of the removed fraction from the original training set. It serves as a tuning parameter 

and determines the trade-off between base model performance and the diversity between models. 

Less overlapped data can help improve diversity, but also indicates a larger removed fraction and 

smaller remaining fraction to train base models. Lower individual model performance can be 

expected with a smaller training set. Therefore the overlap degree needs to be carefully tuned to 

achieve the optimal ensemble performance. 

 In the methods described above, the base models in an ensemble are trained 

independently once the training sets are acquired. Freund and Schapire [20] proposed a different 

algorithm called AdaBoost (Adaptive Boosting) that adaptively chooses training subsets 

according to the learning performance of previous iteration. At the beginning, a set of weights 

are initialized and maintained over the training data. In each learning iteration, a subset of 

training data TRi is drawn based on the weight distribution with replacement. An individual 

classifier is trained on TRi  and its error rates on all training data are computed. Weights are then 

adjusted such that examples misclassified by this classifier have their weights increased while 

those correctly predicted have their weights decreased. In the next learning iteration, a new 

training subset is drawn based on the updated weights to train the next classifier in the sequence. 

With this iterative procedure, more difficult training problems are constructed progressively for 

successive learners so that their errors can be diverse and compensate for each other. In the end, 

all classifiers are combined together as an ensemble to produce an overall classification output. 

AdaBoost has seen great success in many classification problems. Breiman [5] even called 

AdaBoost with decision trees the “best off-the-shelf classifier in the world”. 

 Oza [59] presented a variant version of AdaBoost for neural network ensembles. In that 

study, the update of the input data weight distribution is calculated with respect to all networks 
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trained so far, rather than only the immediate previous network. Experiment results demonstrated 

significant improvement over traditional AdaBoost.  

 Bauer and Kohavi [3] conducted empirical comparison between Bagging, AdaBoost and 

their variants. The result has shown AdaBoost usually generates more performance gain than 

Bagging does. In a bias-variance decomposition analysis, AdaBoost shows a higher variance and 

lower bias in error compared to Bagging. They also found that Bagging and its variants always 

improve the performance on all datasets in the experiments even if only slightly. AdaBoost and 

its variants, however, do not deal well with noisy data.   

 Brown et al [9] categorize the AdaBoost algorithm into explicit diversity method, as the 

training data received by each successive classifier is explicitly designed so that they make 

different errors from that of previous models. On the contrary, the Bagging and cross-validation 

committees can be categorized into implicit diversity method, where the diversity is created 

totally by the randomization of training data.  

 

3.2 Varying Input Features    

 Feature selection has been an important research topic in data mining and machine 

learning. For an individual classifier model, the performance can be significantly optimized 

through selecting relevant features as well as eliminating irrelevant ones. Datasets from real 

world usually have huge amount of input features. Many of them can be redundant or irrelevant. 

The task of feature selection for individual classifiers is to find a subset of features under certain 

objective function, so that the prediction performance and the data processing speed can be 

optimized. For ensemble classifiers, however, the goal is to select different subsets of features to 

train each base model so that the ensemble diversity can be promoted. There have been abundant 

researches on the successful use of feature selection in ensemble approaches.  

Feature selection method for ensemble construction was originally conceived for tree 

classifiers. Ho [35] experimented with constructing tree ensembles using random selection of 

half features from the original feature set. Ho was able to build more accurate tree ensembles 

from feature selection than ensembles built from all features.   

Breiman [6] proposed the famous concept of “Random Forests”, which combines an 

ensemble of independent tree classifiers with majority voting. To train a base tree classifier, a 
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random selection of feature subset is considered to decide the best candidate feature and best 

split for each node in the tree. This yields favorable error rates compared to Adaboosting [20], 

and is also more robust to data noise. 

Duin and Tax [17] studied the performance of combining different types of classifiers 

such as K Nearest Neighbor, Neural Network, Decision Tree, Bayes etc on the same feature set. 

They compared them with that of combining the same type of classifiers on randomly selected 

feature subsets. Their results showed both ensembles improved performance, but the latter is far 

more effective.  

For every feature space of dimension n, there are 2
n
 -1 nontrivial feature combinations 

can be made. With each selection, a base classifier can be constructed. Therefore, using feature 

selection methods for ensemble constructing is essentially a search question. Not surprisingly, 

many researchers have adopted various search algorithms to select a strong group of feature 

subsets to build ensembles.  

Cunningham and Carney [14] adopted the Hill Climbing (HC) search algorithm for 

ensemble feature selections. HC is based on the traditional wrapper search technique proposed 

by Kohavi and John [39].  The search is conducted by first generating a random ensemble of 

feature subsets, and then building a base classifier on each feature subset. For every classifier, 

they flip each bit of the mask on its feature subset. The flip is accepted if the classifier error 

deceases, and rejected otherwise. The flipping process is repeated for each base classifier until no 

further performance improvement is acquired, indicating local optima is reached in the feature 

subset space. By encouraging every base classifier to be a different local learner, the ensemble 

performance is shown greatly improved. However, this search process may not be efficient with 

slow-training learners such as neural networks especially when the space of possible feature 

subsets is large. 

Liao and Moody [47] adopted an information theoretic technique for feature selection. 

All input variables are clustered based on their pair-wise Mutual Information. Similar features 

are grouped to the same cluster. Every base classifier in an ensemble is trained with input 

features extracted from different clusters. The authors tested this approach in experiments on a 

noisy and non-stationary economic forecasting problem and showed performance gain over 

Bagging and random feature selections. 
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Oza and Tumer [60] proposed another technique called “Input Decimation” (ID) to 

reduce the dimensionality of input feature space using target class information. The ID approach 

trains L base classifiers, one for each class in a L-class problem. For each classifier, ID selects a 

group of features that have the highest correlation with the presence or absence of the 

corresponding class. By doing this, they aim to train every base classifier to be a specialist to a 

particular classes, and prune the input features that are not strong discriminators for that class. 

With experiments on both artificial [50] and real [54] datasets, they have shown the ID algorithm 

outperforms individual classifiers trained on the full feature set and the ensembles made of such 

individual classifiers.  

While previous feature selection techniques aim to weed out redundant input features that 

are highly correlated with each other, the ID approach focuses on prune irrelevant features to the 

target class. These two approaches may look conflicting. Due to the transformable nature of 

correlation, a group of input features highly correlated with the same output variable usually 

have high correlation within the group. Therefore a tradeoff between redundancy and relevance 

may need to be decided in selecting feature subsets. An alternative technique is to use a non-

linear relationship measure such as Mutual Information or entropy, instead of a linear one such 

as correlation, to measure the relevance of input features to the target variable. 

Lastly, feature selection is not the only feature varying technique researchers have tried in 

building ensembles. Sharkey [75, 76] has tried using several feature distortion methods to supply 

different training sets for base models in an ensemble. Two different methods were used to 

transform the original inputs. One is to use a transformation neural network to auto-encode the 

data and reproduce inputs as outputs. Once trained, only the input layer weights of the 

transformation network will be applied. In other words, the original input features are converted 

into the hidden unit activations in the transformation net. The other distortion technique is to 

simply let data run through an untrained neural net with random weights, and use its outputs as 

the new input features. Sharkey used one neural network trained on the original data and two 

others trained on transformations of the same dataset in an engine-fault diagnosis task. The 

ensemble using feature distortion techniques outperforms the classifier ensemble using only 

untransformed data. Note this method is especially applicable in the cases where data is very 

limited. Rather than re-sampling that requires large training data, feature distortion method can 

introduce diversity through transformed datasets created from limited original training data. 
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3.3 Varying Architecture  

For neural network ensembles, it makes sense to use a different architecture (i.e. different 

number of hidden nodes and layers) to introduce diversity. However, many of the investigations 

into this approach show disappointing results.  

Partidge and Yates [63] claimed that variation of the number of the hidden nodes is 

regarded one of the least useful methods to build diversity for a neural network ensemble. 

However, this conclusion is based on a limited experiment with variation of hidden nodes 

between 8 and 12, and on a single dataset. More work may be needed to verify this claim. 

 Researchers have noticed that it is difficult to arbitrarily decide the number of hidden 

nodes for each network to achieve satisfying diversity. To address this problem, Islam et al [37] 

proposed a constructive algorithm for training Cooperative Neural Network Ensembles (CNNE). 

CNNE uses incremental training to determine ensemble architecture. Hidden units and new 

individual neural networks are added one by one to the ensemble in a constructive fashion during 

the training. At the beginning, a minimal ensemble of two individual neural networks with one 

hidden unit each is created. Neural networks in this initial ensemble are trained cooperatively to 

minimize ensemble error. If the contribution of any network in the ensemble does not improve 

by a threshold after certain number of iterations, a new hidden unit is added. This iterative 

construction process for individual network stops when the network performance fail to improve 

after adding one more hidden unit. If the current ensemble architecture is not able to reach the 

desired ensemble performance, and the construction of all individual networks in ensemble has 

stopped, a new network with one hidden unit is added to ensemble. This incremental constructive 

process continues until the desired ensemble performance criterion is met. Note the only cost 

function and stop criterion used in CNNE is the ensemble error, instead of the individual network 

error. This enforces a cooperative training for networks to be both accurate and de-correlated. 

CNNE has the advantage of automatically designing ensemble and individual network 

architecture. Experiments with CNNE on a series of benchmark problems from UCI dataset [87] 

have shown this algorithm can produce neural network ensembles with good generalization 

ability.  
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3.4 Varying Initial Conditions    

One common method to build a neural network classifier ensemble is to initiate each 

network with different random weights. This approach tries to let each network take a different 

starting point in the weight space and hopefully converge differently. Although it looks very 

straightforward, many researchers have found it a less effective way to promote diversity.  

Sharkey and Neary [80] investigated the effect of random initial weight vector on the 

solutions converged with back-propagation. In the experiment, a group of neural networks are 

trained with the fuzzy XOR task on a fixed set of training data. Sharkey have the weight vectors 

systematically varied within a reasonably large range. It turned out that each network does take a 

different number of iterations to converge onto a solution. However, once converged, they all 

showed similar generalization pattern and converged to a similar local optima.  

These observations are consistent with the findings from many other researchers. 

Partridge and Yates [63, 93] studied several different approaches to promote diversity for neural 

network ensembles with experiments on large synthetic datasets. They concluded that the 

random initialization of weights is one of the least effective methods.  

Parmanto, Munro and Doyle [62] compared the performance of Bagging, 10-fold-cross-

validation, and random weight initialization with one synthetic and two medical diagnosis 

datasets. The random weights approach is ranked the last.   

In a survey on diversity creation methods, Brown [9] pointed out a technique relevant to 

varying initial condition in ensemble building. This is called Fast Committee Learning [84]. In 

this approach, a single neural network is trained. A set of snapshots of its weight states are taken 

from different time slices during its learning procedure, and are combined to form an ensemble. 

While this approach is not guaranteed to generalize equally well compared to the ensemble made 

of independent networks, it reduces the learning time as only one network is needed to be trained. 

This method can be potentially optimized by explicitly choosing time slices according to a 

predefined metric. 

As Sharkey [82] concluded, abundant evidence has shown that although the variation of 

initial weights may affect the speed of convergence, a network learnt on a particular dataset is 

likely to show similar patterns of generalization. 
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Chapter 4 

The Multi-Task Learning Neural Network Ensemble 

 

Unlike most other classifiers, a Neural Network can be trained on multiple tasks by 

simply adding an additional output unit.  This is called Multi-Task Learning (MTL) [11]. The 

additional output unit is trained simultaneously with the primary output unit through the same 

back-propagation procedure. Since the hidden units of a MTL network are shared by all output 

units, there exists interaction between the primary output unit and the secondary output unit. It is 

interesting to study the effect of prompting diversity for neural network ensembles by adding a 

secondary output unit that receives different training signals for each base network. 

Parmanto and Munro [55] adopted a winner-takes-all approach to guide the secondary 

output units training in an ensemble. The primary output units of all base networks receive the 

same classification training signal. However, the secondary output units are dynamically 

assigned with different tasks such that the network with the highest secondary output takes a 

training signal of 1 while all the others take 0. With this procedure, the base networks in the 

ensemble can be driven to different optimum in a weight space from the training set. As the 

result, the errors from all base networks are de-correlated with improved diversity and the overall 

ensemble error is reduced.  

 

4.1 The Multi-Task Learning Ensemble Mechanism     

 Ye and Munro [94] have researched on introducing an extra output unit for networks in 

an ensemble to replicate one of the input features from the classification task. Each network is 

assigned to reproduce a different input feature as the secondary task, in addition to the common 

classification task for the primary output unit, as shown in Figure 4.1. 

The cost function of a base network i is the sum of square errors on the primary task and 

the secondary task weighted by coefficient  , aggregated over all training patterns ().  
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where λ is the weight balance between the primary task and secondary task. This weight reflects 

the tradeoff between individual classifier performance and the ensemble diversity. Putting a 

higher weight on the secondary task tends to improve the ensemble diversity, but may harm the 

individual performance. An appropriate weight balance is carefully tuned to achieve the optimal 

ensemble performance. 

 

 

 

Figure 4.1  A base network with two output units: a primary output unit for classification task, 

and a secondary output unit to replicate one of the input features (xS). Here xS=x2  

 

 The MTL ensemble is illustrated in Figure 4.2 where a group of base network classifiers 

are trained on a common task P, and each network has an additional output to replicate a 

different one of the input features. This approach is inspired by the encouraging result from 

Caruana and De Sa [12], who showed significant performance gain on a single neural network by 

promoting some poor input features to outputs. The rationale is that by putting some inputs as 

extra outputs, the mappings among these input features are learnt. For many domains, such 

mapping among input features could be more valuable than certain input features themselves. Ye 

and Munro [94] extended this idea into ensemble building, and hypothesized that with a different 

secondary task introduced, even if the base network performance is harmed, the ensemble 

performance can be improved due to increased diversity.  
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Figure 4.2 The MTL ensemble. Each base network of the ensemble has two output units: one 

is trained on a primary task of classification (P), and the other is trained to replicate a single 

input feature that is different for each base classifier. 

 

4.2 Evaluation of the Multi-Task Learning Ensemble    

 To evaluate the performance of the Multi-Task Learning Ensemble, a thorough analysis 

and experiments were conducted with the “Nursery Database” datasets from UC Irvine Machine 

Learning Repository [87]. In the study, the MTL ensemble is compared with a standard ensemble 

that has identical configuration to the MTL ensemble but without the secondary units. Both 

ensembles are initialized with random weights and have 4 hidden units for each of their base 

networks.  

The “Nursery Database” from UC Irvine Machine Learning Repository [87] was derived 

from a hierarchical decision model originally developed to rank applications for nursery schools. 

It contains 8 attributes with the following values: 
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parents  usual, pretentious, great_pret 

has_nurs  proper, less_proper, improper,critical, very_crit 

form    complete, completed, incomplete,foster 

children   1, 2, 3, more 

housing   convenient, less_conv, critical 

finance   convenient, inconv 

social    nonprob, slightly_prob, probable 

health    recommended, priority, not_recom 

 

And there are 5 classes with the following distribution: 

 

Class    N [%] 

---------------------------------------------- 

not_recom  4320 (33.333 %) 

recommend  2 ( 0.015 %) 

very_recom  328 ( 2.531 %) 

priority  4266 (32.917 %) 

spec_prior  4044 (31.204 %) 

 

The 8 attributes were normalized into real numbers between 0 and 1. They are then fed into the 

neural network classifiers as inputs. The network is trained to classify each instance into one of 

the 5 classes according to its attributes. Two of the classes, “recommend” and “very_recom”, 

were excluded since they only account for less than 2.6% of the total dataset. 

 

The remaining 3 classes were encoded as the following: 

Class    Code 

----------------------------------------------- 

“not_recom”  0 

“priority”  0.5 

“spec_prior”  1 

 

The dataset contains 12630 instances of the above 3 classes. 9711 instances are randomly 

selected as the training patterns and 2919 as the test patterns. 

 For any base network k, its primary output Pk is a real number between 0 and 1. A 

threshold e is set such that the classification output Ƴk is defined as follows: 
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A regular base classifier is tuned with e varying from 0.1 to 0.4 at the step of 0.05. With 100 

simulations at each step, it turns out the optimal performance is reached when e is 0.3. 

 To run the evaluation experiment, 100 trails of the MTL ensembles and the standard 

ensembles are trained and tested. Figure 4.3 shows a boxplot of classification errors from the 

MTL ensembles, the standard ensembles, and the average of base network errors in the two types 

of ensembles. Both ensemble approaches, in general, decrease the classification error over 

individual base classifiers from nearly 12% to 8%. Nevertheless the MTL ensembles are able to 

further optimize the classification performance over the standard ensembles, and decrease the 

average error rate from 8.2% to 7.7%. What is more, the MTL ensembles are observed to have 

almost half Inter-Quartile range on error rates as that of the standard ensembles. These show the 

MTL ensembles can generate more accurate and stable classification performance than the 

standard ensembles do. It is noticeable that base classifiers in the MTL ensembles perform a bit 

worse than those in the standard ensembles do. This supports the hypothesis that the MTL 

ensemble performance can be enhanced by improved diversity, even when its base network 

performance is slightly degraded.  

 

 
            

Figure 4.3 The MTL ensemble vs. the standard ensemble. Performance compared for 100 

MTL ensemble trails and 100 standard ensemble trials. Boxplots are displayed for the two types 

of ensembles (left) and their base networks (right). 
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Chapter 5 

The Proposed Approach – A Competitive Learning 

Neural Network Ensemble 

 
Introducing a secondary output unit that receives different training signals for each base 

network in an ensemble can effectively increase diversity. Thus the error patterns from each base 

network can be de-correlated and the ensemble classification performance is improved. To 

further extend this benefit, the secondary unit of a network is trained to predict the network’s 

primary unit performance; and the secondary outputs are used as the weights to combine base 

networks’ primary outputs for the ensemble decision.  

 To achieve this goal, a Competitive Learning Neural Network Ensemble is proposed 

here that the base networks compete with each other on the basis of classification performance 

and partition the stimulus space. This notion is reminiscent of competitive learning (Rumelhart 

and Zipser, 1986). In the competitive learning ensemble, each base network has two output units: 

a primary unit for classification and a secondary unit that adaptively receives different training 

signals depending on the competition of networks on classification performance.  

For a base network i, let its primary output be denoted Pi, and its secondary output be 

denoted Si. The training procedure for a competitive learning ensemble is as follows: 

When an input data item α is fed into the ensemble with the input vector x
α
 and the output 

classification target y
α
, each base network processes x

α
 simultaneously, and generates its P and S 

output. The P-unit of each network receives the same training signal y
α
 for the classification task, 

and the primary unit error on classification is compared among networks. The network that 

achieves the minimal classification error is identified as the “winner network” for the data item α. 

The training signal to the S-unit is 1 for the “winner network”, and 0 for the other networks in the 

ensemble.  
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Specifically, the error functions for the primary unit 𝛿𝑖
𝑃 and the secondary unit 𝛿𝑖

𝑆 are 

defined in Equation 5.1 and 5.2. The error functions are used to adjust the parameters of network 

i in a regular back-propagation learning process.  

       𝛿𝑖
𝑃 = 𝑦𝛼 − 𝑃𝑖                    (Equation 5.1) 
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During the training, the S-unit’s response in each network is explicitly trained to be 

sensitive to the network’s primary task performance. The signal for S-unit is not a static function 

of the input. Instead, it dynamically changes depending on the competition of all base networks 

on their primary task performance. This competitive procedure also partitions the stimulus space 

such that the primary output of one base network is more sensitive to a specific region of the 

stimulus space than the primary outputs of other networks are. 

 

 

 

Figure 5.1 A Competitive Learning Neural Network Ensemble. Each of base network in the 

ensemble receives the same input and computes two outputs, P (Primary) and S (Secondary). The 

P-unit output of each base networks is compared to a common training signal to get the primary 

unit error for competition. The “winner net” that has the smallest primary unit error receives the 

training signal 1 for its S-unit, while the other networks receive the training signal 0 for their S-

units. After trained, the P-unit outputs from all base networks are combined together and 

weighted according to their corresponding S-unit outputs to form the ensemble decision. 
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For any data point in the input space, each base network demonstrates different 

“preference” as indicated by its secondary output. Generally, the greater the secondary output is 

from a network, the higher “preference” the network shows, and thus the more accurate 

classification result can be expected from the network.  

Therefore, the secondary outputs, once normalized, can be utilized as the weights to 

combine the primary outputs from all base networks to form the ensemble decision. In this work, 

the secondary output from each base network is raised to the 2
nd

 power and then normalized as 

shown in Equation 5.3. Previous studies [20, 67, 88] have shown that when the members in an 

ensemble are imbalanced, an optimal set of weights could significantly improve the ensemble 

performance.  

 

𝜱𝑷 =   𝑷𝒊 ∗
𝑺𝒊
𝟐

 𝑺𝒋
𝟐𝑳

𝒋=𝟏
 𝑳

𝒊=𝟏    (Equation 5.3) 

 

where Φ
P
 is the classification output of an ensemble of L base networks. 
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Chapter 6 

Evaluation and Experiment Design 

In the Competitive Learning Neural Network Ensemble, the base networks compete 

against each other on the classification performance for every training data point. This 

competitive procedure divides the input space, and decomposes the overall complex task into 

smaller and easier sub-tasks. Each base network develops “preferences” over different regions of 

the input space, corresponding to different sub-tasks. Such “preference” is indicated by each base 

network’s secondary output. A greater secondary output shows a higher “preference” or more 

accurate classification result from the base network to be expected. Therefore when the primary 

outputs from all base networks are combined and weighted by their secondary outputs, the 

competitive learning ensemble can usually achieve higher classification performance than a 

traditional ensemble does. 

 

6.1 The Baseline 

To evaluate the performance of the proposed approach, the competitive learning 

ensemble is compared to an existing ensemble method. This is to ensure a fair evaluation as the 

simulation setting, algorithm parameters, and network configurations can be controlled and 

maintained same in both types of ensembles.  

The most popular traditional ensemble method is bagging, where each base network is 

trained on a random bootstrap sample drawn from the complete training set. When combining 

the outputs from all base nets, simple averaging is used to obtain the bagging ensemble output. 

With each network trained on a different bootstrap sample, a bagging ensemble can effectively 

gain diversity and usually outperform a single network in classification tasks. Previous studies 

[11, 12, 13, 14, 15, 90] has shown bagging, as a practical and effective ensemble approach, 

usually generates reasonably good classification results. In this work, the bagging ensemble is 

used as the baseline classifier to be compared with the competitive learning ensemble. 
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6.2 The Datasets 

Synthetic data has many advantages over real-world data when it is used to evaluate a 

new approach. With synthetic data, the nature of the task, input features, dimensionality, 

sampling size, and the degree of noise can be fully controlled. More importantly, 2-D synthetic 

data makes it possible to visualize the effect of the new approach on how it solves the problem.  

Four synthetic datasets are designed in this work, including the annulus problem, the 

checkerboard problem, the 10-D parity problem, and the synthetic diabetes problem. In addition, 

a real-world dataset on SPECT heart image diagnosis from the UC Irvine machine learning 

repository [87] is also adopted. 

6.3 Evaluation of the Ensemble Classification Error 

The competitive learning ensemble can improve classification performance by effectively 

decomposing the overall task into smaller sub-tasks and assigning appropriate weights to base 

networks based on their “preference”. The classification performance is measured by a 

classifier’s misclassification rate on the test dataset, and is compared between the competitive 

learning ensemble and the traditional bagging ensemble. 

6.4 Evaluation of the Secondary Unit Performance  

In the competitive learning ensemble, the secondary unit of a base network is trained to 

predict the network’s primary unit performance. Given an input data point, a base network with 

higher secondary output is expected to have lower primary task error. The secondary outputs 

serve an important role as the weights in combining the primary outputs from all base networks 

to form the ensemble decision. Therefore, it is necessary to examine the relationship between the 

secondary output and the primary unit error of each base network.  

A scatter plot of the expected primary unit error at different levels of secondary outputs 

can help visualize the trend between the two variables. For any secondary output value, the 

expected primary unit error can be calculated as the average misclassification error from all base 

networks on all data points where the networks’ secondary outputs are greater than the specified 

secondary output value.   
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6.5 Evaluation of the Ensemble Diversity 

Diversity is a very important factor for ensembles. The higher diversity an ensemble has, 

the more likely its base networks make different errors, and the better ensemble classification 

performance can be expected. The bagging ensemble gains diversity implicitly by randomizing 

the training samples. The competitive learning ensemble, however, explicitly promotes diversity 

by assigning different tasks to the secondary output unit of each base network. In each training 

iteration, a particular base network is identified as the “winner network”. The “winner network” 

receives a different training signal (1) from what other networks receive (0) for the secondary 

output units. These different secondary tasks can in turn influence the primary task learning in 

each base network through the same hidden layer units shared by both tasks.  

Various measures of diversity have been studied by researchers [14, 15, 78], which is 

beyond the scope of this work. The “diversity” in this study is measured by the variance of the 

primary outputs from all base networks in an ensemble. Specifically, for an ensemble of L base 

networks, the diversity is calculated as the variance of primary outputs from all base networks 

shown in Equation 6.1: 
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            (Equation 6.1)  

 

6.6 Evaluation of the Classification Error Decomposition  

As discussed in chapter 2, regular ensembles, such as bagging, can reduce classification 

error through reducing the variance component. Similarly it is expected that a competitive 

learning ensemble is able to reduce the variance error component as a bagging ensemble does. 

More importantly, a competitive learning ensemble may also reduce the bias component of the 

classification error. This can be achieved through dividing the input space and assigning 

appropriate weights to base networks based on the “preference” they show on different input data 

points. 
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To estimate the bias and variance component of the classification error, twenty trials of 

both types of ensembles are trained, each using a random sample drawn from the entire input 

space of the classification problem.  

With each training set T
i
, an ensemble classifier f(x: T

i
) is trained. Given the twenty 

ensemble classifiers f(x: T
1
),  … , f(x: T

20
), let  𝑓  𝑥  be the average output of the twenty 

ensemble classifiers on a test data point x:  𝑓  𝑥 =
1

20
 𝑓(𝑥; 𝑇𝑖)20

𝑖=1 . The bias and variance 

component can then be estimated using the following formulas: 

 

𝐵𝑖𝑎𝑠 𝑥 ≈ (𝑓  𝑥 − 𝐸 𝑦 𝑥 )2       (Equation 6.2) 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥) ≈
1

20
 [𝑓 𝑥; 𝑇 𝑖 − 𝑓  𝑥 ]220

𝑖=1        (Equation 6.3) 

 

Such bias and variance is calculated and averaged over all test data points to obtain the average 

bias and average variance for both the competitive learning ensembles and the bagging 

ensembles. 
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Chapter 7 

Experiment Results and Discussion 

The competitive learning ensemble is evaluated and compared with the traditional 

bagging ensemble on five classification problems. These include the annulus problem, the 

checkerboard problem, the 10-D parity problem, the synthetic diabetes problem, and the SPECT 

heart problem. The first four problems are artificially designed while the last one uses a real-

world dataset. The full experiment results are shown and discussed in this chapter. 

 

7.1 The Experiment on the 2-D Annulus Classification Problem 

To illustrate the strength of the competitive learning ensemble, an artificial classification 

task on a 2-Dimension input space is designed to visualize how the competitive procedure 

partitions the input space. Consider a classification task of two classes in the 2-D input space 

shown in Figure 7.1. All the data points falling in the annulus area between the two circles are 

labeled “1”, while all the other data points are labeled “0”. Each data point consists of two input 

variables x=[x1, x2]. The range of possible values of both input variables is between 0 and 1. The 

two circles have the same origin point at (0.5, 0.5), with a radius of 0.5 for the outer circle and 

0.3 for the inner circle. This makes the annulus area around half of the entire input space area, 

and the two classes are equally distributed. More specifically, the classification function is: 


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)(xy     

Otherwise
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       (Eq. 7.1.1) 

A noisy version of this classification task can be built by introducing Gaussian noise 

along the solution boundary (the two circles in this problem). Let z be a vector of random 

numbers drawn from a Gaussian distribution with standard deviation s. The classification 

function with noise is:  
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      (Eq. 7.1.2) 
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The vector z is drawn from the positive half side of the Gaussian distribution. Normalized to an 

area of 1, the probability density function of z is: 

e
sz

s
zP

2/)/( 2

2

2
)(




  

  (Eq. 7.1.3) 

  The expected value of noise z is thus calculated as:   





0

/2*)(*][ szPzzE

   

          (Eq. 7.1.4)

 

 

In this work, two levels of Gaussian noise were introduced with standard deviation 0.02 

and 0.1. The expected value of the noise would be 0.016 and 0.08 respectively.  

 

7.1.1 Illustration of the Annulus Datasets 

The three variants of the annulus datasets (clean, small noise, and large noise) are 

illustrated with their target classification boundaries in Figure 7.1 through 7.3. In each case, 250 

data points are randomly sampled from the entire input space for the experiment. 200 data points 

are used for training and the other 50 are reserved as the test set. The illustration for the entire 

input space is on the left, and the sample data points are shown on the right. As shown in the 

figures, the noise is introduced in a way that more noise exists closer to the solution boundary 

while less noise exists further away from the boundary. 

 
 

Figure 7.1 Illustration of the annulus task with no noise. The complete input space is on the 

left and the sample data graph is on the right. The two circles represent the target boundaries 

with radius 0.5 for the outer circle and 0.3 for the inner circle.  
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Figure 7.2  Illustration of the annulus task with small noise. The entire input space is on the 

left and the sample data graph is on the right. The two circles represent the target boundaries 

with radius 0.484 (e.g. 0.5-0.016) for the outer circle and 0.284 (e.g. 0.3-0.016) for the inner 

circle.  

 

 

 

 

  
 

Figure 7.3 Illustration of the annulus task with large noise. The entire input space is on the 

left and the sample data graph is on the right. The two circles represent the target boundaries 

with radius 0.42 (e.g. 0.5-0.08) for the outer circle and 0.22 (e.g. 0.3-0.08) for the inner circle.  
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7.1.2 Experiment Implementations 

To evaluate the proposed approach against the baseline, 20 trials of the competitive 

learning ensembles and the bagging ensembles are implemented and simulated for each of the 

clean and noisy annulus tasks. Each ensemble trial is trained for 200,000 iterations on the 

training set and then its generalization performance is measured on the test set. Note for the two 

noisy annulus tasks, the test sets use the noiseless data with real target boundaries as illustrated 

in Figure 7.2 and 7.3. This is to accurately assess the classifiers’ accuracies as discussed in [77]. 

Both the competitive learning ensemble and the bagging ensemble contain 5 base neural 

networks. Each network has 20 hidden units. The various network parameters, such as initial 

weights range, learning rates, etc are fine tuned before simulation and remain the same for both 

types of ensembles.  

 

7.1.3 Evaluation of the Misclassification Performance  

The classification error distributions from the 20 trials of the competitive learning 

ensembles and the bagging ensembles for each of the clean and noisy annulus tasks are shown in 

the boxplots of Figure 7.4 through 7.6. Generally the competitive learning ensembles outperform 

the bagging ensembles in all three cases. In the clean annulus task, the competitive learning 

ensemble reduces the average misclassification error to 0.04 from 0.09 in the bagging ensembles.  

 

 
Figure 7.4 Misclassification comparison – no noise 
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When the data gets noisier, the classification performance from both ensembles decreases as 

expected.  The competitive learning ensemble still achieves more desirable performance than the 

bagging ensemble does. The average misclassification error is 0.07 (competitive) vs. 0.13 

(bagging) under smaller Gaussian noise; and 0.17 (competitive) vs. 0.24 (bagging) under larger 

Gaussian noise. The gain of the competitive learning ensemble over bagging ensemble is 

observed decreasing when more noise is introduced into the data. This is mainly because the 

competitive learning ensemble’s ability to divide input space is impacted by the presence of 

noise in the dataset. 

 
Figure 7.5 Misclassification comparison – small noise  

 

 

 
Figure 7.6 Misclassification comparison – large noise 
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7.1.4 Visualization of the Network Preference Map 

The competitive learning ensemble is able to learn the complex pattern with limited 

training resources because it divides the input space and drives each base network to find its 

“preference” region through competition. The secondary unit of each base network is trained to 

indicate if a network “prefers” a given data point. After trained, given a data point in the input 

space, the higher the secondary output is, the more “preference” the base network shows on the 

data point, and thus the higher weight this network is assigned for the ensemble decision. When 

the input space is appropriately divided through the competition procedure, the overall complex 

task is decomposed into smaller sub-tasks that are easier to tackle.  

The Network Preference Map assigns the "winner networks" (coded by color) over the 

entire input space. The network inputs are drawn from a uniform sample of the unit square with 

resolution 0.01. Each region shows the portion of the input space for which a specific network 

has the highest secondary unit response. Figure 7.7 through 7.9 illustrates the Network 

Preference Map in each of the clean and noisy annulus datasets. The two circles in each figure 

represent the solution boundaries. Note the boundary lines that separate the “preference” regions 

for each base network show alignments with the two circles in some area. 

 

 
Figure 7.7 Network Preference Map – no noise 
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Figure 7.8 Network Preference Map – small noise 

 

 
Figure 7.9 Network Preference Map – large noise 

 

 

 

7.1.5 Visualization of the Ensemble Outputs and the ROC Curves  

The output from a neural network ensemble in this experiment is a continuous value 

between 0 and 1. With a classification threshold, such as 0.5, an ensemble output can be 

classified to be either “inside annulus” (output>=0.5) or “outside annulus” (output<0.5). One 

way to illustrate the impact of noise is to visualize these ensemble outputs on the entire 2-D input 

space. This shows what an ensemble thinks the annulus should look like in the clean and noisy 

annulus tasks. In this experiment, an ensemble is trained on the clean and noisy data, and applied 

on the data points uniformly drawn from the entire input space with resolution 0.01.  
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Figure 7.10 Competitive learning ensemble output (threshold 0.5) – no noise 

 
 

 
Figure 7.11 Competitive learning ensemble output (threshold 0.5) - small noise 

 

 
Figure 7.12 Competitive learning ensemble output (threshold 0.5) -large noise 
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Figure 7.10 through 7.12 illustrates the competitive learning ensemble outputs in the 

clean, small noise and large noise cases with the classification threshold 0.5. The two circles in 

each figure represent the solution boundaries. The ensemble outputs well resemble the target 

annulus for the clean and small noise cases, but there exist significant false positive errors for the 

large noise case. Such false positive errors can be reduced by fine tuning the classification 

threshold for ensemble outputs. Table 7.1 summaries the false positive (FP) and false negative 

(FN) tradeoff for different thresholds in the large noise case. And the ROC curve is shown in 

Figure 7.13. 

Table 7.1 The type I and type II errors by classification thresholds  

 

Classification 

Threshold 
Type1 

(FP) 
Type2 

(FN) 
True 

Positive 

0.06 100.0% 0.0% 100.0% 
0.10 91.3% 0.0% 100.0% 
0.20 82.4% 0.1% 99.9% 
0.30 77.2% 0.1% 99.8% 
0.40 73.6% 0.2% 99.7% 
0.50 65.3% 0.4% 99.5% 
0.60 58.5% 0.5% 99.2% 
0.70 52.3% 0.6% 99.0% 
0.80 45.5% 1.0% 98.4% 
0.90 34.7% 2.2% 96.6% 
0.95 21.4% 12.1% 81.3% 
0.99 7.8% 44.9% 30.6% 
1.00 0.00 0.65 0.00 

 

 

 
Figure 7.13 The ROC curve for the large noise annulus task 
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The Figure 7.14 through 7.16 show the competitive learning ensemble output plots under 

the three thresholds (0.7, 0.9 and 0.95) where the ensemble outputs are reasonably aligned with 

the solution boundaries. These three thresholds are also labeled in red in the ROC curve. 

 

Figure 7.14 Competitive learning ensemble output (threshold 0.7) – large noise 

 

Figure 7.15 Competitive learning ensemble output (threshold 0.9) – large noise 

 

Figure 7.16 Competitive learning ensemble output (threshold 0.95) – large noise 
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The Figure 7.17 shows the ROC curve comparison for the clean, small noise and large 

noise annulus tasks. The areas under the three ROC curves illustrate the competitive learning 

ensemble’s ability to correctly classify the task under different noise level. These areas can be 

approximated with a non-parametric method based on constructing trapezoids under the ROC 

curve. The Figure 7.18 shows the comparison of the areas under the three ROC curves. The area 

decreases as the noise level increases in the annulus task. 

 
 

Figure 7.17 The ROC curve for the annulus tasks – clean, small noise and large noise 

 

 

 

 
Figure 7.18 The ROC area for the annulus tasks – clean, small noise and large noise 
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7.1.6 Evaluation of the Secondary Unit Performance  

The scatter plots in Figure 7.19 through 7.21 show the expected primary unit error at 

different levels of secondary outputs in each of the clean and noisy annulus datasets. While the 

noisy ones have higher primary unit error than the clean one does, it is consistently observed that 

the expected primary unit error is always low when the secondary unit output is high. This shows 

the secondary output in the competitive learning ensemble indeed indicates the primary unit 

performance. The ensemble decision can benefit from a weighted average of all base networks 

based on their secondary outputs. 

 
Figure 7.19 Secondary unit performance – no noise 

 

 

 

 
Figure 7.20 Secondary unit performance – small noise 
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Figure 7.21 Secondary unit performance – large noise 

 

 

7.1.7 Evaluation of the Ensemble Diversity 

To compare the diversity between the two types of ensembles, twenty trials of the 

competitive learning ensembles and the bagging ensembles are implemented and tested on the 

clean annulus task. The distributions of their diversity are shown in Figure 7.22, where the 

competitive learning ensemble is observed to have greater diversity than the bagging ensemble 

does.  

 
Figure 7.22 Diversity comparison for the annulus task 
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7.1.8 Evaluation of the Classification Error Decomposition 

As discussed in the previous chapters, classification error can be decomposed into 

variance component and bias component.  Regular ensembles such as bagging can improve 

classification performance mainly through reducing the variance component. However the 

competitive learning ensembles can also reduce the bias error component through dividing input 

space and assigning appropriate weights based on network preference. 

Figure 7.23 and Figure 7.24 illustrate the bias and variance classification error 

decomposition in the clean annulus task for both the competitive learning ensemble and the 

bagging ensemble. The competitive learning ensemble has shown much smaller bias error than 

the bagging ensemble does. Note the variance error component in the competitive learning 

ensemble is also smaller than that in the bagging ensemble. This is because each competitive 

learning ensemble is more accurate and closer to the target, and thus achieves smaller variance 

among the ensemble results.  

 
Figure 7.23 Classification error decomposition - bias  

 

 
Figure 7.24 Classification error decomposition - variance 
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7.2 The Experiment on the Checkerboard Classification Problem  

Consider a classification problem with two classes shown in Figure 7.25. There are 49 

data points arranged on a 7x7 checkerboard matrix with alternating categorical values of 1 (25 

data points) and 0 (24 data points).  Each data point consists of two input features: the horizontal 

and vertical coordinate values in the range between 0 and 1.  

 

 
 

Figure 7.25 The checkerboard problem 

 

 

This classification task is a non-trivial task as the data points from different classes are 

close to each other. As illustrated in Figure 7.26, this classification task may be solved with 

multiple boundary lines parallel to the matrix diagonal. The input space is then divided into 13 

sub-regions, each containing either all 1’s or all 0’s.   
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Figure 7.26 A solution to the checkerboard problem 

 

 

In this work, 7 data points (3 1’s and 4 0’s) are picked as the test set, and the other 42 

data points (22 1’s and 20 0’s) are used as the training set. A classifier is expected to learn the 

separation boundaries from the training set and generalize to the test set. The test data points are 

uniformly distributed, as marked with red circles in Figure 7.27. The minimal distance between 

test data points is 2 units on the grid, and the nearest pairs of test data points are in different 

classes.  

 

 

                              Figure 7.27 The experiment setup for the checkerboard problem 
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7.2.1 Experiment Implementations 

To evaluate the proposed approach against the baseline, 20 trials of the competitive 

learning ensembles and the bagging ensembles are implemented. Each ensemble trial is trained 

for 100,000 iterations on the training set and then its generalization performance is measured on 

the test set. Both the competitive learning ensemble and the bagging ensemble contain 5 base 

neural networks. Each network has 20 hidden units. The various network parameters, such as 

initial weights range, learning rates, etc are fine tuned before simulation and remain the same for 

both types of ensembles.  

In the bagging ensembles, a random bootstrap sample is retrieved from the training set to 

train each base network in the experiment. Due to the limited size of the training set, the bagging 

approach may not show significant performance improvement over single neural networks. 

In the competition learning ensembles, each base network in the ensemble processes the 

same data point retrieved from the training set in each training iteration. The base network that 

has the smallest classification error for the data point is identified as the “winner net”, and 

receives signal 1 for its secondary unit; while the other networks receive 0 for their secondary 

units in the training iteration. The primary units of all base networks receive the same training 

single for the classification task. 

 

7.2.2 Performance Evaluation 

The error distributions from 20 trials of the competitive learning ensembles and the 

bagging ensembles are compared in the boxplot in Figure 7.28. The bagging ensembles are not 

learning the patterns well with an average misclassification rate of 0.4. On the other hand, the 

competitive leaning ensembles have effectively solved the problem and successfully generalize 

on the test set with the same number of hidden units and training iterations. The competitive 

learning ensemble reduces the misclassification error to 0.23.   
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Figure 7.28 Misclassification comparison for the checkerboard problem 

 

The Network Preference Map in Figure 7.29 assigns the "winner networks" (coded by 

color) over the entire input space. Each region shows the part of the input space for which a 

specific network has the highest secondary unit response. The boundary lines in the graph that 

separate the “preference” regions for each base network resemble the solution boundary lines 

shown in Figure 7.26. This indicates the competitive learning ensemble effectively divides the 

input space, and thus decomposes an overall complex task into smaller and easier tasks. 

It is also interesting to visualize the ensemble outputs and find what the ensemble thinks 

the solution boundaries are. Figure 7.30 shows the outputs from a competitive learning ensemble. 

The network inputs are uniformly drawn from the entire input space with resolution 0.01. The 

solution boundaries calculated by the ensemble are well aligned with the target boundary lines 

shown in Figure 7.26, except on the lower right corner. 
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Figure 7.29  The Network Preference Map for the checkerboard problem. Network inputs are 

drawn from a uniform sample of the unit square with resolution 0.01. The color corresponds to 

the base network with the highest secondary unit response. The 49 data points of the 

classification task are overlaid onto the Network Preference Map showing the patterns in sub-

regions are much simpler than the overall task. 

 

 

 

 

Figure 7.30  The ensemble output for the checkerboard problem. Network inputs are drawn 

from a uniform sample of the unit square with resolution 0.01. The 49 data points of the 

classification task are overlaid onto the ensemble output graph.  
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To examine the secondary unit performance of the competitive learning ensemble, a 

scatter plot of the expected primary unit error at different levels of secondary outputs is shown in 

Figure 7.31. It is again observed that the expected primary unit error is always low when the 

secondary output is high. This shows the secondary output in the competitive learning ensemble 

indeed indicates the primary unit performance.  

 

Figure 7.31 Secondary unit performance for the checkerboard problem 

 

The diversity comparison between the two types of ensembles is shown in Figure 7.32, 

where the competitive learning ensembles are observed to have greater diversity than the 

bagging ensembles do.  

 
Figure 7.32 Diversity comparison for the checkerboard problem 
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7.3 The Experiment on the 10-D Parity Classification Problem  

The 10-D parity task is to classify a sequence of 10 binary digits to either 1 or 0 

depending on its number of 1’s is odd or even. The target class is 1 for odd and 0 for even. The 

entire input space contains 1024 (2
10

) data points. The cases of class 1’s and 0’s are equally 

distributed over the input space.  

 

 

7.3.1 Experiment Implementations 

To evaluate the proposed approach against the baseline, 20 trials of the competitive 

learning ensembles and the bagging ensembles are implemented. In each simulation, 800 data 

points are randomly drawn for the training set and the rest 224 are reserved as the test set. Each 

ensemble trial is trained for 200,000 iterations on the training set and then its generalization 

performance is measured on the test set.  

Both the competitive learning ensemble and the bagging ensemble contain 5 base neural 

networks. Each network has 20 hidden units. The various network parameters, such as initial 

weights range, learning rates, etc are fine tuned before simulation and remain the same for both 

types of ensembles.  

 

7.3.2 Performance Evaluation 

The error distributions from 20 trials of the competitive learning ensembles and the 

bagging ensembles are compared in the boxplot in Figure 7.33. The competitive learning 

ensembles are shown outperforming the bagging ensembles, and reducing the average 

misclassification error to 0.08 from 0.14.  



51 

 

 
Figure 7.33 Misclassification comparison for the 10-D parity problem 

 

 

 

The diversity comparison between the two types of ensembles for the 10-D parity task is 

shown in Figure 7.34. The competitive learning ensembles are again observed to have greater 

diversity than the bagging ensembles do.  

 

 
Figure 7.34 Diversity comparison for the 10-D parity problem 
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7.3.3 The Distribution of “Winner Networks” 

By the nature of the competitive learning ensemble, any input data point can be 

associated with a particular “winner network” that has the highest secondary unit response 

among all base networks. It is interesting to analyze the distribution of the “winner networks” 

and how the entire input space is divided by each base network. The data points “preferred” by 

the same “winner networks” tend to be closer to each other compared to the data points 

“preferred” by different “winner networks”.  For the 10-D parity task, it is challenging to 

visualize such distribution through the Network Preference Map shown in previous chapters. 

However it can be estimated by examining the pair-wise distance among all data points in the 

input space. In this experiment, the distance is measured by the Euclidean distance. 

Table 7.2 summarizes such pair-wise distance matrix. The highlighted cells are the 

average pair-wise distance of data points “preferred” by the same “winner networks”, while the 

un-highlighted cells are the average pair-wise distance of data points “preferred” by different 

“winner networks”. As an example, the average pair-wise distance of data points “preferred” by 

network0 is 1.95; while the average pair-wise distance between data points “preferred” by 

network0 and network1 is 2.24. Table 7.3 further illustrates the detailed cumulative percentage 

distribution of the pair-wise distance “preferred” by the same and different “winner networks”.  

Generally the average pair-wise distance of data points from the same “winner networks” 

is smaller than the average pair-wise distance of those from different “winner networks” as 

shown in Table 7.2. More specifically, picking 2.0 as a threshold for small distances, Table 7.3 

shows 48% of the distances from the same “winner networks” are small distances; while only 37% 

of the distances from different “winner networks” are small distances. Note the data points 

“preferred” by the same “winner networks” could possibly spread over the input space in the 

form of several small chunks. The pair-wise distance analysis only reveals the overall pattern 

that data points “preferred” by the same “winner networks” are more likely to be close together 

than data points “preferred” by different “winner networks” are. 
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Table 7.2 The pair-wise distance matrix for the 10-D parity problem 

Pair-wise Dist Net0 Net1 Net2 Net3 Net4 
Net0 1.95 2.24 2.24 2.17 2.26 
Net1 

 
2.15 2.18 2.24 2.24 

Net2 
  

2.17 2.23 2.21 
Net3 

   
2.18 2.20 

Net4 
    

2.18 
 

 

Table 7.3 The cumulative percentage by pair-wise distance for the 10-D parity problem 

 

Distance 
Threshold 

Net0 Net1 Net2 Net3 Net4 Average 

<=0.5 0% 0% 0% 0% 0% 0% 
<=1 2% 1% 1% 1% 1% 1% 

<=1.5 16% 10% 9% 6% 6% 10% 
<=2 71% 44% 46% 40% 40% 48% 

<=2.5 97% 89% 87% 84% 85% 88% 
<=3 100% 100% 99% 100% 100% 100% 

More 100% 100% 100% 100% 100% 100% 
 

Distance 
Threshold 

N0-N1 N0-N2 N0-N3 N0-N4 N1-N2 N1-N3 N1-N4 N2-N3 N2-N4 N3-N4 Average 

<=0.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
<=1 1% 1% 2% 1% 0% 1% 1% 1% 1% 1% 1% 

<=1.5 5% 4% 6% 4% 7% 4% 4% 4% 4% 6% 5% 
<=2 35% 33% 40% 34% 48% 34% 33% 36% 37% 38% 37% 

<=2.5 75% 76% 86% 78% 85% 81% 80% 81% 82% 83% 81% 
<=3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

More 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
 

 

Figure 7.35 shows the histograms to compare the distances of data points “preferred” by 

the same and different “winner networks” for each base network in the competitive learning 

ensemble. The blue bars show the distance distribution from the data points of the same “winner 

networks” while the red bars show that from the data points of different “winner networks”. Note 

when the distances are small (less than 2.0), the blue bars are higher indicating a bigger portion 

of distances from the same “winner networks” are small. The detailed histograms for distances 

from the same and different “winner networks” are shown in Figure 7.36 and 7.37, where the 

same patterns are observed. 
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Figure 7.35 Distance histograms - by “Winner Networks” 
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 Figure 7.36 Distance histograms - by the same “Winner Networks” 
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 Figure 7.37 Distance histograms - by different “Winner Networks” 
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7.4 The Experiment on the Synthetic Diabetes Problem 

The synthetic diabetes data is built based on the Pima Indians Diabetes Dataset in the 

UCI machine learning repository [87]. The original dataset contains the diagnoses of 768 female 

patients who are at least 21 years old of Pima Indian heritage based on the following 8 attributes: 

1. Number of times pregnant  

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test  

3. Diastolic blood pressure (mm Hg)  

4. Triceps skin fold thickness (mm)  

5. 2-Hour serum insulin (mu U/ml)  

6. Body mass index (weight in kg/(height in m)^2)  

7. Diabetes pedigree function  

8. Age (years)  

The synthetic diabetes data is designed to imitate the Pima Indians Diabetes Dataset so 

the distribution of the input features and the pair-wise correlation among input features from the 

original dataset are preserved in the synthetic dataset. The detailed procedures to develop the 

synthetic dataset are as follows: 

1. Calculate the pair-wise correlation matrix from the original Pima Indians Diabetes 

Dataset. 

2. Calculate the mean and standard deviation of each input feature from the original 

Pima Indians Diabetes Dataset. 

3. Generate synthetic random data with the target pair-wise correlation from step 1 using 

the technique at [99]. 

4. Rescale the synthetic data with the target mean and standard deviation for each input 

feature from step 2. 

5. Train a single neural network classifier on the original Pima Indians Diabetes Dataset, 

and apply the trained network classifier on the synthetic dataset from step 4. For each 

input data point, the neural network classifier generates a continuous value between 0 

and 1. Use the threshold 0.5 to categorize the data point to class 1 or 0. 

6. Choose 5% data points near the solution boundary to flip their target class from 1 to 0 

or from 0 to 1. The boundary data points are those whose neural network outputs are 

the closest to the classification threshold 0.5. 
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The synthetic dataset contains 500 data points in total. A comparison between the 

correlation matrix from the original dataset (Table 7.4) and that from the synthetic dataset (Table 

7.5) shows the pair-wise correlation from original input space has been well preserved.  

 

Table 7.4 The correlation matrix of the original diabetes dataset 

 

Original X1 X2 X3 X4 X5 X6 X7 X8 

X1 1.00 0.13 0.14 -0.08 -0.07 0.02 -0.03 0.54 
X2 0.13 1.00 0.15 0.06 0.33 0.22 0.14 0.26 
X3 0.14 0.15 1.00 0.21 0.09 0.28 0.04 0.24 
X4 -0.08 0.06 0.21 1.00 0.44 0.39 0.18 -0.11 
X5 -0.07 0.33 0.09 0.44 1.00 0.20 0.19 -0.04 
X6 0.02 0.22 0.28 0.39 0.20 1.00 0.14 0.04 
X7 -0.03 0.14 0.04 0.18 0.19 0.14 1.00 0.03 
X8 0.54 0.26 0.24 -0.11 -0.04 0.04 0.03 1.00 

 

 

Table 7.5 The correlation matrix of the synthetic diabetes dataset 

 

Synthetic X1 X2 X3 X4 X5 X6 X7 X8 

X1 1.00 0.14 0.10 -0.11 -0.05 -0.02 0.00 0.57 
X2 0.14 1.00 0.16 0.10 0.33 0.27 0.04 0.25 
X3 0.10 0.16 1.00 0.26 0.04 0.38 -0.05 0.18 
X4 -0.11 0.10 0.26 1.00 0.43 0.46 0.16 -0.16 
X5 -0.05 0.33 0.04 0.43 1.00 0.24 0.17 0.02 
X6 -0.02 0.27 0.38 0.46 0.24 1.00 0.12 0.00 
X7 0.00 0.04 -0.05 0.16 0.17 0.12 1.00 0.05 
X8 0.57 0.25 0.18 -0.16 0.02 0.00 0.05 1.00 

 

 To compare the distribution of each input feature between the original data and the 

synthetic data, their histograms are plotted side by side in Figure 7.38. It’s shown that most input 

features from the synthetic data have similar distribution to their counterparts in the original data, 

but some (e.g. X2, X3, X4 in synthetic data) are a little skewed towards Gaussian distribution. 
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Input Variable 1: Number of times pregnant 

          

Input Variable 2: Plasma glucose concentration a 2 hours in an oral glucose tolerance test  

              

Input Variable 3: Diastolic blood pressure (mm Hg) 

      

 

Input Variable 4: Triceps skin fold thickness (mm)  
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Input Variable 5: 2-Hour serum insulin (mu U/ml)  

          

Input Variable 6: Body mass index (weight in kg/(height in m)^2)  

    

Input Variable 7: Diabetes pedigree function  

      

Input Variable 8: Age (years) 

       

Figure 7.38 Histogram of input variables – the original and synthetic diabetes problem 

0.0%

20.0%

40.0%

60.0%

10 30 75 100 150 More

Original Data - X5

0.0%

10.0%

20.0%

30.0%

10 30 75 100 150 More

Synthetic Data - X5

0.0%

10.0%

20.0%

30.0%

40.0%

15 25 30 35 50 More

Original Data - X6

0.0%

10.0%

20.0%

30.0%

40.0%

15 25 30 35 50 More

Synthetic Data - X6

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

0.1 0.3 0.5 0.8 1 More

Original Data - X7

0.0%

10.0%

20.0%

30.0%

40.0%

0.1 0.3 0.5 0.8 1 More

Synthetic Data - X7

0.0%

10.0%

20.0%

30.0%

40.0%

25 30 40 50 60 More

Original Data - X8

0.0%

10.0%

20.0%

30.0%

40.0%

25 30 40 50 60 More

Synthetic Data - X8



61 

 

7.4.1 Experiment Implementations 

To evaluate the proposed approach against the baseline, 20 trials of the competitive 

learning ensembles and the bagging ensembles are implemented. In each simulation, 400 data 

points are randomly drawn for the training set and the rest 100 are reserved as the test set. Each 

ensemble is trained for 100,000 iterations on the training set and then its generalization 

performance is measured on the test set.  

Both the competitive learning ensemble and the bagging ensemble contain 5 base neural 

networks. Each network has 10 hidden units. The various network parameters, such as initial 

weights range, learning rates, etc are fine tuned before simulation and remain the same for both 

types of ensembles.  

 

7.4.2 Performance Evaluation 

The error distributions from the competitive learning ensembles, the bagging ensembles, 

and the base networks in both types of the ensembles are compared in Figure 7.39. In general, 

both ensemble approaches decrease the classification error over the base networks. The 

competitive learning ensembles further outperform the bagging ensembles, and reduce the 

average misclassification error to 0.10 from 0.14. Notice the base networks in the competitive 

learning ensembles perform a little worse than those in the bagging ensembles do. This is mainly 

because of the secondary task introduced to the base networks in the competitive learning 

ensembles. Even when its base network performance is slightly degraded, the competitive 

learning ensemble performance can be enhanced by effectively dividing input space and 

assigning appropriate weights to base networks based on their “preference”. 

Figure 7.40 shows the diversity comparison between the two types of ensembles for the 

synthetic diabetes task. The competitive learning ensembles are again observed to have greater 

diversity than the bagging ensembles do.  
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Figure 7.39 Misclassification comparison for the synthetic diabetes problem  

– ensembles (left) and base networks (right) 

 

 

 
 

Figure 7.40 Diversity comparison for the synthetic diabetes problem 
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7.5 The Experiment on the SPECT Heart Classification Problem 

The SPECT heart problem from UCI machine learning repository [87] is a real-world 

dataset. It describes the diagnosing of cardiac Single Proton Emission Computed Tomography 

(SPECT) images. Each of the 267 images is classified into two classes: normal (0) and abnormal 

(1), based on the 22 binary features extracted from the original images. The dataset has uneven 

number of 1’s (21%) and 0’s (79%). With over-sampling, the training set contains 80 data points, 

including 50% 1’s and 50% 0’s. The rest 187 data points are reserved as the test set.  

 

7.5.1 Experiment Implementations 

To evaluate the proposed approach against the baseline, 20 trials of the competitive 

learning ensembles and the bagging ensembles are implemented. Each ensemble trial is trained 

for 200,000 iterations on the training set and then its generalization performance is measured on 

the test set.  

Both the competitive learning ensemble and the bagging ensemble contain 5 base neural 

networks. Each network has 20 hidden units. The various network parameters, such as initial 

weights range, learning rates, etc are fine tuned before simulation and remain the same for both 

types of ensembles.  

 

7.5.2 Performance Evaluation 

The error distributions from the competitive learning ensembles, the bagging ensembles, 

and the base networks in both types of the ensembles are compared in Figure 7.41. Both 

ensemble approaches are shown decreasing the classification error over the base networks. The 

competitive learning ensembles further outperform the bagging ensembles, and reduce the 

average misclassification error to 0.20 from 0.25. It is also observed the base networks in the 

competitive learning ensembles perform a little worse than those in the bagging ensembles do, as 

the result of secondary tasks introduced. However the competitive learning ensemble 

performance is enhanced even when its base networks performance is slightly degraded. 

The diversity comparison between the two types of ensembles for the SPECT heart task 

is shown in Figure 7.42. The competitive learning ensembles are again observed to have greater 

diversity than the bagging ensembles do.  
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Figure 7.41 Misclassification comparison for the SPECT heart problem  

– ensembles (left) and base networks (right) 

 

 

 

 

 
 

Figure 7.42 Diversity comparison for the SPECT heart problem 
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7.6 Experiments Summary 

 In this work, a novel Competitive Learning Neural Network Ensemble approach is 

proposed where the base networks compete on the classification performance and partition the 

input space. The secondary output unit in each base network is trained to predict the primary unit 

performance and serves as the weight to combine the primary unit output for the ensemble 

decision. This proposed approach is evaluated and compared with the bagging ensembles on five 

datasets, including the annulus problem, the checkerboard problem, the 10-D parity problem, the 

synthetic diabetes problem and the SPECT heart problem.  

 The proposed approach has shown significantly reducing the misclassification rates over 

the bagging ensemble on all five datasets, as shown in Table 7.6. In the annulus problem the 

proposed approach was evaluated under different levels of Gaussian noises. The gain of the 

proposed approach is observed decreasing when large noises exist in the data. This is mainly 

because the competitive learning ensemble’s ability to divide input space is harmed by the noise.  

The ROC curves were built to show by fine tuning the classification threshold for ensemble 

outputs, the ensemble performance on the large noise annulus problem can be significantly 

improved. In the synthetic diabetes and the SPECT heart problems, the performances of the base 

networks in both ensemble approaches were also examined. It is observed the base networks in 

the competitive learning ensembles perform a little worse than those in the bagging ensembles do.  

This is mainly because of the secondary task introduced to the base networks in the competitive 

learning ensembles. However even when its base network performance is slightly degraded, the 

competitive learning ensemble performance is enhanced by effectively dividing input space and 

assigning appropriate weights to base networks based on their “preference”. 

 

 

Table 7.6 Mean misclassification rate comparison for all five datasets 

 

Ensemble Type Annulus Checkerboard 10-D Parity Synthetic Diabetes SPECT Heart 

Competitive Learning  0.04 0.23 0.08 0.10 0.20 

Bagging 0.09 0.40 0.14 0.14 0.25 
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In the proposed approach, the competitive procedure drives base networks to develop 

“preference” over different region of the input space and thus decompose the overall complex 

task into smaller and easier sub-tasks. The Network Preference Map was built to visualize such 

input space partition for the 2-D classification problems (e.g. the annulus and the checkerboard 

problems). The color regions in the map show the portions of the input space where a specific 

network has the highest secondary unit response. It is observed that the boundary lines that 

separate the “preference” regions for base networks show alignments with the classification 

solution boundaries in some area.  

The effectiveness of the proposed approach largely relies on the ability of the secondary 

unit predicting the primary unit error. In the annulus and the checkerboard problems, a scatter 

plot of the primary unit error versus the secondary output is built. Clear trend is observed that 

when the secondary output gets higher, the expected primary unit error is always lower.  

In the annulus task, the bias/variance error decomposition was examined for both 

ensemble approaches. The competitive learning ensembles have shown reducing both the bias 

and the variance errors, compared to the bagging ensembles. This is mainly achieved by 

partitioning the input space and assigning appropriate weights based on network preference.  

Lastly the ensemble diversity, as measured by the variance among base networks outputs, 

for both approaches were evaluated. The competitive learning ensembles have shown 

significantly higher diversity than the bagging ensembles do on all five classification problems. 

With these experiments, the proposed approach has been fully evaluated on five different 

aspects: misclassification error, input space partition, secondary unit performance, bias/variance 

error decomposition, and the ensemble diversity. The results are consistent and have 

demonstrated the strength of the competitive learning ensemble.  
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Chapter 8 

Conclusion and Future Directions 

 

The effectiveness of an ensemble approach over a single classifier has been theoretically 

proven. Ensemble performance increases when the base classifiers make different errors. 

Prompting diversity is critical in building ensembles. Various techniques have been explored to 

optimize ensemble performance. An important characteristic of a neural network classifier is its 

ability to learn multiple tasks simultaneously by simply adding an additional output unit. The 

primary and secondary output units share the same hidden units and are trained simultaneously 

through the back-propagation procedure. This characteristic can be utilized to develop an 

effective neural network ensemble. Networks that receive different training signals for their 

secondary output units tend to generalize differently on the primary task. What is more, when the 

secondary unit of a network is trained to predict the primary unit performance and used as the 

weights to combine base networks’ primary outputs for ensemble decision, significant 

performance improvement can be achieved. 

This work has proposed a Competitive Learning Neural Network Ensemble where a 

secondary output unit predicts the classification performance of the primary output unit in each 

base network. The networks compete with each other on the basis of classification performance 

and partition the stimulus space. The secondary unit adaptively receives different training signals 

depending on the competition. For any input data item fed into the ensemble, the network that 

computes the minimal classification error is identified as the winner network. This winner 

network receives training signal 1 for its secondary output unit, while the other networks receive 

0 for their secondary output units. During the training, the secondary output unit in each base 

network is explicitly trained to be sensitive to the network’s primary unit performance. The 

training signals for the secondary units dynamically change for each base network when different 

input data items are processed. As the result of the competition, each base network develops 

“preference” over different regions of the input space as indicated by their secondary unit outputs. 

Given any data point in the input space, the higher the secondary output is, the more “preference” 

the network shows on the data point, and the more accurate classification result the network can 
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generate. To form an ensemble classification decision, all base networks’ primary outputs are 

combined and weighted according to their secondary outputs.   

With the experiments on one real-world and four artificial problems, the proposed 

approach has shown outperforming the traditional bagging ensembles where each base network 

is trained on a random bootstrap sample from the training set. Significant misclassification rate 

reduction and higher diversity among base networks have been achieved in the proposed 

approach.  

The secondary units in the proposed approach accurately indicate the primary task 

performance of base networks; and the ensemble decisions benefit from the weighted average 

according to base networks’ secondary outputs. The scatter plots of the expected primary unit 

errors at different levels of secondary outputs show the expected primary unit error is always low 

when the secondary output is high.  

The visualizations of Network Preference Map on the 2D datasets show the competitive 

procedure can effectively partition the input space and drive base networks to different 

“preference” regions over the input space as indicated by their secondary output value. The 

boundary lines in the Network Preference Map often align with the target solution boundaries, 

implying an overall complex task is decomposed into smaller and easier sub-tasks. However this 

ability to divide the input space can be impaired by the presence of noise in datasets; thus the 

benefits of the proposed approach may be reduced when significant noise exists as discussed in 

the annulus problem. It is also noticeable from the Network Preference Map that the data points 

“preferred” by the same “winner networks” often spread over the input space in the form of 

several small chunks, rather than forming one big continuous sub-region.   

The proposed approach was also evaluated from the perspective of classification error 

decomposition. Classification error can be decomposed into variance and bias components. By 

taking the aggregate from a group of base classifiers, regular ensembles such as bagging can 

reduce the variance component of the classification error. However, the proposed approach has 

also shown being able to reduce the bias error component by partitioning the input space and 

assigning appropriate weights based on network preference.  

   Related to this work, there are some interesting research topics that can be studied in 

future work. One is to optimize the aggregate funciton that combines the primary outputs from 

all base networks for ensemble decision. In this work, the aggregate function is the mean of 
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primary outputs weighted by the normalized square of the secondary outputs from all base 

networks. The scatter plots of the expected primary unit error versus the secondary output have 

shwon when the secondary output gets higher the expected primary error is lower. Such 

underlying relationship between the primary unit performance and the secondary output may 

vary in different types of classification problems. That can be derived to adaptively optimize the 

aggregate function for even better ensemble decision.         

Another direction is to explore how to use secondary tasks to solve clustering problems. 

Intuitively the competitive procedure can not only partition the input space but also generate 

meaningful clusters. Data points that are “preferred” by the same network may share some 

common characteristics and thus are likely to be in the same cluster. Chapter 7 shows some 

distribution analysis for the “winner networks”. Just like in clusters, the distance of data points 

“preferred” by the same “winner networks” tend to be smaller than the distance of data points 

“preferred” by different “winner networks”. What would be the difference between this 

clustering method and other clustering algorithms such as K-mean? How can the secondary tasks 

be modified to generate better clustering? 

 Lastly, different types of secondary tasks can be further explored. Chapter 4 discusses an 

interesting secondary task that replicates one of the input features. That can be expanded by 

adding multiple additional outputs to replicate all input features in each base network. How well 

a network replicates an input data point often indicates the sensitivity of the network to the data 

point. This replicating ability could potentially be a predictor of the network’s classification 

performance on the data point. A similar competitive procedure can be designed such that the 

network that best replicates its inputs features is the “winner network” in the ensemble and thus 

receives higher weights in the ensemble decision. 
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