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As either a catalyst and/or catalyst support, metal oxides may contribute surface area, chemically 

active sites, or both.  With cerium dioxide (CeO2), the redox conversion between Ce3+ and Ce4+ 

is facile under conditions of industrial interest.  This redox function imparts CeO2 with the 

capacity to store and release oxygen as reaction conditions, especially oxidant partial pressure, 

vary.   

This work investigated the interaction of CO with stoichiometric and sub-stoichiometric 

materials.  In situ Raman spectroscopy studies provided direct evidence of surface carbon 

deposits on CeO2, Ce0.75Zr0.25O2, and Pd catalysts following CO exposure at 10% CO/He and 

623 K.  A band attributed to Ce3+ demonstrated the presence of reduced Ce sites, viz. the 

presence of oxygen vacancies, and appeared concomitantly with carbon formation.   

It was inferred from the increase in intensity of the carbon bands with increasing time of 

exposure to CO that CeO2-x catalyzes CO disproportionation.  After prolonged exposure to CO at 

623 K, the reaction becomes autocatalytic, as evidenced by the increase in the rate of carbon 

formation.  Based on this result, a mechanistic description of the surface chemistry was put forth.  

It was speculated that at the aggregated vacancy, the degree of electron density localization 

controls the rates at which CO acts as an electron donor or acceptor to form an energetically 

activated complex.   
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After disproportionation of CO on the CeO2 surface at 623 K, subsequent exposure to O2 

at room temperature decreased the intensities of the carbon bands and Raman modes 

characteristic of formate surface species appeared.  A mechanism to account for the C/CeO2-x to 

formate formation was suggested.  Namely, CO interacts with the oxygen vacancy through the 

oxygen end of the molecule to form the intermediate to the surface formate product.  This 

mechanism utilizes the principle of microscopic reversibility and thus may be considered more 

viable than interaction of a ceria oxygen vacancy with the carbon end of CO. 

Similar CO exposure studies performed using a complementary technique, IR 

spectroscopy, indicate that site blocking by carbonates may play a role in the increased oxygen 

storage capacity of ceria-zirconia catalysts compared to ceria. 
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1.0  INTRODUCTION 

Metal oxides are widely used as refractory materials, and are ubiquitous in glasses and ceramics.  

Catalyst supports composed of metal oxides may contribute surface area, chemically active sites, 

thermal stability, or a combination to the catalytic reaction.  Generally, metal oxides consist of 

metal cations ionically bonded to oxygen anions in a defined crystal lattice.   

The oxidation state of a metal refers to the number of valence electrons available to bond 

with oxygen (forming O2-).  For example, aluminum has a 3+ oxidation state, which means two 

atoms of aluminum are able to contribute three electrons each to three oxygen atoms, thus 

forming aluminum oxide (Al2O3).  Many metals, especially transition metals, are able to assume 

multiple oxidation states depending on the chemical conditions.  For instance, iron commonly 

forms Fe2+ oxide, (FeO or ferrous oxide) as well as Fe3+ oxide (Fe2O3 or ferric oxide).  The 

ability of a material to assume different oxidation states is called redox capability.  Several metal 

oxides used in catalysts exhibit redox properties, including oxides of copper, chromium, cobalt, 

and cerium.   

The research presented in this dissertation focuses on ceria.  Regarding cerium dioxide, 

the redox conversion between Ce3+ and Ce4+ is facile at conditions of industrial interest.  When 

used as a catalyst support, this redox ability imparts CeO2 with the capability to store and release 

oxygen to the catalytic reaction under various conditions of oxidant partial pressure.  An 

understanding of ceria redox and oxygen mobility is crucial for applications such as water-gas 
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shift catalysts, solid oxide fuel cell electrodes, and automotive emissions catalysts.  For 

automotive exhaust abatement, ceria supplies oxygen necessary for CO and hydrocarbon 

oxidation under fuel rich conditions.   

The catalysts used to control auto exhaust are called three way catalysts (TWC) because 

they oxidize CO and hydrocarbons, as well as reduce NOx to N2.(1)  Modern automobiles operate 

near the stoichiometric air/fuel ratio in order to simultaneously perform oxidation and reduction, 

and the TWC conversion efficiency drops off sharply as the ratio fluctuates.  In order to 

minimize the air/fuel ratio fluctuations, ceria is added to the TWC support.   

1.1 CERIA STRUCTURE AND REDUCTION CHEMISTRY 

Cerium dioxide crystallizes in the cubic fluorite structure (space group Fm3m), so called because 

it is the same structure as calcium fluoride.(2)  The lattice structure refers to the orientation of 

cerium cations and oxygen anions in space.  The cerium cations crystallize in a face centered 

cube, and the oxygen anions fill the tetrahedral positions in the metal cage.  The ceria structure is 

shown in Fig. 1. 
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Figure 1. Unit cell of CeO2.  Dark atoms are Ce4+ and light atoms are O2-. 
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Among metal oxides with redox capabilities, cerium dioxide is particularly suited for use 

as a catalyst support because the CeO2 lattice structure remains intact even after a significant 

portion of the cerium cations have been reduced from the 4+ to 3+ oxidation state.(3)  The most 

reduced sub-stoichiometric CeO2-x oxide that may be formed from CeO2 without a phase change 

is widely reported to be CeO1.714.(2)  Ceria may be reduced by increasing temperature or 

decreasing the oxygen partial pressure.  For example, at an O2 fugacity of 10-10 atm, the oxide is 

CeO2 at 1020 K, CeO1.9 at 1098 K, and CeO1.8 at 1189 K.(4)   

Additionally, a chemical reductant may be used to accomplish the reduction of ceria at 

less robust temperatures than the thermal O2 route.  During the abstractive reduction of ceria, gas 

phase CO interacts with the ceria resulting in carbon dioxide formation; this is similar to the 

mechanism proposed by Kung on NiO and TiO2.(5)  Each reaction of a CO molecule with the 

ceria to form CO2 removes one oxygen atom from the ceria lattice.  The empty lattice site from 

which the oxygen atom was taken is termed a vacancy.  As the lattice oxygen is abstracted as an 

atom, two electrons remain at the vacancy.  A mechanism for abstractive reduction of ceria by 

CO is shown in Scheme 1: 

 

 O O O O

Ce Ce Ce Ce

CO(g) CO2(g) 

 O O

Ce Ce Ce Ce 

O
3+ 3+

 

Scheme 1. Abstractive reduction of CeO2 by CO. 

 

As more oxygen atoms are abstracted, the concentration of vacancies increases.  To this 

end, the probability of vacancies adjacent to one another increases, and indeed vacancy clusters 
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have been experimentally observed on cerium oxide surfaces.  Dimers, trimers, lines, and larger 

aggregate vacancies have been observed on ceria using STM and AFM,(6,7) as well as inferred 

from Raman investigations using dioxygen as a probe molecule.(8)  Dioxygen adsorbs on ceria-

based oxides as peroxide (O2
2-) or superoxide (O2

-) species.  Though the species have been 

observed at room temperature on ceria(9) and ceria-zirconia(10) using FTIR spectroscopy, Raman 

spectroscopy is an excellent tool for observing the interaction of dioxygen with oxide surfaces 

because dioxygen is a non-polar molecule.  Temperature-programmed dioxygen adsorption 

experiments were performed in this laboratory using in situ Raman spectroscopy on partially 

reduced ceria.(8)  It was observed that surface peroxides formed on the oxygen vacancy sites.  

Three types of peroxides were observed: peroxides on aggregate vacancies, peroxides on line 

vacancies, and peroxides on point vacancies.  The thermal stability of peroxide species followed 

the trend of aggregate < line < point.(8)   

1.2 REDOX PROPERTIES OF CERIA-BASED CATALYSTS 

Control and understanding of the extent and rate of ceria reduction and oxidation is necessary for 

many reactions in which ceria exhibits redox behavior.  For example, as a component of water-

gas shift catalysts ceria may reduce H2O and oxidize CO in the production of H2 and CO2.(11)  

Also, for solid oxide fuel cell electrodes ceria is a mixed ionic and electronic conductor, which 

may increase the available area for anodic oxidation of the CO or H2 fuel.(12)  However, the most 

industrially important application of ceria is in automotive emissions.   

Gasoline powered automobile exhaust oscillates between oxidizing and reducing 

conditions, so the ceria component of the three way emissions catalyst stores and releases 
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oxygen as necessary.  Development of oxygen storage materials precipitated the use of oxygen 

storage capacity (OSC) measurements to quantify the effectiveness of the catalyst redox.  The 

OSC experiments essentially titrate the catalyst with O2 and CO in order to determine the amount 

of labile oxygen available under defined conditions.(13)  The amount of CO2 produced or the 

amount of O2 consumed by a single pulse of CO is termed the OSC, a useful measure of the 

redox rate under the reducing/oscillating conditions typical of automotive emissions.  The total 

amount of oxygen a material will supply is typically measured by exposing the oxidized catalyst 

to pulses of CO until the consumption of CO ceases.  The total amount of CO2 produced during 

all pulses, or the amount of O2 consumed during all pulses, is referred to as the OSC complete 

(OSCC).(13)   

Two main factors influence the amount of labile oxygen available under reaction 

conditions.  First is the ceria surface area; several studies have shown that the larger the surface 

area, the greater the low-temperature OSC.(13-17)  These results indicate that surface oxygen 

participates in ceria low-temperature OSC rather than oxygen from the bulk.  Thus, under 

sintering conditions when surface area is lost permanently, OSC is also lost permanently; for 

example, ceria treated at 1073 K experienced > 90% loss in OSC.(18)  Second, incorporation of a 

foreign metal cation in the ceria lattice also affects the OSC of the material.  Though numerous 

transition metal oxides have been investigated,(19-21) zirconia added to ceria has been shown to 

increase the OSC several times compared to ceria alone. (16,18,22-25)   

With respect to commercial performance, ceria-zirconia is widely used and exhibits 

consistent improved OSC properties compared to ceria alone.(16,18,22-25)  One reason for the 

prevalence of CexZr1-xO2 mixed oxides is ease of incorporation.  Depending on the catalyst 

preparation, zirconia can form a solid solution with ceria, in the cubic crystal structure, for CeO2 

 6 



content between 20 – 80%.(26)  Addition of zirconia also enhances the thermal stability of ceria.  

The CexZr1-xO2 oxides are more resistant to sintering and loss of surface area at high temperature 

compared to ceria.(27-29)  In short, CexZr1-xO2 is one of the most widely used and studied ceria-

based mixed oxides.  The CexZr1-xO2 mixed oxide was a focus of this research.   

It is well established that CexZr1-xO2 oxides exhibit an OSC several times(14,30,31) higher 

than that of CeO2.  Indeed, experiments were performed using H2/H2O atmospheres to control O2 

fugacity while the equilibrium oxidation state of exposed ceria was monitored using 

electrochemical methods; results indicated that reduction of CexZr1-xO2 mixed oxides is more 

thermodynamically favored than CeO2 reduction under equivalent conditions of temperature and 

oxygen fugacity.(32)  The most popular explanations for the increased OSC of the mixed oxide 

involve geometric effects; for example, lattice relaxation may be induced by the smaller size of 

the Zr4+ cation compared to the Ce3+ cation.(16,33-38)  It is speculated that the smaller radius of 

zirconia reduces the lattice strain during Ce4+ reduction, thereby enhancing the stability of 

oxygen defects.(34)  However, electronic effects of the role of zirconia addition in the oxygen 

storage capacity enhancement have also been considered.  For example, the possible localization 

of electrons on Ce3+ near oxygen vacancies has been calculated.(6)  A computational method, 

density functional theory, (DFT) predicted that the single vacancy formation adjacent to single 

Zr4+ cation would be facilitated by 0.9 eV.(6)  In short, the reason for the enhanced OSC of the 

ceria-zirconia mixed oxide compared to ceria is still a matter of debate.  To this end, this 

dissertation research entertains the idea that electronic effects caused by oxygen vacancies aid 

the reduction of CexZr1-xO2 oxides.   
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1.3 SURFACE CHEMISTRY AND SURFACE SPECIES INVOLVING CARBON 

OXIDES 

The molecular orbital-energy level diagram for the CO molecule is shown in Fig. 2.  The ten 

valence electrons are distributed in the 3σ, 4σ, 1πy, 1πz, and 5σ molecular orbitals as shown.(39,40)  

The four nonbonding electrons, located in the 1σ (O 1s) and 2σ* (C 1s) orbitals, are not shown.  

Bonding between CO and a metal or metal oxide surface is believed to occur through electron 

donation from CO to the surface through the 5σ highest occupied molecular orbital (HOMO), 

accompanied by back-donation from the surface to the CO 2π* lowest unoccupied molecular 

orbital (LUMO).  Because the 2π* LUMO is antibonding, the CO bond is weakened upon 

adsorption.   

Because ceria is a basic oxide, carbonate and carboxylate species form on ceria-based 

oxide surfaces when CO or CO2 impurities are present, such as in air.  Whereas carbonate 

species consist of a carbon and three oxygen atoms, a carboxylate species contains only two 

oxygen atoms.  In the presence of hydrogen, usually in the form of surface hydroxyl species, 

hydrogen carbonates and surface formate species may form.  Formate formation has been 

observed on ceria at temperatures ranging from room temperature to over 673 K, on oxides 

pretreated in O2 or H2.(41-43)  The different classes of ceria surface species are shown in Scheme 

2. 

 8 



 

O 

2p 

C 

2p 

2s 

2s 

3σ 

4σ* 

6σ* 

5σ 

1πx 1πy 

2πx* 2πy* 

CO 

E
ne

rg
y 

 

Figure 2. Molecular orbital energy level diagram for the CO molecule(40) 
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The carbonate may adsorb in a variety of orientations and coordinations with respect to 

the oxide surface.  When only one oxygen of the carbonate is shared with the oxide surface, the 

species is classified as a monodentate coordinated species.  Two oxygen coordinated carbonates 

may be bidentate, if both oxygen atoms bind to one surface site, or bridged if the oxygen atoms 

bind to different sites.  When all three oxygen atoms are bound to the surface, the species is 

called polydentate, or bulk carbonate.(44)  Scheme 3 illustrates the possible carbonate 
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The thermal stability of a carbonate species depends, in part, on its type and nature.  

Typically, the carbonates desorb under evacuation at the following temperatures: hydrogen 

carbonate, bridged carbonate (298 K) < bidentate carbonate (423 K) < monodentate carbonate 

(473 K) < polydentate carbonate (573 and above).(41,45,46)  High temperature outgassing (1000 K) 

and/or oxygen treatments (873 K) are required to remove the most stable species, polydentate 

carbonates, from ceria-based catalysts.(41,42,47)   

1.4 RAMAN SPECTRA OF RELEVANT MATERIALS 

The nomenclature for the Raman band assignments given in this work are based on group theory 

and crystalline symmetry.  The CeO2 cubic fluorite lattice has the space group Fm3m,(2) which 

corresponds to point group Oh
5.(48)  The Oh point group indicates that the molecule has three axes 

with 2-fold rotational symmetry, four axes with 3-fold rotational symmetry, and inversion 

symmetry.(48)  The allowed symmetry for point groups have been tabulated in character tables 

that list the available symmetry operations, denoted by I, A, B, C, etc., for each type of 

symmetry.  The character table for the point group Oh shows that the A1g, Eg, and F2g vibrations 

are Raman active, because the vibrations belong to the same species as one of the components of 

the polarizability.(48)  Indeed, the Raman spectrum of CeO2 shows a strong line at 465 cm-1 which 

is consistent with the first order F2g symmetry mode.(49)  Additional features have been observed 

which may be attributed to second order combinations of the Raman active vibrations, A1g, Eg, 

and F2g.  These include weak bands at 207, 250, 428, 578, and 1174 cm-1.(8)   

Considering the Raman spectrum of graphite and other sp2 hybridized carbon, the carbon 

is bonded in hexagonal sheets; the sheets are weakly held together with Van der Waals forces.  
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The unit cell for graphite has symmetry corresponding to point group D6h, and the character table 

shows that E2g is the only Raman active vibrational mode.(50)  The E2g mode corresponds to C-C 

stretching in the plane of the carbon atoms, and is called the G mode (from “graphite”).(51)  

Additionally, a symmetry-forbidden mode has been observed for small sp2 carbon crystals, 

which corresponds to the A1g mode.(52)  This mode has been termed the D mode (from “defect”), 

and arises because of edge effects in the crystal.(52)  The G and D carbon modes are illustrated in 

Fig. 3.   

 

 

B
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Figure 3. Observed vibrational modes for sp2 carbon: (A) E2g “G mode”, (B) A1g “D mode” 
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1.5 SCOPE OF THE CURRENT WORK 

This research investigates the interaction of ceria-based catalysts with CO, a common reactant 

and molecular probe.  The effects of catalyst composition and treatment conditions on the 

oxidation state and surface species are surmised.  This work also introduces the concept of 

reduced ceria metallic nano-domains as active sites for CO disproportionation after long times on 

stream.  Understanding the surface chemistry of ceria based oxides is essential for future 

developments in total and selective oxidation catalysts.   

In order to elucidate the molecular behavior occurring during the reduction of ceria based 

catalysts, their interactions with CO were explored.  In addition to CO oxidation, another 

possible reaction is CO disproportionation.  Carbon monoxide disproportionation results in the 

formation of CO2 and carbon, as shown: 

2 CO  CO2 + Cs 

The reaction is favored thermodynamically at temperatures less than 1000 K, as shown in 

the equilibrium plot in Fig. 4.  Though the gas phase reaction kinetics are extremely slow,(53) 

metals such as Ni,(54-58) Fe,(59,60) Co,(56,60,61) Pt,(62) Pd,(63-65) Ru,(66) and Rh(67) readily catalyze the 

reaction.  It has also been reported that CO disproportionation is facile on metal oxides such as 

MgO(68) and Fe3O4,(69) albeit these metal oxides are considered as less active catalysts than the 

metals.  With respect to the interaction of CO with ceria, results from an FTIR investigation of 

the surface species led to the inference that CeO2 catalyzes CO disproportionation.(70)  One goal 

of this dissertation research was to probe directly the catalysis of CO disproportionation on ceria.  

In particular, Raman spectroscopy is an appropriate tool to study CO disproportionation because 

graphite and other carbonaceous moieties are good Raman scatterers with well-established 

spectra.(50,71-78)  
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Figure 4. Thermodynamic equilibrium constant for CO disproportionation(79) 
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Chapter 2 describes the experimental materials and methods used for this work.  Chapter 

3(80) introduces probing studies of the carbon monoxide interaction with CeO2, explored using 

Raman spectroscopy.  Chapter 4(81) expands the study to include Pd/CeO2, Pd/Ce0.75Zr0.25O2, 

Pd/ZrO2, and the supports alone.  The spectroscopic evidence of reaction products on the ceria 

surface were interpreted as carbonaceous deposits similar to microcrystalline graphite.  The 

reactivity of the products to room temperature oxidation was also explored.   

The macroscopic behavior observed for reactions of reductants or oxidants on ceria is 

modified substantially by the addition of noble metal particles placed on the oxide.  In order to 

understand the molecular-level phenomena controlling the overall rates of reactions, it is 

necessary to understand which elementary reaction steps occur on the noble metal, when present.  

Of primary importance is the mechanism by which a metal site facilitates oxide reduction.  When 

the OSC of metal impregnated oxides are compared to the supports, the metal catalysts exhibit a 

dramatic (300-400 K) decrease in the temperature required for oxide surface oxygen 

reduction,(82,83) with a corresponding increase in overall OSC.(43)  Studies performed on ceria 

supported noble metal catalysts showed that bulk oxide reduction occurred at 727 K for Pd, Rh, 

Pt, Ru, and Ir catalysts.(84)  These studies conclude that the oxygen lability increases dramatically 

upon addition of noble metals to ceria-zirconia catalyst.  One goal of this research was to 

separate the elementary reaction steps occurring on the oxide and noble metal during redox 

catalysis on ceria-based oxides.   

Chapters 5(85) and 6(86) present an investigation of the behavior of ceria and Pd/ceria 

during long time on stream reactions with CO using Raman and IR spectroscopy as well as high- 

resolution transmission electron microscopy (HRTEM).  (Chapter 5 is a rapid communication 

and chapter 6 is the full article.)  In order to clarify the location of carbon formation on the 
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catalyst, the rates of carbon formation on Pd/CeO2 and the bare support were calculated based on 

spectroscopic evidence.  At longer CO exposure times, the ceria support became active for the 

CO disproportionation.  A mechanism for CO disproportionation on CeO2-x involving aggregated 

oxygen vacancy sites was proposed. 

The stability of carbonate species formed upon exposure of CO to Pd/CeO2, 

Pd/Ce0.75Zr0.25O2, Pd/ZrO2, and the supports alone was investigated using FTIR in chapter 7.(87)  

On Pd/Ce0.75Zr0.25O2 and the support alone, carbonates were less strongly bound after oxidation 

compared to reduction.  The oxide-carbonate bond was destabilized upon oxidation of Ce3+ to 

Ce4+, which indicates that the Ce4+ sites in Ce0.75Zr0.25O2 were the active sites for carbonate 

destabilization.  In contrast, the Ce4+ and Ce3+ sites in Pd/CeO2 and CeO2 stabilized carbonates to 

a similar degree, which indicated that site blocking by carbonates may play a role in the 

increased oxygen storage capacity of ceria-zirconia catalysts compared to ceria catalysts alone.  

The results of this study also assigned previously indistinct bands in the CO3 out of plane 

bending region to monodentate, bidentate, and polydentate carbonate species on CeO2 and 

Ce0.75Zr0.25O2. 

Finally, chapter 8 presents a summary of the major contributions of this work, along with 

recommendations for future studies in the field.   
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2.0  EXPERIMENTAL MATERIALS AND EQUIPMENT 

Two complimentary spectroscopic techniques, Raman and FTIR, were used to conduct the 

molecular adsorption experiments on which this dissertation is based.  Two separate systems 

were used, with individual gas delivery and sample cells.  Details of specific experimental 

procedures are presented in relevant chapters of this dissertation, along with the accompanying 

results.  Additionally, a variety of techniques including nitrogen adsorption, x-ray diffraction 

(XRD) and high-resolution transmission electron microscopy (HRTEM) were used to 

characterize the catalysts following various pretreatments. 

2.1 CATALYST SYNTHESIS AND CHARACTERIZATION 

2.1.1 Catalyst synthesis 

Ceria (99.9%) and Ce0.75Zr0.25O2 (99.9%) were supplied by Rhodia.  Before use they were 

calcined in air at 823 K for 12 h.  Zirconia was precipitated from a 1.5 M aqueous solution of 

ZrO(NO3)2·2H2O  (Alfa, 99.9%).  Under vigorous stirring, ammonia solution (14.7 M) was added 

dropwise until the pH reached 10.  The precipitate was aged in the supernatant solution for 24 h 

before filtering and repeated washing.  The filtrate was then dried at 373 K for 12 h, followed by 

calcination in air at 773 K for 12 h.   
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Supports were loaded with 1% palladium, similar to other studies of model TWC.(88)  The 

1% Pd supported catalysts were prepared by wet impregnation of calcined CeO2, Ce0.75Zr0.25O2, 

and ZrO2 with aqueous solutions of Pd(NH3)4(NO3)2 (Strem Chemicals, 99.9%) using the 

incipient wetness technique. First, the water absorption capacity of the oxide support was 

measured.  Then the amount of Pd needed for 1% loading was calculated, and the necessary 

amount of a 5% solution of the Pd(NH3)4(NO3)2 was diluted with distilled water and mixed with 

the support.  For example, the water absorption of the calcined CeO2 was determined to be 0.554 

mL water/ g CeO2.  To achieve 1% Pd impregnation, 8.06 g of calcined CeO2 was added to a 

mixture of 1.5 mL of 5% Pd(NH3)4(NO3)2 solution and 2.8 mL distilled water.  The wet catalyst 

mixture was equilibrated overnight, then dried and calcined.  The 1% Pd/Ce0.75Zr0.25O2 and 1% 

Pd/ZrO2 catalysts were similarly impregnated, and all samples were dried at 373 K for 12 h and 

calcined in air at 823 K for 12 h. 

2.1.2 Catalyst characterization 

Following calcination, the specific surface area and pore volume distribution of the samples were 

determined by physisorption of N2 at 77 K using a Micromeritics (ASAP 2010) volumetric 

sorption analyzer.  The catalysts were evacuated at 673 K for 2 h prior to the measurements.  

Powder XRD data were obtained with a Philips XPERT diffractometer, using a standard Ni-

filtered Cu Kα radiation source operating at 40 kV and 30 mA.  All measurements were made in 

the thin film mode with a scan rate of 0.08 2θ˚/sec.  The average crystalline size was calculated 

using the Scherrer equation based on the average broadening of the (111) and (220) XRD lines.   

High resolution TEM images were obtained using a JEM2010 microscope operated at 

200 kV with a maximum resolution of 0.14 nm.  The samples for HRTEM study were dispersed 
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in ethanol by room temperature ultrasonication, and the emulsion thus obtained was deposited on 

a thin carbon film-covered copper grid.  Following ethanol evaporation, the grid was mounted 

into the microscope. 

2.2 EQUIPMENT 

2.2.1 Raman Spectroscopy System 

The system consisted of a Raman spectrometer with a temperature controlled in situ Raman cell 

in the laser focus; the cell was connected to a flow gas dosing system.  The spectrometer was a 

Renishaw System 2000 confocal Raman spectrometer equipped with a Leica DMLM microscope 

and a 514.5-nm Ar+ ion laser as the excitation source and a CCD detector.  The laser power at 

the source was 5-25 mW, which caused minimal sample damage.(8)  An Olympus ×50 objective 

was used to focus the unpolarized laser beam onto a <3 μm spot on the sample, and to collect the 

backscattered light.  Ten scans were collected for each spectrum in the 100-4000 cm-1 range, 

using continuous grating mode, at a resolution of 4 cm-1.  Spectra were gathered using Wire 

software from Renishaw, with a BGrams interface.  The spectrometer was calibrated daily using 

a silicon standard, with a strong primary band at 520 cm-1.   

Catalyst pellets were self-supported and prepared from powder.  After grinding in an 

agate mortar, approximately 100 mg powder was pressed into a 10 mm pellet, which was 

mounted into the cell on a cover slip.   

The cell was a THMS 600 Raman cell from Linkam Scientific, which was operated at 

atmospheric pressure.  The window was water-cooled and the sample section was connected to 
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the treatment gases.  The temperature controller (Linkam TMS 94) utilized a platinum resistive 

sensor on the cell’s heating element.  The cell working temperature range was 77 to 873 K.  

Product literature indicated temperature stability of <0.1 K for the cell temperature control 

system, in part because the sample cover slip rested directly on the silver heating element.  The 

heating and cooling rate for these experiments was always 10 K/min.  Fig. 5 shows a schematic 

of the Raman cell. 

The reagent grade He (Air Products) was purified using zeolite and OxyTrap filters, both 

from Alltech.  The CO (Praxair, >99.995%) was fitted with a Vista B γ-alumina trap, heated to 

573 K, in order to remove metal carbonyl contaminants.  The 10% O2 in He (Praxair) was used 

without further purification.  The gases (CO, He, and 10% O2/He) were plumbed through 

Swagelok 2 μm filters in order to trap any remaining particulates.  The desired flow rate of each 

gas was maintained within ± 1 cm3/min using Brooks mass flow controllers (model 5850E), and 

the total gas flow rate was 100 cm3/min for all Raman treatments and experiments.  Fig. 6 shows 

a schematic of the Raman system. 
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2.2.2 FTIR Spectroscopy System 

The FTIR system consisted of a spectrometer with a quartz IR cell in the beam path.  The cell 

was connected to a vacuum and gas dosing system, and had a separate heating zone (capable of 

heating the sample over 723 K) and beam transmission zone. 

The infrared spectrometer was a Mattson Research Series II equipped with a liquid N2-

cooled mercury-cadmium-telluride (MCT) detector.  The instrument was operated in 

transmission mode at a resolution of 2 cm-1, and 200 scans were accumulated per spectrum.  

Spectra were collected in the 400 – 4000 cm-1 range.  In order to minimize the changes in 

atmospheric IR bands such as CO2 and water vapor in the beam path, the bench was purged with 

dry N2, which was metered using a needle valve attached to the vent portion of a liquid N2 tank.  

Spectra were collected in single beam mode, converted to absorbance, and ratioed to a 

background spectrum, which was usually the pretreated catalyst.  All spectra were collected and 

analyzed using WinFirst software from Mattson Instruments. 

Catalyst pellets were self supported and prepared from powder.  After grinding in an 

agate mortar, about 250 mg powdered catalyst was pressed in a 30 mm die.  This resulted in a 

circular pellet with a density of 8-25 mg/cm2, which was then trimmed with a blade to a 

rectangular shape, approximately 22 x 9 mm, for a good fit in the quartz sample holder.  The 

sample support section of the sample holder consisted of two pieces of ~1 mm diameter quartz in 

a cage configuration, which left both surfaces of the pellet exposed to gas in the cell chamber.   

The IR cell was constructed from quartz and included a heating zone above the beam 

path, and a sample holder with a magnetic end which allowed the sample to be raised into the 

heating zone and lowered to the beam path without perturbing the atmosphere or vacuum inside 
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the cell.  The IR-transparent cell windows were made of potassium bromide.  The cell heating 

zone consisted of a heating mantle encircling a cylindrical portion of the quartz cell.  The sample 

temperature was measured outside the cell at a distance of 11 mm from the raised catalyst wafer 

using a type K Omega thermocouple.  The temperature at the catalyst pellet was confirmed to 

remain within 5 K of the temperature at the thermocouple.  An Omega temperature controller 

(model CN2011) was used to regulate the heating zone temperature.  The top quartz section of 

the cell could be removed with an O-ring and clamp to allow exchange of catalyst samples.  Fig. 

7 shows a schematic of the FTIR cell.   

Several gases were used without further purification, including O2 (Praxair, >99.999%), 

10% O2 in He (Praxair, UHP), and H2 (Air Products, >99.995%). The trace contaminants in CO 

(Air Products, >99.99%) and CO2 (Praxair, >99.995%) were removed using a liquid N2 cooled 

trap.  Labeled 13C16O (Isotec, 99% 13C) was used without further purification.   

The high vacuum and gas dosing system was constructed of stainless steel and was 

capable of an ultimate vacuum of 2×10-6 Torr.  The pumping system consisted of a 

turbomolecular pump (Pfeiffer) and a roughing pump (Edwards).  The gases were dosed through 

two leak valves, and pressure in the system was monitored with two pressure transducers (MKS 

Instruments) with a range of 10-6 to 10 -3 Torr, as well as an ion gauge for measuring vacuum in 

the range of 10-4 to 10 -8 Torr.  Fig. 8 shows a schematic of the FTIR system. 
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2.3 PROCEDURES 

The experimental procedures used to obtain the spectroscopic data for this dissertation are 

detailed in the individual chapters.  However, for clarity the gas dosing procedures for the 

Raman and FTIR systems will be introduced in this section and illustrated with schematics to 

show the time, temperature, and gas treatments used in this work.   

For Raman studies performed in chapter 3 - 6 the sample pretreatment consisted of 

heating from room temperature to 673 K in 10% CO/He and maintaining these conditions for 1 

h, followed by oxidation in 10% O2/He for 1 h at 673 K.  The pretreatment schematic is shown in 

Fig. 9. 

In the CO exposure Raman experiments run in chapter 3 - 6, a spectrum was collected 

following pretreatment.  Next, the sample was cooled to 623 K in the 10% O2/He flow.  Next, the 

sample was purged at 623 K with He to avoid a catalytic reaction between O2 and CO, and then 

exposed to a 10% CO/He flow while spectra were collected as a function of increasing time.  The 

schematic for the CO exposure experiments is shown in Fig. 10.   

In another set of Raman experiments discussed in chapters 3, 4 and 6, the sample was 

pretreated as described above, except after 12 h CO exposure, the sample was cooled from 623 to 

298 K in 10% CO/He and a spectrum was collected.  Then, the gas flow was switched to 10% 

O2/He and Raman spectra were collected as a function of increasing time.  A schematic for the 

room temperature oxidation experiments is shown in Fig. 11. 
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Figure 9. Pretreatment conditions for Raman experiments 
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Figure 10. Procedure for CO exposure Raman experiments  
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Figure 11. Procedure for room temperature oxidation Raman experiments (prior to CO exposure, the 
sample was cooled in 10% O2/He and purged with He, not shown)  
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Experiments discussed in chapter 6 probed the interaction of CO with Pd/CeO2 by 

examining the IR spectra of species formed after the catalyst was exposed to 13CO.  The Pd/CeO2 

was pretreated in flowing 10% O2/He at 673 K for 1 h, followed by exposure to 50 Torr CO at 

673 K, then 50 Torr O2 at 673 K for 1 h. Next, the Pd/CeO2 was exposed to 50 Torr 13CO for 15 

min and evacuated for 15 min at 623 K.  The sample was then exposed to 50 Torr unlabeled CO2 

for 15 min at 923 K and evacuated for 15 min at 923 K, in order to exchange the carbon atoms of 

susceptible species.  A schematic for the IR isotope experiment is shown in Fig. 12. 

Also discussed in chapter 6, The FTIR band intensity of CO adsorbed on Pd was 

monitored as a function of reduction temperature on Pd/CeO2.  After pretreatment consisting of 

exposure to 50 Torr of CO at 673 K for 1 h followed by flowing a 10% O2/He mixture at 673 K 

for 1 h, evacuation at 673 K 1 h, cooling to 623 K in flowing 10% O2/He, and another evacuation 

at 623 K for 30 min, the Pd/CeO2 was exposed to 5 Torr CO for 15 min at incremental 

temperatures from 293 to 623 K.  The schematic for the temperature programmed CO adsorption 

is shown in Fig. 13.   
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Figure 12. Procedure for FTIR isotope experiment discussed in chapter 6.  Spectra were collected 
at 298 K; cooling for spectra collection is omitted from the figure. 
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Figure 13. Procedure for FTIR temperature programmed CO adsorption experiment discussed in chapter 6.  
Spectra were collected at 298 K; cooling for spectra collection is omitted from the figure. 
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Additional carbon monoxide adsorption experiments carried out with FTIR were 

discussed in chapter 7.  The standard sample pretreatment consisted of exposure to 50 Torr CO at 

673 K for 1 h followed by exposure to flowing 10% O2 in He at 673 K for 1 h, evacuation at 673 

K for 1 h, cooling to 623 K in flowing 10% O2/ He, and evacuation at 623 K for 30 min.  A 

spectrum of the sample following pretreatment was acquired. 

Next, spectra of the sample as well as the gas phase were acquired after each of the 

following gas treatments:  

a) Exposure to 50 Torr CO at 298 K for 15 min  

b) Exposure to 50 Torr CO at 623 K for 15 min 

c) Evacuation at 623 K for 10 min  

d) Exposure to 50 Torr O2 at 623 K for 15 min 

e) Evacuation at 623 K for 10 min  

A schematic of the CO adsorption experiments is shown in Fig. 14.   
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Figure 14. Procedure for FTIR CO adsorption experiments discussed in chapter 7.  Spectra were collected 
at 298 K; cooling for spectra collection is omitted from the figure. 
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3.0  THE DYNAMIC SURFACE CHEMISTRY DURING THE INTERACTION OF 

CO WITH CERIA CAPTURED BY RAMAN SPECTROSCOPY 

3.1 INTRODUCTION 

Ceria is an essential component of the multi-oxide material used to support the noble metals in 

automotive three way catalysts (TWC).  It inhibits thermal sintering of noble metals and 

promotes CO oxidation by water during fuel-rich excursions.(22)  Moreover, because of the facile 

redox chemistry between the Ce3+ and Ce4+ oxidation states, ceria also acts as an oxygen 

buffering agent; viz., ceria has an oxygen storage capacity (OSC).  Under oxidizing conditions, 

the Ce3+ ions are oxidized to Ce4+ by a stoichiometric reaction with gas phase oxygen.  When the 

automotive emission stream is a reducing atmosphere, the ceria lattice oxygen is utilized to 

convert CO and hydrocarbons to CO2, which results in the reduction of Ce4+ ions to Ce3+ ions.  

In essence, the oxygen buffering capacity of ceria dampens the oscillations of the engine air to 

fuel ratio.  This improves the overall efficiency of the TWC with respect to oxidation of CO and 

hydrocarbon emission with simultaneous reduction of NOx emissions.(22)  On the average, the 

TWC containing ceria operates under conditions closer to optimum than a ceria-free TWC. 

The OSC of a catalyst is a property that is measured and assessed in the context of 

determining the overall performance of a TWC.  An established and widely utilized method for 

measuring the amount of stored oxygen is the pulse technique.(43,84)  Typical sequences alternate 
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between O2 pulses and CO pulses.  The total number of O atoms removed from the oxide lattice 

via CO2 formation from a single pulse of CO administered after a single pulse of O2 is termed the 

OSC.(13)  The total number of oxygen atoms removed from a completely oxidized sample during 

consecutive pulses of CO until CO2 formation ceases is called the OSC complete (OSCC).(13)  

Clearly, the results of measurements to determine the oxygen storage capacity depend on 

reaction conditions: temperature, reactant partial pressures, and total pressure.(84)  Videlicet, the 

OSC is the amount of labile lattice oxygen available for oxidation reactions under defined 

conditions.  Common reaction conditions reported for OSC measurements are with 1-10% O2 

and 1-5% CO in an inert gas at 570-770 K and atmospheric pressure.(13,15,89,90) 

The CO2 evolved during the OSC measurement is formed via the abstractive reductive 

adsorption of CO.  Oxygen abstraction from the ceria creates defects in the form of Ce3+ species 

and oxygen vacancies.(3,13,91)  Additionally, ceria becomes an n-type semiconductor in reducing 

conditions, which facilitates sorption of electron acceptors.(92)  The impact of these factors on the 

surface chemistry of carbon oxides on ceria remains unclear. 

The research put forth in this investigation is directed at understanding the extent to 

which the interaction of CO with ceria is affected by the degree of ceria reduction.  The type and 

nature of ceria surface species has been probed by in situ Raman spectroscopy.  Of particular 

interest are reactions which may interfere with OSC measurements such as surface 

transformations of carbon oxide species and CO disproportionation to form CO2 and carbon.  

Raman spectroscopy was chosen for this study because many vibrations of carbon oxide surface 

species are Raman active.  As well, graphite and other carbonaceous moieties are good Raman 

scatterers with well-established spectra.(50,71-78) 

 37 



3.2 EXPERIMENTAL 

The CO2 used in this investigation was supplied by Rhodia; the purity of the material exceeded 

99.9%.  The CeO2 was calcined in air at 823 K for 12 h in a muffle furnace prior to any 

experimentation or characterization.  Nitrogen physisorption measurements at 77 K were 

conducted using a Micromeritics ASAP 2010 volumetric sorption analyzer and the results were 

used to calculate the BET surface area (127 m2 g-1), the average pore diameter (4.8 nm), and the 

pore volume (0.20 cm3 g-1).  An average ceria crystallite size of 9.7 nm was determined from the 

application of the Scherrer equation to the results of (111) and (220) XRD lines broadening 

experiments. 

The Raman spectra were acquired using a system described earlier (Section 2.2.1 of this 

dissertation).  The sample pretreatment consisted of heating from room temperature to 673 K in 

10% CO/He and maintaining these conditions for 1 h, followed by oxidation in 10% O2/He for 1 

h at 673 K.  In one set of experiments, the sample was exposed to 10% O2/He at 673 K for 1 h, 

and then a spectrum was collected.  Next, the sample was cooled to 623 K in the 10% O2/He 

flow.  Next, the sample was purged at 623 K with He to avoid a catalytic reaction between O2 

and CO, and then exposed to a 10% CO/He flow while Raman spectra were collected as a 

function of increasing time.   

In another experiment, the sample was pretreated as described above, except after 12 h 

CO exposure, the sample was cooled from 623 to 298 K in 10% CO/He and a Raman spectrum 

was collected.  Then, the gas flow was switched to 10% O2/He and Raman spectra were collected 

as a function of increasing time. 

 38 



3.3 RESULTS 

The Raman spectrum of ceria after exposure to 10% O2/He at 673 K consisted of a band at 1166 

cm-1 attributed to a combination of A1g, Eg, and, F2g ceria lattice vibrational modes(49) and a band 

at 3634 cm-1 assigned to the O-H stretching mode of a ceria hydroxyl group vibration with 

bidentate coordination(43,93-95) (Fig. 15a).  The two bands decreased in intensity by approximately 

a factor of 4 after exposure to CO at 623 K for 1 h (Fig. 15b).  As well, new bands appeared at 

2115 cm-1 and 1582 cm-1, and a low-frequency shoulder formed on the 1166 cm-1 band at 1068 

cm-1.  The 1068 cm-1 band has been assigned to a vibrational mode of cerium carbonate by 

several research groups.(46,47,92,94,96)   

The dynamic nature of the surface chemistry associated with continued exposure to CO at 

623 K was evident from the Raman spectra (Fig. 16).  Twenty min exposure to CO marked the 

appearance of the 1068 cm-1 carbonate band on the shoulder of the 1166 cm-1 band and a band at 

2115 cm-1.  After 3.4 h CO exposure time, bands at 1582, 1434, and 1331 cm-1 were observed 

(Fig. 16c), and the intensity of these three bands increased throughout the duration of the 

experiment (21.6 h).  In comparison to the intensity increases observed for the 1582, 1434, and 

1331 cm-1 bands, the intensity of the 3634 and 1166 cm-1 ceria bands and the 2115 and 1068 cm-1 

bands did not change markedly with increasing CO exposure time.  It should also be noted that 

after 17.3 h exposure to CO, a broad band centered at 2840 cm-1 was detectable (Fig. 16d), and it 

became more pronounced after 21.4 h exposure to CO (Fig. 16e). 
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Figure 15. In situ Raman spectra of CeO2 (a) after treatment in 10% O2/He at 673 K for 1 h and (b) after 
exposure to 10% CO/He at 623 K for 1 h.  All spectra were recorded at 623 K. 
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Figure 16. In situ Raman spectra of CeO2 (a) after treatment in 10% O2/He at 673 K for 1 h, then exposed to a flow 
of 10% CO/He at 623 K for: (b) 20 min, (c) 3.4 h, (d) 17.3 h, and (e) 21.6 h. All spectra were recorded at 623 K. 
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After exposing ceria to CO for 12 h at 623 K and cooling to room temperature, the 

position of the ceria lattice vibration was 1174 cm-1 (Fig. 17a),(97) in contrast to the spectra 

collected at 623 K in which the band was centered at 1166 cm-1 (Fig. 15 and 16).  The shift to a 

higher frequency is attributed to the lattice thermal contraction; the accompanying increase in the 

bond energy caused a shift in the Raman mode.(97,98)  Bands at 2115 and 3630 cm-1 were also 

present in the room temperature spectrum, as were bands at 1600 and 1340 cm-1 and the 1068 

cm-1 carbonate band  (Fig. 17a). The 1434 cm-1 band in Fig. 16c-e was obscured in the room 

temperature spectrum.  The position of this vibrational band is consistent with a variety of 

surface species and vibrational modes.  One speculative interpretation is that the 1434 cm-1 band 

is a carbon-cerium vibration. 

Subsequent exposure to O2 at room temperature for 30 min resulted in the disappearance 

of the 2115 cm-1 band and the appearance of a band at 831 cm-1, which has been assigned to 

surface peroxide,(8,9,99,100) and bands at 2852 and 2935 cm-1 (Fig. 17b).  The 2852 and 2935 cm-1 

bands are formate modes.  Specifically, the 2935 cm-1 is assigned to a C-H stretching mode(42,101) 

and the 2852 cm-1 band is assigned to a combination mode of the C-H bend and O-C-O 

asymmetric stretch.(42,43,101)  Formate also exhibits strong infrared bands at 1599, 1553, and 1542 

cm-1, all assigned to the O-C-O asymmetric stretch.(42,101)  Thus, a formate mode may be included 

in the collection of low intensity peaks in the vicinity of 1600 cm-1 after 12 h O2 exposure (Fig. 

17c).(42,101,102)  Additionally, the position of the 1363 cm-1 band that appeared after 12 h O2 

exposure (Fig. 17c) agrees well with the 1362-1363 cm-1 which has been assigned to a formate 

asymmetric O-C-O stretching vibration,(101,102) or alternately, a formate C-H in plane vibration at 

1369 cm-1.(42) 
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Figure 17. In situ Raman spectra of CeO2 (a) treated in a flow of 10% CO/He at 623 K for 12 h, and after 
subsequent exposure to a flow of 10% O2/ He at 298 K for (b) 30 min, and (c) 12 h.  All spectra were recorded at 

298 K. 
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The intensities of the bands at 1340 and 1600 cm-1 decreased substantially during 12 h 

exposure to O2 at 298 K (Fig. 17c).  The bands at 2852 and 2935 cm-1 increased in intensity 

during O2 exposure, whereas the intensity of the 831 cm-1 band decreased.  After 12 h exposure 

to O2, bands were detected at 2722 cm-1 and 1363 cm-1.  The 2722 cm-1 band (Fig. 17c) was 

assigned previously in infrared spectra of ceria partially reduced in hydrogen at 673 K for 1 h to 

a formyl species.(42,101-103) 

A band in the hydroxyl region at 3651 cm-1 was present after 12 h exposure to O2; it was 

21 cm-1 higher in frequency than the band present after 12 h exposure to CO.  As well, a band at 

1293 cm-1 was visible after 12 h O2 exposure (Fig. 17c); assignment to a carbonate vibrational 

mode is viable,(43,46) yet speculative. 

 

3.4 DISCUSSION 

In 1994 Bozon-Verduraz and Bensalem pointed out that the propensity of ceria for non-

stoichiometry contributed to significant uncertainty in our understanding of the nature of the 

species formed when carbon oxides interact with ceria based on IR spectroscopy 

investigations.(92)  In other words, carbon oxides may interact with a fully oxidized surface or 

one that has reduced to sub-stoichiometric CeO2-x.  Indeed, the IR spectra of ceria exposed to 

carbon oxides consist of numerous overlapping bands in the C-O, C=O, and C=C vibrational 

region of 1050 - 1750 cm-1.(42,96)  Efforts to establish the frequencies of the variety of types of 

surface carbonate and carboxylate have been complicated by the complexity of the spectra – and 

the propensity of ceria for non-stoichiometry.   
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The results of this investigation show the increase in intensity of Raman bands at 1582-

1600 and 1331-1340 cm-1 with increasing exposure time to flowing CO at 623 K (Fig. 15-17).  

The position of the bands are in line with reported, albeit generous, ranges for the two 

asymmetric vibrational modes of a surface carbonate, one high frequency and one low frequency 

in comparison to the doubly degenerate asymmetric CO stretching mode at 1415 cm-1 for a free 

carbonate ion.(44)   

Additionally, the 1582-1600 and 1331-1340 cm-1 bands are in the range reported for the 

asymmetric and symmetric stretching modes of a carboxylate species, reported as 1510-1570 and 

1310-1410 cm-1, respectively.(46,48,104,105)  The present research showed that the 1582 and 1331 

cm-1 bands increased in intensity with continued exposure to CO at 623 K.  Under these 

conditions, the abstractive reductive adsorption of CO to form CO2 occurs with the concomitant 

formation of Ce3+ ions and oxygen vacancies.(3,22,91)  Hence, it is reasonable to suggest that 

carboxylate formation would be favored as the ceria becomes more reduced and the number of 

oxygen vacancies increases.  The formation of a carboxylate from CO requires only one ceria 

oxygen whereas formation of a carbonate requires two.   

However, the more than 90% decrease the intensities of these two bands after exposure to 

flowing O2 for 12 h at room temperature (Fig. 17) provides a strong driving force to consider 

alternative assignments to carbonate for the 1582-1600 and 1331-1340 cm-1 bands observed in 

this investigation, even though their formation under conditions similar to those used in the 

present work has been reported.(43,106)  Carbonates of ceria are notoriously stable,(92) and no 

apparent change in the spectra of CO adsorbed on CeO2 occurs after dosing O2 on CeO2 pre-

adsorbed with CO according to Li et al.(46)  In fact, the decomposition of the carbonates require a 

temperature of roughly 1000 K and an oxygen-free atmosphere.(46,92)   
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Carbon phonon modes are Raman active, and it is plausible that the 1582 and 1331 cm-1 

bands are attributed to carbon-carbon vibrations.  Specifically, the band position corresponds 

well with the 1575-1585 cm-1 band frequency of the doubly degenerate E2g Raman-active 

phonon mode (G band) of sp2 hybridized carbon materials such as graphite, charcoal and 

coke.(50,71,74,76,107,108)  And the position of the band at 1331 cm-1 is comparable with the 1343-

1360 cm-1 band position of a disorder-induced carbon A1g phonon mode (D band) of graphitic 

and glassy carbons measured experimentally using a 514.5 nm excitation source,(71,76,78,109) as 

was used in this investigation.  The broad band centered in the vicinity of 2840 cm-1 after 

prolonged exposure to CO at 623 K (Fig. 16d-e, Fig. 17a-b) is consistent with the assignment of 

the 1331-1340 cm-1 band to the D band of carbon, as it is in the position(71,74,77,110) and is of the 

shape(76,108) of a D band overtone.   

The dissociation of CO must occur in order for surface carbon to form.  To this end, it 

must be noted that the carbon-oxygen bonds of CO and CO2 readily cleave on ceria at 673 K, as 

evidenced by isotope exchange experiments with C18O and C18O2.(43)  In fact, the rate of 

exchange was faster on ceria than on Pt supported on ceria.  Additionally, the band at 2115 cm-1 

(Fig. 16 and 17) is characteristic of Ce3+ species.  The band has been assigned to the CO 

stretching mode of a CO-Ce3+ species(111) (although earlier investigations assigned it to the 

symmetry-forbidden 2F5/2 → 2F7/2 electronic transition of Ce3+.(47,92)  In contrast to CO adsorbed 

on Ce4+ in which the CO vibrational frequency is 5-24 cm-1 higher than gas phase CO,(112) the 

frequency of CO adsorbed on Ce3+ is 28 cm-1 lower in frequency than the gas phase.  A donation 

of electron density from the Ce3+ ion to the CO is consistent with the shift, as is the interpretation 

that the reduced cerium cations sites favor CO dissociation. 
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Formation of surface formate species was observed upon room temperature O2 exposure 

to ceria that was previously treated in CO at 623 K (2852 and 2935 cm-1 bands in Fig. 17b-c).  

One possible mechanism to account for formate formation is the reaction of a dioxygen surface 

species with carbon followed by a reaction with a hydroxyl group.  A type of reactive dioxygen 

species, surface peroxide, was observed on the ceria upon addition of O2, as evidenced by the 

831 cm-1 band (Fig. 17). 

It may be inferred from the presence of a D band of carbon (1331-1340 cm-1) in addition 

to a G band (1582-1600 cm-1) that the carbon is highly reactive.  The presence of the D band 

demonstrates that the carbon particle size is small.  An empirical relationship has been 

established in the literature relating the ratio of the carbon band intensities (IG/ID) to the graphite 

particle size as measured by XRD; the relationship for a 514 nm Raman laser is IG/ID = 44 Å/La, 

where La is the crystalline size of the graphite plane.(50,76)  The integrated band intensities have 

been obtained using the deconvolution and peak fitting method described by Nistor et al.(113)  

Using this method in the current work, the average carbon particle size was calculated as 1.7 nm.  

Though this value is smaller than the 2 nm experimentally verified lower limit(51) of the 

empirical relationship for disordered carbon spectra, it may nevertheless be surmised that the 

carbon in the current work has a small particle size, less than 2 nm, and therefore exhibits a high 

degree of disorder.  Most importantly, the surface of such small particles is comprised largely of 

carbon atoms that are coordinatively unsaturated.  Thus, the interaction of coordinatively 

unsaturated carbon sites with surface peroxides is a viable model for room temperature carbon 

oxidation.   
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3.5 CONCLUSION 

Prolonged exposure of ceria to CO at 623 K generates reactive lattice defects and carbon-

containing surface species.  It may be inferred from the increase in intensity of the vibrational 

bands at 1582-1600 and 1331-1340 cm-1 with continuing CO exposure that accumulation of one 

or more surface species occurs.  Although carbonates and carboxylates remain viable species to 

which the bands may be assigned, the band positions are also in line with carbon phonon modes.  

It has been suggested that carbon may form by CO disproportionation, and this suggestion is 

supported by the formation of formates upon subsequent exposure to O2 at room temperature.   
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4.0  A MECHANISTIC INVESTIGATION OF FORMATE FORMATION ON CERIA 

BASED OXIDES 

4.1 INTRODUCTION 

The interaction of carbon monoxide with metal oxide supported catalysts to form chemisorbed 

species and reaction products is essential to the study of various catalytic reactions, including 

water gas shift, CO oxidation, and NO reduction by CO.  Carbon monoxide is also commonly 

used as a probe molecule for surface science studies.   

Various surface species result from the reaction of CO with oxide supports containing 

hydroxyl species.  These include oxidation of the CO by surface oxygen to form CO2 [1], 

interaction of the product CO2 with the oxide surface to form carbonates [2], or CO 

disproportionation [3].  Near a hydroxyl, surface formate species may form [4].  Surface 

formates are a suspected intermediate in the water gas shift reaction [5].   

CO + Os  CO2     [1] 

CO2 + Os
2-  CO3

2-     [2] 

2CO  Cs + CO2     [3] 

CO +OHs  COOHs     [4] 

COOHs  CO2 + ½ H2    [5] 
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This study used in situ Raman spectroscopy to examine the interaction of CO with CeO2 

based catalysts.  The major industrial use of CeO2 is as an oxygen storage component (OSC) in 

automotive emissions three way catalysts (TWC).(114)  The facile conversion of the cation from 

Ce3+ to Ce4+ enables the TWC oxidize hydrocarbons and CO during fuel rich excursions.(115)  

Understanding of the interaction of CO with ceria based catalysts is important because the 

quantitative oxidation of CO by TWC has been used as a measure of the OSC of ceria-containing 

catalyst formulations.(13)   

4.2 EXPERIMENTAL 

4.2.1 Materials 

Ceria (99.9%) and Ce0.75Zr0.25O2, (99.9%) were provided by Rhodia and calcined in air at 823 K 

for 12 h prior to use.  Zirconia was precipitated from an aqueous solution of ZrO(NO3)2 (Alfa, 

99.9%) with aqueous ammonia at pH 10.  The precipitate was aged in the supernatant liquid for 

24 h before filtering, washing, and drying at 373 K for 12 h; it was then calcined in air at 773 K 

for 12 h.  The 1% Pd supported catalysts were prepared by impregnation of CeO2, Ce0.75Zr0.25O2, 

and ZrO2 with aqueous solutions of Pd(NH3)4(NO3)2 (Strem Chemicals, 99.9%).  The 

impregnated samples were dried at 373 K for 12 h and then calcined in air at 823 K for 12 h.   

The reagent grade He (Air Products, 99.998%) and CO (Praxair, 99.995%) were purified 

of trace oxygen and water using zeolite and OxyTrap filters, both from Alltech.  Additionally, 

the CO was fitted with a Vista B γ-alumina trap, heated to 573 K, in order to remove metal 

carbonyl contaminants.  The 10% O2 in He (Praxair) was used without further purification.   
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The sample pretreatment, if not otherwise specified, consisted of heating the sample from 

room temperature to 673 K in 10% CO/He, and maintaining these conditions for 1 h.  

Subsequently, the flow was changed to 10% O2/He at 673 K for 1 h.  Experimental conditions 

were chosen to represent typical pretreatment prior to OSC measurements,(18,88) and the treatment 

described above will be referred to as the “standard” pretreatment. 

4.2.2 Catalyst characterization 

The specific surface area and pore volume distribution of the calcined samples were 

determined by physisorption of N2 at 77 K using a Micromeritics (ASAP 2010) volumetric 

sorption analyzer.  Prior to the measurements the catalyst samples were degassed by evacuation 

at 673 K for 2 h.  The average crystalline size was calculated using the Scherrer equation based 

on the average broadening of the (111) and (220) lines in the X-ray diffraction (XRD) spectra of 

the catalyst powders obtained with a Philips XPERT diffractometer, using a standard Ni-filtered 

Cu Kα radiation source operating at 40 kV and 30 mA.  All measurements were made in the thin 

film mode with a scan rate of 0.08 2θ˚/sec.  The catalyst characteristics are shown in Table 1.   

 

Table 1. Catalyst textural characteristics 

Sample 
Surface area 

(m2/g) 
Pore volume 

(cm3/g) 
Pore diameter 

(nm) 

CeO2 127 0.199 4.8 
Ce0.75Zr0.25O2 106 0.287 9.3 

ZrO2 51 0.117 7.5 
1% Pd/CeO2 133 0.195 4.8 

1% Pd/Ce0.75Zr0.25O2 114 0.288 9.0 
1% Pd/ZrO2 49 0.103 8.0 
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4.2.3 Raman studies 

The in situ Raman spectra were acquired using a system described earlier.(80)  (Section 2.2.1 in 

this dissertation.) All samples were pretreated by heating from room temperature to 673 K in 

10% CO/He and maintaining these conditions for 1 h.  Probing studies were performed on all six 

catalysts to explore surface species formed after 1 h CO exposure.  Following standard 

pretreatment, the sample was cooled to 623 K in 10% O2/He, a spectrum was taken, and then the 

cell was purged with pure He for 15 min at 623 K.  Next the gas flow was switched to 10% 

CO/He for 1 h and a second spectrum was recorded.  Additional experiments were conduced on 

CeO2 and Pd/CeO2 to determine the effects of room temperature oxidation following CO 

exposure.  Following standard pretreatment, the sample was reduced in 10% CO/He at 623 K for 

12 h.  It was then cooled to room temperature in 10% CO/He, and subsequently the flow was 

changed to 10% O2/He for 30 min, after which a spectrum was recorded. 

4.3 RESULTS 

The effect of CO exposure to pretreated catalysts at 623 K was observed using Raman 

spectroscopy.  The pretreated CeO2 sample exhibited one Raman band at 1166 cm-1 which has 

been assigned to a mixing of the A1g, Eg, and F2g ceria lattice mode vibrations,(49) as well as a 

Raman band in the hydroxyl region at 3634 cm-1 (Fig. 18A spec. 1).  After exposure to CO for 1 

h at 623 K, three new bands appeared, at 2115, 1582, and 1068 cm-1 (Fig. 18A spec. 2).  The 

2115 cm-1 band may be attributed to the formation of Ce3+.  This band is consistent with the CO 

stretching mode of CO-Ce3+, but has alternately been assigned to the symmetry-forbidden 2F5/2 
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→ 2F7/2 electronic transition of Ce3+;(47,92,112) in either case, the band at 2115 cm-1 is indicative of 

reduced ceria cations on the sample surface.  The band formed at 1068 cm-1 after 1 h CO 

exposure may be assigned to carbonate species.  The Raman spectrum of stoichiometric cerium 

(III) carbonate exhibited a strong doublet at 1086 and 1077 cm-1 (not shown).  Studies have 

attributed a band in the 1073-1062 cm-1 region to bulk cerium carbonate.(46,47,92,94,96) 

Following pretreatment, the Pd/CeO2 spectra showed the same features, at 3634 and 1166 

cm-1, as the CeO2 sample (Fig. 18B spec. 1).  After Pd/CeO2 exposure to CO, three new bands 

were observed at 1582, 1331, and 1068 cm-1 (Fig. 18B spec. 2); the band at 1068 cm-1 may be 

assigned to cerium carbonate species.   

The Raman spectrum of ZrO2 at 623 K in 10% O2/He exhibited one band in the hydroxyl 

region at 3667 cm-1 (Fig. 19A spec. 1).  Subsequent exposure of the sample to CO at 623 K for 1 

h resulted in the appearance of four new bands: 1385, 1561, 2872, and 2979 cm-1 (Fig. 19A spec. 

2).  The four band positions are consistent with an assignment of surface formate species.  The 

bands at 1561 cm-1 and 1385 cm-1 are assigned to the C-H bending and O-C-O stretching 

vibrations,(116-118) respectively.  The 2872 cm-1 band is attributed to the formate C-H stretch,(116-

118) and the 2979 cm-1 band is assigned to a combination(116-118) of the 1561 and 1385 cm-1 

bands.(101)  The spectrum of Pd/ZrO2 at 623K after 1 h exposure to CO contained only bands at 

1582 cm-1 and 1331 cm-1 (Fig. 19B spec. 2).  No hydroxyl band was detected; however, the 

band(s) may be obscured by the strong fluorescence in the region of 2000 – 4000 cm-1. 

With Ce0.75Zr0.25O2 at 623 K in 10% O2/He, two bands were observed (Fig. 20A spec. 1).  

One band at 3654 cm-1 is in the hydroxyl region.  The other band at 1206 cm-1 is consistent with 

the oxide lattice vibrations.  Prior Raman studies of CexZr1-xO2 did not present spectra above 

1000 cm-1.(35,119-121)  However, CeO2 exhibits a band at 1166 cm-1 assigned to a combination of 
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the A1g, Eg, and F2g vibrational modes of the ceria lattice,(49) and both the CeO2 and the CexZr1-

xO2 have a cubic fluorite crystal structure.(122)  One would expect that the 1166 cm-1 lattice 

vibration of CeO2 shifted to 1206 cm-1 in Ce0.75Zr0.25O2 because the smaller ionic radius of the Zr 

cations, compared to the Ce cations, results in a contraction of the lattice.(33,122)  Such a lattice 

contraction manifests itself in the Raman spectra as a shift of the lattice vibrational bands to 

higher wavenumbers.(97,98) 

Exposure of the Ce0.75Zr0.25O2 to CO resulted in the appearance of four new bands: 2847, 

2115, 1582, and 1068 cm-1 (Fig. 20A spec. 2).  The presence of a low intensity band at 2958 cm-1 

cannot be ruled out despite the poor signal to noise ratio.  As well, a low intensity band at 1331 

cm-1 cannot be ruled out because it may be obscured by the broad band at 1206 cm-1.  In 

accordance with the band assignment for ZrO2, the 2958 and 2847 cm-1 bands observed with 

Ce0.75Zr0.25O2 are attributed to formate species.(101)  The band at 1068 cm-1 has been assigned to 

carbonate species.(46,47,92,94,96)   

The bands observed with Pd/Ce0.75Zr0.25O2 at 623 K in 10% O2/He were similar to those 

obtained with Ce0.75Zr0.25O2 under the same condition: a hydroxyl vibration at 3654 cm-1 and a 

lattice vibration at 1206 cm-1 (Fig. 20B spec. 1).  After exposure of Pd/Ce0.75Zr0.25O2 to CO at 

623 K for 1 h, a distinct band appeared at 1582 cm-1, with a shoulder peak in the vicinity of 1331 

cm-1 (Fig. 20B spec. 2).  As well, formate bands at 2930 and 2847 cm-1 were observed, which is 

not surprising for zirconia-containing materials; such species have been reported to be stable at 

high temperatures.(123,124)   
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Figure 18. In situ Raman spectra of CeO2 (A) and 1% Pd/CeO2 (B) after pretreatment in 10% O2/He at 673 K for 1 
h (Intensity X 0.5) (1) and after exposure to 10% CO/He at 623 K for 1 h (2).  All spectra were collected at 623 K. 
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Figure 19. In situ Raman spectra of ZrO2 (A) and 1% Pd/ZrO2 (B) after pretreatment in 10% O2/He at 673 
K for 1 h (1) and after exposure to 10% CO/He at 623 K for 1 h (2).  All spectra were collected at 623 K. 
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Figure 20. In situ Raman spectra of Ce0.75Zr0.25O2  (A) and 1% Pd/Ce0.75Zr0.25O2  (B) after pretreatment in 10% 

O2/He at 673 K for 1 h (Intensity X 0.5) (1) and after exposure to 10% CO/He at 623 K for 1 h (2).  All spectra were 
collected at 623 K. 
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The stability of the species formed on CeO2 and Pd/CeO2 after 12 h CO exposure was 

investigated under mild oxidizing conditions (Fig. 21).  On CeO2, new bands at 2935 and 2852 

cm-1
, which appeared after O2 exposure, may be assigned to surface formates.  The bands have 

been assigned to the C-H stretching mode,(42,101) and a combination of the C-H bending mode 

and O-C-O asymmetric stretching mode(42,43,101) of surface formate, respectively.  New bands 

which appeared at 858 and 831 cm-1 after O2 exposure to CeO2 and at 831 cm-1 on Pd/CeO2 may 

be assigned to peroxide species.(8,9,99,100)  The bands at 1600 and 1340 cm-1 did not change 

significantly after CeO2 was exposed to O2 for 30 min (Fig. 21A).  Conversely, the intensity of 

the Pd/CeO2 band at 1590 cm-1 (Fig. 21B) decreased dramatically after O2 exposure.  No formate 

bands were detected after O2 exposure to Pd/CeO2.   

4.4 DISCUSSION 

Previous investigations have put forth spectroscopic evidence for the occurrence of CO 

disproportionation on ceria.  Raman studies in the current work demonstrate unambiguous 

evidence for CO disproportionation on CeO2, Ce0.75Zr0.25O2, and all the Pd catalysts, namely, the 

appearance of carbon bands(71,74,77,110) at 1582 and 1331 cm-1 on those catalysts following 

exposure to CO at 623 K (Fig. 10, 12).  It is reasonable that the reduced Ce3+ are the active sites 

for the reaction, because CO disproportionation was observed on the reducible oxides only.  
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Figure 21. In situ Raman spectra of CeO2 (A) and 1% Pd/CeO2 (B) pretreated in a flow of 10% CO/He at 623 K for 
12 h (1) and after subsequent exposure to a flow of 10% O2/He at 298 K for 30 min (2).  All spectra were recorded 

at 298 K. 
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 The bands at 1582 and 1331 cm-1 are in the same position as the bands tentatively 

assigned to carbonaceous deposits on CeO2
(80) upon exposure to CO after pre-oxidation.(50,71,73-

78,109)  Graphite and other sp2 hybridized carbons exhibit strong Raman bands in these positions - 

namely, there is a Raman active E2g carbon-carbon stretching mode at 1582 cm-1,(50,71,73-77) and a 

Raman active breathing mode of a sp2 hybridized carbon with A1g symmetry in the vicinity of 

1331 cm-1.(50,74-76,78,109)  The A1g breathing mode is forbidden in large perfect crystals, but 

becomes Raman active in small crystallites.   

Further evidence for the assignment of bands at 1582 and 1331 cm-1 to carbonaceous 

deposits is the presence of bands in those positions on Pd/CeO2, Pd/ZrO2 and Pd/Ce0.75Zr0.25O2 

under the same conditions.  Prior research has established that Pd is active as a CO 

disproportionation catalyst.(63-65)  Cerium carbonates and/or carboxylates form after pre-oxidation 

and subsequent exposure to CO.(41,46,92)  However, assignment of the bands to cerium 

carbonate/carboxylate may be rejected because of their appearance on Pd/ZrO2, and the bands 

cannot be assigned to zirconium carbonates/carboxylates, as they are thermally unstable at 623 

K.(123,124)  In addition, the band positions are inconsistent with formate species as observed on 

metal free ZrO2 (Fig. 19B), and the bands cannot be attributed to a formate species on ceria.  

Only traces of formates have been detected on ceria exposed to CO after oxidation; pre- 

reduction with H2 prior to CO exposure is necessary to obtain appreciable amounts of 

formates.(41,42)   

However, ceria formate species were observed in this study following oxidation of 

carbonaceous deposits (Fig. 21A).  Scheme 4 shows one viable path for the observed formation 

of formate species from the reaction of carbonaceous deposits with adsorbed peroxide.  Lack of 

observed formate species on Pd/CeO2 following oxidation of carbonaceous species (Fig. 21B) 
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indicates that the metal catalyzes formate decomposition in an oxidative environment.  This 

conclusion is supported by a previous study of a similar catalyst, 3% Pt supported on high 

surface area ceria.  In that study, formate formation was observed using IR spectroscopy after 3.8 

Torr CO exposure at room temperature and subsequent evacuation.(43)  Thus, formates are 

expected to be stable on the 1% Pd/CeO2 used in the current work under a CO atmosphere or 

vacuum; the fact that they are not observed in 10% O2/He demonstrates that the species may be 

oxidized at this temperature. 

 

 

 

 

O 
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Scheme 4. Formate formation from carbon deposits on CeO2 

 

 

 

In 1989, Li et.al.(42) investigated the formation of formates on partially reduced ceria after 

exposure to CO at room temperature.  They proposed a mechanism for formate formation 

whereby the carbon atom of CO fills an oxygen vacancy and thereby interacts with a Ce3+ cation.  

The chemisorption of CO to metals(125) and metal oxides(105) is commonly modeled as a bond 

between the 5σ orbital of CO, located on the C atom, and the metal or metal cation, for example 
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Mx+-C=O.  However, this work for the first time shows that the interaction of reduced ceria with 

CO may occur through the oxygen end of the molecule, such as Ce3+-O=C.  Scheme 4 shows the 

dioxygen species peroxide (O2
2-) filling the oxygen vacancies in ceria, and interacting with a 

ceria hydroxyl and elemental carbon on the surface.   

The mechanism of formate oxidation (Scheme 4) can be used to elucidate the mechanism 

of the reverse reaction, formate formation, by the principle of microscopic reversibility.  This 

principle takes into account the fact that the transition state for a reaction is the same for the 

forward and reverse reaction.  The ratio of the rates of change in the rotational, vibrational, and 

electronic states of the forward to reverse reactions reduces to the equilibrium constant, Keq.(126)  

Therefore the principle of microscopic reversibility illustrates that for any reaction at 

equilibrium, the forward and reverse reactions occur at the same rate.(126)   

Scheme 4 shows that one reaction intermediate for formate decomposition is an oxygen 

atom simultaneously bound to a oxygen vacancy and carbon.  Applying the concept of 

microscopic reversibility to the current work indicates that formate formation through CO 

interaction with reduced ceria occurs through the reverse of the process shown in Scheme 4.  

Therefore formate formation must also occur through a similar intermediate, which can only be 

realized if the oxygen end of CO interacts with an oxygen vacancy, prior to rearrangement with a 

nearby hydroxyl.   

This study provides unambiguous evidence for CO disproportionation on CeO2 and 

Ce0.75Zr0.25O2, likely through active Ce3+ sites.  In addition, this study reports the interaction of 

CO with a reduced oxide through the oxygen end of the molecule, as concluded by the principle 

of microscopic reversibility.   
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5.0  WHEN CO OXIDIZES A METAL OXIDE 

The reduction of metal oxides by CO is well-established for oxides containing metal cations with 

multiple oxidation states.  An oxygen atom is abstracted from the lattice by CO to form CO2, 

leaving behind a two-electron vacancy.  According to recent theoretical investigations of point 

vacancies on CeO2, the electrons are localized on adjacent cerium cations such that each cation 

essentially possess a 3+ oxidation state.(6,127)  This work will show that at an aggregated vacancy, 

the degree of electron localization controls the rates at which CO acts as an electron donor or 

acceptor to form an energetically activated complex.   

We provide evidence that CO acts as both an electron acceptor and an electron donor 

when interacting with CeO2-x.  Specifically, we conducted in situ Raman spectroscopy 

investigations of CO exposure to CeO2-x and Pd/CeO2-x.  When oxidized, CeO2 is reduced by CO 

via the abstractive reduction pathway, with CO acting as the electron donor.  On the other hand, 

carbon formation on the pure oxide mandates that CO serves as the electron acceptor in order for 

the bond to cleave homolytically through the CO disproportionation reaction.  By following the 

signature carbon G and D Raman bands for sp2 hybridized microcrystalline carbon,(51) it is 

apparent that no carbon is detected for CeO2-x during the first 0.3 h exposure to CO (Fig. 22A).  

Carbon on CeO2-x is detected after 0.8 h exposure to CO at a rate that remains relatively constant 

through 14 h.  In contrast, for the Pd/CeO2-x both carbon bands are present at 0.3 h (Fig. 22B),  
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which is expected because the Pd catalyzes CO disproportionation.  The rate of this reaction 

decreases rapidly as the carbon blocks the Pd surface sites and by 8 h is essentially the same as 

the rate on CeO2-x (Fig. 22C).   

However, the most intriguing aspect of these results is the increasing rate of carbon 

formation on both CeO2-x and Pd/CeO2-x after 14 h.  This behavior relates to changes in the 

CeO2-x surface by prolonged exposure to CO.  Surprisingly, the formation of carbon becomes 

autocatalytic (product-catalyzed) on both CeO2-x and Pd/CeO2-x after 14 h, as evidenced by the 

increase in the reaction rate.  Thus, the reaction must occur on the support for Pd/CeO2-x.   

It is reasonable to speculate that the O surface atom formed from CO bond dissociation is 

the reactive product that drives the autocatalytic reaction.  At later CO exposure times, the 

increasing rate of carbon formation is consistent with formation of new active sites with 

delocalized electron density.  The experimental work of Esch et al. and Fukui et al. showed 

aggregate oxygen vacancy cluster formation on ceria(6,7)  Presumably, the aggregate electron 

density is more delocalized compared to point defect electron density; however, no literature 

regarding this topic exists.  The CO bond cleavage yields elemental carbon and an oxygen 

species interacting with the aggregate vacancy cluster. 

By definition, a reaction in which the reaction rate increases is autocatalytic, videlicet 

product-catalyzed.  Therefore the active site must be regenerated by oxidation of additional CO 

by ceria lattice oxygens adjacent to the aggregated vacancy.  Though we have no direct evidence 

that O atoms are abstracted adjacent to the aggregated vacancy, it is a reasonable conclusion 

from the rate data shown. 
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Figure 22. In situ Raman spectra of CeO2 (A) and 1% Pd/CeO2 (B) after pretreatment and following exposure to 
10% CO/He at 623 K for time (hours) as listed.  All spectra were recorded at 623 K.  Relative growth rates (C) of 
the 1582 (▲,∆) and 1331 cm-1 (■,□) Raman bands observed on CeO2  (▲,■) and Pd/CeO2 (∆,□) upon exposure to 
10% CO/He at 623 K, as a function of exposure time.  Intensities were normalized to 1166 cm-1 ceria lattice mode. 
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6.0  RELATIVE RATES FOR CO DISPROPORTIONATION ON PALLADIUM AND 

CERIA: IS CERIA THE BETTER CATALYST? 

6.1 INTRODUCTION 

Oxidation reactions on metal oxide catalysts often require labile oxygen species on the surface.(5)  

For example, the Mars van Krevelen oxidation mechanism involves reduction and re-oxidation 

of the catalyst.(128)  Along these lines, research has focused on the utilization and development of 

metal oxides with abundant labile oxygen species, in other words the ability to store and release 

oxygen depending on O2 partial pressure.(3,15,30,91)   

Ceria is widely used as a component of catalyst supports because of the easy transition 

for cerium to change between Ce4+ and Ce3+.(3)  The difference in the oxygen content of oxidized 

ceria with cerium nearly all as Ce4+, and ceria reduced under specific conditions with some 

cerium as Ce3+, has been termed the oxygen storage capacity (OSC).  Because of this OSC, ceria 

included in the support of automotive catalytic converters improves their effectiveness to oxidize 

CO and hydrocarbons while simultaneously reducing NOx under oscillating rich-lean emission 

conditions.(13)  Ceria also promotes the water-gas shift reaction, which oxidizes CO with water 

under fuel rich excursions.(22)  Recent studies(112,129-135) have focused on the use of Pd in  
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automotive catalysts because of compatibility with low-sulfur fuels and low price compared to 

Pt.(1)  It should also be noted that ceria-supported noble metals exhibit dramatically improved 

OSC compared to ceria alone.(1)   

An important factor in automotive three way catalyst (TWC) performance, therefore, is 

the catalyst’s OSC.  Ongoing development of improved TWCs relies on the accurate 

determination of OSC.  While no standard method has been established, widely used OSC 

procedures involve exposing the catalyst to alternating pulses of oxidant and reductant, the most 

common of which are O2 and CO.(18,43,84)  The amount of CO2 produced by a single pulse of CO 

is a measure of the OSC.(13)  On the other hand, the total amount of oxygen a material will 

supply under operating conditions is typically measured by exposing the oxidized catalyst to 

consecutive pulses of CO until the production of CO2 ceases; the total amount of CO2 produced 

is a measure of the OSC complete (OSCC).(13)  Typically, OSC measurements are carried out at 

570-770 K with 1-10% O2 or 1-5% CO, with the balance an inert gas.(13,90) 

Besides the reaction of CO with labile surface oxygen, any side reaction that affects the 

CO and CO2 exit stream concentrations will impact the accuracy of OSC measurements.  Carbon 

from CO may be stored on the surface as carbonates or graphitic carbonaceous deposits; the 

formation of both species is generally neglected during OSC measurements.(14,16,18,90,136,137)  

Carbonates form from the interaction of surface oxygen species with CO to form the adsorbed 

CO3 moiety.  Another possible reaction, carbon monoxide disproportionation, may result in the 

overestimation of OSC since the reaction forms CO2 without participation of labile surface O 

species. 

The CO disproportionation reaction is thermodynamically possible at temperatures below 

1000 K, but kinetically insignificant in the absence of a catalyst.(53)  The rate of CO 
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disproportionation is appreciable on Ni,(54-58) Fe,(59,60) Co,(56,60,61) Pt,(62) Pd,(63-65) Ru,(66) and Rh(67) 

metal deposited on various supports.  Some metal oxides, such as MgO(68) and Fe3O4,(69) have 

also been found to catalyze CO disproportionation.  Regarding CeO2, indirect evidence of CO 

disproportionation was obtained by observing the FTIR spectra of adsorbed species following 

CO exposure to reduced CeO2.(70)  Since several bands were identical to those formed after CO2 

exposure, and CO could not have been oxidized by the reduced ceria surface, CO 

disproportionation was inferred.  Additionally, Raman spectroscopy results from this laboratory 

indicate that CO disproportionation on CeO2 and ceria based oxides does occur.(80,81) 

Thus, the interaction of ceria catalysts with CO is of interest because oxidation of CO is a 

common measure of the OSC of automotive TWC; as well CO adsorption is often used to probe 

catalyst surface site chemistry.  The primary objective of the present study is to investigate the 

interaction of CO with CeO2 and Pd/CeO2 catalysts using Raman and IR spectroscopy.  In order 

to probe disproportionation on these catalysts, Raman is an appropriate tool for detection of 

carbon, since graphite and disordered carbon are good Raman scatterers.(50,51,76)   

6.2 EXPERIMENTAL 

6.2.1 Materials 

Cerium dioxide, CeO2 (99.9%) was supplied by Rhodia and calcined in air at 823 K for 12 h 

before use.  The 1% Pd/CeO2 was prepared by impregnation of the support with an aqueous 

solution of Pd(NH3)4(NO3)2 (Strem Chemicals, 99.9%).  The impregnated sample was dried at 

373 K for 12 h, and then calcined in air at 823 K for 12 h.  
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The reagent grade He (Air Products, 99.998%) and CO (Praxair, 99.995%) were purified of 

trace oxygen and water using zeolite and OxyTrap filters, both from Alltech.  Additionally, the 

CO was fitted with a Vista B γ-alumina trap, heated to 573 K, in order to remove metal carbonyl 

contaminants.  The 10% O2 in He (Praxair) was used without further purification.  For the static 

isotopic IR study, CO and CO2 (Praxair, 99.995%) were run through a liquid N2 cooled trap to 

remove trace contaminants.  Labeled 13C16O (Isotec, 99% 13C) was used without further 

purification.   

The sample pretreatment, if not otherwise specified, consisted of heating the sample from 

room temperature to 673 K in 10% CO/He, and maintaining these conditions for 1 h.  

Subsequently, the flow was changed to 10% O2/He at 673 K for 1 h.  Experimental conditions 

were chosen to represent typical pretreatment prior to OSC measurements,(18,88) and the treatment 

described above will be referred to as the “standard” pretreatment. 

6.2.2 Catalyst characterization 

The catalysts were characterized in an earlier study.(81)  (Section 4.2.2 and Table 1 of this 

dissertation.) 

6.2.3 Infrared studies 

Infrared spectra were collected with a Mattson Research Series II Fourier transform spectrometer 

using a liquid N2 cooled MCT detector.  The catalyst sample was pressed into a self-supported 

disc (8-25 mg/cm2 thick) which was mounted into a sample holder and placed into the quartz IR 

cell, described elsewhere.(138)  The cell was attached to a vacuum system with an ultimate 

 69 



vacuum of 2 × 10-6 Torr achieved using a turbomolecular pump.  Data were obtained at 2 cm-1 

resolution, and 200 scans were averaged for each spectrum collected.  All IR spectra were 

acquired after the sample had cooled to room temperature.   

6.2.4 Raman studies 

The Raman spectra were acquired using a system described earlier.(80) (Section 2.2.1 of this 

dissertation.)   

6.2.5 Electron microscopy 

High resolution transmission microscopy (HRTEM) images were obtained using a JEOL 

JEM2010 instrument with a lattice resolution of 1.4 Å and an accelerating voltage of 200 kV.  

Selected area diffraction (SAD) was used for the phase identification.   

The samples for HRTEM study were prepared in air by grinding the catalyst in an agate 

mortar with ethanol, followed by suspending the powder in ethanol using ultrasonication (≤ 5 

W/cm2).  Then the resulting aerosol was deposited on thin, holey amorphous carbon films with a 

depth of 100-200 Å supported on the standard gold grids.   
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6.3 RESULTS 

6.3.1 Infrared studies 

The interaction of CO with Pd/CeO2 was probed by examining the IR spectra of species formed 

after the catalyst was exposed to 13CO.  The Pd/CeO2 was pretreated in flowing 10% O2/He at 

673 K for 1 h, followed by exposure to 50 Torr CO at 673 K, then 50 Torr O2 at 673 K for 1 h. 

Next, the Pd/CeO2 was exposed to 50 Torr 13CO for 15 min and evacuated for 15 min at 623 K.  

The sample was then exposed to 50 Torr unlabeled CO2 for 15 min at 923 K and evacuated for 

15 min at 923 K, in order to exchange the carbon atoms of susceptible species.  At this point a 

spectrum was taken, shown in Fig. 23 (spec. 1).  Low-intensity bands were observed in the 

carbonate and carboxylate regions at 1700-1200 cm-1, consistent with previously observed 12C 

carbonate/carboxylate(41,43,45-47,92) species.  After the surface species were re-oxidized in O2, 

bands in the carbonate region dramatically increased in intensity and red-shifted approximately 

30-50 cm-1 (Fig. 23 spec. 2).  The largest shift was 1581 – 1537 cm-1, which has been assigned to 

a bidendate carbonate.(46)  This shift is similar to the frequency shift of the 13CO molecule, which 

is predicted to be 47 cm-1.(48)  Other 13C carbonate bands are consistent with those observed 

previously.(43,46,47)  Concurrent with 13C carbonate formation, gas phase 13CO2 was detected after 

oxidation of the surface species, with characteristic bands at 2294 and 2275 cm-1 (Fig. 23 spec. 

3). 

The FTIR band intensity of CO adsorbed on Pd was monitored as a function of reduction 

temperature on Pd/CeO2.  After pretreatment consisting of exposure to 50 Torr of CO at 673 K 

for 1 h followed by flowing a 10% O2/He mixture at 673 K for 1 h, evacuation at 673 K 1 h, 

cooling to 623 K in flowing 10% O2/He, and another evacuation at 623 K for 30 min, the 
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Pd/CeO2 was exposed to 5 Torr CO for 15 min at 293 - 623 K as shown (Fig. 24).  The 

interaction of Pd with CO, as shown by the Pd-CO stretching band intensities, decreased with 

increasing reduction temperature.  Linear Pd-CO bands (46,92,112,139) at 2067 cm-1 and 2092 cm-1 

were observed at 293 K, but only one linear species was present above 373 K, with a band at 

2087 cm-1.  A band at 1973 cm-1, which can be attributed to bridged Pd-CO,(46,92,112,139) was also 

observed.   
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Figure 23. FTIR spectra of 1% Pd/CeO2 after reduction by 13CO (50 Torr) at 623 K for 15 min followed by 
evacuation at 623 K for 15 min, reaction of the sample with 12CO2 (50 Torr) at 923 K for 15 min and evacuation at 
923 K for 15 min (1) and after subsequent reoxidation by O2 (50 Torr) at 623 K for 15 min (2).  Spectrum (3) is the 

gas phase after reoxidation (Intensity X 20).  All spectra were collected at 298 K. 
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Figure 24. FTIR spectra of CO adsorption on 1% Pd/CeO2 after reduction of the catalyst wafer by 5 Torr 
CO  for 15 min at different temperatures, as shown.  All spectra were collected at 298 K. 
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6.3.2 Raman studies 

The temporal effect of CO exposure to pretreated catalysts at 623 K was observed using Raman 

spectroscopy.  After standard pretreatment, the sample was cooled to 623 K in 10% CO/He, and 

these conditions were maintained for 24 h, recording spectra periodically.  The pretreated CeO2 

sample exhibited one Raman band at 1166 cm-1 which has been assigned to a mixing of the A1g, 

Eg, and F2g ceria lattice mode vibrations,(49) as well as a Raman band in the hydroxyl region at 

3634 cm-1 (Fig. 25).  After exposure to CO for 0.3 h at 623 K, bands appeared on CeO2 at 2115 

cm-1 and at 1068 cm-1 as a low-frequency shoulder of the 1166 cm-1 band (Fig. 25).  The 2115 

cm-1 band may be attributed to the formation of Ce3+.  This band is consistent with the CO 

stretching mode of CO-Ce3+, but has alternately been assigned to the symmetry-forbidden 2F5/2 

→ 2F7/2 electronic transition of Ce3+;(47,92,112) in either case, the band at 2115 cm-1 is indicative of 

reduced ceria cations on the sample surface.  The band formed at 1068 cm-1 after 0.3 h CO 

exposure may be assigned to carbonate species.  The Raman spectrum of stoichiometric cerium 

(III) carbonate exhibited a strong doublet at 1086 and 1077 cm-1 (not shown).  Studies have 

attributed a band in the 1073-1062 cm-1 region to bulk cerium carbonate.(46,47,92,94,96)  Bands at 

1582, 1434, and 1331 cm-1 also appeared after 0.8 h and their intensities continued to increase 

during CO exposure (Fig. 25).  After 17 h CO exposure, a broad band appeared at 2840 cm-1 and 

increased in intensity up to 22 h. 

Following pretreatment, the Pd/CeO2 spectra showed the same features, at 3634 and 1166 

cm-1, as the CeO2 sample (Fig. 26).  After 0.3 h exposure to CO, new bands were observed at 

1582, 1331, and 1068 cm-1; the band at 1068 cm-1 may be assigned to cerium carbonate species.  

Similar to CeO2, a broad band at 2840 cm-1 formed after 14 h CO exposure.   
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The relative intensities and growth rates of the bands at 1582, 1434, and 1331 cm-1 over 

time are compared for Pd/CeO2 and CeO2 (Fig. 27).  The bands were normalized to the ceria 

lattice mode at 1166 cm-1
 in each spectrum.  The spectra could not all be deconvoluted because 

of baseline artifacts, especially at low exposure times.  For the purposes of this research, it is 

sufficient to compare the intensities over time on the same sample.  Even with this restriction, it 

is apparent that the main difference between the bands on these samples was the high initial rate 

of band growth on Pd/CeO2 compared to CeO2 (Fig. 27B).   

The surface microstructure of CeO2 and Pd/CeO2 previously exposed to CO were 

investigated using HRTEM (Fig. 28).  Crystalline carbon was observed on both CeO2 and 

Pd/CeO2.  Separation of the 002 plane lattice fringes was measured by locating areas on the 

carbon with several consecutive lattice fringes, measuring the total perpendicular length and 

dividing by the number of contrasting fringes.  The plane separation was measured as 0.48 nm 

for carbon formed on ceria, and 0.45 and 0.48 nm for carbon formed on Pd/CeO2.  This is 

slightly larger than the 0.35 nm separation between graphite planes,(140) and indicates the planes 

in the crystalline carbon in this work are misaligned.   
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Figure 25. In situ Raman spectra of CeO2 (a) after pretreatment and following exposure to 10% CO/He at 
623 K for (b) 0.3 h (Intensity X 0.5), (c) 0.8 h, (d) 3.4 h, (e) 13.2 h, (f) 17.3 h, and (g) 21.7 h.  All spectra were 

recorded at 623 K.   
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Figure 26. In situ Raman spectra of 1% Pd/CeO2 (a) after pretreatment and following exposure to 10% 
CO/He at 623 K for (b) 0.3 h (Intensity X 0.5), (c) 0.8 h, (d) 4.0 h, (e) 14.0 h, and (f) 21.8 h.  All spectra were 

recorded at 623 K.   
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Figure 27. Relative intensities (A) and growth rates (B) of the 1582 (▲,∆) and 1331 cm-1 (■,□).  Raman 
bands observed on CeO2  (▲,■) and Pd/CeO2 (∆,□) upon exposure to 10% CO/He at 623 K, as a function of 

exposure time.  Intensities were normalized to 1166 cm-1 ceria lattice mode, and the lines in (A) have no physical 
significance. 
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Figure 28. HRTEM image of CeO2 (A) and 1% Pd/CeO2 (B), pretreated in a flow  
of 10% CO in He at 623 K for 12 h 
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6.4 DISCUSSION 

Previous investigations have put forth spectroscopic evidence for the occurrence of CO 

disproportionation on ceria.(70,80)  Raman studies in the current work confirm the appearance of 

carbon bands(71,74,77,110) at 2840, 1582, and 1331 cm-1 on CeO2 and Pd/CeO2 following exposure 

to CO at 623 K (Fig. 25, 26).   

For Pd/CeO2, certainty in the 1331, 1582, and 2840 cm-1 band assignments is obtained 

from the FTIR CO isotope exchange results (Fig. 23 and Scheme 5).  The 13C forms on the 

Pd/CeO2 through 13CO disproportionation at 623 K, and 13carbonate/13carboxylates also form.  

Both types of species are stable towards evacuation.(41,46,92)  Yet, the concentration of surface 

13carbonates/13carboxylates decreases by a substitution reaction with 12CO2 (Fig. 23 spec. 1), 

while the 13C deposits are unaffected.  Evacuation of the gas phase and subsequent exposure to 

O2 oxidizes the 13C deposits, as evidenced by the presence of gas-phase 13CO2 (Fig. 23 spec. 3) 

and labeled carbonate species (Fig. 23 spec. 2).  Labeled carbon dioxide in the gas phase would 

not result from carbonate decomposition, because ceria surface carbonates are stable in O2 at 623 

K.(92)  This interpretation is supported by the HRTEM images of carbon deposits on CeO2 and 

Pd/CeO2 following exposure to CO (Fig. 28).   
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Scheme 5. Possible surface chemistry occurring in Fig. 23.  The pathways illustrate surface 

species only and not the bonding geometry.  No reaction is abbreviated N.R. 

 

Carbon deposition is ongoing during CO exposure with both the Pd/CeO2 and CeO2 (Fig. 

25, 26).  The differences in the relative carbon band intensities with time for Pd/CeO2 and CeO2 

suggest different mechanisms of carbon formation for the two samples.  However, it should be 

noted the spectra were similar at CO contact times exceeding 7 h.   

Palladium surface atoms participating as reaction sites for CO disproportionation surely 

may explain the differences of the Pd/CeO2 and CeO2 spectra during early exposure times.  The 

CO disproportionation rate on Pd/CeO2 is higher during the first 4 h, as evidenced by the greater 

intensity of bands at 1582 and 1331 cm-1.  Yet, the number of exposed Pd atoms available to 

disproportionate CO decreases over time due to site blocking by carbon.  The site blocking 

chemistry is well illustrated by the decrease in Pd-CO bands as a function of CO reduction 

temperature, monitored by FTIR (Fig. 24).   

Yet, as noted earlier, the differences between the Pd/CeO2 and CeO2 spectra diminish at 

CO contact times exceeding roughly 7 h.  This behavior may be understood by considering the 

relative rate of carbon formation on the two catalysts during the experiment (Fig. 27).  The 

initially higher rate of carbon formation on Pd/CeO2 is attributed to CO disproportionation on 

Pd, and the rate decreases during the first 7 h due to Pd site blocking.  Between roughly 7 and 10 
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h, the rates were approximately constant and minimal on both catalysts.  Surprisingly, at times 

longer than 10 h the carbon deposition rate increases similarly on both CeO2 and Pd/CeO2.  

Clearly, sites on the ceria must be responsible for the increasing rate, and a change in the nature 

and/or type of the sites occurs after the first 10 h of CO exposure.   

The overall CO disproportionation reaction, 2 CO  CO2 + C(s), may be divided into two 

steps (Scheme 6).  The reduction step involves CO2 formation by abstractive reduction of CeO2 

by CO.  Most likely, abstraction of a lattice oxygen to make a two electron oxygen vacancy 

forms a site for the next step of CO disproportionation, oxidation.  The electrons are localized on 

the neighboring cerium ions, as evidenced by the presence of a Ce3+-CO vibration at 2115 cm-1 

(Fig. 25, 26).  Similar to CeO2 oxidation by dioxygen,(141) the oxygen of CO is attracted by the 

localized electrostatic field of the vacancy.(6,127)  The CO bond cleaves homolytically and the 

vacancy is eliminated by the oxidative incorporation of the oxygen atom of CO to an O2- lattice 

species, while elemental carbon forms.   
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Scheme 6. CO reaction pathway to carbon  
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However, the chemistry depicted in Scheme 6 does not account for the increase in the 

rate of carbon formation after roughly 7 h that occurs both for the Pd/ CeO2 and the CeO2.  One 

plausible explanation is simply an increase in the number of vacancy sites with increasing time 

of CO exposure.  However, the number of these sites would need to increase progressively over 

the duration of the CO exposure, and this is not observed (Fig. 27).  Rather, the rate abruptly 

increases after 10 h.  The observed behavior is better described by a different type of reaction  

site, one that forms after prolonged reduction of the surface by CO.  The increasing rate of the 

CO disproportionation reaction also indicates that the reaction is autocatalytic (product 

catalyzed) at reaction times longer than 10 h. 

Vacancy clusters form when oxygen atoms adjacent to an existing vacancy are 

abstracted.  Dimers, trimers, lines, and larger aggregate vacancies on single crystal surfaces of 

ceria have been imaged by STM and AFM.(6,7)  Such vacancies on polycrystalline ceria have also 

been inferred from Raman investigations using dioxygen as a probe molecule.  In that study, 

three different types of surface peroxides formed upon O2 adsorption on partially reduced ceria: 

peroxides on aggregate vacancies, peroxides on line vacancies, and peroxides on point 

vacancies.(8)  The thermal stability of peroxide species followed the trend of aggregate < line < 

point.(8)  In other words, the aggregate vacancies are most reactive for cleavage of the O-O 

peroxide bond, which fills two vacancies and thus re-oxidizes the ceria.   

The factors that make aggregate vacancies more reactive than line and point vacancies for 

peroxide bond cleavage also make them more reactive for CO bond cleavage.  Indeed, as shown 

in a previous investigation, oxygen exposure to CeO2 after the 12 h reaction with CO resulted in 

negligible Raman band intensity for peroxides on aggregate vacancies (877 cm-1) or peroxides on 

line vacancies (858 cm-1).(80) (Fig. 17 in this dissertation)  These bands were essentially absent 
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because they form in vacancies which are the more reactive sites for CO disproportionation.  The 

disproportionation of CO fills oxygen vacancies; the most reactive sites fill preferentially and 

thus large vacancies are transformed into small/point vacancies.  Reaction with gas phase 

dioxygen or room temperature lattice diffusion(83,142) should not play a role in vacancy 

annilihation.(143) 

The reactivity trend of aggregate > line > point for CO bond cleavage may be understood 

in terms of the extent to which the electron density may be considered delocalized in the vicinity 

of the vacancy.  Recent theoretical calculations have suggested that the electrons from the 

oxygen point vacancy are localized on the nearest cerium cations.(6)  An aggregate vacancy site 

may be viewed as a finite space in which these electrons are delocalized because of the 

concentration of Ce cations with the associated oxygen vacancy electrons.  In other words, 

aggregate vacancy sites exhibit metallic behavior in comparison to isolated vacancies.  Thus the 

aggregate vacancies may be thought of as nano-domains of metallic Ce3+, which provide electron 

density to the CO surface species with which they are interacting.  The extent to which the 

electron density is delocalized impacts the rate at which CO acts as an electron donor or 

acceptor.   

At early CO exposure times, CO acts as an electron donor while reducing the oxide 

surface, forming O vacancies and CO2.  Carbon is formed through CO disproportionation with 

CO as the electron acceptor, but at a slow rate because only point vacancies, with localized 

electron density, are available as active sites.  At later CO exposure times, the aggregated 

vacancies provide more electron density to the CO surface species with which they are 

interacting.  As an electron acceptor, the CO bond cleaves to yields elemental carbon and an  
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oxygen species interacting with the aggregate vacancy cluster.  At intermediate times of 5 – 14 h, 

oxygen vacancies on the surface are aggregating but have not formed the minimum size to 

donate electron density to CO. 

By definition, a reaction in which the reaction rate increases is autocatalytic, videlicet 

product-catalyzed.  Therefore the active site must be regenerated by oxidation of additional CO 

by ceria lattice oxygens adjacent to the aggregated vacancy.  When the reaction rate is low, 

oxygen vacancies are forming but have not aggregated to the extent required for the reaction to 

become autocatalytic.  At times after 14 h, the disproportionation of CO on CeO2 is an 

autocatalytic reaction.  Although we have no direct evidence that O atoms are abstracted adjacent 

to the aggregated vacancy, it is a reasonable conclusion from the rate evidence. 
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7.0  CARBONATE FORMATION AND STABILITY ON CERIA-ZIRCONIA 

SUPPORTED PALLADIUM CATALYSTS 

7.1 INTRODUCTION 

In the current multi-oxide material used to support automotive exhaust three-way catalysts, ceria-

zirconia solid solutions confer oxygen storage capacity (OSC) to the catalyst and improve 

textural properties.(15,144)  The OSC behavior is possible as a result of the facile redox chemistry 

between the Ce3+ and Ce4+ oxidation states.  OSC is often measured using pulse techniques to 

titrate the oxygen available in the catalyst using a reductant, commonly CO.(13,43,84)  Obviously 

the measured OSC will change depending on the temperature, pressure, and reductant/oxidant 

concentrations chosen for the test.  Common reaction conditions reported for OSC measurements 

are with 1-10% O2 and 1-5% CO in an inert gas at 570-770 K and atmospheric pressure.(13,15,89,90)  

Therefore, residual carbon in the form of carbonates or microcrystalline carbon formed from CO 

disproportionation may interfere with the accuracy of OSC measurements. 

This work uses IR spectroscopy to examine the interaction of CO and O2 with Pd/CeO2, 

Pd/Ce0.75Zr0.25O2, Pd/ZrO2, and the supports alone.  The surface species on the catalysts and 

supports under realistic OSC conditions were examined.  This work compares the reactivity of 

the separate components of the ceria-zirconia supported noble metal catalysts presently used for 

automotive three way catalysts for carbonate formation.  Carbonate species are the focus of this 
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study because microcrystalline carbonaceous species are not IR active.  The ZrO2 and Pd/ZrO2 

catalyst were included in order to characterize the behavior of a non-reducible support, compared 

to the ceria and ceria-zirconia supported reducible oxide catalysts.   

7.2 EXPERIMENTAL 

7.2.1 Materials 

Ceria (99.9%) and Ce0.75Zr0.25O2, (99.9%) were provided by Rhodia and calcined in air at 823 K 

for 12 h prior to use.  Zirconia was precipitated from an aqueous solution of ZrO(NO3)2 (Alfa, 

99.9%) with aqueous ammonia at pH 10.  The precipitate was aged in the supernatant liquid for 

24 h before filtering, washing, and drying at 373 K for 12 h; it was then calcined in air at 773 K 

for 12 h.  The 1% Pd supported catalysts were prepared by impregnation of CeO2, Ce0.75Zr0.25O2, 

and ZrO2 with aqueous solutions of Pd(NH3)4(NO3)2 (Strem Chemicals, 99.9%).  The 

impregnated samples were dried at 373 K for 12 h and then calcined in air at 823 K for 12 h.   

The O2 (Praxair, 99.999%) and 10% O2/He (Praxair, UHP) were used without 

purification.  The trace contaminants in CO (Air Products, 99.99%) were removed using a liquid 

N2 cooled trap.  
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7.2.2 Catalyst characterization 

The catalysts were characterized earlier.(81)  (Section 4.2.2 and Table 1 of this dissertation).   

7.2.3 Infrared studies 

Infrared spectra were recorded using a Mattson Research Series II Fourier-transform 

spectrometer using a liquid N2 cooled MCT detector.  The instrument was operated at a 

resolution of 2 cm-1 and 200 scans were accumulated per spectrum.  The catalyst sample was 

pressed into a self-supporting disk (15 mg/cm-2 thick), mounted into the sample holder and 

placed into the quartz IR cell, described elsewhere.(138)  The cell was connected to a vacuum 

system with an ultimate vacuum of 2×10-6 Torr achieved using a turbomolecular pump.  All 

spectra were acquired after the sample had cooled to room temperature.   

The standard sample pretreatment consisted of exposure to 50 Torr CO at 673 K for 1 h 

followed by exposure to flowing 10% O2 in He (60 cc/min) at 673 K for 1 h, evacuation at 673 K 

for 1 h, cooling to 623 K in flowing 10% O2/ He, and evacuation at 623 K for 30 min.  A 

spectrum of the sample following pretreatment was acquired. 

Next, spectra of the sample as well as the gas phase were acquired after each of the 

following gas treatments: 

a) Exposure to 50 Torr CO at 298 K for 15 min  

b) Exposure to 50 Torr CO at 623 K for 15 min 

c) Evacuation at 623 K for 10 min  

d) Exposure to 50 Torr O2 at 623 K for 15 min 
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e) Evacuation at 623 K for 10 min  

The experimental cycle was repeated 3 - 4 times with the same pellet; for all samples the 

difference in peak intensities measured between the first and the last repetition did not exceed 

10%.  The spectra were processed using WinFirst software (Mattson).  The spectra presented are 

the difference spectra for each treated pellet, from which the gas phase background and standard 

pretreated pellet spectra have been subtracted.   

7.3 RESULTS 

7.3.1 Ceria 

After room temperature adsorption of CO on ceria (Fig. 29a), hydrogen carbonate CO3 stretching 

[ν(CO3)] bands were observed at 1602, 1399, and 1045 cm-1, with the corresponding OH bending 

mode [δ(OH)] at 1218 cm-1 and CO3 out of plane wagging mode [π(CO3)] at 824 cm-1.(41)  Bands 

observed at 1570, 1290, and 1006 cm-1 may be attributed to ν(CO3) of bidentate carbonate, with 

the π(CO3) at 855 cm-1.(45)  The monodentate and polydentate bands appear in similar positions, 

so assignments may be ambiguous.(45)  However, given the relative stability under various 

treatments, the 1503, 1362, and 1045 cm-1 bands may be attributed to monodentate carbonates, 

and the 1468, 1362, 1045, and 855 cm-1 bands are best assigned to polydentate carbonates.(45)  

Note the 1362 and 1054 cm-1 bands are attributed to both species.  Carboxylate bands, which 

would appear at 1510-1518 and 1279 cm-1,(42) were not observed in Fig 29a; neither were bridged 

carbonate bands, which have been reported at 1736 and 1135 cm-1.(45).  The band observed at 

2347 cm-1 in Fig. 29a is the same frequency as the C-O stretching mode of gas phase CO2, but 
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may be attributed to adsorbed CO2.(45)  The CO2 in Fig. 29a indicates room temperature 

oxidation of CO to CO2.  For reference, carbonate and related surface species are illustrated in 

Scheme 7. 
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Scheme 7. Carbonate/carboxylate surface species.  

 

Upon heating ceria to 623 K (Fig. 29b), the CO3 carbonate stretching band intensities 

decreased slightly but lost definition, possibly because the baseline in the 1600 – 1200 cm-1 

region increased.  A weak band at 2113 cm-1, which has been associated with to CO adsorbed on 

Ce3+,(92) was observed.  The hydrogen carbonate band at 1218 cm-1 disappeared upon heating.  

Because the hydrogen carbonate band at 1602 cm-1 increased intensity, it may be assigned to a 

second type of hydrogen carbonate.(45)  The CO2 band shifted to 2354 cm-1 in Fig. 29b, which is 

consistent with the stretching mode of linearly adsorbed CO2.(45)   

When the heated ceria sample was evacuated, bands attributed to adsorbed CO2, bidentate 

carbonate, and hydrogen carbonate (1602 cm-1 band) decreased in intensity. (Fig. 29c).  After 
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oxidation by O2 for 15 min, the spectrum in the carbonate region (Fig. 29d) returned to similar 

band intensities and definition as the sample originally exposed to CO at 298 K.  The hydrogen 

carbonate band at 1218 cm-1 re-appeared after O2 exposure.  The appearance of gas phase CO2 in 

Fig. 29d indicates some carbonate decomposition occurred in O2 at 623 K.  Upon evacuation, the 

only band that disappeared was gas phase CO2 at 2349 cm-1; all carbonate species appeared 

stable to 10 min evacuation at 623 K (Fig. 29e).   

7.3.2 Pd/Ceria 

The spectrum following Pd/CeO2 exposure to CO at room temperature (Fig. 30a) was similar to 

the spectrum on ceria.  Hydrogen carbonate ν(CO3) bands were observed at 1601, 1400 and 1045 

cm-1, and the δ(OH) band was at 1218 cm-1.(41)  Bidentate carbonate ν(CO3) bands were observed 

at 1570, 1299 and 1008 cm-1, along with a π(CO3) band at 861 cm-1.(45)  A band at 1476 cm-1 was 

assigned to the ν(CO3) of monodentate carbonate; as well, a band at 1371 cm-1 was assigned to 

the ν(CO3) of both monodentate and polydentate carbonates  Carbon dioxide linearly adsorbed 

on CeO2 was observed at 2354 cm-1.  As was also observed on ceria, the CO2 in Fig. 30a may 

indicate room temperature oxidation of CO to CO2.  Additionally, bands attributed to the C-O 

stretching mode of CO adsorbed on Pd were observed at 2099 and 2068 cm-1, which can be 

assigned to linear species singly and multiply coordinated, respectively.(145,146)   

After heating to 623 K (Fig. 30b), the bridged carbonate band at 1570 cm-1 disappeared; 

as well, the hydrogen carbonate band at 1218 cm-1 was not thermally stable.  The adsorbed CO2 

band at 2354 cm-1 increased, similar to behavior on ceria under the same conditions.   
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Following evacuation of the heated Pd/CeO2 sample, only a monodentate carbonate band 

at 1384 cm-1 remained in the carbonate region, along with an ill-defined band at 1446 cm-1 which 

may be assigned to polydentate carbonate (Fig. 30c). 

After oxidation in O2 at 623 K, the intensity of the polydentate carbonate bands decreased 

and bands attributed to additional types of carbonate species, such as monodentate, bidentate and 

hydrogen carbonate species, re-appeared on Pd/CeO2; the re-oxidized spectra was qualitatively 

similar to the original room temperature CO exposed sample.  The appearance of gas phase CO2 

in Fig. 30d indicates some carbonate decomposition occurred in O2 at 623 K.  After evacuation at 

623 K, the monodentate carbonates remained and other carbonate species decreased in intensity 

(Fig. 30e).   
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Figure 29. FTIR spectra of CeO2 after adsorption of CO (50 Torr) for 15 min at 298 K (a), exposure to CO (50 Torr) 
for 15 min at 623 K (b), followed by evacuation for 10 min at 623 K (c), subsequent oxidation by O2 (50 Torr) for 

15 min at 623 K (d), followed by evacuation for 10 min at 623 K (e).  All spectra were recorded at 298 K. 
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Figure 30. FTIR spectra of 1% Pd/CeO2 after adsorption of CO (50 Torr) for 15 min at 298 K (a), exposure to CO 
(50 Torr) for 15 min at 623 K (b), followed by evacuation for 10 min at 623 K (c), subsequent oxidation by O2 (50 
Torr) for 15 min at 623 K (d), followed by evacuation for 10 min at 623 K (e).  All spectra were recorded at 298 K. 
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7.3.3 Zirconia 

The carbonate bands observed on ZrO2 following CO exposure were lower in intensity than 

those observed on CeO2.  After exposure to CO at room temperature, bands attributed to 

carbonate species were observed on ZrO2 (Fig. 31a).  Bands at 1566 and 1325 cm-1 may be 

assigned to the ν(CO3) of bidentate carbonate,(147,148) and bands at 1623 and 1431 can be 

attributed to the ν(CO3) of hydrogen carbonate, with the corresponding δ(OH) at 1223 cm-1.(124)   

Upon heating (Fig. 31b), the carbonate band intensities changed little, and bands 

attributable to formate species were observed in the ν(CO) region at 1566 and 1370 cm-1, as well 

as in the ν(CH) region at 2971 and 2890 cm-1 (not shown).(117,124,147,148)  A weak band at 2349 

cm-1 is consistent with adsorbed CO2, and the band observed at 2187 cm-1 has been assigned to 

CO adsorbed on Zr4+.(147-149)  The band at 1050 cm-1 has been attributed to the ν(CO3) of 

carbonate species.(147)   

Adsorption of all species on ZrO2 decreased dramatically following evacuation (Fig. 

31c), and the little remaining carbonate bands disappeared after O2 exposure at 623 K (Fig 31d).  

Following evacuation at 623 K (Fig. 31e), carbonate bands at 1556, 1428, and 1314 cm-1 

increased slightly.   
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Figure 31. FTIR spectra of ZrO2 after adsorption of CO (50 Torr) for 15 min at 298 K (a), exposure to CO (50 Torr) 
for 15 min at 623 K (b), followed by evacuation for 10 min at 623 K (c), subsequent oxidation by O2 (50 Torr) for 
15 min at 623 K (d), followed by evacuation for 10 min at 623 K (e).  All spectra were recorded at 298 K. 
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7.3.4 Pd/Zirconia 

In reducing environments, carbonate formation on Pd/ZrO2 was similar to that on ZrO2.  The 

main difference in the two catalysts was the formation of well-defined carbonate and formate 

species on Pd/ZrO2 following oxidation.  After room temperature CO adsorption on Pd/ZrO2, 

(Fig. 32a) carbonate band assignments were similar to those on ZrO2.  Bands at 1560 and 1315 

cm-1 may be assigned to the ν(CO3) of bidentate carbonate,(147,148) and bands at 1600 and 1440 

can be attributed to the ν(CO3) of hydrogen carbonate, with the corresponding δ(OH) at 1221  

cm-1.(124)  The band at 2101 cm-1 has previously been assigned to CO linearly adsorbed on Pd,(150) 

and the 2199 cm-1 band may be attributed to CO adsorbed on Zr4+.(147-149)  A weak band at 2352 

cm-1 is consistent with adsorbed CO2. 

Upon heating (Fig. 32b), formate bands increased in the ν(CO) region at 1560 and 1370 

cm-1.  Bands were discernable in significant noise in the formate ν(CH) region at 2971 and 2890 

cm-1 (not shown).(117,124,147,148)  The linearly adsorbed Pd-CO band at 2101 cm-1 decreased, the 

Zr4+-CO band at 2190 cm-1 retained its intensity, and the adsorbed CO2 band at 2352 cm-1 

increased intensity. 

Bands for all adsorbed species decreased significantly upon subsequent evacuation (Fig. 

32c).  After oxidation at 623 K bidentate carbonate and hydrogen carbonate bands re-appeared 

(Fig. 32d).  When the sample was evacuated, the bands for adsorbed species all decreased 

significantly in intensity (Fig. 32e).   

 98 



 

 

2400 2100 1600 1400 1200 1000 800

10
53

12
21

13
1514

40

16
00 15

60

21
01

21
90

e

d

c

b

a

0.2

 
A

bs
or

ba
nc

e

Wavenumbers (cm-1) 

23
52

 

Figure 32. FTIR spectra of 1% Pd/ZrO2 after adsorption of CO (50 Torr) for 15 min at 298 K (a), exposure to CO 
(50 Torr) for 15 min at 623 K (b), followed by evacuation for 10 min at 623 K (c), subsequent oxidation by O2 (50 
Torr) for 15 min at 623 K (d), followed by evacuation for 10 min at 623 K (e).  All spectra were recorded at 298 K. 
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7.3.5 Ceria-zirconia 

After exposure of Ce0.75Zr0.25O2 to CO, several bands similar to ceria carbonate species were 

observed.  Indeed, results from previous research indicate that IR carbonate band locations on 

ceria-zirconia mixed oxides are within 5 cm-1 of the carbonate band locations for pure ceria up to 

zirconia concentrations of about 50%.(151,152)  After room temperature CO exposure (Fig. 33a), 

hydrogen carbonate ν(CO3) bands were observed at 1603 and 1400 cm-1, with the corresponding 

δ(OH) at 1218 cm-1.  Bidentate carbonate ν(CO3) bands were present at 1330 and 1290 cm-1.  A 

band attributed to ν(CO3) of monodentate carbonate was observed at 1512 cm-1.  The band at 

2353 cm-1 may be assigned to CO2 adsorbed on the support. 

Bands attributed to formate species appeared upon heating at 1480, 1381 and 2892 cm-1 

(not shown), while hydrogen carbonate bands decreased (Fig. 33b).   

After the Ce0.75Zr0.25O2 was evacuated (Fig. 33c), bidentate and hydrogen carbonate 

bands decreased in intensity, while polydentate and monodentate carbonate species remained on 

the surface.  The adsorbed CO2 disappeared upon evacuation.   

Following exposure to O2 (Fig. 33d), some hydrogen carbonate species formed as 

evidenced by the bands at 1407 and 1218 cm-1.  As well, the zirconia bidentate carbonate band 

re-appeared at 1326 cm-1.  The surface species were all susceptible to desorption upon 

evacuation (Fig. 33e). 
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Figure 33. FTIR spectra of Ce0.75Zr0.25O2 after adsorption of CO (50 Torr) for 15 min at 298 K (a), exposure to CO 
(50 Torr) for 15 min at 623 K (b), followed by evacuation for 10 min at 623 K (c), subsequent oxidation by O2 (50 
Torr) for 15 min at 623 K (d), followed by evacuation for 10 min at 623 K (e).  All spectra were recorded at 298 K. 
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7.3.6 Pd/Ceria-zirconia 

The behavior of Pd/Ce0.75Zr0.25O2 following the experimental treatments was qualitatively similar 

to Ce0.75Zr0.25O2, except for the presence of CO adsorbed on Pd.  After room temperature CO 

exposure (Fig. 34a), hydrogen carbonate ν(CO3) bands were observed at 1594 and 1408 cm-1, 

and the δ(OH) band was at 1218 cm-1.  Bands assigned to ν(CO3) of bidentate carbonate (1328 

and 1298 cm-1) and monodentate carbonate (1516 cm-1) were observed.  The band at 2013 cm-1 

may be assigned to CO linearly adsorbed on Pd(145,146) and the band at 2353 cm-1 may be 

assigned to adsorbed CO2.   

The hydrogen carbonate bands decreased upon heating (Fig. 34b), while bands arose at 

1479, 1380 and 2892 cm-1 (not shown), which may be assigned to formate species.   

After the Pd/Ce0.75Zr0.25O2 was evacuated (Fig. 34c), bidentate and hydrogen carbonate 

bands decreased in intensity, while polydentate and monodentate carbonate and formate species 

remained on the surface.  The adsorbed CO2 disappeared upon evacuation.   

Following exposure to O2 (Fig. 34d), some hydrogen carbonate species formed as 

evidenced by the bands at 1407 and 1218 cm-1.  As well, the zirconia bidentate carbonate band 

re-appeared at 1326 cm-1.  Nearly all the surface species were susceptible to evacuation (Fig. 

34e). 

The assignments for the carbonate and formate bands observed at wavenumbers greater 

than 1000 cm-1 are summarized in Table 2. 
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Figure 34. FTIR spectra of 1% Pd/ Ce0.75Zr0.25O2 after adsorption of CO (50 Torr) for 15 min at 298 K (a), exposure 
to CO (50 Torr) for 15 min at 623 K (b), followed by evacuation for 10 min at 623 K (c), subsequent oxidation by 
O2 (50 Torr) for 15 min at 623 K (d), followed by evacuation for 10 min at 623 K (e).  All spectra were recorded at 

298 K. 
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Table 2. Band positions (cm-1) for selected species observed after CO exposure 

 CO2 Pd-CO 
Hydrogen 
carbonate 

Bidentate 
carbonate 

Monodentate 
carbonate 

Polydentate 
carbonate 

Sample ν(CO2) ν(CO) ν(CO3) δ(OH) ν(CO3) ν(CO3) ν(CO3) 
CeO2 2347 -- 1602 1218 1570 1503 1468 

   1399  1290 1362 1362 
   1045  1006 1045 1045 

Pd/CeO2 2345 2099 1601 1218 1570 1476 1446 
  2068 1400  1299 1371 1371 
   1045  1008 1045 1045 

ZrO2 2349 -- 1623 1223 1566 -- -- 
   1431  1325   
   1050  1050   

Pd/ZrO2 2352 2101 1600 1221 1560 -- -- 
   1440  1315   

   1053  1053   
Ce0.75Zr0.25O2 2353 -- 1603 1218 1330 1512 1059 

   1400  1290 1059  
   1059  1000   

Pd/Ce0.75Zr0.25O2 2353 2013 1594 1218 1328 1516 1058 
   1408  1298 1058  
   1000  1058   

 

 104 



7.3.7 Results in π(CO3) out of plane bending region 

In order to clarify the carbonate behavior on the ceria based catalysts without involving the 

drifting baseline and poorly defined bands in the carbonate ν(CO3) region, the carbonate π(CO3) 

out of plane bending region was examined in detail.   

On CeO2, the major band present at room temperature in CO was at 855 cm-1, and a low 

intensity band at 823 cm-1 was also observed (Fig. 35A, spec. a).  After heating to 623 K, new 

bands at 868 and 840 cm-1 appeared, the 855 cm-1 band redshifted, and the band at 823 cm-1 

disappeared (Fig. 35A, spec. b).  Upon evacuation, the band at 840 cm-1 decreased intensity (Fig. 

35A, spec. c).  After exposure to O2, the low intensity band at 823 cm-1 reappeared (Fig. 35A, 

spec. d), but disappeared upon subsequent evacuation (Fig. 35A, spec. e). On Pd/CeO2, the 

results were similar except the main band at 861 cm-1 blueshifted upon heating (Fig. 35B).   

The trends for the band intensities on both CeO2 and Pd/CeO2 are shown in the insets in 

Fig. 35.  The trends for CeO2 and Pd/CeO2 were qualitatively similar, indicating that all detected 

carbonate species were interacting with the ceria support.  The intensities are relative to the 

baseline value at 900 cm-1, and are normalized to the greatest intensity observed on each catalyst.  

The carbonates at 840, 855, and 868 cm-1 (assignments on CeO2) were most stable in CO at 623 

K.  After subsequent evacuation, the carbonate at 868 cm-1 had the smallest decrease in intensity.  

This carbonate was also the most easily oxidized.  The carbonate band at 840 cm-1 shows similar 

behavior to 855 cm-1 but entirely desorbs upon evacuation.  The carbonate band at 823 cm-1 was 

the only band that did not increase intensity upon CO exposure at room temperature or 623 K, 

and in fact, the band markedly increased under oxidizing conditions.   
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On Ce0.75Zr0.25O2, low intensity bands were observed at 870, 859, 849, 840, and 823 cm-1 

after room temperature CO exposure (Fig. 36A, spec. a).  Upon heating, all bands increased 

intensity, with the 859 cm-1 band redshifting and becoming the most intense, while a new band 

appeared at 878 cm-1 (Fig. 36A, spec b).  The carbonate bands were little affected by evacuation 

(Fig. 36A, spec. c), and all bands decreased intensity after O2 exposure except for the band at 

823 cm-1 (Fig. 36A, spec. d).  All bands significantly lost intensity upon evacuation following O2 

exposure (Fig. 36A, spec. e).  On Pd/Ce0.75Zr0.25O2, the band at 861 cm-1 was the most intense 

band after room temperature CO exposure, but the other band intensity changes with treatments 

were qualitatively similar to those on Ce0.75Zr0.25O2 (Fig. 36B).   

The quantitative trends of the band intensities with treatment on both Ce0.75Zr0.25O2 and 

Pd/Ce0.75Zr0.25O2 are shown in the insets in Fig. 36.  Upon examination, some trends are similar 

to those observed on CeO2 catalysts (Fig. 35), but there are several differences.  The behavior of 

the carbonate band at 823 cm-1 is similar to that on CeO2 catalysts; it was stable under oxidizing 

conditions.  The carbonate band at 870 cm-1 also increased upon oxidation.  However, a key 

difference between the carbonate behavior on the mixed oxide and pure ceria was the presence of 

a carbonate band at 878 cm-1.  This band was low intensity and qualitatively similar to the 870 

cm-1 band.  Additional differences included the behavior of the carbonate band at 859 cm-1
; in the 

mixed oxide this band decreased intensity upon evacuation whereas on CeO2 catalysts it 

increased slightly.  The band at 849 cm-1 on the mixed oxide was qualitatively similar to the band 

at 855 cm-1 on CeO2.  The band at 840 cm-1 showed a slight increase upon oxidation with both 

Pd catalysts, but not the bare oxides.   

It should be noted that because ceria is a basic oxide, carbonate species formation is 

favored on ceria based oxide surfaces when CO or CO2 impurities are present, i.e., ambient 
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conditions.  Because of the high stability of surface carbonate species on ceria based oxides, the 

catalyst surfaces in this work were not “cleaned” of carbonate contamination before the start of 

the experiment, because the pretreatment conditions were not severe enough.  Other 

researchers(41,42,47) found it was necessary to perform high temperature outgassing (1000 K) 

and/or oxygen treatments (873 K) prior to their spectroscopic studies of ceria, particularly to 

remove tenacious bulk polydendate carbonates.  Therefore, it should be expected that several 

types of surface carbonates were present on the ceria surface prior to the first treatment, exposure 

to 50 Torr CO at room temperature.  However, it is assumed in the analysis that no remaining 

“core” carbonates, as observed by Bozon-Verduraz et. al.,(92) should have interfered with the 

difference spectra because the pretreatment temperature of 673 K was more severe than the 

highest experimental temperature of 623 K.  Similar to the pretreatment used in this work, 

Sharma et. al.(88) performed IR studies on Pd/ceria without first “cleaning” the surface of 

carbonates.   
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Figure 35. FTIR spectra of the out of plane π (CO3) bending region of CeO2 (A) and Pd/CeO2 (B) after adsorption 
of CO (50 Torr) for 15 min at 298 K (a), exposure to CO (50 Torr) for 15 min at 623 K (b), followed by evacuation 
for 10 min at 623 K (c), subsequent oxidation by O2 (50 Torr) for 15 min at 623 K (d), followed by evacuation for 

10 min at 623 K (e).  All spectra were recorded at 298 K.  Dynamics of the normalized absorbance are shown in the 
inset. 
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Figure 36. FTIR spectra of the out of plane π (CO3) bending region of Ce0.75Zr0.25O2 (A) and Pd/Ce0.75Zr0.25O2 (B) 
after adsorption of CO (50 Torr) for 15 min at 298 K (a), exposure to CO (50 Torr) for 15 min at 623 K (b), 

followed by evacuation for 10 min at 623 K (c), subsequent oxidation by O2 (50 Torr) for 15 min at 623 K (d), 
followed by evacuation for 10 min at 623 K (e).  All spectra were recorded at 298 K.  Dynamics of the normalized 

absorbance are shown in the inset. 
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7.4 DISCUSSION 

Although there is a general consensus that the addition of zirconia to ceria enhances the oxide 

oxygen storage capacity, the mechanism for increased OSC is still a matter of debate.  Unlike 

ceria, pure zirconia has only one stable oxidation state and thus does not release and accept 

oxygen via a redox mechanism.  Yet, upon addition of ZrO2 in amounts of approximately 15-

50%, significant improvements in ceria oxygen storage capacity have been reported.(18,24)  

The substitution of a Ce4+ cation by a Zr4+ cation eliminates a redox site on the oxide.  

Thus, the increase in labile oxygen species obtained by addition of Zr4+ must more than 

compensate for the loss in cerium redox sites; indeed several scenarios have been put forth to 

explain the observed macroscopic behavior.  The role of zirconia addition in the oxygen storage 

capacity enhancement has been attributed to electronic effects, such as the localization of 

electrons on Ce3+ near oxygen vacancies.(6)  However, the most accepted explanations for the 

increased OSC of the mixed oxide involve geometric effects; for example, lattice relaxation may 

be induced by the smaller size of the Zr4+ cation than the Ce3+ cation.  It is speculated that the 

smaller radius of zirconia reduces the lattice strain during Ce4+ reduction, thereby enhancing the 

stability of oxygen defects.(34)   

Carbonate formation on ceria and related oxides is facile at conditions of interest for 

many applications; for instance, heat treatment at 1000 K in oxygen or vacuum is commonly 

used to remove all traces of carbonates from the ceria surface.(24,41,42,92)  This study investigated 

the interaction of surface carbonate species with ceria based oxides under conditions relevant to 

automotive applications.   

The current investigation has shown that the carbonates present on Ce0.75Zr0.25O2 are less 

strongly bound after oxidation compared to reduction.  As shown in Fig. 33c and 34e, evacuation 
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more pronouncedly decreased the intensity of the carbonate bands after oxidation than after 

reduction.  In contrast, evacuation equally affected the carbonates on ceria during evacuation 

following O2 exposure and CO exposure (Fig. 29c, 29e).  The addition of the metal did not alter 

the qualitative behavior observed for each oxide catalyst (Fig. 30c, 30e, 34c, 34e), indicating the 

chemistry occurring on the oxides remains relevant when examining the metal loaded systems.  

It should be noted that the bands associated with carbonates on Pd/CeO2 were less intense 

following O2 exposure compared to CO exposure; however, no carbonates bands remained on 

Pd/Ce0.75Zr0.25O2 following O2 exposure. 

In order to account for the decrease in Ce0.75Zr0.25O2 carbonate stability following 

dioxygen exposure, it is reasonable to consider that upon oxidation of Ce3+ to Ce4+, the oxide-

carbonate bonds were destabilized.  The destabilized carbonates were subsequently desorbed by 

evacuation.  In this case, the Ce4+ sites in Ce0.75Zr0.25O2 were the active sites for carbonate 

destabilization.  This interpretation is supported by previous studies which observed the 

interaction of dioxygen with ceria surface carbonates and showed the dioxygen preferentially 

reoxidized the surface, with no observed isotopic scrambling with oxygen in the carbonate 

species.(153)   

In contrast to the mixed oxide, in this study the carbonates on CeO2 exhibited similar 

stability during evacuation following oxidation and reduction.  This indicates that under the 

conditions of the current research, the Ce4+ and Ce3+ sites in CeO2 stabilize carbonates to a 

similar degree following each treatment.  Because IR is a quantitative technique, it is reasonable 

to conclude that the Ce4+ sites in Ce0.75Zr0.25O2 were more active for carbonate destabilization 

than Ce4+ sites on CeO2.  The lesser stability of carbonates on the mixed oxide compared to the  
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ceria is manifested on the macroscopic level by the increased oxygen storage capacity.  

However, the chemistry is more appropriately visualized as a decrease in site blocking by 

carbonates.   

As oxygen removal progresses, more Ce3+ sites are formed.  These Ce3+ sites are stronger 

bases than the Ce4+ site.  Hence, the corresponding salt that forms by reaction with CO2 is more 

stable, and indeed Ce(III) forms stable bulk carbonate salt, Ce2(CO3)3.  Such stable species may 

be considered as annihilated sites with respect to oxygen uptake and release chemistry.  The 

results of the present work are in agreement with the interpretation presented in a previous study 

of oxygen release/storage and CO2  adsorption on ceria catalysts, which concluded that carbonate 

species adsorbed on the reduced Ce3+ sites.(154)  Carbonate species formation was inferred from 

the oxygen and carbon balances calculated during O2, CO, and CO2 pulse experiments carried 

out at 723 K.  However, the conditions for the current work were able to show a difference 

between the activity of the Ce4+ sites in CeO2 and Ce0.75Zr0.25O2 for carbonate destabilization, 

whereas the cited prior study investigated only ceria catalysts. 

The bands in the out of plane CO3 wagging region may be assigned based on the band 

stability under the conditions used in this work.  On CeO2 and Pd/CeO2, the band at 823 cm-1 has 

previously been assigned to hydrogen carbonate.(41,45)  After hydrogen carbonate, the bidentate 

carbonate species were the least stable.  The band at 840 cm-1 is only present in CO at 623 K and 

is assigned to bidentate carbonate.  The band at 868 cm-1 is consistent with monodentate or 

polydentate carbonate.  The most stable band, at 855 cm-1 and 861 cm-1 on CeO2 and Pd/CeO2, 

respectively, in CO at room temperature, may be assigned to another type of polydentate  
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carbonate, here designated polydentate carbonate II.  From the greater intensity and absorbance 

of the polydentate II type carbonates, it may be surmised that they are the more strongly bound 

of the two types of polydentate species.   

On Ce0.75Zr0.25O2 and Pd/Ce0.75Zr0.25O2, assignments are similar.  The 823 bands are 

assigned to hydrogen carbonate.(41,45)  The bands at 840 cm-1 (835 cm-1 on Pd/Ce0.75Zr0.25O2) and 

878 cm-1 exhibit similar stability and are thus both assigned to bidentate carbonate.  The 870  

cm-1 band may be assigned to monodentate or a type of polydentate carbonate.  The high 

intensity bands at 859 cm-1 and 861 cm-1, respectively on Ce0.75Zr0.25O2 and Pd/Ce0.75Zr0.25O2 in 

CO at room temperature, are consistent with another, more stable type of polydentate carbonate, 

here designated polydentate carbonate II.  The stabilities of the two types of polydentate 

carbonates are similar to those assigned on CeO2 and Pd/CeO2.  The behavior of the 849 cm-1 

(847 cm-1 on Pd/Ce0.75Zr0.25O2) is ambiguous and assignment would be imprudently speculative.  

The band assignments are summarized in Table 3. 

 

 

Table 3. Band positions (cm-1) for carbonate out-of-plane wagging modes 

Hydrogen 
carbonate 

Bidentate 
carbonate 

Monodentate 
carbonate 

Polydentate 
carbonate I 

Polydentate 
carbonate II 

Sample π(CO3) π(CO3) π(CO3) π(CO3) π(CO3) 
CeO2 823 840 868 868 855 

Pd/CeO2 823 841 868 868 861 
Ce0.75Zr0.25O2 823 840, 878 870 870 859 

Pd/Ce0.75Zr0.25O2 822 835, 878 870 870 861 
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8.0  SUMMARY AND FUTURE WORK 

8.1 SUMMARY OF MAJOR RESULTS AND CONTRIBUTIONS OF THIS WORK 

This work investigated the interaction of CO and O2 with ceria-based catalysts reduced to 

varying degrees.  In situ Raman spectroscopy was used to examine the interaction of CO with 

Pd/CeO2, Pd/Ce0.75Zr0.25O2, Pd/ZrO2, and the supports alone.  This work reported the first 

unambiguous evidence for CO disproportionation on CeO2 and Ce0.75Zr0.25O2, namely, the 

appearance of carbon bands at 1582 and 1331 cm-1 on those catalysts following CO exposure at 

623 K.  One previous IR spectroscopic study observed carbonate bands following CO exposure 

to reduced CeO2-x, and inferred that the reaction occurred.(70)  On CeO2, exposure of the 

carbonaceous deposits to oxygen at room temperature resulted in surface formate formation.  By 

the principle of microscopic reversibility, it was proposed that CO interacts with reduced CeO2 

through the oxygen end of the molecule, not the carbon as commonly suggested,(5,42) as an 

intermediate to the ceria surface formate product.   

Carbon monoxide disproportionation was observed on high surface area CeO2 and 1% 

Pd/CeO2 using Raman and infrared spectroscopy and HRTEM.  HRTEM images confirm carbon 

formation on CeO2 and Pd/CeO2; however, the technique did not allow determination of the 

active sites for CO disproportionation on Pd/CeO2.  In order to clarify the location of carbon 

formation on the catalyst, the rates of carbon formation on Pd/CeO2 and the bare support were 
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calculated based on spectroscopic evidence.  Rate data indicated that initially the most active 

sites for CO disproportionation on Pd/CeO2 are Pd, but those sites are quickly blocked by coke.  

At longer CO exposure times, the ceria support becomes active for the CO disproportionation 

reaction.  A mechanism for CO disproportionation on CeO2 involving aggregated oxygen 

vacancy sites is proposed; the sites may be thought of as nano-domains of metallic Ce3+.  At the 

aggregated vacancy, the degree of electron density localization controls the rates at which CO 

acts as an electron donor or acceptor to form an energetically activated complex.  This work 

showed that aggregated electron vacancies provide active sites for the autocatalytic 

disproportionation of CO on CeO2-x.   

Several groups have performed recent theoretical calculations on CeO2 and the reduced 

CeO2 surface.(6,127,155)  In this active field, there is a current consensus that the electrons localize 

on Ce3+ cations adjacent to single oxygen vacancies, contrary to the delocalized electrons in the 

metallic nano-domains proposed in this work.  Current theory and computing power limits the 

application of theoretical calculations to large aggregated oxygen vacancies.  However, future 

calculations should show that electrons become delocalized when the oxygen vacancy clusters 

reach a critical size.   

In addition, the stability of carbonate species formed upon exposure of CO to Pd/CeO2, 

Pd/Ce0.75Zr0.25O2, Pd/ZrO2, and the supports was investigated using FTIR.  On Pd/Ce0.75Zr0.25O2 

and Ce0.75Zr0.25O2, carbonates were less strongly bound after oxidation compared to reduction.  

The oxide-carbonate bond was weakened upon oxidation of Ce3+ to Ce4+, which indicates that 

the Ce4+ sites in Ce0.75Zr0.25O2 were the active sites for carbonate destabilization.  In contrast, the 

Ce4+ and Ce3+ sites on CeO2 stabilize carbonates to a similar degree after both oxidation and 

reduction, which indicates that site blocking by carbonates may play a role in the increased 
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oxygen storage capacity of ceria-zirconia catalysts compared to ceria catalysts alone.  The results 

of this study also assign previously indistinct(41,45,151,152) bands in the CO3 out of plane bending 

region to monodentate, bidentate, and polydentate carbonate species on CeO2 and Ce0.75Zr0.25O2. 

8.2 RECOMMENDATIONS FOR FUTURE WORK 

The conclusions presented in this dissertation indicate that control of the nature of the reactant-

catalyst interaction is possible by tailoring the degree of reduction of metal oxides.  In order to 

favor CO as an electron acceptor (CO as an oxidant), the long exposure studies presented on 

CeO2 and Pd/CeO2 could be extended to other, more reducible oxide materials, such as ceria-

zirconia or ceria-hafnia mixed oxides.  It is reasonable that the formation of aggregated 

vacancies will be more rapid on more reducible materials, thus requiring less thermal energy for 

formation of the nanometallic active sites.   

Isotopic studies using C18O (with a mass spectrometer to monitor gaseous products) 

could further elucidate the relative rates at which CO acts as an electron donor or acceptor on the 

oxide, and test the hypothesis that the disproportionation becomes autocatalytic.  Scheme 6, 

reproduced here for convenience, allows examination of the effect of C18O. 
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Scheme 6. CO reaction pathway to carbon  

 

It would be expected that at early times on stream the CO2 produced would consist of 

mostly C18O16O, because one 16O would come from the ceria lattice during the reduction step.  In 

fact the production of C18O16O could be considered a measure of the OSC complete, as termed in 

the automotive literature.  During C18O exposure, the reduction step would continually fill the 

oxygen vacancies with 18O with concurrent carbon deposition.  At later times on stream, 

production of C18O2 would indicate that the carbon monoxide was oxidized at an oxygen site that 

was located near a carbon deposit, since the vacancy had been filled by labeled C18O.  As 16O is 

depleted from the ceria surface, the concentration of C18O16O produced will decrease.  It may be 

observed that the rate of production of C18O2 rapidly increases after 10 – 14 h on stream, 

assuming conditions similar to the Raman experiments performed in this work.  The rapid 

increase in production of C18O2 would support the hypothesis that the CO disproportionation 

becomes autocatalytic on ceria after long times on stream.   

The mass spectrometer (MS) experiments may be carried out by sampling the effluent 

from the current in situ Raman system.  This would allow direct comparison to the experimental 
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conditions used in this work.  Because MS operates at low pressure, it is necessary to reduce the 

sample volume entering the instrument.  In addition, the delivery volume must be carefully 

controlled and calibrated in order to quantify the MS signal.  This may be accomplished by using 

an automatic sampling valve with a 100 microliter sampling loop, using a carrier gas with a ppm-

level tracer gas, such as Ar.  In addition, a 3-way splitter valve may be used to further reduce the 

sample volume entering the MS.  The MS sample injection schematic is shown in Fig. 37. 
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Figure 37. Mass spectrometer sample injection schematic 
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In addition to studies performed with the spectroscopic equipment used for this work, it 

would be interesting to use noncontact atomic force microscopy (AFM), and/or scanning 

tunneling microscopy (STM) to characterize the reduced oxides after different extents of CO 

exposure.  The microscopic methods would be able to directly image the aggregated vacancies.  

Similarly, X-ray absorption near-edge structure (XANES) could be used to characterize the 

extent of reduction of the ceria.  Assistance from outside laboratories at the University of 

Pittsburgh or other institutions should be obtained for the surface science studies mentioned; the 

instruments are not available in the d’Itri lab. 

As an alternate to surface studies of the phenomena observed in this work, future studies 

of CO as an oxidant could be applied directly to macroscopic reaction engineering problems.  

One of the major challenges in oxidation catalysis is maximizing the selectivity and yield of the 

desired product.  In the case of catalytic partial oxidation, it is a constant challenge to stop short 

of total oxidation, and yield of the desired product often suffers at the expense of selectivity.  By 

controlling the nature of the active site at the aggregated oxygen vacancy, it should be possible to 

tailor activated oxygen species to perform desired partial oxidation reactions.  This macroscopic 

application could be used to probe the reactivity of the oxygen species at the aggregated vacancy.  

For example, propylene partial oxidation to propylene oxide could be carried out over a 

reducible oxide catalyst with some partial pressure of CO to activate the oxygen at the aggregate.  

A conventional temperature controlled reaction kinetics system, with a gas chromatograph 

detector, could be used to measure the yield and selectivity.  The reactor volume and catalyst 

particle size should be small in order to avoid mass and heat transfer effects; a 10 mm i.d. quartz 

microreactor is recommended.  Gases should be delivered through regulators and the flow should 

be controlled with electronic mass flow controllers.  Micron filters and check valves may also be 
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used in the gas delivery lines to prevent against back-mixing, and the CO line should be 

equipped with a carbonyl trap.  The lines should be heated in order to avoid condensation of 

products. A schematic of the kinetics system is shown in Fig. 38. 

Future studies may also be carried out using theoretical DFT + U molecular calculation 

studies.  The U parameter approach for modeling metal oxides corrects for the on-site Coulomb 

interactions in the d and f states.(155)  Previous DFT + U studies on reduced ceria have focused on 

single oxygen vacancies and found that the electron density localized on the two adjacent Ce3+ 

cations.  Future studies on ceria containing aggregated oxygen vacancies should be conducted in 

order to predict the degree of electron localization.  Because the d’Itri group does not currently 

perform computational chemistry, it will be necessary to collaborate with another group at the 

University of Pittsburgh, or an outside institution such as the National Energy Technology 

Laboratory, to perform these studies.   
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