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RESULTS OF APPROXIMATION AND MEASURE ON MUTATIONAL

SPACES

Onyeka E. Obi, PhD

University of Pittsburgh, 2010

This thesis extends the machinery of Mutational Analysis to accommodate numerical meth-

ods that are commonly used today, such as the Midpoint Method, Heun Method, and Runge-

Kutta Methods. This is done by developing Taylor expansions in Mutational Spaces of

Higher Order. Another extension of Mutational Analysis to Stochastic Mutational Analysis

is considered. This extension is used to accommodate more realistic and robust models than

the deterministic counterpart. A biologically relevant model is used as an illustration of

this extension.
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1.0 INTRODUCTION

1.1 THE MOTIVATION AND THE PLAN

In medicine, solid tumor growth beyond a certain point requires resources provided by the

host�s vascular system [23]. One of the many cancer therapies consists of antiangiogenic

agents that target the portion of the vascular system supplying tumor growth [16]. It

has been shown experimentally that antiangiogenic therapy can sometimes aggravate tumor

growth instead of attenuating it. Biologists have suggested two mechanisms for this para-

doxical behavior. One mechanism requires cancer cells to send out signals that recruit blood

vessels to replace those that have been deactivated by medication, by a process called vascu-

lar co-option [23]. Another mechanism requires that cancer masses develop their own vessels

to reconnect to the surrounding vasculature, by a process called vasculogenic mimicry[23].

These kinds of dynamics are geometrically driven, and may bene�t from a �exible gemomet-

ric description. While this interesting problem is the original motivation for the theory to

follow, other applications have encouraged work associated with the theory to follow. For a

survey on antiangiogenic medication, see [14].

One example from a di¤erent point of view comes from networked surveillance [8]. His-

torically, surveillance footage of multiple locations are collected and searched for geometric

targets, which are then segmented and tracked over recorded time. Each target is segmented

as a separate object and followed independently. However, it has been suggested that mul-

tiple objects can be tracked simultaneously as a single geometric object. The mathematics

used to do this is related to a predecessor of the current work, but not the current work

itself.

1



Figure 1.1.1: Vascular Cooption: Blood vessel V1 is deactivated by medication, then the

tumor mass C sends signals out, recruiting V2 in the process.
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Figure 1.1.2: Vasculogenic Mimicry: V1 is deactivated by medicine, then the tumor mass

C develops its own blood vessels V2 and V3 in order to connect to the outside network of

vessels.
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The modern theory of di¤erential equations on metric spaces began with the work of [25]

on quasidi¤erential equations. Recently, [6] have advanced the theory, motivated by balanced

�ows in metric spaces. Jean-Pierre Aubin took the theory in another direction in order to

study visual control and mathematical morphology. His seminal paper [1] established the

theory of mutational equations on metric spaces, which then led to [2], subsequently inspiring

the author to pursue the theory in the present work. Generalizations to mutational equations

on general topological spaces has been carried out in [18, 19, 20]. The focus, so far, has

been on existence results, with [6] brie�y mentioning Euler approximations. Until now,

approximation of mutational equations outside of the Euler method have not been explored.

There also has been, as of yet, no attempt to treat stochastic �ows in the general theory.

The present work seeks to accomplish both objectives.

The current work is a substantial expansion in mutational analysis. There are several

reasons why this expansion is valuable. As a theory of calculus on metric spaces, it computes

directly with geometric evolutions, without a need to designate parameters to evolve, such as

volume or concentration. As a result, one does not have to know a priori which parameters of

a geometric object actually matter in determining its dynamics. Thus, is it not necessary to

follow a tumor "volume" or a wave "amplitude". The objects themselves are described non-

parametrically. Also, mutational analysis is a proper generalization of ordinary and partial

di¤erential equations, in that it makes perfect sense to consider general shape evolutions

and particle or �eld evolutions together. As a theory of calculus on topological spaces, we

can take analogies with di¤erential equations to its logical extreme. As topological spaces

are ubiquitous in analysis and geometry, one can assert that mutational analysis provides

a notion of calculus for nearly all of mathematics. In other words, a study of mutational

analysis can be thought of as a study of calculus in the most general form. Since all physical

laws can be stated in the language of calculus, one can also say mutational analysis is a study

of physics in its most general form.

Before outlining the agenda of the current work, a brief list of topics related to the

history of the current topic will be given. First, the term "calculus on metric spaces" has

been used in reference to metric spaces M1;p discovered by Piotr Haj÷asz in the 1990s. To

be crystal clear, his work dealt with creating metric spaces that were normally associated
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with weak derivatives without the use of derivatives. This stands in obvious contrast to

the current work, which is concerned with developing extensions of derivatives on already

existing metric spaces. The so-called Haj÷asz-Sobolev spaces (M1;p) satisfy an inequality

similar to the classical Poincare inequality, of course without depending on the use of weak

derivatives. In theory, it is possible to consider a Haj÷asz-Sobolev space as a mutational

space with mutations that do not satisfy the Poincare inequality when the mutations are

considered as weak derivatives. In fact, one can say that this will normally be the case.

Therefore, Aubin and Haj÷asz may share the term "calculus on metric spaces" in name only.

The Haj÷asz-Sobolev spaces themselves have seen several generalizations, such as the Orlics-

Sobolev spaces [32]. For more information on Haj÷asz�s work on analysis of metric spaces,

see [9, 10, 11, 13].

The current work deals with probability measures on in�nite-dimensional spaces. One

well-known example of this is the Weiner measure [5], built on the sigma-algebra completion

of the cylindrical algebra where �nite restrictions of the distance between two continuous

random variables have a Gaussian law. Although, using the procedure described in the

current work, the Weiner measure can be reproduced on the space of continuous random

variables, the process is not the same as that traditionally used, and the method to be

discussed extends to more general spaces.

It should be mentioned that the new calculus is valid not only for metric spaces, but for

all topological spaces. The reasoning behind this is rather straightforward. Because all

topological spaces are quasiuniform spaces [26], and quasiuniform spaces can be generated by

the collection of all quasiuniformly lower semicontinuous functions on the space [29], these

spaces are, in turn, generated by a family of Ostensible metrics, as Lorenz calls them. As

a result, much of the theory follows similarly, with some technical considerations, as in [18].

For more background on results linking topological spaces to generalized metrization, see

[30, 31, 17, 15].

The discussion will proceed as follows. A background on mutational analysis will be

given �rst. One can consider this a general theory of calculus on spaces of sets with

an underlying metric. Second, the notion of second and higher order transitions will be

given. These are used to construct the �derivatives�of set-valued maps. An exposition of
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the basics will lead up to Taylor approximation results on metric spaces. An immediate

application of these approximations will be the development of various numerical methods

(e.g. the Midpoint Method, Runge-Kutta methods). In the second half, we turn to the

problem of constructing probability measures on mutational spaces. We do this in order

to extend Aubin�s framework into a stochastic setting. Once we have done this, we can

talk of stochastic mutational equations and their solutions. As an application of this new

theory, we will take a look at two spatial models of tumor growth, one deterministic, and one

stochastic, in order to compare and highlight the achievements of realism in the stochastic

model. The appendix will contain code used to implement the deterministic model.

Before diving into the discussion, one disclaimer should be added. There are many

applications of Mutational Analysis, and an exhaustive list of such applications would sum

to an entire body of work on its own. There are also many applications of the enhancements

to Mutational Analysis made in the current work. However, with the possible exception of

the �nal section, and to maintain brevity and logical coherence throughout, we will restrain

ourselves to the mention of applications that best illustrate the new technology that is the

primary subject of the current discussion.

1.2 PRELIMINARIES

In this section, we review some facts from Mutational Analysis needed throughout. All of

this can be found in [1, 2].

De�nition 1. Let E be a metric space for a distance d. We denote by �(E) the space of

all maps # : [0; T ]� E ! E that satisfy
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8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

i) # (0; x) = x

ii) 8t 2 [0; T ] ; lim
h!0+

d(#(t+h;x);#(h;#(t;x)))
h

= 0

iii) � (#) := max

�
sup
x 6=y

�
lim sup
h!0+

d(#(h;x);#(h;y))�d(x;y)
hd(x;y)

�
; 0

�
< +1

iv) � (#) := sup
z2E

�
lim sup
h!0+

d(#(h;z);z)
h

�
< +1

De�nition 2. These maps are called transitions on E.

De�nition 3. The neutral transition O is the transition such that O (h; x) = x 8 h 2 [0; 1]

and x 2 E for a metric space E:

De�nition 4. A mutational space is a pair (E;�(E)) of a metric space and �(E) a space

of transitions, including the neutral transition, that is closed in C ([0; 1]� E;E) with the

distance d� (#; �) := sup
z2E

�
lim sup
h!0+

d(#(h;z);�(h;z))
h

�
.

De�nition 5. Consider two mutational spaces (E;�(E)), (F;�(F )) and a single-valued

map f : E ! F: We shall say that the mutation
�
f (x) of f at x is the set-valued map from

�(E) to �(F ) de�ned by

� 2
�
f (x)# () lim

h!0+

d (f (# (h; x)) ; � (h; f (x)))

h
= 0

De�nition 6. We shall say that f is mutable at x in the directions # 2 �(E) if
�
f (x)# is

nonempty for every # 2 �(E).

De�nition 7. For (E;�(E)) a mutational space, a 2 R+ , x 2 E; and � 2 �(E) ; � (a; x) =

a� (1; x) :
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We need this de�nition in order to clarify that transitions are supposed to behave like

they do in the classical sense. For example, if we start at a position x 2 Rn; we can move

in a direction v 2 Rn by evaluating x+ v: We can also scale v by an a 2 Rn f0g and move

from x to x+ av:

Notation 8. We will often write a � � + x to stand for a� (1; x) :

We will use the following facts repeatedly:

Lemma 9 (T). Consider two transitions # and � : Then, for all h 2 [0; 1) ;

d (h � #+ x; h � � + y) � d (x; y) e�(#)h + hd� (#; �)
e�(#)h � 1
� (#)h

Consequently, we infer that

d (h � #+ x; h � � + y)� d (x; y)

h
� e�(#)h � 1

h
d (x; y)

and that 8>>>>><>>>>>:
i) k# (x)k := sup

h2[0;1[

d(h�#+x;x)
h

� � (#) e
�(#)�1
�(#)

ii) k#k� := sup
h2[0;1[; x 6=y

d(h�#+x;#(h;y))
d(x;y)

� e�(#)

Lemma 10 (M). Let (E;�(E)) be a mutational space. Consider two measurable functions

t ! # (t) and t ! � (t) from an interval [0; T ] � R to �(E) supplied with the distance d�
and their primitives x (�) and y (�) starting at x0 and y0, respectively. Assume that

� (t) :=

Z t

0

� (# (s)) ds < +1

Then

d (x (t) ; y (t)) � d (x0; y0) e
�(t) +

Z t

0

e�(t)��(s)d� (# (s) ; � (s)) ds

8



In particular, from any initial state x0 starts a unique primitive of t 7! # (t) 2 �(E)

satisfying

d (x (t+ h) ; h � # (t) + x (t))

h
� 1

h

Z h

0

e�(t)��(s)d� (# (t+ s) ; # (t)) ds

and that

8 t; s 2 [0; T ] ; d (x (t) ; x (s)) � c
eMT � 1
M

jt� sj

whenever # (�) is skirted and bounded in the sense that

M := sup
t2[0;T ]

� (# (t)) < +1 & c := sup
t2[0;T ]

� (# (t)) < +1

Theorem 11 (Cauchy-Lipschitz). Let X be a �nite dimensional vector space. Let f :

X ! X be a Lipschitz map with Lipschitz constant kfk� : Fix a di¤erentiable function

y (�) : [0; T ] ! X: Then there exists a unique solution x (�) to the Cauchy problem for the

di¤erential equation x0 = f (x) satisfying the inequality8>>><>>>:
8 t 2 [0; T ] ; d (x (t) ; y (t)) �

e(M+kfk�)td (x0; y (0)) +
R t
0
ekfk�(t�s) kf (y (s))� y0 (s)k ds

Theorem 12 (Filippov). Assume that F : X  X is � � Lipschitz with nonempty closed

values on the interior of its domain. Let y (�) be a given absolutely continuous function

such that t! d (y0 (t) ; F (y (t))) is integrable
�
for the measure e��sds

�
. Then there exists a

solution x (�) to the di¤erential inclusion

for almost all t 2 [0; T ] ; x0 (t) 2 F (x (t))

such that, for all t � 0;

kx (t)� y (t)k � e�t
�
kx0 � y (0)k+

Z t

0

d (y0 (s) ; F (y (s))) e��sds

�
and for almost all t 2 [0; T [ ;8>>><>>>:

kx0 (t)� y0 (t)k � d (y0 (t) ; F (y (t)))

+�e�t
�
kx0 � y (0)k+

R t
0
d (y0 (s) ; F (y (s))) e��sds

�

9



Remark 13. Filippov uses  to indicate a set-valued mapping. On the other hand, we will

use the more standard notation F : X ! 2X :

Remark 14. ��Lipschitz simply means Lipschitz mapping with Lipschitz constant �: For

x1; x2 2 E a metric space, this means that D (F (x1) ; F (x2)) � �d (x1; x2) ; where D is the

Hausdor¤ distance.

We now illustrate some examples of �rst-order transitions.

Example 15. Let x; v 2 Rn: The classical transition derived from v is the map #v (h; x) =

x+ hv; for h > 0. This makes (Rn;Rn) into a mutational space.

Example 16. Let B 2 KC (Rn). The structuring transition derived from B is the map

#B (h; x) := x+hB. Adding the neutral transition, (K (Rn) ;KC (Rn)) becomes a mutational

space.

Example 17. Let ' 2 Lip (Rn;Rn) : De�ne the map #' (h; x) = x (h), where x (h) is the

solution to the di¤erential equation x0 (t) = ' (x (t)) starting at x: Now, for K 2 K (Rn),

de�ne #' (h;K) = fx (h)gx2K. Then #' is the shape transition derived from '. It turns

(K (Rn) ; Lip (Rn;Rn)) into a mutational space.

Example 18. Let � 2 LIP (Rn;Rn) : De�ne the map #� (h; x) = x (h), where x (h) is the

solution to the di¤erential inclusion x0 (t) 2 � (x (t)) starting at x: Now, for K 2 K (Rn),

de�ne #� (h;K) = fx (h)gx2K. Then #� is the morphological transition derived from �. It

turns (K (Rn) ; LIP (Rn;Rn)) into a mutational space.

We have a way to make new mutational spaces from old ones, using �nite products.

Theorem 19. Let (E;�(E)) and (F;�(F )) be mutational spaces with metrics d1 and d2,

respectively. De�ne
�
E � F;�(E � F )

�
as follows: For �1 2 �(E) ; �2 2 �(F ), de�ne

� 2 �(E � F ) by h� + (x; y) = (h�1 + x; h�2 + y), for (x; y) 2 (E;F ). Let the metric

for
�
E � F;�(E � F )

�
be d ((p1; q1) ; (p2; q2)) = d1 (p1; p2) + d2 (q1; q2), for p1; p2 2 E and

q1; q2 2 F . Then
�
E � F;�(E � F )

�
is a mutational space.

10



Proof. 1. 0 � � + (x; y) = (0 � �1 + x; 0 � �2 + y) = (x; y)

2. Fix a t 2 [0; 1[ :

8>>>>>>>>>><>>>>>>>>>>:

lim
h!0+

d((t+h)�+(x;y);h�+t�+(x;y))
h

= lim
h!0+

d(((t+h)�1+x;(t+h)�2+y);(h�1+t�1+x;h�2+t�2+y))
h

= lim
h!0+

d1((t+h)�1+x;h�1+t�1+x)+d2((t+h)�2+y;h�2+t�2+y)
h

= 0

3. 8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

max

�
sup
x 6=y

�
lim sup
h!0+

d(h�+(u;v);h�+(x;y))�d((u;v);(x;y))
h

�
; 0

�

= max

�
sup
x 6=y

�
lim sup
h!0+

d((h�1+u;h�2+v);(h�1+x;h�2+y))�d((u;v);(x;y))
h

�
; 0

�

= max

�
sup
x 6=y

�
lim sup
h!0+

d1(h�1+u;h�1+x)+d2(h�2+v;h�2+y)�d1(u;x)�d2(v;y)
h

�
; 0

�

= max

�
sup
x 6=y

�
lim sup
h!0+

d1(h�1+u;h�1+x)�d1(u;x)+d2(h�2+v;h�2+y)�d2(v;y)
h

�
; 0

�

� max
�
sup
x 6=y

�
lim sup
h!0+

d1(h�1+u;h�1+x)�d1(u;x)
h

�
; 0

�

+max

�
sup
x 6=y

�
lim sup
h!0+

d2(h�2+v;h�2+y)�d2(v;y)
h

�
; 0

�
< +1

11



4. 8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

sup
(y;z)2E�F

�
lim sup
h!0+

d(h�+(y;z);(y;z))
h

�

= sup
(y;z)2E�F

�
lim sup
h!0+

d((h�1+y;h�2+z);(y;z))
h

�

= sup
(y;z)2E�F

�
lim sup
h!0+

d1(h�1+y;y)+d2(h�2+z;z)
h

�

� sup
(y;z)2E�F

�
lim sup
h!0+

d1(h�1+y;y)
h

�
+ sup
(y;z)2E�F

�
lim sup
h!0+

d2(h�2+z;z)
h

�
< +1

It is not necessary that d = d1+d2: There are other metrics derived from d1 and d2 that

will also work.

Corollary 20.
�
E � F;�(E � F )

�
above with the metric d = (dn1 + dn2 )

1
n , for n 2 [1;1) ;

is a mutational space.

Proof. This follows directly from the Minkowski Inequality (see [7]) :

Corollary 21.
�
E � F;�(E � F )

�
above with the metric d = max fd1; d2g is a mutational

space

Proof. This follows from the fact that either d = d1 or d = d2 on their respective projections:

Now we discuss some new results pertaining to Mutational Analysis proper.

Theorem 22 (Taylor-1). Let (E;�(E)) be a mutational space, x : [0; T ] ! E be mutable,

and
�
x (t) be Lipschitz with constant �. Then there exists a constant C such that for all t � 0

d
�
x (t) ; t

�
x (0) + x (0)

�
� Ct2

12



Proof. Let y (t) = t
�
x (0) + x (0) : Then y is mutable,

�
y (t) =

�
x (0) and y (0) = x (0). By

(10), 8>>>>>>>>>><>>>>>>>>>>:

d (x (t) ; y (t)) � 0
x(0)=y(0)

+
R t
0
eM(t�s)d�

�
�
x (s) ;

�
x (0)

�
ds

�
R t
0
eM(t�s)�s ds

� Ct2

13



2.0 TRANSITIONS OF HIGHER ORDER

We now give a de�nition and some examples of second-order transitions on mutational spaces.

De�nition 23. Let (E; d) be a metric space, and (E;�(E)) be the corresponding mutational

space. A second mutational space is a space (� (E) ;�(� (E))), where the underlying

metric space is a space of transitions (� (E) ; d) : The set (� (� (E))) is called a set of second

transitions. A mutation de�ned between two second mutational spaces is called a second

mutation. All of these structures follow the rules of their �rst-order equivalents.

De�nition 24. For �1 and �2 elements of an nth order mutational space, and x an element

of an (n-1)th order mutational space, �2 + �1 + x := �2 (1; �1 (1; x)).

De�nition 25. For �1 an element of an nth order mutational space, and �2 an element of

an (n+1)th order mutational space, �2 + �1 := �2 (1; �1) :

2.1 EXAMPLES OF SECOND TRANSITIONS

Theorem 1. Let E be a space of structuring transitions with the metric d determined by

d (#B; #C) = D (B;C) ; where D is the Hausdor¤ metric, and #B; #C 2 E. Then (E;E) is a

mutational space.

Proof. Here, we show that structuring transitions can serve as transitions on themselves.

Thus, we need to show how these second transitions are de�ned, and then we check each of

the properties of transitions. Let #B; #C ; #D 2 E and de�ne h#C + #B = #B+hC .

i) 0 � #C + #B = #B+0C = #B

ii) (t+ h) � #C + #B = #B+(t+h)C = #B+tC+hC = #(B+tC)+hC = h � #C + t � #C + #B

14



iii)

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

d (h � #D + #B; h � #D + #C)� d (#B; #C) = d (#B+hD; #C+hD)� d (#B; #C)

= D (B + hD;C + hD)� D (B;C)

= sup
u2B;v2D

inf
x2C;y2D

ku� x+ h (y � v)k � D (B;C)

� sup
u2B

inf
x2C

ku� xk+ h sup
v2D

inf
y2D

ky � vk � D (B;C)

= D (B;C) + hD (D;D)� D (B;C) = 0

this implies that � (#D) = 0:

iv) d (h � #D + #B; #B) = d (#B+hD; #B) = D (B + hD;B) = sup
u2B;v2D

inf
x2B

ku� x+ hvk �

sup
u2B

inf
x2B

ku� xk+ sup
v2D

khvk = D (B;B) + hD (D; 0) = h kDk

implies that � (#D) � kDk :

Theorem 2. Let E be a space of structuring transitions with the Hausdor¤ metric as above,

and let �(E) be a space of shape transitions that preserve convexity. For #B 2 E and

#� 2 �(E), de�ne h � #� + #B = #h#�+B: Then (E;�(E)) is a mutational space.

Proof. i) 0 � #� + #B = #0#�+B = #B

ii) (t+ h) � #� + #B = #(t+h)#�+B = #h#�+t#�+B = h#� + #t#�+B = h#� + t#� + #B

15



iii) Let #B; #C 2 E: Then8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

d (h � #� + #B; h#� + #C)� d (#B; #C) = d
�
#h#�+B; #h#�+C

�
� d (#B; #C)

= D (h � #� +B; h � #� + C)� d (#B; #C)

= sup
x2B

inf
y2C

kh � #� + x� (h � #� + y)k � d (#B; #C)

� sup
x2B

inf
y2C

ek�k�h kx� yk � d (#B; #C)

=
�
ek�k�h � 1

�
d (#B; #C)

where the inequality is given by the Cauchy-Lipschitz Theorem (11). Therefore, � (#�) = 1:

iv) d (h � #� + #B; #B) = d
�
#h#�+B; #B

�
= D (h#� +B;B) = D (h � #� +B; h � 1+B) =

sup
x2B

inf
y2B

kh � #� + x� (h � 1+y)k ; and by 11

sup
x2B

inf
y2B

kh � #� + x� (h1+y)k � sup
x2B

inf
y2B

�
ek�k�h kx� yk+ h k�k1

ek�k�h � 1
k�k� h

�
and so � (#�) � k�k1 :

Theorem 3. Let E be a space of structuring transitions with the Hausdor¤ metric, and

let �(E) be a space of morphological transitions. For #B 2 E and #� 2 �(E), de�ne

h � #� + #B = #h#�+B: Then (E;�(E)) is a mutational space.

Proof. By the Filippov Theorem12, given a solution y (�) to the di¤erential inclusion y0 2

	(y) starting at y0, there is a solution to x0 2 � (x) starting at x0 such that8>>>>>>>>>><>>>>>>>>>>:

8t 2 [0; T ] ; kx (t)� y (t)k

� ek�k�t kx0 � y0k+
R t
0
ek�k�(t�s)D (� (y (s)) ;	(y (s))) ds

� ek�k�t kx0 � y0k+ t sup
x2Rn

D (� (x) ;	(x)) ek�k�t�1k�k�t

16



Thus, for any y (�) a solution to y0 2 	(y) from y 2 L

8>>>>>>>>>>><>>>>>>>>>>>:

D (y (t) ; t � #� +K) = inf
z2#�(t;x)

inf
x2K

kz � y (t)k

� inf
x2K

ek�k�t kx� yk+ t sup
�2Rn

D (	 (�) ;� (�)) ek�k�t�1k�k�t

� ek�k�tD (y;K) + t sup
�2Rn

D (	 (�) ;� (�)) ek�k�t�1k�k�t

In particular, for y (t) = t � #	 + L; we get

8>>>>>>>>>><>>>>>>>>>>:

d(#t#	+L;#t#�+K)�d(#L;#K)
t

= D(t�#	+L;t�#�+K)�D(L;K)
t

� ek�k�t�1
k�k�t

�
k�k�D (L;K) + sup

�2Rn
D (	 (�) ;� (�))

�

from which it follows that

8>>>><>>>>:
lim sup
t!0+

d(#t#	+L;#t#�+K)�d(#L;#K)
t

� k�k�D (L;K) + sup
�2Rn

D (	 (�) ;� (�))

and so, by taking 	 = �; we get that � (#�) � k�k� : By taking L = K and 	 = O, we get

that � (#�) � k�k1 = sup
z2Rn

D (� (z) ;O) : Finally, by the fact that morphological transitions

satisfy a property to be discussed later (2:2), (h+ t) � #� +K = h � #� + t � #� +K:

Theorem 4. Let E be a space of shape transitions with the metric d de�ned by d (#�; # ) =

k��  k1, where #�; # 2 E: De�ne #� by h#�+ # = # +h�: Then (E;E) is a mutational

space.

17



Proof. i) 0 � #� + # = # +0� = # 

ii) (t+ h) � #� + # = # +(t+h)� = #( +t�)+h� = h � #� + # +t� = h � #� + t � #� + # 

iii)

8>>>>>>>>><>>>>>>>>>:

d (h � #� + # ; h � #� + #�)� d (# ; #�) = d (# +h�; #�+h�)� d (# ; #�)

= k + h�� �� h�k � k � �k

� k � �k+ h k�� �k � k � �k = 0

so � (#�) = 0

iv) d (h � #� + # ; # ) = k + h��  k = h k�k ; so � (#�) = k�k

Theorem 5. Let E be a space of morphological transitions with the metric d de�ned by

d (#	; #�) = sup
z2Rn

D (	 (z) ;� (z)) ; where #	; #� 2 E. De�ne #� by h � #� + #	 = #	+h�:

Then (E;E) is a mutational space.

Proof. i) 0 � #� + #	 = #	+0� = #	

ii) (t+ h) � #� + #	 = #	+(t+h)� = #(	+t�)+h� = h � #� + #	+t� = h � #� + t � #� + #	

iii)

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

d (h � #� + #	; h � #� + #�)� d (#	; #�) = d (#h�+	; #h�+�)� d (#	; #�)

= sup
z2Rn

D (h � � (z) + 	 (z) ; h � � (z) + � (z))� d (#	; #�)

= sup
z2Rn

sup
y2�(z);v2	(z)

inf
x2�(z);u2�(z)

kh (y � x) + u� vk � d (#	; #�)

� h sup
z2Rn

sup
y2�(z)

inf
x2�(z)

kx� yk

18



8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

+ sup
z2Rn

sup
v2	(z)

inf
u2�(z)

ku� vk � d (#	; #�)

= h sup
z2Rn

D (� (z) ;� (z))

+ sup
z2Rn

D (� (z) ;	(z))� sup
z2Rn

D (� (z) ;	(z))

= h � 0

Hence, � (#�) = 0:

iv) 8>>>>>>>>>>>><>>>>>>>>>>>>:

d (h#� + #	; #	) = d (#	+h�; #	) = sup
z2Rn

D (	 (z) + h� (z) ;	(z))

= sup
z2Rn

sup
y2	(z);v2�(z)

inf
x2	(z)

ky � x� hvk

� sup
z2Rn

sup
y2	(z)

inf
x2	(z)

ky � xk+ h sup
z2Rn

sup
v2�(z)

kvk

and so � (#�) = k�k1 :

Let B (Rn) for �xed n be the ��algebra of Borel subsets of Euclidean space. Let

(Rn;B (Rn) ; dx) be the standard Lebesgue measure space. De�ne a metric on B (Rn) in

the following way: Let B;C 2 B (Rn). Then d (B;C) =
R
j1B � 1C j dx: Now let us

split B (Rn) into equivalence classes by de�ning [A] = fE 2 B (Rn) : d (A;E) = 0g : We

will assume from here on to deal with equivalence classes, so that whenever we write A, we

mean [A]. Furthermore, de�ne [hA] =
�
E 2 B (Rn) :

R
E
dx = h

R
A
dx
	
; and, for L 2 B (Rn) ;

t; h 2 R, de�ne [tL� hL] = fP [Q : P \Q = ;; P = tL;Q = hLg : In the additive notation

of transitions from mutational analysis, de�ne a map #F : [0; 1] � B (Rn) 7! B (Rn) by

h#F +G = G� hF; for F;G 2 B (Rn) ; with F \G = ;: We will, perhaps ambiguously, call

these Borel structuring transitions.

Theorem 6. (B (Rn) ;B (Rn)) is a mutational space with the transitions #F de�ned above,

for F 2 B (Rn) :
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Proof. i) 0 � #F +G = G� 0 � F = G

ii) (t+ h) � #F +G = h � #F + t � #F +G by de�nition of hF � tF

iii) Let F;G;H 2 B (Rn).

d (h � #F +G; h � #F +H)�d (G;H) =
Z
jh � 1F + 1G � h � 1F � 1H j dx�

Z
j1G � 1H j dx = 0

Therefore, � (#F ) = 0:

iv) d (h � #F +G;G) =
R
jh � 1F + 1G � 1Gj dx = h

R
1Fdx, so that � (#F ) = kFk1 =

d (F; f0g)

Corollary 7. (B (Rn) ;B (Rn)) is a second mutational space with the transitions #F ; F;G 2

B (Rn), de�ned by h � #F + #G = #h#F+G:

Remark 8. (Rn;Rn) is also a second mutational space, exactly for the reason it is a �rst

mutational space.

2.2 THE SECOND ORDER TAYLOR THEOREM FOR MUTATIONAL

SPACES

We now list a few axioms of �rst and second transitions that will aid us in the remainder of

the discussion:

Let x be an arbitrary element of an nth order mutational space, � and �1 arbitrary

elements of the corresponding (n+1)th-order mutational space, �2 an arbitrary element of

the corresponding (n+2)th-order mutational space, O1 the neutral element of the (n+1)th-

order mutational space, and t and h positive real numbers.

Axiom S: t � � + h � � + x = (t+ h) � � + x = h � � + t � � + x

Axiom A: t � (h � �2 +O1) + x = h � (t � �2 +O1) + x

Axiom B: t � (h � �2 + �1) + x = t � (h � �2 +O1) + t � �1 + x

Axiom C: For a constant c, whenever c � �2 + c � �1 is well-de�ned, we have

c � �2 + c � �1 = c � (�2 + �1)
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Stylistically, thesis axioms are stated so as to identify the intuition from ordinary calculus.

An alternative notation would be the original one of Aubin, but it is more di¢ cult to digest.

For example, axiom B would read �2 (h; �1 (t; x)) = [�2 (h;O1)] (t; �1 (t; x)) :

Before we make use of these properties, we now show that they hold for a su¢ cient

number of examples.

Proposition 1. Let (E;�(E)) be a mutational space. For any � 2 �; x 2 E; and t; h 2

[0; 1] with t+ h � 1 :

� (t; � (h; x)) = � (t+ h; x) (S)

Proof. Fix �; x; and h: De�ne x; y : [0; 1� h] 7! E by:

x (t) = � (t; � (h; x)) ; y (t) = � (t+ h; x)

We check (a) x (0) = y (0) ; (b) � 2 �
x; and (c) � 2 �

y: For then, by 11, x (t) = y (t) : First,

(a) is trivial, since x (0) = � (h; x) = y (0) : Second, (b) is immediate from the de�nition of

a transition. Third, (c) is also immediate from the de�nition of a transition, but we verify

it for completeness:8>>>><>>>>:
lim
k!0+

d(�(k;y(t));y(t+k))
k

= lim
k!0+

d(�(k;�(t+h;x));�((t+k)+h;x))
k

= lim
k!0+

d(�(k;�(t+h;x));�((t+h)+k;x))
k

= 0; by prop. (ii) of transitions, with �t�:= t+ h; �h�:= k

Proposition 2. Property A holds whenever �2 and O1 come from the same space of tran-

sitions, whether they be (Borel) structuring, shape, or morphological transitions on K 2

K (Rn).

Proof. For structuring transitions, t (h�2 +O1) + x = th�2 + tO1 + x = th�2 + hO1 + x =

ht�2+hO1+x = h (t�2 +O1)+x. For shape transitions, let �2 = #�: Then t (h�2 +O1)+K =

t#h� + K = th#� + K = h#t� + K = h (t�2 +O1) + K: For morphological transitions, let

�2 = #�: Then t (h�2 +O1)+K = t#h�+K = th#�+K = h#t�+K = h (t#� +O1)+K:
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Proposition 3. Property B holds whenever �1; �2; and O come from the same space of

transitions, whether they be (Borel) structuring, shape, or morphological transitions on K 2

K (Rn).

Proof. For structuring transitions, t (h�2 + �1)+K = th�2+ t�1+K = th�2+ tO+t�1+K =

t (h�2 +O) + t�1 +K: For shape transitions, let �1 = #�; and �2 = # : Then t (h�2 +O) +

t�1 +K = t (h# + #0) + t#� +K = th# + t#� +K = t (h# + #�) +K = t (h�2 + �1) +K:

The proof for morphological transitions is similar to that of shape transitions.

Remark 4. Property C holds for (Borel) structuring, shape, and morphological transitions

acting on a member of K (Rn) whenever the �rst and second transitions come from the same

class of transitions by the de�nition of multiplication of Minkowski sums by a constant in

each of these classes.

We now turn to a technical statement that calculates a speci�c mutation.

Lemma 5 (Q). Let g : [0; T ]! E be such that g;
�
g are mutable. Let

k (t) = t

�
t

2

��
g (0) +

�
g (0)

�
+ g (0) ;

��
g (0) = �2;

�
g (0) = �1

We assume here properties A and B. Then
�
k(t) 3 p(t) = t�2 + �1 .

Proof. Fix t. We need to show:

lim
h!0

d(k(t+ h); hp(t) + k(t))

h
= 0:

First we use (S), (A) and (B) to manipulate k(t + h). Then we use (S), (A) and (B) to

manipulate hp(t) + k(t). Finally we compare and calculate the limit. On the one hand we
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calculate: 8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

k(t+ h) = (t+ h) [ t+h
2
�2 + �1)] + x

= (t+ h) [h
2
�2 +

t
2
�2 + �1] + x (S)

= (t+ h)
�
h
2
�2 +

t
2
�2 +O

�
+ (t+ h) �1 + x (B)

=
h
h2

2
�2 + hO

i
+
�
th
2
�2 + hO

�
+ (t+ h)

�
t
2
�2 + �1

�
+ x (S)

= h
�
h
2
�2 +O

�
+ h

�
t
2
�2 +O

�
+ (t+ h)

�
t
2
�2 + �1

�
+ x (A):

On the other we compute:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

[p(t)](h; k(t)) = h[t�2 + �1] + t
�
t
2
�2 + �1

�
+ x

= h[ t
2
�2 +

t
2
�2 + �1] + t

�
t
2
�2 + �1

�
+ x (S)

= h
�
t
2
�2 +O

�
+ h

�
t
2
�2 + �1

�
+ t
�
t
2
�2 + �1

�
+ x (B)

= h
�
t
2
�2 +O

�
+ (t+ h)

�
t
2
�2 + �1

�
+ x (S)

Now we bound the relevant distance. Let8>>><>>>:
� = h

2
�2 +O

 = h
�
t
2
�2 +O

�
+ (t+ h)

�
t
2
�2 + �1

�
+ x

Then we have that 8>>>>>>>>><>>>>>>>>>:

d(k(t+ h); hp(t) + k(t)) = d(h� +  ;  )

� h:C1:d(� ; 1)

� h:C1:C2:h=2

for some constants C1 and C2. Hence, limh!0 d(k(t+h); hp(t)+k(t))=h = 0, as required.
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We �nally come to a statement about the second-order approximation of a path in a

metric space.

Theorem 6 (Taylor-2). If g : [0; T ]! E is such that

8>>>>>>>>><>>>>>>>>>:

i) g mutable

ii)
�
g : [0; T ]! �(E) mutable

iii)
��
g (t) is Lipschitz

then 9 constant C 8 t such that d
�
g (t) ; t

�
t
2

��
g (0) +

�
g (0)

�
+ g (0)

�
� Ct3:

Proof. k (t) = t
�
t
2

��
g (0) +

�
g (0)

�
+ g (0) :

d

�
g (t) ; t

�
t

2

��
g (0) +

�
g (0)

�
+ g (0)

�
� C�t � d�

�
�
g (t) ; p (t)

�

for a constant C� by Lemma M (10), and p (t) is just the �rst-order Taylor expansion of
�
g (t) about 0, so that

C�t � d�
�
�
g (t) ; p (t)

�
� C�C��t

3

for a constant C��: Letting C = C�C�� �nishes the proof.

We next highlight the full Taylor expansion in Mutational Spaces.

24



2.3 THE FULL TAYLOR THEOREM

Notation 1. For n 2 N; we denote the nth mutation of a mutable function f by
(n)

f :

Theorem 2. If g : [0; T ]! E is such that8>>><>>>:
i)

(i)
g mutable for i 2 f0; : : : ; n� 1g

ii)
(n)
g Lipschitz

then, assuming axiom C, there exists a constant C for all t such that

d

 
g (t) ;

nX
i=0

ti

i!

(i)
g (0)

!
� Ctn+1

Proof. We proceed by induction on n. The case where k = 1 and k = 2 are done. Suppose

that the Taylor expansion holds for k = n � 1: Again, by (10) ; we have, for a constant C�

that

d

 
g (t) ;

nX
i=0

ti

i!

(i)
g (0)

!
� C�t � d�

 
�
g (t) ;

nX
i=1

ti�1

(i� 1)!
(i)
g (0)

!
and, by the induction hypothesis, we have that

d�

 
�
g (t) ;

nX
i=1

ti�1

(i� 1)!
(i)
g (0)

!
� C��tn

so let C = C�C�� and we are done.
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3.0 APPLICATIONS OF MUTATIONAL ANALYSIS TO NUMERICAL

METHODS

Three applications of second transitions and second mutations are given below. First, we

work out the Mutational Midpoint Method, then, we use properties A, B, and C to derive the

Mutational Heun Method, and verify the correctness of Mutational Runge-Kutta methods

more generally.

3.1 MIDPOINT AND HEUN METHODS

Theorem 1. Let (E;�(E)) be a mutational space, y : [0; T ] ! E continuous for some

T 2 R, f : E ! �(E) be a continuous function,
�
y 3 f , g : � (E)! �(� (E)) be such that

�
f 3 g, and suppose, for a �xed t, that y (t) = yn has a second-order Taylor expansion, that

is, d
�
y (t+ h) ; h

�
h
2
g (yn) + f (yn)

�
+ yn

�
� Ch3. De�ne the Mutational Midpoint Method

by:

yn+1 = hf

�
h

2
f (yn) + yn

�
+ yn

Then d (y (t+ h) ; yn+1) � C 0h3.

Proof. By (9) 8>>><>>>:
d
�
h
�
h
2
g (yn) + f (yn)

�
+ yn; hf

�
h
2
f (yn) + yn

�
+ yn

�
� C1h � d

�
h
2
g (yn) + f (yn) ; f

�
h
2
f (yn) + yn

��
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but h
2
g (yn) + f (yn) is just the �rst-order Taylor expansion of f

�
h
2
f (yn) + yn

�
about f (yn),

and so

d

�
h

2
g (yn) + f (yn) ; f

�
h

2
f (yn) + yn

��
� C2h

2

and thus 8>>>>>>>>><>>>>>>>>>:

d (y (t+ h) ; yn+1) � d
�
yn; h

�
h
2
g (yn) + f (yn)

�
+ yn

�
+d
�
h
�
h
2
g (yn) + f (yn)

�
+ yn; hf

�
h
2
f (yn) + yn

�
+ yn

�
� Ch3 + C1C2h

3

for constants C;C1; C2:

Proposition 2. Let (E;�(E)) be a mutational space, y : [0; T ] ! E be a continuous

function for some T 2 [0;1), f : E ! �(E) be a Lipschitz function with Lipschitz constant

�,
�
y 3 f , g : � (E)! �(� (E)) a continuous function such that

�
f 3 g, and suppose that y (t)

has a second-order Taylor expansion d
�
y (t+ h) ; h

�
h
2
g (yn) + f (yn)

�
+ yn

�
� Ch3. De�ne

the Mutational Heun Method by

yn+1 =
h

2
f (hf (yn) + yn) +

h

2
f (yn) + yn

Furthermore, suppose that axioms B and C hold. Then d (y (t+ h) ; yn+1) � C 0h3.

Proof. First, it can be shown that

d

�
h

2
f (hf (yn) + yn) +

h

2
f (yn) + yn;

h

2
f (f (t+ h)) +

h

2
f (yn) + yn

�
� C1h

3
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for some C1 > 0. Next,8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

h
�
h
2
g (yn) + f (yn)

�
+ yn

= h
�
h
2
g (yn) +O

�
+ hf (yn) + yn (B)

= h
�
h
2
g (yn) +O

�
+ h

2
f (yn) +

h
2
f (yn) + yn (S)

= h
�
h
2
g (yn) +O

�
+ h � 1

2
f (yn) +

h
2
f (yn) + yn

= h
�
h
2
g (yn) +

1
2
f (yn)

�
+ h

2
f (yn) + yn (B)

=
h
h2

2
g (yn) +

h
2
f (yn)

i
+ h

2
f (yn) + yn (C)

= h
2
[hg (yn) + f (yn)] +

h
2
f (yn) + yn (C)

Finally, we see that8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

d (y (t+ h) ; yn+1) � d
�
y (t+ h) ; h

�
h
2
g (yn) + f (yn)

�
+ yn

�
+d
�
h
�
h
2
g (yn) + f (yn)

�
+ yn;

h
2
f (f (t+ h)) + h

2
f (yn) + yn

�
+d
�
h
2
f (f (t+ h)) + h

2
f (yn) + yn;

h
2
f (hf (yn) + yn) +

h
2
f (yn) + yn

�
� Ch3 + d

�
h
�
h
2
g (yn) + f (yn)

�
+ yn;

h
2
f (f (t+ h)) + h

2
f (yn) + yn

�
+ C1h

3

= Ch3 + d
�
h
2
[hg (yn) + f (yn)] +

h
2
f (yn) + yn;

h
2
f (f (t+ h)) + h

2
f (yn) + yn

�
+ C1h

3

� Ch3 + C2h � d ([hg (yn) + f (yn)] ; f (f (t+ h))) + C1h
3; C2 > 0 (Lemma T )

� Ch3 + C2C3h
3 + C1h

3 = C 0h3; C3 > 0 (Taylor � 1)
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These numerical methods are both given for single steps. It remains to show that the

full method converges, given their single-step convergence.

We give a slight re�statement of the Cauchy�Lipschitz theorem and then derive a general

theorem allowing us to show that a sequence of approximate solutions to a mutational

equation converges to the exact solution. This improves over Najman�s proof that the Euler

Scheme of approximations is �convergent�[24] because it provides exact estimates of the error,

and because the entire sequence converges to the exact solution �not just a subsequence.

Theorem 3 (Modi�ed Cauchy-Lipschitz). Suppose f is Lipschitz with Lipschitz constant

kfk, and skirted � = supx �(f(x)) < 1. Let A = � + kfk. Let x = x(t) be a solution

of
�
x(t) 3 f(x(t)) for t � 0. Let y = y(t) be another mutable function. Then for any

ti+1 � ti � 0, and all t 2 [ti; ti+1]

d(x(t); y(t)) � eA(t�ti)d(x(ti); y(ti)) +

Z t

ti

eA(t�s)d�(f(y(s));
�
y(s)) ds:

Theorem 4 (Convergence of Approximate Solutions). Suppose f , kfk, � and A are as

above. Fix T � 0. Suppose there is a constant C, a constant k � 1, and for each h > 0 a

map xh = xh(t) on [0; T ] such that:

(i) xh(t) is mutable,

(ii) xh(0) = x0 = x(0) and

(iii) there is a partition 0 = t0 < t1 < � � � < tN = T of [0; T ] with jti+1 � tij � h for all

i, such that Z ti+1

ti

eA(ti+1�s)d�(f(xh(s));
�
xh(s)) ds � Chk+1:

Then there is a constant D such that

sup
t2[0;T ]

d(x(t); xh(t)) � Dhk:

Thus the xh�s converge uniformly on [0; T ], in order k, to the exact solution x of
�
x(t) 3

f(x(t)).
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Proof. Take any t 2 [0; T ]. Then t 2 [ti; ti+1] for some i. We show, by induction on i, that

there is a constant D such that d(x(t); xh(t)) � Dhk �as required.

Case t 2 [t0; t1] : Then apply the Modi�ed Cauchy�Lipschitz Theorem (3), noting that

d(x(t0); xh(t0)) = 0, by hypothesis, along with condition (iv), to get:

d(x(t); xh(t)) � Chk+1:

Case t 2 [t1; t2] : Apply (3) over [t1; t2] and use the estimate d(x(t1); xh(t1)) � Chk+1

given by the previous case to get:

d(x(t); xh(t)) � Chk+1eAh + Chk+1

Inductively, we get

Case t 2 [tN�1; tN ] : By (3) and the previous case:

d(x(t); xh(t)) � (eAh)(N�1)Chk+1 + � � �+ Chk+1:

Thus, irrespective of which subinterval [ti; ti+1] t is in, we have:8>>>>>><>>>>>>:

d(x(t); xh(t)) � Chk+1
�
1 + eAh + � � � (eAh)(N�1)

�
� Chk+1 (e

Ah)N�1
eAh�1

= hk
�
C(e

T
h
Ah � 1) h

eAh�1

�
� Dhk

Lemma 5. With the notation of the previous theorems, condition (iv) is satis�ed if:

sup
t2[ti;ti+1]

d�(f(xh(t));
�
xh(t)) � Bhk;

for some constant B (independent of h etc.).
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Proof. The integral of (iv) is bounded as follows:8>>>>>>>>><>>>>>>>>>:

R ti+1
ti

eA(ti+1�s)d�(f(xh(s));
�
xh(s)) ds � Bhk

R ti+1
ti

eA(ti+1�s) ds

� Bhk e
Ah�1
A

� Chk+1

for some constant C (independent of h etc.).

3.2 EXPLICIT RUNGE-KUTTA METHODS

The Heun method of the last section is a second order version of a family of approximation

methods called the Runge-Kutta methods. Let (E;�(E)) be a �rst mutational space,

g : [0; T ] ! E mutable, and f : [0; 1] � E ! E such that
�
g 3 f: We can de�ne a

sequence of Runge-Kutta methods of increasing order by induction. For example, let g(1)

be obtained by the Euler Method, a �rst order Runge-Kutta method. That is, g(1)n+1 =

hb(1)f (tn; gn) + gn: Then de�ne g(m+1) as the (m+ 1) � st order Runge-Kutta method by

g
(m+1)
n+1 = hb(m+1)f

�
tn + c(m+1)h; g

(m)
n

�
+ g

(m+1)
n ; where b(i); c(i) 2 R for all i: Of course,

choosing di¤erent b(i) and c(i) produce di¤erent families of RK methods. Nevertheless, for

�xed b(i) and c(i); the following result is quite useful.

Theorem 1. For a RK method g(m)n ; d
�
g (t+ h) ; g

(m)
n+1

�
� Chm+1:

Proof. By induction:

m = 1; 2 : Euler and Heun methods have already been done.

m = k + 1 : We have8>>><>>>:
d
�
g (t+ h) ; g

(k+1)
n+1

�
= d

�
g (t+ h) ; hb(k+1)f

�
tn + c(k+1)h; g

(k)
n

�
+ g

(k+1)
n

�

� Dh � d
�
g (t+ h) ; f

�
tn + c(m+1)h; g

(k)
n

��
� Dh �D�hk

utilizing a basic property of transitions and the induction hypothesis, respectively.
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4.0 STOCHASTIC ANALYSIS ON SUBSET SPACES

In this section, we begin a modest measure theory for spaces of subsets. Our goal is

to use this theory for several applications. Two applications will be discussed in this

chapter: Stochastic Mutational Equations in the sense of "convergence in measure" and

general parameter estimation of subsets. In the next chapter, we will take a look at a

particular biological model that is a primary motivation for this stochastic extension.

4.1 GAUSSIAN INTEGRALS

For simplicity of illustration, we will only consider the set of all subsets of subsets of R, in

other words, 22
R
. However, the theory is similar when replacing R with any set X. For

an adequate treatment of Gaussian integrals, see [3]. The next two de�nitions will serve as

�nite dimensional templates for a measure we de�ne on 22
R
.

De�nition 1. The one-dimensional Gaussian integral is

G (A) :=

Z
A

e�x
2
dxp
2�

; A � R

and the n-dimensional Gaussian integral is

Gn (A) :=

Z
A

e�x
2
dxp

(2�)n
; A � Rn
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Since, in our in�nite-dimensional integrals, we concern ourselves only with integrating

over functions (as opposed to more general relations), we restrict ourselves to situations where

A is rectangular. Thus, Gn (A) can actually be written as the product of one-dimensional

integrals. That is

Gn (A) := (2�)
�n
2

nY
i=1

Z
Ai

e�x
2
i dx, Ai is the projection of A � Rn onto the nth coordinate

and this yields some intuition in progressing to an in�nite-dimensional version of Gaussian

integration.

We begin by considering [a; b] � R, and giving a de�nition of a measure on R[a;b]:

De�nition 2. The measure �[a;b] on R[a;b] is the unique measure such that for any �nite

partition ftig ; i = 1; : : : n of [a; b] such that a � t1 < t2 < � � � < tn � b; the projection of

�[a;b] onto Rftig is Gn: We can denote this as follows:

�[a;b] (A) :=
Y
x2[a;b]

Z
A

dG1 (x) ; A � R

where dG1 is the one-dimensional Gaussian measure, in the sense of the aforementioned

integral. The fact that �[a;b] is, in fact, unique can be found in [12]. This measure can be

extended to a measure �R by taking the limit of closed intervals increasing in size.

While �[a;b] is interesting enough, we take our methods one step further. Consider the

set R[a;b][c;d] : For two elements g; h 2 R[a;b][c;d] ; we say that g � h i¤ g (x (t)) � h (x (t)) for

all x 2 [a; b][c;d] and t 2 [c; d]. Let us now de�ne a measure on R[a;b][c;d] :
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De�nition 3. The measure �[a;b][c;d] on R
[a;b][c;d] is the unique measure such that for any �nite

partition fxi (tj)g ; i = 1; : : : ; n; j = 1; : : :m of [a; b][c;d] such that c � t1 < � � � < tm � d and

a � x1 � � � � � xn � b in the sense of
�
�;RR

�
; the projection of �[a;b][c;d] onto R

fxi(tj)g is

Gmn: We can denote this as follows:

�[a;b][c;d] (A) :=
Y

x2[a;b]�[c;d]

Z
A

dG1 (x) ; A � R

Now we can extend an in�nite dimensional measure to any �nite multipower. For the

set of all subsets of subsets of Rn, and A � f0; 1g, we will use

�
�
22

[a;b]n

; A
�
:=

Y
x2f0;1g�[a;b]�f0;:::n�1g

X
A

n (x)

and, whenever we wish to replace [a; b] with R, we will use

�
�
22

Rn

; A
�
:= lim

a!�1
b!1

�
�
22

[a;b]n

; A
�
=

Y
x2f0;1g�R�f0;:::;n�1g

X
A

n (x)

whenever the limit exists. As a technical point, whenever the one-dimensional projec-

tions are measures on subsets of A � Z, we replace the Gaussian measure with a measure 


such that 
 (A) < 1. As another technical point, we should mention that the ��algebra

for these measures are the cylindrical ��algebras discussed in [12]:
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4.2 APPLICATIONS

Let
�
22

Rn
;A; �

�
be a measure space. Recall that, for f; g 2 2R

n
, we have that f � g

i¤ f (x (y)) < g (x (y)) for all x 2 Rn and all y 2 f1; : : : ; ng. De�ne a metric on 2R
n
by

d (f; g) = � ([f; g]), for f � g. Consequently,
�
2R

n
; d
�
is a metric space, and one can then

turn it into a mutational space
�
2R

n
;�
�
2R

n�
; d
�
by specifying a set of mutations �

�
2R

n�
.

The e¤ect of the Mutational Cauchy-Lipschitz Theorem on this mutational space is that

solutions of stochastic mutational equations can be de�ned by convergence in measure.

Additionally, we can use this pair of metric space and measure space on the hyperspace

to do non-parametric estimation on a general mutational equation. Let x (�) : [0; T ]! 2R
n

be the solution to a mutational equation
�
x (t) 3 f (x (t)), where f : 2R

n ! �
�
2R

n�
is

Lipschitz and skirted, and
�
x : [0; T ] ! 2�(2

Rn) is a mutation. We construct a measure

space
�
2�(2

Rn); T; �
�
and associate it with the metric space

�
�
�
2R

n�
; �
�
in such a way that

� (h; k) = � ([h; k]), for h; k 2 �
�
2R

n�
; h � k. Now we de�ne the maximum likelihood

estimate of f .

De�nition 1. The maximum likelihood estimate of f given f 2 A; x (t) and
�
x (t) is the f

that minimizes the function

MLE (f) := inf
f2Lip(2R

n
;�(2R

n
))\A

f skirted

inf
�2�x(t)

� (� (t) ; f (x (t)))

for almost all t 2 [0; T ] :

The intuitive interpretation for metrics of the type d and � above is that two elements

are similar to each other if the probability that another element can be inserted between

them is rather low.

We can extend this construction into a more general setting. Let
�
2�(K);K; �

�
be a

measure space, (K;�(K) ; �) a mutational space, and (� (K) ; d) a totally ordered metric

space such that, for a; b 2 K, d (a; b) = � ([a; b]), whenever a � b. Let
�
y (t) 3 g (y (t)) ;

where y : [0; T ]! K, and g : K ! �(K) is Lipschitz and skirted, and
�
y : [0; T ]! 2�(K) is

a mutation. Then we can de�ne the following.
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De�nition 2. The maximum likelihood estimate of g given g 2 B; y (t) and
�
y (t) is the g

that minimizes the function

MLE (g) := inf
g2Lip(K;�(K))\B

g skirted

inf

2�y(t)

� (
 (t) ; g (y (t)))
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5.0 STOCHASTIC MUTATIONAL ANALYSIS AND CANCER

MODELLING

We consider here two models of combined tumorigenesis and angiogenesis. That is, we are

interested in cancer growth in the presence of surrounding vascular growth. The �rst model

will be (mostly) concrete, with a sample implementation left to the appendix. The second

model will be largely abstract, but illustrative of the �exibility of modelling with mutational

analysis.

5.1 FIRST MODEL (JUNIOR GRADE)

For the �rst model, we operate, for the sake of simplicity, in the square [0; 1] � [0; 1]. Fix

T 2 [0;1). We will work with the mutational space

�
K
�
[0; 1]2

�
�K

�
[0; 1]2

�
; LIP

�
[0; 1]2 ; [0; 1]2

�
� LIP

�
[0; 1]2 ; [0; 1]2

�
; D
�

where LIP
�
[0; 1]2 ; [0; 1]2

�
is the set of Lipschitz closed convex processes on the square,

and D is the product Hausdor¤ metric 1.2. Representing a tumor will be the mutable

function C : [0; T ] ! K
�
[0; 1]2

�
; and representing the network of small vessels will be

V : [0; T ] ! K
�
[0; 1]2

�
, also mutable. Our product transition will depend on what each

shape looks like at a particular time t. That is:

�
�
C �

�
V

�
(t) 3 (� � �) [C (t)� V (t)]
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and we now de�ne � and � : The transition � will represent the mutation of the tumor,

and � represents the mutation of the vasculature. They are as follows:

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

� (h;C (t)) =
S
x2C(t) x

+hp1 fd (x;ME (V (t))) ^ cg [ME (V (t))� x]

+ hp2
d(x;ME(V (t)))+�

B

� (h; V (t)) =
S
y2E[V (t)]

R 1
0
y

+hq1d (y; C (t))� [ME (C (t))� y] d�

where p1 and q1 are rates of "chemotaxis", a way of one shape being able to seek its way

to another, which naturally happens in living organisms by way of producing and emitting

chemicals, c and � are positive constants required to bound growth, p2 is a proliferation

constant for tumor expansion, ME is a function that returns the barycenter of a set, E is

the function of the set of endpoints of V . In the appendix, we set jEj = 1, so that we

are dealing with one vessel, but one can model V as a star formation, with any �xed �nite

number of line segments stemming from one point. Both transitions are continuous, as they

are unions of continuous selections. The function d is simply the Euclidean set to point

distance. Finally, the set B is the closed unit ball in R2.

5.2 SECOND MODEL (UTILITY GRADE)

The second model is a strict extension of the �rst. The tumor and vessel set functions

will exhibit much more complex behavior, as probabilistic phenomena are added. We will

now allow centrally necrotic tumor tissue, de novo synthesis of blood vessels by the tumor

itself (as well as recruitment of blood vessels as in model 1), administration of antiangiogenic

medication (via blood vessels), and metastatic growth (tumor sets that are disconnected).
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De novo synthesis of blood vessels and metastasis will require a very di¤erent mutational

space from that of model 1. Continuity issues with disconnected sets and the probabilistic

description force us to adopt a mutational structure more like the ones in the Probability

Measures section. Because of the complexity of this model, transitions will not be displayed

in the complete closed form, as they were in model 1. Rather, this model description

serves the purpose of highlighting the true power of the Mutational Analysis method over

the deterministic or stochastic PDE method of dynamical system modelling.

Let us now operate in [0; 1]3 with T 2 [0;1). Let
�
22

[0;1]3

;A; �
�
be a measure space,

and
�
2[0;1]

3

; 2[0;1]
3

; d
�
be an ordered mutational space with the usual ordering, such that,

whenever f; g 2 2[0;1]3 with f � g, d (f; g) = � ([f; g]) : In similar fashion to the previous

model, we have C; V : [0; T ] ! 2[0;1]
3

, which are both mutable: We will use the same

mutational equation above

�
�
C �

�
V

�
(t) 3 (� � �) [C (t)� V (t)]

except that we will now describe, narratively, both � and � .

The transition � will take four actions with di¤erent probabilities. With probability a1,

it will grow each point x 2 C (t) radially, essentially adding a scaled closed unit ball around

it,

0@ [
x2C(t)�V (t)

x+ hp1B

1A[0@ [
x2C(t)\V (t)

x+
h

m (t)
B

1A

as above. The function m (t) can be seen as a dosage of antiangiogenic medication

at time t, retarding the growth of tumor in the vicinity of the treatment in�ux. With

probability a2, C (t) will be replaced with

C (t)�
�
[x2C(t)

�
B (h; x) : d

�
x; [0; 1]3�C (t)

�
�M

�
where M is a real-valued random variable, bounded below by a constant r > 0, with

a cumulative distribution function F (x). In other words, central necrosis is activated

with probability a2. Note that only interiors are deleted, so that
�
B (0; x) is empty. With
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probability a3, if C (t)\E (V (t)), give the members of E (V (t)) a uniform distribution and

draw randomly one endpoint. This corresponds to an "entry point" for the tumor. Then,

take the drawn point as a starting point, and transfer all points of V (t) within hs units of that

endpoint over to C (t). This is the equivalent of an invasion of solid tumor mass into a blood

vessel. We shall not bother ourselves so much with the case where many small capillaries

are bunched together. From an empirical standpoint, it is reasonable for a tumor mass to

invade many close capillaries simultaneously. Finally, with probability 1 � a1 � a2 � a3, if

h 6= 0, give the members of [0; 1]3 within h of C (t) the uniform distribution, choose one

point from that distribution, and add that point to C (t). One may, instead, only consider

points in space that are adjacent to blood vessels in the selection, if one is considering the

vasculature the only method of metastasis.

Transition � will be much simpler. Fix probabilities b1 and b2 so that b1+ b2 < 1. With

probability b1, the ends of all vessels will grow by hq1, much like in the last model. With

probability b2, assign the uniform distribution to the entire vascular network, pick a point

in the network, and designate that point as a new endpoint. Consequently, the vasculature

will remain inactive with probability 1� b1 � b2.

It should be noted here that it is possible to recast the new model in closed form. The

narrative serves to illustrate how �exible mutational models can be, and how much faster

they can be realized than their PDE counterparts. One may suspect, in addition, that a

PDE equivalent of this model is not possible, because of the frequent additions and deletions

of points to each set evolutions.

Also note that � and � are continuous with respect to t by construction. This can be

checked easily for all twelve event types. For illustration, the case for when the tumor and

vasculature network both grow (with probability a1b1) will be shown. It su¢ ces to show, in

this case, that whenever h! 0; d (� (h) ;O)! 0. This distance is considered by measuring

the absolute value of the characteristic function of the following set

240@ [
x2C(t)�V (t)

x+ hp1B

1A[0@ [
x2C(t)\V (t)

x+
h

m (t)
B

1A35�C (t)
and the fact that h! 0 empties this set implies that its characteristic function tends to
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an absolute value of zero, and we are done. That h! 0 implies d (� (h) ;O)! 0 is clear.
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6.0 CONCLUSION AND FUTURE DIRECTIONS

A substantial expansion of Mutational Analysis has been given in the current discussion. The

discussion began with a review of key de�nitions, examples, results, and inferences of Aubin�s

initial work. Then, the �rst new item is an extension of the concept of mutation to higher

orders. It is shown how interesting this extension is in its own right, and then its usefulness

is highlighted in the study of second and higher order mutational numerical methods. The

second new item is an extension of the the concept of mutation to stochastic mutations. This

relies on already existing mathematics relating to the integration of functions on in�nite

dimensional spaces. This extension allows for a more robust application of mutational

analysis to real world problems involving data. The biological examples of cancer evolution

are displayed as an illustrative example to this end. Depending on the nature of application,

there are several directions that one can travel in with respect to the new theories of the

current work.

There has been much focus on the mathematical accuracy of approximations of muta-

tional equations in this discussion, but little mention of computational speed. Part of the

reasoning behind this comes from the fact that there is almost always a no-arbitrage trade

o¤ of one for the other. It is usually taken for granted that higher order numerical meth-

ods and/or larger domains will result in an slower speed of computation. It is also taken

for granted that, for mutational equations on spaces that are not vector spaces, the num-

ber of computations required to obtain a satisfactory result is greatly reduced from that of

an adequately approximate formulation in terms of equations that require vector space do-

mains. That much is illustrated from the examples of shapes space equations given thus far.

It would be interesting to �nd out which (non-vector-space) metric spaces with additional

structure simplify computations enough to signi�cantly increase computational speed.
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Recently there has been a demand in engineering and science �elds for multiscale mod-

eling, or modeling of complex systems on multiple physical scales. This has been driven

largely by the desire for a more systems-oriented approach to modeling [4]. Since mutational

equations have the capability of considering several di¤erent types of evolutions simultane-

ously, it naturally supports multiscale modeling. Where Mutational Analysis may �nd a

distinct advantage in multiscale modeling is the consideration of several shifting scales. It is

not unreasonable to expect, from experimental data, either that exact scales are impossible

to obtain, requiring approximate or probabilistic scales to su¢ ce, or that the salient scales

themselves are dynamic, and change in magnitude over time, or over some other range of

attributes. Therefore, it may be a worthwhile project to determine what of Mutational

Analysis �nds value in describing such sliding scale systems.

On a more theoretical note, one recognizes Mutational Analysis, as it currently stands,

as a theory of calculus on topological spaces. Then, one naturally asks the question, "Can

this theory be applied to spaces more general than topological spaces?" There are several

mathematical categories that can serve as probable generalizations. One such example is

the category of approach spaces, where point-to-point distances are replaced (non-trivially)

with point-to-set distances [21]. The resulting point-to-singleton set distances will generally

not match up with the point-to-point distances of any metric. Another example is the

category of convergence spaces, where one replaces a metric with a collection of local �lters

at each point in the space [21]. There is also a category of convergence-approach spaces that

contains both convergence spaces and approach spaces as subcategories [22]. Finally, there

is the category of µCech closure spaces, containing spaces with a simple preclosure operator

[27]. This category contains both topological and pretopological spaces as subcategories.
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APPENDIX

APPENDIX

We have encoded a version of model 1 in the Python language in order to illustrate the

ease of implementing spatial models describe in terms of mutational equations. While, in

practice, a particular model becomes tied to a reference system of an author�s choosing, much

of the mutational framework can be encoded in an implementation-independent framework.

Displayed below is the Python code used for both the Taylor-type approximations of the

mutational equation used, as well as the elementary transitions and their compositions. At

the end, an implementation of the script for evaluating a particular numerical method is

provided.

Algorithm: Euler Method

def Euler_sequence(f,x0,h,N):

xs=[x0]

for i in range(1,N):

xs.append(f(xs[i-1])(h,xs[i-1]))

return xs

Algorithm: Midpoint Method

def Midpoint_sequence(f,x0,h,N):

xs=[x0]

xi=x0
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for i in range(1,N):

y=f(xi)(h/2,xi)

z=f(xi)(h/2,xi)

xi=f(y)(h,z)

xs.append(xi)

return xs

Algorithm: Heun Method

def Heun_sequence2(f,x0,h,N):

xs=[x0]

xi=x0

for i in range(1,N):

y=f(xi)(h,xi)

z=f(xi)(h/2,xi)

xi=f(y)(h/2,z)

xs.append(xi)

return xs

Interface: Basic Geometric Operations

def Union(ss):

return reduce(lambda x,y : xjy, ss)

def disk(center,radius):

K=int(radius)

disk=set([center])

for i in range(-K+1,K):

for j in range(-K+1,K):

cur_pt=(int(center[0]+i), int(center[1]+j))

if distance(center,cur_pt)<= radius:

disk.add(cur_pt)

return disk

def line_segment(start,direction,length):
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(sx,sy)=start

(dx,dy)=direction

len_d=sqrt(dx**2+dy**2)

line=set([start])

if (len_d != 0):

for t in range(length):

line.add( (sx+int(t*dx/len_d),sy+int(t*dy/len_d)) )

return line

def cylinder(center,radius,height):

K=int(radius)

cylinder=set([center])

for i in range(-K+1,K):

for j in range(-K+1,K):

cur_pt=(int(center[0]+i), int(center[1]+j), int(height))

if distance(center,cur_pt)<= radius:

cylinder.add(cur_pt)

return cylinder

def cube_segment(start,direction,length,height):

(sx,sy)=start

(dx,dy)=direction

len_d=sqrt(dx**2+dy**2)

line=set([start])

if (len_d != 0):

for t in range(length):

line.add( (sx+int(t*dx/len_d),sy+int(t*dy/len_d),height) )

return line

def vector_sum(x,y):

return tuple(xi+yi for (xi,yi) in zip(x,y))

def add_vector2set(x,K):
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return set(vector_sum(x,y) for y in K)

def int_scalar_product(a,x):

return tuple(int(a*xi) for xi in x)

def multiply_set_by_scalar(a,K):

return set(int_scalar_product(a,x) for x in K)

Interface: Flow-Based Transitions

def transition_from_scaled_�ow(f):

return lambda h,K : Union([add_vector2set(x,f(h,x)) for x in K])

def MidPoint_transition_from_scaled_�ow(f):

return lambda h,K : set(vector_sum(x,z) for x in K for y in f(h/2,x) for z in

f(h,vector_sum(x,y)))

def Heun_transition_from_scaled_�ow(f):

return lambda h,K : set(vector_sum(x,vector_sum(y,z)) for x in K for y in f(h/2,x)

for z in f(h/2,vector_sum(x,int_scalar_product(2,y))))

Implementation: Euler Method

#initial condition is shape of cancer and vasculature

x0=(C0,V0)

#mutational equation: deriv( (C(t),V(t)) ) in F( (C(t),V(t)) )

# transitions are products of morphological transitions

# de�ned from �ows G and H

# the �ow G (resp H) de�nes for each h>0 and point x a compact, convex set

# in this case a disk (resp a line segment)

from mutations.transitions.morphological import disk,

line_segment,transition_from_scaled_�ow

from mutations.transitions.operations import product

# need a parameter, c, for G, and d for H

c=320

d=250
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maxgrowth=20

def F((C,V)):

# the (scaled) �ow G

def G(h,x):

dnp=D(V,d_2)(x)

r=1

if dnp != 0.0:

r=min(c*h/dnp,maxgrowth) # capped dynamics

return disk((0,0),r)

# the (scaled) �ow H

def H(h,x):

(dnp,np)=DD(C,d_2)(x)

r=1

if dnp != 0.0:

r=min(d*h/dnp,maxgrowth) # capped dynamics

start=(0,0)

direction=(np[0]-x[0],np[1]-x[1])

length=int(r)

return line_segment(start,direction,length)

# return the product of transitions from these 2 �ows

return product(transition_from_scaled_�ow(G),

transition_from_scaled_�ow(H))

# We (approximately) solve the mutational equation using Euler�s method

from mutations.soln_schemes.Euler import Euler_sequence

#from mutations.soln_schemes.Heun2 import Heun_sequence2

#from mutations.soln_schemes.Midpoint import Midpoint_sequence

#set step size and number of steps

#h=0.25

#N=5

h=0.33333
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N=7

print "Calculate Euler sequence..."

CV=Euler_sequence(F,x0,h,N)

52


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	1.1.1. Vascular Cooption: Blood vessel V1 is deactivated by medication, then the tumor mass C sends signals out, recruiting V2 in the process.
	1.1.2. Vasculogenic Mimicry: V1 is deactivated by medicine, then the tumor mass C develops its own blood vessels V2 and V3 in order to connect to the outside network of vessels.

	1.0 INTRODUCTION
	1.1 The Motivation and The Plan
	1.2 Preliminaries

	2.0 TRANSITIONS OF HIGHER ORDER
	2.1 Examples of Second Transitions
	2.2 The Second Order Taylor Theorem for Mutational Spaces
	2.3 The Full Taylor Theorem

	3.0 APPLICATIONS OF MUTATIONAL ANALYSIS TO NUMERICAL METHODS
	3.1 Midpoint and Heun Methods
	3.2 Explicit Runge-Kutta Methods

	4.0 STOCHASTIC ANALYSIS ON SUBSET SPACES
	4.1 Gaussian Integrals
	4.2 Applications

	5.0 STOCHASTIC MUTATIONAL ANALYSIS AND CANCER MODELLING
	5.1 First Model (Junior Grade)
	5.2 Second Model (Utility Grade)

	6.0 CONCLUSION AND FUTURE DIRECTIONS
	BIBLIOGRAPHY
	APPENDIX. APPENDIX

